Chapter 7
Other Related Labelings

7.1 Special Super Magic Labelings of Bipar-
tite Graphs

7.1.1 Introduction

Unless otherwise stated the results on this section are found in [31]. In our
study of super magic labelings the concept of special super magic labelings
of bipartite graphs has emerged naturally. We define a special super magic
labeling of a bipartite graph G with bipartite sets V| and V5 to be a bijective
function f: V(G)UE(G) = {1,2,...,|V(G)| + |E(G)|} such that

I. f is a super magic labeling of G,
IL f(Vi) = {1,2,...,|Vil}, and
0L f (Vo) ={Vil + 1, V2| +2,..., [V (G)[}-

If a graph G admits a special super magic labeling, then we say that G
1s special super magic.

Note that it is possible to redefine special super magic labelings of bipar-
tite graphs in such a way that only the vertices of the graph are labeled, and
we do this in the next lemma.

Lemma 7.1. A bipartite graph G with bipartite sets Vi and V, is special
super magic if and only if there ewits a bijective function g : V(G) —
{1,2,...,|V(G)|} with the properties

Lg)={12,....ml},
g (Vo) ={IVil + L Vil + 2,..., [V (G)]},
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II. the set {g (u) + g (v) | uv € (G)} is a set of |E (G)| consecutive integers.

Proof.

For the necessity, assume that a bipartite graph G with bipartite sets V;
and V5 is special super magic. Let f be a special super magic labeling of
G. Then, the function f |y defined to be the restriction of the function f
to the set V(G), meets the properties of the function g as described in the
statement of the lemma. Therefore, take g = f |y(g). For the sufficiency,
assume that g is a bijective function defined on the vertex set of a bipartite
graph G, meeting the requirements of the statements of the lemma. Define
the function f: V(G)U E(G) — {1,2,...,|V(G)| + |E(G)|} as follows

(9@ ife e V(G)
f(z) ={ }::»_.g(u)—g(v) if z =wuv € E(G)

where k = |V (G)| + |E(G)| + min{g (a) + g (b) | ab € E (G)}.
Then, the function f is, in fact, a special super magic labeling of G.
Therefore GG is a special super magic graph. O
Next, we prove the following lemma concerning special super magic bi-
partite graphs.

Theorem 7.2. If G is a special super magic bipartite graph with bipartite
sets Vi and Vi, then |E(G)| < |V(G)| - 1.

Proof.

Let GG be a special super magic bipartite graph with bipartite sets V;
and V, then, by Lemma 7.1, there exists a bijective function g : V(G) —
{1,2,...,|V(G)|} such that

L g()={12,...,l},
IL g(Va) ={il+ L, [ +2,.. ., [V(G)I},
I {g(u) +g(v) | uv € (G)} is a set of |E (G)| consecutive integers.

Now,
min {g(u) + g(u) | uv € E(G)} > 2 + |V4|

and

max {g(u) + g(v) | wv € E(G)} < 2|Vi| + V2

hence, |{g(u) + g(v) | uwv € E(G)}| < 2|Vi|+|Vo| — Vil —2+1=V(G)| -1,
but, [{g(u) + g(v) | uv € E(G)}| = |E(G)|. Therefore, |E(G) < |V(G)|| — L.
O
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7.1.2 Special Super Magic and Super Magic Labelings,
Chessboards, 1-Regular and 2-Regular Graphs

The main goal of this section is to establish relations between super magic
graphs and special super magic bipartite graphs. However, in order to do
this, we need to define what in the near future will prove to be the “link”
between the two concepts. This link is what we call an n x n chessboard. An
n x n chessboard is defined to be a square that contains inside of it n rows
and columns shaping n? new little squares inside of the original one. Figure
1 shows a 3 x 3 and a 5 x 5 chessboard.

Iigure 7.1: Chessboards.

Now, notice that assigning different numbers to the columns and different
numbers to the rows of an n X n chessboard, every square of the chessboard is
uniquely determined by an ordered pair (4, j) where i denotes the column to
which the square belongs and j denotes the row to which the square belongs.
Any function that assigns different numbers to the rows and different numbers
to the columns of a chessboard will be called a numbering of the chessboard.

We are ready to present a construction which allows us to transform every
super magic labeling of a 2-regular graph of order p into a special super magic
labeling of the 1-regular graph of size p.

Let G = Ule C; be a 2-regular super magic graph of order p and k
components, such that I[; = |V (C;)| for ¢ = 1,2,...,k and define the vertex
and edge sets of G in the following manner

k
vig)=J v I1<i<y)
J=1

and . N
)= (Utettd ) o (U ot 125501}
i=1 j=1

and consider the vertex labeling g : V(G) — {1,2,...,|V(G)|} with the
properties of the function g defined in Lemma 7.1. Next, construct a p x p
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chessboard with the associated numbering N, which assigns to the columns
and rows of the chessboard the numbers 1 through p consecutively, from left
to right and from top to bottom, respectively. That is to say, the column
that is most to the left receives number 1, the column that is next to this
one receives number 2, and so on until we get to the column that is most to
the right which receives the number p. Also, the row that is located most
to the bottom receives number 1. The row immediately on top of this one,
receives number 2, and so on, until we reach the top most row, that receives
number p. See the Figure 7.2, for geometrical clarification.

= N W pkb 0 O N ®

123 45 6 7 8

Figure 7.2: Numbered chessboard.

Next, we explain how to represent the function g on the p x p chessboard.
In order to do this we will define the set S; in which each ordered pair
belonging to S; represents a square of the representation of the function g
on the p x p chessboard with numbering N;. Thus,

Si = {(9(v1),9(v2)), (9(v2), 9(v3)),- -, (9(vi; 1), g(%)) (9(vi,), 9(v1)),

2

(9(v1), 9(v3)), (9(v3), 9(v2)), - -, (9(vE,—1), 9(v); (9 (wz,), 9(v1)), -
(9(v1), 9(v3)), (g(v3), 9(v3)), -, (g(vi;, — 1), 9(w,)), (9(vr;), (Ul))}

It is easy to see that the set Ay = {i+j|(i,j) € Si} is a set of [S)]
consecutive integers, since the function g has the property that the set
{g(u) + g(v) | uv € E(G)} is a set of |[E(G)| consecutive integers. Next, de-
fine a new numbering N, of the p x p chessboard as follows. For any column
C' of the chessboard, let Ny(C) = Ni(C) and for any row R of the chess-
board, let Ny(R) = Ni(R) + p. Then, let Sy = {(z,y +p) | (z,y) € S1} and
observe that the set Ay = {z +y | (z,y) € Sy} is also a set of |S;| consecutive
integers since Ay, is a set [S;| consecutive integers. The next step is to define
the graph H = pI, in the following way, let

V(H)={v|1<i<ptU{w|1<i<p}
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and
E(H)={uwv |1 <i<p}.
Now, let h be any bijective function from the set C' of connected components
of H to the set Sy, h : C — Sy and define the bijective function f: V(H) —
{1,2,...,|V(H)|} as described below. If h(uv;) = (x,y) then f(u;) = z
and f(v;) = y. Then, the function f is extendable to a special super magic
labeling of the graph H, since f meets the conditions of the function ¢
described in Lemma 7.1.
The next example illustrates the construction described above.

Example 1: Consider the cycle Cs with the bijective vertex labeling g shown
in Figure 7.3.

Figure 7.3: Labeled Cj

It is easy to see that g : V(C5) — {1,2,3,4,5} is a bijective function with
the property that {g(u) + g(v) | wv € (G)} = {4,5,6,7,8}. Now, we con-
struct a 5 x 5 chessboard, with numbering /N, and we represent the function
g on the chessboard after obtaining the set

Sl - {(1: 4): (41 2): (2! 5): (5! 3)? (Sa 1)} .

See Figure 7.4.

Next, we define the numbering Ny on the 5 x 5 chessboard keeping the
representation of g as shown in Figure 7.5.

Now, S = {(1,9),(2,10),(3,6),(4,7),(5,8)}

Consider the graph 5K represented in Figure 7.6.

And let h be the bijective function from the components of 5K, to the
set. Sy defined by the rule,

h((wmv)) = (1,9)
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- N W B O

12 3 4 5

Figure 7.4: Chessboard representing g, numbered with V.

D ~N oo o

12 3 45

Figure 7.5: Chessboard representing g, numbered with N,.

5K 5:
u O—-C0vi
u, O—Owv
usO—COvs
us O—Ov4
us O——Qvs

Figure 7.6
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h((usvy)) = (2,10)
h((usvs)) = (3,6)
h((ugve)) = (4,7)
h((usvs)) = (5,8)

hence, we get the labeling f of the vertices of 5K, defined next, f(u;) =
flug) = 2, f(ug) = 3, flug) =4, f(us) =5, f(v1) =9, f(ve) = 10, f(vs)
6:f(’”4) =1, f(’UEI)_“: 8. B

Since the set { f(u) 4 f(v) | wv € E(5K3)} is the set {9,10,11,12,13} we
can extend the function to a super magic labeling of 5K, as shown in Figure
7.7.

1,

L|3V3
L!4V4
J 1_5) vs

7.1.3 A Relation Between Super Magic Labelings of
Graphs and Pseudo Graphs and Special Super
Magic Labelings of Bipartite Graphs

It has become customary to define labelings of graphs only for simple graphs
with no loops nor multiple edges. The goal in this section is to show that it
may be useful to study super magic labelings of some types of pseudographs,
that is to say graphs with loops. However, before doing this, it is necessary
to extend the definition of super magic labelings of graphs to pseudographs.
We do this in the obvious way.

Let P be a pseudograph, then a bijective function f : V(P)U E(P) —
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{1,2,...,|E(P)|} is called a super magic labeling of P if the following two
conditions hold,

L f(u)+ f(uv) + f(v) =k for every uv in the set E(P), and
L f(V(P) = {L,2,..., V(P)]}

We observe that if a pseudograph has attached more than a single loop
to any of its vertices, then the pseudograph is not super magic. Thus, the
pseudographs that we will consider are basically graphs with at most one loop
attached to any given vertex. Some examples of super magic pseudographs
(Pseudographs that admit super magic labelings) are showed in Figure 7.8,
with their corresponding super magic labelings.

Figure 7.8

After looking at the previous examples, it is obvious that Lemma 7.1
generalizes immediately to pseudographs. Also, Theorem 7.2, generalizes to
pseudographs as shown in Corollary 1, the proof of which will be omitted
since it is similar to the proof of Lemma 2.2.

Corollary 7.3. If a pseudograph P is super magic, then
|[E(P)| <2|V(P)| -1

At this point, we are ready to establish the connection between super
magic labelings of pseudographs and special super magic labelings of bipartite

graphs.
Theorem 7.4. Let P be either a pseudograph or a graph of order p and size

q, and assume that L : V(P) — S C N is a bijective vertex labeling of P.
Then, there exists a bipartite graph H of order 2p and size q, and a bijective
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vertex labeling L* : V(H) — SU{z+p |z € S} such that there exists a
natural number vy, with the property that {L(z)+ L(y) +v | zy € E(P)} =
{L*(x) + L7 (y) | zy € E(H)}.

Proof.
Let P be either a graph or a pseudograph of order p and size ¢, and let
L:V(P)— S CN be a bijective function. Assume that

k T
P = (@ P;‘) o (EB Cf,‘,)
=1 i=1

is any edge disjoint decomposition of P into & paths and r cycles (each loop
will be considered as a cycle), and orient each path in such a way that we
can “travel” from one “end” of the path to its other “end” following the
direction of the arrows. Also arbitrarily orient each cycle either clockwise or
counterclockwise.

Build k& + r, p x p, chessboards and assign to each chessboard N; the
numbering defined next. The numbers 1,2,...,p will be assigned to the
columns of the chessboard in such a way that the column placed left most,
receives number 1. The column next to this one, receives number 2, and
so on until we reach the column right most which will receive number p.
Also Ny, assigns the numbers 1 through p to the rows 1 through p of the
chessboard with number 1 being assigned to the row that is placed at the
bottom. Number 2, being assigned to the row immediately on top of this
one, and so on, until we reach the top row that will receive number p.

For each path Peij(l < j < k) and for each cycle C3 (1 < j < r) we
will represent the functions L |V( Céj)and L |v( PL) respectively on different

chesshoards as described next. The square (L |v(x) (u), L [v(x) (v)) will be
chosen if and only if uv is an arc of X (where X is any path or cycle in the
decomposition of P. Thus, the set S; of all ordered pairs that represent the
squares chosen on the chesshoards with numbering Ny, is the set

S1 = {(L v (), L v (v) | wo is an arc of X,
where X € {PL |1 <i<k}uU{Ch [1<i<r}}.

Define the set A; to be Ay = {a+0b](a,b) € S1}. It is clear that
Ay = {L(u) + L(v) | uv € E(P)}. Next, define a new numbering N, on the
chessboards depending on the numbering N, as follows. For any column C' of
the chessboard, let No(C') = N1(C') and for any row R of the chessboard, let
Ny(R) = Ny(R) + p. Thus, if we call S; to the set of the ordered pairs that
represent the squares on the chessboard, but now, with respect to N,, we have
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that Sy = {(a,b+p) | (a,b) € S;}. Therefore, we have that the set A, de-
fined as A, = {z +y | (z,y) € Sy}, is basically a shift of the set A; by p units.
That is to say, A; = {z +p: 2 € A;}. With all this information in mind, we
are now ready to define the bipartite graph H as follows V(H) = {z;}7,
E(H) ={ziz; | (1,7) € S} and let L* : V(H) — {1,2,...,2p} be the bijec-
tive function defined by the rule L*(x;) = i for every z; € V(H). Then, L*
has the properties of the function described in the statement of the theorem.
O

In order to clarify the previous proof, we will provide an example.

Example 2: Consider the graph G with the vertex labeling L shown in
Figlll‘(—.‘. 7.9 and let G = 04‘1 @ 04,2 @ P3‘1 ea .Pl,g, where 01,1, 04,2, P3,1, Pl‘z
are as shown in Figure 7.10.

Figure 7.9

Now, give arbitrary orientations to the edges of G in such a way that the
cycles are orientated either clockwise or counterclockwise, and the paths are
oriented in such a way that we can travel from one end to the other following
the direction of the arrows. We do this in Figure 7.11.

Then, construct 4, 7 x 7 chessboard with numbering N; and represent
the functions L |v(c, ), L [vices)s L lvip,) and L |y(p, ,) as shown in Figure
7.12.

Next, build 4 more 7 x 7 chessboards and label the rows and the columns
with numbering Ns, keeping the same squares chosen. See Figure 7.13.

Finally, we construct in Figure 7.14, the graph H with function g.

As an immediate consequence to Theorem 7.4, we get that if G is an
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C4F1Z 1 @ @ 5
Vi1 V7 Vg Vs
Cs2: (3 ) ) 6
Va Vs V2 Ve
Psrt O—4—C—3
Vs Va4 V3 Vo
Paa:
Vi Ve
Figure 7.10

e e
Ca: D—>®

Vi V7 Vs Vs
Cor B>

V3 Vs V2 Ve
Paa:

Vg V4 Va Vo
P

Vi Ve

Figure 7.11
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7@ 7
6 © 6 (@
5 ® 5 ®
4 4
3 3 @
2 2 @
1 ® 1
123 456 7 12 3456 7
Llv(ceq Llv(caz)
7 7
6 6@
5 5
4 @ 4
3 @ 3
2 & 2
1 1
12 3 46567 12 3456867
Llvpa LIv(p,.)

Figure 7.12
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14|@ 14
13 @ 13| |@
12 e 12 @
1 11
10 10 @
9 9 @&
8 @ 8
12 3 456 7 12 3 456 7
Llvican Llv(ca,)
14 14
13 13|@
12 12
1 4 11
10 L J 10
9 € 9
8 8
123 456 7 123 456 7
L|V(F'4,1) LlV(Pz,a}

Figure 7.13



104 CHAPTER 7. OTHER RELATED LABELINGS

Figure 7.14

orientation of a super magic pseudograph of order p and size q. Then there
exists a bipartite graph H of order 2p and size ¢ which is special super magic.
From now on, we will refer to this graph H obtained from G, as the bipartite
graph H induced by G, and we will write it as Hg.

A natural question to ask is whether we can say anything about the
bipartite graph Hg, from the properties of G. Although the structure of Hg
has not been really studied yet, the following results are immediate from the
discussion above.

Theorem 7.5. If a digraph G contains a eulerian cycle, then Hg contains
a perfect matching.

Theorem 7.6. If the digraph G can be edge decomposed into two subgraphs
that contain eulerian cycles, then Hg contains a 2-reqular spanning subgraph.

Theorem 7.7. Let G be a digraph with V(G) = {v; | 1 <i <p}. Then if
Vi and Vy are the bipartite sets of the graph Hg, the degree sequence of the
vertices of Vi is out(vy),out(vs),...,out(v,) and the degree sequence of the
vertices of Vo is in(v;),in(vs), . .., in(vy).

The next theorem provides an interesting corollary to the previous theo-
rem.
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Theorem 7.8. If G is a (p, q)-graph with degree sequence 2ky,2k,, ..., 2k,,
then there exists G an orientation of G such that the graph Hg is a be-
partite graph with bipartite sets Vi and V5 then the degree sequence of the
vertices of Vi is equal to the degree sequence of the vertices of V, and equal
to ki, ko, ..., kp.

Proof.

Since all the degrees of the vertices of G are even, then G is decomposable
into cycles (see [40], for example). Orient each cycle either clockwise or
counterclockwise and apply the above theorem. O

7.2 Magical and Antimagical Product Label-
ings

7.2.1 Introduction

An n x n magic square is an n X n array consisting of all integers 1,2, ..., n?

such that the sum of any row or column in the array is constant. It is known
that there is an n x n magic square for every integer n > 3, see [2]. Steward
[38] was motivated by the notion of magic squares to define vertex magic
labelings. A graph G of size g is said to be vertex magic if there is a labeling
from F(G) onto {1,2,...,q} such that, at each vertex v, the sum of the labels
on the edges incident with v is constant. Such a labeling is called a vertex
magic labeling. It is interesting to notice that if an n x n magic square is
given, then it is possible to construct a vertex magic labeling of a complete
bipartite graph K, , for every integer n > 3, and vice versa.

Hartsfield and Ringel [24] introduced antimagic labelings as follows. A
graph G of size ¢ is said to be antimagic if there is a bijective labeling
[ E(G) — {1,2,...,q} such that the sum of all the labels incident with
each vertex are distinct given that the vertices are distinct. Such a labeling
is called an antimagic labeling. Among the graphs known to be antimagic we
find paths, cycles, complete graphs, and wheels. It is also easy to see, that
K, is not antimagic. In fact, Hartsfield and Ringel [24] conjectured that all
graphs other than K, are antimagic.

The last definition that will be presented in this introduction is the
one given by Ringel and Lladé in [34]. A (p,q)-graph G is defined to be
edge antimagic if there exists a bijective labeling f : V(G) U E(G) —
{1,2,...,p+ q} such that if vyu; and vouy are any two different edges of
G, then f(vy) + f(viuy) + f(uy) # f(va) + f(vaug) + f(ve). In their pa-
per they included the result that every connected graph other than K, is
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