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Theorem 7.8. If G is a (p, q)-graph with degree sequence 2ky,2k,, ..., 2k,,
then there exists G an orientation of G such that the graph Hg is a be-
partite graph with bipartite sets Vi and V5 then the degree sequence of the
vertices of Vi is equal to the degree sequence of the vertices of V, and equal
to ki, ko, ..., kp.

Proof.

Since all the degrees of the vertices of G are even, then G is decomposable
into cycles (see [40], for example). Orient each cycle either clockwise or
counterclockwise and apply the above theorem. O

7.2 Magical and Antimagical Product Label-
ings

7.2.1 Introduction

An n x n magic square is an n X n array consisting of all integers 1,2, ..., n?

such that the sum of any row or column in the array is constant. It is known
that there is an n x n magic square for every integer n > 3, see [2]. Steward
[38] was motivated by the notion of magic squares to define vertex magic
labelings. A graph G of size g is said to be vertex magic if there is a labeling
from F(G) onto {1,2,...,q} such that, at each vertex v, the sum of the labels
on the edges incident with v is constant. Such a labeling is called a vertex
magic labeling. It is interesting to notice that if an n x n magic square is
given, then it is possible to construct a vertex magic labeling of a complete
bipartite graph K, , for every integer n > 3, and vice versa.

Hartsfield and Ringel [24] introduced antimagic labelings as follows. A
graph G of size ¢ is said to be antimagic if there is a bijective labeling
[ E(G) — {1,2,...,q} such that the sum of all the labels incident with
each vertex are distinct given that the vertices are distinct. Such a labeling
is called an antimagic labeling. Among the graphs known to be antimagic we
find paths, cycles, complete graphs, and wheels. It is also easy to see, that
K, is not antimagic. In fact, Hartsfield and Ringel [24] conjectured that all
graphs other than K, are antimagic.

The last definition that will be presented in this introduction is the
one given by Ringel and Lladé in [34]. A (p,q)-graph G is defined to be
edge antimagic if there exists a bijective labeling f : V(G) U E(G) —
{1,2,...,p+ q} such that if vyu; and vouy are any two different edges of
G, then f(vy) + f(viuy) + f(uy) # f(va) + f(vaug) + f(ve). In their pa-
per they included the result that every connected graph other than K, is
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edge-antimagic. In this section we shall investigate, the analogous concepts
to magic, antimagic, vertex magic and edge antimagic labelings in terms of
products. Some characterizations will be presented and in order to obtain
them, some classical number theoretical results will be used. The follow-
ing two lemmas are known as Bertrand’s Postulate and Ingham’s Theorem
respectively.

Lemma 7.9. (Bertrand’s Postulate) For any real number x > 1, there exists
a prime p such that x < p < 2.

Bertrand’s Postulate was first proved by Pafnuty Chebyshev in 1850, and
then Ingham [25] extended Bertrand’s Postulate in the following way.

Lemma 7.10. (Ingham’s Theorem) For any positive integer k, there is a
positive integer ny such that if n > ny, then there are at least k primes
between n and 2n.

In his first published paper, Paul Erdés [9] gave a short elegant proof
of the above two lemmas; see [1] for a brief exposition on the history of
Bertrand’s Postulate and Erdds’ proof.

For our study, the value of ny, as defined in the previous lemma, will be
useful, and Erd6s’ proof provides the means to compute its exact value. In
order to do this, we first consider the prime numbers

7,11,13,19,23,37,43,73, 83,139, 163, 277, 317,
547,631, 1093, 1259, 2179, 2503, 4357 and 5003.

They have the property that for every integer n with 6 < n < 4000, there
are at least two of these primes in the interval (n,2n). Second, from Erdds’
proof, it is easy to deduce that for n > 4000, there are at least n/(30log, n)
primes in the interval (n,2n); see [1]. Therefore, n, = 6.

JFrom now on, unless otherwise stated, the results and definitions found
in the rest of this chapter, were first introduced by Figueroa et al. in [11].

7.2.2 Product magic graphs

A graph G of size ¢ is said to be the product magic if there is a bijective
labeling f : E(G) — {1,2,...,q} such that at each vertex v, the product of
the labels on the edges incident with v is constant, and this product is called
the valence of f. Such a labeling is said to be a product magic labeling. In this
section, and with the aid of Bertrand’s Postulate we completely characterize
product magic graphs.
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Theorem 7.11. A graph G of size q is product magic if and only if ¢ < 1.

Proof.

For the necessity, let G be a graph of size ¢ > 2, and let f : E(G) —
{1,2,...,q} be a bijective function. We will show that f is not a product
magic labeling of G. By Bertrand’s Postulate, there exists a prime number
[ in the set {[q/2],[q/2] +1,...,q}. Let e = uv be the edge of G such that
f(e) = [, and assume that w € V(G)\ {u, v} (w exists since ¢ > 2). Then
the integers

a = H {f(a) | a € E(G) and is incident with v}

and

8= H {f(b) | be E(G) and is incident with w}

are different, since [ | aw and [ 3. Therefore f is not a product magic labeling
of G.

For the sufficiency, observe that if G has size ¢ < 1, then G is isomorphic
to either K5, K, or Ky U K, for some n € N, and clearly these graphs are
product magic. 0

7.2.3 Product Antimagic Graphs

A graph G of size ¢ is said to be product magic if there exists a bijective
function f : E(G) — {1,2,..., ¢}, such that all products of the labels on the
edges incident with the same vertex are distinct. Such a labeling is called
a product antimagic labeling. Next, we present some results about product
antimagic graphs.

It is certainly true that, for a l1-regular graph of size ¢ > 1, any labeling
of the edges using the elements of the set {1,2,...,q} will result in the same
product on every pair of adjacent vertices. Therefore, we have the following
theorem.

Theorem 7.12. Any l-regular graph is not product antimagic.

Hartsfield and Ringel [23] stated that every path P, and cycle C,, is
antimagic for all integers n > 3. Analogously, we have the following two
results

Theorem 7.13. Every path P, of order n(> 4) is product antimagic.

Proof.
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Suppose first that G is isomorphic to the path P, of order n(> 4) with
V(G) = {vy,vs,...,v,} and E(G) = {e; = v;v;41 | 1 < i <n —1}. Then the
next two cases will be considered.

Case 1: Assume that n is even and define the labeling

FiE(G) —{1,2,...,n)

so that f(e;) = i for every integer i with 1 <i <n — 1.
We next show that f is a product antimagic labeling of g. Let

1, ifi=1,
=9 N, if © = n;
(i—1) ifl<i<n-—1.
Now, we observe the facts that m # m,, 7, is odd, 7; is even for 1 < 7 < n,
and m; < m; for 1 <@ < j <n—1. Thus, from the preceding observations, we

conclude that m; # m; for every possible integers ¢ and j with 1 <7 < j < n.
Case 2: Assume that n is odd and define the labeling

f:EG)—{1,2,...,n}

so that
n—1, ife=e, o
fle)=<¢ n—-2, ife=e,;
7 ife=e¢; forl <i<n-—3.

We next show that f is a product antimagic labeling of G.
Let m; denote the product of the labels on the edges incident with each
vertex v;. Then

1, if i = 1;
) n=2, ifi=n;
Y n=-2)(n—1), ifi=n—1;
(i — 1), ifl<i<n-—1.

Thus, my # 7, T # Tpet, Tn # Tp-1, Tpisodd, m;iseven for 1 < i < n—1,
and m; < m; if 1 < ¢ < j < n. Hence, the preceding observations lead
to conclude that m; # 7; for every possible pair of integers ¢ and j with
1<i<ji<n.

Therefore, the proof of this theorem is completed. O

We point out that although P; is antimagic, it is not product antimagic.

Theorem 7.14. Every cycle C,, is product antimagic.
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Proof.

Let E(C,) = {e1,eq,...,e,} and suppose then that e; is incident with
eiy1, where the subscripts are taken modulo n. We now consider the labeling
[ EB(C,) —{1,2,...,n} so that

ey 21 if1<i<
VT m—2i+2, if [E2] <i<n

In order to complete the proof, we need to show that f is an antimagic
labeling of C,,. First, notice that f(e;) < f(ei+1) and f(e;) is odd for each
integer ¢ with 1 < ¢ < [n/2]. Then f(e;) - f(eir1) < fle;) - f(ejr) for every
possible pair of integers ¢ and j with 1 <7 < j < [n/2] — 1. Consequently,
fle:) - fleirs) is odd for every integer ¢ with 1 <4 < [n/2] — 1.

On the other hand, f(e;) > f(e;1) and f(e;) is even for every integer ¢
such that [(n+2)/2] <i < n. Hence f(e;)- f(eir1) > fle;j)- f(ej41) for every
possible pair of integers i and j such that [(n+2)/2] <i < j <n—1, which
implies that f(e;) - f(e;41) is even for every integer i with [(n +2)/2] <i <
n— 1. Thus, all product of labels adjacent with different vertices are distinct
and therefore we conclude that f is a product antimagic labeling of C),,. O

The next corollary is a generalized version of the preceding theorem.

Corollary 7.15. Every 2-reqular graph s product antimagic.

Proof.

Suppose first that G is a 2-regular graph having k(> 2) components.
Then G is isomorphic to U:Ll Cin,, where C,, is a cycle of order m; for every
integer ¢ with 1 <1 < k. Let E(Cp,) = {eir | 7 =1,2,...,m;} and assume
that e;, is incident with e; ; if and only if r = s+ 1 (mod m;). We further
let fi, fa, ..., fr be the labeling of C,,, Cry, - . . Chy, as described in the proof
of Theorem 7.14, respectively.

We next define a labeling f : F(G) = {1,2,...,my +mg+ ... +my} in
the following manner. If e; € E(Cy,,), then f(e;) = fi(e;) + > p_) ma.

Notice that any product of the labels on the edges incident with any
vertex of C,,, is greater than the product of the labels on the edges incident
with any vertex of C,, if and only if i > j.

Finally, we mention that a similar argument to the one used in the proof of
Theorem 7.14 can be developed to verify that all resulting products associated
with each vertex in the same component are different from each other. O

A way of constructing new product antimagic graphs using the join oper-
ation from known product antimagic graphs is presented in the next theorem.

Theorem 7.16. If G is a product antimagic graph, then G + Ky is product
antimagic.
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Proof.
Suppose first that G is a product antimagic (p, ¢)-graph with V(G) =
{v1,v2,...,v,} and product antimagic labeling f. Then, without loss of

generality, the resulting products at vertices can be sorted in ascending order,
say mp < my < ... < Tp, Where 7; is the resulting product at each vertex v;.
In addition, we consider the graph G + K; with V(G + K;) = V(G) U {u}
and B(G+ K,) = E(G)U{uv; | i =1,2,...,p}. We next define the labeling
g: B(G+ K;)—{1,2,...,p+ q} so that

oe) = { f(e), ifee€ E(G);

| i+gq, fe=wuv;and 1 <i<np.

Then we observe that the resulting product at each vertex v; of G + K is
given by (i + ¢) - m;. Further, note that (i +¢q) - m < (7 + ¢q) - w; for every
possible pair of integers 7 and j with 1 < ¢ < j < p. It remains to be shown
that p > (p + q) - mp, where p = J[?_,(i + ¢). Now, in order to finish the
proof, notice that m, is the product of at most p — 1 positive integers less
than or equal to ¢ since 0 < degg v, < p— 1. Hence, 7, < [["_] (i +¢), which
produces the desired result. O

It was stated by Hartsfield and Ringel [23] that wheels and complete
graphs are antimagic. The analogous results for product antimagic graphs
will be presented next, as immediate consequences of Theorems 7.14 and
7.16.

Corollary 7.17. Every wheel W,, of order n is product antimagic.

Corollary 7.18. A complete graph K, is product antimagic if and only if
n > 3.

Another way of constructing product antimagic graphs from known prod-
uct antimagic graphs is presented in the next theorem.

Theorem 7.19. Let G be a product antimagic (p, q)-graph, then the graph
G o K,, is product antimagic for every positive integer n.

Proof.

Suppose that G is a product antimagic (p, g)-graph with V(G) = {v1, v, ..
and E(G) = {ey,e,,...e4}. Also, let the function f : F(G) — {1,2,...,q}
be a product antimagic labeling of G’ and m; denote the product of the labels
on the edges incident with the vertex v; for each i. Since f is a product an-
timagic labeling of G, we assume, without loss of generality, that m; < 7; for
every possible pair of integers i and j with 1 <i < j <gq. Let H2 GoK,,
then H can be described with

- Up}
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VH) =V(G)U{v;|1<i<pand1<j<n}
and
EH)=EB(G)U{vv;|1<i<pand1<j<n}.
Further we define the labeling ¢ : E(H) — {1,2,...,q+ np} so that

B fle), if e € B(G);
ge) = { g+n(i—1)+7, ifee E(H)NEG).

We observe that ¢ is a product antimagic labeling of G o K,,, completing
the proof. O
Finally we will conclude this section with two conjectures.

Conjecture 7.20. A connected graph G of size q is product antimagic if and
only if ¢ > 3.

Conjecture 7.21. A graph G of size q s product antimagic if and only if
q=3.

7.2.4 Product Edge-Magic Graphs

For a (p, q)-graph G, a bijective labeling f : V(G)UE(G) — {1,2,...,p+ q}
is said to be a product edge-magic labeling of G if f(u) - f (uv) - f(v) is a
constant &, independent of the choice of any edge uv of . If such a labeling
exists, then k is called the valence of the labeling and (¢ is said to be a product
edge-magic graph. The objective in this section is to support the intuitive
feeling that almost all graphs are not product edge-magic. However, our first
result shows that there are indeed some graphs that are product edge-magic.

Theorem 7.22. The graph K, UK, is product edge-magic for every positive
integern. Moreover, there exists exactly (n+3)! product edge-magic labelings
of Ko U K,,.

Proof.

Let G = K,UK,,. Then the set of labels is {1,2,...,n+ 3}. Since there is
only one product to consider, it follows that any arbitrary labeling of G with
all the elements of the set {1,2,...,n + 3} produces a product edge-magic
labeling of G.

Finally notice that once the elements of GG are fixed, there exists exactly
(n + 3)! different product edge-magic labelings of G. O
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Our next objective is to prove a characterization of product edge-magic
graphs without isolated vertices. However in order to do this, we will first
state and prove the following two lemmas.

Lemma 7.23. Let G be a graph without isolated vertices that is not isomor-
phic to Ky, for anyn € N, then G is not product magic.

Proof.

Let G be any (p, ¢)-graph not isomorphic to K, for any n € N, and let
f:V(GYUE(G) — {1,2,...,p+ g} be a bijective function. We will show
that f is not a product edge-magic labeling of G. To do so, we recall that,
by Bertrand’s Postulate, there exists at least a prime number [ in the set

(][] e}

Next, we will consider two cases.

Case 1: Assume that there exists an edge e = uv in F(G) such that f(e) = L.
Then if ¢ = u/'v' is an edge of E(G) different from e, (such edge exists
since G' has no isolated vertices and is not isomorphic to K ;), we have
that f(u) - f(e) - f(v) # f(u') - f(e') - f(V') since I | f(u) - f(e) - f(v) but
Lt f(u')- f(e')- f(v'). Therefore f is not a product edge-magic labeling of G.
Case 2: Assume that there exists a vertex v in V(G) such that f(v) =1 and
consider the set E, = {e € E(G) | e is incident with v}. Of course, since G
does not contain isolated vertices,we have that F, # (. Also since G %
K, for any n and does not contain isolated vertices, we know that the set
E(G)\ E, # 0. Thus, let e = uv and €' = u/v' belong to E, and E(G) \ E,
respectively. Then, we have that f(u)- f(e)- f(v) # f(u')- f(e') - f(v') since
Ul f(u)- f(e)- f(v) but L1 f(u')- f(e')- f(v'). Therefore f is not a product
edge-magic labeling of G. O

Lemma 7.24. The graph K, is not product edge-magic for any integer
p>2.

Proof. First of all, an exhaustive computer search for the cases where
p = 2,3,4,5 shows that the statement holds for these small values of p.
Next, let G = K, where p > 6 and assume that [ : V(G) U E(G) —
{1,2,...,2p+ 1} is a bijective function. Then, by the comments following
Lemma 7.10 we know that ny = 6, so there exist at least two primes [; and
Iy in the set {p+1,p+2,...,2p+ 1}. Thus if u is the vertex of degree p
in V(G), necessarily there exists an edge e = uv in F(G) such that either
fle) =1y or Iy or f(v) =l or l,. Without loss of generality assume that
f(e) =1;. Then if ¢ = u'v' € F(G) \ {e}, we have that f(u)- f(e)- f(v) #
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F) - fe) - () since Iy | f(u) - f(e) - F(v) but b { F(u) - (') - F).
Therefore, f is not a product edge-magic labeling of G. a

Therefore, putting together the previous two lemmas, we obtain the fol-
lowing characterization of the product edge-magic graphs without isolated
vertices.

Theorem 7.25. A graph G of size q without isolated vertices is product edge
magic if and only if ¢ < 1.

Kotzig and Rosa [27] proved that a 1-regular graph G is magic if and only
if the size of G is even. Furthermore, they proposed the question of finding
necessary and sufficient conditions for an r-regular graph to be magic when
r = 2, 3 and 4. The next result constitutes an answer for the analogous
question in terms of product edge-magic graphs.

Corollary 7.26. An r-reqular graph G is product edge-magic if and only if
G =K,

In (28], Kotzig and Rosa also mentioned that every graph can be embed-
ded into an edge magic graph. The next theorem is the analogous result for
product edge-magic graphs. Notice that in light of the previous theorem,
this embedding can only be obtained by adding isolated vertices.

Theorem 7.27. For every graph G, there exists a product edge-magic graph
H containing G as an induced subgraph.

Proof.

For every graph G, there exists a magic (p, ¢)-graph H, containing G' as
a subgraph (as noted by Kotzig and Rosa [28]). Suppose now that f is an
magic labeling of H; and then we define the labeling ¢ : E(H,) UV (H;) —
{1,2,...,p+q} so that g(z) = 2/® for every element z in E(H;) UV (H,).
Since f is an magic labeling of Hi, it follows that g(uy) - g(v1) - g(wyvy) =
g(ug) - g(vy) - g(uguy) for any pair of distinct edges uyvy and uyvy of Hy.

In order to finish the proof, we consider the graph H that is isomorphic to
H, U (2P — p — q) K for which the product edge-magic labeling & : V(H) U
E(H) — {1,2,...,2°7 — p — ¢} is constructed in the following manner. If
r is any element in F(H;) U V(H;), then h(z) = g(x); otherwise, assign
any remaining integer from the set {1,2,...,2P™ — p — ¢}. Certainly, h is a
product edge-magic labeling of H and therefore the proof is completed. O

The previous theorem suggests to define the concept of product edge-
magic deficiency as follows. The product edge-magic deficiency of a graph
G, (@), is defined to be the minimum number of isolated vertices that we
have to union G with so that we get a product edge-magic graph.
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7.2.5 Product Edge-Antimagic Graphs

A (p,q)-graph G, we define G is product edge-antimagic if there exists a
labeling f : V(G) U E(G) — {1,2,...,p+ q} satisfying the condition that
fluy) - f(vy) - flugvr) # fluz) - f(va) - fugug) for any pair of distinct edges
uy vy, uavy of G. Such a labeling is called a product edge-antimagic labeling.
Ringel and Lladé in [34] stated that each graph is edge-antimagic. Our
next theorem is the analogous result for product edge-antimagic graphs.

Theorem 7.28. Every graph other than K, and K, U K, is product edge-
antimagic for each positive integer n.

Proof.

We first note that the graphs K, and K, U K, are trivially not product
edge-antimagic for every positive integer n.

We next suppose that G is a (p, g)-graph other than K, and K, U K,
for some positive integer n and let f : V(G) — {1,2,...,p} be any vertex
labeling. Then let

frili=1,2...,0} = {f(w)- [(v) | uw € E(G)}

so that m; < 7; if 1 < i < j < ¢ Now we define g : V(G) U E(G) —
{1,2,...,p+ q} to be the labeling such that g(u) = f(u) for every u € V(G)
and gle) =p+iife=wuv € E(G) and f(u) - f(v) = 7.

Finally we notice that g is a product edge-antimagic labeling of G' and
therefore the desired result follows. O
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