Chapter 3

Watermarking for Digital

Images

In Sections 2.1 and 2.2 we pointed out the need to protect multimedia data
against illegal redistribution and malicious alterations. In this chapter, we
present our contributions to watermarking for digital images for copyright

protection and authentication.

3.1 Image visual components for
imperceptible mark embedding

Next, we propose an algorithm that computes pixel visual components, that
is, the perceptual value of pixels. This value is an estimate of the maximum
subperceptual increment/decrement that each pixel can accomodate without
causing visual degradation.

The idea underlying Algorithm 1 is that dark pixels and those pixels in
non-homogeneous regions are the ones that can best accomodate embedded

information while minimizing the perceptual impact. This algorithm is used
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to provide imperceptibility to the new watermarking schemes proposed in

Sections 3.2 and 3.3 which we have published in [SDH00, SD01] respectively.

Without loss of generality, we will assume a monochrome image in what
follows; for RGB color images, watermarking is independently done for each
color plane. Let the original image be X = {x; : 1 < i < n}, where z; is
the color level of the i-th pixel and n is the number of pixels in the image.
Let z; take integer values between 0 and M AXCOLOR, so that the lower
x;, the darker is the color level. Let parameter dt € [0, MAXCOLOR] be a
threshold such that all color levels x; below dt visually appear as dark.

Let [b; and ub; be integer values lb; < ub; that are used as parameters to
bound the variation of pixel color values. For a given M AX COLOR, suitable

values for dt, [b; and ub; are empirically chosen.

Algorithm 1 (Visual components(dt, lb;, ub;))

1. Fori=1 ton do:

(a) Compute m; = max;|z; — z;|/2, for all pizels j which are
neighbors of pizel i in the image (there are up to eight neighbors);
m; can be regarded as a kind of discrete derivative at pizel v. To
bound the value of m; between lby and uby, perform the following

corrections:
i. If m; > uby then m; := ub;.
1. If m; < lby then m; := 1b;.
(b) Compute the darkness of the i-th pizel as d; := (dt — x;) * ub; /dt

if x; < dt and d; := 0 otherwise. A pizel is considered as dark if

its color level is below dt. The value of d; lies between 0 and uby.
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(c) Compute the preliminary visual component of the i-th pizel as

v; == max(m;, d;).

2. For i =1 to n compute the final visual component of the i-th pizel as
Vi := max; vj, for all pizels j which are neighbors of i in the image plus

the pixel © itself.

The higher V; for a pixel, the less perceptible are changes in that pixel.

Figure 3.1: Visual components of the image Lena.

Figure 3.1 shows the result of applying the visual component algorithm to
the image Lena (parameters are dt = 70, lb; = 2 and ub; = 11). The lighter
a pixel, the larger is its visual component value. Note that large visual
component values are located in non-homogeneous or dark areas where color

level alterations will not be easily perceived.
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3.2 Scale-proof semi-public image
watermarking

This section describes a new robust semi-public! watermarking scheme for
images which we have published in [SDH00]. Bits are embedded into the
image using the same underlying idea of the scheme described in [Her00],
but are distributed so as to replace robustness against cropping attacks by
robustness against scaling attacks.
Imperceptibility is achieved by using the visual components algorithm
described in previous section.

The scheme consists of the mark embedding and mark recovery

algorithms.

3.2.1 Mark embedding

A set of parameters must be specified. These are:

e dt, lby, ub; are required by the visual components algorithm (see

Section 3.1) run before mark embedding to compute values Vj;

e [ is a secret key only known to the merchant and used to generate a
pseudo-random bit sequence {s;};>1. This sequence is used to encrypt

the mark bits before embedding;

e p and r are two parameters used to locate the pixels into which mark

bits will be embedded.

'Knowledge of the original image is needed for mark recovery.
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Algorithm 2 (Mark embedding(p,r))

1. Divide the image into the mazximum possible number of square tiles of
p pizels side, so that there is a r pizels wide band between neighboring
tiles (the band separates tiles). Let q be the number of resulting tiles.
FEach tile will be used to embed one bit, so q is the capacity of this

watermarking scheme.

2. Call € the mark to be embedded. FEncode £ using an error-correcting
code (ECC) to obtain the encoded mark E. If |E| is the bit-length of
E, we must have |E| < q. Replicate the mark E to obtain a sequence

E'" with q bits.
3. Fori=1 to q compute s; = e}, @ s;, where €, is the i-th bit of E'.
4. To embed the i-th encrypted mark bit s into the i-th tile do:
(a) If s; =0 then z}; := x; — Vj for all pizels x; in the i-th tile.
(b) If s; =1 then x’; := x; + V; for all pizels x; in the i-th tile.

5. For every pizel j not lying into any tile, :U; = ;.

X'={z}:1<i<wx h} is the marked image.

3.2.2 Mark recovery

The assumptions for mark recovery are knowledge of the original image X,
the secret key k (in order to regenerate the pseudo-random sequence {s;};>1)
and parameters p and r. The only required knowledge on the original mark
¢ is its length, so that the proposed scheme is also usable for fingerprinting.

Let X be the redistributed image, and let @ and % be its width and height.
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Algorithm 3 (Mark recovery(p,r))

1. Let ones|| and zeroes|-| be two vectors with |E| integer positions

inttially all set to 0.

2. From the length p of the tile side, the width r of the intertile band and

X, compute the number of tiles q.

3. Fort=1 to q do:

(a) Let u:=1+ ((t — 1) mod |E|)

(b) For each pizel in the t-th tile of the original image X do:

0.

0.

Let v and j be the row and column of the considered original

pizel, which will be denoted by x;;.

Locate the pizel 2,y in the marked image X corresponding to
;. To do this, let a =i x h/h and b:= j x /w.

Compute &-j = Zap — Tij-

If 5@' > (0 then

A. If s; = 0 then ones[u] := ones[u] + 1.

B. If s; =1 then zeroes[u] := zeroes[u] + 1.

If Sij < 0 then

A. If s; = 0 then zeroes|u] := zeroes[u] + 1.

B. If s; = 1 then ones[u] := ones[u] + 1.

4. Foru=1 to |E| do:

(a) If ones, > zeroes, then é, := 1, where &, is the recovered version

of the u-th embedded bit.
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(b) If ones, < zeroes, then é, := 0.

(c) If ones, = zeroes, then é, := #, where # denotes erasure.

5. Decode E with the same ECC used for embedding to obtain é.

3.2.3 Parameter choice

The scheme was implemented with parameter values M AXCOLOR = 255,
dt =70, lby =1, uby = 4. These values were empirically chosen to achieve a
satisfactory tradeoff between robustness and imperceptibility.

Regarding parameters p and r, we recommend to use p = 5 and r = 3
as a tradeoff between capacity —which would favor tiles as small as possible
and intertile bands as narrow as possible—, robustness —the larger a tile,
the more redundancy in bit embedding and the more likely is correct bit
recovery— and imperceptibility —the wider a band, the less chances for
artifacts. The band between tiles is never modified and it helps avoiding
perceptual artifacts that could appear as a result of using two adjacent tiles

to embed a 0 and a 1.

3.2.4 Robustness assessment

The scheme, with parameters described above, was implemented using a
dual binary Hamming code DH (31,5) as ECC (which provides a correction
capacity of 7 errors per codeword). The base test of the StirMark 3.1
benchmark [PAK98] was used to evaluate its robustness. The following
images from [Bas| were tried: Lena, Bear, Baboon and Peppers. A 70-bit
long mark ¢ was used (as stated in [PA99]), which resulted in an encoded

E with |E| = 434. Figure 3.2 shows the original and the marked Lena after
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embedding a 70 bit length mark; the peak signal-to-noise ratio between both
images is 41.13 dB.

Figure 3.2: Semi-public scheme: Left, original Lena. Right, Lena after
embedding a 70 bit long mark.

The following StirMark 3.1 manipulations were survived by the embedded

mark:

1. Color quantization.
2. Most filtering manipulations. More specifically:

(a) Gaussian filter (blur).

(b) Median filter (2 x 2 and 3 x 3).

(¢) Frequency mode Laplacian removal [BP98].
(d) Simple sharpening.

3. JPEG compression for qualities 90% down to 20% (for some images

down to 10%).
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4. Rotations with and without scaling of —0.25 up to 0.25 degrees.

5. Shearing up to 1% in the X and Y directions.

6. Cropping up to 1%.

7. Row and column removal.

8. All StirMark scaling attacks (scale factors from 0.5 to 2).

Scaling is resisted because a mark bit is embedded in each pixel of a
tile; even if the tile becomes smaller or larger, the correct bit can still be
recovered. Extreme compression and scaling attacks for which the mark still

survives are presented in Figure 3.3.

Figure 3.3: Semi-public scheme: Left, marked Lena after JPEG 15%
compression. Right, marked Lena after 50% scaling.



44 Watermarking for Digital Images

3.3 Robust oblivious image watermarking

This section describes a new robust oblivious watermarking scheme for
images which we have published in [SDO1]. It overcomes the two main
shortcomings of current oblivious schemes (see Section 2.1.1); it survives
scaling and moderate geometric distortion attacks and does not need previous
knowledge of the embedded mark for mark recovery.
Imperceptibility is achieved by using the visual components algorithm
described in Section 3.1.

The scheme is composed of the mark embedding and mark recovery

algorithms.

3.3.1 Mark embedding

A set of parameters must be specified. These are:

e dt, lby, ub; are required by the visual components algorithm (see

Section 3.1) run before mark embedding to compute values Vj;
e [by, ubs are used when determining how color level encodes mark bits;

e [ is a secret key only known to the merchant M and used to pseudo-
randomly locate the pixels into which mark bits will be embedded and

the way color levels determine the value of the embedded bits.

Algorithm 4 (Mark embedding(k, (b, ubs))

1. Let ¢ be the binary sequence to be embedded. Encode € using an error-

correcting code (ECC) to obtain the encoded mark E.
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2. Using the key k as a seed, pseudo-randomly place |E| non-overlapped
square tiles R; over the image, where |E| is the bitlength of E. Tile

size s also determined by k.

3. Using k as a seed, pseudo-randomly assign a value a; between lby and

ubs to tile R;, for i =1 to |E|.
4. To embed the i-th bit e; of the mark E in R;:
(a) Divide the color level interval [0, M AX COLOR] into subintervals
of size a;.
(b) Label consecutive subintervals alternately as “0” or “1”.
(¢) For each pizel z; in R;:

i. Ifx; lies in a subinterval labeled e;, bring it as close as possible
to the interval center by increasing or decreasing x; no more

than V.

. If z; lies in a subinterval labeled é;, bring it as close as possible
to the nearest neighbor interval center (neighbor intervals are

labeled e;) by increasing or decreasing x; no more than V;.

3.3.2 Mark recovery

Upon detecting a redistributed image X , £ can be recovered as follows,
provided that the length | F| of the embedded mark and the secret key k used

for embedding are known (the merchant should know these parameters).
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Algorithm 5 (Mark recovery(k, lby, ubs))

1. Using the key k as a seed, pseudo-randomly place |E| non-overlapped
square tiles R; over the image (again, tile size is also determined by
k). Also using k as a seed, pseudo-randomly assign a value a; between
by and uby to tile R;, for i = 1 to |E|. (Tiling done in this step is

analogous to tiling done during mark embedding).
2. To recover the i-th bit é; of E from R;:
(a) Divide the color level interval [0, M AXCOLOR] into subintervals
of size a;.

(b) Label consecutive subintervals alternately as “0” or “1”.

(c) Let ones := 0 and zeroes := 0.

(d) For each pizel z; in R;:
i. If x; lies in a subinterval labeled “17, then ones := ones + 1
. If z; lies in a subinterval labeled “07, then zeroes := zeroes+1

(e) If ones > zeroes then é; := 1; if ones < zeroes then é; := 0;

otherwise €; is an erasure.

3. Decode E with the same ECC used for embedding to obtain é.

3.3.3 Parameter choice

In Algorithm 1 (visual components), suitable values for parameters dt, b
and ub; should be empirically chosen for a given M AXCOLOR. Suitability
depends on visual perception and robustness considerations. We have

suggested a good choice for MAXCOLOR = 255, namely dt = 70, (b = 2
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and ub; = 11; for other values of MAXCOLOR, a rule of thumb of is to
scale that choice by MAXCOLOR/255. We discuss below other parameters
related to Algorithm 4 (embedding) and Algorithm 5 (recovery).

On the size of tiles

At Step 2 of the mark embedding algorithm, |E| square tiles are randomly
placed over the image. From the point of view of robustness, the tile size
must be large enough so that each bit is embedded in a sufficient number of
pixels. However, the requirement that all |E| tiles should not overlap limits
the maximum tile size, which decreases as |F| increases.

An additional consideration is imperceptibility. Better imperceptibility
is gained if neighboring tiles are separated by a band of unmodified pixels.

This further limits the tile size.

On the width of color level subintervals

The size a; in which we divide the color level interval is a tradeoff between

robustness and imperceptibility:

e Making such intervals narrow means that, during the mark embedding
algorithm, the variation applied to pixels to mark them is low, which
leads to better imperceptibility. The drawback of narrow intervals is
a loss of robustness, because even small noise can easily shift a color
level to a neighboring subinterval, which can cause an incorrect bit to

be recovered.

e Larger values a; yield higher robustness, but moving the color level of
a pixel to a neighboring subinterval is more perceptible and sometimes

it cannot be achieved as the maximum increment/decrement of a pixel
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x; is limited by its visual component value V.

Thus, given M AX COLOR, the interval [lby, uby| where a; randomly takes
values has its lower bound [b, limited by robustness and its upper bound ub,

limited by imperceptibility.

3.3.4 Robustness assessment

The scheme was implemented and tested using parameter values suggested
in Section 3.3.3. The error-correcting code used was a dual binary Hamming
code DH(31,5). The following images from [Bas| were tried: Lena, Bear,
Baboon and Peppers. A 30-bit long mark ¢ was used, which needed six
codewords of the dual Hamming code and resulted in an encoded E with
|E| =31 x6 = 186 bits. For Lena, a version of size 512 x 512 pixels was used
and the length of the tile side was randomly chosen between 11 and 31; for
the other images, a similar proportion between image size and tile size was
maintained. For all images, tiles were placed so that neighboring tiles were
separated by a band of unmodified pixels at least one pixel wide.

Figure 3.4 shows the original and the marked Lena after embedding a 30
bit long mark; the peak signal-to-noise ratio (PSNR) between both images
is as high as 41.16 dB.

Some general considerations follow regarding robustness in front of the

various kinds of attacks:

e After an attack, a bit is correctly recovered if a majority of correct

mark bits are still inside the corresponding tile.

e Scaling attacks are survived by placing tiles in positions relative to the
image size. In this way, even if the image size varies, each tile still

contains original mark bits.
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Figure 3.4: Oblivious scheme: Left, original Lena. Right, Lena after
embedding a 30 bit long mark.

e Unless tiles are very small, other attacks like row and column removal,
shearing, cropping and rotation will only succeed if most pixels in the

tile suffer a variation so large that it leads to visual degradation.

The base test of the StirMark 3.1 benchmark [Sti] was used to evaluate
robustness on the marked versions of the four test images. The following

manipulations were survived:
1. Color quantization
2. Most filtering manipulations. More specifically:

(a) Gaussian filter (blur)
(b) Median filter (2 x 2, 3 x 3 and 4 x 4).

(c) Linear filter

3. JPEG compression for qualities 90 down to 30.
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4. All StirMark scaling attacks (scale factors from 0.5 to 2).

5. All StirMark aspect ratio modification attacks.

6. All StirMark row and column removal attacks.

7. All StirMark shearing attacks.

8. Small rotations with and without scaling from —2 to 2 degrees.

9. Small cropping up to 2%.

10. StirMark random bend.

3.3.5 Multiple marking

A useful feature of the presented algorithm is that multiple marking is
supported. Up to three consecutive markings on the same image are possible
without substantial perceptual degradation nor loss of robustness. For
example, the content creator M; can mark an image and sell the marked
image to a distributing company M, which re-marks the image with its own
mark, re-sells it to a retailer M3, who re-marks the image again before selling
it to the end consumer. Each of M;, M,, M3 can recover their embedded

watermark by using the same key they used at embedding time.

To illustrate the effects on imperceptibility, Figure 3.5 shows Lena after

three consecutive markings.
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Figure 3.5: Oblivious scheme: Lena after three consecutive markings.

3.4 Enhancing watermark robustness
through mixture of watermarked digital

objects

Coming up with a watermarking method surviving all conceivable attacks
may indeed be a difficult task. We explore in this section ways to obtain
increased robustness by mixing the outputs of several watermarking methods.

We have published the material in this section in [DS02a].

We will first discuss prior mixture, whereby a digital object is
watermarked with different methods and a mixture of the watermarked
objects is released. Posterior mixture will then be presented, which consists
of mixing several attacked versions of the same watermarked digital object.
It will be shown that prior mixture may result in a combination of the

robustness properties of the watermarking methods being used. It will
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also be shown that posterior mixture may allow recovery of the embedded
watermark, even if this watermark can no longer be recovered from each
individual attacked version of the watermarked object. Note that prior or

posterior mixtures are non-exclusive.

3.4.1 Prior mixture

Prior mixture is a general technique that allows a watermarked object to be
obtained that combines the robustness properties of several watermarking
schemes. No knowledge on the specific embedding and recovery algorithms

is needed as they are used as a black box.

Mark embedding and prior mixture

Let Eq,---, E, be n different watermark embedding algorithms which can
be used to embed a watermark M into the original digital object X. It
is assumed in what follows that M contains some kind of redundancy
(checksum, cyclic redundancy check, etc.), that allows its correctness or

integrity to be checked. We then proceed as follows:

Algorithm 6 (Prior mixed embedding)

1. The watermark M s embedded into X using algorithms F+,---, E, to
obtain X1,...,X,, where X] is the output of E;.

2. A weight «; is selected for each object X], such that 0 < a; < 1 and

Zai: 1.

3. The watermarked mized object is computed as

!
X premix

:f(ala"'aanaX{a""X;L) (31)
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where f is a mizture function (see below).

Figure 3.6 illustrates Algorithm 6.

| B

M E2 X2 =

X— i mixture %leremix
—

M— Xh

N E

Figure 3.6: Prior mixture mark embedding procedure.

Any mixture function can be used in Algorithm 6. However, sensible

choices are an additive mixture

flog, - an, X1, X)) = X] + -+ a, X,

or a multiplicative mixture

! \ _ vlal ylas o
f(ala"':an,Xla"'aXn)_Xl X2 Xnn

The above mixtures are componentwise between the semantically
corresponding components of objects: for example, if the object is an image,
components are pixels and the mixture amounts to averaging the color levels

of corresponding pixels.
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Mark recovery from a mixed object

Denote by Ry, -, R, the watermark recovery algorithms corresponding to
embedding algorithms FE', - - -, E, respectively. Let X be the object we want
to recover the watermark from; if it has been attacked, X will not exactly

match any watermarked object X’. The recovery procedure is as follows:

Algorithm 7 (Recovery from a mixed object)

1. Run algorithms Ry,---, R, on X and record the output of those
algorithms, if any. Depending on the attacks suffered by X some

algorithms may give no output.

2. Look for a correct watermark among the outputs of the recovery
algorithms (the redundancy included in marks is checked for
correctness). If all correct watermarks found have the same value, then
recovery is successful. If there is no correct watermark or if there are

several correct watermarks with different values, recovery fails.

Figure 3.7 illustrates Algorithm 7.

Note that mixing watermarked objects entails some amount of noise for
each invidual watermarking method (E;, R;). In other words, when running
recovery algorithm R;, the effect of embedding algorithms E; for j # i is
perceived as noise. Therefore, for prior mixture to be practical noise-robust

watermarking methods must be used.

Applying prior mixture

Next, prior mixture is demonstrated for combining the crop-proof [Her(00]
and the scale-proof [SDH00] schemes for image watermarking. The resulting

mixture stands both cropping and scaling attacks.



3.4 Enhancing watermark robustness 55

X— Ri M,
, M,
X i [: choice %|\I)|
R~ R (Mo

Figure 3.7: Prior mixture mark recovery procedure.

The benchmark image Lena [Bas] was watermarked using the two
aforementioned schemes, so that two watermarked versions were obtained. In
both cases, the embedded watermark was the same 45-bit binary sequence.
Prior image mixture was applied to mix the two watermarked versions of
Lena. Additive and multiplicative mixtures with weights oy = ap = 0.5 were
tried; in what follows, we report results only for additive mixture, which
turned out to outperform multiplicative mixture for this particular example.
Additive mixture with the above weights is actually the arithmetic average of
color levels of pairs of pixels in the same position within images to be mixed.

The error correcting code (ECC) used in this experiment was a (31, 5) dual
Hamming binary code (with correcting capacity 7 errors). When attempting
mark recovery from an attacked watermarked image, the average number of
corrected errors per codeword at the decoding stage gives an indication of
the vulnerability of the scheme against the attack. If the number of errors
that must be corrected to reconstruct the watermark is low, then the scheme

easily survives the attack; the higher the number of corrected errors after an
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attack crop-proof | mix crop-proof
JPEG 30 2.1 not survived
gaussian 0 2.3
sharpening 0 0
FMLR 1.9 not survived
median 3x3 0 1
cropping 0 0
Table 3.1: Average no. of corrected errors at mark recovery for Lena (crop-
proof method).
attack scale-proof | mix scale-proof
JPEG 30 0 2.8
gaussian 0 1
sharpening 0 3.2
FMLR 5.5 not survived
median 3x3 1.7 not survived
scaling 0 1.5

Table 3.2: Average no. of corrected errors at mark recovery for Lena (scale-
proof method).

attack, the more vulnerable is the scheme against the attack.

The following tables show the average number of errors corrected when
recovering the watermark from the image Lena. Table 3.1 shows the average
number errors corrected by the crop-proof recovery algorithm: the second
column accounts for recovery from the crop-proof watermarked Lena (before
mixing), while the third column refers to recovery from the mixed crop-proof
and scale-proof Lena. Table 3.2 corresponds to errors corrected by the scale-
proof recovery algorithm: its second column displays the average number of
errors corrected when recovering a mark from the scale-proof watermarked
Lena (before mixing); the third column refers to corrected errors in the

recovery from the mixed crop-proof and scale-proof Lena.

It can be seen from Tables 3.1 and 3.2 that the result of mixing both
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schemes is a semi-public image watermarking scheme robust against color
quantization, filtering, JPEG compression, cropping and scaling. Thus,
we have succeeded in combining resistance against cropping attacks with
resistance against scaling attacks. Of course, the amount of noise tolerated
by the mixture of both schemes is lower than the amount that would be
tolerated by each scheme individually and some filters like FMLR are no
longer survived.

The experiment above was repeated with other benchmark images

in [Bas|, and the results were similar to those obtained with Lena.

Imperceptibility is a very important feature of a watermarking scheme.
It refers to the extent to which the image quality is preserved after the
mark has been embedded. The Peak Signal-to-Noise Ratio (PSNR) between
the original and the watermarked images is one common way to measure
imperceptibility.

Table 3.3 shows how, after mixture, image quality does not decrease but
stays similar or even higher than quality of watermarked images input to
mixture. Table rows correspond to images Lena and Baboon [Bas|. Table
columns correspond to the three watermarking possibilities: crop-proof only,
scale-proof only or additive mixture of both methods. For each image, the
PSNR of the three watermarked versions vs the original image is given. It is
noteworthy that the PSNR of the mixed image can even be higher than the

PSNR of images watermarked with a single method.
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crop-proof | scale-proof | mixed
Lena 38 41.12 40.59
Baboon 36.7 36.52 36.76

Table 3.3: PSNR of watermarked vs original images

3.4.2 Posterior mixture

Posterior mixture is a technique usable if the following assumptions hold:

Al. Several attacked versions X IPRRE ,Xm originating from the same
watermarked digital object X’ are available, where the watermarking
method used and the embedded watermark are the same for all attacked
versions. The difference between versions is only caused by the attacks

they have undergone.

A2. None of Xl,---,Xm separately allows recovery of the common

embedded watermark.

A3. It must be possible to find a one-to-one mapping between semantically
corresponding components of X; and Xiﬂ, for 2 = 1 to m — 1. Note
that some attacks may render fulfilling this assumption difficult or even
infeasible. For example, let objects be images; then components are
pixels and mapping semantically equivalent pixels may require undoing
scaling attacks, rotation attacks, mapping cropped images with the

corresponding parts of uncropped images, etc.

The recovery procedure based on a posterior mixture can be illustrated

as shown in Figure 3.8 and be described as follows:
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Algorithm 8 (Posterior mixed recovery)

1. Mix the attacked watermarked objects, by computing

Xpostmim = f(/Bla Tty Bma Xla Tty Xm)

where f is a componentwise mixture function (mizing semantically
corresponding components, see Assumption A3 above) and f3;, for

j=1,---,m are weights such that 0 < §; <1 and ) f; = 1.

2. Use the recovery algorithm of the common watermarking method to

recover the embedded watermark from Xpostmiz-

N\

X

N\ N

o133 . xpostmix N
;| mixture recovery —\
%

N

S

Figure 3.8: Posterior mixture mark recovery procedure.

Algorithm 8 must be regarded as a last chance to repair an otherwise
unrecoverable attacked watermark. Posterior mixture can be used as a second
line of defense in combination with prior mixture, i.e. prior mixture can be
used before the attacks happen and posterior mixture after the attacks have
happened: in this case, the attacked Xl, - -,Xm would originate from the

same prior mixed object X/ (see Expression (3.1)).

premix
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Applying posterior mixture

Using the oblivious scheme described in Section 3.3 a sequence of 35 bits was
embedded into the benchmark image Lena. The embedded sequence was

encoded using the (31,5) dual binary Hamming code.

Two attacks were performed on the watermarked image: the first one
consisted of JPEG compression with quality 20, and the second one was a
sharpening filter. From none of both attacked images could the watermark

be recovered.

Posterior additive mixture with weights 5 = f2 = 0.5 was used to mix
both attacked images. In other words, the arithmetic average of color levels
for semantically corresponding pixels in the attacked images was computed;
since neither compression nor sharpening attacks alter the size nor the
orientation of images, semantically corresponding pixels are those occupying
the same position in both images. The watermark was recoverable from
the posterior mixed image, with an average number of 2.5 corrected errors
per codeword, well below the correcting capacity of the (31,5) dual binary

Hamming code (7 errors).

Exactly the same experiment was successfully repeated with other
benchmark images, like Skyline arch and Bear [Bas]. For those images, the
average number of corrected errors per codeword were, respectively, 6 and
5.7, which are already closer to the correcting capacity of the code. Thus, the
effectiveness of posterior mixture depends on the particular image, method

and attacks being dealt with.
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3.5 Invertible spread-spectrum

watermarking for image authentication

In Section 2.2.2 invertible watermarking for image authentication is
introduced. Next, we show how to invert under certain conditions one of
the most widely known robust oblivious watermarking methods, namely
the Hartung-Girod [HG98| spread-spectrum spatial-domain watermarking
algorithm. This invertibility can be used to construct an image
authentication scheme, as shown in this section. Results presented here have

been published in [DS02b].

3.5.1 Hartung-Girod spread-spectrum watermarking

In [HG98|, a spread-spectrum technique is used to obtain an oblivious
watermarking method in the spatial domain. Oblivious watermarking does
not require the original image to recover the watermark embedded in the
watermarked image. We will first recall the fundamentals of this method and
then we will show that, under certain conditions, this kind of watermarking
is invertible.

The embedding and recovery procedures of [HG98] are as follows:

Embedding The copyright information to be embedded is a binary sequence
aj, a; € {—1,1}. This discrete signal is spread by a large factor cr,
called chip-rate, to obtain the sequence b; = a;, j-cr <i < (j+1)-cr.
The spread sequence b; is amplified by a locally adjustable amplitude
factor o; > 0 and is then modulated by a binary pseudo-noise sequence
pi, i € {—1,1} generated from a seed s (which acts as the secret key).

Let x; be the original signal to be marked. The resulting watermarked
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signal is

T = T+ b - pi (3.2)

Recovery Mark recovery is performed by demodulating the watermarked
signal with the same pseudo-noise signal p; that was used for
embedding, followed by summation over the window for each embedded
bit, which yields the correlation sum ¢; for the j-th information bit

o (j+1)-er— 1 ] s (]—|—1 -er—1 2 . . o~
¢ = Zi:j_cr pi - Tk P Ler «; - bj. The sign of ¢; ~

Z(]-H)-cr—l

cr-aj - by = cr-@; - aj, where a; = i—-cr a;/cr, is interpreted

as the embedded bit a;.

With the above method, several watermarks can be superimposed
(multiple marking) if different pseudo-noise sequences are used for
modulation. This is due to the fact that different pseudo-noise sequences are

in general orthogonal to each other and do not significantly interfere [Nic88|.

3.5.2 Inverting spread-spectrum watermarks

In order for the above watermarking scheme to be totally invertible, the

following three conditions must be met:

1. The seed s used to generate the pseudo-noise signal p; must be known.
Being able to re-create p; is needed to recover the embedded bits (see

Algorithm 9 below).

2. The locally adjustable amplitude factor a; used at each sample of the
watermarked signal during the embedding phase must be known. o
is needed to invert Equation (3.2) as shown in Equation (3.3). This
requirement can be easily met by using a constant value « for all

samples.
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3. For every sample z; to be modulated, its modulated value z} = x; + o -
b;-p; must fall within the same range of the original values x; (otherwise

truncation would be needed, which would hamper invertibility).

Assuming that the above three conditions are met, Algorithm 9 shows

how the original unwatermarked signal z; can be recovered from z!:

Algorithm 9 (Spread-spectrum watermark inversion)

1. Recover all embedded bits, where the j-th embedded bit a; € {—1,1} is

i+1)-cr—1
(3+1)-cr !

obtained as the sign of the correlation sum c; = Zi:j_cr i Ty

2. Spread the recovered sequence a; by the chip-rate cr value, to obtain the

sequence b; = a;, j-cor <i< (j+1)-cr.

3. Recover the original T; sequence by computing

Note that &; = z;, Vi if a; = a;, Vj, i.e. if the embedded bits are
correctly recovered, the unwatermarked image will match the original one.

This can be readily seen by comparing Equations (3.2) and (3.3).

3.5.3 Image authentication using invertible spread-

spectrum spatial-domain watermarking

Based on the spatial-domain spread-spectrum watermarking described above,
we next adapt the ideas of [FGDO01la] (reproduced in Section 2.2.2) to give
a construction that, given an image, allows the hash of the image to be

embedded in its pixels; the hash is used as a MAC (Message Authentication
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Code). Anyone knowing the embedding key and the amplitude factor « is
able to recover the embedded MAC, undo the watermark, get the original
image and check for MAC validity.

Without loss of generality, we will assume a monochrome image in what
follows. Let the original image be X = {z; : 1 < i < n}, where z; is the
color level of the i-th pixel and n is the number of pixels in the image. Let

x; be the grayscale level of the pixel, which is assumed to take integer values

between 0 and MAXCOLOR.

Invertible addition

One of the three conditions stated above for a watermark to be invertible
is that the value of a modulated pixel must fall into the grayscale range
of original pixels. In [HJRS99|, modular addition modulo MAXCOLOR
is proposed as another way to keep modulated pixel values within
[0, MAXCOLOR)]. In [FGDO01la], this operation is criticized because of
possible visual artifacts in the watermarked image resulting from grayscale
values close to 0 being flipped to grayscale values close to MAXCOLOR,
and grayscale values close to MAXCOLOR being flipped to values close
to 0 (nearly white pixels become nearly black and conversely). We claim
that, in addition to visual artifacts, modular addition may lead to incorrect
watermark recovery when inverting the Hartung-Girod watermarking. This

is illustrated by the following example.

Example 1 In the watermarking procedure described in Section 3.5.1,
assume that MAXCOLOR = 255, a = 3 and that we want to embed a = 1
in the first four pizels of the original image. If the values of those four pizels
are (vg,v1,v2,v3) = (1,2,3,2) and the first four bits of the pseudorandom

sequence are (po, p1,p2,p3) = (—1,1,1,—1), we spread a over four pizels to
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obtain (bg, b1, b, b3) = (1,1,1,1) and compute
Ti=x;+a-b-p;, fori=0to 3

This yields (xy, 7, xh, x4) = (254, 5,6,255). Values 254 and 255 result from
modular reduction of —2 and —1 (which were out of range). Now, when

trying to recover the embedded bit, we compute

3
c=) pi-aj=—254+5+6— 255 = —498
=0

Since the sign of ¢ is negative, we reach the erroneous conclusion that the
embedded bit was a = —1.

A better way to keep modulated pixels within range is to pre-process the
image in the following simple way:

Algorithm 10 (Gray-level pre-processing(a))

Fori=1 ton do:

1. If z; < a then z; == «
2. If x; > MAXCOLOR — « then ©; := MAXCOLOR — «

Algorithm 10 does indeed result in some non-invertible distortion, so when
watermarking is inverted, there may be some slight difference between the
grayscale values of some pixels of the original and the watermarked images.

However, the advantages over modular addition are clear:

e There are no visual artifacts in the watermarked image, because the

magnitude of grayscale changes is at most « levels.

e Erroneous bit recovery illustrated in Example 1 is avoided.



66 Watermarking for Digital Images

Hash embedding and verification

As shown in Section 2.2.2, invertible watermarking for image authentication
consists of computing a hash of the original image and embedding the hash
bits in the image. Our embedding algorithm takes as input the pre-processed
image resulting from Algorithm 10 and depends on two parameters: a seed

s for pseudo-random number generation and the amplitude factor «.

Algorithm 11 (Hash embedding(s,a))

1. Compute the hash H of the pre-processed image X.
2. Construct the sequence a; to be embedded by doing, for i =1 to [H|:

o IfH;, =0 then a; := —1

e IfH;, =1 thena; :=1

3. Using the spread-spectrum Hartung-Girod technique with parameter o
and seed s, embed the sequence {a; : i =1,---,|H|} into X. Let X' be

the resulting watermarked image.

The algorithm for image authentication, i.e. for verification of image

integrity, is now straightforward:

Algorithm 12 (Integrity verification(s,q))

1. Use Algorithm 9 to recover the embedded sequence H and the

unwatermarked image X from X'.

2. Compute the hash of X, H(X)
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3. Compare ’H(X') with the hash H. If they agree, then X = X and the

image s deemed authentic. If they do not, X is deemed non-authentic.
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