Chapter 4

Collusion 3-Secure

Fingerprinting Codes

In this chapter we present a construction to come up with collusion-secure
fingerprinting codes for collusions of up to 3 colluders. Results presented
here have been published in [SD02b]. For a not too large number of buyers,
our construction generates much shorter codes than those obtained from the
general construction [BS95] for ¢ = 3. The basic idea is to compose a new
kind of code, which we call scattering code, with a dual binary Hamming

code.

Section 4.1 presents some definitions and properties on dual Hamming
codes. Section 4.2 presents a set of lemmas on the probability of successful
collusion as a function of colluders’strategy. The construction and decoding
of scattering codes are introduced in Section 4.3. Then, Section 4.4 explains
how to generate fingerprinting codes secure against collusions of up to three
buyers by composing a scattering code code with a dual binary Hamming
code together with some numerical results comparing the length of codes

from our construction with the length of codes from [BS95].
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4.1 Dual binary Hamming codes

The dual code of a binary Hamming code (denoted by DH(n)) is a binary
code with 2™ codewords of length N = 2" — 1 such that the distance between
any two codewords is 2"1. A few definitions and useful properties related

to such codes are presented next.

Definition 1 Let a',a?,a® be three codewords of a DH(n) code, i.e. a* =
atab - --aly. Define inv(at, a?, a®) to be the set of invariant positions between
all three codewords, that is, those bit positions in which all three codewords
have the same bit value. Formally speaking,

inv(a',a®a®) = {i, 1<i <N, a} =a’ =a}}
Definition 2 Let a',a? a® be three codewords of a DH(n) code. Define

minor(a'; a?, a®) to be the set of bit positions in which a' has a value different

from the values in a® and a® (for such positions, a? = a?). Formally speaking,
minor(a*;a®,0®) = {i, 1 <i < N, a} # a, a; #a}}

Lemma 1 Let a',a? a® be three codewords of a DH(n) code and let | -
| denote the bitlength operator. Then it holds that |inv(a',a? a®)| =
22 — 1, |minor(a‘;a?,a®)| = 22, |minor(a®;a',a®)] = 2"? and

: 3.1 2\ — on—2
’ ’ - .
|minor(a®; o', a?)| = 2

Proof: Let a',a?,a® be three codewords of a DH(n) code. Define
I = inv(a',a®) and T to be the positions not in I. Since d(a’,a?);z; = 271,
then |[I| =271 — 1.

Let z = |inv(al, a?, a®)| (obviously, inv(a',a?,a®) C I) and let y be the

total number of positions i € I where a? = a? (these are the positions that
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form minor(a'; a?,a3)). As d(a?,a®) = 27!, then z +y = 2" — 1.

There are 2" ! — 1 — x positions 7 € I where a} # a; (these are the
positions that form minor(a®; a',a?)) and y positions i € I where a? # a;.
Asd(a® a') =2""1 then 2" ' -1 -z +y =2""1

Solving the following equations for z and y

r+y=2""1-1
2"‘1—1—$+y:2"_1

we get £ = 2""2 — 1 and y = 2"~2. Finally, we conclude
linv(al,a?,a®)| =2 =2""2 -1,

|minor(at; a2, a3)| =

|minor(a?; at, a®)
3.4, a?)

|minor(a®; a*, a®)| =
0
Example: The following are three codewords of a DH (5) code.
inv(al,a?,a®) | minor(a';a?,a3) | minor(a®;a',a®) | minor(a®;at,a?)
at 0000000 11111111 00000000 11111111
a? 0000000 00000000 11111111 11111111
a? 0000000 00000000 00000000 00000000
The codeword length is 2° — 1 = 31. Now |inv(a',a?,a®)| =22 -1 =17,
Iminor(a'; a?, a®)| = |minor(a?;a, a®)| = |minor(a®;a',a?)| = 2°72 =

0

Lemma 2 Let a', a?,a® be three codewords of a DH(n) code. Then it holds
that:

e There exists one and only one codeword a* € DH(n)\{a',d? a®}
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such that af = a} = a? = a}

i : 3, Vi € inv(a',a? a®). Furthermore,

af = a}, Vi € minor(a';ad? a®), af = a?, Vi € minor(a? a',a®) and

z 3

af = a?, Vi € minor(a

;at,a?).

e The remaining codewords satisfy that Ya? € DH(n)\{a',a? a3 a*},
din’u(al,a2,a3)(ajaa'1) = dminor(al;az,a3)(ajaa'1) = dminor(a2;a1,a3)(aj:a'1) =
Aiminor(a a1 ,a2) (07, a') = 2"73, where dp(z,y) denotes Hamming distance

between codewords x and y restricted to bit positions in P. The same

distances hold with respect to a? and a®.

Proof: First, the existence and properties of a* will be proven. As a
DH (n) code is a linear code, any linear combination of codewords results in
another codeword. Then, we get a* = a' ® a® @ a®, where @ denotes the
component-wise modulo 2 addition.

We prove that a? = af = a? = a3, Vi € inv(a',a? a®). This is true
because if a} = a? = a} =1, then o} ® a? D a} =1, and if a} = a? = a3 =0,
then a} @ a? ® a3 = 0.

Then, we prove a? = a}, Vi € minor(a';a? a®). This is true because

z

IS T D 2 _ 3 PR
af = a; ®a;f ®a; and as a; = a;, then a? = q;.
Using the same idea, we can prove a? = a?, Vi € minor(a?;a',a®) and
2 3\ : 3.1 2
a? = a?, Vi € minor(a’®;a',a”).

Next, the second part of the Lemma will be proven. Consider a/ €
DH (n)\{d},a? a*, a*}

Call z the number of positions in inv(a!,a? a®) where a! = a!. Then
the number of positions in inv(a', a?, a®) where a} # a} is 272 — 1 — z (see
Lemma 1).

Call y the number of positions in minor(a'; a2, a®) where a! = al. Then

the number of positions in minor(a'; a?, a®) where o} # a} is 2" 2 — y.
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Call 2z the number of positions in minor(a?; a', a®) where a! = a;. Then

the number of positions in minor(a?; a', a®) where a! # a} is 2" 2 — 2.

Call ¢ the number of positions in minor(a®; a', a®) where o = a}. Then

the number of positions in minor(a®;a', a®) where a} # a; is 2" — 1.

Since d(aj, al) = dmv(al,az,aa)(aj, al) + dminor(al;a2,a3) (aj, al)—l-

1 i1\ _ on—1
Aminor(a?;a1,03) (@7, @") + dinor(as,a1,02) (07, a') = 2", we have

("= 1=2)+ (22 =) + (22— 2) + (22 = ) = 2

Since d(aj, a2) = dmv(al,az’az,)(aj, a2) + dmmor(al;az,as) (aj, 02)+

i 42 i 42) — 9n—1
dminor(a2;a1,a3)(aja a ) + dminor(af‘,al,a?)(a]a a ) =2 , we have

"2 -1—-2)+y+2+(2"?—t)=2""1

Since d(aj, a3) = dinv(al,a2,a3) (a,j, a3) + dminor(al;a2,a3) (aj, a3)+

i 3 i 3 — -1
dminor(az;al,ae‘)(aja a ) + dminor(a",al,a?)(aja a ) =2""7, we have

22 —1—2)+y+ (2" 2 —2)+t=2""

Since d(aj, az) = dinv(al,a2,a3) (aj, az) + dmz’nor(al;az,a?’) (aj, az)-l-

j j _ —1
dminor(az;al,as)(a]a az) + dminor(a3,a1,a2)(aja az) =2""", we have

"2 —1—2)+ 2" 2 —y)+z+t=2""
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From the expressions above, the following equation system can be derived:

(

r+y+z+t=2"1-1
—r+y+z—t=1
—r+y—z+t=1

—r—y+z+it=1

\

By solving it, we get z =2" 3 —land y = 2 =t = 2" 3.

Finally, we conclude,
dinv(al a? aS)(CLJ a)=2""2_-1—g=2"3
Aiminor(atia2,er) (0, a') =22 —y =273
Aiminor(a2at ) (@7, a') =272 — z = 273
Aiminor(a3sat 02) (07, a') = 2772 — ¢ = 213

In the same way, we can prove these distances hold between a’ and a2, a3.

O
Example: The table below displays the unique codeword a* corresponding

to three particular codewords a', a?, a® of a DH(5) code.

inv(al,a?,a®) | minor(a';a?,a®) | minor(a®;a',a®) | minor(a®;a', a?)
at 0000000 11111111 00000000 11111111
a? 0000000 00000000 11111111 11111111
al 0000000 00000000 00000000 00000000
a? 0000000 11111111 11111111 00000000
It can be seen that a? = a] = a? = a}, Vi € inv(a',a? a®). Also,
ai = a}, Vi € minor(a';a® d®), o = a?, Vi € minor(a®;a',a®) and

— 3\ : 3.1 2
? =a}, Vi € minor(a®;a',a®).
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Example: The table below displays three codewords a', a?, a® of a DH(5)

code and another codeword o’ € DH (5)\{a', a?, a®, a*}.

inv(al,a?,a®) | minor(a';a?,a3) | minor(a®;a',a®) | minor(a®;at,a?)
at 0000000 11111111 00000000 11111111
a? 0000000 00000000 11111111 11111111
a? 0000000 00000000 00000000 00000000
a* 0001111 00001111 00001111 00001111
It can be seen that dinyare2e)(a’,0') = dminor(ataz,en(a’,a') =

Aiminor(a?sat a8) (@5 07) = dipinor(as 01,02y (', a') = 2"7% = 4. The same distances

hold between @’ and a?, a®. O

4.2 3-Collusions over DH(n)

4.2.1 Detectable positions

3 compare their copies of the

Let us assume three dishonest buyers c', c?, ¢
same multimedia content. According to the marking assumption [BS95|, they
can only modify the embedded marks in those detectable positions where not
all three marks take the same bit value. In those positions, colluders can set
the corresponding bit to '0’, '1’ or “unreadable”. In this way, we conclude
that, if three different buyers are assigned codewords a!, a? and a® of a DH (n)
code, the result of their collusion will be a word a®“ where no bit has been
modified in the 2"~2 — 1 positions in inv(a', a?,a®). On the other hand,
colluders will be able to detect and identify positions in minor(a'; a?, a®)

as the bit positions of those content fragments which are identical between

the copies of ¢ and ¢® and different from the copy of ¢!. In a similar way,
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3

minor(a?;a', a®) and minor(a®; a', a®) can be detected and identified as well.

4.2.2 Decoding by minimum distance

As it has been said, colluders can generate a new object whose embedded
codeword may have been altered in detectable positions. In this way, it is
possible that the word retrieved from a collusion-generated object does not
correspond to any DH (n) codeword. In such cases, the recovered word will
be error-corrected by minimum distance.

Thus, in order for a collusion to be successful, colluders ¢!, ¢, ¢® with assigned
codewords a', a?, a®, respectively, must generate, by mixing fragments of their
copies, a word such that the closest codeword in the DH(n) code is not in
{a',a? a®} (see Figure 4.1). A successful collusion will cause an innocent
buyer to be accused in lieu of the colluders. Note that we are assuming that
colluders do not generate “unreadable” positions when colluding over DH (n)
codewords. It will be shown later that our construction actually prevents
unreadable positions from being fed by colluders to the dual Hamming

decoder.

4.2.3 The aim of colluders

As decoding is done by minimum distance, the aim of colluders is to come
up with an object whose embedded word is as distant as possible from their
assigned codewords.

Intuitively, it can be realized that all colluders must contribute with the
same number of bits from their corresponding codewords. Otherwise, the
collusion-generated word would be closer to the codewords of those colluders

having contributed more bits.
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| | nearest

Figure 4.1: A successful collusion.

Definition 3 A p-majority collusion strategy is one in which colluders
choose with probability p the majority bit value in positions minor(a‘; a’, a*)

(that is, the bit values in o/ or a¥) (See Figure 4.2).

at 11
a’ U1
a’ 0
p 1-p
a.coII > <

Figure 4.2: p-majority collusion strategy.

It can be seen that a word generated using a p-majority strategy from

a',a?,a® € DH(n) is expected to have the same distance to a', a® and a3.
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4.2.4 Distance from a collusion-generated word to

colluders’codewords

Lemma 3 Let a® be a word that has been generated using a p-majority
collusion strategqy between three codewords a*,a?,a® € DH(n). It holds that
dy = d(a®",a") = K1,Vi = 1,2, 3 with

min(k,27~2)
m(k) =p(K, =k) = > bt 2m 2 p)b(k — ;2" 11— p)
t=max(0,k—27"1)
where b(z1;xo,x3) is the binomial probability function (xo is the number of
trials, x3 the success probability per trial and x, es the number of successful

trials).

Proof: Without loss of generality, take ¢ = 1. We have that, for bit
positions in inwv(al, a2, a®), there is no difference between a' and a®" since
bits in those positions are undetectable. Also, each of the 2"~2 bits in

coll

minor(a'; a®, a®) differs between a' and a® with probability p; therefore,
the probability of there being ¢ differing bits in those positions is given
by a binomial probability function b(¢;2"2 p). Also, each of the 2 - 272

2.1 3. ,1

bits in minor(a?;a',a®) and minor(a®;a',a?) differs between o'

and acoll

with probability (1 — p); therefore, the probability of there being k& — ¢
differing bits in those positions is given by a binomial probability function
b(k —t;2"1,1 — p). In this way, the expression in the lemma corresponds to
the probability of there being a total of ¢ + (k — t) = k differing bits between

a' and @, O

Remarks: The total amount of differing bits is the addition of two

binomially distributed random variables. We use this fact to compute its
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expected value as
E(dl) =p- 27172 + (1 _ p)znfl — 2n71 —p- 2n72

As can be seen in Table 4.1, the expected number of differing bits between
the word (a®") generated by collusion and any of the colluders’ codewords
(a',a? a® € DH(6)) decreases as the value p gets closer to 1 (a® gets closer

1,2 .3
to a', a?, a’).

D 010204 |06 )08/ 1
E(dy) | 32 288|256 |224|19.2 |16

Table 4.1: Expected number of differing bits between a word a®" generated

using a p-majority strategy and any of the colluders’codewords. The code is
a DH(6).

Lemma 4 Let o

be a word generated wusing a p-majority collusion
strategy between three codewords a',a®,a® € DH(n). It holds that dy =

mini:1,2,3 d(ac"”, ai) = K2 with

3 . 3—i

p=po=k=3 (" | k[ m)
i=1 ? k' >k

Proof: The expression in the lemma corresponds to the probability of

one, two or three codewords in {a!,a?, a®} being at distance k from a“" and

the remaining codewords being at a greater distance. [J

Lemma 5 Let a®% be a word generated using a p-majority collusion

strategy between three codewords a',a? a® € DH(n). It holds that d3 =
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maxX;—1.23 d(ac"”, U,i) = K3 with

3 .
3 ] 3—1
p=pKs=k)=> [ " | mk)[ 3 p()]
i=1 ? k' <k
Proof: The expression in the lemma corresponds to the probability of

one, two or three codewords in {a', a?, a®} being at distance k from a®" and

the remaining codewords being at a minor distance. [

Table 4.2 presents expected values of dy and dj for different values of p

over a DH(6) code.

D 01| 0.2 0.4 0.6 0.8 1
E(dy) | 32| 26.5 | 22.7 | 19.5 | 169 | 16
E(d3) | 32 | 31.12 | 28.46 | 25.27 | 21.54 | 16

coll

Table 4.2: Expected number of differing bits between a word a®" generated
using a p-majority strategy and the nearest (E(d2)) and the farthest (E(d3))
among the colluders’ codewords. The code is a DH(6).

4.2.5 Distance from a collusion-generated word to

codewords not in the collusion

Lemma 6 Let a® be a word generated using a p-majority strateqy between
three codewords a',a®,a® € DH(n) and let a® be the only codeword in

DH(n)\{a',a? a*} with o} = a} = a? = a3, Vi € inv(a',d? a®) (existence

z coll) —

and uniqueness of a* are guaranteed by Lemma 2). Then, dy = d(a

,a

pa(k) = p(Ky = k) = b(k;3-2" 2, p)
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Proof: Lemma 2 says that bits of a® are identical to bits of a’ in
the positions in minor(a’;a?, a®) for (i,5,k) € {(1,2,3),(2,1,3),(3,1,2)}.
Therefore, the probability of there being k different bits in those 3 - 272

positions is given by a binomial probability function b(k;3 - 2772 p). O

Remarks: The expected number of differing bits between a* and a¥ is

E(dy) =p-3-2"?

Lemma 7 Let a*" be a word generated using a p-majority strateqy between
three codewords a',a? a®* € DH(n) and let a* be the only codeword in
DH(n)\{a',a? a3} with o} = a} = a? = a, Vi € inv(a',a? a®). Then,
for any codeword a € DH (n)\{a',a? a3, a*} it holds that ds = d(a,a*") =
2n=3 4 K5 with

min{k,3-2" "3}

psk)=p(Ks=k)= >, b(3-2"7,1-p)b(k 32" p)
t=max(0,k—3-27—3)

Proof: According to Lemma 2, a® and a have 2”2 differing bits
in positions in inv(al,a? a®). In each minor(a;d’,a*), for (i,j,k) €
{(1,2,3),(2,1,3),(3,1,2)}, a®" has all 2" 2 bits each of which is different
with probability p and 2”3 bits each of which is different with probability
(1 —p). Therefore, we have 3 - 2"~ bits with probability p of being different,
and thus the probability that ¢ of such bits are different is b(¢;3 - 2773, p).
On the other hand, we have 3 - 2"~3 bits with probability 1 — p of being
different, and thus the probability that & — ¢ of such bits are different is
b(k —t;3-2"3 1 — p). In this way, the expression in the lemma computes

the probability of there being ¢ + (k — t) = k differing bits between a and
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acoll 0O

Remarks: The expected number of differing bits between a and a®¥ is

E(ds) =2"?%+3-2"(1—p)+3-2"?p=2""1

Table 4.3 presents expected values of dy and dj for different values of p

over a DH(6) code.

p |0]02]0406]06]08]1
E(dy) | 0 |96 192|288 | 32 | 38.4 | 48
E(ds) |32 32| 32 | 32 [ 32| 32 |32

coll

Table 4.3: Expected number of differing bits between a word a®"* generated
using a p-majority strategy and a” (F(ds)) and the remaining codewords in
DH(6)\{a',a®,a’,a’} (E(ds)).

For the sake of simplicity, let us assume in what follows that d, is
distributed like ds. Since for p > 0.6 the number of differing bits expected
for d, is greater than the number of different bits expected for d5 (E(ds) >
E(ds) & p-3-2""2 > 2"1 & p > 0.6), such a distributional assumption
will cause actual security to be even slightly higher than computed in what

follows.

Lemma 8 Let a be a word generated using a p-majority strategy (p >
0.6) between three codewords a',a®,a® € DH(n). It holds that dg =
mini¢{1,2’3}{d(a60ll, GZ)} = 271—3 + Kﬁ, with

pe(k) = p(Ks = k) = i 2 Ps(k)i [ Zps(kl)

] on_3—4
i=1 ? kE'>k
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Proof: The expression in the lemma computes the probability that at

least one out of the 2" — 3 codewords in DH (n)\{a',a? a} is at distance k

coll

of ¢, with the remaining codewords at a longer distance. [J

Table 4.4 presents expected values of dg for different values of p over a

DH(6) code.

p |06]08][1]
E(ds) | 245 | 25.6 | 32 |

Table 4.4: Expected number of differing bits between a word a® generated
using a p-majority strategy (p > 0.6) and the nearest of the codewords not
in the collusion. The code is a DH(6).

As it can be seen in Figure 4.3, when p > 0.6, dy tends to take smaller
values than dg. This means that, with high probability, the codeword in

DH (n) nearest to the collusion generated word is a colluder codeword.

4.2.6 Identifying colluders’codewords

Lemma 9 Let a® be a word generated using a p-majority strateqy (p >
0.6) between three codewords a*,a a® € DH(n). The probability that the
codeword in DH (n) closest to a® is not in {a', a?, a®} is expressed by

2" —1

e=> pldy=k)p(ds < k)

cll vields as a result a codeword

€ is the probability that decoding a
different from any of the colluders’ codewords, that is, the probability of

a honest buyer being unjustly accused instead of the colluders.
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Figure 4.3: Distribution of dy and dg for p = 0.6 and p = 0.8. The code is a
DH(6).
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p
0.0 0.6 0.7 0.8 0.9 1.0
DH(7) | 1.0{0.59-1073 [ 0.14-1073 | 0.14-107% | 0.77-107'* | 0.0
DH(8) | 1.0[0.17-107" | 0.10-1077 | 0.15-107"3 | 0.70- 10728 | 0.0

Table 4.5: Probability € of success of a 3-collusion in DH(7) and DH (8) for
several values of p

Remarks: It can be observed from Table 4.5 that, as n increases and p
approaches 1, the probability € of accusing an innocent buyer can be made

arbitrarily close to 0.

Lemma 10 Let a®" be a word generated using a p-magjority strateqy (p >

0.6) between three codewords a*,a® a® € DH(n). The probability that the

coll

three closest codewords in DH (n) to a®¥ are {a',a?,a®} is expressed by

2n—1
l—e =Y p(ds=k)p(ds > k)
k=0
p
0.0 0.6 0.7 0.8 0.9 1.0
DH(7) | 1.0 0.1 0.5-10" [0.1-1072[0.25-1077 | 0.0
DH(8) [1.0]0.14-1072]0.26-10° [ 0.6-10~7 | 0.2-10" | 0.0

Table 4.6: Probability e, of not identifying all three colluders in DH (7) and
DH (8) for several values of p

Remarks: It can be observed from table 4.6 that as n increases and p
approaches 1, the probability of not identifying all three colluders can be
made arbitrarily close to 0.

The problem s that the parameter p defining the collusion strategy s

chosen by the colluders, which implies they can take p = 0 to make sure they
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are not identified!
In Section 4.3, a new kind of codes named scattering codes are presented.
These codes are used in Section 4.4 to prevent colluders from avoiding

identification in this way.

4.3 Scattering codes

In this section, we present a new kind of codes named scattering codes. Their

construction, decoding and properties have been published in [SD02a].

4.3.1 Construction

A scattering code SC(d,t) with parameters (d,t) is defined as a binary code
consisting of 2t codewords of length (2¢ 4+ 1)d constructed as follows:

1. The construction starts with generation of SC(1,1):

(a) The i-th codeword for 1 <4 < ¢ is constructed by setting the first
and the (7 + 1)-th bits of the codeword to '1’. The remaining bits

are set to ’0’.

(b) The i-th codeword for t +1 < i < 2t is constructed by setting the
(1 + 1)-th bit of the codeword to ’1’. The remaining bits are set
to 0’

2. The code SC(d,t) is generated by replicating d times every bit of
SC(1,t). Define a block to be a group of d replicated bits.

3. By convention, the first ¢ codewords of SC(d, t) are defined to encode a
'1" and the last ¢ codewords are defined to encode a ’0’. The first block
of the code is called 'Zone-A’, the next ¢ blocks are called 'Zone-B’ and
the last ¢ blocks are called ’Zone-C’.
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Example: The following are the codewords of a scattering code SC(4, 3).

Encodes | Zone-A Zone-B Zone-C

1111 | 1111 0000 0000 | 0000 0000 0000
T 1111 | 0000 1111 0000 | 0000 0000 0000
1111 | 0000 0000 1111 | 0000 0000 0000
0000 | 0000 0000 0000 | 1111 0000 0000
0’ 0000 | 0000 0000 0000 | 0000 1111 0000
0000 | 0000 0000 0000 | 0000 0000 1111

Using a scattering code, a ’1’ is encoded by randomly choosing one of the

first ¢ codewords and a ’0’ is encoded by randomly choosing one of the last

t codewords.

4.3.2 Decoding

In a scattering code, a word is decoded by using the first applicable rule

among the following ordered list:

1.

If all bits in "Zone-A’ are ’1’ and all bits in Zone-C’ are ’0’, decode as

1.

. If all bits in *Zone-A’ are '0’ and all bits in 'Zone-B’ are ’0’, decode as

70’.

If in two blocks of Zone-B’ there is at least one bit in each with value

"1’, decode as '1°.

. If in two blocks of 'Zone-C’ there is at least one bit in each with value

"1’, decode as '0’.

If there are more '1’ bits than ’0’ bits in ’Zone-A’, decode as ’1’.
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6. If there are more ’0’ bits than ’1’ bits in "Zone-A’, decode as '0’.
7. Decode as ’Unreadable’

Note: It is easy to see that an odd value for d makes Rule 7 unreachable,

making a '0’ or "1’ to be always returned.

4.3.3 Collusions over SC(d,t)

Lemma 11 Let b be a word generated using a p-majority strateqy between
three codewords b',b?,b® € SC(d,t) encoding the same bit value v. Then,

bl decodes as v with probability 1.

Proof: It can be seen that, if v =’1’, bits in Zone-A’ and in 'Zone-C’
stay undetectable and thus decoding will be through Rule 1 and return a
value 1.

If v =’0’, bits in Zone-A’ and in 'Zone-B’ also stay undetectable. Thus,
decoding will be through Rule 2 and return a value '0’. OJ

Lemma 12 Let b be a word generated using a p-majority strateqy between
three codewords b',b?,b® € SC(d,t), with two of them (b and b*) encoding a
value v and the other (b®) the value v. Then, the probability that b decodes
as v s given by

1

p(v) = (1= Dpas(v) + 1e(v)

where pgir(v) is the probability of decoding as v when b* # b* and is computed

as paif(v) =1 — paif(0) (we assume d to have an odd value) and

pair(®) = (1—p)ip*i+
d—1
2 ph(1 - p?) Yop 2 ) b(k; d, p)+
d—1
+ p2dZ,E:21Jb(k;d,p)

_|_
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and peyi(v) is the probability of decoding as v when b' = b* and is computed

as
Pcoi (U) = p2d+

+ (1-p9 ZZ:L%J b(k; d, p)+
+ P2 aae bk d, )

Proof: In a collusion between three codewords b',b% b* € SC(d,t) with
two of them (b' and b?) encoding a value v (without loss of generality, assume
v =1 and v = 0), we have b' = b* with probability { and b' # b* with
probability 1 — 1.

a) In the case b' # b%, we compute pgif(v) = 1 — pgif(v) (we assume d
to have an odd value), where py;r(7) corresponds to the probability of
decoding T after a collusion based on a p-majority strategy. pas(v) is

actually the probability of decoding using Rules 2 or 6.

— Rule 2 will be applied if all bits in "Zone-A’ and ’Zone-B’ are ’0’.
Since we are assuming a p-majority strategy, all bits in ’Zone-A’
will be ’0’ with probability b(d;d,1 — p) = (1 — p)¢, because the
majority bit in these positions is '1’. Since bl # b2, there will be
two detectable blocks in ’Zone-B’ where the majority bit is ’0’.
Bits in "Zone-B’ will be all ’0’ with probability b(2d;2d, p) = p*®.

So, the probability of applying Rule 2 is (1 — p)¢p?..

— Since only one out of the three colluding codewords has value ’0’,
it is not possible to have more than one block of *Zone-C’ with bit

values different from '0’. So Rule 4 cannot be applied.

— The next possibility for decoding as ’0’ is to apply Rule 6. This
happens if there are more ’0’ bits than '1’ bits in "Zone-A’ and no

other rule between 1 and 5 has been applied before. In order to
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render Rule 3 not applicable, we need one of the two detectable
blocks of "Zone-B’ to be all zeros. Let us assume it is the leftmost
one. This happens with probability b(d;d, p) =

Then we need more than half of the d bits of "Zone-A’ with value
'0’ (or less than one half with value ’'1’), which happens with
probability ZL =y b(k;d,p)). We also need that one of the two
detectable blocks of "Zone-B’ is all zeros (with probability p?)
and the other with at least one 1’ bit to (which causes Rule 2
not to be applied), and happens with probability 1 — b(d;d, p) =
1 — p% As this can happen twice, one with each of the blocks
of "Zone-B’ forced to have all bits to '0’, the total probability is
2 (1= p) 4y | blki ).

The same rule is also executed if both blocks of 'Zone-B’ have
all bits to 0’ (with probability p??) and the number of "1’ bits in
"Zone-A’ is greater than 0 (to make Rule 2 not applicable) and
less than one half of the block length d. The total probability is

d—1
P2y 3 bk d, p).

b) In the case b* = b%, the probability of decoding value "1’ corresponds to
the probability of decoding after applying Rule 1 or Rule 5 (note that
Rule 3 is not applicable).

— Rule 1 will be applied if all bits of Zone-A’ are '1’ and all bits
of "Zone-C’ are ’0’. In both cases, we need all bits to take the

majority value, which happens with probability b(2d; 2d, p) = p*®.

— The other possibility is to apply Rule 5 conditioned to not having
applied Rule 1 before. There are two possible scenarios.

In the first scenario, we need at least one bit of ’Zone-C’ and more
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than one half of the bits of Zone-A’ with value '1°. This happens
with probability (1 — p?) ZZ:L%J b(k;d,p).

In the other scenario, we need all bits of Zone-C’ to be 0’ and
the number of ones in 'Zone-A’ to be more than a half of the
zone but less than d (otherwise Rule 1 would have been applied

before). This happens with probability p Zk 442 b(k;d,p). O

Example: A possible collusion of three codewords of a SC(4,3) code
with b' # b? both encoding a '1’ and b encoding a ’0’.

Zone-A Zone-B Zone-C

b | 1111 | 1111 0000 0000 | 0000 0000 0000
b%> | 1111 | 0000 1111 0000 | 0000 0000 0000
b3 | 0000 | 0000 0000 0000 | 1111 0000 0000

Example: A possible collusion of three codewords of a SC(4,3) code

with b' = b? encoding a ’1’ and b encoding a ’0’.

Zone-A Zone-B Zone-C

bt | 1111 | 1111 0000 0000 | 0000 0000 0000
b*> | 1111 | 1111 0000 0000 | 0000 0000 0000
b3 | 0000 | 0000 0000 0000|1111 0000 0000

Figure 4.4 shows graphically the probability of decoding the majority
value p(v) as a function of the p-majority strategy applied over a SC(d, t).

Table 4.7 present some numerical results on the lowest probability p(v)
of decoding the majority value v in a collusion of three buyers, for several

scattering codes.
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1 S | | | |
R d=3,t=4 ——
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Figure 4.4: For different values of d and ¢, probability of decoding the
majority value p(v) as a function of the p-majority strategy applied over
a SC(d,t).

4.4 3-Secure codes

4.4.1 Construction

For N = 2" buyers, each buyer ¢ is assigned a different codeword a* €
DH(n). Rather than directly embedding a’ in the content to be sold, the
merchant generates a codeword A’ by composing a scattering code SC(d, t)
with a’ (See Figure 4.5). Such a composition is performed by replacing each
bit of a with a codeword in SC(d,t) which encodes the value of the bit of

a’. In this way, the codeword A® will have bitlength

I=(N-1)2t+1)d
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d | t | minp(v)
3| 4 0.68
) d 0.8
719 0.89
31 | 100 0.99

Table 4.7: Lowest probability p(v) of decoding as the majority bit v in a
collusion of three buyers, for several parameter choices (d, ).

The merchant then permutes the bits in A’ using a pseudo-random
permutation seeded by a secret key known only to the merchant. The same
permutation is applied to all codewords A’. Figure 4.5 graphically depicts
the construction described in this section. Finally, the merchant embeds the

permuted version of A in the content being sold.

4.4.2 3-Collusions

Let us assume three dishonest buyers ¢!, ¢?, ¢® are assigned three codewords

A, A% A® which have been built by:

1. Composing a scattering code with three different codewords a',a?, a® €

DH(n)
2. Permuting the bits of the composed codewords

By comparison of their copies, the colluding dishonest buyers can identify
minor(AY; A%, A%), minor(A%; A', A%) and minor(A3; A}, A?). But as the
bits of A* have been secretly permuted, colluders cannot find out which bit
of A* corresponds to which bit of a’. Thus, the colluders cannot identify

3

minor(a'; a?, a®), minor(a?; at, a®) nor minor(a®; a', a?). Therefore, the only

way for colluders to generate A" is to use a p-majority strategy.
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According to Lema 9, all bits at positions inv(a',a? a®) remain
unmodified after decoding each of the 2" — 1 components of A" to obtain
a®. Also, according to Lema 10, all bits at positions minor(a’; a’, a¥) for
(1,75, k) € {(1,2,3),(2,1,3),(3,1,2)} will keep the majority value v (the one
of @/ and a*) with probability at least p(v).

What is achieved with the above composition is that, regardless of the
p-majority strategy used by colluders to generate words A®! the word
a® resulting from decoding A®! is a word generated by a p(v)-majority
strategy collusion between a',a?, a®, where the value p(v) is controlled by
the merchant by choosing appropriate values for parameters d and t (see
Table 4.7). It can be seen from Table 4.5 that controlling p(v) is necessary

to the keep low the probability € of successful collusion. If A* has some bits

with value “unreadable”, those bits are randomly set to 0’ or "1’

y [ | DH(n) p(v)-majority, p(v)->1

SC(d,t)
’ p-majority

1 permutation

‘ p-majority

Figure 4.5: Construction of 3-secure codes.

4.4.3 Numerical results

Once parameters d and ¢t have been fixed, the number of buyers can be

increased by increasing n. For d = 5 and ¢t = 5, Table 4.8 shows the size of the
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code (number of buyers), the codeword length of our proposal, the probability
of a successful collusion € and the length of Boneh-Shaw’s proposal for the

same n and e.

n | buyers € Our length | Boneh-Shaw’s length
7] 128 | 0.14-107° 6985 2,788,320
8| 256 |0.15-10713 14025 8,393,220
9| 512 |0.19-107% 28105 28,340,928

Table 4.8: Comparison between our codeword length and Boneh-Shaw’s for
the same number of buyers and security level (scattering code parameters:
d=5,t=05)

It can be seen that Boneh-Shaw’s construction results in much longer
codewords than our proposal. Further, as n increases, their codeword length
increases faster than ours.

In our proposal, once d and t have been fixed, the value € decreases
exponentially as n increases, which yields security levels higher than needed.

Thus, a better comparison is to use a fixed ¢ and assume that, for our
security requirements, Ve’ < € one has € ~ 0. We take a value e = 10! and
use it as security level for Boneh-Shaw’s construction. Results are presented
in Table 4.9.

For a fixed e = 107!°, we can observe that our proposal yields shorter
codeword lengths up to n = 16 (number of buyers N is 65,536). For values
of n > 16 Boneh-Shaw’s proposal offers a shorter codeword length. The
explanation is that our codeword length increases as O(N) while Boneh-
Shaw’s increases as O(log N) with a large constant factor; this large constant
factor prevents Boneh-Shaw’s scheme from comparing favorably unless N is

very large.
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buyers | Our length | Boneh-Shaw’s length
512 28,105 5,148,000
1,024 56,265 5,269,992
32,768 | 1,802,185 5, 883, 888
65,536 | 3,604,425 6,006, 780
131,072 | 7,208,905 6,129, 816

Table 4.9: Comparison of codeword length between our proposal and Boneh-
Shaw’s for the same number of buyers and assuming ¢ = 10710 (scattering
code parameters: d =5, t = b)



