Chapter 5

Statistical Microdata

Protection

In Section 2.3 we pointed out the need to protect statistical microdata
when released to possibly dishonest users that may infer about individual
respondents. In this chapter, we present our contributions to statistical

disclosure control (SDC) for continuous microdata.

5.1 A modified score

In Subsections 2.3.2 and 2.3.3 above, measures to compute information loss
and disclosure risk were shown. Those measures assume that the i-th masked
record corresponds to the i-th original record.

Such one-to-one mapping cannot be assumed when the original and
masked files have a different number of records or when masked records have
been permuted. In this case, a new way to compute I L; must be defined. A
natural way is to map each published masked record 7 to the nearest original

record ¢(7) using the d-dimensional Euclidean distance between standardized
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records (where d is the number of variables in the data sets). Then a new 1L}
is computed as the mean variation between masked records and the original
records to which they are mapped. Denoting by n’ the number of masked
records, we have
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where x;;, x;j are the values taken by the j-th variable for the i-th record of

the original and masked data sets, respectively.

Replacing IL; by IL} leads to a modified information loss measure IL':
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Also, the lack of a one-to-one mapping between original and masked
records forces a redefinition of disclosure risk measures DLLD and PLD. As in
the definition of 1L}, we will say that a masked record is correctly linked to
an original record if they are at the shortest possible d-dimensional Euclidean
distance. Additionally, we redefine ID so that “corresponding values” mean
values in records at shortest d-dimensional Euclidean distance. Distance is
always measured over standardized records. Call DLD’, PLD’ and ID’ the

resulting redefined disclosure risk measures.

The new Score’ is computed by replacing IL, DLD and ID with IL’, DLD’

and ID’ as well as dropping PLD for computational reasons. This yields:

Score' =0.5-IL'+0.25- DLD' +0.25-ID' (5.1)

This new Score' was first used to evaluate the performance of a recently
proposed method for synthetic microdata generation. We published our

results in [DDS02].
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5.2 Post-masking optimization

In the previous section, a measure Score’ has been proposed to measure how

good is a masking method in terms of information loss and disclosure risk.

In this section, a post-masking optimization approach is presented which
seeks to modify the masked data set to minimize information loss without
increasing disclosure risk, leading to a better Score’ and thus to a better

masking. Results presented here have been published in [SDMT02].

Once an original data set X has been masked as X', post-masking
optimization aims at modifying X’ into X” so that the first and second-
order moments of X are preserved as much as possible by X" while keeping
IL} around a prescribed value. Near preservation of first and second-order
moments results in (constrained) minimization of Ly, IL3, IL, and ILs,
which implies near preservation of multivariate statistics. Regarding I'L}, a
slight reduction is reasonable and desirable, whereas minimization is not; too
small an /L would most likely result in a dramatic disclosure risk increase,
because post-masking optimized data would look too much like the original

data.

5.2.1 Mathematical background

Next, we explain the mathematical background on which our post-masking

procedure is based.
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Preserving averages

Let X; and X5 be two data sets with d common variables and with n; and

ng records, respectively. Then, it is easy to see that, if
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where z1;;, To;; are the values taken by the j-th variable for the 7-th record
of X; and X, respectively, then first-order moments of Xy match those of

X; (thus causing I Ly between X; and X5 to be 0).

Preserving variances

Let X; and X5 be two data sets with d common variables and with n; and ny
records, respectively. Let xy;;, T9;; be the values taken by the j-th variable
for the i-th record and 7, To; be the averages of the j-th variables of X
and X, respectively. Preserving the variances of the j-th variables in both
data sets can be written as
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The above is equivalent to
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Finally, the previous expression is equivalent to
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From the expression above, we can see that, if Z,; = Ty; (first-order moments
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and 27,:71113"1” = E’j:fz”, V1l < j < d, then the variance of

are preserved),
corresponding j-th variables of X; and X, will be the same (which will result

in IL, between X; and X, being 0).

Preserving covariances

In a similar way, let X; and X, be two data sets (with n; and n, registers
respectively and d variables). Preserving the covariance between any pair

1 < j < k < d of variables can be written as:
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From the expression above, we can see that if T;; = Zy;, VI < j <d
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(first-order moments are preserved) and Ez—lni” Lk — El—an” 2k V1 <

j < k < d, then the covariance between the j-th and k-th variables of X;

will match with the corresponding one of X, (if variances are also preserved,
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this causes L3 between X; and X, to take a value of 0).

Preserving correlations

From the definition of correlation, it is trivial to see that, when two data sets
X1 and X, preserve variances and covariances, correlations are also preserved

(causing I Ls between X; and X, to be 0).

5.2.2 The model

As it has been shown in the previous section, the first-order moments of a
data set X depend on the sums
n
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where z;; is the value taken by the j-th variable for the ¢-th record. The
second-order moments of X depend on the sums
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Therefore, our goal is to modify X' (masked data set) to obtain a X"
(optimized masked data set) so that the above 2d + d(d — 1)/2 sums are
nearly preserved between X (original data set) and X", IL} is reduced to
a desired value and disclosure risk stays similar in X’ and X”. First, let us

compute I L] of X' vs X as
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where c(i) is the original record nearest to the i-th masked record of X' (d-
dimensional Euclidean distance ! is used). Now let 0 < ¢ < 1 be a parameter
and let M be the set formed by the 100¢% records of X' contributing most
to IL} above. Then let us compute the values z; of X" as follows. For
z;; € M then zj; := xz;;. For x;; € M, the corresponding z;; are solutions of

the following minimization problem:
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where p > 0 is a parameter and C|(4) is the original record nearest to the i-th
masked record of X" after optimization. Note that, in general, C'(i) # c(i),
because in general X" # X'.

5.2.3 A heuristic optimization procedure

To solve the minimization problem (5.3) subject to constraint (5.4), the

following hill-climbing heuristic procedure has been devised:

!Distance is always measured over standardized variables.
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Algorithm 13 (PostMaskOptim(X,X’,p,q,TargetE))

1. Standardize all variables in X and X' by using for both data sets the

averages and standard deviations of variables in X.
2. Compute IL} between X and X' according to expression (5.2).
3. Let TargetI L} :==p-IL}.
4. Let X" := X"

5. Rank records in X" according to their contribution to IL|. Let M be
the subset of the 100q% records in X" contributing most to IL,.

6. For each record i in X", determine its nearest record C(i) in X (use

d-dimensional Euclidean distance).
7. Compute E, where E denotes the objective function in Expression (5.3).
8. While E > TargetE
(a) Randomly select one wvalue v of a record i, in M C X" and
randomly perturb it to get v'. Replace v with v' in record i,.
(b) Recompute the nearest record C(i,) in X nearest to the updated
Ty-
(c) Let PreviousIL! := IL.

(d) Compute IL between X and X". To do this, use Ezpression (5.2)
while replacing xj; by x7; and c(i) by C(i).

(e) Let PreviousE := E.

(f) Recompute E (X" has been modified).
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(9) If E > previousE then undo := true.

(h) If 1L} ¢ 1[0.99 - TargetIL|,1.01 - TargetIL|] and |IL| —
Targetl L)| > |PreviousI L — TargetIL!| then undo := true.

(i) If undo = true then restore the original value v of record i, and

recompute the nearest record C(i,) in X nearest to i,.

9. Destandardize all variables in X and X" by using the same averages

and standard deviations used in Step 1.

Note that, by minimizing E, the algorithm above attempts to minimize
the information loss IL'. No direct action is taken to reduce or control
disclosure risk measures DLD’ and ID’, beyond forcing that IL} should
be in a pre-specified interval to prevent the optimized data set from being
dangerously close to the original one. The performance of Algorithm 13
is evaluated a posteriori: once E reaches TargetE, the algorithm stops and

yields an optimized data set for which IL', DLD" and I D' must be measured.

5.2.4 Computational results

The test microdata set no. 1 of [DDS02] was used. This microdata set was
constructed using the Data Extraction System (DES) of the U.S. Census
Bureau (http://www.census.gov/DES). d = 13 continuous variables were
chosen and 1080 records were selected so that there were not many repeated
values for any of the attributes (in principle, one would not expect repeated
values for a continuous attribute, but there were repetitions in the data set).

In the comparison of [DMT01, DT01a], two masking methods were singled
out as particularly well-performing to protect numerical microdata: rank
swapping [Mo096] and multivariate microaggregation [DM02]. For both

methods, the number of masked records is the same as the number of
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| p | ¢ |[Scord IL' DLD ID E |
None | None | 25.66 23.83 14.74 40.23 0.419
05 | 05 | 2445 14.73 20.30 48.03 0.04
05 | 0.3 | 2215 13.65 16.30 44.98 0.04
05 | 0.1 | 21.71 15.26 14.81 41.51 0.09

Table 5.1: Rank-swapping with parameter 14. First row, best Score’ without
optimization; next rows, scores after optimization.

original records (n = n' = 1080). Several experiments have been conducted
to demonstrate the usefulness of post-masking optimization to improve
on the best (lowest) scores reached by rank swapping and multivariate
microaggregation.

The first row of Table 5.1 shows the lowest Score’ reached by rank
swapping for the test microdata set: the Score’ is 25.66 and is reached for
parameter value 14 (see [DDS02]). The next rows of the table show Score
reached when Algorithm 13 is used with several different values of parameters
p (proportion between target L] and initial IL}) and ¢ (proportion of records
in M). The last column shows the value of the objective function E reached
(for all rows but the first one, this is the T'arget E parameter of Algorithm 13).
The Score' is computed using Expression (5.1) and the values of IL'; DLD'
and ID' reached are also given in Table 5.1.

The first row of Table 5.2 shows the lowest Score’ reached by multivariate
microaggregation for the test data set: the score is 31.86 and is reached for
parameter values 4 and 10, that is, when four variables are microaggregated
at a time and a minimal group size of 10 is considered (see [DDS02]). The
next rows of the table show Score’ reached when Algorithm 13 is used with
several different values of parameters p and q.

When looking at the results on rankswapped data (Table 5.1), we can
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| » | q |Scored IL' DLD ID' E |
None | None | 31.86 22.48 22.14 60.34 0.122
0.5 0.5 26.96 14.16 21.06 58.54 0.008
0.5 0.3 27.39 14.714 21.29 58.80 0.008
0.5 0.1 28.03 1494 21.83 60.38 0.008

Table 5.2: Multivariate microaggregation with parameters 4 and 10. First
row, best Score’ without optimization; next rows, scores after optimization.

observe the following:

e There is substantial improvement of the Score’: 21.71 for post-masking
optimization with p = 0.5 and ¢ = 0.1 in front of 25.66 for the initial

rankswapped data set.

e The lower ¢ (i.e. the smaller the number of records altered by post-
masking optimization), the better is Score’. In fact, Score’ for ¢ = 0.1
is lower than for ¢ = 0.3,0.5 even if the target F for ¢ = 0.1 is less
stringent (higher) than for the other values of gq.

e Post-masking optimization improves the score by reducing information
loss L' and hoping that disclosure risks DLD’ and I D’ will not grow.
In fact, Table 5.1 shows that DLD’ and ID' increase in the optimized
data set with respect to the rankswapped initial data set. The lower
g, the lower is the impact on the rankswapped initial data set, which
results in a smaller increase in the disclosure risk. This small increase in
disclosure risk is dominated by the decrease in information loss, hence

the improved Score’.

The results on microaggregated data (Table 5.2) are somewhat different.

The following comments are in order:
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e Like for rankswapping, there is substantial improvement of Score'
26.96 for post-masking optimization with p = 0.5 and ¢ = 0.5 in front
of 31.86 for the initial microaggregated data set.

e The higher g, the better is Score’. This can be explained by looking
at the variation of IL', DLD' and ID'. Microaggregated data are
such that there is room for decreasing IL' while keeping DLD' and
ID' at the same level they had in the initial microaggregated data set.
In this respect, we could interpret that, multivariate microaggregation
being “less optimal” than rank swapping, we should not be afraid of
changing a substantial number of values because this can still lead to

improvement.



