
81

Chapter 4
Policy Repository

There are several techniques and concepts to design and implement policies, but there is no

commonly accepted terminology or notation. This Thesis suggests the use of PCIM

[Moore01] and their extensions [Moore03] to design policies. However, it is not possible to

store policies in a LDAP repository in that way, it is necessary to do a mapping between

PCIM and PCIMe classes into the LDAP classes and attributes.

Diagram 1 provides an overview of the classes that comprise the CIM Core Policy Model,

their associations to each other, and their associations to other classes in the overall CIM

model.[CIM-DMTF].

Currently, the mapping of PCIM classes into an LDAP scheme is an Internet Draft of the

IETF, and the mapping of the PCIM extension is part of this Thesis and forms the Internet

Draft [Reyes03]. Next there is a detail about the LDAP mapping of the PCIMe.

82

Figure 1. PCIM classes distribution

4.1 LDAP mapping of the Policy Core Information Model (PCIM)
extensions to an LDAP schema

This section presents the mapping of the object-oriented information model for representing

policy information to a concrete implementation using a directory that uses LDAPv3 as its

access protocol. This mapping is an LDAP schema representing the classes defined in the

Policy Core Information Model Extensions [Moore03]. The document [Reyes03] is an

extension to [Strassner02], which defines the LDAP mapping of the Policy Core

Information Model [Moore01] to an LDAP schema. The changes include additional classes

83

previously not covered, deprecation of some object classes defined in PCLS and changes

to the existing class hierarchy in PCLS.

The term 'PCELS' (Policy Core Extension LDAP Schema) is used to refer to the LDAP

object class definitions proposed. The classes described in appendix I contains certain

optimizations for a directory that uses LDAP as an access protocol. One example is the use

of auxiliary classes to represent some of the associations defined in the information model.

Note that other storage types might need to implement the association differently.

Forty-nine of the classes in the PCELS come directly from the fourty-five corresponding

classes in the information model extensions. The prefix "pcime" is used to identify these

LDAP classes. See next table.

Information Model (PCIM ext) LDAP Class(es)

PolicySet pcimePolicySet

PolicyRule pcimeRule
pcimeRuleAuxClass
pcimeRuleInstance

SimplePolicyCondition pcimeSimpleConditionAuxClass

CompoundPolicyCondition pcimeCompoundConditionAuxClass

CompoundFilterCondition pcimeCompoundFilterAuxClass

SimplePolicyAction pcimeSimpleActionAuxClass

CompoundPolicyAction pcimeCompoundActionAuxClass

PolicyVariable pcimeVariable

PolicyExplicitVariable pcimeExplicitVariableAuxClass

PolicyImplicitVariable pcimeImplicitVariableAuxClass

PolicySourceIPv4Variable pcimeSourceIPv4VariableAuxClass

PolicySourceIPv6Variable pcimeSourceIPv6VariableAuxClass

PolicyDestinationIPv4Variable pcimeDestinationIPv4VariableAuxClass

PolicyDestinationIPv6Variable pcimeDestinationIPv6VariableAuxClass

PolicySourcePortVariable pcimeSourcePortVariableAuxClass

84

PolicyDestinationPortVariable pcimeDestinationPortVariableAuxClass

PolicyIPProtocolVariable pcimeIPProtocolVariableAuxClass

PolicyIPVersionVariable pcimeIPVersionVariableAuxClass

PolicyIPToSVariable pcimeIPToSVariableAuxClass

PolicyDSCPVariable pcimeDSCPVariableAuxClass

PolicyFlowIDVariable pcimeFlowIDVariableAuxClass

PolicySourceMACVariable pcimeSourceMACVariableAuxClass

PolicyDestinationMACVariable pcimeDestinationMACVariableAuxClass

PolicyVLANVariable pcimeVLANVariableAuxClass

PolicyCoSVariable pcimeCoSVariableAuxClass

PolicyEthertypeVariable pcimeEthertypeVariableAuxClass

PolicySourceSAPVariable pcimeSourceSAPVariableAuxClass

PolicyDestinationSAPVariable pcimeDestinationSAPVariableAuxClass

PolicySNAPOUIVariable pcimeSNAPOUIVariableAuxClass

PolicySNAPTypeVariable pcimeSNAPTypeVariableAuxClass

PolicyFlowDirectionVariable pcimeFlowDirectionVariableAuxClass

PolicyValue pcimeValueAuxClass

PolicyIPv4AddrValue pcimeIPv4AddrValueAuxClass

PolicyIPv6AddrValue pcimeIPv6AddrValueAuxClass

PolicyMACAddrValue pcimeMACAddrValueAuxClass

PolicyStringValue pcimeStringValueAuxClass

PolicyBitStringValue pcimeBitStringValueAuxClass

PolicyIntegerValue pcimeIntegerValueAuxClass

PolicyBooleanValue pcimeBooleanValueAuxClass

PolicyRoleCollection pcimeRoleCollection

ReusablePolicyContainer PcimeReusableContainer
PcimeReusableContainerAuxClass
pcimeReusableContainerInstance

FilterEntryBase pcimeFilterEntryBase

IPHeadersfilter pcimeIPHeadersfilter

8021Filter pcime8021Filter

85

FilterList pcimeFilterList

Table 1.LDAP Classes

Next table shows the associations established in PCIMe and their mapping to LDAP

attributes or classes.

Information Model Association LDAP Attribute / Class
PolicySetComponent pcimePolicySetComponentList in

pcimePolicySet and
pcimePolicySetDN in
pcimePolicySetAsociation

PolicySetInSystem DIT Containment and
pcimePolicySetDN in
pcimePolicySetAsociation

PolicyGroupInSystem (same as PolicySetInSystem)
PolicyRuleInSystem (same as PolicySetInSystem)
PolicyConditionStructure pcimConditionDN in

pcimeConditionAssociation
PolicyConditionInPolicyRule pcimeConditionList in

pcimeRule and
pcimConditionDN in
pcimeConditionAssociation

PolicyConditionInPolicyCondition pcimeConditionList in
pcimeCompoundConditionAuxClass
and pcimConditionDN in
pcimeConditionAssociation

PolicyActionStructure pcimActionDN in
pcimeActionAssociation

PolicyActionInPolicyRule pcimeActionList in
pcimeRule and
pcimActionDN in
pcimeActionAssociation

PolicyActionInPolicyAction pcimeActionList in
pcimeCompoundActionAuxClass
and pcimActionDN in
pcimeActionAssociation

PolicyVariableInSimplePolicy
Condition

pcimeVariableDN in
pcimeSimpleConditionAuxClass

PolicyValueInSimplePolicy
Condition

pcimeValueDN in
pcimeSimpleConditionAuxClass

PolicyVariableInSimplePolicy
Action

pcimeVariableDN in
pcimeSimpleActionAuxClass

86

PolicyValueInSimplePolicyAction pcimeValueDN in
pcimeSimpleActionAuxClass

ReusablePolicy DIT containment
ExpectedPolicyValuesForVariable DIT containment or

pcimeExpectedValueList in
pcimeVariable

ContainedDomain DIT containment or
pcimeReusableContainerList in
pcimeReusableContainer

EntriesInFilterList DIT containment or
pcimeFilterListEntriesList in
pcimeFilterList

ElementInPolicyRoleCollection DIT containment or
pcimeElementList in
pcimeRoleCollection

PolicyRoleCollectionInSystem DIT Containment

Table 2. PCIMe associations and their mapping to LDAP.

4.1.1 Attaching PolicyVariable and PolicyValues to PolicySimpleCondition and

PolicySimpleAction

A PolicySimpleCondition as well as a PolicySimpleAction includes a single PolicyValue

and a single PolicyVariable. Each of them can be attached or referenced by a DN. The

attachment helps create compact PolicyCondition and PolicyAction definitions that can be

efficiently provisioned and retrieved from the repository. On the other hand, referenced

PolicyVariables and PolicyValues instances can be reused in the construction of multiple

policies and permit the administrative partitioning of the data and policy definitions.

4.1.2 Aggregation of actions/conditions in PolicyRules and CompoundActions/

Conditions.

In PCIM_EXT were defined two new classes that offer the designer the capability of

creating more complex conditions and actions. CompoundPolicyCondition and

87

CompoundPolicyActionclasses are mapped in the PCELS' CompoundConditionAuxClass

and CompoundActionAuxClass classes and inherit from

pcimConditionAuxClass/pcimActionAuxClass

Because of this inheritance they are stored in the same way the non-compound

conditions/actions are. The compound conditions/actions defined in the PCIM_EXT are

extensions of the rule capability to associate, grouping and evaluate/execute

conditions/actions so the conditions/actions are associated to the compounds

conditions/actions as they were associated to the rules in the PCLS.

In this section is explained how to store this classes in the directory. As a general rule, the

specific conditions/actions are DIT contained under rule or compound condition/action

classes and attached to the association classes. The reusable conditions/actions, compound

and non-compound, are contained in reusable containers and attached to policy instances.

The examples below illustrate the four possible cases combining specific/reusable

compound/non-compound condition/action. The rule has two compound conditions; each

one has two different conditions. The schemes can be extended in order to store actions.

The mapping of compound conditions/actions and the schemas below are based on the

section 4.4 of the PCLS [Strassner02] and how conditions and actions are associated to

rules and repositories.

First case: specific compound condition/action with specific conditions/actions.

Because the compound conditions/actions are specific to Rule, the auxiliary classes that

represent them are attached to, structural classes pcimeConditionAssociation or

pcimeActionAssociation. These structural classes represent the association between the rule

and the compound condition and compound action. The rule's specific condition/action are

DIT contained in rule entry.

88

The conditions/actions have to be tied to compound conditions/actions in the same way as

compound conditions/actions are tied to rules, but association classes do the association

between them compound conditions/actions and its specific conditions/actions.

Figure 2. Specific compound condition/action with specific conditions/actions

Second case: Rule's specific compound conditions/actions whit reusable conditions/actions.

This case is similar to the first one. The conditions/actions are reusable so they are not

attached to the association classes but they are attached to structural classes in the reusable

container. It's needed that the association classes tie the conditions/actions in the reusable

container using DN references.

Rule

CA1+cc1 CA2+cc2

CA3+c1 CA4+c2 CA5+c3 CA6+c4

LEGEND:
 DIT containment
 DN reference

CA: pcimeConditionAssociation structural class.
cc: pcimeCompoundConditionAuxClass auxiliary class
c: pcimConditionAuxClass' subclass.

89

Figure 3 Rule's specific compound conditions/actions whit reusable conditions/actions

Third case: Reusable compound condition/action with specific conditions/actions.

Because of the re-usability of the compound compound condition/action they are attached

to structural classes and stored in the reusable container. They are related to the rule

through the DN reference between the association classes and the compound

condition/action. The specific conditions/actions are DIT contained in the compound

condition/action entries.

Rule

CA2+cc2

Repository X

CA1+cc1

CA6 S1+c4

CA5 S2+c3
CA4

CA3
S3+c2

S4+c1

LEGEND:
 DIT containment
 DN reference

CA: pcimeConditionAssociation structural class.
cc: pcimeCompoundConditionAuxClass auxiliary class.
c: pcimConditionAuxClass' subclass.
S: structural class

90

Figure 4. Reusable compound condition/action with specific conditions/actions

Fourth case: Reusable conditions/actions and compound conditions/actions.

All the conditions/actions are reusable so they are stored in reusable containers. Figure 4

illustrates two different repositories or reusable containers but the number of containers in

the system depends on the policy administrator so the conditions/actions could be stored in

the same container or each condition/action could be stored in a different container.

Rule RepositoryX

S1+c4 S1+cc2

CA4+c3 CA4+c3

CA1 S2+cc1

CA3+c1 CA4+c2

LEGEND:
 DIT containment
 DN reference

CA: pcimeConditionAssociation structural class.
cc: pcimeCompoundConditionAuxClass auxiliary class.
c: pcimConditionAuxClass' subclass.
S: structural class

91

Figure 5. Reusable conditions/actions and compound conditions/actions

4.2 Applications, examples.

This section shows some policy examples based on the methodology of the Policy Core

Information Model [Moore01] in the first case and from the point of view of the

maagement application in the second case. .

4.2.1 Example 1

We present some policies examples that follow a set of steps to get an easy and adequate

design that is going to be useful for an implementation in an object-oriented platform, for

example Java or c++. In order having a good design, we follow four steps. First, it is

necessary to describe the policy goal. Second step establishes a definition of the variables

RepositoryXS1+c4 RepositoryX

CA2 CA2

CA6

CA6

S3+c4

S4+c3

S2+cc1CA1

CA4

CA3

S5+c2

S6+c1

92

needed by the policy. Third step involves the definition of the set of conditions associated

with a policy rule specifying when the policy rule is applicable. The notation is based on

the Conjunctive Normal Form (CNF) and on the Disjunctive Normal Form (DNF)

[Moore01]. The last step consists of defining the actions.

We use the BasicPolicyCondition defined in the Policy Core Information Model extensions

(PCIMe) [Moore03]. This class models elementary boolean expressions of the form

(<variable> match <value>). The variable specifies the attribute that should be matched

when evaluating the condition. After the matching the value produce the boolean result to

decide if the policy is going to be applied or not. PCIMe defines two types of

PolicyVariables: Explicit Variables and Implicit Variables.

The last step performs the corresponding action or actions. The elementary action operation

is (Set <variable> to <value>). We use some of them, but also self-defined actions, derived

from the abstract class PolicyAction.

In order to facilitate the explanation of this section, next we present four policies examples:

two service-level policies and two network level policies [Reyes02-2].

Policies from Service Level

Description of policy 1 goal. This policy compares bandwidth available on the link (BWl)

with the bandwidth required by the service (BWr), if the network cannot guarantee this

requirement then the network reject the service.

Definition of the variables needed by policy 1. The BWr is in the SLS database as an

ExplicitVariable (classname = SLS, attribute name = BWr).

The available BWl can be calculated in several ways, for example one possibility is when

the network accepts to provide a service request, the requested parameters are stored in a

93

database. There is also a record for indicating which requests achieve their destination. In

that way we will have an approximation of current transport services in the system;

summing the bandwidth assigned of each service, we obtain occupied bandwidth. After that

it is necessary to subtract occupied bandwidth from total bandwidth in order to get

bandwidth available for new transport services. Note that due to the lack of a variable-to-

variable comparison feature in PCIMe, we need to define one by ourselves.

Definition of Conditions and Actions of policy 1

PolicyRule: IF BWl < BWr then reject request

Description of policy 2 goal. This policy assigns Virtual Wire PDB (VWPDB) when the

users or the services have high priority.

Definition of the variables needed by policy 2. User and service priorities are specified in

SLA database. Available bandwidth in the VWPDB can be calculated with a similar

procedure as in the policy example 1, it means that we have to sum the bandwidth of all

transport services with VWPDB and later subtract it from the total assigned bandwidth to

this PDB.

Definition of Conditions and Actions of policy 2

PolicyRule: If ((user priority = high) or (service priority = high)) and (VW PDB =

available) then use VW PDB.

ExplicitVariable (class name =SLS,
attribute name = bandwidth BWr)

Action (RejectRequest)

Operator (Less than)
ExplicitVariable (BWl = available)

BasicPolicyCondition

94

Policies from Network Level

Description of policy 3 goal. This policy determines if the network has an adequate

technology to offer the requested service. This policy is also used to establish the range of

parameters that the ISP is interested in offering. For example the ISP could be not

interested in offering services with a very slow delay or with a very high rate.

Definition of the variables needed by policy 3. It is necessary a comparison between

requested parameters (delayr, BWr, lostr) and the highest and the lowest network parameters

to determine if the technology is adequate. We have to add more conditions to compare the

requested parameters with the established values by the ISP.

Notation: Virtual Wire PDB has the highest network parameters allowed: Bandwidth = BW

VWPDB, delay = delay VWPDB, lost = lost VWPDB.

Bulk handling PDB has the lowest network parameters allowed: Bandwidth = BW BHPDB,

delay = delay BHPDB, lost = lost BHPDB

Action (Use VW PDB)

ExplicitVariable (service priority)

IntegerValue (high)

SimplePolicyCondition

BooleanValue (true)

SimplePolicyCondition

ImplicitVariable (VWPDB exist)

ExplicitVariable (user priority)
BooleanValue (true)

SimplePolicyCondition

IntegerValue (high)

If we want that the policy considers too the ISP values, then conditions should use a

maximum value allowed (BWisp- maximum, delayisp-maximum, lostisp-maximum) and a minimum

value allowed (BWisp-minimum, delayisp-minimum, lostisp- minimum)

Definition of Conditions and Actions of policy 3

PolicyRule: If ((delayr > delay VWPDB) or (delayr<delay BHPDB) or (delayr < delayisp-

minimum) or (delayr > delayisp- maximum) or (BWr > BW VWPDB) or (BWr < BW BHPDB) or

(BWr < BWisp- minimum) or (BWr> BWisp- maximum) or (lostr > lost VWPDB) or (lostr< lost

BHPDB) or (lostr < lostisp- minimum) or (lostr>lostisp- maximum)) then reject request

Descriptio

Wire PDB

Wire PDB

admitted

In order t

of the Bul
ExplicitVariable (BWr)

SimplePolicyCondition
IntegerValue ((> BW VWPDB) or (< BW BHPDB) or (> BWisp-maximum) or (< BWisp-minimum))
SimplePolicyCondition
IntegerValue ((> delay VWPDB) or (< delay BHPDB) or (> delayisp-maximum) or
(< delayisp- minimum)
ExplicitVariable (delayr)
SimplePolicyCondition

ExplicitVariable (lostr)
IntegerValue ((> lost VWPDB) or (< lost BHPDB) or (> lostisp-maximum) or (< lostisp-minimum)
Action (RejectRequest)
95

n of policy 4 goal. This policy calculates the number of rejections of Virtual

 and if it is bigger than a predefined value then the bandwidth assigned to Virtual

 is increased in 30% in the whole network in order to allow for more services be

in this class.

o increase the bandwidth of the VWPDB it is necessary to decrease the bandwidth

k handling PDB to maintain the proportion on capacity of the link.

96

Definition of the variables needed by policy 4. Rejections number of Virtual Wire PDB =

rejections VW PDB. The predefined value to do the comparison is based on the network

technology and can be specified only for the network operator.

Definition of Conditions and Actions of policy 4

PolicyRule: If (rejections VW PDB > x) then ((decrease 30% to BH PDB) and (add 30% to

BW VWPDB))

In some cases, the performance of a Policy action generates new policies to solve specific

situations. In that way, new policies can also generate more policies. This situation can

produce several conflicts between policies or SLA/SLS inconsistencies or problems related

to indefinite policy creation. .

Another kind of problem is when comes up situations that can not be solved with

predefined policies, for example policy 4 action indicates an increment in the bandwidth

assigned to Virtual Wire PDB. This action has as main consequence a decrement in the BH

PDB bandwidth or/and in the AR PDB bandwidth. One problem could be for example, if it

is not possible to decrease the bandwidth of any PDB, in this case the policy can not apply

the action and it originates an inconsistency in the system. This is related with error

handling in policy evaluation. Plus another problem lies in transactional relationship

between the two actions. If one fails, the other does not need to be performed as well.

One way to avoid inconsistencies is doing previous test, for example in policy case number

four, some tests help to know if it is already full assigned the bandwidth in the PDBs. If the

Action (Decrease 30% BW assigned to
 BH-PDB)

ExplicitVariable (Rejection VW-PDB)
SimplePolicyCondition

IntegerValue (> X)

Action (Increase 30% BW assigned to
 VW-PDB)

97

bandwidth is not full assigned then it is possible to decrease the bandwidth in a PDB in

order to increase the bandwidth in other PDB.

There are several inconsistencies that may come up in a system, some of them only can be

solved by the network operator. In future work we are going to try to solve these system

inconsistencies with dynamic policies that will depend on network state monitoring.

4.2.2 Example 2

In this case, both the information referring to a network’s users and the different service

policies that the service offers are stored in the following LDAP directory. Several QoS

levels are defined, each one takes a specific rank of parameters.

QoSType BW_Guaranteed BW (Kbps) CTDmax CDVT CLR
1 TRUE 2000
2 FALSE 364
...

Table 3. Possible relation amon QoS and associarted parameters

This table can own as many columns as necessary. The Qos type column is the reference on

which all the operations referring to QoS are based. A client’s information is a structure

formed by a series of alphanumeric fields.

Reference Name Password Contact
person

email Account
Number

CltReference CltName CltPassword CltContact CltEmail CltAccount

...

Table 4.Accounting parametrs

98

Row number 2 makes reference to the nomenclature used in IDL terminology. SLA agreed

between the ISP and the different clients can be seen in the following table.

User Reference QoS Agreed SLA Status
CltReference(Tabla 2) QoSType (Table 3) Boolean On/Off

Table 5.Relations between user and SLAs and QOS

Every row in this table associates a service level (QoSType) to every client (CltReference).

In the status column we can see the information about whether the account is active or the

administrator has blocked it.

In order to achieve the application implementation, a node was defined as an undetermined

whole of ports, where every port is represented by means of a data structure formed by a

queue couple Capacity-Policy. Capacity makes reference to the port speed and the policy

makes reference to the class of policy followed in the node (FIFO, etc.). The following IDL

code represents that relation

typedef unsigned short QueuePolicy;
typedef unsigned short Capacity; // Port speed, in Kbps

 struct Port{
 QueuePolicy queue;
 Capacity speed;

 };
typedef sequence<Port> Node;

Figure 6. Node ports structure

Node

PortPort

Port

Port

Port

Port

99

Implementation allows the ORB to receive 6 events. However, the system is scalable when

more events appear. The events used are described as follows:
const Evento NODE_DOWN = 0;
const Evento NODE_UP = 1;
const Evento PORT_DOWN = 2;
const Evento PORT_UP = 3;
const Evento PORT_CONGESTION = 4;
const Evento PORT_DECONGESTION = 5;

A session stays as defined by the following parameters:

 SessionId

 Host originating the connection

 Host destination

 QoS assigned. It coincides with one of the values in table 3.

 Path. It is a routers sequence in which the first item is the edge router.

 MPLabel. It is a label assigned to the connection by the MPLS protocol.

 Client. It is the reference of the user using the service. It must be one of the values

of the CltReference column in table 3.

There is a special administration session, which stays as open by the system administrator.

Therefore, the username and the password must be validated. From this session it is

possible to manage all service policies and all user’s data. ADM_SESSION is the identifier

for this session. The functioning scheme is presented as shows figure 7.

Figure 7. Corba management application

ORB

ClientMgr Session

LDAP

ORACLE

IIOP

100

Interface Definition IDL File example

// --
// Management Application
// --
module mas {
// --
// Interfaces, types and excepcions
// --
 interface ClientMgr;
 interface Session;
 typedef unsigned short QoSType;
 typedef string PropertyName;
 typedef any PropertyValue;

 struct Property {
 PropertyName name;
 PropertyValue value;
 };

 typedef sequence<Property> PropertySeq;
 exception UnsupportedQoS{QoSType denied;};
 exception NoPrivileges{};
 exception UserBlocked{};
 exception NoSuchUser{};
 exception BadPassword{};
// --
// QoS issues
// - Guaranteed Bandwidth (Boolean)
// - Bandwidth (Kbps)
// - Maximum delay peer to peer (CTDmax)
// - Jitter (CDVT)
// - Constant Losses Rate (CLR)
//
// QosType: Takes integer values (0,1,2,3,4...). It is the QoS identification offered to a specific service in
function of the Traffic parameters.
//
// It is possible to add more features
// --
 struct QoS{
 QoSType Tipo;
 PropertySeq TrafficPar;
 };
// --
// User Issues.
// --
 typedef string CltName;
 typedef string CltPassword;
 typedef string CltContact;
 typedef string CltEmail;
 typedef string CltAccount; // Accounting Data
 typedef unsigned short CltReference; // Customer Reference
 typedef string Router; // Identification of routers via their IP address.
 typedef string Host; // Identification of host via their IP address.
 typedef short Label; // MPLS Label

101

 typedef sequence<Router> Route; // First, a route can have only one hop

 interface ClientMgr{
// --
// In OpenSession Invocation, the edge router information goes in the route parameter.
// This parameter only contains an edge router
// This invocation is an interface ClientMgr, which suppose the calculus of the path.
// The best path between the Host Source and Host target. This path has stored in the
// Session instance that come back the invocation to the function.
// --
 Session OpenSession(
 in CltName Nombre,
 in CltPassword Clave,
 in Host Source,
 in Host Destino,
 in Route Hops) raises (NoSuchUser,BadPassword,UserBlocked);
 };
// --
// Issues related to connections and Routing
// --
 typedef unsigned short QueuePolicy;
 typedef unsigned short Capacity; // Port Velocity in Kbps
 struct Port{
 QueuePolicy queue;
 Capacity speed;
 };
 typedef sequence<Port> Node;
// --
// There is a special management session that does not use any resource.
// --
 interface Session{
 typedef unsigned short SessionId;
 const SessionId ADM_SESSION = 0;
 typedef unsigned short Evento; // Events that trigger an optimum path.
 const Evento NODE_DOWN = 0;
 const Evento NODE_UP = 1;
 const Evento PORT_DOWN = 2;
 const Evento PORT_UP = 3;
 const Evento PORT_CONGESTION = 4;
 const Evento PORT_DECONGESTION = 5;
 exception NoSuchEvent{}; // The event is unknown
 readonly attribute SessionId Id;
 readonly attribute Host Source;
 readonly attribute Host Destination;
 readonly attribute QoSType QoS ;
 readonly attribute Route Hops;
 readonly attribute Label MPLabel;
 readonly attribute CltReference Reference;
 Session Reconfigure(
 in Evento Alarma,
 in Node Enlace) raises (NoSuchEvent);
 void CloseSession();
 exception QoSFactoryError{}; // Error value for
 // traffic descriptor
 void QoSCreate(in QoSType Tipo,in PropertySeq TrafficPar)
 raises (QoSFactoryError,NoPrivileges);

102

 void QoSDelete(in QoSType Tipo)
 raises (QoSFactoryError,NoPrivileges);
 void QoSModify(in QoSType Tipo,in PropertySeq TrafficPar)
 raises (QoSFactoryError,NoPrivileges);
 CltReference ClientCreate(
 in CltName Nombre,
 in CltPassword Clave,
 in CltContact Contacto,
 in CltEmail Correo,
 in CltAccount Cuenta) raises (NoPrivileges);
 void SetClientStat(
 in CltReference User,
 in QoSType QoSContratado,
 in boolean Active) raises (NoPrivileges,NoSuchUser,UnsupportedQoS);
 };
};

Server Side

A privileged user is defined to manage the system. This user is the only one that can carry

out creation and destruction operations, and user’s and service policy modifications. The

privileged user corresponds to the LDAP directory administrator and owns enough rights to

read and write on the ORACLE database.

The main program creates an initial instance of the ClientMgr interface. The ClientMgr on

receiving and processing an OpenSession operation successfully creates session interface

instances. The CORBA Session object owns a defined CloseSession operation to release

the resources used in the network.

After the Broker and initial Servant creation, the server waits for new invocations about all

registered objects in it. These operations are the following ones:

In the ClientMgr interface

OpenSession. If parameters are right, a Session interface instance is returned. In addition to

this, on being invocated, as all connection data are known, a first optimum path

computation is carried out. There are three exceptions that can happen:

103

There is no user

The password is wrong

The client is disabled administratively

In the Session interface

If the administrator opens an administration session, this will own the ADM_SESSION

identifier. Only in this case, invocations about the ClientCreate, SetClientStat, QoSCreate,

QoSDelete and QoSModify operations will be able to be carried out. Otherwise, an

invocation to these operations will generate a NoPrivileges{} exception.

ClientCreate. A row is added to Table 2. The only exception that can happen is the fact that

the user invocating the operation does not own any privileges.

SetClientStat. It originates the values modification in Table 3, in which every user has a

service quality and an administrative status (activated or deactivated) assigned. Exceptions

happening can be the following ones: There is no user, the Session owner user does not

own any privileges, there is no QoS specified in table 3.

QoSCreate. A row is added in table 3. Some possible exceptions happening can be either

the absence of privileges or the fact that the specified traffic parameters are not adequate.

QoSDelete. It deletes a row in table 3. Some possible exceptions happening can be either

the absence of privileges or the fact that the specified traffic parameters are not adequate.

QosModify. It modifies a row in table 3, that is to say, the traffic parameters of a specific

service policy.

Reconfigure. A Session interface can receive an invocation of its reconfigure operation

when there is some event in the network. This operation takes as a parameter the kind of

event originated and the network node where it happened. As a result, the optimum path is

computed again with the new network configuration and the Route and Label attributes are

104

updates (if it is necessary according to the MPLS). The event must also be communicated

to the edge router in order to renew its information. (Route and label for this session). The

only exception we contemplate here is the fact of observing and notifying any other

different event from the six ones we have defined until now.

CloseSession. It implies the destruction of this instance. Its implementation must

contemplate the database ORACLE update that keeps the information about the network

status.

4.3 Contribution in this chapter

In this chapter we show the implementation in a real system of the PCIM policy model

using a LDAP repository. The use of a LDAP directory with a structure hierarchically

distributed allows to extend the manage architecture to great networks without reducing

their capabilities.

On the other hand, the fact of storing the network and services management information in

directories and databases specified by ITU (LDAP/X.500) rules allows to extend the PBMS

system easily, which was designed as an alternative planning to the one specified in the

TMN network. This aspect has to do with the application for the management of other

types of network based on ITU signals, as for example, mobile communication networks,

B-RDSI, etc.

In this paragraph we want to mention the cooperation between the author of this Thesis and

its director, Antonio Barba, together with other authors: M.Brunner, M.Pana and D.Morón

in the specification of Draft [Reyes03] corresponding to the IETF, which especially

supports all contributions in this chapter.

105

References

[LPDL] Yongxin Li Ming Chen Xuping Jiang Lihua Song. A Logic-based Policy

Definition Language for Network Management. O. Festor and A. Pras (Eds.). 12th

International Worshop on Distributed Systems: Operations and Management DSOM'2001

France, 2001.

[2-LPDL] G.Stone, B.Lundy, G.Xie, Network policy languages: a survey and a new

approach, IEEE Network, January/February, 2001

[Reyes 03] Reyes, A., Barba A., Moron, D., Brunner, M., Pana

M. Policy Core Extension LDAP Schema (PCELS), IETF Internet

Draft. February 2003.

[Reyes02-2] Angélica Reyes, Marcus Brunner, Antoni Barba. Controlling IP Network

Management Systems via Policies CIIT 2002 IASTED- IEEE St Thomas, USA.2002

[Strassner02] J. Strassner, B. Moore, R. Moats E. Ellesson.

Policy Core LDAP Schema IETF Internet-Draft. October 2002.

Standards

[CIM-DMTF] CIM Core Policy Model White Paper. March 14, 2003

http://www.dmtf.org/standards/documents/CIM/DSP0108.pdf

[Moore01] Moore, E. Ellesson, J. Strassner, A. Westerinen. Policy Core Information

Model-- Version 1 Specification. IETF Request for Comment (RFC) 3060. February 2001.

[Moore03] B. Moore, Ed.. Policy Core Information Model (PCIM)

Extensions. IETF Request for Comment (RFC) 3460. January 200

http://www.dmtf.org/standards/documents/CIM/DSP0108.pdf

	Chapter 4
	Policy Repository
	4.1 LDAP mapping of the Policy Core Information Model (PCIM) extensions to an LDAP schema
	Information Model Association
	LDAP Attribute / Class

	4.2 Applications, examples.
	4.2.1 Example 1
	Policies from Service Level
	
	
	
	
	
	
	Definition of Conditions and Actions of policy 1
	Definition of Conditions and Actions of policy 2
	PolicyRule: If ((user priority = high) or (service priority = high)) and (VW PDB = available) then use VW PDB.

	Policies from Network Level
	
	
	
	
	
	
	Definition of Conditions and Actions of policy 3
	Definition of Conditions and Actions of policy 4

	4.2.2 Example 2
	Interface Definition IDL File example
	
	
	Server Side
	In the ClientMgr interface
	In the Session interface

	4.3 Contribution in this chapter

	References
	
	
	
	
	Standards

