
180

Appendix II 
Policy system implementation

This appendix is a summary about the implementation of processes involved in the

proposed policy-based management system. The Linux system was used taking into

account its advantages to provide traffic control offers. It supports several classification

methods, priorities, partition and limitation in relation to the ingress and egress traffic, in a

management module of Differentiated Services.

First, the necessary process for the network node configuration will be explained in detail;

second, the monitoring process that stores its results in a relational database will be

exposed. At the end of this appendix there is the agent implementation of the routers and

the possible routing ways that the proposed policy system has.



II.1 Network node configuration

A scalable IP address assignation is created to configure the network nodes and in this way,

a package is able to reach its destination through different paths, depending on its class of

service (CoS) and the network status.

The configuration varies depending on the fact that they are interfaces on the customer’s

side or interfaces on the network side, which also varies depending on the fact if they are

edge or core routers.

Core routers send the packages through the interface indicated by the routing chart taking

into account de destination address. The edge routers need a special configuration in order

to assign a route to a customer. In the implementation, the third address octet was chosen to

establish the route. Example: 192.168.3.1 corresponds to an address in the route 3.

The fourth octet is used to differentiate the customers’ addresses that use the same route

and in this way, every customer will have a different core network address. Therefore, the

number of addresses corresponding to the number of paths and to the number of customers

that use those paths is configured by an interface.

The network consists of three PCs and two Sun equipments (Girin7 and Girin0) that

accomplish the functions shown in the following table.
Girin-7: Edge Router1= RF1

Girin-3: Edge Router2= RF2

Girin-6: Core Router3= RC3

Girin-0: Core Router1= RC1/Customer
181

Table 1. SUN equipments functions.



182

The configuration process is divided in three stages that can be graphically seen in the

figure 2 of chapter 3. Every component in the configuration process is detailed as follows.

Traffic control. It classifies the ingress traffic depending on the class of service to which it

belongs, which results in the fact of having aggregated flows (BA) instead of having

individual flows (MF-microflows). The traffic control configures the police and shaping

functions for every flow (MF) and determines what to do with the exceeding traffic. In that

case, it can drop the packages or remark them to another class of service.

In the implementation presented in this Thesis, the exceeding packages are remarked to a

Best Effort class of service. In future implementations, the exceeding traffic with AF

service class can be remarked considering the same class (AF1, AF2, AF3 or AF4) but

changing the package drop precedence level. The standard way considers 3 precedence

levels for each of the four classes that the AF service owns. [Grossman02]

Routing. This module forwards the packages existing in an individual flow through a route

that the path selector process determines (explained in chapter 5) and through the admission

control.

The routing block develops three basic functions:

1. Translation of the IP address of the destination network into the destination

address of the core route (DNAT module).

2. Router exit interface election. The exit interface is chosen considering the

destination address of the core route. (Kernel of Linux carries out this function

being based on the static routing table previously configured).

3. Translation of the IP address of the origin network into the origin address of the

core route (SNAT module).



183

Exit. This module configures the router core network exit interfaces carrying out a common

flow traffic control for every class of service and marking the DS field depending on the

corresponding class. Then the traffic flow is allocated on the queue.

The exit block in an edge router develops the following functions:

1. Police function for BA. The individual flows in the same class form an

aggregated flow (BA) that is controlled by means of police functions based on

the algorithm Tocken Bucket. The parameters for this algorithm are the

bandwidth and the bucket size (Burst), that are equivalent to the available

bandwidth for every service or BA and the exceeding traffic.

2. Marking. An IP package Ds field marking is provided by a DSMARK discipline

that includes the Traffic Control of Linux. This field value depends on the

package class of service. 

3. Package sticking. It is based on the HTB discipline (Hierarchical Token Bucket)

to create different sticking disciplines depending on the classes of service. In

this way, the PHB EF is associated with a queue discipline called FIFO; in case

of Best Effort, a RED discipline (Random Early Detection)is associated, which

drops the packages at random when they surpass a pre-established threshold; in

case of AF PHB, a GRED discipline (Generic Random Early Detection) is

associated, which creates different virtual queues in the same class depending on

the packages elimination priority. 

Different priorities are considered, so that a low-priority class package will not be able to

be served until all superior priority class packages have been served.

Core routers configuration only includes aggregated flows (BA) and routes the packages

depending on the class to which it belongs. Core routers own a routing module to obtain the

destination IP address of the entrant package and send it to the exit interface that indicates

its previously configured routing table. In the same way, it owns an exit module that is

installed in every core network exit interface. It is very similar to the edge router exit



184

module, except the fact that the DSMARK discipline does not mark the DS field of the

packages, but it detects it already marked and it sends it to the corresponding queue in

accordance with its service class.

II.2 Monitoring process Implementation

This process analyses the routers status and the parameters that are obtained are

dynamically stored in a database.

In this implementation, monitoring is carried out by means of the Girin-0 equip. However,

the system is prepared to the fact that monitoring can be developed in a distributed way too.

The main applied technologies for this module are the JDBC data Access, API of Sun, for

the communication with the database Oracle, the JDMK (Java Development Management

Kit) of Sun, for the communication with the routers agents, and the Threads of Java to

create concurrent processes.

HtB scheduler statistics are obtained by means of a Perl script and calling the Traffic

Control system. This call to the system provides statistics for every queue discipline

associated to every service, and statistics of the discipline associated to the whole link. The

most meaningful values that are extracted for the system monitoring are the number of

bytes that every queue sends, the number of packages that are sent, the packages that are

lost and the packages that are on the queue.

The script generates a core timer and it emits shows about these data establishing a certain

period of time between modifiable statistics, which is a default second. The following

parameters are calculated:

Available bandwidth in the link. It is calculated as the existing difference between the

occupied bandwidth and the total available bandwidth. It is obtained taking into account the



185

monitoring timer (T) and the bytes that every queue sends (B). R [KB] = Bi – Bi-1 / Ti –

Ti-i where i= show

Delay in the queue packages. It is calculated as the addition of all delays existing in every

node. In the nodes, the delay is measured as the time in which the packages are on the exit

queue. It is assumed that there are not nor any propagation delays or processing ones in the

routers neither delay caused by collisions in the hub. In order to calculate it, the number of

sent packages (N), the number of sent bytes (B), the number of packages on the queue (C)

and the bandwidth ( R) are used.

Average package length (L) [bytes] = N [packages] / B [bytes] <1500 bytes = maximum

ethernet package length.

Delay (D) [ms] = (C [queue packages] * L [bytes] / R [KB]) * 1000 in milliseconds.

 Jitter. It is calculated as the existing delays difference between consecutive packages on

the same queue. The maximum jitter introduced by the different routers that are involved in

the route is considered. There are different ways of measuring the jitter in a route. In the

implemented scenario, when connections at real time are considered, the metric proposed in

[Demichelis02] and a first-order profitable exponential estimator 1/16: Jitter[i] = 15/16 *

Jitter[i-1] + 1/16 * Jitter[i] where i=show  are used.

To connections that do not happen at real time, the delay is obtained form the current show

(Di) and the delay from the former show (Di-1), considering the first-order estimator,

which reduces noise:

1. JR[i]= | Di – Di-1|

2. JR[i-1]= 15/16 * JR[i-1] + 1/16 * JR[i] in milliseconds, where i= show

Losses of queue packages. Only those losses of packages on the router exit queues are

considered. In future works the effect of the losses happened by communication mistakes

could be considered. This calculation is extracted from the number of the lost packages (P)

and the number of sent packages (N). Losses are expressed as a percentage of the received

packages in respect of the sent ones:  Loss = P/N * 100



186

The following figure shows the different levels in which monitoring identification carried

out:

II.3 Oracle database Parameters

The database that was installed in the Girin-0 equip for the policy system is the 8.1.5

version of the relational database Oracle. Its function consists of storing the network status

information, as for example, the existing nodes and their interfaces, the classes of service,

the pahts between network ends, customers, network connections, etc.

The entity-relation diagram followed to define the database structure is presented as

follows. The grey squares represent the intermediate relational tables that the entities with a

n-to-m relation need. PLSQL developer and SQLPLUS were used to create and list tables.

Monitoring System

Node level Monitoring

database

R E D

JDBC
SQLJDMK RMI

Port

Link level Monitoring

Service level Monitoring

Figure 1. Monitoring system for different levels



187

Figure 2. Entity-relation diagram of the policy system database.

Entities and tables

The implementation carried out until now owns six entities and the tables of the database

are next exposed. Considering the fact that the system is scalable, more entities and tables

can be added to the system

Nodes. This table stores general information about the network nodes: identifier, name,

description and router type (edge or core).

 

Table 2. Example of the node table.

Interfaces. They represent the network links and store the following information: an

identifier, the name of the interfaces in each machine, the node identifier to which the

interface belongs, the link total bandwidth, the bandwidth occupied in that very instant and

the type of interface (core or edge).

Interfaces

Nodes
Services

Paths

Users Connections
2 nn

n

n

1

m

n

n

n
1 m

1
1

PATH_INT

SERVICES_INT

n

2



188

Table 3. Example of the interface table.

Services. The different types of services that are implemented in the application and in the

network are stored in the database. Its fields are: an identifier, the name of the class of

service and its description. Every interface can own one or more classes of services.

Table 4. Example of interface table.

There is an auxiliary table that establishes the relation between the interfaces and the

services with the following fields: a relation identifier, an interface identifier and another

for the service, the service bandwidth in this interface, the total reserved bandwidth, the

bandwidth occupied in that instant, the queue delay of this service in that interface, the jitter

and the losses level.

Table 5. Example of the auxiliary interface and service table.



189

Paths. It stores all the possible paths between two network ends. Two basic parameters are

considered: the edge node identifier and the intermediate interface identifier through which

the path goes.

Table 6. Example of the route table.

This table identifies the route ends, but in order to be able to differentiate the paths that

own the same ends, the network core node interface is identified. This is the reason why

between routes and interfaces there is a n-to-m relation and an auxiliary table having both

the route identifier and the interface one is required.

Table 7. Example of the auxiliary route and interface table.

Customers. Network customers are linked to the network ingress point. This table owns an

identifier field, the IP address, the host customer’s name and a field with the customer’s

characteristics. The node to which the customer is connected has to be an edge router. 

Table 8. Example of the auxiliary customer table.



190

Connections. The connections established in the network are kept in the database. It can

keep only the active connections or, on the contrary, all kinds of connections in order to

have a connection file. The different fields in this table are the following: an identifier, an

identifier of all customers involved in the connection, on for the communication route and

for the communication class of service, bandwidth reserved in the communication,

maximum end-to-end delay expected in the communication, maximum jitter, loss

maximum percentage and time in which the communication is established.

Table 9. Example of the connection table.

II.4 Router agents

Some agents acting as bridges between the remote management applications are used in

order to carry out the monitoring and configuration of the routers. The JDMK (Java

Dynamic Management Kit) technology of Sun allows the fact that, on creating a generic

agent, it can be applied in any network node. JDMK has operations that make easier the

control and management application creation in the agent itself, reducing in this way the

processing in the remote managers. This function distribution is one of the basic

approaches of the new network management platforms and it considerably improves the

decrease in the network loading process.

The design of a JDMK agent experiences a first stage of agent resources instrumentation

and a second stage of design and programming.

Agent resources instrumentation. Agent resources are those entities, physical or virtual, that

are exposed by the agent in order to make them be managed by remote applications. A

resource can represent the whole network node or only some parts of it. JDMK



191

denominates these resources as Managed Beans (Mbeans), because they are based on Java

Beans.

A resource management interface (Mbean Interface) must be created in order to instrument

a resource. This interface is formed by some attributes and accessible operations for the

remote managers, which will be able to accede to the attribute content, modify it and

execute the operations.

In an edge agent three are three kinds of resources. They are described as follows:

a. Customers. This Mbean encapsulates the information of a customer that is

connected in the router at that very moment. When the network accepts a new

connection request, the agent receives a policy action that indicates the

configuration that this new edge router must own to satisfy the user’s request with

the customer’s parameters. The agent creates a Mbean with the following

information: IP destination address, IP origin address, destination port, origin port,

transport protocol, connection route, class of service, burst level, policy action that

must be applied in case of an excess of traffic and a maximum rate for a CoS.

b. Interface scheduler. This Mbean encapsulates the scheduler information belonging

to the router interface. When the router agent is started automatically, a Mbean is

created for each interface with some default values that configure the exit scheduler

for the interface. This configuration is carried out by means of shell-scripts and

system calls to the Traffic Control of Linux. Every CoS scheduler counts on the

following parameters: maximum rate and maximum burst for this class of service

and queue length FIFO.

c. Interface statistics. It obtains the statistics from an interface. When the router agent

is started automatically, a statistics Mbean is created for each interface. On creating

this Mbean, the monitoring process, whose results are the entry parameters for this

Mbean, is initiated. 



192

Agent design and programming. The edge router agent initiates an InterfaceStandard and an

InterfaceStarsStandard for every exit interface towards the core network. Both edge routers

configure the necessary routers for the connection between two customers at the same time.

When the agent is started, a port is opened in order to make remote applications be

connected. JDMK includes some classes to configure a communication protocol adapter in

order to make the agent designer program independently from the communications channel.

In the system agents, a RMI communication adapter is initiated and, in this way, JAVA is

considered over RMI.

The agent starts a HTML service, which is an interface to visualise all agent Mbeans and its

parameters via web. It is important to mention that the core router agents will not own

customer Mbeans, because they work with aggregated traffic (BA) and not with customer

individual traffic (MF). There are only agents for core routers in Girin-6, because it is the

only one that owns a HTB scheduler.

The following quartet is used to differentiate an individual flow (MF) from another: IP

origin – IP destination – Origin Port – Destination Port. [MF-CLASSIFIER]

The following elements are configured for every flow: bandwidth in Kbit/s, the exceeding

number of bytes that is allowed, the corresponding action for the exceeding traffic (DROP

or REMARK) and the class of service (EF-AF1-AF”-BE). The policy system sends these

parameters to the node manager in charge of the network devices configuration.



193

Path schemes

eth1 eth1

Client

Girin7 Girin3

Client

Client Client

eth2 eth2

Client

Girin7 Girin3

Client

Client Client

Path 1 Path 2

qfe1

qfe3

Girin-0

eth2
eth2

Client

Girin-7 Girin-3

Client

Client Client

Path 3

qfe3

qfe 1

Girin-0

eth2
eth2

Client

Girin-7 Girin-3

Client

Client Client

Path 4



194

      qfe1

qfe2

qfe1

qfe2

Girin-0 Girin-2

eth2 eth2

Client

Girin-7 Girin-3

Client

Client Client

Path 5

      qfe3

qfe2

qfe3

qfe2
Girin-0 Girin-2

    eth2 eth2

Client

Girin-7 Girin-3

Client

Client Client

Path 6

Client

Client

eth1
eth1

Girin-7
Girin-3eth0

eth1

Girin-6

Client

Client

Path 7



195

II.5 Graphical Representation Application

These tools have been designed in order to study the possible conflict resolution in case of

overlapping among network and service policies. In this case the geometrical vision helps

to distinguish a right design for parameters and policies where are applied.

Every new policy can be associated with some coordinates (or percentages) that each axis

owns, defining, in this way, a new model point.

Resulting topology of this disposition is a four-dimension sphere or hyper-sphere. The

model, which the program works with, consists of 80 points. The aims this program pretend

to achieve are the following:

1. The program must visualize the hyper-sphere, projecting it from the four-dimension

space to the three-dimension physic world in order to be able to visualize it in the

screen (2D projection).

2. It is necessary to have some navigation tools to move the camera or point of view,

and choose the area we want to see and the place from which we look at it. There

are two cameras: the 4D one, which projects the sphere to the three-dimensional

space, and the 3D one, which visualizes the scene in the flat screen (2D). First the

4D camera is moved until it finds a comprehensive projection around the area to

study. Later, the 3D camera is moved to finish the process and the figure is rotated

to understand better the image three-dimensional aspect.

3. Placing a point on the centre of the scene to see which its neighbours are in a better

way.

4. Adding new points to the model: points that have been computed from the existing

ones, for example, average point between two points, barycentre of the triangle

formed by three points or the centre of a tetrahedron.

5. Additional functionalities as well, for example, the hypercube visualization (a four-

dimension cube, formed by 8 cubic faces), a show of the reference axis, an animated

rotation in four dimensions, an animation with the camera zoom or a show only of

half the hyper-sphere to simulate the elimination of hidden parts in the scene.



196

User´s Interface

The execution of the program opens two windows, a text console where the program shows

the messages and information to the user and a graphic window where the hyper-sphere

(and / or all the operations that the user has executed) is visualised. 

The index has next elements: Direct access to the hyper-sphere, V4 Hyper-sphere, Initiating

the program, Finished initialisation, the Hyper-sphere.

Figure 3. Hyper-sphere 

Three-dimensional and four-dimensional navigation are carried out by pressing some keys,

while the selection of points is executed by means of the left button of the mouse; with the

right button a pull-down menu (with its functions implemented) appear.



197

Figure 4. Options for the hyper-sphere

Mouse functions

The mouse buttons have some different functions:

Left button. This button selects a point or a section of the model. In order to achieve that,

the mouse cursor is placed over the point (situated near the left inferior part of the first

letter of the label) and presses the left button. The text console shows a message informing

about the selected point.

Once the point has been selected, in case there is not refinement mode, the point and the

label are highlighted in yellow, they appear in a bigger size and the chosen point is placed

in the centre of the image.

In case refinement mode, the point will be coloured into purple and the label will

temporarily appear in yellow and in a bigger size as mentioned. However, the image is not



198

reoriented to place the point in the centre: it stays in the same place waiting for the

selection of new points or the end of the use of this refinement mode.

Figure 5. Hyper-sphere

Right button. On pressing the right button in any point of the graphic window, a pull-down

menu appears. The elements of the menu are: Show hypercube, Show hyper-sphere, Show

axes, Show labels, Show refinement, Rotate sphere, Change distance to hyper-sphere,

Show half close to selection, Initiate refinement mode, Finish refinement mode and leave

option. Next, there is a detail of each option.

Show hypercube. It is possible to visualise a hypercube or a four-dimension cube (formed

by eight cubic faces) as some help to understand the hyper-sphere. The following figure is

an example of the hypercube visualisation.



199

Figure 6. Hyper-cube visualisation

Show hyper-sphere. In this case, the menu allows either to visualise the hyper-sphere or

not. 80 points and all the different relations that join these points form this hyper-sphere. It

is visualised by default when the program is being initialised.

Show axes. It visualises or hides the reference axes, in the four dimensions: axis x in red,

axis y in blue, axis z in blue and axis w in black. We imagine that all these four axes are

perpendicular among them. The following shows the hypercube with the reference axes.

Figure 7. Hypercube with reference axes.



200

Show labels. It visualises or hides the labels associated with each of the 80 groups of

policies. They are short forms formed by three letters of the concept related to the point.

Figure 8. Labels associated with policies

Show refinement. It visualises or hides the refinement of the point network that the user has

done. The new points are computed as an average point or barycentre of several selected

points. They have not got a label and they are joined to the selected points by means of blue

lines. Next there is an example where there is not visible the hyper-sphere, only the labels,

just to remark the selection.

Rotate hyper-sphere. This menu activates or stops the automatic rotation of the hyper-

sphere. The implemented rotation is in four dimensions and, therefore, it leaves two fix

axes and the other two axes rotate.

Change distance to the hyper-sphere. This menu activates or stops the automatic movement

of the camera to approach and move away periodically from the point in the centre of the

scene. It is possible to activate this camera movement and the rotation one simultaneously. 



201

Figure 9. Labels of the hyper-sphere.

                  

               Figure 10. Rotate hyper-sphere                                Figure 11. Change distance to the hyper-sphere

Show half close to selection. All the hyper-sphere is visualised at the same time by default,

both the points closer to the camera and those that belong to the posterior part, which would

be the hidden part if the hyper-sphere were opaque. In order to simulate the hiding of this

posterior part, there is a menu that allows choosing between visualising all the hyper-sphere

or just the visible half around the selected point. Therefore, a (hyper) hemisphere (with a



202

pole or the centre of the selected point) is only shown. The following picture shows all the

hyper-sphere with the OBJ point selected; in the second one, only the hemisphere close to

OBJ is shown with this point in the centre, and in the third one, the figure has been rotated

in order to make visible a hemisphere.

        

Figure 12. hyper-sphere with the OBJ point selected                      Figure 12. Hemisphere close to OBJ 

II.5.1 Initiate the refinement mode / Finish the refinement mode

The selection of the Initiate the refinement mode from the menu, allows to add new points

to the model, which will be the average point between two points, the barycentre of three

points or the centre of the tetrahedron formed by four points. The refinement mode finishes

with the option Finish the refinement mode.

The refinement mode selects points by means of the left button of the mouse, but always

without placing it in the centre of the figure. Four points can be selected. Afterwards, the

refinement mode is deactivated automatically and the new point is computed. To compute

the barycentre of a triangle instead, once the three vertexes have been selected, it is



203

necessary to force the computation of the new point selecting the menu Finish the

refinement mode. Then the coordinates of the new point are shown in the console.

Figure 13. The figure has been rotated to make visible a hemisphere

Future research is related to correct a refinement and to select the new points coming from

previous refinements. In the following example, the average point between PCS and AGU

has been computed, the barycentre between ETI, TIA and PRD, and the centre of RAR,

PAS, ONA and ATZ.



204

Figure 14. Refinements

Keyboard functions

The coloured keys have a function associated to them:

There are three groups of functionalities:

1. Leave: pressing the key (+) we end the execution of the program.

2. 3D camera movement: Keys (q), (a), (w), (s), (e), (d), (r), and (f) control the 3D

camera position, which observes the models from any three-dimensional point of

view. 



205

Q 3D Rotation according to axis X
A 3D Rotation according to axis X (opposite direction)
W 3D Rotation according to axis Y
S 3D Rotation according to axis Y (opposite direction)
E 3D Rotation according to axis Z
D 3D Rotation according to axis Z (opposite direction)
R Move forwards 3D Camera up to the centre of the

scene (zoom approaching)
F Move backwards 3D Camera from the centre of the

scene (zoom moving away)

3. 4D camera movement: the rest of the keys control the 4D camera position, which

changes the point from which the four-dimension model is projected into the three-

dimension world. A rotation in four dimensions leaves two fix axes and rotates the

other two. There are six possible rotations:

 
T Move forwards 4D Camera up to the centre of the

scene (zoom approaching) (equivalent to 3D)
G Move backwards 4D Camera from the centre of the

scene (zoom moving away) (equivalent to 3D)
Y 4D Rotation, rotating axes 
U 4D Rotation, rotating axes (opposite direction)
H 4D Rotation, rotating axes 
J 4D Rotation, rotating axes (opposite direction)
B 4D Rotation, rotating axes 
N 4D Rotation, rotating axes (opposite direction)
I 4D Rotation, rotating axes 
O 4D Rotation, rotating axes (opposite direction)
K 4D Rotation, rotating axes 
L 4D Rotation, rotating axes (opposite direction)
M 4D Rotation, rotating axes 
, 4D Rotation, rotating axes (opposite direction)

II.5.2 Conclusions about the application 

The 4D module projection is carried out into the 3D one, which has been the most difficult

process, and to make it useful to project any scene as defined in 4D, not just the hyper-

sphere (in fact, it is possible to see the hypercube and also it is possible to add more

figures).

The program about the user’s interface requires more work, currently there is only a pull-

down menu and some functions by means of the keyboard, but it gives complete access to

all the functions and allows navigating over the scene interactively.



206

Some points can be selected in order to study them and refine the model just by adding

some new points. However, these new points are not still a part of the model and in

consequence, the refinements carried out cannot be filed.

II.6 Stages to follow in order to start the functioning of the Routing
Distributed System based on PBMS

Next the different stages to start the functioning of the system into the GIRIN

scenario are presented. 

First stage: LDAP server start

The LDAP server is allocated on the PC with Linux. A secure connection (SSH) must be

used to reach it. The server is usually active, that is the reason why it is not necessary to

start it. However, it is important to know the mechanism used to start the service in case it

fails because of the system fall. As a root user, the following command must be executed:
/usr/local/libexec/slapd -f /home/tebar/MAS.conf 

Second stage: BBDD Oracle start

BBDD server start. The ORACLE server is allocated on the 10 UltraSparc called

c3gestor.upc.es. It happens the same that in the case just above mentioned, that is to say, it

is always active as a default mechanism and, even when the system falls, it restarts at the

same time as the operative system does. In any case, the commands that must be used both

for the start and the stop of the server are the following: (They should be executed by the

oracle user).
/u01/app/oracle/product/8.0.4/bin/dbstart 

/u01/app/oracle/product/8.0.4/bin/dbshut 



207

ORACLE listener start. It is necessary to start this process in charge of listening the

requests at the BBDD Oracle through the port 1521 and sending the queries result through

the created socket. Unlike the aspects above mentioned, this process does not start

automatically with the operative system. This is the reason why it’s functioning must be

checked periodically or in case some problems emerge in the BBDD Oracle requests. The

lsnrctl (oracle user) is the command that must be used and the start listener plus exit in the

lnrctl subsystem. 

$ lsnrctl
LSNRCTL for Solaris: Version 8.0.6.0.0 - Production on 03-JUN-01 17:22:04
(c) Copyright 1999 Oracle Corporation.  All rights reserved.
Welcome to LSNRCTL, type "help" for information.
LSNRCTL> start listener
Starting /u01/app/oracle/product/8.0.4/bin/tnslsnr: please wait...
TNSLSNR for Solaris: Version 8.0.6.0.0 - Production
System parameter file is /u01/app/oracle/product/8.0.4/network/admin/listener.ora
Log messages written to /u01/app/oracle/product/8.0.4/network/log/listener.log
Listening on: (ADDRESS=(PROTOCOL=ipc)(DEV=8)(KEY=c3ge))
Listening on: (ADDRESS=(PROTOCOL=ipc)(DEV=12)(KEY=PNPKEY))
Listening on: (ADDRESS=(PROTOCOL=tcp)(DEV=14)(HOST=147.83.39.123)(PORT=1521))

Connecting to (ADDRESS=(PROTOCOL=IPC)(KEY=c3ge))
STATUS of the LISTENER

Alias 
Version
Start Date              
Uptime
Trace Level               

Security
SNMP
Listener
Parameter File   

Listener Log File       

Listener
TNSLSNR for Solaris: Version 8.0.6.0.0 – Production
03-JUN-01 17:22:23
0 days 0 hr. 0 min. 0 sec               
off
OFF
OFF
/u01/app/oracle/product/8.0.4/network/admin/listener.ora
/u01/app/oracle/product/8.0.4/network/log/listener.log

Table 10. ORACLE listener start

c3ge          has 1 service handler(s)

extproc has 1 service handler(s)

Table 11. Service summary



208

              

The command completed successfully
LSNRCTL> exit

An analogue proceeding with the stop listener subcommand would be used to stop the

listener.

COSnaming service start

Any user can (and must) start the CORBA Name System. The information referring to all

and every of the objects created during the system functioning is kept in it: location, status,

interface, etc. Provided the fact that CORBA is a distributed computation system, the

COSNaming Service could be at any network computer. In our case and due to simplicity

aspects, the chosen server has been the UltraSparc 10 c3gestor.upc.es again. In order to

start it, the port 1050 port is used, which was selected arbitrarily, and the command

tnameserv -ORBInitialPort 1050   &. 

Start of the management application server

The application server is also allocated on c3gestor.upc.es. Due to the fact that the

application has been developed in java, its execution implies the creation of a java virtual

machine that executes the MAS class. The functioning directory is /home/tebar/idl and the

used command is java MAS.

Router start

The machine in charge of act as a router in this first stage is the UltraSparc 5 girin-0.upc.es.

The SecondTier.class must be started in it. The functioning directory is /home/tebar/idl and

the used command is java SecondTier.



209

From this moment on, we can say that the system is completely operative and ready to

receive new requests from the different clients.

Client program execution

Finally, the user program is started from the PClient.class. It can be executed in any

machine of the network, but it must always consider the Java Runtime Environment

1.3.0_02 or superior. The functioning directory is /home/tebar/Client and the used

command is java PClient.



210

References

[Barba02] Antonio Barba, Joel García, Lluis M. Xirinacs..Manual para representaciones

geometricas de politicas. Documento interno Dep. ENTEL. UPC. 2002.

[Demichelis02] C. Demichelis, P. Chimento. IP Packet Delay Variation Metric for IP

Performance Metrics (IPPM). IETF Request For Comments (RFC) 3393.   November 2002.

[Grossman02] D. Grossman New Terminology and Clarifications for Diffserv. IETF

Request For Comments (RFC) 3260 April 2002.

[Zienckiewicz] O.C. Zienckiewicz - R. L. Taylor. El Método de los Elementos Finitos. Ed.

McGraw Hill / CIMNE 

[Reyes00-telecom] Angélica Reyes, Antoni Barba Desarrollo de una aplicación de Gestión

de encaminamiento en Internet2 Telecom 2000. Madrid España. 

[Reyes00-URSI] Angélica Reyes, Antoni Barba Gestión de encaminamiento basado en

restricciones de Calidad de Servicio en Internet2 Union Radio-Scientifique Internacionale

(URSI 2000). Zaragoza España.


	Appendix II
	Policy system implementation
	II.1 Network node configuration
	II.2 Monitoring process Implementation
	II.3 Oracle database Parameters
	Entities and tables

	II.4 Router agents
	Path schemes

	II.5 Graphical Representation Application
	User´s Interface
	
	
	
	
	Figure 4. Options for the hyper-sphere




	Figure 7. Hypercube with reference axes.
	II.5.1 Initiate the refinement mode / Finish the refinement mode
	II.5.2 Conclusions about the application

	II.6 Stages to follow in order to start the functioning of the Routing Distributed System based on PBMS
	Next the different stages to start the functioning of the system into the GIRIN scenario are presented.
	First stage: LDAP server start
	Second stage: BBDD Oracle start
	
	TNSLSNR for Solaris: Version 8.0.6.0.0 - Production
	
	
	Table 10. ORACLE listener start





	COSnaming service start
	Start of the management application server
	Router start
	Client program execution

	References

