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THESIS ABSTRACT 

The importance of understanding cellular processes has prompted the development of 

experimental approaches that detect protein-protein interactions. Recently, most approaches 

have been focused on large-scale screenings of protein-protein interactions, such as two-

hybrid assays and affinity purifications followed by mass spectrometry. Computational 

methods can use protein interaction data for tasks such as protein annotation and protein 

interactions prediction. However, due to data spread and disparate storage formats, protein 

interactions research has been subjected to using a subset of all information available. 

Here, we describe a software platform called PIANA (Protein Interactions And Network 

Analysis) that facilitates working with protein interactions by integrating data from multiple 

sources and automating the analysis of protein interaction networks. For example, PIANA 

can be used to retrieve all interactions of a given protein, create the interaction network of a 

particular disease, transfer protein interactions from model organisms to human, and to map 

gene expression information into a protein interaction network. 

Experimental methods for protein interactions detection do not identify the protein 

interfaces involved in interactions. Here, we describe a method implemented within PIANA 

for delineating the interacting motifs of proteins. We rely on the observation that proteins 

with common interaction partners tend to interact with these partners through a common 

interacting motif. The positive predictive value of our method in detecting proteins with 

common SCOP families is 75% at sensitivity of 10%. We find that highly connected 

proteins in the network (i.e., hubs) with multiple interacting motifs are more likely to be 

essential than hubs with one or two interacting motifs, thus rationalizing the previously 

observed correlation between essentiality and the number of interacting partners of a 

protein.  

Cancer is a complex disease, involving multiple and specific changes at the DNA level 

that can be inherited or induced by environmental factors. Data from genomics and 

proteomics projects can be used to identify proteins involved in cancer. Here, we present a 

method that predicts cancer genes by integrating protein-protein interaction data, differential 

expression studies and structural, functional and evolutionary properties. For a minimum 

sensitivity of 1%, our approach obtained a positive predictive value of 71%, which is higher 

than the positive predictive value achieved by any of the methods independently. 
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CHAPTER I 

 

INTRODUCTION 

 

  
This thesis is divided into chapters, and each chapter contains 
one or more articles that have been published (or submitted) 
in journals rated in Journal Citation Reports. At the beginning 
of each chapter, we provide a non-too-technical short 
overview of the chapter, for those wishing to get a grasp of 
the work presented in this thesis (but do not wish to plunge 
into its contents). 
 
This introductory chapter starts by providing an overview of 
molecular biology and summarizing the experimental 
techniques that are being used to extract meaningful data from 
biological systems. The rest of the chapter is dedicated to 
describing protein interaction networks and their applications, 
together with a brief state-of-the-art on other related areas. 
 
The thesis ends with an epilogue where the author tries to 
explain using too many words something that Matt Cartmill 
summarized in much shorter terms: 
 
“As an adolescent I aspired to lasting fame, I craved factual 
certainty, and I thirsted for a meaningful vision of human life 
- so I became a scientist. This is like becoming an archbishop 
so you can meet girls.” 
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1.1 Introduction overview 

The completion of genome sequencing projects stimulated the development of high-

throughput experimental methods aimed at functional characterization of the discovered 

genes. In particular, the identification of protein-protein interactions has been accelerated by 

the development of new technologies. Thus, a vast amount of protein-protein interaction 

data has been collected, including proteome-scale interactome maps for yeast [1, 2], fly [3] 

and worm [4], and a partial map for human [5, 6]. The analysis of these maps has shown 

potential for providing insights about biological systems [7, 8]. However, interaction data is 

spread across multiple repositories, which hinders the access to all known information. The 

objective of this thesis was to contribute towards the optimal integration of all available 

protein-protein interaction data and the use of this data for providing biological insights 

about proteins, protein interactions, and protein function (or dysfunction, such as in cancer). 

This introductory chapter shortly describes the biological mechanisms related to protein-

protein interactions and provides the general bioinformatics background needed for 

understanding the key contributions of the work presented here. More specific descriptions 

of the state of the art can be found in the introductions of the articles included in this thesis.  

1.2  Background 

1.2.1 Molecular cell biology 

Deoxyribonucleic acid (DNA) is the cellular library that contains all the information 

required to build the cells and tissues of an organism. The exact duplication of this 

information in any species from generation to generation assures the genetic continuity of 

that species. The information is arranged in hereditary units (i.e. genes) that control the 

identifiable traits of an organism. In the process of transcription (Figure 1.1), the 

information stored in DNA is copied into ribonucleic acid (RNA), which has three distinct 

roles in protein synthesis. Messenger RNA (mRNA) carries the instructions from DNA that 

specify the order of amino acids during protein synthesis. The assembly of amino acids into 

a protein occurs by translation of mRNA (Figure 1.1). In this process, the information in 

mRNA is interpreted by a second type of RNA called transfer RNA (tRNA) with the aid of 

a third type of RNA, ribosomal RNA (rRNA), and its associated proteins. As the correct 

amino acids are brought into sequence by tRNAs, they are linked by peptide bonds to make 

proteins [9].  
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Figure 1.1 From DNA to mRNA to protein. (Image by Mike Jones, licensed under the Creative 
Commons Attribution ShareAlike License v. 2.5) 
 

 

The process by which a gene is “turned on” to produce the specific biological molecule 

encoded by that gene (usually protein or RNA) is referred as “gene expression”. The process 

by which the cell controls when and where genes will be activated and how much gene 

product will be produced is called “gene regulation”. Gene regulation is usually achieved 

through interactions among DNA, RNA and proteins. 

Gene products are the active agents of the cell. In particular, proteins are said to be the 

chief actors of the cell, responsible for carrying out the program of activities encoded by 

genes2 [9]. The main property that enables proteins to carry out their diverse cellular 

functions is their ability to bind (i.e. to interact with) other molecules, either in permanent 

complexes or in transient interactions. The protein surface that is physically in contact with 

the other molecule during an interaction is referred as protein interface. Proteins functions 

range from providing structural support to the cell to acting as enzymes that promote 

specific chemical reactions or acting as a transcription factor (i.e. binding to DNA to 

regulate transcription). In order to perform these functions, most proteins must first fold into 

a three-dimensional (3D) structure, which gives them their specific chemical functionality 

                                                 
2 The word "protein" derives from the Greek word "protos" meaning first. 
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(Figure 1.2). There are four different aspects to the structure of a protein: (i) primary 

structure, referring to the amino acid sequence of the protein; (ii) secondary structure, 

referring to the general 3D form of local protein segments; (iii) tertiary structure, referring 

to the 3D structure of a single protein molecule; and (iv) cuaternary structure, referring to 

complexes of several protein (or other) molecules. The most common secondary structures 

are alpha helices and beta sheets. The tertiary structure of a protein is usually built from one 

or more domains, which are protein subunits capable of folding autonomously from the rest 

of the protein. Usually, a domain has a functionality of its own, and the same type of 

domain can be found in multiple –and in many occasions, unrelated- proteins.  

 
Figure 1.2 Part of one biological pathway (fibroblast growth factor signaling) from a 

structural perspective. Image obtained from [10] 

 

1.2.2 Bioinformatics and Computational Biology 
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According to the USA National Institute of Health (NIH), bioinformatics and computational 

biology are defined [11, 12] as follows: 

• Bioinformatics: Research, development, or application of computational tools and 

approaches for expanding the use of biological, medical, behavioral or health data, 

including those to acquire, store, organize, archive, analyze, or visualize such data. 

• Computational Biology: The development and application of data-analytical and 

theoretical methods, mathematical modeling and computational simulation 

techniques to the study of biological, behavioral, and social systems. 

Along this thesis, we will use the terms bioinformatics and computational biology 

indistinctively to refer to the development and application of computational tools (including 

theoretical methods and mathematical models) for studying biological systems and data. 

1.3 Genomics and proteomics 

The term ‘genome’ is used to refer to the complete genetic content of an organism. 

Analogously, the term ‘proteome’ is used to refer to the entire protein complement of a 

given genome, that is, the complete set of proteins made by a given organism in a given cell 

at a particular point in time3 [13]. In the last decade, one-by-one study of genes and proteins 

has been replaced by ‘genomics’ and ‘proteomics’, in which scientists attempt to study all 

genes or proteins comprehensively and simultaneously. Both genomics and proteomics have 

produce a plethora of data that needs to be systematically organized and analyzed in order to 

make significant contributions to our understanding of the biology of the cell. In this 

section, we briefly describe some4 experimental techniques designed to perform high-

throughput extraction of genomic and proteomic data. 

1.3.1 Two-dimensional gel electrophoresis and mass spectrometry 

In order to identify proteins of interest in a given tissue or cell, researchers usually combine 

two-dimensional gel electrophoresis with mass spectrometry [14]. In this approach, labeled 

proteins from a cell or tissue extract are separated on the gel and then analyzed by mass 

spectrometry, usually after digesting the proteins to produce unique degradation products. 
                                                 
3 The complete proteome for an organism can be conceptualized as the complete set of 
proteins from all of the various cellular proteomes. 
4 This thesis has been mainly focused on protein-protein interactions. Therefore, we present 
here methods for the detection of protein-protein interactions and other experimental 
techniques that produce data related to the study of protein function. 
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The separation on the gel is performed on two dimensions: one on the basis of charge (i.e. 

isoelectric point), and another on the basis of molecular weight. This combination of 

techniques has provided biologist with a tool capable of resolving proteins in high-

throughput mode [15]. 

1.3.2 Three-dimensional structure determination 

The three-dimensional (3D) structure of proteins is usually determined using x-ray 

crystallography or nuclear magnetic resonance (NMR) [16-18]. Currently, these two 

techniques are being used in structural genomics projects to determine the 3D structure of as 

many proteins as possible [19]. These structures provide valuable insights into the 

molecular basis of protein function, allowing an effective design of experiments such as 

site-directed mutagenesis, studies of disease-related mutations or the structure based design 

of specific inhibitors or drugs. However, the experimental determination of the 3D structure 

of a protein is a laborious task and thus, the number of structurally characterized proteins is 

low compared to the number of known protein sequences. Computational methods attempt 

to complement experimental techniques by predicting the structure of proteins. For example, 

comparative modeling predicts the three-dimensional structure of a given protein sequence 

based primarily on its alignment to one or more homologous proteins of known structure 

[20].  

1.3.3 Gene Expression Profiling 

DNA Microarrays are commonly used in expression analysis studies to monitor the 

expression levels of thousands of genes simultaneously [21]. These arrays consist of 

thousands of individual gene sequences bound to closely spaced regions on the surface of a 

glass microscope slide. There are two main types of DNA Microarrays that measure 

expression: two-channel microarrays and oligonucleotide microarrays. In a two-channel 

microarray, one single microarray can be used to visualize up-regulated and down-regulated 

genes in two different samples (e.g. patient and control), but absolute gene expression levels 

cannot be observed. Oligonucleotide microarrays give estimations of gene expression 

absolute levels and therefore the comparison of two conditions requires the use of two 

separate microarrays. Moreover, both types of microarrays can be used to estimate if two 

genes show similar expression behaviors (i.e. are coexpressed). 

1.3.4 Protein chips 

Protein microarrays are miniaturized and parallel assay systems that contain small amounts 
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of purified proteins in a high-density format [22]. There are two main classes of protein 

microarrays: analytical and functional protein microarrays [23]. On one hand, analytical 

protein arrays can be used to monitor protein expression levels or for biomarker 

identification. On the other hand, typical uses of functional protein microarrays include 

probing for various types of protein activities (e.g. catalytic activity) and to profile immune 

responses. Data from these experiments is of great use for proteomics studies. For example, 

protein chips have already been used to provide a global analysis of protein phosphorylation 

in yeast, which is a major regulatory mechanism that controls many basic cellular processes 

[24]. 

1.3.5 ChIp-on-Chip 

ChIP-on-chip is a technique that combines chromatin immunoprecipitation (ChIP) with 

microarray technology (chip) [25]. ChIP-on-chip is used to investigate interactions between 

proteins and DNA. These interactions mediate transcription, DNA replication, 

recombination and DNA repair, which are all fundamental to life. ChIP-on-chip experiments 

allow the determination of the entire spectrum of in vivo DNA binding sites for any given 

protein. However, this technique has still not been applied at proteome-scale levels, and 

currently, computational tools are being used to complement it by predicting DNA sites 

where proteins bind [26].  

1.3.6 Fluorescent tagging 

Fluorescent tagging is the process of attaching a fluorescent molecule (typically the green 

fluorescent protein (GFP) or a fluophore called fluorescein) to another molecule with the 

aim of aiding in detection of the molecule to which it has been attached. Fluorescent tagging 

applications include the analysis of protein expression patterns and determining the 

subcellular localization of proteins [27, 28]. Protein localization data obtained from these 

experiments are a valuable information resource helpful in elucidating eukaryotic protein 

function. 

1.3.7 Methods for the detection of protein-protein interactions 

Historically, biochemical approaches such as cross-linking, immunoprecipitation, and 

protein affinity chromatography have been used to verify interactions between suspected 

interaction partners [29]. However, these methods are not suited to analyze full proteomes in 

a reasonable time [29-31]. Recently, most approaches have been focused on large-scale 

screenings of protein-protein interactions, such as two-hybrid assays [5, 6, 32] and affinity 
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purifications or immunoprecipitation followed by mass spectrometry [33-36]. New 

approaches such as protein microarrays [22, 37] or luminescence-based mammalian 

interactome mapping (LUMIER) [38] have shown promise at detecting protein-protein 

interactions but haven’t been still applied to proteome-scale mapping of interactions. 

Experimental techniques that detect large numbers of interactions by means of a single 

experiment are referred as “high-throughput methods”. 

In the yeast two-hybrid assay (Figure 1.3), a protein of interest (referred as ‘bait’) is 

typically fused to a DNA-binding domain (DBD). Other proteins (referred as ‘preys’), 

which are fused to a transcription-activating domain (TAD), are screened for physical 

interactions with the bait protein using the activation of a transcription reporter construct as 

the detection method [39]. The interaction between the bait (fused to DBD) and the prey 

(fused to TAD) restores the function of the transcription factor, and activates reporter genes 

or selection markers.  

 
Figure 1.3 The yeast two-hybrid method. Image obtained from [40] 

 

The tandem affinity purification method (TAP) requires fusioning a tag to the target 

protein (bait) of interest (Figure 1.4). The TAP tag often consists of calmodulin binding 

peptide (CBP), followed by tobacco etch virus protease (TEV protease) cleavage site and 

Protein A, which binds tightly to IgG. The target protein, fused to the TAP tag, is expressed 

in yeast, where it can form native complexes with other proteins (preys). After two steps of 

washing, the target protein complex is released from the IgG matrix, and the components of 

the complex are screened with mass spectrometry [33]. Moreover, binary protein 

15 
 



interactions can be inferred from the identified complexes using two types of interpretations 

[41]: (i) spoke: one interaction is defined between a bait protein and each protein it pulls 

down; (ii) matrix: interactions are defined between all pairs of proteins pulled down by a 

bait. 

 
Figure 1.4 The Tandem Affinity Purification method. Image obtained from [42]. 

 

High-throughput methods (HT methods) for detecting protein-protein interactions have 

produced large amounts of data, but their reliability has been questioned [43-45]. 

Specifically, HT methods generate a lot of false positives (i.e. proteins that do not interact 

in vivo are reported to interact by the method), but also miss many interactions [41, 43]. 

Moreover, each technique is biased towards detecting and missing certain types of 

interactions and proteins [43]. For example, the TAP method is not suitable for screening 

transient protein interactions, unlike the yeast 2-hybrid method. However, TAP is a good 

method for testing permanent interactions and detects real complexes in physiological 

settings. Besides, while bait and prey have to be over-expressed in a yeast two hybrid 

system, the protein abundance in TAP is physiological. This might have an effect on the 
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detected interactions. For example, a number of false positives  in yeast two hybrid are 

plausible interactions (i.e. the two proteins do interact when one is facing the other) that do 

not take place in vivo (e.g. they are never coexpressed in the cell) [41, 43]. It has also been 

shown that each technique produces a unique distribution of interactions with respect to 

functional categories of interacting proteins [41, 43]. 

Data of protein-protein interactions detected with experimental methods is being 

complemented (and filtered) using computational approaches [46-48]. Some common 

approaches to the prediction of protein-protein interactions include: (i) transferring 

interactions between protein orthologs of different species (referred as ‘interologs’) [49]; (ii) 

inferring interactions from correlated mutations [50]; (iii) predicting interactions using 

distant conservation of sequence patterns and structure relationships [51]; (iv) predicting 

interactions on the basis of co-occurrence of domains or sequence signatures [52]; (v) 

detecting gene fusion events [53]; and (vi) automatically mining scientific publications to 

detect interacting proteins [54]. Moreover, in addition to predicting physical interactions 

between proteins, other computational approaches attempt to create functional links between 

proteins using observations such as similar phylogenetic profiles, coexpression patterns or 

frequent gene neighborhood [55-57]. 

Computational approaches are also used to increase the confidence of interaction data 

[58]. A number of works have used the similarity of mRNA expression profiles to determine 

if an observed interaction has high, medium or low confidence [59, 60]. Several approaches 

have developed reliability measures based on the topology of the protein interaction 

network (see section 1.5.1), such as the “interaction generality” [61] and the IRAP* [62] 

methods. Other works apply an integrative approach in which they combine various features 

of interacting proteins, such as (i) functional similarity and high network clustering [63]; (ii) 

domain composition, Gene Ontology annotations [64] and sequence homology [65]; and 

(iii) statistical and topological descriptors, mRNA expression, genetic interactions and 

database annotations [66]. Finally, there are methods specifically designed to calculate the 

reliability of interactions detected by particular experimental methods, such as the socio-

affinity index for TAP [35], which quantifies the tendency for proteins to identify each other 

when tagged (the spoke model) and to co-purify when other proteins are tagged (the matrix 

model). 

The challenge in protein-protein interactions technologies resides not only in detecting a 

higher number of interactions and augmenting the reliability of the detection methods, but 

also in creating the tools that facilitate the correct storage, analysis and use of the interaction 
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data available. Moreover, due to the different nature of interactions and proteins detected by 

the methods, integrating data coming from multiple sources should be a fundamental goal of 

efforts dedicated to produce interactome maps. 

 

1.4 Repositories of biological information 

The scientific community needs to be able to retrieve the known biological information and 

use it for further computational and experimental scrutiny. Moreover, data from 

experimental studies is increasingly being made accessible for researchers willing to further 

analyze the results. One good example of a database that has become a de-facto standard for 

data storage is the Protein Data Bank [67], which holds all known protein 3D structures. 

However, the PDB is also a good example of a database that needs to adapt to the ever-

increasing demands of the scientific community [68]. In this section, we briefly describe 

public repositories of biological information and experimental data. 

1.4.1 Bio-sequences repositories 

Various public repositories are dedicated to storing the knowledge available for different 

types of biomolecules, such as NCBI GenBank for genes [69] or UniProt for proteins [70]. 

Recently, we have observed a consolidation of these repositories, and cross-linking between 

the different records is increasingly becoming available, facilitating the access and use of 

data. However, the level of integration between the different repositories is still far from 

being optimal. For example, each database uses its own internal identifiers for biomolecules, 

and translating from one identifier to another is usually a daunting task [71]. 

1.4.2 Gene expression studies repositories 

Microarray results are being stored in public repositories such the Gene Expression 

Omnibus [72] and the Array Express [73], and thousands of expression profiles are 

currently available. However, although there have been efforts to implement guidelines for 

expression data annotation and exchange [74, 75], a complete standardization of expression 

data has still not been achieved, which results in difficulties when trying to systematically 

analyze all data available. 

 

1.4.3 Protein domains, families and functional sites 
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Proteins are known to be built from a limited set of molecular block types [76-79]. Several 

databases have been created that describe proteins in terms of structural domains, sequence 

domains and functional sites (Table 1).  

 

 

Table 1. Repositories that classify proteins according to domains, families or functional sites.  

 

Name Available data Description 

SCOP [77] 
75,930 domains, 

3,004 families 

SCOP comprehensively orders all proteins of known 
structure, according to their evolutionary and structural 
relationships. Protein domains in SCOP are hierarchically 
classified into families, superfamilies, folds and classes. 

CATH [79] 86,151 domains 
CATH is a hierarchical classification of protein domain 
structures, which clusters proteins at four major levels, 
Class(C), Architecture(A), Topology(T) and Homologous 
superfamily (H) 

ASTRAL [80] 54,745 domains 

ASTRAL is a collection of databases and tools to aid in the 
analysis of protein structures, particularly through the use of 
their sequences. Partially derived from the SCOP database of 
protein structure domains, it includes sequences for each 
domain and other resources useful for studying these 
sequences and domain structures. 

Pfam [81] 8,957 families 
Pfam is a large collection of multiple sequence alignments 
and hidden Markov models covering many common protein 
domains and families 

INTERPRO [82] 

13,828 entries, 

3,905 domains, 

9,614 families, 232 

repeats,  

34 active sites,  

22 binding sites, 21 

post-translational 

modification sites 

InterPro is a database of protein families, domains and 
functional sites in which identifiable features found in known 
proteins can be applied to unknown protein sequences. 
InterPro combines a number of databases that use different 
methodologies and a varying degree of biological 
information on well-characterised proteins to derive protein 
signatures : PROSITE, Gene3D, PANTHER, PIRSF, Pfam, 
SMART, SUPERFAMILY and TIGRFAMs, PRINTS. 

PROSITE [83] 1,327 patterns 
PROSITE consists of documentation entries describing 
protein domains, families and functional sites as well as 
associated patterns and profiles to identify them. 

PRINTS [84] 1,800 entries 
PRINTS is a compendium of protein fingerprints. A 
fingerprint is a group of conserved motifs used to 
characterise a protein family. 

SUPERFAMILY [85] --- 
SUPERFAMILY provides structural (and hence implied 
functional) assignments to protein sequences at the 
superfamily level as defined by SCOP. 

PRODOM [86] 736,449 families 
ProDom is a comprehensive set of protein domain families 
automatically generated from the global comparison of all 
available protein sequences. 

 

 

For example, the Structural Classification of Proteins (SCOP) [77] classifies protein 
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domains on hierarchical levels that embody the evolutionary and structural relationships 

(Figure 1.5). Proteins with a common evolutionary origin are grouped together in families. 

Proteins with low sequence identity whose structures and functional features suggest a 

common evolutionary origin are placed together in superfamilies. Finally, superfamilies and 

families are defined as having a common fold if their proteins have most of their secondary 

structures in the same arrangement and the same topological connections.  

 

 
Figure 1.5. Example of domains within the same family, superfamily and fold. 

 

1.4.4 Protein function repositories 

Determining the functions of genes and proteins is a central problem in biology, 

fundamental to understanding the molecular and biochemical processes that sustain health 

or cause disease, to identifying and validating new drug targets and to developing reliable 

diagnostics [87]. To date, even for the most well-studied organisms such as yeast, about 

one-fourth of the proteome remain uncharacterized [88]. Functional classifications derive 

groups of genes and proteins on the basis of functional similarity in terms of enzyme 

reaction mechanisms, participation in biochemical pathways and functional roles [89]. 

These classifications provide a convenient framework for bioinformatics efforts geared 

towards protein function prediction. 

The main classification schemes for protein function are the Enzyme Commission (EC) 

hierarchical classification [90] and the Gene Ontology (GO) [91]. In particular, the GO 

project provides structured, controlled vocabularies and classifications that cover several 
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domains of molecular and cellular biology. The controlled vocabularies (ontologies) 

describe proteins in terms of their associated biological processes, cellular components and 

molecular functions in a species-independent manner. These ontologies are structured as 

directed acyclic graphs, which are similar to hierarchies but differ in that a child -or more 

specialized- term can have many parents -or less specialized- terms. Moreover, a protein 

might be associated with or located in one or more cellular components; it might as well be 

active in one or more biological processes, during which it can perform one or more 

molecular functions.  

Other repositories classify proteins (and other biomolecules) in terms of the biological 

pathways in which they intervene [92].  Two important databases of pathways are the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [93] and REACTOME [94]. Originally 

created to store metabolic reactions, today they have been extended to contain as well other 

types of biological processes. Genmapp [95], another pathway tool, was specially designed 

to view and analyze microarray data on biological pathways. 

Manually curated repositories of protein function are not always capable of keeping 

apace with the deluge of data coming from genomics and proteomics efforts [96, 97]. Thus, 

computational methods for annotating proteins are needed to complement experimentally 

validated data and manual curation. Computational approaches to the prediction of protein 

function [88, 98] include phylogenetic profiles [55], manual annotation from automatic 

literature search [91], transfer of function by sequence similarity [99], structure-based 

methods [100], integrative approaches that combine diverse functional genomics data [101] 

and network-based methods (see section 1.5.2). These approaches provide fundamental 

information about proteins for which the function has not already been experimentally 

determined. 

 

1.4.5 Protein-protein interactions repositories 

Results from protein-protein interactions screenings and predictions are being placed in 

public repositories of biological interactions, which enable a convenient access to the 

information available and facilitate further analyses on the data [92, 102, 103]. Table 2 

describes the main repositories of protein interactions. 

 

 

Table 2. Main repositories of protein-protein interactions (PPI). 
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Name 
Number of 

Interactions 
Type of Interactions 

IntAct [104] 136,355 
IntAct is the protein interaction database at EBI. No species restriction. 

Contains PPI from multiple types of sources (HT methods, direct 

submission, literature…). 

DIP [105] 55,895 
Database of Interacting Proteins (DIP) at UCLA. No species restriction. 

Contains PPI from multiple types of sources (HT methods, direct 

submission, literature…). 

HPRD [106] 37,581 
The Human Protein Reference Database (HPRD) contains human PPI 

extracted (and curated) from literature. 

BIND [107] >300,000 

Biomolecular INteraction Network Database (BIND) at the University 

of Toronto, Canada. No species restriction. Archives biomolecular 

interaction, complex and pathway information. Contains PPI from 

multiple types of sources (HT methods, direct submission, literature…). 

MIPS [108] 1,814 
The MIPS Mammalian Protein-Protein Interaction Database is a 

collection of manually curated high-quality PPI data collected from the 

scientific literature by expert curators. Contains mammalian PPI. 

MINT [109] 

 
102,571 

The Molecular INTeraction (MINT) database contains PPI from 

multiple types of sources (HT methods, direct submission, literature…). 

BioGrid 

[110] 
167,752 

The General Repository for Interaction Datasets (BioGrid) is a database 

of genetic and physical interactions. Contains PPI for 13 organisms 

from multiple types of sources (HT methods, direct submission, 

literature…). 

CYGD [111]  
CYGD is the PPI section of the Comprehensive Yeast Genome 

Database. Contains manually curated comprehensive S. cerevisiae PPI. 

STRING 

[112] 

730,000 

proteins 

The Search Tool for the Retrieval of Interacting Proteins (STRING) 

covers 1.5 million proteins for 373 species. Features AJAX-based web-

navigation, inclusion of BioGRID, and detailed protein domain 

annotation. It is useful for comparative genomics, phylogenetics and 

network studies. Contains PPI from multiple types of sources (HT 

methods, direct submission, literature, predictions…). 

HomoMINT 

[113] 
-- 

HomoMINT contains inferred human PPI from orthology to model 

organisms 

HPID [114] -- 
The Human Protein Interaction Database (HPID) contains predictions 

of human interaction derived from model organisms. 

 

Most of these databases keep interactions as binary relationships between proteins. In 
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addition, binary interactions are usually annotated with: (i) detection method employed; (ii) 

Pubmed identifier of the article where the interaction was described; and (iii) several protein 

identifiers for the two proteins involved in the interaction. Some other databases also 

include information such as complex membership, role (bait/prey) in the detection method, 

or a confidence score for the interaction. Most databases contain interactions obtained by 

direct submission from experimentalists and by mining literature and other data sources; in 

some cases the data is verified using automated algorithms or manual curation [103].  

Additionaly, recent works have focused on creating repositories of interactions between 

protein interfaces. In these repositories, interactions are described at resolutions lower than 

the whole protein, usually as domain-domain interactions. PIBASE [115] is a 

comprehensive relational database of structurally defined domain-domain interfaces, based 

on domains definitions from SCOP [77] and CATH [116]. SCOPPI [117] classifies and 

annotates domain interactions derived from all known protein structures, applying SCOP 

domain definitions [77]. Another resource, iPfam [118] investigates protein interactions in 

the Protein Data Bank (PDB) [67] at the level of Pfam domains [81] and aminoacid 

residues. Moreover, numerous computational methods have been used to complement 

interface interactions extracted from the PDB by predicting domain-domain interactions 

from known protein interactions and classifications of protein domains. For example, 

Sprinzak and Margalit characterized proteins using InterPro structural domains and then 

used experimentally determined protein-protein interactions to identify structural domain 

pairings that correlate with protein binding [52]. Other approaches characterized proteins 

using evolutionarily conserved domains defined in Pfam and predicted domain-domain 

interactions by applying a maximum likelihood method [119] or using a probabilistic 

confidence scoring scheme to combine multiple data sources [120].  

In conclusion, protein interaction data can be found in repositories of proteins and 

domain interactions, which might contain results from multiple experimental studies or 

computational predictions. In spite of the interaction data diversity, recent standardization 

efforts (see section 1.6.2) have increased the overlap between the different databases. 

However, there is no one definitive database for protein-protein interactions, and integration 

efforts that unify all available data are needed. 

 

1.5 Protein interaction networks 
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Many complex systems can be represented and analyzed as networks [121]. In particular, 

the network analysis approach is fundamental for successful quantitative modeling of 

biological systems [122, 123]. Network-based approaches have been used to analyze 

biological systems such as gene regulatory networks [124], signal transduction networks 

[125], metabolic networks [126], gene co-expression networks [127], protein interaction 

networks [128], phenome-genome networks [129] and phenome-interactome networks 

[130]. 

Protein-protein interactions is one type of biological data that can be represented and 

analyzed as a network [8]. In a protein interaction network, the nodes are proteins and the 

edges represent physical interactions between proteins. Formally, a protein-protein 

interaction network is defined as a set of proteins P=[p1,...,pn] with interactions I=[i11,  …, 

inm] between them, where ijk describes an interaction between proteins j and k. In such a 

network, a set of proteins linked to protein pj (ie, physically interacting with pj) is named 

“partners of pj”. The distance between two proteins of the network is defined as the 

minimum number of edges that one has to follow in order to connect the two proteins. The 

protein-protein interaction network for a given protein can be built at different depths, 

which represents the number of interacting steps that can be taken from the source protein to 

the outermost protein of the network. Consequently, the protein interaction network for a 

given species (i.e. interactome network) is the joint network of all proteins within that 

species. For example, building a network at depth 2 for a particular protein pj implies 

adding to the network the parters of pj as well as the partners of the partners of pj. In a 

protein interaction network, we refer to proteins with high connectivity (i.e. with many 

interaction partners) as ‘hubs’. Figure 1.6 shows the recently published protein interaction 

network for Drosophila Melanogaster [3]. As illustrated in Figure 1.6, sections 1.5.1 and 

1.5.2, representing protein interactions in a network has fundamental advantages over the 

traditional approach of storing interaction data in the form of simple lists. 
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Figure 1.6 Protein-protein interaction network of the fruit fly from a cellular localization 

perspective. Image from [131] 

 

1.5.1 Protein interaction networks properties 

There are indications that protein interaction networks are governed by certain universal 

laws [8]. For example, interactome networks appear to have a ‘scale-free’ or power law 

degree distribution: most proteins interact with few partners, whereas a few proteins, named 

‘hubs’, interact with many partners [8, 132, 133]. Nevertheless, the scale-free aspect of 

networks will need to be revisited when more comprehensive interaction networks are 

compiled, since a number of studies have recently questioned its existence [134, 135]. 

Besides, a link between the potential scale-free topology of interactome networks and 

genetic robustness seems to exist, because it has been shown that hub proteins are more 

essential for cellular viability than non-hubs [128]. However, recent studies have suggested 
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that the essentiality of protein hubs is better explained by their number of binding interfaces 

[136], the type of interactions in which hubs are involved [137] or the number of shortest 

paths going through them [138].  

Other properties observed in interaction networks include the small-world effect (i.e. any 

two nodes can be connected with a path of a few edges only) and a highly modular 

architecture (i.e. interacting proteins tend to be in complexes or act in the same functional 

process) [8, 139-141]. 

1.5.2 Protein interaction networks applications 

Protein interaction networks have been shown to be a useful representation of interaction 

data [142]. Moreover, networks are useful for integrating data from multiple sources (see 

section1.6.2). Furthermore, protein interaction networks can be applied to objectives such as 

(i) the prediction of protein function [88]; (ii) the estimation of interactions reliability (see 

section 1.3.7) [66]; (iii) the identification of domain-domain interactions (see section 1.4.5) 

[143]; (iii) the prediction of protein interactions (see section 1.4.5) [144]; (iv) the detection 

of proteins involved in disease pathways (see section 1.8) [145]; (v) the delineation of 

frequent interaction network motifs [146]; and (vi) the comparison between model 

organisms and humans [147].  

In particular, protein interaction networks have been extensively used to predict the 

function of proteins [88, 148]. Network-based approaches for elucidating protein function 

can be classified in direct methods, which propagate functional information through the 

network, and module-assisted networks, which infer functional modules within the network 

and use those for the annotation task [88]. The common principle underlying all direct 

methods for functional annotation is that proteins that lie closer to one another in the PPI 

network are more likely to have similar function. Examples of direct methods are 

neighborhood counting [149], graph theoretic approaches that take into account the full 

topology of the network [150] and Markov random field probabilistic approaches [151]. 

Module-assisted methods attempt to identify coherent groups of genes (in terms of 

network topology or data from experiments) and then assign functions to all the genes in 

each group. One interesting example of module-assisted method is the work of Samanta and 

Liang [152], which transfers function between proteins that have a significant number of 

common interaction partners. 

Finally, two other important applications of protein interaction networks are the 

prediction of protein-protein interactions and the identification of frequent network motifs. 
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Network approaches to the prediction of protein interactions are usually based on inferred 

domain-domain interactions (see section 1.4.5) or topological properties of protein 

networks, such as conserved interaction patterns [153]. Methods based on interaction 

patterns rely of the observation that certain network motifs such as a triad of interactions 

occur in protein interaction networks at a significantly higher frequency than that expected 

from an artificially generated network with similar mathematical properties [132]. These 

conserved network motifs can then be used to generate plausible predictions of protein-

protein interactions. 

 

1.6 Biological data integration 

Over the past two decades, databases of biological knowledge have become essential 

resources that are daily used by biologists around the world. One fundamental problem in 

using these databases is that, in order to answer any biological question, it is necessary to 

traverse several repositories of knowledge, because information is spread across multiple 

databases, websites, text files, and private repositories of data [154-156]. Moreover, 

biological information is stored in multiple (disparate) formats, increasing the difficulty 

when trying to uniformly use all available information. Furthermore, the knowledge stored 

relies on different nomenclatures: the same biological object (e.g. a protein) might be 

identified with a different name in each repository that contains information about it.  

Several consequences arise from the above mentioned issues: (i) biologists won’t find the 

information they are searching unless it appears in their favorite websites; (ii) since having 

access to all available information on a particular subject (e.g. protein-protein interactions) 

is not straightforward, only one source of data will be used for testing a method or checking 

the validity of a hypothesis; and (iii) analyses based on multiple sources of data are 

subjected to errors, due to different nomenclature systems and lack of one-to-one 

translations. Thus, solving these difficulties through effective data integration is a key 

element of conducting biological research [154, 157]. 

Ideally, one single universal database would contain all types of biological data. 

However, this is not feasible in practice because (i) creating a single data model for all types 

of information is difficult (if not impossible); (ii) different groups hold the diverse 

expertises; and (iii) keeping up to date repositories is easier when the data to be maintained 

is limited. A more practical solution is to maintain the scientific and political independence 
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of the databases, but make the information that they contain easy to integrate by means of 

cross-database queries based on exchange standards. However, this is not trivial, for both 

technical and human-dependent issues [154, 158].  

There are three main ways in which groups have tried to integrate biological databases: 

link integration, view integration and data warehouses [154]. Link integration is the 

simplest (and most widely used) approach to  having access to all available data: researches 

begin their query with one data source, and then follow hypertext links to related 

information in other data sources. View integration leaves the information in its source 

databases, but builds an environment around the databases that makes them all seem to be 

part of one large system [159]. Data warehousing (Figure 1.7) consists in integrating all the 

data into a single database, which can then be used as the ‘one-stop shop’ for answering any 

of the questions that the source databases can handle, as well as those that require integrated 

knowledge that the individual sources do not have [160].  

 

 
Figure 1.7 The data warehousing approach to data integration. Image obtained from 

[154] 

 

This section addresses the challenge of integrating biological data, focusing on aspects 

related to the study of protein-protein interactions. Specifically, we discuss the 

nomenclature issues in biology, the integration of protein-protein interactions and the 

combination of protein-protein interaction data with other types of biological data. 
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1.6.1 Genes and proteins nomenclature 

Adopting naming standards and translating between different biological entities identifiers 

is the first step towards biological data integration [71, 161]. As described in section 1.2, 

genes are transcribed into mRNA, which is translated to proteins. However, numerous 

mechanisms affect the process of making proteins, such as alternative splicing (i.e. process 

that occurs in eukaryotes in which the splicing process of a pre-mRNA can lead to different 

ripe mRNA molecules and therefore to different proteins) or post-translational 

modifications (e.g. phosphorylation, glycosylation, acetylation). Therefore, a gene is a 

recipe for one or more proteins. However, most biologists use gene names when referring to 

proteins. Moreover, biologists use a variety of names for genes and proteins, based on 

factors such as their research specialization, historical reasons or taste for fanciful names 

[162]. This brings great difficulties to the process of searching for information for a given 

gene, and most pronouncedly, to efforts dedicated to integrating information coming from 

multiple sources. Some examples of gene naming issues are: (i) multiple names can be used 

to refer to the same gene (e.g. CAPZA3, CAPAA3 and GSG3 all refer to F-actin capping 

protein subunit alpha-3); (ii) the same gene name can be written in different ways (e.g. 

spaces become hyphens); (iii) the same gene name can refer to several unrelated proteins 

(e.g. searching in UniProt for gene name ‘pap’ retrieves 57 different proteins, many of them 

completely unrelated); and (iv) gene names can be species specific (e.g. PMS1 is the yeast 

ortholog of human PMS2; the yeast ortholog of human PMS1 is PMS2). 

Several efforts have been made to rationalize the naming of genes and proteins. In 

particular, standards that guarantee the use of unique names are being adopted in most 

commonly used organisms [163-166]. Moreover, there are as well databases that have 

developed unique and tractable identifiers such as Uniprot Entry Names [167], Entrez 

GeneIDs [69] and Ensembl [168]. However, attempts to impose standard names are meeting 

stiff resistance, and approaches that use unique identifiers are not practical for every day 

use. In order to address the nomenclature problem, a number of bioinformatics approaches 

have been developed to automatically translate between different identifiers (see section 

1.7.1). 
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1.6.2 Protein-protein interactions integration 

There are two aspects to protein-protein interactions integration. The first aspect is 

collecting all sources of interaction data and creating a unified interaction network. The 

second aspect is analyzing protein-protein interaction data in combination with other types 

of biological data. 

Integrating protein-protein interactions from multiple sources 

Using protein-protein interactions for computational biology analyses has been historically 

plagued with problems unrelated to biological questions. For example, disparate formats and 

ambiguous protein identifiers impeded the compilation of a comprehensive list of known 

interactions, making difficult to prove (or disprove) research hypothesis. Traditionally, 

researchers kept and exchanged protein-protein interaction data in simple text files. 

However, this approach was not suited for the deluge of data produced by high throughput 

methods. Consequently, public repositories of protein-protein interactions were created, 

either by direct submissions of interactions or manual curation of interactions from the 

literature. Recently, one standard has emerged that attempts to uniform the way interactions 

are formatted and codified [169]. The proposed standard, the protein standards initiative for 

molecular interactions (PSI-MI), is a data exchange format, not a proposed database 

structure. This standard is being promoted by the International Molecular Exchange 

Consortium (IMEx)[170], a group of major public interaction data providers sharing 

curation efforts and exchanging completed records on molecular interaction data. The two 

main contributions of the PSI-MI are the definition of a XML specification for exchanging 

molecular interaction data and the creation of controlled vocabularies (e.g. fixed identifiers 

for types of detection methods). 

While the PSI-MI has standardize to a certain degree the way interactions can be 

exchanged between different databases, using all available interactions in an integrated 

manner is still out of reach for most computational biologists, not to say for biologists in 

experimental labs. The main causes for this are: (i) protein nomenclature issues are there to 

stay (see section 1.6.1); (ii) databases do not follow the PSI-MI in a uniform manner 

(including those that promote the standard); (iii) a unified network of all known interactions 

has not been compiled yet into a single repository. In consequence, researchers willing to 

work with all available interactions need to recur to third party integration tools (see section 

1.7.2). 
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The integration of protein-protein interactions from multiple sources, in addition to 

providing a greater coverage of the interactome space [171, 172], can be helpful for 

obtaining high confidence networks (see section 1.3.7). For example, interactions detected 

in multiple experiments are more reliable than those detected in just one experiment; the 

same is true for interactions detected with different experimental techniques [43, 171]. 

Combining protein-protein interaction data with other types of biological data 

There are two main objectives when combining protein-protein interaction data with other 

types of biological data. The first objective is to increase the confidence of protein 

interaction data by determining the reliability of an interaction on the basis of other 

biological evidence. The second objective is to provide additional biological insights by 

extracting knowledge from the combination of biological data types, knowledge that each 

individual data source didn’t contain by itself. 

Methods for detecting protein-protein interactions have inherently high false-positive and 

false-negative rates (see section 1.3.7 and [43]). One way of reducing the number of false 

positives is to use other types of biological data to judge whether interactions are likely to 

occur in the cell. For example, localization data (see section 1.3.6) can be helpful for 

filtering false positives from protein-protein interactions detected by high-throughput 

methods: if two proteins are never co-localized, they are not likely to interact in vivo. 

Moreover, various protein/gene pair characteristics, such as shared phenotypes, correlated 

expression or shared GO terms, have been employed to assign higher confidence to protein-

protein interaction data [5, 45]. 

Integrating protein-protein interactions with other types of data can provide valuable 

biological insights not captured by protein-protein interaction data alone [173]. For 

example, gene expression studies (see section 1.3.3) can be useful for (i) detecting modules 

of proteins that are coexpressed [174]; (ii) identifying network proteins that are 

differentially expressed in a given disease [145]; and (iii) viewing the interaction network 

from a dynamic perspective [175]. Another example of data that can be integrated with 

protein-protein interactions are results from ChIP-on-chip experiments (see section 1.3.5). 

In particular, combining information of protein-DNA binding sites with protein interactions 

could be fundamental to throwing light on transcription networks [176]. Finally, one 

example of integration of multiple types of biological data is the work of Tanay et al, in 

which they described a framework that allows the integration of protein interaction data 

with gene expression, phenotypic sensitivity and transcription factor binding [177]. 
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1.7 Software 

In this section we review some software packages related to the integration, analysis and 

visualization of protein-protein interaction data, including tools for translating between 

different types of protein identifiers. 

1.7.1 Software for translating gene and protein identifiers 

In order to address the nomenclature problem (see section 1.6.1), a number of 

bioinformatics approaches have been developed to automatically translate between different 

identifiers. Most translation tools rely on a data warehouse approach where information 

from multiple sources is stored. We describe here a summary of the main translation tools: 

• HomGL: HomGL [178]  is a php/mysql driven web-tool to compare and transfer 

genelists between different types of accession numbers and organisms (up to now: 

rat, human, mouse) utilizing the Unigene Clusters, the HomoloGene database, and 

the LocusLink database. 

• Onto-translate: Onto-Translate [179] allows arbitrary mappings between 28 types of 

IDs for 53 organisms. 

• Gpsdb: The Gene and Protein Synonym DataBase (GPSDB) [180] contains 552,469 

gene and protein clusters, with an average of 24.2 names per cluster. 

• GeneSeer: GeneSeer [162] allows access to gene information through common 

names and can map sequences to names. It also allows identification of homologs 

and paralogs for a given gene. GeneSeer works by collecting data from a variety of 

sources and bulding a name-translation database. 

• MatchMiner: MatchMiner [181] is a freely available program package for batch 

navigation among gene and gene product identifier types commonly encountered in 

microarray studies and other forms of 'omic' research. 

• BioThesaurus: BioThesaurus [182] is a web-based system designed to map a 

comprehensive collection of protein and gene names to protein entries in the UniProt 

Knowledgebase. 

• Connect the Dots: Connect the Dots [183] is a general data integration tool that is 

focused on translating identifiers between public biological databases. 

1.7.2 Software for protein interaction data integration, analysis and visualization 
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In the last five years, numerous software packages have been developed to integrate, 

analyze and visualize protein-protein interaction data. In this section, we describe the main 

actors in the molecular interaction software landscape.  

• Cytoscape: Cytoscape [184] is an open source bioinformatics software platform for   

visualizing   molecular interaction networks and  integrating   these interactions with 

gene expression profiles and other state data. Figure 1.8 illustrates the user interface 

of Cytoscape. 

• VisANT: VisANT [185] is an application for integrating biomolecular interaction 

data into a cohesive, graphical interface 

• Osprey: Osprey [186] is a software framework for visualization of complex 

interaction networks 

• cPath: cPath [187] is an open source database and web application for collecting, 

storing, and querying biological pathway data 

• ProViz: ProViz [188] is a tool for the visualization of protein-protein interaction 

networks 

• PimWalker: PimWalker [189] is a free and interactive tool for visualising protein 

interaction networks. PIMWalker handles the unified molecular interaction (MI) 

format defined by members of the Proteomics Standards Initiative (the PSI MI 

format) 

• tYNA: tYNA [190] is a web system for managing, comparing and mining multiple 

networks, both directed and undirected 

• iVici: iVici [191] is a Java application for analysis of cellular networks represented 

as addressable symmetric or asymmetric two-dimensional matrices. 

• InterViewer: InterViewer [192] is a extremely fast layout algorithm for visualizing 

large-scale protein interaction networks. 

• Integrator: Integrator [193] is a collection of interactive, graphical search tools for 

exploring protein-protein interaction networks. 

• AVID: Avid [194] is a computational method that uses a multi-stage learning 

framework to integrate experimental results with sequence information, generating 

networks reflecting functional similarities among proteins. 
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Figure 1.8 Screen capture of the user interface provided by Cytoscape [184]. 

 

 

Moreover, most databases listed in section 1.4.5 provide a web-based user interface that 

can be use to navigate their own protein interaction network. Furthermore, there are some 

public repositories that attempt to collect their data from as many sources as possible, 

including other databases. Two examples of this integrative approach are STRING [112] 

and UniHI [195]. 

 

 

1.8 The role of bioinformatics in cancer research 

Bioinformatics is increasingly becoming a discipline with real life medical applications 

[196] [197]. Biomedical areas that have benefited from advances in bioinformatics research 

include drug design [198, 199], disease diagnosis [200, 201], identification of biomarkers 

for patient monitoring [202] and drug discovery [203, 204]. In particular, computational 

approaches are being used to speed up the identification of effective new drugs [203]. There 

34 
 



are three major issues associated with drug discovery: (i) identifying relevant drug targets; 

(ii) identifying a drug that appropriately disturbs the target; and (iii) assessing the possible 

side effects and pharmaceutical properties of the drug. Computational approaches are well 

suited for helping with issues (i) and (iii) [203], applying techniques such as virtual 

screening [204] and probabilistic modeling of human systems biology [205] . 

One area where bioinformatics is helping to narrow the gap between basic research and 

clinical application is cancer diagnosis and treatment [206-208]. Cancer is a complex 

disease, involving multiple and specific changes at the DNA level that can be inherited or 

induced by environmental factors [209]. Identifying cancer-specific molecular changes and 

discovering their use for increasing therapeutic specificity will lead to higher success rates 

and fewer side effects coming from aggressive cancer treatments [206, 210]. With this 

objective, numerous genomics and proteomics projects are dedicated to the study of genes 

and proteins and their involvement in cancer [211]. Data from these projects is increasingly 

being used by bioinformatics approaches to improve cancer diagnosis, prognosis, prevention 

and therapy [206, 207]. 

In particular, there are two main types of data that are being widely use by the 

bioinformatics research community: microarray data and protein-protein interaction data. 

For example, computational methods have been useful for simultaneously analyzing 

multiple expression studies [212], classifying tumor types on the basis of their gene 

expression profiles [213], or identifying cancer genes by their topological features in the 

protein interaction network [214]. Recently, several approaches have developed algorithms 

that perform integrated analyses based on heterogeneous sources of information such as 

gene expression studies and protein-protein interactions [215]. In the work of Rhodes et al. 

[145], a human interactome was applied to genome-wide gene expression data in cancer for 

identifying a potential tumor suppressor gene in the integrin signaling pathway, and then 

demonstrated the utility of protein-protein interaction data for identifying interaction 

subnetworks activated in cancer. 

Besides, bioinformatics is not only playing an increasingly important role by developing 

computational methods and tools, but also for the continuing work of creating standards and 

repositories [207]. Public data sources with cancer-related information include Oncomine, a 

resource for examining gene expression in cancer [216]; the Cancer Gene Census, a 

catalogue of genes for which mutations have been causally implicated in cancer[217]; and 

the cancer ‘module map’, which describes expression profiles in different tumors in terms of 

the behavior of modules, sets of genes that act in concert to perform a specific function 
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[213]. Moreover, most repositories described in section 1.4.5 contain information that is 

potentially useful for the study of cancer. 

 

1.9 Document organization  

This PhD thesis is presented as a compendium of published (or submitted) research articles. 

The research articles are accompanied by an introduction (this chapter) that puts our work 

into context, and a discussion (chapter VI) that summarizes the achievements of the 

presented work. Specifically, this thesis is organized in the following chapters: 

 

Chapter I (this chapter) introduces the basic biological concepts needed for reading this 

thesis and provides an overview of experimental methods, repositories of biological data, 

protein interaction networks, biological data integration and the application of 

bioinformatics to cancer research. 

 

Chapter II introduces PIANA by means of two articles: one focused on the application 

(published on Bioinformatics as an Application Note) and another one dedicated to the data 

integration approach of PIANA and a description of the interaction data currently available 

(submitted to BMC Bioinformatics as a research article).  

 

Chapter III describes a method implemented in PIANA that attacks the problem of not 

being able to know the interacting interfaces of proteins by means of high-throughput 

methods. In the article included in Chapter III (in revision in PLoS Computational Biology), 

we used binary protein interactions to identify proteins that interact through common 

interacting motifs. These interacting motifs were then used to show that the essentiality and 

evolutionary rate of hub proteins are related to their number of distinct interacting motifs, 

rather than to the number of interaction partners.  

 

Chapter IV describes the use of PIANA from the biomedical perspective of identifying 

cancer gene candidates by the integration of multiple sources of data. The article included in 

Chapter IV (submitted to BMC Bioinformatics as a research article) predicts cancer gene 

candidates by integrating a list of known cancer genes, protein-protein interaction data, 

differential expression studies and structural and functional properties.  
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Chapter V is a summary of other works where the author of the thesis has been 

involved, such as publications from an on-going collaboration with wet lab experimentalists 

working in cancer and a research article in which we combine sequence information with 

protein-protein interactions to detect remote homologs (published in PNAS).  

 

Finally, Chapter VI suggests future directions of research and summarizes the work 

presented in this PhD thesis. 
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OBJECTIVES 

The objectives of this PhD thesis can be summarized as follows: 

1. Designing and implementing a software platform for integrating, managing and 

analyzing protein-protein interactions.  

2. Using protein-protein interaction data to provide biological insights about the 

mechanisms behind protein interactions. Specifically, we were interested in 

describing protein-protein interactions in terms of the specific interfaces that are in 

contact during an interaction. 

3. Using protein-protein interaction data from a biomedical perspective. In particular, 

we were interested in demonstrating that existing data on protein-protein interactions 

can be of use for predicting proteins involved in disease. 

The first objective was addressed by designing, implementing and publicly releasing a 

software framework called PIANA (Protein Interactions and Network Analysis) (see chapter 

II). The second objective was pursued by developing a method within PIANA that infers 

interacting motifs from binary protein interactions (see chapter III). The third objective was 

tackled with the application of PIANA to the prediction of cancer genes by integrating 

protein interaction networks and differential expression data (see chapter IV). 
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CHAPTER II 

PIANA 
(Protein Interactions And Network Analysis) 

 
As presented in the introduction to this PhD thesis, protein-
protein interaction data is spread across multiple repositories, 
websites and literature. This hinders the advance of research in 
scientific areas where comprehensive access to protein-protein 
interaction data is a must. In this chapter, we present by means of 
two articles a software framework called PIANA designed to 
facilitate the analysis of protein interactions retrieved from 
multiple sources.  

 

 

 

 

 

 

 

 
Access statistics to the PIANA website mapped on a world map.  

As observed, the PIANA access map is a good surrogate for countries with a relevant scientific community.  

 

Articles included in this chapter: 
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PIANA: Protein Interactions and Network Analysis 

Ramon Aragues, Daniel Jaeggi and Baldo Oliva* 

Structural Bioinformatics Group (GRIB –IMIM). Departament de Ciències Experimentals i de la 

Salut. Universitat Pompeu Fabra. Barcelona, Catalonia (Spain).  

 

ABSTRACT 

Summary: We present a software framework and tool called PIANA that facilitates 

working with protein interaction networks by 1) integrating data from multiple sources, 2) 

providing a library that handles graph-related tasks and 3) automating the analysis of 

protein-protein interaction networks. PIANA can also be used as a stand-alone application 

to create protein interaction networks and perform tasks such as predicting protein 

interactions and helping to identify spots in a 2D electrophoresis gel.  

Availability: PIANA is under the GNU GPL. Source code, database and detailed 

documentation may be freely downloaded from http://sbi.imim.es/piana 

Contact: ramon.aragues@upf.edu and boliva@imim.es 

1 INTRODUCTION  

The analysis of protein interaction networks is fundamental to the understanding of cellular 

processes (Salwinski and Eisenberg, 2003; Yook, et al., 2004). Furthermore, protein 

interaction networks are being used in tasks such as assignment of function to 

uncharacterized proteins (Huynen, et al., 2003) and searching for remote similarities 

between proteins (Espadaler, et al., 2005). Some tools developed to visualize and analyze 

protein-protein interaction networks are Cytoscape (Shannon, et al., 2003), Osprey 

(Breitkreutz, et al., 2003), VisANT (Hu, et al., 2005), and ProViz (Iragne, et al., 2005). 

Most of these tools are focused on visualizing the networks, while a few of them have 

analytic capabilities. 

PIANA (Protein Interactions And Network Analysis) is a software framework that 

integrates data from multiple sources into a single repository, creates interaction networks, 

predicts novel interactions and performs automatic analyses. PIANA is different to most 
                                                 
*To whom correspondence should be addressed.  
Grup de Bioinformàtica Estructural (GRIB-IMIM). Universitat Pompeu Fabra. C/ Doctor 
Aiguader,  83. Barcelona, 08003. Catalonia, Spain. 
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other tools in that 1) it is also a framework on which developers can base their applications, 

2) it integrates most protein and interaction databases into a single repository, 3) it performs 

analyses not provided by other tools. 

 

2 PIANA ARCHITECTURE 

PIANA has been implemented as a collection of python modules that can be used separately 

as libraries or as a stand-alone application through a user interface. 

 

The Database Module 

The Database Module consists of a MySQL database and a library used as an interface to 

the database. A limited version of a PIANA MySQL database containing interactions from 

DIP (Salwinski, et al., 2004) and interactions predicted from sequence/structure distant 

patterns (Espadaler, et al., 2005) can be downloaded from our website. 

 

The Parsing Module 

PIANA includes parsers for the main protein databases (UniProt (Bairoch, et al., 2005), 

NCBI GenBank (Benson, et al., 2005)) and for protein interaction repositories such as DIP, 

STRING (von Mering, et al., 2003), MIPS (Pagel, et al., 2005), BIND (Alfarano, et al., 

2005) and HPRD (Peri, et al., 2003). PIANA can also parse flat text files and interaction 

data that follows the HUPO PSI MI standard (Hermjakob, et al., 2004). Moreover, PIANA 

provides parsers for databases such as COG (Tatusov, et al., 2003), GO (Ashburner, et al., 

2000) and SCOP (Murzin, et al., 1995). These databases contain information that PIANA 

uses when performing the analyses. 

 

The Network Module 

PIANA implements classes and methods for working with networks. Moreover, PIANA has 

methods specifically designed for biological networks such as clustering proteins by their 

molecular function and visualizing the networks in formats appropriate for biological 

analysis. 

 

 

3 PIANA CAPABILITIES 
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Data integration 

PIANA accepts as input most types of protein database identifiers and contains cross-

references between them. Therefore, interactions from different sources can be integrated 

into a single network. Currently, the type of input and output protein database identifiers 

accepted by PIANA are: UniProt entry names and accession numbers, gene names, NCBI 

GenBank gi, EMBL, PDB, PIR and the protein sequence.  

 

Creation of protein-protein interaction networks 

Usually, a list of proteins of interest is given as input. PIANA searches in its database for 

interactions where these proteins are involved and adds edges (ie interactions) and nodes (ie 

protein interaction partners) to the network until a given depth is reached, where depth is 

defined as the number of interacting steps taken from the original proteins. Internally, a 

protein interaction network is represented as a set of nodes (proteins) connected by edges 

(interactions). The networks can be visualized in different formats, mainly tables that 

describe in detail each interaction and DOT files, which can be used to produce network 

images. PIANA also has the possibility of applying output filters such as highlighting 

proteins that perform specific functions or identifying proteins in the network whose genes 

have been found over/under expressed in a microarray experiment. 

 

Predicting novel interactions 

PIANA transfers interactions between proteins that share a given property. For example, 

PIANA predicts interactions using “interologs” (Yu, et al., 2004) by means of COG codes. 

In a similar way, SCOP codes can be used to transfer interactions between proteins that 

share a domain family.  

 

Finding “interaction distance” between proteins 

PIANA can obtain lists of proteins that are at a certain interaction distance (ie minimum 

number of edges separating two proteins) from another protein, which can be useful for 

tasks such as searching for remote similarities between proteins (Espadaler, et al., 2005). 

 

 

Matching spots from electrophoresis experiments 
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PIANA can be used to help identify spots in a 2D electrophoresis gel. Spots not identified 

by mass spectrometry are putatively assigned to proteins in the network by comparing their 

molecular weights and isoelectric points. 

 

Clustering proteins by their GO terms 

Networks can become very complex and hence, clustering methods are needed to facilitate 

their interpretation. PIANA provides a library for applying agglomerative hierarchical 

clustering to protein interaction networks. For example, using the annotation provided by 

GO, PIANA groups in clusters those proteins in the network that have similar biological 

processes or molecular functions.  The distance function used for this clustering is based on 

the length of the path between the GO terms in the GO hierarchical tree. The stop condition 

is set by the user by means of two thresholds: minimum similarity accepted in order to 

group two clusters and minimum distance from the terms in the cluster to the GO root term.  

 

Extending PIANA 

New functionalities can be added to PIANA by extending the current python classes. 

Moreover, PIANA implements a class called PianaApi that can be used from other python 

programs to work with interaction networks. 

4 EXAMPLE 

We illustrate the use of PIANA with two genes (MMP1 and LTBP1) that have been found 

to mediate breast cancer metastasis to lung (Minn, et al., 2005). First of all, we create a 

PIANA configuration file where we set 1) the input parameters (eg. input proteins and 

network depth), 2) the output parameters (eg. type of protein identifiers to be used) and 3) 

the PIANA commands to execute (eg. create network for the proteins and predict 

interactions based on interologs). Then, we run PIANA with the configuration file as an 

argument. Figure 2.1.1 shows the protein interaction network for MMP1 and LTBP1 before 

(a) and after (b) adding predictions based on interologs. A detailed PIANA example using 

all the genes from (Minn, et al., 2005)  and performing an in-depth analysis of the 

interaction network can be found at http://sbi.imim.es/piana/example.html. 

Furthermore, PIANA has been previously used for the study of biological pathways in 

breast cancer cells (Espana et al., 2005).  
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Figure 2.1.1: a) protein interaction 

network for MMP1 and LTBP1 and b) 

network obtained after adding 

predictions based on interologs 

 

 

5 FUTURE WORK 

Future plans for PIANA include the 

annotation of proteins based on 

network motifs, prediction of protein 

structure using interactions 

(Espadaler, et al., 2005) and 

developing a reliability score for interactions. We intend as well to introduce algorithms that 

split proteins into the domains that perform the interactions. 

 

a) 

b) 

ACKNOWLEDGEMENTS 

We thank J. Planas, P. Boixeda, B. Gregori and L. Salwinski for their helpful comments. 

R.A is supported by a grant from the Spanish Ministerio de Ciencia y Tecnología (MCyT, 

BIO2002-03609). This work has been supported by grants from Fundación Ramón Areces, 

from the Spanish Ministerio de Educación y Ciencia (MEC, BIO02005-00533), and the 

‘‘Programa Gaspar de Portolà (DURSI)’’  

REFERENCES 

Alfarano, C. et al. (2005) The Biomolecular Interaction Network Database and related tools 

2005 update, Nucleic Acids Res, 33, D418-424. 

Ashburner, M. et al. (2000) Gene ontology: tool for the unification of biology. The Gene 

Ontology Consortium, Nat Genet, 25, 25-29. 

Bairoch, A. et al. (2005) The Universal Protein Resource (UniProt), Nucleic Acids Res, 33, 

D154-159. 

Benson, D.A. et al. (2005) GenBank, Nucleic Acids Res, 33, D34-38. 

Breitkreutz, B.J. et al. (2003) Osprey: a network visualization system, Genome Biol, 4, R22. 

48 
 



Espadaler, J. et al. (2005) Detecting remotely related proteins by their interactions and 

sequence similarity, Proc Natl Acad Sci U S A, 102, 7151-7156. 

Espana, L. et al (2005) Bcl-x(L)-mediated changes in metabolic pathways of breast cancer 

cells: from survival in the blood stream to organ-specific metastasis, Am J Pathol, 167, 

1125-1137. 

Hermjakob, H. et al. (2004) The HUPO PSI's molecular interaction format, Nat Biotechnol, 

22, 177-183. 

Hu, Z. et al. (2005) VisANT: data-integrating visual framework for biological networks and 

modules, Nucleic Acids Res, 33, W352-357. 

Huynen, M.A. et al. (2003) Function prediction and protein networks, Curr Opin Cell Biol, 

15, 191-198. 

Iragne, F. et al. (2005) ProViz: protein interaction visualization and exploration, 

Bioinformatics, 21, 272-274. 

Minn, A.J. et al. (2005) Genes that mediate breast cancer metastasis to lung, Nature, 436, 

518-524. 

Murzin, A.G. et al. (1995) SCOP: a structural classification of proteins database for the 

investigation of sequences and structures, J Mol Biol, 247, 536-540. 

Pagel, P. et al. (2005) The MIPS mammalian protein-protein interaction database, 

Bioinformatics, 21, 832-834. 

Peri, S. et al. (2003) Development of human protein reference database as an initial platform 

for approaching systems biology in humans, Genome Res, 13, 2363-2371. 

Salwinski, L. and Eisenberg, D. (2003) Computational methods of analysis of protein-

protein interactions, Curr Opin Struct Biol, 13, 377-382. 

Salwinski, L. et al. (2004) The Database of Interacting Proteins, Nucleic Acids Res, 32, 

D449-451. 

Shannon, P. et al. (2003) Cytoscape: a software environment for integrated models of 

biomolecular interaction networks, Genome Res, 13, 2498-2504. 

Tatusov, R.L. et al. (2003) The COG database, BMC Bioinformatics, 4, 41. 

von Mering, C. et al. (2003) STRING: a database of predicted functional associations 

between proteins, Nucleic Acids Res, 31, 258-261. 

Yook, S.H. et al. (2004) Functional and topological characterization of protein interaction 

networks, Proteomics, 4, 928-942. 

Yu, H. et al. (2004) Annotation transfer between genomes: protein-protein interologs and 
protein-DNA regulogs, Genome Res, 14, 1107-1118. 

49 
 



Assessment of protein-protein interaction data in the 
public domain by integration of multiple sources 

Ramón Aragues1*, Javier García-García1*, Baldo Oliva1, § 

1. Structural Bioinformatics Lab. (GRIB). Universitat Pompeu Fabra-IMIM. Barcelona Research Park of 

Biomedicine (PRBB). 08003-Barcelona, Catalonia, Spain. 
§ Corresponding author   * Both authors contributed equally to this work 

Email addresses: RA: ramon.aragues@upf.edu; JG: jgarcia1@imim.es; BO: boliva@imim.es 

 

Abstract 
Background. The analysis and usage of biological data is hindered by the spread of 

information across multiple repositories and the difficulties posed by different nomenclature 

systems and storage formats.  In particular, the study and use of protein-protein interactions 

is one area where there is an important need for data integration and improvements on the 

tools used to gather information. Without good integration strategies, it is difficult to assess 

how much interaction data is available and its properties. 

Results. We present a data integration approach for protein-protein interactions. Our 

approach is different to other techniques in that 1) it uses the sequence of the protein and its 

taxonomy as the unique identifier; 2) it integrates most protein and interaction repositories 

into a single relational database; and 3) the integrated protein interaction network can be 

built for any source database, detection method and species, or combinations of them. This 

integrative approach has been implemented into PIANA, a protein-protein interaction 

software framework under the GNU Public License (http://sbi.imim.es/piana). The low 

overlap between the different sources of interaction data highlights the need for integrative 

tools. We find that the integrated network of interactions shows properties very similar to 

those previously observed in previously reported protein interaction networks.  

Conclusions. PIANA´s approach to protein interaction data integration solves many of the 

nomenclature issues common to systems dealing with biological data. The concept 

presented here can be extended to other types of biological data. The integration of all 

available protein interaction data is fundamental to obtaining a comprehensive picture of the 

interactions taking place in the cell. 

 

 

50 
 

mailto:ramon.aragues@upf.edu
mailto:jgarcia1@imim.es
mailto:boliva@imim.es
http://sbi.imim.es/piana


Background 

 

The completion of genome sequencing projects stimulated the development of high-

throughput experimental methods aimed at functional characterization of the discovered 

genes. In particular, the identification of protein-protein interactions has been accelerated by 

the development of new technologies such as two-hybrid assays [1-3] and affinity 

purifications followed by mass spectrometry [4-6]. Thus, a vast amount of protein-protein 

interaction data has been collected, including proteome-scale interactome maps for yeast [7, 

8], fly [9] and worm [10], and a partial map for human [2, 3]. In addition to providing 

insights about biological systems [11, 12], protein interaction maps can be used to infer the 

function of proteins (ref), detect remote homologs (ref) and to identify the interacting motifs 

of a protein (ref).  

However, interaction data is spread across multiple repositories and codified using various 

protein nomenclature systems [13]. In consequence, experimental biologists face difficulties 

when trying to find all known interactions for their protein of interest, and the computational 

analysis and use of protein interaction data is usually restrained to a partial subset of all 

available knowledge. For example, any comprehensive search of interactions for a particular 

protein must include at least seven databases of protein-protein interactions: the Database of 

Interacting Proteins (DIP) [14], the MIPS database of interactions [15], the Molecular 

INTerations database (MINT) [16], IntAct [17], the Biomolecular Interactions Database 

(BIND) [18], the BioGrid interactions database (ref) and Human Protein Reference 

Database of interactions (HPRD) [19]. Besides, each database uses different strategies for 

identifying proteins, and translations between synonyms are required before any manual 

search or automatic processing.  Moreover, there are methods for predicting protein 

interactions that can be used when no experimental interactions have been detected for a 

protein, but results from these methods are usually spread across multiple websites, each 

one in its own format flavor. Although there have been efforts to standardize the format for 

protein-protein interactions data exchange [20], the guidelines implemented do not include a 

strategy for naming proteins, which leaves unresolved many of the integration issues.  

The importance of protein interactions analysis has prompted the development of tools 

focused on protein interaction networks and their visualization, analysis and data integration 

[21]. For example, Cytoscape is a major effort to centralize network analysis tools on a 

single platform with built-in visualization [22]. Other visualization and analysis tools 
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include Osprey (ref), VisANT [23], and ProViz [24]. On the other hand, current packages 

aimed at data integration include tYNA [25], a web system for managing, comparing and 

mining multiple networks, and cPath [26], a platform for collecting, storing and biological 

pathways that can be used from third party softwares for visualization and analysis. While 

these tools have been shown to be useful for creating and analyzing protein-protein 

interaction networks, there is still the need for an integration engine that truly unifies all 

available data into a single network and allows automatic analyses on a global scale. Most 

current integration tools are designed to work with interactions coming from one single type 

of data format, and others have problems when dealing with interactions codified using 

different types of protein identifiers. 

Recently, a number of studies have examined the protein interaction data available in the 

public domain [13, 27, 28]. Pandey and coworkers [13] analyzed human experimentally 

detected interactions from multiple databases, concluding that repositories show little 

overlap among them. Herzel et al. [28] also compared human interaction maps, but added 

interaction predictions to the list of analyzed repositories. They concluded that the overlap 

between repositories is small but significant, and showed strong sampling and detection 

biases could be linked to the different interacion maps. The integration strategy of both 

works consisted in mapping all binary interactions to pairs of Entrez Gene identifiers. 

Marcotte and coworkers [27] analyzed yeast and human interaction data sets, and estimated 

their protein interaction networks to contain 37,800-75,500 and 154,000-369,000 

interactions respectively.  

In a recent work, we presented PIANA (Protein Interactions And Network Analysis), a 

framework for creating, managing and analyzing protein-protein interactions [29]. Here, we 

describe the PIANA approach to protein nomenclature and its strategy to protein-protein 

interaction data integration. Furthermore, we describe the properties of the interaction 

network obtained for all species by integrating interactions from DIP [14], MIPS [15], 

MINT [16], IntAct [17], BIND [18], BioGrid (ref) and HPRD [19]. We also describe the 

properties of the interaction networks obtained from different methods for predicting protein 

interactions. We conclude by discussing potential enhancements to the integration approach 

here described. 
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Results 
Overview  

PIANA (Protein Interactions And Network Analysis) [29] is a software framework (Figure 

1) capable of (i) integrating multiple sources of information into a single relational database 

(Supplementary Figure 1); (ii) creating and analyzing protein interaction networks; and (iii) 

mapping multiple types of biological data onto protein interaction networks. PIANA code 

and documentation are freely available under an open source license for local installation 

and modification (http://sbi.imim.es/piana). 

 

 

 
Figure 1: PIANA architecture: a set a parsers inserts information from external repositories into 

the PIANA database. This database is accessed through an interface by the Graph objects, which is 

used by the PIANA library to create, manage and analyze protein-protein interaction networks. The 

whole process can be controlled from a user interface module. 

 

PIANA and protein identifiers 

PIANA ‘understands’ an extensive set of protein identifiers types: UniProt entries and 

accessions; gene symbols; NCBI gi, geneID, Unigene and accession numbers; ENSEMBL; 

RefSeq; PDB; and FastA formatted sequences. PIANA internally identifies proteins with 

proteinIDs (integers). Each proteinID is linked to a pair [aminoacid sequence, taxonomy id], 

so there is a unique identifier for each protein sequence for a given organism. This allows 

PIANA to use the sequence of the protein as an inter-lingua between the external identifiers 

provided by the main repositories of genes and proteins. Therefore, one external protein 

identifier (e.g. UniProt entry THRB_HUMAN) can be associated to one or more proteinIDs 

(e.g. 11483), which are in turn linked to other external identifiers that are also used to 
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represent that protein (e.g., gene symbol ‘f2’ and Unigene ‘Hs.410092’). Therefore, at any 

point in the different processes involved in inputting/outputting PIANA (e.g. printing the 

interaction network), external identifiers are ‘translated’ to proteinIDs, the desired 

operations are performed, and finally, if needed, proteinIDs are ‘translated back’ into the 

external identifier expected by the user (Figure 2). This strategy reduces the ambiguity and 

processing problems to the minimum: there is no need for continuously translating between 

protein identifiers synonyms, since all information has been previously stored by assigning 

it to specific proteinIDs. 

 

 
Figure 2: PIANA analyses involve translating from/to proteinIDs. Once this translation has been 

performed, all operations are performed at the sequence level, reducing ambiguities and synonyms 

conversions to a minimum. 

 

Moreover, PIANA uses a number of techniques to assure the quality and completeness of 

the identifiers used as input/output: 1) self inference on the correspondence between 

identifiers and sequences even in the case that no external database explicitly contained the 

cross-reference; 2) uniqueness of output protein identifiers: if two proteinIDs have a 

common value for the type of identifier demanded by the user, those proteins are considered 

to be the same for that specific output, and hence, merged into a single network node; 3) 

avoiding gene name ambiguities: thanks to integrating the species of the protein into our 

internal identifier, gene names are not confounded even if the same identifier is used for 

several species; and 4) using representative protein identifiers: PIANA will use the identifier 
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labeled as “preferred” by the source database (eg. official gene symbol) unless the user says 

the contrary; any input identifiers given by the user are prioritized over other identifiers in 

the PIANA database. 

 

Protein sequences integration 

Sequence and taxonomy data was obtained from UniProt [30], NCBI GenBank [31] and 

NCBI Blast nr [32] databases (see additional file 1). Interestingly, UniProt swissprot (i.e. 

curated sequences) and UniProt trembl (predicted sequences) have a high unexpected 

overlap (see additional file 2). Moreover, the overlap between Trembl and GenBank is 

lower than anticipated. Cross-references between external identifiers and proteinIDs were 

obtained from multiple third-party repositories (see additional file 3). Table 1 shows the 

coverage provided by the main external identifiers for all proteinIDs in the PIANA 

database. 

 

Table 1: Protein Identifiers statistics. Summary of the most relevant protein identifier types, 

calculated from a total of 6,476,028 distinct sequenceIDs in the database. Columns are: Identifier 

type, number of distinct identifiers, the proportion of proteinID with respect to external identifier 

correspondences, the proportion of external identifiers with respect to proteinIDs, and the percentage 

of proteinIDs covered by the external identifier. 

 

Identifier 
Type 

Number of 
distinct 

identifiers 
External Identifier: 

Piana proteinID 
Piana proteinID : 
External Identifier 

% 
sequences 
coverage 

1:1 99.74 1:1 96.98 Uniprot 
Accession 4,639,397 

1:>2 0.07 1:>2 0.98 
67,81 

1:1 98.44 1:1 24.85 NCBI 
Accession 10,760,685 

1:>2 0.83 1:>2 26.78 
95,53 

1:1 90.77 1:1 98.41 NCBI geneID 2,416,561 
1:>2 1.87 1:>2 0.17 

42,29 

1:1 81.10 1:1 79.58 Gene Symbol 4,143,090 
1:>2 3.95 1:>2 6.57 

79,53 

1:1 90.34 1:1 97.70 Primary Gene 
Symbol 1,207,358 

1:>2 5.27 1:>2 0.13 
41,79 

 

Protein-protein interactions integration 

Each interaction described in a third-party database is ‘translated’ to one or more 

interactions between proteinIDs. For example, if the external database contains an 

interaction between proteins A and B, with A corresponding to two proteinIDs (e.g 1 and 2) 
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and B to one proteinID (e.g. 3), two interactions (1-3 and 2-3) will be inserted into the 

PIANA database. Both interactions will be described in the PIANA database as coming 

from that specific external database and labeled with the method used to detect the 

interaction between A and B. This methodology allows PIANA to give full control to the 

user: 1) interactions can be retrieved from any type of identifier; 2) a network can be created 

for a given external database (e.g. use only interactions from IntAct) and/or a specific 

method (e.g. do not use interactions detected in two hybrids assays) and/or a species (e.g. 

only interested in human interactions); 3) PIANA outputs can be set to use any type of 

protein identifier and therefore, interactions between proteinIDs are transformed to non-

redundant interactions between protein identifiers (Material and Methods). Moreover, 

relating interactions to protein sequences instead of external identifiers provides a true 

integration of all known interactions into a single network, while keeping record as well of 

the source databases and detection methods associated to the interactions. Currently, PIANA 

can integrate interactions from DIP [14], MIPS [15], MINT [16], IntAct [17], BIND [18], 

BioGrid, HPRD [19], STRING [33], interactions predicted by distant conservation of 

sequence patterns and structure relationships [34],  interactions transferred between proteins 

based on orthology [35] and, in general, any interaction data that is in tabulated or PSI-MI 

[20] formats. 

 

PIANA parameters and commands: update 

Most PIANA commands and parameters are described elsewhere [29]. In addition to the 

new data integration features here described, capabilities recently added to the platform 

include: 1) mapping known pathways and disease genes to the protein interaction network; 

2) assigning interacting motifs to proteins of the network using a clustering algorithm; 3) 

mapping microarray expression data onto the network; 4) producing output in a format 

readable by Cytoscape [22]; 5) fine-tuning the network to contain interactions from specific 

species/databases/detection methods; 6) performing text-mining on the function/description 

of the network proteins; and 7) saving/loading PIANA sessions. 

 

Experimental interactions 

The integrated set of experimental interactions consisted of 4,055,698 interactions between 

113,785 different proteinIDs. When grouping proteinIDs by their associated NCBI Gene ID, 

there were 405,808 interactions for 53,143 proteins. All results presented here are for the 

interactions grouped by GeneID (Material and Methods). Gene IDs were chosen because, 
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although they only covered 42% of proteinIDs in the database, the cardinality 

proteinPiana:geneID was the highest (Table 1). 

 

Interactions distribution 

The experimental interactions in the PIANA database have been obtained from 7 different 

databases, belong to 736 different species, and were detected using 106 different 

experimental methods. The species with the largest number of experimental interactions are 

yeast (111,535 interactions) and human (110,457 interactions) (Table 2).  

 

Table 2: Number of interactions by species. 

Species #interactions #proteins 

111535 Saccharomyces cerevisiae 6493 
110457 Homo sapiens 36900 
90562 Drosophila melanogaster 11605 
16097 Escherichia coli 3467 
9184 Caenorhabditis elegans 3959 
4776 Mus musculus 3495 
2723 Plasmodium falciparum 3D7 1279 

17021 Other species 9724 
 

 

Most interactions were found in just one database and were detected by just one method 

(Figure 3). The high correlation between number of methods for interaction and number of 

databases is explained by the fact that most interactions appear in just one external 

repository, and these repositories usually label interactions with a single detection method.  
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We calculated the interactions overlap between the 7 repositories with experimental 

information that are integrated in PIANA (Table 3). BioGrid is the repository with the 

highest number of interactions (216,370) and with the highest number of unique interactions 

(163,700). The two repositories that show the greatest overlap are MINT and IntAct (47,119 

interactions). Moreover, we examined the number of interactions detected by the different 

methods (Table 4). We observed that high-throughput methods account for most of the 

known interactions. 

 
 

Table 3: Overlap of protein interactions for the seven databases integrated within PIANA. Pairwise 

overlaps of protein interactions are shown in cells. For each repository, the total and the unique 

(interactions only contained in that repository) number of interactions are shown. 

 

Total Unique    

104339 42284 IntAct   

97377 46115 DIP 36,867   

77419 16392 MINT 47,119 37,210   

38372 10978 HPRD 8,729 825 8,925   

833 389 MIPS 87 34 107 312   

216370 163700 BioGrid 25,355 19,870 24,709 20,550 210  

62444 24925 BIND 27,269 28,143 26,406 2,839 121 16,187 

   IntAct DIP MINT HPRD MIPS BioGrid BIND

 

 

 

Table 4: Number of interactions per 

detection method. The number of 

interactions per detection method were 

calculated after unifying the protein 

interaction netwok by NCBI geneID and 

manually grouping similar detection 

methods. 

 

 

Interaction Detection 

method 

Number of 

interactions 

Affinity methods (e.g. TAP) 126,136

yeast two-hybrid assay 103,334

Phenotypic 72,159

3D structure 6,525

Array technologies 4,627

Dosage 3,914

Cross Linking 3,104
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Properties of the experimental protein interaction network 

Well-documented observations about protein interaction networks are confirmed when 

analyzing the integrated experimental interaction networks of different species. For 

example, we observed that the networks for the main organisms are are scale free (Table 5) 

[36, 37]. In addition, the following properties were observed for the yeast protein interaction 

network (Table 7): (ii) yeast hubs (proteins with >= 5 ints) are more likely to be essential 

than non-hubs (22% of hubs are essential versus only 5% of non-hubs), although this might 

be a reflection of hubs usually having multiple interfaces [39]; 2) approximately 59% of the 

interactions have the same cell localization; 3) approximately 60% of the interactions 

reported are found coexpressed during the yeast cell cycle. 

 

Table 5. Scale-free property for protein 

interaction networks of the main organisms. For 

each organism, the gamma value and its significancy 

are given for the protein interaction network, where 

gamma is the power-exponent and p-value is the 

probability that a particular network has such 

connectivities if they were drawn from the power-law 

distribution. The scale-freeness was considered 

significant for p-values below 0.01. The scale-

freeness of the interaction networks was calculated 

using the method by Khanin et al. [37]. 

 

 

 

 

 

 

 

 

 

 

Organism Gamma Scale-free 

Human 1.37 yes 

Yeast 1.11 yes 

Fruit fly 1.36 yes 

E. Coli 1.44 yes 

C. Elegans 1.77 yes 

Mouse 1.98 yes 

H. pylori 1.6 yes 

Rat 2.2 not significant 

Cow 1.98 not significant 
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Table 7: Properties of the yeast protein interaction network obtained by integrating multiple sources 

with PIANA. Yeast co-localization data was obtained from (ref). Yeast co-expression data was 

obtained from (ref). Yeast essentiality data was obtained from (ref). A yeast protein was considered 

a hub if it had 5 or more interaction partners. 

 

 Total 

number  

Respect 

property 

Interaction partners are colocalized 72661 37684 (52%) 

Interaction partners are co-expressed 2576 1524 (59%) 

Yeast hubs 4229 22% essential 

Non yeast hubs 886 5% essential 

 

Protein function prediction from the experimental network 

Recently, it has been shown that the number of common interaction partners between two 

proteins can be used to characterize proteins [40, 41]. Here, we have studied the use of this 

heuristic to predict molecular functions and biological processes as defined by GO (Figure 

4). As expected, we observe that the interactions of a protein in the integrated network are 

an important indication of the function of the protein and the biological processes in which 

it intervenes. 

 

 

 
Figure 4. Function prediction based on common interaction partners. 

The percentage of shared GO terms is plotted as a function of the number of 

common interaction partners. 
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Conclusions 
We presented the data integration approach of PIANA, a software framework designed for 

creating, managing and analyzing protein-protein interaction networks. PIANA was created 

to address nomenclature and integration issues common in protein interaction repositories 

and network visualization tools. Moreover, the modular approach of PIANA makes it a 

useful resource for bioinformaticians willing to avoid the low-level details related to 

working with protein interaction networks. PIANA is one of the very few protein interaction 

platforms where all interactions from all external databases can be found for a protein of 

interest, regardless of the type of identifier used as input or the name given to the protein by 

the researcher that submitted the interactions. We also presented a detailed analysis of the 

protein-protein interactions included in PIANA, in terms of their distribution across 

different databases and detection methods. Most importantly, we showed that the overlap 

between the different repositories is low, which reinforces the need for tools that unify all 

known interactions into a single network, which then can be used to perform relevant 

analyses. Moreover, this unified network has been shown to respect properties previously 

found about protein-protein interaction networks retrieved from just one database/detection 

method, such as scale-freeness or its use for protein function prediction. 

We believe PIANA’s approach to data integration is a good equilibrium between reliability 

and flexibility, while giving a good coverage of the information available. Many areas of 

biological research are hampered by the difficulty in accessing all biological information 

available. In particular, protein-protein interactions analysis is usually biased by the input 

sources of data. We showed that the overlap between the different databases and methods is 

very low, which reinforces the need of reliable integration systems. The data integration 

techniques described here could also be of help for areas other than protein-protein 

interactions, such as gene expression studies or regulatory networks. 

 

Material and Methods 
 

Interaction networks based on proteinIDs or other identifiers 

Interaction networks are built using PIANA proteinIDs as nodes (see sections “PIANA and 

protein identifiers” and “Protein-protein interactions integration”). When translating the 

network to an external protein identifier (process referred as ‘unifying the network’), there 

are two possibilities: 1) the proteinID corresponds to a single identifier and 2) different 
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proteinIDs correspond to the same identifier, and thus, nodes and interactions will be 

merged. Therefore, the same PIANA proteinID network will correspond to different unified 

networks, depending on the external identifier used to unify. Statistics in this article have 

been obtained after unifying the networks by NCBI geneID. Although it only covers 42% of 

all proteinIDs, the cardinality proteinID:externalIdentifier is the highest (Table 1), and 

therefore it is the best suited identifier type for obtaining an unbiased view of the protein 

interaction network. 

 

Databases parsing 

Most databases of protein-protein interactions do not follow a standardized nomenclature 

system to describe interaction detection methods. Based on the Open Biomedical Ontologies 

, we have manually created a controlled vocabulary of detection method names, and all 

third-party method labels have been internally mapped to the internal method names. When 

considered necessary, very speficic method names were merge into a more general term 

(e.g., different enzimatic methods have been joined as “enzimatic method”). The overlap 

results presented here have been obtained after eliminating those methods considered too 

generic (e.g. experimental, invivo, invitro). 
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CHAPTER III 

PROTEIN HUBS CHARACTERIZATION BY INFERRING 

INTERACTING MOTIFS FROM PROTEIN INTERACTIONS 

 

 

 
Proteins interact with other proteins through a limited set of 
interface types. However, most methods for protein-protein 
interaction detection do not identify the regions of the proteins 
that are in contact during the interaction. In this chapter, we 
include an article submitted to PLoS Computational Biology 
(in revision) where we investigate the use of PIANA for 
addressing two interesting questions:  
 

1. Can we use protein-protein interaction data to throw 
some light over the interfaces of protein? 

 

 

 

 

 

 

  
2. What is it that makes protein hubs different from other 

proteins in terms of essentiality and evolutionary rate? 
 
We found, similarly to other works based on 3D structures, 
that it is the number of distinct interfaces of a hub that makes 
it more essential and evolve slower than other proteins, rather 
than the traditional explanation based on their high absolute 
number of interactions 

 

 

 

 

 

 

 

 

Articles included in this chapter: 

 

Aragues R, Sali A, Bonet J, Marti-Renom MA, Oliva B. Protein Hubs Characterization 

by Inferring Interacting Motifs from Protein Interactions. PLoS Computational Biology 

(in revision) 
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Abstract 

Characterization of protein interactions is essential for understanding biological systems. 

While genome-scale methods are available for identifying interacting proteins, they do not 

pinpoint the interacting motifs (e.g., a domain, sequence segments, a binding site, or a set of 

residues). Here, we develop and apply a method for delineating the interacting motifs of hub 

proteins (i.e., highly connected proteins in the interactome) by relying on the observation 

that proteins with common interaction partners tend to interact with these partners through a 

common interacting motif. The sole input for the method are binary protein interactions; 

neither sequence nor structure information is needed. The approach is evaluated by 

comparing the inferred interacting motifs to domain families defined for 368 proteins in the 

Structural Classification of Proteins (SCOP). The positive predictive value of the method in 
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detecting proteins with common SCOP families is 75% at sensitivity of 10%. We find that 

yeast hubs with multiple interacting motifs are more likely to be essential than hubs with 

one or two interacting motifs, thus rationalizing the previously observed correlation between 

essentiality and the number of interacting partners of a protein. We also find that yeast hubs 

with multiple interacting motifs evolve slower than the average protein, contrary to the hubs 

with one or two interacting motifs. The proposed method will help discover unknown 

interacting motifs and provide biological insights about protein hubs and their roles in 

interaction networks. 

 

Introduction 
Protein-protein interactions play a central role in many cellular processes, ranging from 

signal transduction to formation of cellular macrostructures and cell cycle control [1-3]. 

Recently, several techniques such as two-hybrid assays [4-6] and affinity purifications 

followed by mass spectrometry [7-9], have enabled large-scale identification of protein-

protein interactions. While these efforts provide rich lists of interacting proteins, they do not 

produce information about the specific interfaces involved in each interaction.  

Proteins interact through a limited set of interface types [3,10,11]. The interfaces are usually 

key determinants of the function. Therefore, narrowing down protein-protein interactions to 

interactions between specific protein components (e.g., a domain, sequence segments, a 

binding site, or a set of residues) is important for a more accurate characterization of the 

function of proteins and their complexes. Identifying the protein interfaces that mediate 

interactions may also be useful for the prediction of unknown protein-protein interactions 

[12], for homology-based protein annotation methods [13], and for relating gene essentiality 

and network topology [14].   

Traditionally, the description of protein interactions in terms of the interacting components 

has been based on protein structural domains [15], protein functional sites [16], and protein 

patches [17]. However, fully characterizing protein surfaces that are in contact with each 

other during an interaction requires the determination of the structure of protein complexes 

by X-ray crystallography or NMR spectroscopy. These methods are not always applicable 

and thus the number of known 3D atomic structures of proteins and their complexes is 

limited. As a result, accurate and general computational methods for identifying motifs 

involved in protein-protein interactions are needed. 
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Recently, several methods [18-21] have been developed to describe protein-protein 

interactions in terms of interacting protein domains, as defined in the Structural 

Classification of Proteins (SCOP) [22], PFAM [23], and InterPro [24] databases. However, 

while these methods find interactions between predefined protein domains, interactions 

between undefined domains remain undetected. Structure-based methods overcome this 

problem by predicting the amino acid residues that are in contact during a protein-protein 

interaction, but require the structures of both proteins [25-28]. Recently, Kim et al. used 

known protein interactions and structures to characterize the interfaces between two 

interacting proteins [14]. They found that some previously accepted relationships between 

network topology and genomic features [29-31] are actually more reflective of the number 

of distinct binding interfaces. For example, highly connected proteins in the network (i.e., 

hubs) with multiple interfaces are twice as likely to be essential as hubs with one or two 

interfaces. The findings of Kim and coworkers clarify some previous analyses that related 

the observed essentiality of hubs with their high number of interacting partners [29,32] or 

with their interactions to other hubs [33]. Kim et al. also demonstrated that the evolutionary 

rate is significantly lower for multi-interface hubs than for the average protein, but not so 

for hubs with one or two interfaces. 

Here, our basic assumption is that proteins with overlapping sets of interaction partners tend 

to interact with the common partners through the same interacting motif, such as a domain, 

sequence segments, a binding site, or a set of residues. A similar assumption has been 

previously used to annotate protein sequences [13,34-36]. We first tested this assumption 

based on databases of protein interactions [37] and protein domains defined in SCOP [22], 

observing that the assumption holds true for highly connected proteins (i.e., hubs). Building 

on this validation, we then developed a method for identifying interacting motifs (iMotifs) 

in hub proteins, which has been implemented within the protein-protein interaction 

framework and integration engine PIANA (Protein Interactions And Network Analysis) 

[37]. iMotifs are not required to be of any particular structural type or size, thus allowing us 

to characterize hub proteins and their interactions at different levels of resolution, ranging 

from full proteins to small binding sites. In contrast to other methods, our approach is not 

limited to finding predefined classes of interacting motifs, such as SCOP domains or 

PROSITE functional sites, and can be used to identify unknown interacting motifs. 

Moreover, the sole input for our method are binary protein interactions; neither structure nor 

sequence information is required to assign iMotifs to proteins. 
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Two main objectives have been addressed in this work. The first objective was to 

demonstrate whether protein interactions alone can be used to infer interacting motifs. The 

positive predictive value of our method in detecting proteins with common SCOP families 

was 75% at sensitivity of 10%, and the Spearman correlation coefficient between the 

number of iMotifs assigned to proteins and the number of interfaces found by Kim et al. 

[14] was 0.57. The second objective was to examine if the conclusions on protein hubs of 

Kim et al. [14] hold for our iMotifs assignments. The results demonstrate that protein hubs 

with multiple iMotifs are more likely to be essential than hubs with one or two iMotifs and 

that protein hubs with multiple iMotifs evolve slower than the average protein in the dataset, 

as opposed to hubs with one or two iMotifs. 

Results 

Proteins with common interaction partners tend to share a SCOP domain  

The basic assumption behind this work is that proteins with overlapping sets of interaction 

partners tend to interact with those partners through a common interacting motif. The 

validity of this assumption was tested on a nonredundant set of 368 proteins (Material and 

Methods) by analyzing the relationship between the number of interaction partners shared 

by two proteins and the likelihood of those proteins having a domain within the same SCOP 

family [22]. Although SCOP does not classify proteins by their kinds of interfaces, it has 

been shown that protein interaction types can be defined by the domains in the interacting 

proteins [38] and thus, in this validation we used SCOP domains as a surrogate for 

interacting motifs.  

We found the number of common interaction partners (N) to be a good indicator of the 

probability of two proteins having a domain within the same SCOP family, especially for 

highly connected proteins (Figure S1). For example, 73% of protein pairs with 50-60 

common interaction partners shared a SCOP domain. We also studied other metrics to 

measure the similarity between two sets of interaction partners, but none of them 

outperformed N at the identification of protein pairs with a common domain family (Figure 

S1, S2A and Table S1).  

Our assumption relies on the binary nature of the interactions used, as two proteins will tend 

to interact through a common interacting motif only if they have direct physical interactions 

with the same partners. We examined the effect of restricting the study to interactions 

detected with the yeast two hybrid method, which is the best suited assay for detecting 
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binary protein interactions [39]. We did not observe the expected increase of protein pairs 

with a common domain family (Figure S2B).  

Delineating interacting motifs 

Based on the observation that highly connected proteins with common interaction partners 

tend to interact with these partners through a common interacting motif, we have developed 

a method that groups proteins with similar interacting motifs (Figure 1). The procedure 

(Methods) is carried out in four steps: 1) build the protein-protein interaction network; 2) 

initialize the cluster interaction network by assigning each protein of the network to a 

cluster; 3) iteratively fuse similar clusters (allowing a protein to be in more than one cluster) 

until the similarity score drops below a predefined threshold; and 4) label with a different 

interacting motif identifier (iMotif) each cluster with more than one protein, and derive 

iMotif assignments and iMotif-iMotif interactions from the clustered network. 

 

 

Figure 1. Description of the 

procedure followed for assigning 

iMotifs to proteins and identifying 

iMotif-iMotif interactions. First, the 

protein interaction network is built. 

Second, a cluster interaction network is 

created by placing each protein in a 

different cluster. Third, clustering is 

performed until the similarity score 

drops below a certain threshold. Fourth, 

an iMotif label is assigned to each 

cluster with more than one protein, and 

iMotif assignments and interactions are 

derived. 

 

 

 

 

 

72 
 



Assigning an interacting motif identifier (iMotif) to a group of proteins simply establishes 

that they have a certain feature that allows them to interact with the same set of partners, 

without giving information on the size, sequence or structure of that feature (Figure 2A); an 

iMotif can be an interface consisting of a set of domains or only a specific constellation of a 

small number of residues (Figure 2B).  

 

 
 

Figure 2. Definition of an Interacting Motif (iMotif). The definition of an iMotif depends on the 

minimum number of common partners required in order to consider the given binary protein 

interactions mediated through a common interacting motif. A) From the protein interaction network 

perspective, proteins with common partners (two in the example provided) are considered to interact 

with these partners through a similar feature, and therefore, are classified as being of the same 

iMotif. B) The same process is shown from a structural perspective: proteins interacting through a 

similar feature (regardless of the feature being two structural domains or a single binding site) are 

considered to have a common iMotif. To further illustrate the method, we also describe a sample 

iMotif assignment for prothrombin (UniProt code THRB_HUMAN) (Text S1 and Figure S3). 
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Method evaluation 

The definition of iMotifs depends on a similarity metric and its threshold. Thus, different 

thresholds or metrics produce different iMotifs, corresponding to different levels of 

resolution in the description of protein-protein interactions. For example, the method can be 

applied at the resolution of domains from SCOP [22], and PFAM [23], or at the higher 

resolution of functional sites from PROSITE [40]. In this work, we have evaluated the 

method on a nonredundant set of proteins (Material and Methods) for three different tasks: 

(i) detecting proteins with common SCOP domain families; (ii) predicting SCOP domain-

domain interactions observed in the PDB [41]; and (iii) predicting the number of distinct 

binding interfaces as defined by Kim et al. [14]. Therefore, in the evaluation, iMotifs 

effectively represent SCOP family domains (for the first two tasks) and binding interfaces 

(for the third task).   

 

Detecting proteins with domains in the same SCOP family  

We evaluated the ability of the method to detect proteins with a domain in the same SCOP 

family (Methods). Using a threshold of 30 common interaction partners (N), our method 

achieves a positive predictive value of ~75%, sensitivity of ~10%, and applicability of 

~20% (Figure 3). The positive predictive value is above 50% for N thresholds higher than 

15 and thus, the method should be preferentially applied to highly connected proteins. While 

the current utility of the method is limited by its relatively low sensitivity and applicability, 

the growth of the interactome data [42,43] is likely to make the approach more applicable in 

the future. Moreover, the applicability can already be increased at the expense of lower 

positive predictive value by using other similarity metrics (Table S1). We provide a 

complete list of iMotif assignments for the test set (Table S2). 
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Figure 3. Performance of the method in detecting proteins with common SCOP families. The 

positive predictive value, sensitivity and applicability (Methods) are plotted as a function of the 

number of common interaction partners threshold (N) used for the clustering. We observe that the 

method obtains high positive predictive values in detecting proteins with the same SCOP domain 

when high numbers of interaction partners are shared. 

 

Predicting domain-domain interactions 

Domain-domain interactions can be predicted from the iMotif-iMotif interactions found by 

the method (Methods). We evaluated the accuracy of these predictions with respect to 

domain interactions in the PDB. Our method achieves a positive predictive value of ~65% 

for ~5% of the proteins in the test set (Figure S4), suggesting that the method can be applied 

to the prediction of domain-domain interactions when a sufficiently large and varied sample 

of protein interactions is known. However, with the amount of data currently available, 

methods based on interaction networks and predefined domains [18-21] are better suited 

than our approach for predicting domain-domain interactions. 

 

Predicting the number of binding interfaces 

Kim et al. used protein 3D structures and binary protein interactions to make inferences 

about the number of binding interfaces of proteins [14]. We tested whether there is a 

correlation between the number of binding interfaces found in their work and the number of 

iMotifs predicted by our method (Figure 4). The number of protein interfaces indeed 

correlates with the number of predicted iMotifs per protein (e.g., for N of 20, rs is 0.57 and 
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p-value 0.01). This correlation is significant for all N values lower than 23 (Figure S5). We 

observe that, although correlated, the number of iMotifs assigned to proteins tends to be 

much higher than the number of binding sites defined by Kim et al. [14]. This might be 

attributed to two factors: (i) an underestimation of the number of binding sites assigned by 

the method in [14], attributable to the fact that current structural data do not contain all 

possible protein-protein interactions; and (ii) an overestimation of our method in the number 

of iMotifs per protein, attributable to lack of coverage of the interactome space.  

 

 Figure 4. Correlation between the 

number of binding interfaces and 

the number of iMotifs. Each point 

corresponds to a protein from the test 

set for which a number of binding 

interfaces was assigned by Kim et al. 

[14] and a number of iMotifs was 

inferred with N set to 20. Both 

variables were found to be 

significantly correlated (rs is 0.57 

and p-value is 0.01). The correlation 

between the number of interfaces and 

the number of iMotifs is significant 

for all N values lower than 23 (Figure 

S5). 

 

 

iMotif assignments for hub proteins 

We applied the method using an N threshold of 20 to the 5,571 hubs (i.e., proteins with 20 

or more interaction partners) in PIANA. The method assigned 17,403 iMotifs to 2,014 hubs, 

an average of 8.64 iMotifs per hub. The percentage of hubs with one or two iMotifs was 

46% (241 hubs had one iMotif; 689 hubs had two iMotifs). In contrast, the average number 

of interactions per hub was ~49. Moreover, we studied the correlation between the number 

of iMotifs assigned to a hub and its number of interactions, finding no relationship between 

the two variables. We provide the complete list of iMotif assignments for all hub proteins in 

PIANA (Data S1) and a simplified table with the number of iMotifs per hub (Table S3).  
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Essentiality and number of iMotifs are correlated in hub proteins 

Similarly to the results by Kim and co-workers [14], we found that yeast hubs with multiple 

iMotifs are more likely to be essential than those with one or two iMotifs (singlish-iMotif) 

(Table 1). Furthermore, we observed a correlation (rs is 0.61 and p-value is 1.64x10-5) 

between the number of iMotifs in yeast hubs and the fraction of essential proteins (Figure 

5A). We compared the correlation between iMotifs and essentiality to the correlation 

between the number of interactions of hubs and essentiality to confirm that the first was not 

a direct consequence of the second (Figure 5B). These results suggest that the number of 

iMotifs predicted for a protein could be used for selecting biologically relevant candidates 

for gene deletion experiments.  

 

Table 1. Protein essentiality and predicted iMotifs.  

The fraction of yeast proteins that are products of essential genes [51] was calculated for the entire 

proteome, singlish-iMotif hubs (one or two iMotifs) and multi-interface hubs. iMotifs were assigned 

by applying the method to all yeast hubs in PIANA with N set to 20. The p-value of the difference 

between the whole data set and singlish- and multi-iMotif hubs (all-singlish and all-multi) and the 

singlish and multi-iMotif hubs (singlish-multi) was calculated using the Fisher’s exact test for count 

data. 

 

 Proteins tested 

for essentiality 

Essential 

proteins 

% 

essential 

P-value 

Entire proteome 6018 1116 19%

All in PIANA 5034 1047 21%

Singlish-iMotif hubs 90 27 30% all-singlish: 0.04 

Multi-iMotif hubs 507 262 52% all-multi: 2.2x10-16 
singlish-multi: 1.5 x10-4
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Figure 5. Essentiality study: proteins were 

binned according to their number of iMotifs (A) 

and to their number of interactions (B), and the 

fraction of essential proteins was calculated for 

each bin. Those bins with just one protein were not 

considered for calculating the correlations. A) 

Correlation between the number of iMotifs assigned 

to yeast hub proteins (≥ 20 interactions) in PIANA 

and the fraction of essential proteins (rs is 0.61 and 

p-value is 1.6x10-5). iMotifs were assigned to yeast 

hubs using an N threshold of 20. B) Correlation 

between the number of interactions of yeast hub 

proteins in Fig. 5A and the fraction of essential 

proteins (rs is 0.51 and p-value is 1.1x10-6).  

 

 

 

 

 

 

Multi-iMotif hubs evolve slower than other 

proteins; singlish-iMotif hubs do not 

A common measure of evolutionary rate is the dN/dS ratio (the ratio of non-synonymous to 

synonymous substitutions) [44]. Kim et al. found that multi-interface hubs have a lower 

evolutionary rate than the average protein in their data, but the same was not true for 

singlish-interface hubs. Our results are in agreement with their findings. Multi-iMotif hubs, 

in contrast to singlish-iMotif, evolve significantly slower than the average protein in our 

dataset (Table 2). However, the evolutionary rate difference between multi- (0.056) and 

singlish-iMotif hubs (0.062) was not found to be significant (p-value of 0.21).  

 

Table 2. Protein evolutionary rate and predicted iMotifs.  
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The average evoluationary rate of yeast proteins [44] was calculated for the entire proteome, 

single-iMotif hubs, and multi-interface hubs. iMotifs were assigned by applying the method 

to all yeast proteins in PIANA with N set to 20. The p-value of the difference between the 

whole data set and singlish- and multi-iMotif hubs (all-singlish and all-multi) and the 

singlish- and multi-iMotif hubs (singlish-multi) was calculated using the Mann-Whitney U 

two-sided test. 

 
 Entire 

proteome 

All in 

PIANA 

Singlish-iMotif 

hubs 

P-value 

(all-singlish)

Multi-

iMotif hubs 

P-value 

(all-multi) 

P-value 

(singlish-multi)

Evolutionary 
rate 

0.077 0.074 0.062 0.12 0.056 8.1x10-11
 0.21 

 

Discussion 

We described, implemented, and evaluated a method that relies solely on binary protein 

interactions to identify interacting motifs (iMotifs) and their interactions. Our approach 

obtained high positive predictive value for identifying proteins with domains from the same 

SCOP family and predicting domain-domain interactions. We also analyzed hub proteins 

and their properties based on the number of iMotif assigned to them, obtaining similar 

findings to those in an independent approach that relies on protein structure information 

[14].  

Recent estimates suggested that only one fifth of interaction types are known [38]. 

Therefore, current knowledge of protein structures is not sufficient to describe all protein 

interaction types. Our approach, in contrast to other previously described methods, 

accomplishes three different objectives: (i) it predicts the number of different iMotifs in a 

protein, (ii) classifies proteins by their predicted iMotifs, and (iii) predicts interactions 

between the iMotifs. The method can identify iMotifs independently of structural or 

sequence information; it can assign an iMotif to two structural domains or two iMotifs to a 

single domain. This property can be used to infer whether the interaction is mediated 

through multiple, single, or partial domains. The resolution at which iMotifs describe 

protein interfaces depends on the similarity metric used and the threshold applied by the 

method. On one hand, setting a high threshold on the number of common interaction 

partners (N) will assign few iMotifs to reduced sets of proteins (i.e. very specific and 
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restrictive iMotifs). On the other hand, using low N thresholds will assign the same iMotif to 

broad numbers of proteins (i.e. very unspecific and general iMotifs). We showed that the 

method works better for highly connected proteins and using high values for N. Moreover, 

our approach is not limited to finding predefined classes of protein components and thus 

allows us to predict new types of interacting motifs. On the one hand, an iMotif can be 

mapped to a predefined class (e.g., a SCOP domain or a PROSITE functional site) by 

examining the known classes assigned to proteins with that iMotif. On the other hand, 

iMotifs that remain unmapped are likely candidates for unknown classes. Such predictions 

may prove useful for target selection in structural genomics. 

Relying solely on experimentally detected interactions affects the accuracy of our method. It 

has been shown that high-throughput experiments have limited reliability and that many of 

the detected interactions are probably not direct (i.e., they are carried out through a third 

protein) or do not even exist (i.e., false positives) [45]. However, we did not observe an 

improvement when solely using interactions from yeast two hybrid assays (Figure S2B), the 

high-throughput method that is best suited to discriminate between direct and indirect 

interactions. The question of restricting the method to use data from specific detection 

methods will have to be re-examined as more interaction data becomes available. One way 

of avoiding these limitations is to calculate similarity scores using families of proteins 

instead of absolute numbers of protein partners. This will prevent assigning the same iMotif 

to proteins that have many common partners but all of them belong to a single protein 

family. Removal of redundancy from the sets of partners indeed increases the percentage of 

identified protein pairs with a common domain family (Figure S6).  

The iMotif assignments from our approach are similar to those obtained using an 

independent approach, which relies not only on known protein-protein interactions, but also 

on protein structure information [14]. In agreement with the results of Kim et al., we 

observe different properties between hubs with multiple iMotifs (multi-iMotif) and hubs 

with one or two iMotifs (singlish-iMotif). In particular, we find that (i) multi-iMotif hubs 

are more likely than singlish-iMotif hubs to be essential for cell viability and (ii) multi-

iMotif hubs, in contrast to singlish-iMotif hubs, evolve slower than the average protein. 

Furthermore, we have also observed a correlation between the number of iMotifs of a hub 

and its essentiality for cell survival. The properties observed for hubs with respect to their 

number of iMotifs may reflect the difference between proteins with multiple simultaneously 

possible interactions (multi-iMotif hubs are probably involved in permanent complexes) and 

proteins with multiple exclusive interactions (for singlish-iMotif hubs involved in transient 
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interactions). This is in agreement with the previous observation that interfaces of transient 

protein-protein interactions are less restricted in evolution than interfaces in permanent 

complexes [46].  

Our results extend the findings and conclusions of Kim and co-workers [14] to proteins of 

unknown structure. Thus, inferring interacting motifs from protein interactions is likely to 

be helpful for providing biological insights about hubs for which no structural information is 

available. 

 

Material and Methods 

Protein interactions  

Protein-protein interactions from DIP 2006.01.16 [47], MIPS 2006.01 [48], HPRD 

2005.09.13 [49], BIND 2006.01 [50], and two recent high-throughput experiments [5,6] 

were integrated using PIANA version 1.2 [37], allowing us to work with a large set of 

363,571 interactions between 42,040 proteins. PIANA represents protein interactions as a 

network where the nodes are proteins and the edges are interactions between the proteins. In 

such a network, a set of proteins linked to protein pj (i.e., physically interacting with pj) is 

named “partners of pj”. PIANA builds the protein interaction network by retrieving partners 

for a initial set of seed proteins. To avoid a positive bias in the method evaluation, 

interactions inferred from 3D structures were not used in this work. 

Structural domains and Protein binding interfaces 

Protein domain assignments and classification were obtained from the SCOP release 1.69 

[22]. Here, domains are defined at the SCOP family level. Thus, domain-domain 

interactions refer to SCOP family interactions. The number of protein binding interfaces for 

hub proteins was obtained from the Structural Interaction Network 2.0 [14]. 

Essential Proteins and Evolutionary Rates 

A list of ORFs essential for the survival of the yeast cell was obtained from the 

Saccharomyces Genome Deletion Project [51]. The evolutionary rates (dN/dS) of yeast 

proteins were taken from the adjusted values given by Wall et al. [44]. 

 

Assigning iMotifs to proteins and finding iMotif-iMotif interactions 
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The procedure is carried out in four steps:  

1. Build the protein interaction network using the proteins of interest as seeds (see 

section “protein interactions” in Material and Methods).  

2. Initialize a cluster interaction network (i.e., nodes are clusters that contain one or 

more proteins, and edges are interactions between clusters) by assigning each protein 

of the protein interaction network to a different cluster. In this initial cluster 

interaction network, each cluster (containing one protein pj) interacts with those 

clusters that contain a partner of pj in the protein interaction network. 

3. Iteratively fuse the most similar clusters until the similarity score drops below a 

predefined threshold. The results presented in this work have been obtained using as 

similarity metric the number of common interaction partners (N). Therefore, the 

similarity between two clusters is their absolute number of common partners in the 

cluster interaction network. Other similarity metrics were considered, but none 

outperformed the use of N (Figure S1). When fusioning two clusters, the resulting 

cluster inherits the interactions that were common to both fused clusters. One protein 

can have multiple interfaces and therefore, in order to allow proteins to be in more 

than one cluster, clusters from the initial cluster interaction network (i.e., those that 

contain one single protein) are kept in the network even after being fused to another 

cluster. 

4. Each cluster with more than one protein is labeled with a different interacting motif 

identifier (iMotif), and that iMotif is assigned to all proteins within that cluster. 

iMotif-iMotif interactions are derived from interactions in the cluster interaction 

network where both sides of the interaction have been labeled with an iMotif 

identifier. 

For example (Figure 1), a proteome of six proteins (namely A, B, C, D, E, and F) forms a 

network of interactions that connects proteins A with B, C and D, and protein E with B, C, 

C, and F (step 1). Our method starts by creating a cluster interaction network from the 

network of protein interactions (i.e., 6 clusters with 7 interactions) (step 2). Next, the 

clusters that share the largest number of common interactions are fused (i.e., clusters 1 and 

5, with 3 common interactions, are fused into a new cluster 6). This step is then repeated 

until the maximum similarity score between the clusters drops below a predefined threshold 

(i.e., 2 common interactions) (step 3). Thus, the iterative process will run for another 

iteration creating a new cluster (cluster 8) by fusing clusters 2, 3, and 4, which have two 

common interactions. Once the iterative process is finished, the method assigns iMotif 
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identifiers to clusters that contain more than one protein (i.e., cluster 7 becomes iMotif 1 

containing proteins A and E, and cluster 8 becames iMotif 2 containing proteins B, C and 

D) (step 4). Moreover, iMotif-iMotif interactions are derived from the cluster interaction 

network (i.e. one interaction between iMotif 1 and iMotif 2). 

Figure 2 illustrates iMotif assignments from a network perspective (Figure 2A) and from a 

structural perspective (Figure 2B). Moreover, the algorithm applied by the method is 

provided using pseudocode (Text S2).  

Test set and evaluation procedure 

We have evaluated the method on a test set created by selecting proteins (i) with at least 5 

experimentally detected interactions, (ii) with at least 80% of their sequence covered by the 

domains defined in SCOP, and (iii) that did not introduce a redundancy bias in the 

evaluation (i.e., if any two sequences had a sequence identity greater than 30%, a BLAST e-

value smaller than 10-5, and the alignment had at least 30 residues, the shortest member of 

the pair was not selected). The final set contained 368 sequences (Table S4). 

The SCOP family assignment was evaluated by considering as positive assignments those 

proteins found by the method to have a common iMotif with the query protein. Among 

these positives, we define as true positives those proteins that have a common SCOP family 

code with the query protein. Moreover, we define as false negatives the proteins that have 

the same SCOP family code as the query protein but were not found by the method to share 

an iMotif. 

iMotif-iMotif interaction predictions were evaluated against interacting SCOP families 

obtained from the PDB. Two SCOP domains were considered to interact if they were co-

crystallized and had at least two atoms within 5Å distance. Because we are interested in 

domain interactions at the protein-protein interaction level, we excluded intra-chain 

interactions from this set. Our method creates a list of putative domain-domain interactions 

for each predicted iMotif-iMotif interaction by assuming that all domains of the query 

protein with one iMotif interact with all domains of proteins with the other iMotif. In this 

context, we define as positive any iMotif-iMotif interaction where the query protein is 

involved. A positive is then considered a true prediction if at least one of its putative 

domain-domain interactions is observed in the PDB. Finally, false negatives are interactions 

observed in the PDB for SCOP families of the query protein that do not appear in any list of 

putative SCOP family interactions. 
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To avoid biases in the evaluation, only proteins from the test set (before removing 

redundancy) and their SCOP families were considered when counting positives and 

negatives. The positive predictive value is defined as the number of true positives over the 

total number of positives, and sensitivity is the number of true positives over the sum of true 

positives and false negatives. The positive predictive value and sensitivity were calculated 

with respect to the similarity score threshold used for stopping the clustering. We also 

define the applicability of the method as the percentage of proteins with at least one positive 

under a given threshold. 

Statistical tests 

All correlations were measured using the Spearman rank correlation coefficient (rs). The 

assessment on whether two binomial samples of essentiality observations are significantly 

different was calculated using the Fisher’s test. The assessment on whether two non-

Gaussian samples of evolutionary rate observations come from the same distribution was 

calculated using the Mann-Whitney U two-sided test. Correlations and differences in the 

observations were considered significant for p-values lower than 0.05. All tests were 

performed using the implementation provided by R [52]. 

Supporting Information 

Figure S1.  The percentage of protein pairs having a domain of the same SCOP family is 

plotted as a function of their similarity scores (grouped in ranges of 10 units).  

Figure S2. The percentage of protein pairs having a domain of the same SCOP family is 

plotted as a function of their similarity scores (grouped in ranges of 10 units), using the 

same parameters as in Fig. S1 but introducing new restrictions: A) proteins that have more 

than 70 interactions are ignored when performing the analysis; and B) only interactions 

from y2h are used.  

Figure S3. Sample iMotif assignment (Text S1). A) Superposition of the prothrombin and 

the pancreatic trypsin inhibitor structures (PDB ids 1BTH and 2HPQ) shows an interaction 

through the SCOP family domain Eukaryotic proteases (in red). B) The structure of the 

anionic trypsin II interaction with the pancreatic trypsin inhibitor (PDB id 1BRB) also 

shows an interaction through the SCOP family domain Eukaryotic proteases (in red).  

 

Figure S4. Performance of the method in predicting SCOP domain-domain interactions.  
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Figure S5. Spearman correlation coefficient between the number of interfaces and the 

number of iMotifs is plotted as a function of different N thresholds. 

Figure S6. The percentage of protein pairs having a domain of the same SCOP family is 

plotted as a function of their similarity scores (grouped in ranges of 10 units), using the 

same parameters as in Fig. S1 but introducing a new restriction: redundancy was removed 

from the sets of partners to avoid artificial increase or decrease of the score caused by 

groups of homolog proteins. 

Text S1. Example of iMotif assignment. To illustrate the method, we describe here a sample 

prediction for prothrombin (UniProt code THRB_HUMAN) (Figure S3). 

Text S2. Algorithm for assigning iMotifs to proteins 
 

Table S1. Number of protein pairs under each similarity score range for metrics described 

in Fig. S1. 

Table S2. Complete list of iMotifs assignments for proteins in the test set. 

Table S3. Complete list of number of iMotifs assigned to all hubs in PIANA. 

Table S4. Proteins from the test set, using UniProt accession numbers 

Data S1. iMotif assignments for all hub proteins in PIANA 
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Figure S1.  The percentage of protein pairs having a domain of the same SCOP family is 

plotted as a function of their similarity scores (grouped in ranges of 10 units). 

To measure the likelihood of two proteins pi and pj having a common interacting motif we 

defined four different 

similarity metrics: 1) 

N: the number of 

interaction partners 

that are common to pi 

and pj (long dashed 

line); 2) RRmax: the ratio 

between N and the 

number of partners of the protein with more partners ; 3) Rmin(bold line) R  N : the ratio between

and the number of partners of the protein with fewer partners (circles); 4) RRave: the average 

of metrics RmaxR  and RR

e 

 SCOP domain. 

min (dotted line). For each score obtained using the similarity metrics 

described above, the percentage of protein pairs within that score range is plotted. For example, w

observed that using N as the similarity metric, 73% of proteins with 50-60 common interaction 

partners shared a
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Table S1. Number of protein pairs under each similarity score range for metrics described in 

Fig. S1. In parenthesis, the number of pairs with at least one domain within the same SCOP family 

is indicated. We observe that metrics such as RRmin outperform N at detecting a higher number of 

protein pairs with a domain within the same SCOP family, but this is done at the expense of being 

less precise. 

 
Similarity Score 

range 
Rave Rmax Rmin N 

 
0  62296 (243)    62296 (243)    62296 (243)    62296 (243)  
01-10   1678 (26)    3271 (92)    995 (21)    4487 (122)  
11-20   1719 (41)    1053 (73)    1446 (22)    352 (66)  
21-30   904 (60)    371 (49)    938 (39)    68 (22)  
31-40   407 (53)    108 (21)    812 (37)    30 (17)  
41-50   182 (55)    39 (13)    344 (39)    26 (21)  
51-60   63 (17)    17 (7)    175 (26)    11 (8)  
61-70   12 (3)    9 (3)    130 (36)    6 (5)  
71-80   9 (4)    6 (5)    86 (26)    3 (3)  
81-90   11 (9)    5 (4)    36 (17)    5 (5)  
91-100   4 (2)    3 (1)    27 (7)    1 (1)  

 

Figure S6: The percentage of protein pairs having a domain of the same SCOP family is 

plotted as a function of their similarity scores (grouped in ranges of 10 units), using the same 

parameters as in Fig. S1 but introducing a new restriction: redundancy was removed from the 

sets of partners to avoid artificial increase or decrease of the score caused by groups of 

homolog proteins. The procedure followed to remove redundancy was the same as the one used for 

creating the evaluation set. We observe a significant improve for all metrics with respect to Fig. S1. 
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CHAPTER IV 

AN INTEGRATIVE APPROACH TO PREDICTING CANCER GENES 

 

 

 

 

Cancer is a disease that causes thousands of deaths every 
year. In 2005, cancer became the leading cause of death in the 
United States for people under the age of 85 (American Cancer 
Society, Cancer statistics 2005 at http://www.cancer.org). 
However, recent developments in cancer research, prevention 
and treatment are showing the way towards a future in which 
cancer will be a marginal cause of death or life-quality loss.  

 

 

 
In this chapter, we include an article submitted to BMC 
Bioinformatics in which we present the use of PIANA for the 
identification of proteins involved in cancer.  

 

 
In this work, we can see the full potential of PIANA’s 
capabilities in terms of integration: we have been able to 
simultaneously analyze data from protein-protein interaction 
databases, differential expression repositories, probabilities 
coming from a Naïve Bayes model, manually-curated lists, 
pathway information and protein annotations. The integration 
of multiple sources allowed us to obtain an accuracy 
significantly higher than methods that rely on a single source 
of data. 
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Aragues R, Sander C, Oliva B. An integrative approach to predicting cancer genes. 
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ABSTRACT 
 
Background. Systematic approaches for identifying proteins involved in different types of 

cancer are needed. Experimental techniques such as microarrays are being used to 

characterize cancer, but validating their results can be a laborious task. Computational 

approaches are used to prioritize between candidate cancer genes, usually based on further 

analyzing experimental data. 

Results. We implemented a systematic method using the PIANA software that predicts 

cancer genes by integrating data from multiple sources. Specifically, we produced lists of 

candidate cancer genes by relying on: (i) protein-protein interactions; (ii) differential 

expression data; and (iii) structural and functional properties of cancer genes. The 

integrative approach that combines multiple sources of data obtained positive predictive 

values ranging from 23% (on a list of 811 genes) to 73% (on a list of 22 genes), 

outperforming the use of any of the data sources alone. We analyze a list of 20 cancer gene 

predictions, finding that most of them have been recently linked to cancer in literature.  

Conclusion. Our approach to identifying and prioritizing candidate cancer genes can be 

used to produce lists of genes likely to be involved in cancer. Our results suggest that 

differential expression studies yielding high numbers of candidate cancer genes can be 

filtered using protein interaction networks. We provide the complete list of human genes 

with the corresponding cancer gene prediction scores according to each type of data. 
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Background 

Tumor development results from a progressive sequence of genetic and epigenetic 

alterations that promote the malignant transformation of the cell by disrupting key processes 

involved in normal growth control and tissue homeostasis [1]. Since complex biological 

networks control these processes, there are many genes that, mutated, can provide the cell 

with a specific aberrant capability. Alterations in three types of genes are responsible for 

tumorigenesis: oncogenes, tumor-suppressor genes, and stability genes [2]. Most 

oncogenes are involved in controlling the rate of cell growth, while tumor suppressor genes 

are usually negative regulators of growth or other functions that may affect invasive and 

metastatic potential, such as cell adhesion and regulation of protease activity. On the other 

hand, stability genes control the rate of DNA mutation, and their alteration can result in 

mutations in oncogenes or tumor suppressor genes, thus contributing to the development of 

cancer [3].  

The completion of the human genome project and the development of high-throughput 

experimental techniques have enabled new approaches for studying cancer. For example, 

gene-expression profiling using microarrays has improved the classification of some tumor 

types [4, 5]. Moreover, data from large-scale screenings of protein-protein interactions has 

been used to identify interaction subnetworks activated in cancer [6]. Finally, genome 

scanning for gene copy-number alterations has detected many loci harboring candidate 

cancer genes [7]. Because of these advances, efforts to catalog all of the mutational events 

that contribute to human cancer can now be envisioned. For example, the Cancer Genome 

Atlas initiative (http://cancergenome.nih.gov) is resequencing a substantial fraction of 

human genes in order to elucidate the contribution of somatic mutations to cancer 

development and progression. Due to the complexity of these initiatives, methods to 

characterize and prioritize gene candidates likely to be involved in cancer must be 

developed [8-11]. 

Protein interaction networks have been shown to be a useful tool for better understanding 

the biology of the cell [12-14]. Moreover, the topology of the networks and the 

neighborhood of a given protein within the network have been used to functionally 

characterize proteins [15, 16]. It has also been observed that proteins related to a disease 

tend to have a high connectivity between them, specifically in inherited diseases [17, 18] 

and ataxia [19]. 
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Gene expression profiling with DNA microarrays is a powerful approach for identifying 

cancer genes. Numerous studies have presented analyses of human cancer samples in which 

they identify gene expression signatures for different cancer types and subtypes [20-22]. In 

these experiments, genes are ranked according to their differential expression in the majority 

of cancer samples with respect to normal tissues, and genes above a predefined threshold are 

considered as candidate genes for the type of cancer being studied. Often, more in-depth 

analyses are performed to evaluate the involvement of candidate genes in the cancer, either 

by means of proteomics techniques [23], real-time polymerase chain reaction (qRT-PCR) 

[24], or literature search [25]. However, validating the results of microarray experiments can 

be a long and costly effort, due to the large number of candidate genes typically involved.  

Often, only a handful of genes of interest are selected for experimental validation, and 

hundreds of others are ignored. Moreover, due to limitations in DNA microarray 

technology, higher differential expressions do not necessarily reflect a greater likelihood of 

being related to cancer [26] and therefore, focusing only on the top candidate genes might 

not be the optimal procedure. Thus, there is a need for better techniques for selecting which 

differentially expressed genes will be analyzed in detail. Several procedures address the 

issue of cancer gene candidate selection [27] by further processing microarray data, either 

using more powerful statistics [28] or integrating multiple expression studies [29]. 

In order to improve the candidate gene selection process, several works have combined gene 

expression with other types of genomic data [30, 31]. One popular approach is gene set 

enrichment analysis, in which statistical tests are used to identify sets of dysregulated genes 

with a common biological function [32, 33]. Recently, Chinnaiyan and coworkers have 

combined the Molecular Concept Map and expression signatures to profile prostate cancer 

progression from benign epithelium to metastatic disease [34]. In the work of Rhodes et al. 

[6], instead of relying on predefined gene annotations, they applied a human interactome to 

genome-wide gene expression data in cancer for identifying a potential tumor suppressor 

gene in the integrin signaling pathway, and then demonstrated the utility of protein-protein 

interaction data for identifying interaction subnetworks activated in cancer. Finally, other 

approaches avoid the use of high throughput data by predicting cancer genes candidates 

based on their sequence, structure and functional properties [8, 35]. 

Here, we have implemented a systematic approach for identifying and comparing genes 

(and gene products) involved in cancer. Our method produces reduced lists of reliable 

candidate cancer genes by combining (i) a list of known cancer genes [10]; (ii) protein-

protein interaction data [36]; (iii) expression information from multiple cancer studies [37]; 

96 
 



and (iv) probabilities derived from structural and functional properties [35]. We begin by 

evaluating each method separately and comparing their results. Next, we present the 

integrative approach and evaluate its potential for predicting cancer genes. We provide 

candidate cancer genes obtained as a result of this work and assess them using public 

repositories of biological information and literature search. We conclude by discussing 

potential applications of our method. 

 

 

Results 
We were interested in assessing different methodologies for identifying cancer genes. 

Specifically, we tested the use of (i) protein interaction networks; (ii) microarray differential 

expression data; (iii) structural and functional properties of genes; and (iv) an integration of 

the three previous type of data. For the evaluation, we relied on a cancer gene list compiled 

from a variety of curated lists, cancer and sarcoma reviews, and Entrez Gene queries, 

followed by additional curation [10] (Material and Methods). We refer to genes in this list 

as the known cancer genes. Moreover, we use the term “cancer genes” to refer to genes and 

proteins involved in cancer. 

 

 

Predicting cancer genes based on protein interaction partners 

We assessed the use of protein interaction networks for predicting cancer genes. We 

hypothesized that proteins whose partners have been annotated as cancer genes are likely 

candidates for being cancer genes as well: if a mutated gene is perturbing a pathway related 

to cancer (e.g. growth control), mutations to interaction partners are also likely to perturb 

the same pathway. As corollary, proteins with many cancer genes interaction should be 

more likely to be involved in cancer than proteins with just one cancer gene partner. We 

used the PIANA (Protein Interactions And Network Analysis) tool [36] to build a cancer 

protein interaction network, using as seeds the gene products of the known cancer genes 

(Material and Methods). In this network, we define the cancer linker degree (CLD) of a 

protein as the number of cancer genes to which it is connected (Figure 1).  
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Figure 1. Calculating the Cancer Linker Degree (CLD) of a protein. The 

Cancer Linker Degree (CLD) of a protein is defined as the absolute number of 

partners of the protein that are known to be involved in cancer. In the example 

provided, we observe that proteins with high CLD are more likely to be cancer 

gene products that proteins with low CLD. 

 

 

We examined the relationship between the CLD of a protein and its likelihood of being a 

known cancer gene. The fraction of cancer genes within proteins with CLD ≥ 10 is ~48%, 

compared to ~15% for proteins with CLD ≥ 1 or 10% for the average protein in our dataset 

(i.e. proteins with CLD ≥ 0).  These results suggest that the Cancer Linker Degree of a 

protein is a good indicator of the probability of that protein being a cancer gene. We used 

the Cancer Linker Degree of a protein to predict cancer genes (Methods), obtaining a 

positive predictive value of ~54% at sensitivity of ~10% (Figure 2). Besides, similarly to 

previous studies [38], we observed that proteins with a large number of interaction partners 

(i.e., hubs) are more likely to be cancer genes than proteins with few interaction partners 

(see additional file 1). However, using the total number of interacting partners of a protein 

to predict cancer genes performed worse than using the cancer linker degree: for sensitivity 

of ~10%, the positive predictive value was ~35%. 
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Figure 2. Positive predictive value and Sensitivity when predicting cancer genes based on the 

protein interaction partners in the cancer interaction network. The positive predictive value and 

sensitivity shown are for accumulative cancer linker degrees (CLD) (i.e. cancer linker degree 5 

represents proteins with CLD ≥ 5). The average protein in the data set is represented by CLD 0. 

 

 

Predicting cancer genes based on microarray data 

We evaluated the use of differential expression data to predict cancer genes. We based our 

study on Oncomine [37] lists of over- and under-expressed genes in 24 differential 

expression studies, which we manually grouped in 12 different cancer types (see Material 

and Methods and additional file 2). The positive predictive value was between 9-16% for all 

cancer types, with sensitivity ranging from 84% (for genes over- or under-expressed in at 

least one cancer type) to 8% (for breast cancer) (Figure 3). We observed that genes 

appearing differentially expressed in multiple cancer types are more likely to be known 

cancer genes than those appearing differentially expressed in just one cancer type. For 

example, 20% of genes found differentially expressed in at least 5 cancer types are cancer 

genes, compared to 9% of genes found differentially expressed in at least one cancer type. 

These results confirm the need for post-processing in differential expression studies: 

microarrays detect many cancer genes, but they are usually mixed with many non-cancer 

genes.  

 

 

99 
 



 

 

 
Figure 3. Positive predictive value and sensitivity when predicting cancer genes based on 

differential expression. The positive predictive value and sensitivity are shown for 12 cancer types 

and genes over- or under-expressed in at least 1, 2 and 5 cancer types. 

 

 

Moreover, we studied the effect of looking at over- and under-expressed genes by their 

differential expression rank in a given experiment (i.e. their position in the list of over- or 

under- expressed genes ordered by their differential expression), as it is usually done in 

practice (Material and Methods). Among the 24 experiments tested, the positive predictive 

value when limiting the prediction to the 50 most differentially expressed genes 

outperformed the use of all differentially expressed genes in only 4 cases; in 10 cases it 

performed worse; and in the other 10 the positive predictive value was similar (see 

additional file 3). These results suggest that the number of cancer types in which a gene is 

observed differentially expressed is a better strategy for predicting cancer genes than using 

the differential expression rank of the gene. 

 

Predicting cancer genes by structural, functional and evolutionary properties 

Cancer genes have been shown to have common structural, functional and evolutionary 

properties [8, 35] and therefore, the properties of a gene can be used to estimate its 

probability of being a cancer gene [35]. We used the results from the work of López-Bigas 

and coworkers [35] to calculate the positive predictive value and sensitivity when predicting 
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cancer genes based on the structural, functional and evolutionary  properties of genes 

(hereafter, we refer as SF-Probabilities to the probabilities assigned to genes in [35]). As 

shown on Figure 4, SF-Probabilities higher or equal to 0.90 yielded a positive predictive 

value of 21% at sensitivity of 13%, while for the average protein in the dataset (i.e. proteins 

with SF-Probability ≥ 0) the positive predictive value was 8% at sensitivity of 67%. 

 

 

 
Figure 4. Positive predictive value and sensitivity are plotted as a function of the probability of 

being a cancer gene according to structural, functional and evolutionary properties (SF-

Probability). The positive predictive value and sensitivity shown are for accumulative SF-

Probabilities (i.e. SF-Probability 0.7 represents genes with SF-Probability ≥ 0.7). The average gene 

in the data set is represented by SF-Probability ≥ 0. SF-Probabilities were obtained from [35]. 

 

Relating the Cancer Linker Degree to differential expression and SF-Probability 

 

Proteins with a high cancer linker degree tend to be differentially expressed in multiple cancer 

types 

We were interested in examining the relationship between the cancer linker degree (CLD) of 

a protein and the number of cancer types in which its corresponding gene was differentially 

expressed. If proteins with high CLD tended to be differentially expressed in more cancer 

types than other proteins, that would suggest an involvement of high-CLD proteins in 

cancer. We observed that proteins with high CLD are more likely to be found differentially 

expressed in multiple cancer types than the average protein in the dataset (Figure 5): 
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proteins with CLD ≥ 1 appear differentially expressed in an average of 2.4 cancer types, 

compared to 4.4 cancer types for proteins with CLD ≥ 20. Furthermore, known cancer genes 

are found over- or under-expressed in an average of 2.8 cancer types. 

 

 

 
Figure 5. The average number of cancer types in which genes appear differentially expressed 

is plotted as a function of the cancer linker degree (CLD) of the gene products. The fractions of 

differentially expressed genes shown are for an accumulative CLD (i.e. CLD 5 represents proteins 

with CLD ≥ 5). The average protein in the dataset is represented by CLD 0. Known cancer genes 

appear differentially expressed in an average of 2.8 cancer types. 

 

 

Proteins with a high cancer linker degree tend to have common functional, structural and 

evolutionary properties with cancer genes 

We tested the correlation between the cancer linker degree (CLD) of proteins and their 

probabilities of being cancer genes according to their structural, functional and evolutionary 

properties (SF-Probabilities). We observed that proteins with high CLD tend to have higher 

SF-Probabilities than proteins with low CLD (Figure 6). For example, proteins with CLD ≥ 

20 had an average SF-Probability of 0.51, compared to SF-Probability of 0.32 for proteins 

with CLD ≥ 1 or SF-Probability of 0.27 for proteins with CLD ≥ 0. Interestingly, proteins 

with CLD ≥ 3 had an average SF-Probability higher than that of known cancer genes. These 

results suggest that proteins highly connected to cancer genes in the cancer protein 

interaction network show structural, functional and evolutionary properties similar to cancer 

genes.  
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Figure 6. The probability of being a cancer gene according to structural, functional and 

evolutionary properties (SF-Probability) is plotted as a function of the cancer linker degree 

(CLD) of the gene products. The average SF-Probabilities shown are for an accumulative CLD (i.e. 

CLD 5 represents proteins with CLD ≥ 5). The average protein in the dataset is represented by CLD 

0. 

 

Predicting cancer genes by integrating multiple types of data 

We evaluated the approach that predicts cancer genes using three different methodologies in 

conjunction: 1) the cancer linker degree (CLD) of proteins in the cancer protein interaction 

network; 2) the number of cancer types in which a gene appears differentially expressed 

with respect to normal tissue; and 3) the probability of being a cancer gene according to 

structural, functional and evolutionary properties (SF-Probability) [35]. The positive 

predictive values of this integrative approach ranges from 23% at sensitivity of 15% (for 

CLD ≥ 1, at least differentially expressed in one cancer type and SF-Probability ≥ 0.1) to 

73% at sensitivity of 1% (for CLD ≥ 15, at least 5 cancer types and SF-Probability ≥ 0.0). 

Figure 7 shows the positive predictive value and sensitivity obtained when using multiple 

combinations of thresholds. We observed that the best results are obtained when combining 

a high CLD with the requirement of the gene being differentially expressed in at least 5 

cancer types. Moreover, using high SF-Probability thresholds contributes towards reducing 

the number of false positives when applying lower CLD thresholds.  
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Figure 7. Contour maps for positive predictive value and sensitivity obtained 

when varying the thresholds applied by the integrative approach. In each image 

of Fig. 7, the x-axis is the SF-Probability threshold and the y-axis is the cancer linker 

degree (CLD) threshold. For a given restriction on the number of cancer types in 

which a gene must be differentially expressed in order to be considered a candidate, 

the positive predictive value and sensitivity are shown for each pair [CLD, SF-

Probability]. Positive predictive values and sensitivities are shown using colored 

contour maps, from red (i.e. 0) to turquoise (i.e., 0.7 for positive predictive value and 

0.3 for sensitivity). For example, imposing a gene to be differentially expressed in at 

least two cancer types, with a CLD of 6 and with an SF-Probability of 0.4, the 

positive predictive value is 0.4 for sensitivity of 0.05. 
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We also examined the contribution of each type of data by studying the positive predictive 

value obtained when segmenting the results by overlaps (Figure 8), observing that all 

criteria contribute towards obtaining reliable results. For example, the positive predictive 

value for each type of data use independently is 34% (for CLD≥ 5), 17% (differentially 

expressed in at least 4 cancer types) and 14% (for SF-Probability≥ 0.6); the overlap of the 

three criteria obtains a positive predictive value of 51%. These results show that the 

integrative approach can be used to produce reduced lists of reliable cancer gene candidates. 

 

 

 
 

Figure 8. Positive predictive value calculated for diverse overlaps of 

cancer gene candidates. The criteria applied was the following: (i) cancer 

linker degree ≥ 5; (ii) differentially expressed in at least four cancer types; 

and (iii) SF-Probability ≥ 0.6. The Venn diagram shows the positive 

predictive value for cancer gene candidates predicted by applying the 

previous thresholds to the three types of data (i.e. 51%), and overlaps 

between each set of predictions.  

 

 

 

 

105 
 



 

 

 

Cancer gene candidates 

The procedure followed to predict cancer gene candidates consists of four steps (Figure 9 

and Methods): (i) using PIANA [36] to build the protein interaction network for the known 

cancer genes; (ii) mapping differentially expressed genes onto the network for each cancer 

type; (iii) mapping SF-Probabilities from [35] onto the network; (iv) producing an ordered 

list of candidates.   

 

 

 

 
 
Figure 9. Procedure followed to predict cancer gene candidates. First, a cancer protein 

interaction network is built from the list of known cancer genes. Second, expression data from 

different cancer types is mapped onto the network. Third, probabilities of being a cancer gene based 

on structural, functional and evolutionary properties are retrieved for proteins in the network. Fourth, 

cancer genes are predicted based on the thresholds provided by the user for each type of data. 

 

 

 

We have produced a reduced list of proteins likely to be involved in cancer (Table 1). 

Proteins in this list have a cancer linker degree equal or greater than 8, are differentially 

expressed in at least one cancer type and their SF-Probability is equal or greater than 0.70. 

106 
 



Table 1 can be used as a high-confidence resource for discovering new cancer genes. We 

also provide the complete list of human cancer gene candidates for which at least one type 

of data indicated a relationship to cancer (see additional file 4). This list comprises 11576 

candidates, 1,040 of which where found by the three types of data (i.e. CLD ≥ 0, 

differentially expressed in at least one type of cancer and SF-Probability>0). 

 

Table 1. Cancer gene candidates. The cancer gene candidates of this table where obtained by 

fixing the following thresholds: (i) cancer linker degree higher than 8; (ii) found differentially 

expressed in at least one cancer type; and (iii) probability based on structural, functional and 

evolutionary properties (SF-Probability) higher than 0.7. 

 

Gene name 
Cancer 
Linker 
degree 

# of cancer 
types 

differentially 
expressed 

SF-
Probability 

CDK9 11 6 0.97 
GATA2 10 5 0.99 
ATF2 17 6 0.94 
CCNB1 13 3 0.73 
CSNK2A2 22 4 0.89 
PPARBP 14 5 0.99 
CSK 19 5 0.90 
KIN27 35 6 0.82 
CUL1 12 3 0.85 
DKFZP686I18166 11 6 0.99 
STAT5B 20 6 0.99 
MCM7 14 4 0.99 
SURB7 14 4 0.74 
MST1R 10 4 0.74 
KHDRBS1 17 6 0.92 
SYK 17 4 0.99 
KDR 15 4 0.85 
NME2 11 5 0.99 
POLR2B 12 3 0.82 
SRF 14 7 0.97 
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We analyzed (Table 2) cancer gene candidates from Table 1 based on literature search [39] 

and descriptions from the Cancer Gene Census [8], UniProt [40], Reactome [41] and the 

Gene Ontology (GO) [42]. This analysis suggests that our approach to identifying cancer 

genes is highly reliable: 60% of the proposed candidates have been directly related to cancer 

in experimental studies described in the literature, and an extra 25% participates in 

pathways known to be implicated in cancer. For example, the spleen tyrosine kinase (syk), 

predicted by the method to be a cancer gene, has been recently added (in a date subsequent 

to the creation of our list of known cancer genes) to the Sanger Cancer Gene Census [8]. 

Syk, with a cancer linker degree of 17, found differentially expressed in 4 types of cancer 

and with a SF-Probability of 0.99, is a positive effector of BCR-stimulated responses [43] 

and has been found to be involved in urinary bladder carcinoma [44] and primary liver 

cancer [45]. Besides, other candidate cancer genes have been related to cancer in the 

literature very recently (e.g. mst1r, involved in breast cancer [13]) or are known to be 

involved in pathways implicated in cancer (e.g. srf is a nuclear repressor of Smad3-mediated 

TGF-beta signaling [19], which induces apoptosis in numerous cell types). Finally, genes 

such as surb7 and kin27 were not found to be involved in cancer according to the literature, 

and future experimental studies should focus on evaluating their potential involvement in 

cancer. Literature references for each cancer gene candidate found to be involved in cancer 

are provided as additional file 5. 
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Table 2. Analysis of predicted cancer genes in Table 1. Column “related to cancer” indicates 

whether literature information [39], pathway membership and descriptions coming from UniProt and 

GenBank indicate a strong involvement in cancer (++), somehow related to cancer (+) or not related 

to cancer (-). Literature references for each gene found to be involved in cancer are provided as 

additional file 5. 

 

Gene 
name 

Description  
and 

Function/Pathway 

Related 
to 

cancer 
CDK9 Cell division protein kinase 9 

Regulation of progression through cell cycle ++ 

GATA2  Endothelial transcription factor GATA-2 
Transcriptional activator which regulates endothelin-1 gene expression + 

ATF2 
Cyclic AMP-dependent transcription factor ATF-2 
Transcriptional activator which binds to the CRE, present in many viral and cellular 
promoters. 

+ 

CCNB1 G2/mitotic-specific cyclin-B1 
Essential for the control of the cell cycle at the G2/M (mitosis) transition. ++ 

CSNK2A2 Casein kinase II subunit alpha 
Participates in Wnt signaling. + 

PPARBP  Peroxisome proliferator-activated receptor-binding protein 
Essential for embryogenesis. Plays a role in transcriptional coactivation ++ 

CSK Tyrosine-protein kinase CSK 
Negative regulation of cell proliferation ++ 

KIN27  Protein kinase A-alpha 
ATP binding and protein serine/threonine kinase activity - 

CUL1 
Cullin-1 
Mediates the ubiquitination of proteins involved in cell cycle progression, signal 
transduction and transcription 

++ 

DKFZP68
6I18166  

Hypothetical protein 
ATP binding and protein kinase activity - 

STAT5B  Signal transducer and activator of transcription 5B 
Signal transduction and activation of transcription ++ 

MCM7  
DNA replication licensing factor MCM7 
Required for DNA replication and cell proliferation. Required for S-phase checkpoint 
activation upon UV-induced damage. 

++ 

SURB7 Mediator of RNA polymerase II transcription subunit 21 
Regulation of transcription. - 

MST1R Macrophage-stimulating protein receptor [Precursor] 
Receptor for macrophage stimulating protein (MSP). Tyrosine-protein kinase activity. ++ 

KHDRBS1 KH domain-containing, RNA-binding, signal transduction-associated protein 1 
Role in G2-M progression in the cell cycle. ++ 

SYK  Tyrosine-protein kinase SYK 
Positive effector of BCR-stimulated responses. ++ 

KDR  Kinase insert domain receptor 
Kinase activity and receptor activity. ++ 

NME2  Nucleoside diphosphate kinase B 
Major role in the synthesis of nucleoside triphosphates other than ATP. ++ 

POLR2B  DNA-directed RNA polymerase II 140 kDa polypeptide 
DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA. + 

SRF Serum response factor 
SRF is a transcription factor that binds to the serum response element (SRE) + 
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Discussion 
We analyzed the use of three different criteria for predicting cancer gene candidates and 

concluded that: (i) the number of interaction partners of a protein that have been previously 

annotated as cancer gene (i.e. the cancer linker degree) is correlated with the likelihood of 

the protein to be involved in cancer; (ii) using differences in gene expression between 

normal tissue and cancer identifies many known cancer genes, but many non cancer genes 

as well; and (iii) probabilities based on structural, functional and evolutionary properties of 

known cancer genes (i.e. SF-Probabilities) are useful for filtering false positives from other 

cancer gene prediction methods. Moreover, we implemented and evaluated a method that 

integrates these criteria to produce reliable lists of cancer gene candidates, obtaining a 

positive predictive value of 71% when using very restrictive thresholds. Finally, we 

provided lists of cancer gene candidates and analyzed them using literature sources and 

information from public repositories, showing that our predictions are highly reliable. 

Most methods used for predicting or prioritizing cancer gene candidates are biased towards 

genes that are well annotated and/or familiar to the researcher. This leaves unexplored many 

potential cancer gene candidates. However, high throughput genomic and proteomic work 

has now yielded relatively unbiased, although noisy, genome- and proteome-wide data sets. 

For example, expression studies produce large lists of over- and under-expressed genes, 

which are then prioritized by their differential expression rank, usually with help of a 

limited number of literature searches. Our integrative approach to finding cancer gene 

candidates can be used to obtain unbiased lists of cancer gene candidates by using the 

cancer linker degree of proteins to filter expression studies. We observed that the low 

positive predictive value obtained when using differential expression data alone (around 

15% for most cancer types) shows a four-fold increase when combining it with protein-

protein interaction data. 

Separately, each of the criteria presented here for cancer gene candidate prediction has its 

limitations. First, methods based on protein interaction networks are limited by the fact that 

many cancers are the result of perturbations in the regulation of genes, which is not captured 

by protein-protein interaction data. Second, differential expression based methods have the 

drawback that many cancers are not the result of a differential expression in a particular 

gene, but rather on a mutation that prevents the gene product from performing its function. 

Finally, methods based on structural, functional and evolutionary properties are very 

dependent on existing functional annotations and their predictions are more stochastic than 
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based on biological observations. Therefore, integrative approaches for cancer gene 

prediction should also consider other types of information, such a gene regulatory networks 

[47] and gene copy-number alterations [7]. 

The methods presented here were evaluated by comparing their predictions with a list of 

oncogenes, tumor suppressors and stability genes [10]. This list attempts to be as 

comprehensive as possible, but two possible biases raise from its use: (i) not all methods 

cover the space of cancer genes to the same extent (e.g. the model used to calculate SF-

Probabilities was trained on genes for which mutations have been causally implicated in 

cancer); and (ii) the method based on protein interaction networks heavily relies on the 

initial set of seed cancer genes and thus, genes isolated in the cancer network will never be 

pinpointed. An alternative approach to seeding our method with a list of known cancer 

genes is one where the seeds for building the protein interaction network are cancer-related 

proteins obtained with low-throughput experimental methods [48, 49]. This would remove 

the bias introduced by the input list of known cancer genes. Besides, we are mapping 

expression levels of mRNA onto a network of protein interactions. However, it is known 

that the mRNA expression levels do not always match the protein expression levels [50]. 

This will be solved by the use of techniques than measure the protein expression levels in 

specific cancers [51].  

 

Conclusions 

In conclusion, we showed that the integration of multiple sources of data is more reliable 

than the use of one single criteria to predicting cancer genes. Moreover, differential 

expression studies could benefit from the use of protein-protein interaction data to further 

validate their results. For example, combining the cancer linker degree of a protein with 

differential expression increased the fraction of known cancer genes within cancer gene 

candidates from 17% to 48%. Recently developed experimental techniques promise an 

increase in the amount of cancer data available, including regulatory events, tissue 

localization and protein expression. Systems capable of integrating all available sources of 

data will be fundamental to better understanding the mechanisms of cancer and other 

diseases. 
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Methods 

Known cancer genes 

 We downloaded cancer genes from the Memorial Sloan Kettering computational biology 

website CancerGenes (http://cbio.mskcc.org/cancergenes/) as of January 2007. We collected 

a set of known cancer genes by querying the website for “oncogene”, “tumor suppressor” 

and “stability”. This list comprises 1256 cancer genes, in particular 385 oncogenes, 471 

tumor suppressors and 494 stability genes (several genes belong to more than one category). 

Protein Interaction Data 

We used PIANA [36] to integrate human protein interaction data from DIP 2007.02.19 

[52], MIPS 2007.04.03 [53], HPRD v6.01 [54], BIND 2007.04.03 [55], IntAct 2007.04.23 

[56], BioGrid v2.026 [57] and MINT 2007.04.05 [58]. The integration of different sources 

of interactions into a single database allowed us to work with an extensive set of 110,457 

human interactions between 36,900 different protein sequences. 

PIANA represents the protein interaction data as a network where the nodes are proteins 

and the edges interactions between the proteins. In such a network, a set of proteins linked 

to protein pj (ie, physically interacting with pj) is named “partners of pj”. PIANA builds the 

network by retrieving partners for an initial set of seed proteins (i.e. the proteins of interest).  

 

Expression data 

We manually searched for gene expression studies between normal tissue and cancer in 

Oncomine [37], a cancer profiling database. We downloaded lists of over- and under-

expressed genes from a total of 24 Oncomine studies, corresponding to 12 different cancer 

types (see additional file 2 for the list of experiments, the cancer type category assigned to 

them, and the total number of over- and under-expressed genes in each experiment). A gene 

was considered to have a significant differential expression if its Q value was lower than 

0.05.  Q values are obtained by correcting for multiple hypothesis testing the p-values 

calculated using Student’s t-test for two-class differential expression analyses. A detailed 

description of the normalization process and statistical tests used in Oncomine can be found 

in [34, 37] . 

 

Probabilities of being cancer-gene based on structural and functional properties 
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We used the probabilities of being a cancer gene calculated in [35] for all human genes. 

These probabilities were obtained using a Bayesian classification model that scored human 

genes for their likelihood of involvement in cancer according to structural, functional and 

evolutionary properties. Specifically, Lopez-Bigas and coworkers [35] relied on GO 

annotations [42] and sequence properties such as the extent of conservation, paralogy, and 

the lengths of proteins and genes. We refer to these estimated probabilities as SF-

Probabilities. 12,194 human genes had an associated SF-Probability, 240 of which had been 

used to train the Bayesian model. 706 human genes had an SF-Probability higher than 0.95, 

and the SF-Probability was lower than 0.1 for 6288 human genes. Finally, 758 genes didn’t 

have an associated protein sequence in PIANA and thus, were not used in this work.  

Genes, proteins and identifiers 

We used PIANA [36] to map expression data and SF-Probabilities onto the interaction 

network, in particular gene symbols coming from Oncomine expression studies and 

Ensembl identifiers coming from [35]. Throughout the text, we use the term ‘cancer gene’ 

to refer to any gene or protein involved in cancer. 

 

Evaluating the use of protein interaction networks to identify cancer genes 

The cancer protein interaction network was built using PIANA [36] by setting the list of 

known cancer genes as seeds (see “protein interaction data”, Material and Methods). In this 

network, we define the cancer linker degree (CLD) of a protein as the number of cancer 

genes to which it is directly connected (Figure 1). The Cancer Linker Degree was calculated 

for each protein and proteins were binned by their CLDs. In this context, and given a CLD 

threshold of N, positives are proteins with CLD ≥ N. True positives are known cancer genes 

among positives. False negatives are known cancer genes whose CLD is lower than N. The 

positive predictive value is defined as the ratio between true positives and positives. 

Sensitivity is the ratio between true positives and the sum of false negatives and true 

positives. Positive predictive values and sensitivities are shown in Figure 2 for CLD 

thresholds with at least 5 positives. 

 

Evaluating the use of differential expression data to identify cancer genes 

We calculated how many over- or under-expressed genes were known cancer genes for each 

cancer type described on additional file 2. Moreover, we tested how many genes 
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differentially expressed in at least 1-5 cancer types were known cancer genes. Besides, we 

evaluated the use of differential expression data by the rank of the cancer gene candidate in 

the original order from lists in Oncomine [37]. Genes from these lists were binned in 

incremental ranges of 50, and the number of known cancer genes was calculated for each 

bin incrementally. In this context, any differentially expressed gene is considered a positive. 

Among positives, we define as true positives those that are known cancer genes. False 

negatives are known cancer genes not found differentially expressed. 

Evaluating the use of structural, functional and evolutionary properties to predict 

cancer genes 

At any given SF-Probability threshold, positives are proteins with a SF-Probability above or 

equal to that threshold. Among positives, true positives are those that are known cancer 

genes. False negatives are known cancer genes not found above the SF-Probability 

threshold. Genes used for training the model in [35] were discarded for the evaluation. 

Protein functions, pathways and literature 

We manually analyzed cancer gene predictions by examining (i) the protein function and 

description as defined in UniProt [40]; (ii) the pathways in which the protein participated 

according to Reactome [41]; (iii) the molecular function and biological process as classified 

in the Gene Ontology (GO) [42]; and (iv) published articles retrieved using iHop [39]. 

Statistical tests 

The correlation between the cancer linker degree of proteins and the fraction of known 

cancer genes among them was measured using the R [59] implementation of the Spearman 

rank correlation coefficient (rho). 

 

 

 

 

ADDITIONAL FILES 
 

Additional file 1 – Positive predictive value and Sensitivity when using the total 

number of partners of a protein to predict cancer genes. (see below) 
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Additional file 2 – Gene expression studies considered for this work. (not included in 

thesis; see article) 

All 24 studies were downloaded from Oncomine (http://www.oncomine.org). The studies 

were manually grouped in 12 different cancer types. The number of over- and under-

expressed genes is shown for each cancer type. 

 

Additional file 3 – Fraction of cancer genes based on their rank in the over-and under-

expressed lists of a microarray experiment. (not included in thesis; see article) 

The specificity shown is for an accumulative rank (i.e. rank 50 represents ranks below or 

equal to 50). All results from all microarrays used for this work are presented here, divided 

in four figures for clarity’s sake. We observed that, among the 24 experiments tested, the 

positive predictive value when limiting the prediction to the 50 most differentially expressed 

genes outperformed the use of all differentially expressed genes in only 4 cases; in 10 cases 

it performed worse; and in the other 10 the positive predictive value was similar. 

 

Additional file 4 – Table with all cancer gene candidates. (not included in thesis; see 

article) 

For each human gene with at least one data type indicated relationhip to cancer, this table 

shows the cancer linker degree (CLD), the number of cancer types in which it appears 

differentially expressed and its probability of being a cancer gene according to structural, 

functional and evolutionary properties (SF-Probability).  

 

Additional file 5 – Sources of information for analysis of candidate cancer genes in 

Table 1 of the article.  (see below) 
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SELECTED ADDITIONAL FILES 
 

Additional file 1 – Positive predictive value and Sensitivity when using the total 

number of partners of a protein to predict cancer genes.  

We observed a clear distinction between proteins with many interaction partners and those 

with just a few partners. The positive predictive value and sensitivity shown are for 

accumulative numbers of partners (i.e. ‘number of partners’ 5 represents all proteins with 5 

or more partners). Positive predictive value and sensitivity are shown for numbers of 

interaction partners with at least 5 positives. 
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Additional file 5 – Sources of information for analysis of candidate cancer genes in 

Table 1 of the article.   

For each cancer gene candidate in Table 1 of the article, we reference one or more recent 

articles where the candidate has been linked to cancer. Information for all proteins was as 

well retrieved from UniProt [40] and from the literature using iHop [39].  
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DKFZP686I18
166  
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STAT5B  [11] 
MCM7  [12] 
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MST1R [13] 
KHDRBS1 [14] 
SYK  [15] 
KDR  [16] 
NME2  [17] 
POLR2B  [18] 
SRF [19] 
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CHAPTER V 

OTHER APPLICATIONS  

OF PROTEIN-PROTEIN INTERACTIONS 

 

 

 

 

 

 

 

 

 

 
In this chapter, we include published articles in which the author 
of this thesis has been involved. In particular, we include the 
article from which the idea of creating PIANA was conceived 
(published in PNAS) and two articles in which PIANA was used 
in an experimental context: starting from data obtained in the wet 
lab, we made biological predictions that were later confirmed (or 
discarded) back in the bench.  
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ABSTRACT 

The function of an uncharacterized protein is usually inferred either from its homology to or 

interactions with characterized proteins. Here, we make use of both sequence similarity and 

protein interactions to identify relationships between remotely related protein sequences. 

We rely on the fact that homologous sequences share similar interactions, and therefore the 

set of interacting partners of a given protein’s partners is enriched by its homologs. The 

approach was benchmarked by assigning the fold and functional family to test sequences of 

known structure. Specifically, we relied on 1,434 proteins with known folds, as defined in 

SCOP, and with known interacting partners, as defined in DIP. For this subset, the 

specificity of fold assignment was increased from 54% for PSI-BLAST to 75% for our 

approach, with a concomitant increase in sensitivity for a few percentage points. Similarly, 

the specificity of family assignment at the e-value threshold of 10-8 was increased from 70 

to 87%. The proposed method will be a useful tool for large-scale automated discovery of 

remote relationships between protein sequences, given its unique reliance on sequence 

similarity and protein-protein interactions. 
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INTRODUCTION 

Functional annotation of protein sequences by computation is essential in leveraging the 

impact of the genome-sequencing projects. To characterize the function of a protein 

sequence, it is often useful to identify its homologs and interacting proteins of known 

function. This task is facilitated by the classifications of protein domain families (1, 2), lists 

of protein-protein interactions (3, 4), and databases of protein structures (5-7). Protein 

domains are organized into folds (if sharing a similar structure), superfamilies (with 

evidence of homology in addition to structure similarity), and families (for homologs with 

similar function, sequence, and structure) (6). The vast majority of homologous sequences 

are expected to share the same fold. 

The most sensitive algorithms for detecting homology between remotely related protein 

sequences rely on multiple sequence and protein structure information. The former group 

includes the sequence profile-based methods (8, 9) and Hidden Markov Models (10) that 

construct a multiple sequence alignment of the close homologs of the query, followed by 

scanning the corresponding profile against a database of sequences. The latter group 

includes sequence-structure threading methods that can sometimes reveal more distant 

relationships than purely sequence-based methods (11). Threading methods assign the fold 

by assessing the energy of coarse models corresponding to all possible ways of threading 

the sequence through each of the structures in a library of all known folds. Despite the 

increased coverage and accuracy of fold assignment using multiple sequence and structure 

information, two major problems remain for sequences related at less than ~25% sequence 

identity (12): (i) finding remote homologs that are undetectable by sequence similarity alone 

and (ii) identifying the functional family even when the fold can be detected (13, 14). 

Approximately ~60% of the known protein sequences have at least one domain with a 

reliable fold assignment, covering ~35% of the amino acid residues in the known protein 

sequences (15, 16). 

Even when two sequences share little or no sequence similarity, their structures and 

functions may be similar (17, 18). Therefore, similarity in function may be indicative of a 

similar structure. An indicator of related functions is similar protein-protein interaction 

patterns. One such special case are the “interlogs” (ie, pairs of interacting proteins that 

interact identically in two species) (19). It has already been demonstrated that the 

information about the interacting partners can be used to predict the fold (7, 20-22) or 

function (14, 23-27) of a protein without considering its sequence. The utility of these 

approaches should grow with time, given the increasing amount of data about protein-
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protein interactions (20, 24, 28), collected in databases such as BIND (3), MIPS (29), and 

DIP (4). 

Our objective here is to demonstrate that the combined use of protein interactions and 

sequence similarity improves detection of remote similarity. We have implemented our 

method using the PSI-BLAST program, but any other method for detection of remote 

sequence similarity can be used. We begin by describing the approach. Next, we benchmark 

the method by relying on a set of non-redundant domains from SCOP that have known 

interacting partners defined in DIP. We conclude by discussing the implications of our 

results for protein structure modeling and functional annotation.  

 

METHODS 

A protein interaction network can be represented by a graph with nodes as proteins and 

edges as protein interactions. In such a graph, a set of proteins connected to protein X (ie, 

physically interacting with X) is named “partners of X”. Moreover, we define successive 

levels of partnership: the set of partners of X is named “partners of X at level 1” and the set 

of partners of the partners of X at level 1 forms the set of partners at level 2, and so on. 

Given the commutative relation of the interactions (ie, if B is found in the set of partners of 

A, then A is found in the set of partners of B), protein X should be in the set of partners at 

level 2 of itself. In fact, protein X should occur in all sets of partners at even levels. 

Therefore, given that homologous proteins perform similar functions associated with similar 

interaction partners, the sets of partners of protein X at even levels contain more sequences 

homologous to protein X than a randomly selected set of sequences of the same size 

(Results). Furthermore, partners of protein X at levels 1 and 3 may also include some of its 

homologs because some proteins interact with their homologs or they evolved via a fusion 

of two genes of interacting ancestors (30). Here, we exploited these considerations in 

combination with sequence similarity to improve the assignment of a given protein 

sequence into the correct fold class and functional family.  

We relied on three databases, the TrEMBL database of protein sequences (release 23.6 of 

April 2003) (31), the SCOP database of protein structure classification (version 1.65 from 

December 2003) (32), and the DIP database of experimentally identified protein interactions 

(release 20040113 of January 2004) (33). 

The DIP database contains 16,903 protein sequences that are involved in 43,742 

documented binary interactions. Fold, superfamily, and family domain codes of SCOP were 

assigned to a total of 4,324 proteins in DIP that could be matched by BLAST to a protein in 
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SCOP, covering one sixth of all proteins in DIP (ie, group DIP-SCOP). More precisely, one 

or more domain codes were assigned to a protein sequence in DIP when the alignment 

between the two sequences had an e-value smaller than 10-8 over at least 75% of the 

residues in the SCOP domain. A total of 4,743 binary interactions had SCOP codes for both 

proteins, while 14,813 interactions had the SCOP code for only one partner. This initial set 

of proteins was reduced to 1,434 query proteins to remove redundancies so that no two 

proteins in the set share more than 25% sequence identity after aligning them with the 

BLAST program. 

Next, we added extrapolated links to the protein interaction network. Two proteins were 

linked by extrapolation if any members from their SCOP families interacted with each 

other. To enable benchmarking, the extrapolation was not performed for the query proteins 

in the benchmark. It was also not performed for “hub” proteins (34) that were defined here 

as proteins interacting with proteins in more than 10 different SCOP families. The hub 

proteins were excluded from extrapolation to minimize false positives. Thus, the list of 

reference links included both known interactions between pairs of domains as well as 

extrapolated links. Similarly, the term partner was expanded to include proteins connected 

via extrapolated links in addition to physical interactions. 

The assignment of a fold or a family to a query sequence involves five steps (Figure 1). 

First, constructing a profile (PSSM) of the query sequence by searching for its homologs in 

the TrEMBL database (31) by PSI-BLAST(35) for a maximum of five iterations. Second, 

detecting query homologs in the DIP-SCOP group by PSI-BLAST using the query profile 

from step 1 (set G0). Third, extracting partners of the query at levels 1, 2, 3, and 4 using the 

reference links. Fourth, grouping the sets of partners obtained in step 2 into four main 

groups, formed by the set of partners at level 2 (G2), the union of the partners at levels 1 and 

2 (G1,2), the union of the partners at levels 2 and 4 (G2,4), and the union of the four sets 

(G1,2,3,4). Fifth, ranking the members of each of the groups in step 3 based on the e-value 

calculated in step 2. Additional combinations of partner levels are either redundant or 

complex, and are not reported in this study. 

 

We tested family and fold assignment for different thresholds on the PSI-BLAST e-value 

with proteins in sets G0, G2, G1,2, G2,4, and G1,2,3,4. The number of positive assignments is 

defined as the number of sequences that align with the query sequence with an e-value 

smaller or equal to the threshold. Among these positives, we define the number of true 

positives as the number of sequences with the same SCOP code as the query sequence.  
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Figure 1. Flowchart for detection of remotely related proteins based on both sequence 

similarity and protein interactions.  
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First, for a query protein, a PSSM is built by five iterations of 

scanning the TrEMBL database by PSI-BLAST. Second, the 

PSSM is used in another PSI-BLAST run to obtain the e-values 

between the query and the proteins in DIP-SCOP. Third, the 

interaction partners of the query are extracted from DIP and may 

be expanded through SCOP family codes. This step is repeated, 

resulting in set Gi in iteration i. Fourth, partners at different 

levels are grouped as described in Methods. Fifth, proteins in the 

intersection are ranked by the PSI-BLAST e-value to the query, 

obtained in the second step. 

 

 

 

 

RESULTS 

Quantifying the enrichment afforded by protein interactions 

Our method for detecting remote relationships by both sequence similarity and protein-

protein interactions depends on the enrichment of the homologs among the set of partners of 

the query protein’s partners (ie, the G2 set). Therefore, we quantified this enrichment as 

follows. We first calculated the proportion of the correct fold assignments by dividing the 

sum of the correct fold assignments in each G2 set by the sum of the G2 set sizes (Table 1). 

Next, we compared this proportion against the corresponding proportion in the DIP-SCOP 

group. There is a significant enrichment of the proteins with the correct fold assignment in 

the G2 set relative to DIP-SCOP. The same assessment was also performed for family 

assignment instead of fold assignment, revealing an even larger enrichment than that for 

fold assignment. Reflecting the homodimers, the corresponding statistics for the G1 set also 

shows significant enrichment for homologs over a random selection from the DIP-SCOP 

set.  

To quantify the statistical significance of enrichment in the G2 set, we calculated the p-value 

with the Wilcoxon test(36). We compared for each query the enrichment in G2 and in 1,000 

random sets, with the same number of proteins as in group G2, obtained from the DIP-
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SCOP group. The corresponding p-value of 0.0064 quantifies the high statistical 

significance of enrichment in the G2 set. 

 

Table 1. Enrichment for the correct folds 

and families. Proportions of the correct fold 

and family assignments in the G1 and G2 sets 

are compared with the proportion of the 

correct folds in the DIP-SCOP set.  

 

 

 

Improved specificity of fold and family assignment 

The specificity is defined as the number of true positives over the total number of positives. 

For an e-value cutoff below 1, our approach achieves ~75% specificity for group G1,2 

(Figure 2a). This relatively high specificity can be compared to the specificity of 54% for 

group G0, obtained by PSI-BLAST alone; simultaneously, sensitivity is also improved for 

several percentage points (below). The improvement in specificity justifies the use of less 

significant e-value cutoffs in the filtered groups of sequences (G2 and G1,2) than with PSI-

BLAST (G0). The difference in performance between the traditional PSI-BLAST approach 

based on sequence matching alone and our approach, which also includes information about 

protein-protein interactions, increases as the e-value cutoff is raised. 

The sets G2 and G1,2 were enriched for the correct family codes relative to the set G0, 

demonstrating an improvement relative to searching by PSI-BLAST alone (not shown). The 

specificities obtained from groups G2 and G1,2 were ~80% for the e-value cutoff of 10-3, 

while PSI-BLAST sequence search without consideration of interactions had the specificity 

of only ~60%. 

 

Sensitivity of fold and family assignment 

Our method cannot correctly assign a fold to a protein sequence when a stringent threshold 

on the E-value filters out correct predictions or when there are no experimental data about 

relevant protein interactions. To estimate the sensitivity, we defined as false negatives those 

undetected members of the same group that have the same domain fold as the query protein. 

Sensitivity for groups G2 and G1,2 is consistently better for several percentage points than 

for G0 (Figure 2b).  

 G1 G2 DIP-SCOP 

Fold 

assignment 
0.137 0.041 0.018 

Family 

assignment 
0.107 0.018 0.003 
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Applicability of fold and family assignment 

Our combined approach is not as general as the sequence comparison methods, which can 

be applied to all protein sequences. The reason is that the combined approach depends on 

the availability of protein interaction data. Therefore, to gauge the practical utility of the 

combined approach, we estimated its applicability to fold assignment for proteins in the sets 

G2, G1,2, G2,4, and G1,2,3,4 (Figure 2c).  

circles). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Specificity (a), 

sensitivity (b), and applicability 

(c) of fold assignment based on a 

combination of sequence 

similarity and protein 

interactions. The specificity, 

sensitivity and applicability are 

plotted as a function of the 

threshold on the PSI-BLAST e-

value for groups G2 (orange), G1,2 

(green), G2,4 (blue), G1,2,3,4 (red), 

and G0 (black with 
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Extrapolating interactions to increase the coverage 

To assess the effect of the extrapolation of protein interactions (Methods), we compared the 

number of true positives at the fold level obtained with and without extrapolation, 

respectively. When used without extrapolation, our method is able to find only 286 true 

positives with 81% specificity at the PSI-BLAST e-value cutoff of 1, compared to 2,885 

true positives and 75% specificity when using extrapolation. Thus, extrapolation yields a 

10-fold increase in coverage with a relatively small loss in specificity. Even with 

extrapolation, however, only ~50% of the proteins in the DIP-SCOP group have a partner at 

level 2. 

 

Example of fold and family assignment  

To illustrate the ability of our approach to detect relationships between members of the 

same family in the absence of significant sequence similarity, we describe an example of the 

SwissProt sequences CNTF_HUMAN (ciliary neurotrophic factor) and ONCM_HUMAN 

(oncostatin M). CNTF_HUMAN is a survival factor for various neuronal cell types and 

ONCM_HUMAN is a growth regulator that inhibits the proliferation of a number of tumor 

cell lines. The two proteins share the same fold (4-helical cytokines) and family (long-chain 

cytokines). However, sequence similarity is very low (PSI-BLAST e-value is ~0.1; 

sequence identity is 16%).  

According to DIP, both proteins interact with a member of the cytokine receptor family, 

LIFR_HUMAN (leukemia inhibitory factor receptor), as revealed by immuno-precipitation 

experiments (DIP entries 10988E and 10064E for the interactions of CNTF_HUMAN and 

ONCM_HUMAN, respectively). Moreover, the PDB structure 1I1R reveals a physical 

interaction between a member of the cytokine family (viral IL-6) and a member of the 

cytokine receptor family (human gp130). Thus, our method predicts with an e-value of 0.1 

in group G2 that CNTF_HUMAN has the same fold as ONCM_HUMAN (Figure 3a). 

 

Example of fold assignment 

To illustrate the ability of our approach to detect remote relationships at the fold level, we 

describe here an example of the Swiss-Prot sequences EF1G_YEAST and EF1B_YEAST. 

The C-terminal domains of these sequences adopt a ferredoxin-like fold. Nevertheless, 

EF1G_YEAST is an elongation factor 1γ of the eEF1-γ domain superfamily, while 

EF1B_YEAST is an elongation factor 1β of the eEF-1β-like superfamily. Both structures 
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share a core formed by a sheet of three β−strands and an external helix, and could be 

superimposed with an RMSD of 3.6 Å (Figure 3b). The e-value of the PSI-BLAST 

alignment between EF1G_YEAST and EF1B_YEAST is 0.036, obtained by querying the 

TrEMBL database with EF1G_YEAST for 5 iterations with default parameters. 

 

a) 

Long chain cytokines 

b) 

Ferredoxin-like fold 

 

 

Figure 3. Illustration of fold assignment by the combined approach. (a) Structural superposition 

of the human ciliary neurotrophic factor (chain 1 of PDB code 1CNT, in cyan) and the human 

oncostatin M (chain A of PDB code 1EVS, in magenta). Structures were superposed with CE (53), 

with Cα RMSD of 1.7 Å and 15% sequence identity.  (b) Structural superposition of two members of 

the ferredoxin-like fold, the C-terminal domains of human Elongation factor 1-γ (chain A of PDB 

code 1PBU, in cyan) and yeast Elongation factor 1-β (chain B of PDB code 1G7C, in magenta). The 

structures were superposed with CE, obtaining the Cα RMSD of 3.6 Å and 7.5% sequence identity. 

 

The relationship between both sequences could be extracted through the interaction of 

EF1G_YEAST with an elongation factor 1α (EF1A_YEAST) in the G protein family, 

obtained from tandem affinity purification experiments (DIP entry 17026E, between nodes 

6813N and 2250N). In addition, DIP contains an interaction between EF1B_YEAST and 
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TEM1_YEAST (a G protein) with the DIP entry code of 13895E (between nodes 6445N 

and 1691N), revealed by immuno-precipitation experiments. Therefore, EF1B_YEAST is a 

partner of EF1G_YEAST at level 2 (G2). Table 2 shows the set of proteins found in G0 of 

EF1G_YEAST with e-values between 10-3 and 1; there is only a single analog sharing the 

ferredoxin-like fold with EF1G_YEAST, and 2 false positives that do not appear in group 

G1,2. In this case, our method is both sensitive and specific, because the correct fold of 

EF1G_YEAST appears in group G1,2 without any false positives. 

 

Table 2. Partial results from a search for homologs of EF1G_YEAST (folds 47615, 52832, and 

54861; superfamilies 47616, 52833, and 89942) by PSI-BLAST. “Swiss-Prot”, SwissProt codes of 

the sequences found in G0 and aligned with the sequence of EF1G_YEAST with e-values between 

10-3 and 0.1 (Methods). “e-value”, the corresponding PSI-BLAST e-values. “Shares Fold” indicates 

whether or not the sequence shares a fold with EF1G_YEAST (ferredoxin-like fold). “SCOP Fold” 

and “SCOP Superfamily” indicate the SCOP fold and superfamily codes, respectively (multidomain 

proteins have multiple codes). “Appears in G1,2” indicates whether or not a sequence is found in the 

G1,2 set of EF1G_YEAST. 

 

 

 

 

 

 

 

 

DISCUSSION 

 

We described, implemented, and benchmarked a new method that uses information about 

both sequence similarity and protein-protein interactions to detect homology between 

remotely related protein sequences. The method was validated by a benchmark involving 

1,434 query proteins of known structure (Figures 1 and 2) and illustrated by two examples 

(Figure 3). Although the method was benchmarked by using known protein structures, it is 

equally applicable to detection of remote relationships between protein sequences without 

known structures because it does not rely on protein structure information. 

 

SwissProt e-value 
Shares 

Fold 

SCOP 

Fold 

SCOP 

Superfamily   

Appears in 

G1,2

SYEC_YEAST 0.027 no 52373 52374 no 

EF1B_YEAST 0.036 yes 54861 54984 yes 

SC14_YEAST 0.83 no 46928, 52086 46938, 52087 no 
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Generally, the function of uncharacterized proteins can be annotated in two fundamentally 

different ways (37). First, by establishing a sequence and/or structure similarity to another 

characterized protein; and second, by establishing a functional link to another characterized 

protein. The first group of methods includes sequence matching and threading (9, 11). The 

second group includes both experimental and computational methods, such as clustering by 

physical interactions (26), mRNA array expression profiles (38), analysis of gene fusion 

(30), phylogenetic profiles (39), and genomic association of genes (40). Our approach is 

unique in that it discovers homology by explicitly combining both sequence similarity and 

experimentally determined protein interactions. Therefore, it benefits from the databases of 

protein sequences, structures, and interactions. Another method infers fold and family 

membership from protein interactions (21), but not in combination with sequence similarity. 

While a few other sequence similarity-based methods, such as 3D-PSSM (22), also use 

functional information, this information is mined from scientific texts, not from lists of 

protein interactions. 

 

The benchmark clearly suggests that protein interaction data increase the specificity and 

sensitivity of fold and family assignment (Figure 2). Consequently, our method allows the 

assignment of fold and family to a higher percentage of known protein sequences without 

loss of accuracy. For example, the specificity of fold assignment at the PSI-BLAST e-value 

cutoff of 1 was increased from 54% for PSI-BLAST to 75% when combining sequence 

similarity and protein-protein interactions, with a concomitant increase of sensitivity for 

several percentage points. Similarly, the specificity of family assignment at the e-value 

threshold of 10-8 was increased from 70 to 87%, also with a slight increase in sensitivity. 

Moreover, at the e-value cutoff of 1, more than 90% of the correct fold assignments share 

the same family as the query, while only 65% of the correct fold assignments with PSI-

BLAST correspond to proteins with the same family code. This result was expected, given 

that our approach benefits from the conservation of interaction patterns usually related to the 

protein function and thus family classification. 

 

The accuracy and coverage of our method are limited by false positives and negatives of 

sequence matching by PSI-BLAST (41, 42) as well as by false and missing interactions in 

DIP (43). To minimize sequence matching problems, additional methods, such as profile-

profile searches (9), Hidden Markov Models (10), threading (44), and intermediate sequence 

search (41) can be used. As to the interactions, false positives rate and coverage can be 
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improved by probabilistic methods that rely on multiple sources of information about 

protein interactions (45) and by performing more experiments. Clearly, the coverage of the 

method will rise with the increase in the number of known protein-protein interactions that 

link query proteins to other proteins.  

 

There are also intrinsic limitations of the method. For example, some of the proteins in the 

same SCOP family do not share the same interactions (46), resulting in false positives of our 

method. In addition, current interaction databases, including the DIP database, list protein-

protein interactions, not domain-domain interactions. Therefore, the lack of distinction 

between a protein and a domain may also increase false positives when extrapolating links 

through the existence of common domains within proteins. This problem is reduced, but not 

eliminated, by not applying the extrapolation procedure to hub proteins. 

 

The combined method is applicable only to protein sequences and their homologs for which 

protein interaction data are available, in contrast to sequence comparison alone, which is 

applicable to all protein sequences. This limitation is quantified by the following two 

examples. First, between ~20% and ~50% of the proteins in the DIP-SCOP group have a 

partner in the G2 set (Figure 2c). Second, for specificity of 75%, sequence comparison by 

PSI-BLAST makes 30,302 pairs with correct fold assignments while our combined method 

finds 2,885 true positives of which 188 were not reported by PSI-BLAST. Two of these 

assignments are illustrated in Figure 3. We suggest that even the comparatively small 

coverage of the combined method is already useful in practice, given the two million known 

protein sequences that need to be related to each other; very few methods for 

characterization of proteins, experimental or computational, are applicable to most protein 

sequences and many proven methods are applicable to only a small fraction of all proteins. 

Moreover, the utility of our combined method is clearly increasing with the growth of the 

databases of known protein sequences and their interactions. We also expect that the idea of 

combining protein sequence comparison and protein interactions will enable additional 

future improvements in the matching of remotely related protein sequences. 

 

There are several fold assignment methods, such as profile-profile matching, Hidden 

Markov Models, and threading, that are more sensitive than PSI-BLAST. We did not assess 

the performance of our approach against these methods because we focused on the relative 

utility of protein interactions when added to the consideration of sequence similarity. 
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However, we do suggest that our use of protein interactions will sometimes result in correct 

fold assignments when all other methods fail, especially when the most sensitive fold 

assignment methods are used instead of PSI-BLAST in our approach.  

 

The proposed method is as applicable to establishing remote sequence-sequence matches as 

it is to fold assignment. However, we focused on fold assignment because of its importance 

in comparative protein structure modeling and structural genomics. The structural genomics 

initiative aims to experimentally determine carefully selected protein structures, such that 

most of the remaining sequences can be modeled with useful accuracy by comparative 

modeling (47). The number of experimentally determined structures for comparative 

modeling of most proteins based on at least 30% sequence identity to a known structure is 

estimated to be ~16,000 (48). A reduction of this number, while keeping the accuracy of the 

corresponding models constant, would reduce both the cost and time required by structural 

genomics to fulfill its aim (49-52). This reduction can be partly achieved by using more 

sensitive fold detection methods, such as the new method described here.  

 

We plan to further develop our method to make it applicable to large-scale comparative 

protein structure modeling, and so increase the number of modeled proteins in MODBASE, 

our comprehensive database of comparative models for all known protein sequences that are 

detectably related to a known structure (15). The proposed method is expected to be a useful 

tool for large-scale automated discovery of remote protein similarities, given its unique 

reliance on sequence similarity and protein-protein interactions. 
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CHAPTER VI 

DISCUSSION  

 
   “ The future has a way of arriving 
unannounced ” 
 
George Will 

 
   “ The best thing about the future is 
that it only comes one day at a time ” 
 
Abraham Lincoln 
 

 
“ A conclusion is the place where you got 
tired of thinking ” 
 
 Arthur Bloch 
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6.1 Discussion 

 
We have presented the work developed during this thesis by means of published (and 

submitted) research articles. Chapter I places our work into context by (i) describing the 

biological processes behind proteins and their interactions; (ii) describing the experimental 

methods used for characterizing proteins and their interactions; (iii) providing an overview 

of biological databases; (iv) reviewing the state of the art in software platforms dedicated to 

protein interactions analysis, visualization and integration; and (v) introducing the use of 

bioinformatics methods for cancer diagnostic, prognosis and treatment. Chapter II 

describes PIANA, the software platform developed during this work. In the two articles 

included in Chapter II, PIANA is shown to be a useful tool for integrating data from 

multiple sources and using the data to provide biological insights about proteins and their 

interactions. Moreover, Chapter II provides a description of the protein interaction data 

available in the public domain and describes the properties of experimental and predicted 

protein interaction networks. Chapter III introduces and evaluates a method (implemented 

within PIANA) for identifying proteins that perform their interactions through the same 

interacting motif. Moreover, the results of this method are used to characterize protein hubs 

(i.e. proteins with many interaction partners). Specifically, Chapter III shows that some 

previously observed relationships between the number of interactions of a protein and 

genomic features such as essentiality and evolutionary rate are actually more reflective of 

the number of interacting motifs in the protein. Chapter IV illustrates the biomedical use of 

PIANA by predicting cancer gene candidates based on the integration of multiple types of 

biological data. The analysis of the results reveals that cancer genes predicted by multiple 

methods are more likely to be known cancer genes than those predicted by each method 

independently. Finally, Chapter V briefly introduces three research articles where PIANA 

was used in a wet lab environment and one research article published before PIANA was 

developed. In summary, this PhD thesis consisted in designing (and implementing) a 

software platform and using it in different research contexts.  

One aspect to be highlighted for all the research articles included in this thesis is the 

importance of having access to as much information as possible. Most research results 

presented in the scientific literature are biased by the difficulties found to validate 

hypotheses on the full spectra of known data. The work performed during this thesis will 

148 
 



facilitate the use of all protein interaction data available, as demonstrated in the methods 

presented in Chapter III and IV. Moreover, the data integration approach presented here can 

be generalized to other types of biological data such as differential expression studies and 

gene regulatory networks. Having uniform and universal access to the plethora of data 

publicly available will be fundamental to the advance of molecular biology. 

Each research article included in this thesis discusses the implications of the presented 

results. As in any scientific endeavor, finishing up a project is only the starting point for a 

new project. In this section, we briefly describe several directions in which this work could 

be continued. 

6.1.1 Providing universal access to PIANA  

PIANA is already being used in third-party laboratories across the world and publications 

referring and using our work are commencing to appear [187, 218-221]. However, PIANA 

is currently a tool for bioinformaticians and laboratories interested in using PIANA needs to 

perform a local installation of the platform and its database. In most experimental contexts, 

local installations are out of reach due to technical limitations and lack of expertise. In order 

to have a greater impact on the research community, new means of accessing PIANA should 

be available. For example, developing a web server capable of performing PIANA routines 

would be of great help for biologists interested in having access to all known interactions for 

their proteins of interest. A preliminary implementation of a web interface to PIANA has 

been developed [222], but its capabilities should be extended to allow multiple users and 

configurations. 

One important aspect of open source software platforms is the involvement of the 

community within the development of the tools. PIANA features a highly modular 

architecture, and several developers have already contributed to improving it (e.g. [223]) 

However, in addition to participating in the development of PIANA, other researchers 

should be able to develop their own plug-ins to PIANA, in order to facilitate the 

implementation of new functionalities by external bioinformatics laboratories.  

As a final remark, it is important to highlight that PIANA is already being used in wet lab 

environments to help guide decisions on which experiments should follow genomic and 

proteomic studies [224, 225]. We hope to extend the use of PIANA in experimental contexts 

by pursuing the goals described above. Bioinformaticians were not grown to help 

experimental biologists and producing data for bioinformaticians is not the ultimate goal of 

experimental biologists; both are there to contribute to the understanding of mechanisms 
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behind life, and it is the combination of all forces that will drive us to success. In particular, 

computational biologists should always have a double way of thinking: 1) helping in the 

advance of research in computational methods, models and data storage; and 2) facilitating 

to biologists the necessary means for easily accessing to bioinformatics tools. PIANA is a 

tiny, but correct, step towards both goals. 

 

6.1.2 Representation and analysis of transient and permanent interactions 

In the current PIANA data model, a protein interaction network is composed of nodes 

(proteins) and edges (interactions between proteins). However, many interactions taking 

place in the cell would be more faithfully represented by groups of proteins (complexes) 

that interact with another protein (or complex). Currently, we are working on labeling 

interactions in PIANA as ‘permanent’ or ‘transient’ (see section 1.2.1) based on information 

from external repositories. The next step will be to allow the creation of network nodes 

consisting of several proteins. In particular, PIANA should be able to represent an 

interaction where one protein complex interacts with another protein. Currently, the 

complex would appear as separate proteins in the network. A more adequate representation 

would be one where the complex proteins are presented as belonging to a single entity. 

 

6.1.3 Biological Interactions And Network Analysis (BIANA) 

PIANA currently works at the protein-protein interaction level. However, many molecular 

interactions involve other biological entities such as DNA (e.g. transcription factors interact 

with DNA to regulate gene expression) or RNA (e.g. complexes such as the ribosome 

include protein-protein interactions, RNA-RNA interactions and protein-RNA interactions). 

Moreover, many biological processes are influenced by factors other than direct physical 

contacts (e.g. phosphorylation). Finally, gene regulatory networks are fundamental to 

understanding the biology of the cell.  PIANA should be able to handle these and other 

interactions taking place in the cell. This goal is currently being pursued and a preliminary 

redesign of the database behind PIANA has been performed to facilitate the transition from 

Protein Interactions And Network Analysis (PIANA) to Biological Interactions And 

Network Analysis (BIANA). 

One important limitation of all software platforms designed to work with protein-protein 

interaction data is that they see the network as a static entity. However, biological processes 
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are dynamic and depend on factors such as presence/absence of inhibitors and protein 

concentrations (e.g., many transient interactions won’t occur unless a minimum level of 

protein concentration is reached). Strategies to address these concepts should be 

implemented within PIANA. A first step towards this goal has been taken by allowing the 

user to restrict the view of the network to proteins within the same cellular compartment, or 

to those found co-expressed by gene expression studies. In the near future, we plan to move 

one step more towards dynamic networks by integrating into a single network protein 

interaction data with co-regulation information. 

All of the improvements highlighted here will imply soft modifications to the PIANA 

software architecture, a slight redesign of the database behind PIANA, the development of 

new parsers and the implementation of classes and methods that deal with new biomolecules 

and interactions. However, none of these modifications will imply any substantial changes 

to the fundaments of PIANA. 

 

6.1.4 Interaction Confidence Score 

PIANA is an important contribution towards creating tools that facilitate the correct storage, 

analysis and use of the interaction data available. However, most interaction data within 

PIANA comes from high-throughput the reliability of high-throughput methods (HT 

methods) for detecting protein-protein interactions has been questioned [43-45]. For 

example, a number of false positives in yeast two hybrid are plausible interactions (i.e. the 

two proteins do interact when one is facing the other) that do not take place in vivo (e.g. 

they are never coexpressed in the cell), while many interactions reported with the Tandem 

Affinity Purification method are in fact  a mere indication of two proteins participating in 

the same complex (see section 1.3.7 and [41, 43]). Different methodologies have been 

proposed to tackle the reliability of protein interaction data (see section 1.3.7), such as the 

“interaction generality” [61] and the IRAP* [62] methods.  

Most protein interaction repositories do not provide interaction confidence scores, and 

therefore, PIANA considers all interactions as being equally reliable. We are currently 

working on the implementation of a robust reliability score for interactions within PIANA, 

in order to allow outputting results at different levels of confidence.  
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6.1.5 Visualization of protein interaction networks 

Visualization is a vital aid in integrating and interpreting molecular interaction networks 

[142]. Currently, PIANA relies on third-party software for visually interpreting protein 

interaction networks. For example, PIANA produces outputs compatible with Cytoscape 

[184], a software environment for integrated models of biomolecular interaction networks. 

There are no plans to implement visualization capabilities within PIANA, but a more direct 

communication between PIANA outputs and visualization software should be addressed 

when PIANA becomes a web service (see setion 6.1.1). For example, implementing a plug-

for Cytoscape that allows users to use PIANA would be a convenient way of benefiting 

from both Cytoscape visualization tools and PIANA integration and analysis capabilities. 

 

6.1.6 Integrating sequence information into the method for delineating interacting 

motifs 

The method described in Chapter III delineates protein interacting motifs by relying on the 

observation that proteins with common interaction partners tend to interact with those 

partners through the same interacting motif. In this method, the protein interacting motifs 

(referred as iMotifs) are inferred from protein interaction data alone; no sequence or 

structure information is needed. However, a preliminary study on the combination of 

sequence and the inferred iMotifs showed promising results, as many iMotif assignments 

could be confirmed or corrected by aligning the proteins within the same iMotif category. 

Therefore, future implementations of the method in Chapter III will have to take into 

account the sequence of the proteins at the time of performing the clustering. Briefly, the 

method will consist of the following steps: 1) build the protein interaction network; 2) create 

the initial cluster interaction network by assigning one protein to each cluster; 3) iteratively 

fuse the most similar clusters until the similarity score drops below a predefined threshold. 

In this step, the similarity metric between two clusters will be calculated based on (i) the 

common interaction partners of the clusters and (ii) the multiple alignment obtained from all 

proteins within both clusters; 4) assign one iMotif identifier to each cluster with more than 

one protein and derive iMotif-iMotif interactions. In this step, two clusters with high overlap 

in terms of protein members will be fused if a common sequence pattern can be found 

between the two sets of proteins.  

Structure-based methods are the best placed for correctly identifying and classifying protein 

interfaces [226, 227]. However, these methods are limited by the relatively low number of 
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known 3D structures for proteins and their complexes, which results in a low coverage of 

the space of proteins and their interactions. Therefore, the question of combining iMotif 

assignments with structure-based approaches for the identification of binding sites should 

also be considered. For example, our method could be trained on structural binding sites 

assigned to proteins in the work of Kim et al. [136] and then use it to assign binding sites to 

proteins for which no structural information is available. 

 

6.1.7 PIANA and Diseases 

Protein interaction networks have been shown to be a useful approach to characterizing 

diseases caused by malfunctions in genes or proteins [130, 145, 147]. In this thesis, we used 

PIANA to predict cancer genes by integrating protein interaction networks, differential 

expression studies and structural, functional and evolutionary properties of genes and 

proteins. However, this integration required manual collection of expression data [216], and 

the application of PIANA to study other diseases (or cancer experiments) would require the 

definition of (i) what is considered a disease; (ii) which data is available for the disease of 

interest; and (iii) interpreting the disease based on the available data. Future work on 

PIANA should be directed towards automatically obtaining disease profiles and analyzing 

them in combination with molecular interaction data. For example, the PIANA database 

could be extended to contain (i) differential expression studies; (ii) gene copy-number 

alterations; (iii) co-expression data; (iii) third-party repositories of disease information such 

as the Mendelian Inheritance in Man (MIM) [228]; (iv) databases linking compounds and 

their target biomolecules [229]; and (v) databases with diseases and drugs used to cure them 

[230]. Ideally, PIANA would receive as input the disease of interest and all information 

would be combined to (i) provide an overview of the biological processes behind the 

disease; (ii) predict new proteins related to the disease; and (iii) propose drugs that 

activate/inhibit the disease proteins.  

 

6.1.8 Using PIANA to detect remote homologs  

The first article included in Chapter V describes and evaluates a method that uses both 

sequence similarity and protein interactions to identify relationships between remotely 

related protein sequences [231]. This method relies on the fact that homologous sequences 

share similar interactions, and therefore, the set of interacting partners of the partners of a 
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given protein is enriched by its homologs. The results presented in by Espadaler, Aragues et 

al. [231] were based on interactions from the Database of Interacting Proteins (DIP) [105]. 

However, DIP does not contain all protein interaction data that is publicly available, and 

therefore, the method would benefit from the use of a larger number of interactions. We are 

currently developing a web server for the method described by Espadaler, Aragues et al. 

[231] which will access to interactions retrieved by PIANA from DIP [105], MIPS [108], 

HPRD [232], BIND [107], IntAct. [104], BioGrid [110] and MINT [109]. We expect that 

the use of PIANA will augment the sensitivity and the applicability of the method and thus, 

a larger number of remote homologs will be detected for most proteins. 

 

6.1.9 The path is consensus, not integration 

A prerequisite to computational biology is the integration of heterogeneous experimental 

data, which are stored in numerous life-science databases. However, a wide range of 

obstacles that relate to access, handling and integration impede the efficient use of the 

contents of these databases [158]. Consequently and coherently, a large part of the work 

presented in this thesis has consisted in parsing and integrating data coming from multiple 

and heterogeneous sources. We have achieved a certain success at the integration of protein 

interaction data, and we are now able to work with an integrated network that contains 

405,808 interactions between 53,143 different proteins. However, the path towards optimal 

integration is not the use of integrative methods but rather building a consensus between the 

major players in the field. Recent years have seen an enormous activity in data 

standardization initiatives [74, 75, 169], nomenclature systems [163-166], literature markup 

languages [233] and controlled vocabularies [64]. However, these initiatives won’t be 

successful without substantial efforts dedicated to educating the research community in the 

use of standards and thus, their practical implementation and frequency of use is still far 

from optimal. Hopefully, future computational biology researchers will be able to dedicate 

most of their time to research, and parsing and integration will become antique concepts. 

The path to integration is consensus, not integration. 
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CONCLUSIONS  

This section describes in short the main achievements of the work presented in this thesis. 

 

 

 

 

1. A new software framework for integrating, managing and analyzing protein-protein 

interactions has been created from scratch. This software, PIANA, has been adopted 

as a work platform by most members of my laboratory, and externally in laboratories 

around the world. 

 

2. PIANA has been used to unify most public repositories of protein interactions into a 

single database. The analysis of interactions in this database has been used to assess 

the protein interaction data available in the public domain. The low overlap found 

between different sources of protein interaction data demonstrates the need for 

integrative methods that unify all interactions into a single network.  

 

3. A method for detecting groups of proteins with a common interacting motif has been 

described. The results from this method suggest that two properties of protein hubs 

previously attributed to their large number of interactions, (i) the high likelihood of 

being essential and (ii) the slow evolutionary rate, are actually more reflective of the 

number of interacting motifs in the protein hub. 
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4. A method for predicting cancer gene candidates has been described. The integration 

of protein interaction networks, differential expression data and structural, functional 

and evolutionary properties of cancer genes has been shown to outperform methods 

that rely on one single source of data.  

 

 

5. Protein-protein interactions have been shown to be useful at analyzing cancer and 

proposing potential cancer genes. In particular, predictions from our integrative 

approach have been shown to be reliable, and other cancer gene candidates have 

been validated in collaboration with wet lab experimentalists. 

 

 

6. In addition to the bioinformatics methods presented here, our work is a first step 

towards bridging the gap between experimentalist biologists and computational 

biologists. This has been achieved by creating a tool that has demonstrated its 

capabilities in contexts ranging from the answer of basic biological questions to the 

prioritization of cancer gene candidates. 
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EPILOGUE 

Coming from a computational science background, there was only one thing I could think of 

during my first months of bioinformatics sufferings: what are these people doing?  

In my previous life, I was used to more-or-less stable data models, well formatted input 

data, good understanding of mechanisms behind the subject of study and robust and flexible 

software. However, I was facing a world in which not much was known about the subject of 

study (i.e. biology), where data models changed overnight, data seemed to be formatted with 

the objective of maximizing the errors when parsing and, in most cases, software was a 

collection of scripts made on the fly. 

Somebody said that in order to beat your enemy you have to become like him. Now, I am 

proud to announce that I have become one of them: I produce my own each-release-is-

different database; my software is plagued with unorthodox pieces of code; and I don’t 

aspire to understand things before developing a hypothesis.  

Now, on the serious side –was I not serious previously?- there is one thing that not that 

many people in bioinformatics pay attention to, but that I would guess is as important as 

having a good understanding of biology: organization. Let me complain a bit: it doesn’t 

make sense that each bioinformatician in the world has his own parser for each database he 

utilizes; It doesn’t make sense that databases are not coherent even with respect to 

themselves; It doesn’t make sense that genes and proteins are identified by non-unique 

names that follow a “many to many” relationship with reality; It doesn’t make sense that a 

biologist starting a PhD in bioinformatics spends the first year of his PhD learning how to 

(incorrectly) parse data files; and it doesn’t make sense that most bioinformaticians, 

including myself, apply methods on the basis that “everyone does it”. There are many things 

in bioinformatics that do not make sense. However, bioinformatics has brought great 

advancements to the understanding of the biology of the cell. Imagine what would had 

happened (and will happen) if bioinformatics started making some more sense… 

Maybe I am writing this because I have become a scientist. Maybe I am just finishing my 

PhD and there is little energy left in my body. Maybe everyone in the world will read this 

and bioinformatics will become an organized science. Maybe not. 
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