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The research carried out in this thesis has been supported by a predoctoral

fellowship from BBVA, a predoctoral contract from REEM, and research

grants from the Spanish Government.





Abstract

Regulation of gene transcription is a complex process involving many

different proteins, some of which bind in a sequence-specific manner

to DNA motifs in the gene promoter. The need to maintain specific

interactions between transcription factors and proteins involved in the RNA

polymerase II complex is expected to impose constrains on the relative

position and spacing of the interacting DNA motifs. The present work

includes the development of a novel approach to identify motifs that show a

preferential location in DNA sequences and the implementation of a public

web application called PEAKS. We investigated if the arrangement and

nature of the most common motifs depended on the breath of expression

of the gene. We found differences that serve to illustrate that many key

specific regulatory signals may be present in the proximal promoter region

in mammalian genes. We also apply other methods for the identification of

specific transcription factors (TFs) involved in the co-regulation of a set of

genes. Data from experimentally-verified transcription factors binding sites

(TFBSs) support the biological relevance of our findings.
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Resum

La regulació de la transcripció dels gens és un procés complex que implica

moltes proteı̈nes diferents, algunes de les quals s’unexien a motius especı́fics

d’ADN localitzats a la regió promotora dels gens. S’espera que la necessitat

de mantenir les interaccions especı́fiques entre els factors de transcripció

i les proteı̈nes implicades en el complex de l’ARN polimerasa II imposi

limitacions en la posició relativa i l’espaiat dels motius d’ interacció amb

l’ADN. La feina presentada en aquesta tesi inclou el desenvolupament

d’un nou metode per l’identificació de motius que mostren una localització

preferencial en seqüències d’ADN i l’implementació d’una aplicació web

pública anomenada PEAKS. Hem investigat si la posició i la naturalesa

de la majoria dels motius més frequents depèn del rang d’expresió del

gen. Hem trobat diferències que serveixen per illustrar el fet que moltes

senyals clau de regulació gènica poden estar presents en la regió proximal

del promotor dels gens de mamı́fers. També hem aplicat altres mètodes per

a l’identificació de factors de transcripció (TFs) especı́fics involucrats en la

co-regulació d’un grup de gens. Dades de llocs d’unió dels TFs (TFBSs)

verificats experimentalment recolzen la rellevància biològica dels nostres

resultats.
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     En ninguna estructura orgánica encontramos una 

forma geométrica pura, en ninguno de los ritmos de su 

vida   una   periodicidad   exactamente   calculable. 

Parece como si la Idea tuviera que sacrificar algo de 

su pureza y de su divinidad esenciales cada vez que 

quiere encarnarse en la naturaleza.

 

                                                                                            CARL GUSTAV CARUS (1789­1869)
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1
Introduction

Summary

In this chapter I introduce some biological concepts about

transcriptional regulation. It also covers what is known about

regulatory motifs present in eukaryotic promoter sequences.

Finally, I also touch on some transcription factors features and

the in silico prediction of their binding sites.

1
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1.1 Overview

Gene expression varies in different cell types or in response to specific

signals. According to the central dogma of biology, if genetic information

that each individual inherits as DNA (the genotype) is to be converted into

proteins, which is largely responsible for the characteristics of the individual

(the phenotype), it must first be converted into an RNA product. RNA

synthesis, or transcription, is the process of transcribing a particular region of

a dsDNA sequence into a ssRNA sequence (see Figure 1.1). The mechanism

of transcriptional regulation is orchestrated by proteins called transcription

factors (TFs), which promote (as activators), or block (as repressors)

the recruitment of the RNA polymerase II (Pol II) complex. Moreover,

some RNA products have post-transcriptional regulatory properties. They

include microRNAs (miRNAs) and small interfering RNA (siRNAs), the so-

called non-coding RNA (ncRNAs) (Chen and Rajewsky, 2007). Therefore,

regulation of gene transcription is the main control point in the regulation of

gene expression and it depends on particular conditions and the cell type.

1.2 Complexity of transcriptional regulation

Context dependency

For a given locus there is a genomic regulatory context defined by several

components and the resulting transcription is the output of many regulatory

signals. The function of DNA-binding molecules, transcription factors and
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Figure 1.1: Transcription of two genes as observed under the electron
microscope. Molecules of RNA polymerase are visible as a series of dots
along the DNA with the newly synthesized transcripts (fine threads) attached
to them. From the lengths of the newly synthesized transcripts, it can be
deduced that the RNA polymerase molecules are transcribing from left to
right. Adapted from (Miller and Beatty, 1969).

histones is always context dependent. They have specific affinities for DNA

binding sites, and thus every sequence defines a unique affinity landscape

with respect to each molecule. The molecules that interact with and bind to

DNA result in a unique distribution of molecule-binding configurations at

each sequence and lead to a transcriptional output (Segal and Widom, 2009).

Epigenetic control

Epigenetic mechanisms can ensure that differential expression patterns are

stably inherited when cells divide. Basically, there are two epigentic mech-

anisms that are responsible of maintaining the heritable transcription states:

chromatin remodeling and DNA methylation.

DNA is packaged into chromatin thereby constraining the size of the

molecule that is approximately 2 meters of DNA per human cell. Chromatin

represents a repeating unit of histones and DNA that form the nucleosome.

Highly condensed chromatin (heterochromatin) is transcriptionally silent.

Further specific patterns of histone tail modifications attract or repel regu-
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latory proteins of the chromatin remodeling complex (Fischer et al., 2008).

Gene-specific transcription factors bound to specific sites in the genome are

known to recruit chromatin-remodeling factors and enzymes that covalently

modify histones. This leads to the binding of other regulatory factors that act

together with chromatin to create a permissive or non-permissive environ-

ment for gene expression (Hahn, 2008). During RNA synthesis, chromatin-

modifying factors are associated with the elongation complex, ahead of RNA

polymerase II, to generate a chromatin state that is permissive for transcrip-

tion.

Methylation of DNA essentially leads to a repression of transcription by in-

terfering with the binding sequence of transcription factors and through the

binding of methyl-CpG binding proteins (MBD) (Wade, 2001). CpG islands

(CGIs), short stretches of DNA that are often between 200 bp and 1 kb long,

frequently contain unmethylated CpG dinucleotides in vertebrates. They are

transcriptionally active genomic regions that contain multiple transcription

start sites (TSSs) (Juven-Gershon et al., 2006).

Promoter regions

The RNA polymerase preinitiation complex, together with TFs, binds to re-

gions upstream to the coding sequence, called gene promoter regions.

Transcription adapter proteins help recruiting basal transcription factors that

are assembled in the pre-initiation complex (PIC) (see Figure 1.2). The RNA

polymerase II complex is positioned at the transcription start site (TSS) by

the PIC. The basal promoter (or core promoter) is the region where the RNA

polymerase complex is recruited. The rest of the promoter corresponds to
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Figure 1.2: Transcriptional regulation and the pathway of RNA poly-
merase II transcription. Signaling pathways activate gene-specific transcrip-
tion factors that bind to gene-regulatory regions. Distant factors can inter-
act with more proximal factors through DNA looping. Transcription factors
can recruit chromatin-modifying factors and transcriptional coactivator com-
plexes. The co-activators function to recruit, and possibly to stimulate, the
activity of the transcription pre-initiation complex (PIC). PIC assembly can be
modulated by specific repressors (Mot1 and NC2). On initiation of transcrip-
tion, the RNA polymerase II (Pol II) carboxy-terminal domain (CTD) is phos-
phorylated by a cyclin-dependent kinase (CDK7). Transcription elongation
in higher eukaryotes is often blocked to generate a paused polymerase. The
elongating Pol II with the CTD phosphorylated at specific serines recruits sev-
eral factors that are involved in chromatin modification, transcription elonga-
tion, messenger RNA (mRNA) processing, mRNA transport and termination.
Long-range chromatin interactions, for example between insulator elements,
isolate chromatin domains to prevent the spread of regulatory signals. Taken
from (Hahn, 2008).

transcription factor binding sites (TFBS) that confer specificity to transcrip-

tion. In eukaryotes, there is no transcriptional activity from a promoter in

absence of specific transcription factors. In consequence, by default the tran-

scription is off (Wray et al., 2003). All promoters contain TFBSs for activa-

tors of the transcription, however only some contain TFBSs for repressors

(Davidson, 2001).
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Transcription factors can recruit chromatin-modifying factors, as well as

transcriptional coactivator complexes, to the vicinity of the transcription

start sites. The three-dimensional structure of DNA plays an important role

in determining promoter regions. It has been proposed that highly flexi-

ble regions can position nucleosomes just downstream of the TSS (Pedersen

et al., 1998). Recently, it has been shown that the nucleosome phasing relative

to the TSSs is directly correlated with RNA polymerase II (Pol II) binding in

humans (Schones et al., 2008).

Most core promoters do not have a single TSS but rather an array of closely

located initiation sites. Basically, two positional distributions of TSSs are

found in promoters, these with a single dominant peak, and these with a

general broad distribution (Kawaji et al., 2006). Transcription from single

peak promoters occurs from a single TSS or a localized cluster of TSSs in less

than 10 bp. However, transcription from CpG islands initiates from mul-

tiple weak start sites that are often distributed over a region of about 100

bp (Juven-Gershon et al., 2006). This is conceptually different from alter-

native promoters, in which core promoters are separated by clear genomic

space. Alternative promoters upstream from the coding sequence (CDS) can

be more or less active under diverse cell conditions. Furthermore, it has been

shown that differentially regulated alternative promoters are a common fea-

ture in protein-coding genes (Carninci et al., 2006).

Combinatorial control by transcription factors

For each gene, there are one or more control regions upstream or down-

stream of the transcription start site (TSS): promoters, enhancers, silencers

and insulators (see Figure 1.2). Usually, enhancer regions are thousands of
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base pairs upstream or downstream from the promoters that they controls

(Atchison, 1988). Transcription factors that bind to enhancers increase the

rate of transcription of the gene. However, transcriptional enhancers located

in introns can also affect both the Pol II elongation rate and alternative splic-

ing (Kadener et al., 2002). Insulators prevent the actions of an enhancer from

acting on the promoter of a downstream gene. When specific TFs bind to a

given genomic region and block transcription or decrease the transcription

rate, we use the term of silencer regions.

All these regulatory regions show a modular organization and each one

is formed of one or more discrete regions called cis-regulatory modules

(CRMs) (Yuh et al., 1998). CRMs produce the spatio-temporal expression

patterns by ’reading-out’ the concentrations of multiple TFs in specific cell

conditions. Each CRM contains a cluster of transcription factor binding sites.

We can consider these transcription factor binding sites (TFBSs) as the ele-

mentary units of this modular organization.

In many cases, TFs interacts in synergy, which means that their combined

effect is larger than the sum of their individual effects. In other cases, antago-

nistic effects occur when TFs are able to bind to overlapping sites (Masquilier

and Sassone-Corsi, 1992). Indeed, the regulatory competition between TFs

occurs because in many cases they can recognize the same sites, albeit with

different affinities. Gene transcription repressors can function by competing

for DNA binding with activators, by masking the activation interface (Wang

et al., 1997) or by direct interaction with general transcription factors (Song

et al., 1995).
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Down-regulation by ncRNAs and NMD

For many years the term ’gene’ has been synonymous for genomic re-

gions encoding messenger RNA (mRNAs) that are translated into protein.

However, recent genome-wide studies have shown that plant and animal

genomes are pervasively transcribed and produces thousands of regulatory

non-protein-coding RNAs (ncRNAs) (Yazaki et al., 2007). Short interfering

or silencing RNAs (siRNAs) and microRNAs (miRNAs) are components of

the RNA based mechanism of gene regulation, and can silence genes at the

transcriptional and post-transcriptional levels. Mature miRNA molecules

are either fully or partially complementary to one or more messenger RNA

(mRNA) molecules, and their main function is to post-transcriptionally

down-regulate gene expression. Recent studies indicate an alternative regu-

latory pathway is operative in diverse organisms, including plants and meta-

zoans, where siRNAs have been shown to mediate transcriptional gene si-

lencing (TGS) (Morris, 2008). TGS is archieved by the anti-sense strand of the

siRNA targeting chromatin remodeling complexes to the specific promoter

region. This siRNA targeting results in epigenetic modifications, rewriting

of the local histone code and silent state chromatin marks (Pikaard, 2006).

Once in the cytoplasm, mRNAs are further subjected to translation-

dependent surveillance. Here a process called nonsense-mediated mRNA

decay (NMD) provides a way to degrade abnormal mRNAs that encode

potentially deleterious truncated proteins. It has been estimated that one-

third of naturally occurring alternatively spliced mRNAs are also targeted

for NMD, potentially providing an additional mechanism to maintain cor-

rect levels of gene expression (Lejeune and Maquat, 2005).
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The ENCyclopedia Of DNA Elements (ENCODE)

The ENCyclopedia Of DNA Elements (ENCODE) project is an interna-

tional consortium that aims to identify all functional elements in the hu-

man genome sequence (ENCODE Project Consortium, 2004). During the

year 2009, the ENCODE project released the first freeze (November 2008) of

whole-genome experimental data produced for the production phase. They

have included transcription factor binding sites of 12 transcription factors

and RNA polymerase II in 7 cell types, histone modifications, DNA methy-

lation, insulators and transcription maps.

We are only beginning to understand how to integrate all these regulatory

signals into complex regulatory circuits. The results of ENCODE project will

help us to understand the relations between cell conditions, cell pathways

and genome-wide regulatory landscapes to characterize the regulatory cir-

cuits.

1.3 Transcription factors

Transcription factors (TFs) are proteins that bind to short DNA sequences

(5-20 bp.). They can activate or repress the recruitment of Pol II to promoter

regions, acting alone or as part of a protein complex. Usually, promoter re-

gions contain 10 to 50 binding sites for 5 to 15 different transcription factors

(Arnone and Davidson, 1997).
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Cis and trans regulatory elements

A cis-regulatory element is a region of DNA involved in the regulation of

gene expression. TFBSs are cis-regulatory elements mainly organized into

CRMs. In contrast, transcription factors are trans-regulatory elements (or

trans-activating factors) that interact with CRMs. The functionality of these

cis-regulatory elements depends both on their accessibility and the relative

amount of active transcription factors.

There are two basic mechanisms to regulate the potential activity of TFs:

controlling the synthesis of the factor or regulating its activation. Synthesis

and degradation are the basic mechanisms to control cell concentrations of

TFs. In addition, alternative splicing (Shen et al., 1991) or translational reg-

ulation (Morris and Geballe, 2000) results in TF isoforms with distinct regu-

latory functions. However, protein synthesis is metabolically expensive and

does not have the necessary rapid response time required for the regulation

of inducible gene expression. Protein-ligand binding, protein-protein inter-

actions and protein phosphorylation are cell mechanisms to rapidly regulate

the function of TFs.

Phenotypic diversity between organisms may arise from changes in the reg-

ulation of gene expression, in addition to differences in the gene repertory

(King and Wilson, 1975). A particular TF family may have different roles

among eukaryotes, whereas others are specific to particular lineages. Com-

parative studies have shown that, for many TFs, the DNA-binding domain is

highly conserved among eukaryotes while the remaining protein sequence

is often very divergent (Riechmann et al., 2000). Protein-protein interaction

and activation domains are usually located in the less conserved protein re-
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gions. These domains include amino acid (AA) tandem repeats, which can

rapidly change their length due to the action of replication slippage (Fondon

and Garner, 2004). In any case, most of the changes in regulatory networks

are likely to occur in cis; changes in trans (transcription factors) may often

have too strong effects (Wray et al., 2003).

Diversity of DNA binding domains

The genome of multicellular organisms contains a large number of diverse

genes encoding transcription factors. Each of which has one or more DNA

binding domains (DBDs) that define its sequence-specificity. They can be

classified into families according on to structure of their DNA-binding do-

mains, which can provide clues to their functions; for example, home-

odomain containing TFs are often associated with developmental processes,

and those in the interferon regulatory factor families are generally associated

with triggering immune responses to viral infections (Luscombe et al., 2000).

Luscombe et al, classified eukaryotic and prokaryotic DNA-binding proteins

into eight different structural groups, which further can be classified into 54

families (see Table 1.1). Into this classification they include TFs, histones,

polymerases and enzymes. Many relevant families of vertebrate TFs were

classified in 6 groups. The ’β-sheet’ group only contains the TATA-box bind-

ing protein. The High movilty group (HMG) and MADS-box are members

of the ’Other α-helix’ group that also include histones. The ’Enzyme’ group

does not contain TF families and clusters diverse enzymes that do not have

a common structural motif for DNA binding.
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Table 1.1: Groups of DNA binding domains

DBD group Fam PP EP TFs family examples
1. Helix-turn-helix 16 32 28 homeodomain, ETS, TFIIB
2. Zinc-coordinating 4 0 23 C2H2 ZF, hormone receptor
3. Zipper-type 2 0 10 bZIP, helix-loop-helix
4. Other α-helix 7 1 5 HMG, MADS-box
5. β-sheet 1 0 8 TBP
6. β-hairpin/ribbon 6 10 1 T-box
7. Other 2 0 8 REL, Stat
8. Enzyme 16 43 68

Fam = number of protein families in the DBD group, PP = number of prokaryotic
proteins in the group, EP = number of eukaryotic proteins in the group, TFs family
examples = examples of relevant vertebrate TFs families. Adapted from (Luscombe
et al., 2000).

The proportion of TF encoding genes is different between organisms. Com-

parative studies of diverse archea, bacterial and eukaryotic genomes show

that the number of TFs increases more rapidly relative to the total number

of genes (van Nimwegen, 2003). A recent census estimates that there are

around 1,400 transcription factors encoded in the human genome, with three

families dominating 80% of the repertoir: C2H2 zinc-finger (675 TFs), home-

odomain (275 TFs) and helix-loop-helix (87 TFs) (Vaquerizas et al., 2009).

Protein-DNA interactions

The structure of the DNA binding domain determines how it interacts with

the DNA recognition motif. Moreover, other protein regions may also inter-

act with the DNA molecule to stabilize the complex (Kurokawa et al., 2009).

Hydrogen bridges and van der Waals force are the main determinants of the

specificity of the amino acid sequence to a particular DNA sequence. How-

ever many TFs interact with the DNA as dimers or complexes, which in turn

affects their protein structure and binding domain exposure.
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Recent in vitro experiments were performed to determine the binding speci-

ficities of several mouse TFs. This technique is called protein binding mi-

croarray analysis (PBM) and is used to determine the binding affinities to

all possible 8-mers in a unbiased manner. PBMs contain 60-mer probes in

which 8-mers occur several times in different sequence context (Berger et al.,

2006). The DNA binding affinities of 168 homeodomain TFs revealed se-

quence preferences and correlation between amino acid sequence of the DBD

and the DNA binding profile. Using the same technique, Badis and col-

leagues found subtle preferences in transcription factor binding affinities,

dependencies between positions, and alternative usage of protein binding-

domains in 104 TFs that contained 22 DNA binding domain classes (Badis

et al., 2009).

In general, different binding domain classes recognize different portions of

the sequence space. Although many TFs from a binding domain class bound

to the same highest-affinity 8-mers, they preferred different lower-affinity

sites (see Figure 1.3). They also observed clear secondary DNA binding pref-

Figure 1.3: Clustergram of k-mers for the Sox family of transcription
factors. 310 8-mers with significant scores for at least one of the 21 TFs.
The rows corresponding to 8-mers were arranged to group those with shared
sequence patterns. Adapted from (Badis et al., 2009)

erences for nearly half of the 104 mouse TFs. The secondary motifs could be
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classified into four different categories: variable spacer length, position in-

terdependence, multiple effects and alternate recognition interfaces(see Fig-

ure 1.4). An example of variable spacer length was Jundm2, a member of

the basic leucine zipper (bZIP) structural class, which can bind to alternative

motifs with a spacer of 1 or 2 nucleotides. Previous reports indicated that

different bZIP dimers bind to the CRE (TGACGTCA) and TRE (TGAGTCA)

cis-regulatory elements with different affinities (Park et al., 1999). Binding

motifs showing position interdependencies made up almost 19% of the TFs.

Interestingly, such interdependences were not always in adjacent positions.

Multiple effects consisted of a combination of position interdependencies

and variable distances separating different parts of the motif. In other cases,

TFs recognize their DNA binding sites through multiple, completely dif-

ferent interaction modes (alternate recognition interfaces). They can bind

through alternate domains or by switching between alternative structural

conformations.

Figure 1.4: Examples of TFs with different class of secondary binding
motifs. Adapted from (Badis et al., 2009)
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1.4 Regulatory motifs in eukaryotic

promoters

Two functional parts are always present in promoters of eukaryotic genes,

but they are often difficult to recognize only from the information in the

DNA sequence. One part is the basal promoter (or core promoter), where

the RNA polymerase complex is recruited, and the other part corresponds

to modules that confer specificity to transcription. The composition and or-

ganization of these modules and TFBSs vary hugely in different eukaryotic

genes (Wray et al., 2003).

In mammals, sequence conservation upstream of the TSS is related with the

function of the gene (Lee et al., 2005). Genes involved in complex processes

such as development or cellular communication present a more conserved

promoter, presumably because they contain more TFBSs. On the other hand,

promoters of genes involved in basic processes, like ribosomal metabolism,

present a limited conservation which indicates that they are simpler. Many

of these genes are housekeeping, that is, expressed in all tissues, so they re-

quire less specific regulation (Farré et al., 2007).

Functional assays in cell cultures show that the region between -500 to +50

bp. relative to the TSS is sufficient to induce transcription of most human

genes (Trinklein et al., 2003). However, mutations in the regulatory motifs

can modify the binding affinity of the factors, and affect gene expression.

For instance, one single mutation can lead to the acquisition of a new bind-
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ing motif. The modular promoter organization implies that the expression

in one tissue may evolve independently of the expression in another tissue

(Wray et al., 2003).

Figure 1.5: Core promoter elements Common cis-regulatory elements in
core promoters are usually found at specific distances relative to the TSS.
Any specific core promoter may contain some, all, or none of these motifs.
The BRE is an upstream extension of a subset of TATA boxes. Different TFs
bind upstream adjacent to the TATA-box in other genes. The DPE consensus
was identified in Drosophila core promoters. The Inr consensus sequence is
shown for both Drosophila (Dm) and humans (Hs). Taken from (Butler and
Kadonaga, 2002).

There are several cis-regulatory elements which include diverse motifs, such

as the TATA box, the initiator (Inr), the TFIIB recognition element (BRE), and

the downstream core promoter element (DPE), that are commonly found in

eukaryotic core promoters (see Figure 1.5). Each of these core promoter ele-

ments is found in some but not all core promoters. It appears that there are

no universal core promoter elements (Butler and Kadonaga, 2002). Each of

these motifs has specific functions related to the transcription initiation pro-

cess. Distances between binding motifs result from requirements of proteins

that interact with each other to regulate the transcription initiation complex.
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The basal transcription factor TFIID is part of Pol II initiation complex. It

comprises the TATA-box binding protein (TBP) and different associated fac-

tors (TAFs). A trimeric complex of TFIID with TBP, TAF250 and TAF150 bind

to sequences that contain the TATA-box and the Inr regulatory elements at a

given distance range. The conformation of the protein-DNA complex and

binding motifs suggest that both structure and the primary sequence are

involved in the sequence recognition (Chalkley and Verrijzer, 1999). Two

different sequence-specific DNA-binding factors, TFII-I and YY1, have been

found to interact with the Inr (YCANTY). TFII-I is a basic-helix-loop-helix

(bHLH) protein that binds to Inr and the E-box (CACGTG) elements and

stimulates transcription in vitro. In addition, other TFs such as E2F and USF

can also stimulate transcription when bound to core promoters elements in

specific genes (Smale, 1997).

CpG islands typically lack TATA-box motifs, but contain multiple GC-box

motifs, which are bound by Sp1 and other related transcription factors (But-

ler and Kadonaga, 2002). In addition, transcription from CpG islands initi-

ates from multiple weak start sites that are often distributed over a region of

about 100 nt, in sharp contrast to transcription from TATA or DPE-dependent

core promoters, which occurs from a single site or localized cluster (of less

than 10 nt) of sites.

Regulatory motifs on promoters can be identified by virtue of their preferen-

tial location relative to the TSS. Analysis of occurrences of all possible 8-mers

in 13,010 human promoter sequences found 9 significant motifs that cluster

within 100 bp of the TSS (FitzGerald et al., 2004). Seven of these motifs cor-

responded to known binding sites for the TFs: Sp1, NF-Y, ETS, CREB, TBP,

USF, and NRF-1 (see Figure 1.6).
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Figure 1.6: Positional distribution of cis-regulatory motifs Positional
distribution of 8-mers and consensus sequences that correspond to 6 known
TFs are show. The y-axis (bins) corresponds to the number of human
promoters that contain the corresponding motif in this sequence range
relative to the TSS (x-axis). SP1 Three Sp1 binding sequences and a non
peaking single base variation that does not correspond to a Sp1 binding
site. TATA Strand-specific localization of the TATAAAD sequence. USF
Two USF (TCACGTGG, TCACGTGA) sequences corresponding to E-boxes
(CANNTG). CREB Three CRE-box (TGACGTCA) like sequences. NRF1
Three NRF-1 binding sequences. ETS ETS core (CCGGAA), consensus
sequence (VCCGGAARY), and a peaking (VGCGGAARY) and non-peaking
VCCGGAAYR variant. Adapted from (FitzGerald et al., 2004).
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Correlation of regulatory motif and gene expression data from 29 tissues

indicate that motifs corresponding to ETS and NRF-1 factors are predom-

inantly found in the promoters of housekeeping genes. On the contrary,

TATA-boxes are abundant in the promoters of tissue-specific genes.

Regulatory motifs conservation

TBP is essential for transcription all three eukariotic RNA polymerases

(I,II,III). Therefore the TBP and TBP-related factors are quite well conserved

among eukariotes. Although bacteria lack TBP, archaea use a protein that

is structurally quite similar to the eukaryotic TBP. The TATA-box is a cis-

regulatory element found in all eukaryotes, but proportion of TATA promot-

ers are different among them. Estimations using a small set of promoters

show that 43% of core promoters in Drosophila (Kutach and Kadonaga, 2000)

and 32% of human promoters contain a TATA box (Suzuki et al., 2001). How-

ever a recent study (Gershenzon and Ioshikhes, 2005) estimated that only

around 5% of human promoters contain a TATA-box.

In organisms ranging from plants to mammals, the TATA box is typically

located about 25-30 bp. upstream of the TSS. In contrast, in yeast its posi-

tion is more variable. Although the consensus sequence for the TATA box is

TATAAA, it has been observed that a wide range of sequences can function

as a TATA box in yeast (Singer et al., 1990). The eukaryotic TATA box closely

resembles the prokaryotic 10 bp. upstream Pribnow-box (TATAAT), which

is recognized and bound by a subunit of RNA polymerase, but is located

further upstream from the start site.
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Distribution curves of 6-mers were evaluated to identify positional over-

representation of DNA motifs with respect to the TSS or the translation start

site (ATG). Resulting motifs from promoter datasets of diverse model species

were compared. They included Arabidopsis thaliana, Caenorhabditis elegans,

Drosophila melanogaster and Saccharomyces cerevisiae. In addition to the TATA-

box, other cis-regulatory motifs were shared between eukaryotic promoters

(Berendzen et al., 2006).

Phylogenetic conservation was used to identify putative cis-regulatory mo-

tifs, in mammalian genes, 5’ UTR and 3’UTR regions (Xie et al., 2005). Com-

mon conserved motifs of 5’ UTR and 3’UTR regions were found among

vertebrates. This led to the identification of many known transcription-

factor binding motifs, miRNA binding sequences and new putative regu-

latory motifs with unknown function (Xie et al., 2005). Many of the already

known TF binding motifs clustered near the TSS, including the TATA-box,

ETS/GABP, NRF-1, E-box (USF), CAAT-box, CRE-box, TRE-box, Sp1 and

YY1. From the 3’-UTR analysis they estimated that miRNAs are involved

in post-transcriptional regulation of at least 20% of human genes. Taken to-

gether these observations point to the existence of a eukaryotic promoter

motif architecture that has been conserved throughout evolution.

1.5 In silico prediction of regulatory motifs

The annotation of genomes has been focused on identifying protein coding

regions and predicting gene function, often leaving aside the prediction of

regulatory elements in non-coding sequences. Regulatory regions play an

essential role in gene function, but predicting them continues to be a chal-
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lenge. Coding sequences have a regular and direct relationship with their

immediate phenotype, which is a specific sequence of amino acids. On the

contrary, the regulatory sequences have an indirect, not-linear, and context

dependent relationship with their immediate phenotype: a particular profile

of transcription (Wray et al., 2003).

In general, methods for the prediction of regulatory motifs are based on pat-

tern matching or pattern discovery algorithms.

Pattern matching: A regular pattern is obtained from a group of TFBSs. Ex-

perimentally validated sequences are usually longer than the actual binding

sequences and the first step is the alignment of the binding sites. A pattern

or motif is often represented as a consensus sequence or as a Position Weight

Matrix (PWM) also called Position Specific Weight Matrix (PSWM). A letter

of the IUPAC code that represent the nucleotide composition of each column

of the alignment is assigned for each position of the consensus sequence.

This kind of representation loses information on the relative frequencies of

nucleotides at each position. The PWM model better reflects the binding

preferences at each position using the normalized frequency of the four pos-

sible nucleotides. Given a particular DNA sequence a quantitative score can

be calculated by summing the values that correspond to the observed nu-

cleotide at each position. For large and representative collections of bind-

ing sites, the scores are proportional to binding energies (Stormo, 2000). Li-

braries of PWMs of specific transcription factors of diverse organisms are

available in several databases. JASPAR (Vlieghe et al., 2006) and TRANS-

FAC (Matys et al., 2006) are the most relevant for vertebrate TFs. Several

programs that use PWMs have been developed to predict TFBS, some of
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which are available on-line and contain their own PWM libraries: Match1

(Matys et al., 2006), ConSite2 (Sandelin et al., 2004) or PROMO 3 (Farré et al.,

2003). Other representations such as suffix trees have been used to predict

TFBSs. Although the accuracy of PWM models has been questioned (Benos

et al., 2002a) they are the most popular method for predicting binding sites.

Pattern discovery: Consist of detecting common motifs in a group of un-

aligned sequences. The objective functions for each method are similar, max-

imizing likelihoods or likelihood-ratios, but the methods for searching the

space of possible alignments are very different. CONSENSUS is a program

based on a greedy strategy that progressively adds sub-sequences to a set

of alignments where each iteration extends a bounded number of partial

alignments (Hertz et al., 1990). MEME is an expectation maximization (EM)

method that considers all sites of the training data simultaneously and con-

verges to a local maximum (Bailey and Elkan, 1994). The gibbs sampling

algorithm is a stochastic variant of the EM method. Gibbs sampling and

expectation maximization algorithms are broadly used for the discovery of

regulatory motifs such as TFBS profiles. Most of the programs obtain motifs

modeled as PWMs use for subsequent, by pattern matching programs.

A set of transcriptionally co-regulated genes under specific conditions is

likely to be regulated by a common set of TFs. Many methods have been

developed to predict relevant TFBSs in a set of sequences. They are based on

word counting (k-mers), pattern matching (PWM) or pattern discovery algo-

rithms. Most of them use phylogenetic footprinting or over-representation

methods to predict common motifs. Although single PWM predictions may

1http://www.gene-regulation.com/pub/programs.html
2http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite
3http://alggen.lsi.upc.es

http://www.gene-regulation.com/pub/programs.html
http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite
http://alggen.lsi.upc.es
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Table 1.2: In-silico methods to detect common cis-regulatory motifs

Strategy Base motifs Organisms PB Reference
CRMs PWM Hs Wasserman and Fickett (1998)
global OR 7-mer 14 spp. Tompa (1999)
neural networks GS Sc Workman and Stormo (2000)
pattern discovery EM Dm + Ohler et al. (2002)
bayesian networks GS Ec Qin et al. (2003)
global OR 8-mer Hs + Marino-Ramı́rez et al. (2004)
pos. clustering 8-mer Hs + FitzGerald et al. (2004)
paired motifs PWM Ec Bulyk et al. (2004)
bayesian networks GS Sc, Ce Beer and Tavazoie (2004)
PC MCS Hs Kolbe et al. (2004)
PC MCS Hs + Xie et al. (2005)
PC/global OR PWMs Hs, Mm Sui et al. (2005)
pos. disequilibrium 6-mer Sc, Ce, Dm, At + Berendzen et al. (2006)
CRMs PWM Mm + Sharov et al. (2006)
pos. OR PWM/6-mer Mm + Bellora et al. (2007b)
meta-alignment PWM Hs, Mm Blanco et al. (2007)

PB = positional bias of putative regulatory motifs were evaluated and detected (+). base
motifs = origin of the evaluated motifs; k-mers = all possible k-mers; PWM = collections
of Position Weight Matrices of known TFs; GS = Gibbs Sampling; EM = Expectation
Maximization (MEME); MCS = Motif Conservation Score calculated using ortholog promoter
multiple alignments; PC = phylogenetic conservation; pos. = positional; OR = over-
representation; CRMs = Cis-Regulatory Modules stochastic models; Organisms: 14 spp. = 14
prokaryotic species, At = Arabidopsis thaliana, Mm = Mus musculus, Ce = Caenorhabditis elegans,
Dm = Drosophila melanogaster, Ec = Escherichia coli, Hs = Homo sapiens, Mm = Mus musculus.

contain a high rate of false positives, over-represented predicted TFBSs are

likely to be functionally relevant as the background noise is accounted for.

However, one has to bear in mind that motif discovery algorithms and over-

representation methods are highly dependent on the background model.

Other methods that analyze the positional distribution of motifs to predict

regulatory motifs, have been used on large promoter datasets. Sophisti-

cated methods include those based on stochastic CRM definitions, bayesian

networks, or meta-alignment of predicted TFBSs. Examples of 16 different

methods applied to diverse sets of promoters are summarized in Table 1.2.

In general, the specificity and sensitivity of such methods has not actually
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been estimated, implicitly because the partial coverage of the experimental

evidence.

Although many regulatory motifs can be identified by virtue of their over

representation or their conservation, others motifs might be difficult to iden-

tify. Indeed, low affinity binding sites, alternative recognition motifs and

non-conserved functional binding sites (Odom et al., 2007) are common

trends of TFBS in mammalian promoters.
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The work developed during the PhD was focused on improving our under-

standing of the organization of the regulatory signals present in the proximal

promoter region relative to gene expression. The objectives of this thesis can

be summarized as follows:

1. Development a novel computational method for the determination of

positional dependent motifs on a set of DNA or RNA sequences.

2. Analyse relative location and spacing of cis-regulatory motifs in

promoter of housekeeping and tissue-specific genes.

3. Identification of specific transcription factors involved in the co-

regulation of a set of genes.





3
Results

Summary

In this chapter, I include 3 articles that are directly relevant

to my thesis. Two of them are published. The first article

is an application note describing a novel method and a web

application to determine motifs with positional bias. Further

research on mouse promoters using the method correspond

to the second article. The third one describes a procedure to

identify transcription factors involved in the regulation of a set

of co-expressed genes.
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3.1 PEAKS: identification of regulatory 
motifs by their position 
 
 
Abstract 
 
Many DNA functional motifs tend to accumulate or cluster at specific gene 

locations. These locations can be detected, in a group of gene 

sequences, as high frequency peaks with respect to a reference position, 

such as the transcription start site (TSS). We have developed a web tool 

for the identification of regions containing significant motif peaks. We 

show, by using different yeast gene datasets, that peak regions are 

strongly enriched in experimentally-validated motifs and contain 

potentially important novel motifs. 

Availability: http://genomics.imim.es/peaks 

 
 
 
 

Bellora N, Farré D, Mar Albà M. 
PEAKS: identification of regulatory motifs by 
their position in DNA sequences. 
Bioinformatics. 2007 Jan 15;23(2):243-4. 

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/2/243
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/2/243
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3.2 Positional bias of general and

tissue-specific regulatory motifs

Abstract

Background: The arrangement of regulatory motifs in gene promoters, or

promoter architecture, is the result of mutation and selection processes that

have operated over many millions of years. In mammals, tissue-specific tran-

scriptional regulation is related to the presence of specific protein-interacting

DNA motifs in gene promoters. However, little is known about the relative

location and spacing of these motifs. To fill this gap, we have performed a

systematic search for motifs that show significant bias at specific promoter

locations in a large collection of housekeeping and tissue-specific genes.

Results: We observe that promoters driving housekeeping gene expres-

sion are enriched in particular motifs with strong positional bias, such as

YY1, which are of little relevance in promoters driving tissue-specific ex-

pression. We also identify a large number of motifs that show positional bias

in genes expressed in a highly tissue-specific manner. They include well-

known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kid-

ney and small intestine, or RFX motifs in testis, as well as many potentially

novel regulatory motifs. Based on this analysis, we provide predictions for

559 tissue-specific motifs in mouse gene promoters.
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Conclusion: The study shows that motif positional bias is an important 

feature of mammalian proximal promoters and that it affects both general 

and tissue-specific motifs. Motif positional constraints define very distinct 

promoter architectures depending on breadth of expression and type of 

tissue. 

 
 
 

Bellora N, Farré D, Albà MM. 
Positional bias of general and tissue-specific 
regulatory motifs in mouse gene promoters. 
BMC Genomics. 2007 Dec 13;8:459. 

http://www.biomedcentral.com/1471-2164/8/459/abstract/
http://www.biomedcentral.com/1471-2164/8/459/abstract/
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3.3 Identifying specific regulatory motifs in

co-regulated genes

Abstract

Large scale transcriptomic experiments such as microarray-based gene

expression profiling provide lists of genes that are co-regulated under

particular conditions. In many cases such gene co-regulation results from

transcriptional activation or repression by common transcription factors that

interact with cis-regulatory motifs present in their promoters. Sequence

specific transcription factors binding sites (TFBSs) can be predicted using

position weighted matrices (PWMs). However, individual predictions have

a high rate of false positives due to the promiscuity of binding sites and the

model itself. A useful strategy to obtain a confident set of regulatory motifs is

measuring their signal to background ratio and selecting those significantly

overrepresented. We have set up one such method and we have used it to

identify highly specific motifs in promoters of co-expressed genes in a set of

genes of interest. In addition, the motifs can be selected in virtue of their

level of conservation in vertebrate syntenic regions. The method can also

be applied to detect other unknown cis-regulatory motifs by measuring the

overrepresentation and conservation of DNA words or k-mers.





Identifying specific regulatory motifs in
co-regulated genes

Method overview

We have developed a method, called MOR, to identify regulatory motifs that are

highly specific of a group of genes under study. The statistical significance of the

motifs is tested using as a background model the rest of promoter sequences, which

filters out those motifs that are common in promoters in general, and leaves only

motifs which are dataset-specific. Affymetrix probe IDs or ENSEMBL gene IDs are

mapped to their corresponding refSeq IDs using Ensembl version 55 downloaded

from BioMart (Smedley et al., 2009). Complete genome sequences and annotations

of human, mouse, fly and yeast were downloaded from UCSC (Karolchik et al.,

2008). We used refSeq experimental mRNA annotations to determine transcription

start site (TSS) positions and extract their corresponding promoter sequences (see

Table 1). In yeast we have used a genome wide full-length cDNA analysis (Miura

et al., 2006) to determine the TSS position.

Promoter regions were extracted using two diverse length intervals, covering 700

bp. or 2000 bp.: from -1000 bp. to +1000 bp., and -600 bp.to +100 bp., relative

to the TSS. The length can be chosen at the beginning of the analysis. Regions

of alternative or bi-directional promoters often overlap. Such overlap interferes

on the statistical analysis of sequences because occurrences of predicted TFBSs are

counted several times. We select all annotated promoters for the input dataset, the
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Table 1: Available promoters per organism

organism genome version promoters

Homo sapiens hg18 (NCBI Build 36.1) 26280

Mus musculus mm9 (NCBI Build 37) 21585

Drosophila melanogaster dm3 (BDGP Release 5) 21158

Saccharomyces cerevisiae sacCer1 (SGD) 3431

remaining promoters are kept as background dataset. Then overlapping regions

are eliminated in both datasets, keeping only independent ones. The method can

use available collections of PWMs, such as TRANSFAC (Matys et al., 2006) or JAS-

PAR (Vlieghe et al., 2006), consensus motifs (CNS) or DNA words / short oligomers

(k-mers).

In order to identify motifs that occur more frequently than expected and the pro-

portion of genes with motifs, we compare the distributions of the input and back-

ground datasets. We use the non-parametric MannWhitney-Wilcoxon test (mww)

(R Development Core Team, 2008) for assessing whether two independent samples

of observations come from the same distribution. Significant motifs are selected

based on mww p-value and the ratio between the mean number of genes with sites

in the input and background datasets. A very large number of predictions for a

given PWM often indicates poor matrix quality. With this test we also implicitely

eliminate those low quality matrices.

Figure 1 shows the result output of an over-represented motif, the TATA-box, in the

analysis with TRANSFAC vertebrate PWMs of a dataset of 154 human genes reg-

ulated by NF-kappaB on 700bp promoter regions. Columns correspond to dataset

name (dataset), number of promoters (n), TF or motif class and representative
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PWM (class/PWM), the sequence logo of PWM matches (sites logo), number and

percentage of promoters with at least a site (promoter with sites), ratio between

mean sites (sites log2), MannWhitney-Wilcoxon test p-value (mww pval), sites con-

servation (cnsv log2) (see next section) and sites positional distribution along pro-

moters (positional distribution). Sequence logo represents the positional frequency

of sites predicted in a given dataset.

Figure 1: TATA-box over-represented in genes regulated by NF-kappaB.

There is redundancy between different matrices that correspond to the same TFs.

Moreover, TFs with the same DNA binding domain class have similar binding pro-

files. In order to show non-redundant results we cluster those matrices with a sim-

ilar binding profile, Most of them cluster TFs that belong to the same structural

family. Other families with similar PWMs such as ATF, CRE and bZIP cluster to-

gether. We refer to these clusters as non-redundant motifs.

Conservation of coding regions and promoters

In order to provide more confident predicted binding sites for the set of candi-

date TFs we measured the sequence conservation in predicted sites and promoter

regions. We used the conservation score between vertebrates genomic sequences

called phastCons (Siepel et al., 2005), downloaded from the UCSC ftp site (Karolchik

et al., 2008). We calculated the ratio between the observed mean conservation score
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in TFBS predictions and the expected mean conservation score in promoter se-

quences from the dataset. Distributions of conservation scores differ between gene

regions. We considered four types of gene regions: coding exons, UTR exons, in-

trons, and intergenic (non-available annotations, NA). We used refSeq annotations

in the human and mouse genomes. Coding exons and UTR exons have higher

scores than introns or non-coding regions. Conservation scores of experimental

binding sites mapped to promoters regions are higher than UTR exons but lower

than CDS exons. Promoter regions in our analysis overlap with diverse genomic

elements, so we also calculate their specific score distribution. Transcription fac-

tor binding sites on promoters are more conserved than promoter average. We can

expect more conservation for highly specific predictions when compared to their re-

spective complete promoter sequences. For this reason, the conservation score ratio

between predictions and promoters conservation (observed/expected) is given for

each dataset and candidate TFs. In addition, we provide the conservation score of

each single prediction in each gene promoter.

Evaluation of MOR in NF-kappaB regulated genes

Rel or NF-kappaB (NFkB) proteins comprise a family of eukaryotic transcription

factors that are involved in the control of a large number of normal cellular and

organismal processes, such as immune and inflammatory responses, developmen-

tal processes, cellular growth, and apoptosis. Rel/NF-kB transcription factors bind

to 9-10 base pair DNA sites (called kB sites) as dimers. All vertebrate Rel proteins

can form homodimers or heterodimers, except for RelB, which can only form het-

erodimers. This combinatorial diversity contributes to the regulation of distinct,

but overlapping, sets of genes. In order to evaluate the method we retrieved a list

of 167 genes regulated by NFkB (Pahl, 1999). Among those genes, 104 are known
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NFkB targets in human, 25 are known targets in rodents and 38 correspond to pu-

tative targets. We extracted 154 non-overlapping human promoters, from -600 bp.

to +100 bp. and -1000 bp. to +1000 bp. relative to the TSS.

Figure 2: Matrices selection in NF-kappaB regulated genes Out of 638 vertebrate PWMs,

20 were overrepresented (sites log2 ratio ≥ 0.5, mww p-value ≤ 0.01, 10% of genes with

sites) in 154 promoters of genes regulated by NF-kappaB. The promoter regions analized

spanned from 600 bp. to +100 bp. relative to the TSS. In red 9 PWMs that correspond

to NFkB and REL motif in the TRANSFAC vertebrate collection. In grey, other matri-

ces that were also over-represented. sites log2 = ratio between mean sites, mww pval =

MannWhitney-Wilcoxon test p-value.

We analyzed both datasets with a collection of 638 vertebrate PWMs from TRANS-

FAC 2009 (Matys et al., 2006). Sequence hits to a matrix were defined as those that

showed an overall matrix relative similarity score ≥ 0.85 and core similarity score

≥ 0.99. This collection contains nine similar PWMs that correspond to NFkB and
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REL binding motifs. To retrieve only over-represented TF candidates we selected

PWMs using three criteria: sites distribution (mww p-value), mean number of sites

per gene (sites log2) and a minimum of 10% of genes with predictions. Based on

the distribution of scores and specific scores of 9 NFkB/Rel binding motifs, a sites

log2 cutoff of 0.5 and a mww p-value cutoff of 0.01 were empirically selected (see

Figure 2).

There were differences between the results obtained using different promoter sizes.

In the -100 to +600 dataset we identified 20 significant PWMs. They correspond to

9 non-redundant binding motifs: NFkB/Rel, STAT, BACH, ZINC-FINGER, CEBP,

TATA-box, HNF4, IRF and E-box (see Figure 4 A). On the other hand in the -

1000 to +1000 dataset we identified 13 significant PWMs that correspond to 6 non-

redundant binding motifs: NFkB/Rel, STAT, FORKHEAD, POU3F2, BACH and

PAX/HNF3 (see Figure 4 B). Two binding motifs, NFkB and Stat, cluster most of

the signifcant PWMs in both datasets. Six out of 9 NFkB/Rel PWMs on TRANS-

FAC, were significant in the longer dataset and STAT motif clusters 3 matrices in

both datasets.

Applying restrictive cutoffs, sites log2 ratio ≥ 1, mww p-value ≤ 1e-3 and 25% of

genes with sites, we identify only NFkB/Rel motifs in both datasets. Although we

could loose important regulatory candidates the main expected regulator is found

and results are consistent among datasets.
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Comparison with alternative methods

We compared the results of MOR with those obtained by three methods available

via web also based on PWM over-representation : (Bellora et al., 2007a) oPOSSUM

(Sui et al., 2007), TFM-Explorer (Defrance and Touzet, 2006) and PEAKS (Bellora

et al., 2007a). oPOSSUM searches over-represented JASPAR (Vlieghe et al., 2006)

PWM predictions conserved between human and mouse promoters. It uses two

different statistics to assess the overrepresentation of the number of sites and the

proportion of genes with sites (Z-score and Fischer exact test respectively). An-

alyzed regions by default span from -5000 bp. to +5000 bp. relative to the TSS.

TFM-Explorer initially identifies all potential TFBS using JASPAR or TRANSFAC

PWMs in human and available mouse orthologous promoters. In the second step

it uses an algorithm based on positional cumulative scoring scheme that is win-

dows independent. High-scoring regions define the window size that is retained

as candidate. Finally selected candidates are statistically evaluated using precom-

puted background models. PEAKS searches for overrepresented motifs with local

over-representation on DNA sequences. Hits to diverse PWM libraries, including

JASPAR and TRANSFAC, or k-mers of a given length are scored using a user de-

fined sliding window. To determine the significance it uses a background model

derived from the sequence dataset.

There are differences between methods: oPOSSUM and TF-Explorer use available

orthologous promoters to calculate motif over-representation. TF-Explorer and

PEAKS are based on local over-representation, that is, on identifying regions with

a high-frecuency of predictions, while MOR or oPOSSUM obtain candidates us-

ing global-overrepresentation. Moreover, different PWM libraries are used by each

method. We apply each method to the NFkappa-B regulated dataset of 154 genes,

described above, that is enriched in experimental TFBS evidence. Because every
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method uses a different statistic we selected the default, non-restrictive, cut-offs

defined by their authors (see Table 2).

Table 2: Differences between methods

method PF OR library PWMs cut-offs n

MOR NO global TF-2009 638 Log2s ≥ 0.5 ; mww ≤ 0.01 20

oPOSSUM YES global JASPAR 123 Z-scr ≥ 5; fisher ≤ 0.05 8

TFM-Explorer YES local TF-7 508 p-value, top 20 20

PEAKS NO local TF-7 508 p-value ≤ 1e-5 16

PF = phylogenetic footprinting (use of orthologous sequences), OR = over-representation

class, library = vertebrate PWMs library (TF = TRANSFAC), PWMs = total number of ma-

trices in the library, cut-offs = non-restrictive selection criteria, cut-offsn = number of sig-

nificant matrices

In order to compare the TFBSs predicted by different methods we mapped diverse

experimental binding sites of the TRANSFAC database (Matys et al., 2006) on 41

(27%) promoters of the dataset. The experimental binding sites comprised 117 dif-

ferent TFs or variants and 165 binding sites, as in some cases diverse TFs bind to the

same site. We clustered similar transcription factors, belonging to the same family

and having a similar binding profile, ie: NF-kappaB clusters RelA-p65, NF-kappaB,

p50, c-Rel, p100, NF-kappaB2-p52, RelB, NF-kappaB(-like) and RBP-Jkappa(p50).

The TFs corresponding to most of the significant motifs obtained by the four meth-

ods have experimental evidence (see Table3). Only 3 PWMs over-represented on

TF-Exp analysis did not have any experimental evidence, they correspond to Pbx-1,

Brn-2 and XFD-3 TFs. There are 14 TF groups that regulate more than one promoter,

13 can be successfully mapped to over-represented motifs. They are all detected by

one or more methods, with the exception of the EGR binding motif. The results

strongly indicate that those TFs, although only with experimental evidence in few

promoters, are likely to regulate more genes
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Table 3: Identification of transcription factors with experimental evidence

TF DBD genes MOR oPOSSUM TFExp PEAKS

NF-kappaB REL 14 + + + +

AP1/CRE bZIP 14 + + + +

C/EBP bZIP 8 + + +

Sp1 ZF 8 + +

NFAT REL 4 + +

TBP TBP 3 + + +

STAT STAT 3 +

HEN-1 bHLH 3 +

Oct1/2 homeo 3 +

EGR ZF 3

IRF IRF 2 +

AP2 bHSH 2 +

ELF ETS 2 +

PU.1 ETS 2 +

Experimental TFBS that correspond to 14 transcription factors with experimental evidence

in at least 2 promoters are listed. 38 transcription factors with sites in only one promoter

were excluded, 3 of them mapped to over-represented PWMs. [+] The TF corresponds

to one or more over-represented PWMs using a given method. TF = transcription factor,

DBD = DNA binding domain family, genes = number of gene promoters with experimental

TFBS.

Different PWMs of NF-kappaB and AP1/CRE of were over-represented with all

methods and corresponds to the most abundant experimental TFBSs. AP1 (Fos/Jun

heterodimer) is a basic leucine zipper (bZIP) domain TF that binds to TRE-box

(TGASTCA) or a CRE-box (TGACGTCA) with different affinities (Hai and Curran,
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1991). AP1 regulates gene expression in response to a variety of stimuli, including

cytokines, growth factors, stress, and bacterial and viral infections. MOR detects

BACH which is a similar bZIP with the same binding profile. Recently it has been

characterized as a specific transcriptional repressor of the enzyme heme oxygenase-

1 (HMOX1) (Reichard et al., 2008), one of the genes present on the dataset . Both

transcription factors, NF-kappaB and AP1, have a well defined motif and a large

number of PWM that model their binding sites.

Sp1 is a ubiquitous activator of numerous genes in the human genome and in-

teracts with NF-kappaB (Parker et al., 1996). In virtue to its spatial distribution of

their binding sites, this factor was found by the two methods that use local over-

representation, but MOR or oPOSSUM did not predict Sp1 because it is not spe-

cific of this dataset. Another transcription factor found by 3 of the 4 methods was

C/EBP, also called NF-IL6. This is a CCAAT enhancer binding protein that binds

to a non-canonical CCAAT box and cooperate with NF-kappa in the regulation of

many genes (Stein et al., 1993).

Other over-represented motifs only found by MOR, IRF and STAT, play a well

known role in proximal enhansosomes in diverse promoters of NF-kappaB regu-

lated genes interacting with AP1, C/EBP and Sp1 (Richmond, 2002). Those enhan-

sosomes are present in promoters that contain a TATA-box which is consistent with

results of MOR, TF-Explorer and PEAKS. Predictions of NFAT, NF-kappaB, STAT

and IRF partially overlap, and all of them are involved in immune response in

mammals. Ikaros-3 is a C2H2 zinc-finger (ZF) transcription factor over-represented

in MOR analysis but their binding motif is similar to NFAT which is a REL fac-

tor. Although there is no experimental evidence in this dataset, the Ikaros family

are important for the development of the immune system (John et al., 2009). In the

oPOSSUM analysis PU.1 was over-represented, this is an ETS-domain transcription
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factor that activates gene expression during myeloid and B-lymphoid cell develop-

ment. Other over-represented motifs that map to TFs with experimental evidence

in only one promoter and found by different methods were: YY-1 (TF-Exp), HNF-4

(MOR) and MZF-1 (oPOSSUM).

Identifying specific TFBS in co-expressed gene
clusters

Human genome-wide expression data were used to build a confident human gene

co-expression network (Prieto et al., 2008). The network reveals a map of co-expression

clusters organized in well defined functional sub-networks. The map shows that

the larger clusters correspond to genes involved in mitochondrial (Mitochondrial-

A and Mitochondrial-B), nuclear (Nuclear) and ribosomal related metabolism (Ri-

bosomal). These clusters are enriched in housekeeping genes. Smaller clusters

include: genes of the major histocompatibility complex (MHC) (Histocomp), genes

that produce the cell surface CD antigens (CDAntigens), genes involved in metal

ion homeostasis (Metalion), genes related to the extracellular matrix and cell ad-

hesion (Adhesion) and genes related to the cytoskeleton (Cytoskeleton). We inves-

tigate their correlation with specific transcription factors. Clusters were analyzed

using TRANSFAC PWMs and significant ones were selected (sites log2 ratio ≥ 1,

mww p-value ≤ 1e-3, 25% of genes with sites). Considering all datasets, 60 PWMs

were overrepresented. They correspond to 49 unique matrices because some of

them were significant in more than one dataset, a total of 20 non-redundant motifs

in 9 datasets (see Table 4 and Figures 6 and 5).
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Table 4: Significant motifs found in co-expressed gene clusters

dataset seq PWM nrm

1 Adhesion 14 5 1 ZINC FINGER

2 CDAntigens 35 7 4 GATA, ETS, IRF, ESTEROID RECEPTOR

3 Cytoskeleton 19 4 1 SRF

4 Histocomp 19 6 4 CAAT-box, IRF, SMAD3, P53

5 Metalion 7 4 4 ZINC FINGER, MTF1, X-box, CBF

6 Mitochondrial-A 57 7 6 E2F, CRE/ATF, YY, NRF1, ETS, MIZF

7 Mitochondrial-B 38 8 6 YY, E-box, E2F, NRF1, ETS, MIZF

8 Nuclear 130 8 3 CRE/ATF, STAF, E2F

9 Ribosome 40 11 5 ETS, YY, CRE/ATF, STAF, MAF

Some matrices were significant in multiple datasets. 49 unique PWMs that correspond to

20 non-redundant motifs (nrm) were over-represented in 9 co-expression clusters (dataset).

seq=number of promoter sequences.

Housekeeping related transcription factors, such as YY, CREB/ATF and E2F (Bel-

lora et al., 2007b), were the most over-represented in the largest clusters and ab-

sent in smallest ones. E2F, a TF related to cell cycle, was not significant in Riboso-

mal. NRF1, nuclear respiratory factor 1, was only significant in both Mitochondrial

datasets. On the other hand STAF, activator of pol II and pol III promoters of several

small RNA genes (Schaub et al., 1997), was overrepresented only in Nuclear and

Ribosomal. Specific ETS matrices were significant in housekeeping related clusters

such as SAP1A 01 (SAP-1a or Elk-4 TFs) or CETS1P54 03 (Ets-1 TF).

In contrast, another ETS factor, PU1 Q4 (SPI-1, a TF that activates gene expres-

sion during myeloid and B-lymphoid cell development) was only overrepresented

in CDAntigens. In addition to ETS/PU1 other motifs related to immune response
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such as GATA, IRF (interferon response factor) and ESTEROID RECEPTOR (Tait

et al., 2008) were overrepresented in CDAntigens.

In Histocompatibility, IRF, P53 (p53 TFs), SMAD3 (Smad3 TFs) and CCAAT (NF-Y)

were overrepresented. The tumor suppressor p53 is an essential partner of Smads

(Atfi and Baron, 2008) and mutations of Smad-3 were associated with cancer (Zhu

et al., 1998). Although CCAAT is a common motif of vertebrate promoters, it was

more abundant in this dataset. In Metalion, 4 PWMs were over-represented: MTF1,

ZINC FINGER, X-BOX and CBF. MTF-1 is a specific TF that binds to metal re-

sponsive elements (Koizumi et al., 1999). Binding sites of specific ZINC FINGERS

TFs were over-represented in Adhesion. All PWMs matched to the core sequence

GAGGG. In Cytoskeleton, SRF motif was significant. Serum response factor (SRF)

is an absolutely essential orchestrator of actin cytoskeleton and contractile home-

ostasis (Miano et al., 2007).

Discussion

MOR is based on the idea that co-expressed genes may share common cis-regulatory

elements that correspond to TFBS of specific TFs. This method evaluate the se-

quence motifs enrichment using a simple statistitc test in a selection of non-overlaping

promoters. In addition, our approach integrates information of experimental bind-

ing sites and phylogenetic conservation to identify highly reliable TFBS. Similar

methods to predict common TFBSs that are based on motif over-representation or

phylogenetic conservation were compared and MOR was used to identify regula-

tory motifs in co-expressed genes.
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In order to evaluate the efficiency and the biological relevance we compare our

results and the results of three alternative methods with the available experimen-

tal evidence. All TFs that correspond to motifs over-represented in MOR (n=20),

oPOSSUM (n=8) and PEAKS (n=16) have experimental evidence, except 3 out of

20 motifs predicted by TF-Explorer. Same of them can be mapped to particular

TFs, however many results are redundant because of the inherent redundancy of

the PWM libraries. There are 14 TFs that regulate more than one promoter, only

the motif of EGR was not detected by any method. NF-kappaB and AP1 were

over-represented in all methods, other factors that interact with NF-kappaB, such

as C/EBP or Sp1 were significant using different methods. TATA, AP1/CRE and

Sp1, that correspond to motifs with positional bias (Bellora et al., 2007b), were de-

tected by the 2 methods based on local over-representation. Those methods found

motifs that are not specific of this dataset but with validated binding sites, such as

Sp1, Oct1/2 or AP2. AP1, C/EBP, NFAT, STAT, IRF and PU.1 are well characterized

transcription factors that interacts with NFkB in immune response processes. Out

of these 7 important factors MOR found 6, oPOSSUM 3, TF-Explorer 4 and PEAKS

3. In addition of the particular algorithm used by each method, differences in the

results, are related to the number of available matrices in the library, the number

and the length of promoter regions analyzed or the background model.

Phylogenetic footprinting methods, such as oPOSSUM or TFM-Explorer are based

on the assumption that functional TFBS are located on conserved regions. Those

methods give similar results than MOR or PEAKS, that do not use ortholog pro-

moters. There are some problems using phylogenetic footprinting on promoter

regions: availability of ortholog promoters, sensibility of pairwise alignments in

non-coding sequences and the assumption that all conserved sites are functional.

We provide the conservation score of individual predictions together with the ob-

served/expected ratio of conservation in promoters for a posteriori evaluation.
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Using MOR we identify highly specific motifs in co-expressed datasets analyzed

and for many of them there is experimental evidence of their implication in the

regulation of such clusters. Although most transcription factor classes have a well

defined binding motif and are found differentially on particular datasets, zinc-

finger and ETS transcription factors present more diverse binding profiles depend-

ing on the factor. Five diverse zinc-finger binding motifs were found on 7 of 9

datasets: GGAG (several PWMs, Adhesion), GATC (GATA, CDAntigens), GN-

NTTCC (IK3, Metalion), GTCCG (MIZF, Mitichondrial A/B) and ACTTCC (STAF,

Nuclear/Ribosomal). This is not surprising given that zinc-finger TFs (C2H2ZF)

is the most extended family of human transcription factors covering around 53%

of the repertory (Vaquerizas et al., 2009). Homeodomain TF family is the second

most abundant in humans and accounts for over 20% of the repertory. We did not

found homeodomain TFs because they are related to development processes that

are not represented on the co-expression clusters. In a reference dataset of liver spe-

cific genes (Sui et al., 2007) MOR found over-represented specific hepatocite factors

(HNF4 and HNF1) in addition to PWMs that correspond to homeodomain factors

(data not shown). Other ubiquitous transcription factors such as Sp1, a GC-rich

binding zinc-finger, were not over-represented in the datasets. This shows that the

method can succesfully discriminate between specific and common transcriptional

regulators.

In general, vertebrate conservation scores of predictions relative to mean conser-

vation along individual promoters were higher than expected (see Figure 3). This

fact indicate that those predictions greatly depart from noise and are likely to be

regulatory regions.
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Figure 3: Observed vs expected sequence conservation along significant predictions.

Distribution of Log2 ratios between observed and expected conservation scores (log2 cnsv)

along predictions of non-redundant motifs in 9 dataset of co-expressed gene clusters. For

most of those motifs (28 of 34) it was higher than expected.

Finally, we use MOR to identify TFs candidates in a particular microarray exper-

iment. Nerve injures often leads to neuropathic pain syndromes. Experiments in

microglia cells revaeled that transcriptional changes induced by interferon-γ (IFN-

γ) are modulated by CB(2) receptor signaling. In this analysis, we evaluated 72

promoter regions of the genes differentially regulated after nerve injury in bot h

wild type and knockout genotypes. Binding sites of IRF (interferon response ele-

ment) factors were the only over-represented regulatory motifs (Racz et al., 2008).

This result was consistent with experimental observations.
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We have used a restrictive similarity cut-off on PWM matching, this is illustrated

by the fact that in the NFkB dataset we don’t detect all real binding sites. However,

predictions are less noisy allowing to detect significant differences between a given

dataset and background occurrences. Additionally, we may miss some important

cis-regulatory motifs not represented by the those matrices. Unknown regulatory

motifs can be obtained measuring k-mers instead of PWMs, but their interpretation

is difficult.

3.3 Identifying specific regulatory motifs in co-regulated genes 77



A

  dataset   n 
  class
  PWM 

  sites
  logo 

  promoters
  with sites 

  sites
  log2 

  mww
  pval 

  cnsv
  log2 

  positional
  distribution 

  NFkB   154 
  REL/NFkB
  NFKAPPAB_01 

   
  56  ( 36.4% )   1.88   0.00e+0   +1.46 

   

      
  ZINC-FINGER
  IK3_01 

   
  82  ( 53.2% )   0.70   2.00e-7   +0.68 

   

      
  TATA-box
  MTATA_B 

   
  63  ( 40.9% )   0.56   2.14e-5   +0.86 

   

      
  NFAT/STAT/HMG
  STAT5A_01 

   
  39  ( 25.3% )   0.81   1.40e-4   +1.24 

   

      
  BACH
  BACH1_01 

   
  27  ( 17.5% )   0.94   3.21e-4   +0.98 

   

      
  HNF4
  HNF4_01_B 

   
  40  ( 26.0% )   0.54   1.34e-3   -0.06 

   

      
  CEBP
  CEBP_C 

   
  34  ( 22.1% )   0.59   6.02e-3   -0.04 

   

      
  IRF
  IRF7_01 

   
  27  ( 17.5% )   0.60   6.98e-3   +0.76 

   

      
  E-box/USF/bHLH
  HEN1_02 

   
  18  ( 11.7% )   0.75   9.23e-3   +0.11 

   

B

  dataset   n 
  class
  PWM 

  sites
  logo 

  promoters
  with sites 

  sites
  log2 

  mww
  pval 

  cnsv
  log2 

  positional
  distribution 

  NFkB   154 
  REL/NFkB
  NFKAPPAB_01 

   
  86  ( 55.8% )   1.13   7.59e-14   +1.35 

   

      
  NFAT/STAT/HMG
  STAT1STAT1_Q3 

   
  67  ( 43.5% )   0.82   1.73e-7   +0.96 

   

      
  BACH
  BACH1_01 

   
  59  ( 38.3% )   0.76   1.11e-5   +1.12 

   

      
  PAX/HNF3
  PAX_Q6 

   
  47  ( 30.5% )   0.63   3.67e-4   +0.83 

   

      
  FORKHEAD
  FREAC3_01 

   
  56  ( 36.4% )   0.62   3.28e-3   -0.52 

   

      
  POU3F2
  POU3F2_01 

   
  16  ( 10.4% )   0.64   9.93e-3   -1.07 

   

Figure 4: Significant regulatory motifs found in NFkB regulated genes promot-

ers. (A) Analized from -1 Kbp. to +1 Kbp. relative to TSS. (B) Analized from -600

bp. to +100 bp. relative to TSS.

78 3. Results



  dataset   n 
  class
  PWM 

  sites
  logo 

  promoters
  with sites 

  sites
  log2 

  mww
  pval 

  cnsv
  log2 

  positional
  distribution 

  Mitochondrial-A   57 
  GABP/ETS
  SAP1A_01 

   
  35  ( 61.4% )   1.24   3.98e-7   +0.72 

   

      
  MIZF
  MIZF_01 

   
  21  ( 36.8% )   1.38   9.96e-7   +0.23 

   

      
  E2F
  E2F1_Q6 

   
  36  ( 63.2% )   1.02   1.07e-6   +0.57 

   

      
  NRF1
  NRF1_Q6 

   
  26  ( 45.6% )   1.27   8.31e-6   +1.55 

   

      
  CRE/ATF/b-ZIP
  ATF4_Q2 

   
  21  ( 36.8% )   1.00   1.62e-4   +0.68 

   

      
  YY1/NF-E1
  NFMUE1_Q6 

   
  22  ( 38.6% )   1.01   9.76e-4   +2.09 

   

  Mitochondrial-B   38 
  E2F
  E2F4DP1_01 

   
  20  ( 52.6% )   1.38   6.96e-7   +0.14 

   

      
  NRF1
  NRF1_Q6 

   
  21  ( 55.3% )   1.28   1.17e-6   +1.23 

   

      
  MIZF
  MIZF_01 

   
  16  ( 42.1% )   1.40   1.57e-6   +1.10 

   

      
  GABP/ETS
  SAP1A_01 

   
  23  ( 60.5% )   1.45   3.66e-6   +1.19 

   

      
  YY1/NF-E1
  YY1_02 

   
  20  ( 52.6% )   1.20   8.15e-6   +1.38 

   

      
  E-box/USF/bHLH
  MYCMAX_B 

   
  21  ( 55.3% )   1.15   1.15e-5   +0.99 

   

  Nuclear   130 
  CRE/ATF/b-ZIP
  ATF_B 

   
  52  ( 40.0% )   1.22   4.16e-11   +0.79 

   

      
  E2F
  E2F_Q3 

   
  39  ( 30.0% )   1.56   1.35e-10   +0.68 

   

      
  STAF
  STAF_02 

   
  34  ( 26.2% )   1.02   2.29e-5   +1.03 

   

  Ribosome   40 
  GABP/ETS
  CETS1P54_03 

   
  34  ( 85.0% )   1.26   2.42e-10   +1.26 

   

      
  YY1/NF-E1
  YY1_02 

   
  25  ( 62.5% )   1.35   4.83e-9   +1.83 

   

      
  STAF
  STAF_02 

   
  15  ( 37.5% )   1.45   1.09e-5   +1.74 

   

      
  MAF
  MAF_Q6 

   
  11  ( 27.5% )   1.43   7.77e-5   +1.65 

   

      
  CRE/ATF/b-ZIP
  CREBP1_Q2 

   
  18  ( 45.0% )   1.15   8.35e-5   +0.81 

   

Figure 5: Non-redundant motifs in Mitchondrial, Nuclear and Ribosome co-expressed

gene clusters.
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  dataset   n 
  class
  PWM 

  sites
  logo 

  promoters
  with sites 

  sites
  log2 

  mww
  pval 

  cnsv
  log2 

  positional
  distribution 

  Adhesion   14 
  ZINC-FINGER
  CKROX_Q2 

   
  12  ( 85.7% )   1.93   9.89e-5   +0.46 

   

  CDAntigens   35 
  GABP/ETS
  PU1_Q4 

   
  28  ( 80.0% )   1.06   1.13e-5   +0.97 

   

      
  IRF
  ICSBP_Q6 

   
  9  ( 25.7% )   1.47   2.06e-4   -0.34 

   

      
  ESTEROID_RECEPTOR
  PR_01 

   
  19  ( 54.3% )   1.02   2.88e-4   +0.06 

   

      
  GATA
  GATA3_03 

   
  16  ( 45.7% )   1.12   6.24e-4   -0.72 

   

  Cytoskeleton   19 
  SRF
  SRF_Q5_02 

   
  6  ( 31.6% )   4.64   0.00e+0   +1.88 

   

  Histocomp   19 
  CAAT-box/NF-Y
  NFY_C 

   
  9  ( 47.4% )   1.81   5.70e-7   +1.94 

   

      
  IRF
  ISRE_01 

   
  7  ( 36.8% )   2.77   1.75e-6   -0.65 

   

      
  SMAD3
  SMAD3_Q6 

   
  13  ( 68.4% )   1.37   4.22e-5   +0.04 

   

      
  P53
  P53_DECAMER_Q2 

   
  14  ( 73.7% )   1.25   5.54e-5   -1.94 

   

  Metalion   7 
  MTF1
  MTF1_Q4 

   
  6  ( 85.7% )   4.24   5.62e-11   -0.45 

   

      
  ZINC-FINGER
  IK3_01 

   
  7  ( 100.0% )   1.82   3.88e-5   -0.04 

   

      
  X-box
  RFX_Q6 

   
  7  ( 100.0% )   1.40   1.24e-4   +0.11 

   

      
  CBF
  CBF_02 

   
  7  ( 100.0% )   1.68   1.34e-4   +0.22 

   

Figure 6: Non-redundant motifs in Adhesion, CD-Antigens, Cytoskeleton, Histocom-

patibility and Metalion co-expressed gene clusters.
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4.1 Thesis overview

Each research article included in this thesis includes a discussion of the cor-

responding results. This section does not attempt to go over the same points

again but to provide some general remarks and future lines of research. The

temporal thread behind the execution of the PhD project can be described

as follows: (a) development and web server implementation of a method to

assess the positional bias of regulatory motifs in biological sequences. (b)

analysis of the relationship between promoter structure and gene expression

pattern in terms of the content and arrangement of regulatory motifs. (c) de-

velopment and implementation of a method to identify relevant regulatory

motifs in co-regulated promoters.

In the first part of this thesis a novel method to detect motifs based on their

position relative to a known functional element is presented (Bellora et al.,

2007a). We evaluate PEAKS on yeast promoter sequences classified in dif-

ferent functional categories. Many well-studied transcription factor bind-

ing motifs have been shown to have positional biases in specific datasets

(Ohler et al., 2002; Marino-Ramı́rez et al., 2004; Xie et al., 2005; Berendzen

et al., 2006). This presumably reflects specific requirements of motif-binding

proteins that need to interact with each other in order to regulate transcrip-

tion. The identification of significant motif peaks can be used to increase the

specificity of motif prediction, provide information on the promoter struc-

ture, and help discover regulatory motifs that are specifically involved in

the regulation of genes with similar expression or function. PEAKS can also

be used to analyze other types of motifs that show positional biases, such as
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splicing sites or transposon insertion sequences. In this respect, we are aware

of several groups using our server for these other purposes. There were al-

ready a number of examples of the application CRMs or positional bias in

large datasets, but this was the first systematic method to obtain significant

biased motifs. PEAKS was the first web application published to identify

motifs solely on the basis of positional bias. Some features could be further

improved to enhance the performance. For example the calculation of the

empirical p-value becomes too computationally intensive for large datasets.

A possible solution is to use randomization of motif localization, which can

significant increase speed. Other useful features would be to upload user-

defined motifs, and to integrate motifs that are very similar into a single

motif cluster. PEAKS, like many similar programs, does not provide accu-

rate results for low abundance motifs, as the small samples does not allow

for statistically robust comparisons.

The second part of this thesis is focused on the analysis of mouse promot-

ers in relation to their expression in diverse anatomical systems (Bellora

et al., 2007b). Our results strongly indicate that housekeeping gene promot-

ers have a more simple motif arrangement than the class composed of pro-

moters driving restricted tissue expression. This is not surprising, as distinct

regulators are expected to control expression in different tissue types. Pre-

vious studies on the identification of tissue-specific motifs have been based

on cross-species conservation and subsequent detection of tissue enrichment

(Xie et al., 2005), or on the identification of cis-regulatory modules with high

tissue specific expression predictive value (Smith et al., 2006). Many of the

motifs that show significant positional bias in our analysis are located within

the first 100 bp upstream of the TSS. This is not surprising considering that

the sequences are anchored at the TSS in this analysis, and position depen-
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dencies between interacting motif-binding proteins are expected to be more

relevant at short distances. In several tissue-restricted datasets we found

motifs with positional bias much further upstream. This is consistent with

the high upstream sequence conservation of tissue-specific promoters when

compared to housekeeping promoters (Farré et al., 2007).

In the third part of this thesis, we investigated the presence of specific mo-

tifs potentially involved in regulation of co-expressed genes. Many spe-

cific binding sites are not biased relative to the TSS, so a global motif

over-representation method is required. Although previous methods had

been developed for this purpose, they did no allow for use of new col-

lections of PWMs or k-mers. We develop one such method, Motif Over-

Representation (MOR). We compared the results of four alternative methods,

oPOSSUM, PEAKS, TF-Explorer and MOR, in a dataset of promoters con-

taining a large number of experimentally validated TFBSs. We used MOR

in diverse datasets of human and mouse promoters of co-expressed genes

to identify a set of TF candidates, for which experimental testing could be

conducted.

The lack of experimental data was an important limitation for the analy-

sis and interpretation of putative regulatory motifs in gene promoters. On

the one hand, we had to rely on the available experimental TFBSs for which

there is partial promoter coverage and which is biased towards binding sites

of TFs involved in disease (Vaquerizas et al., 2009). This was reflected in

low availability of PWMs or problems to mapping k-mer results to validated

TFBSs. On the other hand, alternative TSSs can be activated under diverse

conditions. A quantitative analysis of promoter usage in different human

and mouse tissues showed that differentially regulated alternative TSSs are
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a common feature in protein-coding genes (Carninci et al., 2006). DBTSS

is a growing database that contains information of TSS positions with us-

age frequency and cell conditions (Wakaguri et al., 2008) but contained a

low number of genes compared to experimental refSeq annotations when

we performed our analysis. In order to work with the largest number of

gene promoters we used one TSS per gene to define the promoter. Nowa-

days, many experimental groups are working on genome wide projects to

characterize TFBSs and TSSs under specific cell conditions. Chip-seq is an

experimental method that combines chromatin immunoprecipitation (ChIP)

and DNA sequencing to map in vivo protein-DNA interactions. This method

provides potentially unbiased genome-wide coverage for large-scale iden-

tification of TFBS or histone positions. Diverse genome-wide experiments

have been performed for specific cell conditions and TFs, including STAT1

(Robertson et al., 2007) and NRSF (Johnson et al., 2007).

Our approaches were based on the relative density and position of cis-

regulatory motifs in promoters. Diverse transcription factors compete for

binding to cis-regulatory elements. In many cases we identify cis-regulatory

elements and a cluster of putative TFs that are likelly to bound using the

available experimental evidence. However, the affinities for a specific bind-

ing site and the nuclear concentrations of the active TFs may define the actual

binding outcome.

For a given locus there is a genomic regulatory context defined by several

regulatory elements and the resulting transcription is the output of many

regulatory signals. In addition to the cis-regulatory motifs that are found

in the proximal promoter sequence other regulatory elements define those

input signals: chromatin regulation, distal enhancers, insulators, promoter
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physical structure, alternative promoters, methylation, etc. Integrating all

the elements of this regulatory context is extremely difficult and was not

within the scope of the work presented in this thesis. Moreover, post-

transcriptional regulation by small-RNAs adds a new layer of complexity

to the transcriptional landscape.

4.2 Future directions of research

Completion of a project is only the starting point for a new project. In this

section, we outline three applications of the ideas discussed above.

Characterization of dependencies between regulatory

elements

Using the large numbers of experimental TFBS that will become available

with new technologies, it will be possible to apply local-over-representation

methods to explore the putative dependencies between regulatory motifs.

Those dependencies can indicate common interactions between TFs and

other regulatory elements.

Finding TFs involved in gene co-regulation using validated

binding sites

In our work we have used over-represented TFBSs prediction to identify

TFs in a set of co-expressed genes. However, the same method can be

applied to data on real binding sites. Alternative TSS usage together with

experimentally validated binding sites in specific cell conditions could be
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used to analyze the enrichment of particular TFs in groups of co-expressed

genes.

New predictive TFBS models based on TF binding affinity

Positional interdependencies, variable space lengths, or alternative binding

domains are features that can not be modeled in PWMs. A probabilistic

recognition model based on the DNA binding affinity of EGR has been

proposed to identify putative binding sites (Benos et al., 2002b). Protein

binding microarray (PBM) analysis is an in vitro technique that allows

quantification of the affinity of a given TF to all possible 8-mers in an

unbiased manner (Berger et al., 2008). Using this technique it is possible

to discover subtle preferences in transcription factor binding affinities,

dependencies between positions, and alternative usage of binding motifs

(Badis et al., 2009). Novel DNA-binding models based on TF binding

affinities (Newburger and Bulyk, 2009) and protein amino-acid sequence

(Berger et al., 2008) will improve TFBS predictions.
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The research carried out during my PhD has resulted in or contributed to:

1. The development of a novel systematic approach to identify motifs that

show a preferential location in DNA sequences, a strong indication of

the existence of functional constraints. The method was implemented

on a web server to be used by the scientific community.

2. The identification of regulatory motifs over-represented on diverse tis-

sues and housekeeping genes. YY1 and other general TFs have strong

positional biases on housekeeping genes whereas tissue-specific TFs

and putative novel regulatory motifs were found on diverse tissue re-

stricted datasets. The differences are striking and serve to illustrate

that many key specific regulatory signals may be present in the proxi-

mal promoter region in mammalian genes.

3. The development of a program to identify specific motifs in promoters

of co-expressed genes. Discover TFs that are specific of genes

with similar expression patterns by using this program. Data from

experimentally-verified TFBS support the biological relevance of our

findings.
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A
Articles

In this section are gathered other articles I have collaborated in:

• Housekeeping genes tend to show reduced upstream sequence conser-

vation (Farré et al., 2007).

• Interferon-gamma is a critical modulator of CB(2) cannabinoid receptor

signaling during neuropathic pain (Racz et al., 2008).

• Origin of primate orphan genes: a comparative genomics approach

(Toll-Riera et al., 2009b).

• Evolution of primate orphan proteins (Toll-Riera et al., 2009a).

• Jagged1 is the pathological link between Wnt and Notch pathways in

colorectal cancer (Rodilla et al., 2009).

My contribution to these articles was always related to the identification of

regulatory motifs in gene promoter sequences. Since the original articles are

too long to be included here, only the first page is included.
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Farré, D., Bellora, N., Mularoni, L., Messeguer, X., and Albà, M. M. House-

keeping genes tend to show reduced upstream sequence conservation.

Genome Biology, 8(7):R140 (2007)
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Title: Regulatory motif conservation on eukariotic promoters

2008: Society for Molecular Biology and Evolution Annual Meeting (SMBE),

Barcelona (Spain)

Authors: Macarena Toll-Riera, Nina Bosch, Nicolás Bellora, Robert Castelo,

Lluı́s Armengol, Xavier Estivill, M.Mar Albà
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C
IUPAC Ambiguity Code

Symbol Meaning Origin of designation
A A Adenine
C C Cytosine
G G Guanine
T T Thymine
M A or C aMino
R A or G puRine
W A or T Weak interaction (3 H bonds)
S C or G Strong interaction (2 H bonds)
Y C or T pYrimidine
K G or T Keto
V A or C or G not-T (not-U), V follows U in the alphabet
H A or C or T not-G, H follows G
D A or G or T not-C, D follows C
B C or G or T not-A, B follows A

N/X G or A or T or C aNy
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