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Abstract  
 

In contrast to mammals, zebrafish do have the ability to regenerate 

their heart after injury. A better understanding of how regeneration-

competent species do so should help developing strategies to enhance 

human cardiac regeneration. Here, by genetic lineage-tracing using an 

inducible Cre/lox system, we show that newly formed cardiomyocytes 

arise from the proliferation of differentiated heart muscle cells. These 

results argue against a significant contribution of stem or progenitor 

cells in this process. Our microarray and electron microscopy data 

provide evidence that cardiomyocyte proliferation is accomplished by 

limited cardiomyocyte dedifferentiation and increased expression of 

cell cycle regulators. One of these genes, polo-like kinase 1 (plk1), is 

upregulated in the regenerating area of the zebrafish heart and, by 

specifically inhibiting plk1 activity, we show that it is essential for 

regeneration. We have also identified a series of additional transcripts 

differentially expressed during zebrafish heart regeneration that 

warrant further research. The data presented here offer new insights to 

understanding heart regeneration in zebrafish and should provide 

useful information for cardiac repair in humans. 
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Resum  
 
De manera oposada als mamífers, els peixos zebra sí tenen la capicitat 

de regenerar el cor després d’una lesió. Entenent millor com s’ho fan 

les espècies capaces de regenerar hauria d’ajudar-nos a desenvolupar 

estratègies per a augmentar la capacitat de regeneració en humans. 

Aquí, mitjançant un sistema Cre/lox de traçat genètic de llinatge, 

mostrem que la creació de nous cardiomiòcits prové de la proliferació 

de cèl·lules cardíaques diferenciades. Aquests resultats discrepen amb 

una contribució significativa de cèl·lules mare o progenitores en aquest 

procés. Les dades obtingudes de microarray i de microscòpia electrònica 

evidencien que la proliferació de cardiomiòcits és deguda a una de-

diferenciació parcial i a un increment de l’expressió de gens que 

promouen el cicle cel·lular. Un d’aquests, el polo-like kinase 1 (plk1), 

augmenta d’expressió a l’àrea regenerant del cor de peix zebra i, un 

cop inhibida la seva activitat, mostrem que és essencial per a la 

regeneració. També hem identificat una sèrie adicional de trànscrits 

que s’expressen de manera diferencial durant la regeneració cardíaca 

en el peix zebra i que mereixen més investigació. Els resultats aquí 

presents profunditzen en la comprensió de la regeneració cardíaca en 

el peix zebra i ofereixen informació rellevant per la teràpia cardíaca en 

humans. 
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Preface 
 

In 2010, ending a decade of extensive stem cell biology research, few 

people seem to be aware of how the regeneration field revolutionized 

the minds of those who lived more than two centuries ago. Some 

years before the onset of the French Revolution, thousands of snails 

were decapitated by naturalists and others to find out whether or not it 

was true that they would then equip themselves with new heads. This 

extraordinary phenomenon raised metaphysical questions among the 

philosophers of that time such as where was the residence of the soul. 

Biologically, the observation that selected animals could regenerate 

many of their body parts opened a door to the thinking that one day, 

men would master the process of regeneration for their own benefit. 

The present work results from the above mentioned, the need to 

master the understanding of how certain species deploy regenerative 

mechanisms in selected organs or structures to be able to recapitulate 

these mechanisms for human regeneration therapies.  

Relatively recently, the amount of work produced in the stem cell field 

and the hope that it offered to regenerative medicine, has increased 

exponentially. However, when comparing different types of 

regeneration in vertebrates, one gets to the conclusion that, as a 

general rule, the deployment of the stem cell capacities are not the 

preferred mechanism for regeneration. Instead, it is generally more 

accepted to be relying on something called cellular plasticity, which 

involves the capacity of differentiated cells to undergo a series of 

phenotypical and molecular changes that allow them to restore a lost 
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population of cells and addressing the question of the cellular origin of 

regeneration can be technically challenging. 

Here, we used some of the most modern techniques available for 

zebrafish to characterize molecularly the zebrafish heart regeneration 

response and have adapted one of the most relevant techniques used 

in mice to assess its cellular origin, that is, inducible genetic lineage-

tracing. 

Our results show for the first time, unambiguously, what is the cellular 

origin of zebrafish heart regeneration. Such knowledge, combined 

with data on the molecular events that take place in the zebrafish heart 

during regeneration, might have a substantial impact on how clinical 

strategies will be addressed to treat human cardiac disease. 
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1. INTRODUCTION 

 

1.1  Regeneration  

 

a) Origins 

Humans have long been fascinated about how other animals can 

regenerate some of their body parts after loss, injury or amputation. 

Indeed, studies on regeneration flourished as early as in the 18th 

century (Dinsmore, 1991), setting the origin of developmental biology 

as a research discipline (Okada, 1996). Réamur (1683-1757) and 

Trembley (1710-1784) initiated the first descriptions of regeneration in 

invertebrates such as crayfish and hydra, respectively. Soon after, 

Spallanzani (1729-1799) and others extended these studies to 

amphibian species, which became the preferred animal model for 

many years for the study of what was later defined as epimorphic 

regeneration (Morgan, 1901). 

Regeneration is the process by which a lost body part is restored (Bely 

& Nyberg, 2010) and in the adult, it can be regarded as a striking 

example of postembryonic morphogenesis (Brockes & Kumar, 2008). 

Regeneration itself is a fascinating process; it involves the recognition 

of tissue loss or injury, followed by mechanisms that reconstruct the 

relevant structure. Mastering the knowledge of how such mechanisms 

are initiated, regulated, and finalized is expected to have a tremendous 

impact for regenerative medicine in humans. 
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Many invertebrate species have the capacity to regenerate entire body 

parts or even to generate two individuals as a result of amputations at 

any axis in their body plan. The most common examples are Hydra 

(cnidarian), Dugesia (planarian worm), Nereis (annelid worm) and 

Linckia (echinoderm) (Brockes, 1997). Regeneration research on 

invertebrate species has provided valuable insights into the biological 

bases of this process, and is still a very fertile and productive field of 

research, with Hydra and planarian (Schmidtea mediterranea in 

particular) being the most popular models (Cebria, 2007; Handberg-

Thorsager et al., 2008; Pellettieri & Sanchez Alvarado, 2007; Salo & 

Baguna, 2002; Salo, 2006; Salo et al., 2009; Sanchez Alvarado, 2006). 

In spite of the conservation of some molecular mechanisms, the 

cellular bases by which invertebrates regenerate diverge from those 

used by vertebrates. For this reason, we will focus this introduction 

into the mechanisms of vertebrate regeneration, or the lack thereof. 

 

b) Mammals 

Mammalian species have the capacity to replace lost cells from 

different tissues by several mechanisms. Cell duplication of beta cells 

(Dor et al., 2004) and hepatocytes (Michalopoulos & DeFrances, 

1997), or stem cell proliferation followed by subsequent differentiation 

to replace intestinal epithelium, skin or blood cells, among others 

(Wagers & Weissman, 2004), are the two main mechanisms. 

Additionally, dedifferentiation and/or transdifferentiation capacity of 

some cell types has also been reported (Tosh & Slack, 2002). 

However, this type of cell renewal is mostly considered as tissue 

restoration and it should not be confused with epimorphic 
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regeneration (Raya et al., 2004; Tsonis, 2000). The mechanisms 

governing tissue restoration are maintained throughout life as cells 

from different tissues are continuously replaced. After minor damage, 

the same mechanisms used to establish tissue homeostasis are 

exacerbated in order to accelerate restoration. Such mechanisms, 

however, cannot compensate tissue loss after major injury and, in any 

case, do not provide the bases for rebuilding a complex structure. As a 

result, adult mammalian species have little or no regenerative capacity 

and they are not able to replace a damaged or missing structure.  

Arguably the most striking regeneration event that occurs in 

mammals, and possibly the only exception to the rule discussed above, 

is that of digit tip regeneration first described in fetal and newborn 

mice (Borgens, 1982) and also reported in other species including 

humans (Illingworth, 1974).  

Other vertebrate species, thought, do have remarkable regenerative 

capacity. Whether regeneration represents an evolutionary adaptation 

acquired by regeneration-competent species, or a common ancestral 

trait lost during evolution of regeneration-incompetent species is still 

subject to hot debate (Brockes et al., 2001; Mescher & Neff, 2005; 

Tanaka & Ferretti, 2009; Bely & Nyberg, 2010). To address this issue, 

it will be important to establish molecular and cellular assays that can 

be comparatively applied to different representative taxons of 

evolution, taking into account their ability to regenerate. 
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1.2  Regeneration in vertebrates 

 

As for the purpose of epimorphic regeneration studies, some urodele 

amphibians  (or salamanders) have been for long time the animal 

models by excellence (Odelberg, 2005; Tsonis, 2000). There are three 

families of salamanders that are commonly used to study regeneration: 

Salamandridae (known as newts), Ambystomatidae (known as mole 

salamanders), and Plethodontidae (known as lungless salamanders). 

They have been used to address many questions regarding 

regeneration in vertebrates, especially on limb regeneration, an aspect 

in which they are unique as adult vertebrates (Brockes, 1997). More 

recently, the zebrafish (a teleost fish) has also emerged as an ideal 

model system to study regeneration due to several reasons but mostly 

because of its suitability to be subject to the array of modern 

molecular tools available (see below, Point 1.3 The zebrafish as a 

model system).  

The above-mentioned urodele amphibians and teleost fish, with some 

species-specific restrictions, can regenerate many complex structures 

and organs including their limbs/fins, tail, jaws, spinal cord, retinas, 

lenses, optic nerves, intestine, lateral line and heart. There are some 

differences on how regeneration is accomplished in different 

structures/organs and species (Tsonis, 2000), but there are also 

remarkable commonalities. For example, after limb or fin amputation 

the sequence of events that takes place (Fig. 1) is very similar, namely: 

1) clot formation followed by a rapid migration of adjacent epidermal 

cells to form the wound epithelium or apical epithelial cap (AEC), 2) 

formation of a blastema –a mass of undifferentiated cells with high 
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proliferative capacity- underneath the wound epithelium, and 3) 

proliferation of blastema cells followed by their differentiation and 

pattern formation (Brockes, 1997; Odelberg, 2005; Tsonis, 2000). 

 

 

 

Figure 1. Epimorphic regeneration in the newt limb. A diagram shows sequential steps 
of the regeneration process. Amputation of the limb leads to disruption of the epidermis, 
dermis, muscle and cartilage, and exposure to the outer environment. Epidermal cells 
then migrate to cover the injury site creating the wound epithelium, which delivers signals 
to the underlying mesenchyme. Cells from the wound epithelium start to proliferate 
creating what is known as the apical epidermal cap. At the same time cells in the 
mesenchyme start to dedifferentiate and become blastema cells. Proliferation of blastema 
cells is followed by a redifferentiation process to substitute for the lost elements after 
amputation. At the end of the regeneration process blastema cells stop proliferating and 
pattern is reestablished. From Stewart et al. (2007). 
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a) Lessons from Amphibians 

As these animals have the capacity to regenerate many of their body 

parts, the scientific literature is rich with fascinating data on the 

environmental, cellular and molecular mechanisms of regeneration 

obtained from amphibians. 

Experiments performed on different tissues and cultured cells 

evidenced the differential dependence on local environmental cues 

and on intrinsic factors among regeneration-competent and non 

regeneration-competent species. Insights have been gained in two 

general aspects of regeneration: the formation of the wound 

epithelium and the early regeneration signals, and the cellular 

contribution to the blastema. 

Wound epithelium and early signals. As mentioned above, the 

formation of an epithelial sheet covering the wound after injury in the 

limb is the first step of regeneration. It results from the migration of 

epithelial cells and is accomplished as soon as 2h post-amputation 

(Carlson et al., 1998). The role of the wound epithelium is crucial as it 

is absolutely required for regeneration to occur (Mescher, 1976). 

Indeed, it has been proposed that mammals’ inability to regenerate 

might be due to the deployment of a dermal healing response, rather 

than a wound healing response (Goss, 1980). The signals that control 

or trigger the formation of the wound epithelium are not completely 

understood but it has been proposed that bioelectric currents could be 

one of these early signals (Nuccitelli, 2003). Once primed to respond, 

epithelial cells upregulate matrix degradation enzymes as early as 2h 

after amputation, thereby inhibiting basement membrane formation 
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between the wound epidermis and the underlying mesenchyme, thus 

allowing the direct interaction with one another (Yang et al., 1999). 

Once the epithelial cap is formed, it sends an array of signals to the 

mesenchyme underneath (reviewed in Campbell & Crews, 2008). This 

array of signals, together with other nerve-dependent signals (Kumar 

et al., 2007b; Singer, 1952) and the positional disparity of cells within 

the dermis (Gardiner et al., 1986; Kumar et al., 2007a) will instruct the 

blastema to be formed, grow and acquire pattern. 

However, the formation of the wound epithelium is not necessary in 

the case of lens regeneration. Here, the first step of regeneration relies 

on a restricted systemic response, known as the anterior chamber-

associated immune deviation (ACAID) (Streilein, 2003). It involves 

the trafficking of stimulated dendritic cells from the anterior chamber 

to the marginal zone of the spleen and the return of immune effector 

cells to the eye. If this path is blocked, regeneration of the lens cannot 

occur. Thus, regeneration is primed differently according to 

differential environmental conditions. 

Cellular contribution to blastemas. The origin of the seemingly 

identical cells that form the mass of the blastema has been for long 

time an unanswered question, especially in the case of the limb, and 

specifically the muscle (Carlson, 2003). Early histological and electron 

microscopy studies observations described a process of 

dedifferentiation characterized by myonuclei breaking off from the 

damaged muscle fibers and migrating distally to reach the regeneration 

blastema (Carlson, 2003). However, opponents to this view considered 

that myonuclei in differentiated muscle fibers were incapable of re-

entering mitosis. After satellite cells were discovered in frogs (Mauro 
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& Adams, 1961) and subsequently in other amphibian species 

(including the axolotl and the newt, in this case termed) postsatellite 

cells), they were found to contribute to the restoration of muscle 

(Carlson, 1970b). However, in the amphibian limb, epimorphic 

regeneration overrides tissue restoration (Carlson, 1970a). 

Dedifferentiation of myotubes and formation of mononucleated cells 

in the regeneration blastema was ultimately accepted in light of 

experiments using cell-labeling techniques and transplantation 

(Kintner & Brockes, 1984; Kumar et al., 2000; Lo et al., 1993). The 

contribution of each cell type in the regenerating limb has been 

recently addressed in the axolotl by using transgenic animals 

ubiquitously expressing EGFP and transplantation of adult or 

embryonic tissues to label specific cell types (Kragl et al., 2009). In this 

way, it was shown that each cell type conserved a memory of their 

tissue origin. Muscle gave rise to muscle, epidermis led to epidermis, 

dermis could make also tendons and cartilage, Schwann cells led to the 

same progeny and cartilage gave rise to tendons, perichondrium and 

perhaps dermis. Thus, the limb blastema cannot be considered as a 

homogeneous pool of cells, but rather as a heterogeneous population 

of cells that maintain memory of their tissue of origin and positional 

identity. 

In the case of lens regeneration, pigmented epithelial cells (PECs) 

from the dorsal iris transdifferentiate to give rise to new lens cells 

(Reyer, 1954; Yamada, 1977). 
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b) Heart regeneration in urodeles 

The ability of newt adult cardiomyocytes to enter mitosis was first 

described by John Oberpriller and Jean C. Oberpriller (Oberpriller & 

Oberpriller, 1971). They amputated a portion of the newt’s heart and 

allowed it to regenerate from 16 to 22 days. Taking advantage of the 

capacity of electron microscopy to readily detect the ultrastuctural 

morphology of cardiomyocytes and mitotic chromosomes, they could 

establish a direct relationship between both. The observed mitotic 

cardiomyocytes were placed next to the wounded area of regenerating 

hearts but were not seen in uninjured hearts. These dividing 

cardiomyocytes retained some characteristics such as an associated 

basal lamina and glycogen granules within them. It was also noted that 

the bundles of myofilaments in mitotic cardiomyocytes sometimes had 

a disordered arrangement and they postulated that this was a physical 

requirement for the subsequent process of cytokinesis. 

Not until 3 years later was the term “regeneration” used to describe 

what occurred to the salamander heart after injury (Becker et al., 

1974). The same year, Oberpriller and Oberpriller extended their initial 

studies on the characteristics of mitotic cardiomyocytes by describing 

the full sequence of events after injury in the newt heart. After 

amputation, there was a formation of a blood clot, coagulation 

necrosis, macrophagic activity, regenerative activity of heart muscle, 

and connective tissue formation. Thus, newt hearts were capable of 

remarkable regeneration but failed to achieve it completely 

(Oberpriller & Oberpriller, 1974).  
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During the following years, electron microscopy and autoradiography 

were the two main techniques to characterize the cell type and DNA 

synthesis after delivery of tritiated thymidine in the injured heart. Both 

techniques were applied in a different experimental setting, that is, 

after grafting minced cardiac muscle to the injured heart to increase 

the reactive area of the wound (Bader & Oberpriller, 1978; Bader & 

Oberpriller, 1979), or in the different heart chambers after injury to 

the ventricle or the atrium (McDonnell & Oberpriller, 1983, 1984). 

These studies showed that the atrium of the newt heart is also capable 

of regeneration but that there is no increase in atrial DNA synthesis 

after ventricular injury. It was also confirmed the description of 

myofibrillar structure breakdown in tritium-labeled myocytes, which 

showed scattered myofilaments and no Z-bands in late stages of 

mitosis. During the course of regeneration different stages of 

myofibrillogenesis were observed and, by the end of regeneration, 

myocytes had numerous well-organized myofibrillae and intercellular 

junctions phenocopying those of uninjured cardiomyocytes.  

Primary culture of newt cardiomyocytes was later established (Tate et 

al., 1987), and this allowed a number of different experiments to be 

performed, as these cardiomyocytes underwent DNA synthesis and 

mitosis under culture conditions (Tate & Oberpriller, 1989; Tate et al., 

1989). It was shown that cardiomyocytes in culture responded 

positively with DNA synthesis to PDGF, aFGF, bFGF and O-

tetradecanoylphorbol-13-acetate, and negatively to heparin and 

TGFbeta (Soonpaa et al., 1992, 1994). Time-lapse on phase-contrast 

light microscopy (Matz et al., 1998) and analysis of BrdU 

incorporation and phosphorylated-histone 3 staining (Bettencourt-
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Dias et al., 2003) showed the heterogeneous capacity of mono and 

binucleated cardiomyocytes in terms of proliferation and ploidy of 

their progeny. Newt cardiomyocytes are about 98-100% 

mononucleated (Bettencourt-Dias et al., 2003; Tate & Oberpriller, 

1989) and they predominantly gave rise to mononucleated progeny, 

which could undergo further rounds of cycling. However, a 

percentage of binucleated cardiomyocytes was also produced which 

had a lesser proliferative capacity. 

In light of these results, it was proposed that comparing the factors 

that determine the proliferative capacity of newt mono and 

binucleated cardiomyocytes with those of mammalian cardiomyocytes, 

which are basically binucleated (Brodsky et al., 1991), could help 

understanding why mammalian cardiomyocytes are refractory to 

dividing.  

 

1.3  The zebrafish as a model system 

	
  

The zebrafish, in contrast to the newt and other urodele amphibian 

species, benefits from a powerful set of genetic tools developed 

initially for research on developmental biology (Driever et al., 1994), a 

field in which the zebrafish has become a preferred animal model due 

to its short generation time, large clutch sizes, and transparency in the 

embryonic stage.  

The zebrafish is amenable to be used in large screens to seek for 

defects in development and/or regeneration. Large numbers of 
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knockdown or knockout zebrafish can be obtained by mutagenizing 

the genome (Stainier, 2001) or by disrupting coding genes or their 

promoter/enhancer regions by viral insertion (Amsterdam et al., 1999; 

Amsterdam & Hopkins, 2006). There are several ways to mutagenize 

the zebrafish genome but the most common makes use of 

ethylnitrosourea (ENU), an alkylating mutagen inducing point 

mutations (Solnica-Krezel et al., 1994). This procedure allows for the 

screen of thousands of animals for developmental defects (Driever et 

al., 1996), or for the study of temperature-sensitive mutations affecting 

fin regeneration (Johnson & Weston, 1995). Other common way to 

knockdown gene function in zebrafish is the use of morpholinos, 

which are stable, modified oligonucleotides complementary to start or 

splice sites that block translation or splicing of the targeted genes 

(Nasevicius & Ekker, 2000). These can be injected into one cell-stage 

embryos to search for developmental defects or into regenerating 

tissues, such as the spinal cord (Becker et al., 2004). Coupling injection 

to electroporation was shown to increase the delivery of morpholinos 

into the tail fin and increase the effectiveness of the gene knockdown 

(Jazwinska et al., 2007; Thummel et al., 2006; Thummel et al., 2007). 

The zebrafish is also amenable to pharmacological inhibition and 

drugs can be typically applied in fish water (Iovine, 2007). The 

combination of the use of libraries of chemical compounds to screen 

for phenotypes related to development, disease and regeneration 

(Mathew et al., 2006; Murphey & Zon, 2006; Peterson et al., 2000), 

results in chemical genetics. This permits high-throughput analysis in 

the zebrafish embryo due to its small size and aqueous environment 

(Bowman & Zon, 2010). 
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Other advantages of the zebrafish include a sequenced genome and 

the existence of commercial gene expression arrays. For example, 

Affymetrix chips have been extensively used to study gene expression 

in many aspects including embryology, regeneration and development 

in mutants (Packham et al., 2009; Qian et al., 2005; Schebesta et al., 

2006). The use of standardized gene chips allow for easy meta-analysis 

and comparisons of different experiments. 

Transgenesis in zebrafish is also widely used by the scientific 

community in different fields and with different purposes. There are 

hundreds of zebrafish lines with reporters on specific cell types, 

including erythrocytes, cardiomyocytes, endothelial cells and many 

others. It has also been used to overexpress certain genes or their 

dominant-negative forms in a tissue- and/or time-specific manner 

(Poss et al., 2002a; Stoick-Cooper et al., 2007), and to express 

genetically encoded sensors of chemical compounds (Niethammer et 

al., 2009). Moreover, the production of transgenic animals has been 

significantly facilitated by the free distribution of the Tol2kit, a 

collection of plasmids containing different promoters, reporters and 

tags, which uses multisite gateway-based technology to generate 

transgenesis constructs in a short period of time (Kwan et al., 2007). 

More recent advances in transgenesis led to the establishment of a way 

to conditionally ablate cells in a tissue- and time-dependent manner so 

it could be used as a model to study regeneration (Curado et al., 2007). 

This was achieved by expressing the E. coli Nitroreductase (NTR) 

gene under the control of tissue-specific promoters. NTR is an 

enzyme that, upon the addition of the drug Metronidazole (Mtz), will 
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transform it into a potent DNA interstrand cross-linking agent, 

causing cell death.  

Other tools to understand cell behavior include the existence of a 

transparent fish, casper. This fish can be used to track stem/progenitor 

cells or tumor cells by non-invasive techniques and they can also be 

crossed to numerous transgenic lines that label specific cell types to 

study distinct cell behaviors during angiogenesis, organ homeostasis 

and regeneration after injury (Pugach et al., 2009; White et al., 2008). 

Perhaps the only molecular tool not yet available for zebrafish is the 

possibility to create specific knockouts by homologous recombination 

in embryonic stem (ES) cells. The derivation of zebrafish ES cells has 

been attempted by many laboratories, some having reported the 

generation of chimeras after injecting ES-like cells into blastula-stage 

embryos (Fan et al., 2004). However, those chimeras were not capable 

of germline transmission, and thus, cannot be used to create knockout 

animals. This limitation of the zebrafish model versus the mice, for 

example, has been partially overcome by the possibility to knockout 

genes using engineered zinc finger nucleases (Doyon et al., 2008; 

Meng et al., 2008). A very important step forward for the 

establishment of the zebrafish as a model system was the recent 

implementation of the conditional cell labeling technique (Hans et al., 

2009), widely used in the mouse to study specific cell behaviors. 

The zebrafish has also been widely used as a model for regeneration 

studies on fin regeneration (Akimenko et al., 2003; Poss et al., 2003). 

From the comparative histochemical analysis of three species of 

teleosts (Becerra et al., 1996), to the determination of signaling factors 



 

 15 

by the use of mutants and transgenic lines (Makino et al., 2005; 

Nechiporuk & Keating, 2002; Poss et al., 2002a), the use of zebrafish 

in this field has arisen in popularity and complex regulatory networks 

have been described (for review, see Iovine, 2007) (Fig. 2). 

Figure 2. Establishment of signaling centers and initiation of outgrowth. (A) Cartoon 
of a longitudinal section of a single fin ray following blastemal reorganization. The basal 
layer of the epithelium is indicated by the dotted line, the apical epidermal cap in yellow. 
The distal blastema (red) is distal to the proximal blastema (dark blue). Proliferating cells 
from the proximal blastema will migrate laterally toward the basal epidermal layer (pink), 
and differentiate as bone forming cells. (B) Molecular pathways required for establishment 
of distal blastema, lateral basal epidermal layer and cell proliferation and outgrowth. 
Tissue of expression is color-coded to match that in (A); superscripts refer to list in (C). 
Dotted arrows indicate signaling events that seem to occur but are not clearly defined. (C) 
Genetic or chemical modifiers of the molecular mechanism shown in (B) and their effects 
on gene expression, outgrowth, or both. From Iovine (2007). 
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1.4  The zebrafish heart 

The heart is the first definitive organ to develop and become 

functional, as embryo survival depends on its proper function (Clark, 

1990). In the zebrafish, however, there is a period of several days 

when the heart is already functional, but not yet essential in the early 

developmental stages. This is because the early embryo can obtain 

enough oxygen from the medium by diffusion due to its small size and 

relatively low metabolism (Hu et al., 2000). This peculiarity has 

enabled analyzing mutants with compromised or no cardiac function 

for a considerable period of time (Stainier & Fishman, 1992; Stainier et 

al., 1996), in contrast to mammals. However, regarding the general 

aspects of cardiovascular development, zebrafish are comparable to 

avian and mammalian (Hu et al., 2000; Stainier, 2001). 

The adult zebrafish heart consists of two chambers, the atrium and the 

ventricle, the sinus venosus, which collects blood from the animal 

body, and the outflow tract, which functions as a capacitor 

maintaining continuous blood flow into the gills arches (Hu et al., 

2001) (Fig. 3). The ventricle consists of a vascularized compact 

myocardium of about 4 cell layers and the trabecular myocardium of 

about 2 cell layers. Ventricular cardiomyocytes are larger than those in 

the atrium (Hu et al., 2001). As a general trait, teleost cardiomyocytes 

are 2-10 times smaller than those of mammals, and are basically 

mononucleated; they have a greatly reduced sarcoplasmic reticulum, 

and lack the T-tubules system found in skeletal muscle and 

mammalian cardiac muscle (Farrell AP, 1992). The zebrafish 

epicardium is formed by a single layer of mesothelial cells supported 

by a basal lamina, and imbricated with collagen and vascular structures 
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in the subepicardial space (Hu et al., 2001). These mesothelial cells are 

interdigitated to each other by desmosomes (Lemanski et al., 1975).  

	
  

	
  

	
  

Figure 3. The adult zebrafish heart. An illustration of a posteroanterior view of an 
adult zebrafish heart and the major vasculature in the cardiac region. The atrium 
receives the venous return from the sinus venosus, which is connected to the ductus 
Cuvier and hepatic portal veins. The heart pumps the blood to the bulbus arteriosus 
along the definite chamber of atrium and ventricle. The ventricle forces the blood into 
the ventral aorta, which gives off paired vessels (afferent branchials) that arch upward 
between the successive gills to rejoin (efferent branchials) and form the dorsal aorta. 
Only the left branchials are shown in the illustration. The boxed area indicates the 
coordinates showing the orientation of the heart. From Hu et al. (2001). 
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1.5  Heart regeneration in zebrafish 

In the turn of the 21st century two groups reported the ability of adult 

zebrafish to regenerate large portions of its heart (Poss et al., 2002b; 

Raya et al., 2003) (Fig. 4). Up to 20-30% of the ventricle was surgically 

removed at its apex with iridectomy scissors. This was easily 

accomplished in anesthetized adult fish, whose hearts were readily 

accessible after incision of the skin, muscle, and pericardial sac. After 

amputation, intense bleeding occurred but a blood clot was formed 

within less than one minute. Such an efficient process might be aided 

by the zebrafish low-pressure circulatory system (Raya et al., 2004), 

and probably because of this, amputated fish did not exhibit intense 

myocardium contraction at the site of resection or circulatory stasis, in 

Figure 4. Morphology of the uninjured and amputated zebrafish hearts. 
Hematoxilin and eosin staining of an uninjured zebrafish heart (A) and after about 20% 
ventricular resection (B). Shown are the ventricle, the atrium, the atrio-ventricular valve 
and the bulbus arteriosus (b.a.). From Poss et al. (2002). 
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contrast to newts (Becker et al., 1974). The blood clot is then replaced 

first by fibrin, reaching maximum levels at 7 to 9 days, and later by 

collagen. Ultimately, due to increased cell proliferation next to the 

wound site, the lost myocardium is regenerated and hearts from 30-60 

days post amputation (dpa) look histologically and functionally 

indistinguishable from uninjured hearts (Poss et al., 2002b; Raya et al., 

2003). 

	
  

a) Cellular bases 

The cellular origin of the regenerated myocardium has been a 

controversial topic. The first experiments relied on BrdU injection 

into the fish and its incorporation into proliferative cells. By these 

means, Poss and colleagues (Poss et al., 2002b) identified by 

immunofluorescence, cells co-labeled with antibodies against BrdU 

and against myosin heavy chain, a marker for cardiomyocytes. This led 

to the conclusion that the proliferating cells were cardiomyocytes on 

its origin. Alternatively, Raya and colleagues (Raya et al., 2003) reached 

the same conclusion by analyzing the BrdU labeling under light 

microscopy, as they could observe BrdU-positive cells displaying 

morphological characteristics of cardiomyocytes. Both studies 

identified the vast majority of these cells in the region surrounding the 

wound and next to the epicardium. Pulse-chase experiments of BrdU 

labeling (Poss et al., 2002b) revealed that the leading edge of 

proliferation during regeneration was the new layer of outermost 

compact muscle, which was displaced inwards at later stages. By using 

an antibody against β-catenin to distinguish compact from trabecular 
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myocardium, it was shown that, after regeneration was completed, the 

compact layer of muscle increased to 10 to over 30 cell layers. 

However, this phenotype was not observed by others (Raya et al., 

2003), who reported normal proportions of compact and trabecular 

zones (Raya et al., 2004). 

In their 2003 paper, Raya et al. (2003) also addressed the question of 

whether developmental-like progenitor cells were activated during 

regeneration by analyzing the expression of nkx2.5 and tbx5, two early 

markers of cardiac lineage. They could not detect any increase in 

expression by in situ hybridization upon amputation, and they 

addressed this question further by using a transgenic zebrafish line 

expressing EGFP under the control of the CARP (a direct target of 

nkx2.5) promoter. They could not see fluorescence from the EGFP at 

any time point analyzed beginning from 3dpa. The results from these 

different approaches lead to the conclusion that progenitor cells did 

not appear to be the ones driving the regenerative response, but the 

differentiated cardiomyocytes instead. 

The notion that cardiomyocytes were the source of the newly formed 

muscular tissue was later supported by the observation that primary 

cultures of zebrafish cardiomyocytes were capable of responding to 

growth factors by increasing BrdU incorporation (Lien et al., 2006). 

That same year though, immersed in the very raising popularity of the 

stem cell field, this view was shifted 180 degrees by evidence 

published by Lepilina et al. (2006). They used an elegant timing assay 

that takes advantage of the different kinetics in fluorescence and 

degradation of the EGFP versus DsRed2. The premises were that (1) 
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EGFP folds and fluoresces more rapidly than DsRed2 (they reported 

to be one day faster in embryonic zebrafish cardiomyocytes activating 

the cmlc2 promoter for the first time) and that (2) EGFP is also less 

stable than DsRed2 and degrades about twice as rapidly. This 

bidirectional developmental timer would have allowed them to (i) 

identify new cardiomyocytes arising from an undifferentiated state 

(EGFP-positive, DsRed2-negative) and (ii) identify once-expressing 

cardiomyocytes switching off the cmlc2 promoter in a presumable 

process of dedifferentiation (EGFP-negative, DsRed2-positive) (Fig. 

5). 

What they reported was that, in regenerating hearts, a front of EGFP-

positive, DsRed2-negative appeared from 7dpa onwards and no 

EGFP-negative, DsRed2-positive cells were detected. They 

interpreted these results to indicate that newly formed cardiomyocytes 

arise from a pool of undifferentiated progenitor cells. They further 

supported their observations by in situ hybridization experiments 

detecting an increase of expression of early markers of cardiac 

progenitors such as nkx2.5, hand2, tbx20 and tbx5, together with 

increased immunoreactivity to MEF2 protein (Lepilina et al., 2006). 

	
  

b) Molecular bases and non-myocardial cellular contribution  

The first data about the molecular requirements for proper heart 

regeneration in zebrafish came as a byproduct of large mutagenesis 

screens primarily aimed to find genes required for zebrafish fin 

regeneration (Makino et al., 2005; Nechiporuk et al., 2003; Poss et al., 

2002a; Whitehead et al., 2005).  
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In the first of this series of papers, Poss et al (Poss et al., 2002a) 

described the lack of fin regeneration in a temperature-sensitive 

mutant of the gene monopolar spindle 1 (mps1), encoding a conserved, 

kinetocore-associated kinase, required for proper mitotic checkpoint 

(Abrieu et al., 2001; Weiss & Winey, 1996). In these mutants, the fin 

does not regenerate due to the failure of blastema cells to proliferate 

Figure 5. Model of the double developmental timer assay used in Lepilina et al. 
(2006) study. (A) An unlabelled undifferentiated progenitor cell undergoing 
cardiomyocyte differentiation will activate its cmlc2 promoter and thus the expression of 
EGFP and nuclear DsRed2. Because EGFP folds and fluoresces faster than DsRed2, it 
will appear earlier in differentiating cardiomyocytes. (B) A differentiated cardiomyocyte 
showing fluorescence of both EGFP and nuclear DsRed2 will turn down the activation 
of the cmlc2 promoter as a result of dedifferentiation. Because EGFP is less stable than 
DsRed2, the dedifferentiating cardiomyocyte will lose EGFP fluorescence faster than 
DsRed2’s. 
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(Poss et al., 2002a). Consistent with this, it was found that mps1 

mutants also failed to regenerate their hearts, and postulated that this 

gene was necessary for cardiomyocytes to proliferate, since wild-type 

cardiomyocytes next to the site of injury display increased expression 

of msp1 (Poss et al., 2002b). A similar situation occurred in nbl (no 

blastema) mutants, which carried a point mutation in the gene coding 

for heat shock protein 60 (hsp60). The authors failed to detect BrdU 

incorporation in MEF2-positve cells (Makino et al., 2005). 

More data came as part of an expression screen for candidate genes 

required for heart regeneration in zebrafish. Raya et al. (2003) found 

an overexpression of the genes encoding the muscle segment 

homeobox (msx) msxB and msxC, and of notch1b together with one 

of its ligands, deltaC. Although no loss-of-function was performed to 

confirm their requirement for proper regeneration, some hypotheses 

can be inferred from their expression patterns during heart 

regeneration and from data in the literature. notch1b and deltaC 

transcripts were upregulated in the endocardium of the whole ventricle 

from 1dpa to 7dpa, suggesting a role of the endocardium in aiding or 

instructing the proliferation of cardiomyocytes, as their expression is 

also seen during zebrafish heart development (Beis et al., 2005; Walsh 

& Stainier, 2001). Of special interest should be msxB and msxC for 

several reasons.  They were found to be overexpressed in the cardiac 

tissue next to the wound, from 3dpa to 21dpa, but peaking at 14dpa. 

In zebrafish, the five msx genes (msxA-E) have been shown to be 

expressed during development in fins and other organs (Akimenko et 

al., 1995; Ekker et al., 1997; Zauner et al., 2003) and during fin 

regeneration, either in the adult (Akimenko et al., 1995) or in the 
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embryo (Mathew et al., 2007). However, neither msxB nor msxC, were 

found to be expressed during heart development in zebrafish (Raya et 

al., 2003), but are the only ones to be expressed in the blastema cells 

during adult fin regeneration (Akimenko et al., 1995). That meant that, 

at least in the heart, msxB and msxC overexpression during 

regeneration does not recapitulate a developmental program but 

instead they would presumably act as factors to induce 

dedifferentiation, a phenomenon observed in mammalian myotubes 

after ectopic expression of the related factor msx1 (Odelberg et al., 

2000). 

Very interesting data was also revealed by work showing the dynamic 

action of genes expressed in the epicardium such as raldh2 and tbx18 

(Lepilina et al., 2006), which were found to be upregulated in the 

whole heart at 3dpa, while their expression was restricted to the 

regenerating area of the ventricle at 14dpa. The penetration of cells 

expressing these genes into the wound, together with the increase of 

reporter expression in the wound from fli1:EGFP fish (in which 

EGFP is under the control of the endothelial-specific gene, fli1), 

prompted the authors to speculate about an epithelial-to-mesenchymal 

transition (EMT) process, homologous to what is seen during 

development (Timmerman et al., 2004). They further suggested an 

interaction between epicardial and myocardial cells involving fibroblast 

growth factor (fgf) signaling. They showed that the ligand fgf17b is 

upregulated in the myocardium, while the receptors fgfr2 and fgfr4 are 

upregulated in the epicardial cells that invade the wound at later stages 

of regeneration. Moreover, in the involvement of fgf signaling during 

heart regeneration was bolstered by using a transgenic line in which a 
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dominant-negative form of the fgfr1 is expressed under the hsp70 

promoter (hsp70:dn-fgfr1). After heat-shocking the animals in the 

process of regeneration they observed that their regenerative capacity 

was reduced. This was accompanied with an increase of the scar size, a 

lack of infiltration of tbx18-positive epicardial cells and a lack of 

vascularisation as observed by the absence of EGFP expression in the 

fli1:EGFP background. 

A more comprehensive approach to determine the molecular bases 

during heart regeneration came by means of a genome-wide 

expression analysis (Lien et al., 2006). Their samples consisted of one 

third of the ventricle containing the amputation plane obtained from 

3dpa, 7dpa and 14dpa regenerating hearts and sham-operated hearts. 

662 transcripts were found to be differentially expressed, and within 

those, they found a sequential expression profile of genes coding for 

wound response/inflammatory/anti-inflammatory factors, secreted 

molecules, and matrix metalloproteinases (MMPs) (Fig. 6). They also 

checked the expression pattern by in situ hybridization of some of 

these genes, namely apoEb, midkine a, thymosin beta 4 and pdfgb. They 

obtained a clear signal for the first two genes. While apoEb peaked at 

3dpa and appeared in a punctuate fashion suggesting expression from 

infiltrating macrophages, midkine a peaked at 7dpa and its expression 

could be detected in the compact layer of myocardium and the 

epicardium around the wound site. They also went one step further in 

their search for molecules that could stimulate cardiomyocytes to 

proliferate by adding some of the identified factors to primary cultures 

of cardiomyocytes, something that already proved valuable in the newt 

(Soonpaa et al., 1992, 1994). They tested mammalian ApoE4, Midkine 
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a, Progranulin, PDGF-AA, PDGF-AB, PDGF-BB and recombinant 

zebrafish PDGF-BB. They could only see a significant increase in 

BrdU incorporation in cardiomyocytes treated with both zebrafish and 

mammalian PDGF-BB (a 2,68-fold increase for the latter). The role of 

PDGF action was further addressed in vivo by the use of a chemical 

inhibitor. They observed a very mild decrease of BrdU incorporation 

into cardiomyocytes, although significant, in contrast to what they 

observed by the use of a MMPs inhibitor. 

 

Notably, the transcriptional analysis of Lien et al. (2006) supported 

some, but not all previous data. For example, they found mps1 (Poss et 

al., 2002b) to be upregulated and peaking at 3dpa. On the other hand, 

they did not find upregulation of notch1b or deltaC (Raya et al., 2003) 

nor of hsp60 (Makino et al., 2005). They argued that notch1b and deltaC 

Figure 6. Gene expression profile of 
regenerating zebrafish heart. General 
trend and average fold change of 
expression of wound 
response/inflammatory genes, secreted 
molecules, and MMPs. The wound 
response/inflammatory genes are 
expressed early (peak at 3 dpa) during 
zebrafish heart regeneration. Genes 
coding for secreted molecules begin to 
express at 3 dpa and the expression level 
reach a peak at 7 dpa. The MMPs start to 
express at 7 dpa and last until 14 dpa. 
From Lien et al. (2006). 
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were probably not detected because of the different heart locations 

examined in the study of Raya et al. (2003), compared to theirs. They 

also postulated that the failure to detect an upregulation of hsp60 

might be explained by a post-translational control of hsp60 activity 

during regeneration. 

Thus, the data obtained by several approaches may in some cases be 

complementary but in some others may have to be revisited. 
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2. OBJECTIVES 

 

 

1. Characterize molecularly the initial steps of heart regeneration in 

zebrafish and identify general molecular signatures by the analysis 

of genome-wide transcriptional data. 

 

2. Validate a list of candidate genes to have a role during heart 

regeneration in zebrafish by more sensitive techniques, both 

qualitatively (conventional RT-PCR, in situ hybridization), and 

quantitatively (quantitative RT-PCR). 

 

3. Validate the functional role of selected candidate genes during heart 

regeneration in zebrafish in vivo. 

 

4. Identify the cellular origin of the newly formed cardiomyocytes 

during the process of heart regeneration by inducible genetic 

labeling techniques. 

 

5. Characterize the structural changes associated with the cells that 

give rise to new cardiomyocytes during heart regeneration in 

zebrafish. 
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3. RESULTS 

 

3.1 Paper 1: Zebrafish heart regeneration occurs by 

cardiomyocyte dedifferentiation and proliferation 

U48820
Cuadro de texto

Jopling C, Sleep E, Raya M, Martí M, Raya A, Izpisúa JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation.
Nature. 2010; 464(7288): 606-9.
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http://www.nature.com/nature/journal/v464/n7288/abs/nature08899.html
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3.2 Paper 2: Transcriptomics approach to investigate 

zebrafish heart regeneration 
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4. DISCUSSION 

 

The results presented here change the conception of how heart 

regeneration occurs in the zebrafish at the cellular level and is further 

supported at the molecular level. Overall, our data provide a new entry 

point for dissecting the mechanisms of heart regeneration in zebrafish 

with the hope that such knowledge will be ultimately used for the 

development of effective regenerative-based therapies for human 

cardiac disease. 

	
  

4.1  Cellular bases of heart regeneration in zebrafish 

The identification of the cell type(s) that give rise to new 

cardiomyocytes is essential to understand how zebrafish heart 

regeneration takes place. Previous observations suggested that a set of 

cardiac progenitor or stem cells were the source of the newly formed 

cardiomyocytes (Lepilina et al., 2006). However, we consider that their 

experimental approaches had several caveats and some results 

appeared to be at odds with previous reports. These facts could have 

led the authors to misleading conclusions, as pointed out shortly after 

their publication (Borchardt & Braun, 2007). Specifically, our concerns 

include the following: First, DsRed2, similar to its former relatives, is 

an obligate tetramer and has been shown to aggregate under typical 

conditions of use, including the reducing environment of the cytosol 

and the presence of native proteins (Baird et al., 2000). This might 

have toxic effects and impede proper targeting to cellular 

compartments (Strack et al., 2008; Yanushevich et al., 2002). Second, 
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whereas EGFP was cytosolic, DsRed2 was targeted to the nucleus, 

thus providing another variable that was not taken into account for 

the decay kinetics. Third, DsRed2 has only been shown to degrade 

slower than EGFP in Drosophila S2 cells grown at 25ºC (Verkhusha 

et al., 2003) but not in the zebrafish. The authors failed to show this 

important control in their study, something that could have easily been 

checked by co-injecting EGFP and DsRed2 mRNA into zebrafish 

embryos and following the decay of fluorescence. Fourth, although 

both EGFP and DsRed2 where under the control of the cmlc2 

promoter, the double transgenic line was obtained from a cross of two 

independent lines, harboring transgene insertions on different genome 

locations, and therefore their reporter expression possibly being 

subject to different positional influences (Hans et al., 2009). Fifth, and 

related to the previous concern, when using the single transgenic line 

expressing nuclear DsRed2, Lepilina et al. (2006) observed that nuclei 

of the regenerated myocardium had a lower intensity than the non-

regenerated myocardium at 14dpa and 22dpa. The authors claimed to 

expect this result in less differentiated or transitioning cardiomyocytes. 

This was striking, as Raya et al. (2003) did not report any decrease in 

fluorescence in the regenerated area of hearts from cmlc2-EGFP 

zebrafish. This difference could point to a regeneration-dependent 

differential behavior of the reporter transgenes. Sixth, while observing 

low-intensity DsRed2 fluorescence driven by the cmlc2 promoter in the 

nuclei of cardiomyocytes in the regenerating area at later stages of 

regeneration (which the authors interpreted as less differentiated or 

transitioning cardiomyocytes), they also observed an increase of MEF2 

immunoreactivity in the regenerating area as early as 4dpa (which was 

interpreted as an evidence of pre-cardiac or early differentiation 
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marker). However, MEF2 has been shown to directly bind the cmlc2 

promoter and activate its transcription in vertebrates and flies 

(Sandmann et al., 2006). Thus, these two observations by Lepinila et 

al. (2006) seem to contradict one another and are not satisfactorily 

addressed in their studies. Seventh, the increase of expression detected 

by in situ hybridization of markers of cardiac progenitors such as 

nkx2.5 and tbx5 described by Lepilina et al. (2006) was not observed in 

previous reports analyzing the same markers in a similar context (Raya 

et al., 2003). Moreover, neither nkx2.5, nor tbx5, tbx20 or hand2 were 

found to be upregulated in the genome-wide transcriptome analysis of 

Lien et al. (2006), or in ours (Paper 2). 

Considering the concerns described above, we should note that we 

were not convinced by the data presented by Lepilina et al. (2006), nor 

by their conclusions. 

To unambiguously address the question of whether newly formed 

cardiomyocytes are derived from pre-existing cardiomyocytes or from 

a progenitor or stem cell source, we genetically labeled differentiated 

cardiomyocytes and their progeny. Our lineage tracing experiments 

provide strong support to the notion that cardiac progenitor or stem 

cells are not the source for new cardiac muscle (Paper 1). Rather, our 

results show that the proliferation of differentiated cardiomyocytes is 

the primary source of the regenerated myocardium. This was already 

suggested by previous studies (Poss et al., 2002b; Raya et al., 2003), 

although firm conclusions could not be drawn in the absence of 

inducible genetic labeling techniques. Consistent with this view, 

regeneration of the newt heart was also proposed to depend on the 

proliferation of already existing cardiomyocytes (McDonnell & 
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Oberpriller, 1984; Oberpriller & Oberpriller, 1971). As the data 

obtained for the newt could not discriminate between different forms 

of regeneration, it will be very valuable to address this question in 

future lineage tracing labeling experiments, once this technique 

becomes available for this animal model. 

We show that cardiomyocytes, especially those closest to the wound, 

undergo a partial dedifferentiation process characterized by a 

disorganization of the contractile apparatus and detachment of 

adjacent cardiomyocytes and among cardiomyocytes and endothelial 

cells. Disarrangement of contractile filaments in mitotic 

cardiomyocytes and the breakdown of myofibrillar structure in 

cardiomyocytes labeled after DNA synthesis was also noted in the case 

of newt heart regeneration (Bader & Oberpriller, 1979; Oberpriller & 

Oberpriller, 1971). In that case, it was suggested that the disruption of 

the myofibrils might be a physical factor to allow the cell to proceed to 

cytokinesis (Oberpriller & Oberpriller, 1971). Importantly, this 

phenotype was also found in cell culture experiments. Time-lapse 

analyses of plated newt cardiomyocytes showed that the myofibrillar 

structure suffered changes in cells undergoing mitosis and striations 

could only be detected at the very periphery of dividing 

cardiomyocytes (Bettencourt-Dias et al., 2003; Matz et al., 1998). 

Consistent with this, we also showed that cardiomyocytes that stained 

positive for phosphorylated-histone 3 (pH3), a marker of mitosis, 

failed to display a properly organized sarcomeric structure. Thus, the 

zebrafish and the newt seem to share common mechanisms that allow 

the cardiomyocyte to enter the cell cycle. It will be very interesting to 
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investigate how these two mechanisms, myofibrillar breakdown and 

cell cycle re-entry, are coordinately induced, deployed, and terminated. 

As shown for zebrafish cardiomyocytes, cellular dedifferentiation and 

reacquisition of the differentiated state has also been observed in the 

case of limb and lens regeneration in the newt and the axolotl (Tanaka 

& Galliot, 2009; Tsonis, 2000). This suggests that cellular plasticity 

from the differentiated state may be a conserved feature used for 

regeneration in adult vertebrate regeneration-competent species 

(Brockes & Kumar, 2002; Odelberg, 2005). 

	
  

4.2  Molecular mechanisms 

A myriad of factors might be involved in instructing the different cell 

types present in the zebrafish heart to proliferate, migrate or to change 

their phenotype in order to rebuild it after amputation. To gain more 

insights into this, and with an especial interest in initiator signals of 

regeneration, we undertook a transcriptional analysis of the zebrafish 

heart at the early stages of regeneration by the use of Affymetrix 

technology (Paper 2). Even though the 14,900 transcripts analyzed the 

Affymetrix GeneChip Zebrafish Genome Array correspond to around 

60% of total annotated transcripts (according to the current Vega 

Genome Browser release 38), our transcriptional profiling allowed us 

to describe some of the initial steps of heart regeneration in molecular 

terms, that is, a partial cardiomyocyte dedifferentiation process 

followed by the progressive return to the differentiated state. This was 

characterized by an early downregulation of cardiac-specific 

transcription factors and a later upregulation of contractile proteins 
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and it was accompanied by a downregulation of genes involved in 

structural integrity of the cell and cell-cell adhesion. Thus, our 

molecular data provided molecular bases, at the transcriptional level, 

to our transmission electron microscopy observations of regenerating 

hearts. 

We suspected that dedifferentiation in cardiomyocytes would be 

followed by, or be contemporary to, the upregulation of genes 

involved in cell proliferation. To enrich our list of candidate genes 

involved in the acquisition of a proliferation-competent status, we 

compared our transcriptional data to those of three other available 

transcriptional datasets on zebrafish tissue regeneration. Among the 

33 genes (35 probesets) found to have differential expression in all 

types of zebrafish regeneration analyzed, we found the gene encoding 

polo-like kinase 1 (plk1), a positive regulator of cell cycle progression 

(Petronczki et al., 2008). plk1 was found to be upregulated during 

heart regeneration in cells next to the wound, where the highest 

proportion of proliferative cardiomyocytes are found, suggesting that 

cardiomyocytes upregulated this gene to enter mitosis. Indeed, we 

found that pharmacological inhibition of plk1 in vivo blocked 

regeneration due to reduced cardiomyocyte proliferation upon 

amputation. Thus, plk1 has an essential role in enabling cell cycle 

progression in cardiomyocytes and can be added to the list of required 

genes for heart regeneration together with mps1, fgfr1(Poss et al., 

2002a), and hsp60(Makino et al., 2005). 

We also used the transcriptional comparison approach to address the 

question of which genes in the ~2,000-gene (2,006 probesets) list we 

obtained were more prone to have a specific role in the regeneration 
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of the zebrafish heart. We did this by comparing our data to that of 

Lien et al. (2006) and found more than 300 genes (318 probesets) 

shared between the two datasets. Three of such genes were found to 

be upregulated next to the injury site, namely cathepsin S b.1 (ctssb.1), 

cathepsin Z (ctsz) and glia maturation factor gamma (gmfg).  

The genes ctssb.1 and ctsz encode for proteolytic enzymes. Apart from 

a general role in remodeling the extracellular matrix and allowing cell 

migration, such proteolytic enzymes could also be responsible for 

disrupting cell contacts, facilitating the reversal from a differentiated 

state and for allowing responses to soluble mediators (Brockes, 1997). 

It is appealing to speculate that ctssb.1 and ctsz could have a role in 

mediating the dedifferentiation of cardiomyocytes either triggered by 

the release of inhibitory cell contacts, as it is found to be the case in 

cultured newt myotubes (Tanaka et al., 1997), or by proteolyzing a 

serum factor that would have an effect to cardiomyocytes. An example 

of the latter could be thrombin, which was shown to generate a ligand 

from the cleavage of a substrate in vertebrate serum leading to 

induction of cell cycle re-entry of cultured newt myotubes (Tanaka et 

al., 1999).  

The gene gmfg encodes for an actin-binding protein predominantly 

expressed in microvascular endothelial cells and inflammatory cells 

(Ikeda et al., 2006; Walker, 2003). It will also be interesting to 

determine whether it can have any role on cardiomyocyte performance 

during regeneration or on other cellular processes such as the 

epithelial-to-mesenchymal transition. Such process is very important 

during heart development in zebrafish (Timmerman et al., 2004) and 



 

 74 

was also suggested to be an important aspect of zebrafish heart 

regeneration (Lepilina et al., 2006). 

At the molecular level, both zebrafish and newts seem to use 

conserved mechanisms to induce regeneration. Recently, a report 

comparing transcriptional data of regenerating zebrafish heart to an 

EST database from 14dpa newt hearts led to the conclusion that newt 

and zebrafish activate similar genes in response to injury (Borchardt et 

al., 2010). This is another example of the consistency in the 

mechanisms deployed by both animal species during heart 

regeneration and provides support to the view that information 

acquired in one model may complement the information gathered in 

the other. 

Finally, the determination of what factors are involved in or influence 

the acquisition of a proliferation-competent status should be of 

outstanding interest. We suspect that the study of other unexplored 

members of the Wnt, TGF-beta, BMP, or IGF signaling pathways, as 

well as other pathways identified in our transcriptome profiling, will 

lead to interesting data regarding the control of different cellular 

aspects of regeneration, as they already have in other regenerating 

systems (Chablais & Jazwinska, 2010; Ho & Whitman, 2008; 

Kawakami et al., 2006; Smith et al., 2006; Stoick-Cooper et al., 2007). 

 

4.3  Contribution to regenerative medicine 

Ischemic cardiomyopathy is the leading cause of death worldwide 

(Mathers et al., 2005). Myocardial infarction results from the 
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obstruction of a coronary artery, resulting in a reduced or absent 

blood supply with subsequent cellular hypoxia and necrosis. In 

mammals, after a myocardial infarction episode, the damaged 

myocardium is replaced by scar tissue featuring collagen deposition 

and tissue remodeling (Jugdutt et al., 1996; Lutgens et al., 1999; 

Nakatsuji et al., 1997). Although it has been reported that 

cardiomyocytes do proliferate in normal adult human hearts and that 

cell proliferation increases after myocardial infarction (Beltrami et al., 

2003; Kajstura et al., 1998), the efficiency of this process appears to be 

too low to overcome the injury and cellular hypertrophy is the main 

compensatory response. 

Therapies in use to prevent heart failure are limited. Prophylactic 

treatment is pharmacological in nature, aiming primarily to inhibit the 

neurohormonal axis that results in excessive cardiac activation through 

angiotensin- or norepinephrine-dependent pathways (Itescu et al., 

2003). In recent years, some cell-based therapies including 

transplantation of skeletal myoblasts, hematopoietic stem cells, 

adipose-derived mesenchymal stem cells, and bone marrow-derived 

mesenchymal stem cells have been tested (reviewed in Sanchez et al., 

2007). They rely on the differentiation capacity of these cells into 

cardiomyocytes and other cell types found in the heart. Although 

some cell-based therapies have proven to ameliorate cardiac function 

and decrease the risk of post-infarct heart failure, the long-term 

behaviour of those cells have not been well characterized in the in vivo 

context and their regenerative capacity remains uncertain. At this time, 

it is not clear whether the improvement in cardiac function is due to 

the ability of the transplanted progenitor cells to differentiate into the 
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relevant cell types or because of the secretion of pro-survival factors 

by these cells (Boudoulas & Hatzopoulos, 2009; Guan et al., 2007). 

Pre-clinical research has provided evidence on the differentiation 

capacity of progenitor cells from a variety of sources to give rise to 

different cardiac cell types, and on the identification of embryonic and 

adult cardiac stem cell populations (Baba et al., 2007; Beltrami et al., 

2003; Garry & Olson, 2006; Guan & Hasenfuss, 2007; Laugwitz et al., 

2005). Moreover, genetic fate-mapping studies showed that, in the 

mouse heart, stem cells contribute to new cardiomyocytes after injury 

(Hsieh et al., 2007). However, they do not do so in the normal aging 

period of 1 year. On the other hand it has been recently reported that 

the human heart replaces about 50% of its cardiomyocytes during a 

normal life span (Bergmann et al., 2009). Although in this study they 

could not rule out if new cardiomyocytes arose from cardiomyocyte 

duplication or from a stem/progenitor pool, the data obtained from 

genetic labeling in aging mice (Hsieh et al., 2007) could still be 

consistent with cardiomyocyte duplication. 

The fact that zebrafish regenerates its heart by utilizing pre-existing 

cardiomyocytes as the primary source for new cardiac muscle opens a 

way to try to enhance mammalian cardiac regeneration by acting 

directly on cardiomyocytes analogously as the zebrafish does. 

Although the mammalian cardiomyocyte has mostly been regarded as 

a terminally differentiated cell with no proliferative potential, some 

have reported that this is not the case and that they can go all the way 

to cytokinesis (Bersell et al., 2009; Engel et al., 2005; Kuhn et al., 

2007).  
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A parallelism to the comparison of skeletal muscle regeneration 

between mammals and amphibians can be drawn. Different behaviors 

of newt and mammalian myotubes in culture have been observed. The 

former respond to high concentrations of serum or thrombin by 

reentering the cell cycle, traversing S phase and arresting at G2 

without cytopathology (Tanaka et al., 1997; Tanaka et al., 1999). The 

latter are refractory to both (Tanaka et al., 1997) unless they lack both 

copies of the retinoblastoma (Rb) gene or unless they are myotubes 

coming from the fusion of mouse C2 and newt A1 mononucleate cells 

(Velloso et al., 2001). Alternatively, mammalian myotubes can be 

induced to dedifferentiate by ectopically expressing a homeobox gene, 

msx1 (Odelberg et al., 2000), which was shown to be upregulated 

during urodele regeneration (Simon et al., 1995). These results point to 

cell-autonomous differences regarding regeneration capacity, thus 

offering little hope for the successful development of non-genetic or 

xenobiotic-free regenerative therapies. However, mammalian 

myotubes can also be induced to dedifferentiate by culturing them 

with newt limb regeneration extract (McGann et al., 2001), or by 

treatment with certain chemical compounds such as myoseverin 

(Rosania et al., 2000). This suggests that, under the appropriate stimuli, 

mammalian myotubes can be forced to behave as regeneration-

competent myotubes. Altogether, these observations point to local 

environment as a critical aspect in triggering the cellular plasticity seen 

in regeneration. This type of experiments could also be applied to 

research on heart regeneration to unveil crucial aspects of mammalian 

cardiomyocyte competence in terms of dedifferentiation and 

proliferation when compared to zebrafish. 



 

 78 

	
  

4.4  Open questions 

Some questions though, still need to be answered. One of the most 

important is how far does the cardiomyocyte need to dedifferentiate. 

Our data point to a mild dedifferentiation in which structural genes 

and myocyte-specific transcription factors are downregulated and 

characteristic cytoskeletal proteins are disassembled, presumably to 

facilitate cell division (Fig. 7). However, these observations come from 

snapshots at different times of regeneration. It could be possible that 

cardiomyocytes undergoing dedifferentiation go very transiently 

through a state close to that of embryonic cardiomyocytes and thus be 

overlooked by our transcriptional profiling approach. Moreover, our 

genetic lineage tracing experiments were designed to track 

differentiated cardiomyocytes and, as therefore, do not allow to follow 

cells that turn the cmlc2 promoter off. This question was partially 

addressed in a previous study (Raya et al., 2003) by analyzing the 

reporter expression under the control of a developmentally expressed 

gene in the heart (CARP), but no evidences were found to take this 

hypothesis under consideration. A feasible way to directly address this 

possibility would be to genetically mark the cells that reactivate 

developmentally expressed genes using strategies similar to the one 

described here (Paper 1). A battery of candidates including those 

found in early progenitors such as nkx2.5, CARP or ckit, or more 

committed cardiomyoblasts such as tbx5, tbx20 or hand 1/2, could be 

useful for this purpose (Fig. 7). In addition, it would be very 

interesting to analyze quantitatively the proliferating capacity of 

regenerating cardiomyocytes. In other words, do all cardiomyocytes 
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around the wound undergo the same number of cell divisions, or are 

there intrinsic differences between different cardiomyocytes, as seen in 

the case of mono- and binucleated newt cardiomyocytes (Matz et al., 

1998)? Or even further, is it that just a few of them have the capacity 

or are instructed to divide continuously while others do not? 

Developing appropriate labeling techniques and culture conditions to 

track zebrafish cardiomyocytes for long time-periods will be 

instrumental to provide a definitive answer to these questions. 

 

Figure 7. Cardiomyocyte differentiation status and gene expression signatures 
during development and regeneration. A schematic representation of the general 
steps in vertebrate heart development showing the progressive maturation from a 
pluripotent cell to an adult cardiomyocyte together with its changing expression 
signature is shown. During zebrafish heart regeneration, cardiomyocytes only 
dedifferentiate partially and do not go a long way back to the pluripotent state 
(indicated as a dashed line barrier). Instead, they conserve expression signatures 
and morphological features of adult or fetal cardiomyocytes. 
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5. CONCLUSIONS 

 

1. Genome-wide transcriptional analysis identified about 2000 genes 
showing differential expression during the initial stage of heart 
regeneration in zebrafish and identified a molecular signature 
consistent with a partial dedifferentiation of cardiomyocytes. 

2. Comparative analysis of different forms of regeneration in 
zebrafish identified a subset of about 318 genes showing 
differential expression specifically during heart regeneration and a 
subset of 33 genes with conserved differential expression in all the 
forms of regeneration analyzed. 

3. Transcriptome data was validated for a number of genes by 
conventional and quantitative RT-PCR and the gene expression 
patterns were determined for four of the validated genes showing 
expression in putative cardiomyocytes, endothelial cells, epicardial 
cells, and infiltrated blood cells. 

4. plk1, one of the candidate genes validated by RT-PCR and showing 
a suggestive expression pattern, is essential for proper heart 
regeneration in zebrafish, since pharmacological inhibition of plk1 
led to the failure of regeneration due to decreased cardiomyocyte 
proliferation. 

5. We unambiguously identified the differentiated cardiomyocyte as 
the primary source of newly formed cardiomyocytes during heart 
regeneration in zebrafish by an inducible genetic labeling technique 
based on the Cre/loxP system. 

6. Ultrastuctural analysis of regenerating zebrafish hearts identified a 
series of changes consistent with dedifferentiating cardiomyocytes, 
including a disorganization of the sarcomeric structure and the 
cellular detachment from adjacent cardiomyocytes and endocardial 
cells. 
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