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Part II

Redshift space distortions





Chapter 8

Theory of redshift space distortions

In this part of the thesis we present a different approach to measure the evolution in the
growth of structure, based on redshift distortions. Galaxies, that trace the matter density
in the universe, move differently depending on the cosmology. These peculiar velocities are
added to the Hubble flow and this affects the distance that we obtain from redshifts in the
direction of line-of-sight. The 2-point correlation function becomes anisotropic in redshift
space, and gives us important information depending on the degree of anisotropy. We work
with luminous red galaxies from the Sloan Digital Sky Survey, which occupy a big volume
and are assumed to live in the centers of the halos. While in the previous part of this Thesis
we use the photometric sample of SDSS (with angular positions) here we will focus in the
spectroscopic sample, which contains information from peculiar velocities. In this chapter, we
study the theory involved in our calculations.

8.1 Introduction to redshift space distortions

Peculiar velocities v are defined as deviations away from the Hubble flow due to local
inhomogeneities:

ṙ = ȧx = ȧx+ aẋ = Hr + v (8.1)

where a is the scale factor, r = ax is the proper distance and x is the comoving distance.
The peculiar velocities of galaxies cause them to appear displaced along the line-of-sight in

redshift space, since redshift is a measure of velocity as well as of distance. Then, the redshift
distance s of a galaxy differs from the true distance r by its peculiar velocity along the line-of-
sight. These displacements lead to redshift distortions, with two important contributions. The
first, from large over densities that lead to a coherent bulk motion. We see walls denser and
voids bigger and emptier, with a squashing effect in the 2-point redshift correlation function
along the line-of-sight (Kaiser 1987). At small scales, random velocities inside clusters of
galaxies produce a radial stretching pointed at the observer, known as fingers of God (FOG).

Although such distortions complicate the interpretation of redshift maps as positional
maps, they have the advantage of bearing information about the dynamics of galaxies. In
particular, the amplitude of distortions on large scales yields a measure of the linear redshift
distortion parameter β, which is related to the cosmological matter density.

Kaiser (1987) pointed out that, in the large-scale linear regime, and in the plane-parallel
approximation (where galaxies are taken to be sufficiently far away from the observer that the
displacements induced by peculiar velocities are effectively parallel), the distortion caused by
coherent infall velocities takes a particularly simple form in Fourier space:

Ps(k) = (1 + βμ2
k)

2P (k). (8.2)



64 8 Theory of redshift space distortions

where P (k) is the power spectrum of density fluctuations δ defined in Eq.(2.11), μ is the
cosine of the angle between k and the line-of-sight, the subscript s indicates redshift space,
and β is the growth rate of growing modes in linear theory, the dimensionless quantity which
solves the linearized continuity equation �∇.�v + βδ = 0 in units where the Hubble constant
is one. If the galaxy overdensity δ is linearly biased by a factor b relative to the underlying
matter density δm of the Universe, δ = bδm (see Eq.(2.14)), but velocities are unbiased, then
the observed value of β is

β ≈ Ω0.55

b
(8.3)

for standard gravity. See Hamilton (1992) for an extensive review.

8.2 Model for the anisotropic 2-point correlation function in

redshift space

The 2-point correlation function, ξ(�r), is defined by the joint probability that two galaxies
are found in the two volume elements dV1 and dV2 placed at separation �r (see Peebles 1980)

dP12 = n2[1 + ξ(r)]dV1dV2 (8.4)

We can split the distance �r into its component along the line-of-sight (LOS) π and per-
pendicular to the LOS, σ, as shown in Fig.10.6, so that ξ(�r) is in fact a function ξ(π, σ).
These are the right variables to study redshift space distortions. In real space we usually have
isotropy so that ξ(σ, π) = ξ(r) with r =

√
σ2 + π2.

The correlation ξ(�r) in real space is related to the power spectrum by a Fourier transform:

ξ(�r) =

∫
P (k)e−i�k�r d3k

(2π)3
(8.5)

and with isotropy,

ξ(r) = 4π

∫ ∞

0
P (k)

sin(kr)

kr

k2dk

(2π)3
(8.6)

As mentioned above, Kaiser (1987) pointed out that the coherent infall velocities take a
simple form in Fourier space given by Eq.(8.2). Hamilton (1992) translated these results into
real space,

ξ′(σ, π) = [1 + β(∂/∂z)2(∇2)−1]2ξ(r), (8.7)

which reduces to

ξ′(σ, π) = ξ0(s)P0(μ) + ξ2(s)P2(μ) + ξ4(s)P4(μ), (8.8)

where in general (see also Eq.(8.16)),

ξ0(s) =

(
1 +

2β

3
+

β2

5

)
ξ(r), (8.9)

ξ2(s) =

(
4β

3
+
4β2

7

)
[ξ(r)− ξ(r)], (8.10)

ξ4(s) =
8β2

35

[
ξ(r) +

5

2
ξ(r)− 7

2
ξ(r)

]
, (8.11)
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and

ξ(r) =
3

r3

∫ r

0
ξ(r′)r′2dr′, (8.12)

ξ(r) =
5

r5

∫ r

0
ξ(r′)r′4dr′. (8.13)

We use these relations to create a model ξ′(σ, π) which we then convolve with the dis-
tribution function of random pairwise motions, f(v), to give the final model ξ(σ, π) (Peebles
1980):

ξ(σ, π) =

∫ ∞

−∞
ξ′(σ, π − v/H(z)/a(z))f(v)dv (8.14)

where we divide peculiar velocities by a(z) to translate to comoving distances, since ve-
locities are defined in physical coordinates.

We represent the random motions by an exponential form,

f(v) =
1

σv

√
2
exp

(
−
√
2|v|
σv

)
(8.15)

where σv is the pairwise peculiar velocity dispersion. An exponential form for the random
motions has been found to fit the observed data better than other functional forms (Ratcliffe
et al. 1998; Landy 2002).

Sometimes there is a confusion in the dispersion of the pairwise velocity distribution, which

in the case of coming entirely from random peculiar velocities, should follow σ1D
v =

1√
3
σ3D

v ,

defined using the absolute values of the pairwise velocities. But in this work, σv refers to the
dispersion taking into account the sign of the pairwise velocity in the LOS, being negative
when galaxies are approaching each other and positive when they are moving further away.
We can only do this distinction in one dimension. This dispersion σv used here is larger than
the 1 dimensional σ1D

v .

When we add non-linear bias to the real-space correlation function, the corresponding
ξ(π, σ) is altered at different distances, not only for small redshift scales, basically around the
zone FOG.

Matsubara (2004) and Scoccimarro (2004) have presented different models for the 2-point
correlation function in redshift space. Tinker et al. (2006) and Tinker (2007) do a modeling of
redshift space distortions in the context of halo occupation distribution model (HOD). These
models are complementary to the one studied here. In most situations the differences are
small and we will show that our modeling gives good agreement with simulations and real
data.

8.3 Multipoles of ξ(π, σ)

We can define the multipoles of ξ(π, σ) as

ξ�(s) =
2	+ 1

2

∫ +1

−1
ξ(π, σ)P�(μ)dμ. (8.16)

where μ is cosine of the angle to the line-of-sight π.

The normalized quadrupole (Hamilton 1992) is defined as
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Q(s) =
ξ2(s)

ξ0(s)− (3/s2)
∫ s
0 ξ0(s′)s′2ds′

(8.17)

Linear bias cancels in the quadrupole, and Q(s) is slightly dependent on the shape of the
correlation function, such as changes of Ωm in large scales or scale dependent non-linear bias
for small scales.

In the Kaiser approximation, large scales, the quadrupole is directly related to β

Q(s) =
4
3β + 4

7β2

1 + 2
3β + 1

5β2
(8.18)

In small scales, the quadrupole depends strongly on the random pairwise velocities, rep-
resented by σv, but it does not depend much on non-linear bias, as we will show.

8.4 The projected correlation function Ξ(σ)

As we will show, the redshift-space correlation function differs significantly from the real-
space correlation function because of the distortions originated in the direction LOS. We can
estimate the real-space correlation function by calculating the projected correlation function,
Ξ(σ), integrating the redshift distorted ξ(π, σ) along the line-of-sight π.

Ξ(σ) = 2

∫ ∞

0
ξ(σ, π) dπ (8.19)

However, with data, we can not integrate until infinite. We set the upper limit in this
integral to πmax = 80Mpc/h. The result does not change when we move the upper limit of
the integral for πmax > 60Mpc/h in the data.

Davis & Peebles (1983) show that Ξ(σ) is directly related to the real-space correlation
function.

Ξ(σ) = 2

∫ ∞

σ

rξ(r)dr

(r2 − σ2)
1

2

. (8.20)

If we assume that the real space correlation function is a power law ξ(r) = (r/r0)
−γ0 , then

we can do this integral numerically, obtaining:

Ξ(σ)

σ
=
(r0

σ

)γ0 Γ(1
2 )Γ(

γ0−1
2 )

Γ(γ0

2 )
=
(r0

σ

)γ0

A(γ0). (8.21)

The parameters γ0 and r0 can then be estimated from the measured Ξ(σ), giving a value
of the real-space clustering independent of any peculiar motions (see also, Fry & Gaztanaga
1994).

8.5 The real space correlation function ξ(r)

It is possible to estimate ξ(r) by directly inverting Ξ(σ) (Saunders et al. 1992). They recast
Eq.(8.20) into the form,

ξ(r) = − 1
π

∫ ∞

r

(dΞ(σ)/dσ)

(σ2 − r2)
1

2

dσ. (8.22)
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Assuming a step function for Ξ(σ) = Ξi in bins centered on σi, and interpolating between
values,

ξ(σi) = − 1
π

∑
j≥i

Ξj+1 − Ξj

σj+1 − σj
ln

⎛⎝σj+1 +
√

σ2
j+1 − σ2

i

σj +
√

σ2
j − σ2

i

⎞⎠ (8.23)

for r = σi.

We take the redshift space anisotropic model ξ(π, σ) in Eq.(8.14), with a fixed β = 0.35
and σv = 400km/s, and we use Eq.(8.19) to obtain the projected correlation function Ξ(σ)
as if it was data. We fix the upper limit in the integral: 60Mpc/h, 80Mpc/h, 100Mpc/h and
200Mpc/h (dotted lines in top panel of Fig.8.1), and compare the result to the one obtained
theoretically from Eq.(8.20) (solid line in top panel of Fig.8.1). As we increase the upper limit
in the integral, we approach the real result, but we can not integrate until 200Mpc/h in real
data, because as we will see in future sections, data is quite noisy for π > 60Mpc/h. The
conclusion is that we will not be able to recover the projected correlation function completely
free of redshift distortions for large scales in real data (at least with available data), just where
we would like to evaluate the shape of the real correlation function, but we can use it at small
scales.

In the bottom panel of Fig.8.1 we see the real space correlation function recovered from the
previously calculated projected correlation function with different upper limit fixed, Eq.(8.22).
We obtain a good estimation of the ξ(r) until 30Mpc/h, we will use this inversion to see the
non-linear bias at small scales.

This analysis can be done for different values of β and σv and we find very similar conclu-
sions. We have shown in the plots the values that are in concordance with real LRG SDSS data.

Once we recover the real-space correlation function, we can also estimate the ratio of the
redshift-space correlation function, ξ(s), to the real-space correlation function, ξ(r), which
gives an estimate of the redshift distortion parameter, β, on large scales:

ξ(s)

ξ(r)
= 1 +

2β

3
+

β2

5
. (8.24)

As we have shown in Fig.(8.1), ξ(r) will be in general slightly overestimated at large scales

when we estimate it from the projected correlation function Ξ(σ), so the expression ξ(s)
ξ(r) will

in general be slightly lower than expected on large scales.
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Figure 8.1: Top: We compare here the projected perpendicular correlation function calculated theo-
retically from ξ(r) (solid line) compared to integral of π − σ to rf=60.(cyan), 80.(blue), 100.(yellow),
200.(red) for β = 0.35 and σv = 400km/s. Bottom: Estimation of the real space correlation function
by deprojecting the dotted color lines Ξ(r) in the top panel
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8.6 Growth history

According to general relativity, the equations that determine the evolution of the density
contrast δ in a flat background consisting of matter with density ρm and dark energy with
ρDE = pDE

w are of the form

δ̈ + 2
ȧ

a
δ̇ = 4πGρmδ (8.25)(

ȧ

a

)2

=
8πG

3
(ρm + ρDE) (8.26)

2
ä

a
+

(
ȧ

a

)2

= −8πGwρDE (8.27)

where Ωm(a) is the matter density at a redshift z where a = 1/(1 + z)

Ωm(a) =
H2

0Ω0ma−3

H2(a)
(8.28)

and

H(a) = H0

√
Ω0ma−3 + (1− Ω0m)a−3(1+w) (8.29)

so the linear theory growth D(a) = δ/δ(0) factor depends purely on the expansion history
H(a), w(a), Ωm(a). Any discrepancy found between the observed growth and the predicted
based on expansion history test the gravity.

Considering the gravitational growth index formalism of Linder (2005),

f =
d ln D

d ln a
= Ωm(a)

γ (8.30)

where γ is the gravitational growth index. Note that, as it was designed for, the growth index
formalism separates out the two physical effects on the growth of structure and the redshift
distortion: Ω(a) involves the expansion history and γ focuses on the gravity theory.

D(a) = e
R a
0

d lna [Ω(a)γ−1]. (8.31)

γ =
3(w0 − 1)

6w0 − 5
(8.32)

which reduces to γ = 6/11 = 0.55 for ΛCDM (w = −1), and it is accurate to less than
0.1%.

Zhang et al. (2007) propose a test to discriminate gravity at cosmological scales based on
lensing. Nesseris & Perivolaropoulos (2008) have compiled a data set of various data points at
a redshift range that can be used to constrain the linear perturbation growth rate f through
redshift distortions or indirectly through the rms mass fluctuation σ8(z) inferred from Ly−α.
Wang (2007) do a prediction of the characteristics that a survey must accomplish to be able
to rule out the DGP gravity model (an extra-dimensional modification of gravity), where the
idea is to calculate H(z) from the baryon acoustic peak and f(z) from redshift distortions.
Guzzo et al. (2008) test the nature of cosmic acceleration using galaxy redshift distortions
at z=0.8, obtaining f , but errors are still too high to distinguish between different theories.
Acquaviva et al. (2008) has recently done a new compilation of results. See Bertschinger &
Zukin (2008) for a theoretical approach to modified gravity.
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8.6.1 Growth history in redshift distortions

The redshift distortion parameter observed through the anisotropic pattern of galaxy red-
shifts on cluster scales is (Kaiser 1987)

β =
1

b

d lnD

d ln a
= f/b, (8.33)

where b is the bias between galaxies and the total matter, D is the linear theory growth factor
at expansion scale factor a, and f is called growth rate of fluctuations.

See Linder (2007) for a detailed study of the impact of β to variations in the cosmological
parameters. The gravitational growth index has substantial impact on the redshift distortion,
with β more sensitive to the growth index γ and Ωm than to the equation of state variables
w0, wa, especially at low redshifts. (where the effective w(a) is parametrized as w(a) =
w0 +wa(1− a)) This is furthermore where measurements can be made most precisely, so this
suggests that redshift distortions offer a promising tool for investigating gravity.

In this work, we will use redshift distortions to see changes in modified gravity, assuming
that w is slightly dependent on γ so that the observations are explained by exclusively the
growth history, with the same expansion history.

8.6.2 Growth history in ISW effect

As seen in the first part of the thesis, the angular auto-correlation function is proportional
to

wGG ∝ σ2
8φG(z)

2b(z)2D(z)2 (8.34)

and the cross-correlation between galaxies and CMB wTG (ISW effect)

wTG ∝ σ2
8φG(z)b(z)D(z)

d[D(z)/a]

dz
(8.35)

where after some calculations

d[D(z)/a]

dz
= D(z)(1− f) (8.36)

We can learn about the growth rate of fluctuations f using the ISW effect. This method
is independent to the one explained before with redshift distortions.

8.7 Baryon acoustic peak

Before the recombination, the universe was filled by a plasma with coupled photons and
baryons. Sound speed was relativistic then, due to the pressure of photons, and the sound
horizon had a comoving radius of 150Mpc. The cosmological fluctuations produced sound
waves in this plasma, when the recombination occurred, 380,000 years after the Big Bang.
Temperature dropped down to 3000 K and photons and baryons recombined to form neutral
gas. At this stage of the evolution of the Universe, the sound speed dropped off abruptly and
acoustic oscillations became frozen until now. The signature they imprinted can be found
both in CMB and LSS, so the baryon acoustic peak can be used as a cosmic ruler.

The distance that a sound wave has traveled at the age of the universe at that time is the
comoving length of the sound horizon, which depends on the speed of sound in the plasma,
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related to the density of the fluid.

s(a) =

∫ t

0

cs(t
′)

a(t′)
dt′ =

∫ a

0

cs(a
′)

a′2H(a′)
da′ (8.37)

where the sound of speed cs(s) is

cs(s) =
∂p

∂ρ
=

c2

3

(
1 +

3ρb

4ργ

)−1

(8.38)

and H(a) before at the epoch of recombination is

H(a) = H0

√
Ωm(1 + z)3 +Ωr(1 + z)4 (8.39)

In harmonic space, the baryonic feature is seen as a series of small-amplitude oscillations,
while in the 2-point correlation function is seen as a single wide peak, around 100Mpc/h. We
can use the position of the baryonic peak in the 2-point correlation function as a measure
of H(z) and DA(z). If we measure the peak at the radial direction, we find directly infor-
mation about H(z), since dr = dz/H(z). In principle, w can be estimated from both the
radial and transverse parts of the power spectrum. Transforming redshifts to comoving dis-
tances requires the Hubble parameter H(z) while transforming angular separations involves
the angular-diameter distance DA(z). Both H(z) and DA(z) depend on w as well as other
cosmological parameters. Thus, the radial and tangential components provide independent
routes to w. In real data, recent surveys use the averaged power spectrum or the monopole
to do predictions, but in future surveys, the anisotropy of BAO in redshift space can be used
to constrain better w and Ωm.

The comoving sound horizon is calculated with WMAP5, s(a) = 146.8 ± 1.8Mpc. The
idea is to compare the well known measure of the baryonic peak calculated by WMAP5, with
the peak obtained from LSS using a fiducial cosmology.

A number of effects can alter the form of the two-point correlation function from the lin-
ear perturbation theory predictions presented in the last section: the non-linear growth of
perturbations, redshift space distortions and bias.

It turns out that bias, general non-linear evolution and redshift-space distortions are much
simpler to deal with in the case of the correlation function than they are for the power spec-
trum. On the scales we consider (60 < (rMpc/h) < 180), these effects primarily result in
a change in the amplitude of the measured correlation function and do not alter its shape
(Sanchez et al. 2008).

See Blake & Glazebrook (2003), Eisenstein et al. (2007b), Eisenstein et al. (2007a), Smith
et al. (2008), Crocce & Scoccimarro (2008) and Sanchez et al. (2008) for discussion about
all these effects on the BAO peak in the 2-point correlation function, and Eisenstein et al.
(2005b), Percival et al. (2007a) and Percival et al. (2007b) for examples of estimation of
cosmological parameters using BAO’s.

8.8 Magnification bias in the baryon acoustic peak

Magnification bias is given by the lensing effect caused by the dark matter which is located
between the observed galaxies and us (in the line-of-sight). This lensing creates an enhance of
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number of galaxies per pixel due to the magnification that allows us to see dimmer galaxies,
and a suppression of the number of galaxies due to the growth of the area, which excludes
some galaxies. The final net lensing is controlled by the slope in the number counts. (see Hui
et al. 2007)

The slope s is defined as

s =
d log10N(< m)

dm
(8.40)

where N(< m) refers to the number of galaxies in the survey with apparent magnitude
< m

Magnification can be important in the direction LOS, and particularly at large scales,
where it is located the baryon acoustic peak, so we will calculate the slope and see the effects
in our real LRG data. When noise is shot-noise dominated, as in the case of galaxies LRG in
the direction LOS, bias increases only the signal (not the noise), so we can gain S/N easily.

The 2-point correlation function, with redshift distortions and the new terms due to mag-
nification, is:

ξobs = ξgg + ξgv + ξvg + ξvv + ξgμ + ξμg + ξμμ (8.41)

where the cross-terms velocity-magnification vanish due to Limber approximation. The first
four terms are due to redshift distortions and they are explained in §8.2. The cross-term μg
is the only one that can alter significantly the signal at large scales. The auto-magnification
term is too low compared to the cross-term, it can be more than 5 orders of magnitude lower.
The cross-term galaxy-magnification is:

ξgμ(χ1,θ1;χ2,θ2) =
3

2
H2

0Ωm(5s− 2) (8.42)

(1 + z1)
(χ2 − χ1)χ1

χ2
Θ(χ1 < χ2)∫

d2k⊥
(2π)2

Pgm(z1, k⊥)e
ik⊥·χ1(θ1−θ2)

where Θ(χ1 < χ2) is a step function which equals 1 if χ1 < χ2 and vanishes otherwise, H0

is the Hubble constant today, Ωm is the matter density today (normalized by the critical
density), z1 is the redshift corresponding to the comoving distance χ1, and Pgm is the (3D)
galaxy-mass power spectrum, and k⊥ is the transverse Fourier wave vector. We have used the
Poisson equation to relate the gravitational potential φ to the mass overdensity δ:

∇2φ = 3H2
0Ωm(1 + z)δ/2 (8.43)

Note that the speed of light is set to 1 throughout.

Further, suppose one has a galaxy survey, or a subsample thereof, that spans some finite
redshift range such that the radial separation χ1 − χ2 is always small compared to χ1 or χ2.
This is a sensible assumption since at sufficiently large separations, galaxy evolution becomes
important and complicates one’s analysis. Let χ̄ be the mean radial comoving distance to these
galaxies, and z̄ be the associated mean redshift. The galaxy-magnification cross-correlation
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and the magnification auto-correlation can be simplified as follows:

ξgμ(χ1,θ1;χ2,θ2) + ξgμ(χ2,θ2;χ1,θ1) = (8.44)

3

2
H2

0Ωm(5s− 2)(1 + z̄)|χ2 − χ1|∫
d2k⊥
(2π)2

Pgm(z̄, k⊥)e
ik⊥·χ̄(θ1−θ2)

We can use this simplified model to have an idea of the magnification we will have in LRG.
These galaxies are far, at redshift=0.35, so we can consider that the distance to the survey is
big compared to the distances between galaxies inside the survey. The galaxy-magnification
term is important at the LOS direction and vanish quickly when moving to bigger angles to
the LOS. Moreover, it is proportional to the LOS distance between galaxies, the reason why
we can see the magnification only at large scales, where there is the BAO peak. No linear
bias can increase considerably the magnification.

See Matsubara (2000b), Hui et al. (2007) and Hui et al. (2008) for a more detailed account.





Chapter 9

Testing the errors and models with

simulations

In this chapter we perform an analysis of simulations in order to test the models used and
the errors. We can see through the simulations how to use the analytical models to extract
cosmological information optimally. We also study the pairwise velocities in both real and
redshift space. Finally we calculate Monte Carlo errors, we compare them with jackknife
errors and we obtain an analytical form for the error in ξ(π, σ) when the density of objects is
low, as in the LRG case.

9.1 Description of the simulations

We have used a comoving output at redshift 0.3 of a MICE simulation, run in the super
computer Mare Nostrum in Barcelona by MICE consortium (www.ice.cat/mice)

The simulation contains 20483 dark matter particles, in a cube of side 7689Mpc/h, ΩM =
0.25, Ωb = 0.044, σ8 = 0.8, ns = 0.95 and h = 0.7.

We have divided this big cube in 33 cubes of side 2 x 1275Mpc/h, and taking the center of
these secondary cubes as the observation point (as if we were at z=0), we apply the selection
function of LRG, which arrives until z=0.47 (r=1275Mpc/h). We can obtain 8 octanes from
the secondary sphere included in the cube, so at the end we have 8 mock LRG catalogs from
each secondary cube, which have the same density per pixel as LRG in order to have the
same level of shot noise, and the area is slightly smaller (LRG occupies 1/7 of the sky with a
different shape). The final number of M independent mock catalogs is 216 (27x8).

There is no bias in these simulations, because there is only dark matter, so β = Ωm(z)0.55

b =
0.62 (where Ωm(z) = Ωm(1 + z)3/(Ωm(1 + z)3 + 1− Ωm) and bias=1)

We have also used a MICE simulation with 20483 dark matter particles, in a cube of side
3072Mpc/h, at z=0 to study pairwise velocities in dark matter particles and halos.

9.1.1 How to generate redshift distortions in the simulations

Redshift distortions are generated in the line-of-sight direction, where the expansion of the
universe (intrinsic redshift) and peculiar velocities can not be separated, and we take the sum
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as if it was all due to the expansion, an indicator of the distance to the galaxy. Then the
distance in redshift space s is:

s = r + vLOS/H(z)/a(z) (9.1)

where we divide by a(z) because we work in comoving distances.

9.2 Halo simulations

We have also used 50 low resolution halo simulations from the Institute for Computational
Cosmology in Durham, labeled L-BASICC (see Angulo et al. 2008). Here, the cosmological
parameters are: ΩM = 0.25, Ωb = 0.045, σ8 = 0.9, ns = 1 and h = 0.73. We use these
simulations to test the errors in the case of high bias (� 2), but they have low resolution and
50 is a reduced number to study errors. The simulations are comoving outputs at a z=0, of
side 1340Mpc/h and 4483 particles. The halos contain 10 or more particles (corresponding to
a mass of 1.8 1013h−1M�).

9.3 Description of errors Monte Carlo, jackknife and analyti-

cal

The description of the different approaches to errors is explained in detail in the first part
of the thesis. Here we do a brief summary. We obtain the Monte Carlo error from the dis-
persion of M independent realizations of our universe. Typically, we need 100 independent
simulations for the diagonal error, and more for the covariance matrix, depending on the case.
The Monte Carlo is considered the true error, but it spends more computational time than
other kinds of errors, and it also requires simulations with the same particularities of the data
analyzed.

For M realizations, the Monte Carlo covariance is

Cij =
1

M

M∑
k=1

(ξ(i)k − ξ̂(i))(ξ(j)k − ξ̂(j)) (9.2)

where ξ(i)k is the measure in the k-th simulation (k=1,...M) and ξ̂(i) is the mean over M
realizations. The case i=j gives the diagonal error (variance).

For the jackknife error, we obtain the different realizations that we need to compute the
error from the data, dividing the catalog in M zones, and we consider that each simulation is
all the catalog except from one of these JK zones. In this case, as the realizations are clearly
not independent, we correct for a factor (M − 1) the previous covariance to account for this
effect.

We use the dark matter simulations to probe the limit in JK errors, which we want to use
in LRG data, because we do not have precise simulations of LRG galaxies to obtain reliable
Monte Carlo errors. We study the errors in the redshift space correlation function ξ(π, σ), the
monopole ξ(s), the quadrupole Q(s), the perpendicular projected function Ξ(r), and finally
the obtained real-space correlation function ξ(r).

In the ξ(π, σ) case, we use different binning in the data to obtain the 2 dimensional π− σ
information, squares of 5Mpc/h, 1Mpc/h or 0.2Mpc/h. The errors JK and MC seem to agree
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at small scales until σ = 20Mpc/h but we see that there is a well motivated phenomenolog-
ical form that match perfectly the MC errors at even large scales. This analytical error is
proportional to a noise part, as 1/

√
number of pairs and a part proportional to the signal.

It works well in this case because LRG is a low density catalog, and we are able to separate
both parts, as if we were in a diagonal space. In general, the analytical derivation of the error
is more complicated. The idea is to fit the phenomenological form to the MC errors and from
there we can use the formula as an estimation of the error in LRG.

The error has the following form, when we add the noise and signal parts linearly (it fits
better than quadratically)

err(ξ) = err(ξ)noise + err(ξ)signal = err(ξ)noise + ξ/rfit (9.3)

We can associate rfit to the number of independent nodes in the catalog.

The correlation function is calculated as

ξ(π, σ) =
DD

RR
− 2

DR

RR
+ 1. (9.4)

The error that comes from having a limited number of pairs is, for data-data: err(DD) =

1/
√

RR/N2
R, and for DR: err(DR) = 2/

√
RR/NR. We suppose that the error in random-

random is insignificant, because we are using a denser random catalog. We add the errors
quadratically

err(ξ)noise =

√
N2

R + 4NR

RR
(9.5)

where the random catalog is NR denser than the data catalog. We can reduce the error
in ξ(π, σ) by increasing the number of particles in the random catalog, modifying the error
coming from DR, which is inversely proportional to the square root of the pairs data-random.
The first part of the error is always the same, because it depends on the data.

For NR = 10, as in the simulations, errξnoise =
√
140./RR, so the DR part is a 40% of

the DD part. For NR = 20, as in the LRG, errξnoise =
√
480./RR, so the DR part is now a

20% of the DD part.

We have tried to add the error due to the signal quadratically or linearly, and it fits better
for the linear adjust. However, we want to use this approach at large σ, where the signal part
is not significant. For small σ scales, JK and MC coincide so we can just use JK error in LRG.

For a binning of 5Mpc/h, rfit = 95 and for 1Mpc/h, rfit = 25.

We fit different parameters that we can extract from the ξ(π, σ) in the simulations using
MC errors or the analytical form and we obtain the same constraints. In the next section, we
will see the differences between errors.

9.4 Study of the errors

In this section we see the differences between the different errors, and covariances.
First, we can see the octant catalog used for the mock divided in 63 jackknifes zones, with the
same area and approximate shape; and the SDSS DR6 catalog divided in 73 jackknife zones
(see Fig.9.1).
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Figure 9.1: Left panel: JK zones for the LRG catalog (equatorial coordinates). Right panel: the mock
catalog with its JK zones

9.4.1 Errors in ξ(π, σ)

In Fig.9.2 we show the differences in the diagonal error between MC, JK and the analytical
form, when binning the correlation function with 5Mpc/h. MC error is calculated using MICE
simulation and JK is the mean over all the JK that we have calculated in each mock. JK
works well for small σ but it becomes higher than MC when going to large σ. The analytical
form agrees at all scales with MC error. We have done the same analysis with the halo simu-
lations from Durham, which have bias as LRG, and the conclusions are exactly the same, see
Fig.9.3. After these plots from simulations, we see in Fig.9.4 and 9.5 the error JK obtained
from the real LRG data using a random catalog 10 and 20 times denser than the data, and the
analytical form. Again, the JK error is bigger than the analytical one, which is representative
of the true error. Note the similarity between the errors in the data and in the simulations.
If we use a random catalog 20 times denser, as we do for the analysis of the data, the error is
clearly lower, as we see in Fig.9.5.
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Figure 9.2: Diagonal error in ξ(π, σ) in redshift space for MICE simulations and binning 5Mpc, with
contours ξ = 0.002− 0.1 (log increment=0.2)

Figure 9.3: Diagonal error in ξ(π, σ) in redshift space for Durham simulations (contours as Fig.9.2)

Figure 9.4: Diagonal error in ξ(π, σ) in redshift space for LRG data and random catalog 10 times the
data (contours as Fig.9.2)
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Figure 9.5: Diagonal error in ξ(π, σ) in redshift space for LRG data and random catalog 20 times the
data (contours as Fig.9.2). As we can see, error is reduced increasing the number of particles in the
random catalog
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We next show similar plots, but for a binning of 1Mpc/h, which we use on small scales (for
r<40 Mpc/h). In this case there is no covariance between points, but the error increases, a
way to compensate the lack of covariance. In Fig.9.6 we see the comparison between errors
in MICE simulations, Fig.9.7 shows the same in Durham simulations with bias, where we see
that JK works well at small π and σ, while the analytical form is optimal for the rest of scales.
After that, a comparison between JK and the analytical form in LRG with random catalog
10 times denser (Fig.9.8), and 20 times denser (Fig.9.9). Finally, we see this comparison for a
slice in redshift from z=0.15-0.34, where there are fewer particles, and consequently the error
increases (Fig.9.10).

Figure 9.6: Diagonal error in ξ(π, σ) in redshift space for MICE simulations and binning 1Mpc, with
contours ξ = 0.02 − 0.6 (log increment=0.2). When decreasing the bin in our calculation, the error
increases, but there is not covariance in this case.

Figure 9.7: Diagonal error in ξ(π, σ) in redshift space for Durham simulations (contours as Fig.9.6)

In the real LRG data, we use the JK error obtained from the same data for small scales σ,
the analytical approach for large scales σ and π , and if needed (for the binning=5Mpc/h), the
covariance from MICE simulations, which does not depend on the signal, but in the distance
between points.

So far we have shown diagonal errors. The covariance is in fact small, this can be seen
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Figure 9.8: Diagonal error in ξ(π, σ) in redshift space for LRG data and random catalog 10 times the
data (contours as Fig.9.6)

Figure 9.9: Diagonal error in ξ(π, σ) in redshift space for LRG data and random catalog 20 times the
data (contours as Fig.9.6). As we can see, error is reduced increasing the number of particles in the
random catalog

in Figure 9.11 where we show the MC covariance. It has the same approximate shape and
amplitude for all the points.
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Figure 9.10: Diagonal error in ξ(π, σ) in redshift space for LRG data from redshift 0.15 to 0.34 and
random catalog 20 times the data (contours as Fig.9.6). The error is bigger than in the catalog of all
LRG

Figure 9.11: Covariance of ξ(π, σ) at the position σ = 30Mpc/h, π = 30Mpc/h, with contours 0.1
(solid), 0.3 and 0.5
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9.4.2 Error in the monopole ξ0(s)

The error in the monopole is not easy to predict theoretically, but in this case JK error
works well. We plot in the left panel of Fig.9.12 the monopole when we bin the data with a
separation 5Mpc/h (black for the simulations, red for LRG data). At the right panel, we see
the difference between the mean JK error and its dispersion (solid line with errors) and the
MC error (dashed line), and over-plotted the JK error for the LRG (color). The covariance
for the monopole is plotted in Fig.9.13, not completely smooth for the MC case, because we
would need probably more than 216 simulations, but we see that it has the same shape than
JK covariance, which we will use to fit our LRG data. JK covariance is smoother than the
MC because we have taken the mean over 216 x 63 realizations (216 mocks x 63 JK zones),
which seems enough to converge. The next two plots show the same comparison but with a
bin of 1Mpc/h (Fig.9.14 and Fig.9.15). JK error also works in this case, and we see that the
error is higher here than in the 5Mpc/h bin, while the covariance is smaller, practically equal
to zero. As we can see, the error for LRG is larger than the one in simulations, since the
signal is also higher due to bias. The distinction between blue and red line is the number of
the particles in the random catalog (NR), which does not change the estimation of the error.

Figure 9.12: Left: Monopole ξ(s) with errors for MICE simulations (black lower signal) and for LRG
(red higher signal) using a bin=5Mpc/h. Right: Diagonal error for MICE simulations (JK with
dispersion solid black line, MC dotted black line) and for LRG data (red for NR = 10 and blue for
NR = 20)

Figure 9.13: Covariance MC and JK for the monopole of ξ(s) for MICE simulations and bin-
ning=5Mpc/h
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Figure 9.14: Same as Fig.9.12 but bin=1Mpc/h

Figure 9.15: Covariance MC and JK for the monopole of ξ(s) for MICE simulations and bin-
ning=1Mpc/h
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9.4.3 Error in the quadrupole Q(s)

In the quadrupole, the JK error also works well, as we can see in Fig.9.16 and Fig.9.17 for
5Mpc/h and 1Mpc/h binning. The solid line with errors shows the JK error and its dispersion,
the dotted line is the MC error, and the color and lower line is the JK error in LRG data.
The error for LRG data, in the quadrupole, is lower than the simulations one, again because
it is proportional to the signal, and in this case, LRG signal is lower (since Q(s) depends on
β which depends inversely on bias).

Figure 9.16: Left: Q(s) with errors for MICE simulations (black higher signal) and for LRG (red lower
signal) using a bin=5Mpc/h. Right: Diagonal error for MICE simulations (JK with dispersion solid
black line, MC dotted black line) and for LRG data (red and blue for NR = 10 and NR = 20)

Figure 9.17: The same as Fig.9.16 for bin=1Mpc/h
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9.4.4 Errors in the projected correlation function Ξ(σ)
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9.5 Gaussianity in the errors

In this section we study the assumption of Gaussianity when we use the chi-squared test
χ2 in ξ(π, σ). We could in principle use the test χ2 despite non-Gaussianity, but then the
interpretation requires some changes. We evaluate if the expression Δξ(π, σ) = (ξ(π, σ) −
ξ̂(π, σ))/σξ used in the estimation of χ2 is Gaussian, where ξ(π, σ) is the value for each MC

simulation, ξ̂(π, σ) the mean over all the simulations, and σξ the error calculated using the
analytical form (to normalize the expression). Fig.9.18 shows the histogram for all the MC
simulations, and we see that the expression is Gaussian for different values of π and σ and
also for the mean over all the values of π− σ. Now, we know that a reduced chi-squared of 1
is a good fit (χ2

r = χ2/(N −1)) because the statistics χ2 follows a Gaussian, so we can discard
the models that have bigger values.

Figure 9.18: Histogram for the relation Δξ(π, σ) = (ξ(π, σ) − ξ̂(π, σ))/σξ for different π and σ as
indicated in the top of the figures and also the mean over all the range π − σ (bottom right)
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9.6 Peculiar velocities

We have also used the simulations to see how the particles move, and specially we study the
change of the pairwise velocity distribution with distance. We have used MICE simulations
at the comoving output z=0.3, where we have done all the study of errors. We also study the
difference between a comoving output at z=0. and a catalog of halos extracted from the same
redshift, z=0.

First, we show the differences for the velocity distribution: 3D (Fig.9.19), LOS (Fig.9.20)
and perpendicular (Fig.9.21). We see no significant differences between the three outputs, as
we expected. Now we move to the pairwise velocity distribution. In Fig.9.22, 9.23 and 9.24
we can see the LOS pairwise velocity distribution for different separations in real space. The
dispersion is wider for lower distances, but it follows always a quasi exponential form. Its
dispersion is represented in the bottom plot versus distance of separation. We can say that
σv is almost constant for r > 5Mpc/h. For redshift 0. we have the same tendencies, but the
dispersion is slightly higher, and for the halos at redshift=0. compared to particles at the
same redshift, we see clearly an exclusion for small scales, due to the method used to identify
halos, friends of friends. At large scales, the dispersion is slightly lower.

The pairwise velocity is similar if we work with particles of dark matter or halos, although
the bias in the clustering is clearly different. This means that at large scales, the velocity
is not biased. And at small scales, the pairwise velocity in halos does not give us infor-
mation since there is an exclusion. In real data, the pairwise velocities at smaller scales will
depend on the combination halo-halo, halo-satellite and satellite-satellite (explained in §10.1).

Figure 9.19: Distribution of velocities in MICE simulation at z=0.3, z=0. and halos in z=0.

Figure 9.20: Distribution of line-of-sight velocities in MICE simulation at z=0.3, z=0. and halos in
z=0.
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Figure 9.21: Distribution of perpendicular velocities in MICE simulation at z=0.3, z=0. and halos in
z=0.
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Figure 9.22: Top: Pairwise LOS velocity distribution for the comoving output at z=0.3, for different
separations in real space, as indicated in the figure. Pairwise velocities < 0 mean that particles are
falling to each other in LOS direction , > 0 mean that they are going away from each other. Bottom:
Dispersion in the velocity distribution when we change the distance between particles



92 9 Testing the errors and models with simulations

Figure 9.23: Pairwise LOS velocity distribution for the comoving output at z=0., as in Fig.9.22
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Figure 9.24: Pairwise LOS velocity distribution for the halo comoving output at z=0., as in Fig.9.22
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9.7 Validity of the models

Apart from studying the errors, we use the simulations to test the methods that we will
apply to real data (LRG) in the following chapter. We want to study if we recover the input
parameters.

We first calculate the 2-point real-space correlation function and compare it to the input
model that describes the simulation. We recover it perfectly. After that, we look to the ratio
ξ(s)/ξ(r) between the redshift space and real space, which should be a function of the distor-
tion parameter β for large scales and for the distant observer approximation, as in Eq.(8.24).
In Fig.9.25 we have plotted the mean ratio over the simulated mocks, with its error, and
over-plotted in red the expected value for the ratio at β = 0.62 as in the input model (see
§9.1). It seems to converge below 10Mpc/h, which is in agreement with other analysis (see
Fig.13 in Hawkins et al. 2003). We could obtain β from the ratio ξ(s)/ξ(r), but it is difficult
in real data since we do not have direct information of the real-space, only through integration
of the anisotropic ξ(π, σ) through the line-of-sight (see §8.5).

Figure 9.25: Mean ξ(r)/ξ(s) over MICE mocks with errors (of the mean, scaled as 1/
√

nsim), and
Kaiser prediction for large scales for β = 0.62, corresponding to the input model (red)

As we will explain later (§10.5), we prefer to obtain β and σv contours from the quadrupole
Q(s) defined in Eq.(8.17). For the simulations, β = 0.62 (see §9.1) and σv is near 400km/s at
large scales (see Fig.9.22). If we fit the quadrupole obtained to all the mocks, we obtain the
correct value for β and a little biased σv to higher values, probably because we are obtaining
an effective σv which also accounts for the values at lower scales, although at 1 − σ is con-
sistent. At the top panel in Fig.9.26, we show the mean contour β − σv which is the average
over the individual contours in each simulation, obtained from Q(s); at the bottom panel, we
see the best fit over-plotted over the mean Q(s) with the MC errors.

MC errors correspond to a single mock, while errors in the mean value are
√

N times
smaller (N=216 in our simulations). In the bottom panel of Fig.9.26, we plot the errors cor-
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responding to a single mock.

Figure 9.26: Top panel: Mean best fit β − σv to MICE quadrupole Q(s). Bottom panel: Q(s) with
MC errors (points), and best model (red)

From large scales, we obtain the shape of the correlation function, defined by Ωm and
the amplitude, as explained in §10.6. As we have seen in chapter 8 we can not rely on the
projected correlation function at large scales, or the recovered real space correlation function,
so the only way to extract information about the shape of the real space correlation function
using the same data is from ξ(π, σ). We try to recover Ωm and the amplitude (bias=1 in this
case) for each mock once marginalized with σv and β. We arrive to the conclusion that small
scales are not useful to determine Ωm, as expected, since it is at large scales where Ωm changes
mostly the shape. Moreover, fingers of God and also the non-linear bias affect small scales. If
we use large scales until around 100Mpc/h, the obtained Ωm is biased to lower values, prob-



96 9 Testing the errors and models with simulations

ably because we introduce the BAO peak which is not well modeled by the simplest halofit
model, or because of the wide angle approximation, that can bias the parameters for large σ
(perpendicular direction). The best place to fit Ωm and a linear amplitude independent on
scale is then for intermediate scales from 20Mpc/h to 60Mpc/h to be safe from non-linear bias
and extracting an angle of 30-40 deg from the line-of-sight, where fingers of God can alter the
information.

For small scales, we calculate the projected correlation function Ξ(σ) and the recovered
real-space correlation function ξ(r). In our simulations we can calculate directly the real-space
correlation function, which is the one expected for dark matter, and we can also calculate
ξ(π, σ) with the redshift distorted simulations, and through the integration of ξ(π, σ) to π
direction, obtain indirectly Ξ(σ) and ξ(r). In real data, we only have the second option, so
we use the simulations to see if the recovered ξ(r) is the same as the one directly calculated.
We recover it with high precision almost completely apart from large scales (see Fig.??), as
expected (see Ch.8). However, the errors are higher when we recover the real-space correlation
function than when we obtain it directly, as seen in Fig.??.

Finally, we plot ξ(π, σ) at small scales and large scales for the mean over MICE mocks
in Fig.9.27, and over-plot in solid lines the best model (using Eq.(8.14)). For σ larger than
5Mpc/h we use the effective σv = 400km/s while for σ lower than 5Mpc/h we use a different
σv (as seen in Fig.9.22) for each σ constant along the LOS π. With this simple approximation,
we get to reproduce the observed FOG. When dealing with real data, we explain a method,
proved with simulations, to calculate this σv at small scales (see §10.7.1). The model works
incredibly well even at small scales, except from large scales in σ direction where there are
some changes probably due to wide angle approximation, and the model does not explain the
peak at LOS direction, since our model does not include non-linearities that can be important
in the BAO peak, although in Fig.9.28 it seems that this difference can be explained by noise,
where we have used the MC errors. We also plot the monopole in the BAO and the linear
model (dashed black and color lines), and we see that the monopole is modified by redshift
distortions and non-linear effects. We will see this later on.

As we have said, in the bottom panel of Fig.9.27 we see the ξ(π, σ) for the mocks, which
have the same selection function, although a more compact area, than real LRG data (see
Fig.9.1 for a plot of the difference in area). We see that the obtained correlation (colored)
differs from the distant observer approximation theory (lines) at large σ and π � 0. The
redshift space correlation in real surveys, which are not located at infinite, depends on π and
σ, but also on the angle between galaxies θ and the angle γz between the direction LOS (at
θ/2) and the vector which goes from galaxy 1 to galaxy 2 (following the notation used in
Matsubara 2000a). In distant observer approximation we assign to the angle between galaxies
the value θ = 0. Matsubara (2000a) studies the differences between the real correlation and
the approximated correlation for distant observers. In general, the approximation is good
for angles θ below 10 deg, which include all the zone we are using for our analysis in LRG
data (the worst case comes from the closest galaxies at z=0.15, where σ � 80Mpc/h for
θ = 10deg). The correlation also depends on γz. We can see in Fig.9 of Matsubara (2000a)
a comparison between the real correlation, which depends on the distance between galaxies
and both angles described above, and the distant observer correlation function, used in this
work, which depends only on π and σ. Each position in the 2 dimensional π − σ is a mixing
of different θ and γz, because there is a range in redshift, but we can explain qualitatively
the lack of power of the observed correlation respect to the distant observer approximation
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theory at large σ and π � 0.

We conclude that all the methods that we use from now to obtain parameters from LRG
are validated by simulations.
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Figure 9.27: ξ(π, σ) for the MICE simulation. The contour colors are -0.05, -0.01, -0.005, -0.001, 0,
and 0.001 to 20 with 20 equally spaced logarithmic bins
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Figure 9.28: Top panel: Mean ξ(sLOS) (solid black) for the simulations, with errors (= errMC/
√

N)
and over-plotted the linear distorted model in the LOS with σv = 600km/s (solid blue). We also plot
the monopole (dashed black) and the linear model in dashed blue (We have multiplied the monopole
for a bias=3 to distinguish clearly the monopole from the LOS correlation) Bottom panel: We plot
ξ(sLOS)s

2 in order to see better the peak. The solid green line corresponds to σv = 400km/s. We also
plot ξ(s)s2 with bias=3 (dashed lines)





Chapter 10

Luminous Red Galaxies analysis

The luminous red galaxies (LRGs) are selected by color and magnitude to obtain intrinsi-
cally red galaxies in SDSS (Eisenstein et al. 2001). These galaxies trace a big volume, around
1Gpc3h−3, which make them perfect to study large scale clustering. LRGs are supposed to
be red old elliptical galaxies, which are usually passive galaxies, with relatively low star for-
mation rate. They have steeper slopes in the correlation function than the rest of galaxies,
since they reside in the centers of big halos, inducing non-linear bias dependent on scale, for
small scales. They are well known galaxies, so they represent a good chance to use it as dark
matter clustering tracers.

In this work we use the most recent spectroscopic SDSS data release, DR6 (Adelman-
McCarthy et al. 2008), to perform a study combining all the scales of the anisotropic 2-point
correlation function, and its derivatives projected correlation function, real-space correlation
function, and different order redshift space multipoles; with the subsequent studies of linear
bias at large scales to obtain cosmological parameters, and non-linear bias at smaller scales.
As we will see, we can break the degeneracy between bias and σ8 present in the correlation
function thanks to redshift distortions anisotropies, and look at the growth history and pos-
sible modifications of the gravity. We also obtain information from the baryon acoustic peak
in the line-of-sight (LOS), which could be enhanced by magnification bias, and only depends
on H(z) in the radial direction, obtaining independent information of Ωm and the dark energy
equation of state parameter w(z), through the variations of the peak location. We have cross-
correlated LRGs with WMAP in order to investigate the ISW effect again, obtaining a high
signal as in the first part of the thesis compared to current theories. We can break the degener-
acy bias−σ8 and study the growth history using the cross-correlation between temperature of
CMB and galaxies wTG, both from another point of view than the used in redshift distortions.

We should point out that the spectroscopic LRG catalog used in this part of the thesis is
different from the photometric sample that we used before, not only in the number of galaxies,
but also in the selection function in redshift. Photometric LRGs are supposed to be at higher
redshifts, around z=0.5, than the spectroscopic redshift (z=0.35).

In this work, we define the parameters we assume during all this work, which are motivated
by recent results of WMAP, SNIa and previous LSS analysis: ns = 0.98, Ωb = 0.045, h = 0.72.
We will use the power spectrum analytical form for dark matter by Eisenstein & Hu (1998),
and the non-linear fit to halo theory by Smith et al. (2003).
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10.1 Clustering of LRG

Galaxy clustering allows us to study different phenomena at each scale. On large scales, the
density fluctuations are small enough to be linearized, and there we can constrain cosmological
parameters, since we can assume that the clustering is described by dark matter. On smaller
scales, we can learn about the relation of galaxies to dark matter through the biased clustering
of halos. This range of distances can be fitted by a power law, but there are small deviations
that can be understood in the theory of the halo occupation distribution. The transition
between galaxy pairs of the same halo and galaxy pairs that belong to different halo, occurs
around 1Mpc/h. When moving to scales smaller than 1Mpc/h, in the 1-halo term, we can see
processes more complex that modify the galaxy clustering, such as dynamical friction, tidal
interactions, stellar feedback, and other dissipative processes.

The same LRGs (but with reduced area) have been studied from different points of view.
Tegmark et al. (2006) have done an analysis of the power spectrum at large scales to ob-
tain cosmological parameters. Zehavi et al. (2005) study LRGs at intermediate scales (0.3 to
40Mpc/h), where they calculate the projected correlation function, the monopole and real-
space correlation function to study mainly the linear high bias, the non-linear bias and the
differences between luminosities, remarking that there are differences from a power law for
scales smaller than 1Mpc/h. At smaller scales, Eisenstein et al. (2005a) do a cross-correlation
between spectroscopic LRG with photometric main sample in order to reduce shot-noise in
small scales clustering, obtaining mainly the same conclusion than in the intermediate scales.
Finally, Masjedi et al. (2006) deal with very small scale clustering to scales smaller than 55”
by cross-correlating the spectroscopic LRG sample and the targeted imaging sample and find
that the correlation function from 0.01-8Mpc/h is really close to a power law with slope -2, but
there are still some features that diverge from the power law. The small scale slope depends
on the interplay between two factors which control how the correlation function of galaxies is
related to that of the underlying matter : the number of galaxies within a dark matter halo
(HOD) and the range of halo masses which contain more than one galaxy (Benson et al. 2000).
LRGs are to be found in halos with the median of the distribution occurring at 3 1013M�/h,
estimated using weak lensing measurements (Mandelbaum et al. 2006). 25% of LRGs at z =
0.24 are satellite galaxies (Almeida et al. (2008)), which play an important role in the pairwise
velocity dispersion, which also provides information about galaxy formation and evolution.

Slosar et al. (2006) show that pairwise velocity distribution in real space is a complicated
mixture of host-satellite, satellite-satellite and two-halo pairs. The peak value is reached at
around 1Mpc/h and does not reflect the velocity dispersion of a typical halo hosting these
galaxies, but is instead dominated by the sat-sat pairs in high-mass clusters. Tinker et al.
(2007) use the halo occupation distribution framework to make robust predictions of the pair-
wise velocity dispersion (PVD). They assume that central galaxies move with the center of
mass of the host halo and satellite galaxies move as dark matter. The pairs that involve cen-
tral galaxies have a lower dispersion, so the fraction of satellites strongly influences both the
luminosity and scale dependence of the PVD in their predictions. At r � 2 Mpc/h, the PVD
rapidly increases as satellite-satellite pairs from massive halos dominate. At r < 1 Mpc/h, the
PVD decreases with smaller separation because central-satellite pairs become more common.
Li et al. (2006) conclude that the reddest galaxies move in the strongest gravitational fields.

While working in this part of the thesis, Okumura et al. (2008) published the first appli-
cation of the anisotropy in the 2-point correlation function including the baryonic features,
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to obtain constraints in cosmological parameters. They use the DR3 spectroscopic sample of
LRGs to calculate the 2-point correlation function with a different definition than the one used
here (Matsubara 2004) and fit for large scales using the linear Kaiser model, from 40Mpc/h
to 200Mpc/h, excluding the FOG zone. They claim that it can be obtained a direct measure-
ment of the growth function from Kaiser anisotropy and Da(z) and H(z) from the baryon
acoustic peak anisotropic, with improved LRG data. The constraints are weak by now, but
fitting all the anisotropic 2-point correlation function including the baryonic feature enable
to divide the effect of the redshift distortions into dynamical and geometrical components.
The anisotropy due to geometric distortion contributes to better estimation of the equation
of state of the dark energy.

10.2 BAO detection

Eisenstein et al. (2005b) detected the baryon acoustic peak in the 2-point correlation func-
tion using LRGs. Hütsi (2006a,b) use LRGs to constrain cosmological parameters in the power
spectrum, including the baryonic peak. Percival et al. (2007a) have analyzed also the LRGs
using both 2dF and SDSS. Padmanabhan et al. (2007) used the photometric catalog to work
with a bigger set of LRGs with photometric redshifts, obtaining also cosmological constraints,
the same as Blake et al. (2007), which work with the MegaZ-LRG, a photometric-redshift
catalog of luminous red galaxies based on the imaging data of the SDSS DR4.

With large samples, the BAO can be used as a standard ruler to get parameters such as
Ωm, through the comoving distance-redshift relation (Blake & Glazebrook 2003). Percival
et al. (2007b) obtain a value for Ωm from the position of the BAO peak in LRGs. However,
non linear effects act to wash out the oscillations at higher k due to mode coupling (Meiksin
et al. 1999, Seo & Eisenstein 2005). Many works have been done in this direction in the
power spectrum (Jeong & Komatsu 2006, Padmanabhan & White 2008). They all say that
non-linearities are important in the baryon acoustic oscillations. Crocce & Scoccimarro (2008)
perform a modeling also in the 2-point correlation function. Nonetheless the problem is ag-
gravated by the need to model scale dependent galaxy bias, which may have already become
the strongest limitation on the use of large scale structure information to obtain constraints
on cosmological parameters (Sánchez & Cole 2008). A recent work, Sanchez et al. (2008),
analyze the relation between the acoustic peak in the two-point correlation function and the
sound horizon scale, which can be different by few %, and which is the better statistic to use
to constrain the dark energy equation of state, the correlation function or the power spectrum,
arriving to the conclusion that all the effects applied to the 2-point correlation function only
change the shape, and not the location of the peak, while the analysis is more difficult in the
power spectrum. In this work, we just use the location of the peak, and not the overall shape.

LRGs have also been analyzed at higher redshifts (z=0.55) with the 2dF-SDSS LRG and
QSO Survey (2SLAQ, Cannon et al. 2007). Ross et al. (2007); da Ângela et al. (2008); Wake
et al. (2008) analyze the redshift distortions in the LRGs and quasars for this catalog. For part
of our analysis we have followed the method explained in Hawkins et al. (2003), an extensive
analysis of the redshift distortions in the 2dF catalog.
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10.3 Luminous Red Galaxies data

SDSS luminous red galaxies (LRGs) are selected on the basis of color and magnitude to
have a sample of luminous intrinsically red galaxies that extends fainter and farther than
the SDSS main galaxy sample. Eisenstein et al. (2001) gives an accurate description of the
sample.

LRGs are targeted in the photometric catalog, via cuts in the (g-r, r-i, r) color-color-
magnitude cube. Note that all colors are measured using model magnitudes, and all quantities
are corrected for Galactic extinction following Schlegel et al. (1998).

The galaxy model colors are rotated first to a basis that is aligned with the galaxy locus
in the (g-r, r-i) plane according to:

c⊥= (r-i) - (g-r)/4 - 0.18

c||= 0.7(g-r) + 1.2[(r-i) - 0.18]

Because the 4000 Angstrom break moves from the g band to the r band at a redshift z �

0.4, two separate sets of selection criteria are needed to target LRGs below and above that
redshift:

Cut I for z <� 0.4

rPetro < 13.1 + c|| / 0.3

rPetro < 19.2

|c⊥| < 0.2

mu50 < 24.2 mag arcsec−2

rPSF - rmodel > 0.3

Cut II for z >� 0.4

rPetro < 19.5

|c⊥| > 0.45 - (g-r)/6

g-r > 1.30 + 0.25(r-i)

mu50 < 24.2 mag arcsec−2

rPSF - rmodel > 0.5

Cut I selection results in an approximately volume-limited LRG sample to z=0.38, with
additional galaxies to z � 0.45. Cut II selection adds yet more luminous red galaxies to z �

0.55. The two cuts together result in about 12 LRG targets per deg2 that are not already in
the main galaxy sample (about 10 in Cut I, 2 in Cut II).

We k-correct the r magnitude using the Blanton program ’kcorrect’ 1. We need to k-correct
the magnitudes in order to obtain the absolute magnitudes and eliminate the brightest and
dimmest galaxies. We have seen that the previous cuts limit the intrinsic luminosity to a
range −23.2 < Mr < −21.2, and we only eliminate from the catalog some few galaxies that
lay out of the limits. Once we have eliminated these extreme galaxies, we still do not have
a volume limited for high redshift galaxies, but we suppose that the variations in luminosity
just change the overall shape in the clustering.

In Fig.10.1, we show the distribution of LRGs in redshift. We show the comoving density
in Fig.10.3 once we have removed the brightest and dimmest galaxies, which are plotted in
Fig.10.2, absolute magnitude and redshift.

1http://cosmo.nyu.edu/blanton/kcorrect/kcorrect help.html
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Figure 10.1: dN/dz of LRG galaxies

Figure 10.2: Absolute magnitude vs redshift

In Fig.10.4 we can see the distribution of galaxies for the main sample, z=0.15-0.47, and
in Fig.10.5 the redshift space clustering in a slice of dec = 32-40 deg. We compare it with the
same slice random to see clearly the clustering in the data.

We have masked the catalog using at the first step the photometric DR6 mask, based on
the number of galaxies per pixel. In previous works we saw that the mask that we obtain
statistically by dropping out the pixels with small number of galaxies gives the same corre-
lation function that the one obtained by extracting the polygons masked by the SDSS team.
After that, we compare our masked catalog to the LRG spectroscopic catalog, and we extract
manually the zones where there are artificially few galaxies, because the fibers trace a little
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Figure 10.3: Comoving density vs redshift

different mask than the photometric catalog. We are very careful in the mask in order not to
extract valuable information.

This rough mask could imprint spurious effects at very small scales, but we are not inter-
ested in these scales where fiber collisions in the redshift catalog are limiting our analysis, for
distances less than 55arc sec, less than 0.3Mpc/h at the mean redshift of LRG data, z=0.35.
We obtain 75,000 galaxies for the final catalog, from z=0.15 to z=0.47.



10.3 Luminous Red Galaxies data 107

Figure 10.4: Density distribution of galaxies in the main catalog, z=0.15-0.47
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Figure 10.5: Slice in dec = 32-40 deg showing ra vs redshift
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10.4 Estimation of the anisotropic 2-point correlation function

We use the ξ estimator of Landy & Szalay (1993),

ξ(σ, π) =
DD − 2DR +RR

RR
(10.1)

to estimate the 2-point correlation function in redshift space, with a random catalog 20
times denser than the SDSS catalog. The random catalog has the same redshift distribution as
the data, but smoothed to avoid the elimination of intrinsic correlations in the data, and also
the same mask. We count the pairs in bins of separation along the line-of-sight (LOS), π, and
across the sky, σ. The LOS distance is just the difference between the comoving distances in
the pair. The perpendicular distance between the two particles corresponds approximately to
the mean redshift. It is exactly σ =

√
s2 − π2, where s is the distance between the particles.

(see Fig.10.6). We use the wide-angle approximation, as we had the catalog at an infinite
distance, which is accurate until the angle of separation is 15deg for the quadrupole and
below for the ξ(π, σ), about 10 degrees (see Szapudi 2004 and Matsubara 2000a). This is
more than σ = 100Mpc/h for our mean catalog. We do not use the information provided
by the baryonic scale in σ direction because it could be affected by wide angle corrections.
In Fig.10.7 we can see the obtained ξ(π, σ) for LRG DR6 catalog, and for MICE simulations
(with a linear bias=2 to see similarities visually). As expected, simulations have less noise
because we have done the mean over 216 simulations. Moreover, the distortion parameter β is
higher in the simulations than in data because of the high bias of LRG, as can be seen in the
the shape of the 2-point correlation function, more flattened as β increase. In next sections
we will analyze all the information hidden in this figure.

Figure 10.6: Illustration of the parallel and perpendicular separations between two objects
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Figure 10.7: 2-point anisotropic redshift correlation function ξ(π, σ) for LRG galaxies in DR6 catalog
and MICE simulations (with a linear bias =2, in order to be similar to LRG). Contours are -0.5 to
-0.004 with logarithmic bin of 0.4, 0. (over-plotted), 0.003 to 40. with bin=0.4
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10.5 Quadrupole result

We can calculate the multipoles of the 2-point redshift-space correlation function, enhancing
different angles of the anisotropy between the LOS and the perpendicular direction. We have
tested with models that the monopole ξ(s) and quadrupole ξ2(s) and even the combination
ξ2(s)/ξ(s) depend strongly not only on β, σv, but also on other parameters like the shape
of the correlation function (for example, Ωm), the non-linear bias and the overall amplitude.
On the contrary, the quadrupole Q(s), defined in Eq.(8.17) only depends strongly on σv and
β, but not on the bias. So when using the quadrupole we do not need an expression for the
non-linear bias and Ωm (the shape) to extract information. In §9.4.3 we have shown that JK
errors work very well here.

First, we can measure β using the large scales in the quadrupole where there is no depen-
dence in σv. In the range 40− 80Mpc/h, β = 0.34± 0.06; for 50− 80Mpc/h, β = 0.32± 0.08;
and for 40 − 100Mpc/h, β = 0.34 ± 0.05. In Fig. 10.8 we see the quadrupole with jackknife
errors at large scales and the error obtained in β, translated to the quadrupole.

Figure 10.8: Q(s) with errors (points with errors) and best fit for β translated to quadrupole (red
dotted)

As mentioned above, the quadrupole only depends strongly on β and σv. It does not
depend on linear bias because it is canceled, and it does not depend much on the shape of
the 2-point correlation function (Ωm and other parameters) and the non-linear bias for small
scales. We have tried to fit β and σv using all the scales in the quadrupole, fixing Ωm (which
in our model means fixing the shape of the real-space correlation function) and we use a power
law form for the non-linear bias. When we change the shape of the ξ(r) in the model (that
is Ωm for large scales and non-linear bias for small scales) , we obtain the same contours for
β − σv, so we arrive to the conclusion that the quadrupole is a good estimator to find β − σv

separately from the other parameters, which are degenerate with them in ξ(π, σ).

We fit the quadrupole above 5Mpc, because it is a reliable scale where we do not see
differences when fitting from larger scales. Below this minimum scale, σv can change, and
despite modifying minimally the quadrupole at larger scales, it can bias the measure of β,
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Figure 10.9: z=0.15-0.47, Best fit for σv and β for the quadrupole Q(s) distances between 5-60Mpc/h

Figure 10.10: z=0.15-0.3, Best fit for σv and β for the quadrupole Q(s) distances between 10-60Mpc/h,
β = 0.34, σv = 370.

which constrained with σv has better errors.
We have fit β− σv for different slices in redshift. First, we divide the catalog in 3 redshift

slices: z=0.15-0.3, z=0.3-0.4, z=0.4-0.47. And then, we divide it in 2 redshift slices: z=0.15-
0.34, z=0.34-0.47. The fitted values σv and β are similar in all the redshift slices. (see table
10.1)

Sample β σv (km/s)

z=0.15-0.47 0.310-0.375 365-415
z=0.15-0.34 0.280-0.365 320-410
z=0.34-0.47 0.305-0.405 345-420
z=0.15-0.30 0.280-0.395 305-435
z=0.30-0.40 0.285-0.365 335-390
z=0.40-0.47 0.305 -0.395 350-410

Table 10.1: Marginalized values for β and σv to 1-σ errors for each sample in redshift
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Figure 10.11: z=0.3-0.4, Best fit for σv and β for the quadrupole Q(s) distances between 5-60Mpc/h,
β = 0.32, σv=360.

Figure 10.12: z=0.4-0.47, Best fit for σv and β for the quadrupole Q(s) distances between 10-60Mpc/h,
β = 0.34, σv=380.

Figure 10.13: z=0.15-0.34, Best fit for σv and β for the quadrupole Q(s) distances between 10-60Mpc/h,
β = 0.33, σv = 370.
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Figure 10.14: z=0.34-0.47, Best fit for σv and β for the quadrupole Q(s) distances between 5-60Mpc/h
β = 0.34, σv = 370km/s
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10.6 Fitting at large scales

As we have seen in chapter 8 we can not rely on the projected correlation function at large
scales, or the recovered real space correlation function, so the only way to extract information
about the shape of the real space correlation function using the same data is from ξ(π, σ).
We use models that vary with Ωm, amplitude, σv and β at large scales (from 20 to 60Mpc/h,
approximately). The amplitude Amp refers to the factor b(z)σ8, where b(z) is the bias at
redshift z. b(z) and σ8 are completely degenerated in the correlation function, also with the
growth factor D(z). In fact, what we obtain from observations is b(z)σ8D(z), but D(z) is
known for each cosmology and the median redshift of the slice. We extract the FOG zones, to
be safe we eliminate from our analysis an angle of 40 deg from LOS. This way, we have proved
using simulations that we can use linear bias and the σv and β found using the quadrupole.
If we do this fit without β − σv information, we see strong degeneracies. First, between β
and σv, since β higher can be corrected by also incrementing σv, because β tends to flatten
the anisotropy while σv tends to stretch it when we approach the zone of FOG. Because we
have chosen a region which is slightly dependent on the random peculiar velocities, we can
not distinguish among β and σv. We also see a strong degeneracy between Ωm and σv (di-
rectly correlated). The linear amplitude is independent of σv, but it is degenerated with β
(inversely), and with Ωm (directly). Finally, β and the amplitude are inversely degenerated.
When we fit ξ(π, σ), we use for each theoretical Ωm distances calculated using a cosmology
with that Ωm in order to be consistent, although there is not a significant change from using
always the same cosmology for the calculation. We do not see any difference when fitting
ξ(π, σ) with models with non-linear bias or linear bias. This is because we are safely located
at large scales, although in general in redshift space there is a mixing of scales.

In the plots shown in Fig.10.15 (for the catalog ALL), we have marginalized each contour
using the rest of parameters, with subsequent degeneracies explained in the previous para-
graph. When we marginalize we suppose that the probability goes like exp(−χ2/2). Because
σv is completely degenerate and we only have fitted for this range of σv, the other contours
are limited by the chosen σv. These figures just want to show the strong degeneracies between
parameters, but we are really interested in the contour Ωm−Amp once we marginalize using
the contour β−σv obtained from Q(s) in §10.5. In Fig.10.15 there are two panels which show
contours Ωm−Amp. The first one when marginalizing among the rest of parameters obtained
in the fit at large scales (top right panel). The second one shows the result if we marginalize
with β − σv from Q(s).

In the rest of plots, for different redshift slices (see Fig.10.16, 10.17, 10.18, 10.19 and
10.20), we only show the contours obtained for Ωm−Amp once we have marginalized σv and
β with the contours obtained in the quadrupole Q(s) fitting of previous section. In table 10.2
we have annotated the marginalized 1-σ errors for the amplitude Amp and for Ωm.

If we try to fit to larger scales, we obtain always a biased low Ωm compared to the one we
obtain in the scales before the acoustic peak, probably because the wide-angle approximation
but possibly also because non-linear effects on the BAO peak and large sample errors. We
have seen this effect in the simulations, where we see that the best part to obtain parameters
is at intermediate-large scales. In Okumura et al. (2008) they use all the large scale range
including the baryonic peak without non-linear model, and they obtain lower values for Ωm

than the recent results. In order to avoid this problem, as said before, we fit at intermediate
scales.
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Sample Amp Ωm

z=0.15-0.47 1.47-1.65 0.225-0.265
z=0.15-0.34 1.45-1.62 0.230-0.275
z=0.34-0.47 1.55-1.82 0.215-0.285
z=0.15-0.30 1.45 - 1.80 0.240- 0.320
z=0.30-0.40 1.42-1.60 0.210-0.260
z=0.40-0.47 1.60-2.00 0.195-0.305

Table 10.2: Marginalized values for Amp and Ωm to 1-σ errors for each sample in redshift

Note how the best fit values of Amp seem to change from sample to sample. This could be
due to bias. The values of Ωm agree within 1− σ for 2 degrees of freedom (dotted lines).
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Figure 10.15: Top left panel shows ξ(π, σ) for the data (as colors) and over-plotted the best fit (solid
lines) obtained in the zones delimited by the orange line. Yellow contour show negative zones. We see
also the contours for Ωm − Amp marginalized for the rest of parameters, or marginalized for β − σv

from the quadrupole Q(s), and the degeneracies between the other parameters used in the fitting once
we marginalize for the rest of parameters (without using the quadrupole information). Solid lines are
1− σ, 2− σ and 3− σ (1 dof), and dotted lines 1− σ and 2− σ (2 dof)
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Figure 10.16: z=0.15-0.3. Best fit and contour Ωm − Amp once marginalized for β − σv from the
quadrupole Q(s)

Figure 10.17: z=0.3-0.4. Best fit and contour Ωm − Amp once marginalized for β − σv from the
quadrupole Q(s)

Figure 10.18: z=0.4-0.47. Best fit and contour Ωm − Amp once marginalized for β − σv from the
quadrupole Q(s)
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Figure 10.19: z=0.15-0.34. Best fit and contour Ωm − Amp once marginalized for β − σv from the
quadrupole Q(s)

Figure 10.20: z=0.34-0.47. Best fit and contour Ωm − Amp once marginalized for β − σv from the
quadrupole Q(s)



120 10 Luminous Red Galaxies analysis

10.6.1 Fitting σ8 or the modified gravity growth index γ

First, we try to obtain a fit to the parameter σ8, which we can separate from the bias b(z)
because of redshift distortions, following the equation

β ≡ f(z)

b(z)
=
Ωm(z)

γ

b(z)
(10.2)

explained in the theoretical section (§8.1). We use the prediction Ωm − Amp from large
scales and the value of β from Q(s), with γ = 0.55 for standard gravity with high accuracy.
As Amp = σ8b(z), we obtain σ8

σ8 =
βA

Ωm(z)0.55
(10.3)

where Ωm(z) is described in Eq.(8.28)

Here we assume a flat universe (WMAP results motivated) with a constant dark energy
equation of state characterized for w = −1.

We marginalize for the errors we have and obtain the 1-sigma errors for σ8 shown in
Fig.10.21, on the bottom, with colors Gray: All the catalog, Red: z=0.15-0.34, z=0.34-0.47,
Blue: z=0.15-0.3, z=0.3-0.4, z=0.4-0.47. There is a lower σ8 deviation for the middle slice,
but it is consistent with the others at 2 − σ level. On the top of the same figure, we obtain
the bias b(z) from the amplitude and σ8. The linear bias b(z) is clearly higher as we move to
higher redshifts, and it is consistent with previous results found also with LRG.

Figure 10.21: b(z) and σ8 for each slice in redshift, which range is plotted in the figure. Gray: All the
catalog, Red: z=0.15-0.34, z=0.34-0.47, Blue: z=0.15-0.3, z=0.3-0.4, z=0.4-0.47

We could also assume a value for σ8 which is also known from other observations, such as
WMAP, and assume that the observations can be explained by changes in the law of gravity
at cosmological scales (Linder 2005). This can be represented by the growth index γ. Both
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f(z) and the growth factor D(z) changes with γ. We have plotted the change of f and D
with γ in Fig.10.22 for z=0.34 (mean redshift in LRG) and Ωm = 0.25. From observations,
we have measured σ8b(z)D(z), if we now fix σ8 we can have an estimation of b(z)D(z) as well
as our estimation of β. We therefore can use this to calculate the product f(z)D(z) directly
from the combination β(b(z)D(z)), see Eq.(10.2).

We have assumed that the change comes from a different γ and not from a different
equation of state for dark energy. This is a good approximation because w only depends
slightly on γ (Linder 2007). We show in Fig.10.23 our estimation of 1−σ errors for the growth
index γ once we fix σ8=0.7, 0.8, 0.9 . As shown in Fig.10.22, the product f(γ)D(γ), at a given
redshift, decreases with γ. If we change the value σ8 to higher, the factor β b(zslice) D(zslice)
obtained from observations will be lower, and we will arrange the difference by reducing f D,
so increasing γ. In §13.7 we will see as the argument goes in the opposite way when we work
with ISW effect. At 2−σ and for all the redshift slices, γ is consistent with a standard gravity,
except for σ8 = 0.7 where we need 3 − σ for the last slice, favoring a σ8 clearly higher than
0.7, which is in agree with recent observations.

Figure 10.22: We see here the change of f and D with γ and the factors involved in redshift distortions
and ISW effect. We have fixed Ωm = 0.25 and z = 0.34
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Figure 10.23: Growth index γ for different redshift slices as in Fig.10.21 when we fix σ8 = 0.7, 0.8, 0.9
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10.7 Fitting to small scales and non-linear bias

When we move to small scales, we find the following problems. First of all, the bias be-
comes clearly dependent on scale for distances smaller than 10-20Mpc/h, because LRG are
galaxies highly biased so they only keep the linear bias constant at large scales. Secondly,
the model that we are using is supposing that the pairwise velocity dispersion is independent
of scale, which is not a good approximation for small scales as we have seen in the simulations.

In Fig.10.24 we see the projected correlation function Ξ(σ) calculated using Eq.(8.19) on
the top panel, and at the bottom panel we have plotted Ξ(σ)/σ which as seen in Eq.(8.21)
should be a power law in the case that the real space correlation function is also a power law.
In Fig.10.25 we show the resulting real-space correlation function which we have calculated
using Eq.(8.23) (in blue) and over-plotted the monopole in redshift space (in orange). At
intermediate scales, from 5 to 30 Mpc/h (the top value limited by the method to obtain ξ(r)),
ξ(s) is equal to ξ(r) but biased by a constant factor, as in Eq.(8.24), due to Kaiser effect.
We see this constant bias at intermediate scales in Fig.10.26, where we divide the correlation
function in redshift space and real space ξ(s)/ξ(r), and we can associate it to a function of β
(solid line shows β = 0.34, the best value for the redshift slice z=0.15-0.47). The agreement
is excellent, which provides a good consistency check for our results. Note that we prefer to
obtain β from the quadrupole, which seems to be more stable at large scales. The difference
between the real and redshift space correlation function for small scales is primordially due
to the random peculiar velocities.

First, we fit the obtained real space correlation function to a power law, ξ(r) = (r/r0)
−γ0 ,

from 1Mpc/h to 15Mpc/h. At scales smaller than 1Mpc/h the fit is bad, it is no longer a
power law. In Fig.10.27 we see the contour plot for 1−σ, 2−σ and 3−σ (for 1 and 2 degrees
of freedom, dotted and solid) and in Fig.10.28 we see the real space correlation function, the
best model (red) for the power law and the dark matter correlation function obtained from
best parameters in §10.6 which is corrected for a linear bias. Large scale and small scale
fittings agree as we can see in the plot, and the correlation function does not follow a power
law for distances smaller than � 1Mpc/h, where we can see the transition from the one-halo
to the two-halo term.

Zehavi et al. 2005 did a similar analysis with a previous SDSS spectroscopic data release
(35000 LRGs) at intermediate scales from 0.3 to 40Mpc/h. We have doubled the number
of LRGs and our results agree with them for the monopole, the projected correlation func-
tion, and the obtained real-space correlation function, with the same main conclusions. Also
Eisenstein et al. (2005a), in a study of small scales (0.2-7Mpc/h) using the cross-correlation
between spectroscopic LRG with the main photometric sample, remark that ξ(r) can not be
explained with a power-law fitting. However, Masjedi et al. (2006) have obtained the corre-
lation function at very small scales (0.01-8Mpc/h) and have found that, although with some
features diverging from a power law, all the range is really close to a ξ(r)−2.
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Figure 10.24: Ξ(r), Ξ(r)/r
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Figure 10.25: ξ(r) (blue dots) and ξ(s) (orange dots)

Figure 10.26: ξ(s)/ξ(r)
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Figure 10.27: Best fit of ξ(r) to a power law model ξ(r) = (r/r0)
−γ0 , 1-15Mpc/h

Figure 10.28: Observed ξ(r) (dots), best fit to the power law ξ(r) = (r/r0)
−γ0 (red), and dashed

over-plotted the best real space correlation function for large scales, assuming a constant bias

We know from simulations with halos that the non-linear bias typically follows a power-
law, which has a different slope γb depending on the halo mass of the particles studied, and
many other parameters concerning galaxy formation. LRG are assumed to be red galaxies
that trace halos of 1013M�, but there is a wide range of halos masses, and the non-linear bias
shows us these properties. We define the bias as

b(r) =
√

ξ(r)/ξ(r)DM = b bnl(r) (10.4)

where the dependence on scale of the bias is represented by bnl(r), and the linear constant
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bias as b. bnl(r) shows the relation between the LRG real space correlation function to the
dark matter once corrected by just linear bias. When bnl(r) is equal to 1, it means that the
bias is linear from there, so we define a parameter rb for the power law which shows the
scale from which non-linearity begins to be important. rb coincides approximately with the
correlation length, where the real space correlation function is 1. To compute the non-linear
bias we need the dark matter correlation function and the linear bias, which we have taken
from the fitting at large scales. We have calculated the bias for all the Ωm and amplitudes.
Then we marginalize over them. In Fig.10.29 we see the contours for rb and γb (left panel),
and the best fit (red in the right panel). This fit to the bias can explain the differences seen
previously between the correlation function and a power law for scales smaller than 1Mpc/h.
At scales smaller than 0.3Mpc/h, the real space correlation function turns down probably due
to fiber collisions. In detail, we see in Fig.10.29 a feature in the bias between 1 and 2 Mpc/h,
indicating that LRGs galaxies do not trace the halo model in a scale dependent bias completely
smooth. We have tried to change σ8, fixed for this analysis at σ8 = 0.8, and we observe that
we could see this feature if the true σ8, imprinted in the galaxies, is lower than the assumed
value 0.8, but the characteristic shape would be located at 1Mpc/h and no higher. Moreover,
we have found that σ8 tends to be slightly higher than σ8 in the previous section, which goes
in the opposite direction. We think that it is difficult to obtain σ8 in this range, and that
this feature is due to the range of halo sizes of our LRGs, which makes it difficult to predict
exactly the transition point from the 1-halo to the 2-halo term (see Gaztañaga & Juszkiewicz
2001). If galaxies are residing within dark matter halos then the clustering of the galaxies
on scales larger than halos is determined by the clustering of the dark matter halos that host
them, plus statistics of the occupation of halos by galaxies. For larger scales than � 2Mpc/h
(the biggest halos), the clustering comes entirely from LRGs that reside in different halos,
while for smaller scales, the clustering can come from galaxies in different halos or galaxies in
the same halo until it is reached a minimum size of halos (see Masjedi et al. (2007) for a more
detailed explanation).

Figure 10.29: Left panel: Best fit to no linear bias bnl(r) (defined in the text) with a power law
bnl(r) = (r/rb)

−γb . Right panel: No linear bias bnl(r) (solid line with errors in gray) and best power
law fit (red). We have also over-plotted in dashed line the bias obtained if we suppose that the galaxy
correlation function is a power law

10.7.1 Measurement of σv as a function of scale

Once we have obtained the real space correlation function, we look at the monopole ξ(s),
the quadrupole ξ2(s) and also at ξ(π, σ) in order to check the result. We see in Fig.10.30 the
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monopole ξ(s) (top panel) and quadrupole ξ2(s) (bottom panel) binning the distance with
0.2Mpc/h, and over-plotted in red the theoretical model, which we have found integrating
ξ(π, σ). We have used the method of Hamilton (Eq.(8.14)) which gives a shape for ξ(π, σ)
given a real-space correlation function and the parameters obtained in the previous sections.
The monopole does not coincide with the model for scales smaller than 3Mpc/h, neither does
the quadrupole; this difference indicates that σv is higher at smaller scales as shown in Fig.9.22
for the simulations.

We use ξ(s) to fit a value for σv at each distance and we use the same pairwise velocities
to check for consistency the discrepancy found in ξ2(s) (bottom panel in Fig.10.30).

We have tested this method in the simulations. In Fig.9.22 we can see the dispersion in the
LOS pairwise velocity for all the range of distances. We plot in Fig.10.33 the monopole of the
simulation (solid) and different models (dotted) with different σv, growing down. The idea is
that we can not distinguish between different σv at large scales, from 5Mpc/h to 10Mpc/h the
monopole follows a line of constant σv near 400 km/s, and for smaller scales, the monopole
cross different lines of constant σv. This is the range of σv dependent on the scale. The dis-
persion σv at such small scales changes with the real distance, not with the redshift distance
s which we are analyzing in the monopole. The result in a fixed distance in redshift space is a
convolution of the signal at different real distances, with different σv, so we are approximating
the result when we obtain the real σv from the monopole. Nevertheless, we see in simulations
that the change that we observe in the monopole gives an estimation of σv for the real scale
r = s because we recover the expected values of σv.

These errors we have plotted are correlated with the same covariance that we used in
the monopole (Fig.10.31). As seen in §10.1, Slosar et al. (2006) show that pairwise velocity
distribution in real space is a complicated mixture of host-satellite, satellite-satellite and two-
halo pairs. The peak value is reached at around 1Mpc/h and does not reflect the velocity
dispersion of a typical halo hosting these galaxies, but is instead dominated by the sat-sat
pairs in high-mass clusters. Tinker et al. (2007) uses the HOD model to explain that at r �

2 Mpc/h, the PVD rapidly increases as satellite-satellite pairs from massive halos dominate.
At r < 1 Mpc/h, the pairwise velocities dispersion decreases with smaller separation because
central-satellite pairs become more common. These predictions agree well with our results.

The effect in the quadrupole Q(s) is not significant at the scales where we obtain the
contour β−σv, where we assume that σv does not change, although it explains the difference
we see at small scales.
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Figure 10.30: Monopole ξ(s) (dots) with errors (gray) and best model assuming a constant σv (red).
Bottom panel: Quadrupole ξ2(s) (dots) with errors (gray), best model assuming a constant σv (red)
and model assuming variation in σv with scale (blue) derived from the monopole ξ(s) in the top panel
(see Fig.10.31)
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Figure 10.31: σv vs distance, calculated directly from the monopole

Figure 10.32: Dispersion calculated from monopole in simulations (solid) compared to the calculated
directly from velocity field in simulations (dashed)
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Figure 10.33: Monopole in the simulations (solid) and different models with MICE cosmology changing
the random pairwise velocity dispersion σv (dotted)
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10.7.2 Consistency of σ − π model with data

Now we look directly at ξ(π, σ) at small scales once we have all the parameters, to see if
the model works when we separate π and σ, for all the angles. We have used a binning of
0.2Mpc/h for these plots, in order to see clearly the fingers of God, which are concentrated
at very small σ. First, we can see the detailed plot of ξ(π, σ) in Fig.10.34.

Figure 10.34: ξ(π, σ) calculated using squares in π − σ of side=0.2Mpc. Contours are: 0.1-50 with
logarithm separation=0.6

In the next three figures 10.35, 10.36 and 10.37, we can see the differences between the
data and the model in three cases. Top panels from left to right show: the data as colors; the
data and the model over-plotted as solid line; and the model as colors. Bottom panels show:
the same as in the top but we have zoomed the σ direction to see clearly the fingers of God.
First (Fig.10.35), we compare the data with a model that assumes linear bias (found fitting
large scales) and a constant pairwise velocity dispersion of σv (obtained from the quadrupole
Q(s)). We see clearly that it does not fit, basically because the bias becomes non-linear. Part
of the apparent fingers of God are corrected just adding the non-linear bias in the model. In
the second model (Fig.10.36), we compare the model that we obtained using the real space
correlation function just found, which includes all the non-linear effects. We still need to
explain the strong elongation we see in the direction line-of-sight, which we correct with the
third model (Fig.10.37). We include the variation in σv assuming that σv is constant along
the line-of-sight for a fixed σ (perpendicular distance). In reality, different real scales, each
with its associated σv, can affect the same redshift space scale s, but it has been found in
previous studies that this is a good approximation, as we see in the figures.

It is difficult to model ξ(π, σ) if σv is dependent on scale, but we have seen that the change
in σv only affects small s (less than 4Mpc/h) and small perpendicular σ. For the rest of values
of π and σ, we can explain the observed ξ(π, σ) just by a β and an effective σv, which in reality
does not change a lot on real scales bigger than 4Mpc/h. Figures 10.38, 10.39, 10.40, 10.41
and 10.42 show the best third model, for different redshift slices. All the cases agree well with
observations.
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Figure 10.35: ξ(π, σ) (z=0.15-0.47) modeled with a linear bias in the real-space correlation function.
Top:data, data+model, model . Bottom: the same zoomed in σ

Figure 10.36: ξ(π, σ) (z=0.15-0.47) modeled with real-space correlation function obtained from depro-
jection. Top:data, data+model, model . Bottom: the same zoomed
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Figure 10.37: ξ(π, σ) (z=0.15-0.47) modeled with real-space correlation function obtained from de-
projection and σv dependent on scale. Top:data, data+model, model . Bottom: the same zoomed

Figure 10.38: ξ(π, σ) (z=0.15-0.3) modeled with real-space correlation function obtained from de-
projection and σv dependent on scale. Top:data, data+model, model . Bottom: the same zoomed
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Figure 10.39: ξ(π, σ) (z=0.3-0.4) modeled with real-space correlation function obtained from depro-
jection and σv dependent on scale. Top:data, data+model, model . Bottom: the same zoomed

Figure 10.40: ξ(π, σ) (z=0.4-0.47) modeled with real-space correlation function obtained from de-
projection and σv dependent on scale. Top:data, data+model, model . Bottom: the same zoomed
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Figure 10.41: ξ(π, σ) (z=0.15-0.34) modeled with real-space correlation function obtained from de-
projection and σv dependent on scale. Top:data, data+model, model . Bottom: the same zoomed

Figure 10.42: ξ(π, σ) (z=0.34-0.47) modeled with real-space correlation function obtained from de-
projection and σv dependent on scale. Top:data, data+model, model . Bottom: the same zoomed
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10.8 Different redshift slices

We look at the differences between the redshift slices in the monopole (Fig.10.43), in the
monopole BAO scale (Fig.10.44), in the projected correlation function Ξ(σ) (Fig.10.45), in
the real-space correlation function ξ(r) (Fig.10.46) and in the ratio ξ(s)/ξ(r) (Fig.10.48).

As we have seen in section 10.5, β is similar for all the redshift slices, and we can also see
that in Fig.10.48, which at large scales also is a function of β (Eq.(8.24)). The turn down
at large scales is due to ξ(r) which is dividing and it is not well calculated for scales larger
than 30Mpc/h (it is overestimated). Thus, the monopole is approximately a measure of the
real-space correlation function for large scales, but biased by a function of β similar for all
the slices. Looking at the monopole (Fig.10.43), also at the projected correlation function
(Fig.10.45) and at the real-space correlation function (Fig.10.46) we see that all the slices
except from the further one (blue dash-dot) lay in the same line, meaning that D(z)b(z) is
almost constant with redshift, what is called stable clustering. We see the baryon peak in
detail in the monopole ξ(s) (Fig.10.44), which is consistent with the first detection of the
same peak in LRG (Eisenstein et al. 2005b). The peak is biased for slices further away. On
bottom panel we have over-plotted the best lineal fit (Eisenstein & Hu 1998) which is lower
than measurements probably due to sampling variance. We study the peak with more detail
in §10.10.

In Fig.10.46 we also see that the change of the slope at small scales moves to larger scales
as we explore further slices, we think that it is due to geometry since it is the same angular
scale. We have also plotted the bias b(z) for all the slices (Eq.(10.4)). It is clear that b(z)D(z)
are nearly constant, thus b(z) grows with redshift as we see in Fig.10.47. The slope in the
non-linear bias is nearly the same, so the small scale interaction between galaxies is nearly
the same, as expected.
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Figure 10.43: Comparison between ξ(s) in redshift space for different slices in redshift. All: black,
z=0.15-0.3 (solid blue), z=0.3-0.4 (dashed blue), z=0.4-0.47 (dashed-dotted blue); z=0.15-0.34 (solid
red), z=0.34-0.47 (dashed red)
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Figure 10.44: Comparison between the BAO peak in ξ(s) for different slices in redshift. All: black
dots with errors, z=0.15-0.3 (solid blue), z=0.3-0.4 (dashed blue), z=0.4-0.47 (dashed-dotted blue);
z=0.15-0.34 (solid red), z=0.34-0.47 (dashed red). Top: Detail of the BAO peak in ξ(s). Bottom:
Large scales for ξ(s) compared to the best fit linear model for the principal redshift slice (solid line)
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Figure 10.45: Comparison between the projected correlation function Ξ(σ) for different slices in red-
shift. All: black, z=0.15-0.3 (solid blue), z=0.3-0.4 (dashed blue), z=0.4-0.47 (dashed-dotted blue);
z=0.15-0.34 (solid red), z=0.34-0.47 (dashed red)

Figure 10.46: Comparison between ξ(r) in real space for different slices in redshift. All: black, z=0.15-
0.3 (solid blue), z=0.3-0.4 (dashed blue), z=0.4-0.47 (dashed-dotted blue); z=0.15-0.34 (solid red),
z=0.34-0.47 (dashed red)
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Figure 10.47: Comparison between the bias b(z) =
√

ξ(r)/ξ(r)DM (as in Eq.10.4) in real space for
different slices in redshift. All: black, z=0.15-0.3 (solid blue), z=0.3-0.4 (dashed blue), z=0.4-0.47
(dashed-dotted blue); z=0.15-0.34 (solid red), z=0.34-0.47 (dashed red)

Figure 10.48: Comparison between ξ(s)/ξ(r) for different slices in redshift. All: black, z=0.15-0.3 (solid
blue), z=0.3-0.4 (dashed blue), z=0.4-0.47 (dashed-dotted blue); z=0.15-0.34 (solid red), z=0.34-0.47
(dashed red). The constant solid black line shows the Kaiser expression for ξ(r)/ξ(s) at large scales
(as a function of β, see Eq.(8.24)) for β = 0.34
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10.9 Angular correlation and cross-correlation with WMAP,

ISW effect

In this section we explore the angular correlation function and also the ISW effect through
the cross-correlation between galaxies and fluctuations of temperature in WMAP. We point
out that the catalog used here is the spectroscopic LRG, while the work done in the first part
of the thesis uses the photometrical catalog of LRG, which has a different selection function,
centered at a higher redshift (z=0.5). As seen in the theoretical section 8.6, the angular
auto-correlation function GG goes like

wGG ∝ σ2
8φG(z)

2b(z)2D(z)2 (10.5)

and the cross-correlation function between galaxies and CMB temperature fluctuations
wTG is proportional to

wTG ∝ σ2
8φG(z)b(z)D(z)

d[D(z)/a]

dz
(10.6)

where

d[D(z)/a]

dz
= D(z)(1− f) (10.7)

Both expressions wGG and wTG are proportional to σ2
8 because this factor comes from

the normalization of the power spectrum, but wGG is proportional to (φG(z)b(z)D(z))
2 while

wTG is proportional to (φG(z)b(z)D(z)) (from the clustering of galaxies) and d[D(z)/a]
dz (from

the evolution of gravitational potentials).

We find the signal wTG higher than expected (see Fig.10.49 for the redshift slice z=0.15-
0.34), a clear tendency that has been seen before (see Giannantonio et al. 2008 for a com-
pilation of ISW observations). The high signal wTG could be due to: σ8 higher, Ωm lower,
non-linear effects, bias between matter and galaxies different from the one obtained from
galaxies-galaxies, non-linear bias, different form of dark energy as w > −1 (see §6 for some
hints in this direction), modified gravity at cosmological scales, or non-linear magnification
(linear magnification is not expected to affect ISW at low redshifts, Loverde et al. 2007).

The signal to noise is not very high so we can not obtain tight constraints, but we can
have an idea of what is creating this high signal. We study two reasons: a change in σ8 or a
change in the growth index γ. We have also studied these two parameters in the section of
redshift distortions and we want to see if results are compatible.

We can break the degeneracy between b(z) and σ8 in the auto-correlation function wGG

(proportional to b2σ2
8) by combining the result with wTG which depends differently on these

two parameters, as bσ2
8 . We suppose that the factor b(z)D(z) = b(z = zslice)D(z = zslice) is

constant through all the redshift slice to be consistent with the previous section of redshift
distortions.

We start from wGG: we fix the shape (Ωm = 0.25) and find the factor b(z = zslice)D(z =
zslice)σ8 which should be equal to the one found in previous sections when analyzing redshift
distortions, since we are working with the same galaxies LRG. Once we prove that it is the
same value within the errors, we assume a flat universe, we fix the dark energy equation of
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state parameter w to w = −1, and fix standard gravity (γ = 0.55). Now we can explain the
wTG observed by changing σ8, and we can break the degeneracy of σ8 with bias b(z) in a way
completely independent from the one used in the section of redshift distortions. In Fig.10.49,
we have plotted at the top left the auto-correlation wGG and over-plotted the best fit obtained
from redshift distortions, on the top right wTG and the best fit for σ8 plotted on the bottom
left panel versus χ2, where we see that σ8 tends to prefer higher values than the standard ones
and also higher than the value σ8 obtained in previous sections, but it is consistent within
1 − σ errors (χ2 = 1). We only plot the redshift slice z=0.15-0.34 because the others have a
higher noise.

Now we see how we can explain the observed ISW signal if it is due to a modification of
gravity.

Once we know D(z = zslice)b(z = zslice) from the angular auto-correlation function wGG or
from redshift distortions, we fix σ8 = 0.8 and look for γ. We suppose that w(z) changes slightly
with γ and that almost all the variation with γ in ISW comes from the factor D(1− f) (see
the theoretical section 8.6 for a detailed explanation). See the bottom right panel in Fig.10.49
for χ2 vs γ. Both D and (1− f) grow with γ, so also D(1− f) grows with γ (see Fig.10.22).
If we want to obtain a higher signal, once fixed the rest of parameters, we can increase σ8 or
increase D(1− f) for a low fixed σ8, equivalent to increase γ. The conclusion is the following:
if we fix σ8 to a higher value, we need a lower value for γ; while for redshift distortions, if we
fix σ8 to a higher value, we need γ to be also higher. It seems to be a promising tool because
both ways to obtain growth histories seem to go in opposite direction, and we will be able to
break degeneracies in future surveys with best ISW signal.

From these observations, we conclude a preference for higher σ8, or equivalently, a higher
ISW unexpected in the standard model.
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Figure 10.49: z=0.15-0.34. Top left: wGG of LRGs (solid with errors) and best linear model (dotted
line). Top right: wTG (solid black with errors) and best model when fitting σ8, for σ8 = 1.2. Bottom
left: χ2 for σ8 once we assume the rest of parameters fixed. Bottom right: χ2 for γ once we assume
σ8 = 0.8
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10.10 Evidence of magnification bias in the BAO

We expect a peak around 100Mpc/h in the real-space correlation function, which is also
imprinted in the anisotropic redshift space ξ(π, σ), produced by baryon oscillations (see §8.7).
If we measure the peak in the radial direction, we find directly information about H(z), since
dr = dz/H(z), while transforming angular separations involves the angular-diameter distance
DA(z). In real data, recent surveys have used the averaged power spectrum or the monopole
to do predictions, which position constrains cosmological parameters through a combination
of H(z) and DA(z) (also dependent on H(z)) (see Eisenstein et al. 2005b). In ξ(π, σ), the
differences between the perpendicular and parallel positions translate to an almost circular
ring at around 100Mpc/h, although the peak is enhanced differently at each angle, because
of redshift distortions. The peak is detected with higher signal if the galaxies are more biased
and they trace a bigger volume, the reason why LRG are good galaxies to locate the position
of the peak. Moreover, in the π − σ plane, specially in the LOS direction, where we want to
detect the peak, the error is dominated by shot noise. This means that the noise does not
increase proportionally to signal, so if we increase the signal, we will have more signal to noise.

In the following plots (Fig.10.50, 10.51) we see the redshift-space correlation function
ξ(π, σ) for the complete catalog (z=0.15-0.47, top panel Fig.10.50), and for three different
slices in redshift (z=0.15-0.3, bottom panel Fig.10.50; z=0.3-0.4, top panel Fig.10.51 and
z=0.4-0.47, bottom panel Fig.10.51). For large scales, in the context of linear theory, we
should see less power at the BAO scale when we approach the line-of-sight direction π, as
we can see in the left panel of Fig.10.53, where we have plotted the linear model for the
anisotropic ξ(π, σ) using cosmological parameters similar to the ones derived in previous sec-
tions. Instead of that tendency, we see a baryon peak ring of equal amplitude (except for
the intermediate slice z=0.3-0.4, with low S/N, where we do not see the ring). Moreover,
the peak in the line-of-sight direction seems to be higher than in the rest of the ring. In this
section we try to explain the reason of such a peak and we use the location to gain information
about H(z). We only believe our results for s lower than 130Mpc/h, since we have seen in the
monopole that after the baryon peak, there is too much power which could be due to selection
effects (see Fig.10.44) and systematic errors could dominate over the statistical errors. On
scales smaller than 130 Mpc/h these systematic errors have been shown to be smaller than
statistical errors (Eisenstein et al. 2005b). Note that in separating σ from π in the data we
have assumed plane-parallel approximation. This introduces a distortion of the BAO scale in
the perpendicular direction σ > 100Mpc/h when π is small. This can be clearly seen in the
plots, where there is an artificial concentration of signal in the direction of 30 degrees away
from π = 0 at radial scales r � 100Mpc/h, which produces a X shape in our σ − π plots. In
reality this signal is distributed along smaller angles in the same radial bin. Thus, we do not
extract information from the perpendicular direction σ at the BAO scale, since it could be
affected by wide-angle effects. In §10.11 we show how to correct for this effect by removing
some of the pairs in the calculation (see Fig.10.73). This is not the best possible approach,
as we do not want to through away information, but shows the origin of the strange X shape
features at large σ (see also Fig.9 in Matsubara 2000a). We can also use the monopole mea-
surements which are not affected by these distortions (eg see Fig.10.43, 10.44) to explore the
full BAO signal.

We use a fiducial model of Ωm = 0.25 through all the chapter to convert z into distances.
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Figure 10.50: ξ(π, σ) Top panel: z=0.15-0.47 (all). Bottom panel: z=0.15-0.30 . Distances in Mpc/h
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Figure 10.51: ξ(π, σ) Top panel: z=0.30-0.40. Bottom panel: z=0.40-0.47 . Distances in Mpc/h
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We have looked statistically to the significance of this BAO detection, through the null
test: the probability that such an event to be different from zero by chance (the null result).
We need this probability to be very low in order to have significance in the signal (3 − σ
corresponds to a probability of 1%). We have performed a full covariance matrix analysis
around the peak LOS position in a circle of s=10Mpc/h in the plane π−σ. There are 7 pixels
in the σ−π plane in our analysis. We find that the significance of the detection is more than
3-σ for the mean slice in redshift and the slice z=0.4-0.47 (probability of 0.8%). For the slice
z=0.15-0.3, the significance is lower, 2-σ if we take all the signal in the circle 10Mpc/h, and
increase when we center the study at the peak, as we will see in Fig.10.56. We notice that
the peak seen in the LOS is followed by a ring in the plane π − σ at around 100Mpc/h.

Once we know that the peak is significant, we try to explain the reason of such a big peak.
It is not possible to explain this BAO peak in the direction of LOS only through redshift
distortions in the linear regime, which predict a lower peak in the LOS than in the perpendic-
ular direction. The peak that has been measured (see Fig.10.44) roughly in agreement with
predictions for the monopole, is dominated by modes in the perpendicular direction, and it
is 10 times lower (� 0.01) than the one we find in the LOS direction (� 0.1!), just in the
contrary direction to expectations. We need to point out that it is precisely at the direction
LOS where the errors are bigger, but the signal is even higher, as we have seen in the null test.
In reality, even the measured monopole (in Fig.10.44) seems slightly larger than predictions,
which could also be due to the LOS contribution to the monopole.

We think that the peak that we find in the LOS is primarily due to magnification bias
(see §8.8), the effect caused by the dark matter which acts as a gravitational lens for the light
coming from further galaxies. It can create an enhance of number of galaxies per pixel due to
the lensing that allows us to see dimmer galaxies, and a suppression of the number of galaxies
due to the growth of the area, which excludes some galaxies. The final net lensing is controlled
by the slope in the number counts (Eq.(8.40)). This effect is really important at large scales
and it is concentrated at the direction LOS, just where we are looking for. We only account
for the cross-term, since the auto-magnification term is insignificant for our purpose.

In order to calculate the slope in the spectroscopic catalog LRG, we need information from
dimmer galaxies than the limit of our catalog, to obtain the number count slope at exactly
the magnitude cut (Eq.(8.40)). We take the photometric catalog, and with a similar selection
in colors (adapted to photometry, explained in Chapter 6), we can calculate the slope, since
we have dimmer galaxies in this new catalog. Because the photometric catalog is different
from the spectroscopic one, we must take care when interpreting the slope. In Fig.10.52,
we see the galaxy number counts depending on the apparent magnitude r and the logarithm
of this expression, which indicates the slope. Our magnitude cut is around 19.2, where the
slope is around 1.5. This is a rude estimation, but gives us an idea about the slope, which is
clearly different from zero, thanks to the low magnitude cut (see Matsubara 2000b for more
predictions of the slope s).

Fig.10.53 shows a comparison of the theoretical model for ξ(π, σ) with and without mag-
nification bias (right panel and left panel). We see how the LOS direction is affected by this
contribution, enhancing the peak in the LOS over the case with no magnification. When we
compared models of linear magnification bias to data, we find a good agreement in the shape
but the amplitude can not explain the data with a slope of around 2. We think that it can be
arranged with some non-linear contribution (non-linear magnification?), which would affect
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Figure 10.52: Number counts for each apparent magnitude and slope

the signal in a multiplicative way, or just with cosmic variance on top of the magnification
signal.

Figure 10.53: Theoretical ξ(π, σ) Left panel: Linear model with redshift distortions. Right panel: The
same with magnification bias (slope=2)

Fig.10.54 shows the correlation in the LOS direction for a squared bin of 5Mpc/h in the
π−σ plane (starting from σ = 0.5Mpc/h to avoid the fiber collision zone), moving the center
of the bin 1Mpc/h each time in π (LOS direction) in order to have more precision. The top
panel is in logarithmic scale to show a wider range of distances. We have plotted the cor-
relation LOS in black (negative zones are dotted in the top panel), in blue the linear model
assuming σv = 600km/s, although in the top panel we have also plotted extreme models with
σv = 400km/s (lower) and σv = 800km/s (higher) (we see that this range can be explained
by a combination of σv dependent on scale. Since the bin is 5Mpc/h, FOG are not so evident
as in §10.7.2, where we have proved that a change in σv dependent on scale, explains the FOG
observed). The linear model alone can not explain the peak. When we add the magnification
cross-term μg (cyan dashed) with slope of 2 to the linear model (redshift distortions) we ob-
tain a higher peak (orange line). Taking into account the errors (the cosmic variance, dashed
orange, bottom panel), the predictions are closer to the data, but we till need some additional
multiplicative factor to match observations. If we increase the slope in the prediction of μg,
we will have a LOS correlation with progressively less negative zone. We see clearly a negative
zone at intermediate scales, so the best option is a multiplicative factor which enhances the
positive parts, and the negative parts, this could be due to sampling variance. The peak in
the monopole is wider than the one in LOS direction (see Fig.10.44). This is a consequence
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of redshift distortions, which flatten the direction LOS and create a negative zone at interme-
diate scales (40-100Mpc/h). The peak in LOS comes after a negative range, so it is clearly
observed since it is positive and the peak is more Gaussian, while in the monopole or the
perpendicular direction, the peak is convolved with the typical power law at intermediate
scales (positive), and it is no longer Gaussian.

In Fig.10.55 we have plotted the signal with errors for large scales, around the peak (�
110Mpc/h). We see clearly the peak except from the intermediate redshift slice, z=0.3-0.4.
Errors are bigger in this slice because we have less volume and less number of pairs (specially
in the radial direction, where we are looking). We have over-plotted the linear prediction at
the direction LOS, multiplied by a factor of 10, to simulate the magnification effect.

In order to see more clearly the peak and the significance just in LOS direction, we plot
(S/N)2 in Fig.10.56, an estimation of χ2. We have also done the analysis using an angular
mask with 10% less galaxies, which are safely inside “good” plates, and with a radial selection
function which is smoother (dz=0.05) than our default value of dz=0.02 (see §10.11). This
new case allows us to see how solid is the result and look for systematic errors. We have
over-plotted in Fig.10.55 and Fig.10.56 the new result (dashed line). We see how for the all
sky catalog the systematic effects can suppress the peak. This can be understood easily since
it is a mixture of different slices in redshift and we find that the BAO peak position tends to
decrease with redshift resulting in a degradation of the mean signal.

Once we have a plausible explanation for the origin of the peak, we can take advantage
of the high S/N in LOS to obtain cosmological constraints, through the factor H(z). The
idea is to compare the well known measure of the baryonic peak calculated by WMAP5, with
the peak that we obtain using a fiducial cosmology (in our case Ωm = 0.25 and w = −1,
although we have tried other fiducial models and results are similar). In the LOS direction,
the only change in the location is due to H(z), used to estimate the distances from redshifts,
dr = dzc/H(z). Following this argument, we can directly calculate H(z) at the redshift of the
survey, comparing the comoving distance of the survey peak with the WMAP peak.

H(z)real = rsurvey/rWMAP H(z)fiducial (10.8)

where the peak measured by WMAP5 is rWMAP = 146.8 ± 1.8Mpc being r the comoving
distance, H(z)fiducial is the one used when computing the comoving distance of the peak in
the survey (rsurvey),

H(z)/H0 =
√
Ωm(1 + z)3 + (1 −Ωm)(1 + z)3(1+w) (10.9)

if we suppose a flat universe and a dark energy equation of state constant parameter w.
The difference between H(z)real and H(z)fiducial will tell us about a different Ωm than the
fiducial in our Universe or a different constant w. In order to obtain the error in the peak, we
take the maximum value in (S/N)2 at the BAO scale, and see the range of distances where
χ2 = (S/N)2 > (S/N)2peak − 1, which means 1− σ from the maximum. When we include the
covariance, the significance is slightly lower, but the errors are still the same. This is because
the covariance with neighboring bins in the direction LOS is � 20% (dotted line in Fig.10.56).

We should take care with the conclusions, because we have not modeled in detail the re-
lation between the peak in the correlation function with the actual BAO sound horizon scale
as measured from WMAP, so the position could be slightly biased. This has been recently
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Figure 10.54: correlation ξ(π, σ) at LOS in black (negative zones are dotted in the top panel), in blue
the linear model assuming σv = 600, although in the top panel we have also plotted extreme models
with σv = 400 (lower) and σv = 800 (higher). Cross-term μg (cyan dashed) added to the linear model
(orange line), and errors over the model (dashed orange in the bottom panel)
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Figure 10.55: Redshift-space correlation function ξ(π, σ) in the direction LOS (solid black) with linear
model multiplied by a factor 10 (solid red), with errors (gray area). We plot also the result for a
different mask explained in the text (dashed line). Redshift slice as indicated in the same figure

explored by Sanchez et al. (2008). Their Fig.2 shows that at Ωm = 0.25 the peak in the corre-
lation function (using CAMB) systematically underestimates the true sound horizon by about
1.5% (this error increases to 2% for Ωm = 0.2 and reduces to 1% for Ωm = 0.3). This is a large
(but well predictable) systematic effect and we could in principle correct our measurements
for this. The problem is that this correction depends on the width of the BAO peak as given
by the Silk damping. In the case of the correlation function along the line of sight, the width
of the BAO peak is smaller due to the Kaiser effect (see Fig.10.53). If anything, magnification
bias would tend to move the peak by a similar amount (less than a percent) in the opposite
direction (see Hui et al. 2007). We conclude that it is safer not to apply any correction here
and just increase the systematic error by about 1% to account for a possible systematic in
this conversion. In Table 10.10 we show the values for the position of the peak for different
redshift slices, the mean statistical error, the systematic error and the corresponding H(z).
Systematic errors (added linearly) are given by the difference in the results using different
mask and different selection functions and also the uncertainty in the conversion between the
peak position and the sound horizon scale mentioned above. For illustration purposes, we will
use the mean peak value among both masks for the following calculations, the mean statistical
error and, added in quadrature, the systematic error.

We obtain H(z) from Eq.(10.8), for each slice. For the errors,

σHreal
=

√(
σrsurvey

rsurvey

)2

+

(
σrWMAP

rWMAP

)2

Hreal. (10.10)

In Fig.10.57 we see the H calculated from the well located peaks. We over-plot the best
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Figure 10.56: In this figure we plot the significance of the detection as χ2 = (S/N)2 (solid line) and
χ2 when including the covariance (dotted line). We plot also the results for a slightly different mask
as explained in the text (dashed line). Redshift slice as indicated in the same figure. The gray zones
indicate a 1-σ, 2-σ, 3-σ or 4-σ detection

Sample rΩm=0.25 σst σsys H(z) σst σsys

Mpc/h km/s/Mpc

z=0.15-0.47 (zm = 0.34) 109.6 1.6 1.7 86.8 1.7 1.2
z=0.15-0.3 (zm = 0.24) 110.5 0.75 1.35 83.4 1.2 1.0
z=0.4-0.47 (zm = 0.43) 108.6 0.4 1.22 90.0 1.2 1.1

Table 10.3: Mean position of the BAO peak in the LOS direction calculated with a fiducial Ωm = 0.25
and statistical and systematic error , and also the derived H(z) with its associated errors for each
redshift slice

flat ΛCDM model (w=-1) with WMAP5 parameters Ωm = 0.258 ± 0.03, h = 0.72 ± 0.026
and errors (red line and orange shaded area). We see that our estimation of H(z) lays within
the errors, but with a tendency of higher Hubble constant h (or higher Ωm for h=0.72) and
different slope, indicating that w could be a function of redshift. This reflects the tendency
of the BAO scale to decrease with redshifts (see Table 10.10).

We see what happens when we fix Ωm to a fixed value, and fit a constant w for each
redshift slice. In Fig.10.58, we see the constraints in w(z) once we fix Ωm to 0.2 (red), 0.25
(black) or 0.3 (blue), and h=0.72. There is a tendency of w to depend on the scale (higher w
when we approach z=0).

We can see the same effect by fixing again h=0.72, assuming a flat universe (Ωm+ΩΛ = 1)
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Figure 10.57: H(z) obtained from different redshift slices (points with errors), the red line shows the
best value for H(z) from WMAP5, and errors (orange)

and supposing a constant value for w. We obtain a degenerated relation between Ωm and w
(Eq.(10.9)). We can see the result in Fig.10.59 for different redshifts. Again, we only can ex-
plain this plot by assuming different w for a given realistic Ωm. We point out that Eisenstein
et al. (2005b) also obtain a high value for Ωm (the one that better explain a w near -1) and
their result for w is also higher than the standard w = −1, although the method they follow
is based in an analysis of intermediate and large scales (including the baryon peak) in the
monopole, which constrains the same parameters in another way.

We think that the use of redshift anisotropies in the BAO peak can constrain better
the parameters H0, Ωm and w(z) in future surveys. We let to future work the complete
modelization of the BAO peak at all the directions of the plane π − σ.



10.10 Evidence of magnification bias in the BAO 155

Figure 10.58: We fix Ωm to 0.20 (red), 0.25 (black) or 0.30 (blue) and explain the H(z) given in
Fig.10.57 by a constant w at each redshift

Figure 10.59: Contour Ωm − w obtained from the position of the BAO peak, z=0.15-0.47 (green),
z=0.15-0.3 (blue), z=0.4-0.47 (orange)
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10.11 Systematic errors

In this section we look for possible systematic errors that could be imprinted by the ra-
dial mask through the line-of-sight, the angular mask, or the selection in LRG galaxies. In
Fig.10.44 we show that for some slices there is extra power in ξ(s) at scales s > 130Mpc/h,
something which is not expected in the models. This is particularly evident for the slice in
redshift z=0.3-0.4. This extra power could be due to sampling variance but could also be
caused by some systematic errors in the data or the way we analyze it. The extra power
seems to be important at scales larger than the baryonic peak, but we test here if it could
also have some effect over the peak location.

First, we test the radial selection function that we use for the random catalog. If we
use exactly the same selection function of the data, we suppress the radial modes, the π di-
rection. In Fig.10.60 we can see the differences between different smoothing windows in the
data selection function, and in Fig.10.61 the redshift-space correlation function for these three
smoothing bins. We do not see any significant difference between the three cases.

Figure 10.60: Selection function for data (black histogram) and random smoothing for a bin in redshift
of z=0.02 (red), z=0.05 (green) and z=0.08 (blue)

In Fig.10.62 we look at the difference between the results of Eisenstein et al. (2005b) (in
black) and our results (in red). Our result is consistent with their work despite our larger
area and the difference in the selection. However, at larger scales than the baryonic peak, we
observe some extra-power. We wonder if the difference is just due to sampling, selection or
to the way we estimate the correlation function (we do not include weighting).

We have also calculated the correlation function using a weighting scheme, as the one ex-
plained in Eisenstein et al. (2005b). We weight the sample using a scale-independent weighting
that depends on redshift. When computing the correlation function, each galaxy and ran-
dom point is weighted by 1/(1 + n(z)Pw) (Feldman et al. 1994) where n(z) is the comoving
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Figure 10.61: Redshift-space correlation using a redshift smoothing in the random selection function
of 0.02 (red), 0.05 (green) and 0.08 (blue)

number density and Pw = 40, 000h−3Mpc3. We do not allow Pw to change with scale so as
to avoid scale-dependent changes in the effective bias caused by differential changes in the
sample redshift. We choose Pw at k � 0.05hMpc−1 as in Eisenstein et al. (2005b). At z <
0.36, nPw is about 4, while nPw � 1 at z = 0.47. In Fig.10.63 we can see the comparison
between the correlation function estimated without weighting (solid line) and with weighting
(dashed line). It seems that contrary of what we were looking for, the extra power is higher
in the weighting scheme, which is logical, since we are now giving more importance to the
far pairs, which have a higher bias. In Fig.10.64 we have plotted the anisotropic correlation
function ξ(π, σ) for both cases, showing slight differences.

We have also looked at the angular selection function, the mask. First, we construct a dif-
ferent mask than the original by using a Healpix map, with nside=64 (with pixels of area�0.8
sq deg). In Fig.10.65 we plot the distribution function for the number of galaxies per pixel.
The pixel is large enough to distinguish between real empty pixels and artificial ones. We only
include pixels that have more than n galaxies (where n=2,6,10). As we can see in the dis-
tribution plot, if we include more than 2 galaxies, we are probably including artificially void
zones, which will create extra power and pencil beams at the direction line-of-sight, while
when we include only the pixels with more than 10 galaxies, we are probably excluding some
real voids. In this second case, the density is higher than the real one, so the density contrast
is lower. We can see these effects in Fig.10.66 for the correlation function in redshift space.
We see that the correlation is lower when we increase the minimum number of galaxies (from
red to blue), but we can always see the baryonic peak and the three lines have the same shape
approximately. Our results are similar to the case n > 6, which does not include artificial
voids and does not eliminate real voids. In Fig.10.67 we see the correlation in π− σ, which is
lower when we increase the minimum number of galaxies, and we observe clearly the pencil
beams for the case n=2 through the direction π, when we include artificially voids.
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Figure 10.62: Estimation of the redshift-space correlation function for LRG. In black with JK errors
the result by Eisenstein et al. (2005b), and over-plotted in red our result

The spectroscopic survey of SDSS is observed using circular plates, which contain about
600 fibers each to take spectra. Targets are selected from the photometric survey, although
the spectroscopic survey is not exactly the same as the photometric one. There are some
plates that have not been observed properly due to known problems, which are explained in
the web (http://www.sdss.org). We have extracted from our previously calculated mask all
the galaxies that are not laying inside “good” plates (maskplate1). In Fig.10.68 we can see the
plates (black circles) and the galaxies (red). Moreover, we can also eliminate all the galaxies
that lay inside a bad plate to ensure that we are taking only the really good ones (maskplate2).
This second mask reduces the number of galaxies significantly, and the correlation is then a lot
noisier, but we show here the results. In Fig.10.69 we have plotted the redshift-space averaged
correlation function for the new mask based on spectroscopic plates. Results are very similar
to our previous result, in black. Moreover, we over-plot the result for the north stripe of SDSS,
which contains the most significant part of the survey, in blue. The anisotropic redshift-space
correlation function is really similar in all these cases, so that we do not find it useful to plot it.

We have also tried to extract all the plates that have a large number of galaxies, which
have big clusters, since it is known that big clusters can bias the correlation function. The
result is not significantly modified.

In volume limited surveys, we can estimate the correlation function with a pixelization
scheme. As explained in the first part of the thesis, the correlation function can be estimated
as:

ξ(s) =
∑
ij

δG(si)δG(sj)/Npairs(s) (10.11)
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Figure 10.63: Our previous estimation of the redshift-space correlation function for LRG (solid)
compared to estimation using a weighting as explained in the text (dotted)

Figure 10.64: Our previous estimation of the redshift-space correlation function ξ(π, σ) for LRG (left
panel) compared to estimation using a weighting as explained in the text (right panel)

where δG = NG/ < NG > −1 and the sum extends to all pairs i,j separated by a dis-
tance s ± Δs. We have taken a volume limited part of the selected galaxies, with redshift
z=[0.15,0.38] and absolute magnitude Mr=[-22.5,-21.5] and have calculated the correlation us-
ing this method. We have also calculated a similar selection by using the traditional method
with a random catalog. Results are plotted in Fig.10.70, dotted for the pixel method and solid
for the randoms. This is a good test to validate our results, since both methods are quite
different. As we can seen in the figure, the two estimations are very similar. The slight shift
of amplitude at small scales is due to the pixel smoothing, 10 Mpc/h on the side for this case.
There is a very good match for smaller pixel size. Also note how these estimations, based on
a volume limited sample with about half of the LRG galaxies, agree quite well with previous
results (ie in Fig.10.69) which includes all galaxies at a price of a more complicated selection
function.
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Figure 10.65: Distribution function of number of galaxies per pixel (nside=64 using the package
Healpix)

Table 10.4: Slices in the plane Mr − z

Sample M-range Mean M mean z z-range

S22.50 -22.50 -23.00 -22.75 0.43 0.35-0.50
S22.25 -22.25 -22.75 -22.50 0.40 0.33-0.48
S22.00 -22.00 -22.50 -22.25 0.38 0.31-0.46
S21.75h -21.75 -22.25 -22.00 0.35 0.27-0.42
S21.75 -21.75 -22.25 -22.00 0.20 0.12-0.27
S21.50h -21.50 -22.00 -21.75 0.32 0.25-0.40
S21.50 -21.50 -22.00 -21.75 0.18 0.10-0.25
S21.25 -21.25 -21.75 -21.50 0.18 0.10-0.25

Finally we have also divided the catalog in many different volume limited slices as indi-
cated in table 10.11 plotted in Fig.10.71. The most and less luminous slices (in the bottom
right and top left) contain fewer galaxies and do not trace properly the baryonic peak, but
we see that the red and pink slices, at intermediate redshifts and magnitudes, are the origin
of the extra-power that we see at large scales (Fig.10.72 with the same colors as Fig.10.71).
We have not plotted large scales for the other slices because they are quite noisy. However,
at intermediate scales, we can see clearly the bias due to different intrinsic luminosity, more
biased when more luminous, although bias seems to be independent on scale, in the scales
used for our analysis.

Finally, we have calculated the correlation function limiting the angle between galaxies to
see if wide angle effects disappear. In Fig.10.73, we see the anisotropic ξ(π, σ) without limits
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Figure 10.66: We now define our catalog by including all the pixels that have more than n galaxies
in the Fig.10.65 (n>2 red, n>6 green, n>10 blue) and plot the redshift-space correlation function

in the angle (top panel), accepting galaxies with θ < 15deg (middle panel) and θ < 10deg
(bottom panel). As we increase the restriction, we see how the σ direction recovers power,
which explains the lack of power we see at σ direction when angles are too big to apply the
distant observer approximation. The angle between galaxies explain part of the distortions
due to wide angle effects, specially the ones that are concentrated at small π and large σ,
which affect the first slice considered, from z=0.15-0.3. The angle γz, between the direction
LOS (at θ/2) and the vector which goes from galaxy 1 to galaxy 2 (following the notation used
in Matsubara 2000a), is also important and can also imprint some modifications at larger π
and large σ.

We conclude that the measurements on the BAO scale are quite robust and the extra
power at the largest scales is probably the result of sampling fluctuations.
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Figure 10.67: Redshift-space correlation function ξ(π, σ) for n>2 (top panel), n>6 (middle panel),
n>10 (bottom panel), as in Fig.10.65
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Figure 10.68: SDSS DR6 survey with our selection of LRG galaxies as red points and the spectroscopic
“good” plates as black circles

Figure 10.69: Redshift-space correlation function for our mask (black), maskplate1 as indicated in
the text (red), maskplate2 (dotted red) and north stripe (blue)
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Figure 10.70: Redshift-space correlation function for a volume limited slice selection of LRG galaxies
with z=[0.15,0.38] and Mr=[-22.5,-21.5]. Solid line shows the result when using a random catalog.
Dotted line shows a new method based on pixelization which validated the previous results

Figure 10.71: We have divided the catalog in different approximately volume limited slices as indicated
in table 10.11. Here we over-plot the slices in the plane Mr − z
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Figure 10.72: Redshift-space correlation function for the different slices plotted in Fig.10.71
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Figure 10.73: Redshift-space correlation function ξ(π, σ) including all the galaxy pairs (top panel),
limiting the angle between galaxies to θ < 15deg (middle panel) and θ < 10deg (bottom panel)



Chapter 11

Conclusions for Part II

a) We have shown with realistic simulations that the normalized quadrupole Q(s) provides
an estimation for the distortion parameter β, and the effective dispersion of pairwise
velocities σv, at large real scales (> 1 Mpc/h) and that this measurement is fairly
independent of other parameters, such as matter density, amplitude or biasing.

b) We show that one can only recuperate the exact real space correlation function for
r < 30Mpc/h through the integration of the redshift distortions along the line-of-sight
direction, with actual data. At scales larger than about 30 Mpc/h the recovered cor-
relation is systematically biased. The amplitude of the bias increases with scale and is
close to a factor of 2 on BAO scales.

c) We have found an analytical approximation for the error at ξ(π, σ) (see §9.4.1), ideal for
large perpendicular σ. This approximation have been tested and calibrated with a set
of very large numerical simulations. The JK error is shown to work well only for small
σ < 20Mpc/h. For larger σ, JK overestimates the true error.

d) We have proved with realistic simulated mocks (with the selection function of LRG, an
area 1/8 of the sky and 60 JK zones) that JK works well at all the scales for: Q(s),
monopole ξ0(s), projected correlation function Ξ(σ) and real space correlation function
ξ(r) (see §8). We also test in detailed in §9.7 the range of validity of the tools and
analysis that we will apply to real galaxy samples.

e) Peculiar velocities at large scales are traced by the interaction halo-halo. If we look at
the peculiar velocities in halos, we have approximately the same peculiar velocities. For
small scales, the dispersion of pairwise velocities σv changes with scale (see §9.6).

f) In §10 we study the new SDSS DR6 LRG galaxy sample to find similar conclusions than
in previous results with smaller samples.

g) In §10.5, we use the measured quadrupole Q(s) to estimate the redshift distortion pa-
rameter β.

h) In §10.6 we estimate Ωm-Amp for large scales (linear regime) in ξ(π, σ), where Amp=b(z)σ8,
as tested with simulations.

i) We have an estimation of σ8 due to redshift distortions, that allows us to break the
degeneracy between bias and σ8 in the real-space correlation function. We find σ8 =
0.8 − 0.9. We also measure the bias as a function of redshift.
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j) We have also presented new constraints on the growth index of perturbations γ (which
indicates modified gravity) through the redshift distortions.

k) We obtain a power law form for the non-linear bias at small scales, which is in concor-
dance with previous results.

l) In §10.7.1 we recover the pairwise velocity dispersion σv as a function of scale at small
scales through the distorted monopole. This method is shown to work in realistic sim-
ulations.

m) We show in §10.7.2 that a simple Kaiser model convolved with exponential distribution
of pairwise velocities, can explain the complicate shape of ξ(π, σ) at small scales, once
we add the scale dependent bias and the scale dependent σv (constant along the line-
of-sight).

n) When comparing redshift slices, we see that all them have similar distortion parameters
β, consistent values of Ωm and similar D(z)b(z) as in the stable clustering.

o) We cross-correlate LRG with CMB to study the ISW effect again with spectroscopic
samples. We find a high signal that can be explained by a combination of a high σ8 and
maybe a high γ, although 1− 2σ errors are compatible with the standard model.

p) The baryon acoustic peak helps to constrain the dark energy equation of state param-
eter w, which is more difficult to obtain from redshift distortions or ISW. We use the
position of the BAO in the direction LOS, where it is enhanced by magnification bias,
to obtain constraints for H(z). The values are compatible with WMAP5 results, but we
find better errors for H(z), which show a tendency to higher value for w which shows
some evidence for an increase with cosmic time. We have shown that the anisotropy of
the peak in redshift distortions provides a good opportunity to obtain tight constraints
on Ωm and w.


