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Abstract

Accessing data from multiple heterogeneous databases entails dealing with differ-
ent data models, different schemas and different query languages and interfaces. This thesis
can be divided in two main parts, both related to different aspects of the design of modern
data integration systems. The first part is related to the problem of dealing with hetero-
geneous data models and schemas. It is also divided in two different sub-parts. The first
one is focused in the semantic integration between XML and RDF (the Resource Descrip-
tion Framework). We suggest a strategy based on the mapping of the XML model to RDF
triples. Translating XML documents to RDF permits taking profit from the powerful tools
of Description Logics allowing XML documents interoperate at the semantic level. This
mapping has generated some interesting results, like a schema-aware and ontology-aware
XPath processor that can be used for schema semantic integration or even for implicit query
transcoding among different data models. The approach have been tested in the Digital
Rights Management (DRM) domain, where some organizations are involved in standardiza-
tion or adoption of rights expression languages (REL).

In the second sub-part we suggest a vector space model for semantic similarity
measurement and OWL ontologies alignment. A rigorous, efficient and scalable similarity
measure is a pre-requisite of any ontology matching system. The presented model is based
on a matrix representation of nodes from an RDF labelled directed graph. A concept is
described with respect to how it relates to other concepts using n-dimensional vectors, being
n the number of selected common predicates. We have successfully tested the model with
the public testcases of the Ontology Alignment Evaluation Initiative 2005.

The second part of the work is related to the problem of dealing with heterogeneous
query interfaces. We suggest a strategy that allows redistributing an expressive user query
(expressed in a XML-based data query language) over a set of autonomous and heterogeneous
databases accessed through web forms. The idea, that has recently been renamed by Thomas
Kabisch [81] as "Query Tunneling", consists on the reprocessing of the initial user query
over the results returned by the different sources, that must be a superset of the results
that satisfy the initial query. We describe in this document the strategy and its limitations,
and an implementation in the form of two Java APIs, the Java Simple API for Metasearch
(JSAM), that has been used in the development of a spanish news metasearch engine, and
the Java Simple API for Web Information Integration (SAWII), that offers high level tools
to the development of articulated wrappers for complex web form-chains and result pages.
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Chapter 1

Introduction

This introductory chapter serves to three purposes. In one hand to define the scope
of the work that is addressed by this document. In the other hand to facilitate the reading
of the document by giving and overview of its structure. Finally, but the most important,
to provide the necessary elements to enclose the work in the framework of a PhD thesis.

1.1 About this thesis

This document describes research work being done under the framework of the Dis-
tributed Multimedia Applications Group (DMAG), and also in the context of the Doctorate
in Computer Science and Digital Communication of the Department of Technology of the
Universitat Pompeu Fabra. The work focuses on the different aspects related to the design
of modern data integration systems in the context of the World Wide Web, combining an
exploratory stage with others focused on the design of new strategies and models and the
development of specific tools. The main scope of the work is the data integration problem,
within the databases research discipline, but that also falls between other well-known disci-
plines. On one hand Information Retrieval, since in most cases the purpose of storing and
accessing data and metadata is not the metadata themselves but the support to information
search and retrieval processes. On the other hand the Web discipline, and specially the
Semantic Web Initiative, a promising and relatively new research line where metadata has
a central role. Among all these sources I've tried to choose the elements that define the
context of this work, and the weaknesses and opportunities that justify the work itself.

1.2 Aims and Hypothesis

The general goal of this research project is to study solutions to the new problems
arisen with respect to the querying of distributed and heterogeneous sources of data and
metadata. This goal can be seen as a reformulation of some topics faced by the data inte-
gration community, but now arisen again as databases become open and accessible through
the Web, storing data and metadata in old and new formats that can be the basis of better
ways of searching and retrieving digital contents. Within this ambitious and broad aim, the
work has focused in two related but independent aspects, semantic integration and query
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interoperability. Within the semantic integration problem, we face the XML-RDF integra-
tion from a novel approach, and also the ontology alignment problem. Within the query
interoperability problem, we face the querying of restricted and heterogeneous web-based
database interfaces with XML technologies.

A more tangible sub-goal of the work is the development of tools (in the form of
APIs) to test the models and strategies suggested. For the first part, related to semantic
integration, the implementation of a Semantic XPath processor and its usage in the Digital
Rights Management (DRM) domain will demonstrate the interest of our novel way to map
XML and RDF. Related to ontology alignment, the implementation of our novel structure
similarity measure and its results against the Ontology Evaluation Initiative 2005 testsuite
will demonstrate the relevance of our approach. For the second part, related to query
interoperability, two Java APIs - the Java Simple API for Metasearch (JSAM) and the
Java Simple APT for Web Information Integration (SAWII) - integrated inside an advanced
spanish news metasearch engine will serve to prove the advantage of the Query Tunneling
technique.

All the work is sustained over the presumption that the traditional data integration
strategies still don’t take profit from the potential of the new uses of metadata on the Web
and some of its new directly or indirectly related technologies, like XML [151], XML Query
[154|, RDF [124] or OWL [112]|. The success of standard syntaxes for metadata (XML and
RDF), the dissemination of metadata related to multimedia contents (e.g. MPEG-7 [101]) or
to the more broad framework of the Semantic Web, open new opportunities and challenges
for distributed data retrieval and data integration.

For a more detailed description of the goals of the thesis please refer to the Problem
Statement chapter.

1.3 Methodology

In order to avoid replication of work, and also to achieve the necessary background,
the exploratory and analytical stage of the thesis has implied the identification and reading
of relevant materials from a lot of different sources. Because the work falls between different
research disciplines, that sometimes have different approaches to the same problems, I have
tried to identify the most authoritative sources of each field.

1.3.1 Related to the first contribution part 'Heterogeneous Data Models
and Schemas: Semantic Integration’

I acquired background of issues related to semantic integration in the works of
A. Y. Halevy [54] et al. (the Piazza Infrastructure), I. Cruz et al. [65], B. Amann et
al. [5], M.C.A Klein, L.V.Lakshmanan and F.Sadri [87], P.F.Patel-Schneider and J.Simeon
[117]. However, the spark that inspired the contribution of the first sub-part (XML-RDF
integration) came from the reading of a relatively old work of Yoshikawa et al. [97] that
differentiated between approaches that map the structure of some XML schema to a set
of relational tables and works that map the XML model to a general relational schema
respectively. I've also found a previous work from Lehti and Fankhauser |91 that also
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pursues the target to achieve a semantic behaviour for XPath /XQuery. For the formalisation
of the XML /RDF Syntax with description logics I've borrowed abundant material from Ian
Horrocks and Ulrike Sattler, like [62], [60], [59], [63] and [61]. During the development of the
inference-based XPath processor I've used the Jaxen Universal Java XPath Engine |75] for
parsing XPath 2.0 expressions and the Jena API [76] and its OWL inference engine [77] for
processing the queries. Among the differnt RDF query languages (rdfDB [125], SquishQL
[139], RDQL [127], or the recent SPARQL [138]) I've chosen RDQL for its maturity and
because it’s supported by the Jena API. This stage has entailed also frequent visits to some
unfriendly W3C specifications like the XML Information Set [68], the XML Path Language
(XPath) 2.0 [69], XQuery 1.0 [154], XQuery 1.0 and XPath 2.0 Data Model [152], XQuery 1.0
and XPath 2.0 Formal Semantics [153], RDF /XML Syntax Specification [147], OWL Web
Ontology Language Overview |112] and XSL Transformations (XSLT') Version 2.0 [155].

For the second sub-part (a vector space model for sematic similarity calculation),
I’ve found a good survey on schema alignment from Erhard Rahm and Philip A. Bernstein
[122], and a more recent survey on ontology alignment from Natalya F. Noy [106]. I've also
read abundant material about semantic similarity, like the old works of Philip Resnik [129],
Dekang Lin [94] or J.J. Jiang and D.W. Conrath [79]; and also more recent ones like those
of Francisco Azuaje and Olivier Bodenreider [8] or M. Bisson [19] among others. Here the
key work where I've found inspiration has been the paper of Wei Hu et al. |64] from who
I’ve also received personal support and patient clarifications. The graph matching algorithm
that I have used comes from the work of Vincent D. Blondel et al. [20].

1.3.2 Related to the second contribution part ’Heterogeneous Query In-
terfaces: Query Tunneling’

For general concepts on the Information Retrieval area I’ve borrowed a lot of mate-
rial from the work of Ricardo Baeza |9] and some of the references he uses. For more specific
aspects on Web search, I've studied the works of Kobayashi and Takeda [85], Lawrence and
Giles [88], Brin and Page [23][113] and others. It has been difficult to find rigurous research
works about metasearch, because is a popular topic among independent and sometimes
volunteer-based communities, but I've found a good basis on the works of Dreilinger [33]
and Selberg and Etzioni [135], among others.

For the study about the Semantic Web I’ve read materials by the people who
are behind this initiative, like Tim Berners-Lee [11]|15][12][14][13], James Hendler [17|, Ora
Lassila [17] or Dan Brickley [22], and I've had to assimilate the specification of RDF and
other related technologies. I've also invested some time trying to understand and appreciate
the added value of the RDF model against others (e.g. relational or XML), and I have found
some good materials about this topics, like e.g. [25] or [13]. Searching for materials related to
the Semantic Web activity, I’ve found some promising works, like the RDFWeb initiative and
its FOAF ontology [39], the work of Guha and MacCool [120][49] or the Query by Example
by Reynolds [130]. To make the analysis about digital libraries and general metadata issues
I've spent some time studying the specifications of the Dublin Core Element Set [28], the
Z39.50 protocol [156], SRW [140] and the OAI-PMH protocol [109][110]. I've also found
some works discussing issues about digital libraries and the Open Archives Initiative, like
e.g. those by Lagoze and Sompel |86][137] or Baker [10|. These are just some of the materials
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reviewed, but serve to illustrate in some way the selection criteria.

For the development of the specialised metasearch application I've followed a tradi-
tional software engineering approach. The requirements stage has consisted in innumerable
meetings with my advisor, Jaime Delgado, to try to define clearly the different aspects of
the functionality. The analysis stage has involved the hard task of translating the natural
language requirements to some formal model, I've used UML to do this but also some home-
made diagrams. The design stage has consisted in weaving the objects architecture of the
application, with an special emphasis in the multi-threading sub-parts. It has also involved
the specification of test XML-based query language and the study of the critical parts of
the system, as the mapping of the queries or the metadata extraction. I've studied to do
this some existing XML-based Query Languages, like XCQL [150] or XML Query [154].
The implementation methodology has involved the study and selection of the tools (Java,
Tomcat, XML, XML Query, Tidy) and the analysis of the performance, where I've invested
an important time, specially in defining a good policy to discard targets that are suffering of
not ordinary delays. I'm going to talk more about the implementation methodology later.

1.4 Document outline

This document has four main parts, ‘Background Information’, ’State of the Art
and Problem Statement’, ’Heterogeneous Data Models and Schemas: Semantic Integration’
and "Heterogeneous Query Interfaces: Query Tunneling’, and also other smaller sections like
this introduction or the final comments.

1.4.1 Background Information

The ’Background Information’ part tries to compile in a coherent way some results
of the exploratory stage that can help readers not familiar with databases, information
retrieval or the semantic web. This implies to define and describe the key concepts of these
areas and related to the work, and also the difficult task to weave all the relationships
between them. Readers familiar with these technologies will probably skip this part.

1.4.2 State of the Art and Problem Statement

The ’State of the Art and Problem Statement’ part is a survey of the progresses
being done in the data integration field in general and the semantic integration research trend
in particular in the last years. It begins enumerating some classical works and concepts of
the area and ends analysing its current weaknesses and opportunities.

1.4.3 Heterogeneous Data Models and Schemas: Semantic Integration

After the State of the Art come two related but independent parts containing
the main contributions of this work. Because of their particularities each one of them
provides a complete internal structure, including an introduction, a related work section
and conclusions.
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The first main contribution, 'Heterogeneous Data Models and Schemas: Semantic
Integration’ part includes two works related to the use of Semantic Web technologies to help
solving the problem to work in domains where multiple schemas or ontologies exist. The
first sub-part, "XML Semantic Integration: A Model Mapping Approach’ , describes a model
to face the problem of dealing with heterogeneous data models and schemas. It is focused
in the semantic integration between XML and RDF (the Resource Description Framework).
I suggest a strategy based on the mapping of the XML model to RDF triples. Translat-
ing XML documents to RDF permits taking profit from the powerful tools of Description
Logics allowing XML documents interoperate at the semantic level. This mapping has gen-
erated some interesting results, like a schema-aware and ontology-aware XPath processor
that can be used for schema semantic integration or even for implicit query transcoding
among different data models.

The second sub-part, ’A Vector Space Model for Semantic Similarity Calculation
and OWL Ontology Alignment’, describes a novel semantic similarity measure based on a
matrix representation of nodes from an RDF labelled directed graph. A concept is described
with respect to how it relates to other concepts using n-dimensional vectors, being n the
number of selected common predicates. It shows how adapting the graph matching algorithm
in [20] to apply this idea to the alignment of two ontologies. It also includes the results of
the testcases of the Ontology Alignment Evaluation Initiative 2005.

1.4.4 Heterogeneous Query Interfaces: Query Tunneling

The second main contribution, "Heterogeneous Query Interfaces: Query Tunneling’
describes a strategy to face the problem of dealing with heterogeneous query interfaces. 1
suggest a strategy that allows redistributing an expressive user query over a set of databases
with heterogeneous Web-based query interfaces. The idea, that has recently been renamed
by Thomas Kabisch [81] as "Query Tunneling", consists on the reprocessing of the initial
user query over the results returned by the different sources, that must be a superset of the
results that satisfy the initial query. I describe in this part the strategy and its limitations,
and an implementation in the form of two Java APIs, the Java Simple API for Metasearch
(JSAM), that has been used in the development of a spanish news metasearch engine, and
the Java Simple API for Web Information Integration (SAWII), that offers high level tools
to the development of articulated wrappers for complex web form-chains and result pages.

1.4.5 Relationship between thesis parts and chapters

The first part, "Heterogeneous Data Models and Schemas: Semantic Integration’,
refers to the problem of schema/ontology interoperability. This problem can be divided
in two sub-problems, 1) How can we use a global (mediator) data schema/ontology to
interoperate a set of heterogeneous schemas/ontologies? and 2) How can we automatically
generate this global schema/ontology?

Chapter 9 faces the first of these problems for the particular case of XML, suggest-
ing a strategy to design a schema-aware and ontology-aware XPath processor, which process
queries taking in consideration the relationships defined in one or more XML schemas or
OWL/RDFS ontologies. This allows to write the queries in terms of one of the schemas/ontologies
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(acting as a global schema), whose relationships with the specific schemas have been pre-
viously specified. How these relationships (mappings) are obtained is not the focus of this
chapter, but of the next one.

Chapter 10 is independent from the previous one, but is related to the second
problem (how the mappings between ontologies/schemas can be automatically generated).
This is the reason why the two chapters have been placed in the same part.

The second part, 'Heterogeneous Query Interfaces: Query Tunneling’, describes a
practical approach to the design of a web-based data integration system using XML tech-
nologies. It includes some chapters covering practical solutions, based on XML and XML
Query, for real world scenarios. However, despite of it is strongly related to the previous
chapters, the focus of this work is not the generation of schema mappings or the interac-
tion with ontologies, but the problem of distributing the queries over restricted autonomous
interfaces. This is the reason why the two contributions have been placed in separate parts.



Chapter 2

Background Information

Terms as ’'information’, ’data’, ‘'metadata’, 'information retrieval’, ’data retrieval’,
‘data integration’, ’Semantic Web’ and others, are specially susceptible of being interpreted
in very different ways. So, to avoid misunderstandings, in this section I'm going to clarify,
or at least narrow, the semantics of some important concepts related to this work.

2.1 Information vs. Data

Despite of in some works the terms ’information’ and ’data’ are used indistinctly,
here I'm going to specially strict in separating the two concepts. According to The Free On-
line Dictionary of Computing [111], data are "numbers, characters, images, or other method
of recording, in a form which can be assessed by a human or (especially) input into a com-
puter, stored and processed there, or transmitted on some digital channel. Computers nearly
always represent data in binary. Data on its own has no meaning, only when interpreted by
some kind of data processing system does it take on meaning and become information.”.

So, it is clear that is easier to define data than information, which requires a
higher effort of abstraction. Now we can take profit that we’ve already separated these two
concepts to locate another one, knowledge. According to [21] "We had two decades which
focused solely on data processing, followed by two decades focusing on information technology,
and now that has shifted to knowledge. There’s a clear difference between data, information,
and knowledge. Information is about taking data and putting it into a meaningful pattern.
Knowledge is the ability to use that information.”.

2.2 Metadata

In short, metadata is "data about data”. According to |9] metadata is “informa-
tion on the organization of the data, the various data domains, and the relationship between
them”. Tim Berners-Lee gives a more Web-centric definition, "Metadata is machine under-
standable information about web resources or other things”. We can difference two kinds
of metadata [100], Descriptive Metadata and Semantic Metadata. Descriptive Metadata is
external to the meaning of the data it describes, and pertains more to how it was created.
For example, the Dublin Core Metadata Element Set |28| proposes 15 fields to describe a
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document. Semantic Metadata features the subject matter that can be found within the
data it is describing. An example of semantic metadata could be some MPEG-7 [101] de-
scriptors, that allow to describe for example that a video includes a football match in a
rainy day. There are a lot of different uses of metadata, like cataloguing, content rating,
intellectual property rights, etc. but nowadays some point to more ambitious uses (overall
of semantic metadata) like for example the Semantic Web initiative.

2.3 Information Retrieval vs. Data Retrieval

According to [9], information retrieval “deals with the representation, storage, or-
ganization of, and access to information items”. The aim of an IR system is to facilitate
the user access to the information in which he is interested. However, the user information
need cannot be easily formalized, an it must be translated into a query processable by the
retrieval system. Given the user query, the IR system aims to retrieve information which
might be relevant to the user.

On the other hand, a data retrieval system aims to determine which objects of
a collection satisfy clearly defined conditions as those in a relational algebra expression.
For a data retrieval system, like a database, a single erroneous object among a thousands
retrieved means a total failure. So, data retrieval deals with well defined data models,
expressive query languages and performance issues, while information retrieval faces the
problem of interpreting the contents of the information items to decide their relevance. The
two concepts are not isolated, data retrieval is ever an important part of an IR system, and
can be seen as a lower-level layer. Because this research work focuses in metadata, instead
of on other traditional IR issues, it is in some way more related to data retrieval rather than
to information retrieval. However, because the context keeps being IR systems for the Web,
the references to IR aspects will be usual.

2.4 Traditional Information Retrieval vs. Multimedia Infor-
mation Retrieval

Traditional information retrieval only deals with unstructured textual data. Tra-
ditional IR is an old discipline, with published books from even the last 70s like e.g. [131],
and already classic conferences like ACM SIGIR (International Conference on Information
Retrieval) or TREC (Text REtrieval Conference). Its research is based in solid and well char-
acterized models, like the boolean model, the vector model or the probabilistic IR model.

The irruption of the Web and Web search engines has put IR at the “center of the
stage” since the 90s. However the new context introduces new challenges for IR like the
retrieval of heterogeneous multimedia contents. Multimedia data is rapidly growing in the
Internet, and also metadata related to multimedia information objects, that of course include
textual documents. Multimedia IR systems must support different kinds of media with very
heterogeneous characteristics such as text, still and moving images, graphs and sound. This
poses several interesting challenges, due to the heterogeneity of data and the fuzziness of
information. Multimedia IR systems have an interesting feature for our concerns, they must



Chapter 2: Background Information 9

handle metadata, because it is crucial for data retrieval, whereas traditional IR systems do
not have such requirement.

2.5 Data Integration

The Data integration (also named Information Integration) research discipline
study mechanisms for a seamless access to autonomous and heterogeneous information
sources. These sources can vary from legacy databases to Semantic Web or P2P appli-
cations. Traditionally the target of a data integration system is to provide a mediation
architecture in which a user poses a query to a mediator that retrieves data from underlying
sources to answer the query. The constraints of the sources access, and their potentially
different data models and schemas, are the challenges of a data integration system.

Data integration is the main topic of this thesis, and its evolution and current
situation will be described in the State of the Art and Problem Statement Chapter.

2.6 Distributed Information Retrieval vs. Data Integration

Search engines for the Web or other information retrieval systems are usually based,
according to [24], in a single database model of text retrieval, in which documents are copied
to a centralized database, where they are indexed and made searchable (this model can
be seen as the information retrieval version of data warehousing for data retrieval). How-
ever, some information is not accessible under this model (it can be queried but cannot be
copied to the centralized database) for different reasons (size, volalility, interface restric-
tions). The alternative is a multi-database model, in which the central site (or any peer in a
distributed peer-to-peer context), instead of storing copies of the documents, translates the
user information need into queries to the different sources. This kind of model is studied
by the Distributed Information Retrieval discipline, and has been also informally known as
metasearch.

A distributed information retrieval system covers traditionally the following stages:

Source description: The contents of each text database must be described

Source selection: Given the descriptors and the user information need, which sources
must be queried.

Source querying: Map the information need to the selected sources and query them.

Results merging: Merge the ranked lists returned by the different sources.

In some aspects data integration and distributed information retrieval are equiv-
alent, and in some contexts the words are mixed. However, while distributed information
retrieval targets to satisfy a user information need over unstructured data or semi-structured
data sources, a data integration system aims to satisfy a query over also autonomous and
heterogeneous, but structured data sources.
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2.7 Metasearch

Metasearch is the informal name that refers to Web-based distributed information
retrieval systems (see [33| or [135] for a more detailed definition). Because metasearch
systems are supposed to solve some of the problems described in the previous section, and
because they never have really gained the favour of Web users, some interesting conclusions
can be extracted from their evolution.

In theory, the strength of a metasearch engine is its recall value, because it queries
a set of conventional crawler-based search engines that cover certain subsets of the public
indexable Web. However, some studies have demonstrated that these subsets, far from
being disjoints, are highly overlapped [88]. Furthermore, recall is not precisely the main
problem of conventional Web search systems, but precision. Another important drawback
of metasearch systems is that their work often does neither rely over an agreement with
their underlying sources nor over specific interchange protocols. This forces them to face
the problem to manage query forms and results pages designed for human consumption and
written in HTML. This is usually solved with hand-coded screen-scraping rules or similar
things that reduce speed and difficult maintainability. Some metasearch defenders claim
that these systems have an important advantage, the ability to access the hidden web,
because they capture the results of the target sources on-the-fly, that allows them to harvest
dynamically generated content. However, this style of doing things, without considering
legal issues!, is far from being elegant, remember the sentence of Tim Berners-Lee [14]:

"And so you have one program which is turning it from data into documents, and another
program which is taking the document and trying to figure out where in that mass of glowing
flashing things is the price of the book. It picks it out from the third row of the second column
of the third table in the page. And then when something changes suddenly you get the ISBN
number instead of the price of a book and you have a problem. This process is called ’screen
scraping’, and is clearly ridiculous.”

2.8 Datalog

Chapters 3 and 4 make use of the Datalog language [43] in some examples related
to initial data integration approaches. Datalog is an old (1978) database query language
that syntactically is a subset of Prolog. Its logic basis made it popular in academic database
research, but despite of its advantages over standard query languages like SQL it never
succeeded in becoming part of commercial systems.

A Datalog query program consists of a finite set of Horn clauses C1,...,Cy (the
rules of the Datalog program). Horn clauses express a subset of statements of first-order
logic with at most one positive literal:

L< Ly, Ly

'Some conventional search engines explicitly forbid metasearch. In Google’s terms of service page we can
find "You may not send automated queries of any sort to Google’s system without express permission in
advance from Google".
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Equivalent to:
LYV -Ly,..,~L,

In Datalog each literal corresponds to an atomic formula p(A;, Ag, ..., A,) where p is the
relation name and A; are variables or constants (names that start with an upper case letter
are variables). Let’s see a relation table written in Datalog:

employees(name, dept, id)

Let’s see an example query program with one Datalog rule:
financeEmployees(X, Y) :- users(X, "finance", Y)

There are two types of relations: (1) base relations (physically stored in the
database) and (2) derived relations (temporary relations that hold intermediate results).
The general form of a rule is as follows:

p(xla L2y eeey xn) : —Q1($11,2U12, -'-axlm)a ERRS) qk?(xkla '-'7$kp)7 €.

Where ¢; are base or derived relation names, e is an arithmetic predicate (any
number) and each z; appearing in p appears in at least one of the ¢;’s. The Datalog rule
can be interpreted as:

p(...) is true if ¢;(...) and go(...) and ... gg(...) and e is true.

In Datalog an answer to an atomic query is a set of constants that satisfy the query.
Answers are computed by using top-down (or backward-chaining) or top-down algorithms.

2.9 The Extensible Markup Language (XML)

According to [9] Markup is defined as “eztra teztual syntaz that can be used to
describe formatting, actions, structure information, text semantics, attributes, etc.”. One
example of markup can be the formatting commands of the popular text formatting software
TeX.

In the late seventies was defined the Standard Generalized Markup Language
(SGML), a metalanguage for tagging text developed by Charles F. Goldfarb and his group,
and based on a previous work done at IBM. In 1996 the SGML Editorial Review Board
became the XML Working Group under the auspices of the World Wide Web Consortium
(W3C), chaired by Jon Bosak of Sun Microsystems and with the intermediation of Dan
Connolly. This group developed The Extensible Markup Language [151] (XML), a subset
of SGML which goal is to enable generic SGML “to be served, received, and processed on the
Web in the way that is now possible with HTML(also based on SGML). XML has been de-
signed for ease of implementation and for interoperability with both SGML and HTML”[151].

XML, the same as SGML, is not exactly a markup language, it is a metalanguage
that can be used to define specific markup languages (like XHTML, MathML, SVG, etc.).
That means that XML allows users to define new tags and structures for their own languages.
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For some reasons, some obvious and other that will remain a mystery, XML have reached
an amazing success worldwide. In an interconnected and global society, the interchange of
data over a standard syntax has become a key issue, and here is where XML fits perfectly.

2.10 The Semantic Web

The Semantic Web is a promising initiative lead by the W3C which aim is to
provide a data model for the Web, allowing information to be understood and processed
also by machines. The oficial definition of the W3C [142] says "The Semantic Web is the
representation of data on the World Wide Web. [....] It is based on the Resource Description
Framework (RDF), which integrates a variety of applications using XML for syntaz and
URIs for naming.”. So, it is clear that this initiative strongly relies on RDF, but what is
the meaning of “the representation of data” Often in this document we have referred to de
difficulties related to search and retrieve information on the Web. One of the main reasons
is the fact that the most part of Web data, despite of being processed by machines, can
be only understand by humans. This include natural language text, still/moving images,
audio, etc.

Before we have discussed the difference between information retrieval and data
retrieval, saying that while data retrieval is appropriate for databases it is not appropriate
(or not enough) for the Web. The reason is that the information on the Web, contrary to
databases, does not have an underlying data model. So, “the representation of data” means
two things, the development of a data model for the Web, and the dissemination of machine-
understandable metadata (under the framework of the data model) linked in some way to
the Web information. Another classic definition is that by Berners-Lee et al. [17| “The
Semantic Web is an extension of the current web in which information is given well-defined
meaning, better enabling computers and people to work in cooperation.”.

2.11 Querying the Semantic Web

The Semantic Web initiative has opened a broad spectrum of opportunities for
improving the search and retrieve of information on the Internet. Of course this is not
casual, but one of the main targets of this new scenario as pointed in [15] or [12|. However,
the consolidation of a standardised way to interchange semantic information is just another
step in the race for interoperability. Other battles are being fight to rationalise the way this
information is processed and search and retrieval are maybe the most important elements
of the information feed chain. The challenge is to find efficient and rational ways to exploit
this new information that begins to be disseminated over the net, and that, despite of it is
formalised in a standard way (RDF [22]), it can be stored in different ways (embedded on
HTML pages, in a database, in specific knowledge repositories, etc.) and it remains highly
heterogeneous (an innumerable an unrestricted number of ontologies, potentially overlapped,
can co-live in the Semantic Web).

This two key issues, how to locate and access the information, and how to manage
heterogeneity, are of relevance for our analysis and also very related with what we have
said in the previous sections. Some research works reflect special approaches to this, like the
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Edutella project |[102] that constitutes a distributed search network for educational resources
and is based on P2P networking (its JXTA implementation [80]) and RDF. This interesting
work uses the query exchange language family RDF-QEL-i (based on Datalog semantics
and subsets) as standardised query exchange language format. Because Edutella peers are
highly heterogeneous and have different kinds of local storage for RDF triples, as well as
some kind of local query language (e.g., SQL) to enable them to participate in the network,
wrappers are used to translate queries and results from the peer and vice versa.

Another work is Sesame [73], an extensible architecture implementing a persistent
RDF store and a query engine capable to process RQL queries [3] [42]. Of special interest for
us is TAP [49] a system that implements a general query interface called GetData, Semantic
Negotiation and Web of Trust enabled registries. It introduces the concept of Semantic
Search and describes an implemented system which uses the data from the Semantic Web
to improve traditional search results. The GetData interface is a simple query interface
to network accessible data presented as directed labelled graphs, in contrast to expressive
query languages like SQL, RQL or DQL. This work defends deployability against query
expressiveness.

Related to this project, and also with the query language of Edutella, is RDF-QBE
[130], a mechanism for specifying RDF subgraphs, which they call ’Query by Example’, that
could allow a high performance standardised interface for retrieval of semantic information
from remote servers. From all this study cases we can observe the latent necessity of defining
a low-barrier mechanism that allow to harvest heterogeneous semantic information and how
it generates a trade-off between deployability and expressiveness. Some of them (e.g. TAP)
point the necessity to consider also other conventional or not-semantic search strategies, like
crawler-based engines, when thinking in future applications.

2.12 Semantic Integration

The semantic integration research area is a joint effort between the people from
databases and data integration, and the people from knowledge management and ontology
research. It can be seen as a reformulation of some old problems like matching database
schemas or answering queries using multiple sources. Ontologies can be the solution to some
of these old challenges but also the source of new problems, like ontology alignment. This
last topic tries to determine which concepts and properties represent similar notions between
two ontologies and is one of the main goals in this area. Related to ontology alignment arise
other questions, like how do we represent the mappings or what do we do with them. [106]
presents a recent survey on semantic integration.

Semantic integration is one of the main topics of this thesis, and it will be discussed
deeper in the State of the Art and Problem Statement Chapter.

2.13 Resource Description Framework (RDF)

According to [124] the Resource Description Framework (RDF) is “a foundation for
processing metadata; it provides interoperability between applications that exchange machine-
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understandable information on the Web”. RDF is the main building block of the Semantic
Web, a framework composed by some different but strongly related elements (a data model, a
syntax and a subclassing language among other things). First RDF is a syntax-independent
data model designed for representing named properties and property values. The basic
model consists of three object types. On one hand Resources, as all things being described,
like Web pages, images, videos or any other thing, even it is not digital (like a real-life book).
The only requirement is that they have a name, and this name conforms to the URI [16]
syntax. On the other hand we have Properties, as specific characteristics used to describe a
resource. The value of a property (the object) can be another resource (specified by a URI)
or it can be a literal (i.e. a simple string). Finally, a specific resource together with a named
property plus the object (the value of the property for that resource) is a Statement, the
third basic object type of the model.

RDF is being used in a variety of application areas, like in resource discovery, in
cataloguing (for describing the content and content relationships of some information object),
by intelligent software agents, in content rating, or in describing intellectual property rights
for example. The combination of RDF with digital signatures aims to allow what is known
as the "Web of Trust" [83]. The conceptual model of RDF is complemented with an XML
interchange syntax. The syntax is needed to ensure the required interoperability when
creating and exchanging metadata.

To complete the framework, RDF have a class system much like many object-
oriented modelling systems. A collection of RDF classes is called a schema. A schema
contains classes organised in a hierarchy, offering extensibility through subclass refinement.
RDF schemas allow reusability of metadata definitions. The schemas themselves may be
written in RDF, with the RDF Schema language [126]. RDF schemas are being used nowa-
days to serialise ontologies.

2.14 Ontology Web Language (OWL)

According to [112]| the Ontology Web Language (OWL) is a language “ intended to
be used when the information contained in documents needs to be processed by applications,
as opposed to situations where the content only needs to be presented to humans. OWL can
be used to explicitly represent the meaning of terms in vocabularies and the relationships
between those terms. This representation of terms and their interrelationships is called an
ontology "

OWL is a vocabulary for describing properties and classes of RDF resources, com-
plementing the RDFS capabilities in providing semantics for generalization-hierarchies of
such properties and classes. OWL enriches the RDFS vocabulary by adding, among others,
relations between classes (e.g. disjointness), cardinality (e.g. "exactly one"), equality, richer
typing of properties, characteristics of properties (e.g. symmetry), and enumerated classes.
The language has three increasingly expressive sublanguages designed for different uses:

e OWL Lite has the lowest formal complexity, and serves for simple classification hier-
archies. It has some restrictions like e.g. permitting only cardinality values of 0 or
1.
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e OWL DL tries to offer the maximum expressiveness while retaining computational
completeness (all conclusions are guaranteed to be computable) and decidability (all
computations will finish in finite time). OWL DL is so named due to its correspondence
with description logics.

e OWL Full does not give any computational guarantee but offers the maximum expres-
siveness and the syntactic freedom (e.g. a class can be treated simultaneously as a
collection of individuals and as an individual).

In this work I will focus always in OWL DL, even when I do not mention it
explicitly.

2.15 OWL and Description Logics

OWL has the influence of more than 10 years of Description Logic research. It is
supposed that this knowledge has served to choose the constructors and axioms supported
carefully, balancing expressiveness and efficiency. This balance was achieved by basing
OWL on the SH family of Description Logics [63]. Members of the SH family include
the SHZQ Description Logic [62] and the SHOQ Description Logic [61], that overcomes
some limitations of SHZQ by taking the logic SHQ and extending it with individuals and
concrete datatypes.

The OWL Lite and OWL DL species are syntactical variants of Description Logic
languages. OWL Lite can be seen as a variant of the SHZF (D) description logic language,
which is itself just SHOZN (D) without the oneOf constructor and with the atleast and
atmost constructors limited to 0 and 1 [60].

OWL DL is a variant of the SHOZN (D) language, which is itself an extension
of the SHOQ(D) (adding inverse roles and restricted to unqualified number restrictions)
[59]. OWL Full extends both OWL DL and RDF(S) and thus cannot be translated into
a Description Logic language. Entailment in OWL Full is undecidable in the general case,
because it allows arbitrary roles in number restrictions, which makes the logic undecidable
[62].
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Chapter 3

State of the Art in Data Integration

The integration of data from multiple heterogeneous sources is an old and well-
known research problem. It has been traditionally faced by the database and Al research
communities, but the promise of integrating data on the WWW or Peer-to-Peer systems
and its related technologies (XML, RDF, etc.) has attracted efforts from other disciplines.
Below I explain the progress of this topic and what challenges lie ahead.

3.1 Historical Progress

The integration of multiple information sources aims at giving users and applica-
tions the illusion of interacting with one single information system. There are two general
approaches to this problem, materialized integration and virtual integration.

Materialized integration is strongly related to materialized views in databases, and
consists on first storing all data from all sources locally and then querying them. Data
warehousing is a well-know example of materialized integration. It is suited for situations
when data changes infrequently and a fast evaluation of complex queries is required. However
it is not always possible or convenient to replicate and update all data from a set of sources.
There are situations when the size or volatility of data (or the limitations imposed by the
sources query interfaces) makes materialization impossible. This is the reason why virtual
integration has become of increasing interest in recent years as it has matured.

Virtual integration aims to offer the same results without the constraint of having
to store and update all data from all sources. In pure virtual integration the global schema
is strictly a logical entity. Queries issued over it are dynamically rewritten at runtime and
redirected to the underlying data sources. Resulting data is fetched from the sources through
wrappers and merged. Here we are just interested in virtual integration, or simply data
integration from now. There are several problems related to data integration, but the main
ones are: 1) The ability to present an integrated (mediated) schema for the user to query,
or the modelling problem, 2) The ability to reformulate the query to combine information
from the different sources according to their relationships with the mediated schema, or the
querying problem, and 3) The ability to efficiently execute the query over the various local
and remote data sources.

19
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Application

Query
. Global
Mediator Schema
QWW
Wrapper Wrapper
Data Local Data Local
Source Schema Source Schema

Figure 3.1: Architecture of a data integration system

3.1.1 Mediated Schema (the modeling problem)

We talk about a mediated schema when a data integration system employs a logical
schema in order for several autonomous sources to interoperate (see fig. 3.1). This kind of
schema is usually accompanied by the definition of semantic mappings (translations) between
the mediated schema and the schemas of the different sources. This correspondence will
determine how the queries posed to the system are answered.

The two classic approaches concerning mediated schemas and mappings mod-
elling are the global-as-view and the local-as-view. The global-as-view approach or GAV
[2](TSIMMIS)|[26][50], consists on a mediated schema (the global schema) which is defined
as a set of views over the data sources. This kind of mediation has the advantage that the
user query can be simply merged with the view definitions (unfolded) obtaining a full query.
The disadvantage of this approach is that the mediated schema is strongly coupled with the
underlying source schemas and their changes, making it a bad solution for the Web context,
where sources are autonomous and volatile.

The local-as-view approach or LAV [98][56][34] takes the inverse point-of-view and
describes sources as views over the mediated schema. It has the advantage that changes on
the underlying sources does not imply changes on the mediated schema. The disadvantage
of this approach is the difficult to map the user query, referred to the mediated schema, to
the different data sources. It’s worth mention also the hybrid combination of GAV and LAV
into the GLAV formalism [41].

3.1.2 Formalisation of the modelling problem

A formalisation of the modeling problem borrowed from 93] can be:
Definition 3.1.1. A data integration system Z is a triple <G, S, M> where:
e G is the global schema (structure and constraints),

e S is the source schema (structures and constraints), and



Chapter 3: State of the Art in Data Integration 21

Global Schema Local Schema
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Figure 3.2: Global-as-view (GAV) approach

e M is the mapping between G and S.

To specify the semantics of Z we have to start with a source database D (source
data coherent with §). We call global database for Z any database for G. A global database
B for 7 is said to be legal with respect to D if:

e 3 is legal with respect to G, i.e., B satisfies all the constraints of G;
e 3 satisfies the mapping M with respect to D

We can also specify the semantics of queries posed to a data integration system. If
q is a query of arity n and DB is a database, we denote with ¢”? the set of tuples (of arity
n) in DB that satisfy ¢. Given a source database D for Z, the answer ¢/*” to a query ¢ in
T with respect to D, is the set of tuples ¢ such that t € ¢” for every global database B that
is legal for 7 with respect to D. The set ¢/*” is called the set of certain answers to ¢ in T
with respect to D.

3.1.3 Formalisation of global-as-view (GAV) approach

When modeling with GAV, the mapping M associates to each element g in G a
query gg over S.

Definition 3.1.2. A GAV mapping is a set of assertions, one for each element g of G, of
the form g ~ gg

The idea is that each element g of the global schema should be characterized in
terms of a view ¢gg over the sources. The mapping is explicitly telling the system how to
retrieve data related to each element from the global schema. In this sense the GAV approach
helps enormously the query processing design, but is just effective when the system is based
on a set of sources that is stable.

Example 3.1.1. A data integration system over two sources of movies information could
present the following global schema:

Global schema:

movie(Title, Year, Director)
european (Director)
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Global Schema I Local Schema
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Figure 3.3: Local-as-view (LAV) approach

review(Title, Critique)
The two data sources could present the following local schemas:

Source 1: r1(Title, Year, Director ) since 1960, european directors
Source 2: r2(Title, Critique) since 1990

Each entity of the global schema has assotiated one or more views over the sources:

movie(T,Y, D) ~ {(T,Y,D)|ri(T,Y,D)}
european(D) ~ {(D)|ri(T,Y,D)}
review(T,R) ~ {(T,R)|r2(T,R)}

3.1.4 Formalisation of local-as-view (LAV) approach

When modeling with LAV, the mapping M associates to each element s of the
source schema § a query q¢ over G.

Definition 3.1.3. A LAV mapping is a set of assertions, one for each element s of S, of the
form s ~ qg

The idea is that each source s should be characterized in terms of a view qg over
the global schema. This means that adding a new source just implies adding a new assertion
in the mapping. This favours the maintainability and extensibility of the data integration
system.

Example 3.1.2. The movies example under the LAV approach:
Global schema:

movie(Title, Year, Director )

european (Director)

review(Title, Critique)

In LAV the sources are featured as views over the global schema:
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ri(T,Y,D) ~ {(T,Y,D)|movie(T,Y, D) A european(D) N Y >= 1960}
r2(T,R) ~ {(T,Y, D)|movie(T,Y,D) A review(T,R) ANY >= 1990}



Chapter 4

Query reformulation algorithms (the
querying problem)

4.1 Query reformulation in LAV and GAV (the querying prob-
lem)

Strongly related to the mediated schema we found the algorithms for answering
the user query in a data integration system. A initial query, targeting the logical mediated
schema, must be translated into queries over the different data sources. In the case of the
Global-as-view (GAV) approach, this problem reduces to view unfolding (unnesting). In
the Local-as-view (LAV) approach, it translates to the more complex problem of answering
queries using views [51]|, with some good solutions like MiniCon [119] or the bucket [56]
algorithms.

The following two examples illustrates the querying problem for GAV and LAV:

Example 4.1.1. Querying the movies example under the GAV approach:

The query "Title and critique of movies in 1998" could be formalised (in respect to the
global schema) as:

{(T, R)|movie(T,1998, D) A review(T,R)}

Because in GAV we have views for each schema entity, the query is processed by means of
view unfolding, i.e., by expanding the atoms according to their definitions:

movie(T,1998, D) — r1(T,1998,D)
review(T,R) — r2(T,R)

Example 4.1.2. Querying the movies example under the LAV approach:

Having the same query of the previous example ("Title and critique of movies in 1998")
and its formalisation:

24
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{(T, R)|movie(T,1998, D) A review(T,R)}

Because in LAV both the query and the mappings target the global schema, it is not trivial
to determine how to map the query to the local sources. This process is performed by means
of an inference mechanism that re-expresses atoms of the global schema in terms of atoms
of the sources:

{T,R)|r2(T,R) Ar1(T,1998,D)}

While query reformulation looks easier in GAV, it is very complex (it needs reason-
ing) in LAV. However, LAV appears to be a better solution when autonomous and hetero-
geneous sources are present, like in the case of the Web. In such context we cannot rewrite
the global schema and its mappings once and again, so we need a stable global schema and
individual mappings that can be changed independently.

4.2 Answering queries using views

The first goal of the data integration system is to reformulate a user query Q
to refer to the data sources. In the LAV approach the data covered by each source can
be abstracted by a view V; over the global schema. The first task of the system will be
determining which views should be queried to achieve the best possible answer.

The old research paper (1995) "Answering Queries Using Views" [55] by A. Halevy
et al. is probably the oldest and best known work facing the problem of determining the
combination of data sources (modelled as views) that must be used to answer a given query
in a LAV approach. This work considers the problem of rewriting a conjunctive query using
a set of conjunctive views in the presence of a large number of candidate views.

As most part of similar works of these initial approaches it uses Datalog' to for-
malise the problem:

A conjunctive query Q has the form:
q(X) - e1(X1), ...y en(Xn)

where ¢ and e, ..., e, are predicate names. The atom ¢(X) represents the answer
relation and is called the head of the query. The atoms ey (X7), ..., e,(X,) are the subgoals
of the query, where e, ..., e, are database relations from the global schema.

4.2.1 Query containment

The query rewriting problem is closely related to the concept of query containment.
We say that a query Q; is contained in the query Qs, denoted by Q1 CE Qs, if the answer
to Q1 is a subset of the answer to Qy. To determine if a conjunctive query Qy is contained
into another conjunctive query Qs we must find for each subgoal of Qs a subgoal in O,

'see the Background Information chapters for a brief introduction to Datalog
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Figure 4.1: A conjunctive query Qs with two subgoals

Figure 4.2: A conjunctive query Qi with three subgoals that is contained in Qs

contained in it. Figures fig. 4.1 and fig. 4.2 shows graphically the concept of containment

applied to conjunctive queries.

Example 4.2.1. A query Q> that asks for people with blue eyes and blond hair contains a
query Q1 that asks for women with blue eyes and blond hair because for each subgoal of Qs
(blue eyes, blond hair) Q; has a subgoal contained in it (plus some other goals, like being a
woman). In contrast, a query Qs that asks for people with blue eyes is not contained in Qo
because it does not provide a subgoal contained in the subgoal "blond hair".

When all subgoals of a query contain subgoals of another query we call the set of
containments a containment mapping. So we can say that a query Qs contains Q; if and
only if there is a containment mapping from Qs to Q;.
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4.2.2 Rewriting a query using views

Given a conjunctive query @ and a set of views V = Vy,...V,,, we want to rewrite
Q using just some of the views and comparison predicates.

Example 4.2.2. Consider the following global schema. The relation movie(m, n) stores
the identifiers (m) of all movies and their names (n). The relation actor(a, n, y) stores
identifiers (a) of actors, their names (n) and birth years (y). The relation starring(a, m)
stores the relationship between movies and actors identifiers. The following query asks for
the filmography of the actor ’Christopher Walken’.

Q(m) :- movie(m,n),actor(a,’Christopher Walken’),starring(a,m)

Database views are named queries that return a subset of the data in a database.
They can also be modelled as conjunctive queries and formalised with Datalog rules. There
are some differences between answering queries using real relational views and answering
queries using virtual views representing data sources in a LAV-based data integration sys-
tem. Two LAV views with the same definition are not assumed to contain the same tuples
because they represent autonomous data sources. So, it makes sense to have the views:

V1(m) :- movies(m,n)
V2(m) :- movies(m,n)

V1 and V2 can represent two different movie databases containing different subsets
of movies.

Example 4.2.3. Continuing with our example, consider the following views:
V1(m) :- movies(m,n)

V2(m) :- movies(m,n)

V3(a, m) :- starring(a,m)

V4(a) :- actors(a,n,y), y<1950

Now we can consider the problem of rewriting a query over a database using only
views or comparison predicates (without directly using relation predicates).

Definition 4.2.1. (contained rewriting or simply rewriting) Let Q be a query, and V =
V1,...Vn be a set of views. The query Q' is a rewriting of Q using V if Q' C Q.

Example 4.2.4. One possible rewriting of the previous example query using the views is:
Q’(m) - Vl(m) 7V3(a7m)7V4(a)
Another possible rewriting can be:

Q' (x,y) :- V2(m),V3(a,m),V4(a)

Example 4.2.5. Unfolding the views of the previous example we can see that the resulting
rewritings are contained in the initial query, so they are valid rewritings. Take the first for
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example:

Q”(m) :- movie(m),actor(a,’spain’),starring(a,m),woman(a)

The obtained rewritings guarantee that results will not be outside the scope of the
initial query, but they do not guarantee that they are the same results that could be obtained
applying directly the query over a hypothetical local database containing all the data from
the sources. This ideal situation is called equivalent rewriting and is pursued when answering
queries using views is applied to query optimization and physical data independence in a
local database.

Definition 4.2.2. (equivalent rewriting) Let Q be a query, and V = Vy,...V, be a set of
views. The query Q' is an equivalent rewriting of Q using V if @’ C Q and Q C Q'

In the context of data integration we pursue to obtain the biggest set of results
possible using the given views. The best rewriting in this sense is called the maximally-
contained rewriting.

Definition 4.2.3. (maximally-contained rewriting) Q' is a maximally-contained rewriting
of Q using views V = V1,...V, if (1) @ € Q and (2) there is no other query Q" such that
odCco'Co.

The maximally-contained rewriting of a conjunctive query can be obtained with
the union of all possible contained rewritings.

Example 4.2.6. To obtain the maximally-contained rewriting of our example we simply
perform the union of the two obtained rewritings. This is usually represented just by showing
the list of rewritings:

Q’'(m) - V1(m),V3(a,m),V4(a) Q’(m) - V2(m),V3(a,m),V4(a)

4.3 Parametrized views

The initial approaches to answering queries using views provide a formal basis for
the data integration problem. However, data sources in the real world are difficult to be
represented with a single view or with a finite set of views because they use to present
parametrized query interfaces. These initial works on answering queries using views assume
a finite set of views V, but a parametrized query interface can be only represented by a
potentially infinite number of views.

Example 4.3.1. Continuing with our example about movies, it is not realistic to assume
that a data source can be represented with a finite view like:

V1(m) :- movies(m,n)

Probably the source would offer a query interface with some parameters, like e.g.
the movie name. In this case instead of one view we would have one view for each possible
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name:

V1(m) :- movies(m, Rio Bravo’)
V2(m) :- movies(m,’Assault on Precinct 13’)

To overcome this limitation some works have analysed the problem of answering
queries using sources modelled by an infinite set of views. In [115] authors already considered
this possibility, showing that it is important to be able to exploit the local processing power
of sources to reduce the amount of data transmitted over the network. In this work is intro-
duced the concept of a parametrized view as a conjunctive query that contains placeholders
in argument positions.

A parametrized view V represents the set of all view definitions obtained by as-
signing a constant to each placeholder. Placeholders can be denoted by argument names
beginning with an asterisk (*).

Example 4.3.2. We can rewrite the previous example with this parametrized view:
V1(m) :- movies(m, *n)

In [57] A. Halevy, A. Rajaraman and J. D. Ullman extend this idea showing that
any infinite set of views can be partitioned into a finite set of equivalence classes, in such
a way that all views in an equivalence class are also equivalent with respect to rewritings
of a query Q. The equivalence classes allow to keep applying the traditional algorithms of
answering queries using views like |56].

4.4 Query processing

The resolution of a query in a data integration system can be divided in two stages,
query reformulation and query processing. Query reformulation corresponds to the research
around answering queries using views, and focus on the selection of the sources that can
provide the best valid response to a given query. However, knowing which sources to query
it is not enough. The obtained rewritten query of the first stage is a declarative query
wich refers to the sources modelled as views. In a local system such a high-level query
would be translated to a syntactic tree and then optimized for execution. By contrast, in
a data integration system some of the algebraic operations can be performed locally at the
sources, while others must be performed in the mediator. The query processing stage aims
to generate the best execution plan for a given query and executing that plan with the help
of the mediator and the wrappers of the sources.

Because the target systems are distributed, autonomous and heterogeneous, achiev-
ing a good performance can be a difficult task. In answer to this challenge, several works
have considered adaptive query processing [71][72]|7] where the systems starts with some
execution plan and adapts it as the execution proceeds.
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Data Integration and XML

The classic data integration literature focused on the Relational Model for both
queries and mappings till mid-90s. However, in late-90s researches turned their interest
to a new and emerging data model, XML [68]. The new model aroused as a de-facto
standard to expose and interchange data, so it was the ideal choose for systems pursuing
data interoperability. Now, XML and its query languages are the selected interfaces for Web
Services, XML-native databases and lots of other applications.

5.1 Mapping the classic data integration problems to XML

Integrating data from various XML sources arise the same problems described in
the classic data integration literature, but new solutions need to be found to tackle the
particularities of the new scenario.

The first of these classical problems is schema mapping. The schema in which
terms is expressed the query (there’s no need to call it the Global Schema if we are e.g. in
a peer-to-peer context) must be someway mapped to the schema or schemas of the sources
where the query will be actually executed. The simplest approach to such mapping is an
attribute correspondence, where some property or attribute in one representation corre-
sponds to some attribute in the other representation. We find an increased complexity when
mapping concepts that are semantically the same, but the XML representations may be
structured differently.

Example 5.1.1. This example, borrowed from [52], illustrates some of the problems of
mapping XML schemas.

Sourcel.xml DTD:
pubs
bookx*
title
authorx*
name
publisherx*
name

30
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Source2.xml DTD:
authors
authorx*
full-name
publicationk
title
pub-type

The example shows how a simple schema describing books and authors can take
different shapes. The difficult of obtaining a mapping between them will depend on the
goal of that mapping. It may serve for simple migration tasks (translation of data from one
schema to another), and then a simple translation template will be enough. However, it
may be needed for querying purposes, and then a more complex strategy is needed, related
to the old query rewriting problem described in previous sections.

5.2 XML query languages and data integration

XML query languages have been broadly used for the development of simple data
integration applications. Mapping between schemas or defining wrappers with XSLT or
XQuery can be a direct solution for some real world problems. These solutions generally
are based on the manual coding of templates and updates, so they represent the modern
version of the more primitive data integration approaches.

5.2.1 XSL Transformations (XSLT)

XSL Transformations (XSLT) is a language standardized by the W3C for trans-
forming XML documents into other XML documents. XSLT is a component of the W3C’s
XML Stylesheet Language, and initially its main purpose was to be used in conjunction
with a formatting language like XSL:FO, targetting the presentation layer independence.
However, XSLT can be used independently, and it has been used in many application areas,
but specially by the data integration community.

A transformation expressed in XSLT, called a stylesheet, describes rules for trans-
forming a source XML document into a result XML document. An XSLT stylesheet asso-
ciates patterns with templates. When a pattern is matched against an element in the source
XML tree, the corresponding template is instantiated to generate XML code for the result
document. This generation can include data from the source tree, but also can include new
data.

The current version, XSLT 2.0 (W3C Candidate Recommendation 3 November
2005), is a revised version of the XSLT 1.0 Recommendation published on 16 November
1999. It is designed to be used in conjunction with XPath 2.0, which is defined in [69].
XSLT shares the same data model as XPath 2.0, which is defined in [152].

The capabilities of XSLT for transforming XML documents makes it a natural
choice for data integration applications. In scenarios where heterogeneous XML schemas
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need to be mapped, XSLT stylesheets can be manually coded or semi-automatically gener-
ated to allow the conversion between the different schemas. XSLT has been used also for
intra-model conversions, like RDF-to-XML. Another usage of XSLT has been in the defini-
tion of web wrappers. HTML code can be easily modified to become XHTML with tools like
HTML Tidy [143], and then filtered with XSLT stylesheets. Lots of commercial products
make use from XSLT data integration capabilities, like the Altova MapForce tool [99].

Example 5.2.1. This example shows how an input XML document can be transformed
using an XSLT template. Take the followint XML document describing two movies.

intput.xml:

<?xml version="1.0"7>
<movies>
<movie id="26">
<title>Blade Runner</title>
<year>1982</year>
</movie>
<movie username="27">
<title>Rio Bravo</title>
<year>1959</year>
</movie>
</movies>

The following XSLT template is applied recursively to all the nodes of the under-
lying tree of the input document. The template translates the movie elements into record
elements. It also translates the id attributes into equivalent elements.

template.xslt:
<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="xml" indent="yes"/>
<xsl:template match="/">
<transform>
<xsl:apply-templates/>
</transform>
</xsl:template>
<xsl:template match="movie'">
<record>
<id>
<xsl:value-of select="@id" />
</id>
<title>
<xsl:value-of select="title" />
</title>
</record>
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</xsl:template>
</xsl:stylesheet>

This is the resulting XML document:

output.xml:
<?xml version="1.0" encoding="UTF-8"7>
<transform>
<record>
<id>26</id>
<title>Blade Runner</title>
</record>
<record>
<id>27</id>
<title>Rio Bravo</title>
</record>
</transform>

5.2.2 XML Query (XQuery)

The W3C’s XML Query language (XQuery) [154] allows to query the logical struc-
ture of an XML document (defined in [152] in a SQL-like fashion. It is derived from the
previous XML query language called Quilt, which in turn borrowed features from several
other languages, including XPath 1.0, XQL, SQL, and OQL.

XQuery Version 1.0 is an extension of XPath Version 2.0. It enriches XPath func-
tionality with FLWR expressions (FOR-LET-WHERE-SORT BY-RETURN), element con-
structors, variables, functions and updating capabilities.

There have been some discussion about the overlapping of XQuery and XSLT.
This discussion can also take place in data integration scenarios. In principle XQuery and
XSLT can be interchangeable on most part of situations, e.g. when mapping data from
heterogeneous schemas or for the definition of wrappers. The final choose usually depends
on the quality of tools and developers preferences. In general XSLT continues to be the
primary choice for transforming XML data, while XQuery it is becoming the standard for
querying and updating XML-based databases.

Example 5.2.2. This example shows how an input XML document can be transformed
using an XQuery expression. The result of processing this query will be the same as in the
previous example.

<transform>
{
for $m in doc("input.xml")//movie
return
<record>
<id>{ $m/0title/text() } </id>
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<title>{ $m/title/text() } </title>
</record>
}

</transform>

5.3 XML Data Integration Systems

The success of XML and its potential use in interoperability problems has fuelled
lots of XML-related data integration projects like XQuare, Liquid Data (Enosys), Nimble,
XML Information Workbench, Callixa, Metamatrix, Xyleme, Tukwila or Raccoon. Here I
describe the features of three representative cases.

5.3.1 Tukwila

The Tukwila system, developed at the The University of Washington Database
Research Group, is an example of the LAV approach applied to XML data. It uses the
MiniCon [119] algorithm to reformulate the queries posed over the global schema into queries
over the local XML sources. Tukwila is a native-XML integration system, because it operates
directly over non materialized XML (not converted to another internal representation). The
system introduces the X-scan operator, that allows to process XML data as it is being
received (streaming XML).

Today Tukwila already is an old academic prototype, but it was designed by some
active researchers in data integration like Zachary Ives and Alon Halevy, and provides ad-
vanced features not present in other commercial systems.

5.3.2 Enosys

The industrial success of a research approach do not always entail that it was the
better choice, but at least demonstrates it was viable and well motivated. We can find
such a success in an XML-based data integration system, the Enosys XML Integration
Platform [116]. This system, based on the wrapper-mediator architecture, allows querying
heterogeneous data sources abstracted with XML schemas. Wrappers (or XMLizers in the
project’s terminology) uses XML schemas as logical views of the sources, and a mediator
resolves XQuery expressions over the sources.

On June 18, 2003, Enosys Software was acquired by BEA Systems, Inc. Now the
system is part of the BEA’s Aqual.ogic DSP, formerly known as Liquid Data, an XQuery-
based Enterprise Information Integration (EII) solution that takes a data service layer-based
approach to data integration.

5.3.3 XQuare Fusion

XQuare (XQuery Advanced Runtime Environment), previously known as XQuark,
is a set of open source Java modules for extending J2EFE platforms with XML-based, hetero-
geneous information integration capabilities. Instead of being an API, XQuare is designed
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to be embedded into Java-based Web or application servers, and rely on the standard J2EE
services for exchanging, processing and publishing XML information. The goal of XQuare is
presenting to applications a single, uniform XML view of the different data sources, which
can then be queried with XQuery to produce XML documents. Accessible data sources
include relational databases, XML documents, Web Services and any XQuery-enabled data
source and JCA connectors. Last known release was in September 10, 2005.
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Semantic Integration

6.1 Ontologies and Data Integration

The Data Integration discipline has studied during almost two decades mecha-
nisms to allow several autonomous data sources to interoperate. The main limitation of
traditional data integration systems has been the impossibility to automatically establish
semantic mappings between the data schemas of the different sources. Schemas obtained
from traditional data models (e.g. relational and XML) are built with a reduced set of
simple and meaningless constructs and lots of human readable labels. These kinds of data
structures are designed to being interpreted just for humans, and automatically establishing
semantic mappings among them becomes a very difficult and imprecise task.

The recent success of not so recent semantic-rich modelling languages under the
global name of The Semantic Web Initiative has raised a new opportunity and challenge
to the data integration community. Ontologies, instead of schemas, are the new way to
represent information domains. They are built with a rich set of meaningful constructs
provided by the Semantic Web modelling languages like RDFS [126] and OWL [112].

Because ontologies are built with standard semantic operators, a software agent
could try to perform some automatic interpretations of the represented meaning. This
could allow for example to automatically entail the semantic mappings between two different
ontologies. However, the set of standard semantic operators are still very small, and today
ontology modelling involves a lot of ambiguous natural-language labels. Obviously, as greater
is the set of standard semantics of an ontology, easier will be its automatic processing by
software agents. This is the reason of the proliferation of initiatives to standardize an
Upper Ontology, like the IEEE SUMO (Suggested Upper Merged Ontology) [105], DOLCE
(Descriptive Ontology for Linguistic and Cognitive Engineering) [44] or Cyc/OpenCyc [92].

While the fight for a standard semantic basis remains at the top level, at the domain
level ontology standardization is not the goal. For many knowledge domains (anatomy, web
directories, digital rights management, music, etc.), several overlapping ontologies have been
engineered. Each is a different abstraction and representation of the same or similar concepts.
To enable collaboration within and across information domains, software agents require the
semantic alignment (mapping) of the different formalisms. It is the same old problem of
Schema Mapping from Data Integration, but now with new promising expectatives and

36
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under the name of Ontology Alignment. This topic has attracted a lot of interest recently,

even being object of an international contest, The Ontology Alignment Evaluation Initiative
2005 [108].

6.1.1 Semantic integration challenges

[106] enumerates the three main dimensions of semantic-integration research:

Mapping discovery (ontology alignment)

How do we define the similarity between two ontology entities. And, given two
ontologies, how do we find the similarities between them.

Declarative formal representations of mappings

Once we have found the mappings between two ontologies, how do we represent
this new knowledge to enable reasoning with mappings.

Reasoning with mappings

What do we do with the obtained mappings, how we use them to answer queries,
how we face their uncertainty.

6.2 Ontology Alignment

Ontology alignment (or matching) is the operation that takes two ontologies and
produces a mapping between elements of the two graphs that correspond semantically to
each other. Several ontology alignment algorithms have been provided like PROMPT [107],
GLUE [32], Ontrapro [6], OLA [37] or FOAM |[36].

Definition 6.2.1. (from [35]) Given two ontologies O and O’, an alignment between O and
O’ is a set of correspondences (i.e., 4-uples): < e,e’,r,n > with e € O and €' € O being
the two matched entities, r being a relationship holding between e and €', and n expressing
the level of confidence [0..1] in this correspondence.

It is typically assumed that the two ontologies are described within the same knowl-
edge representation language (e.g. OWL [112]). Here I will focus on automatic and au-
tonomous alignment, but other semi-automatic and interactive approaches exist.

Example 6.2.1. Let’s see simple example. Figures 6.1 and 6.2 present two ontologies,
O 4 and Op respectively.

A possible alignment A1l (to simplify, the relation is always "=" and the confidence
is always 1.0) is defined as follows:

<a:Human,b:People,=,1.0>
<a:Director,b:Manager,=,1.0>
<a:S8taff,b:Employee,=,1.0>
<a:directs,b:supervise,=,1.0>
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rdfs:subClassof rdfs:subClassOf

a:Director a:Staff

rdfs:subClassOf
rdfs:domain rdfs:range

I a:directs _| a:Adminstrative Staff
e — —

Figure 6.1: The RDF graph of O 4

| b:People

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

b:Manager b:Employee b:Other
X-/ rdfs:subClassOf
rdfs:domain rdfs:range
b super\rlse b:Sales Employee
e —

Figure 6.2: The RDF graph of Op
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Another reasonable alignment A2:

<a:Human,b:People,=,1.0>
<a:Director,b:Manager,=,1.0>
<a:Staff,b:Sales Employee,=,1.0>
<a:directs,b:supervise,=,1.0>

And an obviously wrong alignment A3:

<a:Human,b:Manager,=,1.0>
<a:Director,b:Employee,=,1.0>
<a:directs,b:Sales Employee,=,1.0>

6.2.1 Alignment Methods

The ontology alignment problem has an important background work in discrete
mathematics for matching graphs [58||114], in databases for mapping schemas [122] and in
machine learning for clustering structured objects [19]. It is closely related to the concept
of similarity, an inverse measure of the distance between entities.

Most part of ontology alignment algorithms rely on some semantic similarity mea-
sure, used to deduce that two different data items correspond to the same information.
Semantic similarity between ontology entities (within the same ontology or between two
different ones) may be defined in many different ways. For example, it may be defined in
terms of topological patterns. Given a pair of entities, ¢ and ¢, a traditional method for
measuring their similarity consists of calculating the distance between them in the graph.
The shorter this distance, the higher the similarity. This is commonly known as the edge
counting method.

Topological similarity methods have evolved from this simple idea, but there exist
other similarity methods based e.g. in nformation theory . The recently celebrated Ontol-
ogy Alignment Evaluation Initiative 2005 [108] has shown that best alignment algorithms
combine different similarity measures.

6.2.2 Similarity measures

There are many different ways to define the similarity between ontologies. [37]
provide a classification (updating [122]):

e terminological (T) comparing the labels of the entities; stringbased (TS) does the
terminological matching through string structure dissimilarity (e.g., edit distance);
terminological with lexicons (TL) does the terminological matching modulo the rela-
tionships found in a lexicon (i.e., considering synonyms as equivalent and hyponyms
as subsumed);

e internal structure comparison (I) comparing the internal structure of entities (e.g.,
the value range or cardinality of their attributes);
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e external structure comparison (S) comparing the relations of the entities with
other entities; taxonomical structure (ST) comparing the position of the entities within
a taxonomy; external structure comparison with cycles (SC) an external structure
comparison robust to cycles;

e extensional comparison (E) comparing the known extension of entities, i.e. the set
of other entities that are attached to them (in general instances of classes);

e semantic comparison (M) comparing the interpretations (or more exactly the mod-
els) of the entities.

This taxonomy is inherited from the study of similarity in relational schemas, and
IMHO can be simplified to three categories when being applied to ontologies: Lexical,
Topological and Extensional.

Lexical approaches

Lexical (or terminological) similarity is based in applying information retrieval
techniques to match labels of entities. Labels are written in natural language and constitute
one of the main sources of ambiguity in an ontology. However, all best algorithms of the
Ontology Alignment Evaluation Initiative 2005 make use of lexical similarity measures at
their first stages.

Topological (structural) approaches

The initial works around ontologies just focus on is-a constructs (taxonomies). The
first ways to evaluate semantic similarity in a taxonomy were based only on the topology
of the concept tree. Works like [121] and [90] measure the distance between the different
nodes. The shorter the path from one node to another, the more similar they are. Given
multiple paths, one takes the length of the shortest one. [148| finds the path length to the
root node from the least common subsumer (LCS) of the two concepts, which is the most
specific concept they share as an ancestor. This value is scaled by the sum of the path
lengths from the individual concepts to the root. [89] finds the shortest path between two
concepts, and scales that value by the maximum path length in the is—a hierarchy in which
they occur.

However, the problem of this approach is that it relies on the notion that nodes
in the taxonomy represent uniform distances. Actually, there can be a big variability in
the distance covered by a single taxonomic node, specially when certain sub-taxonomies are
much denser than others (e.g., biological categories).

Recently, new works like [20] define more sophisticated topological similarity mea-
sures, based on graph matching from discrete mathematics. These new graph-based mea-
sures suit the particularities of the new ontologies, built with more expressive languages like
OWL [112]. Their use by some of the best alignment algorithms of the Ontology Alignment
Evaluation Initiative 2005 (e.g. [64]) arises some expectation over this way of measuring the
similarity of two concepts.
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Extensional approaches

In some cases we know only the labelled structure of an ontology. However, in
other situations we can also have some information about the instances corresponding to
the classes and properties defined in the ontology (its extension). If these instances are
enough representative, they can offer some relevant information to the similarity measure-
ment. Extensional or corpusbased measures are related to statistics, Machine-Learning and
Information Theory.

One of the oldest extensional measure is res, defined by Resnik in 1995 [129]. It was
followed by two measures, lin [94] and jen [79], that augment the information content of the
LCS of two concepts with the sum of the information content of the individual concepts. [94]
scales the information content of the LCS by this sum, while [79] subtracts the information
content of the LCS from this sum.

More recent information-theoretic approaches are [30], [32] (GLUE) and [67]. They
are essentially based in the concept of joint probability distribution defined in [38]. This
distribution consists of the four probabilities: P(A, B), P(A, B), P(A, B), and P(A, B). A
term such as P(A,B) is the probability that a randomly chosen instance from the universe
belongs to A but not to B, and is computed as the fraction of the universe that belongs to
A but not to B.

Practical uses of extensional information-theoretic similarity measures exist, like
their application to Functional Genomics [8].

6.3 GMO. A structure-based semantic similarity algorithm

One of the best behaving algorithms of the Ontology Alignment Evaluation Initia-
tive 2005 was Falcon-AQO. Among other tools it makes use of a lexical similarity resolver and
an interesting structural similarity strategy called GMO (Graph Matching for Ontologies
[64]). GMO is interesting because it is a purely automatic algorithm for finding struc-
tural similarities between OWL-DL ontologies, and because it obtained excellent results in
tests where lexical labels where obfuscated (to evaluate the behaviour of structural similarity
strategies). Among other particularities, GMO simplifies the alignment of ontologies defined
with rich modelling languages like OWL-DL because, instead of managing each relationship
(is-a, part-of,...) specifically, it makes use of the underlying directed bipartite graph of the
participating ontologies.

6.3.1 Graph similarity calculation algorithm

GMO is based on the structural similarity calculation described in [20], that is
based on the following updating equation to compute the similarity matrix:

Definition 6.3.1. X, = BX,AT + BTX, Ak =0,1,...

where X}, is the np * n4 similarity matrix of entries x;; at iteration k, and A and B are the
adjacency matrices of G4 and Gp respectively. [20] demonstrates that the normalized even
and odd iterations of this equation converge.
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Let’s decompose this basic equation for a better understanding of its behaviour.
Once we have a similarity matrix between Gg and G 4, we can obtain the relationships be-
tween entities of Gg and entities of G 4 by using the following formula:
rely, = BX}
This new matrix describes the elements of Gz in terms of their relationship with the el-
ements of G4. We can compare this matrix with A, that describes the elements of G 4 in
terms of their relationship with themselves:
simpg = Telpg AT
The resulting matrix is already a similarity matrix between G and G4, but it describes
only the relationship between Gg and G4 w.r.t. how elements of Gz relate to elements of
G4. We must add the equivalent formulas and we obtain the final equation:
Xpy1 = BXi AT + BT X3 Ak =0,1, ...
That can be seen as:
Xk+1 = simba + Simab
Where:
rely, = BX}
Simpg = relp, AT

rely = XA

simgy = Bl rely,

Example 6.3.1. Let’s see a simple example. Take the following trivial graphs G4 and Gg.

Note that initially the similarity matrix Xg is set to 1. If we start the process
already knowing the similarity values of some pair of entities, we can modify this matrix
accordingly, and keep the known values between iterations. Let’s calculate the similarity
between G 4 and Gg:
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Figure 6.3: G4 (left) and Gp (right)

110
X; =BXoAT +BTXgA=11 2 1
01 1

0,316 0,316 0
X1 = X1/ frobeniusNorm(X;) = | 0,316 0,632 0,316
0 0,316 0,316

Iterating the algorithm 22 times it converges to the following result:

0,577 0 0
Xog = 0 0,577 0
0 0 0,577

So, as expected the entities a’, b’ and ¢’ (rows) are similar to a, b and ¢ (columns) respectively.

6.3.2 GMO adaptation of the graph similarity algorithm to OWL-DL

GMO takes the graph structural similarity calculation of [20] and adapts it to
OWL-DL ontologies.

Definition 6.3.2. (from [64]) Let G/, be the RDF directed labelled graph of O4. The
directed bipartite graph of ontology O 4, denoted by G 4, is a derivation of G'; by replacing
the "s" (subject) edges with edges pointing to statement nodes, and the "p" (predicate) and
"o" (object) edges with edges pointing from statement nodes. The adjacency matrix of G 4
is called the matrix representation of ontology O 4, denoted by A.

Because of the different nature of the ontology entities (classes, properties, state-
ments, shared entities, etc.) it is convenient to give the input matrices the following block
structure,

0 0 Ags
A= 0 0 As
Ag Aop O



44 Chapter 6: Semantic Integration

© O
e

Figure 6.4: Comparison between an RDF graph (left) and its correspondant directed bipar-
tite graph (right).

0 0 Bgs
B = 0 0 Bgs

Aps and Bgg represent the connections from external entities to statements in A and
B respectively.

Ag and Bg represent the connections from internal entities to statements in A and B
respectively.

Ap and Bp, represent the connections from statements to external entities in A and
B respectively.

App and Bop represent the connections from statements to internal entities in A and
B respectively.

External entities are usually those constructs defined by RDFS or OWL, built-in
data types and literals.

As said before GMO uses the updating equation from [20]:
X1 = BXp AT + BT X, Ak =0,1, ...

The matrix X includes also the similarity related to statements and external
entities. It can be decomposed as follows:

Egs 0 O
Xy = 0 O O
0 0 S

e Ep 4 represents the similarity among external entities.
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e Oj represents the similarity among internal entities.

e S} represents the similarity among statements.

e Other similarities are kept to zero (e.g. between statements and internal entities)

Initially Sy =1, O = 1, and Ep4 is set in advance as an identity matrix because
external entities are supposed to be the same. Take for example only three external entities,
subClassOf, range and domain. Their crossed similarity matrix would be:

Epa =

O O =

0 0
10
0 1

For each iteration S; and Oy are recalculated and normalized using the sum of
the frobenius norm of the three matrices (Epa is kept unchanged). Finally S and Oy are
normalized again but with the 2-norm.

Some improvements of the algorithm described in [64] include a further classification of
entities (in classes, properties and instances) that improves the scalability and performance.

6.3.3 Concept of similarity in GMO

The traditional definitions of structural similarity are usually based on the distance
among nodes. This concept of similarity is inherited from the graph matching problem from
discrete mathematics. However, in a knowledge representation scenario, the same or similar
information can be represented taking a wide range of different shapes. So, simple graph-
based similarity can arise totally arbitrary results. Intuitively, similarity of two concepts
can be defined in terms of how these two concepts relate to the world they share. Two red
objects are similar w.r.t. the colour dimension, but their similarity cannot be determined in
a general way.

Because GMO is based in the directed bipartite graph of the participating ontolo-
gies, some modelling constructs like subClassOf, range or domain appear as shared external
entities in the input graphs. Initially, GMO measures similarity of entities comparing the
way they relate to these shared entities. As the algorithm iterates (structural similarity
algorithms are always iterative), entities appearing to be similar can be also taken as a ref-
erence to find similarities between other entities '. This is a more rigorous and less arbitrary
concept of similarity than those based on node distance. It compares how entities relate to
common concepts, so it is closer to the human interpretation process, in which the mean-
ing of something is entailed from how it relates to things for which the meaning is already
known.

![20] demonstrates that the algorithm converges
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6.3.4 An example
Example 6.3.2. Let’s see a simple example. Take the following graphs G’y and G.

Scholastics
subClassOf  subClassOf

Suparvisor Graduate

0
(1

domain range’ subClassOf

supervise

Vs

owl:Object
Property

Figure 6.5: G';

People

>.

subClassOf  subClassOf subClassOf

Teacher

O}
o

domain range’ subClassOf

teach OverseaSt

0

owl:Object
Property

Figure 6.6: Gy
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owl:Object
Property

Figure 6.8: Gp

Iterating the algorithm 22 times it converges to the following result (Rows: b:Teacher,
b:OverseaStudent, b:People, b:Other, b:Student; Columns: a:Graduate, a:Scholastics, a:PhdStudent,
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a:Supervisor):
0,049 0 0,014 0,106
0,013 0 0,02 0,013
Xpp=| 0,051 0,125 0 0
0,018 0 0,014 0,018
0,145 0,029 0,014 0,049

The similarity between b:teach and a:supervise is 0,446.
After normalization:

0,336 0 0,098 0,73
0,00 0 0,134 0,09
X192 = Xy/mazValue(X;) = | 0,353 0,863 0 0
0,127 0 0,098 0,127
1 0,201 0,098 0,336

The similarity between b:teach and a:supervise is 1.
So, as expected the entities a’, b’ and ¢’ (rows) are similar to a, b and ¢ (columns) respectively.

6.4 Upper Ontologies

Some recent and not so recent initiatives pursue to develop a general-purpose on-
tology (a.k.a. upper ontology), formalizing concepts such as processes and events, time and
space, physical objects, and so on. These upper ontologies aim to offer some basic and
standard meaning building blocks to allow domain-specific ontologies extend them.

As noted by [106], this scenario is different from the traditional data integration
scenario, where a global schema (a common view on different local schemas) is usually
generated once the underlying local schemas are already known. User queries are written
in terms of the global schema, and the integration problem reduces to 1) Map the local
schemas to the global schema (using the Global As View (GaV) or the Local As View (LaV)
approaches) and 2) Answer the query using the defined mappings.

An upper ontology does not aim to be a view over all its derived domain-ontologies,
nor pretending standard queries being written in its terms. An upper ontology is usually
more general, since it define constructs for ontologies yet to be developed. However, it serves
also to the data integration goals, sice increasing the number of standard semantics it also
improves the confidence of Ontology Alignment algorithms.

Some upper or top-level ontologies are SUMO [105], DOLCE [44] and Cyc/OpenCyc
[92]. Very related to this idea -despite it is not strictly an upper ontology- we find also Word-
Net [95].

6.4.1 IEEE SUMO

SUMO (Suggested Upper Merged Ontology) [105] is an effort by the IEEE Standard
Upper Ontology Working Group aimed at developing a standard upper ontology that will
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promote data interoperability, information search and retrieval, automated inferencing, and
natural language processing.. SUMO tries to standardize a hierarchy of some basic ground
concepts like Object, ContinousObject, Process, Quantity or Relation.

6.4.2 DOLCE

DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) [44] is a
formal foundational ontology developed as an upper ontology in the WonderWeb project.
DOLCE aims to provide a set of common semantics to achieve interoperability among on-
tologies related to WonderWeb. According to [44], it aims at capturing ontological categories
underlying natural language and human common-sense.

6.4.3 WordNet

WordNet is an online lexical reference system, developed at Princeton University.
English nouns, verbs, adjectives and adverbs are organized into synsets (synonym sets),
each representing one underlying lexical concept that is semantically identical to each other.
Despite of WordNet does not define itself as an ontology, synsets are cross-linked through
relationships such as synonymy and antonymy, hypernymy and hyponymy (Subclass-Of and
Superclass-Of) meronymy and holonymy (Part-Of and Has-a). So, we can consider WordNet
as a special kind of upper ontology.

6.4.4 Cyc/OpenCyc

Doug Lenat’s Cyc (from enCYClopedia) Project [92] was begun in 1984 as an
attempt to build a wuniversal expert system. The project resolved basic questions about
representing time, substances, perception, etc., and the original emphasis on frames shifted
towards first-order predicate calculus instead. The initial idea of a unified knowledgebase
was replaced with the idea of many partially-independent micro-theories.

Cyc’s main goal was constructing a foundation of basic common sense knowledge, a
semantic substratum of terms, rules, and relations. It intended to provide a layer of meaning
that can be used by other programs (such as domain-specific expert systems). Nowadays its
open source version, OpenCyc, is still progressing, and contains over 47,000 concept terms
and over 300,000 facts.
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Current Challenges in Data
integration

Data integration has evolved in parallel to computer networks and computer paradigms.
First data integration problems were related to the evolution of local area networks. The
success of Internet and the WWW fed a new generation of problems, and solutions for some
of them. Now XML, the Semantic Web, and the P2P paradigm arise new challenges for this
discipline.

7.1 Semantic Mappings Generation: Schema matching and
Ontology Alignment

Most part of approaches of data integration (GAV, LAV and GLAV) rely on the
semantic mappings between a set of different data sources and a mediated schema. Tradi-
tionally these mappings have been written manually, being this the main drawback of data
integration systems. Manual mapping generation is a costly and error-prone task, and -what
is worst- it entails serious maintainability problems.

For the moment, complete automation of the generation of semantic mappings
seems not to be possible. This task entails the complete understanding of the semantics
of the source schemas or ontologies, that surpasses all known Al techniques. However, the
topology and lexical information of the schemas and ontologies, or even their related data,
provide clues that can serve to help the process of generation and maintainment as we have
seen in the chapter about Semantic Integration. Now, the focus has turned to Ontology
Alignment, because ontologies have potentially better possibilities for semantic integration
than schemas. However, schema integration research has achieved good results these last
years, like the semi-automatic approach in [122], or the work of A. Doan [31|, whose Ph.D.
thesis "Learning to Match the Schemas of Databases: A Multistrategy Approach” won the
2003 ACM Doctoral Dissertation Award.

50
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7.2 Answering queries using ontology alignments

Data integration aims at giving users and applications the illusion of interacting
with one single information system. This interaction usually takes the form of a query that
the user issues to the system, which it must process and return a satisfactory answer. In
ontology-based information systems, user queries are translated to queries or other retrieval
tasks over the ABox defined!.

One of the main goals of Ontology Alignment is allowing semantic information
systems to answer queries independently of the ontology from which the query terms have
been taken. The common way to proceed in most part of existing systems is to materialize
the obtained mappings into new statements (e.g. owl:equivalentClass), and then let the
inference engine do its task. However, not all the mappings have the same level of confidence,
and deciding which to include and which not becomes a problem that is usually solved
heuristically.

Ontology 1

ABox TBox Alignment que

Ontology 0
o. lign
Ontology 2

ABox TBox Alignment o g

Figure 7.1: Workflow of the query answering process

7.2.1 Uncertain mappings

In traditional semantic information systems, if a statement does not satisfy the
exact constraints of a query, then it is not included in the result. However, there are
some situations when there are some degree of uncertainty over an statement. One of this
situations could be an ontology alignment process, which returns a set of mappings with
their respective level of confidence. Traditional description languages (e.g. OWL) or query
languages (e.g. SPARQL), do not provide mechanisms to face this problem. However, some
initiatives like Fuzzy OWL [141] or PR-OWL [27] are now working to include certainty in
the Semantic Web.

! Abox and Thox are used to describe two different types of statements in ontologies. Thox statements
describe a controlled vocabulary (e.g. a set of classes and properties) while Abox are statements about that
vocabulary (instances).
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PR-OWL (probabilistic OWL)

PR-OWL |27] is a novel ontology description language that extends OWL providing
constructs for modelling uncertainty in ontologies. It allows moving beyond the current
limitations of deterministic classical logic to a full first-order probabilistic logic. PR-OWL
it is not limited to extending the attribute-value model by including syntax to describe
probabilities, it goes beyond by allowing to represent complex Bayesian probabilistic models.
PR-OWL has Multi-Entity Bayesian Networks (MEBN) as its underlying logical basis. This
kind of networks combine Bayesian probability theory with classical First Order Logic.

f-OWL (fuzzy OWL)

Fuzzy OWL or simply f-OWL [141] is a fuzzy extension of OWL DL by adding
degrees to OWL facts. Despite that the only syntactic change required is the addition of

a membership degree, that ranges from 0 to 1, the semantics of f-OWL must be redefined.
[141] describes the new semantics and also -SHOZN as an extension of the SHOZN DL.

7.3 XML-RDF semantic integration

Interoperability among autonomous XML schemas has been one of the recent chal-
lenges of data integration. The success of the Resource Description Framework (RDF) [124]
and its related technologies (RDFS [126], OWL [112]) has refuelled the problem by, on one
hand, raising the necessity to establish interoperability mechanisms between XML schemas
and RDF schemas (RDFS or OWL), and, on the other hand, opening the possibility to
use RDFS/OWL ontologies as a solution for the semantic mapping problem among XML
schemas.

One of the contributions of this thesis is strongly related by the research trend that
tries to exploit the advantages of an XML-to-RDF mapping [54](65][5]|84][87][117][132]. The
XML-to-RDF mapping has been faced traditionally from what is known as the structure-
mapping |97|, that defines a direct way to map XML schema entities to RDF classes. Our
contribution consists on exploring a different approach, the mapping of the general XML
model to RDF. A more deep analysis of the related state of the art can be found in the
related work section of Chapter 9.

7.4 Querying highly volatile and restricted Web data sources

The classical problems of data integration have well-known solutions like the GAV
and LAV approaches or the MiniCon [119] and bucket [56] algorithms. However, the evo-
lution of web-related technologies like XML and RDF, and the proliferation of new data
sources and wrapper technologies suggest the reformulation of the old problems and solu-
tions. One of the contributions of this thesis is related to using XQuery [154] in a LAV-based
approach to query a set of spanish online newspapers. Recently Thomas Kabisch and Mattis
Neiling [81] have used a very similar strategy but using RDF and RDQL to query data re-
lated to research papers from the best-known web sources. I borrow from them the name of
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Query Tunneling to define this trend, which in fact is a simplification of the LAV approach
but more appropriate for the very restricted web data interfaces.

7.5 Data integration in P2P

Peer-to-peer (P2P) architectures are becoming popular. They update the client-
server model by eliminating the necessity of having central servers, reducing communication
and storage costs and improving reliability. Some works have suggested that having a central
schema for data is not a good idea in a P2P architecture. We can find an example of this
in the Peer-data management systems (PDMS) [4][53][18]. In a PDMS participants do not
need to agree on a central data schema, they can define their local semantic mappings to the
most convenient peer, and queries can be answered by chaining mappings. This approach
improves flexibility, allowing each peer to query the system using its own schema.

In [52] Alon Y. Halevy et al. described Piazza: Data Management Infrastructure
for Semantic Web. Piazza is a PDMS based on the use of XML and XQuery but allows
also the integration of RDF. In [4] are described some of the problems related to PDMS,
focusing on data placement (also related to the Piazza system). They demonstrate that
an intelligent materialization of views (replication) in some nodes in the network allows to
improve performance and availability.

In [18] Philip A. Bernstein et al. described local relational models as a formalism
for mediating between different peers in a PDMS, and an algorithm for answering queries
using the formalism. In [103] is described the Edutella system, focused in the XML-RDF in-
teroperability. It aims to provide query and storage services for RDF, but with the ability to
use heterogeneous underlying sources. The RDF queries are reformulated to the underlying
storage formats and query languages using canonical mappings (Edutella does not employ
point-to-point mappings between nodes).

The Chatty Web [1] describes protocols for exchanging semantic mapping informa-
tion in a decentralized fashion. Schemas and mappings are dynamically spread through the
network by a gossip mechanism, and queries are routed and mapped using this information.
Hyperion 82| faces the problem of mapping objects from different sources. It focuses on the
use of relational tables and provides a theoretical model.

Finally, PeerDB [104] avoids schema mappings taking a different approach based
on Information Retrieval algorithms for query reformulation. Each peer and each one of its
attributes is associated with a set of keywords. Given a query over a peer schema, PeerDB
reformulates the query into other peer schemas by matching the keywords associated with
the attributes of the two schemas.
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Problem Statement

This thesis faces two specific problems within the general and old research topic of
Data Integration. In general, integration of multiple data sources aims at giving a unified
view over a set of pre-existent data. This entails to allow users a uniform access over the
data without having to deal with the particularities of each source. Achieving this ambitious
goal implies solving several problems that have defined different research topics.

8.1 Problem addressed 1: Semantic integration

Semantic heterogeneity is one of the key challenges in integrating and sharing data
across disparate sources. Semantics refer to meaning, in contrast to syntax that refers to
structure. In the database area, semantics can be regarded as people’s interpretation of data
and schema items according to their understanding of the world in a certain context. Se-
mantic integration is the research area focused in reconciling data from autonomous sources
using ontologies or other semantic-based tools.

This thesis aims to contribute to this research trend by providing solutions to two
problems:

1. XML-RDF Semantic Integration: How to take profit from ontologies to integrate XML
data from disparate schemas? How to query XML data related to multiple schemas
but also to one or more ontologies? It is possible to do this and keep using conventional
XML query languages like XPath or XQuery?

2. OWL Ontology Alignment: Can a rigorous and scalable semantic similarity measure
be defined for OWL ontologies? Can an ontology alignment process successfully work
directly over the RDF labeled directed graph, or it is better to process the equivalent
bipartite graph?

8.2 Problem addressed 2: Heterogeneous query interfaces

Within the old data integration LAV (Local-As-View) approach, some solutions
were provided to the problem of how an initial query, targeting a logical mediated schema,
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must be translated into queries over a set of different autonomous data sources. The old
solutions, generally complex, were based on Datalog, and focus on answering expressive
queries over heterogeneous but rich query interfaces. The evolution of the Web and its
related technologies, like XML, allows to reformulate this old problem, that is the basis of
the second main contribution of this work:

1. Can XML-technologies and a strategy based on the reprocessing of results be a prac-
tical solution for web-based data integration systems? How this approach can be
instantiated to develop specific applications?
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Chapter 9

XML Semantic Integration: A Model
Mapping Approach

This work describes 1) Why an ontology-aware XPath processor (or an XQuery
engine that makes use of it) can be a natural and powerful tool for processing metadata,
2) How a processor with such behaviour has been implemented using Description Logics
(materialised in RDFS and OWL constructs) and 3) A real application scenario in the
Digital Rights Management (DRM) domain. We present the architecture of a schema-aware
and ontology-aware XPath processor that acts over an RDF mapping of XML. Translating
XML documents to RDF permits taking profit from the powerful tools of Description Logics
allowing XML documents interoperate at the semantic level. We test our approach in
the Digital Rights Management (DRM) domain, where some organizations are involved in
standardization or adoption of rights expression languages (REL). We explore how a schema-
aware and ontology-aware XPath/XQuery processor can be used in two of the main REL
initiatives (MPEG-21 REL and ODRL).

9.1 Already published work

Large portions of this chapter have appeared in the following papers:

Tous R., Garcia R., Rodriguez E., Delgado J. “Architecture of a Semantic XPath
Processor. Application to Digital Rights Management”, 6th International Con-
ference on Electronic Commerce and Web Technologies EC-Web 2005. August
2005 Copenhagen, Denmark. Lecture Notes in Computer Science, Vol. 3590
(2005), pp. 1-10. ISSN: 0302-9743

Tous R., Delgado J. “A Semantic XPath processor”. InterDB 2005 International
Workshop on Database Interoperability. ELSEVIER’s Electronic Notes in The-
oretical Computer Science 2005

Tous R., Delgado J. “RDF Databases for Querying XML. A Model-mapping
Approach”. DISWeb 2005 International Workshop Data Integration and the Se-
mantic Web. Procedings of the CAiSE’05 Workshops. Faculdade de Engenharia
da Universidade do Porto. ISBN 972-752-077-4 Pages: 363 - 377
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Tous R., Delgado J. “Using OWL for Querying an XML/RDF Syntax”. WWW’05:
Special interest tracks and posters of the 14th international conference on World
Wide Web. Chiba, Japan. Pages: 1018 - 1019. ACM Press 2005. ISBN:1-59593-
051-5. http://doi.acm.org/10.1145/1062745.1062847

9.2 Introduction

The most part of XML-based applications make use of one or more XML schemas
for instance validity check. In addition to defining a valid structure for the documents,
generally the schemas define also inheritance hierarchies among types and element names (to
rationalize the writing of the schemas and the instances respectively). However, sometimes
it is necessary to consider this information not only for validation but also when evaluating
queries over the XML data. Today it is also becoming common the use of RDFS/OWL
ontologies to define semantic connections among application concepts. In some cases, the
ontologies define relationships that are relevant for query evaluation (equivalences among
names, subclassing, transitiveness, etc.). Unfortunately, all this structural and semantic
knowledge is hard to access for developers, because it requires a specific treatment, like
defining multiple extra queries for the schemas or using complex RDF tools to access the
ontologies information.

To overcome this situation we present the architecture of a schema-aware and
ontology-aware XPath/XQuery processor. The processor can be fed with an unlimited
set of XML schemas and RDFS/OWL ontologies and will resolve the queries taking in
consideration the structural and semantic connections described in them. To achieve this
goal, the processor acts over an RDF mapping of XML, contributing to a recent research
trend that defines an XML-to-RDF mapping allowing XML documents interoperate at the
semantic level. We use a model-mapping approach to represent instances of XML and XML
Schema in RDF. This representation retains the node order, in contrast with the usual
structure-mapping approach, so it allows a complete mapping of all XPath axis.

This chapter is structured in three main blocks. First, we describe some related
work to help identifying the problem and the relevance of the contribution. Second, we
describe the architecture of the semantic XPath processor and some implementation details.
Third, we apply our approach to a plausible usage scenario, the Digital Rights Management
(DRM) domain. We explore how an XPath/XQuery processor with semantic behaviour can
be used for processing licenses from two of the main Rights Expression Language (REL)
initiatives (MPEG-21 REL and ODRL).

9.3 Related work

9.3.1 The query rewriting approach

There is a previous work that also pursues the target to achieve a semantic be-
haviour for XPath/XQuery. This approach is described in |91], and also shares with ours
the translation from XML Schemas to OWL. Because the authors do not attempt to provide
a new XQuery implementation, they use the obtained ontology as a guidance to rewrite the
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original semantic XQuery instance (they call it Semantic Web Query Language or SWQL)
to a conventional XQuery instance.

The difference between this approach and ours is that our work does not describe
a new query language and does not need a translation between the semantic queries and
XPath/XQuery expressions. We have developed a new XPath processor that directly manip-
ulates conventional XPath instances but taking in consideration the semantic relationships
defined in the schemas and /or ontologies and related to the names involved in the query. The
processor can be embedded into a conventional XQuery processor to obtain the semantic
behaviour also for XQuery.

9.3.2 Other related work. Model-mapping vs. Structure-mapping

The key element of our work is the mapping of the XML and XML Schema models
to OWL. The origins of this approach can be found in a research trend that tries to exploit the
advantages of an XML-to-RDF mapping [54][65]|5][84]|87][117][132]. However, the concepts
of structure-mapping and model-mapping are older. In 2001, [97] defined these terms to
differentiate between works that map the structure of some XML schema to a set of relational
tables (element names become table names) and works that map the XML model to a
general relational schema (a small number of tables representing elements, atributes and
relationships, element names become just field values) respectively.

More recently, [84] takes a structure-mapping approach and defines a direct way to
map XML documents to RDF triples (|65] classifies this approach as Direct Translation).
[54], [65], and [5] take also a structure-mapping approach but focusing on defining semantic
mappings between different XML schemas (|65] classifies their own approach as High-level
Mediator). They also describe some simple mapping mechanisms to cover just a subset
of XPath constructs. Other authors like [87] or [117]| take a slightly different strategy
(though within the structure-mapping trend) and focus on integrating XML and RDF to
incorporate to XML the inferencing rules of RDF (strategies classified by [65] as Encoding
Semantics). Finally it’s worth mention the RPath initiative [132], that tries to define an
analogous language to XPath but for natural (not derived from XML) RDF data (this last
work doesn’t pursue interoperability between models or schemas).

9.4 Architecture of the semantic XPath processor

9.4.1 Overview

Figure 9.1 outlines how the schema-aware and ontology-aware XPath processor
works. The key issue is the XML-to-RDF mapping, already present in other works, but
that we face from the model-mapping approach. In contrast with the structure-mapping
approach, that maps the specific structure of some XML schema to RDF constructs, we map
the XML Infoset [68] using RDFS and OWL axioms based on the already existing W3C’s
RDFS informative representation [147]. This allows us to represent any XML document
without any restriction and without losing information about node-order. We use the same
approach with XSD, obtaining an RDF representation of the schemas, as we will explain
later. Incorporating alternative OWL or RDFS ontologies is straightforward, because they
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XML model
XML data OWL ontology
translation RDF
XML schemas/ (model mapping) N /
RDFS/OWL T Inference
ontologles ANV Engine
query v
XPath ——————* translation RDOL
< ) —» RDQL —F»
query algorithm ¢ Processor

Figure 9.1: Semantic XPath processor architecture overview

are already compatible with the inference engine. In the figure we can see also that an OWL
representation of the XML model is necessary. This ontology allows the inference engine to
correctly process the different XPath axis and understand how the XML elements relate to
the different XSD constructs.

Example 9.4.1. Let us see a simple example. Take the following XML document describing
two movies:

<movies>
<movie id="ml1">
<title>Blade Runner</title>
<year>1982</year>
<director id="di'">
<name>Ridley Scott</name>
</director>
</movie>
<movie id="m2">
<title>Paris, Texas </title>
<year>1984</year>
<director id="d2">
<name>Wim Wenders</name>
</director>
</movie>
</movies>

And also its attached XML schema describing the valid structure for all "movies"
documents:

<xs:schema>
<xs:element name="movies'">
<xs:complexType>
<xs:sequence>
<xs:element name="movie'">
<xs:complexType>
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<xs:sequence>
<xs:element name="title"/>
<xs:element name="year"/>
<xs:element name="director">
<xs:complexType>
<xs:sequence>
<xs:element name="name"/>
</xs:sequence>
<xs:attribute name="id"/>
</xs:complexType>
</xs:element>
<xs:attribute name="id"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

The object-oriented nature of some XML Schema constructs allows using them to
increase the interoperability of applications or to fix interoperability problems in an elegant
way. For example, the substitutionGroup inheritance mechanism can be used to bind the
names of two different XML languages. The previous schema defines the elements mowies,
movie, title, year, etc. It could be interesting in some context to have the possibility to write
the element and attribute names in a language different from English. We can generate a
schema that binds the different names from the Spanish version to the (master) English
version:

<xs:schema>
<xs:element name='"peliculas" substitutionGroup=’movies’>
<xs:complexType>
<xs:sequence>
<xs:element name="pelicula" substitutionGroup=’movies’>
<xs:complexType>
<xs:sequence>
<xs:element name="titulo" substitutionGroup=’title’/>
<xs:element name="afio" substitutionGroup=’year’/>
<xs:element name="director" substitutionGroup=’director’>
<xs:complexType>
<xs:sequence>
<xs:element name="nombre" substitutionGroup=’name’/>
</xs:sequence>
<xs:attribute name="id"/>
</xs:complexType>
</xs:element>
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<xs:attribute name="id"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Now, using our schema-aware XPath processor, if we ask for /mouvie/country we
will obtain the same as for the /pelicula/pais (independently if the XML instance is written
in English or in Spanish). So, we can develop applications that are not tied to a particular
schema but to an global one. This feature allows using XML schemas (or also OWL on-
tologies) to define semantic relationships between other XML schemas or ontologies, and to
issue XPath queries that will be solved accordingly. This is just one of the features of the
approach in a trivial scenario, but serves to illustrate the idea.

9.4.2 OWL. An ontology web language

The OWL Web Ontology Language, being produced by the W3C Web Ontology
Working Group (WebOnt), is a language for defining and instantiating Web ontologies. The
language can be used to formalize a domain by defining classes, properties of those classes
and individuals. With the information of a domain in a machine-understandable format,
inference engines or other application can reason about the different classes and individuals,
deriving logical consequences, i.e. facts not literally present in the ontology, but entailed by
the semantics.!

9.4.3 An OWL ontology for the XML model (XML/RDF Syntax)

Instead of taking the intuitive structure-mapping approach to transform a XML
document in a set of RDF triplets like [65], we tried to represent the XML Infoset [68] using
an OWL ontology based on the already existing W3C’s [147]. This allows us to represent
any XML document without any restriction and without losing information about node-
order. Fig. 9.3 shows graphically how the example of fig. 9.2 will be represented using the
classes and properties defined with OWL. The descendants of the class node (document,
element, attribute and textNode) in conjunction with the ObjectProperty childOf are the
main building blocks of the document tree, while the ObjectProperty preceding-sibling is
necessary to preserve the node order.

Following we include the OWL ontology to show the details. We take profit from
the expressive power of OWL to define properties like parentOf, descendant, ancestor, de-
scendantOrSelf, ancestorOrSelf, immediateFollowingSibling, followingSibling, following, pre-
cedingSibling, and preceding just in terms of the two primitives childOf and immediate Pre-
cedingSibling. This will be of great help later when we translate an XPath query to a RDQL
query for the RDF-representation of the XML data. For e.g., we define descendant as a
superset of childOf, which itself is defined as the inverse of parentOf. All these properties do

see the Background Information chapters for a brief introduction to OWL
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not need to be present in the representation because they will be deduced by the inference
engine when processing the queries. A simplified description of the ontology in Description

Logics syntax (SHZ Q-like style [62]) would be:

Document CNode
FElement CTNode
TextNode CNode
childO f Cdescendant
parentO f Cancestor
childO f =parentOf~
Trans(ancestor)
ancestor CancestorOrSel f
sel f CdescendantOrSel f
sel f CancestorOrSel f
self =sameAs
immediate PrecedingSibling CprecedingSiblinng
immediate FollowingSibling C followingSibling
immediate PrecedingSibling =immediateF ollowingSibling™
Trans(followingSibling)

Fig. 9.3 shows graphically how the example of fig. 9.2 will be represented using the classes
and properties defined with OWL.

A document
A element

O attribute
l:l texthode

movies

maovie I‘T'ID\I'IE!

& A\A

id = m1 trtle dlrector id =2 trtle

Faris, Texas W.'m Wendsrs Rio B.ravo Howard Hawkis

Figure 9.2: XML simple example describing two movies
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Figure 9.3: RDF graph for movies example

9.4.4 XPath

While the official definition of XPath [69] remains saying "XPath is a language for
addressing parts of an XML document”, that was strictly correct for XPath 1.0, the version
2.0 cannot be defined just that way. Because the syntax of XPath 2.0 is a compact-version
of XQuery 2.0, it better would be defined as e.g. "a sequence-based language for querying
and processing XML". XPath uses a compact, non-XML syntax to facilitate use of XPath
within URIs and XML attribute values. XPath operates on the abstract, logical structure
of an XML document, rather than its surface syntax.

[69] says that XPath 2.0 has been designed to be embedded in another host language
such as XSLT 2.0 [155] or XQuery 1.0 [154]. However the relation of XPath and these two
languages differs. XPath 2.0 and XQuery 1.0 have the same semantics, defined by XQuery
1.0 and XPath 2.0 Formal Semantics [153]. [69] says that "XQuery 1.0 is an extension of
XPath 2.0". So one can talk about the same language with two syntaxes, one with the SQL
flavour (XQuery), and the compact version (XPath) to be embedded in a host language
(XSLT).

9.4.5 XPath data model

[152] specifies the XQuery 1.0 and XPath 2.0 data model. It defines the infor-
mation contained in the input to the host language in which XPath is embedded and also
all permissible values of XPath expressions. The data model is based on the XML Infoset
[68]. The following definitions (extracted from [152] and not comprehensive) describe the
key elements of the XPath data model:

1. Every instance of the data model is a sequence.

2. A sequence is an ordered collection of zero or more items.
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3. A sequence cannot be a member of a sequence.
4. An item is either a node or an atomic value

5. Every node is one of the seven kinds of nodes (document, element, attribute, text,
namespace, processing instruction, and comment).

So, the basic building block of the data model is the sequence. This is an important
difference with respect to Xpath 1.0, in which the basic constructs were node-sets (without
duplicates). Sequences can contain duplicates but not other sequences, combining sequences
always produce a flattened sequence instead of a nesting.

9.4.6 XPath syntax

The grammar rules of XPath 2.0 have increased in complexity, since now supports
for expressions, conditionals, intersections, unions and differences among other constructs.
Here we are going to describe just the rules that are shared with the version 1.0, focusing in
location paths (now PathEzpr). The partial Backus-Naur Form (BNF) rules for an XPath’s
expression are:

Expr ::= ExprSingle ("," ExprSingle)*

ExprSingle ::= ForExpr | QuantifiedExpr | IfExpr | OrExpr
OrExpr ::= AndExpr ( "or" AndExpr )*

AndExpr ::= PathExpr ( "and" PathExpr )*

The basic building block of the syntax is the ezpression, which is a string of Unicode
characters. For this work we are going to consider just expressions consisting on a single
PathFEzpr, the basic construct to address parts of an XML document. The BNF rules for a
PathEzpr are:

PathExpr ::= RelativePathExpr | ("/" RelativePathExpr)?
RelativePathExpr ::= AxisStep "/" (AxisStep)*

AxisStep ::= (ForwardStep | ReverseStep) Predicate*
ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep
AbbrevForwardStep ::= "Q@"7 NodeTest

ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep
AbbrevReverseStep ::= ".."

NodeTest ::= KindTest | NameTest

NameTest ::= QName | "x*"

KindTest ::= "node()" | "text(" |

Predicate ::= "[" Expr "]1"

These rules, extracted from [69], were more simple and clear in the version 1.0.
They say simply that a PathEzpr is a sequence of steps (azisStep), each one composed of
an axis (ForwardAzis or ReverseAuis), a NodeTest and a list of Predicates. Axis are the key
element, because define the direction of each step. There are 13 different axis:
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ForwardAxis ::= <"child" "::">
| <"descendant" "::">
| <"attribute" "::">
| <"self" "::">
| <"descendant-or-self" "::">
| <"following-sibling" "::">
| <"following" "::">
| <"namespace" "::">
ReverseAxis ::= <"parent" "::">
| <"ancestor" "::">
| <"preceding-sibling" "::">
| <"preceding" "::">
| <"ancestor-or-self" "::">

Table 9.1 gives the meaning of each axis. Some example XPath queries for an
XML document describing movies could be:

/child: :movies/child: :movie/child: :title

(in abbreviated form /movies/movie/title)

/descendant-or-self::title

(in abbreviated form //title)

/child: :movies/child: :movie[@id=’m1’]
/following-sibling: :node()

(in abbreviated form /movies/movie[@id=’m1’]
/following-sibling)

9.4.7 XPath Formal semantics

XPath can be formally defined by describing the operations on this data model. It
is not a coincidence that some of the axioms are already present in the XML /RDF ontology,
because they map directly to XML primitives (e.g. child). First we must define the function
E, corresponding to the XPathEzpr rule from the EBNF grammar [69].

E : Path — Node — sequence(N ode)

Elle1/ea]]e = {z2 | 21 € E[lel]]s N z2 € E[€2]]s1}
Ella = t]]s = {z1 | z1 € Au(z) AT (z1)}
Ellepl]ls = {z1 | 21 € E[[e]]s A P[[p]la, }

The function A, describes both the ForwardAxzis and the ReverseAuxis rules from the gram-
mar.

Ay :— Node — sequence(Node)
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Table 9.1: XPath axis

child | All children of the context element
(attributes cannot have children)
descendant | The descendants of the context node
(the children, the children of the
children, and so on)
parent | The parent of the context node.
ancestor | The ancestors of the context node

(the parent, the parent of the parent,
and so on)

following-sibling

Those children of the context node’s
parent that occur after the context
node in document order

preceding-sibling

Those children of the context node’s
parent that occur before the context
node in document order

following

All nodes that are descendants of
the root of the tree in which the
context node is found, are not
descendants of the context node,
and occur after the context node in
document order

preceding

All nodes that are descendants of
the root of the tree in which the
context node is found, are not
ancestors of the context node,
and occur before the context node
in document order

attribute

The attributes of the context node

narmespace

Namespace nodes

self

The context node

descendant-or-self

The context node and the
descendants of the context node

ancestor-or-self

The context node and the ancestors
of the context node

Achild(l') = {1‘1 | Ch'ildOf({L‘l,l')}
Adescendant(x) = {xl | Ch@ldof(ﬂ?l,[li)\/

(childOf (3, x)
Nz € Adescendant('r?))}

Adescendant—or—self(w) = {-’L'} U {-’IJ1 | T € Adescendant(x)}
Aparent(r) = {1 | childOf (z, 1)}
Aancestor(l') = {1'1 | Ch’leOf(:l?,:El)\/

(Ch’bldOf(.’E, 5172) N1 € Agncestor (-TQ))}
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Aancestor—or—self (T) = {x} U{m1 | 71 € Aancestor(T)}
Apreceding—sibling(z) = {x1 | precedingSibling(z1,x)}
Apreceding () = {1 | £1 € Adescendant—or—self (72)
N3 € Apreceding—sivling(%3) }
N x3 € Agncestor—or—self(Z)}
Aoliowing—sibling () = {x1 | precedingSibling(z, z1)}
Afoliowing(®) = {z1 | 1 € Adescendant—or—self(%2)
A x3 € Afollowing—sibling(23)}
A3 € Aancestor—or—self(T)}
Aattrivute(7) = {21 | attributeOf (z1,z)}
Aattribute(z) = {21 | namespaceO f(z1,z)}

The function T describes the NodeTest rule from the grammar.

T : NodeTest — Node — Boolean

T, (z) = {true}

T, (z) = {hasName(z,n)}
Troae(y () = {type(z, node')}
Tyear(y(7) = {type(z,' textNode')}

Telement()(l") = {type(z,' elementNode')}

The function P describes the Predicates rule from the grammar. There are a lot of
different predicates but defining all is out of the scope of this document. As an example we
define here the predicate that expresses the existence of a specific sub-tree as a condition.

P : Predicate — Node — Boolean

Pllpllz = {3z1 € E[p]l.}

9.4.8 RDQL A Query Language for RDF

RDQL [127] is the popular RDF query language from HP Labs Bristol. RDQL is
an implementation of the SquishQL [139] RDF query language, which itself is derived from
rdfDB [125]. The specification of RDQL was submitted to the W3C in 9 January 2004,
and has an enormous influence to the new W3C’s RDF query language, SPARQL [138].
However we have chosen RDQL instead of SPARQL because of the existence of a mature
query processor as the Jena API [76]. The results obtained are extensible (and we plan to
do this explicit when tools are available) to the new W3C’s language.

An RDF model is a graph, often expressed as a set of triples. An RDQL query
consists of a graph pattern, expressed as a list of triple patterns. Each triple pattern is
comprised of named variables and RDF values (URIs and literals). An RDQL query can
additionally have a set of constraints on the values of those variables, and a list of the
variables required in the answer set. An example RDQL query could be:
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SELECT 7book

WHERE (7book, <somelibrary:year>, 7year)

AND ?year >= 2004

USING somelibrary FOR <http://example.somelibrary.org/books#>

This sample query will return all the RDF triples with a predicate somelibrary:year
and a literal object consisting on an integer equal or greater than 2004. A complete expla-
nation of the language can be found in [127].

9.4.9 XPath translation to RDQL

Some works face the problem to execute XPath queries over RDF data. Most
of them (like [65]) take a structure-mapping approach and describe some simple mapping
mechanisms to cover just a subset of XPath constructs (as mentioned before it is not feasible
to map the constructs based on node-order in a structure-mapping approach). Another
works, like the RPath initiative [132], try to define an analogous language to XPath but for
natural (not derived from XML) RDF data.

Our strategy is radically different because we transform a XPath query into a
RDQL query that we execute over an exact (and not just an intuitive mapping) RDF
representation of the input XML data. This makes feasible the mapping of all XPath
constructs in a natural and elegant way.

Each XPath azis can be mapped into one or more triple patterns of the target
RDQL [127] query. Analogously each nodetest and predicate can be mapped also with just
one ore more triple patterns. The output RDQL query always takes the form:

SELECT =*

WHERE
(?v1, <rdf:type>, <xmloverrdf:document>)
[triple pattern 2]
[triple pattern 3]

[triple pattern N]
USING
xmloverrdf FOR <http://dmag.upf.edu/xml#>

The translation can be deduced from the XPath formal semantics. For example,
the following axis is described as:

Afollowing(f) = {fl | T € Adescendant—or—self(l'?)
Nzg € Afollowing—sibling (373)}
Nzxg € Aancestor—or—self(x)}

So the following axis must be translated to:
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(?vi, <xmloverrdf:ancestor-or-self>, 7vi-1)

i=1i+1
(?vi, <xmloverrdf:following-sibling>, ?vi-1)
i=1+1
(?vi, <xmloverrdf:descendant-or-self>, 7vi-1)
i=1+1

There are also simple conversion rules for all nodeTests and predicates but we omit
them to save space. The notation used includes variable names like v¢ and vi-1 where ¢
begins with value 2 (because of the first triple pattern is always the same as shown before).
So if we would have just the expression:

/child::movies/child: :movie

We will translate the first child axis to:

(?v2, <xmloverrdf:childOf>, ?7v1)

The first node test to:

(?v2, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movies>)
The second child axis to:

(?result, <xmloverrdf:childOf>, ?v2)

And the second node test to:

(?result, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movie>)
The complete WHERE clause will appear as:

WHERE
(?v1l, <rdf:type>, <xzxmloverrdf:document>)
, (?v2, <xmloverrdf:child0f>, ?v1l)
, (?7v2, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movies>)
, (?result, <xmloverrdf:child0f>, ?v2)
, (?result, <zmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movie>)

9.4.10 Example results

An example query could be:

/child: :movies/child: :movie/child::title
(in abbreviated form /movies/movie/title)

That is translated to:
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SELECT =*
WHERE
(?v1, <rdf:type>, <xmloverrdf:document>)
, (?v2, <xmloverrdf:child0f>, ?v1)
, (?v2, <xmloverrdf:hasName>, '"movies")
, (?v3, <xmloverrdf:childOf>, ?v2)
, (?v3, <xmloverrdf:hasName>, '"movie")
, (?result, <xmloverrdf:childOf>, ?v3)
, (Presult, <xmloverrdf:hasName>, "title")

Result: 6, 9 (node numbers, see figure)

9.5 Incorporating schema-awareness

9.5.1 Mapping XML Schema to RDF

In our ontology for the XML model, the object of the hasName property is not a
literal but a resource (an RDF resource). This key aspect allows to apply to hasName all the
potential of the OWL relationaships (e.g. defining ontologies whith names relationships).
So, if we want our XPath processor to be schema-aware, we just need to translate the XML
Schema language to RDF, and to add to our XML/RDF Syntax ontology the necessary
OWTL constructs that allow the inference engine to understand the semantics of the different
XML Schema components. The added axioms in Desctiption Logics syntax (SHZQ-like
style [62]) would be:

hasName C fromSubstitutionGroup
Trans(fromSubstitutionGroup)
hasName C fromType
Trans(fromType)
fromType CsubTypeO f

9.5.2 A simple example of schema-aware XPath processing

The next example ilustrates the behaviour of our processor in a schema-related
XPath query. Take this simple XML document:

<A>
<B id=’B1’ />
<B id=’B2’>
<C id=’C1°’>
<D id=’D1’></D>
</C>
</B>
<B id=’B3’/>
</A>
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And its attached schema:

<schema>
<complexType name=’BType’>

<complexContent>

<extension base=’SUPERBType’></extension>

</complexContent>
</complexType>
<element name=’B’

type=’BType’ substitutionGroup=’SUPERB’ />

</schema>

When evaluating the XPath query //SUPERB, our processor will return the elements with
IDs 'B1’, ’B2’ and 'B3’. These elements have a name with value 'B’, and the schema specifies
that this name belongs to the substitution group '’SUPERB’, so they match the query. Also,
when evaluating the query //SUPERBType, the processor will return 'B1’, ‘B2’ and 'B3’.
It assumes that the query is asking for elements from the type SUPERBType or one of its
subtypes.

9.5.3 Complete XSD to OWL Mapping

The previous XML Schema (XSD) to RDF mapping is partial in the sense that it
just maps the XML Schema semantics that are needed in order to make the XPath processor
XSD semantics aware. There is also a more complete XML Schema to OWL mapping
(XSD20WL) that is responsible for capturing almost all the schema implicit semantics. This
semantics are determined by the combination of XML Schema constructs. The XSD20WL
mapping is based on translating these constructs to the OWL ones that best capture their
semantics. The informal semantics of XML Schema constructs are presented in Table 9.2
and then used to guide the XML Schema to OWL mappings shown in Table 9.3.

The XSD20WL mapping is quite transparent and captures a great part XML
Schema semantics. The same names used for XML constructs are used for OWL ones, al-
though in the new namespace defined for the ontology. XSD and OWL constructs names are
identical; this usually produces uppercase-named OWL properties because the corresponding
element name is uppercase, although this is not the usual convention in OWL.

Therefore, XSD20WL produces OWL ontologies that make explicit the semantics
of the corresponding XML Schemas. The only caveats are the implicit order conveyed by
xsd:sequence and the exclusivity of xsd:choice.

For the first problem, owl:intersectionOf does not retain its operands order, there is
no clear solution that retains the great level of transparency that has been achieved. The use
of RDF Lists might impose order but introduces ad-hoc constructs not present in the original
metadata. Moreover, as it has been demonstrated in practise, the elements ordering does
not contribute much from a semantic point of view. For the second problem, owl:unionOf is
an inclusive union, the solution is to use the disjointness OWL construct, owl:disjoint With,
between all union operands in order to make it exclusive.

The resulting OWL ontology is OWL-Full because the XSD20OWL translator has
employed rdf:Property for properties to cope with the fact that there are properties that have
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Table 9.2: XML Schema informal semantics

XML Schema

Shared informal semantics

element | attribute

Named relation between nodes or nodes and values

element@substitutionGroup

Relation can appear in place of a more general one

element@type The relation range kind
complexType | group | attributeGroup Relations and contextual restrictions package
complexType//element Contextualised restriction of a relation

extension@base | restriction@base

Package concretises the base package

@maxOccurs @minQOccurs

Restrict the number of occurrences of a relation

sequence choice

Combination of relations in a context

Table 9.3: XSD20WL translations for the XML Schema constructs

XML Schema

\ OWL

element | attribute

rdf:Property
owl:DatatypeProperty
owl:ObjectProperty

choice

element@substitutionGroup rdfs:subPropertyOf
element@Qtype rdfs:range
complexType | group | attributeGroup owl:Class
complexType//element owl:Restriction
extension@base | restriction@base rdfs:subClassOf
@maxOccurs owl:maxCardinality
@minOccurs owl:minCardinality
sequence owl:intersectionOf

Owl:unionOf
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both data type and object type ranges as specified in the XML Schema for the corresponding
xsd:element.

The full mapping facilitates the implementation of XSD semantics-aware applica-
tions. These applications can use the XSD schema semantics formalised in the corresponding
ontologies. This ontologies enable semantic XPaths but also they open the possibility to
use other semantics-enabled tools to the XML domain, e.g. reasoning engines or ontology
alignment solutions for schema integration.

For instance, this approach has already shown its usefulness in the Digital Rights
Management (DRM) domain [48]. These ontologies have been then exploited for DRM
Systems implementation [45] [46] and assisted negotiation of digital goods [47].

9.6 Implementation and performance

The work has been materialised in the form of a Java API. We have used the Jena
2 API [76] for RDQL computation and OWL reasoning. To process XPath expressions we
have modified and recompiled the Jaxen XPath Processor |75|. An on-line demo can be
found at http://dmag.upf.edu/contorsion.

9.6.1 Jena Inference Engine

The Jena API [76] provides a set of different inference engines or reasoners. We
use the Jena’s OWL reasoner to allow the RDQL query processor to derive additional RDF
assertions from the base RDF data together with the XML/RDF ontology axioms. This
reasoner includes rules for each one of the OWL/Lite constructs and also others, so it
can be considered an incomplete implementation of OWL/Full. Table 9.4 enumerates the
constructs supported by the OWL reasoner.

Table 9.4: OWL constructs supported by the Jena’s OWL reasoner
’ Constructs ‘
rdfs:subClassOf, rdfs:subPropertyOf, rdf:type

rdfs:domain, rdfs:range
owl:someValuesFrom, owl:allValuesFrom

owl:minCardinality, owl:maxCardinality, owl:cardinality

owl:intersectionOf

owl:equivalentClass, owl:disjoint With

owl:sameAs, owl:differentFrom, owl:distinctMembers
owl:Thing

owl:equivalentProperty, owl:inverseOf

owl:FunctionalProperty, owl:InverseFunctionalProperty

owl:SymmeticProperty, owl:TransitiveProperty
owl:hasValue

The OWL reasoner is built on top of a general purpose rule engine. This engine
allows rule-based inference over RDF graphs, combining two different strategies. On one
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hand the engine uses forward chaining (specifically the RETE algorithm [40]) to precompute
deductions. On the other hand it uses backward chaining (a Logic Programming strategy
like Prolog) to answer the queries. The combination of these wwo strategies (hybrid model)
is used by default, but the engine can be configured to run just one of them.

raw data @
Forward T
forward rules —# (RETE) deductions
angine
Backward
—
backward rules ,@ B (LE) N query
engine

Figure 9.4: Jena hybrid execution model

The forward engine maintains a set of inferred statements in the deductions store.
Forward rules can infer new data (deductions) and also other rules. When a query is for-
mulated, the backward chaining LP engine applies the merge of the supplied and generated
rules to the merge of the raw and deduced data.

The hybrid approach allows improving performance by reducing e.g. the generality
of some backward rules that could be instantiated for a specific dataset. As an example,
extracted from [77], consider the RDFS subPropertyOf entailments. A simple solution would
involve the following backward rule:

(?a ?q ?b) <- (?7p rdfs:subProperty0f ?7q), (7a ?p ?b)

Of course the rule would work, but because the head is composed just by variables,
every goal from the query will match. This will cause that the engine will have to test
for subProperty relations for all possible goals. So, it makes sense to adapt this rule to a
specific dataset before the backward process begin. We can try the following combination
of a forward rule and a backward rule:

(?p rdfs:subProperty0f ?7q), notEqual(?p,?q)
-> [ (?a ?q ?b) <- (?a ?p ?b) ]

The forward strategy would precompile all the declared subPropertyOf relationships into
simple backward rules. These rules would only be fired if the goal references a property
which actually has a sub property.

9.6.2 Performance

Though performance wasn’t the target of the work, it is an important aspect of
the processor. We have realised a performance test over a Java Virtual Machine v1.4.1 in
a 2GHz Intel Pentium processor with 256Mb of memory. The final delay depends mainly
on two variables, the size of the target documents, and the complexity of the query. Table
9.5 shows the delay of the inferencing stage for different document depth levels and also for
some different queries.
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The processor behaves well with medium-size documents and also with large ones
when simple queries are used (queries that not involve transitive axis), but when document
size grows the delay related to the complex queries increases exponentially. Some perfor-
mance limitations of the Jena’s OWL inference engine have been described in [78]. We are
now working on this problem, trying to obtain a more scalable inference engine.

Table 9.5: Performance for different document depth levels

’expression ‘5d ‘ 10d ‘15d ‘20d ‘20d (Xalan XPath processor) ‘
/A/B 32ms (47ms |47ms |62ms |16ms
/A /B /following-sibling::B | 125ms | 46ms |48ms |47ms |15ms
/A /B /following::B 125ms | 62ms |63ms |47ms |16ms
/A//B 172ms | 203ms | 250ms | 219ms | 31ms
//A//B 178ms | 266ms | 281ms |422ms | 32ms

9.7 Testing in the DRM Application Domain

The amount of digital content delivery in the Internet has made Web-scale Digital
Rights Management (DRM) a key issue. Traditionally, DRM Systems (DRMS) have dealt
with this problem for bounded domains. However, when scaled to the Web, DRMSs are very
difficult to develop and maintain. The solution is interoperability of DRMS, i.e. a common
framework for understanding with a shared language and vocabulary. That is why it is
not a coincidence that organisations like MPEG (Moving Picture Experts Group), OMA
(Open Mobile Alliance), OASIS (Organization for the Advancement of Structured Informa-
tion Standards), TV-Anytime Forum, OeBF (Open eBook Forum) or PRISM (Publishing
Requirements for Industrial Standard Metadata) are all involved in standardisation or adop-
tion of rights expression languages (REL). Two of the main REL initiatives are MPEG-21
REL [149] and ODRL [66].

Both are XML sublanguages defined by XML Schemas. The XML Schemas define
the language syntax and a basic vocabulary. These RELs are then supplemented with what
are called Rights Data Dictionaries [133]. They provide the complete vocabulary and a
lightweight formalisation of the vocabulary terms semantics as XML Schemas or ad hoc
ontologies. ODRL and MPEG-21 REL have just been defined and are available for their
implementation in DRMS. They seem quite complete and generic enough to cope with such
a complex domain. However, the problem is that they have such a rich structure that they
are very difficult to implement. They are rich in the context of XML languages and the
"traditional" XML tools like DOM or XPath. There are too many attributes, elements and
complexTypes (see Table 9.6) to deal with.

9.7.1 Application to ODRL license processing

Consider looking for all constraints in a right expression, usually a rights license,
that apply to how we can access the licensed content. This would require so many XPath
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Table 9.6: Number of named XML Schema primitives in ODRL and MPEG-21 REL
Schemas | xsd:attribute | xsd:complexType |xsd:element | Total

ODRL EX-11 10 15 23 127
DD-11 3 2 74

MPEG-21| EL-R 9 96 78 330
REL-SX 3 35 84
REL-MX 1 28 36

queries as there are different ways to express constraints. For instance, ODRL defines 23
constraints: industry, interval, memory, network, printer, purpose, quality. .. This amounts
to lots of source code, difficult to develop and maintain because it is very sensible to mi-
nor changes to the REL specs. Hopefully there is a workaround hidden in the language
definitions.

As we have said, there is the language syntax but also some semantics. The sub-
stitutionGroup relations among elements and the exztension/restriction base ones among
complexTypes encode generalisation hierarchies that carry some lightweight, taxonomy-like,
semantics. For instance, all constraints in ODRL are defined as XML elements substituting
the o-ex:constraintElement, see Figure 9.5. The difficulty is that although this information

oex:constraintElement]
R

substitutionGroup

|0dd:industry”odd:interval| |odd:memory| |odd:network| |odd:printer| |odd:purpose”odd:qualityl

Figure 9.5: Some ODRL constraint elements defined as substitutionGroup of constraintEle-
ment

is provided by the XML Schemas, it remains hidden when working with instance documents
of this XML Schemas. However, using the semantics-enabled XPath processor we can profit
from all this information. As it has been shown, the XML Schemas are translated to OWL
ontologies that make the generalisation hierarchies explicit, using subClassOf and subProp-
ertyOf relations. The ontology can be used then to carry out the inferences that allow a
semantic XPath like “//o-ex:constraintElement” to retrieve all o-ez:constraintElement plus
all elements defined as its substitutionGroup.

9.7.2 Application to the MPEG-21 authorization model
MPEG-21 REL

In MPEG-21 standard the protection and governance of digital content are specified
in MPEG-21 IPMP Components [70], MPEG-21 REL [128] and RDD [123| parts. MPEG-21
IPMP Components provides mechanisms to protect a digital item (DI) [29] and to associate
licenses to the target of their governance, while MPEG-21 REL specifies the syntax and
semantics of the language for issuing rights for users to act on DIs while MPEG-21 RDD
comprises a set of terms to support the MPEG-21 REL. Suppose an MPEG-21 compliant
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peer that receives a protected and governed MPEG-21 DI, which consists of a digital asset
and some metadata, as the information related to the tools to unprotect the asset and the
conditions of use of this asset (see example). When processing this DI the first step is
to obtain the IPMP metadata associated to the asset, then if any license that governs the
protected asset is found, the application has to resolved if the user can exercise the requested
action by means of the authorization mechanism defined in MPEG-21 REL, and if the result
is positive the asset is unprotected and the action is exercised.

<DIDL>
<Item>
<Component>
<Resource mimeType="application/ipmp">
<ipmpdidl:ProtectedAsset mimeType="audio/mp3">
<ipmpdidl:Identifier>
<dii:Identifier> urn:mpegRA:mpeg21:dii:as002-11</dii:Identifier>
</ipmpdidl:Identifier>
<ipmpdidl:Info>
<ipmpinfo:IPMPInfoDescriptor>
<ipmpinfo:Tool> ... </ipmpinfo:Tool>
<ipmpinfo:RightsDescriptor>
<ipmpinfo:License>
<r:license> ... </r:license>
</ipmpinfo:License>
</ipmpinfo:RightsDescriptor>
</ipmp:IPMPInfoDescriptor>
</ipmpdidl:Info>
<ipmpdidl:Contents> EFJDVOFUV98JRF424UO39RNCNK. .. </ipmpdidl:Contents>
</ipmpdidl:ProtectedAsset>
</Resource>
</Component>
</Item>
</DIDL>

In the scenario described above, the XPath processor is useful when implementing license
based authorization mechanisms. MPEG-21 REL standard specification defines the autho-
rization model, Figure 9.6, that makes use of the authorization request and story elements
and resolves the question "Is a Principal authorized to exercise a Right such a Resource?".
The XPath processor simplifies the implementation of the authorization algorithm because
it allows to the application to quickly identify which elements are of a particular type in the
licenses, authorization request and stories considered to resolve this algorithm. Therefore,
when the application has to determine if a license or a grant within an authorization request
or story has any element representing a resource, a principal or a condition, this process
could result complex and costly if we don’t use the XPath processor. A clear example is
when we look for a resource in a license or grant element within an authorization request
or story, if we don’t have the capability to search for an element that its substitutionGroup
is resource, then we have to look for one of the elements depicted in Figure 9.7. In the
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R’

Authorzation story Authorization Reguest
| Frimitiwe grant | | Frincipal |
| Authorized grant or grantGroup | | Right |
Authorizer

| Res ource |

| License |

it authorzation
proot for

| Interval of time |

| Frinzipal |

| Authoriz ation context |

| Time instant |

| Licenze elements |

| Authorization cortest |
Grant elements that do not

| require an autharzer

- | Authoriz ation stony

Figure 9.6: MPEG-21 REL authorization model

anxmlExprazsion

anxmiPatternAbstract
k-__ resourceP atte rnfbstract
| resource |q—‘ digitalResource |

\.‘ prindpalPatternAbstract |"—| propertyFoszessar

ditemR efarance
grantzroupPathern

propertwAbstract

Figure 9.7: Example of resource elements
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authorization process, the Xpath processor also is useful when comparing the right the user
wants to exercise and the right in the user’s license, because we have to take into account
the rights lineage defined in RDD as described above.

MPEG-21 RDD

In order to interpret REL licenses, the semantic XPath processor help us when
determining if the user has the appropriate rights taking into account the rights lineage
defined in the RDD (Rights Data Dictionary).

In contrast with ODRL, that uses XMLSchemas both for the language and dic-
tionary definitions, MPEG-21 has an ontology as dictionary (RDD). The semantics that it
provides can also be integrated in our semantic XPath processor. To do that, the MPEG-21
RDD ontology is translated [74] to the ontology language used by the Semantic XPath Pro-
cessor, i.e. OWL. Once this is done, this ontology is connected to the semantic formalisation
build up from the MPEG-21 REL XML Schemas. Consequently, semantic XPath queries
can also profit from the ad hoc ontology semantics. For instance, the acts taxonomy in
MPEG-21 RDD, see Figure 9.8, can be seamlessly integrated in order to facilitate license
checking implementation. Consider the scenario: we want to check if our set of licenses au-
thorises us to uninstall a licensed program. If we use XPath, there must be a path to look for

Derive

Perceive

InteractWith <—| UseAsSource

Install

DR

Uninstall

ActType

Figure 9.8: Portion of the acts taxonomy in MPEG-21 RDD

licenses that grant the uninstall act, e.g. “//r:license/r:grant/mx:uninstall”. Moreover, as it
is shown in the taxonomy, the usetool act is a generalisation of the uninstall act. Therefore,
we must also check for licenses that grant us usetool, e.g “//r:license/r:grant /mx:uninstall”.
An successively, we should check for interactwith, do and act.

However, if we use a semantic XPath, the existence of a license that grants any
of the acts that generalise uninstall implies that the license also states that the uninstall
act is also granted. This is so because, by inference, the presence of the fact that re-
lates the license to the granted act implies all the facts that relate the license to all the
acts that specialise this act. Therefore, it would suffice to check the semantic XPath ex-
pression “//r:license/r:grant/mx:uninstall”. If any of the more general acts is granted it
would match. For instance, the XML tree /r:license/r:grant/dd:usetool implies the trees
Jrilicense/r:grant/dd:install and /r:license/r:grant/dd:uninstall.
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9.8 Conclusions

In this chapter we have described a novel strategy for designing a schema-aware and
ontology-aware XPath/XQuery processor. Such behaviour, that we have called semantic,
can be used to transparently resolve queries over XML instances bound to schemas that
define inheritance hierarchies among types and element names, or related to ontologies that
define relationships that are relevant for the queries evaluation.

Our approach has consisted in mapping the XML and XSD models to OWL, al-
lowing a complete translation from XML and XSD instances to RDF triples. The XPath
expressions are translated to RDQL queries (we have provided a simple and elegant algorithm
to do it) that are then resolved by an RDQL engine with OWL reasoning capabilities. The
chosen representation retains the node order, in contrast with the usual structure-mapping
approach, that maps the specific structure of some XML schema to RDF constructs. The
work has been materialised in the form of a Java API. An on-line demo can be found at
http://dmag.upf.edu/contorsion.

Finally, we have demonstrated how our approach can be useful in a plausible usage
scenario, the Digital Rights Management domain, where the schema-aware and ontology-
aware XPath/XQuery Processor has shown its benefits. The behaviour of the processor
allows a transparent access to the semantics hidden in the schemas of the Rights Expression
Languages, so we do not need to recode them. This allows developing software less coupled
with the underlying specifications.






Chapter 10

A Vector Space Model for Semantic
Similarity Calculation and OWL
Ontology Alignment

Ontology alignment (or matching) is the operation that takes two ontologies and
produces a set of semantic correspondences (usually semantic similarities) between some
elements of one of them and some elements of the other. A rigorous, efficient and scalable
similarity measure is a pre-requisite of an ontology alignment process. This chapter presents
a semantic similarity measure based on a matrix represention of nodes from an RDF labelled
directed graph. An entity is described with respect to how it relates to other entities using
N-dimensional vectors, being N the number of selected external predicates. We adapt the
graph similarity calculation described in [20] when applying this idea to the alignment of two
ontologies. We have successfully tested the model with the public testcases of the Ontology
Alignment Evaluation Initiative 2005. !

10.1 Already published work

Large portions of this chapter have appeared in the following paper:

Tous R., Delgado J. “A Vector Space Model for Semantic Similarity Calculation
and OWL Ontology Alignment”, 17th International Conference on Database and
Expert Systems Applications (DEXA 2006), 4-8 September 2006. To be pub-
lished in Lecture Notes in Computer Science.

! This work has been partly supported by the Spanish administration (DRM-MM project, TSI 2005-
05277).
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10.2 Introduction

10.2.1 DMotivation

For many knowledge domains (biology, music, web directories, digital rights man-
agement, etc.) several overlapping ontologies (middle ontologies) are being engineered. Each
one is a different abstraction and representation of the same or similar concepts. There are
proliferating also a myriad of problem-specific ontologies (lower ontologies) for many appli-
cations, metadata repositories, personal information systems and peer-to-peer networks.

To enable collaboration within and across information domains, software agents
require the semantic alignment (mapping) of the different formalisms. The alignment process
will identify the equivalences between some entities (e.g. classes and properties) of the
participating ontologies, and the different levels of confidence. These mappings are required
before the querying of semantic data from autonomous sources can take place.

10.2.2 Ontology Alignment

Ontology alignment (or matching) is the operation that takes two ontologies and
produces a set of semantic correspondences (usually semantic similarities) between some
elements of one of them and some elements of the other. Several ontology alignment al-
gorithms have been provided like GLUE [32], OLA [37] or FOAM [36]. A more formal
definition, borrowed from [35], can be given:

Definition 10.2.1. Given two ontologies @ and @', an alignment between O and O’ is a
set of correspondences (i.e., 4-uples): < e,e’,r,n > with e € O and ¢’ € O’ being the two
matched entities, r being a relationship holding between e and ¢/, and n expressing the level
of confidence [0..1] in this correspondence.

It is typically assumed that the two ontologies are described within the same knowl-
edge representation language (e.g. OWL [112]). Here we will focus on automatic and au-
tonomous alignment, but other semi-automatic and interactive approaches exist.

10.2.3 Semantic similarity measures

The ontology alignment problem has an important background work in discrete
mathematics for matching graphs [58]|[114], in databases for mapping schemas [122] and in
machine learning for clustering structured objects [19]. Most part of ontology alignment
algorithms are just focused on finding close entities (the "=" relationship), and rely on some
semantic similarity measure.

A semantic similarity measure tries to find clues to deduce that two different data
items correspond to the same information. Data items can be ontology classes and proper-
ties, but also instances or any other information representation entities. Semantic similarity
between ontology entities (within the same ontology or between two different ones) may be
defined in many different ways. The recently held Ontology Alignment Evaluation Initiative
2005 [108] has shown that the best alignment algorithms combine different similarity mea-
sures. [37] provides a classification (updating [122|) inherited from the study of similarity
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in relational schemas. This classification can be simplified to four categories when being
applied to ontologies: Lexical, Topological, Extensional and Model-based.

10.2.4 Owur approach

The work presented in this chapter takes a topological or structure-based semantic
similarity approach. As ontologies and knowledge-representation languages evolve, more
sophisticated structure-based similarity measures are required. In RDF graphs, relationships
are labeled with predicate names, and trivial distance-based strategies cannot be applied.
Some works like [64] explore similarity measures based on structure for RDF equivalent
bipartite graphs.

Our work focus also in RDF, but faces directly the natural RDF labelled directed
graphs. The approach can be outlined in the following two points:

1. To compute the semantic similarity of two entities we have taken the common RDF
and OWL predicates as a semantic reference. Objects are described and compared
depending on how they relate to other objects in terms of these predicates. We have
modeled this idea as a simple vector space.

2. To efficiently apply our similarity measure to the ontology alignment problem we have
adapted it to the graph matching algorithm of [20].

10.3 Representing RDF labelled directed graphs with a vector
space model (VSM)

In linear algebra a vector space is a set V' of vectors together with the operations of
addition and scalar multiplication (and also with some natural constraints such as closure,
associativity, and so on). A vector space model (VSM) is an algebraic model introduced a
long time ago by Salton [134] in the information retrieval field. In a more general sense,
a VSM allows to describe and compare objects using N-dimensional vectors. Each dimen-
sion corresponds to an orthogonal feature of the object (e.g. weight of certain term in a
document).

In an OWL ontology, we will compare entities taking into consideration their rela-
tionships with all the other entities present in the ontology - First we will focus on similarity
within the same ontology, next we will study its application to the alignment of two ontolo-
gies -. Because relationships can be of different nature we will model them with a vector
space. For this vector space, we will take as dimensions any OWL, RDF Schema, or other
external predicate (not ontology specific) e.g. rdfs:subClassOf, rdfs:range or foaf:name. We
can formally define the relationship of two nodes in the model:

Definition 10.3.1. Given any pair of nodes n; and no of a directed labelled RDF graph
Go representing the OWL ontology O, the relationship between them, rel(n,ny), is defined
by the vector {arc(ni,ng,p1),...,arc(ni,n2,py)}, where arc is a function that returns 1 if
there is an arc labelled with the predicate p; from ny to ny or 0 otherwise. p; is a predicate
from the set of external predicates P (e.g. {rdfs:subClassOf, foaf-name}).
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rel(ni, n2) ={arc(ni,n2, p1),...,arc(ni,n2, pn)} |
ni,n2 € Go A Vi € [0;N],p; € P

1 if there is an arc labelled with p; from nq to ns;
arc(ny, ng,p;) =

0 otherwise.

Example 10.3.1. Let us see a simple example. Take the following graph G4 representing
an ontology O 4. Imagine a trivial two-dimensional vector space to model the relation-
ships between nodes. External predicates rdfs:domain and rdfs:range have been chosen for

dimensions 0 and 1 respectively.
dfs:domain

rdfs:domain /

rdfs:range

-

rdfs:domain

e rdfs:range

o

Figure 10.1: G4

The relationship between the property directs and the class director will be de-
scribed by {1,0}. The relationship between the property actsIn and the class movie will be
described by {0,1}, and so on.

Now, the full description of an entity can be achieved with a vector containing the
relationships between it and all the other entities in the ontology. Putting all the vectors
together we obtain a three-dimensional matrix A representation of the labelled directed
graph G4 (row order: director, actor, movie, directs, actsIn, voiceln):
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10.4 Similarity of entities within the same ontology

In the general case, the correlation between two vectors z and y in an N-dimensional
vector space can be calculated using the scalar product. We can normalize it by dividing this
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product by the product of the vector modules, obtaining the cosine distance, a traditional
similarity measure. In our case, vectors describing entities in terms of other entities are
composed by relationship vectors (so they are matrices). We can calculate the scalar product
of two of such vectors of vectors V' and W using also the scalar product to compute V;W;:

N M
Vo= VW
i=1 j=1
Applying this equation to the above example we can see that the scalar product of
e.g. the vector describing directs and the vector describing actsin is directs - AactsIn = 1.
The scalar product of actsIn and voiceln is actsIn - Avoiceln = 2, and so on. Normalizing
these values (to keep them between 0 and 1) would allow to obtain a trivial similarity matrix
of the ontology entities. However, we aim to propagate the structural similarities iteratively,
and also to apply this idea to the alignment of two different ontologies. In the following
sections we will describe how to do it by adapting the ideas described in [20].

10.5 Applying the model to an ontology alignment process

To calculate the alignment of two ontologies represented with our vector space
model we have adapted the graph matching algorithm of [20]. This adapted algorithm cal-
culates entity similarities in an RDF labelled directed graph by iteratively using the following
updating equation:

Definition 10.5.1. Sy, = BS AT + BTSy A,k =0,1, ...

where Sj is the Np * N4 similarity matrix of entries s;; at iteration k, and A and B are
the Np * Np x Np and Ny x N4 * Np three-dimensional matrices representing G 4 and Gp
respectively. N4 and Npg are the number of rows of A and B, and P is the number of
predicates selected as dimensions of the VSM.

Note that, as it is done in [20], initially the similarity matrix Sp is set to 1 (assuming
for the first iteration that all entities from G 4 are equal to all entities in Gg). If we start the
process already knowing the similarity values of some pair of entities, we can modify this
matrix accordingly, and keep the known values between iterations.

Example 10.5.1. Let’s see a simple example. Take the following graphs G 4 and Gg. Figure
10.6 shows their corresponding RDF labelled directed graphs.

WP E
0

Figure 10.2: G4 (left) and Gg (right)
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(0,0) (1,0) (0,1) (0,0) (1,0) (0,1) 111
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 111

2.0 0
simps = RpgAT =1 0 0 0
00 0
(0,0) (1,0) (0,1)
Ray=SoA= [ (0,0) (1,0) (0,1)
(0,0) (1,0) (0,1)
00 0
stmgy =B " Rgp =1 0 1 0
00 1

2.0 0
Sy = simpg + simg, = BSoAT + BTSpA=[ 0 1 0
00 1

To normalize the similarity matrix (to keep its values between 0 and 1) [20] divides all its
elements by the Frobenius norm of the matrix, defined as the square root of the sum of the
absolute squares of its elements 2.

0,816 0 0
S1 = 81/ frobeniusNorm(S;) = 0 0,408 O
0 0 0,408

Iterating the algorithm 4 times it converges to the following result:

0,577 0 0
Sy = 0 0577 0
0 0 0,577

So, as expected the entities a’, b’ and ¢’ (rows) are similar to a, b and ¢ (columns) respectively.

?Frobenius norm: /> M, Z;V:1 |ai;]|
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10.5.1 Computational cost and optimization

Because the number of selected external predicates p; € P can be small and it
is independent of the size of the ontologies, operations involving relationships vectors can
be considered of constant cost, and the general algorithm of order O(N?). Because the
number of nodes can be considerably high, some optimizations are required to constraint
the processing time. Inspired in [64], we have classified nodes into five types: Properties (p),
Classes (c), Instances (i), External Classes (¢') and External Instances (i'). Because nodes
from one type cannot be similar to nodes of another type, the matrices can be rewritten
(rows and columns correspond to types previously mentioned and in the same order):

Apy Ape Ay Apo Ay
Acfp Acfc Acfi Acfc’ Acfi’
A= Aip Aie Ay Ao Ay
Aoy Au_e Avi Au_u Au_y
App Ay e Ay Ap_o Ay g

S, 00 0 0
0 S 0 0 0
Se=| 0 0 S 0 0
0 0 0 S, 0
0 0 0 0 Sy

Definition 10.5.2. The Sy equation can be decomposed into three formulas:

Spk+1 = BP*PSPkAg—p + BpfcsckAg_c + Bp—iSikAg,i + B,y SCZAZ;—C’ +
Bp—i'si;cAjj)li’ + BpT_pSpkApfp + BZ_pSCkAC,p + BZ'T_pSikAifp +
BcT'fpScchC’—p + B’;I’jfpsikai’_p

Sck+1 = BC_pSpkAchp + Bc—cSckAzlc + BC—iSikAz_i 4+ By SC;C AZlC, +
B, Sy Al .+ Bl Sy Apc+ BL S, Acc+ Bl Siy Aiee +

Bg;_csc;c Ac’fc + Bg_csi%Ai’fc
Sirs = BipSp Al + BioeSo, Al .+ BioiSi Al + Bio Sy Ay +

BCT,%SC;CACI_@ + Bij'lisi;cAi’—i

Sck - and Sik ., are diagonal matrices passed as input parameters. They are kept unchanged
between iterations.

10.5.2 Comparison against algoritms based on bipartite graphs

The use of an algorithm to measure similarity between directed graphs could lead
to think that it would be better to directly apply it over the ontologies equivalent bipartite
graphs (like it is done in [64]), instead of adapting it to RDF labelled directed graphs.
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However, our approach has some advantages; on one hand we reduce critically the number
of nodes and the computational cost. On the other hand, in bipartite graphs the core
predicates of OWL are treated as all the other nodes, while in our model they become
the semantic reference to describe and compare entities. Figure 10.7 shows the equivalent
bipartite version of the previous example with two graphs of three nodes.

Figure 10.3: Bipartite version of Figure 10.6
Appying the [64] we obtain the following similarity matrix between o', ', ¢’ and a, b, ¢:

Note that initially the similarity matrix Xg is set to 1. If we start the process
already knowing the similarity values of some pair of entities, we can modify set this matrix
accordingly, and keep the known values between iterations. Let’s calculate the similarity
between G 4 and Gg:

0001100 0001100
000O0O0O0OO O 000O0O0O OO i 1 } } 1 1
00 0O0O0O0OO O 00 0O0O0O OGO 1111 1 1
A=010001OB=0100010X0=111111
0010001 0010001 111 1 1 1
00 0O0O0O 0O 00 0O0O0O0O O L1111 1 1«
00 0O0O0O0OO O 00 0O0O0O0OO
Iterating the algorithm 22 times it converges to the following result:
0,405 0 0 0 0 0 0
0 0,153 0,05 0 0 0,153 0,05
0 0,05 0,153 0 0 0,05 0,153
Xoo = 0 0 0 0,534 0,172 0 0
0 0 0 0,172 0,534 0 0
0 0,153 0,05 0 0 1 0,05
0 0,05 0,153 0 0 0,05 1
0,405 0 0
Xog = 0 0,153 0,05

0 0,05 0,153
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As can be seen, the inclusion of statement nodes adds some symmetries not present in the
original graphs, resulting in less precise results. Some similarities between nodes b’ and ¢
(and vice-versa) appear.

10.5.3 An extended example

Example 10.5.2. Let’s see a simple example. Take the following graphs G4 and Gg.

Scholastics
subClassOf  subClassOf

Supervisor Graduate

D
{0

domain range subClassOf

supervise

O
(7)

owl:Object
Property

Figure 10.4: G4
Iterating the algorithm 22 times it converges to the following result:

Rows: b:Teacher, b:OverseaStudent, b:People, b:Other, b:Student Columns: a:Graduate,
a:Scholastics, a:PhdStudent, a:Supervisor

0,049 0 0,014 0,106
0,013 0 0,02 0,013
X2 =| 0,051 0,125 0 0
0,018 0 0,014 0,018
0,145 0,029 0,014 0,049

Separately b:teach and a:supervise similarity = 0,446
After normalization:
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Figure 10.6: Bipartite version of G4

0,336 0 0,098
0,09 0 0,134
X192 = Xy /mazValue(X1) = | 0,353 0,863 0
0,127 0 0,098
1 0,201 0,098

0,73
0,09

0,127
0,336
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Figure 10.7: Bipartite version of Gg

Separately b:teach and a:supervise similarity = 1
So, as expected the entities a’, b’ and ¢’ (rows) are similar to a, b and ¢ (columns) respectively.

A Rows: a:PhdStudent, a:Graduate, a:Scholastics, a:Supervisor, a:supervise, owl:ObjectProper
B Rows: b:Other, b:People, b:OverseaStudent, b:Student, b:Teacher, b:teach, owl:ObjectProperty
Relationships: (subClassOf, domain, range, type)

(0,0,0,0) (1,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (0,0,0,0) (1,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

A= (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
| (0,0,0,0) (0,0,0,0) (1,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (0,0,0,1) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,1,0,0)
(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

(0,0,0,0) (1,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (0,0,0,0) (0,0,0,0) (1,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
B=1 (0,0,0,0) (1,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (1,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,0,0) (0,1,0,0)
(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
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Iterating the algorithm 48 times it converges to the following result:

Rows: b:Other, b:People, b:OverseaStudent, b:Student, b:Teacher, b:teach, owl:ObjectProperty
Cols: a:PhD, a:Graduate, a:Scholastics, a:Supervisor, a:supervise, owl:ObjectProperty

0 0,15 0 0,156 0 0

0 0 0,462 0 0 0

0,134 0 0 0 0 0

Xyg = 0 0,39 0 0,156 0 0
0 0,15 0 0,354 0 0

0 0 0 0 0,589 0

0 0 0 0 0 1

10.6 Results

To test our approach we have used the Ontology Alignment Evaluation Initiative
2005 testsuite [108]. The evaluation organizers provide a systematic benchmark test suite
with pairs of ontologies to align as well as expected (human-based) results. The ontologies
are described in OWL-DL and serialized in the RDF /XML format. The expected alignments
are provided in a standard format expressed in RDF /XML and described in [108]. Because
our model does not deal with lexical similarity, we have integrated our algorithm inside
another hybrid aligner, Falcon [64] (replacing its structure similarity module by ours). This
constraints the interest of the obtained results, but otherwise it hadn’t been possible a
comparative evaluation. Because most part of the tests include more lexical similarity than
structural similarity challenges, our aligner and Falcon? obtain very similar results (the same
for tests 101-104 and 301-304). The differences fall between tests 201-266, that we show in
table 10.1.

Rows correspond to test numbers, while columns correspond to the obtained val-
ues of precision (the number of correct alignments found divided by the total number of
alignments found) and recall (the number of correct alignments found divided by the total
of expected alignments).

3A description of all the tests can be obtained from [108]. Our results for tests not present in the table
are the same as those of Falcon, and can be obtained in [64]
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vsm falcon foam ola

test |prec. rec. |prec. rec. |prec. rec. |prec. rec.
205(0.90 0.89]0.88 0.87|0.89 0.73]0.43 0.42
2091 0.88 0.8710.86 0.86|0.78 0.58|0.43 0.42
2301 0.97 0.96(0.94 1.0]0.94 1.0]0.95 0.97
2481 0.83 0.80]0.84 0.82|0.89 0.51]0.59 0.46
2521 0.64 0.64]0.67 0.67|0.67 0.35]0.59 0.52
257(0.66 0.66|0.70 0.64| 1.0 0.64]0.25 0.21
260(0.44 0.42|0.52 0.48]0.75 0.31]0.26 0.17
261(0.45 0.42]0.50 0.48|0.63 0.30|0.14 0.09
262 1.0 0.27]10.89 0.24|0.78 0.21]0.20 0.06
265(0.44 0.42|0.48 0.45]|0.75 0.31]0.22 0.14
266(0.45 0.42]0.50 0.48|0.67 0.36|0.14 0.09

Table 10.1: OAEI 2005 tests where our approach (vsm) obtains a different result than [64]

10.7 Related Work

The initial work around structure-based semantic similarity just focused on is-a
constructs (taxonomies). Previous works like [90] measure the distance between the different
nodes. The shorter the path from one node to another, the more similar they are. Given
multiple paths, one takes the length of the shortest one. [148] finds the path length to the
root node from the least common subsumer (LCS) of the two entities, which is the most
specific entity they share as an ancestor. This value is scaled by the sum of the path lengths
from the individual entities to the root. [89] finds the shortest path between two entities,
and scales that value by the maximum path length in the is—a hierarchy in which they occur.

Recently, new works like [20] define more sophisticated topological similarity mea-
sures, based on graph matching from discrete mathematics. These new graph-based mea-
sures suit the particularities of the new ontologies, built with more expressive languages
like OWL [112]. Our work is based on the previous work in [20], and also in its adaptation
to OWL-DL ontologies alignment in [64]. This last work describes a structural similarity
strategy called GMO (Graph Matching for Ontologies). Differently from our work, GMO
operates over RDF bipartite graphs. It allows a more direct application of graph matching
algorithms, but also increases the number of nodes and reduces scalability.

10.8 Conclusions

We have presented here an approach to structure-based semantic similarity mea-
surement that can be directly applied to OWL ontologies modelled as RDF labelled directed
graphs. The work is based on the intuitive idea that similarity of two entities can be defined
in terms of how these two entities relate to the world they share (e.g. two red objects are
similar with respect to the colour dimension, but their similarity cannot be determined in a
general way). We describe and compare ontological objects in terms of how they relate to
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other objects. We model these relationships with a vector space of N dimensions being N
the number of selected external predicates (e.g. rdfs:subClassOf, rdfs:range or foaf:name).
We have adapted the graph matching algorithm of [20] to these idea to iteratively compute
the similarities between two OWL ontologies. We have presented also an optimization of the
algorithm to critically reduce its computational cost. The good results obtained in the tests
performed over the Ontology Alignment Evaluation Initiative 2005 testsuite has proven the
value of the approach in situations in which structural similarities exist.
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Chapter 11

Facing Heterogeneous Query
Interfaces: Query Tunneling

In this chapter we describe the motivation, the requirements, the design decisions
and some implementation aspects related to the development of an advanced metasearch
strategy. This strategy is a reformulation of the traditional answering queries using views
[51] problem in a local-as-view (LAV) scenario from the data integration discipline. We
describe a new solution suited for the highly restricted and volatile scenario of the Web, and
based on XML technologies.

11.1 Already published work

Large portions of this chapter have appeared in the following papers:

Gil R., Tous R., Garcia R., Rodriguez E., Delgado J. “Managing Intellectual
Property Rights in the WWW: Patterns and Semantics”. 1st International Con-
ference on Automated Production of Cross Media Content for Multi-channel
Distribution (AXMEDIS 2005), November 2005

Tous R., Delgado, J. “Interoperability Adaptors for Distributed Information
Search on the Web”. Proceedings of the 7th ICCC/IFIP International Conference
on Electronic Publishing 2003. http://elpub.scix.net/cgi-bin/works/Show?0341

Tous R., Delgado, J. “Advanced Meta-Search of News in the Web”, Proceedings

of the 6th International ICCC/IFIP Conference on Electronic Publishing. Pub-
lisher: VWF Berlin, 2002. ISBN 3-89700-357-0. 395 pages. http://elpub.scix.net/cgi-
bin/works/Show?0234

11.2 Introduction

The main idea behind this work is that, in specific domains such as newspaper news,
virtual libraries, videos or music repositories, the available metasearch engines usually offer

101
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very restricted user interfaces (often only a keywords field) because of the difficulty to face
the interface particularities of each underlying source. Our approach targets to overcome
this limitation with a strategy inspired in the old works related to data integration but
making use of the new possibilities offered by XML technologies. We base our stratgy
on the reprocessing of the metadata returned by the different sources, allowing to include
metadata-based search conditions in the user interface even if they are not offered by some
of the target engines.

11.2.1 Web search engines

When we are looking for some information or content, in any digital environment,
we have two possible alternatives: We can explore one by one all the existing objects inside
the set of interest that in the case of the Web could take probably more than a million years
or we can use a search application that allows us to express constraints about the properties
of the objects that we are seeking, using some kind of language as for example SQL in the
context of databases. The more expressiveness the language has the more precision the
query will have. Traditional search over the Internet is usually performed using applications
known as ’search engines’. These systems seek a list of keywords among the textual content
of the Web (HTML, PDF, etc.). The concordance of a resource with the query depends on
the times keywords are present and also on their relative and absolute position.

The traditional search engines user interface consists of a single text field where
users can enter a sequence of keywords and boolean operators to constraint how these key-
words must be searched. Because common users are not programmers most of the search
sites offer an "advanced search" page to facilitate an alternative way in boolean queries.
Once the search is finished the search engine shows to the user a results page, where it lists
the web resources where the keywords have been found. The list is showed in descendent
order, from the best result to the worst according to the criteria described before. The
items of the results list, in this kind of search, contain few information about the resource
described: information about the title, a short description, the size and maybe the author.

11.2.2 Specialised search engines

In specific domains, as newspaper news, the available search engines use to offer to
the users more complex interfaces than the generic ones. These interfaces allow to specify
constraints about specific features of the resources being searched, as the date of an article,
the price of a book, etc. The results page of a specialised search engine it is quite similar to
the results page described in the previous section, but it provides more information about
each item in the list.

Engines of different domains, as videos, music or games for example, will use a
different set of attributes to describe each matching result, but even engines of the same
domain, books in this case, will probably use a similar but not equal set of attributes. This is
the main drawback that constraints the functionality of the existing specialised metasearch
engines, as we will discuss later, and one of the targets of this part of the research work.
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11.2.3 Metasearch engines

The increasing number of search engines has motivated the apparition of new sys-
tems that help users finding information in the Internet by automatically querying a set of
available search engines. These systems are called metasearch engines. From the users point
of view traditional meta-search engines have the same interface and functionality as normal
ones, but it is commonly accepted that they are slower. Metasearch engines have to face the
problem of querying applications designed for human interaction with interfaces as those de-
scribed above. Some initiatives have appeared to define a standardized and machine-friendly
access point to Web search systems, but the success of these approaches is constrained by
the fact that search service providers are reluctant of other systems taking unrestrained
profit of their work. However, the inexistence of machine-friendly interfaces cannot avoid
the exploitation by third parties of the information harvesting effort of the existing search
engines, mainly because they use browsers as a presentation layer, with exposed HTTP
requests and HTML results pages. This leaves a door open to other applications to act as
browsers and launch queries against them. So the task of meta-search can be divided in two
main sub-problems:

1. How to query each search engine
2. How to obtain the information from each results page

The necessity to feature each engine interface, overall considering the lack of collaboration,
is very time-consuming and cumbersome, and no one can guarantee that the interfaces will
remain unchanged. This makes existing metasearch engines very difficult to maintain, and
the uncertainness about their update state reduces their public acceptance.

11.2.4 Specialised Metasearch

If in the field of generic search we can find the figure of the meta-search engine,
in the field of specialised search happens exactly the same. There exist some meta-search
engines designed to launch queries against a set of specialised search engines of the same
domain. Currently there exist specialised metasearch systems in practically every possi-
ble area. As said before, specialised search engines provide complex interfaces to perform
accurate queries constraining the particular features of the target resources. Surprisingly,
traditional specialised meta-search usually offer only a "one-field" interface to the user. The
origin of this limitation lies in the difficulty to feature the interface particularities of every
underlying specialised engine. To provide a richest interface it would be necessary to map
the interface semantics with the semantics of every target engine, a hard task especially if we
consider that the interfaces could change. To overcome this limitation is one of the targets
of our research work concerning this area, as it will be further explained.

11.3 Owur approach: Advanced metasearch

Our research group has been working during several years in practical solutions to
improve the capabilities of metasearch engines [118]. It is not a quantitative approach, since
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we do not pretend to reduce the search time or to amplify the search field, but a qualitative
approach. The target is to provide users (human or agents) with a search interface that
allows to express unrestricted search criteria over any existing resource in the Internet,
without doing any presumption over the existing technologies (as other approaches do, as
the Open Archives Initiative [109]). To achieve these goals we have defined a new strategy
to design meta-search engines. This strategy is based on five main ideas:

1. Common metadata specification: The specification of a selected common set of prop-
erties (metadata) of the objects targeted by the search. This specification could be
formalised using XML DTDs, XML Schemas or RDF Schemas for example.

2. User-interface independent query language: The specification of a generic query lan-
guage that will be the entry point to the meta-search engine. It is not necessary to
reinvent the wheel, if we assume that results will come in some XML form, W3C’s
XQuery [154] language will suffice (or RQL if we are using RDF). The language needn’t
to be known by human users because it could be distilled from human-friendly inter-
faces.

3. Human/machine maintainable XML descriptors: The use of XML descriptors to fea-
ture the ’hostile’ underlying engines interfaces, to facilitate its generation and main-
tainability by human administrators or learning agents.

4. Mapping: The XML descriptors should allow to map the generic queries of the users
(formalized in the language mentioned above) to the specific interfaces of the under-
lying engines. These descriptors should also be used to map the heterogeneous results
obtained to the generic set of metadata. The homogeneous results obtained could
be formalized using XML or RDF. Some questions arise here, as what happens with
search conditions that cannot be mapped to some engines, or what must be done with
results where not all the properties were defined (specially the properties referenced
in some of the search conditions). The following point will answer these questions.

5. Reprocessing: The key aspect of our strategy is the reprocessing of the results. Be-
cause some of the conditions expressed by the generic user query probably cannot be
mapped to all the underlying engines, it is necessary to reprocess the query over the
obtained results, once they have been normalised. Because the user query arrives to
the system in the form of a standard query language (XQuery, RQL, etc.) this stage
can be performed by simply executing the respective query processor over the obtained
results. This step guarantees that the results returned to the user are coherent with
the conditions expressed in the initial query.

Our approach can be applied to any kind of search over the Web, but it becomes specially
appropriate when it is applied to specialised meta-search. The reason is that, in despite of
that the specialised search engines of the same domain use to share similar and rich sets of
metadata, the traditional specialised meta-search has not found till now a way to exploit
it, unless by establishing partnerships and specific protocols with the underlying engines
administrators. Fig. 11.1 illustrates graphically the main features of this strategy, that
leaves undefined some points marked here with dotted lines.
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Figure 11.1: Strategy Diagram

11.4 XML Search Neutral Language (XSNL)

Any query, expressed in some syntax over a set of items featured with a certain set
of properties, has an underlying semantic. Unfortunately, there is not an universally accepted
standard way to express it. The parameters of the HT'TP forms from Web search engines
can be viewed as the building blocks of a particular query syntax, one for each different
engine. The problem to map a generic user query, expressed in some query language, to a
set of different HT'TP interfaces is the problem of mapping between query syntaxes.

Imagine two news search engines; one offers the possibility to constraint the search
to news appeared today, this week and this year. The other engine allows to constraint the
search to an explicit month from the three last years. These are two different syntaxes. If
we would have a syntax that allowed to express a specific range of dates, we could map it to
each one of the syntaxes. So we need a language that acts between the meta-search interface
and the target systems, built to be as flexible and fine grained as possible, allowing to map
the biggest set of possible query conditions.

The old research paper (1995) "Answering Queries Using Views" [55] by A. Halevy
et al. faces a similar situation and considers the problem of rewriting a conjunctive query
using a set of conjunctive views. As most part of similar works of these initial approaches
it uses Datalog'. Instead of Datalog, we have chosen XML related technologies as a more
natural way to interact with modern web interfaces.

We have defined an XML-based query language to test our approach. We call
it XML Search Neutral Language (XSNL) and we have applied it to the development of
an advanced meta-search engine specialized in newspaper news, as explained in the next
sections. The reason why we do not use XML Query as the intermediate language (we use it
to process XSNL sentences) is that our strategy is based on having simple queries expressed
in XML. There exists also an XML serialization of XML Query, but it is too verbose and
complex to suit our approach. This doesn’t mean that users (developers) cannot use XML
Query to process the results, because XSNL is just used as a mediator query language with
XML output.

The following XML code shows a sample instance of XSNL in the news context:

'see the Background Information chapters for a brief introduction to Datalog
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XSNL sample query:

<query>
<select>
<property propertyname="headline" />
<property propertyname="date" />
</select>
<where>
<contains propertyname="content" value="iran" />
<between propertyname="date" from="2002-06-31" to='"2003-06-31" />
<in minimum="3" propertyname='"source'">
<valueitem value="El Mundo" />
<valueitem value="ABC" />
<valueitem value="La Vanguardia" />
<valueitem value="El Pais" />
<valueitem value="Reuters" />
<valueitem value="CNN Spain" />
<valueitem value="Le Monde" />
<valueitem value="The Washington Post" />
<valueitem value="BBC" />
<valueitem value="Diari Avui" />
<valueitem value="La Stampa" />
</in>
</where>
<sortby propertyname="source_order" type="asc"/>
<sortby propertyname="date"/>
</query>

To understand the example, let’s imagine a web page where a user can search
newspaper news by specifying some keywords and a date range. In the web server the user
request is analysed and translated to XSNL. Finally the XSNL is sent to the metasearch
engine and the search process begins. The structure of a XSNL document is inspired in
the SQL language. It have a ’select’ element, where can be specified the desired attributes
of the resulting objects, a 'where’ element, where can be specified the search constraints,
and an ’sortby’ element, to determine the results order. The different constraints can be
specified by using different elements, allowing to add to the language new constraint types
with different structures.

11.5 A Practical Application: Advanced News Meta-search
Engine
We have applied our ideas in the development of an advanced metasearch engine

specialised in newspaper news [144]|. In this domain there exist thousands of commercial
and non-commercial traditional search engines, and also hundreds of available meta-search
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applications. The most part of the newspapers with presence in the Web offer search services
in their sites. All these engines are the potential information sources of our system, but
each one of them uses a different set of parameters in the queries and a different results
page format. Our objective is to offer to the user a generic interface that allows to specify
unrestricted conditions over the set of common properties that we have selected in this
domain (headline, author, date, section, page, newspaper and language). To achieve this
target, once selected and formalized (we are currently using a XML DTD) the subset of
metadata of interest, the next step is to analyse the interface of every engine to obtain
information about the query method. We use XML descriptors to describe how to map
each specific set of query parameters to the generic common properties selected. We plan
to use learning agents to perform this operation periodically because the interfaces of the
engines could change over time. As a part of the interface featuring we must also acquire
information about the results page, that will be used during the parsing process. Once we
have a mechanism to feature the engines interfaces, we can design the interface of the meta-
search engine. We have selected XML messages (SOAP [136] ) containing XQuery sentences
and HTTP protocol. This interface is open and can be used by third-parties to develop
independent clients -user interfaces or agents- However, to demonstrate the functionality of
the system, we have developed our own interface (see fig. 11.2 or fig. 11.3 for the advanced
interface).  The criteria specified by the user is translated to XQuery and sent to the
metasearch engine. The engine maps the parts of the query (at least those that are possible)
to each underlying engine interface and then launches all the searches in parallel. The results
obtained are heterogeneous and must be parsed and mapped to the common set of properties.
Because no one can guarantee that all the criteria have been mapped to all the engines, the
results (now homogeneous and serialized in XML) must be reprocessed. This reprocessing is
easily performed in the server only by using a XQuery processor with the XQuery received
as the input.

11.6 Implementation

Implementing the prototype application has meant to instantiate the metasearch
strategy explained above. The next subsections explain how, with the help of W3C’s XML
Query Language [154], the prototype executes the following query over the different sources:

XSNL sample query:

<query>
<select>
<property propertyname="headline" />
<property propertyname='"date" />
</select>
<where>
<contains propertyname="content" value="test" />
<between propertyname="date" from="20020631" to="20030631" />
</where>
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<sortby propertyname="date" />
</query>

11.6.1 Mapping the user query to target systems

The first hole to fill from the strategy diagram described above is the way to obtain
the parameters for the HT'TP call for each search engine from the user query formalised in
XSNL. This is not a trivial issue, because it must be determined if the condition expressed in
one parameter is also expressed with one ore more statements in the XSNL query, and then
extract the necessary information to give a value to the parameter. This process can require
a complex analysis of the query, and the information to do it must not be coupled with
code, for maintainability reasons. The description of the way to characterize a parameter of
one engine should be editable, human-friendly and modifiable at runtime. Here is where the
XML Query language fits, as is illus-trated in fig. 11.4. Each engine parameter is featured
in XML. The parameters that require some analysis of the user query are featured with a
XML Query within a CDATA clause. The following simplified example shows a fragment of
the configuration file of a news metasearch engine.

Configuration file fragment:

<parameter>
<name>precision</name>
<type>xquery</type>
<value>
<! [CDATAL
<result-value>
LET $a := document(’input.xml’)
LET $b := $a//contains/Qtype
LET $c := IF ($b = ’or’) THEN ’1°
ELSE IF ($b = ’and’) THEN ’2°
ELSE ’3°
RETURN $c

</result-value>

11>
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Figure 11.5: Screen Scraping with XML Query

</value>
<default>1</default>
</parameter>

The parameter precision of the target engine corresponds to a the boolean operator
to be applied. This information is obtained from the user XML query, from the attribute
'type’ of the 'contains’ element. This is a very simplified example, but it serves to illustrate
the idea.

11.6.2 Metadata extraction ("Screen Scraping")

The second hole to fill in the design of our system is the way the results pages are
analyzed to extract the metadata related to each item. As we will see later, it would be
convenient to formalize this metadata in XML. So, why not to convert the HTML results
page in XML and then apply a XML Query to it? There exist a lot of tools to convert
a HTML page to XML, even if it is malformed, and some of them perform very fast. An
example is W3C’s HTML Tidy [143]. The XML Query can be edited and modified by
human administrators or software agents at runtime, without the necessity to recompile the
sources. The following XML fragment shows an example on how to apply this idea to extract
information from the results pages of the Washington Post searcher:

Example of XML query wrapper for screen scraping:

<resultsmap>
<![CDATA[
import dt as org.dmag.metasearch.utils.XQueryTransformDate;
import ps as org.dmag.metasearch.utils.XQueryTransformString;
FOR $c IN document(’input.xml’)/table
WHERE $c/tr/td/font/b/a
RETURN
<result>
<property name=’headline’ value=$c/tr/td[1] />,
<property name=’description’ value=$c/tr/td[2] />,
<property name=’date’ value=dt(ps($c/tr/td[3]1)) />,
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Figure 11.6: Reprocessing of the results with XML Query

<property name=’link’ value=$c/tr/td[1]/a/Qref/text() />,
</result>
</results>
11>

</resultsmap>

11.6.3 Reprocessing the results

Once we have obtained the results in XML, we must face the problem of reprocess-
ing them to assure that all the initial conditions have been applied. The good news is that
XML Query fits perfectly to do this job, the bad news is that our initial query is formalized
in XSNL, not in XML Query. To overcome this problem we must simply transform our
instance of XSNL to a XML Query, as it is shown in the following XML fragment:

<results>
for $c in document(’input.xml’)//result
where $c/property[@name=’date’]/Q@value .>=. ’20020631°
and $c/property[@name=’20030631°]/0value .<=. 220030631’
return $c
sortby (property[@name=’date’]/@value
</results>

Now we already have a XML Query and we can just apply it to the results. The
reprocessed results will be the output of the system, being the interface is responsible to
render it in a convenient way. With this we have completed the initial strategy filling all
the undefined aspects, as presented in fig. 11.6.

11.7 Related work

In the State of the Art chapters we have seen that the problem faced in this work is
traditionally known as the querying problem of the data integration discipline. This problem
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is related to the ability to reformulate a query to combine information from the different
sources according to their relationships with a mediated schema. This virtual mediated
schema of data is the only schema visible to the users and their queries, giving them the
illusion of interacting with one single information system.

There are two classic approaches concerning mediated schemas, the global-as-view
(GAV) [2][26][50], which defines the mediated schema as a set of views over the data sources,
and the local-as-view (LAV) [98]|56][34], which takes the inverse point-of-view and describes
sources as views over the mediated schema. Our approach is similar to the LAV scenario,
because describes sources in terms of a mediated schema, and offers a very simplified solution
to the problem of answering queries using views.

Traditional works on classic metasearch are [33] [135]. A more recent approach
very similar to ours can be found in [81], that defines this idea as "Query Tunneling". It
makes use of RDF tools and focuses on scientific papers databases.

11.8 Conclusions

Nowadays the Web has become the first place where people goes when they need
to find some information. Surprisingly, and in concordance with what we have exposed in
this document, we can affirm that the functionality of the current search systems of the
Web is very limited, overall in comparison with other digital environments. Today, the
'keywords paradigm’ consisting in that one types some words in a text field and press the
'search’ button, satisfies the necessities of the most part of the people, and probably the
average Web user does not want to hear nothing about new search interfaces. However,
the Web is growing exponentially, and also the need for information, and soon the results
obtained from a query based on a list of keywords will be unmanageable, and new and faster
search mechanisms will be needed. Furthermore, in the short term, the most part of the
non-textual resources of the Web (images, videos, music, etc.) will be enriched with some
kind of metadata, supporting new standards as MPEG-7 [101]. The queries targeting these
resources must be capable to express complex conditions about properties and attributes.
In the long term, the ’Semantic Web’ will require strategies to adapt the existing human-
oriented search services to enable its use by software agents without traumatic impact in
the underlying technologies. Our approach targets all these challenges without making
assumptions of the success of some standard or protocol.






Chapter 12

Waiting Policies for Distributed
Information Retrieval on the Web

Distributed Web search engines, those systems that query on-the-fly a set of avail-
able Web search systems in response to a user’s request, have to face the problem of inter-
acting with a large set of unpredictable systems with heterogeneous and changing response
times. The necessity to achieve a compromise between the final user perceived delay and
the quality of the results motivate the discussion between different algorithms to determine
when the query process of an information source should be aborted. We call these algorithms
'waiting policies’, and their goal is to maximise the quality of service (QoS) by minimizing
the impact of sources behaviour without reducing the result quality beyond user’s tolerance.
Our experience in the design and development of specialised metasearch engines has given
us the possibility to try some of these policies, and to extract some conclusions that we
present here.

12.1 Motivation

A distributed search engine is a system that sends queries to multiple search sys-
tems, then collates the results in some way and formats them for display. We can identify a
lot of different kinds of these systems, depending on their data sources, that can be internal
indexes, associated text search engines, database search engines, message archives, Intranet
or Web wide search engines, or even file servers.

This part of the work focuses on distributed search over Web search systems, in any
of its forms (metasearch, content syndication, aggregation, etc.), but mainly over specialized
ones. The typical session when using a traditional distributed Web search engine begins
when the user submits a query to the system through the user interface. The engine then
sends the user query to a set of underlying search engines (or component search engines
[146]). The query must be translated to an appropriate format for each local system. Once
received the results from the underlying sources, these are merged into a single ranked list
and presented to the user. Nevertheless, we are not going to discuss here the motivation
or interest of metasearching or other forms of distributed search on the Web, already well
documented (see for e.g. [135], [33] or [88]).

115
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Generally, and independently of the kind of systems the distributed engine is tar-
geting, the process of querying the different engines is done in parallel. Each target engine
is called and treated by a different execution thread of the distributed engine, that waits
until the source (i.e. the queried system) responds with a set of results and then passes the
information to a results pool. A main thread is responsible to analyse the evolution of the
results pool and determine when the process must end. The set of rules used to do this is
that we call the *waiting policy’, and it is the focus of this article.

Any distributed search system needs a waiting policy, but depending on the context
the complexity of the policy can vary. If we have a system that queries a small set of remote
sources and requires all the responses to fulfil the process, the waiting policy will consist in
simply determining if some of the remote systems are out of service (even this can be a non
trivial issue). This is what happens with most of traditional Web-wide meta-search systems
(for e.g. [135]). However, if we have a Web-based distributed search engine that queries
hundreds or even thousands of sources, we can consider that maybe it is not necessary nor
desirable to wait them all (even if they are on service).

Maybe the user prefers to sacrifice some results to achieve a better response time.
This also may happen when working with specially unreliable underlying sources, as in
some specialised domains. But, how to measure the 'quality’ of the results? And, when the
‘quality’ is enough to decide to abort the search process? These are difficult questions that
depend on subjective variables like user’s perception of the results relevance or the response
time. We have been forced to study this problem as a side effect of our work on an advanced
metasearch strategy [118], specially for the development of the architecture that instantiates
this strategy and that is being used in real engines like [144].

12.2 Distributed Search Engine Performance

Some of the measures proposed to quantitatively measure the performance of clas-
sical information retrieval systems (see, e.g., |96]) can be extended to evaluate Web search
and distributed search engines. However, as remarked by [85] Web users may have a ten-
dency to favour some performance issues more strongly than traditional users of information
retrieval systems. For example, interactive response times appear to be at the top of the list
of important issues for Web users. A basic model from traditional retrieval systems [145]
recognizes a three way trade-off between the speed of information retrieval, precision and
recall (see fig. 12.1).Precision is the ratio of relevant documents to the number of retrieved

documents:
relevantDocuments

precision = (12.1)

retrieved Documents

Recall is defined as the proportion of relevant documents that are retrieved with respect the
total number if existing relevant documents:

I relevant Documents (12.2)
recall = )
total Relevant Documents

The precision is related to the expressiveness of the queries and the structure of the infor-
mation to explore. Most Web users are not so much interested in the traditional measure
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speed

precision recall

Figure 12.1: Three way trade-off in search engine performance [85]
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of precision and recall as the precision of the results displayed in the first page of the list of
retrieved documents, before "next page" command is used. This special characteristic can
be extended to meta-search engines users, and is a key point when considering to design a
waiting policy, because it shows that users may prefer to sacrifice some of the results (even
relevant ones) to improve response time.

12.3 Waiting Policy

A waiting policy (see fig. 12.2) is an algorithm that determines when a distributed
information search process must end. A distributed search implies the interaction with re-
mote, heterogeneous and potentially unreliable systems, with different and variable response
times. This does not imply only that some engines can sporadically appear out-of-service,
but this can also imply that some engines may experience enormous delays sometimes un-
related to network overloads. This situations can last hours, days or even weeks. So it is
not enough to activate a method to detect source failures, because some sources can be
on-service but with response times beyond user tolerance. Because this is a very dynamic
context, the system must have a mechanism to determine when the search process must be
stopped.

The algorithm must guarantee the quality of service (QoS) by optimising the rela-
tionship between the ’results quality’ and the user’s perceived response time. The response
time can be easily measured but the results quality depends on a combination of objective



118 Chapter 12: Waiting Policies for Distributed Information Retrieval on the Web

20
10
f \
Y
0 .\\f/\:/‘\e—e < :ﬁ.—: <
5000 10000 15000 20000
-5
ms

Figure 12.3: Distribution of Engines Delay

and subjective aspects. Objective aspects can be the correctness of the results in relation
to the query, the total number of results or the number of sources successfully queried. The
policies that we will study here focus on the third of these aspects, the number of sources,
that has a tight relationship with results quality. Be-cause the quality of the sources can vary,
even depending on the user perception, one can establish pondering mechanisms, assigning
different weights to each source of information. However we will talk about 'number of
successful sources’ assuming that, if weights have been assigned, the number already reflects
it.

12.4 Target Engines Behaviour

When designing a waiting policy, and taking the number of successful sources as
a main parameter, it is interesting to know if there is some pattern in the behaviour of
the target engines. We have tested the response times of an arbitrary set of approximately
sixty search engines! (see fig. 12.3). The horizontal axis (fig. 12.3) represents the sequence
of delay times and the vertical axis the number of target engines. The measurements have
been grouped in intervals of 1000 ms (the graph shows the lower margin of the interval, for
e.g. the first ten engines finished in less than one second). Knowing this we can anticipate
how the results pool will evolve, because when each engine terminates, the pool receives a
new result?. So, the function that models the time evolution of the number of results first
grows slowly, because only a few set of engines have very small delay times, then grows very
fast, and finally grows slowly again (see fig. 12.4). To construct the graph we have made
a one-to-one association between results and engines, but the conclusions can be extended
to the situation that we have mentioned before, when we assign different weights to the

!We have chosen about sixty heterogeneous engines from diverse locations. They include Web-wide search
engines, specialized search engines, meta-search engines, digital libraries and others. The complete list can
be download at http://www.tecn.upf.es/“ertous/projects/ir/url_waiting_policies.htm

2Here for ’result’ we mean a set of results returned from one source
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sources.

Because target engines are remote systems arbitrarily located, we do not know the
reasons that underlay their response time. Despite that, they are all conditioned by global
changes of network conditions, overall considering that the response time includes the results
transmission to the distributed search engine, around which they share the same network
state. So, we can assume that target engines will have a certain global behaviour, and that
this behaviour can change. Fig. 12.5 shows the progression of the results obtained from
the same engines of the previous figures but under different network conditions. We have
simulated a network overload in the proximities of the distributed search engine that have
increased the delay of all the sources.

12.5 Results vs. Time

The simplest waiting policy one can imagine is a fixed Timeout Policy. Someone
fixes heuristically a time limit for waiting for results; once surpassed, engines that still have
not responded are discarded. In this case, users always experience the same delay (without
considering the time it takes to send collated results to them). When network conditions
are bad, only a few set of engines have the chance to respond, and users get only a small
subset of the potential results. Obviously this cannot be considered a good policy but serves
to illustrate what is the problem we are facing. The only advantage of a Timeout policy is
that does not propagate the changes of target engines behaviour to end users, as illustrated
in fig. 12.6. The figure shows how a degradation of network conditions slows down the
harvesting of results that ends when time-out arrives (vertical line).

The opposite approach to Timeout Policy is the Minimum-results Policy, that waits
until a minimum number of engines have successfully finished. This policy guarantees the
quality of the response, but propagates to the user the delay time of the target engines and
its changes (see Fig. 12.7). Again it must be mentioned here that we focus on the number of
successful engines to measure the results quality assuming that this value could have been
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Figure 12.5: Results progression in hostile network conditions
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Figure 12.6: Timeout Policy Example
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Figure 12.7: Minimum-results Policy Example

modified to reflect source relevance issues.

These two different approaches optimise only one of the variables, the response
time or the number of successful sources respectively. The user experience with a system
instantiating one of these algorithms can be very frustrating. In hostile network conditions
the timeout policy may abort practically all search threads, eliminating the possibility to
find answers to even simple queries. If network performance is good, the minimum-results
policy will abort threads even with a very fast response time. It is clear that none of these
algorithms is the solution, because it should optimise the two variables. To design a good
waiting policy we should achieve a compromise between time and quality, and this must be
able to adapt to environmental changes.

12.6 Source Discarding Policies

Some policies focus on being able to detect target failures under changing network
conditions. These policies try to maximise the number of results without discarding any
potential source. One approximation to this is to maintain statistics about each source
delay, and, when network conditions vary, be able to determine the expected delay for each
target. If we have N sources and K previous search experiences, we can trivially calculate
the average delay (d) of each source to represent its historical performance (see Fig. 12.8).
Because we probably want to use the latest information (the information of the search
process in course), in the search experience K+1 we can approximate the future delay of
some engine e applying the average change ratio of the n sources already finished.

This kind of policies work fine to discard sources that are behaving disaccording
to the network conditions and its own historical values. However these policies propagate
to the user the changes in the network performance, and cannot be considered a definite
solutions according to what we have said before.
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12.7 Minimum Granted Results Policy

During our work on designing and implementing specialised meta-search engines
we have developed a policy that we call Minimum Granted Results Policy (MGR), that
satisfies two requirements:

1. The waiting policy must be able to abort the search process if a minimum results have
been achieved and the response time has surpassed some desirable level.

2. Even if the minimum results have not been achieved a maximum time-out must be

established.

These two requirements can be more formally expressed. The first one just says that if the
delay t surpasses some minimum time tmin and the quality of the results already obtained
r surpasses some minimum level rmin the search process must end. The second requirement
says simply that the delay never must surpass some maximum level tmax. See the formula
in Fig. 12.9.

Fig. 12.10[h!!] shows how this algorithm behaves in the same two environments
described before. With normal network conditions (left graph) the system has the chance to
harvest results even over the rmin level. When the delay arrives to tmin the search process
is aborted. Under hostile network conditions (right graph) the tmin level of delay must
be surpassed because the number of successful target engines is still not enough to fulfil a
response. When rmin engines finish (or the value of pondering the engines that have finished
reach rmin ) the search process is terminated. The graphs does not show the case when tmax
is reached but no rmin, this could happen under exceptionally bad network performance.

We have tested this policy in an implementation of a news metasearch engine [144]. For
this case we have used heuristic values for rmin, tmin and tmax, but we are studying how
to automate this process by obtaining user’s feed-back. This can be achieved implicitly,
by analysing user actions after different levels of delay (abandoning the session, retyping
the query, etc.), or explicitly, by letting users define themselves what they consider a good
results level, an unacceptable delay, or how to ponder the different sources (this can be
stored in user’s profile).
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12.8 Conclusions

Specialised distributed search is a natural link in the information feed-chain. How-
ever, some specialised search engines have response times often higher and more unpre-
dictable than traditional Web-wide search systems like Google [23]. This constraints the
performance and QoS of specialised distributed search systems and motivates the study of
techniques to optimise the trade-off between delay and results quality. Aborting a search
process to improve performance can seem a sin from a traditional information retrieval point
of view, but if we consider that the recall value for the underlying engines is far from being
100%, and taking to consideration that most part of users usually consider only the first
results, to abort the search proc-ess when results have reached some reasonable quality can
be a good measure. We have applied the techniques described here to the development of
a specialised meta-search engine that searches and retrieves newspaper news. Most part of
the sources we have used in the practical application are on-line news services of the Spanish
market, and have proved to be slow and unreliable. After some initial frustration we decided
to apply the MGR policy described above. The experience of using the system improved
notably, because the policy hides to the user the underlying engines performance and the
network conditions.

Now we are working to automate some features of the system, that includes among
other issues (automatic source discovery and configuration, automatic extraction of meta-
data) the tuning of the parameters of the MGR policy. As we pointed out before, this
automation can be done implicitly (observing user reactions under certain conditions) or
explicitly (letting user to establish some of the parameters). We are also working on new
techniques to improve the overall QoS, that includes different levels of caching and the study
of some related issues like cache live times.
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Chapter 13

Conclusions

Because the results of the work can be divided in different parts, corresponding
to the different related research papers, I've chosen to keep their specific conclusions (see
previous chapters). However, here I'm going to summarise these conclusions and to give
some final comments.

13.1 Heterogeneous Data Models and Schemas: Semantic In-
tegration

Within the general area of data integration, this thesis presents two contributions
to the semantic integration research trend. In on hand, I present a novel approach to the
problem of XML semantic integration. It aims to overcome some limitations of already
existing solutions (e.g. [91][84][65][54]) applying an old idea of [97] related to the XML-
Relational data integration. The idea consists on represent the general XML model, instead
of some specific schemas, over constructs of another model (Relational Model in the case of
[97], RDF and OWL in my case). This translation of XML to RDF allows loading XML
instances and also multiple XSD schemas into an RDF-based repository, that can also host
different ontologies.

Over this idea, I have implemented a schema-aware and ontology-aware XPath
processor, that can be used to transparently resolve queries over XML instances bound
to schemas that define inheritance hierarchies among types and element names, or related
to ontologies that define relationships that are relevant for the queries evaluation. The
materialization of the approach in the Contorsion API, and its usage in a plausible usage
scenario like the Digital Rights Management domain, demonstrates its usefulness.

In the other hand, but also within the semantic integration area, I have contributed
to the ontology alignment problem. The thesis presents a novel sutructure-based semantic
similarity measure based on a matrix represention of nodes from an RDF labelled directed
graph. The approach is based on the intuitive idea that similarity of two concepts can be
defined in terms of how they relate to other concepts. We model these relationships with
a vector space of n dimensions being n the number of selected standard predicates (e.g.
rdfs:subClassOf, rdfs:range or foaf:name). We have adapted the algoritm in [20] to these
idea to iteratively compute the similarities between two OWL ontologies. I have presented
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also an optimization of the algorithm to critically reduce its computational cost. The good
results obtained in the tests performed over the Ontology Alignment Evaluation Initiative
2005 testsuite has proven the value of the approach.

13.2 Heterogeneous Query Interfaces: XML Query Tunneling

Also within the general area of data integration, this thesis contributes to the prob-
lem of dealing with heterogeneous query interfaces. I have suggested a strategy that allows
redistributing an expressive user query (expressed in a XML-based data query language)
over a set of autonomous and heterogeneous databases accessed through web forms. This
is a new practical solution to an old problem of the data integration LAV (Local-As-View)
approach. How a initial query, targeting the logical mediated schema, must be translated
into queries over the different autonomous data sources.

The idea, that has recently been renamed by Thomas Kabisch [81] as "Query
Tunneling", consists on using XML-related technologies for the reprocessing of the initial
user query over the results returned by the different sources, that must be a superset of the
results that satisfy the initial query. The usefulness of the approach, that theoretically does
not improve the old solutions based in Datalog [51][119][56], relies in its applicability, that
has been demonstrated in the development of a spanish news metasearch engine, and the
Java Simple API for Web Information Integration (SAWII), that offers high level tools to
the development of articulated wrappers for complex web form-chains and result pages.

13.3 A Final Comment

The integration of data from multiple heterogeneous sources is an old and well-
known research problem for the database and Al research communities. However, the evo-
lution of the World Wide Web and other distributed environments like Peer-to-Peer and the
Grid has refuelled some research challenges of this area with a great practical importance.

While the amazing success of XML has clearly improved the interoperability of
data and metadata in the digital environment, the recent success of not so recent semantic-
rich modelling languages under the global name of The Semantic Web Initiative has raised
a new opportunity and challenge to the data integration community. Ontologies, instead of
schemas, are the new way to represent information domains. They are built with a rich set
of constructs provided by the Semantic Web modelling languages like RDFS [126] and OWL
[112].

Despite of XML and RDF derive from technologies more than 30 years old, and
without discussing the reasons, it is clear that they are at the centre of the stage, changing
the way to do a lot of things that have remained unchanged for a long time. Their impact
has stimulated the imagination of a lot of people, and has generated a lot of initiatives. Most
of these initiatives are not new, but have been revitalised in the new context. Some of these
initiatives are those related to the dissemination and use of machine-readable metadata, that
take profit from the benefits in terms of interoperability that XML and RDF offer. However,
it is not clear where is the limit of the advantages of structured data, and not everybody
agree in what is going to be the future scenario.



Bibliography

1]

2]

3]

[6]

8]

[10]

ABERER, K., CUDRE-MAUROUX, P., AND HAUSWIRTH, M. The Chatty Web: Emer-
gent Semantics Through Gossiping. In Proceedings of the 12th International World

Wide Web Conference (2003). 53

ApALI, S., CANDAN, K. S., PAPAKONSTANTINOU, Y., AND SUBRAHMANIAN, V. S.
Query caching and optimization in distributed mediator systems. In SIGMOD Con-
ference (1996), pp. 137-148. 20, 113

ALEXAKI, S., CHRISTOPHIDES, V., KARVOUNARAKIS, G., AND PLEXOUSAKIS, D.
The rdfsuite: Managing voluminous rdf description bases. Technical report, Institute
of Computer Science, FORTH, Heraklion, Greece. See http://www.ics.forth.gr/proj/
isst/RDF /RSSDB /rdfsuite.pdf. 13

ALON, S. G. What can databases do for peer-to-peer? See http://citeseer.ifi.unizh.ch/
653741.html. 53

AMANN, B., BEERI, C., FUNDULAKI, I., AND ScHOLL, M. Ontology-based inte-
gration of xml web resources. In Proceedings of the 1st International Semantic Web

Conference (ISWC 2002),pages 117-131 (2002). 2, 52, 61

AsHPOLE, B. Ontology translation protocol (ontrapro). In E. Messina and A.
Meystel, editors, Proceedings of Performance Metrics for Intelligent Systems (Per-
MIS’04) (2004). 37

AVNUR, R., AND HELLERSTEIN, J. M. Eddies: continuously adaptive query process-
ing. In Proceedings of the 2000 ACM SIGMOD international conference on Manage-
ment of data (2000), pp. 261-272. 29

AzuAJE, F., AND BODENREIDER, O. Incorporating ontology-driven similarity knowl-
edge into functional genomics: An exploratory study. In BIBE (2004), pp. 317-324.
3, 41

BAEZA-YATES, R., AND RIBEIRO-NETO, B. Modern Information Retrieval. Addison-
Wesley-Longman Publishing co., 1999. 3, 7, 8§, 11

BAKER, T. A Grammar of Dublin Core. D-Lib Magazine. October 2000. Volume 6
Number 10. ISSN 1082-9873, 2000. 3

129



130

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

BERNERS-LEE, T. Information management: A proposal. CERN DD/OC (1989). 3

BERNERS-LEE, T. Semantic web road map, 1998. See http://www.w3.org/
Designlssues/Semantic.html. 3, 12

BERNERS-LEE, T. Why rdf model is different from the xml model. w3c draft septem-
ber 1998, 1998. See http://www.w3.org/Designlssues/RDF-XML.html. 3

BERNERS-LEE, T. Transcript of tim berners-lee’s talk to the lcs 35th anniversary
celebrations, cambridge massachusetts, 1999 /april/14, 1999. 3, 10

BERNERS-LEE, T., CaiLLiAu, R., GROFF, J.-F., AND POLLERMANN, B. World-

wide web: The information universe. FElectronic Networking: Research, Applications
and Policy, Vol 1 No 2, Meckler, Westport CT (1992). 3, 12

BERNERS-LEE, T., FIELDING, R., AND MASINTER, L. Internet rfc 2396, uniform
resource identifiers (uri): Generic syntax. 14

BERNERS-LEE, T., HENDLER, J., AND LAssiLA, O. The semantic web. Scientific
American (May 2001). 3, 12

BERNSTEIN, P.; GIUNCHIGLIA, F., KEMENTSIETSIDIS, A., MYLOPOULOS, J., SER-
AFINI, L., AND ZAIHRAYEU, I. Data management for peer-to-peer computing: A
vision. In Workshop on the Web and Databases, WebDB (2002). 53

BissoN, M. Learning in fol with a similarity measure. In Proceedings of the 10th
American Association for Artificial Intelligence conference, San Jose (CA US), pages
82-87 (1992). 3, 39, 86

BrLoNDEL, V. D., GAJARDO, A., HEYMANS, M., SENELLART, P., AND DOOREN,
P. V. A measure of similarity between graph vertices: Applications to synonym
extraction and web searching. SIAM Rev. 46, 4 (2004), 647-666. 3, 5, 40, 41, 43, 44,
45, 85, 87, 89, 90, 97, 98, 127

BLUE, A. Davis drives home the importance of being knowledge based. Information
Outlook, 2(5): 89. (1997). 7

BRICKLEY, D., AND GUHA, R. Resource description framework (rdf)schema spec-
ification (proposed recommendation), w3c (world wide web consortium), 1999. See
http://www.w3.org/TR /1999 /PR-rdf-schema-19990303. 3, 12

BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems (1998). 3, 123

CALLAN, J. Distributed information retrieval. Advances in information retrieval,
chapter 5, pages 127-150. Kluwer Academic Publishers (2000). 9

CHANG, W. A discussion of the relationship between rdf-schema and uml, 1998. W3C
Note 04-Aug-1998. 3



Bibliography 131

[26]

[27]

28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

CHAWATHE, S. S., GARCIA-MOLINA, H., HAMMER, J., IRELAND, K., PAPAKON-
STANTINOU, Y., ULLMAN, J. D.; AND WiDOM, J. The tsimmis project: Integration
of heterogeneous information sources. In IPSJ (1994), pp. 7-18. 20, 113

Costa, PauLo C. G.; Laskey, K. B., aAND Laskey, K. J. Pr-owl: A bayesian

framework for the semantic web. In Workshop on Uncertainty Reasoning for the Se-
mantic Web (URSW 2005), held at the Fourth International Semantic Web Conference
(ISWC 2005). November, 7th 2005, Galway, Ireland. (2005). 51, 52

Dublin core. See http://dublincore.org/. 3, 7
Iso/iec, iso/iec 2nd edition fcd 21000-2 - digital item declaration. 79

Doan, A., DomINGOs, P., AND HALEVY, A. Y. Reconciling schemas of disparate
data sources: A machine-learning approach. In SIGMOD Conference (2001). 41

DoaN, A., DoMINGOS, P., AND HALEVY, A. Y. Learning to match the schemas of
data sources: A multistrategy approach, 2003. 50

DoaN, A., MADHAVAN, J., DOMINGOS, P., AND HALEVY, A. Learning to map

between ontologies on the semantic web. In The Eleventh International WWW Con-
ference, Hawaii, US, 2002. (2002). 37, 41, 86

DREILINGER, D. Integrating heterogeneous www search engines, 1995. Masters Thesis,
Colorado State University. 3, 10, 113, 115

DuscHkA, O. M., AND GENESERETH, M. R. Answering recursive queries using
views. In PODS ’97: Proceedings of the sizteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems (New York, NY, USA, 1997), ACM
Press, pp. 109-116. 20, 113

EnriG, M., AND EUZENAT, J. Relaxed precision and recall for ontology matching.
See http://km.aifb.uni-karlsruhe.de/ws/intont2005 /intontproceedings.pdf. 37, 86

EHRIG, M., AND STAAB, S. Qom - quick ontology mapping. In Proc. of the Third
International Semantic Web Conference (ISWC2004) (2004). 37, 86

EuzENAT, J., AND VALTCHEV, P. Similarity-based ontology alignment in owl-lite. In
Proc. of ECAI 2004, pages 333-337, Valencia, Spain, August 2004 (2004). 37, 39, 86

FLE1ss, J. L. Statistical methods for rates and proportions. isbn: 0-471-52629-0, 1973.
41

Rdfweb: Friend of a friend (foaf). See http://rdfweb.org/foaf/. 3

Foray, L. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence (1982). 77



132

Bibliography

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

FrIEDMAN, M., HALEVY, A. Y., AND MILLSTEIN, T. Navigational plans for data
integration. In AAAI "99/1IAAI ’99: Proceedings of the sizteenth national conference on
Artificial intelligence and the eleventh Innovative applications of artificial intelligence
conference innovative applications of artificial intelligence (Menlo Park, CA, USA,
1999), American Association for Artificial Intelligence, pp. 67-73. 20

G. KARVOUNARAKIS, V. CHRISTOPHIDES, D. P., AND ALEXAKI, S. Querying com-
munity web portals, 2000. Technical report, Institute of Computer Science, FORTH,
Heraklion, Greece. See http://www.ics.forth.gr/proj/isst/RDF /RQL/rql.pdf. 13

GALLAIRE, H., AND MINKER, J., Eds. Logic and Data Bases. Perseus Publishing,
1978. 10

GANGEMI, A., GUARINO, N., Masoro, C., OLTRAMARI, A., AND SCHNEIDER, L.
Sweetening ontologies with dolce. In 18th International Conference on Knowledge
Engineering and Knowledge Management (EKAW02), volume 2473 of Lecture Notes
in Computer Science, page 166 ff, Sig uenza, Spain, Oct. 1-4 (2002). 36, 48, 49

GARrcia, R., AND DELGADO, J. Brokerage of intellectual property rights in the
semantic web. In Proc. Semantic Web Working Symposium. Stanford University, Cal-

ifornia, pp. 245-260 (2001). 76

GARrciA, R., GiL, R., AND DELGADO, J. Intellectual property rights management
using a semantic web information system. In OTM Confederated International Con-
ferences, CooplS, DOA, and ODBASE 2004. Springer-Verlag, LNCS Vol. 3291, pp.
689-704 (2004). 76

GiL, R., GARcCIA, R., AND DELGADO, J. Delivery context negotiated by mobile

agents using cc/pp. Int. Conference on Mobile Agents for Telecommunication Appli-
cations, MATA 03. LNCS, Vol. 2881, pp 99-110. Springer-Verlarg (2003). 76

Gi1L, R., GARCIA, R., AND DELGADO, J. An interoperable framework for ipr using
web ontologies. In Legal Ontologies and Artificial Intelligence Techniques Workshop,
LOAIT 2005. To be published in the International Association for Artificial Intelligence
and Law Workshop Series (2005). 76

GuHA, R., AND McCooL., R. Tap: A semantic web platform, 2003. See http://
tap.stanford.edu/tap.pdf. 3, 13

Haas, L. M., KossMANN, D., WiMMERS, E. L., AND YANG, J. Optimizing queries
across diverse data sources. In Proceedings of the Twenty-third International Confer-
ence on Very Large Databases (Athens, Greece, 1997), VLDB Endowment, Saratoga,
Calif., pp. 276-285. See http://citeseer.ist.psu.edu/article/haas97optimizing.html. 20,
113

HALEVY, A. Y. Answering queries using views: A survey. VLDB Journal: Very Large
Data Bases 10, 4 (2001), 270-294. 24, 101, 128



Bibliography 133

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

HaLEVY, A. Y., IVES, Z., MORK, P., AND TATARINOV, 1. Piazza: Data management
infrastructure for semantic web applications. In Proc. of the 12th Intl. World Wide
Web Conf. (2003). 30, 53

Havrevy, A. Y., IVEs, Z., Suciu, D., AND TATARINOV, I. Schema mediation in
peer data management systems. In Proceedings of ICDE (2003). 53

Harevy, A. Y., IVES, Z. G., MORK, P., AND TATARINOV, I. Piazza: Data man-
agement infrastructure for semantic web applications. In Proceedings of the 12th In-
ternational World Wide Web Conference (2003). 2, 52, 61, 127

HaLEVY, A. Y., MENDELZON, A. O., SAGIV, Y., AND SRIVASTAVA, D. Answering
queries using views. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (San Jose, Calif., 1995), pp. 95-104.
25, 105

HarLevy, A. Y., RAJARAMAN, A., AND ORDILLE, J. J. Querying heteroge-
neous information sources using source descriptions. In Proceedings of the Twenty-
second International Conference on Very Large Databases (Bombay, India, 1996),
VLDB Endowment, Saratoga, Calif., pp. 251-262. See http://citeseer.ist.psu.edu/
levy96querying.html. 20, 24, 29, 52, 113, 128

HarLevy, A. Y., RAJARAMAN, A., AND UrLLMAN, J. D. Answering queries us-
ing limited external query processors (extended abstract). In Proceedings of the fif-
teenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database sys-
tems (1996), ACM Press, pp. 227-237. 29

HopcrorT, J. E., AND KARP, R. An O(n’/?) algorithm for maximum matching in
bipartite graphs. SIAM J. Comput. 4 (1973), 225-231. 39, 86

HORROCKS, [., AND PATEL-SCHNEIDER, P. F. Reducing owl entailment to descrip-
tion logic satisfiability. In Proc. of the 2003 Description Logic Workshop (DL 2003),
volume 81 of CEUR, pages 1-8 (2003). 3, 15

HoORrRROCKS, 1., PATEL-SCHNEIDER, P. F., AND VAN HARMELEN, F. From shiq and
rdf to owl: The making of a web ontology language. J. of Web Semantics (2003). 3,

15

HORROCKS, I., AND SATTLER, U. Ontology reasoning in the shoq (d) description
logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence, pages 199-204
(2001). 3, 15

HorROCKS, 1., SATTLER, U., AND TOBIES, S. Practical reasoning for very expressive
description logics. Proc. of the 6th Int. Conf. on Logic for Programming and Automated
Reasoning (LPAR 99), number 1705 in Lecture Notes in Artificial Intelligence, pages
161-180. Springer (1999). 3, 15, 65, 73

HorROCKS, 1., SATTLER, U., AND TOBIES, S. Practical reasoning for very expressive
description logics. J. of the Interest Group in Pure and Applied Logic (2000). 3, 15



134

Bibliography

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

|75]
[76]

[77]

Hu, W., JiaN, N., Qu, Y., AND WANG, Y. Gmo: A graph matching for ontologies.
In Integrating Ontologies (2005). See http://CEUR-WS.org/Vol-156 /paper7.pdf. xiv,
3, 40, 41, 43, 45, 87, 91, 92. 96, 97

I. Cruz, H. X., AND Hsu, F. An ontology-based framework for xml semantic integra-
tion. In Proceedings of the FEighth International Database Engineering and Applications
Symposium. IDEAS’04. July 7-9, 2004 Coimbra, Portugal (2004). 2, 52, 61, 64, 71,
127

R. iannella. open digital rights language (odrl), version 1.1. world wide web consortium
2002 (w3c note). See http://www.w3.org/TR/odrl. 78

IcHISE, R., TAKEDA, H., AND HONIDEN, S. Rule induction for concept hierarchy
alignment. In Proceedings of the Workshop on Ontology Learning at the 17th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI) , 2001. (2001). 41

Xml information set (second edition) w3c recommendation 4 february 2004. See http://
www.w3.org/TR/xml-infoset /. 3, 30, 61, 64, 66

Xml path language (xpath) 2.0 w3c working draft 23 july 2004. See http://
www.w3.org/ TR /xpath20/. 3, 31, 66, 67, 68

Iso/iec, iso/iec fed 21000-4 - intellectual property management and protection compo-
nents. 79

Ives, Z. G., FLOREScU, D., FRIEDMAN, M., HALEVY, A. Y., AND WELD, D. S.
An adaptive query execution system for data integration. In ACM SIGMOD Record,
Proceedings of the 1999 ACM SIGMOD international conference on Management of
data SIGMOD 99, Volume 28 Issue 2 (1999), pp. 299-310. 29

Ives, Z. G., HALEVY, A. Y., WELD, D. S., FLORESCU, D., AND FRIEDMAN, M.

Adaptive query processing for internet applications. IEEE Data Engineering Bulletin
23,2 (2000), 19-26. 29

J. BROEKSTRA, A. K., AND HARMELEN, F. Sesame: An architecture for storing and
querying rdf data and schema information, 2001. 13

J. DELGADO, I. G., AND GARCIA, R. Use of semantic tools for a digital rights dic-
tionary. E-Commerce and Web Technologies: 5th International Conference, 2004. K.
Bauknecht, K. and M. Bichler and B. Proll. LNCS Volume 3182 (338-347) Springer-
Verlag (2004). 82

Jaxen: Universal java xpath engine. See http://jaxen.org/. 3, 76

Jena 2. a semantic web framework. See http://www.hpl.hp.com/semweb /jena.htm. 3,
70, 76

D. reynolds. jena 2 inference support. See http://jena.sourceforge.net/inference/. 3,
7



Bibliography 135

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

[90]

[91]

192]

Routefinding over rdf geodata with jena2 rdql. See http://chimpen.com/things/
archives/001182. 78

JIANG, J., AND CONRATH, D. Semantic similarity based on corpus statistics and

lexical taxonomy. In Proceedings of the International Conference on Research in Com-
putational Linguistics (1997). 3, 41

Project jxta homepage. See http://www.jxta.org/. 13

KaBiscu, T., AND NEILING, M. Wrapping of web sources with restricted query
interfaces by query tunneling. In Proc. of InterDB 2005. International Workshop on
Database Interoperability (2005). v, 5, 52, 113, 128

KEMENTSIETSIDIS, A., ARENAS, M., AND MILLER, R. Mapping data in peer-topeer
systems: Semantics and algorithmic issues. In Proceedings of VLDB (2003). 53

KHARE, R., AND RIFKIN, A. Weaving a web of trust. World Wide Web Journal,
Volume 2, Number 3, Pages 77-112, Summer 1997 (1997). 14

KLEIN, M. C. A. Interpreting xml documents via an rdf schema ontology. In Proceed-
ings of the 13th International Workshop on Database and Ezxpert Systems Applications
(DEXA 2002),pages 889-894 (2002). 52, 61, 127

KoBAvasHI, M., AND TAKEDA, K. Information retrieval on the web. ACM Computing
Survey (2000). xiii, 3, 116, 117

Lacoze, C., AND SOMPEL, H. The open archives initiative: Building a low-barrier
interoperability framework. ACM/IEEE Joint Conference on Digital Libraries (2001).
3

LAKSHMANAN, L. V., AND SADRI, F. Interoperability on xml data. In Proceedings
of the 2nd International Semantic Web Conference (ICSW 03) (2003). 2, 52, 61

LAWRENCE, S., AND GILES, L. Searching the world wide web. Science (1998). 3, 10,
115

LeAcock, C., AND CHODOROW, M. Combining local context and wordnet similarity
for word sense identification. WordNet: An Electronic Lezical Database 49(2) (1998),
265-283. 40, 97

Ler, J. H., Kim, M. H., AND LEE, Y. J. Information retrieval based on conceptual
distance in is-a hierarchies. Journal of Documentation 49(2) (1993), 188-207. 40, 97

LeHTI, AND FANKHAUSER. Xml data integration with owl: Experiences & challenges.
SAINT 160-170 (2004). 2, 60, 127

LENAT, D. B. CYC: A large-scale investment in knowledge infrastructure. Commu-
nications of the ACM 38, 11 (1995), 33-38. 36, 48, 49



136

Bibliography

(93]

[94]

[95]

[96]

197]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

LENZERINI, M. Data integration: a theoretical perspective. In PODS ’02: Proceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems (New York, NY, USA, 2002), ACM Press, pp. 233-246. 20

LiN, D. An information-theoretic definition of similarity. In Proc. 15th International
Conf. on Machine Learning (1998), Morgan Kaufmann, San Francisco, CA, pp. 296—
304. 3, 41

Lin, D. Review of wordnet an electronic lexical database, 1998. See cite-
seer.ist.psu.edu/lin98review.html. 48

LosEE, R. Text Retrieval and Filtering: Analytic Models of Performance. Kluwer,
Boston, 1998. 116

M. YosHIKAWA, T. AMAGASA, T. S., AND UEMURA, S. Xrel: A path-based ap-

proach to storage and retrieval of xml documents using relational databases. ACM
Transactions on Internet Technology, Vol. 1, No. 1, June 2001 (2001). 2, 52, 61, 127

MANOLEscU, 1., FLOREscU, D., AND KossMANN, D. K. Answering XML queries

over heterogeneous data sources. In Proceedings of the 27th International Conference
on Very Large Data Bases (2001), pp. 241-250. 20, 113

Mapforce. visual data integration and web services implementation tool, 2006. See
http://www.altova.com/products/mapforce/data_mapping.html. 32

MARCHIONINI, G. Information Seeking in Electronic Environments. Cambridge Uni-
versity Press, 1995. 7

Mpeg-7. See http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm. 2, 8,
113

NEJDL, W., AND ET AL., B. W. Edutella: A p2p networking infrastructure based on
rdf, 2001. 13

NeJpL, W., WoLF, B., Qu, C., DECKER, S., NAEVE, M. S. A., NILSSON, M.,
PALMER, M., AND RiscH, T. Edutella: A p2p networking infrastructure based on
rdf, 2001. 53

Na, W. S., Oor, B. C., TaN, K.-L., AND ZHOU, A. Peerdb: A p2p-based system
for distributed data sharing. In Proceedings of the Intl. Conf. on Data Engineering
(ICDE) (2003). 53

NiLES, 1., AND PEASE, A. Towards a standard upper ontology. In FOIS ’01: Pro-

ceedings of the international conference on Formal Ontology in Information Systems
(New York, NY, USA, 2001), ACM Press, pp. 2-9. 36, 48

Novy, N. F. Semantic integration: a survey of ontology-based approaches. SIGMOD
Rec. 33, 4 (December 2004), 65-70. 3, 13, 37, 48



Bibliography 137

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Novy, N. F., AND MuseN, M. A. PROMPT: Algorithm and tool for automated
ontology merging and alignment. In AAAI/IAAI (2000), pp. 450-455. 37

Ontology alignment evaluation initiative. 2005 campaign, 2005.  See http://
oael.inrialpes.fr/2005/. 37, 39, 86, 96

The open archives initiative. See http://www.openarchives.org/. 3, 104

The open archives initiative protocol for metadata harvesting.  See http://
www.openarchives.org/OAI/openarchivesprotocol.html. 3

Foldoc, free on-line dictionary of computing. http://wombat.doc.ic.ac.uk/foldoc/. 7

Owl web ontology language overview. w3c recommendation 10 february 2004. See
http://www.w3.org/ TR /owl-features/. 2, 3, 14, 36, 37, 40, 52, 86, 97, 128

PAGEe, L., BrIN, S., MoTwANI, R., AND WINOGRAD, T. The pagerank citation
ranking: Bringing order to the web. Stanford Digital Library Technologies Project

(1998). 3

PapapiMmiTrIOU, C. H., AND STEIGLITZ, K. Combinatorial optimization: algorithms
and complezity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982. 39, 86

PAPAKONSTANTINOU, Y., GUPTA, A., GARCIA-MOLINA, H., AND ULLMAN, J. D.
A query translation scheme for rapid implementation of wrappers. In 4th Intl. Conf.
on Deductive and Object-Oriented Databases; LNCS 1018 (Singapore, 1995), vol. Ex-
tended version available at: ftp://ftp.db.stanford.edu/pub/papakonstantinou/1995/
querytran-extended.ps, Springer Berlin, Heidelberg, New York, pp. 319-344. 29

PAPAKONSTANTINOU, Y., AND VASSALOS, V. Architecture and implementation of
an xquery-based information integration platform. See http://citeseer.ist.psu.edu/
612914.html. 34

PATEL-SCHNEIDER, P. F., AND SiMEON, J. The yin/yang web:xml syntax and
rdf semantics. In Proceedings of the 11th International World Wide Web Conference
(WWW2002),pages 443-453 (2002). 2, 52, 61

PEiG, E., DELGADO, J., AND PEREZ, I. Metadata interoperability and meta-search

on the web. In Proceedings of the International Conference on Dublin Core and Meta-
data Applications (DC-2001) (2001). 103, 116

POTTINGER, R., AND HALEVY, A. Y. MiniCon: A scalable algorithm for answering
queries using views. VLDB Journal: Very Large Data Bases 10, 2-3 (2001), 182-198.
24, 34, 52, 128

R. GuHA, R. M., AND MILLER, E. Semantic search, 2003. See http://
tap.stanford.edu/ess.pdf. 3



138 Bibliography

[121] RAapA, R., MiL1, H., AND BICKNELL, E. Development and application of a metric on
semantic nets. IEEE Transactions on Systems, Man and Cybernetics (1989), 17-30.
40

[122] RauM, E., AND BERNSTEIN, P. A. A survey of approaches to automatic schema
matching. VLDB Journal: Very Large Data Bases 10, 4 (2001), 334-350. 3, 39, 50,
86

[123] Iso/iec, iso/iec is 21000-6 - rights data dictionary. 79

[124] Resource description framework. See http://www.w3.org/RDF/. 2, 13, 52

[125] rdfdb query language. See http://www.guha.com /rdfdb/query.html. 3, 70

[126] Rdf vocabulary description language 1.0: Rdf schema. See http://www.w3.org/TR/
2003 /WD-rdf-schema-20030123/. 14, 36, 52, 128

[127] Rdql - a query language for rdf. w3c member submission 9 january 2004. See http://
www.w3.org/Submission/RDQL/. 3, 70, 71

[128] Iso/iec, iso/iec is 21000-5 - rights expression language. 79

[129] RESNIK, P. Semantic similarity in a taxonomy: An information-based measure and
its application to problems of ambiguity in natural language. Journal of Artificial
Intelligence Research 11 (1999), 95-130. 3, 41

[130] REYNOLDS, D. Rdf-gbe: a semantic web building block. HP-Lab (2003). 3, 13

[131] RIJSBERGEN, C. Information Retrieval. Butterworths, 1979. 8

[132] Rpath - rdf query language proposal. See http://web.sfc.keio.ac.jp/ km/rpath-eng/
rpath.html. 52, 61, 71

[133] RusT, G., AND BARLAS, C. The mpeg-21 rights data dictionary. IEEE Transactions
on Multimedia, volume 7 number 2 (2005). 78

[134] SALTON, G. The smart retrieval system. Ezperiments in Automatic Document Pro-
cessing (1971). 87

[135] SELBERG, E., AND ETzIONI, O. The metacrawler architecture for resource aggrega-
tion on the web. IEEE Expert (1997). 3, 10, 113, 115, 116

[136] Soap. See http://www.w3.org/TR/SOAP/. 107

[137] SomPEL, H., AND LAGOZE, C. The santa fe convention of the open archives initiative.
D-Lib Magazine, 6(2), February 15, 2000 (2000). 3

[138] Sparql query language for rdf. w3c working draft 12 october 2004. See http://

[139]

www.w3.org/ TR /rdf-sparqgl-query/. 3, 70

Inkling: Rdf query using squishql. See http://swordfish.rdfweb.org/rdfquery/. 3, 70



Bibliography 139

[140]

[141]

[142]

[143]
[144]

[145]

[146]

[147]

[148]

[149]

[150]
[151]

[152]

[153]

[154]

[155]

[156]

Search/retrieve web service (srw). See http://lcweb.loc.gov/z3950/agency /zing/srw/
specifications.html. 3

SToILOS, G., STAMOU, G., TZOUVARAS, V., PAN, J. Z., AND HORROCKS, I. Fuzzy
owl: Uncertainty and the semantic web. In OWL: Ezperiences and Directions Work-

shop (2005). 51, 52
Semantic web. See http://www.w3.org/2001/sw. 12
Html tidy. See http://www.w3.org/People/Raggett/tidy/. 32, 111

Tous, R., AND DELGADO, J. Advanced metasearch of news in the web. In Proceedings
of the International Conference on Electronic Publishing 2002. (ElPub 2002) (2002).
106, 116, 122

V. RAGHAVAN, P. B., AND JUNG, G. A critical investigation of recall and precision
as measures of retrieval system performance. In ACM Transactions on Information
Systems, 7(3):205-229 (2001). 116

W. MENG, C. Y., AND Liu, K. Building efficient and effective metasearch engines.
ACM Computing Surveys (2002). 115

Rdf/xml syntax specification (revised). w3c recommendation 10 february 2004. See
http://www.w3.org/ TR /rdf-syntax-grammar/. 3, 61, 64

Wu, Z., AND PALMER, M. Verbs semantics and lexical selection. In Proceedings of
the 32nd annual meeting on Association for Computational Linguistics (Morristown,
NJ, USA, 1994), Association for Computational Linguistics, pp. 133—-138. 40, 97

X. WANG, T. D., WRAGG, B., AND PARAMASIVAM, M. The mpeg-21 rights expres-
sion language. IEEE Transactions on Multimedia volume 7 number 2 (2005). 78

Xcgl. See http://www.loc.gov/z3950/agency/zing/cql/xcql.html. 4
Extensible markup language (xml). See http://www.w3.org/XML/. 2, 11

Xquery 1.0 and xpath 2.0 data model. w3c working draft 23 july 2004. See http://
www.w3.org/ TR /xpath-datamodel/. 3, 31, 33, 66

Xquery 1.0 and xpath 2.0 formal semantics. w3c working draft 3 june 2005. See http://
www.w3.org/TR/xquery-semantics/. 3, 66

Xquery 1.0: An xml query language. w3c working draft 04 april 2005. See http://
www.w3.org/ TR /xquery/. 2, 3, 4, 33, 52, 66, 104, 107

Xsl transformations (xslt) version 2.0. w3c working draft 4 april 2005. See http://
www.w3.org/TR/xslt20/. 3, 66

739.50. See ftp://ftp.loc.gov/pub/z3950 /official /part1.pdf. 3



	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Already Published Work
	Acknowledgments
	Dedication
	Introduction
	About this thesis
	Aims and Hypothesis
	Methodology
	Related to the first contribution part 'Heterogeneous Data Models and Schemas: Semantic Integration'
	Related to the second contribution part 'Heterogeneous Query Interfaces: Query Tunneling'

	Document outline
	Background Information
	State of the Art and Problem Statement
	Heterogeneous Data Models and Schemas: Semantic Integration
	Heterogeneous Query Interfaces: Query Tunneling
	Relationship between thesis parts and chapters


	Background Information
	Information vs. Data
	Metadata
	Information Retrieval vs. Data Retrieval
	Traditional Information Retrieval vs. Multimedia Information Retrieval
	Data Integration
	Distributed Information Retrieval vs. Data Integration
	Metasearch
	Datalog
	The Extensible Markup Language (XML)
	The Semantic Web
	Querying the Semantic Web
	Semantic Integration
	Resource Description Framework (RDF)
	Ontology Web Language (OWL)
	OWL and Description Logics

	I State of the Art and Problem Statement
	State of the Art in Data Integration
	Historical Progress
	Mediated Schema (the modeling problem)
	Formalisation of the modelling problem
	Formalisation of global-as-view (GAV) approach
	Formalisation of local-as-view (LAV) approach


	Query reformulation algorithms (the querying problem)
	Query reformulation in LAV and GAV (the querying problem)
	Answering queries using views
	Query containment
	Rewriting a query using views

	Parametrized views
	Query processing

	Data Integration and XML
	Mapping the classic data integration problems to XML
	XML query languages and data integration
	XSL Transformations (XSLT)
	XML Query (XQuery)

	XML Data Integration Systems
	Tukwila
	Enosys
	XQuare Fusion


	Semantic Integration
	Ontologies and Data Integration
	Semantic integration challenges

	Ontology Alignment
	Alignment Methods
	Similarity measures

	GMO. A structure-based semantic similarity algorithm
	Graph similarity calculation algorithm
	GMO adaptation of the graph similarity algorithm to OWL-DL
	Concept of similarity in GMO
	An example

	Upper Ontologies
	IEEE SUMO
	DOLCE
	WordNet
	Cyc/OpenCyc


	Current Challenges in Data integration
	Semantic Mappings Generation: Schema matching and Ontology Alignment
	Answering queries using ontology alignments
	Uncertain mappings

	XML-RDF semantic integration
	Querying highly volatile and restricted Web data sources
	Data integration in P2P

	Problem Statement
	Problem addressed 1: Semantic integration
	Problem addressed 2: Heterogeneous query interfaces


	II Heterogeneous Data Models and Schemas: Semantic Integration
	XML Semantic Integration: A Model Mapping Approach
	Already published work
	Introduction
	Related work
	The query rewriting approach
	Other related work. Model-mapping vs. Structure-mapping

	Architecture of the semantic XPath processor
	Overview
	OWL. An ontology web language
	An OWL ontology for the XML model (XML/RDF Syntax)
	XPath
	XPath data model
	XPath syntax
	XPath Formal semantics
	RDQL A Query Language for RDF
	XPath translation to RDQL
	Example results

	Incorporating schema-awareness
	Mapping XML Schema to RDF
	A simple example of schema-aware XPath processing
	Complete XSD to OWL Mapping

	Implementation and performance
	Jena Inference Engine
	Performance

	Testing in the DRM Application Domain
	Application to ODRL license processing
	Application to the MPEG-21 authorization model

	Conclusions

	A Vector Space Model for Semantic Similarity Calculation and OWL Ontology Alignment
	Already published work
	Introduction
	Motivation
	Ontology Alignment
	Semantic similarity measures
	Our approach

	Representing RDF labelled directed graphs with a vector space model (VSM)
	Similarity of entities within the same ontology
	Applying the model to an ontology alignment process
	Computational cost and optimization
	Comparison against algoritms based on bipartite graphs
	An extended example

	Results
	Related Work
	Conclusions


	III Heterogeneous Query Interfaces: XML Query Tunneling
	Facing Heterogeneous Query Interfaces: Query Tunneling
	Already published work
	Introduction
	Web search engines
	Specialised search engines
	Metasearch engines
	Specialised Metasearch

	Our approach: Advanced metasearch
	XML Search Neutral Language (XSNL)
	A Practical Application: Advanced News Meta-search Engine
	Implementation
	Mapping the user query to target systems
	Metadata extraction ("Screen Scraping")
	Reprocessing the results

	Related work
	Conclusions

	Waiting Policies for Distributed Information Retrieval on the Web
	Motivation
	Distributed Search Engine Performance
	Waiting Policy
	Target Engines Behaviour
	Results vs. Time
	Source Discarding Policies
	Minimum Granted Results Policy
	Conclusions


	IV General Conclusions
	Conclusions
	Heterogeneous Data Models and Schemas: Semantic Integration
	Heterogeneous Query Interfaces: XML Query Tunneling
	A Final Comment

	Bibliography




