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Abstract

This thesis deals with two different subjects concerning dynamics of message interchange be-

tween stochastic units.

First, we discuss a theoretical model of an ensemble of stochastic non-leaky integrate-and-fire

neurons with global, delayed and excitatory coupling and a small refractory period. Simulations with

adiabatic changes of the coupling strength indicate the presence of a phase transition accompanied

by a hysteresis around a critical coupling strength. Below the critical coupling production of spikes

in the ensemble is governed by the stochastic dynamics whereas for coupling greater than the critical

value the stochastic dynamics looses its influence and the units organize into several clusters with self-

sustained activity. All units within one cluster spike in unison and the clusters themselves are phase-

locked. Theoretical analysis leads to upper and lower bounds for the average inter-spike interval of the

ensemble valid for all possible coupling strengths. The bounds allow to calculate the limit behavior

for large ensembles and characterize the phase transition analytically. These results may be extensible

to pulse coupled oscillators.

The second part is focused on the analysis of human communication behavior. We examine

the many-to-many social communication activity on the popular technology-news website Slashdot.

To find regular patterns in the activity we have concentrated in the dynamics of message production

without considering semantic relations. Regular temporal patterns have been found in the reaction

times of both the community and single users to a news-post. The statistics of these activities follow

log-normal distributions. Daily and weekly oscillatory cycles, which cause slight variations of this

simple behavior, are identified. The findings are remarkable since the distribution of the number

of comments per users, which is also analyzed, indicates a great amount of heterogeneity in the

community. The reader may find surprising that only a few parameters, allow a detailed description, or

even prediction, of social many-to-many information exchange in this kind of popular public spaces.
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Resumen

Esta tesis trata de dos temas diferentes referente a la dinámica de intercambio de mensajes entre

unidades estocásticas.

Primero, discutimos un modelo teórico de un conjunto de neuronas estocásticas tipo integración-

y-disparo con integración sin pérdidas, un pequeño periodo refractario, y con acoplamiento global y

retardado. Simulaciones con cambios adiabáticos de la fuerza del acoplamiento indican la presencia

de una transición de fase acompañada por una histéresis alrededor de un valor crítico de la fuerza

del acoplamiento. Por debajo del acoplamiento crítico la producción de disparos es gobernada por

la dinámica estocástica, mientras que por encima del valor crítico la dinámica estocástica pierde

su influencia y las unidades se organizan en varios subgrupos con actividad auto-sostenida. Todas

las unidades de un subgrupo disparan al unísono y los subgrupos entre sí están sincronizados fuera

de fase. Un análisis teórico lleva a cotas superiores e inferiores para el promedio del tiempo entre

dos disparos de la población. Estas cotas son válidas para todos los posibles valores de la fuerza

del acoplamiento. Las cotas permiten calcular el comportamiento límite para conjuntos grandes y

caracterizar la transición de fase analíticamente. Estos resultados pueden ser extensibles a osciladores

acoplados por pulsos.

La segunda parte se centra en el análisis de patrones de comportamiento en comunicación hu-

mana. Examinamos la actividad causada por comunicación entre comunidades de usuarios en Slash-

dot, un popular sitio web de noticias relacionados con tecnología. Para encontrar patrones regulares

en la actividad nos hemos concentrado en la dinámica de producción de mensajes sin considerar rela-

ciones semánticas. Se han encontrado patrones regulares en el tiempo de reacción a una nueva noticia

tanto para la comunidad como para usuarios individuales. La estadística de estas actividades sigue

distribuciones log-normales. Se identifican ciclos oscilatorios diarios y semanales, que causan varia-

ciones leves de este simple comportamiento. Los resultados son notables puesto que la distribución

del número de comentarios por usuarios, también analizada en este estudio, indica una gran cantidad
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x Resumen

de heterogeneidad en la comunidad. El lector puede encontrar sorprendente que pocos parámetros,

permiten una descripción detallada y pueden permitir la predicción del intercambio social de infor-

mación entre multitudes en esta clase de espacios públicos populares.
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Introduction

Who are we? The answer to this question is not only one of the tasks,
but the task of science.

Erwin Schrödinger, Science and Humanism.

One of the basic motivations of modern science is to understand human nature. As researchers

we have two main possibilities to advance in this task. We can either focus inside ourselves and try

to understand the interaction of the neurons which form our brain and allows us to investigate such

questions, or aim in the opposite direction and study human behavior in the way we interact with each

other. In the first case the subject of study are neurons, whose basic principles and functions, when

considered as isolated objects, are already widely understood, while in the other case comprehension

of the basic subject is the purpose of the study itself. Despite of this enormous difference in the com-

plexity of the basic unit, in both cases additional intricacy and even qualitatively different behavior

arises due to communication between the subjects of study. The communication takes the form of

action potentials in the case of neurons and all kind of written, spoken or even nonverbal forms of

information exchange in the case of humans. We can consider those forms somehow as the oppo-

site ends in the hierarchy of communication. Nevertheless, what happens if we ignore the difference

in complexity between human and neural communication and reduce both to the same basic level,

where we consider the generation and reception of messages as point processes and that an incoming

message influences the messages production of the receptor? Are there some underlying common

principles? Can we even consider, both, a network of humans or neurons just as another manifesta-

tion of the simple general principle that the whole is more than the sum of its parts, in terms that a

unit as a part of a network shows different behavior form that of an isolated one? Or, at least, can we

identify some patterns in human activity which justify this simplification and allow to speculate about

the existence of self-organized behavior (Sumpter, 2006) caused by human communication?
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2 Introduction

In this thesis we try to give, at least, a partial answer to these questions and investigate on both

ends of the hierarchy of communication. We analyze a simple network of coupled spiking neurons

to understand more about the principles of self-organization due to message exchange and study the

imprints of human communication in online forums. In both cases we consider that an isolated unit

(either human or neuron) is governed by a stochastic process and focus on temporal events produced

by these units when they form part of a network. Those are communication events with other units in

the form of spikes in the case of neurons, or message posts in an online forum in the case of humans.

The messages may incite other units to produce messages as well. For neurons this process is well

studied experimentally (Kandel, Schwarz and Jessel, 2000) and has lead to several models of neural

dynamics (Gerstner and Kistler, 2002) , of which we concentrate on the integrate-and-fire model

(Burkitt, 2006).

Less is known when dealing with human communication. It is not easy to find a similar situation

to a neural network where a unit is influenced by the messages (spikes) of many others as well as

it influences them by its spikes. Traditionally, human communication occurs in an one-to-one or at

most in an one-to-many relation between speaker and audience. Even in an open discussion in a public

sphere as defined by Habermas (1962/1989), where in principle many-to-many communication could

be achieved, we can only listen to one speaker simultaneously. Only with the advent of Internet and

online discussion forums it is possible to find real many-to-many communication (Rheingold, 1994),

with everybody talking at once and software handling the sequencing. Many people can publish their

messages at the same time, and reach a large audience.

This motivated us to investigate Slashdot1 as an example of such an online public sphere (Poor,

2005) focusing especially on the temporal patterns of activity such as the time-differences between

two consecutive comments of the same user or the reaction times of a user and the entire commu-

nity to a certain event. Can we find patterns of activity which justify the simplification of treating

communication just as a point process, without considering its semantics? And furthermore can we

describe these patterns with a simple mathematical expression? This description would be important

for evaluation of a theoretical model of human communication behavior.

In the case of the human communication activity we observe on Slashdot we have no control over

the parameters of the system, we are only observers of a dynamical system in a very limited region of

its parameter-space or, in other words, of a very reduced amount of the possible variants of activity.

The simple model of an integrate-and-fire neural network we study inPart II, on the other hand, gives

us full control over the parameters of the system which we can modify at will, and allows us to analyze

phenomena of self-organization in detail. It is an extension of the model introduced byRodríguez,

Suárez and López (2001) which in turn is a stochastic variant of a simple discrete integrate-and-fire

1http://www.slashdot.org

http://www.slashdot.org


Introduction 3

neuron of van Vreeswijk and Abbott (1993). Using this model we can analyze how neurons, initially

governed by stochastic dynamics, self-organize into several phase-locked clusters, as we increase the

coupling strength, i.e. the influence an incoming message has on a unit. We investigate especially

the effect of a delay in the message reception and periods of insensitivity to incoming messages

(refractory periods) on this type of behavior and measure the length of the inter-spike-interval (ISI)

of the neurons and their distribution among a population as indicator of behavior. Furthermore, we

are interested in a theoretical description of these phenomena, allowing to put limits on the ISI of

the ensemble and determine a critical amount of coupling, for which transition from stochastic to

phase-locked firing occurs, and which in turn may describe a state optimal for information processing

(Kinouchi and Copelli, 2006) and give deeper insight into synchronization phenomena (Pikovsky,

Rosenblum and Kurths, 2001; Izhikevich, 2007).

Although the two types of communication we investigate in this thesis are loosely related as

we have illustrated in the previous paragraphs, we describe them in autonomous components which

can be read independently from each other. Together with an introduction inPart I into some of the

theoretical background needed for understanding this work, this leads to an organization of this thesis

into three parts.

In Part I we explain in chapter 1 the terminology used in this work when referring to locking and

synchronization phenomena in networks of weakly (Kuramoto, 1984) and pulse coupled oscillators

(Canavier and Achuthan, 2007). A short introduction into those two concepts is given as well.

In chapter 2 we give an introduction into the diffusion process (Cox and Miller, 1965) and its

role in neural dynamics (Burkitt, 2006) and models of human reaction times (Smith, 2000). Then the

stochastic integrate-and-fire neuron, its relation with pulse coupled oscillators and the model used in

Part II of this thesis are explained.

Afterwards in Part II we present the work on ensembles of stochastic non-leaky integrate-and-fire

neurons. In chapter 3 a short introduction into the study of synchronization in networks of neuron-

like elements which interchange messages is given and the relations of our findings with those in the

literature are discussed. We then introduce the methodology used in this study as well as the model

we have studied in chapter 4.

First we study only homogeneous populations with delayed, pulsed coupling and a small refrac-

tory period and perform a series of numerical experiments with adiabatic changes of the coupling

strength which we present in chapter 5. Analytical approximations of the expected behavior of the

population are given as in the same chapter. Those results are extended to heterogeneous networks in

chapter 6 and their independence of the type of updating used is shown inchapter 7. Finally, chapter 8

discusses those results and their possible applications and consequences.

When dealing with human communication in Part III we start in chapter 9 with an overview of
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recent findings about human population dynamics placing emphasis on results which report heavy

tailed probability distributions (Sigman, 1999). In the same chapter the class of heavy tailed distribu-

tions is formally defined and two of its exponents, the power-law (Newman, 2005) and the log-normal

(Crow and Shimizu, 1988) distributions, often creating competing models to explain the same data

(Mitzenmacher, 2004), are explained in more detail and set in contrast with each other. We also

describe the popular technology news-platform Slashdot from where we obtained the data in this

chapter.

The crawling-process used to mine data from this website is described inchapter 10 together with

some basic magnitudes extracted from this data and activity cycles we could identify. Afterwards in

chapter 11 a detailed analysis of the temporal behavior patterns of the users commenting the news

posts on Slashdot is given. It is shown that user-behavior can be well approximated with log-normal

distributions and an even further improvement can be achieved if the log-normal distributions are

modified to account for the activity cycles of the population.

To investigate the influence of the community we study inchapter 12 first the distribution of ac-

tivity among all the users participating in the debates and focus then on the temporal activity patterns

of single users, which are similar to those of the entire community and can be modeled as well by

log-normal distributions. The results of Part III are then discussed in chapter 13.

Finally, in Conclusions and Future Research:, the last chapter of the dissertation, we give the

main conclusions of this work and describe future research perspectives and in theAppendix some

proofs and of the theoretical results presented inchapter 5 and a graphical interpretation of them can

be found.
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Chapter 1

Synchronization

In this chapter we explain the terminology used in this work when referring to locking and

synchronization. We introduce briefly the concepts of weakly and pulse coupled oscillators and con-

centrate on locking and synchronization phenomena in networks of such types of oscillators. The

following is based mainly on the textbooks of Pikovsky et al. (2001) and Izhikevich (2007). When-

ever there was a discrepancy between the two works we favored the latter.

1.1 Introduction

Synchronization is a phenomena that can be found in many areas such as natural sciences, en-

gineering and social life and has a long history in science. Christian Huygens was probably the first

to describe a synchronization phenomena as early as in the seventeenth century when he observed

the synchronization of two clocks hanging on a wall. A reprint of letters to his father mentioning this

discovery can be found in (Pikovsky et al., 2001). The word “synchronous” originates from the Greek

words σύν (syn, meaning the same, common) and χρóνoς (chronos, meaning time), which in a di-

rect translation would mean something like “sharing the same time” or “occurring in the same time”.

Nowadays synchronization is understood as an adjustment of rhythms of oscillating objects due to

their weak interaction (Pikovsky et al., 2001). An oscillator is an active system that contains an in-

ternal source of energy which is transformed into oscillatory movement. Being isolated the oscillator

continues to generate the same rhythm until the source of energy expires.

1.2 Forms of locking and synchronization in periodic oscillators

In what follows we restrict ourselves only on the description of locking and synchronization

phenomena of periodic oscillators. More general forms of synchronization, such as complete and

7
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generalized synchronization can occur in chaotic oscillators, but a description of these phenomena

is beyond the scope of this thesis. (See for example Pikovsky et al., 2001 for an introduction on

synchronization of chaotic oscillators).

1.2.1 Weakly coupled oscillators

Periodic oscillators generate a periodic process x(t) and can be characterized by their phase φ(t)

and amplitude R(t). The phase φ(t) increases continuously in time (usually by 2π during a period T

of the oscillator) and the amplitude R(t) can be written in terms of φ(t). We consider now a system

of N interacting periodic oscillators of the form:

dxi(t)
dt

= fi
(
xi(t)

)
+ ε

N

∑
j=1

gi j
(
xi(t),x j(t)

)
(1.1)

with functions gi, j being periodic in both arguments. For weak coupling ε� 1 the above system can

be reduced to the phase model for coupled oscillators (Kuramoto, 1984; Hoppensteadt and Izhikevich,

1997):
dφi(t)

dt
= ωi + ε

N

∑
j=1

Qi j
(
φi(t),φ j(t)

)
(1.2)

being φi the phase of oscillator i and wi its frequency. The Qi j are 2π-periodic functions in both argu-

ments. Intuitively, the above reduction can be performed since periodic oscillators can be described

by a stable limit cycle and weak perturbations (or couplings) influence only the phase of an oscillator

but not its amplitude (Pikovsky et al., 2001).

With the phase reduction of equation (1.2) we can write a system of two weakly coupled oscil-

lators in the following general form:

dφ1(t)
dt

= h1
(
φ1(t),φ2(t)

)
,

dφ2(t)
dt

= h2
(
φ1(t),φ2(t)

)
. (1.3)

Again h1 and h2 are 2π-periodic functions in both arguments.

The phases φ1,2(t)mod 2π of the two oscillators are defined on circles. Their state-space is thus a

torus and the system (1.3) performs a trajectory on this torus. According to the form of this trajectory

we can separate different forms of locking and synchronization of the two oscillators:

Frequency locking: The oscillators are frequency-locked if there exists a periodic trajectory on the

state space. If during this trajectory φ1 performs p oscillations and φ2 during the same time q,

we speak of p : q frequency-locking (p and q are relatively prime integers).

Entrainment: A 1 : 1 frequency locking is called entrainment.1

1Note that in the literature the terms entrainment and synchronization are often used as synonyms. Here we we follow
the nomenclature of Izhikevich (2007) and define them separately.
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Figure 1.1: Degrees of locking for oscillators (Figure inspired byIzhikevich, 2007)

Phase-locking If the oscillators are p : q frequency-locked and their phases fulfill

qφ1(t)− pφ2(t) = const (1.4)

we speak of p : q phase-locking. Depending on the value of the constant we can separate the

following forms of phase locking: in-phase (const = 0), anti-phase const = ±π, or out-of-

phase.

The case of 1 : 1 phase-locking is usually referred to as synchronization, and we have analogous to

the above separation the following nomenclature:

In-phase synchronization: The oscillators do not only share a single common frequency, but also

tend to oscillate with a common phase angle. i.e. the phase difference is zero.

Anti-phase synchronization The oscillators share the same frequency but oscillate in anti-phase,

i.e. φ1(t)−φ2(t) =±π

Phase-locked synchronization: The most general case φ1(t)− φ2(t) = const �= 0. The oscillators

share the same frequency but oscillate with a constant phase difference.

Figure 1.1 shows in a Venn-like diagram the relationships of the above described types of synchro-

nizations and locking. Those types can also be found in networks of N > 2 oscillators, where their

occurrence is equivalent to pairwise frequency-locking, entrainment or phase-locking of the oscilla-

tors in the network. However, more complex phenomena, such as phase-locked clusters or partial

synchronized regions, can be observed in networks and will partly be described inPart II of this

thesis.
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1.2.2 Pulse coupled oscillators

If the coupling between oscillators happens at discrete times (via a pulse) and can be described

as an effect multiplied by a delta function, we speak of pulse coupled oscillators (Canavier and

Achuthan, 2007). Their phase is usually taken to be proportional to the time between the emis-

sion of two consecutive pulses. That is if T is this period, the phase φ(t) fulfills φ(t +T ) = φ(t)+2π.

The coupling between units in this case is pulse like. In its most simple form, i.e. without considering

delays nor refractory periods, a system of two pulse coupled oscillators can be written as following

way:

dx1(t)
dt

= f1
(
x1(t)

)
+ ε1

∞

∑
k

δ
(
t− t2,k

)
dx2(t)

dt
= f2

(
x1(t)

)
+ ε2

∞

∑
k

δ
(
t− t1,k

)
(1.5)

where δ(t) is the Dirac delta function and {ti,k|k ∈N} is the sequence of pulses emitted by oscillator i,

i.e. its pulse train.

Contrary to weakly coupled oscillators, in the definition of locking and synchronization phe-

nomena between pulse coupled oscillators their phase difference is not required to be constant. It

only has to be bounded and is allowed to oscillate around some value. This is justified by the fact that

usually, e.g. in the case of spiking neurons, one is only interested in the pulse trains the two oscillators

generate.

Formally we require:

|qφ1(t)− pφ2(t)| < const (1.6)

for p : q phase locking. This is equivalent to the definition of frequency locked oscillators, which

implies that there is no separation between frequency and phase locking for pulse coupled oscillators.

Again we speak of synchronization in the case of 1 : 1 phase locking.

Since the phase difference is no longer constant in the above condition, it is convenient to define

the different types of synchronization over the time-difference between two consecutive pulses of

the oscillators. That is, if the period of oscillation is T , the oscillators are synchronized in-phase

if they emit a pulse exactly at the same time (or within a very narrow time-window). We speak of

synchronization in anti-phase if one oscillator emits a pulse T/2 time units after the other.2 Any other

time-difference is referred to as phase-locked or out-of-phase synchronization.3 As in the case of

weakly coupled oscillators the definitions extend to networks via pairwise locking.

2Note that contrary to weakly coupled oscillators we do not speak of in-phase or anti-phase p : q phase-locking.
3Some authors (Pikovsky et al., 2001) use the phase difference in these definitions, requiring either φ1(t)− φ2 ≈ 0 or

φ1(t)−φ2 ≈±π. For our purposes the above definition is more useful.



Chapter 2

Diffusion models

In this chapter we give a brief introduction into different models of neural dynamics and human

behavior which are based on a stochastic accumulation process (SAP). The following was mainly

inspired by the reviews of Smith (2000) and Burkitt (2006).

2.1 Wiener Process

Before we start with the definition of a SAP, we first give a brief description of the Wiener Pro-

cess, a continuous stochastic process which was introduced in 1923 by Norbert Wiener as a rigorous

mathematical model of the Brownian motion and is sometimes also referred to as Brownian motion

process. It is the continuous limit of a simple random walk (Cox and Miller, 1965) and can be defined

in the following way (Ross, 2003):

Definition 1 A stochastic process {W (t), t ≥ 0} is said to be a Wiener process if

(i) W (0) = 0;

(ii) {W (t), t ≥ 0} has stationary1 and independent increments2;

(iii) for every t > 0. W (t) is normally distributed with mean 0 and variance σ2t.

For σ= 1, we speak of a standard Wiener process. Some interesting properties which follow imme-

diately from this definition are: the variance of a standard Wiener process in an interval is equal

to the length of the interval, i.e. E
((

W (t1)−W (t2)
)2
)

= |t1 − t2|, and its correlation function

E
(
W (t1)W (t2)

)
= min(t1, t2).

1Stationary means that W (t + s)−W (t) does not depend on t.
2Its increments in successive non-overlapping intervals are independent.

11
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2.2 Stochastic accumulation process

The time evolution of neural potentials or the information accumulation process in decision

making tasks can be described in a general form as solution of the following SDE:

dX(t) = µ
(
X(t), t

)
dt +σ

(
X(t), t

)
ξ(t) (2.1)

where X(t) is a random variable which represents the amount of accumulated information at time

t and dX(t) is the random change in the process X(t) that occurs in an infinitesimally small time

interval dt. The stochasticity is introduced in the equation by ξ(t) representing Gaussian white noise,

which is equivalent to the first derivative of a standard Wiener process W (t). Equation (2.1) includes

linear as well as nonlinear processes of arbitrary order. If we restrict ourselves to a linear first order

version of (2.1), we can rewrite it as

dX(t) =
(

µ(t)+b(t)X(t)
)

dt +
(
σ(t)+ c(t)X(t)

)
ξ(t) (2.2)

where µ(t),b(t),σ(t) and c(t) are continuous functions of time. We can distinguish two important

special cases of 2.2.

dX(t) =
(

µ(t)− γX(t)
)

dt +σξ(t) (2.3)

dX(t) = µ(t)dt +σξ(t) (2.4)

which are obtained setting σ(t) = σ constant, c(t) = 0 and b(t) = −γ or b(t) = 0. The diffusion

process of Equation (2.3) is called the Ornstein-Uhlenbeck process, and (2.4) a Wiener Process with

drift. Both have great importance for theory and applications in the explanation of response times in

simple information processing tasks (Smith, 2000) or for neural modeling (Burkitt, 2006).

2.3 The diffusion process in human and animal behavior models

Diffusion models are often used to explain the response time (RT) distribution of decisions of

human or animal test subjects in simple perceptual and cognitive tasks. The models are based on the

premise of noisy stimulus representation in the central nervous system and the necessity to accumulate

successive samples of the noisy stimulus until a decision-threshold is reached (Ratcliff and Smith,

2004). Correspondence between this models and the growth of stimulus information in neural firing

data has been reported (Smith and Ratcliff, 2004).

The solution X(t) of the SDE (2.1) describes in a general form the amount of accumulated

stimulus information at time t. Depending on the type of task, either one or two sided first passage
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Figure 2.1: Diffusion model as explanation of response time in a two-choice task (Figure inspired by
Ratcliff and Smith, 2004)

time problems of the diffusion process X(t) are of interest to model the reaction time. Two sided

problems are used when modeling cognitive tasks where a test subject has to choose between two

different responses according to the stimulus presented, while one sided problems can model tasks

where the decision is between performing a response or do nothing.

One sided problems involve a single random variable T , which stands for the time where the

accumulate information X(t) first reaches the in the general case time dependent decision threshold

aA(t). T is defined as

T = inf{t|X(t)≥ aA(t)}; X(t0) = z < aA(t0), (2.5)

with the diffusion process starting at time t0 at X(t0) = z.

The two sided problem involves a pair of random variables TA and TB, which represent the time

where X(t) first exceeds the threshold aA(t) or falls below aB(t). Again both threshold may be time-

dependent and can be interpreted as decision criteria of competing responses. We can formally define

TA and TB in the following way:

TA = inf{t|X(t)≥ aA(t)∧X(τ)≥ aB(τ) for all t < τ}, (2.6)

TB = inf{t|X(t)≤ aB(t)∧X(τ)≤ aA(τ) for all t < τ}, (2.7)

with aB(t0) < X(t0) = z < aA(t0) and aB(t) < aA(t) for all t ≤ t0. The statistics of interest are now

the first passage time distributions of T or TA and TB respectively, which for certain restrictions on the

parameters of (2.1) and the decision criteria can written in closed form. SeeSmith (2000) and Ratcliff

and Smith (2004) for more details and examples.
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An example of three different trajectories towards the decision thresholds in a two decision task

model is given by Figure 2.1. The decision criteria aA and aB are set to be constant and the diffusion

process X(t) is a Wiener process with a constant drift, i.e. the solution of (2.4) with µ(t) = µ. The drift

parameter determines the preferred direction of the diffusion process, indicated by the dashed line in

Figure 2.1. While the trials 1 (black) and 3 (dark gray) reach aA leading to the preferred response A.

The trajectory of trial 2 (light gray) falls below aB, implying that the corresponding realization of the

task lead to response B.

If we had a one sided first passage time problem, the later trajectory would not stop at aB and

X(t) would eventually increase again to reach aA at a later time, or in the opposite case the trajectory

would correspond to a no response trial.

2.4 The diffusion process in neural models

2.4.1 The stochastic integrate and fire model

In neural dynamics one is interested in modeling the evolution of the membrane potential v(t)

of a neuron in time. The membrane potential is modified by excitatory or inhibitory synaptic inputs

form other neuron. If the membrane potential exceeds a fixed threshold, an output spike is generated

and the membrane potential relaxes to a resting potential V0. In other words, a neuron sums up inputs

and fires if they exceed a certain value, which explain the name of integrate-and-fire. Often a leaky

term is included in this mechanisms, since the membrane potential of real neurons decreases if no new

inputs arrive. A deterministic version of the leaky integrate-and-fire neural model is often written in

the following form:

Cm
dv(t)

dt
=−Cm

τm
(v(t)−V0)+ Is(t)+ Iin j(t), (2.8)

The first term on the right hand side of the equation describes the current due to passive leak of the

membrane, i.e. the leak current. The rest of the variables are described inTable 2.1.

Cm . . . the membrane capacitance.

Is(t) . . . the synaptic input current to the neuron.

Iin j(t) . . . a current injected into the neuron, by an intra-cellular electrode.

τm . . . the passive membrane time constant, which is related with τm = RmCm to Cm and
the leak resistance Rm.

V0 . . . the resting potential.

Table 2.1: Explanation of variables used in equation (2.8).

The arrival times of the synaptic input are often modeled as Poisson processes (Cox and Miller, 1965),
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which is reasonable if we consider a large number of independent synaptic inputs. If we differentiate

between excitatory and inhibitory synaptic inputs, we can rewire the synaptic input current as:

Is(t) = Cm (εESE(t)− εISI(t)) , (2.9)

Where SE and Si are the Poisson processes of excitatory and inhibitory inputs with rates λE and λI ,

and εE > 0 and εI > 0 the changes in current due to a single synaptic event. Using (2.9) in (2.8) and

setting Iin j(t) = 0 leads to the so called Stein model (1965):

τm
dv(t)

dt
=−

(
v(t)−V0

)
+ εESE(t)− εISI(t). (2.10)

which can be approximated by a continuous diffusion model, namely the Ornstein-Uhlenbeck model

(Uhlenbeck and Ornstein, 1930), assuming that the discrete evolution of the potential is sufficiently

small (Redner, 2001) and is then usually written as (compare with equation2.3):

dv(t)
dt

=−v(t)−V0

τm
+µ+σξ(t). (2.11)

where ξ(t) is Gaussian white noise and the intensity coefficient σ and the drift µ relate with the

parameters of the Poisson process in the following way:

µ = εEλE − εIλI , (2.12)

σ =
√
ε2EλE + ε2IλI. (2.13)

If we omit the leaky term in Eq. 2.11 we get a SDE equivalent to eq. (2.4) with µ(t) = µ constant,

which can be solved easily. The result is the perfect integrator or non-leaky integrate-and fire neuron

model, one of the first neural models to be analyzed (Gerstein and Mandelbrot, 1964). We get that

v(t) = v0 +µt +σW(t), t > 0 (2.14)

where v0 = v(0) and W (t) is the standard Wiener process described insection 2.1.

2.4.2 Pulse coupled oscillators

The deterministic integrate-and-fire model of equation (2.8) can be simplified using a phase

reduction technique (Winfree, 2001) in the following way. We set the resting potential V0 = 0 and

rescale the membrane potential v(t) to eliminate the constants, which results in a voltage like state

variable x(t) with the threshold at 1. We get

dx
dt

= α− γx (2.15)

for 0≤ x≤ 1 and γ> 0. If x≥ 1 then the neuron fires and x is reset to zero. The external input to the

neuron is given by α.
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If the external input is strong enough (α> γ), an individual neuron fires repetitively even in the

absence of coupling with other neurons and we have an integrate-and-fire oscillator. A combination

of N such oscillators, with pulsed coupling has been used to model the self synchronization of the

cardiac pacemaker (Peskin, 1975). Every unit i that reaches threshold increases all other units state

by an amount ε. If m neurons fire simultaneously the states of all other neurons are increased by mε.

Such a system of pulsed coupled oscillators always synchronizes for almost all initial conditions of

the system. (Mirollo and Strogatz, 1990).

2.4.3 Discrete integrate-and-fire model

The simplified leaky integrate-and-fire model of (2.15) can be discretized (van Vreeswijk and

Abbott, 1993), which allows to study the effect of transmission delays analytically. Integration of

equation (2.15) over one time-step leads to

ai(t + 1) =λai(t)+α+ εm(t) if ai(t) < 1,

ai(t + 1) =0 if ai(t)≥ 1. (2.16)

where λ= exp(−β) and m(t) stands for the number of neurons which reach threshold at time t. The

transmission delay of the above system is 1, it takes one time-step for a spike to reach all the other

neurons. The units of system (2.16) also experience a refractory period, which is a small time period

after a neuron has reached its threshold during which it is insensible to incoming synaptic events.

This is reflected in the second equation of (2.16) which ignores spikes received from other units.

For the above equations, bounds for regions with self sustained firing patterns of an homoge-

neous ensemble of N neurons have been derived in van Vreeswijk and Abbott (1993) in the absence

of external input to the system, i.e. α= 0.

2.4.4 Discrete stochastic integrate-and-fire model

As a variant of system (2.16) Rodríguez et al. (2001) introduced a stochastic non-leaky integrate-

and-fire model. In their model the threshold is set to L and only discrete values are allowed for the

state variables ai(t) and the coupling strength ε. Instead of using a constant input α to the neurons,

the state of a unit performs a random walk according to the outcome of a Bernoulli process. The state

increases for every success and remains constant in case of failure, being p the probability of success.

Combining this with the input from other neurons leads to the following equations:

ai(t + 1) =

⎧⎨
⎩ ai(t)+m(t)ε+ 1 with probability p

ai(t)+m(t)ε with probability (1− p)
if ai(t) < L,

ai(t + 1) = 1+
(
m(t)−1

)
ε with probability 1 if ai(t)≥ L. (2.17)
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Again m(t) stands for the number of neurons which reach threshold in time-step t. The above system

can be seen as a discrete variant of the diffusion model of Gerstein and Mandelbrot (see equation

2.14), although the monotonically increasing random walk does not exactly coincide with a discrete

version of a Brownian motion. Note that the previous system (2.16) treats the refractory period

differently, it does not allow any modification of the state variable while equations (2.17) only block

the stochastic increases of the states of the units but enable changes due to incoming messages from

other neurons during the refractory period.

System (2.17) experiences clustering phenomena for larger values of ε (Rodríguez, Suárez and

López, 2002). A more general version of this model will be introduced and further analyzed inPart II

of this thesis.
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Part II

Neural populations
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Chapter 3

Introduction to message interchange in neural populations

The collective dynamics of networks composed of neuron-like elements which interchange mes-

sages have been studied in many areas of science. Several models have been developed to simulate

and analyze phenomena produced by pacemaker cells in heart (Peskin, 1975), neurons in the brain

(Bienenstock, 1995), swarms of fireflies (Buck, 1988; Copeland and Moiseff, 1995) or hand clapping

of opera theater attendants (Néda, Ravasz, Brechet, Vicsek and Barabási, 2000). Synchronization of

the ensemble units is a common characteristic of these phenomena.

The observed synchronization effects are different according to the model characteristics. Most

studies consider only instantaneous coupling (i.e. no delay in the message exchange) between the

units which simplifies the analysis of the resulting dynamics. Under this restriction Mirollo and

Strogatz (1990) demonstrated that certain types of identical leaky oscillators with global coupling

synchronize for almost all initial conditions. Their result has been extended bySenn and Urbanczik

(2000) allowing non-identical oscillators whose intrinsic frequencies, thresholds and couplings are

heterogeneous within a certain range. They showed that non-leaky linear integrate-and-fire neurons

synchronize for any initial condition for almost all parameter values of the system and speculate that,

using perturbative arguments, their results might be still valid in the presence of a small leakiness. The

influence of an absolute refractory period on the Mirollo-Strogatz model has been analyzed byChen

(1994) and Kirk and Stone (1997). The authors of these papers showed that the system approaches

synchrony for almost all initial conditions if the refractory period is below a critical value.

If a delay for the message exchange is added more complex forms of synchronization are ob-

served. Gerstner (1996) found than an ensemble of non-leaky oscillators with identical frequencies,

converges to periodic phase locked firing but does not necessarily fire in unison, under the restriction

that the sum of input due to coupling to each oscillator is constant.Ernst, Pawelzik and Geisel (1995;

1998) report that for both, excitatory and inhibitory coupling, leaky pulse coupled oscillators tend to

cluster their activities. All oscillators within a cluster are synchronized and fire in unison whereas

21
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the clusters are phase-locked with constant phase differences. The number of clusters of the system

was inversely proportional to the length of the delay for inhibitory coupling. The stability of these

clusters was analyzed by Timme, Wolf and Geisel (2002) and Ashwin and Timme (2005). Clusters

have also been observed by van Vreeswijk (1996) for coupling with α functions. For very large de-

lays (larger than the period of isolated neurons)Gong and van Leeuwen (2007) found that a network

of sparsely connected pulse coupled spiking neurons jumps spontaneously between a large variety of

quasi stable phase locked states. Similar phenomena have been proposed as a possible mechanism for

neural information coding and processing in the form of synfire chains (Abeles, 1991; Bienenstock,

1995; Diesmann, Gewaltig and Aertsen, 1999; Ikegaya et al., 2004). The importance of delay for neu-

ral modeling has recently been addressed by Izhikevich, Gally and Edelman (2004) and Izhikevich

(2006), claiming that it allows an unprecedented information capacity, which translates into an in-

crease of stable firing patterns in more realistic neural populations due to heterogeneous delays.

In this study we investigate the influence of variations in the coupling strength on a network of

non-leaky integrate-and-fire neurons with delayed, pulsed coupling and a small refractory period. We

show that a system of these characteristics exhibits a phase transition with a delay-induced hysteresis.

Phase transition phenomena are well known in populations of weakly coupled oscillators, where the

onset of synchronization represents a second order phase transition analogous to the formation of

a Bose-Einstein condensate (Winfree, 1967; Kuramoto, 1984). Interacting chaotic oscillators also

exhibit a special kind of phase transition which closely resembles that seen in spin glasses (Kaneko,

1990). Recent work analyzes the existence of phase transitions for chains (Östborn, 2002) and lattices

(Östborn, Åberg and Ohlén, 2003) of pulse-coupled oscillators with a particular, biologically inspired

phase response curve. For a review on phase transitions and other critical phenomena in complex

networks see Dorogovtsev, Goltsev and Mendes (2007).

Contrary to the former mentioned studies the neurons of the network we analyze are driven

by stochastic input, i.e. pulse-coupled oscillators with stochastic frequencies. Such type of model

neurons have been introduced in Gerstein and Mandelbrot (1964) and one possible interpretation of

the stochasticity is random input form background neurons that are not explicitly modeled (Stein,

1967). The units perform a random walk towards a threshold and, according to the characteristics

of the stochastic input, several studies have analyzed the resulting distributions of the inter-spike

intervals of single units for the case of non-leaky integrate-and-fire (IF) neurons1 (Tuckwell, 1988;

Fusi and Mattia, 1999; Salinas and Sejnowski, 2002; Middleton, Chacron, Lindner and Longtin,

2003; Lindner, 2004). For a review on those results and the more biological plausible models of

leaky IF neurons see (Burkitt, 2006) and the references therein.

Here we are interested in a network of such units which can be interpreted as a simplified model

1Sometimes also referred to as leak-less or perfect integrator neurons.
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of a pool of globally coupled neurons with similar properties, which receive stochastic input form

different regions of the brain (Gerstner, 2000). Such networks have been studied for the cases of in-

hibitory (Brunel and Hakim, 1999; Brunel and Hansel, 2006) and excitatory coupled (Gerstner, 2000)

leaky IF neurons. The later work mainly concentrated on noise in the thresholds or the refractoriness

and only makes some comments on the effect of stochastic inputs. A combination of excitatory and

inhibitory coupling, where noise leaded to enhanced stability of long distance synchronization, has

been analyzed in a realistic heterogeneous neural model (Hodgkin-Huxley) by (McMillen and Kopell,

2003).

A common problem of these more biologically plausible models is that analytical studies are

hard to perform especially if delay and refractory period are added. To bypass this problem we base

our analysis on a discrete-time model introduced inRodríguez et al. (2001), of globally coupled, non-

leaky integrate-and-fire neurons with a constant transmission delay and a refractory period, where

the stochastic inputs to the units are provided by a Bernoulli process. This model allows efficient

simulations and a detailed analytical study and is an extension of the discrete model presented invan

Vreeswijk and Abbott (1993).

The use of a stochastic model allows to observe that the nature of the dynamics changes abruptly

from a regime where the units show noisy, irregular spiking behavior at low coupling to a regime with

deterministic, self-sustained and repetitive spiking behavior if the coupling is increased to values

greater than the critical coupling strength. There the units organize into several clusters, have all the

same inter-spike interval (ISI), fire in-phase with the units of their own cluster and phase-locked with

constant time differences to the neurons of other clusters. The clusters are robust to modifications

of the rate of the stochastic input. If the coupling strength is increased even more, the number of

clusters and the length of the ISI decrease since some clusters merge, but the system continues with

the phase-locked firing. If, on the contrary, the coupling is decreased, the units of the population

remain firing phase-locked without an increase of the ISI or the number of clusters until the critical

coupling strength is reached, where the clusters start to dissolve. Thus a hysteresis effect can be

observed.

The phase transition and the hysteresis can be described in detail. Upper and lower bounds for

the ISI as well as an approximation for the mean ISI are obtained and the system’s behavior for large

ensemble sizes (i.e. at its thermodynamic limit) is characterized.

We conjecture that the observed phenomena can potentially occur in rather different models with

a refractory period and delayed coupling. The results may be useful to explain certain aspect of animal

behavior e.g. synchronized and non-synchronized flashing of North American fireflies (Copeland and

Moiseff, 1995), create a simple working-memory (Wang, 2001) and may be applied in information

processing.
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Chapter 4

Neural model and experimental procedures

In this chapter we explain the model used in this study and the methodology of the simulations

and data analysis.

4.1 A discrete model of an stochastic integrate-and-fire neuron

The discrete neural model studied in this work is based on the one introduced byRodríguez et

al. (2001), which is an extension of the work of van Vreeswijk and Abbott (1993). It is composed of

a globally coupled network of N non-leaky stochastic integrate-and-fire units. Unlike the model of

Rodríguez et al. (2001), where only a finite number of states is allowed, each unit i is at time t in a

continuous state ai(t) ∈ [1,∞). Transitions between states can take place only at discrete time-steps

and are limited by a threshold L. L is a positive real number and limits the range of excitations in the

sense that every state ai(t)≥ L is meta-stable since it absorbs any further state transitions or incoming

messages and relaxes to 1 after the end of a refractory period tre f .

We have two types of state transitions:

1. Stochastic state transitions:

At every discrete time-step t a single unit can increase its state variable by 1 with probability p

if the state of the neuron is below threshold L.

ai(t + 1) =

⎧⎨
⎩ ai(t)+ 1 with probability p

ai(t) with probability (1− p)
if ai(t) < L,

ai(t + tre f ) = 1 with probability 1 if ai(t)≥ L.

(4.1)

2. State transitions due to coupling between units:

A unit j that reaches the threshold L at time t emits a spike and increases the continuous state

variable of an unit i by an amount εi j at time t + δ, where δ stands for the synaptic delay.

25
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Rodríguez et al. (2001) only allowed positive integer values for εi j. We will not use this re-

striction and allow any non-negative real number. The total amount of change of a single unit

at time t +δ is obtained by summing over all neurons which had reached the threshold at time

t. This gives us the following transition function due to messages of other units (we have to

consider three cases depending on the threshold situation and the relation of tre f and δ):

ai(t +δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ai(t)+
N

∑
j=1

εi jΘL(aj(t)) if ai(t) < L,

1+
N

∑
j=1

εi jΘL(aj(t)) if ai(t)≥ L and δ≥ tre f ,

1 if ai(t)≥ L and δ< tre f .

(4.2)

Notice that ΘL(x) = Θ(x−L) where Θ(x) is the Heaviside step function whose value is 0 for

negative inputs and 1 elsewhere. We use this function to sum only over the neurons which

reached threshold L in the previous time-step.

We restrict our analysis to the case of δ ≥ tre f . Consequences of other choices are discussed in

chapter 8. To keep the simulations simple we set both tre f and δ equal to 1, which allows us to

combine these two types of evolution (4.1) and (4.2) into a single equation and we get the following

dynamics:

ai(t + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai(t)+
N

∑
j=1

εi jΘL(aj(t))+ 1 with probability p

ai(t)+
N

∑
j=1

εi jΘL(aj(t)) with probability (1− p)
if ai(t) < L,

ai(t + 1) = 1+
N

∑
j=1

εi jΘL(aj(t)) with probability 1 if ai(t)≥ L.

(4.3)

Rodríguez et al. (2001) set all εi j = ε for i �= j and all εii = 0. With these prerequisites the parameter

η=
L−1

(N−1)ε
(4.4)

was introduced to characterize the strength of the interactions among the units. The parameter η gives

the ratio between the total change in activation needed for a neuron to fire and the one provided by

the coupling with the rest of the population. For η� 1 the following expressions approximate well

the mean and standard deviation of the ISI of a neuron in the ensemble:

τm f = tre f +
L− (N−1)ε−1

p
, σm f =

η−1
η

√
(L− (N−1)ε−1)(1− p)

p
. (4.5)

Details and derivations of these equations, which are based on a mean-field approach, replacing the

state transitions due to coupling between units by their average, can be found in (Rodríguez et al.,
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2001)1. Equations (4.5) fail to describe the behavior of the system in regions of high coupling. At

η = 1 they predict one giant cluster containing all the units with an ISI of 1. This would only be

true for a system without delay and refractory period. In our system, however, the more important

correlations due to the delayed message exchange become (i.e. the smaller becomes η), the bigger

is the difference between τm f and the ISI of the units. This was first reported by Rodríguez et al.

(2002), who found that for η= 1 after an initial transient the system reaches one of a large number of

periodic firing patterns, composed of several clusters. The same is true for η< 1, as can be observed

in Figure 4.1, where raster plots of spikes of a system consisting of 100 neurons are shown. The

irregular behavior of the system at η = 1.2 (Figure 4.1a) changes into a regular repetitive spiking

pattern at η = 1 (Figure 4.1b) if the coupling is increased. If increased further some clusters merge

but the system continues with the phase-locked clustered firing as shown inFigure 4.1c for η= 0.9.

1Note that (Rodríguez et al., 2001) used tre f = 1 in their analysis, which can be easily extended to the general case of
tre f variable.
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Figure 4.1: Raster plot of spikes (firing patterns) of 100 neurons (noise rate p = 0.9 and threshold
L = 100) for different values of η. Simulation started with a random initial state for every neuron.
Coupling strength is slowly increased every 100 time-steps and time was set to 0 after a transient of
50 time-steps. For clarity in the visualization the neurons are re-labeled according to their spike-time
at η= 1. (a) We observe irregular firing at η= 1.2. (b) At η= 1 the neurons organize into 9 phase-
locked clusters (labeled by the boxed numbers). (c) At η= 0.9 the number of phase-locked clusters
is reduced to 5 since clusters number 1,2; 4,5; 6,7 and 8,9 merged into new bigger clusters. Note
that the length of the ISI coincides with the number of clusters for η= 1 and η= 0.9.
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4.2 Experimental procedures

To analyze the system described in section 4.1 we use the following experimental procedures.

The phase transition and the hysteresis are best understood observing how the system reacts to adi-

abatic2 changes of the coupling strength. A simple analogy is useful to understand the procedure.

Consider a cloud of particles that is slowly concentrated or diluted by increasing or decreasing the

volume. We begin with a very dispersed cloud with little interaction between the particles and start

to concentrate it in a stepwise manner. At every concentration step the interaction among the par-

ticles increases. At some point the process is inversed and the cloud is diluted again until reaching

the original state. We therefore distinguish two different processes in our experiments, to which we

refer as concentration process and dilution process. The particles are in our case the spiking units

and the interaction can be measured via the relation of the threshold L and the coupling strength ε

multiplied by the number of units N. As explained above (see equation4.4) this relation is reflected

in the parameter η, which in our analogy represents the volume of the system.

In our experiments we choose a fixed set of N neurons with fixed threshold L. The only parameter al-

lowed to change is the global interaction strength ε. We start with units at random initial states and at

regions of high η (usually η= 2) where the system can be described with high accuracy by equations

(4.5) and is ergodic in the sense that all accessible micro-states are visited over a long period of time.

The units in these regions can be viewed as nearly independent with a threshold lowered by the mean

activity induced by messages received from other units. The only difference to real independence is

a period focusing effect described by Rodríguez et al. (2001). This results in a slightly lower (by a

factor (η−1)/η) standard deviation than the one of an independent unit with lowered threshold.

Once an experiment is started we let the system evolve enough time-steps to avoid dependence on

unnatural initial conditions (i.e. conditions that are not typical of the system) and let the ISI stabilize.

Now we can start the concentration process by decreasing η in a stepwise manner. We achieve this

via adapting ε. Notice that, although we change η by a constant Δη, the changes of ε are not constant

due to the inverse relation of η and ε. After every decrease of η we let the system evolve enough

time-steps until the ISI stabilizes again. This procedure is repeated until a value of η in the range be-

tween 1 and 0.5 is reached. Then we reverse the procedure and start the dilution process. We increase

η in a stepwise manner until we reach again the starting value of η.

To analyze the results we calculate two types of statistics of the ISIs of the units for every value of η.

1. The statistics of the ISI of the units just before the parameters of the system are changed (i.e. ε

is increased or decreased). We call the first two moments of these statistics τ and σ (τ denotes

the mean ISI of the ensemble and σ their standard deviation).

2We use the term adiabatic as it is used in quantum mechanics, meaning a “sufficiently slow” change of the system.
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2. The statistics of τ and σ of different experiments: We call 〈τ〉 the mean and σexp the standard

deviation of the ensemble’s mean ISI τ. In the case of σwe only calculate its mean value, which

we denote 〈σ〉.

The value of 〈σ〉 gives us an idea of the likelihood to end up firing with phase-locked clusters for

the given parameter values. The closer 〈σ〉 is to 0 the bigger is this likelihood. If the units in one

experiment have all the same ISI their standard deviation σ equals 0. σm f of equation (4.5) estimates

〈σ〉.
On the other hand, σexp measures the influence of the initial conditions and variations in the stochastic

state transitions on the mean ISI τ of the ensemble.



30 Chapter 4: Neural model and experimental procedures



Chapter 5

Results for homogeneous networks

In this chapter we first present the outcome of several experiments that reveal the existence

of a phase transition phenomenon of the system described in section 4.1 around a critical value of

the coupling parameter η. This phenomenon is accompanied by a hysteresis effect which will also

be described. We then give analytical bounds for the mean ISI 〈τ〉. This description allows us to

calculate the behavior of the observed phenomena for N→ ∞. We will refer to this limit behavior as

thermodynamic limit in the rest of this work.

5.1 Experimental Results

5.1.1 Dependence of the ISI on the coupling strength ε

As explained in section 4.1 one of the quantities we are interested in this work is the ISI. Es-

pecially we want to know how it is modified by small changes of the coupling parameter η. We

therefore performed several experiments for different ensemble sizes as described insection 4.2 and

observed the dependence of the mean value of the ISI 〈τ〉 on the coupling parameter η for different

values of the rate p of the stochastic evolution. First we analyze only the concentration process, where

we slowly increase the amount of coupling between the neurons. Since the coupling parameter η is

inverse proportional to the coupling strength an increase of the coupling strength indicates a decrease

of η.

Figure 5.1a and 5.1b show the results for 1000 such concentration experiments for noise rates

of p = 0.9 (solid line) and p = 0.6 (dashed line). We used an ensemble size of N = 1000 neurons

and can observe how the mean ISI 〈τ〉 decreases as we increase the coupling. Initially at high values

for η there is a clear dependence on the noise rate p which seems to disappear as we reach η= 1. A

closer examination of the mean ISIs of both experiments in this region reveals that their difference for

η close to 1 and below decays exponentially to 0 with decreasing η. (Shown in the insets of Figures
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5.1a and 5.1b). We will see later in the theoretical analysis that the greater N the faster is this decay

and at the thermodynamic limit the mean ISI is independent of p for all values of η< 1.

When we analyze the deviation of the ISIs we also notice a change in the behavior of the system

if we approach η = 1. The mean deviation 〈σ〉 of several experiments drops to 0 when the critical

value of η is reached, indicating that the units organize into clusters and fire phase-locked, all with the

same ISI. Figure 5.2a shows this effect for the concentration experiments with the two different noise

rates analyzed before. In the inset we notice that for a noise level of p = 0.9 (solid line) the onset

of phase-locking already happens at η≈ 1.04. This can also be observed in the deviation σexp of the
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Figure 5.1: Mean ISI: Values of the ISI 〈τ〉 over all neurons and 1000 experiments for increasing ε
(i.e. decreasing η). Number of neurons N = 1000 equals threshold L in all cases. (a) Dependence of
〈τ〉 on η for two different noise levels p. Inset shows the difference of both curves in the interesting
region around η= 1. (b) Same as (a) but in logarithmic scale. (c) Dependence of 〈τ〉 on N for different
values of η and p = 0.9. (d) Same as (c) but in logarithmic scale. We can see a linear dependence of
〈τ〉 on N for η= 1.15, a square root dependence for η= 1 and nearly no dependence for η= 0.9.
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experiments ISIs. Figure 5.2b shows the corresponding value of σexp. Here the onset of phase-locking

is marked by an increase of σexp.

If the units are not phase-locked, σexp is low since it is the deviation of averages. Although there

may be great differences between the ISIs of the units as is reflected by the value of 〈σ〉, once the

mean ISI τ of the ensemble is calculated, these fluctuations are just averaged out. But as the units

start to organize into phase-locked clusters the ensemble dynamics starts to govern the system. The

deviation of the ensemble, σ, equals 0 but the deviation of the experiments, σexp, increases. The mean

ISI τ of the ensemble is now an integer value, which depends on the evolution of all the units since

the beginning of the experiment. This gives rise to a broader shape of the ISI distribution. Small
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Figure 5.2: Standard Deviations: Values of the deviations of 〈σ〉 and σexp of the experiments with
increasing ε (e.g. decreasing η) presented in Figure 5.1. Number of neurons N equals threshold L
in all cases. (a) Dependence of 〈σ〉 on η for two different values of p. Inset shows a zoom on the
interesting region around η= 1. (b) Same as (a) but for σexp (c) Dependence of 〈σ〉 on N for different
values of η and p = 0.9. 〈σ〉= 0 for all η< 1 due to synchronization. (d) Dependence of σexp on N
for different values of η and p = 0.9.
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fluctuations in the evolution of some units can lead to a different ISI of the whole system. Therefore

the averaging effect observed before is lost and different experiments, although started with the same

initial conditions, can lead to systems with different τ.

The maximum of σexp is reached when the rate p of the stochastic evolution looses most of its

influence on the size of the ISI (Compare with Figure 5.1). In this sense the interval between the

local minimum at η > 1 and maximum at η < 1 of σexp marks the transition between an ensemble

governed by the stochastic evolution to an ensemble with self-sustained activity where the stochastic

evolution does not have much influence on the statistics of the system. We can see that once the

local maximum is reached the curves for p = 0.9 and p = 0.6 are practically identical if the system

is further concentrated. (i.e. the coupling strength is increased). σexp reaches a value of 0 at η= 0.5

when the system consists only of one giant cluster which spikes at every time-step. The strange bump

at η ≈ 0.7 can be explained by a probability of nearly 80% of having an ISI of 2 for this value of

η. The value of σexp experiences thus an important decrease, but starts to increase again when the

concentration continues and the probability of having an ISI of 1 increases.

5.1.2 Dependence of the ISI on the ensemble size N

Once the properties of the deviations have been described, our analysis focuses again on the

mean ISI 〈τ〉. The strange shape of the curves in the logarithmic scale of Figure 5.1b suggests that

apart from the elimination of the dependency on the noise rate p something else is going on around

the value of η= 1. To investigate this point further we observed the dependence of the ISI 〈τ〉 on the

ensemble size N.

Figures 5.1c and 5.1d reveal a quite different kind of dependence for different values of the

coupling parameter η. For η= 1.15 (line with circles) we observe a linear dependence of 〈τ〉 on N,

whereas for η= 0.9 (line with crosses) the value of the ISI stabilizes once a certain number of neurons

is in the ensemble (N ≥ 300) and does not show any dependence on the ensemble size. At η= 1 (line

with diamonds) another type of relationship is observed. The slope in the double logarithmic scale of

Figure 5.1d has nearly exactly a value of 0.5 indicating a relationship of type
√

N ∼ 〈τ〉.
The corresponding values of the deviations 〈σ〉 and σexp for p = 0.9 can be seen in Figures 5.2c

and 5.2d. As expected for η≤ 1 the mean deviation 〈σ〉= 0 since the units fire phase-locked. We omit

for clarity the line for η= 0.9 and only show the values for η= 1 (line with diamonds). For η= 1.15

(line with circles) we get a linear dependence of 〈σ〉 on
√

N as predicted by Eq. (4.5). The additional

curve for η = 1.05 (line with squares) allows to observe that the smaller the ensemble the earlier

happens the onset of phase-locking in the concentration process. Here the units are phase-locked

already for ensemble sizes of N > 500.

The dependence of σexp on N can be observed in Figure 5.2d. For η= 1.15 (line with circles),
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where the stochastic state transitions govern the ensemble, σexp slightly decreases since an increase

of N implies an increase of the number of samples taken for every ISI τ and due to the central limit

theorem a decrease of the deviation. For η= 0.9 (solid line with crosses) and η= 1.0 (solid line with

circles) the σexp increases as N increases. This behavior changes in the case of η= 0.9, where σexp

stabilizes for higher values of N and becomes independent of the ensemble size (data not shown).
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Figure 5.3: Comparison between experimental and theoretical results for the parameter c of the as-
sumption that 〈τ〉 = αNc. 10 sets of 1000 experiments with p = 0.9 and different values for N were
carried out. (Solid line: N ∈ {100,200, . . . 1000}. Dashed line: N ∈ {1000,2000, . . . 10000}). The
values of c have been obtained by a least squares fit of the experiments with the linear equation
ln(〈τ〉) = ln(α)+ c ln(N). The shaded areas show the region of possible values of c obtained by least
squares fits of the theoretical bounds for 〈τ〉 of equations (5.10) and (5.11) and the assumption. For
N ∈ {105, . . .106} (darkest area), the value of c is already very close to its thermodynamic limit. The
difference between the values of c of the two bounds is very low.
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5.2 Characterization of the Phase Transition

The results of the dependence of the mean ISI 〈τ〉 on the ensemble size N for different values of

η presented in Figures 5.1c and 5.1d motivate us to investigate if there exists a relation of type

αNc = 〈τ〉 (5.1)

and analyze the dependence of c and α on the coupling parameter η. Equation (5.1) can be trans-

formed into a linear equation with slope c and y-intercept α

ln(α)+ c ln(N) = ln(〈τ〉). (5.2)

This allows us to calculate c and α by least squares fits of the simulation data.

The results of these fits are shown in Figures 5.3 and 5.4. In both we see two curves, each rep-

resents a set of 10 different values of N. For every value of N the mean ISI 〈τ〉 of 1000 concentration

processes was calculated. For the solid line N takes values from 100 to 1000 in steps of 100 and for

the dashed line values from 103 to 104. We can see that both c and α experience a sharp change of

their value around η = 1. The higher the value of N the sharper this change is. We can therefore

speak of a phase transition around a critical value of η= 1. We expect that for N→ ∞ the value of c

should jump from 1 for η> 1 via 0.5 at η= 1 to 0 for η< 1.

The gray areas represent bounds obtained from theoretical analysis and will be discussed in

section 5.4.

5.3 Hysteresis effect

After having analyzed the concentration process experimentally and characterized a phase tran-

sition phenomenon we are interested in what happens if we invert the process. Instead of increasing

the coupling strength we decrease it in a stepwise manner. As described insection 4.2 we call this

type of experiment dilution process. If we combine concentration and dilution process to obtain a

cyclic process we notice a hysteresis effect comparing the mean ISIs 〈τ〉 of both processes for values

of η close to 1 and below.

Figure 5.5 shows this effect for 3 different starting points of the dilution process. The dotted line

represents the mean ISI 〈τ〉 of the concentration process of 1000 experiments. When the concentration

process stops and the dilution process is started, τ and therefore also 〈τ〉 remain constant until a

dilution of η> 1 is reached. The solid line with circles represents a dilution process stating at η= 0.5

and the dashed line with + markers one starting at η= 0.9. In both cases the ISI remains unchanged

until η= 1 where it jumps then to a value slightly higher than the one predicted by the formulas (4.5)
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for this case. If we start the dilution process already at η= 0.99 we observe that 〈τ〉 remains constant

even for η= 1.01. Only if we dilute further 〈τ〉 increases and starts to coincide with 〈τ〉 of the other

two dilution processes. Approximately at η= 1.08 the ISI of the dilution process coincides with the

one of the concentration process. To understand this phenomenon in detail we carry out a theoretical

analysis which will be presented in the next section.

η=1/ε
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N=103−104

N → ∞: Theoretical Limits

Figure 5.4: Comparison between experimental and theoretical results for the value α under the as-
sumption that 〈τ〉 = αNc. 10 sets of 1000 experiments with p = 0.9 and different values for N
were carried out. (Solid line: N ∈ {100,200, . . . 1000}. Dashed line: N ∈ {1000,2000, . . . 10000}).
The values of α have been obtained by a least squares fit of the experiments with the equation
ln(〈τ〉) = ln(α) + c ln(N). The shaded areas show the regions of possible values of α for N → ∞
according to equations (5.20).
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Figure 5.5: Hysteresis effect in the comparison of the dependence of 〈τ〉 on η between the concentra-
tion and dilution process of the experiments. The y-axis shows 〈τ〉 of 1000 experiments in logarithmic
scale. Four curves are shown: η ↓ till 0.5: shows the results of the concentration process till η= 0.5.
η ↑ from 0.5 is the corresponding part of 1000 dilution processes starting from η= 0.5. η ↓ from 0.9
shows the result for the dilution process starting after a concentration till η= 0.9. And η ↓ from 0.99
the same for a concentration until η= 0.99. The inset shows a zoom on the interesting region around
η= 1 in linear scale. The number of neurons N = 1000 equals threshold L and p = 0.9 in all cases.

5.4 Theoretical Description

Once identified the phenomena occurring in the model in experiments we make some theoretical

observations to gain further insight. We base these observations on a deterministic approximation of

the model where the stochastic evolution (4.1) of a neuron i is simplified into the following determin-

istic iterative rule:

ai(t + 1) = ai(t)+ p if ai(t) < L,

ai(t + tre f ) = 1 if ai(t)≥ L.
(5.3)
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The random walk performed by the units is replaced by their average behavior: a deterministic mo-

tion with constant homogeneous velocity p. An equivalent continuous time system but with hetero-

geneous velocities (frequencies) and without delay and refractory period has been studied bySenn

and Urbanczik (2000). In the following we will restrict our analysis to the case where the delay δ of

the message exchange is greater than or equal to the refractory period tre f .

After an initial transient the deterministic system shows a periodic pattern of spikes. The period

of a pattern is the ISI of the ensemble (Figure 4.1b and 4.1c illustrate such patterns). If we take an

arbitrary neuron and start the pattern at a spike of this unit, all units will spike exactly once until the

next spike of the same unit. The sequence of these spikes will then start again with exactly the same

time differences between the spikes, and this pattern will repeat itself forevermore if the parameters

of the system are not changed. One can derive the following condition the system fulfills if it shows

a periodic firing pattern.

Theorem 1 (Periodic pattern condition) A system that consists of κ clusters, where every cluster i

consists of ki elements, shows a periodic firing pattern with ISI τ if for every i ∈ {1, . . . ,κ}

ki > kmin(τ) =

⎧⎨
⎩ (N−1)(1−η)+ p(τ−1−tre f )

ε if τ≥ 1+ tre f

(N−1)(1−η) if τ< 1+ tre f

(5.4)

is fulfilled.

For derivation of this rule see Appendix A. Condition (5.4) simply tells us that every cluster (i.e. units

that reach the threshold at the same time-step) has to be greater than a certain minimum cluster size

which depends on the system’s parameter and its ISI.

Before we continue our analysis we make some comments on the validity of this rule for the

stochastic system. The firing patterns of the deterministic system may also occur in the stochastic

system as can be seen in Figure 4.1b and 4.1c. According to the robustness of these patterns against

variations in the stochastic evolution we can distinguish between three types of patterns.

Robust firing patterns are totally insensitive to variations of stochastic state transitions in the sense

that, no matter how they evolve, even if they are totally suppressed, the system cannot change

its periodic pattern.

Semi-robust firing patterns remain unchanged if one or more units evolve slower than with their

mean velocity p, but if they evolve much faster the spiking pattern may change. Since such

changes are rare, as will be explained subsequently, and the patterns are robust against at least

half of the possible stochastic events, we choose the name semi-robust.

Variable firing patterns may change due to very slow or very fast evolution of one or more units.
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At η≤ 1 we can find only robust and semi-robust patterns. Condition (5.4) gives us the rule for

a semi-robust pattern in the stochastic system. To get the condition of a robust pattern in this case we

would have to replace p with 1.

A change of a semi-robust pattern of phase-locked clusters implies that one or more units change

from one cluster to the one firing directly before it. This increases the robustness of the resulting new

firing pattern since the smallest cluster has the highest probability of receiving a neuron and leads

to a certain balancing of the sizes of the clusters. Only if we have two small clusters spiking one

directly after the other a merge of these two clusters might occur, which would imply a decrease

of the ISI. Every decrease of the ISI enhances the robustness of the resulting firing pattern, since it

implies a decrease of the minimum cluster size kmin(τ). Such events however are rare especially for

large populations and their influence is far below the standard deviation of the experiments. Since we

are mainly interested in the ISIs of our system we can neglect them in our analysis. Although we have

to state that for an infinite simulation time all semi-robust patterns would transform into robust ones.

For η> 1 we only find variable firing patterns (Figure 4.1a). In the stochastic system, the higher

the value of η the lower is the probability to observe between three consecutive spikes of a certain

single unit the same two spiking patterns of the rest of the neurons. It is not even granted that the

two ISIs of this unit have the same length. But now, unlike the case of η ≤ 1, the fluctuations of the

noise cannot create irreversible effects on the ISI of the system. The mean ISI of the system coincides

therefore with the one of the deterministic system, which makes the following analysis valid in this

region as well.

Every time the coupling strength is increased, after a short transient, the deterministic system

fulfills again condition (5.4). This allows us to make some observations on the ISI of the system.

Since the cluster sizes have to be integer numbers we define

k̂min(τ) = �kmin(τ)+ 1� (5.5)

and have the condition ki ≥ k̂min(τ). This definition guarantees that k̂min(τ) ≥ 0 and is necessary for

technical reasons in the derivation of the lower bound we will see later. A system with ISI τ consists

of κ= τ/δ clusters since a spiking cluster at time t provokes the spiking of the next one at time t +δ.

With this we calculate another quantity we need to describe our system, the mean cluster size given a

certain ISI τ:

k̄(τ) =
Nδ
τ

. (5.6)

We then introduce a new function g(τ) which gives us the ratio between k̄(τ) and k̂min(τ).

g(τ) =
k̄(τ)

k̂min(τ)
. (5.7)
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Intuitively this quantity can be seen as the frequency a system consisting only of clusters with the

minimum cluster size k̂min(τ) has to fire with, to achieve the same ISI as the system with cluster-size

k̄(τ). Note that g(τ) > 0 since k̂min(τ)≥ 0.

Using equation (5.5) of the minimum integer cluster size k̂min(τ) we arrive after some manipula-

tion to the following inequality (See equation B.15 in Appendix B for details).

Nδ
〈τ〉 ≤ 〈g〉(kmin(〈τ〉)+ 1) . (5.8)

〈g〉 denotes the expectation of g(τ) with respect to the probability distribution of τ. We will call 〈g〉min

from now on the minimum value, which 〈g〉 can take to fulfill inequality (5.8). Using 〈g〉min inequality

(5.8) can be written as
1
〈τ〉 = 〈g〉minζ , (5.9)

when we replace (kmin(〈τ〉)+ 1)/(Nδ) with ζ. If we plot 〈τ〉 and ζ in double logarithmic scale we

notice a nearly linear dependence between 1/〈τ〉 and ζ. This is the reason why by replacing 〈g〉min

with a constant one can get a good approximation of 〈τ〉 as we will see later. Two examples for this

nearly linear relation can be seen in Figure 5.6a for noise rates of p = 0.9 and p = 0.6. The inset

shows a comparison between ζ and η for p = 0.9. If we take a closer look on 〈g〉min however, we

notice that the hypothesis of a linear relationship does not hold. InFigure 5.6b we can observe the

exact value of 〈g〉min for the corresponding two sets of experiments. From empirical evidence we can

suppose, that for the values of p and η of our simulations 2 is an upper bound of 〈g〉min, which allows

us to replace 〈g〉 with 2 in inequality (5.8).

5.4.1 Bounds for τ and 〈τ〉
With the results of the last section we can derive upper and lower bounds for τ and the mean ISI

〈τ〉. Both bounds of 〈τ〉 can be used to approximate 〈τ〉.
First we derive a lower bound for 〈τ〉 using definition (5.7) and condition (5.8). 1

〈τ〉min =
(N−1)ε(η−1)− ε

2p
+

1+ tre f

2
+

√(
(N−1)ε(η−1)− ε

2p
+

1+ tre f

2

)2

+
Nεδ
p〈g〉 (5.10)

In the following we will use (if not stated differently) the empirical upper bound 2 of 〈g〉min as ex-

plained in the previous section to substitute 〈g〉 in (5.10) and to calculate the numerical values of

〈τ〉min.

To get an upper bound for all possible ISIs we use (5.4) and (5.6):

τmax =
(N−1)ε(η−1)

2p
+

1+ tre f

2
+

√(
(N−1)ε(η−1)

2p
+

1+ tre f

2

)2

+
Nεδ

p
(5.11)

1Note that if 〈g〉 is replaced by 〈g〉min in (5.10) we get an expression for 〈τ〉.
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and have that (See Appendix B for details):

〈τ〉min ≤ 〈τ〉 ≤ τmax . (5.12)

Note that τmax is an upper bound for all ISIs τ whereas 〈τ〉min is only a lower bound for 〈τ〉 but not

for τ. Because of this fact 〈τ〉min is much closer to 〈τ〉 than τmax, as we can observe in the Figures

5.6c and 5.6d which show the quality of these bounds. The solid line inFigure 5.6c represents 〈τ〉 for

1000 concentration processes in logarithmic scale. It lies within a gray area that indicates the interval
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Figure 5.6: (a) Relation of 〈τ〉 and ζ = (kmin(〈τ〉) + 1)/(Nδ) for two different values of p. (b)
Dependence of parameter 〈g〉min on η for two different values of p. We can observe 〈g〉min ≤ 2.
(c) The empirical outcome 〈τ〉 of the concentration processes of 1000 experiments compared to its
theoretical limits τmax and 〈τ〉min (gray area). (d) Difference between the theoretical limits τmax and
〈τ〉min (gray area), 〈τ〉 and 〈τ〉min (dashed line), τmax and 〈τ〉 (black solid line), 〈τ〉 and τm f (gray solid
line with circles). τmax has been calculated using equation (5.11) and 〈τ〉min substituting 2 for 〈g〉 in
equation (5.10).
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limited by the two bounds 〈τ〉min and τmax.

In section B.2 we derive a lower bound τmin ≤ τ. τmin = tre f for η < 1 and coincides with the

approximation τm f (see equation 4.5) for η≥ 1. We have therefore that

τm f ≤ τ≤ τmax. (5.13)

The exact difference between 〈τ〉 and its bounds is shown inFigure 5.6d. The difference 〈τ〉− 〈τ〉min

is indicated by the dashed line, and τmax−〈τ〉 by the solid line. The gray area shows the width of the

interval bounded by 〈τ〉min and τmax. The quantity 〈τ〉min is, for a wide range of values of η, not only a

bound but an excellent approximation for 〈τ〉. It beats by far the approximation τm f , whose difference

to 〈τ〉 is shown by the gray solid line with circles in Figure 5.6d. In spite of this fact the importance

of 〈τ〉min and τmax does not only lie in their quality as approximations, but rather in the fact that they

are bounds and both experience a similar phase transition effect as 〈τ〉. This allows us to derive the

thermodynamic limit of 〈τ〉.

5.4.2 Thermodynamic Limit

The thermodynamic limits (i.e. the behavior for infinite N and L and finite η) of the bounds from

equation (5.10) and (5.11) can be derived after some calculations (See Appendix C for details) and

allow to set bounds for the thermodynamic limit of 〈τ〉.

lim
N→∞
〈τ〉= δ if η< 0.5 ,

δ
〈g〉(1−η) ≤ lim

N→∞
〈τ〉 ≤ δ

(1−η) if 0.5 ≤ η< 1 ,√
εδ

p〈g〉 ≤ lim
N→∞

〈τ〉√
N
≤
√
εδ
p

if η= 1 ,

lim
N→∞

〈τ〉
N

=
ε(η−1)

p
if η> 1 . (5.14)

The upper bound at 0.5≤ η< 1 coincides with the one obtained for a model without stochastic input

similar to (van Vreeswijk and Abbott, 1993). To characterize the quality of these bounds we examine

the quantity Δτ = τmax−〈τ〉min, especially at its thermodynamic limit. The gray area in Figure 5.6d

shows Δτ for the case of N = 1000 and p = 0.9. From (5.10) and (5.11) we can derive after some
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algebra that

lim
N→∞
Δτ=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for η< 0.5 ,

δ
1−η

(
1− 1
〈g〉
)

for 0.5≤ η< 1 ,

lim
N→∞

(
1− 1√〈g〉

)√
Nεδ

p
for η= 1 ,

ε
p

+
δ
η−1

(
1− 1
〈g〉
)

for η> 1 .

(5.15)

Since from τmax ≥ 〈τ〉min follows Δτ≥ 0, we have that 〈g〉 and 〈g〉min have lower bounds:

lim
N→∞
〈g〉 ≥ lim

N→∞
〈g〉min ≥

⎧⎪⎨
⎪⎩

1 for η≤ 1 ,

pδ
pδ+(η−1)ε

for η> 1 .
(5.16)

If we compare Δτ with the difference of τm f and τmax we get

lim
N→∞

(τmax− τm f ) = 1+
δ
η−1

for η> 1 . (5.17)

For high values of η the limit of this difference tends to 1. Therefore the formulas (4.5) of Rodríguez

et al. (2001) really represent a good approximation of the dynamics for η� 1.

Approximation with 〈τ〉min however is always closer to 〈τ〉 if p≥ ε. In the case of p < ε we can

derive using 〈τ〉 ≥ τm f an upper bound for 〈g〉min.

lim
N→∞
〈g〉min ≤

pδ
(η−1)(ε− p)

if η> 1 and p < ε . (5.18)

As long as we use a value lower than the right hand side of inequality (5.18) to replace 〈g〉 in (5.10),

the approximation of 〈τ〉 with 〈τ〉min beats τm f also for η> 1 and p < ε, and is therefore an improve-

ment to earlier studies for all values of η.

5.4.3 Application of the Thermodynamic Limit

If we suppose a dependence of 〈τ〉 on N as in (5.1) ( αNc ∼ 〈τ〉) we can now derive the ther-

modynamic limits for α and c from the above results. See Appendix C for details. The value of c is

rather straightforward.

lim
N→∞

c =

⎧⎪⎪⎨
⎪⎪⎩

0 for η< 1 ,

0.5 for η= 1 ,

1 for η> 1 .

(5.19)

This observation coincides with the experimental results presented inFigure 5.3 and indicates a linear

dependence between the ISI and the number of neurons N for η> 1, whereas for η< 1 the ISI does

not depend on the amount of units in the ensemble at all. In between at η= 1 the mean value of the
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ISI distribution 〈τ〉 depends on
√

N.

The thermodynamic limit of α follows straightforward from (5.14). We get:

lim
N→∞
α= δ if η< 0.5 ,

δ
〈g〉(1−η) ≤ lim

N→∞
α≤ δ

(1−η) if 0.5≤ η< 1 ,√
εδ

p〈g〉 ≤ lim
N→∞
α≤

√
εδ
p

if η= 1 ,

lim
N→∞
α=
ε(η−1)

p
if η> 1 . (5.20)

Since we can replace 〈g〉 with 〈g〉min and 1≤ 〈g〉min ≤ 2 for η≤ 1 we get an excellent approximation

for α at the limit of large N. We can observe this in Figure 5.4. The shaded area shows the possible

regions of α. Already for low N the experimental data fits well into the theoretical results for the

thermodynamic limit, which give an idea what ISI to expect for η< 1.

A graphical interpretation of the above findings can be found inAppendix D.

5.4.4 Hysteresis

Condition (5.4) for a periodic spiking pattern gives us also the explanation of the hysteresis

phenomena. In the dilution process we always start from a robust or semi-robust pattern at η ≤ 1

and condition (5.4) is not altered by an increase of η. The inequality gets even sharper, which means

that the probability of changing a semi-robust pattern is even lower the more we increase η. In other

words: the semi-robust patterns tend to be robust during the dilution process. This changes once we

reach η= 1, since now the stochastic state transitions are needed again to maintain the ISIs. But even

for η> 1 the ISI may remain constant as long as the following condition is fulfilled. (Seesection B.2

for details and derivation)

τ≥ tre f +
(N−1)ε(η−1)

p
. (5.21)

This inequality reflects that the approximations (4.5) of Rodríguez et al. (2001) are a lower bound

for the ISI in the dilution process, which have to be fulfilled by the deterministic system. Only when

a value of η violating this condition is reached, the system leaves the ISI it has fired with since the

beginning of the dilution process and changes to a new ISI which does fulfill the condition. We can

observe this in the dashed-dotted line with � markers of Figure 5.5 which shows a dilution process

started already at η= 0.99. In this case 〈τ〉 remains constant even for η= 1.01 since inequality (5.21)

is still fulfilled at this point. Only if we dilute further 〈τ〉 increases to values fulfilling condition (5.21)

and starts to coincide with 〈τ〉 of the other two dilution processes. Approximately at η = 1.08 the

mean ISI of dilution processes coincides with the one of the concentration processes, since then the

equations (4.5) start to approximate 〈τ〉 well again.
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Chapter 6

Results for heterogeneous networks

In this chapter we show that the results described inchapter 5 for homogeneous networks can be

extended to networks consisting of neurons with heterogeneous coupling strengths and thresholds.

6.1 Generalization of the model

To be able to simulate heterogeneous networks we have to apply the following extensions to the

model presented in section 4.1.

• Instead of setting all coupling strengths εi j equal to an homogeneous coupling strength ε we

take the εi j from a Gaussian distribution with mean 〈ε〉.

• We allow heterogeneous thresholds Li for every unit. Each Li is taken form a Gaussian distri-

bution with mean 〈L〉.

• The relation (denominated s) between standard deviations and means of both distributions is

fixed.

• To characterize the new extended system we calculate the parameter η in the same way as be-

fore but use the mean values 〈ε〉 and 〈L〉 of the distributions instead of L and ε of a homogeneous

network. We call this parameter ηext .

ηext =
〈L〉−1

(N−1)〈ε〉 . (6.1)

With this model of a heterogeneous network we perform the same type of experiments as described in

section 4.2. In the concentration process we start in regions with high ηext and increase the connection

strengths of the system adiabatically. As in the experiments with homogeneous networks we increase

it by resting a constant value Δηext from ηext . We have to calculate the corresponding values of εi j

47
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after the change by multiplying them by ηext/(ηext −Δηext). Thus we achieve that after every change

equation (6.1) is still valid.

η
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Figure 6.1: (a), (b) and (c) compare the results of 1000 experiments with homogeneous and
heterogeneous networks. (a) shows α and (b) c under the assumption that 〈τ〉 = αNc for N ∈
{100,200, . . . 1000}. Coupling strengths and thresholds where taken from Gaussian distributions with
deviations of 10% (dash-dotted line) and 30% (gray solid line with circles) of their means. The black
solid lines (homogeneous network) coincide with the results shown in Figures5.3 and 5.4, as well
as the shaded areas, which represent in (a) the regions of possible values of α for N→ ∞ according
to equations (5.20) and in (b) the region of possible values of c obtained using equations (5.10) and
(5.11) for finite N as in the experiments. (c) Comparison only of the results for N = 1000. The mean
ISIs 〈τ〉 of the heterogeneous experiments lie within the gray area bounded by 〈τ〉min (Eq. 5.10) and
τmax (Eq. 5.11). Compare with Figure 5.6c. We notice that the results obtained for the theoretical
bounds of the ISI are also valid for heterogeneous networks. (d) Hysteresis in a heterogeneous net-
work with s = 30%. Compare with Figure 5.5. Hysteresis does also occur in heterogeneous networks,
but vanishes there already at η slightly lower than 1.
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6.2 Results for heterogeneous networks

We compare experiments with the generalized model with the results ofchapter 5 for homoge-

neous networks. Figure 6.1 shows this comparison for the values of α (Figure 6.1a) and c (Figure 6.1b)

of equation (5.1).

The only noticeable difference between experiments with homogeneous networks (solid black

line) and the corresponding heterogeneous equivalents with deviations of 10% (dash-dotted line) and

30% of the mean value (gray solid line with circles) is that for η≤ 1 the curves show some irregular

bumps which differ from the expected values (gray areas) of the theoretical analysis. A closer ex-

amination of the ISIs at η< 1 reveals that this bumps are provoked by jumps between integer values

of the ISI, as can be observed in Figure 6.1c, which shows 〈τ〉 for N = 1000. Contrary to intuition

the smooth change of the mean ISI in the homogeneous case (black solid line) is more step-like in

heterogeneous networks, meaning that for certain intervals of the coupling strength (i.e. the plateaus

in Figure 6.1c) nearly all the experiments (with different networks) end up with the same ISI. The ob-

served behavior, which is reproducible and robust despite the stochastic inputs and the heterogeneity

of the network, is not fully understood, but might be of biological relevance and will be subject of

future research. The locations of the steps depend on the ensemble size N, which causes the bumps

in Figures 6.1a and 6.1b. In the thermodynamic limit, however, these bumps should disappear.

In spite of this effect, the upper and lower bounds for 〈τ〉, given by equations (5.10) and(5.11) and

represented by the gray area in Figure 6.1c, are valid even for high deviations of the underlying prob-

ability distributions. Also the hysteresis effect is present in the heterogeneous networks (Figure 6.1d),

although it vanishes slightly before the critical coupling strength is reached at η = 1 (compare with

Figure 5.5). This is caused by some neurons which receive less input compared with their threshold

than the others. They need stochastic input to reach the threshold already slightly below η= 1, which

can cause the end of self-sustained firing and an increase in the ISI of the ensemble.



50 Chapter 6: Results for heterogeneous networks



Chapter 7

Sequential versus Parallel Dynamics

The results presented so far have been obtained using parallel updating of the units, meaning

that at every time-step all units are updated. Sometimes sequential dynamics, where only a reduced

number of neurons is updated at every time-step, are used to simulate neural dynamics instead (Herz

and Marcus, 1993). It has been shown that sequential and parallel updating can lead to different be-

havior of the Hopfield model (Fontanari and Köberle, 1988) and multi-state Ising-type ferromagnets

(Bolle and Blanco, 2004), which motivates us to investigate the dependence of our results on the type

of updating.

7.1 Sequential model

We will use the most simple case of sequential updating, where only one neuron is updated at

each time-step and modify the model presented insection 4.1 in the following way:

• One time-step of the original model is split up into N time-steps and at each new time-step only

one neuron is updated. A specific neuron i is updated at every time-step t which fulfills i ≡ t

mod N.

• Given a synaptic delay δseq and a refractory period tseq
re f , the neuron which is updated at time

t receives all the spikes which have been sent within the interval [t−N− δseq, t− δseq) by the

other neurons. In case that neuron i fired in the last update, the interval narrows to [t −N−
δseq + tseq

re f , t−δseq).

This modification implies that the synaptic delay is no longer homogeneous. An update of a post-

synaptic unit occurs now the next time it is updated instead of the precise time-step when the spike

would reach the unit. Therefore the effective delay is uniformly distributed between δseq and δseq +N,
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leading to an average delay of

〈δseq〉= δseq +N/2. (7.1)

7.2 Results with sequential updating

To compare simulations with sequential and parallel dynamics we have to set δseq accordingly

to fulfill Nδ= 〈δseq〉 where δ is the delay of the parallel dynamics. This leads to

δseq = N

(
δ− 1

2

)
. (7.2)

The equations for upper (Eq. 5.11) and lower bounds (Eq. 5.10) obtained for the parallel dynamics are

valid only if tre f ≤ δ, which means that the only noticeable effect of tre f on the ensemble dynamics is

that the threshold L acts as an absorbing barrier. In other words: if the state of a certain unit i exceeds

the threshold, this excess is absorbed and not used as the new state of the unit after resetting it.

Nevertheless, spikes of other units which occur during the same time-step as the one of unit i are not

absorbed if the delay δ of the message exchange is greater than or equal to the refractory period tre f .

This means that only a minimum amount of activity is absorbed in the parallel dynamics. To achieve
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Figure 7.1: Comparison of 1000 experiments with parallel dynamics (continuous lines) and their
equivalent with sequential updating (dashed lines with circles). Number of neurons N = 1000 equals
threshold L and p = 0.9. The results for the sequential dynamics are rescaled by the factor 1000. (a)
The mean ISIs 〈τ〉 of both type of dynamics nearly coincide and lie within the gray area bounded by
〈τ〉min (Eq. 5.10) and τmax (Eq. 5.11). (b) The sequential dynamics show a slightly higher mean of
deviation 〈σ〉 of the units ISIs with the same experiments as the parallel dynamics for η≥ 1 but also
end up in phase-locked clusters at η < 1. The inset shows a zoom on the interesting region around
η= 1.
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the same effect of the refractory period in the sequential model we have to set tseq
re f to a minimal value,

i.e. tseq
re f = 1. This guarantees that spikes from other units which arrive after the threshold crossing are

not affected by the refractory period. A tseq
re f greater than 1 could lead to the absorption of those spikes

and in consequence to a greater ISI of the ensemble than in the corresponding parallel experiments.

If we consider these two constraints we obtain similar results for both type of dynamics, as

shown in Figure 7.1, where we compare simulations with increasing coupling strength for N = 1000

neurons and a noise rate p = 0.9. Since the delay δ of the parallel simulations equals 1, δseq was set

to 500. This implies a mean delay 〈δseq〉 of N, which is coherent with the rescaling of t to t/N. We

observe in Figure 7.1a that after rescaling (i.e. dividing the ISI by the ensemble size) the mean ISI

of the sequential dynamics (dashed line with circles) nearly coincides with the result of the parallel

simulations (continuous line), and the bounds obtained in section 5.4 are valid also for this type of

dynamics. Hysteresis can also be observed (data not shown). Units with sequential updating show

due to the inhomogeneous delays a slightly greater deviation of their ISIs than their equivalents with

parallel updating (see Figure 7.1b). This effect causes that phase-locked clusters, although observable

also at η = 1, appear as a general phenomena (i.e. 〈σ〉 = 0) for couplings slightly greater than the

critical coupling strength as we can observe in the inset ofFigure 7.1b.

Despite these small differences due to the enhanced dispersion of the ISIs we can conclude that

the results derived in the previous chapters are also valid if sequential instead of parallel updating is

used.
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Chapter 8

Discussion of the results for neural networks

We analyzed, by varying its coupling strength ε, the behavior of an ensemble of stochastic,

non-leaky integrate-and-fire neurons with delayed, excitatory global coupling and a small refractory

period. Around a critical value of the coupling strength the behavior of the system undergoes a phase

transition (Figure 5.3), which has three main consequences on the dynamics of the ensemble:

Transition from irregular to clustered spiking behavior: The units of the ensemble are homoge-

neous but show, due to a stochastic component in their evolution towards threshold, irregular

spiking behavior if they are weakly coupled (Figure 4.1a). The coupling strength ε is inversely

proportional to the parameter η (see equation 4.4), which describes the system and allows to

fixate the phase transition at η= 1. For coupling greater than or equal to the coupling at η= 1

the population splits into several clusters. All neurons within a cluster spike in unison, although

they still might show different trajectories towards the threshold. The clusters are phase-locked

(Figure 4.1b) and have all exactly the same ISI, which is proportional to the number of clusters.

This number decreases if the coupling is increased further (Figure 4.1c), but usually remains

greater than 1 until a trivial case of only one cluster is reached at latest at η< 0.5. The activity

at η≤ 1 is self-sustained in the sense that the stochastic inputs are not needed to maintain the

clustered spiking activity.

Hysteresis: The phase transition is accompanied by a hysteresis effect (Figure 5.5). We applied a

cyclic process to our system which consisted of two subprocesses: a concentration process

where we increased ε and a dilution process where ε is decreased. Starting at an initial con-

figuration with low coupling the process is reversible as long as we do not reach (at values of

η slightly greater than 1) the onset of phase-locking. If we increase the coupling strength fur-

ther the ISI τ of the concentration process decreases following rules explained below, whereas

if we inverse the process (start the dilution process) the ISI remains frozen as long as η ≤ 1.
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Then it jumps up to a value fulfilling condition (5.21) and coincides again with the ISI of the

concentration process at η slightly greater than 1.

Change in the dependence of the ISI on ensemble size and noise rate: For low coupling the mean

ISI 〈τ〉 of the ensemble in the concentration process depends linearly on the ensemble size N,

at η = 1 there is a square root dependence on N, whereas for coupling greater than at η = 1

the mean ISI 〈τ〉 does not depend on N nor on the rate of the stochastic component, which

governs the dynamics for low coupling. Between η = 1 and η = 0.5 the ISI only depends on

the coupling strength itself. For a coupling greater than at η= 0.5 the influence of ε on the ISI

is also lost. The length of the time delay determines the length of the ISI in this regime.

To obtain analytical results we used a deterministic approach to the model dynamics which allowed

us, using a simple condition (5.4), to derive upper and lower bounds (τmax and 〈τ〉min) for the mean

ISI 〈τ〉 of the ensemble in the concentration process. The lower bound 〈τ〉min is also an excellent

approximation for 〈τ〉, as can be observed in Figure 5.6d. Using the bounds we can calculate the be-

havior of the system at its thermodynamic limit (i.e. for N→∞) and characterize the phase transition

analytically.

These theoretical results are also valid if sequential instead of parallel updating (Herz and Mar-

cus, 1993) is used to simulate the dynamics (Figure 7.1). In this case the synaptic delay is no longer

homogeneous, leading to a slightly higher deviation of the unit’s ISIs and in consequence a slightly

later onset of clustered spiking behavior in the concentration process.

The above explained effects could also be observed if, instead of an increase or decrease of the

coupling strength, positive or negative external input were be added to the system. To calculate the

critical point in this case we would have to add the external input to the denominator of equation (4.4)

to get the appropriate value of η.

Using the hysteresis effect one can generate a simple memory by stimulating the system with

a strong input, which leads the system to a value below η = 1. If the input is then substituted by a

smaller one, which is just big enough to maintain the system below the critical couping strength and

could represent the will to remember the first input, the ISI and the firing pattern of the ensemble

will still be the same as if the strong input were still present. Once the system receives a short erase

signal (e.g. in form of a negative input, or the absence of the small input), which allows it to reach

a state corresponding to η > 1, the firing pattern produced by the strong input will disappear (i.e.

the memory will be deleted). Such a mechanism might be a novel way to represent working memory

functions (Wang, 2001), which are often modeled in the form of bistable dynamical attractor networks

(Durstewitz, Seamans and Sejnowski, 2000). In our case it seems that we have multi-stability for

coupling greater than the critical coupling strength, but further analysis is needed to verify this claim.
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The main difference of our model to those used in earlier studies is the use of discrete time

dynamics and that we combine delayed coupling with an implicit refractory period. Setting delay

δ and refractory period tre f identical and equal to 1 in the experiments does not represent a critical

restriction on the presented results as can be seen in the theoretical analysis, which is valid in the

general case as long as δ ≥ tre f and both are positive. We can observe as well from equations (5.15)

and (5.17) that in a system with no delay, i.e. δ = 0, the upper and lower bounds nearly coincide,

leaving no space for clustering with more than one cluster and hysteresis. For a delay lower than

the refractory period some of the inter-population messages would get absorbed, leading to different

upper and lower bounds for the ISIs. Such a pair of bounds has been calculated for a system without

stochastic input in van Vreeswijk and Abbott (1993) for the case of δ slightly lower than tre f . We

expect those results to be valid for our system at η < 1 in the thermodynamic limit. In the case of

sequential dynamics the condition δ≥ tre f translates into setting the refractory period to a minimum

value.

It is straightforward to transfer the discrete time dynamics onto the continuous domain replacing

the stochastic state transitions with a continuous increase of the state variable. This leads to contin-

uous oscillators similar to the ones analyzed by Senn and Urbanczik (2000), but with the add-ons of

delayed coupling and refractory period, which are both crucial to observe the reported phase transi-

tion and clustering phenomena. One can even maintain the stochastic dynamics using a continuous

extension of the ISI distribution of a single uncoupled unit, a negative binomial distribution in our

case (Rodríguez et al., 2001). Two different possibilities for such an extension have been presented

by Gómez, Kaltenbrunner and López (2006), leading both to gamma distributions. The length of de-

lay and refractory-period remain untouched by these extensions. An analysis of these models is object

of current research using a novel event-driven modeling technique (Gómez et al., 2006) allowing to

simulate such extended models (also with non-integer values for delay and refractory period) without

precision errors and without determining the exact trajectories of the states of the units in the ensem-

ble. The derived formulas for upper and lower bounds should, apart from some minor modifications,

be valid in these extended systems as well.

For models with a leaky term (Mirollo and Strogatz, 1990) clustering phenomena have been

reported by Ernst et al. (1998) if a delay is added, but these clusters turned out to be unstable for

excitatory coupling if noise was added to the coupling strength. We conjecture that this behavior

would change if a positive refractory period were included in the system. During the refractory

period the threshold acts as an absorbing barrier allowing the system a certain tolerance against noise

which is the higher the greater the amount of absorption is. The fact thatErnst et al. (1998) reports

stability for inhibition is a clear evidence for this conjecture, since the reset state is a reflecting barrier

in their model, allowing to absorb noisy negative coupling. It would also be interesting to observe
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the effect of delay and refractory period for a model with a biological inspired phase response curve

(PRC). For this type of PRC the existence of a phase transition in the case of one (Östborn, 2002) and

two dimensional (Östborn et al., 2003) oscillator lattices has been reported.

Our study shows that synaptic delay changes significantly neural dynamics. It is crucial for

the observed hysteresis effect and the appearance of several phase-locked clusters. Without it we

would get a totally synchronized ensemble at the critical coupling strength. The lack of a leaky

term makes our model biologically plausible only at the limit of high coupling where integration of

synaptic inputs occurs over a time scale much shorter than the decay constant (Burkitt and Clark,

1999), which is exactly where we find the phase transition and hysteresis. We therefore conjecture

that the phenomena described could be found as well in more complex, realistic neural models with

delay. Even in a system with inhomogeneous delays we can find similar results as shown for the case

of sequential dynamics, which demonstrates the robustness of the findings.

In a network consisting of heterogeneous neurons with different coupling strengths and thresh-

olds drawn from Gaussian distributions the reported phenomena are also present (Figure 6.1). This

may be of great importance if synaptic dynamics are added to the model. We conjecture that in

this context, plasticity may act as a homeostatic mechanism to maintain the system in the regime

around the critical coupling strength if it experiences perturbations. In the neighborhood of the crit-

ical state the system explores all possible clusters one after the other. Clusters that are phase-locked

after crossing this point are then transient states and the system is ready to set in any of the phase-

locked, periodic firing patterns as a reaction to an increase in the number of received messages. This

could have potential applications in a wide range of engineering applications like image segmentation

(Campbell, Wang and Jayaprakash, 1999; Rhouma and Frigui, 2001) or large scale sensor networks

(Hong and Scaglione, 2005; Hu and Servetto, 2006), where clustering might be useful to optimize the

information throughput. The application of the results to information processing in natural systems is

the subject of current research. In this context a recent study (Kinouchi and Copelli, 2006) (See also

Chialvo, 2006) presents evidence for optimality of information processing near a phase transition,

very similar to the one we observe. Those results indicate that the sensitivity of a neural system and

the stimulus interval which it can code robustly seem to be maximized near the critical point of the

phase transition.

As a final aspect we would like to highlight the application of our model (interpreted as a network

of pulse-coupled oscillators with stochastic frequencies) to describe animal behavior, e.g. populations

of flashing fireflies (Buck, 1988). For the North American firefly several types of synchronization

have been reported (Copeland and Moiseff, 1995) and it seems that a certain number of flashing flies

within a certain area is needed to observe synchronization. This would be in consonance with our

model, where an increase in the number of units (fireflies) would decrease the coupling parameter η.
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For a certain number of units we would reach the critical point, where synchronization would appear.

Apart form unison synchrony, wave synchrony has been observed, which might be explained by the

clusters we report.
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Part III

Human communication behavior
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Chapter 9

Introduction into human communication dynamics

9.1 Motivation

Nowadays, an important part of human activity leaves electronic traces in form of server logs,

e-mails, loan registers, credit card transactions, blogs, etc. This huge amount of generated data allows

to observe human behavior and communication patterns at nearly no cost on a scale and dimension

which would have been impossible some decades ago. A considerable amount of studies has emerged

in recent years using some part of these data to investigate the time patterns of human activity. The

studied temporal events are rather diverse and reach from directory listings and file transfers (FTP

requests) (Paxson and Floyd, 1995), job submissions on a supercomputer (Kleban and Clearwater,

2003), arrival times of consecutive printing-job submissions (Harder and Paczuski, 2006) over trades

in bond (Mainardi, Raberto, Gorenflo and Scalas, 2000) or currency futures (Masoliver, Montero and

Weiss, 2003) to messages in Internet chat systems (Dewes, Wichmann and Feldmann, 2003), online

games (Henderson and Bhatti, 2001), human displacements (Brockmann, Hufnagel and Geisel, 2006),

page downloads on a news site (Dezso et al., 2006) and e-mails (Johansen, 2004).

A common characteristic of these studies is that the observed probability distributions for the

waiting or inter-event times are heavy-tailed (Sigman, 1999). However, which type of heavy-tailed

distribution provides the best explanation of the data is still an open problem. A recent study (Barabási,

2005) tries to illuminate these phenomena under the assumption that these heavy-tailed distributions

can be well approximated by a power-law or at least by a power-law with an exponential cut-off

(Newman, 2005). The cited study presents a model which seems to explain the distribution of e-mail

response times and has been used later to account for the inter-event times of web-browsing, library

loans, trade transactions and correspondence patterns of letters (Vázquez et al., 2006). However, the

hypothesis of a power-law distribution is not generally accepted, at least in case of e-mail response

times. Stouffer, Malmgren and Amaral (2006) claim that the data can be much better fitted with
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either a log-normal (LN) distribution (Crow and Shimizu, 1988; Limpert, Stahel and Abbt, 2001)

or the superposition of two LN, a double log-normal (DLN) distribution (Fowlkes, 1979). The de-

bate power-law versus log-normal has been repeated across many areas of science for decades, as

noticed by Mitzenmacher (2004). For log-normal event-time distributions in other areas of science

see Lawrence (1988).

9.2 Slashdot

Here we extend the above mentioned debate to the temporal patterns of human communication

in systems where social interaction occurs in a more complex manner than just person to person

(one-to-one) communication. We think it is valuable to analyze the many-to-many social interaction

(Rheingold, 1994) on a technology-related news-website which supports user participation and have

therefore chosen to investigate the communication patterns on Slashdot1, a popular website for people

interested in reading and discussing about technology and its ramifications. It gave name to the

“Slashdot effect” (Adler, 1999), which refers to the phenomenon of a popular website linking to a

small, under-powered one, causing a huge influx of traffic towards the hosted link during a short

period of time, which may force the small website to slow down or even to temporarily collapse.

Slashdot was created at the end of 1997 and has ever since metamorphosed into a website that

hosts a large interactive community capable of influencing public perceptions and awareness on the

topics addressed. Its role can be metaphorically compared to that of commercial malls in developed

markets, or hubs in intricate large networks. The site’s interaction consists of short-story posts that

often carry fresh news and links to sources of information with more details. These posts incite many

readers to comment on them and provoke discussions that may trail for hours or even days. Most

of the commentators register and comment under their nicknames, although a considerable amount

participates anonymously.

Although Slashdot allows users to express their opinion freely, moderation and meta-modera-

tion mechanisms are employed to judge comments and enable readers to filter them by quality. The

moderation system was analyzed by Lampe and Resnick (2004), who concluded that it upholds the

quality of discussions by discouraging spam and offending comments, marking a difference between

Slashdot and regular discussion forums. This high quality social interaction has prompted several

socio-analytical studies about Slashdot. Poor (2005) and Baoill (2000) have both conducted inde-

pendent inquiries on the extent to which the site represents an online public sphere as defined by

Habermas (1962/1989).

Given that a great amount of users with different interests and motivations participates in dis-

1http://www.slashdot.org

http://www.slashdot.org
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cussions about very different topics, one would expect to observe a high degree of heterogeneity on

a site like Slashdot. However, what if the posts and comments were analyzed just as imprints of an

occurring information exchange, with no regard to semantic aspects? Is there a homogeneous behav-

ior pattern underlying heterogeneity? To answer these and related questions we collected and studied

one year’s worth of interchanged messages along with the associated meta-data from Slashdot. We

show here that the temporal patterns of the comments provoked by a post are very similar, indicat-

ing that homogeneity is the rule not the exception. The temporal patterns of the social activity fit

accurately log-normal distributions, thus giving empirical evidence of our hypothesis and establish-

ing a link with previous studies where social interaction occurs in a simpler way. The quality of the

LN-fit depends on the publishing hour of a post. This dependency can be eliminated and therefore

the quality of the fit can be improved by using double log-normal distributions, i.e. a mixture of two

independent log-normals, as for example used in (Stouffer et al., 2006) to explain the waiting time

in email conversation, or by multiplying a log-normal distribution with a periodic function. The best

results are obtained if both methods are combined.

Our analysis allows more insight into questions such as: is there a time-scale common to all

discussions, or are they scale-free? What does incite a user to write a comment, is it the relevance of

the topic, or maybe just the hour of the day? Can we predict the amount of activity a post will trigger

already some minutes after it has been written? Which type of applications can we devise on the basis

of using these conclusions?

Even though Slashdot holds much closer ties to web based bulletin board systems (BBS) and

newsgroups, we can find some related studies about the comments to posts on weblogs (Mishne

and Glance, 2006; Duarte, Mattos, Bestavros, Almeida and Almeida, 2007). It was shown that the

amounts of comments per post and per blog follow heavy-tailed distributions, but only 30% of the

blogs (15% percent of the posts) received comments (Mishne and Glance, 2006). According to Duarte

et al. (2007), 55% of the discussions appearing in these blogs can be classified as many-to-many com-

munication. Among other temporal patterns of the comments, their study also analyzes the aggregate

of all PCI-distributions, which is fit by a Weibull distribution. The number of comments per user in a

BBS was shown to be distributed according to a truncated LN distribution (Naruse and Kubo, 2006),

which coincides with our results.

9.3 Statistical preliminaries

In this section we briefly give a formal characterization of heavy-tailed distributions, the densities

of the probability distributions used for fitting the data and explain the principle of the statistical test

used to measure the quality of the fits.
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9.3.1 Definition of heavy-tailed distributions

According with (Sigman, 1999) we give the following formal definition for the class of heavy-

tailed distribution:

Definition 2 Given a non-negative random variable X, its distribution is said to be heavy-tailed if its

cumulative distribution function F(x) = P(X ≤ x) fulfills

lim
x←∞P(X > x+ y|X > x) = lim

x←∞
1−F(x+ y)

1−F(x)
= 1 (9.1)

for y≥ 0.

In other words, if X ever exceeds a large value it is likely to exceed any larger value as well. An

important subclass of the heavy-tailed distributions are the so called subexponential distributions

(Goldie and Kluppelberg, 1998), whose tail 1−F(x) tend to zero slower than any exponential e−εx.

Several important distributions belong to this class. Those of them which we will use in this study are

described in more detail hereafter.

9.3.2 Log-normal and double log-normal distributions

If a random variable Y follows a Gaussian distribution then X = exp(Y ) is log-normally dis-

tributed. This implies that a log-normal (LN) distribution has the following probability density func-

tion (pdf):

fLN(t;µ,σ) =
1

tσ
√

2π
exp

(−(ln(t)−µ)2

2σ2

)
(9.2)

and its cumulative distribution function (cdf) is given by:

FLN(t;µ,σ) =
1
2

+
1
2

erf

(
ln(t)−µ√

2σ

)
, (9.3)

where erf(x) is the Gauss error function being defined as

erf(x) =
2√
π

Z x

0
exp(−u2)du. (9.4)

And a double log-normal (DLN) distribution, which is a superposition of two independent LN-

distributions and has the following pdf:

fDLN(t;θ) = k fLN(t;µ1,σ1)+ (1− k) fLN(t;µ2,σ2) (9.5)

where θ = (µ1,σ1,k,µ2,σ2).

The corresponding cdf can be easily derived from equations (9.3) and (9.5).
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9.3.3 Power law distributions

The tail of a heavy-tailed distributed random variable X is often tried to fit with a function of the

form of a power law

P(X = t) = Ct−α for t ≥ tmin. (9.6)

Such distributions are also referred to as Pareto distributions or Zipf’s laws (Newman, 2005). The

value of C depends on the lower bound for the powerlaw behavior tmin, the exponent α and on whether

we are modeling discrete or continuous data. Here we are only interested in the discrete power law

(PL) distribution, whose pdf is given by

fPL(t;α, tmin) =
t−α

ζ(α, tmin)
(9.7)

and its cdf by

FPL(t;α, tmin) = 1− ζ(α, t)
ζ(α, tmin)

(9.8)

where

ζ(α, t) =
∞

∑
n=0

(n+ t)−α (9.9)

is the generalized or Hurwitz zeta function (Adamchik and Srivastava, 1998).

To find the optimal value for tmin to fit a dataset a recent study (Clauset, Shalizi and Newman,

2007) proposes a method based on finding the tmin for which the distance between the cdf of data

and a PL-fit (using maximum likelihood estimation) takes a minimum value, which in most cases is

equivalent with maximizing the p-value of a Kolmogorov-Smirnov test, which is described hereafter.

9.3.4 Kolmogorov-Smirnov test

To test whether a given dataset is distributed according to a certain model distribution F , we use

the Kolmogorov-Smirnov (KS) test with the following hypotheses:

H0: The data is a sample of distribution F .

H1: The hypothesis H0 is not true.

The test is based on finding the maximal difference D between the cdf of data and model distribution.

With this maximum and the number of samples (i.e. the number of comments in our case) we can

calculate the p-value of the KS-test. It gives us the probability of obtaining a result as different from F

as the data. In other words: the greater the p-value, the closer is the fit with the test distribution. The

hypothesis H0 is accepted if the p-value is greater than the chosen level of significance α0 (usually
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set to 0.05 or 0.01). Using the following formula one can calculate the p-value, given the number n

of elements in the dataset:

p = 2
∞

∑
i=1

(−1)i−1 exp
(
−2i2

(√
n + 0.12+ 0.11/

√
n
)2

D2
)

. (9.10)

Usually a summation up to i = 100 is enough to obtain reliable results (Press, Flannery, Teukolsky

and Vetterling, 1992). For more details see for example (DeGroot and Schervish, 2002).

Note that the KS-test is designed to test distributions whose parameters are independent of the

dataset used. In other words: if we use the dataset to calculate the parameters of the distribution, e.g..

through maximum likelihood estimation, we introduce a bias towards higher p-values (Goldstein,

Morris and Yen, 2004). One could use instead an equivalent to the Lilliefors test for normal distri-

bution (Abdi and Molin, 2007). However, this implies a huge amount of Monte Carlo simulations to

obtain reliable results. Since we are mainly interested in describing the quality of a fit, we use the

p-values of the much simpler KS-test as a measure of approximation quality rather than as statistical

proof of the origin of the underlying data.
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The dataset

In this chapter we explain the methods used for data retrieval and the analysis of Slashdot. We

give then some basic quantities of the retrieved data and an overview of the global activity looking at

the data on different temporal scales.

10.1 Data retrieval process

The crawled1 data correspond to posts and comments published between August 26th, 2005

and August 31th, 2006. We divided the crawling process into two stages. The first stage included

crawling the main HTML (posts) and first level comments and the second stage covered all additional

comment pages. Crawling all the data took 4.5 days and produced approximately 4.54 GB of data.

Post-processing caused by the presence of duplicated comments was necessary (due to an error of

representation on the website). This explains discrepancies in the total number of comments between

our study and Slashdot for certain posts.

Although a high amount of information was extracted from the raw HTML (sub-domains, ti-

tle, topics, hierarchical relations between comments) we concentrated only on a minimal amount

of information: type of contribution (either post or comment), its identifier, author’s identifier and

time-stamp or date of publishing. The selected information was extracted to XML-files and imported

into Matlab where the statistical analysis was performed. Table 10.1 shows the main quantities of the

crawling process.

Figure 10.1 shows an example of a post (blue dashed box) with 4 of its comments (black dash-

dotted box). The time-stamps of post and comments (indicated by red boxes inFigure 10.1) can be

obtained from Slashdot with minute-precision and corresponded to the EDT time zone (= GMT−4

hours). They allow to calculate the following two quantities:

1Software used: wget, Perl scripts, and Tidy on a GNU/Linux, Ubuntu 6.0.6 OS.
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Period covered 26-8-05 − 31-8-06
Time needed for crawling 4.5 days
Amount of data mined 4.54 GB

Table 10.1: Main quantities of the crawling

The Post-Comment-Interval (PCI) stands for the difference between the time-stamps of a com-

ment and its corresponding post. The PCIs of Figure 10.1 are symbolized by the dimensioning.

The Inter-Comment-Interval (ICI) refers to the difference between the time-stamps of two

consecutive comments of the same user (no matter what post he/she comments on).

The Inter-Comment-Interval (ICI1) refers to the difference between the time-stamps of two

consecutive comments of the same user to different post, i.e. only the first comments of a users to a

post is considered in its calculation.

Figure 10.1: Example for a post (blue dashed) and a few of its comments (black dash-dotted box).
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10.2 Basic quantities of the retrieved data

The data analyzed contain about 104 news posts which received a total of 2 · 106 comments.

We found nearly 105 distinguishable users (commentators) responsible for this comments. The exact

numbers are shown in Table 10.2. Approximately 18.6% of the comments were given by anonymous

users. Assuming that many users comment anonymously, most of the anonymous users do not posses

a registered user-name and the number of comments per anonymous user is similar to those of the

registered ones, we can suppose that the actual number of commentators is about 20% higher. Never-

theless, for our purposes the exact identification of unique user-names is only interesting inchapter 12

where we have to eliminate the comments of the anonymous users. In the rest of the study the fact that

a comment is anonymous does not entail any restrictions on our analysis and we can use the entire

dataset.

Posts 10016
Comments 2075085
Anonymous comments 18.6%
Commentators 93636

Table 10.2: Main quantities of retrieved data

The distribution of the number of comments per post is quite heterogeneous. It is shown in the

form of a histogram in Figure 10.2. Half of the posts provoke more than 160 comments and some

of them even trigger more than 1000. In the next section we analyze the time-distribution of these

comments and in the next chapter we study the distribution of their post-comment intervals (PCIs).
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Figure 10.2: Histogram of the number of comments per post (inset shows the corresponding cdf).
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10.3 Activity cycles on Slashdot

In this section we analyze the time-series generated by the post- and commenting activity on

Slashdot. Figure 10.3a shows these two time-series2 grouped into 10 five week periods. The amounts

of posts (blue continuous) and comments (black continuous lines) per hour show clearly daily and

weakly cyclic behavior. Figures 10.3b-d represent the mean and standard deviations (gray areas) of

the post and comment activity shown in Figures 10.3a over different timescales. In Figure 10.3b we

can observe the average daily cycles of the time series of Figure 10.3a, while Figure 10.3c shows

the average over these time series. Figure 10.3d finally shows average and standard deviation over

the cycles of Figure 10.3d. The low values of the standard deviations indicate that the activity cycles

do not change much during the year, they are relatively stable over time especially in the case of the

comments.

2A correction to account for changes in the activity rhythm caused by the Daylight Saving Time (DST) has to be applied,
since the DST is not reflected in the raw data obtained from Slashdot. We used the DST-period of the USA, which slightly
differs from the schedule in the European Union.
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Figure 10.3: Post and comment activity on Slashdot throughout the year. (a) Evolution of the number
of post and comments per hour. (b) Mean and standard deviations of the daily activity cycles for the
10 time-series shown in (a). (c) Mean and standard deviation over the time-series shown in (a). (d)
Mean and standard deviation of the daily activity cycles of (b). We observe daily and weakly activity
cycles which are relatively stable throughout the year of mined activity.
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Interestingly, although post activity shows more fluctuations and higher standard deviations than

comment activity, there is little discrepancy between their mean temporal profiles. This difference in

the deviations is not surprising since the number of posts is 3 magnitudes smaller than the number of

comments (see Table 10.2). This is further confirmed by Figure 10.4 which shows the mean number

of posts and comments per hour, now with the standard deviation of all the data. It illustrates patterns
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Figure 10.4: (a) Weekly and (b) daily activity cycles

which are in agreement with the social activity outside the public sphere. Figure 10.4a shows high

activity working days which slows down during weekends. This weekly cycle is interleaved by daily

oscillations illustrated in Figure 10.4b. The daily activity cycle reaches its maximum between 11am

and 2pm approximately and its minimum during the night between 5am and 6am. At weekends and

holidays (compare also with Figure 10.3 the maximum of the daily activity cycle reduces to 50% of

its value during working days, while the minimum does not show much variations. We can conclude

that there is a certain stock of activity which is maintained independent of hour and weekday and

that, although Slashdot is open to public access around the world, its activity profile is clearly biased

towards the American time-schedule.
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Chapter 11

Analysis of Post-induced activity

In this chapter we focus on the time-distribution of the activity (comments) a single post induces

on Slashdot. The distribution of the number of comments per posts was shown Figure 10.2. To

analyze the time-distribution of these comments we study their post-comment intervals (PCIs). We

are especially interested in the resulting probability distribution of all the PCIs of a certain post,

which gives us the probability of a post to receive a comment t minutes after it has been published.

These distributions are approximated with different types of heavy-tailed probability distributions. To

measure the quality of those approximations we use the p-value of a KS-test.

11.1 Approximation with log-normal (LN) distributions

We start by analyzing the PCI-distribution of some example posts and use LN-distributions as a

first guess to approximate them. Figures11.1a and 11.1b show in linear and logarithmic scale the PCI-

distribution of a post, let us call it post1, which triggered 1341 comments. We notice (Figure 11.1a)

that the activity starts directly after the post has been published, reaches its maximum after around

30 minutes and decays then successively. Some fluctuations around this general behavior can be ob-

served. The characteristic shape of the probability density function (pdf) resembles a LN-distribution,

which becomes even more visible in its bell shape in logarithmic scale ofFigure 11.1b. However, to

averaged out the fluctuations of the pdf a better picture can be obtained from the cumulative probabil-

ity distribution (cdf) which is shown in Figures 11.1c and 11.1d, again in both linear and logarithmic

scale. The fit with a LN-distribution (dashed) closely resembles the data (continuous line) and it is

thus not surprising that a KS-test gives us a high p-value of 0.637 an we would accept the LN-fit as

a valid hypothesis to explain the PCI-distribution of this post. The parameters µ and σ of the LN-

distribution are obtained simply by calculating the mean and standard deviation of the logarithm of

the PCIs in the dataset.
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Figure 11.1: LN approximation (dashed lines) of the PCI-distribution (solid lines and bars) of post1
which received 1341 comments. (a) Comments per minutes (bin-with= 2 for better visualization) for
the first few hours after the post has been published. (b) Same as (a) in logarithmic scale. (c) The
cumulative distribution of the data shown in (a). Inset shows a zoom on the first 2000 minutes. (d)
Same as (c) in logarithmic scale.

The PCI-cdf of three more posts and their LN-fits are show in Figure 11.2. The top two sub-

figures show good fits with p-values of 0.3 and 0.99 respectively, both much greater than the usual

criteria of rejection. The topmost Figure on the right shows that even for a post with a smaller number

of comments the PCI-distributions is well approximated with a LN-distributions. The question is now

whether all posts show this LN-pattern in the time-distribution of their comments. The answer is no,

the LN-fit is not accurate for all posts. E.g. the PCIs of the post shown inFigure 11.2 (bottom), post2

from now on, start to show considerable different behavior from the LN-approximation about 3 hours

after its publication around midnight. The activity is lower than the LN would predict, but starts to

increase again at about 8am in the morning the following day. At around 10:30pm it increases further

to recover the lost activity during the night. More such oscillations of activity can be observed during

the subsequent days. The time-spans of variations in activity coincide quite exactly with the average
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Figure 11.2: LN-approximation of the PCI-distribution of 3 different posts.

daily activity cycle shown in Figure 10.4b, which suggests that it may be the cause for the aberration

of the LN-behavior. We will investigate this further insection 11.5, but first we try to improve the fit

in those cases.

11.2 Approximation with double log-normal (DLN) distributions

To approximate PCIs of posts like post2 (Figure 11.2 bottom) for which a LN-fit gives bad re-

sults, we can use a double log-normal distribution (DLN), i.e. a superposition of two LN-distributions

(See subsection 9.3.2). To find their parameters and especially their mixing coefficient we use max-

imum likelihood estimation (MLE) (Stouffer et al., 2006; DeGroot and Schervish, 2002), which is

performed by minimizing the negative logarithm of the likelihood function with fminsearch in MAT-

LAB. Since the DLN has five parameters compared to only two of the LN, it should lead to better

results.

In Figure 11.3 we compare LN and DLN approximation of the the PCI-distribution (black con-

tinuous line) of post2, shown previously inFigure 11.2 bottom. The red and blue lines indicate the two
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Figure 11.3: Comparison of LN and DLN-approximations (dashed-dotted lines) of the PCI-
distribution (solid lines and bars) of a post which received 1567 comments. The DLN-distribution
is a superposition of LN1 and LN2, which in the above figure are rescaled according to the coefficient
k of the DLN. Rest of legend as in Figure 11.1.

log-normals (LN1 an LN2) rescaled according to the mixing parameter k. Their superposition results

in a DLN (gray, dash-dotted), which clearly outperforms the previous LN (black, dashed) approach.

The p-value of the DLN approximation is 0.177, which is above the usual level of significance. We

would therefore accept the DLN-distribution as a valid model of the PCI-distribution in this case,

while the LN hypothesis is rejected with a p-value below 10−10. The two LN-distributions which

form the DLN can be interpreted as two waves of activity. The first one (LN1, red line)) starts directly

after a post has been published and approximates well the first 8 hours of activity. Then the activity

increases due to the rise in the circadian activity cycle (compare also withFigure 10.4b and the text

labels in Figure 11.2 bottom). The second wave (LN2, blue line) accounts for the extra of activity due

to this rise and therefore the DLN-approximation reflects the first bump in the PCI-cdf and fits well

the data. However, a second bump in the cdf, caused by the subsequent oscillation of activity due

to the circadian circle during the following day is not reproduced by the DLN-approximation. Since
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Figure 11.4: Transformation of LN into LNxC.

its amplitude is low compared to the rest of activity triggered by the post, it is not strong enough to

force us to reject the DLN-hypothesis in the KS-test. Nevertheless, in the following section we try to

approximate this minor bumps as well.

11.3 Approximation with LN and DLN distributions combined with the

circadian cycle

Another possibility to improve the LN-fits is the use of modified LN and DLN distributions

which incorporate fluctuations which account for the activity changes due to the circadian rhythm.

We denominate them LNxC and DLNxC and describe them in more detail in what follows.

11.3.1 Definition of LNxC and DLNxC

The distributions LNxC and DLNxC are generated by point-wise multiplication1 of the LN or

DLN pdf with a periodic continuation of an “ad hoc” circadian cycle as shown inFigure 11.4b. The

circadian cycle is approximated by the normalized mean number of comments per hour of the day,

which is then linearly interpolated to achieve minute resolution. Alternatively, higher dimensional

1Note that we use a discretized version of the pdfs, since we model discrete data with minute precision.
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interpolation could be used, but the differences are negligible for our purposes.

The starting point of the periodic function coincides with the moment the post is published.

After the multiplication we have to normalize to obtain the final pdf. We denominate the two resulting

probability distributions LNxC and DLNxC. This procedure is visualized inFigure 11.4. Figure 11.4a

shows an example of a LN-pdf. After multiplying it with the periodic continuation of the circadian

activity cycle (Figure 11.4b) and a renormalization we obtain the LNxC-pdf (Figure 11.4c). In order

to find the parameters of the above described distributions which best approximate a given post we

use again MLE.
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Figure 11.5: Approximation with LNxC (red dashed line) and DLNxC (blue dashed doted) of the
PCI-distribution (solid lines and bars). (a) Comments per minute (bin-with=2) for the first 1000
minutes after the post’s publishing. (b) Same as (a) but in logarithmic scale. (c) The cumulative
distribution of the data shown in (a). Inset shows a zoom on the first 2000 minutes. (d) Same as (c)
but in logarithmic scale.
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Figure 11.6: Example of improvement of fit with DLNxC. Legend as in Figure 11.5.

11.3.2 Two example posts

We use the PCI-distributions of post1 and post2 to show the quality of the LNxC or a DLNxC-

approximation in comparison with the LN and DLN-fits. We start with the PCI-distribution of post1

which was well approximated by a plain LN distribution (p = 0.637 in Figure 11.1). Figure 11.5

shows the fits with LNxC (red dashed) and DLNxC (blue dash-doted line) distributions. The later

improves the LN-fit and adjusts very well even the small bumps in the cdf after about 1000 minutes

of activity (Figure 11.5c and Figure 11.5d). This implies the high p-value of 0.975, meaning a nearly

perfect fit. On the contrary the LNxC, although it also adapts its shape to the bumps, shows worse

results than the simple LN distribution. It achieves only a p-value of 0.009, which is below the usual

choices for the level of significance, which implies the rejection of the null hypothesis . Although

the p-values of the three other distributions of the LN family are much greater than those significance

levels, they indicate that the DLNxC-fit is the closest to the data.

Moreover, the DLNxC leads to excellent results even for those cases where the KS-test rejects

the LN-hypothesis. We show this in Figure 11.6 on the example of post2, which was published late in
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Figure 11.7: Two examples of the approximation of the tail of PCI-distribution with power-laws (PL).
The PCI-cdf of (a) post1 (b) post2 is shown in logarithmic scale. The gray areas correspond to the
amount of discarded data for the PL-fits. Inset in (a) shows the pdf of the two variants of PL used.

the evening and suffers thus distortions due to the circadian cycle. The LN-hypothesis is rejected (p-

value < 10−10), but a DLNxC-fit would be accepted with a p-value of 0.509. Also the DLN variant

has a p-value (0.177) which is above the thresholds of rejection. The outcome of the KS-test for

the LNxC depends on the chosen value of the significance level α0, since the corresponding p-value

of 0.029 can either lead to acceptance (α0 = 0.01) or rejection (α0 = 0.05). Although the LNxC

represents an improvement compared to the simple LN for post2, it does not reach the quality of the

DLN or the DLNxC. If we compare the approximation quality of LNxC and DLNxC visually we

note that both LNxC and DLNxC seem to adjust well the PCI-pdf (Figures 11.6a and 11.6b), but

the corresponding PCI-cdf (Figures 11.6c and 11.6d) shows us that the DLNxC is closer to the data.

For the two example post analyzed in this section we notice that the DLNxC adapts very well to the

oscillations of activity. A more general comparison of the quality of the four different distributions of

the LN family involving all posts will be given insection 11.5.

11.4 Approximation with power-law (PL) distributions

As explained in subsection 9.3.3 the tail of heavy tailed distributions is often fit with a power-

law. We will try this as well for the PCI-distributions of the posts on Slashdot and give in this section

two examples for these fits. Apart from the power-law (PL) distribution we also use a powerlaw

distribution modified by the circadian cycle (PLxC) which we generate in the same way as the LNxC

and DLNxC multiplying a PL-distribution with a periodic extension of the circadian cycle. The inset

in Figure 11.7a illustrates the relationship between the pdfs of PL (red dash-dotted line) and PLxC

(blue dashed curve) in a log-log plot.

We take as example, as in the previous sections, the PCI-distributions of post1 and post2, whose



Chapter 11: Analysis of Post-induced activity 83

cdfs are shown in Figure 11.7 together with their approximation in log-scale. We use the methodology

explained in subsection 9.3.3 to find the optimal value for the cut-off parameter xmin. Only PCI greater

than xmin are considered for the fits. We set the maximal cut-off at 1000 minutes to guarantee at

least one magnitude of data for the fit. The discarded PCI-data is represented by the gray areas in

Figure 11.7 (dark gray for the PLxC and light gray for the PL-distribution). For post1 we have to

cut-off more than 89% of the comments to achieve the best fits. Both post show p-values above the

levels of significance, although the PL (p = 0.086) is very close to rejection. For post2 both p-values

are 0. We would have to allow higher values for xmin to achieve better results in this case, which then

of course would imply an even greater percentage of discarded data.

In the next section we will show that this is the general problem of trying to fit power-laws with

the tails of the PCI-distributions. The more data one discards the easier becomes a powerlaw fit, but

the less significant is it to explain the data.

11.5 Comparison of all six approximation variants

After these analysis of some example posts we will try to achieve a general picture by performing

KS-tests for all posts and all six types of distributions presented earlier. We then compare their

p-values to analyze their overall approximation quality. The higher the p-value the better is the

approximation.

11.5.1 Overall performance of the approximations

The cdfs of the p-values of these tests are shown in Figure 11.8a. The axes are interchanged so

that the x-axis gives the proportion of posts whose p-value is lower than or equal to the corresponding

y−coordinate of a curve. This implies that the closer a curve of a probability distribution is to the top

border of the plot, the better it approximates the data “on average”.

First we compare only the four different variants of log-normal distributions, which we will refer

to in what follows as the LN-family. We observe that the LN (dashed line) gives the worst results of

all tested distributions, it is the closest curve to the bottom of the plot. A significant improvement

is achieved if we use a log-normal plus circadian cycle (LNxC)-distribution (black continuous line).

And as expected from the results for the example-posts, the best performance is obtained by the two

double log-normal distributions. For both, DLN and DLNxC, fits the proportion of posts which low

p-values is much smaller than those of their single LN counterparts. However, the improvement

achieved by using the circadian cycle is very small, the curves of DLNxC (dash-dotted line) and

DLN-curve (gray continuous line with circles) nearly coincide.

The same ranking of the distributions can be observed if we fix the significance level α0 of the
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Figure 11.8: (a) Result of KS-test of all posts for different approximations. (b) Percentage of dis-
carded comments for the PL and PLxC-fits.

KS-test with either 0.01 or 0.05 (shown as gray areas in Figure 11.8a). We can then quantify the

percentage of posts for which the KS-test rejects the null hypothesis. The corresponding number can

be found in Table 11.1. We observe that while a single LN-distribution can only explain in 83% of

the cases the activity provoked by a post, both double log-normal variants are a valid model of the

data for more than 99.5% of all posts. The best results are obtained for DLNxC which is only rejected

for 11 of 10016 posts (α0 = 0.01). We can conclude that both DLN and DLNxC are valid models to

explain the activity provoked by the posts on Slashdot.

To compare our results with other studies which favor power-laws to fit heavy tailed distributions,

we also analyzed the approximation quality of two classes of PL-distributions. The corresponding re-

sults of the KS-tests are similar to those of the LNxC in Figure 11.8a. However, we have to stress

out that we cannot compare the distributions of the p-values of the PL with those of the LN-family

directly, since the PL-variants only approximate a fraction of the PCI-distribution. A large number of

comments, those with the lowest PCIs, have to be discarded to achieve reasonable results in approx-

imating the tail of the PCI-distribution. In other words: we have to make the heavy tail very short to

fit it with a PL. The distribution of the percentage of discarded comments is shown inFigure 11.8b.

α0 = 0.01 α0 = 0.05 PCIs used
LN 16.68% 25.62% 100%
LNxC 4.80% 9.88% 100%
PL 6.79% 12.77% 44.50%(±20.04%)
PLxC 8.36% 13.94% 38.79%(±22.17%)
DLN 0.44% 0.96% 100%
DLNxC 0.11% 0.33% 100%

Table 11.1: Percentage of rejected 0-hypotheses and data used for the PCI-approximation.
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Figure 11.9: Results of KS-tests per publishing hour of post of (a) DLN and LN, (b) DLNxC and
LNxC.

On average 55.5% of the comments have to be discarded in the case of a simple PL and even 61.21%

when we approximate with PLxC. In Figure 11.8a we observe that in the case of DLN and DLNxC,

the performance of PL (gray continuous line with squares) and PLxC (dash-dotted line with triangles)

are very similar, although here the PL is slightly better than its oscillatory variant as can be seen in

Table 11.1. A PL allows to explain 93% of the tails of the PCI-distribution versus the 91% of PLxC.

We observe that the PLxC does not lead to an improvement of the results of the PL distribution, since

the PL explains more data and achieves better approximations of the tails of the PCI-distributions.

However, it is no surprise that parts of LN-distributed data can be fit by PLs (Newman, 2005).

A LN-distribution is a quadratic curve in log scales and a quadratic curve looks straight (i.e. a PL in

log scale) if looked on a sufficient small portion of it2, which can represent a relatively large portion

of its range depending on the parameters of the LN. The same is true for DLN distributions. This,

together with the fact that the LN-family is able to explain the entire PCI-distribution with similar

(LNxC) or even much better quality (DLN and DLNxC) than a PL, motivates us to concentrate only

on the LN-family in what follows.

11.5.2 Dependency of the approximation quality on the circadian cycle

The analysis of the example posts in section 11.1 suggested that the publishing hour of a post

influences the quality of a LN-fit of their PCI-distributions. Here we will investigate whether there

exist a dependency of the outcome of the KS-tests on the hour of the day. To do so we arrange the

posts in 24 groups according to their publishing hour. Figure 11.9 shows mean (continuous), median

2The exponent α of the corresponding PL-fit of this portion would depend then on which part of the data we were
approximating and only secondarily, over the parameters of the LN, on the data itself.
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(dashed lines) and standard deviations (gray areas) of the p-values for each of the groups and the

four distributions of the LN-family. We observe that the quality of LN (black lines inFigure 11.9a)

and LNxC-approximation (black lines in Figure 11.9b) depends on the publishing hour, although this

dependence diminishes in the case of LNxC. Posts published during the phase of increased activity

of the circadian cycle (see Figure 10.4) achieve significantly higher p-values than those made public

outside of this time-span. This explains the bad approximation of post2 (seeFigure 11.3), published

around midnight, with LN and LNxC distributions.

On the contrary, both types of double log-normal distributions show only minor variations due

to the publishing hour of the post. Although the DLNxC (gray lines inFigure 11.9b) is slightly more

constant than DLN (gray lines in Figure 11.9a) we can conclude that both DLN-variants, account for

the main part of the variations in the activity patterns caused by the circadian rhythm.

11.6 Approximation parameters

After having analyzed the quality of different approximations of the PCI-distributions, we now

take a look on the parameters of two of this approximations.

We start with the LN-distribution which, when it leads to good approximation results, allows

to describe the activity triggered by a post with only two parameters: the median3 and the geomet-

ric standard deviation σg of the LN. Both quantities are commonly used to compare log-normally

distributed data (Limpert et al., 2001). The median and σg relate to the parameters µ and σ of a

LN-distribution in the following way:

median = exp(µ) , σg = exp(σ); (11.1)

Estimates for the values of µ and σ are given by the mean and standard deviation of the logarithm of

the PCIs.

Figure 11.10a shows the distribution of the medians of the LN-fits of all posts. The medians are

rather short (for 50% of the posts they are below 2.5 hours, for 90% below 6 hours) compared to the

maximum PCI (approx. 14 days), which implies that, although the activity a post generates covers a

large time span, the major part of it happens within the first few hours after the post’s publication. We

can use the median of the LN-approximation as a measure for the “half-life” of a discussion, which

is an indicator of how fast after the publication of a post the mayor part of its comments have been

put online. The geometric standard deviation σg, on the other hand, gives us an idea of how dispersed

in time the activity is. Its distribution, which is centered around 4.5 (stdv= 0.91), is shown in the

inset of Figure 11.10a. The lower the value of σg the more peaked is the discussion, i.e the faster is

3Note that the median coincides with the geometric mean for a log-normally distributed random variable.
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the decay of activity once the median has been reached, while a large σg indicates a tail with slowly

decreasing activity. It is interesting to note that no significant correlation between the median and σg
could be found (correlation coefficient = 0.0076), making this two parameters independent indicators

which allow to describe the reaction of the community to a certain news post.

When we use a DLN-distribution to approximate the data we need five parameters to describe the

activity. Their distributions together with those of the parameters σ and µ of the LN-approximation

can be observed in Figure 11.10b. For better visualization we choose a stair plot instead of a bar-

graph and relabel the parameters when necessary to ensure a value of the mixing coefficient k ≥ 0.5.

Clearly, the regions of µ1 (continuous line with circles) and σ1 (continuous line) are very similar to

those of the parameters of LN-approximations (dashed-dotted lines), indicating that the first one of

the two log-normal distributions used to generate the DLN is similar to the LN-approximation. The

parameters µ2 (dashed with squares) and σ2 (dashed), on the other hand, show an interesting bimodal

distribution. The first of its two peaks lies within the regions of the values of µ1 or σ1 respectively,

corresponding to posts for which the two superposed log-normal distributions are very similar and the

data fits well already a single LN. However, the second peak in the µ2-distribution represents posts

which trigger a second wave of activity starting after the next increase of the circadian cycle. In those

cases the parameter σ2 is usually smaller than σ1, which indicates that the second wave of activity is

less extended than the first one.

Finally, we observe in the inset of Figure 11.10b the distribution of the mixing parameter k,

which is nearly uniform except that values in [0.7,1] are slightly more likely than lower ones. To get

a better picture of the distribution of k and the other parameters we analyze in the following section

aggregate distributions of several posts.
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Figure 11.11: PCI of aggregate posts and parameters of DLN approx. by publication hour.

11.7 Two waves of activity

As explained already in section 11.2 the fact that a DLN, a combination of two LN distributions

(LN1 and LN2), allows to approximate well the PCI-distributions suggests that the activity triggered

by a post consists of two major waves, each one represented by one of the two LNs. To verify this

claim we combine the PCIs of all posts of our dataset which have been published during the same

hour of the day into an aggregate post. For example, to obtain the first aggregate post we generate

the distribution of the PCIs of the posts published between 1am and 2am. In this way we obtain

24 aggregate posts, which we approximate with DLN-distributions. The normalized PCI-cdfs of

those aggregates (black solid lines) and their DLN-approximations (gray dashed lines) are shown in

Figure 11.11d. The shift on the y-axis of the curves corresponds to the hour, which the aggregate post

represents.

The parameters of these 24 DLN-approximations can be observed in the top three subplots of
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Figure 11.11. We notice that the parameters µ1 and σ1 (continuous lines in Figures 11.11a and 11.11c)

of the first LN-distribution (LN1), which corresponds to the first wave of activity, experience only

minor variations due to the hour of publication. The mixing parameter k, µ2 and σ2 (dashed lines), on

the other hand, vary significantly.

Figure 11.11b shows that k experiences a cyclic behavior, similar to the circadian activity cycle

(Figure 11.4b). The location in time of the maximums and minimums of both cycles approximately

coincide. The value of k reaches its maximum around 3pm, which indicates that for posts published at

this time of the day most of the activity can be modeled only by LN1. At the same time µ2 reaches its

maximum and σ2 its minimum. The difference between the medians exp(µ1) and exp(µ2) of LN1 and

LN2 is of about 16 hours. This connotes hat LN2 models the activity of those users which comment the

post during the following day, i.e. during the next high-phase of the circadian cycle. For publishing

times later than 15pm the value of k decreases successively, while σ2 increases, which implies that

the proportion of the total number of comments received during this second wave of activity increases

as well. Parallel to this rise, µ2 decays likewise to the decrease of the time-difference between the

publishing of the post and the next rise of activity. This trend stops in the morning around 5am when

the proportion of comments provided by the first wave of activity increases again. Between 9am and

14pm, during the high-phase of activity, the values of µ1 and µ2 are very similar, making a separation

of the two waves and the interpretation of their parameters very difficult. During this time window the

DLN leads only to minor improvements compared to a single LN distribution as it is also the case in

the approximation of the aggregate post of 3pm which leads us back to the beginning of the paragraph

and closes the cycle.

The gray areas in Figure 11.11d representing the activity within exp(µ1,2±σ1,2), visualize the

influence of the above described two waves of activity in the composition of the DLN-approximation.

We observe the relative evenness of LN1 (line with circle marks and light gray area) and the strong

variations of LN2 (dashed line with squares and dark gray area), which corresponds to the second

wave of activity.

This analysis gives us further insight why posts like post1 (Figure 11.5), published during the

high-phase of activity on Slashdot, can be well approximated by a single LN distribution, while posts

similar to post2 (Figure 11.5), published late at night, need a DLN or (a DLNxC) to approximate their

PCI-distribution.
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Chapter 12

User Dynamics

In this chapter we analyze the activity on Slashdot taking the authorship of the comments into

account. We first study the distribution of activity among all the users participating in the debates and

then focus on the temporal activity patterns of single users. For obvious reasons we do not consider

the anonymous comments, which represent 18.6% of the total amount of comments (seesection 10.2

for more details), in this chapter.

12.1 Global user activity

To illustrate the activity of a users we use the number of his comments. The resulting distribution

of the number of comments per user, which we refer to as the activity distribution in the following,

is heavy tailed and gives a quite heterogeneous picture of the Slashdot-users. It is shown as black

dots in double-logarithmic scale in Figure 12.1a. Most of the approximately 105 unique users we

identified write a low number of comments (53% write 3 or less) during the time-span which is

covered by our data (approximately a year). Nevertheless, a considerable amount of user writes more

then 10 comments (24.85%) and the small number of 93 users (0.1%) writes even more than 1000

comments. See Table 12.1 for more details. It is interesting to note that, although only 3.4% of the

users write more than 100 comments, these approximately 3200 users generate more than 51% of all

the comments in our dataset, whereas the 53% of the users which write 3 or less are responsible only

for 4.6% of the total amount of interaction on the site.

Contrary to the PCI-distributions analyzed in the previous chapter, the lower limit of the sup-

port of the activity distribution has highest probability, which then (apart from some fluctuations in

the tail decays successively for higher numbers of comments per user. Such a decay, which at first

sight resembles linear in log-log scale, has been frequently modeled with a power-law (PL) proba-

bility distribution (see subsection 9.3.3). Indeed, after applying linear regression as in other studies

91
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# comments per user % of users % of comments
1 30.90% 1.71%

(1,10] 44.25% 10.53%
(10,100] 21.43% 36.39%

(100,1000] 3.32% 43.57%
(1000,∞) 0.10% 7.80%

[1,∞) 100.00% 100.00%
(100,∞) 3.42% 51.37%
(50,∞) 7.00% 65.32%
(10,∞) 24.85% 87.76%

(0,3] 52.99% 4.62%

Table 12.1: Percentage of users (second column) which write a certain number of comments (first
column) and the percentage of the total number of comments (third column) produced by these users.

(Faloutsos, Faloutsos and Faloutsos, 1999; Albert, Jeong and Barabási, 1999) we obtain a quite large

correlation coefficient R2 = −0.97 for an exponent of α = 1.79. However, if we apply rigorous sta-

tistical analysis as proposed in Goldstein et al. (2004) the picture changes. First, we estimate the

power-law exponent computing the less biased maximum likelihood estimator (MLE). The resulting

PL with exponent α= 1.48 differs significantly from the previous one and is illustrated inFigure 12.1

as dark gray dashed line. Although this PL-fit of the pdf in Figure 12.1a is tempting to accept the

PL hypothesis, the cdf shown in Figure 12.1b clearly discards it. It is thus not surprising that the

Kolmogorov-Smirnov (KS) test forces us to reject the PL fit. This does not change if we apply the

method of Clauset et al. (2007) and approximate only the tail of the distribution with a PL. The result-

ing distribution, which is shown as blue dashed line inFigure 12.1 is only a minor improvement. We

have to discard more than 95% of the users, represented by the gray areas inFigure 12.1 to achieve

at least a good optical fit of the cdf. Nevertheless, the p-value of a KS-test remains small (p < 10−8)
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Figure 12.1: (a) Histogram of the number of comments per user and (b) and its corresponding cdf.
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and we are forced to reject the PL-fit of the tail as well.

As an alternative hypothesis to describe the data we propose a truncated LN probability distri-

bution, shown in Figure 12.1 as red solid-line. Its parameters are found using MLE. Clearly, the fit is

much better using this hypothesis and a KS-test accepts the fit (p-value= 0.64) of the entire data-set.

We can thus conclude that the distribution of activity among the Slashdot-users is not scale

free, which implies that the parameters of the LN-fit may depend on the size of the dataset1. We

have only made a momentary picture of the distribution, which may change if for example a second

year of activity would be considered. This findings coincide with those ofNaruse and Kubo (2006),

who found that the number of articles submitted by individuals to public distributions bulletin board

system is also distributed like a LN. Truncated LN distributions give also good fits of the distribution

of different parameters describing the communication threads and the social network on Slashdot, as

will be shown in Gómez, Kaltenbrunner and López (2008).

12.2 Single user dynamics

After characterizing the user activity at a general level, we investigate the temporal behavior

patterns of single users. First we analyze some example users and give than an overview of all users.

12.2.1 Four examples of single users

The following analysis concentrates on the temporal activity patterns of four users, to protect

their privacy we refer to them as user1, user2, etc. InTable 12.2 we can find the number of comments

these users have published during the time-span covered by our data and how many post have been

commented by them. The temporal patterns of the users we analyze are the distributions of the PCIs

user1 user2 user3 user4
commented posts 1189 1306 64 113
comments 3642 3350 73 163

Table 12.2: Contributions of the two most active users.

of their comments as well their inter-comment-interval (ICI) distributions, i.e. the time-differences

between two subsequent comments of the same user.

First we focus only on the two most active users in our dataset (user1 and user2). Figure 12.2a

shows the PCI-cdf of user1 (light grey continuous) and user2 (dark gray continuous). We observe a

great similarity to the PCI-distributions of the posts analyzed inchapter 11, which motivates us to use

1For example, if the LN were the results of the multiplication of identical random variables Xi, one for every time-step
i, the parameters of the LN would be determined according to the central limit theorem by number of time-steps.
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user1: median=11 min.
user2: median=7 min.
all users: median=1007 min.
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Figure 12.2: Activity patterns of the two most active users: (a) PCI-distributions, insets shows daily
and weekly activity cycles. (b) Distribution of the inter-comment intervals (ICI) compared with the
whole population (dashed line).

here as well LN and DLN-approximations. The LN-fits are shown as dashed (users1) and dashed-

dotted lines (user2) in Figure 12.2a, and the DLN-fits as red curve with circle markers (user1) and

blue curve with box markers (user2) ibid. To measure the approximation quality we use again the

p-value of a KS-test. While the LN shows bad performance in approximating the PCI-distribution

(p = 0 for both users), a DLN is a good explanation of the PCIs at least for user1, for which it achieves

a p-value of approximately 0.5. For user2 the p-value of the DLN-fit is below the usual choices of

the level of significance, which implies that the it is rejected for this user. Nevertheless, we observe

that the first 8 hours of his PCI-cdf are well approximated by a DLN, then the activity decays relative

to the approximation but increases again after 16 hours. This bump in the cdf, causing the rejection

of the DLN-hypothesis, is originated by the activity cycle of user2, whose participation on Slashdot

concentrate almost exclusively on the working hours from Monday to Friday, as can be observed

in the insets of Figure 12.2a. User1, on the other hand, whose daily and especially weekly activity

cycles are much more balanced than those of user2, does not show such prominent bumps and the

time difference between his comments and the corresponding posts are hence easier to approximate

by a DLN.

The DLN does not account for the alteration due to the circadian cycle in the PCI-distribution

of user2, since we mix here all posts, independent of their publishing hour, which makes it difficult

to isolate the exact influence of the circadian cycle on the distribution. To get a better picture we

would have to investigate only the comments of user2 to posts published at the same hour of the day.

Unfortunately the number of his comments (as well those of the other users) in the dataset is too low

to achieve reliable information from such an analysis. We will therefore perform the observations in
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this section without considering this aspect2.

The influence of the activity cycle becomes even more evident in the ICI-distribution, which

for user1 (light grey) and user2 (dark gray curve) is illustrated inFigure 12.2b. The ICI-cdf, shown

in the inset of Figure 12.2b, of user2 reveals an even more pronounced increase as in the PCI-cdf

around an ICI-length of 16 hours, which is clearly caused by the 8h of inactivity in the activity cycle

of user2. We further notice that the ICI-pdf peaks for both users as well as for the whole population

(dashes curve) at 3 minutes. This is probably caused by an anti-troll filter (Malda, 2002), which

should prevent a user from commenting more than once within 120 seconds. The medians of the

ICI-distributions of user1 and user2 are rather short (11 and 7 minutes respectively) compared to the

median of the whole population (about 17 hours), indicating that the two users engage in discussions

frequently during their activity phase.
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Figure 12.3: DLN fit of the distribution of the inter-post intervals (ICI1) of user1 and user2 between
their first comments to different posts.

An approximation of the ICI-distribution with LN or DLN does not lead to good results, since

a user may write more than one comment to a post during a short time interval, bounded below by

the anti-troll filter, which leads to an abundance of short ICIs. However, if we group the activity into

sessions as proposed by Duarte et al. (2007), we achieve much better results. We consider the first

comment to a post as the beginning of a new session and the subsequent comments to the post as

within the same session.

To refer to the time difference between two sessions we use the abbreviation ICI1, which cor-

responds to the time-difference between two subsequent first comments of the same user to different

posts. The cdf of the resulting ICI1-distributions of user1 and user2 is shown inFigure 12.3. As in the

2However, one has to keep in mind that a similar study using a greater dataset could probably obtain better results, if the
publishing hour of the post were considered.
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case of the PCI-distribution the LN approximation does not lead to good results (data not shown) and

the DLN-approximation is acceptable for user1. For user2 the outcome of the KS-test depends on the

choice of the significance level αo. The resulting p-value of 0.045 accepts the DLN-hypothesis for

α0 = 0.01, but rejects it for α0 = 0.05.

If we compare the medians of the ICI (Figure 12.2b) and the ICI1-distributions (Figure 12.3)

of user1 and user2, we observe that although their ICI-medians are quite similar the two users show

different behavior, when looking on their ICI1s. User2 changes the post very frequently (median

≈ 0.5h), while user1 is more persistent to the post’s subject (median ≈ 3h).

In Figure 12.4 we show the temporal patterns of two more users (user3 and user4), which are less

active than those analyzed previously. For both users we can approximate their ICI1 as well as their

PCI-distributions with DLNs, as is shown in Figure 12.4 (see Figure legend for the corresponding p-

values). The daily activity cycle of user2 is similar to the one of user4 (compare insets ofFigure 12.4a

and Figure 12.2a). Nevertheless, since about 95% of all the comments of user4 are given within the

first 16 hours after the publishing of the respective posts, no bumps affecting the outcome of the

KS-tests can be observed in the activity distributions of this user.
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Figure 12.4: Activity patterns of user3 and user4: (a) PCI-distributions, insets show daily and weekly
activity cycles. (b) Distribution of the inter-comment intervals (ICI1) of the first comment to a post.

User3 shows an even more complicated activity pattern. His daily activity cycle shows a bimodal

behavior, with an second phase of reduced activity around lunch time (light gray curves in the lower

inset of Figure 12.4a). This causes decreased activity in the PCI-distribution between 2 and 4 hours

after the posts are published. It is interesting to note that in this case we are able to approximate the

bump well with a DLN-distribution. When comparing the medians of PCI and ICI1 distribution we

note as a second interesting fact that although user3 is faster in the respond to a new post than user4,

the latter has a shorter ICI1. It seems thus that we observe two independent parameters which will

allow us to describe the activity of the users. A more detailed analysis on this subject will be given at
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Figure 12.5: (a) Results of KS-test of PCI- and ICI1-distributions for users which write more than 50
comments. (b) Medians of their PCI (inset) and ICI1-distributions.

the end of this chapter.

12.2.2 Description of the activity patterns the most active users

After having analyzed the activity patterns of some users in detail, we will now compare the

approximation quality of the patters of the most active part of the users as well as present parameters

which allow to describe their activity.

Approximation Quality

We concentrate on the 6736 users for which we can identify more than 50 comments in our

dataset and analyze the quality of LN and DLN-approximations of their PCI and ICI1-distributions.

To measure the approximation quality we use, as in the case of the PCI-distributions of single posts,

the p-values of KS-tests.

Figure 12.5a shows the cdf of the resulting p-values. We notice that a DLN allows to approximate

the activity patterns of most of the users. The result is slightly better for the PCI-distributions, where

the DLN approximation ins rejected for only 12 users with a level of significance α0 = 0.01, whereas

in the case of the ICI we reject it for 44. This corresponds to 0.18% and 0.66% of the total amount of

α0 = 0.01 α0 = 0.05
ICI1: LN 38.89% 54.38%

DLN 0.66% 1.77%
PCI: LN 6.43% 11.79%

DLN 0.18% 0.48%

Table 12.3: Percentage of users with rejected 0-hypotheses of their PCI and ICI1-approximations.
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users investigated. The LN distribution does not give good results for the ICI, but we can still explain

the reaction times to a post, i.e. the PCI-distribution, of more than 93% of the users (seeTable 12.3).

We can conclude that a DLN is a valid explanation for the activity patterns of single users, since

it allows to fit the reaction time distribution (PCI) as well as the distribution of the time differences

between two consecutive comments to different post (ICI1) of more than 99% of the investigated

users. Again, the DLN shows to be very flexible in accounting for the alterations in these distributions

caused by the activity cycles of single users.

Characterization of single users

As insinuated in the previous subsection we will use the medians3 of PCI and ICI1 distribution

to characterize the activity of single users. We concentrate again on the users which wrote more than

50 comments.

The distribution of the two medians of these users can be observed in Figure 12.5b. While

the PCI-medians, shown in the inset of Figure 12.5b, are distributed in an right skewed unimodal

distribution, the medians of the ICI1s give rise to an interesting multi-modal distribution, which peaks

around time differences between the comments of 24, 48, etc. hours. This is caused by activity cycles

of users with very narrow peaks. Such users comment mainly during a very short time interval, e.g.

once a day, what then naturally results in time differences of a least 24h between comments, weekends

and casual absence of commenting can cause the peaks at multiples of 24h.

Only a very small correlation (correlation coefficient = 0.082) can be found between the two

medians, which allows to use these largely independent quantities for user characterization. The

median of the PCI-distribution gives us a measure of how fast a user reacts to a new post, and the ICI1

median tells us how frequent a user joins a new discussion about another subject.

3Since we deal with heavy tailed distributions we use as descriptive parameter the median instead of the mean, to avoid
dependency on a few very large values in the tail.
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Discussion of the results for human communication

The special architecture of the technology-related news website Slashdot allowed us to analyze

the temporal communication patterns of an online society without considering semantic aspects. The

interactions on the site are driven by news-posts which provoke communication activity in the form

of comments.

The number of comments per user (Figure 12.1 and Table 12.1) indicates a high amount of

heterogeneity in the behavior of Slashdot users. The vast majority of the users writes only a very

reduced number of comments while a small nucleus of “hard-core” commentators is responsible for

the main part of the comments. We can fit the distribution of the number of comments well with a

truncated log-normal (LN) distribution. A similar result has been obtained on a much smaller scale

by Naruse and Kubo (2006) analyzing the number of comments per individual in web based bulletin

board systems.

Despite the heterogeneity in the distribution of activity among the users and the diversity of

themes (games, politics, science, books, etc.) simple homogeneous patterns can be identified on

Slashdot, which repeat themselves over and over again. These patterns appear in the reaction time of

both community and single users to new posts as well as in the time difference between consecutive

comments to different posts of single users.

We show with Kolmogorov-Smirnov tests that the distribution of the time differences between a

post and its comments (the PCIs) can be well approximated by a LN distribution for most of the posts.

The only remarkable deviations from these approximations are caused by oscillatory daily and weekly

activity patterns (Figure 10.4) on the site, which become less noticeable if a post is published early in

the morning (Figure 11.9). A significant improvement of the approximation can be achieved using a

superposition of two log-normal distributions. Such a double log-normal (DLN) accounts for the first

vacillation of activity caused by the circadian cycle and can be interpreted as two independent waves

of activity (Figure 11.11), one starting directly after a post has been published, and the second at the

99
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next increase of activity due to the circadian rhythm. Although more such vacillations may occur

during the life-time of a post, their amplitude is low compared to the first one, suggesting that a com-

bination of more than two LN-distributions would only increase the complexity of parameter-finding

(via MLE) without improving significantly the approximation quality. Nevertheless, a combination

of a DLN-distribution with an oscillatory function (DLNxC) emulating the circadian cycle leads to

slightly better results without affecting the complexity of MLE.

In single user behavior akin patterns appear in the PCI-distribution of all comments a user writes

(to several posts) and in the ICI1-distribution of single-users, i.e. the time-span between two consec-

utive comments of a certain user to different posts. Both distributions can be well approximated for

nearly all users by DLNs, which again are able to account for the deviations from a simple LN pattern

caused now by the individual circadian activity cycles of the users.

We would expect that the time-spans between publishing and reading of a post, or in other words

the number of readers of a post per time-interval, also follow log-normal patterns. This is supported

by a study of visits of news-pages on an Hungarian website (Dezso et al., 2006), which revealed

patters quite similar to the PCI-distribution on Slashdot. To verify our claim one could for example

check the server logs of Slashdot or the access-times of an external homepage linked by a Slashdot

post. Such a study has been performed to show the Slashdot effect (Adler, 1999), but the scale of the

data presented does not allow to draw significant conclusions. Further investigation on this issue is

needed.

Log-normal and DLN temporal patterns similar to those described above for many-to-many com-

munication were found in the waiting and inter-event times of single users in person-to-person e-mail

communication by Stouffer et al. (2006). The temporal patterns of the e-mail data were previously

claimed to show power-law (PL) behavior, which could be explained by a queuing model (Barabási,

2005). Although the model of Barabási might allow insight into temporal patterns of other types of

human activity (Vázquez et al., 2006) it is not able to account for the observed log-normal behavior

patterns in e-mail conversations (Stouffer et al., 2006). The same is true for the temporal patterns in

Slashdot, as we show for the posts’ PCI-distributions. Only after discarding on average more than

50% of the comments can the tail of the PCI-distributions be explained by PLs. The multiplication

of a PL with an oscillatory function, in analogy to the DLNxC, only deteriorates the fit. One can

conclude that the temporal patterns of human communication investigated are not scale-free and thus

not covered by the model of Barabási. We hope therefore to encourage further research towards a

theoretical understanding of the underlying phenomena responsible for this apparently quite general

human behavior patterns.

The medians (Figure 11.10) of the PCI-distributions are very small compared to the overall

duration of the activity provoked by a post. Although the posts might be available for commenting
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for more than 10 days, the first few hours decide whether they will become highly debated or just

receive some sporadic comments. We would therefore expect that the simplicity of the approximation

together with the high initial activity should make an accurate prediction of the expected user behavior

feasible at an early phase after a post has been put online. The accuracy of such forecasting methods

is subject of current research and will be published elsewhere (Kaltenbrunner, Gómez and López,

2007a).

An early characterization of the activity triggered by a post could be applied, for instance, on

dynamic pricing or placing of online advertisements or on the improvement of online marketing.

The success of a campaign might be predicted already after a short time-period, thus allowing an

early adaptation of the strategy of information diffusion. In this context the viral marketing concept

(Leskovec, Adamic and Huberman, 2006) which relies on personal communication might be the most

promising field.

In our opinion, the regular communication activity patterns described in this work may be rel-

evant in two aspects. The first, simpler one, is related to applications where a better understanding

of information trade in the web translates easily into a better description, and even quantification,

of Internet audience. But a second, more complex, aspect is related to the human “communicative”

behavior uncovered at present time: Internet based communication capabilities. We face a new, large

scale, all-to-all public space in which a novel kind of social behavior arises, a scenario that we do not

yet fully understand. However, we should not forget that the new activity is being largely recorded

and the data can be available for research. The work presented in this contribution is a good example

of how those data can be collected and analyzed to give, at least, a quantitative description of the

behavior. This is a first step towards a more ambitious target: to develop “ab initio” models for the

population dynamics of message interchange, which is also the goal of our current research.

Our results are independent of the semantics of the comments and posts we have analyzed,

which allows us to speculate that in an abstract sense a comment can be treated as a simple binary

message between humans. Furthermore, and in relation with the first part of this thesis where we

describe synchronization phenomena in networks of excitable stochastic elements which exchange

messages, we postulate the existence of phenomena where communication between humans may

lead to synchronized behavior as for example observed in the case of hand-clapping (Néda et al.,

2000). A candidate for this type of behavior, although probably better described as a burst of activity,

might be flash mobs (Duran, 2006), phenomena where a large amount of people, incited for example

by e-mail o mobile messages, meets in a predetermined location, performs some action, and then

disperses again.
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Conclusions

We have presented two different aspects of the dynamics of message interchange between stochas-

tic units. Both can be considered as two subclasses of communication between living beings, one at

a high cognitive level of human communication and the other at the basic level of intra-cellular com-

munication in the form of pulsed spikes between neurons.

We have found that a network of non-leaky integrate-and-fire neurons with delayed, pulsed cou-

pling experiences a phase transition around a critical value of the coupling strength. For sub-critical

coupling the neurons can be considered as nearly independent and are mainly governed by exter-

nal stochastic input to the system. If, on the contrary, the coupling is greater than the critical value

(supercritical) we observe a self-organization phenomena, where the communication between units

becomes dominant. The neurons group into phase-locked clusters with an ISI, which is independent

of the number of neurons or the stochastic input. It only depends on the coupling strength. Hysteresis

can be observed in the supercritical region and theoretical limits for the ISI and its expectation, valid

of the entire parameter range of the system are given.

We conclude that synaptic delay changes significantly the dynamics of neural networks. It is

crucial for the observed hysteresis effect and the appearance of several phase-locked clusters. Our

results are also valid for networks of neurons with heterogeneous thresholds and coupling strengths

or if the updating is changed form parallel to sequential. The later implies heterogeneous delays.

This robustness of the findings allows us to conjecture that the phenomena described could be found

as well in more complex, realistic neural models with delay.

In the case of human communication we have analyzed the temporal patterns of discussions

triggered by the tech-news website Slashdot. We have identified daily and weekly activity cycles and

analyzed the distributions of the time differences between the publishing of a new news-post and the

comments it triggers. These distributions have been approximated with several different heavy-tailed

distributions based on either power-law and log-normal distributions. Although in some cases good
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fits can be achieved with a single log-normal distribution, the best approximation quality was reached

by a superposition of two log-normal distributions (a double log-normal), which can be interpreted

as two waves of activity, one starting directly after a post has been published, and the second at

the next increase of the activity cycle. The double log-normal (DLN) distribution accounts for the

variations caused by the daily activity cycle. We have obtained similar results for the reaction time of

single users to a new posts and expect a double log-normal distributions to be a good approximation

for the temporal patterns of other types of human communication behavior, e. g. in the time-spans

between publishing and reading of news articles. This hypothesis is supported by an analysis of

e-mail communication by Stouffer et al. (2006)

Unlike most studies which fit similar data-sets with power-law distributions, double log-normal

distributions approximate the entire data. We do not have to cut-off an important (if not the mayor)

part of the probability mass on the left hand side of the distribution to achieve good fits (Clauset et al.,

2007). The fits with DLN distributions are even better than those of power-laws with cutoff. These

cutoffs (apart from the weaker quality of the fits) present a mayor drawback for some recent models

which try explain temporal patterns in human behavior using power-law distributions (Barabási, 2005;

Vázquez, 2005), and leave the question for a theoretical explanation of this behavior open.

When comparing the two types of communication we have analyzed in this work, we observe

that the human communication patterns we have found show no qualitative difference between a

single user answering his e-mails (Stouffer et al., 2006) or a large population reacting to a news

article in an online forum. This indicates that the behavior we have observed is sub-critical in the

sense that the users can be considered basically as independent units, yet they are responding in a

similar fashion to a stimulus. We can only speculate whether there exist supercritical phenomena in

human communication.



Future Research

Most of the approaches we have introduced here can still be improved. Moreover, they generate

new perspectives of work and have other possible applications. We outline plans for future research

and some for each of the subjects involved in this thesis:

PART II: Neural populations

- Extension to other models of pulse coupled oscillators:

The main results of Part II is the existence of a phase transition in a network of stochastic, pulse-

coupled, non-leaky integrate-and-fire neurons around a critical value of the coupling strength where

the system transforms from an ensemble of asynchronous oscillators to a system of stable phase-

locked clusters. We conjecture that this result is restricted to our special model configuration, but is a

general property that can be observed in a wide range of different models, as long as they incorporate

a delayed coupling and an explicit refractory period.

Candidates for an occurrence of the phenomena would be:

• The leaky integrate-and-fire oscillator of Mirollo and Strogatz (1990).

• The linear, non-leaky-integrate and fire oscillator used bySenn and Urbanczik (2000).

• Oscillators with biological inspired phase response curves like the one used byÖstborn (2002).

• Models where the coupling is defined via alpha functions like byvan Vreeswijk (1996) instead

of point processes.

- Detecting synchronization between populations of stochastic spiking neurons:

We plan to used two coupled networks of populations of stochastic spiking neurons as described

in this thesis to generate pairs of time series. We will then try to uncover the direction of coupling
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with standard methods of nonlinear time series analysis, which are used in Quiroga, Arnhold and

Grassberger (2000); Smirnov and Andrzejak (2005) to analyze coupling between chaotic oscillators.

Those methods allow to detect the direction of coupling as long as the coupled systems do not show a

strict periodic behavior and can therefore also be applied in the case of coupled networks of stochastic

oscillators.

- Provide a more detailed prediction of the mean period of the system:

In Rodríguez et al. (2002) an approximation for the distribution of the ISI at the critical cou-

pling strength was given. We plan to extend this approximation to the complete domain of possible

coupling strengths.. As a first step we will derive this distribution for a network of deterministic neu-

rons starting at random initial conditions with low coupling and receiving adiabatic increases of the

coupling strength.

- Application of the Hysteresis as a simple memory mechanism:

The hysteresis effect might be used to generate a simple memory of a strong stimulus, which

leads the system below the critical point around which the phase transition occurs. If the strong stim-

ulus would be substituted by a weaker but sufficient strong one to maintain the system below the

critical point, the system would still evolve as if the strong stimulus would still be present (“remem-

bered”) due to the hysteresis. The memory could be erased by removing the weaker input or a short

negative input leading the system back to a sub-critical behavior.

- Perform a stability analysis of the system:

Working memory function are often modeled in the form of bistable dynamical attractor net-

works (Durstewitz et al., 2000). We would expect the system analyzed here to be multi-stable in the

region of supercritical coupling in the where hysteresis occurs, since it can choose there between a

large amount of different, apparently quite stable periodic firing patterns, with different amounts of

neurons in the clusters or even different amount of clusters. A formal stability analysis of these firing

patterns should be performed. The result will be interesting to compare with the unstable attractors

found in networks of pulse coupled oscillators with delayed coupling (Timme et al., 2002; Ashwin

and Timme, 2005).
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PART III: Human communication behavior

- Develop a model which generates the log-normal behavior:

Develop a model similar to those explained in section 2.3 which is able to reproduce the log-

normal distributions in the reaction time of the community to a news item.

- Predict the activity on Slashdot:

Using the excellent approximation quality of the PCI-distributions we will develop an algorithm

which allows the prediction of expected server-loads.

- Analyze the nesting of the comments:

The comments a news-post receives on Slashdot are threaded and nested. We plan to investigate

two aspects of the structure of the nesting tree.

• Analysis of the social network of Slashdot users: We consider that two users (user1 and user2)

are related when user1 replies to a comment of user2. Using this we can generate a social

network, which can be analyzed with standard measures (Newman, 2003) like clustering coef-

ficient, average path length, etc. We expect the number of links per user to follow a heavy-tailed

distribution similar to the one of the number of posts per user (seeFigure 12.2).

• Measure the controversy caused by a certain post or user: Using an adapted version of the

h-index of Hirsch (2005), commonly used to characterize the scientific output of researchers,

we can generate a measure to quantify the amount of controversy generated by a certain post

or user. For a posts we order its comments in nesting levels, top-level comments which reply

directly to the post are in level one, replies to these comments in level two and so fort. The

h-index h of a post is then the maximum nesting level i which has at least h > i comments, or

in other words, h + 1 is the first nesting level i which has less then i comments. This measure

should be more robust than just the maximum nesting level, which might reach high values, for

example, due to debates between only two users for on post which otherwise does not initiate

much discussions in the community. In the case of users we just order the comments of a user

by their number of replies. The h-index i of the user is then the maximum number of comments

which obtained at least i replies, in analogy to the h-index of citations.

- Use the content of the comments:

Standard methods of text classification (Joachims, 2002) and clustering will be applied on the

content of the comments to analyze how useful the comments are to identify the topic of the post and
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to generate clusters of users with similar characteristics.
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Appendix A

Proof of Periodic Pattern Condition 5.4

In this Appendix we give a proof of the periodic pattern condition, which enables us to calculate

the minimum number of neurons per cluster to allow a repetitive firing pattern with a given period.

This condition is the basis of the theoretical results ofsection 5.4.

In the following analysis we use the deterministic rule (5.3) instead of the stochastic state transi-

tions (4.1) and restrict ourself to the case of δ≥ tre f . A unit with ISI τ can make τ−1− tre f transitions

due to this rule before reaching the threshold. The term tre f corresponds to the refractory period where

no increase of the state of an unit is allowed and the −1 to the last time-step when the threshold is

reached. We have therefore a contribution of p(τ−1− tre f )Θ(τ−1− tre f ) because of rule (5.3) to the

total evolution of a neuron before its threshold is reached1.

With this result we can calculate the mean minimum cluster size of a system of κ clusters. We

call the clusters Ki (i ∈ {1, . . . ,κ}) and set the number of elements of every cluster |Ki| = ki. The

clusters are ordered according to their spiking time. At every time-step one cluster reaches threshold

starting with cluster K1. After cluster Kκ spikes the cycle starts again with cluster K1. When cluster

Ki reaches threshold, the elements of cluster Ki+1 (or of K1 in case of i = κ) have received the inputs

of all clusters except cluster Ki and an increase of p(τ− 1− tre f ) due to rule (5.3). This leads to the

following condition:

1+
(
−1+

κ

∑
j=1
j �=i

k j

)
ε+ p(τ−1− tre f )Θ(τ−1− tre f ) < L. (A.1)

Which due to ∑κj=1 k j = N is equivalent to

ki > kmin = N−1+
1+ p(τ−1− tre f )Θ(τ−1− tre f )−L

ε
for all i ∈ {1, . . . ,κ}. (A.2)

1Note the use of the Heaviside step function to have a valid formula also for the case of τ< tre f +1.
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Written in terms of η this is equal to

ki > kmin(τ) = (N−1)(1−η)+
p(τ−1− tre f )Θ(τ−1− tre f )

ε
. (A.3)

We have proved the periodic pattern condition (5.4).



Appendix B

Bounds for τ

In this Appendix we derive theoretical upper and lower bounds for the ISI τ of populations

of stochastic non-leaky integrate-and-fire neurons. A sharper lower bound for the expectation of the

inter-spike interval over is also given. Again we use the deterministic rule (5.3) instead of the stochas-

tic dynamics (4.1). We will obtain two absolute bounds such that τmin ≤ τ≤ τmax for all possible ISIs

of the system, and a lower bound for the mean value 〈τ〉 over all possible initial conditions which we

call 〈τ〉min. We get thus

〈τ〉min ≤ 〈τ〉 ≤ τmax . (B.1)

B.1 Maximum ISI τmax

First we derive the maximum possible ISI τmax of the system. It is obvious that the mean cluster

size k̄(τ)≥ kmin, which can be written using equations (5.6) and (A.3) as

k̄(τ) =
Nδ
τ
≥ (N−1)(1−η)+

p(τ−1− tre f )Θ(τ−1− tre f )
ε

. (B.2)

This results in an inequality of degree 2 for τ which has the only solution

τ≤ τmax =
(N−1)ε(η−1)

2p
+

1+ tre f

2
+

√(
(N−1)ε(η−1)

2p
+

1+ tre f

2

)2

+
Nεδ

p
. (B.3)

compatible with the condition τ≥ 0. We omitted the Θ(τ−1− tre f ) term to calculate (B.3). This can

be done if τ≥ 1 + tre f . Inequality (B.2) permits us to calculate the minimum value of η for which a

certain ISI τ is possible. We get

η≥ ηmin(τ) =
p(τ−1− tre f )Θ(τ−1− tre f )

(N−1)ε
+ 1− Nδ

(N−1)τ
. (B.4)

It is sufficient to calculate ηmin(2δ) since we assume that δ ≥ tre f ≥ 1 and the system will be fully

synchronized (τ = δ), i.e. it consists of only one cluster, for values of η below this limit, which we
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call ηsync. We get

η≥ ηsync = 0.5− 1
2(N−1)

+
p(2δ−1− tre f )Θ(2δ−1− tre f )

(N−1)ε
. (B.5)

For the limit of large N this transforms into

lim
N→∞
ηsync = 0.5 . (B.6)

Condition (B.3) is therefore valid if η≥ 0.5.

B.2 Minimum ISI τmin

If, instead of looking at the state of a neuron before the threshold is reached as in the proof of

the periodic pattern condition in Appendix A, we observe the state of a neuron just after it has passed

the threshold, we can derive a condition for the minimum possible ISI. We use that a neuron with an

ISI of length τ increases its state due to the deterministic rule (5.3) by p(τ− tre f ) during every ISI.

Moreover, since the ensemble is homogeneous we expect that during an ISI of a single neuron all

other neurons fire once, which translates into an increase of the activation state by (N−1)ε due to the

ensemble dynamics. Combining the two terms we get

L≤ 1+(N−1)ε+ p(τ− tre f ), (B.7)

which we can transform into a condition for τ

τ≥ τ̂min = tre f +
L−1− (N−1)ε

p
= tre f +

(N−1)ε(η−1)
p

. (B.8)

Comparing this result with equation (4.5), we observe that τ̂min = τm f and have thus found that the

formulas (4.5) are a lower bound for the ISI τ. This bound of course can be improved for for η< 1,

since there τ̂min is negative, although τ can never be smaller than tre f . We use therefore the Heaviside

step function and get

τmin = tre f +Θ
(

(N−1)ε(η−1)
p

)
, (B.9)

which is a lower bound for τ valid for all values of η.

B.3 Minimum mean ISI 〈τ〉min

To derive a lower bound for 〈τ〉 we start with

Nδ
τ

= g(τ)�kmin(τ)+ 1�

≤ g(τ)
(

(N−1)(1−η)+
p(τ−1− tre f )Θ(τ−1− tre f )

ε
+ 1

)
, (B.10)
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which can be obtained from (5.6), (5.7) and (A.3). We calculate the mean of the left and right hand

side according to the probabilities P(τ), which denominate the probability of the system ending up in

a system with ISI τ.

τmax

∑
i=1

Nδ
i

P(i)≤
τmax

∑
i=1

g(i)
(

(N−1)(1−η)+
p(i−1− tre f )Θ(i−1− tre f )

ε
+ 1

)
P(i) . (B.11)

We set 1/τ= f where f is the spiking-frequency, use P(τ) = P( f ) = P(g(τ)), eliminate the terms of

the summation which equal 0 and get

N〈 f 〉δ ≤ 〈g〉
(

(N−1)(1−η)+ 1− (1+ tre f )p
ε

)
+

+
p
ε

(
1+tre f

∑
i=1

g(i)P(i)+
τmax

∑
i=2+tre f

g(i)iP(i)

)
. (B.12)

Using the following identity 〈XY〉 = 〈X〉〈Y 〉+ Cov(X ,Y ) for two random variables X and Y we

achieve

N〈 f 〉δ ≤ 〈g〉
(

(N−1)(1−η)+ 1− (1+ tre f )p
ε

)
+

+
p
ε

(
〈g〉〈τ〉+ Cov(g(τ),τ)−

1+tre f

∑
i=2

g(i)(i−1)P(i)
)

. (B.13)

From (B.10) it is easy to see that Cov(g(τ),τ) ≤ 0 since an increase of τ translates into a decrease

of g(τ) and vice versa. Because of this fact and g(τ) ≥ 0 we can eliminate the two leftmost terms of

inequality (B.13) by weakening the inequality.

N〈 f 〉δ≤ 〈g〉
(

(N−1)(1−η)+ 1+
p(〈τ〉−1− tre f )

ε

)
. (B.14)

The mean frequency 〈 f 〉 is equal to the inverse of the harmonic mean h(τ). Since for a set of positive

numbers its harmonic mean is never greater than its arithmetic mean (Bullen, 2003) we have 1
〈τ〉 ≤

1
h(τ) = 〈 f 〉. Applying this on inequality (B.14) leads to

Nδ
〈τ〉 ≤ 〈g〉

(
(N−1)(1−η)+ 1+

p(〈τ〉−1− tre f )
ε

)
. (B.15)

We can transform this into a quadratic inequality of 〈τ〉 since 〈τ〉> 0. It has the only positive solution

〈τ〉 ≥ 〈τ〉min =
(N−1)ε(η−1)− ε

2p
+

1+ tre f

2
+

+

√(
(N−1)ε(η−1)− ε

2p
+

1+ tre f

2

)2

+
Nεδ
p〈g〉 . (B.16)

We have found a lower bound for the mean value of our ISI distribution.
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Appendix C

Thermodynamic limits of 〈τ〉min and τmax

In this Appendix we will calculate the thermodynamic limit (i.e. the behavior for N → ∞) of

〈τ〉 for the different regions of η. We first calculate the thermodynamic limits of the bounds 〈τ〉min

and τmax of 〈τ〉 calculated in Appendix B and then situate the thermodynamic limit of 〈τ〉 between

the limits of the bounds to show the change in behavior of the system around the critical coupling

strength.

We start with the limit for 〈τ〉min using (B.16):

• η> 1

lim
N→∞

〈τ〉min

N
= lim

N→∞
ε(η−1)

2p
− ε(η−1)

2pN
+

1+ tre f

2N
+

+

√(
ε(η−1)

2p
− ε(η−1)

2pN
+

1+ tre f

2N

)2

+
εδ

p〈g〉N

=
ε(η−1)

2p
+
∣∣∣∣ε(η−1)

2p

∣∣∣∣ , (C.1)

which for η> 1 is

lim
N→∞

〈τ〉min

N
=
ε(η−1)

p
. (C.2)

This coincides with the limit of τm f /N (See equation (4.5)).

• η= 1

Setting η= 1 in (B.16) leads to

lim
N→∞

〈τ〉min√
N

= lim
N→∞

1+ tre f

2
√

N
− ε

2p
√

N
+

√
1

4N

(
1+ tre f − εp

)2

+
εδ

p〈g〉 =

√
εδ

p〈g〉 . (C.3)

• η< 1

Equation (C.1) for η < 1 leads to limN→∞ 〈τ〉min/N = 0, but we can improve this result. We
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transform (B.16) slightly and calculate

lim
N→∞
〈τ〉min = lim

N→∞
1+ tre f

2
− (N−1)ε(1−η)+ ε

2p
+

+

√(
(N−1)ε(1−η)+ ε

2p
− 1+ tre f

2

)2

+
Nεδ
p〈g〉 .

Applying −a+b = −a2+b2

a+b we get

lim
N→∞
〈τ〉min = lim

N→∞

Nεδ
p〈g〉

(N−1)ε(1−η)+ε
2p − 1+tre f

2 +

√(
(N−1)ε(1−η)+ε

2p − 1+tre f

2

)2
+ Nεδ

p〈g〉

= δ
(〈g〉(1−η)

2
+
∣∣∣∣〈g〉(1−η)2

∣∣∣∣
)−1

(C.4)

and have therefore for η< 1

lim
N→∞
〈τ〉min =

δ
〈g〉(1−η) . (C.5)

The limits for τmax can be calculated analogously from equation (B.3). Combining the limits for both

bounds with the result of equation (B.6) that the system has an ISI of δ for η< 0.5 we obtain

lim
N→∞
〈τ〉= δ if η< 0.5 ,

δ
〈g〉(1−η) ≤ lim

N→∞
〈τ〉 ≤ δ

(1−η) if 0.5≤ η< 1 ,√
εδ

p〈g〉 ≤ lim
N→∞

〈τ〉√
N
≤
√
εδ
p

if η= 1 ,

lim
N→∞

〈τ〉
N

=
ε(η−1)

p
if η> 1 . (C.6)



Appendix D

Graphical interpretation of the bounds for 〈τ〉

In this Appendix we present a graphical interpretation of the lower bound for the expectation

〈τ〉min of the ISI. The expression is interpreted as the sides of a right triangle whose acute angles

experience a phase transition at the critical coupling strength. The special form of the formula for

〈τ〉min (see equation 5.10 and Appendix B for derivation)

〈τ〉min =
(N−1)ε(η−1)− ε

2p
+

1+ tre f

2
+

√(
(N−1)ε(η−1)− ε

2p
+

1+ tre f

2

)2

+
Nεδ
p〈g〉 (D.1)

suggests that it might be interpreted as shown inFigure D.1 in the form of a right triangle.
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�
�

h b

a
γ

a =
√

Nεδ
p〈g〉

b = (N−1)ε(η−1)−ε
2p + 1+tre f

2

h =
√

a2 +b2 =

√(
(N−1)ε(η−1)−ε

2p + 1+tre f

2

)2
+ Nε

p〈g〉

Figure D.1: Graphical interpretation of equation (D.1) for 〈τ〉min for different regions of η. (a) η> 1:
The sum of the lengths of the thick red lines h and b is equivalent to 〈τ〉min. (b) η< 1: The length of
the thick red line is equivalent to h−|b| which is approximately equal to 〈τ〉min

Figure D.1a represents the interpretation for η > 1 and Figure D.1a for η < 1. Each of the sides a,

b and h of the triangle represents a part of equation D.1. The definitions for a, b and h are shown

in Figure D.1. Since a2 + b2 = h2 the triangle is right-angled. With the variables of the geometrical

interpretation equation D.1 for 〈τ〉min reduces to

〈τ〉min = b+h = b+
√

a2 +b2. (D.2)
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The thick red lines in Figure D.1 represent this equation. Using the absolute value |b| instead of b,

equation (D.2) can be approximately written as

〈τ〉min ≈

⎧⎪⎪⎨
⎪⎪⎩

h−|b| for η< 1

a for η= 1

h+ |b| for η> 1

(D.3)

Note: In this part of the Appendix we don not take care of the fact that the formula for 〈τ〉min does

not lead to correct results for η< 0.5. We are only interested in its geometrical interpretation which

is valid for η≥ 0.5.
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0.5+γ(η)/π; p=0.9
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Figure D.2: Phase transition of γ at the critical coupling strength η = 1 for different N. N = L,
p = 0.9 and 〈g〉 = 2. and in all cases. The interval [−π2 , π2 ] was transformed into [0,1] using 0.5+ γ

π .
We observe that γ undergoes a phase transition at η= 1 for N→ ∞.
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D.1 Dependency on the angle γ

A way to determine the sign of b is to use the angle γ between the hypotenuse h and on-cathetus

a of the triangle. γ can be calculated by

tan(γ) =
b
a
, (D.4)

which transforms into

γ= arctan

(
(N−1)(η−1)−1

2

√
ε〈g〉
N pδ

+
1+ tre f

2

√
p〈g〉
Nεδ

)
. (D.5)

We can determine the sign of γ approximately according to the value of η if we do not fixate on the

small fluctuations due to the constant term 1+ tre f − ε/p of b

γ< 0 for η< 1 ,

γ= 0 for η= 1 ,

γ> 0 for η> 1 .

(D.6)

With γ we can, using some trigonometric identities, calculate 〈τ〉min. Due to

b = a tan(γ), (D.7)

h =
a

cos(γ)
, (D.8)

we get

〈τ〉min = b+h = a

(
tan(γ)+

1
cos(γ)

)
, (D.9)

which since 1
cos(γ) =

√
1+ tan2(γ) is equivalent to

〈τ〉min = a

(
tan(γ)+

√
1+ tan2(γ)

)
. (D.10)

The angle γ encodes the phase transition as can be seen in FiguresD.2 and D.3. In order to show the

similarity with the parameter c of Figure 5.3 the transformation 0.5 + γ
π was used to transforms the

interval [−π2 , π2 ] into [0,1] in both figures. The value of g has been set equal to its empirical limit 2.

Figure D.2 shows γ in relation to η for different values of N. If we compare the slope at η = 1 of

the curves for N = 103 (dotted line with � markers) and N = 106 (solid line with circles) we observe

that the higher the value of N the more abrupt is the change of the value of γ at η= 1. The curve for

N = 106 is already very close at the thermodynamic limit where γ experiences a phase transition at

the critical coupling strength η= 1.

The influence of the probability p of a stochastic state transition on γ can be seen inFigure D.3 in

relation to the value of η. The curve for p = 0.9 (solid line with circles) has a lower slope at η = 1

than the curve for p = 0.1 (dashed line with + markers). We observe thus that lowering p has a

similar effect as increasing N. The jump from 0 to 1 at η= 1 is more abrupt.
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Figure D.3: Phase transition of γ for different p. N = L = 1000 and 〈g〉 = 2 in all cases. The interval
[−π2 , π2 ] was transformed into [0,1] using 0.5 + γ

π . We can observe that the lower the value of p, the
greater is the expression of the phase transition at η= 1.

D.2 Conclusions of the graphical interpretation

The value of the angle γ represents the degree of interaction between two forces, which are

represented by the catheti a and b of a right triangle. If γ is close to π2 the system is governed by

b, which means it acts approximately as predicted by the mean field formulas (4.5). If γ ≈ 0, the

dynamics of the system are governed by a which represents the solution of the period for η= 1. For

γ close to −π2 the value of h is again dominated by b, but since b has negative sign for negative γ, the

value of 〈τ〉min is equal to h−|b|. This leads to the cancellation of h if it is dominated by b. In other

words 〈τ〉min is of o(1) if γ is close to −π2 .

A similar interpretation can be done with the uppere bound τmax of the ISI.
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