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ABSTRACT

A peer-to-peer (P2P) overlay network is a logical network, built on top of an underlying physical

network, which facilitate the location of distributed resources without centralized control. These

systems have emerged on the edges of the Internet thanks to the generalized growth of broadband

Internet connections.

There exist two main families of P2P systems: unstructured and structured. In the former, the

distribution of resources across the network and the overlay structure are independent. They are

more easily set up, but resource location requires exhaustive search over the network. In the latter,

the distribution of resources and the network structure are strongly coupled and hence, searches

for resources are more efficient. However, their construction and maintenance are more complex

than in unstructured overlay networks.

On the contrary, structured overlays, also called Distributed Hash Tables (DHTs), overcome

the scaling problems of unstructured systems. Essentially, DHTs provide the same functionality

of a hash table — the standard Put(key, value) and Get(key) interface, but associating key-

value pairs with users rather than hash buckets.

Due to its salient scalability, DHT abstraction has received a lot of attention in the last years.

However, many of the existing proposals have been conceived under the assumption that logical

proximity in the overlay does not need to match physical proximity in the Internet. This mismatch

has become a large barrier for the deployment and performance optimization of P2P applications.

In addition, many of the existing designs have assumed that communication is uniform, while, in

practice, users communicate more frequently with other users in the same administrative domain.

The traditional approach to tackle these flaws revolves around the organization of users into a

hierarchy of domains. By partitioning the network into smaller domains, complexity reduces too.

As typical examples, DNS or group multicast achieve scalability via a hierarchical design.

The basic problem is that most of the existing DHTs have been devised as flat structures and

hence, they cannot enjoy the scalability of a hierarchical design. In this dissertation, we attempt

to address this issue from three different perspectives:

Seduced by the scalability of hierarchical designs, we start by presenting a hierarchical frame-

work for DHTs. The main aim of our framework is to provide a generic methodology to transform

a flat DHT into a hierarchical one made up of telescoping clusters — clusters of ... of clusters of

peers. Our idea is to exploit the recursive structure that many DHTs have to embed a hierarchy of

domains. This strategy has an important benefit: our hierarchical construction of a DHT inherits

the homogeneity of load and functionality of the original design but with the advantages of hav-

ing a hierarchical structure. Further, we provide the hierarchical version of Chord and give some

hints to transform another six DHTs. With our hierarchical construction of Chord, we investigate

the potential reduction in query latency offered by our framework.

Then, we proceed to study an interesting question: what makes our hierarchical constructions

better than existing hierarchical DHTs? To address this issue, we introduce an analytic cost model.

Our idea is to provide the means for identifying the optimal hierarchical design in terms of com-

munication cost. In an effort to show the lack of a universally optimal design, we analyze the two

main families of hierarchical designs: the superpeer design and the homogeneous design. Our

hierarchical constructions belong to the last family.

In general, our hierarchical designs have many interesting applications. For example, the



introduction of multiple separate domains in a flat structure can be used to improve its perfor-

mance. One example is latency optimization. By adapting the clusters to the physical network,

the search latency could be diminish within each cluster and obtain important savings. The prob-

lem is how to divide peers into low-latency clusters in a decentralized and accurate manner.

To answer this question, we finally introduce a clustering algorithm that attempts to organize

peers into clusters, so that peers in a cluster are closer — in terms of round-trip-time — to each

other than peers not in their cluster. To assess the quality of our clusterings, we propose a novel

metric called false clustering rate. This metric measures the proportion of falsely clustered peers

in a clustering. Falsely clustered peers are distant nodes that have been clustered together. Using

our metric, we provide enough evidence that our algorithm can achieve important improvements.

Keywords: Distributed Systems, Peer-to-Peer Overlay Networks, Distributed Hash Tables, Hi-

erarchical Designs, Proximity Clustering.



RESUM

En el darrers anys, Internet ha experimentat una forta expansió gràcies a l’aparició d’un con-

junt d’aplicacions d’àmbit global que han esdevingut pràcticament imprescindibles per la majo-

ria d’usuaris. Aquest grup d’aplicacions, que inclouen des de serveis de missatgeria instantània

fins aplicacions d’intercanvi de fitxers com BitTorrent o eMule, s’acostumen a construir sobre sub-

strats peer-to-peer (P2P),també anomenats d’igual-a-igual. Aquestes substrats es contitueixen en

forma de xarxes overlay o de recobriment. Les xarxes overlay o de recobriment es poden definir com

a xarxes punt a punt que interconnecten usuaris de manera lògica i desacoblada de la topologia

fı́sica, i que proporcionen un servei descentralitzat de cerca de recursos.

Existeixen dues grans famı́lies de xarxes P2P descentralitzades: les xarxes P2P desestructurades

i les xarxes P2P estructurades. En les xarxes desestructurades, la distribució dels recursos és in-

dependent de la topologia de la xarxa overlay, mentre que en les homòlogues estructurades, la

distribució dels recursos i la topologia es troben fortament acoblades. La conseqüencia d’aquest

acoblament es tradueix en una localització de recursos més eficient, tot i que la seva construcció i

manteniment siguin més costosos que en els sistemes desestructurats.

Des del punt de vista funcional, les xarxes estructurades reben el nom de Taules de Hash Dis-

tribuı̈des (DHTs). Bàsicament, les DHTs proporcionen la mateixa funcionalitat de les taules de

hash tradicional — la interfı́cie estàndard Put(clau, valor) i Get(clau), però associant els

parells clau-valor amb usuaris de la DHT.

Degut a les seva excel·lent escalabilitat, les DHT han generat una gran expectació en el darrers

anys. Tanmateix, la seva adopció com a eina generalitzada de comunicació és encara lenta degut

a una sèrie d’incovenients. El primer inconvenient és que l’estructura lògica de les DHTs no es

correspon amb la topologia fı́sica d’Internet. En altres paraules, un usuari pot tenir com a veı̈ns

a d’altres participants que en realitat es trobin molt allunyats — en termes de latència — d’ell.

Per aplicacions en què el retard extrem-a-extrem ha de ser necessàriament baix, aquesta manca

de correspondència és un gran obstacle. D’altra banda, molts dels dissenys actuals assumeixen

que la comunicació és uniforme, mentre que en la pràctica els usuaris es comuniquen de manera

més freqüent amb els usuaris que pertanyen el mateix domini administratiu, comparteixen els

mateixos interessos etc.

Per resoldre aquest tipus de deficiències, tradicionalment s’ha recorregut a l’organizació dels

usuaris en dominis jeràrquics. Exemples arquetı́pics d’aquesta estratègia inclouen el sistema DNS

i els sistemes de distribució i gestió de contingut multimèdia d’alta qualitat.

El problema bàsic és que la majoria de DHTs s’han dissenyat seguint estructures planes i per

tant, no poden gaudir dels avantatges de les jerarquies. En aquesta dissertació, hem procurat

solucionar aquesta mancança de la forma següent:

Seduı̈ts per l’escabilitat del dissenys jeràrquics, en la primera part de la nostra discussió, de-

senvolupem un framework o marc de treball jeràrquic per a DHTs. L’objectiu principal d’aquest

framework es proporcionar una metodologia genèrica per a transformar una DHT qualsevol en

una DHT jeràrquica constituı̈da per grups o clusters telescòpics — clusters de clusters de ... de

clusters d’usuaris. L’idea bàsica consisteix en explotar, si és possible, la seva estructura recursiva.

En cas afirmatiu, la construcció jeràrquica hereta la homogeneı̈tat en càrrega i funcionalitat del

disseny original, però amb els avantatges addicionals derivats d’una estructura jeràrquica. Per

il·lustrar l’utilitat del nostre framework, proporcionen la versió jeràrquica de Chord i un conjunt



d’indicacions per a poder transformar sis DHTs de manera senzilla. Concloem aquesta part amb

l’estudi de la millora en el rendiment experimentable pels nostres dissenys.

En la segona part d’aquesta dissertació, responem a una qüestió que hom hauria de tenir molt

present a fi de poder valorar objectivament l’utilitat del nostre framework: En quins aspectes les

nostres construccions jeràrquiques són superiors a les existents? Per a donar una resposta satisfactòria

a aquesta pregunta, introduı̈m un model genèric basat en costos. La nostra contribució és propor-

cionar un mecanisme imparcial que permeti identificar quin model jeràrquic és òptim en termes

de cost de comunicació. Per assolir aquest objectiu, analitzem les dues famı́lies principals de dis-

senys jeràrquics: el model basat en superusuaris i el disseny homogeni, i arribem a la conclusió

que no hi ha un disseny clarament superior a l’altre. Cal esmentar que les nostres construccions

pertanyen a la famı́lia homogènia.

En general, els nostres dissenys jeràrquics ofereixen un ampli ventall d’aplicacions relacionades

amb l’explotació de múltiples dominis. Una exemple representatiu pot ser l’optimització del

rendiment. Si la comunicació és freqüent entre usuaris d’un mateix domini, l’adaptació dels do-

minis a la xarxa fı́sica permetrà reduir el temps de cerca mitjà del sistema. El problema bàsic és

com organitzar els usuaris en clusters de baixa latència, de forma descentralitzada i escalable.

Per a satisfer aquesta qüestió, l’última part d’aquesta tesi introdueix un nou algoritme de clus-

tering o d’agrupament. La funció d’aquest algoritme és organitzar els usuaris en múltiples clus-

ters de manera que els usuaris dins d’un cluster estiguin mútuament més propers — en termes

de latència — que usuaris pertanyents a clusters diferents. Per mesurar la qualitat de la nostra

solució, proposem una nova mètrica anomenada false clustering rate. Aquesta mètrica mesura

la proporció d’usuaris falsament agrupats dins del sistema. Per usuaris falsament agrupats ens

referim a usuaris llunyans que han estat erròniament agrupats dins d’un mateix cluster. Final-

ment, demostrem empı́ricament com el nostre algoritme permet assolir millores significatives

respecte les tècniques existents.

Paraules Clau: Sistemes Distribuı̈ts, Sistemes d’Igual-a-Igual, Xarxes overlay d’Igual-a-Igual,

Taules de Hash Distribuı̈des, Disseny Jeràrquic, Clustering per Proximitat.
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1.1 General Introduction

In May 1999, an 18-year old college student, Shawn Fanning, devised Napster. Shawn developed

Napster to help music lovers to find an exchange MP3 files on the Internet. Unlike search engines

of the day, Napster indexed the files the users wanted to share on a central server that the other

users could access. As a result, Napster users could directly download MP3 files from other users,

bypassing the use of a central server.

Despite being shut down by USA government [1], Napster made the term peer-to-peer (P2P)

popular. Inspired by Napster, a new generation of P2P systems soon appeared that led a revolu-

tion on file sharing and other type of content delivery applications. But, what exactly a P2P system

is? In order to clarify it, we propose our own definition, as follows:

P2P systems are a class of distributed applications that exploit the resources — storage space, CPU

cycles, content, bandwidth — provided by the users at the edges of the Internet to their benefit.

Compared with the traditional client-server architecture, a pure P2P system can be described

as a decentralized network system in which all participant computers (also known as peers) have

symmetric duties and responsibilities. In simplistic terms, all participating computers act as both

clients and servers to one another, leading to a large pool of information sources and computing

power. Key features of P2P systems are decentralization, self-organization, dynamism, and fault-

tolerance, all of which make P2P paradigm very attractive for information storage and retrieval.

In terms of network structure, P2P systems are roughly classified into two categories: unstruc-

tured and structured. The first wave of P2P systems implemented unstructured P2P overlays, in

which data placement was random and no global structure was maintained (e.g., Gnutella [2]). To

look for a file, unstructured systems used message flooding to propagate queries. Although such

systems were fault-tolerant and resilient to users joining and leaving the network (phenomenon

commonly known as churn), their search mechanism did not scale [3]. Structured overlays [4] [5]

[6], which implement a Distributed Hash Table (DHT) data structure, were proposed to increase

the scalability of unstructured systems. This is the main reason why the focus of this thesis is on

DHTs, and not on unstructured systems in which searches are less efficient.

1.1.1 Distributed Hash Tables

DHTs provide the same functionality of a traditional hash table — the standard Put(key, value)

and Get(key) interface— but associating key-value mappings with participating nodes rather

than hash buckets. The location of an object is thus determined by the hash-value of its name. For

instance, cryptographic secure hash-functions such as MD5 [7] or SHA-1 [8] map arbitrary strings

to 128-bit or 160-bit hash-values, respectively. These functions can be used to map arbitrary object

names into n-bit hash-values, where n depends upon the hash function being used. This defines

an identifier space I = [0, 2n − 1], where objects are assigned to.

In a DHT, each participating computer is also assigned an identifier in space I. At any instant,

the current set of identifiers determines the set of partitions (hash buckets) that the hash-table has

been divided into. Each host is the manager of a distinct partition (hash bucket), being responsible

for all objects whose names hash into that partition.

With this abstraction, in order to insert or retrieve an object, one first computes the hash-value

of its name, and then locates the peer whose partition contains that hash-value. In order to contact
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Figure 1.1: Routing example on a Distributed Hash Table.

this peer, knowledge of its physical address (IP address and port) is needed. The management of

this knowledge arises a key question in DHTs:

Does each peer need to know the complete mapping between the current set of partitions and the physical

addresses of their corresponding managers?

The answer might be affirmative if there would be a relatively small and static set of peers in

the network. However, decentralization forces such a mapping neither to be maintained as global

knowledge nor to be available at some central site. The adopted common solution is to allow each

participating peer to establish links only to a few neighbors. Taken together, these links constitute

what is known as an overlay network. As a consequence, a request to insert or retrieve an object

is injected into the overlay which routes the request to its appropriate manager. Each peer along

the route selects one of its out-going links to take the request increasingly closer to the manager.

This establishes a logical path between the source and the manager, which is made up of all the

intermediate peers through which the request was routed.

While there are significant implementation differences between DHTs, all achieve efficiency

by organizing the participant nodes into a well-defined structure, so that queries can be resolved

within O(log N) number of hops, where N is the number of peers in the network.

The main features of DHTs can be summarized as:

• Scalability: there is not a universal definition of scalability. However, in peer-to-peer context,

scalability means that a DHT should work efficiently for overlay networks of arbitrary size.

This implies handling node arrival and departures in a scalable fashion. A node arrival and

departure requires to redistribute the affected objects over the neighbors and reestablish the

affected links.

• Small degree: this property is consequence of the above property. It means that there should

be a reasonable number of neighbors per node; otherwise, link maintenance overhead might

congest the entire network.
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• Small diameter: the manager of an object should be reachable through a short path. At most,

the diameter should be of O(log N) routing hops. The higher the number of hops, the larger

the latency for Get and Put operations.

• Load Balancing: load should be well-balanced across all peers in the network. In a call to Put

and Get, the communication load should be equitably distributed among all participating

peers. This includes preserving the randomness guarantee of hashing and the distributional

properties of in-degree, which are very relevant for load balancing in message forwarding.

• Fault Tolerance: the structure of the overlay should be preserved by a maintenance protocol.

Due to unpredictable peer and link failures, a node could suddenly become unreachable. To

provide reliable operation, a DHT should be resilient against such failures. Furthermore, it

should exhibit a maintenance complexity as much low as possible.

Examples of DHTs are Chord [4], CAN [9], Pastry [5], Tapestry [10], Symphony [11], P-Grid [12]

and Kademlia [6].

1.2 Topics and Motivation of this Thesis

The academic community has implemented a number of DHTs as efficient, scalable, and robust

P2P infrastructures. However, most of these proposed DHTs make two assumptions which do

not correspond to reality. These assumptions are as follows:

• Uniform communication: DHTs assume that communication between peers is uniform, that

is, all peers have an equal probability of processing a request. However, at any given time, a

peer is usually interested in only a few topics and tends to issue queries and share collections

of objects about those topics he/she is interested in. This makes communication to be non-

uniform and to bother users with queries he/she is not interested in at all. For example, two

users from the same organization cannot prevent to route their queries through users not

in their organization. Further, applications cannot ensure that an object is stored in a given

domain. This lack of control is consequence of the de-clustering nature of the hash functions

used to assign peers and objects into the identifier space. In summary, lack of control over

object placement and routing paths raises concerns over autonomy, administrative control

and accountability of participating organizations.

• Independence of the underlying physical network: DHTs have traditionally considered the phys-

ical IP-level network as a transparent layer, transmitting data from one point of the overlay

to another. This assumption could make sense in small LAN where all users are close to

each other and network delays are low. In the Internet, however, this transparency has neg-

ative repercussions on scalability. Because in a DHT Get and Put operations take Θ(log N)

hops on average, the routing latency between two nodes on the overlay can be very different

from the unicast latency between those two peers in the Internet. Put another way, a single

logical hop on the overlay could incur several hops in the underlying IP-level network. This

clearly results in poor routing performance, and can adversely affect the performance of the

applications and services that could use DHTs as communication infrastructures.
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To drop these assumptions, we have adopted the hierarchy as a method of organization. The

reason is that hierarchies are ideal to accommodate growth and to reflect administrative domains.

Our idea is to group the peers within a domain into the same cluster, and represent the hierarchi-

cal relationships among domains as a hierarchical DHT. As signaled by [13], the use of hierarchical

organization provides two important routing properties:

• Path locality: the route between two nodes never leaves the lowest-tier domain that contains

both nodes.

• Path convergence: the paths from two distinct peers in a domain D but heading to a common

destination outside this domain converge at the same node in D

Path locality provides fault isolation, since interactions between two nodes in a domain cannot

be interfered with by, or affected by the failure of, nodes outside that domain. On other hand, path

convergence enables effective caching, as the answers to the queries for a given hash-value (key)

can be cached at the peer to which all routing paths converge before leaving each domain.

This thesis improves on the current state-of-the-art by proposing a framework for constructing

hierarchical DHTs. Traditionally, hierarchical design has been characterized by the differentiation

of roles and responsibilities between the elements of a system. This view has given rise to what is

known as superpeer systems.

Superpeer systems classify peers into two or more classes based on their individual capacities,

such as CPU, bandwidth and storage space. The idea behind superpeer systems is to assign more

responsibilities to high-capacity peers in order to improve the overall performance of flat systems.

Typically, high-capacity peers, referred to as superpeers, provide routing services to other peers.

Each superpeer becomes responsible for a subset of regular peers, which means that it maintains

the necessary knowledge to resolve Get an Put requests targeted at, and coming from, the regular

peers in its group. The main benefit of this structure is that, if properly maintained, provides Get

an Put operations incurring a small number of hops.

However, these systems have a major shortcoming. They change load balancing for scalability,

and fault tolerance for single points of failure, two changes that are questionable. For example, in

the case of fault tolerance, the failure of a superpeer disconnects all its regular peers from the rest

of the structure.

In stark contrast, the design of our framework assumes that all peers are homogeneous. Our

idea is to preserve the load balancing and fault tolerance properties of flat DHTs but incorporating

the advantages of hierarchical design, such as path locality and path convergence. Conceptually,

our designs can be visualized as hierarchy in which peers share the same ”horizontal position” of

power and authority, each playing a theoretically equal role. Architecturally, this means that each

peer maintains connections at all tiers of the hierarchy, instead of one connection to its superpeer

or parent node. That is, a peer can be connected to other peers without needing to go through or

get permission from some other peer in the hierarchy. This property has some important benefits:

it balances routing load and increases resilience to failures, as no peer is a subordinate of a single

other peer.

In summary, our contribution is the development of the first generic framework to construct

hierarchical structured overlays in which any peer occupies a more prominent position than the

rest. Our constructions have many interesting applications that go beyond latency optimization.
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For example, we have applied our design to provide a secure routing primitive for DHTs [14] and

a Geographic Information Service (GIS) in [15]. In general, our design can be used to implement

any distributed application in which separate domains can improve its performance.

On the other hand, it is obvious that path locality could reduce search latency if clusters were

optimized based on network latency. However, this task is not trivial in a decentralized environ-

ment. Ideally, every peer should be able to identify its cluster with little intervention of the other

peers in the system. How to organize participating peers into low-latency clusters in a completely

distributed and accurate manner is the challenge to address. By decentralization and accuracy we

mean the following:

• Decentralization: each peer should identify its cluster without relying on global information

and based on a relatively small set of network latency measurements.

• Accuracy: clusters should be generated with minimum false clustering rate. Falsely clustered

peers are distant computers in the underlying physical network that have been erroneously

clustered together.

Until now, locality algorithms have mainly attempted to adapt the overlay connections to the

underlying network. But they have not considered that for many applications such as application-

level multicast, it is more interesting to detect clusters of nearby peers than adapting their logical

links.

To fill this gap, the second major contribution of this thesis is the introduction of a clustering

algorithm to create clusters that minimize false clustering. In particular, we view clustering as the

process of having a set of peers independently self-organize into disjoint clusters, so that peers

within each cluster are closer to one another than peers not in their cluster. Clearly, this clustering

model combined with path locality can help to improve the performance by avoiding logical links

over high latency IP hops.

1.3 Contributions of this Thesis

In this thesis, we describe a framework for constructing and optimizing hierarchical DHTs. The

design of our framework is modular. It consists of three main modules, which are the following:

• The construction module is responsible for constructing hierarchical structured overlays from

their flat counterparts. The hierarchical constructions must fulfill several requirements: load

balancing, fault isolation, small number of links per peer, routes shorter than in flat overlays

when communication is between arbitrary peers in the same domain, low-latency routes,

and resilience to failures. To implement this module, we make the following contributions:

– Our first contribution is a generic framework which preserves all the properties of the

flat overlays such as degree, load balancing and fault-tolerance, but incorporates all the

advantages of hierarchical design. Our hierarchical construction strategy is based on

the recursive structure of DHTs that we elucidate by means of their Cayley graph [16]

representation. This makes our framework applicable to a large subset of the existing

DHT designs.
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– Our second contribution is a novel hierarchical construction for Chord, which inherits

its logarithmic complexity in construction, maintenance and degree while enjoying all

the benefits of hierarchical design such as path locality. Further, we give some indica-

tive hints of how to transform another six DHTs into hierarchical overlays. We verify,

theoretically and through simulations, that our construction of Chord is equivalent to

Chord, and in addition, it can obtain significant savings in search latency.

• The comparative module is responsible for identifying the features that make our hierarchical

constructions better than others, and defining What does better mean? To shed light on these

questions, we make the following contributions:

– Our third contribution is an analytic cost model to calibrate the potential performance

of hierarchical designs. Our strategy is not only to look at the graph-theoretic proper-

ties of each design, but also to determine the overall communication costs as a function

of several parameters. Among them, locality in communication is very helpful to mea-

sure the improvement on search latency brought by path locality.

– Our fourth contribution is the comparison between the two main families of hierar-

chical designs: the homogeneous design, in which all peers assume equal roles, against

the superpeer design, in which a relatively small set of peers behave as proxies for the

rest of peers in the overlay. For the comparison, we use our hierarchical construction

of Chord as a representative of the homogeneous design. Our comparison shows that

there exists no a universally better design: homogeneous designs may be worse than

superpeer designs and vice versa, depending on the communication locality, lifetime

and query traffic.

• The clustering module is responsible for dividing peers into low-latency clusters so that rout-

ing performance can be improved by exploiting path locality. We make the following two

contributions:

– Our fifth contribution is the definition of the false clustering problem. False clustering

occurs when two distant nodes are clustered together. We study the interplay between

false clustering and the performance of hierarchical overlays. For this purpose, we first

propose a new metric to measure the quality of clusterings. Using this metric, we then

show, through a simple example, the limitations of the existing clustering tools.

– Our sixth contribution is an innovative clustering algorithm that is deliberately aimed

at minimizing false clustering. Our algorithm reduces the rate of falsely clustered peers

by recursively forming new clusters with peers much closer to each other than were in

the previous clusters. Our simulation results show that our algorithm is superior to the

existing tools in the literature, with a false clustering rate inferior to 5%.

1.4 Outline of this Dissertation

In the following, we provide a short summary of the main thesis chapters:
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Chapter 2: Background. In general terms, this Chapter presents a conceptual model, notations

and definitions for both flat and hierarchical DHTs, followed by a discussion of related work. We

provide an extensive description of Chord [4], the DHT we use to demonstrate the utility of our

framework.

Chapter 3: Cyclone: a Framework for Designing Hierarchical DHTs. This Chapter is central to

this dissertation. In this Chapter, we describe our framework to construct hierarchical DHTs and

our hierarchical construction of Chord. To conclude this Chapter, we include some simulations

results to verify the effectiveness of our framework.

Chapter 4: A Comparative Study of Hierarchical DHT Systems. In this Chapter, we describe

the analytic cost model that implements the comparative module. In addition, we compare the

two main hierarchical designs: the homogeneous design and the superpeer design. Our analysis

reveals that the costs incurred by the superpeer design are not necessarily minimized.

Chapter 5: False Clustering on Peer-to-Peer Networks. In this Chapter, we study the false clus-

tering problem followed by the description of our clustering algorithm. To evaluate the perfor-

mance of our algorithm, we use real datasets and PlanetLab test bed [17].

Chapter 6: Conclusions. This Chapter presents the conclusions that ensue from this work and

a variety of possible future research lines.
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chical Framework for DECentralized Aggregation in DHTs. In Proceedings of 17th IFIP/IEEE
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Management. Dublin, Ireland, October 2006.

• Marc Sánchez-Artigas, Pedro Garcı́a López, and Antonio F. G. Skarmeta, A comparative
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Computer Networks (LCN’07). Conference Best Paper Award. Dublin, Ireland, October
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2.1 Peer-To-Peer

We distinguish between unstructured and structured P2P systems. First, we will focus on struc-

tured P2P systems and introduce Chord. Then, we will give an overview of the two main hierar-

chical designs for structured P2P systems.

2.1.1 Unstructured P2P Overlay Networks

In unstructured P2P overlays, such as Gnutella [2], peers use flooding or random walks to resolve

queries. These routing techniques can be used for complex searches since they are not limited to

indexed data in the network. The main problem of these systems is that search cost does not scale

well, as it grows linearly with the size of the network. Since one of our main goals is to improve

even more search scalability, we will not further consider unstructured P2P systems in this thesis.

Nevertheless, it must be noted that unstructured P2P systems are superior to structured systems

in maintenance complexity. Since each peer can possibly select any other peer as a neighbor, the

goal of the maintenance strategy is to keep the number of neighbors equal to a pre-specified value,

which is economic to do in terms of communication.

For example, in Gnutella, after a pre-specified time period, each peer initiates a broadcast mes-

sage with a certain time-to-live to discover new online peers. If a peer that receives the message

is still active, it should confirm its active presence by sending a reply back which is called a pong

message. The peer sender waits for a specified time period for the pong messages to arrive. From

the set of active peers, it selects new neighbors only in the case that some of its current neighbors

have gone offline.

2.1.2 Flat Structured P2P Overlay Networks

We start this section by first introducing an abstract model for flat structured overlay networks. In

general terms, a flat structured network, also called Distributed Hash Table (DHT), can be defined

by a a set of peers P that cooperate together to provide access to a set of objects O. The access is

provided by means of an identifier space I and mappings: FP : P −→ I and FO : O −→ I. These

mappings establish the assignment of objects to peers.

The mapping FP : P −→ I splits I into disjoint partitions. At any instant, the current set of

identifiers defines the current set of partitions in which the identifier space has been divided into.

Each peer is the manager of a distinct partition. By manager we mean that each peer is responsible

for all objects whose identifier is mapped into that partition according to FO : O −→ I.

The distributional properties of FP and FO have a critical impact on load balancing. For this

reason, our framework focuses on the effects that these two mappings have upon our hierarchical

designs.

To maximize load balancing, structured P2P overlays use a hash function to insert both peers

and objects into the identifier space. Cryptographic hash-functions like MD5 [7] or SHA1 [8] are

usually used to map arbitrary strings to 128-bit or 160-bit keys, respectively.

Associated to the identifier space, structured P2P systems define a distance metric d : I×I −→

R, which is used to route greedily towards the manager of a key. Distance metric d should satisfy

the following three properties:
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i. ∀u, v ∈ I : d(u, v) ≥ 0.

ii. ∀u ∈ I : d(u, u) = 0.

iii. ∀u, v ∈ I : d(u, v) = 0 ⇒ u = v.

Very frequently, d satisfies the triangle inequality: ∀u, v, z ∈ I : d(u, z) ≤ d(u, v) + d(v, z). To

illustrate, examples of distance metrics are the Euclidean distance adopted in CAN [9], the length

of the common prefix adopted in Pastry [5], Tapestry [10], and Kademlia [6] (also known as XOR

metric in the latter), or the clockwise distance between two ids on the circle [0, 2n − 1] modulo 2n.

Clockwise distance is the distance metric specified in Chord [4].

In addition to FP , FO and d, three other elements characterize a structured overlay. The first is

the management protocol of the identifier space. The second one is the graph topology embedded

into the identifier space and finally, the routing algorithm for locating an object.

Management of the identifier space: The management protocol is responsible for durability and

availability of objects. More formally, it can be determined by the mapping FM : I −→ 2P that

associates to every object name in I, the set of managers of this object. To provide fault-tolerance,

the returned set by mapping FM typically includes more than one peer, i.e., more than one peer is

responsible for managing each object. In some systems, the number of managers for each object is

pre-defined. In other systems, the number of managers is variable and it is the result of dynamic

load balancing protocols. Independently of the cardinality of the resulting set, the common way to

define FM is based on the distance metric of I. Specifically, the set of M managers for an identifier

id in I is defined as: M =
{

m1 = argminp∈Pd(FP(p), id) , m2 = argminp∈P−{m1}
d(FP(p), id), . . .,

mM = argminp∈P−{m1,m2,...,m(M−1)}d(FP(p), id)
}

.

In general, the cardinality of set M specifies the maximum degree of replication. Two schemes

for replication have been proposed:

i. Replication of the contents of manager m1 at each of the r ≤ M other closest managers of id

along the identifier space.

ii. Erasure codes for breaking an object into r′ smaller-sized objects with the property that any

r < r′ of the small-sized objects are sufficient to reconstruct the original object, where r and

r′ are small integers.

See Weatherspoon and Kubiatowicz [18] for comparison between the two schemes.

Graph embedding: Generally, a structured P2P overlay network can be modeled as a (un)directed

graph G(P, E), embedded into the identifier space I, where P is the set of vertices (peers) and

E is the set of edges. This graph is time-dependent, that is, it depends on the set of participating

peers P at each instant of time. This causes peers to change its neighbors in order to preserve the

topological properties of the graph, i.e., small diameter, routing load-balancing etc. Denote by

P(t) the set of participating users at time t. Then, the mapping FN : P(t) −→ 2P(t) defines the

neighborhood of each peer in G. That is, for a peer p, FN (p) represents the set of peers to which p

maintains a physical connection with. FN (p) is a subset of the edges in G.

The neighborhood of a node could be either deterministic or randomized. In deterministic over-

lays like Chord [4], for a given set of participants P , FN establishes only one possible neighbor-

hood for each node. In randomized overlays like Symphony [11], there exist multiple graphs for
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the same P and FN . Moreover, neighborhood can be classified into two types with respect to the

distance metric:

i. Short-range neighborhood, which refers to the immediate neighbors of a node with respect to

d. An example could be: ∀p, q ∈ P : d(FP(p), FP(q)) ≤ dmin ⇒ q ∈ FN (p).

ii. Long-range neighborhood:, which refers to the relatively distant neighbors of each peer along

I. One example are small world networks [19]. These graphs are constructed in such a way

that long range connections satisfy the condition: Pr[q ∈ FN (p)] ∝ 1
d(FP(p),FP(q))D , where D

is the dimensionality of the identifier space.

The philosophy of separating the short- and the long-range connections stems from the fol-

lowing fact: the short-range links enforce correctness on routing, i.e., they ensure that all managers

are connected at all times and are able to communicate with each other; whereas the long-range

links stand for efficiency. They ensure that the path between two nodes requires few hops, at most

O(log N) hops. The choice of long-range links is particularly conditioned on the trade-off between

the number of links per node and the average number of hops. To achieve optimal trade-off, long-

range links are selected so that the resulting graph emulates a family of graphs with small degree

and small diameter. Examples include hypercubes and small-world networks [19].

This emulation has an important consequence. In order to provide a small diameter, the con-

nectivity of the graph should be preserved at all times. However, due to node arrivals and depar-

tures, the graph structure can be deteriorated. For this reason, each graph embedding is accom-

panied by a maintenance algorithm that repairs its structure in the face of network dynamics.

Routing: routing is the aspect of a structured overlay that mostly characterizes its performance.

Each overlay network has its own routing strategy. In general, a routing strategy can be described

as follows:

Definition 1. Let I be the identifier space of a structured overlay network. For a peer p, let FN (p) be the

neighbors of p in this overlay. Let id be an identifier in I. A routing strategy, R : P × I −→ 2P , selects

for each peer p in this overlay the next peer q ∈ FN (p) to which a request for id will be forwarded.

For structured overlays, the most representative routing strategy is GREEDY routing. In GREEDY

routing, each peer forwards a requests to the neighbor that minimizes the remaining distance to

the destination with respect to distance metric d.

With the concepts presented above, we are ready to provide a simple definition that describes

what a flat overlay is. Although not all aspects are considered in our definition, we believe that it

is illustrative enough to characterize any DHT design.

Definition 2. A flat, structured overlay design, D, can be mainly described by the tuple

D := 〈I, d, FP , FO, FM, FN , R〉

where

• I denotes the identifier space of this design;

• d is the distance metric associated with I;



BACKGROUND 15

N38 

N8 

N14 

N21 

8-bits ID space 

00…00 11…11 

N32 

N42 

+1 
+2 
+4 

+8 

+16 
+32 

N8 + 32 

N8 + 16 

N8 + 8 

N8 + 4 

N8 + 2 

N8 + 1 

N14 

N14 

N14 

N21 

N32 

N42 

N8.FingerTable 

Figure 2.1: Chord’s graph embedding: the neighborhood (finger table) for node 8 is shown in the figure.

• FP is the mapping of the participating peers into I;

• FO denotes the mapping of the objects into I;

• FM returns the set of managers for each identifier in I;

• FN determines the out-going links for each participating peer; and

• R is the routing strategy associated with design D;

Chord

Now we describe Chord [4], one of the earliest DHTs that were developed. In our description, we

instantiate all the aspects included in Definition 2.

The identifier space I of Chord consists of finite strings on a binary alphabet. The length of the

identifiers is exactly n = 160 bits and they are ordered on an identifier circle modulo 2n, labeled

from 0 to 2n − 1.

The mapping FP : P −→ I, which assigns each peer an identifier in I, is implemented using

secure hashing function SHA-1 [8]. Consequently, random partitions are assigned to each joining

peer, without taking into account the current partitions and loads imposed on participating nodes.

The mapping FO : O −→ I, which maps an object to an identifier (also called key) in I, is also

realized through SHA-1. The main benefit of this choice is that objects are uniformly distributed

along the identifier space. As illustrated in [4], for any set of |P| peers and |O| objects, the use of

SHA-1 provides the following two guarantees with high probability:

i. Each node is responsible for at most (1 + ε)|O|/|P| keys (for small ε).

ii. When an (|P|+ 1)st peer joins or leaves the network, responsibility for O( |O|
|P| ) keys changes

hands (and only to or from the joining or leaving node).
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The distance metric defined on I is the clockwise distance. More formally, given two peers with

identifiers u and v, the clockwise distance, dclockwise(u, v), between them is

dclockwise(u, v) =





v − u if v ≥ u

2n + v − u otherwise

Specifically, distance metric dclockwise(u, v) gives actually the number of points (ids) found on the

circle when moving in clockwise direction from the identifier of u to v. Most remarkably is the fact

that Chord’s identifier space is not symmetric with respect to clockwise distance, which means

that dclockwise(u, v) 6= dclockwise(v, u) (except for the case dclockwise(u, v) = 2n−1). More precisely,

dclockwise(u, v) = 2n − dclockwise(v, u).

Management to the identifier space: We start by giving some definitions necessary for presenting

the concept of management of the identifier space in Chord.

Definition 3. A peer p is said to the predecessor of an identifier id in the Chord circle, denoted as pred(id),

if dclockwise(FP(p), id) = minq∈P dclockwise(FP(q), id). A peer p is said to be the predecessor of another

peer q if p = pred(FP(q)).

Analogously,

Definition 4. A peer p is said to the successor of an identifier id in the Chord circle, denoted as succ(id),

if dclockwise(id, FP(p)) = minq∈P dclockwise(id, FP(q)). A peer p is said to be the successor of another

peer q if p = succ(FP(q)).

The mapping FM : I −→ 2P is defined as follows: a peer p is responsible for all objects whose

identifiers are hashed onto the arc from FP(p) to the identifier of the closest node that precedes p

on the circle. Formally, a peer p ∈ FM(id) for all the identifiers in the range [FP(pred(p)), FP(p)).

Moreover, Chord replicates all the objects whose hash-name falls into range [FP(pred(p)), FP(p))

to the r = Ω(log N) successors of p, i.e., FM(id) = {p, succ(p), succ(succ(p)), . . . , succr(p)}, where

succr(p) is the result of applying recursively function succ() r times starting at p.

Graph embedding: the neighborhood set, FN (p), of a peer p consists of the pred(p), the succ(p)

and the set of long-range contacts, Fingers(p), also known as the finger table of p. Hence,

FN (p) = {pred(p)} ∪ {succ(p)} ∪ Fingers(p)

Fingers(p) contains at most n fingers and equals to
{
succ(FP(p) + 2i−1 (mod 2n))

}
1≤i≤n

. In-

formally, each peer partitions the identifier space by means of the fingers into at most n partitions.

The starting point of the ith partition is the id of succ(FP(p) + 2i−2 (mod 2n)) while the end point

is the id of succ(FP(p)+2i−1 (mod 2n)), respectively. Fig. 2.1 shows the fingers of peer 8. The first

finger of peer 8 points to peer 14, since peer 14 is the first peer that succeeds (8+20) (mod 26) = 9.

Similarly, the last finger of peer 8 is peer 42, since it is the first peer going clockwise that succeeds

(8 + 25) (mod 26) = 40.

The maintenance strategy for Chord consists of two algorithms:

i. The stabilization algorithm: each peer periodically runs the stabilization algorithm to maintain

up to date the information about its immediate successor on the circle. Each time a peer runs
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this protocol, it asks its successor about which peer is its predecessor and learns if there is a

new peer that should become its successor.

ii. The fix fingers algorithm: each peer periodically calls fix fingers. In every call to this function,

fix fingers refreshes exactly one finger. To repair all fingers, fix fingers remembers the index i

of the last finger refreshed, and in a new call, it repairs the (i + 1)th finger.

In addition, each node executes an algorithm for periodically checking its predecessor.

Routing: the routing strategy of Chord is a natural consequence of how its identifier space is

partitioned. Its functionality is to find the successor of a key k when trying to locate an object with

this key. The standard Chord routing protocol works as follows: upon receiving a message for a

key k, a node p forwards the query to the neighbor (finger) whose id precedes most immediately

(or is equal to) key k. Formally, it can be described as follows:

Definition 5 (Clockwise GREEDY Routing). In a Chord graph with distance function dclockwise, GREEDY

routing entails the following decision: Given a key k, a node p with neighbors FN (p) forwards a message

to its neighbor q ∈ FN (p) such that dclockwise(q, k) = minx∈FN (p) dclockwise(x, k).

2.1.3 Hierarchical Structured P2P Overlay Networks

Shortly after the appearance of flat overlay networks, it became obvious that uniformity prevents

flat overlays to improve its performance. To address this issue, several hierarchical designs were

rapidly proposed as basis for dropping such an assumption. Sometimes, the common character-

istic of these designs was only the organization of peers into two or more tiers.

In this section, we provide a conceptual description of existing hierarchical designs. In general

terms, they can be classified into to major groups: superpeer systems and homogeneous systems.

This classification is based upon whether a hierarchical design prefers to optimize load balancing

or to assign responsibility in proportion to the capacity of peers.

In what follows, we describe the two families in conjunction with an example of each category.

We start with the description of superpeer systems.

Superpeer Systems

Generally, superpeer systems divide peers into two tiers, mostly because of the simplicity in their

design. Their main characteristic is that they attempt to assign responsibility in proportion to the

capacity of a peer. As a result, they classify peers into two tiers: the supertier, where high-capacity

peers, referred to as superpeers, process requests coming from low-capacity peers at the regular

tier.

Since there is no a generic design for superpeer systems, no formal definition can be provided

without the risk to blur the singular aspects of each design. Consequently, we describe the general

aspects of superpeer systems and provide a tentative definition.

Let S be the subset of high-capacity peers or superpeers. Then, a first definition of a superpeer

system is:

Definition 6. A superpeer system H can be described by the quadruplet H :=
〈
DS ,DP , FNS

, FNP−S

〉
,

where DS is the overlay design at the supertier, DP is the overlay design at the regular tier, the mapping
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FNP
: P − S −→ 2S defines the connections from peers to superpeers, and the mapping FNP−S

: S −→

2P−S defines the connections from superpeers to peers.

Usually, peers provide cooperative access to a set of objects O by virtue of functions FP and

FO. However, since each overlay can maintain a separate identifier space, FP and FO should be

adapted to each layer. Analogously, the management of the identifier space should be considered

at two levels. At the regular tier, objects are assigned to peers as in flat DHTs. At the supertier,

objects are assigned to superpeers. The basic idea is that any superpeer can find any object routing

through the supertier. This mapping is analogous to the mapping FM defined for flat overlays.

Graph embedding: in addition to neighborhood mappings FNP
and FNP−S

, there are two addi-

tional neighborhood relationships:

i. The mapping FNS
: S −→ 2S , which establishes the connections among superpeers; and

ii. The mapping FN : P −→ 2P−S , which defines the links among regular peers.

If all these mappings are defined, superpeer design leads to the following out-degrees. For a

regular peer p, the out-degree is |FNP
(p)|+ |FN (p)|. The out-degree of a superpeer s is |FNS

(s)|+

|FNP−S
(s)|.

Routing: the implementation of the basic communication primitives Get and Put depends on

the type of the peer. Most superpeer systems have been designed in such a way that superpeers

only assume the responsibility for routing, although there are other systems in which superpeers

are responsible for storing objects as well. As for flat overlays, the routing strategy can be defined

by function R : P × I −→ 2P , where P also includes the set of superpeers.

For a superpeer s, this function specifies to which neighbor s should forward a request. More

specifically, s decides whether to forward to a superpeer from FNS
(s) or to a peer from FNP−S

(s).

This decision is specific to the overlay design.

For a regular peer p, the decision is also whether to forward to a superpeer or to a regular peer.

Technically, this means to select from |FNP
(p)| or from |FN (p)|. The way this decision is made is

specific for each overlay network.

Examples of superpeer systems that match this definition are Brocade [20] and the hierarchical

design of Mizrak et. al. [21]. The core idea behind these designs is to build a superpeer overlay on

top of a flat DHT to improve routing performance. However, there are other superpeer systems

which do not adhere to this definition, as their intention is to reflect administrative domains rather

than improving routing performance. Since these designs do not completely match Definition 6,

we now provide a detailed description of one example to complete our discussion on superpeer

systems.

Garcés-Erice et. al. Hierarchical Design

Garcés-Erice et. al. proposed a superpeer-based model in [22], attracted by the idea of hierarchical

routing in the Internet.

To support multiple domains, this model divides peers into several groups where each group

can form its own structured overlay: Chord, Tapestry etc. In each group one or more superpeers
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Figure 2.2: An example of a hierarchical organization in Garces-Erice et al.

are chosen to participate in a superpeer overlay, where superpeers behave as proxies sending and

receiving messages on behalf of the peers in their groups.

In this discussion, we assume that the superpeer overlay is a Chord DHT, as described in [22].

As a result, the diameter in this system will be characterized by O(log |S|) hops, where |S| denotes

the number of superpeers. An illustration of this two-level hierarchy is given in Fig. 2.2

In general, the identifier space I of this model can be viewed as the union of g subsets I ′
i and

Is, the identifier space of the superpeer overlay. More formally, I = Is ∪ [
⋃g

i=1 I
′
i], where each I ′

i

corresponds to the identifier space of each group. Since each group is free to form an independent

overlay, this hierarchical design cannot assume two global mappings for FP and FO. A reasonable

decision, however, would be to assume that FP and FO are realized via a secure hash function in

all groups, including the superpeer overlay.

Another feature of this design is that there could be g + 1 distance metrics: one for the super-

peer overlay, ds, and g intra-group distance metrics, d1, d2, . . . , dg . For the superpeer overlay, we

assume that ds = dclockwise. Recall that Chord is the overlay used in the supertier.

Management of identifier space: in each intra-group, objects are managed by peers according to

the specific structured overlay chosen for each group. Hence, the mapping FM can be viewed as

a complex function defined separately on each subdomain.

Let S denote the set of superpeers in the system. For ease of explanation, we assume that the

mapping FS : I −→ 2S , which defines how the identifier space is managed by superpeers, equals

to the mapping FM of Chord. In practice, intra-groups are assumed to be administrative domains

such as university campuses.

Graph embedding: the whole set of peers P is divided into g disjoint subsets P1,P2, . . . ,Pg . A

possibly different overlay network is defined on each subset. Those overlay networks are referred

to as intra-groups.

To ease exposition, we assume the existence of a mapping FG : P −→ {P1,P2, . . . ,Pg}, which
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returns the intra-group for each participating peer. We note that this function is not part of the

model defined in [22]. We use it to simplify notation.

Each regular peer p creates its neighbor set, FN (p), according to the linking rules of the specific

intra-group overlay with the following condition: ∀q ∈ FN (p) : q ∈ FG(p), where FG(p) denotes

the intra-group of p.

Obviously, one or more peers from each intra-group are promoted to the supertier; they are re-

ferred as superpeers. The function FNS
: S −→ 2S defines the neighborhood sets at the supertier.

The general model in [22] allows the use of any possible structured overlay as the superoverlay.

However, as defined in [22], the authors assume that the overlay at the supertier is Chord. For a

superpeer s, this means that FNS
(s) = {predS(s)}∪{succS(s)}∪FingersS(s), where the subscript

S remarks that the predecessor, the successor and fingers of s are superpeers.

Each superpeer s needs also to maintain a reference to some peers in its intra-group. As before,

its intra-group neighborhood, FNP−S
(s), depends on the specific intra-group overlay design. For

instance, a superpeer s in a Chord like intra-group will maintain a set FNP−S
(s) of O(log |FG(s)|)

peers. In a star like intra-group, s will maintain connections to |FG(s)| − 1 peers.

Routing: when a regular peer r receives or initiates a request for an object identified by id, then

it must distinguish between two cases:

i. if id is managed by a peer from its intra-group, then r can either forward directly or through

a superpeer. In Group 3 in Fig. 2.2, each peer knows about all peers in its intra-group and

can therefore immediately contact the target peer. In Group 2, which organizes peers into a

Chord overlay, peer r can route the request using its neighborhood set, FN (r). Recall that

in Chord, a peer r forwards a message to its neighbor q ∈ FN (r) such that dclockwise(q, id) =

minx∈FN (r) dclockwise(x, id). Group 4 has a star-like organization and in this case, r forwards

each request to its superpeer.

ii. Otherwise, the request is routed through a superpeer in r’s intra-group. When a superpeer

s receives a request for a identifier id, it first decides upon whether this request is for its own

intra-group or belongs to a distinct group. Depending on this decision, s forwards either to

a peer in its intra-group or to another superpeer. Let RS(s, id) be the routing decision taken

at superpeer s when receiving a request for identifier id. Then, RS(s, id) can be formulated

as follows:

RS(s, id) =






r′ |dFG(s)(r
′, id) = minx∈FNP−S

(s) dFG(s)(x, id) if ds(s, id) =

= minx∈FNS
(s) ds(x, id)

s′ |ds(s
′, id) = minx∈FNS

(s) ds(x, id) otherwise

where r′ is the peer to which s will forward the request within its intra-group, and s′ is the

superpeer to which it will forward the request in the supertier.

Homogeneous Systems

In contrast to superpeer systems, the main characteristic of homogeneous designs is that all peers

are considered as equal. Assumptions on equality are made regarding peers characteristics, such
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as available bandwidth and storage capacity. As a consequence of this assumption, homogeneous

systems can exploit the uniformity of load and functionality that characterizes flat DHTs such as

Chord [4], Pastry [5] and Kademlia [6].

Generally, the main feature of homogeneous systems is the use of a single identifier space that

is shared by the all peers in the system. This property has three important consequences:

i. there is a single distance metric d in the system;

ii. the mappings FP and FO are unique; and

iii. there is only one structured overlay which is virtually shared by all peers.

The difference with flat structured overlays is the use of hierarchical organization to provide

additional features such as fault isolation and path locality. Their hierarchical structure, however,

is completely opposite to the hierarchical structure of superpeer systems. Mainly, the difference is

that each peer is contained in a collection of telescoping domains, rather than in a single separate

domain. More formally, their hierarchical organization is typically as follows (a similar definition

is provided in [23]):

Let H be a collection of sets D ⊆ P . Clearly, each set D ∈ H is a subset of peers. As usual, we

refer to D as a domain. Any domain that does not contain another domain in H is said to be a leaf

domain. Then, the hierarchical structure of homogeneous designs have the following properties:

• P ∈ H.

• For any pair of domains in H, the two domains are either disjoint, or one domain is a proper

subset of the other.

• For each domain D ∈ H, if D is not a leaf domain, then D is the union of a finite number of

sets in H.

By the above definition, one can easily see that relation ’⊂’ defines a partial ordering over the

domains in H, generating a partial-order tree with multiple tiers. All the participating peers are

included at tier-0, the highest tier. At tier-1, the single domain D = P at tier-0 is split into a finite

number of domains, D1,D2, . . . ,Dm, such that for all i = 1 . . . m, Di ⊂ D. The rest of tiers can be

recursively defined in the same manner.

The main consequence of this form of organization is that each peer has the same identifier in

all domains to which it belongs; as discussed in [24], one can view a peer as projecting its presence

to the same location in each of its domains. Further, it conditions the following aspects:

Management of the identifier space: in any homogeneous overlay, ids are associated to managers

according to the managing rule of the original structured overlay. Although the managing policy

is the same for all domains, the set of managers for a specific identifier varies at each tier. This is

caused by the telescoping property of non-leaf domains. Because each non-leaf domain comprises

a finite number of lower-tier domains, the partitioning of the identifier space as established by FP

in that domain differs from those in the lower-tier domains. As a result of this repartitioning, the

identifiers are reassigned to managers. In this sense, the mapping FM can be viewed as a complex

function defined separately for each domain.
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Graph embedding: from a structural viewpoint, homogeneous design can be viewed as a single

structured overlay made up of smaller structured overlays. Consequently, FN must be considered

separately for each domain, as each domain forms its own overlay. The unique constraint is that

FN must adopt exclusively the linking rules of the chosen structured overlay in all domains.

Routing: let h be the number of tiers in a homogeneous system. Generally, routing operation

proceeds in h loops. In the first loop, a query for an identifier id starts at the lowest domain.

Upon the reception of the query, each peer uses the routing strategy of the flat structured overlay

to route on that domain. Inside that domain, routing continues until the peer p that satisfies

id ∈ F−1
M (q) is found. If peer p does not store the object, the routing operation continues in the

next higher tier. The same operation is repeated until a manager holding id is found. At the last

loop, the routing procedure is executed on the largest domain which spans all peers in the system.

Definitely, the routing procedure stops at one manager of id, irrespective if this manager stores

the object whose identifier is id.

Examples of homogeneous designs are HIERAS [25], Coral [24], Canon [13] and TOPLUS [23].

In the following, we provide a description of Coral in order to clarify concepts.

Coral

Coral is a P2P content distribution network that was proposed in [24]. While attempting to reduce

the latency of Get and Put operations, Coral inadvertently proposed the earliest homogeneous

hierarchical design. In this section, we characterize this design.

Since it belongs to the family of homogeneous designs, all domains share a unique identifier

space I. In Coral, this space consists of strings on a binary alphabet. The length of the identifiers

is n = 160 bits, such that the whole identifier space consists of 2160 binary strings.

As discussed above, the uniqueness of the identifier space enables the following simplification:

the adoption of two global mappings for FP and FO. Specifically, FP and FO are implemented

via a hash function. This implies that:

i. Each peer p has the same identifier FP(p) in all tiers; and

ii. Each object o has the same hash-name FO(o) in all levels.

In addition, the use of a single identifier space restricts the number of distance metrics to one.

That is, there is a single distance metric d defined on I for all domains. Specifically, d corresponds

to XOR metric, dXOR. This metric defines the distance between two identifiers u and v as

dXOR(u, v) =

n−1∑

i=0

|ui − vi|2
i

where ui and vi denote the ith bit of identifiers u and v, respectively. dXOR has the following

properties:

i. ∀u, v ∈ I : dXOR(u,w) = d(v, w) for all w ∈ I ⇒ u = v.

ii. ∀u, v ∈ I : dXOR(u, v) ≤ 2n − 1.

iii. Let π(u, v) be the number of bits in the common prefix of u and v. ∀u, v ∈ I : π(u, v) = m ⇒

dXOR(u, v) ≤ 2n−m − 1.
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Figure 2.3: An example of Coral routing. Higher-tier, smaller-diameter domains are naturally sparser.

For a query on identifier id, the querying node a first routes on its highest domain. The routing fails on

that tier if the node closest to id on the identifier space, node t2, does not store the object. If this occurs,

Coral continues routing on a lower tier domain, having already traversed the identifier space up to t2.

iv. ∀u, v, w ∈ I : dXOR(u,w) ≤ dXOR(v, w) ⇒ π(u,w) ≥ π(v, w).

Observe that dXOR is a refinement of longest-prefix matching. If u is the unique longest-prefix

match with v, then identifier u is the closest to v in terms of the metric. Further, if two peers share

the longest matching prefix, the metric will break the tie.

Management of the identifier space: in Coral, objects are managed by peers according to Kadem-

lia [6], the specific structured overlay chosen to represent the hierarchy. As a result, FM is based

on the XOR metric, dXOR. Inside each domain, the manager of an identifier id is the peer p in that

domain that minimizes dXOR(FP(p), id).

Graph embedding: for locality-optimized routing, Coral divides the entire set of participants P

into three tiers of domains. Each peer participates in at least one domain from each tier. Domains

are characterized by a threshold on round-trip-time. At the highest tier, the peers are the physically

closest. At each successive tier, the average round-trip-time between all pairs of peers gradually

increases.

Since each peer projects its presence to the same location at each tier, the mapping FN : P −→

2P can be viewed as a complex function defined separately for each domain. For a peer p, denote

by FN (p, i) the neighbor set of p at tier-i. Then, FN (p) can be defined as
⋃h

i=0 FN (p, i), where h

is the height of the hierarchy. In the original Coral work [24], h = 3, although there is no explicit

reason to restrict the number of tiers to 3. Each subset FN (p, i) is determined according to dXOR.

Routing: as in all homogeneous designs, routing is recursive. It starts at the highest tier in order

to take advantage of network locality. If the object is not found in that domain, search operation

reaches the peer in that domain that is closest to the target identifier w.r.t. dXOR. Then the process

continues from that peer in the next lower level. This process is repeated until a manager holding

the object is found.

Technically, this means that the routing strategy is the same as in Kademlia, but successively

applied at each tier. Without loss of generality, let us consider that a query is routed through a tier-
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i domain. For a peer p, the next hop is the neighbor q s.t. dXOR(q, id) = minx∈FN (p,j) dXOR(x, id),

where

j =





i − 1 if p is s.t. dXOR(p, id) = minx∈FN (p,i) dXOR(x, id) and p does not store id

i otherwise

An example of Coral routing is shown in Fig. 2.3.



3
CYCLONE: A FRAMEWORK FOR DESIGNING

HIERARCHICAL DHTS

In this Chapter, we present a hierarchical model for DHTs which benefits from the recursive struc-

ture that many DHT topologies inadvertently own. We devise a novel group-theoretic technique

based on Cayley graph model for converting a flat DHT into a hierarchical DHT almost at no

cost. While retaining the uniformity, scalability and load balancing of the original designs, our

framework increases their scalability through a hierarchical design. The reason is that hierarchies

constitute a nice method to accommodate growth and isolate faults. We show how Chord can be

converted into a hierarchical DHT using our methodology. Furthermore, we give some indicative

hints of how six different DHTs — Randomized Chord, Symphony, Kademlia, P-Grid, Tapestry

and Pastry — can be transformed into their hierarchical versions. Simulations results verify the

effectiveness of our framework.
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3.1 Introduction

”The trees that are slow to grow bear the best fruit”’

Moliere (1622-1673)

Distributed Hash Tables (DHTs) such as Chord [4], Kademlia [6], Pastry [5] and Tapestry [10],

have recently arisen as general infrastructures for building large-scale distributed systems. DHTs

have many appealing virtues such as decentralization, self-organization, and fault-tolerance. How-

ever, yet, it is unclear how to implement certain type of applications and services using DHTs. For

instance, DHTs have poor locality. Although some DHTs such as Pastry make an effort to route

queries through nodes with low network latency, the last few hops in any query are essentially

random. This is of particular concern for content delivery networks (CDNs), which require the

end-to-end latency from the source to each receiver to be low.

The traditional approach to tackle the above flaw revolves around the hope to organize the

nodes hierarchically. By dividing the network into smaller groups, the system complexity reduces

as well. As typical examples, DNS or group multicast achieve scalability via a hierarchical design.

In the peer-to-peer context, hierarchical designs provide new forms of routing that can potentially

achieve significant savings in query time. One of these forms of routing is Path-Constrained routing.

Path-Constrained routing can be described as follows:

Definition 7 (Path-Constrained Routing). Given a query for a key k originated at a node belonging to

cluster C, Path-Constrained Routing refers to the routing in which each hop is constrained within cluster

C and terminates at the node responsible for each k in this cluster.

This form of routing has been adopted by hierarchical systems such as Coral [24] and Canon [13],

albeit they do not refer to this form of routing with this denomination.

As a representative example, we describe Coral [24], a decentralized, peer-to-peer web-content

distribution network. Coral exploits DNS redirection, together with a ”sloppy” DHT abstraction

to redirect each client to a close copy of the requested web page, hosted on some volunteer node.

To attain this goal, Coral uses three levels of clusters and allows a set of nodes to form a cluster

only if their average, pairwise round-trip-times (RTTs) are below some threshold. More precisely,

Coral specifies thresholds of ∞ ms, 60 ms, and 20 ms for level-0, -1, and -2 clusters, respectively.

The immediate consequence of this is that clients can first query the servers in higher-level, fast

clusters before those in lower-level, slower clusters. This both reduces the latency of Get and Put

operations and increases the chances of returning values stored by nearby nodes.

An example of Coral hierarchical routing is shown in Fig. 3.1. For a Get on key k, the querying

node first applies Path-Constrained routing on its highest cluster to benefit from network proxim-

ity. The routing fails on that level if the node closest to key k on the identifier space, node t2, does

not store the key. If this hapens, Coral continues routing on a lower-level cluster, having already

traversed the identifier space up to node t2.

3.1.1 Goals

From the preceding discussion, it is clear that a hierarchical design has the potential to improve

query throughput. However, there are some issues that must be considered before constructing a

hierarchical version of DHT, such as how to inherit the load and functionality of flat designs.



CYCLONE: A FRAMEWORK FOR DESIGNING HIERARCHICAL DHTS 27

 

11…11 
m-bits ID 

T 

a 

a 

a 

Level-2 

Level-1 

Level-0 

t2 

t1 

t0 

0 

1 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 

0 0 

0 0 0 0 

1 1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 1 

00…00 

< 20 ms 

< 60 ms 

< ∞ ms 

Diameter 

Figure 3.1: Coral hierarchical routing. Nodes use the same ids in each of their clusters; higher-level,

smaller-diameter clusters are naturally sparser. For a lookup on key k, the querying node a first applies

Path-Constrained routing on its highest cluster. The routing fails on that level if the node closest to key

k on the identifier space, node t2, does not store the key. If this occurs, Coral continues its lookup on a

lower level cluster, having already traversed the identifier space up to t2.

For example, the expected in-degree of a Chord node (i.e., the number of routing table entries

referring to a given node) is O(log N). This property is desirable, as it tends to balance commu-

nication load across all computers in the network. However, it requires that peers are uniformly

distributed along the identifier space, which limits the possibilities of mapping peers into a hier-

archy.

To address this issue, we introduce Cyclone in this Chapter, a framework that combines the

homogeneity of load and functionality offered by plain DHTs with the advantages of hierarchical

design, which are diverse, but generally aim to improve query efficiency. Put another way, the

challenge we face is how to design hierarchical DHTs that obtain the ”best” of both worlds, with-

out inheriting the disadvantages of either. To better understand the contributions of this research,

we discuss the key aspects of our framework for coming up with ”good” hierarchical designs.

To ease exposition, we assume a generic DHT (similar to Chord) that has logarithmic degree and

diameter. Then, we consider the following key aspects:

• Efficiency. Our framework should guarantee short routing paths with small state per node.

At most, a diameter of O(log N) routing hops. Also, maintenance should be kept minimal,

i.e., affecting O(log N) number of peers and mostly no burden on anyone.

• Scalability. The concept of scalability comprises many aspects. We focus on numerical scal-

ability. Broadly speaking, we want to show that N can grow without performance degrada-

tion in our hierarchical designs.

• Fault-tolerance. Under normal conditions, the integrity of cluster structures is guaranteed
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by the maintenance protocol. However, due to unpredictable peer and link failures, a node

might suddenly become unreachable. To provide reliable operation, our framework should

guarantee that the hierarchical version of a DHT is resilient against such failures. Moreover,

it should report a maintenance complexity as tight as possible to the one claimed in the flat

DHT.

• Load Balancing. A basic principle of P2P paradigm is that load should be well-balanced

across all nodes in the network. If random nodes call Put and Get, then the communica-

tion load should be equitably distributed among all participant nodes. This includes pre-

serving the randomness guarantee of consistent hashing and the distributional properties

of in-degree, which are very relevant for message forwarding.

To meet the above requirements, our framework takes advantage of the following fact:

To maximize load-balancing, DHTs make use of a hash function h to map the set of distributed

objects O and the set of participants P to the identifier space I. Formally, hash function h defines

the relationships h : O −→ I and h : P −→ I, respectively. This overlap obscures the indepen-

dence of two primary concerns:

• On the one hand, the distribution of peers on the identifier space I (i.e., mapping FP : P −→

I); and

• On the other hand, the distribution of objects (i.e., mapping FO : O −→ I).

In our framework, we consider these two concerns separately. While each cluster has available

the whole identifier space for mapping data objects, the space for hosting nodes is partitioned into

disjoint clusters. The partitioning is, of course, done according to the recursive decomposition of

each graph. This leads to a hierarchical structure in which nodes assume equal roles and take the

same duties and responsibilities for all operations. If stability was a mandatory requirement, our

hierarchical framework does not impede participation to be allowed only to superpeers such as in

TOPLUS [23]. More precisely, what we provide in this thesis is a generic framework for building

hierarchies of telescoping clusters (i.e. clusters of ... of clusters of nodes) such as in TOPLUS [23],

Coral [24] and Canon [13]. More formally, our hierarchical constructions are as follows:

Definition 8. Let H be a collection of sets Ci ⊆ P . We term each Ci cluster. Then, collection H is said to

be a telescoping hierarchy of clusters if it has the following properties:

i. P ∈ H. The cluster Ci = P is called the global cluster of H.

ii. For any two clusters Ci, Cj ∈ H, either Ci ∩ Cj = ∅, or one is a proper subset of the other.

iii. For each cluster Ci ∈ H, Ci is the union of a finite number of sets in H.

Let H = {C1, C2, . . . , CK} be a telescoping hierarchy. Then, it is easy to see that the relation ⊂

defines a partial ordering over the sets of H. This generates a tree with levels, where each cluster

is successively partitioned into disjoint clusters.

Definition 9. Let H be a telescoping hierarchy of clusters. A cluster C in H is said to be a leaf cluster if

and only if it does not contain another cluster, i.e., for all Ĉ ∈ H, Ĉ 6= C: C + Ĉ.



CYCLONE: A FRAMEWORK FOR DESIGNING HIERARCHICAL DHTS 29

We note that clusters may differ in size, and at any moment in time, leaf clusters may belong

to different tiers. Further, our hierarchical model reflects the paths that messages follow:

Definition 10. Let H be a telescoping hierarchy of clusters. Then, two nodes communicate over the lowest-

tier cluster they share. More formally, assume that two nodes u and v belong to distinct leaf clusters in H.

Then, u and v communicate over the cluster C such that u ∈ C, v ∈ C and for all Ĉ ∈ H, C ⊃ Ĉ : u /∈ C

or v /∈ C.

This is exactly one of the main characteristics of our constructions: a message from a node u

to another node is injected to u’s leaf cluster, and then it ”works its way up” to the lowest cluster

that is shared by them.

Summary of results

In this Chapter, we make the following contributions:

i. We provide the first formal framework that generically yet smartly augments plain DHTs

to accommodate hierarchies almost for free, i.e., without renouncing to the scalability, fault-

tolerance and load balancing properties of the original designs. Its distinguishing feature is

that is based on the Cayley graph group-theoretic model [16], an algebraic machinery that

has been extensively used to study the structural and algorithmic properties of interconnec-

tion networks (ICNs).

We have used the Cayley graph model for three reasons:

(a) By using the Cayley model, we ensure that the developed theory is not tied to a given

DHT topology; many important DHT geometries are Cayley graphs like the hypercube

(HyperCuP [26]), the torus (CAN [9]), the cube-connected cycles (Cycloid [27]), and the

pancake graph (IHOP [28]);

(b) Every Cayley graph is vertex-symmetric, i.e., a graph in which no node occupies a more

prominent position than the others. This is fundamental for load balancing, since one

can expect that all nodes operate in a uniform manner and whatever occurs at a node

occurs equivalently at all the other nodes. On the search side, this means that commu-

nication is well balanced across all peers in the network.

(c) This model allows us to abstract our topological problem to a sorting problem, which

is tractable programmatically using tools like GAP [29].

ii. We show how to apply our framework to Chord. We also describe how to adapt other DHTs,

including non-deterministic Chord [30], Symphony [11], Kademlia [6] and Pastry [5].

iii. We argue that our hierarchical constructions have numerous benefits, including significant

reductions in the average number of routing hops and in network latency for Get and Put

operations, particularly when locality in communication is high.

The rest of this Chapter is structured as follows:

• In §3.2, we provide a survey of related work.

• §3.3 gives necessary background information.
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• We describe our framework in §3.4.

• In §3.5, we show how to obtain hierarchical versions of other DHTs.

• In §3.6, we validate our framework and quantify its advantages.

• We conclude this Chapter in §3.7.

3.2 Related Work

Hierarchical Designs

Many research works have proposed hierarchical designs for accommodating growth and isolat-

ing faults. As discussed in Chapter 2, these designs can be classified into two groups:

• Homogeneous designs, in which a unique global identifier space is shared by a hierarchy of

self-contained clusters. Prominent examples of this class are Coral [24] and Canon [13].

• Superpeer designs, in which each cluster constitutes an independent DHT that a small set of

gateway nodes (often referred to as superpeers) maintains interconnected. A representative

example of this design is the work of Garcés-Erice et. al. [22].

The difference between the two architectures is that while in the first class, a node maintains

the same identifier on all clusters, in the second class, each node has a distinct identifier for each

cluster in which participates.

With respect to all these works, the distinguishing property of our framework is that we pro-

vide a formal technique to build a hierarchical DHT from its flat version, rather than a hierarchical

model tight to a particular topology. For brevity, we only describe the most akin work to ours in

each class.

Superpeer design: Garcés-Erice et. al. in [22] studied the benefits that emerge when hierarchical

design is combined with peer-to-peer foundations. They examined the advantages obtained from

superpeers, network proximity, and caching in this type of networks. Architecturally, this design

is essentially the opposite to our hierarchical constructions from the viewpoint of load balancing,

as inter-cluster queries are routed through a small number of peers, i.e., the superpeers. However,

it bears some similarities with our work in the sense that they defined a new hierarchical model

for DHTs.

Homogeneous design: the most similar work in spirit to our framework is Canon. The major aim

of Canon [13] is to build a hierarchy of telescoping clusters (i.e., clusters of ... of clusters of nodes)

from a flat design in such a way that it inherits the homogeneity of load and functionality offered

by its flat counterpart, just our goal. However, it presents a major shortcoming. Canon does not

provide any formal mechanism to automatically embed a hierarchy into a DHT. In contrast, we

provide a generic framework based on Cayley graphs which is extensible to almost all existing

topologies, and allows to exploit the vast literature on Cayley topologies to improve flat DHTs.

Cayley graphs

While the Cayley graph model is very common in ICNs literature, to date only a few proposals

have attempted to study the structural properties of DHTs according to this model. Ratajczak and
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Hellerstein [28] claimed that there exist two complementary aspects to bear in mind when design-

ing a DHT: an ideal topology and an emulation scheme. It is worth noting that unlike ICNs, DHTs

allow its overlay graph to evolve as nodes join/leave. Therefore, once an ideal topology has been

chosen, it is necessary to emulate it when the name space is sparsely populated. For this purpose,

they evaluated several emulation schemes and proposed IHOP (Internet Hashing over Pancake

graphs), a DHT design based on pancake topology. Analagously, Qu and colleagues [31] pointed

out that several insights can be gained by concentrating on the ideal DHT topologies. Based on

the observation that the ideal topologies influence important features such as load balancing, scala-

bility, congestion and fault-tolerance, they showed that many DHTs employ Cayley graphs as their

ideal topologies, thus taking advantage of several important properties of Cayley graphs such as

vertex/edge symmetry, fault-tolerance and hamiltonicity. However, the important distinguish-

ing contribution of our work is that we show how the Cayley graph model can improve standard

DHTs in the sense that communication becomes more efficient. Further, this is done without sac-

rificing load-balancing and other basic properties of DHTs. In fact, in all the above proposals only

the Cayley graph representation of the current DHTs is given, thus exposing the theoretic benefits

of the Cayley model but without showing how to work with it.

Another interesting work has been recently proposed by Mihai Lupu et. al. [32]. Their main

contribution was to identify several graph-theoretic measures that ease the election of a DHT

given a set of prerequisites such as query completeness, fault-tolerance, load balancing and scal-

ability. To identify the necessary conditions for a DHT to be optimal, they looked at their static

topologies using the corresponding Cayley graph representations. Although they worked with

Cayley graphs in their analysis, their work is complementary to ours. Their aim was to come up

with some interesting measures to assess the possibilities of a DHT rather than improving it.

There are some recent works that use the Cayley graph model for the definition of their topolo-

gies. For instance, W. Xiao and B. Parhami proposed a model of deterministic small-world graph

in [33]. They used an algebraic method to construct Cayley graphs which display small-world

features. More interesting, however, is ComNET [34], a new Cayley DHT topology that supports

logical grouping, and defines a set of P2P protocols which are suitable for providing file browsing

services. These examples show, in conjunction with this Chapter, that with the use of the Cayley

model, one can solve distributed problems easily; in our particular case, the identification of the

better manner to embed a hierarchy in a representative DHT.

3.3 Background

In this section, some basic definitions are given, and some notation is introduced.

3.3.1 Graph-theoretic and Group-theoretic Notions

We provide a set of basic definitions from graph and group theory to facilitate discussions in the

sections that follow.

Definition 11. A graph G = (V,E) is defined by a set V of vertices and a set E of edges, where E is a

subset of elements (u, v) of V × V .
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In our formal representation of a DHT, each node corresponds to a vertex and each link to an

edge. The terms ”graph” and ”network” will be considered synonymous here. Nodes connected

by an edge in E are said to be adjacent to each other. Nodes adjacent to v ∈ V will be also referred

as the neighbors of v.

Now, some basic algebra definitions:

Definition 12. A group Γ = (V, ◦) is a set of elements V together with a binary operation ◦ : V ×V −→ V

with the following properties:

i. closure: ∀u, v ∈ V : u ◦ v ∈ V .

ii. associativity: ∀u, v, w ∈ V : u ◦ (v ◦ w) = (u ◦ v) ◦ w.

iii. identity: ∃1 ∈ V such that (s.t.) ∀u ∈ V : u ◦ 1 = 1 ◦ u = u.

iv. inverse: ∀u ∈ V , ∃v ∈ V : u ◦ v = v ◦ u = 1.

By an abuse of notation, we will often write Γ as the set of elements of the group. We will refer

to the binary operation of a generic group as multiplication.

Definition 13. A subset S ⊂ Γ is called a generating set of group Γ if every element u ∈ Γ can be written

as the multiplication of a finite set of elements from S.

Cayley graphs [16] are based on groups and constitute a large class of vertex-symmetric networks,

i.e., networks which look the same from any vertex (node). More formally,

Definition 14. Given a set S = {s1, s2, ..., sd} of generators for a group Γ, a Cayley graph Cay (Γ, S) has

the vertices corresponding to the elements of Γ and the edges corresponding to the action of the generators:

if u, v ∈ Γ, the edge (u, v) exists in Cay (Γ, S) if and only if there is a generator s ∈ S such that v = s ◦ u.

A common assumption is that the identity element of Γ does not belong to S (in order to avoid

self-loops) and that S is closed under inverses (i.e., s ∈ S ⇒ s−1 ∈ S).

We will also make use of the following two definitions.

Definition 15. Given a set of elements ξ within some group Γ, the group generated by ξ is defined as the

smallest subgroup of Γ that contains all the elements in that set.

Throughout this Chapter, we will denote the group generated by ξ as 〈ξ〉. Moreover, we will

denote by o(〈ξ〉) the order of subgroup 〈ξ〉.

Finally, we briefly define what a graph isomorphism is.

Definition 16. A graph isomorphism is a bijection between the vertex sets of the two graphs that preserves

the adjacencies. We say that two graphs, G1 and G2, are isomorphic (written G1
∼= G2) if there exits an

isomorphism between them.
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3.3.2 Chord

Although Chord [4] has been extensively described in Chapter 2, we include here a brief summary

to refresh it.

To support searches in a highly dynamic environment, Chord maps keys to nodes by means of

consistent hashing [35], which has some desirable properties. Consistent hashing assigns an n-bit

identifier to both nodes and objects using a collision-resistant hash function such as SHA-1. Then,

objects are mapped to nodes as follows. Identifiers are ordered on an identifier circle modulo 2n,

labeled from 0 to 2n−1. An object with identifier k (also know as key) is assigned to the first node,

called the successor of this key and denoted by succ(k), whose identifier follows (or is equal to)

k in the identifier space (i.e., the first node going clockwise from k). If a node u is given as input,

succ(u) returns the immediate successor of this node in the Chord circle.

To accelerate searches, Chord maintains logarithmic routing information. Each node u main-

tains a routing table with up to n entries called finger table. The ith entry in the table contains the id

of the first node v that succeeds u by at least 2i on the identifier ring, where 0 ≤ i < n. In addition,

node u maintains a list, called successor list, of pointers to the O(log N) immediate successors of u

on the Chord circle. Its main purpose is to guarantee a reliable operation even if half of the nodes

fail. Such a structural definition can be represented in form of Cayley graph as follows:

Definition 17. Let Γ be the group (Z2n ,+) of 2n elements with generators
{
±2i

}
0≤i<n

. Then, the pair

Cay
(
Γ,
{
±2i

}
0≤i<n

)
is the Cayley graph representation of Chord with diameter n/2 and degree 2n.

The standard Chord search protocol works as follows: Upon receiving a message for a key k, a

node u forwards the query to the furthest finger whose id precedes most immediately (or is equal

to) key k. By O(log N) forwardings, the message reaches the destination node. Hence, routing is

clockwise and greedy, never overshooting the destination.

From here on, we will refer to the clockwise distance dclockwise(u, v) between two nodes u and

v as d(u, v) for simplicity.

3.4 Cyclone Framework

In this section, we first present an overview of our framework, followed by a detailed description

of its functionalities.

3.4.1 Overview

In Section 3.1, we have shown that by logically grouping computers by similarity, one can increase

query efficiency. However, it is unclear how to do this so that the hierarchical version of a DHT

does not lose the abilities that characterize it. To answer this question, we base our framework

on the algebraic-combinatorial properties of Cayley graphs. In particular, the basic idea is to exploit

the recursive structure of DHTs (if any) to incorporate clusters almost for free. In order to do this,

we need to address two technical challenges.

First, we need to determine the way in which their structures recursively decompose into smaller graphs

of the same family. To be specific, what we want is not to view a DHT as dynamic graph, but rather

as a family of ”static” graphs {G0, G1, ...} with the important property that ∀i > 0, the ith graph
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Figure 3.2: Recursive decomposition of Q4. Edges belonging to the 3-dimensional hypercubes are

shown in bold style. Interconnection edges are drawn in thin style.

can be constructed in a recursive manner from identical copies of Gi−1. For some structures such

as the hypercube, this is already known: the hypercube of dimension n, Qn, can be recursively

constructed from 2 hypercubes of dimension n− 1, Qn−1 (see Fig. 3.2). For other DHTs, however,

this may not be so obvious. We reflect this in the recursive construction of Chord.

In other words, the first problem we deal with in this Chapter is the decomposition problem for

DHTs. Assuming that a DHT can be recursively defined as a family of static graphs {G0, G1, G2, ...},

our first challenge is to elucidate the relationship between successive graphs, Gi and Gi−1, of the

same family. To whet the reader’s appetite for the conclusions, Cyclone reduces this problem to

a simple combinatorial problem that consists in ordering generators such that certain conditions

are satisfied.

Second, once this task is accomplished, we need to accommodate a hierarchy without losing efficiency,

scalability, fault-tolerance and load-balancing. In order to do this, the key idea behind our framework

is to have each telescoping cluster ”approximate” the structure of some graph of the family. In this

way, we ensure that each cluster implicitly inherits the properties and complexity of the original

design, but now with the benefits in query throughput brought by a hierarchical design. Given a

cluster, the election of the most appropriate graph of the family mainly depends on the application

built atop. For this reason, we restrict our attention on demonstrating the validity of this strategy.

This issue is tightly related to the dynamics of peers. Since each peer can freely decide to join or

leave the system at any time, our second task requires to demonstrate that from the recursive defi-

nition of a DHT, a hierarchy of dynamic clusters can be incorporated without negatively affecting

efficiency, scalability, fault-tolerance and load-balancing. Specifically, we show that it suffices to

apply the construction and maintenance rules of the original design to meet this challenge.

In summary, Cyclone takes two steps to tackle the problem of constructing hierarchical DHTs.

We describe them as follows:

• Step 1: Recognizing Recursive Structure. Given a Cayley DHT (say, Cay(Γ, S)), in this step, the

task of Cyclone is to elucidate (if possible) how Cay(Γ, S) can be recursively decomposed

into smaller graphs of the same variety. As a result, we get a budget of subgraphs that can

potentially behave as the full overlay.
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• Step 2: Mapping the Hierarchy. Once the above is done, the second job is to determine how

to embed the hierarchy into the DHT. To this aim, we associate a subgraph of Cay(Γ, S) to

each cluster and we apply the link construction and maintenance rules of the original DHT.

As a result, we obtain a new DHT, with each cluster approximating a small subgraph of the

same family.

3.4.2 Determining Recursive Structures: Cayley DHTs

The first problem we consider in this paper is how to elucidate the recursive structure of a DHT. In

this section, we propose a solution to address this challenge in terms of the Cayley graph model.

The idea is to consider a DHT topology as a family of Cayley graphs F = {G0, G1, G2, ...} and

use this characterization to identify the recursive relationship between every pair of successive

graphs of the family. Specifically, determining this relationship requires answering the following

two questions:

• First, how many copies of Gi−1 are needed to construct Gi? A natural way of doing so is to

provide a non-null function φ that specifies for all i > 0, the number of copies of Gi−1 needed

to construct Gi. For example, the corresponding φ for the family of binary hypercubes is the

constant function 2; and

• Second, how these copies must be interconnected to construct Gi? For that matter, it is necessary

to describe two aspects. Assuming that Gj
i−1 =

(
V j

i−1, E
j
i−1

)
, 1 ≤ j ≤ φ(i), denotes the

jth copy of Gi−1, we need to specify the following: One the one hand, how to relabel the

vertices of each copy such that
⋃

1≤j≤φ(i) V j
i−1 = Vi. On the other hand, how to interconnect

the relabeled copies such that
[⋃

1≤j≤φ(i) Ej
i−1

]⋃
X = Ei, where X is the set of additional

edges used to construct Gi.

For answering the above questions, we use the concept of quasiminimality introduced in [36].

The importance of quasiminimality is that allows determining the recursive structure of Cayley

graph through the simple rearrangement of the elements in its generating set. This can be done

programmatically, and for many cases, it suffices to examine a small graph of the family to infer its

decomposition procedure, thus requiring little effort in terms of CPU cycles. In general, for fami-

lies of graphs where φ is constant or linear, the same set of rules can be applied to decompose any

graph of the family. In the recursive decomposition of Chord, we will provide enough evidence

of this. In what follows, we make use of the following definition of quasiminimality:

Definition 18. A generating set S is a quasiminimal symmetric generating set if there exists a numbering

of the elements of S: s1, s2, ..., sn such that

i. if the order of si is greater than 2, then s−1
i is either si−1 or si+1.

ii. if the order of si is 2, then 〈{s1, s2, ..., si−1}〉 is a proper subgroup of 〈{s1, s2, ..., si}〉.

iii. if the order of si is greater than 2 and s−1
i = si−1, then 〈{s1, s2, ..., si−2}〉 is a proper subgroup of

〈{s1, s2, ..., si}〉.

To complete the picture, we now explain why quasiminimality can solve the decomposition

problem for structured overlays. For simplicity in discussion, let us simplify Definition 18 as
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follows. Let Ω(s) be the subset
{
s, s−1

}
of S. Then, under this notation, we say that a generating

set S is quasiminimal if there exists an ordering of the Ω-sets, Ω(s1), Ω(s2), ..., Ω(sj), such that Ω(si)

is outside the subgroup generated by the first (i − 1) Ω-sets, 2 ≤ i ≤ j.

Now consider a Cayley graph with its generating set S ordered in quasiminimal order: Ω(s1),

Ω(s2), ..., Ω(sj). Let ξj denote the set
⋃

1≤i≤j Ω(si). Denote by Gj the Cayley graph Cay(〈ξj〉 , ξj).

Then, it can be easily seen that Gj+1 can be built from φ(j + 1) = o(〈ξj+1〉)/o(〈ξj〉) vertex-disjoint

copies of Gj along with the edges interconnecting them: there is one copy of Gj for each left coset

of 〈ξj〉. In fact, Gj+1 can be viewed as collection of copies of Gj with the edges between them

corresponding to the action of generator sj+1 and its inverse on the copies of Gj . Certainly, this is

what makes quasiminimality extremely useful. To be specific, if one examines the quasiminimal

sequence in reverse order, i.e., Ω(sj), Ω(sj−1), ..., Ω(s1), decomposing a Cayley graph mainly

consists in increasingly removing the Ω-sets from S in this order. Note that each removal implies

eliminating all the edges with a specific label from the graph. Remember that an edge (u, v) is

labeled s if and only if there exists a generator s ∈ S such that v = s ◦ u.

An Example: Chord

To illustrate the above theory, next we show how quasiminimality allowed us to elucidate the

recursive structure of Chord. Throughout this thesis, we will denote the Chord graph of order 2n

by CHn. Before understanding the recursive structure of CHn (See Theorem 21), we introduce

some auxiliary formalities.

Theorem 19. Let CHn and CHn[Vk] be the Chord graph of order 2n and the subgraph of CHn induced

by the set Vk = {v|v ≡ k (mod 2)}, 0 ≤ k < 2, respectively. Then, the graph CHn−1 is isomorphic to

CHn[Vk], n > 0.

Proof. See appendix

By considering the following remark, we will prove that Chord has a recursive structure in

Theorem 21.

Remark 20. All subgroups of a cyclic group are cyclic. If Γ = 〈g〉 is a cyclic group of order n, then for each

divisor m of n there exists exactly one subgroup of Γ of order m; it can be generated by gn/m (Lagrange’s

theorem).

Now we are in position to show that CHn can be recursively defined. We use the following

theorem.

Theorem 21. Let Vi be the subset of vertices of CHn such that Vi = {v|v ≡ i (mod 2)} , n ≥ 1 and i,

0 ≤ i < 2. Let CHn[Vi] denote the graph induced by Vi. Then, CHn has a recursive structure that contains

two vertex-disjoint copies of the graph CHn−1, i.e., the graphs CHn[V0] and CHn[V1]. The unused edges

form a Hamiltonian cycle.

Proof. We verify that CHn has a recursive structure. For reaching this aim, we have to show that

for n > 0, the set ξ =
{
±2n−1,±2n−2, ...,±1

}
is a quasiminimal symmetric generating set and

then, formally state the recursive definition of CHn by taking ξ in reverse order. Throughout the

proof, we will denote the additive cyclic group of 2n elements by Z2n . For the first part, we will

make use of the following lemma (recall that the vertex set of graph CHn is V = {0, 1, ..., 2n − 1}):
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Lemma 22. For k > 0, let ξ =
{
±2k−1,±2k−2, ...,±1

}
denote the generating set for CHk. Then, ξ with

the given order is a quasiminimal symmetric generating set of Z2k .

Proof. The strategy of the proof is as follows. Since
〈
+2l

〉
=
〈
−2l

〉
is true for all 0 ≤ l < k,

we must show that definition 18.3 holds for each pair
{
+2l,−2l

}
∈ ξ, 1 ≤ l < k. Notice that{

+2k−1,−2k−1
}

is a single element, since
〈
+2k−1

〉
has order 2. Then we must prove:

1. For each
{
+2l,−2l

}
∈ ξ, 1 ≤ l < k − 1, both o(+2l) and o(−2l) is greater than 2; and

2. For all 2 ≤ l ≤ k,
〈
ξl =

{
±2k−1,±2k−2, ...,±2k−l

}〉
is a proper supergroup of〈

ξl−1 =
{
±2k−1,±2k−2, ...,±2k−l+1

}〉
.

The above two claims are shown as follows:

1). From Remark 20, it follows that for each m, 0 ≤ m ≤ k, there exists a unique subgroup

of group Z2k of order 2m. Let K be the subgroup of order 2m. With the exclusion of the trivial

subgroup, we have by Remark 20 that K =
〈
+2l

〉
, where l = k − m. Since

〈
+2l

〉
=
〈
−2l

〉
, we can

claim o(+2l) = o(−2l) = 2k−l for each l, 1 ≤ l < k − 1, thereby concluding 1).

2). By contradiction. Without loss of generality, we assume that 2k−l ∈
{
±2k−1,±2k−2, ...,±2k−l+1

}
.

Then, we come to a contradiction. We know from elementary group theory that

〈ξl−1〉 =
{
v|v ≡ x12

k−1 + x22
k−2 + ... + xl−12

k−l+1(mod 2k), x1, x2, ..., xl−1 ∈ Z
}

Thus, we have

x12
k−1 + x22

k−2 + ... + xl−12
k−l+1 − 2k−l ≡ 0 (mod 2k),

2k−l
(
x12

l−1 + x22
l−2 + ... + xl−12 − 1

)
≡ 0 (mod 2k),

Since 2k−l is not congruent to 0 (mod 2k), then x12
l−1 + x22

l−2 + ... + xl−12 ≡ 1 (mod 2k).

Because each xi2
l−i ≡ 0 (mod 2), we come to a contradiction and the lemma follows.

Now let us denote by CHn[Vi] the subgraph of CHn induced by the set Vi = {v|v ≡ i (mod 2)},

0 ≤ i < 2. In view of the above, it is natural to ask: what is the relationship between ξ, ordered as in

Lemma 22, and the subgraph CHn[Vi]? The answer is the following: CHn[Vi] has as generating set

the subset ξ \ {+1,−1}.

Lemma 23. Let CHn[Vi] be the subgraph of CHn induced by Vi = {v|v ≡ i (mod 2)}, 0 ≤ i < 2. Then,

the generating set for CHn[Vi] is
{
±2k

}
1≤k<n

.

Proof. Suppose that (v, v + 2k) is an edge of CHn[Vi]. Since both v and v + 2k are in Vi, then we

have

v ≡ i (mod 2),

v + 2k ≡ i (mod 2),

this implies that 2k ≡ 0 (mod 2). This occurs when k > 0, so the lemma is proved.
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Intra-cluster edge: {�2, �4} 

Inter-cluster edge: {�1} 

011

1 

111
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101
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110 

100 

000 

010 

CH3[V0] ≅ CH0
2 CH3[V1] ≅ CH1

2 

Figure 3.3: Recursive definition of CH3 = Cay(Z8, {±4,±2,±1}). All vertices are represented in base

2. Intra-cluster edges of the two copies of CH2 are shown in bold style while inter-cluster edges are

drawn in thin style. All nodes belonging to the same copy share the last bit of their nodeIds.

Our development to this point allow us to infer, by the preceding lemma, that CHn contains

two vertex-disjoint and edge-disjoint subgraphs, called CHn[V0] and CHn[V1], obtained by remov-

ing the edges labeled 1 from CHn. Now, it only remains to show that the subgraphs CHn[Vi],

0 ≤ i < 2, are copies of CHn−1 to verify that the recursive decomposition of CHn is into φ(n) = 2

copies of CHn−1.

Consider now the mapping from the vertex set of CHn−1 to the vertex set of CHn[Vi] defined

by u → i + 2u. By Theorem 19, this mapping defines a graph isomorphism between CHn−1 and

CHn[Vi], and hence, we can find 2 copies of graph CHn−1 into graph CHn. Note that the auto-

morphism of group Z2n defined by s → 2s maps the generating set of CHn−1 to the generating

set of CHn[Vi]. Hence, the edges labeled 2 of CHn[Vi] are indeed the edges labeled 1 of CHn−1

and ergo, the next ones to be removed.

As said before, the edges that are between a vertex in CHn[V0] and a vertex in CHn[V1] are

obtained by adding 1 (mod 2n) to their vertices. As a result, they describe together a Hamiltonian

cycle.

Summary of results

We have shown how CHn, n ≥ 1, can be recursively decomposed into φ(n) = 2 copies of CHn−1.

However, we have not described explicitly the two aspects that define the recursive structure of

Chord yet. These are:

• On the one hand, we have the relabeling of the vertices in each copy; and

• On the other hand, the set of edges, namely X , which interconnect the copies.

For the former aspect, assuming that CHj
n−1 = (V j

n−1, E
j
n−1), 1 ≤ j ≤ φ(n), denotes the jth

copy of CHn−1, we must relabel each vertex u ∈ V j
n−1 by u → j+2u. For the latter aspect, it is easy

to see that X = {(u, v)|v ≡ u + 1 (mod 2n)}. To clarify these aspects, the recursive construction of

CH3 is illustrated in Fig. 3.3.
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It is important to note that finding the quasiminimal generating set for Chord, and presumably

other topologies, is not time-consuming. For the example shown in Fig. 3.3, it suffices to discover

that {0, 4} ⊂ {0, 2, 4, 6}, and then, {0, 2, 4, 6} ⊂ {0, 1, 2, 3, 4, 5, 6, 7}, which can be done by permut-

ing the 3 generators of CH3. This is the major strength of quasiminimality: the permutation of 3

generators has elucidated the internal structure of Chord.

Traffic Concentration: Node and Link Congestion for Chord

One crucial requirement of P2P systems is that communication load across all nodes (resp., links)

is well balanced. In this section, we examine node- and link-congestion in Chord. Our primary aim

behind this is to give a quantitative idea about how much traffic concentrates in a node (resp., a

link) in Chord, to show later that our hierarchical version of Chord balances load as effectively as

the original design.

So far, we have treated Chord as an undirected graph for ease of explanation (for the figures,

in particular), but we have to keep in mind that Chord is in reality a Cayley digraph with binary

operation +(mod 2n) and generating set
{
2i
}

0≤i<n
. For this reason, we will measure the load on

arcs instead of the load on edges. We will make use of the following standard notation:

Definition 24. A routing R in a connected (di)graph G of order N is the set of N(N − 1) paths specified

for every (ordered) pair of vertices of G.

To measure the traffic concentration deterministically, Chung et al. in [37] and Heydemann et

al. in [38] introduced the concept of the vertex-forwarding index and Manoussakis and Tuza in [39]

the notion of arc-forwarding index of a routing R. We made use of the following definitions:

Definition 25. For a routing R, the load, ξ(G,R, v), of a vertex v is defined as the number of paths in R

that pass through v (where v is not an end vertex).

Likewise, they defined the load of an arc as follows:

Definition 26. For a routing R, the load, π(G,R, a), of an arc a is defined as the number of paths of R

going through a.

Then, the parameters

ξ(G,R) = max
v∈V (G)

ξ(G,R, v)

π(G,R) = max
a∈E(G)

π(G,R, a)

were defined as the vertex-forwarding index and the arc-forwarding index specified by routing R

over the graph G, respectively. Then,

Definition 27. The vertex-forwarding index ξ(G) of the graph G is the minimum of ξ(G,R) over all

routings R in G.

Analogously,

Definition 28. The arc-forwarding index π(G) of the graph G is defined as the minimum of π(G,R) over

all routings R in G : π(G) = minR π(G,R).
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Denote by GRn the standard Chord GREEDY routing protocol. Now, we give the forwarding

indices of CHn with respect to GRn. We note that we implicitly assume here that every node in

the identifier space exists and is alive. This assumption is acceptable, as there exists no way to

achieve a lower bound on the maximum number of paths going through any node (resp., any link)

than ξ(G,R) (resp., π(G,R)) when the identifier space is not fully populated. This happens because

there are nodes in Chord with an in-degree of Θ(log2 N) with high probability ∗. So they can only

increase the number of times a node (respectively, a link) is visited by GRn. This occurs whenever

a node u has not other nodes in the range [u − 2n(log N)/N, u], because then u attracts an average

number of log N other nodes for each distance 2i, resulting in Θ(log2 N) incoming links with high

probability.

Theorem 29. The vertex-forwarding index of CHn with respect GRn is ξ(CHn, GRn) = 2n−1(n−2)+1.

Proof. Observe first that δ(u, v) − 1 is the minimum number of vertices through which GRn(u, v)

can possibly pass, where δ(u, v) is the length (in number of hops) of the shortest, clockwise path

between u and v. Summing over all v 6= u and then over u, we can obtain a lower bound on

the total number of instances in which paths pass through vertices. Since the maximum number

of paths passing through any vertex in CHn cannot be less than the average number, then we

have that ξ(CHn, GRn) ≥ 1
V

∑
u

∑
u6=v(δ(u, v) − 1). Moreover, GRn is easily seen to be symmetric

in the sense that it imposes the same forwarding index on each vertex. Thus, ξ(CHn, GRn) =
1
V

∑
u

∑
u6=v(δ(u, v) − 1), which by vertex-symmetry reduces to 1

V |V |
∑

v 6=0(δ(0, v) − 1).

Let s(0, CHn) =
∑

v∈V (CHn) δ(0, v) be the sum of distances from vertex 0 to all other vertices in

CHn. Based on the analysis of Loguinov et. al. [40], it can be easily seen that any shortest path of

length l is formed by drawing l unique generators from set
{
+20,+21, ...,+2n−1

}
. The uniqueness

is easy to see since any two jumps of size 2i can be replaced with a single (more optimal) jump

of size 2i+1. Consequently, each node can reach
(
n
l

)
other nodes at length l. Hence, s(0, CHn) =

∑
1≤l≤n l

(
n
l

)
= n2n−1. Then, 1

V |V |
∑

v 6=0(δ(0, v) − 1) = s(0, CHn) − (2n − 1) = 2n−1(n − 2) + 1

and the theorem follows.

In addition to vertex transitivity, Cayley graphs may have another important property called

arc transitivity. A graph G is said to be arc-transitive if for any given pair of arcs (u, v), (a, b), there

exists an automorphism σ of G such that (σ(u), σ(v)) = (a, b). The benefit of arc transitivity is that

in an arc-transitive graph, communication load is uniformly distributed on all links. Although

Chord is not arc-transitive, its routing protocol subtly compensates the lack of arc transitivity. We

notice that if one considers (u, v) and (a, b) without direction, then G is said to be edge transitive.

Lemma 30. The Chord graph CHn of order 2n is not arc-transitive for n ≥ 2.

Proof. See appendix.

By similar reasoning to that in Lemma 30, one can easily demonstrate that Chord is not edge-

transitive.

∗An event ζ occurs with high probability (w.h.p.) if Pr {ζ} ≥ 1 − 1

Nk
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Lemma 31. The Chord graph CHn of order 2n is not edge-transitive for n ≥ 3.

Proof. Say first that CHn is edge-transitive for any n ≤ 2, as in that case CHn is isomorphic to

the complete graph of 2n vertices. This concludes the first part. For n ≥ 3, it suffices to apply

the same reasoning of Lemma 30 to show that an edge labeled 1 does not participate in the same

number of cycles of an edge labeled n − 2. Hence, we have at least two types of edges- So, CHn

cannot be edge-transitive.

The following theorem derives the arc-forwarding index of Chord and our work appears to be

the first to claim it. The important insight here is that π(CHn) = π(CHn, GRn), which indicates

that GRn is arc-uniform, i.e., the load on all arcs is the same. The proof strongly depends on the

following lemma [39].

Lemma 32. If G = (V,E) is a connected graph of order n, then

1. 1
|E|

∑
(u,v)∈V ×V d(u, v) ≤ π(G) ≤ πm(G), where πm(G) denotes the minimum taken over all the

routings of shortest paths in G.

2. The equalities hold if and only if there exists a shortest path routing in G for which the load of all arcs

is the same.

Theorem 33. The arc-forwarding index of CHn is π(CHn) = 2n−1.

Proof. The proof is by induction on n. Since π(CH1) = 1 = 21−1, the theorem is true for n = 1.

Assume that the theorem is true for every m, 1 ≤ m < n.

By Theorem 21, it follows that CHn can be recursively constructed from two copies of CHn−1,

which are the subgraphs, CHn[Vi], of CHn induced by Vi = {v|v ≡ i (mod 2)}, 0 ≤ i < 2. Let Pn

be the set of paths between the set V0 and V1 in an arbitrary routing Rn of CHn. Then, |Pn| =

2 × 2n−1 × 2n−1. Since there are 2n arcs (with label 1) between CHn[V0] and CHn[V1] and every

path in Pn uses at least one arc, π(CHn) ≥ |Pn| /2n = 2n−1.

On the other hand, since π(CHn) ≤ π(CHn, GRn), we only need to show that π(CHn, GRn) ≤

2n−1. Now let us find the load of an arc a which is labeled 1. Let a = (x, x + 1 (mod 2n)) with

x ∈ Vi. Then, it is easy to see that the paths going through a are the paths ending at vertex

x + 1 (mod 2n), i.e., the paths GRn(u, x + 1 (mod 2n)) for any u ∈ Vi. Because each path crosses a

only once, we have π(CHn, GRn, a) = 2n−1.

Let us calculate the load of an arc a which is not labeled 1. Assume that the ends of a are in

Vi. Clearly, all the paths going through a begin in Vi: if the path GRn(u, v) passes through a, then

u ∈ Vi. Now, assume that v ∈ Vj . When i = j, the path GRn(u, v) is simply the path GRn−1(u, v)

in copy i. When i 6= j, the path GRn(u, v) can be split into two pieces: the path GRn−1(u, u′) in

copy i of graph CHn−1 followed by the arc (u′, v) of label 1. These are all the paths going through

arc a. Then, by induction hypothesis, we have

π(CHn, GRn, a) ≤ 2π(CHn−1, GRn−1) = 2 × 2n−2 = 2n−1.

Thus, we have that π(CHn, GRn) ≤ 2n−1. Based on the above discussion, the theorem follows.
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3.4.3 Mapping a Hierarchy

So far, we have shown how to elucidate the recursive structure (if any) of a DHT in terms of its

Cayley graph. Therefore, what is lacking is to show how to construct a hierarchical version of a

DHT based on the formal definition of its recursive structure. In order to preserve the uniformity

in functionality and load, our intuition is to have each cluster approximate a static graph from the

family of the targeted DHT. We say ”approximate” because the nodes in a cluster do not have

to necessarily occupy all positions (identifiers) in the assigned (sub)graph. We remark here that

due to the dynamics of peer-to-peer networks, the structure of each subgraph is time-dependent.

Each node can freely decide to join or leave the system at any time, but what is evident is that its

decision irremediably alters the structure of the underlying graph. We are aware of this fact and

show why sparsity on clusters does not attenuate the validity of our proposal.

Construction Strategy

As we discussed earlier, DHTs use consistent hashing [35] to spread keys, and also nodes, evenly

over the identifier space. Such a uniform distribution is vital in uniform DHT topologies.

As defined by Xu et. al. [41], a graph over N nodes arranged in a circle is said to be uniform

if the set of off-sets for out-going links is identical for all nodes. This has important consequence:

for any uniform graph with O(log N) links per node and diameter Ω(log N), GREEDY routing is

congestion-free. Notice that uniformity is only possible if nodes are uniformly distributed in the

identifier space, a task that consistent hashing carries out well, albeit not perfectly.

For Cayley DHTs, note that uniformity follows directly from the definition of Cayley graph.

Let Cay(Γ, S) be the Cayley graph defined by the generating set S on group Γ. Then, we know

that two vertices u, v ∈ Γ are adjacent in Cay(Γ, S) if and only if u−1 ◦ v ∈ S. Therefore, offsets

for out-going links are identical in all nodes and hence, Cayley DHTs are uniform.

Uniformity implies that the greedy paths starting from distinct nodes but traveling the same

distance pass through disjoint sets of nodes. This obviously balances routing load over all nodes

in the network. Nearly all DHT geometries are uniform (e.g. [4–6, 10]). So, one should expect that

our hierarchical constructions inherit uniformity, too. To preserve this property, our construction

strategy can be summarized as follows:

i. When joining the system, the key idea is that the joining node acquires a free position in the

subgraph emulating its leaf cluster. In our hierarchical model, note that the election of this

position automatically determines the set of clusters a node needs to join (as clusters follow

the recursive decomposition of the original topology).

ii. The second step is that the joining node applies the linking rules of the original design, but

first applied to the nodes lying in its leaf cluster; second to the nodes belonging to in its next

higher-tier cluster and so on, until reaching the global cluster.

More formally, let τ be the denote the number of tiers in a telescoping hierarchy H. Each peer

u is contained in an ascendant sequence of telescoping clusters in H; hence, u maintains the same

nodeId in all clusters. If we denote these clusters by C1(u) ⊂ C2(u) . . . ⊂ Cτ (u), where C1(u) is

the leaf cluster of u and Cτ (u) is the global cluster, then
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i. At tier 1, node u joins its leaf cluster C1(u), where it is assigned an identifier from I. C1(u)

emulates a graph G1 of the same family of the original DHT; hence, node u establishes the

links dictated by this graph but to the live nodes in C1(u). In order to do this, it applies the

linking rules of the original design to the nodes in C1(u).

ii. From the leaf cluster to the global cluster, u successively joins each cluster Ci(u), 1 < i ≤ τ .

Within each cluster, it creates the additional links specified by graph Gi, but retaining all the

links from cluster Ci−1(u). More specifically, node u establishes the links corresponding to

the generators of Gi that are not present in the generating set of Gi−1, the graph associated

with cluster Ci−1(u).

The result is a hierarchy of clusters, where the sibling clusters in the same subtree operate as a

unique DHT in the next higher tier. From the perspective of the system, constructing a hierarchical

DHT can be viewed as the process of aggregating sibling clusters at each tier, to form increasingly

larger clusters of the same type.

This strategy is advantageous for two reasons:

1. Nodes can route queries using keys as usual, as the mapping h : O −→ I is complete within

every cluster. Since each object is always under the responsibility of at least one peer in each

cluster, nodes can store and search objects at any tier with operations Put(key, value,

level) and Get(key, level). This property is very desirable, since it avoids bothering

the non-member nodes of a particular cluster by the queries originating in it.

2. The mapping h : P −→ I can be extended to clusters. Thus each cluster can inherit the uni-

form distribution of peers over the identifier space, which implicitly favors communication

load-balancing.

We now introduce the Cyclone construction of Chord: Whirl. It is worth mentioning that the

election of the appropriate subgraph for each cluster is responsibility of the application built atop.

Therefore, this issue is not longer considered in this Chapter. In general terms, what we describe

below is the construction of Whirl from its recursive definition, with particular emphasis on the

relationship between the identity of a node and its neighborhood. Recall that the label of a node

determines the sequence of clusters where it is contained.

Whirl: The hierarchical version of Chord

So far, we have shown that Chord is a hierarchical Cayley graph. In this section, we provide

the hierarchical version of Chord by exploiting its recursive structure. Recall that the static Chord

version can be constructed by the successive application of the generators
{
±2n−1,±2n−2, ...,±1

}

starting from any element of group Z2n .

Now, we need to show how to embed a hierarchy H in Chord. As discussed above, we need to

provide the mapping between the sequences of clusters in hierarchy H to the sequence of graphs

{G0, G1, G2, . . .} of the Chord family, so that the graph at the ith tier can be built from the graphs

at the (i − 1)th tier.

For a peer u, let σ(u, s) be the s rightmost bits of its nodeId. The mapping for Chord consists

in logically partitioning σ(u, s) into τ substrings increasingly shorter, where τ denotes the height

of the hierarchy. To better understand this, consider the following:
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Figure 3.4: An example of a Whirl construction.

Represent each vertex of CHn by its n-bit binary label (u1u2...un), where ui ∈ {0, 1}. Then, it is

easy to see that the set of vertices with un fixed, i.e., CHn[Vun
] (see Fig. 3.3), is one of the φ(n) = 2

copies of graph CHn−1 into which CHn decomposes. More generally, CHn can constructed from

φ(m) = 2n−m copies of subgraph CHm, for 0 ≤ m ≤ n. An immediate consequence of this is that

all nodes assigned to a copy of subgraph CHm share the n − m rightmost bits of their nodeIds.

At a given tier, this means that the nodeId of node u is logically split into two parts: a PREFIX

of m bits, and a SUFFIX of n−m bits, σ(u, n−m), where m refers to the index of the Chord graph,

CHm, the cluster of this tier is emulating.

The role of the two parts is complementary. While the PREFIX provides a node with a unique

intra-cluster identity, the SUFFIX identifies its cluster. In other words, the SUFFIX acts as a cluster

identifier and therefore, it is necessarily common to all nodes in a cluster. The PREFIX, however,

is as usual, the outcome of a hash function, which ensures that communication load is uniformly

balanced over all nodes in the network.

At the next higher tier, the PREFIX is enlarged and the SUFFIX is reduced by a certain number

of bits s to represent the aggregation of the children clusters into the new cluster. In algebraic terms,

this aggregation corresponds to the action of the next s generators sorted in quasiminimal order of

CHn. Without loss of generality (w.l.o.g.), assume that the associated graph of node u at a given

tier is CHm. If the next higher-tier cluster of u emulates CH(m+s), then the clusterId of this cluster

will be σ(u, n − (m + s)). This has the following three effects:

i. This cluster is the result of the aggregation of φ(n− (m+s))φ(n− (m+s−1)) . . . φ(n− (m+

1)) = 2s clusters emulating CHm;

ii. The identifier space for the participating nodes has enlarged from 2m to 2(m+s); and

iii. The links to add to u in order to maintain logarithmic guarantees on routing correspond to

generators
{
±2n−(m+1),±2n−(m+2), ...,±2n−(m+s)

}
.

The main benefit of this mapping is that links can be created as dictated by the linking rules

of the original DHT, preserving logarithmic guarantees on the out-degree. More specifically,

Definition 34 (Whirl linking rule). Let u be an arbitrary node in cluster Cu. At next tier, node u sets

up a link to a node v in another cluster Cv 6= Cu if and only if v is the closest node that is at least distance

2i away for some 0 ≤ i ≤ h, where h is the index of the largest power of two between u and its successor in

Cu.

To better understand this, we provide the following example:
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Example 1. An example of Whirl is shown on Fig. 3.4. Since n = 3, each node u is labeled by a

binary string of the form (u1u2u3). The figure illustrates how to combine two Chord clusters to

produce a DHT graph isomorphic to a Chord network of N = 2(n=3) nodes. Cluster C0 hosts the

nodes with labels of the form (u1u20) whereas cluster C1 the nodes labeled (u1u21). Both clusters

approximate CH2.

For simplicity in discussion, we only consider the routing connections set up by node 0. Since

bit y3 is fixed, the links in cluster C0 are initialized by considering only the PREFIX. Hence, node

0 creates its ith link by finding the closest node whose PREFIX is at least distance 2i away in the

diminished identifier space induced by fixing the last bit. Clearly, this does not require to modify

the Chord policy for link selection, as these links are virtually set up in a Chord network with 22

possible positions instead of 2(n=3). The result is that the intra-cluster fingers of this node point to

nodes 2 (010) and 4 (100) as in standard Chord. At the next tier, node 0 applies the Chord linking

rule to the whole identifier and hence, it establishes a link to node 1 (001).

We remark that some nodes may not create additional links at all. For instance, this eventuality

could have occurred to node 0 if node 1 had gone off-line. Astute readers may thus wonder if our

constructions lead to a skewed degree distribution, especially if the size of the clusters follows a

skewed distribution (Zipf-like distribution). Nonetheless, our simulation results demonstrate that

such is not the case. The main reason is that graph CHn can be viewed as two interleaved copies

of graph CHn−1 and generalizing, as 2m interleaved copies of CHn−m. This has a positive effect

on the distribution of inter-cluster neighbors along the identifier space.

Without loss of generality, consider that a node u joins a leaf cluster approximating CHn−m.

Within this cluster, the recursive decomposition of Chord causes the immediate successor of u to

be at least at clockwise distance 2m from it on the Chord circle. This assures at least one exclusive

position for each other cluster between u and its successor, which increases the odds of u to end

up with an additional link, irrespective of the distribution of nodes in its own cluster. Combined

with mapping h : P −→ I, this property is of great help to ensure that the union of all clusters

does not yield a skewed distribution of nodes. By preserving this property, we take an important

step toward inheriting the distributional properties of Chord out-degree.

Theorem 35. In a Whirl network of N nodes, with nodes distributed uniformly at random on the identifier

space, the expected out-degree of a node is bounded by log(N − 1)+ log N +2, irrespective of the structure

of the hierarchy.

Proof. We start by showing that the expected out-degree of a node in a two-tier Whirl network of

N nodes is log(N − 1) + 3. Then, we generalize this result to more than two levels.

Let C1, C2, ..., CK be the K different clusters in the system. W.l.o.g., consider some node u in

C1. Let n1 be the number of nodes in C1, and let CHm (for some m ≤ n) be its emulation graph.

Clearly, its out-degree is given by Xin + Xout, where Xin is the number of links to other nodes in

C1 and Xout is the number of inter-cluster links. We define the following two indicator random

variables:

1. Ik as the indicator that there is at least one other node within distance d ∈
[
2k, 2k+1

)
of u

within C1; and

2. Jk as the indicator for the event that there exists at least one node outside C1 within distance

d ∈
[
2k, 2k+1

)
of u.
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Observe that E[Ik] = Pr {Ik = 1}. To obtain Pr {Ik = 1}, note first that the probability that

some specific node lies in a range of length 2k is 2k

2m . Therefore, by the Union bound, we have

Pr {Ik = 1} ≤ (n1−1)2k

2m ,∀0 ≤ k < m. Moreover, E[Ik] ≤ 1, for all 0 ≤ k < m. Let α = m −

dlog(n1 − 1)e (assume n1 > 2). By linearity of expectation, the expected value of Xin is given by

E[Xin] =

m−1∑

k=0

E[Ik] =

α∑

k=0

E[Ik] +

m−1∑

α+1

E[Ik]

≤
α∑

k=0

(n1 − 1)2k

2m
+

m−1∑

k=α+1

1

=
(n1 − 1)

2m

(
2α+1 − 1

)
+ m − α − 1 (for n1 > 2)

=
2(n1 − 1)

2dlog(n1−1)e
−

(n1 − 1)

2m
+ dlog(n1 − 1)e − 1

< log(n1 − 1) + 1 (3.1)

Combined with the fact that E[Xin] = 1 for n1 = 2, we have E[Xin] ≤ log(n1 − 1) + 1. Thus,

once we bound the expected value of Xout, we shall be done. As before, we first bound E[Jk].

Observe that the expected number of nodes outside C1 that lie within the range [u, succ(u)) is
(N−n1)

n1
. Therefore we have E[Jk] ≤ (N−n1)

n1

2k

d , where d is the clockwise distance between u and

succ(u) in the global ring. Now notice that the automorphism of group Z2n defined by s −→

2(n−m)s maps the generating set of CHm to the generating set of CHn, i.e., the emulation graph

of the global ring. As a result, we get that α corresponds to l = α + (n − m) = n − dlog(n1 − 1)e.

Since d can be at most 2l, it follows that E[Jk] ≤ (N−n1)
n1

2k

2l . By a similar reasoning to the above, it

is easy to see that

E[Xout] ≤
l−1∑

k=0

E[Jk] =

β∑

k=0

E[Jk] +

l−1∑

β+1

E[Jk] (3.2)

where β = l −
⌈
log (N−n1)

n1

⌉
(assume (N−n1)

n1
≥ 2). There are two cases to be considered: (1)

(N−n1)
n1

≤ 2 and (2) (N−n1)
n1

> 2. We show that both cases lead to a total out-degree of at most

log(N − 1) + 3.

Case (1): (N−n1)
n1

≤ 2. In this case, E[Xout] is at most (N−n1)
n12l

(
2l − 1

)
< (N−n1)

n1
< 2. Thus, the

total out-degree is at most log(n1−1)+3, which is maximized when n1 = N , so our claim follows.

Case (2): (N−n1)
n1

> 2. Using the same arguments as in the derivation of Eq.(3.1) above, the

expectation of Xout is E[Xout] ≤ log
(

(N−n1)
n1

)
+1. Combining this fact with Eq.(3.1) gives that the

expected total out-degree is at most log
[(

(N−n1)
n1

)
(n1 − 1)

]
+ 2, which is maximized for n1 = 2.

The total out-degree is at most log(N − 2) + 1 < log(N − 1) + 3.

Now we generalize this result for more than two tiers. At each tier, our construction aggregates

all the clusters from the lower tier to produce the telescoping cluster for this tier. Now say there is

a cluster with nt nodes which has been produced after aggregating t times. By reasoning similar

to the one above, the expected out-degree for a node in this cluster is given by log(nt − 1) + t + 2.

Since there are at most log N aggregations of clusters, where nodes in one cluster are aggregated

with at least as many nodes outside that cluster, we have that the expected out-degree is at most

log(N − 1) + log N + 2. This concludes the proof.
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Lemma 36. With high probability, when N peers are distributed uniformly at random on the Chord circle,

the minimum distance between two consecutive nodes is Ω
(
2n ln N

N2

)
.

Proof. Consider that we are tossing the joining nodes onto the Chord circle one at a time. Let ξi

be the event that some interval is of length α or less when the ith node joins the Chord network.

Clearly, Pr {ξN} = 1 − Pr
{
ξN

}
, which is

1 −
N∏

i=2

Pr
{
ξi|ξi−1

}
≤ 1 −

N∏

i=1

(2n − iα)

2n
.

Note that α = 2nβ, for some β, 0 ≤ β ≤ 1). Then, we have

Pr {ξN} ≤ 1 − e−
∑N

i=1 iβ ≤ 1 − e−β
(N+1)N

2 .

For β = Ω
(

ln N
N2

)
, this probability is 1 − 1

N . This completes the proof.

Theorem 37. The out-degree of any node in Chord is O(log N) with high probability (w.h.p.).

Proof. From Lemma 36, the distance between two consecutive nodes is at least 2n C ln N
N2 w.h.p., for

some small positive constant C. Consequently, for all i, i < n− 2 log N + log C lnN , we have that

the ith finger of a node points to its immediate successor w.h.p. Hence, the out-degree of a node

will be at most n − (n − 2 log N + log C lnN) = 2 log N − log C lnN w.h.p., which completes the

proof.

Theorem 38. The out-degree of any node in Whirl is O(log N) with high probability.

Proof. The proof of this theorem follows from the proofs of Theorems 35 and Theorem 37.

Routing In Whirl

We now shift gears to routing. First, we describe Whirl’s routing protocol. Then, we analyze its

theoretical performance compared to Chord. Informally, routing in Whirl can be viewed as gen-

eralization of routing in standard Chord. Messages are forwarded along those links that diminish

the distance by some power of two. So routing is clockwise and greedy, never overshooting the

destination.

Routing protocol

Let u be a node starting a query for key k. The routing protocol can be described as follows:

Initially, u attempts to take the largest possible steps towards the destination by routing within

its leaf cluster. Meanwhile, if routing encounters some node caching the key, the query halts and

the corresponding value is returned. If not, the query arrives at the closest predecessor of k in this

cluster. Let u′ be this node. Then, u′ switches to the next higher-tier cluster and continues routing

in that cluster. This procedure is repeated until either the manager for key k is found or the query

contacts some intermediate node storing a copy of k.

Even if the query eventually switches to the global cluster, the total number of hops incurred

by Whirl is almost the same as Chord, as a query always restarts from the point where it was left

off in the lower-tier cluster.
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Figure 3.5: Routing example in Whirl. Node 0 routes a query for key k = 7. Within each cluster, clockwise

GREEDY routing is performed until the node responsible for the key is found.

Example 2. Fig. 3.5 shows the routing path a request for key 7 and originating at peer 0 follows

through the infrastructure. Initially, node 0 routes the query along its leaf cluster, until the closest

predecessor of key 7 is found in this ring. As shown in the figure, such a predecessor is node 4.

Next, node 4 switches to the next higher-level ring, taking an inter-cluster hop that leads the query

to node 5. Finally, node 5 uses GREEDY, clockwise routing to forward the query to node 7, i.e., the

node responsible for the key.

We now characterize the number of hops required for routing in Whirl.

Lemma 39. Assume that N peers are distributed regularly on the Chord ring. Then, the expected number

of routing hops between two Chord nodes is 1
2 log N , N > 1.

Proof. Consider two randomly chosen nodes u and w with path u = v0, v1, ..., vt = w. The search

strategy of Chord halves the clockwise distance to the destination at each step. Hence, for every

j, d(vj+1, w) ≤ d(vj , w)/2. Consequently, for j = log N , we have that d(vj , w) ≤ 2n

2log N = 2n

N .

W.h.p., it can be easily seen that vj must have a successor pointer to w provided the number of

nodes in the successor list is sufficiently large. Thus, we have that Chord can resolve all requests

within log N hops and more importantly, the sequence of jumps is unique: two jumps of size 2i

are replaced with a single (more optimal) jump of size 2i+1. So we obtain that any path of length

l is formed by following exactly l edges, all with distinct labels. This means that each Chord node

can reach
(
log N

l

)
other nodes at length l. Since the probability that each jump is selected is 1

2 , the

probability density function of routing path length l is given by a binomial distribution with parameter

p = 1
2 . Hence, the average path length is

log N∑

l=1

l

(
log N

l

)(
1

2

)l(
1

2

)log N−l

=
1

2
log N

Theorem 40. In an Whirl overlay of N nodes, with nodes regularly placed around the Chord circle, the

expected number of routing hops between two nodes is 1
2 log N , N > 1.

Sketch of proof. The proof follows from a generalization of Lemma 39. We make use of the follow-

ing fact. With the assumption that nodes are uniformly distributed in [0, 2n), it can be easily seen
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that the expected number of routing hops between any two nodes that are within a distance d is

bounded by 1
2 log

(
N d

2n

)
.

First, observe that routing in Whirl can be visualized as an alternating sequence of intra- and

inter-cluster hops. Routing always starts in the cluster where the source belongs to, generating a

sequence of intra-cluster hops until the message reaches the closest predecessor, say u′, of the key.

Then, node u′ uses an inter-cluster link to forward the message to the neighbor that is closest to

the destination, say u′′. Node u′′ then performs the same operation as the source: it first attempts

to route within its cluster and then it follows an inter-cluster link. This sequence is repeated until

the message reaches the destination.

With every hop, Whirl ensures that the remaining distance to the destination decreases by at

least a factor of 1
2 . Hence, the number of intra-cluster hops will gradually decrease in each new

sequence. Combining this fact with the following two observations, we shall be able to prove the

theorem:

1. Once intra-cluster routing is accomplished, the expected distance remaining to the destina-

tion is at most 2n

2nc
, where nc denotes the number of nodes in the current cluster; and

2. Each inter-cluster hop is expected to decrease the distance by at least a factor of 1
2 .

For a random distance, now consider a path traversing two clusters, C1 and C2, which starts

from a node in C1 and then follows an inter-cluster link to a node u in C2. Further, assume that C1

and C2 contain n1 and n2 nodes, respectively. Then, it is easy to see that the expected number of

nodes between u and the destination is bounded by n2

2n times the distance from u to the destina-

tion. Clearly, this is n2

2n

(
1
2

2n

2n1

)
= n2

4n1
. By Lemma 39, then it follows that the expect number of

intra-cluster hops is at most

1

2
log n1 +

1

2
log

[
(n1 + n2)

1

4n1

]
=

1

2
log(n1 + n2) −

1

2
log 4 =

1

2
log(n1 + n2) − 1 (3.3)

Eq. (3.3) can be generalized to any number of clusters. In general, when a query traverses K

clusters over a random distance, the expected number of intra-cluster hops is given by

1

2
(n1 + n2 + ... + nK−1) −

1

2
log 4K−1 =

1

2
log(n1 + n2 + ... + nK−1) − K + 1 (3.4)

which is bounded by 1
2 log N − K + 1. Since the number of inter-cluster hops is K − 1, the

expected number of routing hops is thus 1
2 log N .

Theorem 41. In a Whirl network of N nodes, the number of routing hops to route between any two nodes

is O(log N) with high probability.

Proof. The proof of this theorem follows from the proof of Theorem 40.

In what follows, we quantify the potential improvement in query efficiency achieved by Whirl

with respect to Chord. The idea is to validate theoretically the improvement on query efficiency

brought by path locality.
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Routing Benefits. In general, existing DHT works assume that communication is uniform, i.e.,

all nodes have an equal probability of processing a query. While this assumption is acceptable for

file-sharing applications, locality in communication is frequent in many distributed applications,

such as content delivery networks and data management systems. In this sense, our constructions

offer an ideal substrate. They organize peers into clusters, which allow communication locality to

be exploited by the applications built atop.

In this section, we drop this assumption and assume that nodes within a cluster communicate

with a higher (or lower) probability than do two nodes from different clusters. For simplicity, we

also assume a two-tier hierarchy, with multiple leaf clusters but with only one telescoping cluster:

the global cluster. Recall that the global cluster spans all nodes in the system.

Now, let γ denote the probability that both the source and the destination peers belong to the

same leaf cluster. Hence, (1−γ) is the probability of inter-cluster communication. Thus, the larger

the value of γ, the more likely the locality in communication. Further, we assume that:

• Intra-cluster communication is distributed uniformly at random over the nodes in each cluster.

Put differently, a node routes an intra-cluster message to each other node in its cluster with

equal probability; and

• Inter-cluster communication is distributed uniformly at random. That is, a node forwards an

inter-cluster message to each other node outside its leaf cluster with equal probability.

In what follows, we assess the improvement in query efficiency achieved by Whirl as a func-

tion of γ. The reason is that it is difficult to foresee what values of γ a particular application may

expect in practice. Intuitively, if intra-cluster requests are frequent, we should expect a noticeable

improvement in query efficiency from Whirl. We provide analytical evidence for this conjecture.

For simplicity in discussion, we assume that the number of nodes is a power of two, N = 2α,

α ≤ n. Further, we assume that the number of nodes in each leaf cluster is the same and equal

to 2m, m < α. Hence, the number of leaf clusters is 2α − 2m. Now we derive the average path

length, RWhirl, of Whirl. Clearly, RWhirl is given by

RWhirl = γRin + (1 − γ)Rout, (3.5)

where Rin denotes the average number of routing hops between two nodes in a leaf cluster, and

Rout is the average path length between two nodes belonging to different clusters. By Lemma 39,

Rin = 1
2m. Thus, once we compute Rout, we shall be done. First, note that the number of nodes

at (i + j) hops from the source equals to
(
m
i

)(
α−m

j

)
, where i(i > 0) is contributed by the jumps

from set
{
+2n−(m+1),+2n−(m+2), ...,+2n−1

}
required for intra-cluster routing, and j(j > 0) is

contributed by the remaining (α − m) jumps. Then, it easy to see that

Rout =

∑m
i=0

∑α
j=1

(
m
i

)(
α−m

j

)
(i + j)

2α − 2m
=

α2α−1 − m2m−1

2α − 2m
(3.6)

Combining Eq. (3.5) and (3.6) gives

RWhirl = γ
(m

2

)
+ (1 − γ)

(
α2α−1 − m2m−1

2α − 2m

)
. (3.7)

Note that when γ = 2m−α (i.e., the probability of intra-cluster communication is proportional

to m), RWhirl = 1
2α as in Chord. The average path length for both Chord and Whirl is illustrated



CYCLONE: A FRAMEWORK FOR DESIGNING HIERARCHICAL DHTS 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

7

7.5

8

8.5

γ

A
vg

. 
 #

 R
o

u
tin

g
 H

o
p

s

Whirl, α =16, m = 10

Chord

Figure 3.6: Comparison between the average path length of Chord and Whirl for α = 16 and m = 10. The

value of γ is varied from 0.0 to 1.0

in Fig. 3.6. Both systems have a network size N = 216. For Whirl, the cluster size is fixed at 2m=10.

The value of γ is increased from 0 to 1. The main observation is that as γ approaches to 1, Whirl

can significantly reduce the average path length while Chord misses any opportunity to do it due

to the lack of a clustered structure. This makes apparent the necessity of new techniques, able to

capture locality such as Cyclone.

Maintenance in Whirl

Dynamic maintenance in Whirl is a natural generalization of dynamic maintenance in Chord.

It must deal with nodes joining and leaving the system but also with node failures. In what

follows, we restrict our attention to the join protocol. The leave protocol is similar and has been

omitted for clarity. Since fault-tolerance mechanisms are the same as Chord, we only give a short

description of how to apply them to Whirl.

Join protocol

Let u denote the joining peer. The join protocol consists of three phases:

1. Find an arbitrary peer in the destination leaf cluster. To enter the system, node u must know at

least one existing peer in the destination cluster. This information can be provided by many

different mechanisms. For example, u could look up a central server for this knowledge; this

server could maintain a cache of live peers from each cluster. Alternatively, this information

could be stored in the DHT itself, and u might obtain it by simply querying the DHT. In any

case, we assume that u is able to obtain the IP address of some live node in the destination

cluster.

2. Using the peer found in Phase 1, construct the finger table. Let u′ be the peer found in Phase

1. Using this node, u ”inserts” itself in all clusters using the standard Chord technique for

insertion, applied at each tier of the hierarchy. Specifically, node u′ routes a query using u’s

nodeId as key. This query reaches the predecessor of u at each tier of the hierarchy. At this
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point, the join protocol proceeds as follows. After inserting itself after each predecessor p,

u notifies succ(p) to announce itself as its new predecessor. Once this is done, u constructs

its finger table using the linking rules defined in Section 3.4.3. Since node u requires a Get

operation for each finger establishment, the cost of initializing O(log N) fingers is O(log2 N),

the same complexity as Chord.

3. Copy all keys for which node u has become their successor to node u.

By itself, the join protocol does not make the rest of the network to be aware of u. However, u

may become the finger of other nodes in the system. To correct the topological changes caused by

the addition of node u, we adopt function fixfingers of Chord [4]. As in Chord, each Whirl node

runs periodically fixfingers to make sure its finger table entries are correct. Specifically, each call

to this function updates one finger entry. The main benefit of this strategy is that maintenance

complexity is upper bounded by O(log2 N). By Theorem 41, we have that each call to fixfingers

costs O(log N) messages. Since O(log N) calls to fixfingers are required to initialize the entire

finger table, the complexity is thus O(log2 N).

Key Observation: Phase 2 can be accelerated by using the finger tables of u’s predecessors. That

is, the ith finger of u can be efficiently obtained by asking the ith finger of the corresponding

predecessor. This operation costs O(log N log log N) w.h.p., since the number of nodes that must

be contacted to initialize the new finger table is O(log N), and each one takes O(log log N) hops

w.h.p., and only O(1) hop on average [42].

Fault-tolerance. For fault tolerance reasons, each Chord node maintains a successor list of Ω(log N)

successor pointers, containing the node’s first Ω(log N) successors in the ring. To inherit the same

robustness, each Whirl node maintains a separate successor list for each cluster it belongs to. We

note that successor lists are cheap to maintain since can be updated by passing a single message

along the ring. Further, they do not incur keep-alive maintenance overhead, as they do not corre-

spond to physical connections.

3.5 Adaptability to Other DHTs

In this section we show the usefulness of our strategy, by applying Cyclone to six families of DHTs

that are benchmarks among P2P systems:

R-Chord [30] and Symphony [11] Yet another variant of Chord is R-Chord, which differs from

standard Chord on the great amount of freedom it provides in choosing neighbors. In R-Chord,

each node u picks n neighbors, where the ith neighbor can be any node within clockwise distance[
2i−1, 2i

)
of u, instead of the closest node that is at least 2i−1 away. For this reason, we can regard

the construction of R-Chord in the same way as Chord, but with the non-deterministic rule for

link selection instead of the deterministic rule.

Symphony, a randomized version of Chord, was initially conceived as a constant degree DHT.

To approximate it as a Cayley graph, it is necessary to transform it into a logarithmic degree

network. This requires that each node u creates O(log N) links to other nodes, each chosen inde-

pendently at random, such that the probability of selecting a node v is inversely proportional to
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the distance from u to v. Such a generalization permits viewing Symphony as a non-deterministic

version of Chord, which leads to the following construction:

Each node u initially creates blog n1c connections, where n1 is the number of nodes in its leaf

cluster. Leaf neighbors are selected as in Symphony, i.e., with a probability that is inversely pro-

portional to the distance between u and each neighbor. At the next higher tier, u creates blog n2c

links by the same random process, where n2 is the number of nodes in the next higher-tier cluster,

but retains only those connections that are closer than its successor in the lower tier. This process

is repeated successively at all tiers of the hierarchy. Notice that both Symphony and its Cyclone

version require to know each ni exactly. This can be done using the techniques developed in [43].

Kademlia [6] and P-Grid [12] Kademlia can be viewed as a hypercube version of R-Chord. Like

in R-Chord, each node creates a link to an arbitrary node within distance
[
2i−1, 2i

)
, for all 0 < i ≤

n. However, it differs from R-Chord in the definition of the distance function required for routing

greedily. More specifically, Kademlia uses the XOR metric rather than clockwise distance between

pairs of nodes. In other words, the distance d(u, v) between two nodes u and v is the XOR of their

binary nodeIds, i.e., d(u, v) =
∑n

i=1 |vi − ui|2
i−1.

Let Kn denote the Kademlia graph of order 2n. Using hypercube as the Cayley representation

of Kademlia, it is easy to see that Kn can be partitioned into φ(n) = 2 copies of Kn−1, with the first

copy containing all the nodes labeled (0u1...un) and the second copy the nodes labeled (1u2...un).

Let us consider that leaf clusters emulate graph Km, for some m ≤ n. Altogether, this means that

a hierarchy should be mapped to Kademlia by logically partitioning the first α = (n − m) bits

of node labels. W.l.o.g., assume that prefixes u1u2...uα are divided into two parts: u1u2...uβ and

uβ+1...uα, in order to create a hierarchy of three levels. Our construction for Kademlia is then as

follows. Each node creates its links as dictated by Kademlia. For its leaf cluster, each node sets up

only the links that cover distance ranges
[
2i−1, 2i

)
, for i = 1 ... α. At the second tier, nodes create

the connections that cover ranges
[
2i−1, 2i

)
, for i = (α + 1) ... (β − 1). Finally, the rest of links are

established within the global cluster.

Another approximation of hypercube is P-Grid. P-Grid implements a binary trie abstraction,

i.e., a tree for storing binary strings in which there is one node for every common prefix. Specif-

ically, each node u is associated with a leaf of the tree and hence to a binary string π(u) of the

identifier space. Notice that π(u) is also the path from u to the root of the tree. For routing, node

u maintains for each prefix π(u, i) of π(u) of length i a link to a node v such that π(v, i) = π(u, i),

where π is the binary string π with the last bit inverted. Geometrically, this means that at each

level of the prefix tree, node u has a pointer to a node not contained in its subtree. This enables the

efficient implementation of prefix routing. Consequently, the appropriate way to map a hierarchy

of telescoping clusters to P-Grid is to group nodes into clusters according to a common prefix, in

a similar way to Kademlia construction.

Pastry [5] and Tapestry [10] Finally, we consider the variant of PRR trees [44] employed in Pas-

try and Tapestry. Nodes are labeled by a string (u1u2...un) of n digits in base b. Each node is

connected to n(b − 1) distinct neighbors with labels (u1u2...ui−1x yi+i...yn), for 0 < i ≤ n and

x 6= ui, ui ∈ {0, ..., b − 1}. Besides, Pastry uses a ring-like geometry in a similar fashion to Chord

to make sure that requests can always make progress towards the destination if no entry is avail-

able for routing. This makes its adaptation more tedious. To simplify the process, we make use of
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the following observation.

Among the different possibilities for the remaining digits, i.e., yi+1, ..., yn, both DHTs select a

node that is nearby with respect to some proximity measure such as round-trip-time. However, if

we pick yi+1 = ui+1, ..., yn = un, it is possible to represent Pastry and Tapestry as an hypercube.

Since the generating set of the hypercube is quasiminimal for any permutation of the generators,

the construction rule for Pastry and Tapestry should be based on the permutation that preserves

the uniformity in the spatial distribution of nodes and keys. Such an order consists in picking the

(b − 1) generators that determine the edges for the ith digit of node labels in right-to-left order.

This implies that the hierarchical construction for Pastry and Tapestry is carried out by logically

partitioning the suffix part of Pastry labels into levels. In this sense, the construction for Pastry

and Taspestry is similar to Whirl. A joining node starts setting up its links by applying the Pastry

linking rule only to the nodes belonging to its leaf cluster. At the next higher tier, the joining peer

uses again Pastry linking rule to create its links in that tier. This process is repeated at successively

higher tiers of the hierarchy, until the links at the global cluster are established (if needed).

3.6 Performance Evaluation

To conclude the description of our framework, we decided to use a simulator and evaluate Whirl.

Since none of the tools available fitted our needs, we built our own simulator. We evaluated the

following characteristics of Whirl:

• Out-degree distribution;

• Average path length;

• Average query time, using both synthetic and real Internet latency models; and

• Load Balancing

Setup For simulations conducted in this evaluation, we used a Whirl hierarchy of 2 tiers. The

simulation model consisted of N participant peers, gathered in a varying number of leaf clusters

nc. Specifically, we set nc to 8, 16 and 32 in all tests, which corresponded to nodeId SUFFIXes of

3, 4 and 5 bits, respectively. We restricted Chord’s identifier space to [0, 2n=16). Further, we used

two different distributions to assign nodes to their clusters:

• A uniform distribution; and

• A Zipfian distribution where the number of nodes in the ith largest cluster is proportional to
1

i0.95 .

Since the results reported by our simulations were practically identical for both distributions,

we will only show the results corresponding to the Zipfian distribution. As a comparison baseline,

we implemented Chord as specified in [4].

3.6.1 Basic Properties: Degree and Average Path Length

First we evaluated the degree distribution of Whirl. Fig. 3.7a plots the average number of links per

node, as a function of the size of the network. The comparison shows that the average out-degree
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Figure 3.7: Out-degree comparison between Chord and Whirl.

is extremely close to log N irrespective of the number of clusters. This implies that Whirl retains

Chord complexity as the network grows, which facilitates scalability as well as link maintenance.

Fig. 3.7b plots the distribution of the number of links for a network of N = 10, 000 nodes.

The results show that the distribution ”flattens out” to the right of the average (of 13.29 links per

node) as the number of clusters increases. This can be explained by the following observation: as

nc increases, the distribution of the arc lengths at the global cluster is increasingly skewed. We also

note that the maximum number of links increases slightly, which indicates that the equivalence

between Whirl and Chord is near perfect in this regard. Whirl, moreover, enables the exploitation

of path locality thanks to its clustered architecture.

In Fig. 3.8a, we depict the average number of hops required to route between two nodes, as a

function of the network size. The results show that the average path length of Whirl is 1
2 log N +c,

where c is a small constant depending on the number of clusters. This phenomenon can be again

explained by our earlier observation. Moreover, it is noteworthy to remark that this increase is at

most 0.5, irrespective of the number of clusters (and even beyond to what we have represented

on this figure).

Finally, we measured the hop-count savings of Whirl with respect to Chord, as a function of γ.

The network size was set to 4, 096 for this test. As shown in Fig. 3.8b, for communication patterns

with more than 40% of locality, Whirl increasingly outperformed Chord. For γ = 0.9 and nc = 32,

Whirl exhibited a decrease of 33% in the average path length. This can be easily explained by

the reduction in the search space offered by each cluster. As γ approaches to 1, inter-cluster links

are taken less frequently; so intra-cluster routing takes place more commonly. Since each cluster

approximates a Chord graph of smaller order than the one in the global cluster, the average path

length reduces proportionally to the logarithm of the average cluster size, as shown in this figure.

3.6.2 Query Latency

In an effort to assess scalability, the typical measure that has been used is the average number of

routing hops. In most cases, either logarithmic complexity (e.g., Chord [4]) or polylogarithmic
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Figure 3.8: Routing comparison between Chord and Whirl.

complexity (e.g., Symphony [11]) has been sought. However, if the only requirement is a constant

number of hops, say three, a query could go, for instance, from Berlin to Paris through Tokyo and

New York. Although the number of hops is small, network latency was indeterminate and high in

this example. While bounding the number of hops by a logarithm is important, more important

is that the total cost of communication between peers is low.

In this section, we evaluate routing in terms of query time, rather in terms of number of routing

hops. We used two different datasets to model real communication latencies:

• GT-ITM [45]: The first dataset was produced using GT-ITM topology generator. The result-

ing topology provided a backbone of 1, 000 core routers arranged in a hierarchical manner.

Specifically, it contained 3 transit domains at the top level, with 4 routers in each. Each

transit router was broken into an average of 3 stubs, and each stub contained an average of

24 routers. Network latencies (edge weights) were assigned according to GT-ITM default

policy. Finally, we attached an average number of N
1,000 peers to each stub router. Such an

assignment was carried out to make possible the creation of a physical topology including

all the N participating peers.

• DIMES [46]: The second dataset was downloaded from DIMES, the largest-scale deployed

Internet exploration tool concerning the number of monitors, more than 8, 700 monitors

scattered over five continents. In particular, we used the inferred AS graph corresponding

to September of 2007. To assign the weights to edges, we selected the minimum latency (in

milliseconds) between the first hop in the source AS to the last hop in the destination AS.

Further, we removed parallel edges, always maintaining the edge with the largest delay. For

the simulations, we chose a random subset of 1, 000 ASes and attached an average number

of N
1,000 peers to each one, so that the final topology mimicked a real network of exactly N

peers interconnected through 1, 000 ASes.

To obtain exactly nc clusters with an accuracy similar to the one expected in reality, we made

use of Vivaldi [47]. Vivaldi is a distributed algorithm that assigns synthetic coordinates to nodes,
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Figure 3.9: Improvements in query time achieved by Whirl as a function of communication locality, γ.

so that the Euclidean distance between the coordinates of two nodes approximates the network

latency between them. Each node computes its coordinates by simulating its position in a network

of physical springs. Vivaldi is decentralized and efficient, in the sense that no fixed infrastructure

needs to be deployed and a new node can compute its coordinates after collecting latency infor-

mation from only few other nodes. These features align well with the requirements of peer-to-peer

systems; hence we chose Vivaldi.

The use of coordinates allowed us to deal with the creation of clusters as a traditional cluster-

ing problem which is solvable by popular clustering algorithms such as K-Means [48]. K-Means

is a general-purpose heuristic to cluster multi-dimensional data. It is simple and fast, and works

well with a wide variety of data distributions. Moreover, it has only two parameters: the number

of clusters and the degree of accuracy. K-Means obtains a set of nc clusters in such a way that the

sum of the squared Euclidean distance from each node to the center of the cluster it was assigned

to is minimized.

For Vivaldi, we used the implementation provided by Bamboo [49]. Then, we ran Vivaldi on

the two datasets to obtain two independent sets of coordinates. To stabilize the coordinates, we

fed the same set of measurements as an input to Vivaldi 1, 000 times. Afterward, we ran K-Means

5 times on the set of Vivaldi coordinates and returned the best solution. For this experiment, the

network size was set to N = 4, 096.

Fig. 3.9 depicts the results corresponding to GT-ITM (left) and DIMES (right), as a function of

communication locality (γ). As can be seen in the figure, for communication patterns with more

than 40% of locality, Whirl becomes the ”winner”, obtaining savings of up to 50% to the reference

query time established by Chord in GT-ITM. In DIMES, the results are somewhat worse, with a

cut-down on query time to 35%. Hence, we see that, irrespective of the underlying latency model,

Whirl has the potential to achieve significant reductions in query time by means of its hierarchical

structure, which makes our technique very appealing in practice.
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Figure 3.10: Load balancing comparison between Chord and Whirl.

3.6.3 Load Balancing

We also evaluated the load balancing characteristic of Whirl. The question we set out to answer

was whether Whirl was able to maintain a satisfactory load-balancing among peers, an assurance

provided by random hash assignments in Chord. To shed light on this question, we empirically

derived the load distribution on nodes and links imposed by GREEDY routing in both designs. In

this case, we limited the number of participants to 2, 048 nodes. The main reason for doing so was

to reduce the execution time, as accurate computation of load requires to consider the N(N − 1)

greedy paths specified for every pair of nodes.

Fig. 3.10a shows the fraction of peers that appeared as intermediate routers in a particular

number of routing paths. From the inspection of this figure, it can be inferred that all distribu-

tions present a similar shape. However, Whirl distributions are shifted rightward (downward) by

a variable amount relative to Chord distribution. The quantity of shift increases gradually with

the number of clusters, albeit the fraction of nodes whose load is more than 1.5 times the vertex-

forwarding index of Chord is insignificant. Recall that the vertex-forwarding index of Chord is

given by expression 2n−1(n − 2) + 1 (see Theorem 29), which is equal to 9, 217 in a network of

2(n=12) participating nodes. The load distribution over nodes is thus almost uniform and there-

fore, Whirl has a good load balance, which is comparable, to a remarkable extent, to the load

balance characteristic of Chord.

The distribution of link load is depicted in Fig. 3.10b. As can be seen in the figure, more than

65% of links have a load close to 1, 024, which coincides with the arc-forwarding index of Chord

(see Theorem 33). In general, what this figure shows is that when the identifier space is not fully

occupied, Whirl balances load as well as Chord.

3.7 Conclusions

We have described Cyclone, a generic framework for constructing hierarchical DHTs almost at no

cost. We have shown how this framework can be applied to flat DHTs that, while yet maintaining
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homogeneity, can also achieve significant improvements in communication. As a representative

example, we have applied our technique to construct a hierarchical version of Chord. Since our

framework is based on the Cayley graph model, it can be made extensible to a wide variety of

DHTs, including Chord, Symphony, Pastry, HyperCup, IHOP etc., and in theory, to all DHTs

where the number of generators is a function of the size of the Cayley graph. Further, we have

quantified the advantages of our constructions in terms of routing and adaptation to the physical

network, theoretically when possible, but always by means of extensive simulations.

Possible directions for future work:

• An interesting direction would be to improve our framework by considering other aspects.

For example, with O(log N) connections per node, Whirl can route in O(log N) steps as

Chord. If nodes could establish a number of links proportionally to their capacities, Would

Whirl be able to reduce the average path length for leaf clusters without worsening routing at higher

tiers?

• It would be interesting to identify and to address practical issues that arise in the implemen-

tation of our hierarchical designs, on PlanetLab, for example.

• Since our hierarchical constructions differ from superpeer systems, it would be very useful

to provide a comparison between our designs and superpeer systems to identify the advan-

tages as well as the pitfalls of our constructions relative to superpeer systems. We provide a

partial answer to this issue in the next Chapter, where we propose a framework to compare

the communication costs of hierarchical designs.
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Appendix

Proof of Theorem 19

Proof. Let V (CHn−1) and Vk be the vertex set of CHn−1 and CHn[Vk], respectively. Let fk(x) be

a mapping from V (CHn−1) to Vk such that fk(u) = k + 2u, ∀u ∈ {0, 1, ..., 2n − 1} and 0 ≤ k < 2.

Notice that fk is well-defined: An element in the domain V (CHn−1) has exactly one image in Vk.

In the following, we show that fk is an edge-preserving bijective function.

(a). (one-to-one)

Let u and v be vertices in V (CHn−1) such that fk(u) = fk(v). Then,

fk(u) = fk(v)

k + 2u = k + 2v

u = v

(b). (onto)

Clearly, fk is onto since for any vertex v in Vk, there exists a vertex u in V (CHn−1) such that

fk(u) = v.

(c). (edge-preserving)

c.1. Let u and v be two adjacent vertices in CHn−1. We show that their respective images

under fk are adjacent vertices in CHn[Vk]. Then,

fk(v) ≡ fk(2i + u) (mod 2n)

(since u and v are adjacent, v ≡ 2i + u (mod 2n−1) for some i ∈ {0, 1, ..., n − 2})

≡ k + 2(2i + u) (mod 2n)

≡ 2i+1 + (k + 2u) (mod 2n)

≡ 2i+1 + fk(u) (mod 2n)

Therefore, vertices fk(u) and fk(v) are adjacent with respect to the generators 2i+1, ∀i ∈ {0, 1, ...n − 2}.

By a similar argument, it is easy to prove that fk(u) and fk(v) are adjacent with respect to −2i+1,

∀i ∈ {0, 1, ..., n − 2}.

c.2. Let u and v be adjacent vertices in CHn[Vk]. Now, we show that f−1
k (u) and f−1

k (v) are

adjacent vertices in CHn−1. Then,

v ≡ 2i + u (mod 2n), for some i ∈ {0, 1, ..., n − 1}

≡ fk(2i−1 + 2−1(−k + u)) (mod 2n).

Thus,

f−1
k (v) ≡ 2i−1 + 2−1(−k + u) (mod 2n−1)

Since f−1
k (u) ≡ 2−1(−k+u) (mod 2n−1), it follows that the vertices f−1

k (u) and f−1
k (v) are adjacent

in CHn−1 with respect to the generators 2i−1, ∀i ∈ {1, ..., n − 1}. By similar reasoning to that in

c.1., it is easy to show that the same follows for the inverse generators −2i−1, ∀i ∈ {1, ..., n − 1}.

Proof of Lemma 30
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Proof. For n ≤ 1, note first that CHn is isomorphic to the complete digraph of 2n vertices. Hence,

CHn is arc-transitive, which completes the first part of the proof.

Suppose that n ≥ 2. The strategy of the proof is as follows. Let us consider an arc (u, v) of

CHn and compute N3
uv , the number of distinct cycles of length 3 that contain (u, v). If for two arcs

(u, v) and (u′, v′), their numbers differ, then CHn cannot be arc-transitive. Now, let us consider

that (u, v) is an arc with label 1, v = u + 1 (mod 2n), and (u′, v′) is an arc with label n − 2,

v′ = u′ + 2n−2 (mod 2n). Let us show that N3
uv 6= N3

u′v′ .

Let us first consider (u, v). Without loss of generality, let us assume that u = 0 and v = 1.

Further, suppose that (u, v) lies in a cycle of length 3. Hence, this cycle is of the form 1 −→ p −→

0 −→ 1, with p 6= 1 and p 6= 0. By definition, this means

p ≡ 1 + 2i (mod 2n), for some i ∈ {0, 1, ..., n − 1}

0 ≡ p + 2j (mod 2n), for some j ∈ {0, 1, ..., n − 1}

Altogether, this gives 1+2i +2j ≡ 0 (mod 2n). Since 0 is even, this implies that either 1+2i or

1+2j must be an even integer. Without loss of generality, let us consider that 1+2i is even. Then,

i = 0. Thus, we have that 1 + 2j−1 ≡ 0 (mod 2n), which is impossible. Consequently, N3
uv = 0.

Now let us consider (u′, v′). Without loss of generality, let us assume that u′ = 0 and v′ = 2n−2.

We are looking for a cycle of the form 2n−2 −→ q −→ 0 −→ 2n−2 (with q 6= 2n−2 and q 6= 0). Then,

q ≡ 2n−2 + 2i (mod 2n), for some i ∈ {0, 1, ..., n − 1}

0 ≡ q + 2j (mod 2n), for some j ∈ {0, 1, ..., n − 1}

In this case, we can see that it is possible to find at least two distinct solutions for the doublest

(i, j). They are the following: {(n − 1, n − 2), (n − 2, n − 1)}. As a result, N3
u′v′ ≤ 2. Hence, CHn

is not arc-transitive for n ≥ 2. In other words, arcs labeled 1 do not participate in any cycle of

length 3, whereas arcs labeled n− 2 participate in some cycles; thus, no automorphism of CHn can

transfer the first type to the other.
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4
A COMPARATIVE STUDY OF HIERARCHICAL

DHT SYSTEMS

In Chapter 3, we have proposed a framework for building hierarchical DHT designs. However, a

significant number of hierarchical DHT designs have been proposed in the literature, which have

particularities that distinguish them from our hierarchical constructions. Since no design can be

considered ”universally” better, what is lacking is an analytic framework to provide the means

for identifying the optimal hierarchical design for a given workload.

In this Chapter, we provide such a comparative framework, and we use it to compare the two

principal hierarchical DHT designs: the homogeneous design, in which all nodes take equal roles,

against the superpeer design, in which a small subset of peers (the most powerful and stable), be-

have as proxies, interconnecting clusters with highly dynamic membership. Our analysis reveals

that, on the contrary to what was initially expected, the costs incurred by the superpeer design

are not necessarily minimized.
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4.1 Introduction

”Your faith was strong but you needed proof”

Cohen, Leonard

In the previous Chapter, we presented our framework for constructing hierarchical DHTs from

their flat designs. Although our framework is novel in many aspects, there exist other hierarchi-

cal designs in the literature that present particularities that complement our work, and make hard

the identification of under which circumstances our design is better. The same occurs between

other existing designs. For instance, a software engineer may choose our constructions for their

graph-theoretic properties, while an Autonomous System (AS) administrator may select the de-

sign offering the greatest amount of administrative autonomy.

In such a relative wide sea of designs: Coral [24], Canon [13], HONET [50], HIERAS [25], our

constructions, what is lacking is an analytic framework that takes the first step towards a general

consensus for the comparison of the existing, as well as the future, hierarchical designs against

each other.

In this context, our work provides an analytical basis, by which an engineer can choose the

underlying hierarchical network.What makes superpeer systems better than homogeneous designs like

ours, or more generally, one design better than another? And what does better mean? These are the main

questions that we seek to answer in this Chapter.

We answer these questions from the viewpoint of communication cost. More specifically, we

provide an analytic framework to measure the communication cost of hierarchical DHTs. Also, we

take the extreme designs on the spectrum to show that not necessarily a design is better than the

other. In particular, we compare the superpeer architecture proposed by Garcés-Erice et. al. [22]

against our framework for designing homogeneous hierarchical DHTs. We note that because our

aim is to explore in which situations a particular hierarchical design is better, we do not lose

generality by restricting attention to these two particular instantiations.

Summary of Results

In this Chapter, we make the following contributions:

i. We develop a cost-based model to assess the resources that a hierarchical DHT system has

to contribute to efficiently support communication operations. Our formal model is novel

in several aspects, among which, emphasizing locality in communication is the most impor-

tant. It is obvious that the cost will be greatly influenced by the degree of locality, known as

intra-cluster communication, that exits in the communication patterns of any specific peer-

to-peer application.

ii. Using the proposed cost model, we compare the two main hierarchical DHT designs:

• The homogeneous design, in which all nodes take the same duties and responsibilities

for all operations; against

• The superpeer design, in which a small set of peers, usually referred to as superpeers,

process and relay queries on behalf of regular peers.
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We believe that our framework is useful in determining which type of topology is appropriate

for a specific P2P application, and in identifying pitfalls in existing hierarchical designs that are

mainly driven by the desire to exploit the heterogeneity of peers to their advantage.

The rest of the paper is structured as follows:

• In §4.2, we discuss related work.

• In §4.3, we present the designs we analyze in this Chapter.

• In §4.4, we examine the impact that locality has upon routing performance.

• In §4.5, we evaluate the hierarchical designs we have introduced in §4.3.

• Finally, we draw some conclusions in §4.6.

4.2 Related Work

Despite the growing interest in hierarchical DHTs, as far as we know, our work is the first attempt

at providing a formal analysis of the two main hierarchical DHT designs: the homogeneous design

[13, 24] against the superpeer design [22, 25, 50]. However, recent work has extensively examined

superpeer architectures, shedding light on their performance trade-offs, their potential drawbacks

and reliability. They are described below.

S. Zoels et. al. [51] proposed a cost model to analyze when a superpeer architecture is better

than a flat architecture. They found the existence of a natural trade-off between minimizing total

cost and minimizing the cost for the highest loaded peer in the network. However, their study was

tailored to a particular hierarchical architecture. They did not provide an analytical framework to

compare existing hierarchical DHT designs.

A more practical analysis was performed by Yang and Garcia-Molina [52]. They considered,

in addition to performance trade-offs, redundancy and topology variations in superpeer design.

They were able to extract a few rules of thumb, even though they did not contemplate the homo-

geneous alternative.

For flat DHTs, Christin and Chuang [53] proposed a cost model to evaluate the resources that

each node has to contribute for participating in the network. They investigated some of the most

representative topologies, and concluded that from the point of view of reliability and scalability,

all the geometries may create large imbalances in the load imposed on different nodes. We argue

that such a model was a good starting point for our analytic framework. It helped us to formalize

the forwarding traffic and characterizing the efficiency of a system as whole. We shared their aim,

but for hierarchical designs.

In the following, we review some relevant works that showed the advantages of hierarchical

designs.

Ganesan et. al. [13] proposed Canon, a technique to construct hierarchical DHTs from their flat

counterparts, so that the homogeneity of load and functionality offered by the flat designs can be

incorporated to the hierarchical versions. They mostly adduced better fault isolation, more effec-

tive bandwidth utilization, and better adaptation to the physical Internet as the main arguments

to use hierarchical DHT systems.
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Complementing this work, Garcés-Erice et. al. [22] studied the potential benefits of structuring

peers into two layers: a superlayer, where the superpeers (the nodes with relatively long lifetime

and large capacities) behave like proxies for the peers in the ”regular” layer. The authors showed

that superpeer systems scale better because queries are mainly processed by superpeers, which

actually constitute the ”backbone” of the network.

4.3 Hierarchical Architectures

In this section, we describe the two architectures we compare in this work. Since we instantiate

both designs with Chord, we start with a brief description of Chord followed by our assumptions.

Chord

Although Chord [4] has been extensively described in Chapter 2, we provide a brief description

to refresh it here.

Chord maps keys to nodes by means of consistent hashing [35], which has some desirable prop-

erties. Consistent hashing assigns an D-bit identifier to both nodes and objects using a collision-

resistant hash function such as SHA-1. Then, objects are mapped to nodes as follows. Identifiers

are ordered on an identifier circle modulo 2D, labeled from 0 to 2D − 1. An object with identifier

k (also know as key) is assigned to the first node, called the successor of this key, whose identifier

follows (or is equal to) k in the identifier space (i.e., the first node going clockwise from k).

To accelerate searches, Chord maintains logarithmic routing information. Each node u main-

tains a routing table with up to n entries called finger table. The ith entry in the table contains the

id of the first node v that succeeds u by at least 2i on the identifier ring, where 0 ≤ i < D.

The standard Chord search protocol works as follows: upon receiving a message for a key k, a

node u forwards the query to the furthest finger whose id precedes most immediately (or is equal

to) key k. By O(log N) forwardings, the message reaches the destination node. Hence, routing is

clockwise and greedy, never overshooting the destination.

Assumptions

For the remainder of this work, we make use of the following assumption.

Definition 42 (All-exist-all-live assumption). Given that the identifier space under consideration is

I =
{
0, 1, . . . , 2D − 1

}
, all-exist-all-live assumption determines that each position in I is occupied by a

live node.

As we look for comparative results under the same conditions, we observe that this assump-

tion is clearly acceptable. Moreover, it prevents our results to be biased against the nodes with the

longest arcs. In fact, this bias is only significant when providing a worst-case analysis. However,

for an average-case analysis, this simplification is acceptable and very helpful to ease exposition.

For the sake of simplicity, both architectures are restricted to two layers. It has been discussed

in [25] that two is a pragmatic choice for the number of layers in a hierarchy. Of course, to make

a fair comparison, we suppose that both architectures have the same number of nodes N , the

same number of peers n in a cluster, and the same number of clusters K, where N = Kn. Under
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Figure 4.1: Two-tier Whirl architecture.

all-exist-all-live assumption, the above requirements force N to be 2D. Hence, n must be equal to

2d for some positive integer d < D, and K = 2D−d. Also, we assume that and each cluster has a

unique identifier.

4.3.1 Homogeneous Design

Among the existing homogeneous designs [13, 24], we selected our design for one basic reason: to

identify in which characteristics our design is superior to superpeer systems. Since an extensive

discussion of our construction was provided in Chapter 3, we only revisit the components needed

to easily follow exposition in this Chapter.

Under all-exist-all-live assumption, our construction of Chord, called Whirl, can be defined as

follows.

Definition 43 (Whirl). Consider a directed graph on 2D nodes distributed on a circle. Nodes are labeled

with D-bit identifiers from 0 through 2D − 1 going clockwise. At tier-1, all nodes are organized into 2D−d,

0 ≤ d < D, disjoint clusters, which together form a unique cluster at tier-2. All nodes participate to the

two tiers simultaneously, and use the (D−d) rightmost bits of their nodeIds to identify their cluster. That

is, all nodes within the same cluster share the (D − d) rightmost bits of their nodeIds.

Each node establishes the following links:

i. At tier-1, a link (u, v) exists between two nodes u and v in the same cluster iff dclockwise(u, v) = 2i

on the circle for all i ∈ {(D − d), (D − d) + 1, . . . ,D − 1} .

ii. At tier-2, a link (u, v) exists iff u and v are 2i positions apart on the circle for all i < (D − d). In

this case, nodes u and v come from distinct tier-1 clusters.

According to the above definition, Whirl can be seen as a ever-rising sequence of regular inter-

leaved polygons with corners uniformly distributed along the identifier circle
{
0, 1, . . . , 2D − 1

}
.

Technically speaking, given a tier-1 cluster and a node u within that cluster, the immediate succes-

sor of u in its tier-1 cluster will be at least clockwise distance 2d away from u on the circle. Fig. 4.1

shows a two-tier Whirl architecture for two clusters (D − d = 1).

From the perspective of shortest paths, the definition of Whirl is deceptively simple; it hides a

rich combinatorial structure, some of which we will unearth throughout this chapter.
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Routing

Routing in Whirl is identical to routing in Chord, i.e., clockwise GREEDY routing. Throughout

this Chapter, a source node will first attempt to route on its tier-1 cluster, and only if the node that

is responsible for the key is not reached, the query will be routed through the global cluster.

Advantages and Disadvantages

As signaled in [13], the primary benefit of the homogeneous design is the uniform distribution of

load among all nodes in the network, which also ensures that there is no a single point of failure.

We illustrate this aspect through a brief discussion.

If one views a cluster as a single node, it is evident that a cluster can only be disconnected if the

clusters to which it is connected are faulty. Otherwise, any message will have the chance to leave

it, albeit this is done through a (suboptimal) routing path. To provide a better understanding of

this, we provide the following simple Lemma.

Lemma 44. Let each node fail with probability p in a time period of length λ(p), with probability at least

ε = 1− 1/Nk the following statement is true. If all clusters have size at least n > ln
(

1
N ln

(
1
ε

))
1

ln p , then

no cluster is faulty.

Proof. Recall that for a cluster to fail all peers in that cluster must be faulty. The probability that

this event happens is pn. Since the total number of clusters is K = N
n , we have that the probability

that no cluster is faulty is given by (1−pn)N/n > (1−pn)N ≈ e(−pn)N (N is supposed to be large).

Picking n > ln
(

1
N ln

(
1
ε

))
1

ln p , this probability is more than ε and the lemma follows.

However, this design has a major drawback. Transient and low-capacity peers can seriously

compromise the scalability of the whole system. For example, if a low-capacity peer stores a pop-

ular file, it will be rapidly overwhelmed, becoming a bottleneck. To remedy this, there are some

solutions such as proactive caching [54] that can compensate the disadvantages of a homogeneous

treatment of all peers.

4.3.2 Superpeer Design

In this section, we describe the superpeer design selected for our comparison. This design is the

superpeer architecture proposed by Garcés-Erice et. al. [22]. We extensively describe it in Chapter

2. Hence, in this section, we only revisit the main parts.

Architecture

In this design, peers are divided into two layers: the superlayer and the regular-layer. Each peer in

the superlayer, or the layer-2 network, is called supeerpeer, and is responsible for propagating the

queries on behalf of the regular-peers in its cluster. For this purpose, each superpeer is connected

to other superpeers in the superlayer, according to the standard Chord rule for creating links.

More specifically, all clusters are organized into a Chord overlay network defined by a directed

graph (C, E), where C = {C1, C2, . . . , CK} is the set of all clusters and E denotes the set of edges

between the clusters in C. If si is a superpeer in cluster Ci, and (Ci, Cj) is an edge in the superlayer
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Figure 4.2: Two-tier superpeer Chord-like architecture.

overlay, (C, E), then si knows the IP address of superpeer sj in cluster Cj . With this knowledge,

si can directly forward queries to sj .

It is important to note here that we assume that each cluster has exactly one superpeer, though

in [22] there is no such a restriction. However, this assumption is reasonable because we consider

that all superpeers are always up and never leave the network. In other words, we are optimistic

with respect to the performance of this design.

A peer in the regular-layer, or equivalently in the layer-1, is called regular-peer. A regular-peer

is characterized because it only keeps connections to other regular-peers in its cluster. Within each

cluster, there is also a Chord overlay network that is used for routing queries in that cluster. Fig.

4.2 depicts this architecture with a single superpeer per cluster.

Routing

Essentially, the routing protocol exploits the multi-layer structure: first, the routing protocol looks

for the cluster that stores a given key; next, it looks for the manager of this key within that cluster.

More precisely, consider a peer p looking for a key k not stored in its cluster. Then, routing can

be described in the following way:

1. First, p forwards the query to the superpeer in its cluster, using standard Chord GREEDY

routing.

2. Upon the reception of the query, the superpeer routes the query across the superlayer over-

lay (C, E) until the destination cluster is reached. Since (C, E) is a Chord overlay, the desti-

nation cluster is the cluster whose superpeer s has the closest id to the key. Let Fsup(C) be

the superpeer of cluster C. Formally, the destination cluster, Cdest, is

Cdest = arg min
Ci∈C

dclockwise(Fsup(Ci), k)

Observe that during this phase, the query only passes through superpeers. This is the major

strength of this architecture.

3. Finally, using the Chord overlay network in cluster Cdest, superpeer Fsup(Cdest) routes the

query to the peer responsible for k.
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Advantages and Disadvantages

The obvious benefit of superpeer systems is the exploitation of heterogeneous peers, by assigning

responsibility in proportion to the capacities of peers. By designating as superpeers the peers that

are ”up” the most, the superlayer overlay will be more stable, thereby letting the system approach

its optimal performance.

Disadvantages of superpeer systems include the potentially high traffic rates on inter-cluster

links, and the diminished fault-tolerance due to the special role played by superpeers. However,

there is another factor that most notably limits the feasibility of superpeer systems. This factor is

the use of an effective management protocol that promotes the long-lifetime and large-capacity

peers as superpeers when needed [55]. Since no complete knowledge is available in a decentral-

ized system, it is difficult to determine what values are ”long” or ”large” enough in relation to the

peers currently present in the system. We provide a large discussion on this topic in [56].

4.4 Locality Analysis

Previous works [13, 22, 51] that evaluate hierarchical DHT systems suppose that communication

is uniform, that is, all nodes have an equal probability of serving a request. While such an assump-

tion is realistic for flat DHTs, hierarchical DHTs exploit the locality that exists in communication

patterns to their benefit, for example, by allowing nodes to specify in which clusters the content

is made accessible or stored [13]. In other words, we drop the assumption that a node communi-

cates with any other node with equal probability, assuming that nodes in a cluster communicate

together with a higher (or lower) probability than do two nodes from two different clusters.

Let γ be the probability that both the source and the destination nodes of a request are in the

same cluster. Hence, (1 − γ) denotes the probability of inter-cluster communication. That is, the

smaller the value of γ, the more likely the anti-locality in communication. Further, we assume

that:

• Intra-cluster communication is distributed uniformly at random over the set of nodes within

each cluster. This means that the source peer will route an intra-cluster query to each intra-

cluster peer with equal probability; and

• Inter-cluster communication is uniformly random, that is, a source forwards an inter-cluster

query to each other cluster and to each node in the target cluster with equal probability.

In what follows, we characterize the performance measures to evaluate both architectures as

a function of γ. Observe that it is difficult to predict what values of γ an architect may expect in

practice. We remark that although the results of the following sections suggest that no design is

”universally” better, it is clear that if inter-cluster messages are frequent, it is more beneficial to

use a hierarchical design that requires higher maintenance but saves significantly on requests.

First, we begin by clarifying the impact that locality has upon the average path length, denoted

by µ (in terms of number of hops). The expected value of this quantity can be viewed as simple

metric capturing the overall routing cost suffered by each node.
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4.4.1 Homogeneous Design

We derive the average path length, µHD, for the homogeneous design. Then,

µHD = γ(µl1) + (1 − γ)(µl2) (4.1)

where µl1 is the average number of hops between two nodes within a cluster at tier-1, and µl2

is the average path length of the global cluster (when both nodes belong to distinct tier-1 clusters).

To compute µl1, we exploit the fact that under all-exist-all-alive assumption, a Chord network

embeds a hypercube. Thus, if a message is for a node that is clockwise distance η away, routing is

equivalent to performing left-to-right bit fixing to convert the 1s in the binary representation of η

to 0s. That is, if η is 9 (1001 in binary), Chord routing uses the jumps of size 8 and 1 in that order,

fixing the leftmost 1 in the remaining distance at each step. Thus, µl1 can be calculated as follows,

µl1 =

∑d
i=0

(
d
i

)
i

2d
=

d

2
(4.2)

Once we compute µl2, we shall be done. To calculate µl2, the first constraint to be imposed is

that the source and the target clusters are distinct. This implies the existence of at least 1 inverted

bit in the rightmost (D − d) bits of the source and target nodeIds. Now, let η be the clockwise

distance between the source and target nodes. Then, it is easy to see that η = i+ j, where distance

i (i > 0), is contributed by the (D− d) rightmost bits of η and the distance j (j > 0) is contributed

by the d rightmost bits of η. Consequently, the number of nodes at clockwise distance η is given

by
(
D−d

i

)(
d
j

)
. Then, µl2 is computed from

µl2 =

∑D−d
i=1

∑d
j=0

(
D−d

i

)(
d
j

)
(i + j)

2D − 2d
=

D2D−1 − d2d−1

2D − 2d
(4.3)

Equations (4.1), (4.2), and (4.3) then give

µHD = γ

[
d

2

]
+ (1 − γ)

[
D2D−1 − d2d−1

2D − 2d

]

It is worth noting that when γ = 2d−D (i.e., the probability of intra-cluster communication is

proportional to n), µHD = D
2 as expected.

4.4.2 Superpeer Design

We now compute the average path length, µSD, of the superpeer design as a function of γ. Clearly,

µSD is given by:

µSD = γ(µl1) + (1 − γ)(2µl1 + µsl)

where µl1 is the average path length of the layer-1 overlay, and µsl is the average path length

of the superlayer overlay (notice that both the source and the destination node belong to distinct

clusters). We have already shown that µl1 = d/2. Using reasoning analogous to that in Eq.(4.3), it

is easy to see that
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Figure 4.3: Comparison between homogeneous (HD) and superpeer (SD) designs’ average path length for

D = 32 and d = 10. The value of γ is varied from 0 to 1 (a). γ is fixed at 0.5 and d is varied from 1 to 32 (b).

µsl =

∑D−d
i=1

(
D−d

i

)
i

2D−d − 1
=

(D − d)2D−d−1

2D−d − 1
(4.4)

Therefore, combining equations (4.4) and (4.2), µSD is given by

µSD = γ

[
d

2

]
+ (1 − γ)

[
(D + d)2D−1 − d2d

2D − 2d

]

Again, when γ = 2d−D, µHD equals to D
2 or that of Chord.

4.4.3 Discussion of Results

A comparison of the average path length for the two designs is plotted in Figures 4.3a-4.3b. Both

instances have network sizes n = 210 and N = 232. We make the following observations.

• In Fig. 4.3a, the value of γ is varied from 0 to 1. As γ approaches 1, both designs have similar

performance, as inter-cluster links are rarely used. However, as γ tends to 0, the superpeer

design increasingly outperforms the homogeneous design. It must be noted that this is done

at the price of increasing the required capacities of superpeers. This claim will be clarified

in the next section.

• As can be seen in Fig. 4.3b, the average path length in both designs rises when cluster size

approaches N (γ is fixed at 0.5). Our results indicate that is not recommendable to create

large clusters. With a few thousands of nodes in each cluster, the average path length of the

superpeer network is 40% higher than the path length of the homogeneous network. Thus,

if query traffic dominates maintenance traffic, then hierarchical overlays with large clusters

will perform poorly. Most of the traffic will cross the already congested inter-cluster links,

thereby incurring intolerable network delays.
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4.5 Cost-Based Analysis

In this section, we describe our cost framework for hierarchical DHTs. To this purpose, we start

with a formal description of the metrics and the workload. We define workload as follows.

Definition 45. Denote by l the average lifetime of a node. Denote by f the average number of queries each

node processes per second. Then, we define a workload w by the quadruplet w :=< N,n, l, f >, where N

is the number of nodes in the system, and n the cluster size.

Our typical workload assumes that node lifetime L follows an exponential distribution:

Pr[L = t] = λle
−λlt,

where λl = 1
l . We take a node lifetime similar to the one encountered in real P2P systems.

For instance, the average node lifetime in Gnutella is 2.9 hours [57]. We also assume that nodes

generate traffic independently of each other, following a Poisson process with a medium to high

mean rate f = 0.1 ∼ 10 queries/second (Note that a node itself can represent a gateway in a

large enterprise network). In addition, we treat node arrival as a Poisson process with rate λa. To

maintain a stable population of N nodes at all times, we set λa = Nλl = N
l .

Next, we define the individual cost as follows.

Definition 46. Let D be a hierarchical design. Let ID be a concrete realization of D with vertex set V (ID).

Given a workload quadruplet w :=< N,n, l, f >, the individual cost imposed on a peer p in V (ID) is given

by CID (p,w) = CID,m(p,w) + CID,r(p,w), where CID,m(p,w) and CID,r(p,w) denote the maintenance

and routing costs imposed by ID on p under workload w, respectively.

We now define total cost as follows.

Definition 47. Let D be a hierarchical design. Let ID be a concrete realization of D with vertex set V (ID).

Given a workload quadruplet w :=< N,n, l, f >, we define the total cost CID (w) of an instance ID as

CID (w) = CID,m(w) + CID,r(w), where CID,m(w) and CID,r(w) are the maintenance and routing costs

of ID under workload w, respectively. Clearly,

CID (w) =
∑

p∈V (ID)

CID,m(p,w) +
∑

p∈V (ID)

CID,r(p,w)

To simplify exposition throughout this Chapter, we drop parameter w from all cost equations

(as it is clearly implicit). Further, we assume that both query and maintenance messages have a

size of b bytes, all messages are explicitly acknowledged and the acknowledgments have length

0.5b. Below, we use the total cost to compare the two hierarchical designs against each other.

4.5.1 Homogeneous Design

We start with the maintenance costs of the homogeneous design.

Maintenance cost

In this section, we calculate the minimum traffic required for updating the routing tables in the face

of node arrivals and departures. In an N -node homogeneous DHT with node lifetime l, on aver-

age N
l nodes join and N

l nodes leave each second. As our analysis uses Chord as a representative
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substrate, maintenance costs for the homogeneous design are strongly characterized by the costs

of keeping up the Chord overlay structure in each cluster.

The main characteristic of the homogeneous design is that all nodes act equal roles and adopt

the same responsibilities for all the operations. Under our workload model, this means that the

traffic suffered by each node will be the same, irrespective of capacity constraints at each node. In

our model, this property is advantageous for computing the cost, as the cost of the homogeneous

design, CHD, is equivalent to computing the total cost of a Chord network (note that requests are

uniformly distributed over the set of nodes and all nodes have an equal number of fingers).

In what follows, we compute the maintenance cost for Chord. In Chord, maintenance traffic

is generated by: 1) heartbeat messages, 2) stabilization messages and 3) fixfinger messages.

Heartbeat Cost. Heartbeat messages are sent periodically by each node to check if a finger is still

alive. Assuming that 1) heartbeat messages are sent every Tbeat seconds; 2) they have length 0.5b,

and 3) each node handles D fingers, the total traffic for the heartbeats is

Cbeat =
0.5bND

Tbeat

Stabilization Cost. Chord specifications define a stabilization algorithm that each node executes

periodically to verify if a joining node has inserted itself between a node and its successor. A

detailed description of this procedure can be found in [4]. For convenience, we assume here that

stabilization requires three messages of length b. If we consider that stabilization is run every Tstab

seconds, the traffic generated is

Cstab =
3bN

Tstab

Finger Updating Cost. Adding or removing a node is accomplished at a cost of O(log2 N) mes-

sages. By way of explanation, each node periodically invokes fixfinger to make sure that its fingers

are correct; this is how existing nodes incorporate new nodes into their finger tables. In particu-

lar, fixing a finger requires looking up the finger’s id, which costs O(log N) messages on average.

Because log N rounds of fixfinger are required to initialize a finger table, fixfinger cost is O(log2 N).

For the time being, we make a further simplification by assuming that fixfinger acquaints each

node that is affected by a topological change. In other words, fixfinger is run solely when a node

joins or leaves the overlay. We take thus a conservative approach, contrariwise to Chord that

needs periodic updates on all nodes, a simpler strategy that incurs a higher overhead. Consistent

with this observation, the cost for fixfinger is presented below.

When a node joins, the number of existing nodes that need to update its finger table is O(logN)

on average. In our case, this value is exactly D, since we supposed that the identifier space is fully

populated. Since fixing each finger requires performing one lookup, a mean of D(D/2) messages

is required to update all the affected nodes in the face of a node arrival. Assuming these messages

have unit size b and each is acknowledged by a packet of length 0.5b, the total traffic needed for

updating all the affected finger tables is

(1 + 0.5)bND2

2l



A COMPARATIVE STUDY OF HIERARCHICAL DHT SYSTEMS 75

The same cost is incurred when a node leaves. Specifically, the leaving node sends a message

to each of its fingers to notify them about its imminent departure. Upon reception of this message,

each notified finger immediately updates its routing table to continue offering logarithmic guar-

antees on routing. Altogether, this requires ND2

2l messages, which increases the maintenance cost

by another amount of

(1 + 0.5)bND2

2l

bytes. Moreover, a mean of D2/2 messages are required to initialize the finger table of a new

node. Therefore, the fixfinger traffic is

Cfix,HD = (1 + 0.5)b

[
N

l
D +

N

l
D +

N

l
D

]
D

2
.

Maintenance cost. The maintenance traffic (fixfinger + heartbeat + stabilize) is then given by

Cm,HD =

(
4.5

D2

2l
+

0.5D

Tbeat
+

3

Tstab

)
bN.

Routing Cost

Once we compute the routing cost, we shall be done. With this formulae, we will be able to infer if

it is economical to use the homogeneous design under a given workload. To compute the routing

cost, we know that each node processes f queries per second. Hence, the total number of lookups

processed by the system is Nf . Since each lookup takes µHD hops, then the total traffic dedicated

for lookups is

Cr,HD = (1 + 0.5)bNfµHD.

Total cost

Therefore, the total cost (maintenance + routing) is given by

CHD =

[
4.5

D2

2l
+ 1.5fµHD +

0.5D

Tbeat
+

3

Tstab

]
bN. (4.5)

We can in turn use expression (4.5) to compute the individual cost that each overlay node p

has to afford for being part of the overlay. Let CHD(p) denote the individual cost suffered by peer

p. Then, CHD(p) can be computed directly by dividing the total cost, CHD, by N . This is possible

because all nodes have equal responsibilities from the system’s viewpoint. Therefore,

CHD(p) =

[
4.5

D2

2l
+ 1.5fµHD +

0.5D

Tbeat
+

3

Tstab

]
b for all p.

4.5.2 Superpeer Design

As in the case of the homogeneous design, we start with the derivation of the maintenance cost.

Next, we continue with the routing cost to finally provide an accurate closed-form expression for

the total cost. The analysis here is more complex, since we need to distinguish between two types

of peers: regular-peers and superpeers.



76 CHAPTER 4

Maintenance cost

There are two classes of connections in superpeer networks: the connections between superpeers

and the connections which have at least one regular-peer as an endpoint. The maintenance cost

on any peer is directly related to the number and the stability of the peers in its finger table. This

means that the maintenance cost is proportional to the number of fingers and inversely propor-

tional to the average lifetime of them. For ease of explanation, we consider that supeerpeers are

always up. So fixfinger traffic must be considered conservative in this design. Formally, this leads

us to establish that total fixfinger traffic as (i.e., only links to regular-peers can fail)

Cfix,SD = (1 + 0.5)b

[
N

l
d +

N

l
d +

N

l
d

]
d

2
.

Consequently, the total maintenance cost Cm,SD is

Cm,SD =

(
4.5

d2

2l
+

0.5D

Tbeat
+

3

Tstab

)
bN. (4.6)

One important observation about superpeer design is that individual maintenance costs Cm,SD(p)

suffered by each node p can be directly derived from Cm,SD/N .

Routing cost

Next, we derive the routing cost imposed on each superpeer. Let CSD,r(s) denote the individual

routing cost that superpeer s processes each second. Then, it is easy to see that CSD,r(s) can be

calculated as follows:

CSD,r(s) = CSD,CL(s) + CSD,NCL(s)

where CSD,CL(s) is the routing cost at s due to intra-cluster traffic, and CSD,NCL(s) is the routing

cost at s due to inter-cluster traffic.

In the derivation of CSD,r(s), note that each inter-cluster message traverses µsl =
[

(D−d)2D−d−1

2D−d−1

]

superpeers on average before reaching the destination cluster. Since each cluster injects these mes-

sages at rate (1 − γ)fn into the system, then

CSD,NCL(s) = (1 − γ)fnµsl(1 + 0.5)b for all s,

while

CSD,CL(s) = γf µl1(1 + 0.5)b for all s.

This completes the computation of CSD,r(s).

Cost on regular-peers. In inter-cluster routing, a query issued by a regular-peer r is first routed

to the closest superpeer to r, and thence routed to the target cluster. This causes the regular-peers

close to a superpeer to receive more inter-clusters queries. As a consequence, the individual cost

imposed on regular-peers is not unique and depends on how close each peer is to its superpeer. This

complicates the analysis, since now each regular-peer p has an associated routing cost, CSD,r(p),

that depends on its relative position to the closest superpeer. More specifically, we can compute

CSD,r(p) as

CSD,r(p) = CSD,CL(p) + CSD,NCL(p)

where:
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Figure 4.4: Chord’s spanning binomial tree (d = 4).

• CSD,CL(p) denotes the routing load suffered by p due to intra-cluster traffic; and

• CSD,NCL(p) denotes the routing cost at p due to inter-cluster traffic.

Since the intra-cluster traffic cost is equally distributed over all nodes in the cluster, CSD,CL(p)

is given by

CSD,CL(p) = γf(µl1)(1 + 0.5)b for all p.

However, CSD,NCL(p) is not the same for all regular-peers (as discussed above). To compute

CSD,NCL(p), our analysis draws attention to the geometric intuition that Chord GREEDY routing

resembles hypercube geometry. Denote by η(i, j) the clockwise distance, dclockwise(i, j), between

nodes i and j in binary form. Then, recall that GREEDY routing in Chord is effectively achieved by

”correcting” the 1s in the binary representation of η(i, j) to 0s. In a hypercube, this is equivalent

to routing from node η(i, j) to node 0. The basic difference between routing in Chord and in the

hypercube is that the hypercube allow bits to be corrected in any order while on Chord bits have

to be corrected from left-to-right.

The consequence of this way of routing is that the union of the clockwise-GREEDY paths from

all nodes to one specific node spawns a spanning binomial tree [58] (as in hypercubes). One basic

particularity of this tree is that is unique. By unique we mean the following. Let TChord(u) be the

spanning binomial tree rooted at node u. Then, for each node v 6= u, TChord(v) is isomorphic to

TChord(u), which means that all the trees have the same structure and there is only one tree.

There is a particularly simple way of determining if two Chord trees TChord(u) and TChord(v)

are isomorphic. First, assume that TChord(u) and TChord(v) have the same number of nodes and

the same height (otherwise they are not isomorphic). Then, nodes can be grouped into levels, i.e.,

sets of nodes that are at the same distance from the root; since distance from the root is preserved

by isomorphism, nodes in TChord(u) must correspond to nodes in TChord(u) at the same level.

This property allows us to simplify considerably the computation of CSD,NCL(p), as the cost

on p depends only on the (clockwise) distance to its closest superpeer and not on the nodeId of

the latter. Using this property, we can avoid including the root node as parameter and expose our

findings in a somewhat more general context. Notice that if we label each node by its clockwise

distance to the superpeer, we obtain a unique tree, TChord, for all clusters. This tree corresponds
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to the spanning binomial tree rooted at vertex 0 of a d-dimensional binary hypercube. In Fig. 4.4,

we illustrate TChord for a Chord cluster of 16 nodes.

Formulation of TChord

Formally, let V (TChord) be the set of nodes in TChord. TChord can be then uniquely defined us-

ing function children : V (TChord) −→ 2V (TChord), which returns the children of node p in TChord.

The children of p are obtained by complementing one of the leading zeros in the binary represen-

tation of p.

Analogously, TChord can be uniquely defined using function parent : V (TChord) −→ V (TChord),

which returns for a node p, the parent of p in TChord. Specifically, the parent of p is obtained by

complementing the leftmost 1-bit in binary representation of p. We observe that this operation

corresponds to performing one Chord hop towards the root of TChord.

By the definition of these two functions, it is easy to see that TChord has an optimal height d, an

optimal average height equal to d/2, and more importantly, it is highly unbalanced. By a simple

inspection of Fig. 4.4, it is easy to see that the subtrees of the root have sizes 20, 21, ... and 2d−1,

which corresponds to a poorly balanced tree. This imbalance is precisely what causes each node

to present a particular cost depending on its position in the tree.

Definition 48. Assume a TChord tree of size 2d. Denote by η = ηd−1ηd−2...η0 the binary representation

of the clockwise distance between the root and an arbitrary node other than the root. Let i be such that

ηi = 1 and ηj = 0, ∀j ∈ {i + 1, i + 2, ..., d − 1} ≡ LSBT (η) and let i = −1 if η = 0. Clearly, LSBT (η)

is the set of leading zeros of η. Then, we have that

children(η) =
{
ηd−1ηd−2 . . . η̄j . . . η0 | j ∈ LSBT (η)

}
.

The next lemma provides the number of times a node is seen on the clockwise-GREEDY paths

from all nodes to one specific node in Chord. To the best of our knowledge, we are the first to

claim it.

Lemma 49. Assume a TChord tree of size 2d. Assume that each node is represented by its clockwise

distance to the root. Now let η = ηd−1ηd−2...η0 be the binary representation of the clockwise distance

between node η and the root, such that ηi = 1 and ηj = 0, ∀j ∈ {i + 1, i + 2, . . . , d − 1} ≡ LSBT (η).

Then, the number of nodes in the subtree induced by η (including node η itself) is exactly 2d−i−1.

Proof. In TChord, the children of a node η are obtained by complementing one of the leading 0s in

the binary representation of η. Let i be such that ηi = 1 and ηj = 0,∀j ∈ {i + 1, i + 2, . . . , d − 1} ≡

LSBT (η), which implies that each child of node η is formed by drawing exactly one element of

LSBT (η). The possibilities to draw one element of a set of size (d− i−1) is Cd−i−1
1 =

(
d−i−1

1

)
. This

means that there are exactly Cd−i−1
1 other nodes that route through η. By a similar argument, it is

easy to see that |childrenk(η)| = Cd−i−1
k , k > 0, where childrenk(η) denotes the children of η that

results after applying k times children function to η. Clearly, the number of nodes that lie on the

subtree rooted at η is then

1 +

d−i−1∑

k=1

(
d − i − 1

k

)
= 2d−i−1,

so the lemma follows.
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With this Lemma, we are now in position to derive CSD,NCL(p) and conclude the computation

of the individual routing cost.

Let η(p, s) = ηd−1ηd−2 . . . η0 be the clockwise distance from node p to superpeer s expressed

in binary form. In addition, let i be the position of the leftmost 1-bit in η(p, s), i.e., the index i

such that ηi = 1 and ηj = 0,∀j ∈
{
i + 1, i + 2, . . . , d − 1 ≡ LSBT

}
(η). Note that the total number

of inter-cluster messages a cluster generates and receives per second equals to 2(1 − γ)fn. Then,

CSD,NCL(p) can be calculated as follows:

CSD,NCL(p) = (1 − γ)fn(1 + 0.5)b(Rp,OUT + Rp,IN )

where Rp,OUT (resp., Rp,IN ) denotes the probability that an inter-cluster message gets routed

through node p on its way out of (resp., into) the cluster.

Now, we derive the expression for Rp,OUT . One way to do so yields the result we seek. Say

first that the set of source nodes S(p) for which p acts as an intermediate hop (including himself)

is the set of nodes that are in the subtree rooted at p. By Lemma 49, |S(p)| = 2d−i−1, since i is the

position of the leftmost 1-bit in η(p, s). Hence, Rp,OUT is given by (recall that n = 2d):

Rp,OUT =
2d−i−1 − 1

n
=

2d−i−1 − 1

2d
=

1

2i+1
−

1

2d
.

By a similar argument, it can be shown that

Rp,IN =
2k − 1

n
=

2k − 1

2d
=

1

2d−k
−

1

2d
. (4.7)

where k is the position of the rightmost 1-bit of η(s, p) = ηd−1ηd−2 . . . η0, i.e., k is such that ηk = 1

and ηj = 0,∀j ∈ {k − 1, k − 2, . . . , 0} ≡ T SBT (η(s, p)), with k = d if η(s, p) = 0. T SBT (η(s, p))

denotes the set of trailing zeros of η(s, p). This completes the derivation of CSD,NCL(p). Thus, we

have that

CSD,r(p) = 1.5bf
[
γµl1 + (1 − γ)(2d−i−1 + 2k − 2)

]
.

One important point to be noted here is that in general, Rp,OUT 6= Rp,IN . More precisely, recall

that η(i, j) = (j − i + n) mod n is the clockwise distance from a node i to a node j. Then, one can

prove without much difficulty that Rp,OUT = Rp,IN if and only if d − i − 1 = k, where (d − i − 1)

is the position of the leftmost 1-bit in η(p, s) and k is the position of the rightmost 1-bit in η(s, p),

respectively.

Using Eq.(4.7), we show the PMF (probability mass function) of Rp,IN in Fig. 4.5a for n = 256.

As can be seen in the figure, a small subset of nodes (we have excluded superpeers) receive a lot of

traffic. As in the case of homogeneous designs, this plot provides an important insight, commonly

obscured in the literature: the performance of a superpeer system could be also conditioned by

the capacities of weak nodes, thus questioning one of the key benefits of this design. For instance,

while for a peer p that is at clockwise distance 1 away of its superpeer, Rp,IN = 0, the fraction of

inter-cluster queries that receives a node p′at clockwise distance 128 away is Rp′,IN = 1
2 .

Total cost

To complete the picture, we next derive the total cost, CSD, for the superpeer design. In this case,

observant readers will realize that this can be done using the individual costs experienced by each
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node (as in Definition 47). More precisely, we compute CSD as follows

CSD = Cm,SD + K

n−1∑

p=0

CSD,r(p) +

K−1∑

s=0

CSD,r(s)µsl.

Since each superpeer manages an equal number of regular-peers, CSD is given by the follow-

ing expression (recall that K is the number of cluster and n the cluster size):

CSD = Cm,SD + K

(
n−1∑

p=0

CSD,r(p) + CSD,r(0)µsl

)
. (4.8)

Recall that the cost CSD,r(s) is proportional to the number of regular-peers s manages, which

is n. We leave the expansion of Eq.(4.8) to the reader.

4.5.3 Discussion of Results

In this section, we compare the traffic costs incurred by each design. For our discussion, we set

D = 32 and d = 10. Unfortunately, there exists some controversy in the literature [51, 52, 57]

about the optimal ratio of regular-peers to the number of superpeers. This is of great importance,

however, we do not wish to involve ourselves in this issue here. Rather, what we want is to pro-

vide a comparative with a workload presumably equivalent to the one found in real P2P systems.

Unlike otherwise noted, we assume that l = 2.9 hours (Gnutella) and f = 0.1 queries/second. As

a result, the workload quadruplet for the comparison conducted on this section corresponds to

< 32, 10, 2.9, 360 >. In addition, Tbeat and Tstab are set to 30 seconds.

In Fig. 4.5b, we compare the total cost of the homogeneous design with the cost of the super-

peer design. We use the relative traffic cost to illustrate the traffic savings of one design to that of

the reference. Here, we define the total relative traffic as CSD/CHD, where CSD refers to the total

traffic of the superpeer design and CHD is the total cost of the homogeneous design. The value of

γ is varied from 0 to 1. For communication patterns with up to 70% of locality, the maintenance

costs exhibited by the homogeneous design are rightly compensated by the savings obtained from

the greater efficiency in routing. In contrast, the superpeer design incurs higher load in this range.

However, as γ approaches 1, the homogeneous design introduces more traffic than the superpeer

design. The reason for this is easy to explain. As γ approaches 1, inter-cluster links are used less,

and the maintenance summand emerges as the ”dominant” factor in equations (4.5) and (4.8).

As a result, the homogeneous design cannot be recommended for distributed applications that

anticipate strong locality on its communications patterns.

Bearing in mind the special role played by superpeers, Fig. 4.5c and Fig. 4.5d plot the relative

traffic experienced by the highest loaded peer (HLP) in each design. In Fig. 4.5c, we vary the

amount of intra-cluster communication. In Fig. 4.5d, we vary the average node lifetime (γ = 0.5)

to investigate the impact of churn, that is, the continuous process of node arrivals and departures.

Recall that to maintain a stable population, we set the node arrival rate λa to N/l. Consequently,

if l is of the order of a few seconds, then a sufficient number of nodes will join the network each

second to compensate leaving peers. The motivation behind these figures obeys to our conviction

that the routing traffic imposed on weak superpeers can limit the performance of a hierarchical

system as a whole. In particular, we compare the traffic imposed on any superpeer with the traffic

found at any homogeneous peer. As a rule of thumb, Fig. 4.5c shows that the traffic experienced
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Figure 4.5: Traffic comparison between homogeneous and superpeer designs for D = 32 and d = 10. (a)

illustrates PMF of Rp,IN . The relative total cost, namely CSD/CHD , is shown in (b) when γ is varied from 0

to 1. Similarly, we plot the relative cost between the highest loaded peers (HLPs) of both designs. (c) Varies

locality γ. (d) Varies node lifetime (γ is set to 0.5).

by a superpeer is 600 times greater than the traffic suffered by a homogeneous peer when γ = 0

(reflecting a situation of strong ”anti-locality”), which provides a practical finding: depending on

the communications patterns, superpeer design, on the contrary to what one can a priory conjecture, does

not always enable a system to reach its optimal performance.

Fig. 4.5d shows that the positive results obtained by the homogeneous design in the preceding

evaluation do not longer hold. In fact, this figure confirms the well-known fact that if the average

node lifetime l is low (in our case, when l < 1 hour), the cost of maintaining a network of transient

peers does not compensate a major efficacy in routing. However, we note that this result is rather

pessimistic; increased realism would be supposing that superpeers join and leave the network

systematically, which requires dropping our assumption that superpeers stay forever.

In summary, while very appealing from the point of view of resilience and scalability, super-

peer designs (such as the one in [22]) do not always constitute the best alternative. For instance,

they can potentially create large imbalances on the load imposed on regular nodes. Analogously,
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homogeneous designs cannot also be considered the best solution, since they perform poorly

if the nodes participating in the system are too much transient. This leads to the conclusion that

does not exist a ”universal” design. In this regard, we believe that our cost model can enormously

help architects in the task of electing the appropriate design under a given workload.

4.6 Conclusions and Future Research

In this Chapter, we have proposed an analytic cost framework aimed at evaluating hierarchical

DHTs. Using this framework, we have compared the two main families of hierarchical DHTs: the

homogeneous design, in which all nodes assume equal roles, against the superpeer design, in which

a small subset of peers (generally, the most powerful and stable), behave as proxies, interconnect-

ing clusters with highly dynamic membership. More specifically, we have demonstrated that no

design is ”universally” better, and to that effect, we believe that our cost-based model can be very

useful in identifying the advantages and disadvantages of a design over the multiple alternatives.

In summary, while traditional superpeer systems have been motivated from the point of view

of robustness and scalability, they do not always bring us the best alternative. For example, they

can potentially create large imbalances on the traffic imposed on some nodes when inter-cluster

communication is high. Although our model does not consider churn in the superlayer, observe

that maintenance protocols may impose excessive overhead if superpeers change frequently.

In contrast, homogeneous designs offer a larger amount of load balancing, which derives from

their inherent symmetry. Therefore, we believe that when one seeks simplicity, and assuming high

anti-locality in communication, node heterogeneous capacities lose preponderance.

This Chapter has sparked a number of avenues for future work.

• We have only analyzed the extreme hierarchical designs on the spectrum. We believe that

our framework could be useful to determine which benefits and shortcomings have interme-

diate designs such as HONET [50]; they may be more appropriate for specific applications.

• Another interesting question consists in obtaining a meaningful set of values for the work-

load quadruplet < N,n, l, f >, for each specific type of application. In this regard, it would

be interesting to collect measurement data from real networks, such as content distribution

networks and file-sharing systems to provide more realistic results.



5
FALSE CLUSTERING ON PEER-TO-PEER

NETWORKS

In this chapter, we study a fundamental question that has been obscured in proximity techniques

so far: how often false clustering might happen in reality and how much this affects the overall

performance of an overlay. In this regard, we present a novel algorithm called TR-Clustering to

cluster nodes in a peer-to-peer overlay network based on their physical positions on the Internet.

More precisely, TR-Clustering uses the Internet routers with high vertex betweenness centrality to

cluster participating nodes. Briefly, the betweenness centrality of a router is defined as the fraction

of shortest paths between all pairs of nodes running through it. Simulation results illustrate that

TR-Clustering is superior to existing techniques, with less than a 5% of falsely clustered peers (of

course, relative to the datasets given as input in our simulations).
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5.1 Introduction

”The results you achieve will be in direct proportion to

the effort you apply”

Waitley, Denis

As said throughout this thesis, many applications are complex to implement on top of existing

peer-to-peer networks. One example is multimedia live streaming. Unlike file sharing, live media

is usually delivered synchronously to a large number of clients, with minimum delay in playback

compared to the playback at the source. This and many other applications such as VoIP systems,

overlay multicast and content distribution networks (CDNs) can significantly benefit from their

adaptation to the underlying physical network.

Following our framework to construct hierarchical overlays, a CDN could be implemented as

a hierarchical overlay and then, each cluster could be adapted to the underlying network. As we

saw in Chapter 3, this practice may achieve significant savings in communication time. However,

it poses the following challenge:

How to organize nodes into topologically-aware clusters in a scalable and timely fashion?

Several projects such as IDMaps [59], GNP [60], and Vivaldi [47] have developed infrastruc-

tures to estimate network distances (round-trip-times) without the need of direct measurements,

offering a scalable substrate, able to generate appropriate input for assistance in clustering.

Although the above initiatives are useful in determining the latencies among nodes that have

never communicated, they present a major shortcoming. Congestion or even re-configuration of

the network can suddenly change the relative location of many hosts in the network and provoke

their reclustering. If this is not done, many hosts may be incorrectly clustered, which occurs when

distant hosts are clustered near each other, a problem known as false clustering.

Motivated by this observation, in this Chapter, we explore new forms of clustering based on

more stable measurements. As the quality of existing clustering algorithms strongly depends on

the quality of measurements, it can be significantly inferior to the optimal when there is unstable

measurement data such as round-trip-times (RTTs), or artificial data such as network coordinates,

based on the embedding of inaccurate information (e.g., RTTs) on a metric space. More precisely,

metric embeddings such GNP and Vivaldi assume that RTTs satisfy the triangle inequality.

For two peers u and v, let RTT(u, v) be the distance between u and v in the metric space. Ge-

ometric embeddings enforce the triangle inequality, which means that for any three peers u, v, w,

RTT(u, v) ≤ RTT(u,w) + RTT(w, v). This is not true in the Internet and the accuracy of clustering

is clearly affected. For instance, the Vivaldi work [47] observed that 4.5% of the triples violated

the triangle inequality in the King data set [61]. Violations of the triangle inequality lead to inac-

curacies that rise the fraction of falsely clustered nodes.

Summary of Results

In this Chapter, we make the following contributions:

i. We investigate the impact of false clustering on proximity techniques, a problem that has not
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received enough attention in previous works, but it is key to solve the topology mismatching

problem. We show through an illustrative example,

• how frequently false clustering may happen in reality;

• how much this may affect the performance of proximity techniques; and

• what are the potential gains when the presence of false clustering is negligible.

ii. We present a novel clustering algorithm called TR-Clustering that we deliberately conceived

to cut down false clustering. Its most distinguishing characteristic is the use of traceroute to

recursively partition the subgroups of topologically closest nodes within a cluster into new,

lower-latency clusters.

The use of traceroute as our primary tool not only reduces the fraction of erroneously clustered

nodes, but it also makes clusters more resilient to changing network conditions. It turns out to be

that most Internet paths are stationary over a time period of one day [62].

Another important characteristic of TR-Clustering is that it is landmark-based. In most landmark-

based approaches, clients use the distance measurements to a common, fixed set of ”landmark”

machines to characterize a host’s location in the Internet. In TR-Clustering, however, hosts record

traceroute paths to a dynamic set of landmarks and use this information to form new, lower-latency

clusters. The election of the landmarks is based on vertex-betweenness centrality. Informally, the

betweenness centrality of a router can be defined as the fraction of shortest paths going through

it. Specifically, TR-Clustering selects as landmarks the nodes with the highest vertex-betwenness.

The key intuition is that if traceroute paths from two nearby sources converge to the routers with

high betweenness [63], peers can be easily clustered by grouping together those peers that en-

countered one common landmark on their traceroute paths to other landmarks.

It must be noted that our approach is clearly scalable, as nodes need only to maintain knowl-

edge of (and perform traceroute probes to) the landmark set they used to identify its new cluster.

The rest of the Chapter is organized as follows:

• In §5.2, we survey the related work and establish the distinguishing features of TR-Clustering

with respect to prior works.

• In §5.3, we examine false clustering on proximity techniques through Proximity Neighbor

Selection. We use several metrics to assess the quality of previous proposals in comparison

to optimal clustering. The analysis shows that mitigating false clustering is very relevant to

maintain high efficacy in routing.

• §5.4 discusses the principles we heavily rely on for clustering peers based on traceroute data.

• In §5.5, we describe TR-Clustering. The description includes the main algorithms as well as

the main implementation issues that might arise in its real deployment.

• In §5.6, we compare our algorithm with previous proposals for the same.

• In §5.7, we summarize and present future research directions.
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5.2 Related Work

Much research has been done to allow hosts to discover network topology and accurately predict

network distances in a scalable and timely fashion. However, few of these works have examined

how to identify clusters of nearby hosts among the potential set of clients, without either requiring

the IP addresses of all hosts or falsely grouping distant nodes.

Netvigator (Network Navigator) [64] is a scalable latency estimation tool that aims to discover

the closest node offering a certain service to a client. In order to achieve this, Netvigator employs

a small number of landmarks and a relatively large set of intermediate routers (termed milestones)

to increase accuracy. Milestones allow each host to discard those servers that, while having similar

landmark vectors to it, are far away from it in the Internet.

Although our strategy bears some similarities to Netvigator, our scope is broader. Specifically,

what we want is to provide a generic clustering algorithm, rather than a tool that returns the clos-

est server to a client with a certain confidence. For us, clusters are the basic element to optimize,

a task that is obviously more complex to implement than server selection; a cluster is a group of

nodes that must be mutually close to each other, while in server selection the closeness is relative

to the client. It is for all of this that we see our algorithm as a step further.

Another strategy is based on prefix-length matching of IP addresses. The basic idea is that all

the hosts sharing the same first n bits of their IP address are simply grouped into the same cluster.

However, the quality achieved by this approach has been questioned [65], as clients with the same

prefix may come from distant geographic areas. A representative example is TOPLUS [23], which

exploits IP prefixes to organize nearby nodes into topologically-aware clusters. Other approaches

propose to employ other sources such as DNS or BGP masks to achieve a better clustering. How-

ever, as in TOPLUS, these approaches share an important flaw for their real-world deployment:

the use of information such as IP prefixes and DNS domain names that are rarely available to the

clients.

In contrast, our approach does not rely on any kind of specialized information to cluster nodes.

Rather, each node is responsible for itself; it performs a small number traceroute measurements

and thereafter, it decides itself to which cluster go.

There are schemes that use landmarks to cluster hosts. Landmark clustering is based on the

intuition that nodes close to each other are likely to have similar network latencies to a few land-

mark machines spread across the Internet.

A pioneering work on landmark clustering was developed by Ratnasamy et. al. in [66]. They

proposed a binning strategy where each node, after measuring its RTTs to the landmarks, sorts

them in order of increasing RTT. As a consequence, each node obtains an associated ordering of

landmarks, so that hosts having the same landmark ordering are binned together. Although little

effort is required for the landmarks to allow nodes identify their bin (they need only to echo ping

messages), works such as [64] have identified several shortcomings in this solution. The first one

is that it is a coarse-grained approximation, not very effective in differentiating close nodes. The

second one is its vulnerability to landmark misplacements: an inadequate selection of landmarks

can make landmark ordering completely useless.

In comparison, our solution is more flexible. Since clusters are recursively split, an initial bad

selection of landmarks is compensated by adding a specific set of landmarks to each new cluster.
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Network coordinate systems (NCs) embed nodes into some metric space so that unmeasured

RTTs can be estimated using distance computation in that space. This avoids the cost of explicit

measurements between any two nodes the first time they engage in a communication operation.

Hence, one may opt here to exploit coordinates to clusters hosts with reasonable accuracy, since

nodes close to each other should have similar coordinates. Unfortunately, NCs have several im-

portant shortcomings [67]. On the one hand, estimates are quite unpredictable. While many hosts

obtain good estimates, a few ones get extremely bad results. On the other hand, NCs assume that

the triangle inequality holds, which is certainly untrue. As shown in [68], triangle violations are

common, persistent and consequence of Internet routing policies. For instance, the authors of [68]

observed that 18% of the triples between 399 Planetlab nodes violated the triangle inequality. Dy-

namics such as triangle violations force nodes to recompute periodically their coordinates, which

lead to oscillations that make hard to determine when it is convenient to update the coordinates.

In stark contrast, TR-Clustering prefers stability to predictability and exploits traceroute paths to

produce stable clustering, though this supposes more effort to the nodes. Our position is that only

clustering makes sense if there are enough means to ensure stability.

In summary, whatever the NC system may be, as the embedding of latencies into any metric

space leads to persistent triangle violations, clustering hosts using coordinates can introduce un-

predictable oscillations hard to handle, both in the number and the membership of the resultant

clusters.

5.3 False Clustering on Proximity Techniques

With the rapid growth of the Internet, overlay networks have been increasingly used to deploy

large-scale services. Some examples include application-layer multicast, peer-to-peer file-sharing

and content distribution. In order to construct an efficient overlay network, the knowledge of the

Internet topology is essential. For many of these services, detecting clusters of nodes that are close

to each other may be sufficient to improve their performance and scalability. To better understand

this, consider a file-sharing application that offers multiple replica servers from whom download

a file. In this scenario, the problem would be where to place the file replicas such that the latency

perceived by any requester approximated the average latency of the shortest paths in the Internet.

An effective strategy could be:

1. To organize nodes into proximity-aware clusters, such that the nodes within a cluster were

relatively closer to one another than the nodes not in that cluster; and then

2. To place a replica in each cluster.

However, clustering algorithms have some drawbacks. Depending on the data set, they may

converge to a suboptimal solution with some data points incorrectly clustered, a problem known

as false clustering. In our context, false clustering means that the partitioning of hosts has been

done into clusters in which their members are not completely close (in terms of RTT) to each other.

The aim in this section is not to investigate which proximity strategy is the most appropriate

to achieve optimal network clustering, a problem that is NP −Complete. But rather to show that

false clustering can be an important barrier to achieve the expected results for a wide range of

applications.
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5.3.1 Clustering Model

We represent an overlay network as a connected undirected graph G = (V,E), where V represents

the set of nodes and E the set of links. Then, we define the clustering of network G = (V,E) as

follows:

Definition 50 (Clustering Model). A clustering C = {C1, C2, ..., Cm} of a network G = (V,E) is a

division of V into a finite number of sets for which the following two conditions hold:

I.
⋃

1≤i≤m Ci = V ; and

II. ∀Ci, Cj ∈ C : Ci ∩ Cj = ∅.

The sets Ci are called clusters. We define the size of a cluster as the total number of nodes in that cluster.

5.3.2 False Clustering Rate

In general, whatever the clustering algorithm may be, there is a fundamental question that needs

to be addressed: how ”good” or ”bad” is a clustering algorithm itself. In this context, this question

is equivalent to determining if a clustering algorithm does a reasonable work of grouping nearby

nodes into the same cluster.

To answer this question, we define a new metric called false clustering rate (fcr) that measures

the fraction of falsely clustered nodes in a cluster. Informally, what fcr represents is that if a node

were to communicate with a randomly selected node from its cluster, the probability of contacting

a falsely clustered node would be equal to the fcr of that cluster. In what follows, we provide a

formal description of the fcr.

Definition 51 (Individual fcr). Let C = {C1, C2, ..., Cm} be a clustering of an overlay network G =

(V,E). Denote by Ĉv the set of nodes in the same cluster of a node v with the exclusion of v, i.e., Ĉv =

Cv − {v}. Denote by Γv(r) the set of r closest nodes to v in the Internet. For a node v, its false clustering

rate is defined as

fcrv =
|Ĉv ∩ Γv(|Ĉv|)|

|Ĉv|
(5.1)

Informally, fcrv measures the overlap between the |Ĉv| closest nodes to v and its current clus-

ter neighbors. We note that to provide Γv(|Ĉv|) for all nodes in V , it is necessary to collect the |V |2

pair-wise latency measurements between all nodes. These measurements are only for verification

purposes; hence, they should not be interpreted as a part of any clustering algorithm. Specifically,

note that Γv(|Ĉv|) is not static and depends on the data set given as input. For instance, Γv(|Ĉv|)

could be implemented using network coordinates, RTT measurements, or traceroute paths.

Finally, we define the fcr as the average over all individual fcrs. More formally,

Definition 52 (fcr). Let C = {C1, C2, ..., Cm} be a clustering of an overlay network G = (V,E). For

clustering C over G = (V,E), we define the false clustering rate as

fcr =
1

|V |

∑

v∈V

fcrv (5.2)

fcr presents the following properties:
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I. It assumes a value of 0 at best and a value of 1 at worst;

II. It punishes a clustering only for their false positives; and

III. It penalizes more ”sparse” clusters than ”dense” clusters.

Property III is very interesting, since fcr rewards clustering algorithms that attempt to create

dense clusters. In P2P systems, where clusters are rather dense, it is clearly more convenient to

have a metric that biases toward high-density clusters than a density-independent metric. To see

that this property holds, we provide the following proof.

Proof. Denote by γv the number of falsely clustered nodes with respect to a node v. Clearly, we

have that γv = |Ĉv| ·fcrv . W.l.o.g., consider that two hosts u and v belong to two different clusters

Cu, Cv ∈ C. Now assume that |Ĉv| = c · |Ĉu|, for some positive constant c. Setting fcru = fcrv ,

we obtain

γv = |Ĉv| · fcrv = (c · |Ĉu|) · fcrv = c · (|Ĉu| · fcru) = c · γu

Thusly, based on the above equation, we can conclude that cluster Cv can contain c times more

falsely clustered peers than cluster Cu. Consequently, a clustering algorithm incurs a higher risk

to be penalized if the partitioning is done into sparse clusters than if it is done in dense clusters.

This concludes the proof.

There are some concerns that readers should be aware of:

• First, Why does fcr not account for false negatives? False negatives are the nodes in other

clusters that should be included in the present clusters but not have been; and

• Second, Why do we use fcr while there are other quality metrics such as Dunn’s Index [69]

that are more popular?

Mainly, the reason for not measuring false negatives is that to do so, optimal partitioning must

be known in advance, a challenging problem for the Internet itself. So we can only use measures

such as fcr that do not depend on the benefit of any a priori classification.

The second question, however, deserves further examination. Cluster validity checking is one

of the most important issues in cluster analysis. It aims at the evaluation of clustering results to

give an indication of the partitioning that best fits a given data set. However, as shown in [70], the

traditional validity criteria (such as variance, density, continuity and separation) is not sufficient

when one must deal with arbitrarily-shaped clusters. Since we cannot evaluate the results of host

clustering based on any prior information about the geometry of the clusters, we have developed

a quality measure that do not bias toward a particular shape (e.g., spherical, elliptical). Notice

that fcr does not evaluate the compactness of the clusters directly. Rather, fcr measures how well

clustering algorithms group hosts that are close to each other, which presumably works better

when clusters are mostly compact.

5.3.3 Case Study: Proximity Neighbor Selection

One of the main reasons to cluster nodes in the Internet is to construct topology-aware overlays.

For this purpose, it is important to fully understand the relationship between false clustering and

proximity techniques. As a case study, we focus on the impact that false clustering exercises upon
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Proximity Neighbor Selection (PNS) [71]. According to [71], PNS is amongst the best techniques

to adapt overlay networks to the underlying physical network. It works as follows. For a node v,

PNS selects, among all the nodes that satisfy the structural constraints of the overlay, the neigh-

bors that are also the closest ones to v.

For a concrete realization of PNS, we use Chord [4]. We observe that although Chord linking

rule defines a specific set of neighbors for each node, this rigidity is not inevitably the sine qua

non for routing efficiency. More precisely, routing is achieved in at most O(log N) hops regardless

whether node v picks as its ith neighbor any node in the range [v + 2i, v + 2i+1) (mod 2n) or the

closest node to position v + 2i (mod 2n).

Ideally, PNS would select as the ith neighbor of a node v the closest neighbor lying in the

range [v+2i, v+2i+1) (mod 2n). However, identifying the closest node may be unfeasible for large

systems, as the size of range [v+2i, v+2i+1) grows exponentially with i. To remedy this situation,

we propose a new heuristic that uses clustering to approximate the optimal performance of PNS.

With this heuristic, we wish to show the negative impact that false clustering might exercise upon

proximity routing, and determine whether it pays off to use clustering to reduce communication

delays.

Proximity-Aware Clustering for Neighbor Selection

In what follows, we provide a formal description of our heuristic called C-PNS. Consider a node

v and denote by Cv the cluster of this node. To pick the ith neighbor, v proceeds under C-PNS as

follows:

1. If there exists one or more nodes that belong to Cv while being at clockwise distance [2i, 2i+1)

of v, v selects uniformly at random one server from that range.

2. Otherwise, the ith neighbor of node v is chosen uniformly at random from the set of nodes

lying within [v + 2i, v + 2i+1). Note that these nodes do not belong to cluster Cv .

After introducing C-PNS abstractly, it still remains to answer: Which clustering algorithm should

we use to implement C-PNS and explore the effect of false clustering? Because there exists no de facto al-

gorithm for proximity clustering, in the following, we describe two implementations of C-PNS. In

our evaluation, we will compare these two implementations against perfect clustering. Through-

out this Chapter, we will use the term ”Ideal C-PNS” to refer us to this case. The two implemen-

tations are:

1. Landmark Ordering (LO) [66]. Landmark ordering causes nodes, at join time, to probe a set

of well-known ”landmarks”, estimating each of their network distances. Each node measures its

round-trip-time (RTT) to the landmark machines, and orders the landmarks from the nearest to

the most distant in the Internet. Nodes with the same landmark ordering are then clustered into

the same bin.

An important thing is noticeable in this scheme: Landmark ordering is prone to false clustering.

To better understand this, consider two nodes u and v. Node u is located on the East Coast of the

United States while node v is physically on the West Coast. Due to the relative positions of the

landmarks, u and v may inevitably obtain similar RTT measurements. The result is that they will

be binned together despite being far away to each other.
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2. Global Network Positioning (GNP) [60]. In GNP, nodes are embedded into a d-dimensional

Euclidean space E. Whenever a new node v joins the system, it computes the coordinates of its

position in E. In order to do this, v measures the RTTs against a set of λ well-known ”landmarks”

L = {l1, l2, ..., lλ}. Observe that for a space of dimensionality d, GNP has to use at least (d + 1)

landmarks, because otherwise the coordinates for a node might be not unique. As a result of the

measurements, v obtains the absolute distances to all landmarks. Then, v uses a Simplex solver to

compute its coordinates in such a way that the relative error between the estimated and measured

distances is minimized. Having the coordinates of two hosts u and v, every node can then predict

the latency between them very easily: it suffices to apply Euclidean distance to the coordinates of

u and v.

Further, the use of coordinates is very advantageous. It allows us to treat proximity clustering

as a traditional clustering problem, which is solvable by popular algorithms such as K-Means [48].

K-Means is a general heuristic to cluster multi-dimensional data. It has some nice properties, such

as speed and simplicity, which has converted K-Means into a popular algorithm for clustering any

kind of data. However, the main reason that motivated its election is its adaptability to a wide

variety of data distributions.

K-Means [48]. K-Means can be described at a high level as an iterative algorithm that evolves

k compact clusters on a d-dimensional data set X = {x1, x2, ..., xn}. K-Means iterates from some

initial solution to obtain a set of k clusters centers {c1, c2, ..., ck}, such that the average quantiza-

tion error q(C) defined as

q(C) =
1

n

n∑

i=1

k∑

j=1

d(xi, cj) (5.3)

is minimized, where d(xi, cj) denotes the squared Euclidean distance from point xi to center

cj . The quantity q(C) measures the average squared distance from each point to the center of

the cluster where it was assigned to. The centers are generally initialized with k random points.

Then, X is split into k clusters based on q(C) criterion. Each center is subsequently updated to the

mean of the points that belong to the cluster it characterizes. This partitioning-updating process is

repeated until there is no significant change in the q(C) quantities of the last two iterations.

GNP + K-Means. Let us term by X = {x1, x2, ..., xN} the set of d-dimensional GNP coordinates

corresponding to the N nodes in the system. To cluster nodes, we performed the following: we

ran K-Means several times on X and returned the best solution, i.e., the clustering with the lowest

quantization error. Multiple runs prevented K-Means to converge to a suboptimal solution due

to the random initialization of the cluster centers.

Notice that K-Means will work well when the coordinates are mostly accurate. GNP relies on

a small number of landmarks; so a bad choice of the landmarks may negatively affect the accuracy

of GNP coordinates.

Key observation. NC systems such as GNP estimate the pair-wise O(N2) RTTs among N nodes

performing O(N) measurements. More efficiently is, however, the approximation of Landmark

ordering: each node v does not need the O(N) RTTs to all nodes, since every host in the ith range

of v can be directly among the closest nodes to v.
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Figure 5.1: An illustration of the backbone of the star-like graph data set.

Evaluation

In this section, we simulate the effect of false clustering over Chord. There are several ways to

capture this formally, and in our context the most appropriate notion is lookup latency, or the time

required to find the node responsible for a key. However, this metric is itself insufficient without

a landmark set and an underlying graph which jointly induce a high false clustering rate. In this

case, a ”clever” decision is to use a symmetric graph such as a tree or a star. For example, in a star

graph, all the leaf nodes view the network exactly in the same way. In practice, this implies that

many of these nodes may obtain similar RTTs to the landmarks and may be incorrectly assigned

to the same cluster.

In our simulations, we used a star-like graph to simulate the effect of false clustering. Fig. 5.1

illustrates the backbone of this graph. In the complete version, there are 800 leaf nodes attached

to each of the leaves emanating from the core. Because of the numerous symmetries, observe that

preventing false clustering in this topology requires to place at least one landmark in three out of

the four trees rooted at r5, r6, r7, and r8, respectively.

To induce enough false clustering, the landmarks selected for the two implementations were

the routers c, g and r0. As these landmark machines covered only two of the four trees in the star,

we explicitly gave rise to a 50% of falsely clustered nodes.

In GNP, we embedded all the nodes of the star into a 2-dimensional Euclidean space. Formally,

we embedded all the nodes into R2 with the standard notion of Euclidean distance ‖x − y‖ =√∑
1≤i≤2(xi − yi)2. The landmarks’ coordinates were generated after running Simplex solver

for 300 iterations, and the leaf hosts’ coordinates were computed after repeating the minimization

procedure for 30 iterations [60]. The authors of GNP [60] showed that in general 3 iterations are

enough to obtain a fairly accurate coordinates. Finally, the clusters were obtained after running

10 times K-Means over the set of GNP coordinates.

The main input parameter of K-Means is k, the desired number of clusters. Since there exists a

direct correspondence between clusters and trees in this graph, k = 4, a larger k would only slow

the algorithms and it would marginally provide new insights about the effects of false clustering
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upon C-PNS.

Metrics. As a sanity check, we used the absolute relative error (RE) [60] to measure the accuracy

of GNP coordinates before any comparison was made. For a pair of nodes u and v, their absolute

relative error is defined as

REuv =
|‖cu − cv‖ − muv|

min(‖cu − cv‖ ,muv)
(5.4)

where muv is the measured RTT between u and v, and cu and cv are the assigned d-dimensional

coordinates of u and v, respectively. Recall that ‖x − y‖ =
√∑

1≤i≤d(xi − yi)2.

From [66] we borrowed the average gain ratio (agr) to measure the improvement in latency

experienced by Ideal C-PNS relative to the two benchmarking heuristics. As specified in [66], the

computation of the agr required us to calculate the following:

• Average inter-cluster latency: average latency from a given node to all nodes not in its cluster.

• Average intra-cluster latency: average latency from a given node to all nodes in its cluster.

We then calculated the ratio of the inter-cluster latency to the intra-cluster latency for nodes

within that cluster. We call this the node’s gain ratio. At last, we obtained the average gain ratio by

averaging over all nodes the individual gain ratios. Intuitively, what the gain ratio represents is

that on the average if a node were to communicate with a node from its own cluster instead of a

node not in its cluster, then the communication latency would be reduced by a factor equal to its

gain ratio.

Results. Fig. 5.2 shows the cumulative distribution (CDF) of RE for GNP over 100, 000 random

node-pairs. Specifically, we performed 100 experiments, each with 1, 000 random distances. The

RE did not vary significantly across the experiments, which was desirable for this test. The results

indicate a poor performance of GNP in the face of landmark misplacements.

In Fig. 5.3, the resultant clustering for GNP is depicted using different marks for each cluster.

As can be seen from this plot, GNP clusters are somewhat elliptical in shape. In the center of the

figure, there is a cloud of nodes that, albeit close to each other, come from different clusters. These

nodes are the bulk of hosts with the largest relative errors.

Fig. 5.4 depicts the CDFs of fcr for Landmark Ordering and GNP. The common characteristic

of the two distributions is that more than 50% of the hosts exhibit a fcr superior to 0.5. The reason

for this becomes clear when we look at the view from a leaf node to the landmarks. If we assume

that each edge represents a distance of 1, it can be easily seen that there are some sets of mutually-

distant nodes that have the same RTTs to the landmarks. To make exposition more concrete, let
~d(v,L) = 〈dl1 , dl2 , ..., dlλ〉 denote the distance vector of a node v to landmark set L = {l1, l2, ..., lλ}.

Using this notation, it is easy to see that

• node a and its closest leaf node, node b, have ~d(a, {c, g, r0}) = ~d(b, {c, g, r0});

• node e and its closest leaf node, node f , have ~d(e, {c, g, r0}) = ~d(f, {c, g, r0}); and

• more importantly, ~d(a, {c, g, r0}) = ~d(e, {c, g, r0}) = 〈5, 5, 3〉,
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Figure 5.5: agr for Ideal C-PNS, Landmark Ordering

and GNP.

which means that nodes a and b will be falsely clustered with e and f , even though the RTTs

between these two set of nodes are large.

It is worth to note here that perfect clustering is hard to achieve in practice. The reason is that

Internet topology changes frequently due to detour paths and multi-homed nodes, i.e., nodes that

are connected to more than one ISP. To alleviate this effect, our heuristic has been conceived to

deliberately cope with false clustering. Non-surprisingly, it achieves better results than any other

heuristic cited in this Chapter (see §5.6).

Fig. 5.5 plots the agr for the three heuristics. From the comparison of Ideal C-PNS with LO, it

is clear that agr is negatively affected by the presence of a high fcr. In contrast, the agrs for Ideal C-

PNS and GNP are equivalent. This can be explained by the fact that K-Means compensated false

clustering through the identification of compact and well-separated clusters. However, when we

inspected the distribution of the gain ratio over all nodes, we found some noticeable differences.

As an example, the agr for each cluster is shown in Table 5.1. As can be inferred from the table,

the agr varies highly from one cluster to another in GNP. Whereas clusters C1 and C4 obtained a

high agr, clusters C2 and C3 only appreciated a slight improvement in their respective agrs. On

the contrary, the distribution for Ideal C-PNS was more uniform, which is more desirable, as a

”good” clustering should exhibit moderate to high latency savings for all clusters.
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Figure 5.6: CDF of lookup latency for Landmark Ordering, GNP and Ideal C-PNS over Chord. Plain

Chord (labeled Chord in the figure) is used as baseline for comparison.

Finally, we explored the effect of false clustering upon the presumably improvement in Chord’s

lookup latency offered by C-PNS. In this experiment, we compared the improvement of LO-based

and GNP-based implementations of C-PNS against Ideal C-PNS. The experiment was the follow-

ing: 100, 000 lookups for random keys were issued by randomly elected hosts. All lookups were

recursive and went to the key’s successor node. For each lookup, we recorded the time required

to locate the key’s successor node. The results are shown in Fig. 5.6. As expected, the results agree

with our intuition that fcr negatively affects the overall performance of PNS. As fcr increases, the

CDF of lookup latency shifts to the right, which indicates that the number of lookups falling into

high-latency ranges grows. Observe that Ideal C-PNS exhibits the maximum improvement while

plain Chord (labeled Chord in the figure) the minimum.

Table 5.1: Average cluster’s gain ratio for GNP and Ideal C-PNS.

Clusters

Implementation C1 C2 C3 C4 Std. deviation

GNP 2.82 1.27 1.14 2.44 0.84

Ideal C-PNS 2.03 2.03 2.03 1.99 0.02

In summary, this evaluation shows that false clustering may impact negatively proximity tech-

niques and have an important influence in solving the topology mismatching problem.

5.4 TR-Clustering: Principles

TR-Clustering is based on the following two empirical observations:

• The betweenness centrality of Internet routers encountered on traceroute paths towards a

set of landmarks; and
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• The sampling bias in traceroute-like explorations of Internet.

5.4.1 Internet Routers and Betweenness Centrality

As shown in §5.3.3, landmark set L = {c, g, r0} is unable to separate the four branches in the

star graph of Fig. 5.1. The problem is that RTT measurements from the nodes routing through

r5 and r7 to each landmark in L are identical. The result is that the nodes hanging of r5 and r7

are clustered together, albeit being far away from each other. To overcome this limitation, the

solution consists in adding one more landmark to L so that the hosts routing through r5 can be

discriminated from the ones going through r7. This new landmark can be either router r5 or

r7. The reason is that both nodes are the two remaining routers with the highest betweenness

centrality.

First proposed by Freeman [72], the betweenness centrality of a vertex is defined as the fraction

of shortest paths between pairs of vertices that run through it. Formally,

Definition 53. For a graph G = (V,E) with n vertices, the betweenness bv of a vertex v is

bv =
∑

s 6=v 6=t∈V,s 6=t

σst(v)

σst

where σst denote the number of shortest paths from s to t, and σst(v) denote the number of shortest paths

from s to t that run through v. It can be normalized by dividing bv by the number of pairs of vertices not

including v, which is (n − 1)(n − 2).

Vertex betweenness is thus a measure of the influence of a node over the flow of information

between other nodes, specially in cases where information travels over the network by primarily

following shortest paths. This property is basic for the high performance of TR-Clustering: if a

network contains clusters that are loosely connected to each other by a few intermediate routers,

one can expect that all the traffic passes along these routers. The immediate consequence of this is

that these routers report the highest betweenness and hence, the problem of detecting the clusters

can be solved by equipping the landmark set with such routers. This is the reason why routers r5

and r7 can improve the clustering for the star graph. In conclusion, we use betweenness centrality

as a useful hint to choose landmarks that have the potential to improve clustering.

To estimate betweenness, we assume the existence of an alias resolution service that strives to

identify the multiple interface IP addresses assigned to a single router. In the literature, there exist

various techniques to deal with interface resolution. Some examples are the works of Govindan

and Tangmunarunkit [73], and Spring et al. in RocketFuel [74]. As our evaluations illustrate, alias

resolution is not a requirement. However, we use scriptroute sr-ally [75] to increase the precision

of TR-Clustering. More specifically, alias resolution allows us to treat the multiple IP addresses of

a router as a single node rather than as multiple separate routers.

Our strategy relies, to a certain degree, on what we term efficient routing, i.e., the assumption

that Internet routing policies strive to discover low latency paths between hosts, and that Internet

routes from two nearby hosts will be similar when heading to the same destination [63]. This

assumption is somewhat optimistic since it is usually violated due to routing policies. However,

it appears to be that most Internet routes are stationary over a time period of one day [62].
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5.4.2 Sampling Bias in Traceroute Exploration

While underlining the benefits of betweenness centrality in the preciding analysis, astute readers

have immediately recognized the assumption that enables the use of betweenness centrality: the

assumption that the network is known beforehand, since the computation of vertex-betweenness

requires the knowledge of all shortest paths between any two nodes in the network.

To overcome this barrier, we exploit the bias that mapping projects are suffering in the quest

of gathering a complete picture of the Internet. Although significant research efforts have been

made to construct sufficiently accurate views of the Internet, Internet maps are not complete yet.

The reason is that Internet mapping projects rely on a general monitoring strategy that introduces

some sampling bias. This strategy can be summarized as:

1. The acquisition of local views of the Internet from a small set of monitors, where a local

view is, in practice, a set of traceroute paths that together form a graph; and

2. The merging of local views to obtain a global picture of the Internet.

Recent studies have shown that relying on a relatively small number of monitors introduces

some sampling bias. For example, Lakhina et. al. [76] discovered that if a graph has a degree

distribution that is very different from a power law (i.e. the probability of a vertex to have degree

k is given by Pr(k) ∝ k−γ), sampling from a small set of monitors will yield a picture of the graph

with a node degree distribution following a power law. This owes to the fact that traceroute

explorations statistically focus on high vertex-betweennes nodes, sampling more frequently the

routers that are closer to the sources.

However, we emphasize that the work of Asta et al. [77] is the more akin to us. They were the

first to claim the existence of a correlation between vertex betweenness and the odds of a node to

be discovered during a traceroute exploration. Specifically, they investigated sampling biases on:

• Homogeneous graphs, in which the degree distribution Pr(k) is peaked around the mean, with

exponential or faster decaying tails.

• Scale-free graphs, for which Pr(k) is characterized by a heavy tail that decays as a power-law

Pr(k) ∝ k−γ .

More importantly, their evaluations shown that the probability to discover a router with high

betweenness tends to be 1.0, irrespective of the number of traceroute probes. In our approach,

this observation has repercussions on two basic aspects. First, it ensures that traceroute paths

from two nearby nodes converge to the same intermediate routers when heading to the same

landmarks (i.e., traceroute paths will sample the routers with the highest vertex betweenness).

Second, it suggests that it is very likely that one of the landmarks appears on the shortest path

from the source to another landmark. We base our clustering heuristic on the latter. Recall that

we select as landmarks only those routers that have high vertex betweenness. Hence, it is logical

to expect that some landmarks appear on the traces to the other landmarks. Put differently, while

such bias is a handicap for Internet mapping projects, it is what allows us to cluster hosts based

on the shortest paths to the landmarks. In fact, owing to the way information is processed, we

view TR-Clustering as a traceroute-based sampling tool which exchanges sources with targets.
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5.5 TR-Clustering: Algorithms

The major purpose of TR-Clustering is to have a set of clusters dynamically evolve such that

nodes within a single cluster are closer to one another than hosts not in that cluster. Technically

speaking, we see TR-Clustering as a clustering algorithm that recursively partitions dense clus-

ters into lower-latency clusters based on the existing similarity found on nodes’ traceroute paths

to common set of landmarks. It has been is built upon the fact that distant nodes (as measured

by traceroute) tend to belong to distinct spanning trees, where for spanning tree we mean the

sampled graph induced by the union of all traceroute paths to a given landmark. Strictly speak-

ing, the last statement may not be true. Traceroute paths may intertwine (due to routing policies)

and introduce cycles. However, in order to simplify exposition, we will make use of this term

henceforth.

Equally important is the interplay between routers with high betweenness and spanning trees.

To explain, traceroute probes tend to converge to the routers with high vertex-betweenness when

heading to the same landmark, even though they come from far away locations. Motivated by this

observation, TR-Clustering progressively reduces false clustering by clustering hosts based on the

forks present on traceroute paths. To make this strategy feasible, TR-Clustering is built upon the

fact that a small number of routers will appear on almost all traceroute paths. By progressively

selecting such routers as landmarks, TR-Clustering will identify new spanning trees that lead to a

more optimal clustering of the network (of course, in terms of fcr). More specifically, for each new

spanning tree, TR-Clustering creates a new cluster. A small set of landmark machines is set up for

bootstrapping. That is, the first clusters are formed by having the hosts in the network partition

themselves according to the traceroute probes to this set.

In order to partition a cluster, TR-Clustering performs the following two steps:

1. In the first step, TR-Clustering composes a set of landmarks for assistance in partitioning a

cluster. To elect the landmarks, all nodes within the cluster submit their traceroute data, i.e.,

the paths that were used to create this cluster in the last iteration, to a local repository in the

cluster.

With the traceroute paths from all hosts to the old landmark set, the local repository selects

as new landmarks the first λ routers that, besides having the highest betweenness, pertain

to different spanning subtrees.

2. In the second step, by scanning the traceroute paths to the new landmarks, each node man-

ages to clusters itself, i.e., without needing to know neither the traceroute paths nor the RTT

measurements of the other hosts.

This process of selecting landmarks followed by clustering is repeated until the either there

are not more dense clusters, or the desired clustering quality (in terms of fcr) is achieved.

5.5.1 Landmark Selection

Unlike GNP [60], TR-Clustering maintains a separate set of landmarks for each cluster. Ideally, the

new landmarks should be elected so that ∆fcr after splitting was minimized, where ∆fcr is the gain

in fcr between the splitting cluster and the new clusters. However, because this practice would be

too costly, i.e., it implies verifying all possible combinations of landmarks, we have developed an
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heuristic based on vertex-betweenness to make landmark selection computationally feasible. This

heuristic is coded in function getLandmarks (see Algorithm 1). For correct operation, it requires

two parameters:

I. The desired number of landmarks λ; and

II. The graph, Ĝ = (V̂ , Ê), induced by the union of all traceroute paths to the preceding land-

mark set; V̂ is the set of sampled routers and Ê is the set of sampled edges.

With this information, getLandmarks is able to elect λ non-redundant landmarks to facili-

tate the splitting. Non-redundancy means that getLandmarks tries to identify λ landmarks that

can yield the identification of λ lower-latency, far-apart clusters within the current one. This is

achieved by iteratively removing the router with the highest betweenness. Recall that the sam-

pling bias on traceroute exploration leads to a power-law distribution of betweenness with a fast

decaying tail. Roughly speaking, this implies that a small subset of the routers in V̂ monopolize

betweenness.

Let Lnew denote the new landmark set. Let Lold be the preceding landmark set, i.e., the land-

mark set the nodes in this cluster used to be clustered together. Let Blist be the list of sampled

routers sorted in decreasing order of vertex-betweenness. Then, getLandmarks works as follows:

First, it extracts the router with the highest betweenness from Blist. Let us denote by rmax this

router. Next, getLandmarks evaluates two conditions to decide whether rmax should be a new

landmark or not, i.e., Lnew = Lnew ∪ {rmax}:

• The first condition checks if the degree of rmax, degree(rmax), is greater than 2.

• The second condition verifies if there is a pair of landmarks, l in Lnew and l̂ in Lold, such

that a traceroute path from rmax and heading to l̂ goes through l. More specifically, function

isOnPath returns true when:

∃(l, l̂), l ∈ Lnew, l̂ ∈ Lold : l ∈ T ∗[rmax → l̂]

where T ∗[rmax → l̂] denotes the set of all routers that starting at rmax appeared on at least

one traceroute path to l̂.

The purpose of function isOnPath is to make sure that each new landmark lies on a different

spanning tree, thus covering the maximum possible area with the new landmark set. Recall that

nodes are clustered based on the landmarks they discover on the traceroute paths to other land-

marks. In a practical sense this means that if each new landmark belongs to a different spanning

tree, the traceroute probes from one tree to another will get routed through these landmarks with

high probability.

We observe that function getLandmarks ignores the routers with degree equal to 2. The reason

is that these routers lie on a path graph. Specifically, a path graph P = (Vpath, Epath) is a simple

connected graph with |Vpath| = |Epath|+1 vertices and |Epath| edges that can be drawn so that all

the vertices and edges lie on a straight line. In practice, this means that these routers transfer the

betweenness of one neighbor to the other and hence, they do not help to separate each spanning

tree from the rest.
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Algorithm 1 getLandmarks(λ, Ĝ)

1: /* Blist is a list with the routers in V̂ sorted in decreasing order of vertex betweenness */

2: Blist ← new orderedList(V̂ ,”betweenness”)

3: Lnew ← ∅

4: while size(Lnew) < k and length(Blist) > 0 do

5: /* Extracts the router with highest betweenness */

6: rmax ← pop(Blist)

7: /* If router rmax is not redundant, add rmax to Lnew */

8: if degree(rmax) > 2 and not isOnPath(Lold,Lnew, rmax) then

9: Lnew ← Lnew ∪ {rmax}

10: end if

11: end while

12: return Lnew

Communication Cost. In this phase, communication cost strongly depends on the way peers

exchange traceroute data with the local repository. The main consequence of this is that a general

upper bound cannot be provided for communication cost. In what follows, however, we describe

a particular solution to show that TR-Clustering is clearly scalable if sufficient means to distribute

communication load are provided. Furthermore, the discussion below will be useful to clarify the

communication exchanges that occur between the parties.

At this point is important to highlight that the primary aim of this Chapter is not to investigate

what is the best way to exchange traceroute information. Rather, our goal is to provide a generic

clustering algorithm that minimizes false clustering, a problem that has not been received enough

attention on prior works.

As a trivial solution, we propose that one host in each cluster takes over the responsibility of

maintaining the local repository. To ease exposition, we shall refer to these nodes as cluster-heads

(CHs). Even partially decentralized, this solution does not solve the whole problem yet. Nodes

still need sending their traceroute data to CHs directly, which may not scale for large clusters. To

overcome this, a first approximation consists in allowing the nodes to self-organize into a tree

for assistance in making a fairer distribution of communication load among the nodes. In this

way, CHs can rapidly propagate the new landmark set to its cluster neighbors as well as collecting

traceroute information without being overswamped.

For structured overlays, this can be done using a multicast tree rooted at each CH (see Scribe [78]).

As an optimization, interior tree nodes could aggregate the traceroute paths of its children. In this

way, CHs could be off-loaded from this task. Anyway, the main benefit of this method is that al-

lows TR-Clustering to scale to a large system since each node receives at most f messages, where

f denotes the fan-out of the tree. In constrast, the propagation of traceroute data incurs O(∆ logf ρ)

time, where ∆ denotes the maximum RTT between any two nodes in the cluster.

For unstructured overlays, this responsibility could be assigned to the superpeers. Superpeers

are nodes with long lifetime and large capacities (specially, CPU and bandwidth) which act as

proxies for unstable, ordinary peers. Using gossiping (see [79] for references thereof), superpeers

could propagate the traceroute data of its client peers and even aggregate it.

One important feature of TR-Clustering is that it does not require global synchronization in the

sense that all clusters in the system must be in the same iteration. Clusters partition themselves,
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independently of each other, which reduces enormously the amount of communication incurred

during clustering.

Space Cost. As the communication cost depends on the way nodes exchange information, we

only provide the worst-case space cost for landmark selection. Let m(t) be the number of clusters

at iteration t. At iteration t, the space cost at any node is proportional to the number of probes per-

formed by this node, which is O(max {|L(Ci)|}1≤i≤m(t)). Assuming that the maximum number of

iterations is T , then the amount of space required at any node is O(
∑

t=1...T max {|L(Ci)|}1≤i≤m(t)).

The space cost for the local repository is O
(
ρ
[∑

t=1...T max {|L(Ci)|}1≤i≤m(t)

])
. Observe that

this bound is rather pessimistic, since traceroute paths converge at the routers with high vertex

betweenness and often overlap, which saves space. Also note that, in the derivation of this bound,

we have assumed a one-to-one mapping between CHs and clusters so that there is no CH being

shared for more than one cluster.

5.5.2 Clustering Nodes

Landmark selection is followed by clustering. In this step, we assume that the landmarks for the

splitting cluster have been set up and made available to all cluster members. In TR-Clustering,

partitioning is a decentralized procedure, in the sense that each node can identify its new cluster

with no intervention of the other hosts. Specifically, a node identifies its new cluster after issuing

traceroute probes to a few landmarks. For that reason, what we describe here are the steps a single

node will follow to be clustered. The protocol steps are described below.

1. The node sends a traceroute probe to each landmark, recording the Internet routers and the

round-trip-time to each one. When an Internet router receives a probe packet, it replies with

an acknowledgment packet sent back to the originator of the traceroute probe.

2. Upon receiving all acknowledgment packets from the landmarks and routers (if any), the

node scans the traceroute paths in order, starting with the routers that immediately follow it

on the traces, in order to identify which landmarks come out as routers too. By accounting

for these landmarks, the node can identify its new cluster, which is done by calling function

getChildCluster (see Algorithm 2).

The rationale behind getChildCluster is as follows. Since the eligibility of landmarks is

based on vertex-betweenness, there is a large likelihood that a node finds a landmark l 6= l̂ on its

traceroute path to another landmark l̂. With this in mind, getChildCluster can be seen as an

iterative algorithm that scans traceroute paths, right to left, looking for the closest landmark to

the source that also appears as intermediate router on at least one other traceroute path.

To describe the algorithm, we make use of the following notation. We denote by T [h → l̂] the

traceroute path from a host h to a landmark l̂. Further, we use L(C) to denote the landmark set

used for partitioning cluster C.

We are now in position to sketch how TR-Clustering implements getChildCluster. For a host

h, first function firstLandmark is called passing as input traceroute path T [h → l̂] and L(C)).

This function returns the first landmark l1st 6= l̂ found on the path to landmark l̂. Next, function

networkLatency is invoked with l1st given as input. As a result of the call, the RTT between h
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Algorithm 2 getChildCluster(h, C)

1: latmin ← +∞

2: Cnew ← Zero

3: for each l̂ in L(C) do

4: l1st ← firstLandmark(T [h→ l̂],L(C))

5: if l1st is null then

6: continue

7: end if

8: /* lat holds the round-trip-time between h and the first landmark other than t̂ found en route to t̂*/

9: lat← networkLatency(h, l1st)

10: /* If l1st is closer to h than the current candidate, then Cnew should represented by l1st */

11: if lat < latmin then

12: latmin ← lat

13: Cnew ← l1st

14: end if

15: end for

16: return Cnew

and landmark is l1st is obtained. If then the RTT is smaller than the RTT of the closest landmark

found so far, l1st is chosen as the representative for its new cluster Cnew. Independently if the

latter holds, then the same operation is repeated for each landmark in L(C). In consequence,

getChildCluster ends up determining the closest landmark to h that was seen on at least one

traceroute path. If there exists no such a landmark, getChildCluster returns constant Zero. This

constant signals that h belongs to cluster Zero, i.e., the cluster that contains all the hosts that did

not find any landmark in their traceroute paths. Note that cluster Zero is therefore prone to have

a high fcr. To better understand how this function works, we present an example below.

Example. To be consistent with the exposition of this chapter, we again base our example on the

graph illustrated in Fig 5.1. In this case, however, we focus on how this phase is viewed in the

eyes of node a when the landmark set is L = {r1, r3}. As specified above, this phase proceeds as

follows. Initially, node a samples the paths T [a → r1] = [a, r5, r1] and T [a → r3] = [a, r5, r1, r0, r3]

using traceroute. Next, a invokes getChildCluster, which returns r1 as the closest landmark

to itself. The result of the call is r1, because r1 is clearly the first landmark present in T [a → r3].

Consequently, a becomes a new member of cluster Cr1
.

Communication Costs. To conclude, we give the communication costs for this phase in terms

of number of traceroute probes. At iteration t, we have that the communication cost at any node

is O(max {|L(Ci)|}1≤i≤m(t)), where function m(t) returns the number of clusters at this iteration.

The overall communication cost is then O(
∑

t=1...T max {|L(Ci)|}1≤i≤m(t)), where T denotes the

maximum number of iterations or partitionings performed by any node.

5.5.3 Putting It All Together: a Clustering Example

In this section, we tie together all the above developments through a simple example. As in other

sections, we revisit the graph on Fig 5.1. For bootstrapping, we assume that routers r2 and r4 are
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Figure 5.7: A step-by-step clustering example

the static landmarks in the system. We describe the state of the system at the end of each iteration,

where for iteration we mean the partitioning of all the clusters now present in the system.

To begin with, we thus describe the state of the system at the end of the first iteration. In this

iteration, 3 clusters are formed: Cr2
= {d, c}, Cr4

= {g, h} and CZero = {a, b, e, f}, which contains

the subsets {a, b} and {e, f} mutually misclustered (see Fig. 5.7a). The reason is that the traceroute

probes from nodes a, b, e and f to landmark r2 (resp., landmark r4) have seen landmark r4 (resp.,

landmark r2) on their paths; thereby introducing ambiguity on clustering decision. The remedy is

to incorporate new landmarks to improve decision. These landmarks are routers r1 and r3, since

they are the two remaining routers in the graph with the highest betweenness. So at iteration two,

CZero is effectively partitioned into two new clusters: Cr1
= {a, b} and Cr3

= {e, f} (see Fig. 5.7b).

To better understand this, consider node a. Because its traceroute path to r3 follows the itinerary

T [a → r3] = [a, r5, r1, r0, r3], it discovers that r1 is on the path to r3 and hence, it belongs to cluster

Cr1
. It is interesting note here that the average number of landmarks contacted by each node is

exactly 3 as in Fig 5.1, but now with a fcr of 0%.

5.5.4 Traceroute: Implementation Issues

In TR-Clustering, traceroute is the network sampling tool used to cluster end hosts. In general,

traceroute is implemented with Internet Control Message Protocol (ICMP), which means that the

probing node sends a series of IP datagrams with increasing time-to-live (TTL) to the destination

(in our case a landmark). From the returned ICMP error messages, it obtains intermediate routing

information such as router IP address and round-trip-time (RTT). Unfortunately, the traceroute

behavior explained above is the ideal case. An intermediate router along the path might not reply

to probes because the ICMP protocol is not enabled, or because the router simply uses ICMP rate

limiting. In order to avoid waiting an infinite time for ICMP replies, the probing node activates

a timer after launching each probe. If the time expires and no reply is received, for that TTL, this
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router is considered non-responding and is termed anonymous. In traceroute output, anonymous

routers are commonly represented by ′∗′s.

In TR-Clustering, however, the presence of anonymous routers is not as critical as in network

mapping projects. To obtain accurate network maps, projects such as Skitter [80] has to deal with

anonymous routers explicitly to prevent generating inflated network graphs by considering each
′∗′ as a single router. Since accurately mapping the Internet is not our purpose, we argue that

landmark selection can be accomplished without a specific treatment of the anonymous routers.

Observe that if we treat each anonymous router as a unique router, its vertex-betweenness will

be low and consequently, it will be automatically discarded by function getLandmarks. Only if

the presence of ′∗′s were large, we might consider to apply methods such as [81] to reduce its

number. However, as shown in the literature, it turns out to be that the percentage of anonymous

routers found in traceroute paths is no more than 15%. For example, in [82], the authors gauged

their network inference method by mapping the Internet2 backbone. Using the traceroute output

from 8 vantage points, they identified 808 unique IP addresses and only 61 ′∗′s. This corresponds

to a presence of anonymous routers of less than 7%.

At first glance, another algorithmic aspect of TR-Clustering for which resolving ′∗′s might be

critical is the identification of the correct cluster for each node. Recall that each node chooses

its new cluster based on the landmark occurrences found on traceroute paths. Hence, if for any

reason a landmark stopped replying to ICMP probes, hosts might be falsely clustered. However,

we believe that this behavior is difficult to show up in practice because the criterion for selecting

landmarks prevents it. A landmark is always a router with high betweenness, which means that

it had to reply to a large number of ICMP probes in order to become a landmark. Consequently,

we do not find unreasonable to assume that landmarks will continue answering ICMP probes in

the future.

5.6 Experimental Results

To analyze the performance of our clustering algorithm, we used both synthetic and real Internet

topologies. They were the following:

1. RocketFuel (RF) [74]. The main contribution of Rocketfuel is that it shows that the number of

disjoint paths between pairs of Points-of-Presence (POP) is frequently low. To give an example,

Tiscali, a european ISP, presents on average a single disjoint path among its POPs. This empirical

observation reinforces our thesis, since the packets originating at two nearby sources and directed

towards the same destination are routed through the same set of intermediate routers. To provide

a strong confidence on the results, we ran TR-Clustering on several Rocketfuel POP topologies.

We identified each one by its corresponding AS number. They were: the RF-6465 model, with 654

nodes; the RF-1785 model, with 300 nodes; the RF-3356 model, with 1, 786 nodes, and lastly, the

RF-1221 model, with 3, 515 nodes.

2. Scale-Free Topologies. (Probably) the most well-known study about the Internet topology

was conducted by Faulotsos et. al. [83], which discovered the existence of power-law relationships

between several aspects of the Internet AS graph. The key relationship they found was between



FALSE CLUSTERING ON PEER-TO-PEER NETWORKS 105

the out-degree of a node and its rank (i.e., its index in order of decreasing degree). To study the

effect of this relationship, TR-Clustering was evaluated on two scale-free topologies. The first one

was synthetically generated using the Barabási-Albert (BA) model [84]. The second topology was

downloaded from DIMES [46], the largest-scale deployed network tracing technique regarding

the number of monitors; more than 8, 700 monitors scattered over five continents.

The degree distribution of BA graphs is a power-law with exponent γ = 3. For the experiments

in this paper, the BA model we created had a core of 5, 000 routers and about 10, 000 links. Such a

large number of edges obeyed to the must-have evaluation of TR-Clustering in a network plenty

of disjoint paths.

From DIMES, we used the inferred AS graph corresponding to September of 2007. To assign

the weights to edges, we used the minimum delay between the first hop in the source AS to the

last hop in the destination AS (measured in milliseconds). Further, we removed parallel edges,

maintaining the edge with the largest delay. For the simulations, we chose a random set of 1, 000

ASes among the ASes with degree 5 and 6. The reason for doing so was to verify if TR-Clustering

is capable to follow primary paths and miss out on backup paths, i.e., paths that are only used

when primary paths are not available, for example, due to network congestion. Finally, we at-

tached 100 peers to each AS to simulate a P2P overlay network of 100, 000 peers.

The basic properties of the DIMES topology are the following: 21, 902 AS nodes, 61, 399 AS

links, and a power-law exponent γ = 2.14 in its degree distribution (after removing the parallel

edges).

3. GT-ITM (TS) [45]. GT-ITM is a software tool for creation, manipulation, and analysis of graph

models for the Internet. It has been used by many networking researchers in a variety of ways,

most often to create topologies to use in simulation studies. For this reason, we found convenient

to use GT-TIM to generate two synthetic Internet graphs. The first one, the TS-1K network was

a network graph with a core of 1, 000 routers arranged in a hierarchical manner. In this graph,

there were 3 transit domains at the top level with an average of 4 routers in each. Each transit

router presented an average of 3 stubs attached to it, and each stub had an average of 24 routers.

For the sake of easy visual examination, the second topology was restricted to a backbone of 45

routers (see Fig. 5.12). The pair-wise latencies between nodes were calculated according to GT-

ITM default policy in both graphs.

4. PlanetLab [17]. We also used two different datasets derived from measurements on Planet-

Lab network test-bed. Both datasets involved 33 PlanetLab nodes, but one was elaborated using

scriptroute sr-ally [75] to filter as much router aliases as possible. The 33 hosts were distributed

around the world: 16 nodes were in Europe, 13 other nodes were in America and 4 in Asia. To

elaborate these datasets, we collected the delays along with traceroute paths between any two

PlanetLab hosts over a two-day period: on January, 2 − 3, 2007. In fig. 5.8, we show the CDF of

the RTT over all pairs of Planetlab nodes. The average RTT for the alias and no-alias datasets were

of 63 and 68 milliseconds, respectively.
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Figure 5.8: CDF of the RTT over all pairs of PlanetLab nodes.

5.6.1 Comparison of TR-Clustering against Global Clustering

In this section, we compare the performance of TR-Clustering with K-Means. With regards to

TR-Clustering, the question we wanted to address was:

Can a traceroute-based, decentralized clustering algorithm do a reasonable job of placing nearby hosts

into the same cluster?

To answer this question, we made use of K-Means because it represented the ideal case where

a global site has all the pair-wise O(N2) latencies, and can exploit such a ”privilege” to achieve

optimal clustering.

Setup. For this test, we preferred TS-45 graph over the rest of datasets. The main reason was to

illustrate the resultant clustering in Fig. 5.12, so that a a deep understanding of TR-Clustering can

be easily gained by the reader. This experiment required the following steps:

• We first ran K-Means on the N -by-N matrix containing the pair-wise latencies between all

hosts; and

• Then, we applied TR-Clustering on the traceroute paths from all hosts to the landmark set.

We made the nodes join the overlay progressively, triggering a new partitioning when the

density of any temporary cluster exceeded ρ.

Because there was no evidence for the optimal number of clusters, we ran both algorithms for

different values of k. It is important to note that for a given k, TR-Clustering cannot ensure that

the clustering process ends up with exactly k clusters; it depends on the particular value of ρ. The

larger the value of ρ, the less the number of clusters. In this test, we set ρ to b0.3Nc. We emphasize

here that there is no any general reason to choose this particular value of ρ. The basic reason to fix

ρ = b0.3Nc was to provide sufficient traceroute information to make sure that simulations were

not inadvertently biased against TR-Clustering.
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Metrics. In this experiment, we measured the average fcr, the average gain ratio and the Davies-

Bouldin index [85], which according to [86] is among the best indices to evaluate the performance

of a clustering algorithm. These metrics were chosen to provide an uncorrelated analysis of the

quality of TR-Clustering, as each metric captures a distinct aspect of clustering.

The Davies-Bouldin (DB) index is a measure to assess the quality of a clustering with respect to

a benchmarking clustering, either created by distinct algorithms, or even by the same algorithm

for different parameter sets. This metric [85] is a function of the ratio of the sum of within-cluster

scatter to between-cluster separation.

Definition 54. Let X = {x1, x2, ..., xn} be a dataset of n points and C = {C1, C2, ..., Ck} its clustering

into k clusters. Let d(xi, xj) denote the distance between xi and xj . Let ∆(Ci) denote the scatter distance

within cluster Ci, i.e., ∆(Ci) = 1
|Ci|

∑
x∈Ci

d(x, ci), where ci is the cluster center (mean). Then, the

Davies-Bouldin index is defined in the following way:

DB(C) =
1

k

k∑

i=1

max
j=1..k,i 6=j

{
∆(Ci) + ∆(Cj)

δ(Ci, Cj)

}

where δ(Ci, Cj) is the inter-cluster distance, i.e., the distance between the centers ci and cj that characterize

clusters Ci and Cj , respectively.

From the above definition, one can easily see that the DB index represents the average similar-

ity between each cluster Ci and its most similar counterpart. As it is desirable for the clusters to

have the minimum possible similarity to each other, the DB index is small when the clusters are

mostly compact and far away from each other.

Results. In Fig. 5.9, we plot the average fcr for TR-Clustering and K-Means. The x-axis repre-

sents the number of clusters k, while the y-axis shows the average fcr. Non-surprisingly, K-Means

achieves a fcr of 0% for many values of k. The reason is as follows. K-Means knows all the pair-

wise O(N2) RTTs between hosts. Thus it can iteratively partition the hosts into clusters so that

the sum, over all clusters, of the distances from the hosts to the cluster centers is minimized. In

contrast, TR-Clustering can only converge to the optimal solution by recursively partitioning the

densest clusters at each iteration. The consequence of this is that TR-Clustering needed at least 14

clusters to reduce the mean fcr to 0%. This shows that if clusters evolve sufficiently, TR-Clustering

can be equivalent to K-Means. We outline that a fcr of 0% is possible because TS-45 is synthetic

and contains non-overlapping proximity clusters.

Fig. 5.10 depicts the average gain ratio for TR-Clustering and K-Means. From the figure, we

can clearly see that the average gain ratio increases linearly, with the same slope for the two

curves. This suggests that the temporary clusters identified by our scheme provide savings com-

parable to those reported by K-Means. In fact, the benefit can be considered superior in TR-

Clustering, since each host is clustered only with its own information. This distributes load and

clustering process among all hosts in the network, which makes TR-Clustering very suitable for

highly decentralized environments such as P2P systems.

In Fig. 5.11, we depict the Davies-Bouldin’s index as a function of k. As before, TR-Clustering’s

results are very similar to those reported by K-Means. This suggests that clustering hosts based on

the forks identified on traceroute paths works reasonably well: clusters are far-apart and compact.
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Figure 5.11: TR-Clustering vs. K-Means on GT-ITM:

Evolution of Davies-Bouldin’s (DB) index with an

increasing number of clusters

However, as we will see for PlanetLab and DIMES, this argument does not longer hold. This claim

will be discussed in detail in the following sections.

Finally, we illustrate the resultant clustering for k = 15 in Fig. 5.12. The black circles stand for

the transit routers. Each cluster is drawn with a shape and a color which distinguishes it from its

adjacent clusters. As this figure illustrates, TR-Clustering puts the mutually nearby hosts into the

same cluster.

Fig. 5.13 depicts the landmarks that were elected by TR-Clustering. For clarity, the color of the

landmarks faints gradually from black to white at each iteration. The arrows signal the landmarks

chosen at the next iteration. From visual inspection of the figure, it is clear that the next-iteration

landmarks were mainly the routers with the highest betweenness from the remaining ones.

5.6.2 Impact of the Density Threshold

Fig. 5.15 depicts the complementary cumulative distribution (CCDF) of degree (a), and vertex-

betweenness (b), for RF-1221 dataset at the end of the first iteration. Clearly, the figure proves our
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Figure 5.12: Resultant clustering for TS-45 topology. For instance, nodes S2.2/1.0 and S2.2/0.0 are in

the same cluster.

Figure 5.13: Landmark selection step-by-step in TS-45 topology. Black arrows indicate the landmarks

chosen at next iteration.

intuition. Both subplots show a power-law curve with a fast exponential decaying tail (in log-log

scale), which is more pronounced in the case of vertex-betweenness.

One important parameter of TR-Clustering is the density threshold. It controls cluster splitting

and hence, it may influence the quality of the clusterings. For this reason, we now study the

sensitivity of TR-Clustering w.r.t. this parameter. Fig. 5.14 plots the average fcr of six datasets

after generating k = b0.3Nc clusters. Each group of two bars compares the fcr for the thresholds

ρ = b0.01Nc and ρ = b0.1Nc, respectively. We make the following two observations.

• The average fcr is low for all models. For GT-ITM and RocketFuel, the average fcr is clustered

around 2%, whereas for BA this value is slightly higher; it stabilizes around 3%. This means

that if a host was to communicate with a random host within its cluster, the probability that

the recipient was not among the closest hosts to the source would be less than 3%.
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Figure 5.14: Effect of the density threshold on fcr. Each group of two bars illustrates the fcr experienced

on six models for thresholds ρ = b0.01Nc and ρ = b0.1Nc, respectively. As suggested by this figure,

TR-Clustering appears no particularly sensitive to the current value of ρ.
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Figure 5.15: Sampling bias (power-law behavior) in RF-1221 dataset after first iteration.

• Decreasing the density threshold helps to decrease the average fcr. However, this reduction

is not proportional. For instance, the reduction in the BA model is only of 4% while ρ has

been decreased ten times. This suggests that TR-Clustering is not particularly sensitive to

the value of ρ.

In addition, we verified if the cluster graphs induced by the union of all traceroute paths are

affected by some kind of sampling bias. To that purpose, we recorded the degree and betweenness

of the routers discovered by traceroute probes on RF-1221 dataset at the end of the first iteration.

5.6.3 Performance Evaluation on PlanetLab

The purpose of this section is to give a quantitative idea of TR-Clustering’s performance on Plan-

etLab, a global, real testbed that supports the development of new network services. To begin
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Figure 5.16: Average fcr of TR-Clustering on PlanetLab with alias and without alias resolution.

with, we study the effect of alias resolution on TR-Clustering. As anonymous routers can greatly

inflate traceroute graphs, we considered the following question:

Does false clustering diminish significantly by reducing the number of anonymous routers?

To answer this question, we conducted the following test. We fed TR-Clustering with Plan-

etLab alias and no-alias datasets. For each dataset, we recorded the mean fcr as a function of the

number of clusters. The results are shown in Fig. 5.16.

At first sight, aliasing information should improve accuracy. However, what Fig. 5.16 suggests

is the contrary to what was initially expected: aliasing information does not significantly diminish

fcr; the two curves present similar slopes, which clearly demonstrates that aliasing information is

not strictly necessary to spot the best results. On the one hand, this result is excellent, as router

aliases are hard to collect, but on the other hand, it is also negative, as aliasing information allows

TR-Clustering to operate with less landmarks. Specifically, the use of sr-ally reduced about 25%

the number of landmarks in PlanetLab.

For the rest of experiments, we compared TR-Clustering against GNP and Vivaldi [47]. Briefly,

Vivaldi models the network as a collection of springs that push on the coordinates of each node.

The idea is that each node is represented by a unitary mass connected to each neighbor by a spring

with the rest length set to the measured RTT. The actual length of the spring is the latency predicted

by the coordinate space. Since each spring strives to have its actual length equal to its rest length,

each node continuously updates its coordinates. After several updates, the coordinates converge

and are ready for latency estimation.

Setup. In order to make a fair comparison, we set GNP and Vivaldi parameters to the ”optimal”

configuration identified in the original works:

• For GNP, we set the number of dimensions, d, to 5 and 7, which according to the authors

yields the best results [60].
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Figure 5.17: CDFs of RE for Vivaldi and GNP on PlanetLab.

• For Vivaldi, we made use of the implementation provided by Bamboo [49], which embeds

nodes into a 2-dimensional Euclidean space. To stabilize the coordinates, we fed the same

set of measurements to Bamboo’s Vivaldi implementation 100 times.

The same set of measurements were supplied as input to each scheme.

Results. Fig. 5.17 plots the CDFs of RE for Vivaldi and GNP with d = 5 and d = 7, respectively.

Our results show a draw between the two schemes: the 90th percentile relative error is 0.5, which

coincides with the CDF of RE for PlanetLab on Vivaldi’s original work. We note that a completely

objective comparison between TR-Clustering, Vivaldi and GNP is difficult in this case due to the

lack of benchmarks. However, we believe that by computing Vivaldi and GNP coordinates with

high accuracy, the confidence on our results will be high enough to convince readers about the

utility of TR-Clustering.

In the next experiment, we compared TR-Clustering against Vivaldi, GNP(d = 5) and GNP(d =

7). It is customary to run K-Means several times to find a good clustering solution. As in §5.3, we

ran K-Means 10 times for each set of coordinates, and we returned the best solution for each one.

The measures we chose to express numerically the comparison between the three schemes were

again the fcr and the Davies-Bouldin index.

Fig. 5.18 plots the evolution of fcr for an increasing number of clusters. Our observations are

as follows.

• For k < 8, TR-Clustering performed poorly, with up to a 60% of fcr when hosts were split

into two clusters. The explanation for this is that TR-Clustering could not separate the 4

PlanetLab hosts in Asia from the rest of PlanetLab machines. In contrast, Vivaldi was able

to do it and found the optimal clusters. Fig. 5.19 plots this clustering, with the two cluster

centers marked with a cross. The figure illustrates two well-separated clusters; the small one

characterizes the Asian PlanetLab hosts; whereas the large one contains the nodes in Europe

and America.
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Figure 5.18: Evolution of the average fcr as a function of k for TR-Clustering, GNP and Vivaldi on

PlanetLab no-alias dataset.
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Figure 5.19: 2-dimensional plot of the resultant clustering for Vivaldi. k = 2.

• For all k ≥ 8, fig. 5.18 illustrates that TR-Clustering was superior to the other three schemes.

This can be explained by the fact that TR-Clustering can generate clusters of arbitrary shape

if they characterize better the underlying network. This allowed us to split correctly the

cloud of the American and European PlanetLab hosts. As can be seen in Fig. 5.19, the posi-

tions of these hosts were highly overlapped.

Fig. 5.20 plots the evolution of the Davies-Bouldin’s index for an increasing number of clusters.

As shown in the figure, when the number of clusters is less than 18, Vivaldi and GNP outperform

TR-Clustering. The explanation of this result is the same as in the preceding plot. In order to

reduce false clustering, TR-Clustering preferred to generate compact clusters of arbitrary shape than

creating well-separated, spherical clusters. In stark contrast, GNP and Vivaldi boosted the creation
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Figure 5.20: Evolution of the Davies-Bouldin’s Index as a function of k for TR-Clustering, GNP and

Vivaldi on PlanetLab no-alias dataset

of well-separated clusters and hence, they obtained better results. However, this was done at the

expense of an increase in the fraction of falsely clustered nodes as shown in Fig. 5.19.

5.6.4 Performance Evaluation on DIMES

To test our algorithm with more real data, we also fed our simulator with DIMES. In this case, we

compared the performance of TR-Clustering only with Vivaldi. As in the preceding evaluation,

we used fcr and the Davies-Bouldin index as the main performance metrics.

Setup. Using Vivaldi embedding, we first mapped the 100, 000 DIMES peers into a 2-dimensional

Euclidean space. Then, we executed K-Means exactly 10 times on the set of Vivaldi coordinates

and returned the clustering with the minimum quantization error (see Eq.(5.3) for further details).

Because the accuracy of Vivaldi coordinates depends on the number of updates performed by

each host, we varied the number of coordinate updates to study the interplay between accuracy,

communication cost and false clustering. The obvious relationship is that ”the higher the accuracy,

the higher the communication cost”, but to which extent accuracy helps to reduce false clustering is a

question that deserves more attention. While communication increases linearly with the number

of updates (each update requires at least one ping measurement with the corresponding neigh-

bor), the key question we tried to answer in this section was:

Does a linear increase in accuracy imply a linear decrease in the false clustering rate?

To answer this question, we generated three sets of Vivaldi coordinates, each one identified by

the number of updates performed by each node before K-Means was run. Particularly, we created

Vivaldi-100 (100 updates), Vivaldi-1000 (1K updates), and Vivaldi-5000 (5K updates) data sets.

It must be noted that it is unlike to find a set of coordinates with 5000 updates in practice: due

to the frequent arrivals and departures of nodes, it is hard to find a set of peers that can update
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Figure 5.22: CDF of cluster size when k = 450.

5, 000 times their coordinates without being penalized excessively by the inaccuracies of the joining

peers’ coordinates. Our evaluation was thus optimistic with respect to Vivaldi’s real performance.

Results. In fig. 5.21, we illustrate the CDFs of the RE for the three Vivaldi configurations. As can

be seen in the figure, the three configurations perform similarly. To explain, approximately 80% of

the hosts exhibit a RE between 0.0 and 0.5, which coincides with the cumulative distribution of the

RE found on PlanetLab dataset. Needless to say, as the number of coordinate updates increases,

the relative error diminishes (albeit not significantly). More specifically, Vivaldi-5000 performed

the best, Vivaldi-1000 the next, and finally, Vivaldi-100.

Fig. 5.22 plots the CDFs of the cluster size (in hundreds of nodes) for TR-Clustering and

Vivaldi-100 when k = 450. The trends on both curves tell us that TR-Clustering presents a higher
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Figure 5.23: Average fcr as a function of k for TR-Clustering and Vivaldi.

variability in cluster size. To be more specific, while in Vivaldi-100 clusters were more uniform

and contained approximately 300 nodes on average, in TR-Clustering we found clusters of up to

4, 500 peers. Such a variability comes from the following fact. In DIMES dataset, leaf ASes are

commonly connected to the Internet backbone through a small set of transit ASes. Consequently,

when clustering hosts, TR-Clustering also grouped into the same cluster the leaf ASes that shared

similar routing paths to the backbone, transforming path diversity between ASes into variability in

cluster sizes.

In fig. 5.23, we plot the average fcr for an increasing number of clusters. Our results indicate

the following.

• TR-Clustering was clearly the best. For k = 450, TR-Clustering decreased the fcr to 3%,

leading to a potential performance ≈ 15 times better than the best of three Vivaldi configu-

rations.

• Surprisingly, Vivaldi could not diminish the fcr below 40%, which suggests that it is essential

to make no assumptions on the cluster forms. Precisely, the superiority of TR-Clustering can

be explained by its strong independence on cluster shapes. In addition, Vivaldi establishes a

metric embedding; hence, it is incapable to adapt itself to detour paths as such paths violate

the triangle inequality.

Fig. 5.24 illustrates the variation of Davies-Bouldin’s index with the number of clusters. Sim-

ilar to what was observed for PlanetLab, our results show that TR-Clustering and Vivaldi ex-

changed again trends w.r.t. DB-index. We recall that DB-index has a geometric (typically centroidic)

view of clustering, which means that it works well when the underlying data contains clusters of

spherical form, but it is susceptible to data where this condition does not hold. This observation

is what explains the tendency of our clusterings to obtain high values for this metric. We note

that despite the negative results, TR-Clustering is superior to Vivaldi, since what we seek is that

the effects of false clustering are smoothed out. The inclusion of these results owed to the need
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Figure 5.24: Davies-Bouldin’s index as a function of k for TR-Clustering and Vivaldi.

of verifying if traditional metrics such as Davies-Bouldin’s index or Dunn’s index are adequate to

evaluate the quality of proximity clustering in the Internet.

In summary, although the accuracy of TR-Clustering is not 100%, it provides a better accuracy

than coordinate systems when clusters evolve dynamically, a property that we believe it is critical

to achieve good clustering results on the Internet.

5.7 Summary and Future Directions

In this Chapter, we have provided an extensive study about false clustering. For this purpose, we

have investigated the negative impact that false clustering has on Proximity Neighbor Selection,

and have shown that false clustering is a serious problem induced by the Internet itself. To cope

with this problem, we have developed a new clustering algorithm called TR-Clustering which

uses traceroute to cluster together those hosts that share the same paths to a common set of land-

marks. The main contribution of TR-Clustering is that it can form stable clusters with a low rate of

falsely clustered nodes because traceroute information is more stable than network coordinates.

Our simulation results show that the utility of TR-Clustering seems to be promising, especially

on the Internet where it is difficult to get a consistent set of delay measurements at all times (this

affects more NCs). In this context, we believe that TR-Clustering can provide both the accuracy

and the stability necessary to facilitate the deployment of real peer-to-peer applications.

Possible directions for future work:

• A traceroute probe incurs message overhead proportional to the length of the probed path.

It would be interesting to devise a smarter version of traceroute that does not probe every

hop, but reports the same accuracy in terms of false clustering rate. A good start could be as

follows. Instead of incrementing the TTL of the ICMP probe packet by 1, ”smart-traceroute”

could intelligently skip some intermediate hops.
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• Concerning the preceding question, it would be interesting to study more extensively the

trade-off between measurement overhead and accuracy in order to find the optimal operat-

ing point for TR-Clustering.

• Another aspect of our future work could be to apply our technique to real applications such

as constructing efficient hierarchical overlay networks. This implies adapting the structure

of the overlay to the current clustering, which may induce marginal or even major changes

in the routing tables of nodes.



6
CONCLUSIONS AND PERSPECTIVES
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6.1 Conclusion

The peer-to-peer paradigm has grown in significance in the Internet, both in terms of the number

of participating users and the traffic volume. Nowadays, structured overlay networks, also called

Distributed Hash Tables (DHTs), are considered as the most scalable substrates in the peer-to-peer

paradigm. However, there still remain some critical issues to address before DHTs can experience

a wide adoption. Some of them are: (1) offering flexibility to organize users into a domains, either

by interest, by affiliation or whatever, in order to ensure routing paths stay entirely in a domain

when possible; (2) providing the possibility for optimizing the locality of domains in such a way

that the average latency between two peers in a domain is much lower than any two peers outside

that domain. These two issues are the main topics of this thesis.

In the first part of this dissertation, in Chapter 3, we have studied the problem of hierarchically

constructing DHTs in order to provide fast search operation, load balancing, fault isolation, and

administrative autonomy. In order to achieve this, we have developed a generic framework which

preserves all the properties of the original DHT such as degree, load balancing and fault-tolerance,

but incorporates all the advantages of hierarchical design. We have shown that this can be done

by finding the quasiminimal generating set of its Cayley graph representation. Moreover, we

have applied our framework to provide a hierarchical version of Chord. We have also given some

indicative hints of how to convert another six DHTs into hierarchical overlays. In the course of

this work, we verified, theoretically and through simulations, that our construction of Chord is

equivalent to Chord in maintenance and construction complexity and in addition, it can obtain

significant savings in search latency.

It must be remarked that our hierarchical framework can be applied to solve other distributed

problems. Such flexibility is facilitated by the use of clusters which can be visualized as smaller

DHTs embedded into a large DHT. This property has many appealing applications. One promis-

ing application is in the field of security. There are many applications that may never profit from

the possibilities of structured P2P overlays unless distributed security is developed. For instance,

DHTs have only one routing path between the source and target peers. As a result, any malicious

peer along this path may simply drop the message, even though this message is cryptographically

secure. To address this issue, we have used our framework in [14] to provide multi-path routing

between the source and target peers by means of multiple independent paths, i.e., paths that do

not share any common peer other than the source and the target. Each path is of the same length

and is exclusively composed of peers lying in the same cluster, of course, with the exception of the

source and target peers. Thanks to multi-path routing, the probability of a routing failure can be

then reduced by an exponential decay factor in the number of independent paths.

Other applications include Geographic Information Services (GIS) for the Internet such as the

one we developed in [15], publish/subscribe systems and even Domain Name System (DNS).

In the second part of this thesis, in Chapter 4, we have formulated the question of what are the

salient features of our hierarchical constructions compared with existing hierarchical designs. To

answer this question, we have developed an analytic cost-based model to calibrate the potential

gains of each design. Our strategy was not only to look at the graph-theoretic properties of each

design, but also to compute the communication cost as a function of the locality in communica-

tion. Furthermore, we have compared the two main hierarchical DHT designs: the homogeneous
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design, in which all peers assume equal roles, against the superpeer design, in which a relatively

small subset of peers behave as proxies for the other peers in the overlay. From this comparison,

we have discovered that there is no a universally better design: superpeer designs could be worse

than homogeneous designs and vice versa.

Finally, in Chapter 5, we have studied a central question to all hierarchical overlays: how to

divide participating peers into low-latency clusters so that routing performance can be improved.

In order to do this, we have seen that it is critical to mitigate false clustering, which occurs when

distant peers are clustered together. Since none of the existing tools accounts for this fact, we have

proposed: (1) a novel clustering algorithm deliberately aimed at minimizing false clustering; and

(2) a novel metric to measure and compare the performance of our clustering algorithm against

them. Specifically, our metric measures the fraction of falsely clustered peers in a clustering. We

have shown through simulation that our clustering algorithm is superior to existing tools, with a

false clustering rate inferior to 5%. These results illustrate that our algorithm can be successfully

deployed in real environments because it is scalable and it provides accurate clusterings.

Overall, we believe that this dissertation provides all the necessary mechanisms to construct

efficient content distribution networks such as Coral, which includes the adaptation to the under-

lying physical network, and many other wide-area applications.

6.1.1 Summary of Contributions

The following is the list of original contributions of this thesis.

i. Formal classification of peer-to-peer overlay networks

• a classification of peer-to-peer overlays into flat and hierarchical structures and discus-

sion of one prominent example of each class.

• a conceptual model for homogeneous, hierarchical overlays.

ii. Hierarchical construction (the construction module)

• a generic framework for the construction of homogeneous hierarchical DHTs based on

the Cayley graph representation of their flat topologies.

• a hierarchical construction for Chord, which inherits the load balancing property and

logarithmic complexity of Chord, while enjoying the advantages of hierarchical design.

• indicative hints of how six different DHTs — Randomized Chord, Symphony, Kadem-

lia, P-Grid, Tapestry and Pastry — can be converted into their hierarchical versions.

• Theoretic and experimental results that illustrate the improvement on search latency

offered by our hierarchical designs.

iii. Comparative study of hierarchical designs (the comparative module)

• an analytic cost model to identify the optimal hierarchical design for a given workload.

• an analytic comparison of the two main hierarchical designs: the superpeer design and

the homogeneous design.

iv. Addressing locality (the clustering module)
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• an innovative metric called false clustering rate to assess the quality of proximity-based

clustering.

• a deep understanding of the false clustering problem.

• a novel clustering algorithm that organizes peers into clusters so that peers in a cluster

are closer — in terms of round-trip-time — to each other than peers not in their cluster.

6.2 Directions for future research

In the course of this work, several interesting questions have arisen, among which the following

are of particular interest.

• The design of our framework assumes that all peers are homogeneous, an assumption that

does not hold in the real world. A question of enormous interest for future work would be

how to extend our framework to incorporate heterogeneity of peers. As noted in Chapter 3,

our hierarchical construction of Chord has logarithmic diameter with logarithmic degree. If

peers could maintain a number of connections in proportion to their capacities, it would be

interesting to explore the trade-off between diameter and load balancing, as both properties

are at odds with each other.

• Another unaddressed aspect of hierarchical DHTs is security. In superpeer systems, super-

peers process and relay requests on behalf of other peers. This means that for an attacker to

infringe the maximum damage all he/she has to do is to compromise as much superpeers

as possible. In order to strengthen a system against this attack, how to elect the superpeers

and how to establish trust among peers are critical issues. Designing completely distributed

protocols to address these problems is a very challenging task.

• We have seen in Chapter 2 that objects are assigned to domains by means of mapping FM.

As a consequence, the stability of a domain plays an important role in the scalability of the

system. Failures and dynamic creation and deletion of domains could trigger an avalanche

of object movements among domains. Moving all the objects from one domain to another

might congest network links. For this reason, it would be interesting to include object move-

ment in our cost model and determine which designs are more sensitive to such dynamics.

• Our clustering algorithm uses traceroute as a measurement tool. As mentioned in Chapter

5, a traceroute probe incurs message overhead proportional to the length of the probed path.

An interesting future research would be to develop a smarter version of traceroute that does

not probe every hop, but achieves equivalent accuracy in terms of false clustering rate. For

example, a smarter version of traceroute could skip some intermediate hops. Which hops

to skip is a challenging problem for future research.
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