
New Heuristics For Planning

with Action Costs

Emil Keyder

TESI DOCTORAL UPF / 2010

Thesis advisor

Prof. Dr. Héctor Geffner,

Department of Information and Communication Technologies

To my family

Acknowledgements

This thesis would not exist without the help and contributions
of many people. First among these is my PhD advisor Hector
Geffner, who went far beyond his responsibilities as an advisor
in encouraging me and inspiring me to do this work. Hector is
truly an exceptional researcher and person, and I count myself
lucky for having spent these past five years as his student.

The stress of consecutive all-nighters trying to finish a paper be-
fore a conference deadline is much more bearable when shared
with others in the same situation. Alexandre Albore, Nir Lipovet-
zky, Hector Palacios and Miquel Ramirez shared my frustrations
and encouraged me and helped me with every aspect of my work,
and I hope that I was able to do the same for them.

The planning community is a friendly one, and I am thankful for
the discussions I had with Blai Bonet, Carmel Domshlak, Malte
Helmert, Jörg Hoffmann, and Silvia Richter. These discussions
expanded my horizons and deepened my insight into the prob-
lems I was working on. I am especially thankful to Blai Bonet for
collaborating with me to prepare a tutorial for the International
Conference on Planning and Scheduling, and Malte Helmert and
Silvia Richter for their collaboration on the paper “Sound and
Complete Landmarks for AND/OR Graphs”. It was a pleasure
to work with all of them. A special thanks goes to Blai Bonet,
Malte Helmert, and Jörg Hoffmann for their generosity in mak-
ing their software available and taking the time to reply to my
sometimes foolish questions, as well as all the other researchers
who allow their programs to be used. When I began this PhD,
I had little idea of how to put together planners and other large
pieces of software, and it is thanks to the community that I was

v

vi

able to learn these skills.

During my time in Barcelona, I had the extraordinary good
luck of never having a bad flatmate. Alexandre Albore, Ayman
Moghnieh, Filomena Nascimiento, Rita Rodrigues, and Xiaolei
Yang all became dear friends, and I was very sad to see those
who I no longer live with leave. My friends Candela Carrera,
Sandra Gilabert, Ivan Herreros, Cenk Metin, Nardine Osman,
Rida Sadek, and Nehir Sönmez all showed me new ways of look-
ing at the world, and were there for me whenever I needed them.

I would like to especially thank Sira Ferradans for her love and
understanding during the best part of these past five years; they
would have been immeasurably poorer without her.

Finally, a big thanks to my family for their love and encourage-
ment. It is not always easy to put up with me, and they have
done an extraordinary job of it.

Abstract

Classical planning is the problem of finding a sequence of ac-
tions that take an agent from an initial state to a desired goal
situation, assuming deterministic outcomes for actions and per-
fect information. Satisficing planning seeks to quickly find low-
cost solutions with no guarantees of optimality. The most effec-
tive approach for satisficing planning has proved to be heuristic
search using non-admissible heuristics. In this thesis, we intro-
duce several such heuristics that are able to take into account
costs on actions, and therefore try to minimize the more general
metric of cost, rather than length, of plans, and investigate their
properties and performance. In addition, we show how the prob-
lem of planning with soft goals can be compiled into a classical
planning problem with costs, a setting in which cost-sensitive
heuristics such as those presented here are essential.

Resumen

La planificación clásica es el problema que consiste en hallar
una secuencia de acciones que lleven a un agente desde un es-
tado inicial a un objetivo, asumiendo resultados determińısticos
e información completa. La planificación “satisficing” busca en-
contrar una solución de bajo coste, sin garant́ıas de optimalidad.

vii

viii resumen

La búsqueda heuŕıstica guiada por heuŕısticas no admisibles es
el enfoque que ha tenido mas éxito. Esta tesis presenta varias
heuŕısticas de ese género que consideran costes en las acciones,
y por lo tanto encuentran soluciones que minimizan el coste, en
lugar de la longitud del plan. Además, demostramos que el prob-
lema de planificación con “soft goals”, u objetivos opcionales, se
puede reducir a un problema de planificación clasica con costes
en las acciones, escenario en el que heuŕısticas sensibles a costes,
tal como las aqúı presentadas, son esenciales.

Preface

Classical planning is the problem of finding a sequence of op-
erators, or plan, that given an initial state achieves a desired
goal situation. It can be seen as a pathfinding problem in an
implicitly defined graph whose nodes represent states, specified
in terms of the values of a set of variables, and whose edges rep-
resent operators, specified in terms of sets of requirements and
effects on the values of those variables. As in the pathfinding
problem, each edge or operator in this graph is associated with
a weight or cost, and among solution paths, those with lower
weight are preferred. Planning approaches can be divided into
two categories based on the solutions they seek: optimal plan-
ning, in which plans are guaranteed to have minimum cost, and
satisficing planning, which finds some plan without offering any
guarantee of its optimality.

Heuristic search with a heuristic function that given a state esti-
mates the cost of reaching a goal state has proven to be the most
effective technique in both of these settings. First introduced by
Bonet et al. (1997) and McDermott (1996), it greatly increased
the size and complexity of problems that domain-independent
planners were able to solve. Current state-of-the-art approaches
continue to employ this approach in both the satisficing (Richter
and Westphal, 2010) and optimal (Helmert and Domshlak, 2009)
settings. Improvements in the performance of heuristic search
arise from two factors: improvements in search algorithms, in-
cluding the way in which heuristic estimates are used, and im-
provements in heuristic functions resulting in more accurate es-
timations of the cost of states. This thesis focuses mainly on
improving the accuracy of heuristic functions, with a special

ix

x preface

emphasis on problems in which the costs of actions are not uni-
form.

Heuristic functions generally result from solving a relaxation or
simplification of a given problem. Part II of this thesis focuses on
a relaxation of the planning problem that has been widely used
for this purpose, the delete relaxation. The cost of an optimal so-
lution to the delete-relaxation is a very informative lower bound
on the cost of a planning problem, yet such solutions cannot
be found in polynomial time. However, various approximations
that approach its cost from both above and below have been
proposed, giving both admissible (non-overestimating) heuris-
tics for use in optimal planning and non-admissible heuristics
for use in satisficing planning. In this thesis, we consider two
lines of research in non-admissible delete-relaxation heuristics
and show how they can be unified to obtain heuristics that com-
bine the strengths of each, such as taking into account action
costs and producing explicit solutions to the delete relaxation
problem, which can be exploited beyond what a simple cost es-
timate allows. We demonstrate that one of these lines of research
implicitly makes use of a simplification known as the indepen-
dence assumption that is explicit in the other, and relate this
property to research into several graph problems which turn out
to be equivalent to the delete relaxation. In addition, we propose
a novel non-admissible heuristic that approximates the cost of
this problem without relying on the independence assumption,
and show that it greatly improves the informativeness of the
resulting estimates in certain problems.

In Part III, we describe two techniques for deriving heuristic es-
timates that take into account delete information in a problem.
The first of these consists of a method for finding landmarks, val-
ues that a variable must take on at some point in the execution
of every valid plan, or actions that must occur in every plan. We
state the equations giving the complete set of delete relaxation
landmarks, which can be solved in polynomial time, and show
how to apply our techniques to a problem resulting from a pre-
viously introduced translation of a planning problem, allowing
for the first time the discovery of landmarks that go beyond the
delete relaxation. Such landmarks can then be used in previously
introduced cost-partitioning heuristics that split the costs of op-

preface xi

erators among the various landmarks that they achieve. The
second technique explores the idea of a new kind of invariant in
planning, that of choice variables. Choice variables are multival-
ued variables to which each plan can assign a value at most once,
and are similar in spirit to the variables used in problems such
as constraint satisfaction and graphical models. We show that
a heuristic that reasons about different possible assignments to
these variables is more informative in certain settings, and that
its values can be computed efficiently by adapting pre-existing
methods from the field of graphical models to planning. Further-
more, we give planning encodings of some well-known problems
from various fields of computer science for which the heuristic is
optimal.

Part IV presents a compilation of a non-classical planning prob-
lem, that of planning with soft goals, into a classical planning
problem with action costs. Soft goals are goals that are not
necessarily achieved by every valid plan but are associated with
some reward or utility. We show that problems with soft goals
can be transformed into classical planning problems in which
the penalty of not obtaining a reward must be traded off against
the cost of the plan that achieves a soft goal. The cost-sensitive
heuristics described in the previous sections are especially useful
in solving such compilations.

Some of the work presented in this thesis has previously been
published in the following articles:

• Emil Keyder, Silvia Richter, and Malte Helmert. Sound
and Complete Landmarks for And/Or Graphs. In Pro-
ceedings of the 19th European Conference on Artificial In-
telligence, pages 335–340, 2010. [Chapter 5]

• Emil Keyder and Hector Geffner. Soft Goals Can Be Com-
piled Away. In Journal of Artificial Intelligence Research,
Volume 36, pages 547–556, 2009. [Chapter 7]

• Emil Keyder and Hector Geffner. Trees of Shortest Paths
vs. Steiner Trees: Understanding and Improving Delete
Relaxation Heuristics. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, pages
1734–1739, 2009. [Chapter 4]

xii preface

• Emil Keyder and Hector Geffner. Heuristics for Planning
with Action Costs Revisited. In Proceedings of the 17th
European Conference on Artificial Intelligence, pages 588–
592, 2008. [Chapter 3]

• Emil Keyder and Hector Geffner. Set-Additive and TSP
Heuristics for Planning with Action Costs and Soft Goals.
In Proceedings of the ICAPS-07 Workshop on Heuristics
for Domain-Independent Planning, 2007. [Chapter 3]

• Emil Keyder and Hector Geffner. Heuristics for Plan-
ning with Action Costs. In Proceedings of the 12th Spanish
Conference on Artificial Intelligence, pages 140–149, 2007.
[Chapter 3]

Contents

Abstract vii

Resumen vii

Preface ix

List of Figures xvi

List of Tables xviii

I Background 1

1 The Planning Problem 3
1.1 The Classical Planning Model 3
1.2 Factored Representations in Planning 5
1.3 Complexity . 6
1.4 Planning as Heuristic Search 7
1.5 Summary . 14

II Delete Relaxation Heuristics 15

2 The Delete Relaxation 17
2.1 Introduction . 17
2.2 The Delete Relaxation in STRIPS 18
2.3 Directed Hypergraphs and AND/OR graphs . . . 19
2.4 Special Cases of the Delete Relaxation 23

3 Exploiting the Independence Assumption 27
3.1 The Independence Assumption 27

xiii

xiv contents

3.2 Unfolded Plans 29
3.3 Relaxed Plans From Best Supporters 31
3.4 The Set-Additive Heuristic 35
3.5 Experimental Results 39
3.6 Related Work . 53
3.7 Conclusions . 55

4 Beyond the Independence Assumption 57
4.1 Steiner Trees and the Delete Relaxation 57
4.2 Improvement Algorithms for Steiner Trees 59
4.3 Improving Relaxed Plans 63
4.4 Experimental Results 72
4.5 Conclusions . 76

III Beyond The Delete Relaxation 77

5 Landmarks for the Delete Relaxation and Beyond 79
5.1 Introduction . 79
5.2 Optimal Π+ Landmarks 82
5.3 Landmarks for the Πm Problem 86
5.4 Experimental Results 89
5.5 Related Work . 95
5.6 Conclusions . 99

6 Heuristics with Choice Variables 101
6.1 Introduction . 101
6.2 The Choice Variables Heuristic 105
6.3 Domains . 121
6.4 Experimental Results 126
6.5 Related Work . 130
6.6 Conclusions . 131

IV Extending the Scope of Classical Planning 133

7 Compiling Soft Goals Away 135
7.1 Introduction . 135
7.2 Compiling Soft Goals Away 137
7.3 Experimental Results 143
7.4 Extensions . 147

contents xv

7.5 Related Work . 148
7.6 Conclusions . 149

V Conclusions and Future Work 151

8 Conclusions 153
8.1 Contributions . 153
8.2 Future Work . 155
8.3 Open Challenges 159

VI Appendix 161

Bibliography 163

List of Figures

1.1 The best-first search algorithm. 11

3.1 Some examples of (non)independence. 29
3.2 Folded and unfolded delete relaxation plans. 30
3.3 The relaxed plan extraction algorithm. 32
3.4 Delete relaxation plans and their corresponding un-

folded plans. 33
3.5 Set-additive vs. cost-additive plans. 37
3.6 A delete relaxation problem illustrating the quirks of

hsa. 39

4.1 Edge replacement in undirected MSTs. 61
4.2 Edge replacement algorithm for undirected graphs. . 61
4.3 Multiple connected components resulting from path

removal. 63
4.4 Path replacement in Steiner trees, T = {t1, t2}. . . . 64
4.5 Path replacement algorithm for undirected graphs. . 65
4.6 Preserving the tree property in directed graphs. . . . 66
4.7 Visual representation of plan components. 67
4.8 Algorithm for computing π+(y) 67
4.9 Partial plan replacement in relaxed plans. 68
4.10 Exclusion of actions in partial plan recomputation. . 70
4.11 Local Steiner tree procedure for improving relaxed

plan π. 71
4.12 Node expansions with the Steiner improvement pro-

cedure. 75

5.1 Lookback in the delete relaxation. 82
5.2 An instance of the blocksworld domain. 88

xvi

list of figures xvii

5.3 Node expansions by landmark generation method,
optimal cost partitioning. 91

5.4 Node expansions by landmark generation method,
uniform cost partitioning. 92

6.1 A choice variable graph. 110
6.2 A planning problem with a cyclic choice variable graph.113
6.3 A dtree for a choice variables graph. 114
6.4 Recursive conditioning for calculating probability of

evidence. 115
6.5 Recursive conditioning for computing hcd. 117
6.6 A problem with multiple market types. 118
6.7 Choice variable graph and dtree for the two markets

problem. 120
6.8 Choice variable graph for MPE problem. 125
6.9 Node expansions on the MCSAT domain. 128
6.10 Node expansions on the HMM domain. 130
6.11 Plan costs on the HMM domain. 131

7.1 Soft goal ordering optimization. 142

8.1 A challenge for improvement procedures. 157

List of Tables

2.1 Special cases of the delete relaxation problem. 25

3.1 Possible sequence of updates with the Bellman-Ford
algorithm. 39

3.2 Sequence of updates with Dijkstra’s algorithm. . . . 40

3.3 Quality of independence assumption based heuristics,
initial states. 41

3.4 Quality of independence assumption based heuristics,
many states. 41

3.5 Relaxed plans as proportions of cost of hff plan. . . . 42

3.6 Heuristic evaluations per second. 44

3.7 Coverage using cost(π). 46

3.8 Coverage using cost(π) with added cost. 46

3.9 Coverage using |π|. 47

3.10 More/less node expansions using cost(π). 49

3.11 More/less node expansions using cost(π) with added
cost. 49

3.12 More/less node expansions using |π|. 50

3.13 Higher/lower cost plans using cost(π). 51

3.14 Higher/lower cost plans using cost(π) with added cost. 52

3.15 Higher/lower cost plans using |π|. 53

4.1 Evaluation of Steiner improvement procedure. 73

5.1 Number of causal landmarks found. 90

5.2 Number of expansions with optimal cost partitioning. 93

5.3 Number of solved problems. 96

5.4 Detailed results for several problems. 97

xviii

list of tables xix

6.1 Heuristic estimates for the initial states of MCSAT
problems. 127

6.2 Heuristic estimates for the initial states of HMM prob-
lems. 129

7.1 Coverage for optimal planners. 144
7.2 Coverage and quality for satisficing planners. 145

Part I

Background

1

Chapter 1

The Planning Problem

In this chapter we present the classical planning model, and
discuss how it can be described implicitly by factored represen-
tations. We then briefly review some complexity results for the
planning problem in terms of the size of these representations,
and discuss the heuristic search approach for solving planning
problems.

1.1 The Classical Planning Model

Classical planning is the problem of finding a sequence of ac-
tions, or plan, that when applied in the initial state of the prob-
lem results in a goal state. A classical planning problem can
be viewed as a directed graph whose nodes represent states of
the planning problem, and whose edges represent actions that
change the state from that represented by the source node of
the edge to that represented by the target node. A plan is then
a path from the node in the graph representing the initial state
to a node representing a state that is an element of the set of
goal states of the problem. The formal model underlying the
planning problem can be described as follows:

Definition 1.1 (Classical planning model). A planning model
Π = �S, s0, SG, O, a, f� consists of:

3

4 the planning problem

• A finite and discrete set of states S,

• An initial state s0 ∈ S,

• A set of goal states SG ⊆ S,

• A set of operators O,

• The applicability function a : S �→ P(O) giving the set of
operators that are applicable in each state,

• The transition function t : S × O �→ S, where t(s, o) is
defined when o ∈ a(s).

We say that the state resulting from applying an operator o in
a given state s is t(s, o), and denote this resulting state as s[o].
The result of applying a sequence of operators �o1, . . . , on� to a
state can be defined recursively as

s[�] = s

s[o1, . . . , on] = (s[o1, . . . , on−1])[on]

Definition 1.2 (Plan). Given a planning model Π, a plan π for
Π is a sequence of operators such that s0[π] ∈ SG. The length
|π| of a plan is the number of operators in a plan.

In the absence of a cost function, plans with lower length are
preferred to those with higher length. Alternatively, the plan-
ning model may be stated in conjunction with a cost function
that assigns costs to the operators of the problem:

Definition 1.3 (Classical planning model with costs). A plan-
ning model with costs Πc consists of a planning model Π =
�S, s0, sG, O, a, t� along with a function c : O �→ R+

0
that maps

each operator in the model to a non-negative cost.

Definition 1.4 (Plan cost). The cost of a plan π = �o1, . . . , on�
is given by

cost(π) =
n�

i=1

c(oi)

1.2. factored representations in planning 5

In planning problems with costs, plans with lower cost are pre-
ferred to plans with higher cost. Planning problems without
cost, in which the length |π| is the criteria for preference, can be
seen as a special case of planning with costs in which c(o) = 1
for all o ∈ O.

1.2 Factored Representations in Planning

Since it is impractical to explicitly enumerate the state spaces
of larger planning problems, factored representations, in which
states are represented by complete assignments to a set of vari-
ables with finite and discrete domains, are commonly used. Given
such a representation, the sets of goal states and operators, as
well as the applicability and transition functions, can also be
described in terms of these variables.

The most common and simplest factored representation is one
which consists of only boolean variables, with the value of each
such variable indicating whether a proposition about the world
is true or false in a given state. Such variables are also known
as fluents or facts. This representation was first used in the
Stanford Research Institute Problem Solver (strips) (Fikes and
Nilsson, 1971) and is known by that name today:

Definition 1.5 (strips). A planning problem in strips, Π =
�F,O, I,G� consists of:

• A set of boolean variables (fluents) F ,

• A set of tuples O representing operators, each having the
form �Pre(o),Add(o),Del(o)�, where Pre(o), Add(o), Del(o)
⊆ F

• A set I ⊆ F , describing the initial state

• A set G ⊆ F , describing the set of goal states.

Note that in this representation, preconditions of operators are
assumed to be positive. If operators having preconditions that
require some fluent p to be false in the current state are desired,

6 the planning problem

this can easily be achieved by introducing a second fluent p� that
has the value true whenever p false, and vice versa (Bylander,
1994). All operators adding p must then additionally delete p�,
and all operators deleting p must add p�.

Definition 1.6 (strips with costs). A strips problem with
costs Π = �F,O, I,G, c� consists of:

• The strips problem defined by Π = �F,O, I,G�

• A cost function c : O �→ R+

0
that assigns to each strips

operator in the problem a non-negative cost.

The strips representation describes the state space graph un-
derlying the planning problem implicitly. Each subset s ⊆ F of
the set of fluents represents a state in which the fluents p ∈ s
have the value true, while the fluents p� ∈ F \ s have the value
false. I then represents the unique initial state s0, while G rep-
resents the set of goal states, defined as SG = {s | G ⊆ s}.
The applicability and transition functions a and t are obtained
from the set of ungrounded operators O, each of which may cor-
respond to more than one operator in the grounded (explicit)
representation of the problem: a(s) = {o | Pre(o) ⊆ s}, and
t(s, o) = (s ∪Add(o)) \Del(o).

More complicated factored representations such as SAS+ (Bäck-
ström and Nebel, 1995) describe planning problems in terms of
variables with domains of arbitrary (finite) size. Like strips,
these representations also allow for the underlying state space
to easily be made explicit. Such representations are not used in
the work presented in this thesis, and we do not discuss them
here.

1.3 Complexity

Given the explicit representation of a planning problem Π, the
problem of finding the optimal paths from the single source s0
to all s ∈ S (and therefore all s ∈ SG) is in p, and can be solved
by Dijkstra’s algorithm in time O(|S|2) (Cormen et al., 2001).

1.4. planning as heuristic search 7

However, the state spaces of planning problems are typically too
large even for the purposes of enumeration. The complexity of
the planning problem is therefore analyzed in terms of the size
of the factored representation used.

Definition 1.7 (Plan Existence). Given a factored represen-
tation of a planning problem Π, PlanExt(Π) is the following
decision problem:

INSTANCE: A planning problem Π.

QUESTION: Does a plan π for Π exist?

Definition 1.8 (Plan Cost). Given a factored representation of
a planning problem Π and a constant value k ∈ R+

0
, PlanCost(Π)

is the following decision problem:

INSTANCE: A planning problem Π, a constant k ∈ R+

0
.

QUESTION: Does a plan π for Π with cost(π) ≤ k exist?

For planning problems expressed in strips, both PlanExt(Π)
and PlanCost(Π, k) are pspace-complete (Bylander, 1994). Given
the theoretical difficulty of the planning problem, approaches to
planning are generally evaluated in terms of their practical per-
formance, rather than worst-case complexity guarantees.

1.4 Planning as Heuristic Search

Given the interpretation of planning problems as directed graphs
whose nodes represent states and whose edges represent actions,
graph search algorithms are a logical choice for solving them. Yet
due to the size of the state spaces of planning problems, “blind”
approaches such as Dijkstra’s algorithm are in general imprac-
tical. However, heuristic search approaches using a heuristic
function that is computed automatically given the problem rep-
resentation have proven to be tremendously successful in recent
years, with winners of several of the most recent International
Planning Competitions (ipc), including the most recent one, us-
ing this strategy (Richter and Westphal, 2010; Hoffmann and

8 the planning problem

Nebel, 2001; Helmert, 2006; Bonet and Geffner, 2001). The pri-
mary focus of this thesis is on how to improve the quality and
informativeness of such automatically extracted heuristics. In
this section, we briefly review heuristics and search in general
and discuss some specific search algorithms.

Heuristics

A heuristic is a way of choosing between different courses of
action in order to achieve some goal (Pearl, 1983). Heuristics
make no guarantees as to the optimality of their suggestions,
yet in combination with heuristic search algorithms have been
used successfully to find both optimal and satisficing solutions to
many problems in which the underlying search space is too large
to find a solution using exhaustive search methods. Canonical
examples are problems such as the 15-puzzle, in which tiles must
be moved around a grid to reach a target configuration, and the
route finding problem, in which a route must be found between
two cities on a highway map. In many settings, heuristics take
the form of heuristic estimators that compute for a given state
an estimate of the cost of reaching the goal from that state:

Definition 1.9 (Heuristic estimator). A heuristic estimator is
a function h : S �→ R+

0
that given a state s estimates the cost of

reaching a goal state from s.

One suggested course of action a in the state s is then the one
which minimizes the estimated cost h(s�) of the state s� = t(s, a)
which results from taking it. While such a state represents the
quickest way of getting to the goal from the current situation, if
different courses of action have different costs, these must also
be considered if a globally optimal solution is desired.

While its computation in practice for problems that are of in-
terest to heuristic search is impractical, it is useful to define the
perfect heuristic estimator h∗, which at any state s has the value
of the cost of an optimal solution from that state:

Definition 1.10 (h∗). The perfect heuristic estimator h∗(s) is
the cost of an optimal (lowest-cost) solution to a problem from
state s.

1.4. planning as heuristic search 9

The fact that h∗ gives the optimal cost from the current state
s means that there should always exist an action a such that
h∗(s) = cost(a) + h∗(t(s, a)). This in turn implies that it should
be possible to go from the initial state of the problem to a goal
state by following a sequence of states for which the sum of the
accumulated cost until that state and the h∗ value of the state
are constant. In practice, heuristics for problems of interest are
far less accurate, and require the exploration of a much larger
part of the state space.

Admissible, or non-overestimating heuristic estimators can be
defined with reference to h∗:

Definition 1.11 (Admissible heuristic estimator). (Pearl, 1983)
An admissible heuristic estimator h is one which satisfies h(s) ≤
h∗(s) for all states s ∈ S.

An admissible heuristic estimator for the route finding problem,
for example, is the Euclidean distance in the map between two
cities, as this is guaranteed to be a lower bound on the actual
minimum distance that must be driven to get from one to the
other. Admissible heuristic estimators are important for prob-
lem solving, as they can be used in combination with search al-
gorithms that always explore first courses of action that appear
to be less costly in order to obtain optimal solutions. In contrast,
non-admissible heuristic estimators may lead to suboptimal so-
lutions, as an overestimate of the optimal cost of a state may
cause the algorithm to rule out a solution that actually has lower
cost. Typically, both types of heuristic estimators are defined as
the costs of solutions to simpler versions of the problem than
the one at hand. These simpler problems are called relaxations
of the original problem, and result from ignoring certain of its
properties or complexities (Pearl, 1983). When any solution to
a problem also constitutes a solution to a specific relaxation of
the problem, the relaxation has the property that the cost of its
optimal solutions constitute an admissible heuristic estimator,
since the cost of the optimal solution to the original problem is
an upper bound on the cost of the relaxation. Part II of this the-
sis is dedicated to improving solutions to the delete relaxation
in planning, which has this property and results from ignoring
the delete effects in a problem specified in strips.

10 the planning problem

Search

A heuristic search algorithm is a procedure that uses a heuristic
estimator to find a sequence of actions that reach a goal. The
state space of the problem being searched is represented by the
algorithm in the form of nodes, which are structures which con-
tain the description of the state they represent along with some
further information, such as the action that was used to reach
that state and the total cost of the actions used in the path cur-
rently leading to that state. Storing the action that led to each
state allows the algorithm to recover a path from the initial state
of the problem to a state represented by any node under con-
sideration by following the actions backwards from the current
node until the node representing the initial state is encountered.

Best first search (BFS) algorithms explore the search space by
ranking all of the currently reachable nodes whose successors
have not yet been generated according to some evaluation func-
tion f(n), which is typically a linear combination of the accumu-
lated cost of reaching the node, denoted by g(n), and the esti-
mated cost of reaching the goal from that node according to the
heuristic estimator used, written as before h(n) (Pearl, 1983).
The algorithm operates by placing the unexpanded nodes, which
are those whose successors have not yet been generated, in a set
in which each is associated with its value according to the rank-
ing function f(n), known as an open list (Algorithm 1.1). At
each step of the algorithm, a node n with minimum f(n) is re-
moved from the open list, and its successors are inserted with the
f(n) value that results from their evaluation. In order to avoid
re-exploring previously considered states, those nodes that have
been removed from the open list and expanded are placed in a
set of nodes known as the closed list, and when a node is gen-
erated the closed list and open lists are checked to see if it had
already been generated previously. If it was already present in
the closed list or open list with a worse f(s), this value and the
action stored as leading to the node are updated, and if it was
found on the closed list, the state is moved back to the open list.

A generic form of the typical evaluation function used by heuris-
tic search algorithms is given by f(n) = g(n) + w(h(n)). When
w = 1, this results in the A∗ algorithm, which finds optimal

1.4. planning as heuristic search 11

Input: A problem model of the form
Π = �S, s0, SG, O, a, f�

Output: A path to a goal state sg

open-list ← a set of nodes
ni ← a node representing the initial state
Calculate f(ni) and add ni to open-list
while open-list �= ∅ do

n ← a node with minimal f(n) in open-list
Remove n from open-list
if IsGoal(n) then

return GeneratePath(n)
for n� ∈ GenerateSuccessors(n) do

Calculate f(n�)
if n� �∈ open-list, closed-list then

Add n� to open-list
else if previous f(n�) > current f(n�) then

Update the path that lead to n� and its f(n�)
value
if n� ∈ closed-list then

Move n� to open-list
Place n in closed-list

Figure 1.1: The best-first search algorithm.

solutions when used in combination with admissible heuristics
(Pearl, 1983). For higher values of w, the value of the heuris-
tic estimator for a state is given more weight, and states esti-
mated to be closer to a goal state, even if they have higher g
values, are expanded more aggressively. When the value of g is
ignored completely by the evaluation function and f(s) = h(s),
the search takes into account only the estimated distance to the
goal, ignoring the cost accumulated in the solution path to get
to that state. This type of search is known as greedy best-first
search (GBFS), and is the search algorithm that we use for the
experimental results presented in chapters 3 and 4.

A number of variations and improvements have been proposed to
the generic BFS algorithm in the context of planning. We now
briefly review those that are used in the experimental results

12 the planning problem

presented in this thesis.

Helpful Actions. The vast majority of the computational ef-
fort expended by heuristic search planners is in the calculation of
the heuristic estimator h(s). Techniques that allow the planner
to avoid generating all of the possible successors of a state when
it is expanded therefore allow such planners to scale up to much
larger problems. One such technique is that of helpful actions
(Hoffmann and Nebel, 2001; Helmert, 2006) 1. Heuristics with
helpful actions, in addition to estimating the cost to reach the
goal from a given state, also return a subset of the applicable
actions in that state that they consider particularly promising:

Definition 1.12 (Heuristic estimator with helpful actions). A
heuristic estimator with helpful actions is a function h : S �→

R+

0
×P(a(s)), where a(s) is the set of applicable operators in the

evaluated state s.

In heuristics that are based on relaxations, such actions are typ-
ically those used in the solution to the relaxation found by the
heuristic that are applicable in the current state. Various search
frameworks have been proposed to take advantage of helpful ac-
tions, in which either states resulting from non-helpful actions
are not generated, or states resulting from helpful actions are
expanded preferentially. The approach used by the ff planner
was to initially attempt to find a solution while considering only
states resulting from helpful actions, and resorting to normal ex-
ploration if this failed. A more recently proposed approach used
by several successful planners is to alternate between exploring
states resulting from helpful actions and those resulting from all
other actions (Helmert, 2006). This leads to a search algorithm
that is able to take advantage of the extra information presented
by the heuristic in the form of helpful actions without sacrific-
ing completeness. Algorithmically, it can be implemented in the
form of a best first search with multiple open lists.

1The term “helpful actions” was first used in the context of the FF
planner (Hoffmann and Nebel, 2001). A similar concept called “preferred
operators” was discussed by Helmert (2006). Here we refer to the general
approach as “helpful actions”.

1.4. planning as heuristic search 13

Multiple open lists. Multiple open lists can be seen both as
a tool for integrating multiple heuristic estimators (Richter and
Westphal, 2010) into a single search algorithm and for preferen-
tially evaluating nodes resulting from the application of helpful
actions without sacrificing completeness (Helmert, 2006). Here
we focus on their interaction with helpful actions. A BFS search
using a heuristic with helpful actions h with two open lists works
as described above, except that when it generates the successors
to a node, it places all nodes resulting from the application of
helpful actions on one of the open lists, and those resulting from
non-helpful actions on the other. When choosing a state to ex-
pand, the algorithm then alternates between the two open lists
in choosing nodes of minimum f(n). As the number of actions
chosen as helpful is typically small compared to the number of
all applicable actions in a state, this results in a much deeper
exploration of the state space using only helpful actions. Yet
since all nodes are eventually evaluated, this does not affect the
completeness of the search even in the case in which the help-
ful actions chosen by the heuristic are not of high quality. To
further promote a fast exploration of the state space, the pro-
portions with which two open lists are used to select a node to
expand can be changed, for example removing a node from the
open list containing only nodes resulting from helpful actions p
times for every node that is removed from the other open list
(Richter and Westphal, 2010). In the experiments described in
this paper, we do not use this technique, instead choosing nodes
from both open lists with equal frequency.

Delayed Evaluation. As stated above, the computation of
heuristic estimators’ values is typically the largest computational
bottleneck faced by heuristic search planners. Furthermore, in
many cases a large proportion of the nodes that are placed in the
open list are never expanded, leading to many heuristic evalua-
tions that serve only to disqualify a node from immediate con-
sideration. Delayed evaluation seeks to minimize the impact of
this situation by not evaluating the heuristic estimator for a node
until it is expanded, using the heuristic estimate computed for
its parent node in the calculation of the evaluation function f(n)
(Helmert, 2006; Richter and Westphal, 2010). While this results

14 the planning problem

in a less informative evaluation function for individual nodes,
this is offset by the search algorithm’s being able to quickly gen-
erate a larger portion of the state space.

1.5 Summary

The classical planning model is that of a state space with a single
initial state and a set of goal states. In factored representations,
the states and edges of the state space are represented implicitly:
the states in terms of a complete assignment to a set of variables,
and the edges between them in terms of operators with precon-
ditions and effects that are partial assignments to this set of
variables. The planning problem is then pspace-complete in
terms of the size of this representation. The heuristic search
approach to planning consists of the use of a heuristic extracted
automatically from the factored problem representation in com-
bination with standard heuristic search methods to find a path
from the initial state of the state space to one goal state. Parts II
and III of this thesis describe a number of ways in which such
heuristics can be defined and computed.

Part II

Delete Relaxation

Heuristics

15

Chapter 2

The Delete Relaxation

In this chapter we discuss the intuition behind the delete relax-
ation and how it is constructed in the strips formalism. We
show how it can be seen as an instance of a pathfinding prob-
lem in two distinct formulations of graphs that are extensions of
standard directed graphs, and isolate the sources of complexity
of the problem.

2.1 Introduction

Heuristics are commonly derived from relaxations of problems
in which certain conditions are removed, or certain assumptions
are made (Pearl, 1983). Planning is no exception, and one of
the most fruitful tools for the derivation of new heuristics has
been the delete relaxation, with the heuristics used in successful
planners such as hsp (Bonet and Geffner, 2001), ff (Hoffmann
and Nebel, 2001), and lama (Richter and Westphal, 2010) based
on solutions to it. Simply put, the delete relaxation considers a
factored representation of a planning problem and makes the as-
sumption that once a variable is assigned a certain value during
the execution of a plan, it continues to hold this value simultane-
ously with its previously held value(s). It follows from this that
a variable may have several values at once, as different actions
in the plan may assign new values to the variable.

17

18 the delete relaxation

Given a problem, the cost of the optimal solution to the associ-
ated delete-relaxation problem is a lower bound on its cost and
can therefore be used as an admissible heuristic. Intuitively, this
follows from the fact that any plan for the original problem is
also a plan for the delete relaxation, and since a plan in the
original problem may have to assign a variable a certain value
multiple times, cheaper plans may exist in the delete relaxation
as a variable need be given a certain value at most once.

2.2 The Delete Relaxation in STRIPS

The delete relaxation problem was first formulated in terms of
the strips representation, and was used to derive the heuris-
tic used in the seminal heuristic search planner hsp (Bonet and
Geffner, 2001). Given a problem Π expressed in strips, a sim-
ple transformation consisting of removing all delete effects from
operators results in a second strips problem Π+ which encodes
its delete relaxation:

Definition 2.1 (Delete relaxation in strips). Given a strips
problem Π = �F,O, I,G�, its delete relaxation Π+ is described
by the tuple Π+ = �F,O+, I, G�, where

O+ = {�Pre(o),Add(o), ∅� | o ∈ O}

The delete relaxation of a strips problem with costs is obtained
in the same way, with no change to the cost function c.

Definition 2.2 (Relaxed plan). Given a strips problem Π =
�F,O, I,G�, a relaxed plan for Π is a plan for its delete relaxation
Π+.

For a planning problem Π+ with no deletes, the plan existence
problem PlanExt(Π+) is in p(Bylander, 1994). This property is
due to the fact that the set of reachable fluents in the problem
grows monotonically with the application of operators, and op-
erators whose preconditions are newly satisfied can be applied
until no further fluents can be achieved. Since no operator need

2.3. directed hypergraphs and and/or graphs 19

be applied more than once, this occurs after at most |O| itera-
tions. If the goals of the problem are then contained in the set of
reachable fluents, a plan exists. The problem of finding an opti-
mal plan, however, or more generally the PlanCost(Π+, k) prob-
lem, is np-complete even if operators are restricted to have no
preconditions (Bylander, 1994). This follows from the fact that
the vertex cover problem, for instance, can be easily reduced to
PlanCost(Π+, k), with operators representing vertices and hav-
ing the add effects of edges which are incident to them, and the
goals of the problem being the full set of edges of the graph.
Planning heuristics for satisficing planning therefore commonly
attempt to compute a good approximation to the cost of the op-
timal plan for Π+ in polynomial time, while providing no guar-
antees of optimality, and as follows logically no guarantees of
admissibility.

2.3 Directed Hypergraphs and AND/OR
graphs

The delete relaxation problem can be seen as a pathfinding prob-
lem on an instance of one of two types of graph: a directed hyper-
graph or an and/or graph. We note that due to this equivalence,
all of the methods proposed in this thesis for better approximat-
ing the optimal cost of the delete relaxation can also be seen as
methods for finding paths in either graph representation.

Directed Hypergraphs

Directed hypergraphs are a generalization of directed graphs and
hypergraphs, in which each edge may have an arbitrary number
of source and target vertices (Ausiello et al., 1998; Gallo et al.,
1992) 1:

Definition 2.3 (Directed hypergraph). A directed hypergraph
H = �V,E� consists of a set of vertices V and a set of edges E,

1Alternatively, only multiple source vertices may be allowed. This is not
an essential distinction as allowing multiple target vertices does not increase
the complexity of the problem, see Proposition 2.10 for details.

20 the delete relaxation

where each edge ei = �s(ei), t(ei)� is defined by a set of source
nodes s(ei) ⊆ V and a set of target nodes t(ei) ⊆ V .

Given a hypergraph H, the subhypergraph induced by a set of
edges E� ⊆ E is the hypergraph HE� = �

�
ei∈E� s(ei)∪ t(ei), E��.

The criteria for a subgraph induced by a set of edges E� consti-
tuting a hyperpath between a set of nodes I and a set of nodes G
in a directed hypergraph echoes the intuition behind the notion
of paths in standard directed graphs:

Definition 2.4 (Directed hyperpath). Given a hypergraph H =
�V,E�, a directed hypergraph from I ⊆ V to G ⊆ V is a subhy-
pergraph HE� such that for all g ∈ G, either

• g ∈ I, or

• there exists an edge ei ∈ E� such that g ∈ t(ei), and HE�

constitutes a path from I to s(ei).

Note that when the graph is a standard directed graph, i.e.
|s(ei)| = |t(ei)| = 1 for all ei ∈ E, this definition is equivalent to
the standard definition of a path in a directed graph.

A weighted directed hypergraph is a triple H = �V,E,w�, where
w : E �→ R+

0
is a function that assigns a non-negative weight

to each edge in the graph. The weight of a (sub)hypergraph is
c(H) =

�
e∈E w(e).

The problem of solving the delete relaxation optimally can be
stated as a pathfinding problem on a hypergraph that can be
constructed from the planning problem. Given a planning prob-
lem Π = �F,O, I,G, c� with no deletes, we define the directed hy-
pergraph HΠ corresponding to Π as HΠ = �F, {�Pre(o), Add(o)�
| o ∈ O}, c�.

Proposition 2.5 (Equivalence of directed hypergraphs). Let π
constitute a plan for a strips problem Π with no deletes. Then
HΠ

E�, where E� = {�Pre(o),Add(o)� | o ∈ π} constitutes a path in
HΠ from I to G, and w(HΠ

E�) = cost(π).

2.3. directed hypergraphs and and/or graphs 21

Various heuristics that are in common use for the delete re-
laxation have been proposed in the context of directed hyper-
graphs as measures of cost for which the problem of finding
optimal hyperpaths is tractable. In particular, the traversal
cost and rank of hyperpaths are measures for which minimum
weight hyperpaths can be found in polynomial time (Ausiello
et al., 1998), and correspond respectively to the additive heuris-
tic hadd and the max heuristic hmax (Bonet and Geffner, 2001)
which will be discussed in Chapter 3. Additionally, the un-
folded hyperpath structure used to define these measures turns
out to closely mirror the idea behind the independence assump-
tion upon which these heuristics are based, and gives new insight
into other heuristics employing it.

AND/OR Graphs

and/or graphs are another generalization of directed graphs in
which the set of nodes is partitioned into two disjoint sets, the
and nodes Vand, and the or nodes Vor. The role taken by edges
with multiple source nodes in hypergraphs is taken here by and
nodes. Directed graphs can be seen as a special case of and/or
graphs in which all nodes are or nodes.

Definition 2.6 (and/or graph). An and/or graph is a di-
rected graph G = �V,E� in which the set of nodes V is partitioned
into two disjoint sets Vand, Vor.

Solutions in and/or graphs take the form of justifications for a
set of initial nodes VI ⊆ V and a set of goal nodes VG ⊆ V :

Definition 2.7 (and/or graph justification). A justification in
an and/or graph G = �V,E� for a set of initial nodes VI ⊆ V
and a set of goal nodes VG ⊆ V is a subgraph J = �V J , EJ� of
G such that:

• VG ⊆ V J

• ∀a ∈ (V J ∩ Vand) \ VI : ∀�v, a� ∈ E : v ∈ V J ∧ �v, a� ∈ EJ

• ∀o ∈ (V J ∩ Vor) \ VI : ∃�v, o� ∈ E : v ∈ V J ∧ �v, o� ∈ EJ

22 the delete relaxation

• J is acyclic

The intuition behind a justification in an and/or graph is that
all predecessors of an and node v ∈ Vand must be proved to
be true, or reached, in order to prove that node true, while to
prove or reach an or node v ∈ Vor, it is sufficient to prove any
one of its predecessors true. Given an and/or graph and a
set of initial nodes VI, the set of initial nodes are nodes that
are assumed to be true, and correspond to the facts that are
true in the initial state of a planning problem. Given a weight
function w : V �→ R+

0
, the weight of a justification is defined as

w(J) =
�

v∈V J w(v).

Finding a plan for a problem Π with no deletes is equivalent to
finding a minimum-weight justification in an and/or graph GΠ

that can be constructed from a planning problem Π+ with no
deletes. The set of and nodes Vand for this graph is given by
the set of operators O of Π+, with each v ∈ Vand having weight
w(v) equal to the cost of the corresponding operator, the set of
or nodes Vor by the set of fluents F , with each having weight 0,
and the set of edges E by E =

�
o∈O Epre(o) ∪ Eadd(o), where

• Epre(o) = {�f, o� | f ∈ Pre(o)}

• Eadd(o) = {�o, f� | f ∈ Add(o)}

Proposition 2.8. Given a planning problem Π with no deletes,
the sets of and nodes Vand∩V J of minimum-weight justifications
J in GΠ for the set of initial nodes I and the set of goal nodes
G correspond to optimal delete-relaxation plans.

and/or graphs are slightly more general than delete-relaxation
problems in two respects. First, and/or graphs representing
planning problems with no deletes do not contain edges connect-
ing two and nodes or two or nodes, while and/or graphs in
general are not constrained in this manner. Second, the weight
function in such graphs always has the value 0 for v ∈ Vor, while
weight functions for and/or graphs in general can take arbi-
trary real positive values for all nodes.

2.4. special cases of the delete relaxation 23

2.4 Special Cases of the Delete
Relaxation

We now state several previously made observations about the
delete relaxation, with the objective of highlighting the sources
of complexity in the problem. To this end, we attempt to con-
struct from an arbitrary problem Π without deletes a problem
that more closely resembles the shortest path problem on a stan-
dard directed graph, which is known to be in p(Cormen et al.,
2001). In the following, we will often write an operator o without
deletes as �Pre(o),Add(o)� for simplicity.

Definition 2.9 (Problem equivalence). A strips problem Π�

is equivalent to a problem Π if for each plan π� for Π�, there
exists a plan π for Π such that cost(π) = cost(π�), and π can be
reconstructed from π� in time polynomial in the size of π�.

Proposition 2.10 (Multiple add effects). For any strips prob-
lem Π = �F,O, I,G, c� with no deletes, there is an equivalent
problem Π� = �F �, O�, I �, G�, c�� such that for all o� ∈ O�, |Add(o)|
= 1.

Proof. Given Π = �F,O, I,G, c�, let Π� = �F �, O� ∪ O��, I, G, c��,
where

• F � = F ∪ {po | o ∈ O}

• O� = {�Pre(o), {po}� | o ∈ O}

• O�� =
�

o∈O{�{po}, {q}� | q ∈ Add(o)}

• c�(o) =

�
0 if o ∈ O��

c(o�) where po� ∈ Add(o) otherwise

It can then be seen that any plan π� = �o1, . . . , on� for Π� can be
transformed into a plan for Π by removing all oi ∈ O��, and re-
placing all operators oj ∈ O� with o ∈ O such that po ∈ Add(oj),
and that cost(π) = cost(π�).

Proposition 2.11 (Multiple goal fluents). For any strips prob-
lem Π = �F,O, I,G, c� with no deletes, there is an equivalent
problem Π� = �F �, O�, I �, G�, c�� such that |G| = 1.

24 the delete relaxation

Proof. Given Π = �F,O, I,G, c�, let Π� = �F �, O ∪ {end}, I,
{g}, c��, where

• F � = F ∪ {g}

• end = �G, g�

• c�(o) =

�
c(o) if o ∈ O
0 if o = end

It can then be seen that any plan π� for Π� must have the struc-
ture π� = �o1, . . . , on, end�, as end is the only action adding the
newly introduced goal fluent g, and that π = �o1, . . . , on� must
constitute a plan for Π with cost(π) = cost(π�).

Proposition 2.12 (Multiple initial fluents). For any strips
problem Π = �F,O, I,G, c� with no deletes, there is an equivalent
problem Π� = �F �, O�, I �, G�, c�� such that |I| = 1.

Proof. Given Π = �F,O, I,G, c�, let Π� = �F �, O∪ {start}, {i},
G, c��, where

• F � = F ∪ {i}

• start = �{i}, I�

• c�(o) =

�
c(o) if o ∈ O
0 if o = start

It can then be seen that any plan π� for Π� must have the struc-
ture π� = �start, o1, . . . , on�, as start is the only action that
can be applied in the new initial state which consists of only
the newly introduced fluent i, and that π = �o1, . . . , on� must
constitute a plan for Π with cost(π) = cost(π�).

Combining these results, we have that for any delete relaxation
problem Π = �F,O, I,G, c�, it is possible to obtain an equivalent
problem such that the add effects of all operators are unary, and
both the initial state I and the goal state G consist of a single
fluent. This problem differs from the Shortest Path Problem
(SPP) only in that operators may have multiple preconditions,

2.4. special cases of the delete relaxation 25

|Pre(o)| |G| Problem Complexity
unlimited unlimited Optimal Hyperpath np-complete

1 unlimited Directed Steiner Tree np-complete
1 1 Shortest Path P

Table 2.1: The complexity of optimally solving special cases of
the delete relaxation problem.

and this turns out to make the difference in complexity between
the SPP which is in p, and the Optimal Hyperpath Problem
(OHP) and Directed Steiner Tree Problems (DSTP) which are
np-complete (Table 2.1). Taking into account Proposition 2.11
above, the DSTP can be seen as a special case of the OHP in
which a single edge e with multiple source nodes |s(e)| > 1 is
allowed, and the problem is restricted to looking for paths to
the single target node of this edge. While this does not decrease
the worst-case complexity of the problem, we include it here
as it has been extensively studied in the literature (Proemel
and Steger, 2002; Zelikovsky, 1997; Charikar et al., 1998; Robins
and Zelikovsky, 2000), and one of the heuristics we present in
Chapter 4 is inspired by this problem.

Chapter 3

Exploiting the

Independence Assumption

In this chapter we present the independence assumption and
planning heuristics based on this assumption as applied to costs,
and show how they can be used to obtain relaxed plans. We also
show how these heuristics can be seen as minimizing certain mea-
sures in a structure obtained from a plan or hyperpath, known in
the literature as the unfolded hyperpath. We then present the set-
additive heuristic and discuss how it differs from these heuristics
in its application of the independence assumption, which leads
to certain subtleties in its computation.

3.1 The Independence Assumption

In Chapter 2, we discussed why the fundamental source of com-
plexity in optimally solving the delete relaxation problem is the
presence of operators with multiple preconditions, which renders
it an np-complete problem. Heuristics therefore commonly em-
ploy further relaxations or simplifications in order to solve the
problem suboptimally. Since the resulting heuristic values are
the costs of non-optimal relaxed plans, they are not admissible,
yet they are informative and can be used to quickly find non-

27

28 exploiting the independence assumption

optimal solutions to planning problems. One such simplification
that has been proposed is the independence assumption.

The independence assumption takes various forms in different
heuristics, but in general can be seen as the assumption that the
optimal cost of, or optimal plan for, a set of fluents Q can be
obtained as some function of the optimal costs of, or optimal
plans for, each of the individual fluents q ∈ Q. This assumption
is incorrect due to interactions between plans that achieve differ-
ent fluents. In a planning problem with deletes, achieving a set
of fluents in conjunction may be more or less expensive than the
sum of the costs of achieving each individually. It may be more
expensive, for example, to achieve a set of fluents Q = {q1, q2}
if all plans achieving q1 delete another fluent p, which must be
made true again in order to achieve q2. In contrast, in problems
without deletes all interactions are positive, since variables re-
tain the values they are assigned by any action in the plan. The
cost of the optimal plan to achieve a set of fluents is therefore
bounded by the sum of the costs of the optimal plans for the
individual fluents:

cost(π+∗(Q)) ≤
�

q∈Q
cost(π+∗(q)) (3.1)

In practice, the optimal plan for a set of fluents may consist of
the union of the optimal plans for each of the fluents, the optimal
plans for some of the fluents combined with other actions that
take advantage of the fluents achieved by these plans, or may
not intersect at all with the optimal plans for the individual
fluents (Figures 3.1a, 3.1b, 3.1c respectively). Heuristics that
employ the independence assumption ignore these interactions,
and associate with a set of fluents Q = {q1, . . . , qn} a value
obtained from a function of the values associated with each qi.
In problems in which the size of all precondition sets and the
goal set is 1, the assumption is trivially correct, and heuristics
based on the independence assumption are optimal.

3.2. unfolded plans 29

s

q1
3

q2
3

(a)

s

q1

3

q2
3

1

(b)

s

q1
3

q2
3

p
3 1

1

(c)

Figure 3.1: Q = {q1, q2}. Optimal plans for q1, q2 in isolation
are {s → q1}, {s → q2} respectively in all three problems.

3.2 Unfolded Plans

To explain the properties of the solutions found for delete relax-
ation problem by methods which employ the independence as-
sumption, we briefly discuss unfolded plans. Unfolded plans are
analogous to unfolded hyperpaths in the directed hypergraph
setting (Ausiello et al., 1998).

Definition 3.1 (Unfolded plan). An unfolded plan U for a prob-
lem Π = �F, I,O, {g}�, consists of a tree whose nodes are pairs
�P, q� such that there exists an operator o ∈ O with Pre(o) = P
and q ∈ Add(o), and has the following properties:

• The root node r = �P, g� has the goal g as its second value,

• For each leaf node l = �P, q�, P ⊆ I,

• For each non-leaf node n = �P, q�, ∪�P �,q��∈children(n){q
�} =

P .

30 exploiting the independence assumption

s

q1

q2

g

(a) A delete relaxation prob-
lem Π+.

s

q1

q2

g

(b) A plan for Π+.

�{q1, q2}, g�

�{q1}, q2�

�{s}, q1�

�{s}, q1�

(c) The unfolded plan.

Figure 3.2: Folded and unfolded delete relaxation plans.

Figure 3.2 shows a delete relaxation problem along with a re-
laxed plan for it and the corresponding unfolded plan. Unfolded
plans are useful representations of heuristics making use of the
independence assumption, as the trees rooted at each node �P, q�
represent the unfolded plans Up for each fluent p ∈ P which are
computed independently of one other, and do not interact with
the unfolded plans for the other fluents in the set since U does
not contain cycles. Given an operator o and unfolded plans Uq

for each q ∈ Pre(o), an unfolded plan Up can then be obtained
for a fluent p ∈ Add(o) by taking �Pre(o), p� to be the root and
adding as its children the unfolded plans for each q ∈ Pre(o).
Independence assumption-based heuristics can then be seen as
minimizing the cost according to some measure of each of these
subtrees independently, and then applying this composition op-
eration to obtain an unfolded plan for the global problem.

Given an unfolded plan for a fluent g, the sequence of opera-
tors corresponding to a postordering (Cormen et al., 2001) of
the nodes of the tree is a plan for g. However, such a plan may
contain multiple instances of a single operator. Since in delete-
relaxation problems fluents never become false after being made

3.3. relaxed plans from best supporters 31

true, these repetitions are always unnecessary. A closer approx-
imation that constitutes a plan for the problem can therefore be
obtained by simply removing all such repetitions from the plan:

Proposition 3.2. If U is an unfolded plan for {g}, the set of
all operators o such that U contains a node n corresponding to
o constitutes a relaxed plan for g.

3.3 Relaxed Plans From Best Supporters

In practice, unfolded paths which contain the same subtree be-
low all nodes �P, g� for which g is the same fluent can be repre-
sented in a much more compact manner: it is sufficient to keep
a function that maps to each fluent p an operator ap, called
its best supporter. The (unfolded) path to any fluent can then
be recovered by recursively collecting best supporters of each
precondition until fluents that are already present in the initial
state are reached. Given a best supporter function, the algo-
rithm shown in Figure 3.3 extracts a plan with at most a single
instance of each operator.

As long as the plan represented by the best supporter function
is well-founded (i.e. does not contain cycles), this algorithm will
terminate. Several ways of selecting best supporters have been
proposed that minimize different measures on the unfolded path
to each fluent. Here we discuss two that have been used with
success. In the following definitions O(p) denotes the set {o |

p ∈ Add(o)}.

The Additive Heuristic

The additive heuristic hadd applies the independence assump-
tion by recursively estimating the cost of a set of fluents as the
sum of the costs of each of the individual fluents (Bonet and
Geffner, 2001). This is equivalent to making a “worst-case” as-
sumption of independence, in which there is no positive inter-
action between different fluents, and achieving one fluent makes
no progress towards achieving any other fluent. The additive
heuristic estimate of the cost of a fluent p is given by:

32 exploiting the independence assumption

Input: A planning problem Π = �F, I,O,G�

Input: A best supporter function
BestSupporter : F �→ O

Output: A relaxed plan π or dead-end

π ← ∅

supported = ∅

to-support ← G
while to-support �= ∅ do

Choose p ∈ to-support
to-support ← to-support \ {p}
if p �∈ I then

if BestSupporter(p) = undefined then
return dead-end

π ← π ∪ {BestSupporter(p)}
supported ← supported ∪ {p}
to-support ←
to-support ∪ (Pre(BestSupporter(p)) \ supported)

return π

Figure 3.3: The relaxed plan extraction algorithm.

hadd(p; s)
def
=

�
0 if p ∈ s
hadd(aaddp ; s) otherwise

(3.2)

where aaddp denotes the best supporter chosen for fluent p by the

hadd, and hadd(aaddp ; s) denotes the cost of applying this action.
These are given by the following:

aaddp

def
= argmina∈O(p)h

add(a; s) (3.3)

hadd(a; s)
def
= cost(a) + hadd(Pre(a); s) (3.4)

hadd(Q; s)
def
=

�

q∈Q
hadd(q; s) (3.5)

In words, the heuristic estimate of the cost of applying an action
is the cost of achieving its set of preconditions, given by the sum
of the cost of achieving each, plus the cost of the action itself.

3.3. relaxed plans from best supporters 33

s

q1

3

q2
3

1 g
0

(a) Optimal plan for problem
shown in Figure 3.2a, cost 4

�{q1, q2}, g�(0)

�{q1}, q2�(1)

�{s}, q1�(3)

�{s}, q1�(3)

(b) Unfolded plan correspond-
ing to optimal plan, additive
cost 7

s

q1

3

q2
3

1 g
0

(c) Suboptimal plan for
problem shown in Fig-
ure 3.2a, cost 6

�{q1, q2}, g�(0)

�{s}, q1�(3)�{s}, q2�(3)

(d) Unfolded plan correspond-
ing to suboptimal plan, addi-
tive cost 6

Figure 3.4: Delete relaxation plans and their corresponding un-
folded plans.

Among all of the actions that add a fluent, the action having the
lowest heuristic estimate of the cost of application is defined to
be its best supporter.

In terms of the unfolded paths discussed above, the hadd(p; s)
value is the minimum over all unfolded paths U for p of the sum
of the costs of the nodes in U , where the cost of a node is the
cost of the operator to which it corresponds. The cost of a single
operator may therefore contribute multiple times to the heuristic
estimate, behaviour that is known as overcounting. While the
procedure shown above (Figure 3.3) eliminates this, the relaxed
plan that is found is that which minimizes the additive cost of
the corresponding unfolded plan, and not the cost of the plan
itself, which is not in general equivalent (Figure 3.4).

34 exploiting the independence assumption

The Max Heuristic

The additive heuristic is pessimistic about the cost of the delete
relaxation and estimates the cost of a set of fluents as the sum of
the costs of achieving each fluent individually. This can be seen
as the assumption that a relaxed plan achieving one fluent in a
set makes no progress towards achieving any of the other fluents,
and results in a heuristic estimation that is an upper bound on
the optimal cost of the delete relaxation problem. In contrast,
the hmax heuristic can be seen as assuming that achieving the
most expensive fluent in a set will make all of the other fluents in
the set true as “side effects”. It then defines the cost of achieving
a set of fluents as the cost of achieving the most expensive fluent
among them (Bonet and Geffner, 2001):

hmax(p; s)
def
=

�
0 if p ∈ s
hmax(amax

p ; s) otherwise
(3.6)

Here, amax
p and hmax(a; s) denote the best supporter and es-

timated cost of applying an action as above, yet are defined
differently:

amax
p = argmina∈O(p)h

max(a; s) (3.7)

hmax(a; s)
def
= cost(a) + hmax(Pre(a); s) (3.8)

hmax(Q; s)
def
= max

q∈Q
hmax(q; s) (3.9)

This change renders the value of the hmax heuristic admissible.
In terms of unfolded plans, the value hmax(p) is the minimum
over all unfolded plans U for p of the maximum cost path from
the root node of U to any one of its leaf nodes, where the cost
of such a path is given by the sum of the costs of the operators
corresponding to each node in the path.

Using the hmax heuristic for the extraction of relaxed plans was
first proposed with a different formulation in the context of the
ff planner (Hoffmann and Nebel, 2001). There, it was stated as
a combination of the layered relaxed planning graph with a plan

3.4. the set-additive heuristic 35

extraction algorithm enhanced with several secondary heuristics
to guide the choice of best supporters. However, upon closer
examination it can be seen that the layer at which a fluent first
appears in the planning graph is equivalent to the hmax value of
the fluent when all operator costs in the problem are set to 1.
The no-ops first heuristic used by ff to select for each fluent p a
supporter which appears at the earliest possible layer therefore
ensures that a supporter with minimal hmax value is chosen. The
ff heuristic is therefore equivalent to relaxed plan extraction
using the hmax heuristic with no costs to choose best supporters.

3.4 The Set-Additive Heuristic

The two heuristics discussed in the previous section make use of
the independence assumption for costs to minimize some mea-
sure of the cost of the unfolded plan. The overcounting resulting
from multiple instances of action nodes in unfolded plans is then
eliminated by extracting the corresponding plan. In contrast,
the set-additive heuristic hsa applies the independence assump-
tion directly to relaxed plans represented by sets, approximating
the optimal relaxed plan for a set of fluents as the union of the
relaxed plans for each fluent. The heuristic estimate for a given
state is then the cost of the set-additive relaxed plan πsa:

hsa(G; s)
def
= cost(πsa(G; s)) (3.10)

which is given by the following equations:

πsa(p; s)
def
=

�
{} if p ∈ s
πsa(asap ; s) otherwise

(3.11)

where

asap
def
= argmina∈O(p)cost(π

sa(a; s)) (3.12)

πsa(a; s)
def
= {a}

�
πsa(Pre(a); s) (3.13)

πsa(Q; s)
def
= ∪q∈Qπ

sa(q; s) (3.14)

and the cost of a relaxed plan is, as always, given by the sum of
the costs of the operators it contains:

cost(π)
def
=

�

a∈π
cost(a) (3.15)

36 exploiting the independence assumption

The intuition behind the set-additive heuristic is that if an oper-
ator appears in multiple fluents belonging to a set, only the cost
of a single instance of the operator need be counted towards the
cost of the overall plan. This intuition is realized by propagating
sets representing relaxed plans rather than numeric costs, which
allow the operators responsible for the cost of each fluent or sub-
tree in an unfolded plan to be considered when choosing its best
supporter. One case in which this information proves to be use-
ful can be seen in Figure 3.5. In this example, hsa chooses as the
best supporter for g the action {q1, q2} → {g}, since in comput-
ing the cost of achieving the precondition set {q1, q2}, the cost
of the action {s} → {p} is counted only once when the union of
the plans for q1 and q2 is taken. In contrast, hadd considers the
cost of the two fluents and comes up with a cost estimate of 6
for the set, which is higher than the correctly calculated cost of
the alternative way of achieving g, {s} → {g}. However, it is
important to note that the values found by hsa are not optimal
in general.

In this context, an alternative way of seeing the regular cost-
additive heuristic discussed in Section 3.3 is as the multiset ad-
ditive heuristic. Multisets are set-like objects in which each el-
ement is associated with a count denoting how many times it
is repeated. When these structures are used rather than reg-
ular sets, the union operation above results in a multiset that
contains each operator the sum of the number of times that it
appears in the plan for each of the fluents contained in a set,
and gives the same overcounting behavior seen in the additive
heuristic.

Computation

There are two issues that must be considered in the computation
of hsa. The first of these is one of efficiency: while the cost of the
relaxed plan obtained from the set-additive heuristic is in many
cases a more accurate approximation of the optimal cost of the
delete relaxation than that of the plan obtained from the best
supporters defined by the regular cost-additive heuristic, this
comes at the cost of the extra overhead associated with stor-
ing sets and performing the costly set union operation to obtain

3.4. the set-additive heuristic 37

s p2

q1

1

q2
1

g
0

5

(a) A delete relaxation prob-
lem

s p2

q1

1

q2
1

g
0

5

(b) Optimal plan found by
hsa, cost 4

s p2

q1

1

q2
1

g
0

5

(c) Subptimal plan found by
hadd, cost 5

Figure 3.5: Set-additive vs. cost-additive plans.

plans for sets of fluents rather than the much cheaper operation
of summing costs. We have found that sorted lists represent-
ing relaxed plans work well, as the set union operation can be
performed in time linear in the size of the sets. Furthermore, re-
laxed plans tend to be sparse subsets of the set of operators O of
the problem, and structures that grow linearly with its size |O|,
such as boolean vectors, tend to be inefficient, even if they allow
for quick set union implemented as the logical or operation.

The second and more interesting computational issue concerns
the algorithm used to find the fixpoint solution to the recursive
equations that define the heuristic. For heuristics such as hadd

and hmax, generalized versions of the Bellman-Ford or Dijkstra
algorithms are typically used (Bellman, 1958; Cormen et al.,
2001; Dijkstra, 1959; Knuth, 1977; Liu et al., 2002). These al-
gorithms are guaranteed to terminate with the unique fixpoint
solution which minimizes the estimated cost of all fluents in the
problem when the functions used in the equations satisfy a prop-

38 exploiting the independence assumption

erty known as superiority, originally defined in the context of the
grammar problem (Knuth, 1977):

Definition 3.3 (Superior function). A function g(x1, . . . , xk) :
(R+

0
)k �→ R+

0
is a superior function if it is monotone nonde-

creasing in each xi and if g(x1, . . . , xk) ≥ max(x1, . . . , xk) for
all x1, . . . , xk.

The sum and maximum functions used in the hadd and hmax

equations are both superior functions. As hsa is defined in terms
of sets and not the positive real numbers, we must state an
equivalent criterion for functions with non-numeric arguments
and a cost function over these arguments:

Definition 3.4 (Generic superior function). Let A be any set
and c : A �→ R+

0
a cost function over that set. A function

g(a1, . . . , ak) : Ak �→ A is a superior function for cost func-
tion c if c(g(a1, . . . , ak)) is nondecreasing in each c(ai) and if
c(g(a1, . . . , ak)) ≥ max(c(a1), . . . , c(ak)) for all a1, . . . , ak.

In the case of hsa, the function g is ∪, the union operator over
sets, and the set A is the set of subsets P(O) of the set of op-
erators of the problem. It is then easy to see that ∪ is not a
superior function with respect to the sum of the costs of the
operators in the set. For an example, let c be the unit cost
function c(A) = |A|, and consider three sets B = {o1, o2, o3},
C = {o2, o3, o4}, D = {o5, o6}. We then have that c(D) < c(C),
yet c(g(B,C)) < c(g(B,D)). The fact that the set union oper-
ation does not satisfy the criteria for being a generic superior
function is not surprising: if it did, the equations defining hsa

could be minimized simultaneously, in which case it would be
possible to compute the cost of a minimal cost plan for a set of
fluents Q by combining the minimal plans for the members of the
set q ∈ Q. This is equivalent to the independence assumption
that we already know to be false.

It is easy to construct a problem in which the Bellman-Ford
and Dijkstra algorithms find solutions to the hsa equations that
are either non-minimal for some variable or inconsistent.1 Con-

1We thank Malte Helmert for pointing this issue out to us (private com-
munication, 2009).

3.5. experimental results 39

s
p

op, 1

q1
oq1 , 2

q2

oq1q2 , 1

opq2 , 1

g
og, 0

(a) A delete relaxation problem

Figure 3.6: A delete relaxation problem illustrating the quirks
of hsa.

s p q1 q2 g
0 {}

1 {} {oq1} (2)
2 {} {oq1} (2) {oq1 , oq1q2} (3)
3 {} {oq1} (2) {oq1 , oq1q2} (3) {oq1 , oq1q2 , og} (3)
4 {} {op} (1) {oq1} (2) {oq1 , oq1q2} (3) {oq1 , oq1q2 , og} (3)
5 {} {op} (1) {oq1} (2) {op, opq2} (2) {oq1 , oq1q2 , og} (3)

Table 3.1: Possible sequence of updates with the Bellman-Ford
algorithm. Solution is inconsistent as πsa(g) �= {og} ∪ πsa(q1) ∪
πsa(q2).

sider the problem shown in Figure 3.6a. If the Bellman-Ford
algorithm is used, certain sequences of updates result in an in-
consistent solution (see Table 3.1), while if Dijkstra’s algorithm
is used, plans found for fluents are not necessarily minimal (see
Table 3.2). However, Dijkstra’s algorithm is guaranteed to find
the minimal consistent solution, and is the algorithm we use to
compute the value of hsa.

3.5 Experimental Results

We evaluate the performance of the heuristics discussed above in
several respects, asking which produce better approximations of
the optimal cost of the delete relaxation, which are most efficient
in terms of computational effort, and finally which result in the
best overall planning performance in terms of coverage and plan

40 exploiting the independence assumption

s p q1 q2 g
0 {}

1 {} {op} (1)
2 {} {op} (1) {oq1} (2) {op, opq2} (2)
3 {} {op} (1) {oq1} (2) {op, opq2} (2) {oq1 , op, opq2} (4)

Table 3.2: Sequence of updates with Dijkstra’s algorithm. πsa(g)
has cost 4, compared to 3 in the inconsistent solution found with
the Bellman-Ford algorithm.

quality. In addition to the relaxed plans extracted using the
best supporters for each fluent as determined by the hmax and
hadd heuristics, and the relaxed plan given by the hsa heuristic,
we consider the relaxed plan resulting from a basic implementa-
tion of the hff heuristic, in which best supporters with minimum
level in the planning graph, or equivalently, minimum hmax value
when costs are treated as uniform, are chosen. The secondary
heuristics described in Hoffmann and Nebel (2001), such as the
selection of supporters with a minimum number of delete effects,
are not used. As our test domains, we use the set of satisficing
planning instances from the most recent International Planning
Competition (ipc6). All experiments discussed below were run
on Xeon Woodcrest computers with clock speeds of 2.33 GHz,
using a 2GB memory limit and a time cutoff of 1800 seconds
when appropriate.

Quality of Π+ Approximation

We first consider which of the heuristics discussed above is best
able to approximate the optimal cost of the delete relaxation.
Table 3.3 shows the number of problems in which each heuristic
generates the lowest and second-lowest cost relaxed plans for the
initial states of the thirty instances of each domain. Table 3.4
evaluates the heuristics on a larger number of states, and shows
the proportion of states for which each heuristic produces the
lowest cost plan. In both tables, individual entries sum to more
than the total number of instances, or more than 100%, when
two or more heuristics generate relaxed plans with the same cost.

3.5. experimental results 41

Domain hff π(hmax) π(hadd) hsa

cybersec (30) 9 / 14 15 / 13 16 / 11 30 / 0
elevators (30) 2 / 8 23 / 7 17 / 11 15 / 10
openstacks (30) 0 / 30 30 / 0 30 / 0 30 / 0
parcprinter (30) 7 / 16 23 / 4 25 / 5 29 / 0

pegsol (30) 4 / 16 19 / 11 4 / 17 25 / 5
scanalyzer (30) 14 / 3 17 / 9 27 / 2 28 / 1
sokoban (30) 5 / 19 21 / 8 21 / 9 22 / 7
transport (30) 1 / 11 19 / 5 12 / 11 4 / 7

woodworking (30) 1 / 10 16 / 9 8 / 18 17 / 2
total (270) 43 / 127 183 / 66 160 / 84 200 / 32

Table 3.3: Quality of independence assumption based heuris-
tics. Entries indicate number of times each heuristic found low-
est/second lowest cost relaxed plan out of the four heuristics.
The heuristics were computed for the initial state of each of the
30 problems per domain.

Domain hff π(hmax) π(hadd) hsa

cybersec (300000) 0.40 0.78 0.75 0.84
elevators (300000) 0.05 0.83 0.52 0.46
openstacks (221684) 0.02 1.00 1.00 1.00
parcprinter (229963) 0.04 0.67 0.83 0.84

pegsol (214143) 0.08 0.68 0.11 0.71
scanalyzer (230183) 0.32 0.22 0.56 0.52
sokoban (248638) 0.14 0.60 0.59 0.78
transport (210700) 0.15 0.60 0.23 0.13

woodworking (183331) 0.04 0.50 0.24 0.63
total (2138642) 0.15 0.67 0.55 0.66

Table 3.4: Quality of independence assumption based heuristics.
Entries indicate proportion of states for which each heuristic
found lowest cost relaxed plan out of the four heuristics. Number
of states for which the heuristics were evaluated is indicated next
to each domain in parenthesis.

42 exploiting the independence assumption

Domain hff π(hmax) π(hadd) hsa

cybersec (300000) 1.00 0.66 0.66 0.65
elevators (290000) 1.00 0.62 0.67 0.68
openstacks (212031) 1.00 0.37 0.37 0.37
parcprinter (229963) 1.00 0.88 0.88 0.88

pegsol (214128) 1.00 0.75 0.98 0.74
scanalyzer (230183) 1.00 0.96 0.94 0.94
sokoban (248638) 1.00 0.92 0.93 0.91
transport (210700) 1.00 0.87 1.03 1.11

woodworking (183331) 1.00 0.92 0.93 0.92
total (2118974) 1.00 0.76 0.81 0.79

Table 3.5: The average proportion of the costs of the relaxed
plans found by different heuristics to those found by hff . Number
of states for which the heuristics were evaluated is indicated next
to each domain in parenthesis.

Finally, in Table 3.5, we show the average ratio of the cost of
the relaxed plan generated by each heuristic to that generated
by the hff heuristic which ignores costs. For this experiment and
the previous one, the states to be evaluated in each problem are
generated by blind search from the initial state.

Our first observation is a rather obvious one: taking into account
the costs of actions when choosing supporters generally results
in lower cost relaxed plans. The relaxed plans found by hff are
consistently worse than those found by the other heuristics. hff

finds the lowest cost plan only for only 43 out of the 270 initial
states considered, compared to 160 for the second-worst heuris-
tic, and for only 15% of a larger number of evaluated states,
compared to 55% for the second-worst heuristic. It finds worse
relaxed plans than the other heuristics in almost all cases when
considered on a per-domain basis as well, outperforming only
the hmax and hsa heuristics on a single domain each, scanalyzer
and transport respectively. In terms of the relative costs of the
plans found, the picture is similar, with the average cost of the
relaxed plan found by other heuristics being higher in only one
domain, transport, for the hsa and hadd heuristics.

Comparing hmax, hadd, and hsa, it is hard to choose a clear win-

3.5. experimental results 43

ner. Each heuristic generates lower cost plans in the largest
number of states for some domain, in the case of hmax the ele-
vators and transport domains, in the case of hadd the scanalyzer
domain, and in the case of hsa the cybersec, parcprinter, peg-
sol, sokoban, and woodworking domains. The plans generated
by all three heuristics for the openstacks domain have the same
cost. In general, hsa outperforms hadd, generating the lowest-
cost plans in up to 60% more states than hadd in five domains,
and generating the lowest-cost plans in a slightly lower number
of states in three. In the three domains in which hadd gener-
ates the lowest-cost plans in more states, the difference is never
larger than 10% of the states evaluated. Between the hmax and
hsa heuristics, the picture is more varied. In the elevators and
transport domains, hmax generates the best relaxed plans in 37%
and 47% more of the instances respectively. Yet in the other six
domains for which there are variations in relaxed plan cost, hsa

generates the best plans for between 3% and 30% percent more
states. This leads to the two heuristics performances being ap-
proximately equal when considered over the full set of domains,
yet as seen above there are large variations on a per-domain
basis.

When considered through the lens of relative plan costs, the
picture is similar, with hsa generating plans of slightly less cost
than those generated by hadd on average, and hmax generating
better plans than both, principally due to its performance in
the transport and elevators domains. Note, however that this
type of comparison is less effective at distinguishing between the
heuristics, and values tend to be more uniform. For an example,
consider the parcprinter domain, in which hsa generates the best
relaxed plans in 84% of the considered states compared to 83%
for hadd, 67% for hmax, and 4% for hff . When considered in
terms of relative plan costs, all three of the cost based heuristics
generate plans that are on average 88% as costly as those of hff .
Several factors may contribute to this: the differences in cost
between the best relaxed plan found and the second or third best
plans may be small, and the heuristics may tend to find better
plans for different states, resulting in similar average values.

44 exploiting the independence assumption

Domain hff π(hmax) π(hadd) hsa

cybersec 718 874 1887 109
elevators 1142 1536 1202 303
openstacks 113 898 84 27
parcprinter 6610 5966 5999 3808

pegsol 12888 10748 12293 5830
scanalyzer 52 113 70 39
sokoban 2568 2547 2387 475
transport 536 569 320 48

woodworking 237 260 369 152
total 1419 2118 1726 496

Table 3.6: Average number of heuristic evaluations performed
per second for independence assumption based heuristics. To
minimize variance, only problems solved with > 1000 heuristic
evaluations were considered.

Computational Cost of Heuristics

We now look at the issue of the computational effort required to
compute the value of each heuristic. We expect the computation
of hff , hmax, and hadd to be faster than that of hsa due to two
factors. The first of these is that the first three heuristics prop-
agate costs rather than sets of actions, and calculating the cost
of an action by taking the maximum or sum of the costs of a set
of precondition fluents is less computationally intensive than the
union operation over sets. Furthermore, as the domain size in-
creases, the number of such operations that must be performed
in each state grows for all heuristics, yet in the case of hsa, the
difficulty of the operation grows as well, as the sets representing
relaxed plans become larger. The second factor is that in order
to compute a consistent solution to the set-additive heuristic,
the associated equations must be solved with a variant of Di-
jkstra’s algorithm, in which updates are ordered in a priority
queue. The overhead of inserting the updates to be applied in
the priority queue then implies further overhead. These issues
are discussed in more detail in Section 3.4.

Table 3.6 shows the number of heuristic evaluations performed
per second by each of the heuristics. In order to reduce vari-

3.5. experimental results 45

ance in the calculation resulting from inaccurate measurement
of shorter time periods, only problems that were solved with
more than 1000 evaluations were considered. Taking into con-
sideration the factors mentioned above, it is not surprising that
the computation of the set-additive heuristic is on average a
factor of 2–10 times slower than the computation of the other
three heuristics. Evaluation times for the other heuristics exhibit
some variation, but are largely similar across the set of domains
considered.

Coverage

In this section we consider the overall planning performance of
the heuristics in terms of coverage, or the number of problems
solved by each heuristic. Results in this section were obtained
using a greedy best first search (GBFS) algorithm with delayed
evaluation and two open lists, one of which contains only nodes
resulting from helpful actions, defined as the set of actions in
the relaxed plan applicable in the current state. The algorithm
is our own implementation of the algorithm used in the winning
planner of the satisficing track of the most recent ipc, lama
(Richter and Westphal, 2010). In choosing a node to be ex-
panded, we alternate between picking a node from the open list
containing nodes resulting from helpful actions, and the regu-
lar open list, giving no priority to the former. We consider the
four heuristics discussed above in three different configurations,
(a) computing the heuristics using the operator costs stated in
the problem (except in the case of hff) and taking the cost of
the resulting relaxed plan, (b) as (a), but using an added cost
for zero cost actions (discussed below), and (c), computing the
relaxed plans using costs, but using the size of the relaxed plan
|π|, rather than the cost cost(π) as the heuristic value.

It has previously been observed that optimizing relaxed plans
for cost rather than size can often be detrimental to coverage
(Richter and Westphal, 2010). Here we confirm this observa-
tion. Using the cost of the relaxed plan generated by the hff as
the heuristic value of the state, more problems are solved than
with any other heuristic in six out of the nine domains consid-
ered (Table 3.7). The three other domains in which some other

46 exploiting the independence assumption

Domain hff π(hmax) π(hadd) hsa

cybersec (30) 8 3 5 7
elevators (30) 12 8 8 8
openstacks (30) 15 12 12 10
parcprinter (30) 17 16 16 18

pegsol (30) 29 30 30 30
scanalyzer (30) 26 25 22 21
sokoban (30) 28 27 27 25
transport (30) 12 11 14 14

woodworking (30) 29 28 28 28
total (270) 176 160 162 161

Table 3.7: Coverage for independence assumption based heuris-
tics. The number of problems in each domain is indicated in
parenthesis.

Domain hff π(hmax) π(hadd) hsa

cybersec (30) 18 10 14 16
elevators (30) 12 11 10 8
openstacks (30) 27 27 30 25
parcprinter (30) 17 16 16 18

pegsol (30) 29 29 30 30
scanalyzer (30) 27 26 21 22
sokoban (30) 26 27 27 23
transport (30) 12 11 14 14

woodworking (30) 29 28 28 27
total (270) 197 185 190 183

Table 3.8: Coverage for independence assumption based heuris-
tics when the cost of all zero cost actions is set to be 0.01. The
number of problems in each domain is indicated in parenthesis.

heuristic is able to solve more problems are the parcprinter do-
main, in which hsa solves one more problem than hff , pegsol,
in which all three other heuristics solve one more problem, and
transport, in which hsa and hadd both are able to solve two more
problems than hff . When the total number of problems solved is
considered, hff does significantly better, solving 14 more prob-
lems than its closest competitor, hadd.

3.5. experimental results 47

Domain |hff | |π(hmax)| |π(hadd)| |hsa|
cybersec (30) 14 15 20 19
elevators (30) 26 23 24 28
openstacks (30) 30 25 30 28
parcprinter (30) 22 23 22 23

pegsol (30) 29 30 30 30
scanalyzer (30) 26 22 21 22
sokoban (30) 28 26 26 26
transport (30) 13 13 17 16

woodworking(30) 21 27 24 26
total (270) 209 204 214 218

Table 3.9: Coverage for independence assumption based heuris-
tics when plan size rather than plan cost is used. The number
of problems in each domain is indicated in parenthesis.

One issue that we have noted in optimizing for plan cost rather
than plan length is that operators with zero cost can lead to
heuristic plateaus, in which such an operator decreases the num-
ber of operators in the relaxed plan for the resulting state, thus
advancing towards the goal, but not its cost. In order to test the
impact of this, we modify the heuristic computation slightly by
assigning to each operator with zero cost a base cost, thus en-
suring that the removal of an operator from a plan also results
in a decrease in the cost of the plan. The results of using a base
cost of 0.01 are shown in Table 3.8. We observe that the use of
this base cost improves coverage across the board, increasing the
total number of problems solved by approximately 20 for each
heuristic. Furthermore, this addition also decreases the gap be-
tween the results for hff and the cost based heuristics, with hff

solving the most problems in only four domains, compared to
six in the previous experiment, and the gap in the number of
problems solved compared to the next best heuristic shrinking
to 7, from 14.

Finally, when the cost of the relaxed plan is completely discarded
and its size |π| is used as a heuristic estimate, coverage results
are further improved (Table 3.9). Note that costs are not dis-
carded during the computation of the heuristics, so the heuristic
computation still attempts to find low cost, rather than size,

48 exploiting the independence assumption

relaxed plans. Interestingly, the increase in coverage across the
different heuristics is not uniform in this case and search using
the additive and set-additive heuristics benefits the most. In
fact, using the size of the relaxed plans generated by hadd and
hsa as a heuristic results in both configurations solving more
problems than with the hff heuristic, in the case of hadd 5 more,
and in the case of hsa 9 more.

Node Expansions

We now consider the number of nodes expanded by each heuris-
tic in order to find a solution. The three configurations used
are the same as those discussed above. In our evaluation, we
consider only the problems which were solved using all four of
the heuristics, and compare the number of nodes expanded to
the number of nodes expanded using the hff heuristic. Each
entry in the following tables is then of the form +x/-y, indicat-
ing that of the commonly solved problems, the heuristic solved
x with more expansions than hff , and y with less. In the first
configuration, using the costs of relaxed plans as the heuristic
value, the three cost based heuristics turn out to be much less
informative than hff in terms of goal directedness (Table 3.10).
In almost all of the domains, they evaluate a greater number of
nodes to find a solution in more problems than the other way
around, with large differences especially in the pegsol, wood-
working, and openstacks domains. The woodworking domain is
a particularly egregious in this respect.

When a base cost of 0.01 is added to the cost of all zero cost
actions, results are somewhat improved, with both the hmax and
hsa heuristics solving problems with approximately the same
number of node expansions as the hff heuristic (Table 3.11).

In the third configuration, costs of actions are ignored by the
search algorithm, which instead takes the size of the relaxed
plan to be the heuristic value. This is especially detrimental
to the cost based heuristics, and results are similar to the first
configuration. In almost all domains, the number of problems
solved with a greater number of expansions is higher than the
number of problems solved with fewer (Table 3.12). The situa-

3.5. experimental results 49

Domain hff π(hmax) π(hadd) hsa

cybersec (2) +0/-0 +0/-1 +1/-1 +1/-1
elevators (5) +0/-0 +2/-3 +2/-3 +2/-3

openstacks (10) +0/-0 +9/-1 +9/-1 +8/-2
parcprinter (15) +0/-0 +9/-4 +9/-4 +7/-7

pegsol (29) +0/-0 +17/-10 +15/-12 +18/-10
scanalyzer (20) +0/-0 +11/-9 +16/-4 +15/-5
sokoban (25) +0/-0 +10/-15 +10/-15 +10/-15
transport (11) +0/-0 +5/-6 +1/-10 +1/-10

woodworking (25) +0/-0 +18/-3 +18/-3 +18/-5
total (142) +0/-0 +81/-52 +81/-53 +80/-58

Table 3.10: Number of node expansions when using the cost of
the generated relaxed plan as the heuristic function. An entry
of the form +x/-y indicates that the heuristic solved x problems
with more node expansions than hff , and y problems with fewer.
Results are shown only for problems solved with all four heuris-
tics. The number of such problems is indicated in parenthesis.

Domain hff π(hmax) π(hadd) hsa

cybersec (8) +0/-0 +1/-4 +2/-6 +5/-3
elevators (7) +0/-0 +3/-4 +3/-4 +4/-3

openstacks (20) +0/-0 +2/-18 +14/-6 +10/-10
parcprinter (15) +0/-0 +9/-4 +9/-4 +7/-7

pegsol (29) +0/-0 +18/-10 +14/-14 +12/-16
scanalyzer (20) +0/-0 +11/-9 +16/-4 +15/-5
sokoban (23) +0/-0 +9/-14 +7/-16 +6/-17
transport (11) +0/-0 +5/-6 +1/-10 +1/-10

woodworking (24) +0/-0 +17/-3 +17/-3 +17/-5
total (157) +0/-0 +75/-72 +83/-67 +77/-76

Table 3.11: Number of node expansions when using the cost of
the generated relaxed plan as the heuristic function, with an
added base cost of 0.01 for all zero cost actions. An entry of the
form +x/-y indicates that the heuristic solved x problems with
more node expansions than hff , and y problems with fewer. Re-
sults are shown only for problems solved with all four heuristics.
The number of such problems is indicated in parenthesis.

50 exploiting the independence assumption

Domain |hff | |π(hmax)| |π(hadd)| |hsa|
cybersec (10) +0/-0 +4/-3 +3/-7 +5/-5
elevators (23) +0/-0 +17/-5 +10/-13 +9/-14
openstacks (23) +0/-0 +22/-0 +23/-0 +21/-2
parcprinter (22) +0/-0 +17/-3 +17/-3 +12/-9

pegsol (29) +0/-0 +10/-17 +12/-13 +9/-18
scanalyzer (19) +0/-0 +9/-10 +11/-8 +8/-11
sokoban (26) +0/-0 +19/-7 +17/-9 +15/-11
transport (12) +0/-0 +11/-1 +0/-12 +0/-12

woodworking (19) +0/-0 +11/-3 +11/-3 +13/-4
total (183) +0/-0 +120/-49 +104/-68 +92/-86

Table 3.12: Number of node expansions when using the size of
the generated relaxed plan as the heuristic function. An entry
of the form +x/-y indicates that the heuristic solved x problems
with more node expansions than hff , and y problems with fewer.
Results are shown only for problems solved with all four heuris-
tics. The number of such problems is indicated in parenthesis.

tion is particularly bad in the openstacks domain, in which the
cost based heuristics require more evaluations in almost all of
the instances.

Plan Cost

Here we evaluate the heuristics from the perspective of the cost
of the plans that each produce. As in the previous section, the
evaluation method is to compare the number of higher/lower
cost plans produced compared to the hff heuristic which ignores
costs, considering only the problems which are solved with all
four heuristics. In the first configuration, in which the cost of the
relaxed plan is used with no added values for zero cost actions,
results are greatly improved across the board with the use of
costs, with all three heuristics that take into account cost in
their computation producing more lower cost plans than higher
cost plans compared to hff(Table 3.13). The best results are
obtained by the set-additive heuristic, which produces 78 lower
cost plans and 35 higher cost plans. The costs of the generated

3.5. experimental results 51

Domain hff π(hmax) π(hadd) hsa

cybersec (2) +0/-0 +0/-0 +0/-0 +1/-0
elevators (5) +0/-0 +2/-2 +3/-2 +3/-2

openstacks (10) +0/-0 +0/-9 +0/-9 +0/-9
parcprinter (15) +0/-0 +0/-3 +0/-3 +0/-3

pegsol (29) +0/-0 +4/-15 +3/-7 +4/-17
scanalyzer (20) +0/-0 +10/-9 +11/-8 +6/-14
sokoban (25) +0/-0 +5/-13 +4/-14 +6/-14
transport (11) +0/-0 +6/-5 +0/-11 +0/-11

woodworking (25) +0/-0 +12/-9 +12/-9 +15/-8
total (142) +0/-0 +39/-65 +33/-63 +35/-78

Table 3.13: Higher/lower cost plans when using the cost of the
generated relaxed plan as the heuristic function. An entry of the
form +x/-y indicates that the heuristic found higher cost plans
than hff for x problems, and lower cost plans for y problems. Re-
sults are shown only for problems solved with all four heuristics.
The number of such problems is indicated in parenthesis.

plans are lower for almost all of the domains, with the single
exception being the woodworking domain, which was also an
outlier in terms of the previous criteria considered. In particular,
the woodworking domain is responsible for slightly less than half
of the worse cost plans produced by the hsa, and approximately
a third of the worse cost plans produced by hadd and hmax. The
use of cost based heuristics improves the resulting plans to a
large extent particularly in the pegsol, scanalyzer, and sokoban
domains.

In the second configuration, in which an added base cost is used
for zero cost actions, the differences in plan quality are less (Ta-
ble 3.14). hadd and hmax continue to generate more plans of
higher cost than lower cost when compared to hff , with the do-
mains showing particular improvement being the same as those
in the previous configuration. One interesting deviation from
the previous results is the performance of hadd in the openstacks
domain, in which it generates 20 plans of lower cost compared
to hff , and no plans of higher cost. The woodworking domain
continues to play a large role in the overall results, being respon-
sible for approximately a third of the higher cost plans in the

52 exploiting the independence assumption

Domain hff π(hmax) π(hadd) hsa

cybersec (8) +0/-0 +0/-0 +0/-0 +3/-0
elevators (7) +0/-0 +7/-0 +4/-2 +7/-0

openstacks (20) +0/-0 +11/-5 +0/-20 +8/-9
parcprinter (15) +0/-0 +0/-3 +0/-3 +0/-3

pegsol (29) +0/-0 +2/-14 +5/-7 +5/-14
scanalyzer (20) +0/-0 +10/-9 +11/-8 +6/-14
sokoban (23) +0/-0 +6/-11 +5/-11 +7/-12
transport (11) +0/-0 +6/-5 +0/-11 +0/-11

woodworking (24) +0/-0 +11/-9 +11/-9 +14/-8
total (157) +0/-0 +53/-56 +36/-71 +50/-71

Table 3.14: Higher/lower cost plans when using the cost of the
generated relaxed plan as the heuristic function, with an added
base cost of 0.01 for all zero cost actions. An entry of the form
+x/-y indicates that the heuristic found higher cost plans than
hff for x problems, and lower cost plans for y problems. Results
are shown only for problems solved with all four heuristics. The
number of such problems is indicated in parenthesis.

results for the hsa and hadd heuristics.

Finally, when the size of the relaxed plan is used to generate
heuristic values rather than its cost, the advantage enjoyed by
the cost sensitive heuristics is nullified for both hsa and hmax

(Table 3.15). Interestingly, the performance of the hadd heuris-
tic in this configuration is greatly improved compared to previ-
ous configurations, and it generates 80 plans of better cost than
those generated by hff , compared to only 44 plans of worse cost.
Similarly to when the heuristics are considered in terms of the
number of node expansions required to find a solution, the open-
stacks domain is a particularly bad case, with the combination
of cost sensitive heuristics and relaxed plan size as a heuristic
function leading to hsa and hmaxgenerating worse plans in almost
all of the instances considered.

3.6. related work 53

Domain |hff | |π(hmax)| |π(hadd)| |hsa|
cybersec (10) +0/-0 +0/-3 +0/-3 +1/-3
elevators (23) +0/-0 +11/-12 +6/-17 +15/-7
openstacks (23) +0/-0 +21/-1 +2/-10 +23/-0
parcprinter (22) +0/-0 +10/-10 +11/-9 +9/-10

pegsol (29) +0/-0 +8/-8 +3/-4 +11/-7
scanalyzer (19) +0/-0 +7/-7 +4/-9 +4/-12
sokoban (26) +0/-0 +8/-11 +8/-12 +14/-8
transport (12) +0/-0 +5/-6 +2/-10 +1/-11

woodworking (19) +0/-0 +9/-5 +8/-6 +7/-9
total (183) +0/-0 +79/-63 +44/-80 +85/-67

Table 3.15: Higher/lower cost plans when using the size of the
generated relaxed plan as the heuristic function. An entry of the
form +x/-y indicates that the heuristic found higher cost plans
than hff for x problems, and lower cost plans for y problems. Re-
sults are shown only for problems solved with all four heuristics.
The number of such problems is indicated in parenthesis.

3.6 Related Work

Since the independence assumption was first stated explicitly
and used to obtain a heuristic value from the delete relaxation,
much work has gone into developing new heuristics that explic-
itly or implicitly depend on it and exploring their properties.
Here we briefly review some of this work.

The additive heuristic hadd used in the HSP planner is the first
heuristic to be stated in terms of a solution to the delete re-
laxation of a problem, and the first to explicitly make use of
the independence assumption (Bonet and Geffner, 2001). The
heuristic value used is the sum of the costs of the goals in the
problem as discussed in Section 3.3, rather than an explicit re-
laxed plan described by the set of operators belonging to it. As a
result, the heuristic suffers from the overcounting problem, due
to which the cost of an operator could count more than once
towards the heuristic estimate.

The relaxed planning graph heuristic hff adapts the original
planning graph (Blum and Furst, 1995) to the delete relax-

54 exploiting the independence assumption

ation by dropping the delete information encoded in the form
of mutexes in the graph (Hoffmann and Nebel, 2001). The ex-
plicit graph representation in which each fluent in the problem
is marked with an operator adding it allows the extraction of a
relaxed plan in the form of a set in which each operator appears
at most once, thereby eliminating the problem of overcounting.
However, propagation in the relaxed planning graph as originally
defined can not take into account the costs of operators, consid-
ering only the level, or number of parallel plan steps, required
to achieve a fluent, and is therefore not suitable to planning
problems in which it is important to find low-cost plans. The
explicit representation of the relaxed plan allows the extraction
of helpful actions, defined in the FF planner as those operators
applicable in the current state adding some precondition of an
operator in the relaxed plan.

The SAPA planner uses several variations of additive and max
propagation in the relaxed planning graph followed by relaxed
plan extraction as in the FF planner (Do and Kambhampati,
2003). The LAMA planner proposed the use of relaxed plan ex-
traction with best supporters as defined by the additive heuris-
tic independently of our work, and its authors have conducted
a thorough analysis of various schemes for setting the costs of
actions (Richter and Westphal, 2010). As we do here, they con-
clude that constructing relaxed plans in a cost-sensitive manner
and using their costs rather than sizes as heuristic values, while
increasing plan quality, is greatly detrimental to coverage. They
also investigate a strategy similar to ours to address the issue
of zero-cost operators resulting in heuristic plateaus, summing
the cost and size of the relaxed plan to obtain heuristic values.
In their setting, this strategy does not result in the coverage in-
crease seen here. We speculate that this difference is due to the
fact that in their pure cost version, they break heuristic ties by
preferring the state resulting in the plan with smaller size, which
appears to be sufficient to give the increase in coverage.

A number of works have focused on a more general framework
for describing the theoretical properties of heuristics based on
the independence assumption. In the setting of optimal directed
hyperpath finding, this has taken the form of investigating the
types of cost measures for which optimal hyperpaths can be

3.7. conclusions 55

found in polynomial time (Ausiello et al., 1998). These cost
measures turn out to encompass the hadd and hmax heuristics as
special cases. Fuentetaja et al. (2008) also give a general algo-
rithm for computing independence-assumption based heuristics
in the relaxed planning graph, with different aggregation func-
tions acting as its building blocks. They show that the heuristics
presented here can be computed by various instantiations of their
algorithm.

3.7 Conclusions

We have investigated the use of the independence assumption as
applied to costs to obtain suboptimal relaxed plans. We have
shown that any acyclic best supporter function which assigns to
each fluent in the problem an operator that supports it can be
used to generate these plans, and used this fact to build upon
the hadd and hff heuristics to obtain new heuristics that inte-
grate the advantages of both: namely, sensitivity to costs, the
elimination of the overcounting behaviour seen in hadd, and the
ability to obtain an explicit relaxed plan from which search con-
trol information in the form of helpful actions can be extracted.
The best supporter functions we use are defined declaratively
in terms of recursive equations rather than algorithmically in
terms of the planning graph, leading to a better understanding
of their properties and a reduction in the space requirements
of the algorithms required to compute them. In addition, we
have related the independence assumption to the unfolded plan
structure, previously investigated in the context of optimal di-
rected hyperpath finding, giving new insight into the properties
of heuristics that rely on it.

We have also introduced the set-additive heuristic that moves
away from the independence assumption in the context of costs
and instead applies it to relaxed plans for fluents, leading to re-
laxed plans whose costs are a tighter upper bound on the optimal
cost of the delete relaxation.

Chapter 4

Beyond the Independence

Assumption

In this chapter we explore methods for solving the delete relax-
ation or improving existing solutions that instead of assuming
independence, attempt to find plans that are globally better.
We present first an improvement scheme based on certain prop-
erties of Steiner trees, and give an experimental evaluation of
the resulting heuristic.

4.1 Steiner Trees and the Delete
Relaxation

The Steiner Tree (ST) problem is a graph problem similar to the
better known Minimum Spanning Tree (MST) problem. While
in the MST problem the goal is to find a minimum weight tree
that spans all the nodes in a graph (Cormen et al., 2001), in the
ST problem, only a subset of the full set of nodes of the graph
must be spanned:

Definition 4.1 (Steiner tree problem). Given a graph G =
�V,E� and a set of target nodes T ⊆ V which is a subset of
the full set of nodes, the Steiner tree problem is the problem of

57

58 beyond the independence assumption

finding a tree S with minimum weight that spans all the nodes
in T .

When the set of target nodes T is equal to the full set of nodes
in the graph, the ST problem is equivalent to the MST prob-
lem. The MST problem can be solved in polynomial time by
greedy approaches such as Prim’s or Kruskal’s algorithms (Cor-
men et al., 2001), yet the ST problem is in general intractable
(Proemel and Steger, 2002) and was in fact one of the origi-
nal 21 np-complete problems presented by Karp (1972). The
associated optimization problem of finding the lowest cost tree
spanning T is therefore np-hard. Here, we refer to such a mini-
mum cost tree as a Steiner tree (ST), and to a tree which spans
the set of nodes T while not necessarily having minimal weight
as a candidate Steiner tree (CST).

The ST problem can be encoded straightforwardly as a planning
problem without deletes:

Definition 4.2 (Delete relaxation encoding of ST problem).
Given an ST problem S specified by a graph G = �V,E� and a
set of target nodes T ⊆ V , let PS = �F, I,O,G�, where

• F = V

• I = n0, where n0 ∈ T is any node in T

• O =
�

�n,n��∈E{�n, n
��, �n�, n�}, where �n, n�� denotes an

operator with precondition Pre(o) = {n} and add effect
Add(o) = {n�} and the cost of each operator is equal to the
weight of the edge w(�n, n��) with which it is associated

• G = T

The planning problem PS is equivalent to the ST problem S
in the sense that every plan π for PS encodes a CST Cπ in
S and vice versa. To see this, note that any plan π for PS

can be interpreted as the CST Cπ = {�n, n�� | �n, n�� ∈ π}.
Furthermore, by how the cost of each operator is obtained above,
the weight of the resulting CST w(Cπ) and the cost of π are
equal. It then follows that:

4.2. improvement algorithms for steiner trees 59

Theorem 4.3. The Steiner trees for the problem S = ��V,E�, T �
are equivalent to the optimal plans for PS and c∗(S) = cost∗(PS) =
cost∗(P+

S
).

As discussed in Section 2.4, the planning encoding of the ST
problem is a problem with no deletes in which the preconditions
of all actions have size 1, but the size of the goal set |G| is un-
bounded. Since the problem has no delete effects, the value of
the optimal delete relaxation heuristic h+ captures the optimal
cost of this encoding. However, the delete relaxation heuristics
discussed until now that are based on the independence assump-
tion do not: since all preconditions in the problem are unary,
they are able to give optimal cost estimates for the cost of the
path to each of the target nodes of the problem in isolation, but
not for the set of goals T as a whole. Instead, the relaxed plans
that they yield consist of the union of the shortest paths to each
of the goals, which is known as a trees of shortest paths (Cormen
et al., 2001).

The cost of the tree of shortest paths is not a good approxima-
tion to the cost of the ST problem. Yet many polynomial-time
algorithms that compute better approximations exist (Charikar
et al., 1998; Robins and Zelikovsky, 2000). We cannot build di-
rectly on these algorithms, however, as the graphs that underlie
the delete relaxations of arbitrary planning problems are directed
hypergraphs, rather than undirected graphs. However, as we will
show below, it is possible to obtain better relaxed plans by bor-
rowing some of the underlying ideas. We begin by developing
an improvement procedure for CSTs in undirected graphs, and
then show how to extend the procedure to directed graphs and
later directed hypergraphs, which are equivalent to the delete
relaxation problem.

4.2 Improvement Algorithms for Steiner
Trees

Given a CST C, the set of points spanned by C which are not
in T are known as the Steiner points of C (Proemel and Steger,
2002). For a fixed set of Steiner points Q, it is easy to see that

60 beyond the independence assumption

the lowest cost CST that can be constructed constitutes an MST
over the subgraph of G induced byQ∪T , as any tree with greater
cost could be replaced with the MST over this set of points to
yield a lower cost CST. The weight of the Steiner tree for a given
problem S can then be stated as the minimum over all possible
sets of Steiner points of the weight of the MST on the subgraph
induced by the union of the set of terminal points and the set of
Steiner points:

w∗(S) = minQ⊆(V \T)w(MST (GT∪Q)) (4.1)

Solving the ST problem is then equivalent to finding the set of
Steiner points Q which results in the induced subgraph GT∪Q

with the minimum cost MST. Though it is of course intractable
to find this optimal set of Steiner points, the property suggests a
fast test to eliminate a tree C spanning a set of nodes N , T ⊆ N ,
from consideration: if C is not an MST over the graph induced
by N , C can be replaced in polynomial time by the MST that
spans the same nodes with less cost. Furthermore, these im-
provements can be done incrementally with a simple algorithm
that consists of removing an edge from C and checking whether
the two connected components that result can be reconnected
with a lower weight edge to give a new tree C � that spans the
same set of nodes but has less weight (Figures 4.2 and 4.1).
When no further edges can be replaced, it can be shown that C
is an MST over the set of nodes that it spans.

Taking into consideration that our overall goal is not to find
an MST over the set of nodes spanned by C but rather to ap-
proximate the cost of the ST problem as closely as possible,
this algorithm can be further improved. As the edge replace-
ment algorithm replaces only single edges connecting two nodes
in the candidate solution, the set of Steiner points Q of C is
never modified. A version of the algorithm that also checks
solutions with a modified set of Steiner points Q� is therefore
guaranteed to give better results (recall Equation 4.1). Such an
algorithm can be constructed by considering for replacement a
path p in C whose internal nodes are all Steiner points, rather
than only a single edge e (Figures 4.5 and 4.4). In other words,
rather than replacing an edge e connecting two trees with a

4.2. improvement algorithms for steiner trees 61

a b

2

c

1

d

1

1

(a) Suboptimal spanning
tree with weight 4.

a b

2

c

1

d

1

1

C1 C2

(b) Removal of edge �a, b� results in
two connected components.

a b

2

c

1

d

1

1

(c) Reconnecting C1 and
C2 with edge �c, d� gives
new MST with weight 3.

Figure 4.1: Edge replacement in undirected MSTs.

Input: A graph G = �V,E�

Input: A tree C in G
Output: A tree C �, with w(C �) ≤ w(C)

for e ∈ C do
C1, C2 ← ConnectedComponents(C \ e)
Er ← {�n, n�� ∈ E | n ∈ C1 ∧ n� ∈ C2}

for e� ∈ Er do
if w(e�) < w(e) then

return C1 ∪ C2 ∪ e�
return C

Figure 4.2: Edge replacement algorithm for undirected
graphs.

62 beyond the independence assumption

lower weight edge e� that connects the same two trees, the al-
gorithm attempts to replace a path p = �n1, . . . , nk� in C such
that ni /∈ T for 1 < i < k. When removing a path p from C,
care must be taken as more than two connected components Ci

such that Ci ∩ T �= ∅ may result (Figure 4.3). For simplicity, we
ignore such paths and consider only those whose removal results
in exactly two connected components C1 and C2. If a new path
connecting the two p� = �n�

1
, . . . , n�

m� with n�
1
∈ C1, n�

m ∈ C2,
n�
2
, . . . , n�

m−1
�∈ C1, C2, and c(p�) < c(p) can then be found, a

new CST C � = C1∪C2∪p� of lower cost results from replacing p
with p�. The requirement that the internal nodes of the path not
belong to either connected component ensures that the resulting
structure contains no cycles and is a tree. In the undirected set-
ting, this property could also be preserved by considering only
minimal cost paths that reconnect the two components, how-
ever the criterion as stated here is more readily applicable to
the directed graphs.

This more powerful improvement procedure generalizes the edge
replacement algorithm, and may change the set of Steiner points
Q of C.

Improving Directed CSTs

The edge and path replacement algorithms discussed above can
easily be extended to directed graphs. The one issue that arises
is that while two undirected trees C1, C2 can be joined by a
path from any node of C1 to any node of C2 to obtain a new
tree that spans all the nodes of both C1 and C2, this is not the
case for trees in directed graphs. When C1 and C2 are directed
trees, adding a path that terminates in a node that already has
an incoming edge will increase the in-degree of the node to 2,
invalidating the tree property (see Figure 4.6). The paths or
edges that are chosen in order to reconnect the two components
must therefore end in nodes that have in-degree 0 in the indi-
vidual connected components, or in other words the root nodes
of each. Modifying the path improvement algorithm presented
above to consider only such paths is a simple matter.

Furthermore, note that in directed (hyper)graphs representing

4.3. improving relaxed plans 63

t1
s

t2

t3

(a) Steiner tree for T = {t1, t2, t3}.

t1
s

t2

t3

C1 C2

C3

(b) Removal of path p = �t1, s, t2� results in 3 con-
nected components containing points in T .

Figure 4.3: Multiple connected components resulting from path
removal.

delete relaxation problems, solutions are necessarily rooted at
the node i representing the initial state that results from ap-
plying the transformation implied by Proposition 2.12. Given
such a CST, the removal of a path necessarily results in one
component C0 which is rooted at the initial state, and a second
component C+ which is not. In order to reconnect the two con-
nected components, it is then sufficient to only consider paths
from some node of C0 to the root node of C+.

4.3 Improving Relaxed Plans

We now show how to adapt the algorithm described above to
the setting of delete relaxation problems represented by hyper-

64 beyond the independence assumption

t1

s1 s2

t2

(a) Steiner tree with
Steiner point set
Q = {s1, s2}.

t1

s1 s2

t2

C1 C2

(b) Removal of path
p = �t1, s1, s2, t2� results
in two connected compo-
nents containing nodes in
T .

t1

s1 s2

t2

(c) Reconnecting C1 and
C2 with path p = �t1, t2�
gives new Steiner tree with
Steiner point set Q = {}.

Figure 4.4: Path replacement in Steiner trees, T = {t1, t2}.

graphs, assuming without loss of generality that solutions take
the form of relaxed plans π from a single initial fluent i (Propo-
sition 2.12) to a single goal fluent g (Proposition 2.11), and that
all actions have a single add effect (Proposition 2.10). We dis-
cuss below how to modify the procedure to handle multiple add
effects.

We define three disjoint subsets of π: π+(y), π0(y), and π−(y)
in terms of any fluent y ∈ F (π), where F (π) represents the
set of fluents that appear in the precondition Pre(o) of some
operator o ∈ π. These subsets correspond respectively to the
two connected components C+ and C0 and to the path p that

4.3. improving relaxed plans 65

Input: An ST problem S = ��V,E�, T �
Input: A tree C in G
Output: A tree C �, with w(C �) ≤ w(C)

PC ← {p = �n1, . . . , nk� ⊆ C | n2, . . . , nk−1 �∈ T}
for p ∈ PC do

if |ConnectedComponents(C \ p)| = 2 then
C1, C2 ← ConnectedComponents(C \ p)
Pr ← {�n�

1
, . . . , n�

m� ∈ �V,E� | n�
1
∈ C1 ∧ n�

m ∈ C2}

Pr ← {�n�
1
, . . . , n�

m� ∈ Pr | n�
2
, . . . , n�

m−1
�∈ C1, C2}

for p� ∈ Pr do
if w(p�) < w(p) then

return C1 ∪ C2 ∪ p�

return C

Figure 4.5: Path replacement algorithm for undirected
graphs.

connects them (Figure 4.7).

Given y, the structure analogous to the tree C+ rooted at y in
the directed tree setting is the portion of the plan π+(y) that is
dependent on y, defined recursively as follows:

1. o ∈ π is dependent on y if y ∈ Pre(o).

2. o ∈ π is dependent on y if it is dependent on some fluent
x added by an operator that is dependent on y.

The algorithm shown in Figure 4.8 computes π+(y) incremen-
tally, iterating over the set of operators in π and terminating
when no further actions can be added to the set. This compu-
tation can also be implemented recursively with an algorithm
similar to relaxed plan extraction.

The portion of the relaxed plan that corresponds to the path
p between the two directed trees is termed π−(y), and is the
set of actions in π that are required only in order to achieve
the fluent y, i.e. that would not be necessary if y were already
present in the initial state from which π is calculated. Note that

66 beyond the independence assumption

a b

1

c

1

d

1

2

(a) Optimal directed
MST with weight 4.

a b

1

c

1

d

1

2

C1 C2

(b) Removal of edge �c, d� results in
two connected components.

a b

1

c

1

d

1

2

(c) Reconnecting C1

and C2 with edge �a, b�
would invalidate tree
property.

Figure 4.6: Preserving the tree property in directed graphs.

this set of actions is distinct from the set of actions in π that
form a plan for y: an action may appear in the portion of the
plan that achieves y and also in the plan for the preconditions
of some action that is not dependent on y. In Figure 4.9a, for
example, the operator op is part of the plan for y yet does not
belong to π−(y). This consideration is related to the discussion
above of the removal of paths possibly resulting in more than two
connected components (Figure 4.3). π−(y) can be computed by
first extracting a relaxed plan π(g | s ∪ {y}) for the problem
that “assumes” y by returning the empty plan whenever y is
encountered as a precondition, and then removing these actions
from the global plan π in order to obtain the actions that are
required exclusively in order to achieve y:

4.3. improving relaxed plans 67

π0(y)

s

g

π+(y)

π−(y)

y

Figure 4.7: Visual representation of plan components.

Input: A delete-free planning problem P = �F, {i}, O,G�

Input: A plan π in P from i to g
Input: A fluent y
Output: The set of operators constituting π+(y) with

regards to goal g

π+(y) ← ∅

dep ← {y}
fixpoint ← false

while !fixpoint do
fixpoint ← true

for o ∈ π, o �∈ π+(y) do
if dep ∩ Pre(o) �= ∅ then

π+(y) ← π+(y) ∪ {o}
dep ← dep ∪ {Add(o)}
fixpoint ← false

Figure 4.8: Algorithm for computing π+(y)

68 beyond the independence assumption

s pop, 1

q
oq, 2

y

oqy, 1

opy, 2

g
og, 0

π0(y)

π−(y)

π+(y)

(a) A delete relaxation plan with cost 5, π+(y) = {og}, π−(y) =
{opy}, π0(y) = {op, oq}

s pop, 1

q
oq, 2

y

oqy, 1

opy, 2

g
og, 0

(b) Plan for y from augmented initial state {s, p, q}
is {oqy}, with cost 1

s pop, 1

q
oq, 2

y

oqy, 1

opy, 2

g
og, 0

(c) Replacing π−(y) with π(y|s�) yields relaxed
plan with cost 4

Figure 4.9: Partial plan replacement in relaxed plans.

π−(y) = π \ π(g | s ∪ {y}) (4.2)

Finally, the part of the relaxed plan corresponding to the con-
nected component rooted at the initial state fluent i can be
computed by simply subtracting the two sets above from the
complete plan π:

π0(y) = π \ (π+(y) ∪ π−(y)) (4.3)

4.3. improving relaxed plans 69

With these three disjoint sets defined, it is now possible to lay out
the algorithm that performs partial plan substitution in relaxed
plans. The algorithm follows the same intuition as that of the
algorithms given above, yet here the place of the computation
of a path from any one of the nodes of a connected component
to the root of the other is taken by the computation of a relaxed
plan π(y; sy) for y from an augmented state sy that is obtained
by adding the fluents achieved by the plan component π0(y) to
{i}.

In the path improvement algorithm, we prevented the formation
of cycles when reconnecting the two connected components C1

and C2 by only considering paths whose internal nodes did not
belong to either. Here the same effect is achieved by computing
the new relaxed plan π(y; sy), in a modified problem Π� in which
fluents added by an operator in π+(y) are removed from the
problem. Figure 4.10 shows how cycles can result when these
actions are considered in the recomputation of the plan for y.
No assumptions about how this relaxed plan is computed are
made, and any existing technique, for example those discussed
in Chapter 3, can be used. A single iteration of this procedure
that checks whether an improved partial relaxed plan can be
found for any y ∈ F (π) is shown in Figure 4.11. This procedure
is repeatedly called until the plan that is returned is equal to the
plan given as input, indicating that no further improvements can
be performed.

Implementation

The implementation of our improvement procedure differs from
the algorithm discussed above in certain respects. First of all, as
explicitly manipulating sets representing relaxed plans is expen-
sive, we instead keep a table that lists for each fluent f in the
problem a best supporter bs(f). When a cheaper plan achieving
y is found, it is then sufficient to change the entry for y and the
entries for the set of fluents F (π(y; sy). The previously discussed
relaxed plan extraction procedure (Figure 3.3) will then extract
the modified plan.

This method of manipulating best supporters rather than sets is

70 beyond the independence assumption

s yosy, 3 g2

oyg2 , 1

og2y, 1

g1

og1 , 3 og1g2 , 1
π0(y)

π−(y) π+(y)

(a) Initial delete relaxation plan.

s yosy, 3 g2

oyg2 , 1

og2y, 1

g1

og1 , 3 og1g2 , 1

(b) Plan for y from initial state sy =
{s, g2} when no fluents are excluded.
π(y; sy) = {og1g2 , og2y}.

s yosy, 3 g2

oyg2 , 1

og2y, 1

g1

og1 , 3 og1g2 , 1

(c) Replacement of π−(y) with plan
obtained for y without exclusions leads
to a cycle.

Figure 4.10: Exclusion of actions in partial plan recomputation.

4.3. improving relaxed plans 71

Input: A delete-free planning problem
P = �F, {i}, O, {g}�

Input: A plan π in P
Output: A plan π� in P such that cost(π�) ≤ cost(π)

for y ∈ F (π) do
π+ ← Compute-π+(y)
π− ← Compute-π−(y)
π0 ← Compute-π0(y)
sy ← {i} ∪

�
o∈π0 Add(o)

excy ←
�

o∈π+ Add(o)
π(y; sy) ←
ComputeRelaxedPlanExcluding(sy, {y}, excy)
if cost(π(y; sy)) ≤ cost(π−) then

return π+ ∪ π0 ∪ π(y; sy)
return π

Figure 4.11: Local Steiner tree procedure for improving
relaxed plan π.

also relevant for the assumption stated above that each action
has a single add effect. When this is assumed, an action appear-
ing in a plan is necessarily the best supporter for the single fluent
that it adds. However, applying the transformation required to
enforce this property is costly and unnecessarily increases the
size of the problem. To avoid this transformation, the exclusion
criteria discussed above has to be modified. To obtain the new
problem Π� in which π(y; sy) is to be computed, it is sufficient
to remove from Π all fluents whose best supporters are in the set
π+(y). The set exc in the algorithm shown in Figure 4.11 can
then be obtained as

excy ← {p | ap ∈ π+(y)}

The main drawback to the use of this improvement procedure in
all settings is the cost of its computation, which results primarily
from the repeated calls to the heuristic used to obtain a relaxed
plan for each fluent y ∈ F (π) from the augmented state sy. Two
possible strategies could ameliorate this overhead. One of these

72 beyond the independence assumption

is to decrease the number of calls made to obtain relaxed plans;
this can be done for example by attempting the improvement
procedure on only a subset of the fluents in F (π), such as the set
of goals of the problem or the set of delete-relaxation landmarks.
The second is to decrease the time taken by each call to the
heuristic. This can be done by observing that the initial states
sy used in the computation of new relaxed plans are similar to
s, and indeed since s ⊆ sy for all y, the costs of all fluents in
the problem as computed by heuristics such as hadd and hmax

are guaranteed to decrease compared to their costs in s. The
heuristic values computed initially for s can then be used as
seed values for the new computation, resulting in fewer iterations
before the values converge (Liu et al., 2002).

4.4 Experimental Results

In order to assess the impact of the relaxed plan improvement
procedure we have described, we compare the performance of
a planner using an independence assumption based delete re-
laxation heuristic to the performance of the same planner us-
ing as a heuristic value the cost of the relaxed plan resulting
from the improvement procedure. The independence assump-
tion based heuristic is the additive heuristic hadd, which offers a
good tradeoff between coverage and quality (see Section 3.5 for
further information). As in the evaluation of previous heuristics,
the planner uses a greedy best first search algorithm with delayed
evaluation and a second open list for nodes resulting from help-
ful actions, and the set of test domains is the set of satisficing
instances from the most recent International Planning Competi-
tion (ipc6). All experiments discussed below were run on Xeon
Woodcrest computers with clock speeds of 2.33 GHz, using a
2GB memory limit and a time cutoff of 1800 seconds.

In our evaluation of independence assumption based heuristics,
we discuss three configurations for the heuristics: (a) using costs
as stated in the problem, (b) using an added base cost for zero
cost operators, and (c), using the size of the relaxed plan as the
heuristic estimate. Here we report only experiments performed

4.4. experimental results 73

Domain (a) (b) (c) (d) (e)
cybersec (30) 0.99 13 +2/-4 +1/-1 +0/-0
elevators (30) 0.79 86 +12/-0 +0/-10 +1/-9
openstacks (30) 1.00 3 +0/-0 +0/-0 +0/-0
parcprinter (30) 0.81 3 +9/-1 +3/-10 +0/-0

pegsol (30) 0.64 6 +0/-1 +15/-13 +7/-12
scanalyzer (30) 0.92 2 +2/-1 +4/-13 +5/-7
sokoban (30) 0.93 6 +0/-4 +10/-13 +11/-4
transport (30) 0.85 46 +1/-0 +4/-8 +5/-6

woodworking (30) 0.90 11 +1/-2 +6/-18 +5/-17
total/avg. (270) 0.81 7 +27/-13 +43/-86 +34/-55

Table 4.1: Evaluation of Steiner improvement procedure. Col-
umn (a): average ratio of the cost of the relaxed plan after
improvement to before improvement, (b): average slowdown in
number of heuristic estimates per second, (c): number of prob-
lems solved using the improvement procedure but not without,
and vice versa, (d): number of problems in which more/less
nodes were evaluated to find a solution, (e): number of prob-
lems for which more costly/less costly plans were found.

with the second configuration, which offers the best tradeoff be-
tween coverage and plan quality.

In Table 4.1, the columns compare the behaviour of the local
Steiner tree improvement procedure (LST) to the bare additive
heuristic in different respects. In the first column, the average
ratio of the cost of the relaxed plan resulting from applying
the LST procedure to the cost of the original plan is shown.
In almost all domains, the cost of the relaxed plan is improved,
with the openstacks domain being the only exception. The other
domains benefit to various degrees, with the best case being the
pegsol domain, in which plans obtained with the LST procedure
have only 64% of the cost of the original relaxed plans. We
note also that since the values shown are averages for all of the
evaluated states, those in which the plan cannot be improved
significantly affect the result. In many states, the improvement
to the relaxed plan is significantly larger than the average.

In column (b), we show the approximate average slowdown in

74 beyond the independence assumption

the number of heuristic evaluations per second that results from
the using the LST procedure. As expected, the many heuristic
evaluations required to compute the result of the LST in a single
state take their toll, and evaluation is significantly slower in all
domains. The worst cases occur in the elevators and transport
instances, in which heuristic evaluation is 86 and 46 times slower,
respectively. The average slowdown across all domains, weighted
by the number of states evaluated in each, is 7.

Column (c) shows the differences in the number of problems
solved when the heuristic is compared to the bare additive heuris-
tic. Somewhat surprisingly, the large slowdowns reported in col-
umn (b) are not hugely detrimental to coverage: in fact, use
of the procedure results in the planner solving an additional 14
problems across all domains. This improvement is concentrated
in the elevators and parcprinter domains, in which the plan-
ner solves 12 and 8 more problems respectively. In domains for
which the procedure does not increase informativeness, the ef-
fect of the slowdown is to slightly decrease the coverage of the
planner. The worst case for this occurs in the sokoban domain,
in which 4 problems fewer are solved.

The change in the number of nodes expanded with the proce-
dure, considering only the problems solved with both planners,
is shown in column (d). The improved relaxed plans are signif-
icantly more informative in the two domains that were also re-
sponsible for the increase in coverage, elevators and parcprinter.
In fact, in these two domains the number of nodes that have
to be evaluated decreases by orders of magnitude when the im-
provement procedure is used (Figure 4.12). Some improvement
is also observed in the woodworking and scanalyzer domains. In
the other domains, the procedure does not affect informative-
ness. Overall, the heuristic results in fewer heuristic evaluations
in 86 problems, and more in only 43.

Finally, column (e) shows the results considered from the point of
view of plan cost. The LST procedure results in the generation of
lower cost plans in the elevators and woodworking domains, and
to a lesser extent in the pegsol domain. The increased coverage
in the parcprinter domain does not come with an accompanying
decrease in plan quality. In the sokoban domain, which is in

4.4. experimental results 75

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

h
add

h
add
lst

(a) The elevators domain.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

h
add

h
add
lst

(b) The parcprinter domain.

Figure 4.12: Node expansions with the Steiner improvement pro-
cedure.

76 beyond the independence assumption

general resistant to improvements in delete relaxation estimates,
plan costs significantly increase with the use of the procedure.
Globally, the LST heuristic results in 55 plans solved with lower
cost and 34 with higher cost among those problems solved with
both heuristics.

4.5 Conclusions

We have discussed the relationship between the well-known Steiner
tree problem and the delete relaxation, showing that in the
Steiner tree problem the independence assumption results in a
tree-of-shortest-paths approximation. We have taken advantage
of a simple property of Steiner trees to formulate an improve-
ment procedure for the undirected Steiner tree problem and
shown how it can be modified to work for the directed version,
and in turn, for the directed hyperpath problem which is equiva-
lent to the delete relaxation problem. This procedure constitutes
the first approach that allows the computation of suboptimal re-
laxed plans that do not depend on the independence assumption
in their estimates. The increased computational effort required
to compute these relaxed plans turns out to pay off in several
settings, and the use of the procedure increases both coverage
and plan quality in the domains studied.

Part III

Beyond The Delete

Relaxation

77

Chapter 5

Landmarks for the Delete

Relaxation and Beyond

Landmarks are necessary properties of solutions to planning
problems. These may be formulas over the set of fluents, im-
plying that the formula must be made true in some state during
the execution of any valid plan, or formulas over operators, in-
terpreted as statements about operators that must necessarily
belong to plans. In this chapter we give the equations that de-
scribe the complete set of single fluent and operator landmarks
for the delete relaxation, and show how to apply our method
to a recently proposed transformation of the planning problem,
allowing the discovery of conjunctive landmarks and landmarks
beyond the delete relaxation.

5.1 Introduction

Landmarks in a planning problem are necessary features of solu-
tions to planning problems. Fluent landmarks are formulas over
the set of fluents of the problem that must be satisfied by some
state that occurs during the execution of any valid plan:

Definition 5.1 (Fluent landmarks). A fluent landmark L is
a formula over the set of fluents F of a planning problem, such

79

80 landmarks for the delete relaxation and beyond

that any valid plan π = �o1, . . . , on� has a prefix π� = �o1, . . . , oi�,
possibly of length 0, whose application in the initial state results
in a state in which L is true, i.e. s0[π�] |= L.

It can be seen by choosing the empty prefix |π�| = 0 that all for-
mulas true in the initial state of the problem are also landmarks.
Similarly, choosing the prefix to be the entire plan π implies that
all formulas entailed by the goal are landmarks for the problem
as well.

Landmarks consisting of a single disjunction or conjunction are
referred to as disjunctive landmarks and conjunctive landmarks,
respectively. Orderings over fluent landmarks are statements
about the order in which they must be made true. While more
complicated ordering criteria have been proposed (Hoffmann
et al., 2004), here we limit the discussion to two types:

Definition 5.2 (Natural ordering). Given two landmarks L1

and L2, there is a natural ordering L1 ≺n L2 if for any plan
π = o1, . . . , on, s[o1, . . . , oj] |= L2 implies that there exists i < j
such that s[o1, . . . , oi] |= L1.

Definition 5.3 (Greedy necessary ordering). Given two land-
marks L1 and L2, there is a greedy-necessary ordering L1 ≺gn

L2 if for any plan π = o1, . . . , on, s[o1, . . . , oj] |= L2 and
s[o1, . . . , oi] �|= L2 for all i < j implies s[o1, . . . , oj−1] |= L1.

Intuitively, a natural ordering L1 ≺n L2 states that L2 cannot be
made true without making L1 true first, and a greedy natural
ordering L1 ≺gn L2 states that L1 must be true immediately
before L2 is made true for the first time.

Definition 5.4 (Operator landmarks). An operator landmark L
is a formula over the set of operators O of a planning problem,
such that when any valid plan π is interpreted as a truth assign-
ment to the set of operators in the problem, with those operators
appearing in π having the value true and those not appearing in
π having the value false, L is satisfied.

The problem of deciding whether a given formula is a landmark
for a planning problem is the Landmark problem:

5.1. introduction 81

Definition 5.5 (Landmark). Given a planning problem Π, and
a formula L over the set of fluents F or the set of operators O,
Landmark(Π, L) is the following decision problem:

INSTANCE: A planning problem Π and a landmark formula L.

QUESTION: Is L a landmark for Π?

The Landmark problem is known to be pspace-complete (Hoff-
mann et al., 2004) even when formulas are restricted to size 1,
e.g. single fluent and single action landmarks. Approaches to
landmark finding therefore focus on finding landmarks for the
delete relaxation Π+ of planning problems, in which setting the
problem of deciding Landmark(Π+, L) when L is restricted to
single fluent and operator landmarks can be shown to be in P
(Hoffmann et al., 2004). Finding the complete set of single fluent
and operator landmarks for Π+ is therefore also in P , as every
fluent and operator can be tested with this polynomial proce-
dure. This problem can also be stated in terms of hypergraphs
or and/or graphs, in the case of hypergraphs as the problem of
finding all edges and nodes included in every directed hyperpath
for a set of initial and goal nodes, and in the case of and/or
graphs as the problem of finding all AND and OR nodes v such
that v ∈ V J for any justification J for a set of initial and goal
nodes.

The naive approach referred to above of simply checking every
fluent and operator in the problem to determine whether it is
a landmark is too costly in practice. Most previously proposed
methods have instead focused on variations of a technique known
as backchaining. Backchaining methods start from a known sin-
gle fluent landmark g, such as a goal fluent, and attempt to
find more landmarks by reasoning backwards from g (Hoffmann
et al., 2004). This can be done by checking whether the set
of operators Og = {o | g ∈ Add(o)} adding g share a common
precondition p, and if this is the case, adding p to the set of
known landmarks. Backchaining can then be applied from p.
This relies on the fact that achieving g, which is known to be
a landmark, requires the application of some operator o ∈ Og,
all of which require p as a precondition. This method typically

82 landmarks for the delete relaxation and beyond

s lm

a1 . . . an

b1 . . . bn

g

Figure 5.1: n levels of lookback are required to detect that lm is
a landmark for g.

fails to find many landmarks, and is therefore enhanced with a
lookahead procedure, which consists of choosing from each pre-
condition set pre(o) for o ∈ Og a single fluent po, and creating
a disjunctive formula L over this set. Since some action in Og

necessarily must be applied, and its preconditions made true in
order to achieve g, L is also a landmark for Π+. To find fur-
ther single fluent landmarks, L = L1 ∨ . . . ∨ �Ln can then be
backchained from by checking whether all operators adding any
one of the disjuncts Li share a precondition, or using the disjunc-
tive landmark itself as a landmark (Richter et al., 2008). Note
however, that each time backchaining occurs from a disjunctive
landmark, the number of disjunctions that must be considered
grows exponentially in the number of actions adding any one of
the disjuncts. In order to make the problem tractable, a limit is
therefore imposed on the number of times backchaining occurs
from consecutive disjunctive landmarks (known as the lookahead
depth), and the size and type of admitted disjunctive landmarks.
Due to these limits, backchaining is incomplete and does not find
all of the landmarks of the delete relaxation. Furthermore, it is
easy to construct a problem in which a lookahead depth of n is
required to detect that a fluent is a landmark (Figure 5.1).

5.2 Optimal Π+ Landmarks

Though the methods that are currently most in use rely on the
incomplete method of backchaining, one algorithm has been pro-
posed that instead of reasoning backwards from the goals of
the problem by applying the backchaining method recursively,

5.2. optimal Π+ landmarks 83

computes landmarks through forward propagation in a relaxed
planning graph (RPG). This algorithm is sound and complete
according to the simple and intuitive criterion of causality, which
excludes “incidentally” achieved facts that are added by some
action in the plan, but are neither used as preconditions by some
other action nor are goals (Zhu and Givan, 2003):

Definition 5.6 (Causal landmarks). A fluent landmark L is a
causal landmark for a problem Π if it is either satisfied by the
set of goal fluents of Π, G |= L, or if for all valid plans π for Π,
Pre(o) |= L for some o ∈ π.

The algorithm works by associating with each action or fluent
node at every level of the RPG a label consisting of the set of
facts that must be made true in order to reach it. In the first
level of the RPG, each initial state fact is associated with a
label containing only itself. The labels of the nodes appearing
at following levels are obtained by combining the labels of the
nodes in previous layers in two different ways:

• The label for an operator node o at level i is the union of
the labels of all its preconditions at level i− 1.

• The label for a fluent node f at level i is the intersection
of the labels of all operator nodes adding it at level i − 1
(possibly including no-op actions), plus the fact itself.

Intuitively, these rules state that for a fluent f to be a landmark
for an operator o, it is sufficient that f be a landmark for some
precondition of o, and that for a fluent f to be a landmark for
another fluent f � at a given level, either f = f � or f must be a
landmark for all operators that achieve f � at that level.

Given these propagation rules, the label associated with a flu-
ent or operator node at any level i is a superset of the set of
causal landmarks for this fluent or operator in Π+. If the cri-
teria above are applied until a fixpoint is reached, i.e. until no
further changes occur in the node labels from layer to layer, the
labels for the goal nodes in the last layer are exactly the causal
landmarks for Π+.

84 landmarks for the delete relaxation and beyond

Our contribution is to observe that these labels can be charac-
terized as the unique maximal solution to the following set of
equations, where maximal is interpreted in terms of set inclu-
sion:

LM(G; s)
def
=

�

g∈G
LM(g)

LM(p; s)
def
=

�
{p} if p ∈ s
{p} ∪

�
{o|p∈Add(o)} LM(o; s) otherwise

LM(o; s)
def
={o} ∪

�

p∈Pre(o)

LM(p)

Theorem 5.7. For any planning problem Π+ with no deletes,
the system of equations LM(·) has a unique maximal solution,
where maximal is defined with regard to set inclusion, and this
solution satisfies

p ∈ LM(q) ⇐⇒ p is a causal landmark of size 1 for {q} in Π+

for p ∈ F,O. Moreover, for any node set G, LM(G) is the set of
causal landmarks of size 1 for G in Π+.

Proof. Let LMc(p) denote the complete set of causal landmarks
for p. A solution to the system of equations exists, as it is
satisfied by setting LM(p) = LMc(p) for all p. To show that LMc

is the unique maximal solution, we show that all solutions to
LM(·) satisfy p ∈ LM(q) ⇒ p ∈ LMc(q). Let a counterexample
X to this implication be a tuple �p, q,π�, where p and q are
operators or fluents, such that

• π is a plan that adds q, if q is a fluent, or q ∈ π, if q is an
operator,

• p �= q,

• p ∈ LM(q), and

• p /∈
�

o∈π Pre(o), if p is a fluent, or p /∈ π, if p is an operator.

5.2. optimal Π+ landmarks 85

Assume that such a counterexample exists and choose one with
minimum size, where we define the size of a counterexample to
be |X| = |π|. We consider two cases:

q ∈ F Let o� be the operator in π that adds q. Since p �= q, p ∈�
{o|q∈Add(o)} LM(o), and p ∈ LM(o�). Since p /∈ π, p �= o�.

Let r be one of the preconditions of o� such that p ∈ LM(r).
Such a precondition must exist since p ∈

�
r∈Pre(o�) LM(r).

Then there exists πr ⊆ π that constitutes a plan for r, and
|πr| < |π| since o� /∈ πr. We then have that p ∈ LM(r)
and p /∈ (πr ∪

�
o∈πr

Pre(o)). X � = �p, r,πr� is therefore
a smaller counterexample, contradicting our choice of X
to have minimum size. Such a counterexample therefore
cannot exist.

q ∈ O Since p �= q, p ∈
�

r∈Pre(q) LM(r). Then there exists
r ∈ Pre(q) such that p ∈ LM(r). Let πr ⊆ π be the
minimal subset of π that constitutes a plan for r. We have
that |πr| < |π|, since q /∈ πr. Then as before X � = �p, r,πr�
is a counterexample with |X �| < |X|, and X cannot exist.

The unique maximal solution to the LM(·) equations can be
found in polynomial time with the generalized versions of the
Bellman-Ford procedure (Liu et al., 2002), in the same way that
this algorithm can be adapted to compute the values of similar
declaratively defined heuristics such as those discussed in Chap-
ter 3. One way to compute the solution is to initialize the set of
landmarks for the initial state fluents p ∈ s to {p}, and the set
of landmarks for all other fluents and operators in the problem
to O ∪ F , and then iteratively refine these sets by interpreting
the equations as update rules. If the updates are performed ac-
cording to the order in which nodes are generated in the relaxed
planning graph (i.e., all nodes in the first layer, then all nodes
in the second layer, etc.), then the RPG label propagation al-
gorithm by Zhu & Givan is obtained. If only fluent landmarks
are sought, the equation for operators can be modified to not
include the operator itself, {o}, in LM(o).

86 landmarks for the delete relaxation and beyond

Orderings between landmarks of the types discussed above can
easily be inferred and recorded during the computation of the
landmarks. A natural ordering p ≺n q exists when p ∈ LM(q),
since it implies that q can not be achieved without achieving p
first. Greedy necessary orderings between two facts p ≺gn q can
be inferred by maintaining for each fact q a set of operators that

are its first achievers, FA(q)
def
= {o | q ∈ Add(o) ∧ q /∈ LM(o)}.

This is the set of operators that add q and do not have q as
a landmark, implying that they can be used to achieve q for
the first time. A greedy necessary ordering p ≺gn q then exists
when p ∈

�
o∈FA(q)

Pre(o). These orderings can be discovered
and recorded during the computation of the landmarks and do
not require any additional post-processing step.

5.3 Landmarks for the Πm Problem

The method above improves on backchaining by guaranteeing
that the set of landmarks found for the delete relaxation is com-
plete with regard to a well-defined criterion, and on the Zhu &
Givan algorithm by giving a declarative definition of the land-
marks that it finds, thus eliminating the need for the relaxed
planning graph and allowing other computational techniques to
be applied. However it is possible to further extend landmark
discovery techniques by taking advantage of a recently proposed
compilation that converts a planning problem into a problem
without deletes, yet whose fluents and operators encode infor-
mation about the deletes present in the original problem.

The hmax heuristic discussed in Chapter 3 is also known as the h1

heuristic, as it can be seen as recursively estimating the cost of
a set of fluents as the cost of the single most expensive fluent in
the set. Generalizing this heuristic with a parameterm results in
the hm family of heuristics, which as the name implies estimate
the cost of a set as the cost of the most expensive subset of
the set of size less than or equal to m (Haslum and Geffner,
2000). The Πm compilation encodes the relaxation implied by
the hm heuristics in a problem with no delete effects, whose
fluents correspond to sets of fluents of size less than or equal to
m in Π, and whose operators are obtained by making explicit in

5.3. landmarks for the Πm problem 87

the precondition and add effects of the original operators of the
problem those facts which, while not required or added by an
action, may occur in the state in which the operator is applied
and persist after its application, allowing them to be achieved in
conjunction with the effects of the action (Haslum, 2009). This
is done by creating for each operator o in Π a set of operators
in the new problem, each having as a precondition in addition
to the precondition of o itself, a set of facts C of size at most
m− 1 such that C is disjoint from Add(o) and Del(o). For a set
C and action o, the operator oC is then given by:

Pre(oC) = {S | S ⊆ (Pre(o) ∪ C) ∧ |S| ≤ m}

Add(oC) = {S | S ⊆ (Add(o) ∪ C) ∧ |S| ≤ m}

Del(oC) = ∅

An operator landmark oC found for Πm then corresponds to
an operator landmark o in Π, and a fluent landmark S in Πm

representing the set of fluents {p1, . . . , pm} in Π corresponds to
a conjunctive landmark L = p1∧ . . .∧pm in Π. These landmarks
take into account delete information in the original problem Π,
allowing landmarks that are not necessarily landmarks of the
delete relaxation to be found for the first time.

Any landmark finding technique applicable to the delete relax-
ation is also applicable to the problem with no deletes resulting
from the Πm compilation. However the completeness property
of the method described above guarantees that as the value of
m goes to infinity, the set of landmarks found for Π approaches
the complete set of conjunctive landmarks of the problem, just
as the values of the hm heuristic approach h∗.

Example

Consider the blocksworld problem of Figure 5.2. Apart from
trivial landmarks such as those facts belonging to the initial state
or goal, the complete set of causal delete-relaxation landmarks
and orderings is clear B ≺gn holding B, implying that holding B
must be made true in some state by any valid plan, and that

88 landmarks for the delete relaxation and beyond

A

B C

A

B

C

Figure 5.2: An instance of the blocksworld domain.

clear B must be true in the state that immediately precedes it.
In contrast, when the landmarks computation is applied to the
Π2 compilation of the problem, one of the obtained chains of
orderings is the following:

(clear B ∧ holding A) ≺gn (clear B ∧ on-table A) ≺gn

(holding B ∧ on-table A) ≺gn (on B C ∧ on-table A) ≺gn

(on B C ∧ holding A)

where a ∧ b is a conjunctive landmark that implies that a and
b must be true simultaneously in some state. These landmarks
and orderings are only a subset of those found by the procedure,
yet provide an almost complete roadmap for solving the problem.

The additional landmarks found in this way are not only con-
junctive: the consideration of delete effects may also result in
the discovery of fact landmarks for Π that are not landmarks
in the Π+ problem. In this example, the facts holding A and
ontable A are also implied to be landmarks, as they are part of
a conjunctive landmark.

Implementation

In the implementation of the Πm compilation, we eliminate some
unnecessary fluents by discarding fluent sets in which a subset
of the fluents are mutex with one another, implying that they
cannot occur together. Since these fluents cannot be achieved

5.4. experimental results 89

together in the original problem, they can not constitute land-
marks for achievable fluents either.

Landmark sets in the computation are represented as ordered
lists, which allow both the union and the set intersection oper-
ations to be performed in time linear in the size of the sets.

5.4 Experimental Results

We implemented the Πm transformation and the computation
of landmarks as discussed in Section 5.3. Here, we try to answer
three main questions: whether our approach finds landmarks not
found by previous approaches, whether these landmarks contain
interesting information, and finally, whether current planners
can exploit this information. All experiments were run on 2.3
GHz AMD Opteron machines using a 2 GB memory limit and
a 30-minute timeout.

Number of Landmarks

Table 5.1 compares the number of causal landmarks found by our
method with the state-of-the-art backchaining method used in
LAMA (Richter et al., 2008) (RHW). With m = 1, our approach
is equivalent to the Zhu & Givan procedure, and in accordance
with theory generates a superset of the causal landmarks found
by the RHW method, increasing the number of landmarks found
by 10–30% in several domains. With m = 2, the single fluent
landmarks found are a superset of those found with m = 1,
improving on RHW by up to 60%. When conjunctive landmarks
found with m = 2 are also considered, the number of landmarks
found exceeds that of the RHWmethod by factors between 3 and
43. However, using m = 2 is computationally costly. Landmark
generation with m = 2 times out or runs out of memory in
several instances of the Airport and Freecell domains, as well as
on many large tasks in other domains that are far beyond the
reach of current optimal planners.

90 landmarks for the delete relaxation and beyond

Causal Ratio to RHW
LMs m = 1 m = 2 m = 2

Domain RHW (Z&G) Single Conj.
Airport (11) 1043 1.00 1.00 24.07
Blocks (35) 1444 1.00 1.05 8.36
Depot (21) 1379 1.07 1.13 13.11
Driverlog (19) 441 1.02 1.02 6.71
Freecell (54) 4110 1.26 1.27 15.33
Grid (4) 70 1.14 1.14 3.36
Gripper (20) 960 1.00 1.00 10.35
Logistics-1998 (23) 816 1.00 1.00 3.45
Logistics-2000 (28) 1319 1.00 1.00 4.02
Miconic (150) 7720 1.00 1.00 3.52
Mprime (26) 96 1.07 1.67 2.72
Mystery (16) 66 1.03 1.64 2.86
Openstacks (24) 2946 1.03 1.03 11.08
Pathways (30) 954 1.50 1.57 7.32
Pipesw. Not. (44) 754 1.22 1.29 4.25
Pipesw. Tank. (26) 524 1.15 1.24 5.42
PSR Small (50) 550 1.00 1.60 7.32
Rovers (32) 687 1.15 1.17 6.27
Satellite (23) 515 1.01 1.01 7.31
TPP (24) 751 1.13 1.32 5.94
Trucks (14) 467 1.23 1.25 8.92
Zenotravel (18) 309 1.05 1.05 5.25
Elevators (30) 629 1.12 1.12 3.66
Openstacks (30) 2925 1.03 1.03 11.37
PARC Printer (30) 2142 1.00 1.07 18.48
Peg Solitaire (30) 1457 1.00 1.02 19.33
Scanalyzer (26) 673 1.00 1.26 9.65
Sokoban (29) 605 2.73 5.25 43.02
Transport (30) 390 1.00 1.00 3.44
Woodworking (30) 1520 1.06 1.08 9.91

Table 5.1: Number of causal fluent landmarks found by RHW
and average ratio to this of the causal landmarks found by our
approach. In the second to last column, only single fluent land-
marks found with m = 2 are counted, the last column includes
conjunctive landmarks as well. Top part of table: STRIPS do-
mains of IPC 1–5. Only solvable problems are listed for Mystery.
Bottom part of table: domains of the optimal track of IPC 6.
Numbers in parentheses show the number of tasks considered
for that domain (the tasks where LM generation finished for all
configurations).

5.4. experimental results 91

101

102

103

104

105

106

107

101 102 103 104 105 106 107

101

102

103

104

105

106

107

101 102 103 104 105 106 107

101

102

103

104

105

106

107

101 102 103 104 105 106 107

Figure 5.3: Node expansions with optimal cost partitioning,
compared to RHW landmark generation (x-axes), of our ap-
proach using m = 1 (top), m = 2 when using only facts (mid-
dle), and m = 2 when using facts and conjunctive landmarks
(bottom). Points below diagonal line are problems in which our
approach expands fewer nodes.

92 landmarks for the delete relaxation and beyond

101

102

103

104

105

106

107

101 102 103 104 105 106 107

101

102

103

104

105

106

107

101 102 103 104 105 106 107

101

102

103

104

105

106

107

101 102 103 104 105 106 107

Figure 5.4: Node expansions with uniform cost partitioning,
compared to RHW landmark generation (x-axes), of our ap-
proach using m = 1 (top), m = 2 when using only facts (mid-
dle), and m = 2 when using facts and conjunctive landmarks
(bottom). Points below diagonal line are problems in which our
approach expands fewer nodes.

5.4. experimental results 93

RHW Improvement over RHW
Exp. m = 1 m = 2 m = 2

Domain (Z&G) Single Conj.
Airport (11) 384 1.00 1.00 1.12
Blocks (23) 2550007 1.00 1.00 7.84
Depot (4) 365373 1.07 1.48 3.75
Driverlog (8) 868496 1.00 1.00 1.02
Freecell (37) 189661 2.14 2.14 2.45
Grid (1) 270 1.50 1.50 1.64
Gripper (5) 458498 1.00 1.00 1.00
Logistics-1998 (3) 45663 1.00 1.00 1.48
Logistics-2000 (20) 862443 1.00 1.00 22.80
Miconic (141) 135213 1.00 1.00 1.34
Mprime (15) 313579 1.00 1.34 1.39
Mystery (12) 290133 1.00 1.00 1.00
Openstacks (7) 27392 1.00 1.00 1.00
Pathways (4) 152448 1.60 1.60 1.60
Pipesw. Not. (16) 1931233 1.05 1.05 1.46
Pipesw. Tank. (8) 29698 1.00 1.00 0.91
PSR Small (48) 697969 1.00 1.03 1.62
Rovers (5) 231520 1.06 1.06 1.06
Satellite (5) 1012920 1.01 1.01 1.08
TPP (5) 12355 1.00 1.00 1.00
Trucks (2) 108132 1.02 1.02 1.05
Zenotravel (8) 186334 1.00 1.00 1.02
Elevators (7) 483982 1.00 1.00 1.35
Openstacks (10) 649341 1.00 1.00 1.00
PARC Printer (12) 1118898 1.00 1.29 1.61
Peg Solitaire (23) 1734655 1.00 1.04 1.20
Scanalyzer (11) 23029 1.00 1.00 1.46
Sokoban (10) 1229907 1.02 1.05 0.90
Transport (9) 929285 1.00 1.00 1.00
Woodworking (10) 199666 1.41 1.41 2.35

Table 5.2: Expanded nodes when using the landmark generation
of RHW and average improvement ratios of our approach using
the optimal cost partitioning method. In the second to last
column, only single fluent landmarks found with m = 2 are
counted, the last column includes conjunctive landmarks as well.
Numbers in parentheses show the number of tasks considered for
that domain (the tasks solved by all configurations).

94 landmarks for the delete relaxation and beyond

Heuristic Accuracy of Landmark Information

In order to assess how the additional landmarks influence heuris-
tic accuracy, we use them in the LM-A∗ algorithm with the
admissible landmark counting heuristic of Karpas & Domsh-
lak (Karpas and Domshlak, 2009), which we extend to handle
conjunctive landmarks. Cost partitioning among landmarks is
performed optimally. Table 5.2 shows the number of expanded
states in those tasks solved by all configurations. We show re-
sults both for when m = 2 is used only to compute additional
single fluent landmarks, and for when the additional conjunc-
tive landmarks are considered during planning. The number of
expansions is improved in some domains by 30–50% even when
using only the additional facts found with m = 2. With conjunc-
tive landmarks, improvements of factors beyond 2 occur in sev-
eral domains, with the planner expanding 22 times fewer nodes
in the Logistics-2000 domain.

The expansion data from Table 5.2 can be compared with the
number of expansions resulting from uniform cost partitioning
by considering Figures 5.3 and 5.4. While our approach expands
significantly fewer nodes than RHW when used in combination
with optimal cost partitioning, with uniform partitioning this
advantage is smaller for m = 2 when using only facts, and all but
disappears for m = 2 when also using conjunctive landmarks.

Planning Performance

While optimal cost partitioning among landmarks leads to best
heuristic accuracy, this method is unfortunately too costly to
be competitive with the simpler uniform cost partitioning in
terms of runtime and total number of problems solved. In Table
5.3, we report the total number of tasks solved with each of our
experimental configurations when using the uniform partitioning
method. The number of problems solved in domains in which
landmark generation with m = 2 was computationally too costly
(timing out in tasks that were solved by RHW) are shown in
parentheses at the bottom of the table and not included in the
total. Our approach with m = 1 solves slightly more tasks than
RHW, and m = 2 using only single fluent landmarks solves one

5.5. related work 95

more task than m = 1. Using conjunctive landmarks during
planning, however, does not improve coverage.

The results in this table are not as good as could be expected
when considering the improvement in expanded states shown in
Table 5.2. The scatter plots in Figures 5.3 and 5.4 indicate that
this may be due in large part to the uniform cost partitioning
method.

Table 5.4 shows detailed results for selected domains, demon-
strating how the benefit of additional heuristic accuracy does
not always pay off compared to the extra computational effort
needed for generating and managing the conjunctive landmarks.
While in Logistics-2000, our approach using m = 2 performs
better than RHW both with respect to expansions and time, in
Depot, m = 2 performs better with respect to expansions, but
worse with respect to time. Driverlog is an example where the
conjunctive landmarks are not helpful at all and RHW performs
better both with respect to expansions and time. We also found
that while having more causal fact landmarks usually translates
to better heuristic accuracy, this is not always the case when
using the uniform cost partitioning scheme.

5.5 Related Work

Landmarks were first introduced in the context of the relaxed
planning graph, in which they are computed via the backchain-
ing procedure (Porteous et al., 2001; Hoffmann et al., 2004). As
the backchaining procedure alone does not find a large number
of landmarks, it is enhanced with a lookahead step in which
intermediate disjunctive goals are backchained from and then
discarded. One recent innovation in the computation of land-
marks with backchaining is to generalize landmarks to formulas
over fluents and adapt landmark utilization algorithms to di-
rectly consider disjunctions over the set of fluents (Richter et al.,
2008). The computation of landmarks by forward propagation
of sets in the relaxed planning graph was first introduced by
Zhu and Givan (2003). This allowed the complete set of land-
marks for the delete relaxation to be found, and is one method

96 landmarks for the delete relaxation and beyond

RHW m = 1 m = 2 m = 2
Domain (Z&G) Single Conj.
Blocks (35) 26 26 26 28
Depot (22) 7 7 7 7
Driverlog (20) 10 10 10 9
Grid (5) 2 2 2 2
Gripper (20) 7 7 7 7
Logistics-1998 (35) 3 3 3 3
Logistics-2000 (28) 20 20 20 22
Miconic (150) 142 142 142 142
Mystery (19) 15 15 15 15
Openstacks (30) 7 7 7 7
Pathways (30) 4 4 4 4
Pipesw. Not. (50) 19 19 19 18
Pipesw. Tank. (50) 12 13 13 11
PSR Small (50) 49 49 49 49
Rovers (40) 6 6 6 5
Satellite (36) 6 6 6 6
TPP (30) 6 6 6 6
Trucks (30) 2 2 2 2
Zenotravel (20) 8 8 8 8
Elevators (30) 13 13 13 14
Openstacks (30) 17 17 17 12
PARC Printer (30) 14 14 16 12
Peg Solitaire (30) 27 27 27 25
Scanalyzer (30) 9 9 9 6
Sokoban (30) 21 24 23 14
Transport (30) 11 11 11 11
Woodworking (30) 13 12 12 9
Total (951) 476 479 480 454
(Airport) (50) (26) (26) (11) (11)
(Freecell) (80) (55) (60) (49) (30)
(Mprime) (35) (19) (19) (19) (19)

Table 5.3: Solved problems when using the landmark generation
of RHW and our approach using the uniform cost partitioning
method. In the second to last column, only single fluent land-
marks found with m = 2 are counted, the last column includes
conjunctive landmarks as well. Numbers in parenthesis show the
total number of solvable tasks in that domain.

5.5. related work 97

RHW m = 2 using conj. LMs
Inst. LM Exp. Time LM Exp. Time
Logistics-2000
5-0 33 936 0.06 33 + 66 28 0.01
7-0 44 7751 0.58 44 + 112 37 0.03
10-0 56 194038 21.85 56 + 192 3421 3.69
11-0 61 156585 24.00 61 + 221 6706 7.65
12-0 56 117387 16.91 56 + 236 2041 2.82
Depot
2 29 1488 0.08 34 + 193 310 0.18
4 54 2347873 220.95 60 + 111 531785 1237.57
7 42 167561 13.35 46 + 351 79755 78.00
10 47 1956533 197.43 55 + 82 375300 578.99
13 62 507369 77.64 62 + 625 336331 822.89
Driverlog
3 10 1109 0.04 10 + 29 2105 0.10
5 17 247579 9.65 17 + 73 658799 73.10
7 17 26591 1.54 17 + 94 88915 19.66
10 14 504955 24.29 14 + 55 2506690 324.94
11 14 1298547 49.62 14 + 49 6969276 690.56

Table 5.4: Detailed results for select domains, comparing m = 2
to RHW with respect to landmarks found, expanded states and
runtime. Landmarks shown are causal facts for both approaches
and conjunctive landmarks for m = 2 (second term in the sum).

by which the solution to the equations we introduce above can
be computed.

Landmarks were initially used as search control information in
the form of a control loop, in which a planner is repeatedly in-
voked with the next landmark to be achieved until the global
goal of the problem is reached (Hoffmann et al., 2004). While
this method results in increased coverage, the quality of the plans
generated suffers as the planner ignores other subgoals while gen-
erating a plan for the landmark currently being considered. Ad-
ditionally, a planner constructed in this way may be incomplete
even if the planner invoked to find solutions to each subproblem
is guaranteed to eventually find a solution if one exists. A second

98 landmarks for the delete relaxation and beyond

approach to landmark utilization that maintains completeness is
to compute a heuristic estimate using landmarks, and use this
estimate in the context of a complete search algorithm. One such
heuristic propagates in the relaxed planning graph counts of the
number of times a landmark must be achieved that take into ac-
count the delete effects of operators (Zhu and Givan, 2003), then
solving a generalized bin-packing problem in which every sepa-
rate achievement of a landmark must be associated with an ac-
tion. The number of actions required for all achievements of the
remaining landmarks then constitutes the heuristic value for a
state. A more recent heuristic based on counting landmarks uses
the idea of greedy-necessary orderings between delete-relaxation
landmarks to compute landmarks that must be achieved multiple
times, and has been shown to significantly increase the number
of problems solved with heuristic search when used in combina-
tion with another heuristic (Richter et al., 2008). This heuristic
makes the inference that a landmark which has previously been
achieved, yet is not currently true, must be reachieved if it is
ordered greedy-necessarily before a landmark that has not yet
been achieved.

More recently, much work has been directed at the use of land-
marks in optimal planning, both through the formulation of ad-
missible heuristics and modifications to existing optimal search
algorithms. One way in which an admissible heuristic can be ob-
tained from landmarks is to use a cost-partitioning function to
distribute the cost of each action in the problem among all of the
landmarks which it can achieve (Karpas and Domshlak, 2009).
It can be shown that the heuristic estimator resulting from sum-
ming the minimum cost of achieving each landmark over the
full set of known landmarks then results in an admissible heuris-
tic. One important direction of future research in this area is the
formulation of cost-partitioning functions that are less computa-
tionally costly to compute, yet nevertheless result in informative
heuristic values. A second approach to formulating admissible
heuristics is the use of delete-relaxation landmarks in order to
closely approximate the optimal cost of the delete relaxation
(Helmert and Domshlak, 2009). This idea is based on finding
cuts induced by landmarks in the delete relaxation graph, and
summing the cost of these cuts with the cost of the rest of the

5.6. conclusions 99

graph, computed by recursively applying the same procedure.
This admissible estimate of the cost of the delete relaxation can
be further improved by considering several cuts simultaneously
and treating the sets of actions as the components of a hitting
set problem (Bonet and Helmert, 2010).

Additionally, in the presence of path-dependent heuristics such
as those resulting from landmark counting, the A∗ algorithm can
be modified to take into account the fact that paths along which
certain landmarks have not been achieved may assign higher
(admissible) costs to a state than other paths to the same state.
As both estimates are guaranteed to be admissible, the higher
of these two heuristic values can then be used as the estimate
for the state. The algorithm resulting from these improvements
is called LM-A∗.

5.6 Conclusions

We have shown how to declaratively define the complete set of
causal landmarks for the delete relaxation. Given this defini-
tion, the complete set of causal delete relaxation landmarks can
be computed in polynomial time using propagation algorithms
similar to those used to compute the heuristics discussed in pre-
vious chapters. Combined with the Πm compilation that yields a
problem with no deletes which nevertheless encodes information
about deletes in its fluents and operators, we obtain a param-
eterised method that permits the computation of conjunctive
and single fact landmarks that take into account delete informa-
tion in planning problems. The experimental evaluation of these
landmarks indicates that their use can significantly increase the
informativeness of landmark-based admissible heuristics.

Chapter 6

Heuristics with Choice

Variables

In this chapter we introduce a heuristic based on the idea of
choice variables, implicit multivalued variables to which every
valid plan must assign at most one value. We show that by
reasoning by cases over different assignments to such variables,
heuristic estimates can be improved in certain problems, and
adapt an algorithm from the field of graphical models to our
setting to perform such reasoning efficiently. The resulting for-
mulation shares some aspects with a family of approaches known
as factored planning, offering a new interpretation of these tech-
niques.

6.1 Introduction

Many recently proposed techniques in planning make use of in-
variants, which can potentially take advantage of problem struc-
ture to a greater extent than delete-relaxation based heuristics.
These invariants come in many forms: Landmarks, for example,
are invariants over the state trajectories followed by all valid
plans that achieve a goal (Chapter 5), and have been used both
for search control (Hoffmann et al., 2004; Karpas and Domsh-
lak, 2009) and in the computation of heuristic estimates (Richter

101

102 heuristics with choice variables

and Westphal, 2010; Helmert and Domshlak, 2009). Mutexes in
strips planning are sets of fluents that can be shown not to
be achievable in conjunction by any plan (Haslum and Geffner,
2000), and have been used to reason about causal constraints
in planning (Vidal and Geffner, 2006; Lipovetzky and Geffner,
2009) as well as to extract multivalued representations from
strips problems and use them in heuristics that go beyond the
delete relaxation in computing their estimates (Helmert, 2006).
Here, we consider a new type of invariant in planning: implicit
multivalued variables to which a value can be assigned at most
once by every plan. We refer to such variables as choice vari-
ables. Choice variables are dissimilar to standard multi-valued
variables in that their values do not represent a property of the
current state that may change in future states, but rather a
commitment made by the planner to solve the problem while
accepting the constraints that a choice imposes upon the space
of possible plans. Indeed, they are more similar in spirit to the
variables that are used in graphical models such as constraint
satisfaction problems (CSPs) and Bayesian networks. In these
types of problems, a single value that is consistent with the rest
of the solution to the problem, or a single most likely instanti-
ation, must be chosen for each variable. Such variables can be
represented in strips as sets of fluents, each corresponding to
one value of the implicit multivalued choice variable, of which
at most one can be made true in any valid plan.

While such variables in CSPs typically impose hard restrictions
on each other’s values, in the planning setting the more frequent
case is that making an assignment to one of them influences
the cost of making an assignment to another, or of solving the
overall problem. Choice variables can then be used as a tool for
improving the quality of planning heuristics, by forcing heuristics
to respect features of a problem that otherwise might not be
present in problem relaxations. For a simple example, consider
a scenario in which an agent must purchase various items at a
market. There are various markets from which all of the items
can be purchased at different prices, but the agent can only make
one trip and must choose a single market at which to purchase
all of them. A multivalued variable whose domain consists of
the set of markets and represents the choice made by the agent

6.1. introduction 103

for where to buy the items then constitutes a choice variable to
which a value must be assigned by every valid plan, and which
once assigned, can not be changed. A strips encoding of such
a problem might contain operators o = �Pre(o),Eff(o)� such as
the following:

• goto-marketi = �{at-home}, {¬at-home, at-marketi}�

• buy-itemij = �{at-marketi}, {have-itemj}�

with the cost of each of the buy-itemij operators being the cost
of item i at market j. In the delete relaxation Π+ of this prob-
lem, the delete-relaxed operators goto-market+

i
= �{at-home},

{at-marketi}� do not delete the fluent at-home, and the fact
that once one market is chosen the agent can no longer go to
other markets is no longer encoded. The optimal delete relax-
ation plan will therefore be to apply the goto-market+

i
operator

for all markets i that carry some required item at the minimum
price, and buy the items at different markets, leading to a large
underestimation of the real cost of the problem. However, the
knowledge that the set of markets constitutes a choice variable
allows us to improve the informativeness of the heuristic by rea-
soning independently about each of its possible values. This can
be done by computing the value of a delete relaxation heuristic
in several different versions of the same problem, in each of which
the operators that allow moving to all but one of the markets
are disallowed. Estimating the cost of each of these subproblems
and taking the minimum among them then allows us to obtain
an improved estimate for the problem as a whole.

While the technique of enumerating all possible assignments to
the set of choice variables may be feasible in problems with few
such variables, the number of complete assignments that must
be considered grows exponentially in their number. For exam-
ple, consider a variant of the problem above in which several
markets from which to buy various classes of goods must be
chosen in a specified order, and the action of moving between
each of the markets is associated with a cost. The agent might
first have to buy groceries from one of a set of markets that sells
food, then move to one of a set of markets that sells hardware

104 heuristics with choice variables

in order to buy light bulbs, and so on. The possible assignments
that need to be considered is then the product of the number of
markets of each type. However, the choice of at which market
to buy each type of good is independent of all of the other mar-
kets except for that of the type of good that directly precedes
it, and explicitly enumerating each global assignment is not nec-
essary to obtain the optimal cost. Such a problem constitutes
a cost network in which the interaction graph representing how
the assignment made to each choice variable affects the cost of
making some assignment to the others is a chain. To take ad-
vantage of this kind of problem structure, we turn to the field of
graphical models, in which the problem of exponential growth in
the number of possible global assignments is a familiar one, and
focus on a family of methods known as conditioning methods.
Conditioning methods exploit the fact that the interaction be-
tween two variables may be reduced, or the two variables made
independent, by instantiating some subset of the variables that
lie along the paths between them in the interaction graph of the
problem (Pearl, 1988; Boutilier et al., 1996). The problem can
then be solved by enumerating the assignments to this subset
and solving the remaining parts of the problem, now rendered
independent of one another or their interactions made easier to
reason about, separately. Here we adapt the optimal recursive
conditioning algorithm (Darwiche, 2001) to perform this type
of reasoning in the planning setting, computing the minimum
heuristic cost of a state over all possible assignments to a set of
choice variables.

The resulting algorithm can also be seen as an instance of the
factored approach to planning. Factored planning methods de-
compose a planning problem into a set of factors or compo-
nents, and attempt to find plans for each that can be inter-
leaved with the plans for the others in order to obtain a global
solution (Amir and Engelhardt, 2003; Brafman and Domshlak,
2006; Fabre et al., 2010). Such subproblems may share with
each other either fluents or actions; our approach is similar to
the former, with the fluents representing different values of the
choice variables of the problem being shared between compo-
nents. Each of the subproblems that we consider then consists
of making an assignment to a target choice variable Ct, given an

6.2. the choice variables heuristic 105

assignment to the set of choice variables on which Ct is directly
dependent. However, while factored planning methods attempt
to find explicit plans for the global problem, we instead obtain
heuristic estimates of the cost of solving each subproblem and
combine these costs to obtain a heuristic for the global problem.
If actions are also shared between components, for instance, the
result is a less informative heuristic estimate, and not an un-
sound planning algorithm.

In the remainder of this chapter, we concentrate on how to use
choice variables to efficiently compute better heuristic estimates
for planning problems, and assume that the choice variables
themselves are given to the planner along with the domain and
problem representations in the form of a set of subsets of the
fluents of a problem, with each subset representing the possi-
ble values of a choice variable. Techniques for automatically
identifying sets of fluents that naturally have the choice variable
property are a topic of further research.

6.2 The Choice Variables Heuristic

We define choice variables formally as follows:

Definition 6.1 (Choice variable). A choice variable C = {⊥, d1,
. . . , dn} in a planning problem is a multi-valued variable whose
value ⊥ denotes that it is unassigned, and which can take on at
most one of the values in {d1, . . . , dn} during the execution of
any plan.

Definition 6.2 (Choice variable in strips). A choice variable C
in strips consists of a set of fluents {d1, . . . , dn}. When none
of these fluents are true, the value of the implicit multivalued
variable is ⊥. No operator in the problem may add more than
one of these fluents, and those operators adding exactly one must
have effects that make the preconditions of other such operators
unachievable.

Given a planning problem Π in strips with a set of choice vari-
ables C = {C1, . . . , Cn}, each with domain D(Ci), we denote

106 heuristics with choice variables

with φ(C) the set of possible assignments to C, where an as-
signment is a function v that maps each variable Ci for which it
is defined to a value in its domain D(Ci). We use the notation
v[Ci] to denote the value assigned to Ci by v. For an assignment
v, a problem Πv that respects this assignment can be obtained
by removing from the problem all operators that assign a value
to any choice variable Ci that is inconsistent with v:

Definition 6.3 (Πv). Given a problem Π = �F, I,O,G�, a set
of choice variables C, and an assignment v to C, let Πv =
�F, I,Ov, G�, where Ov is the set of operators in O that respect
v and is given by

Ov =
�

Ci∈C
{o ∈ O | (D(Ci) \ {v(Ci)}) ∩Add(o) = ∅} (6.1)

In other words, Ov consists of the set of operators that for each
choice variable Ci either make no assignment to it or add the
value in D(Ci) that is specified by v. Note that in the Πv prob-
lem the values of each choice variable v(Ci) implied by the as-
signment v are not added to the initial state I. The optimal
plan for Πv is then the lowest cost plan for Π that chooses the
values for each Ci ∈ C implied by the assignment v.

Given a base heuristic h, we can define the choice variables
heuristic hc in terms of this heuristic and the restricted problems
Πv for v ∈ φ(C):

hc = min
v∈φ(C)

h(Πv) (6.2)

Proposition 6.4 (Admissibility and optimality of hc). Given
a problem Π with a set of choice variables C and an admissible
base heuristic h, hc is also admissible. Furthermore, if h is the
perfect heuristic h∗, then hc = h∗.

Proof. Let π∗ be an optimal plan for Π, and v the assignment
to C made by π∗. Then π∗ also constitutes a plan for Πv, since
it cannot contain any operators assigning values to C other than
those in v. If h is admissible, we have that hc(Π) ≤ h(Πv) ≤

cost(π∗), and hc(Π) is admissible. If h = h∗, h(Πv) = cost(π∗),

6.2. the choice variables heuristic 107

and there can be no v� for which h(Πv�
) < cost(π∗), as any

plan for Πv�
is a plan for Π as well and this would contradict

the optimality of π∗. Then hc(Π) = h(Πv) = cost(π∗), and
hc(Π) = h∗(Π).

While the value of hc can be calculated as implied by Equa-
tion 6.2, this results in the number of evaluations of the base
heuristic being exponential in the number of choice variables
|C|, or more precisely, equal to the number of possible different
instantiations of the set C, |φ(C)|. For problems in which choice
variables exhibit some degree of conditional independence, how-
ever, it may be possible to reduce the number of calls to h by
taking advantage of problem structure. We now describe how to
obtain a graph with choice variables as nodes which encodes the
causal dependencies between them, and show how to adapt to
our setting the recursive conditioning algorithm, first introduced
in the context of Bayesian networks, to take advantage of these
relationships.

The Choice Variables Graph

Given a problem Π with choice variable set C, we encode its
structure by constructing a directed graph GC = �C ∪CG, EC�,
where CG = ∪g∈G{Cg} is the set of goal choice variables, each
of whose domains are D(Cgi) = {gi}, where G = {g1, . . . , gm} is
the set of goals of the problem. In the following, Ci may denote
either one of the explicitly defined choice variables of the problem
or one of these goal choice variables. An edge e = �Ci, Cj� in GC

signifies that the cost of making some assignment to the choice
variable Cj is directly dependent upon the assignment made to
Ci, while the lack of such an edge signifies that the cost of setting
Cj to any one of its values is conditionally independent of the
assignment made to Ci given the assignments made to its set
of parent nodes Par(Cj) = {Ck | �Ck, Cj� ∈ EC}. To describe
the construction of GC , we first define the notion of relevance
between the fluents of a planning problem:

Definition 6.5 (Relevance). Given a planning problem Π =
�F, I,O,G�, p ∈ F is relevant to q ∈ F if:

108 heuristics with choice variables

• p = q, or

• There exists o ∈ O such that p ∈ Pre(o) and r ∈ Add(o) ∪
Del(o), and r is relevant to q.

Intuitively, the relevance relation tells us that the cost of making
a fluent q true or false in a future state is dependent on whether
p is true in the current state or not. Conditional relevance given
a set of fluents B can be defined similarly:

Definition 6.6 (Conditional relevance). p ∈ F is conditionally
relevant to q ∈ F given B ⊆ F if:

• p = q, or

• There exists o ∈ O, r ∈ (F \ B) such that p ∈ Pre(o) and
r ∈ Add(o) ∪ Del(o), and r is conditionally relevant to q
given B.

In this case, the intuition is that p is conditionally relevant to
q given B if p somehow influences the cost of achieving q, even
when it is known whether all fluents in B are currently true or
false. These definitions can easily be extended to sets of fluents,
with a set P ⊆ F being (conditionally) relevant to Q ⊆ F (given
B) if any p ∈ P is (conditionally) relevant to any q ∈ Q (given
B). Denoting this with rel(P,Q,B), the set of edges EC of GC

is given by:

EC = {�Ci, Cj� | rel(D(Ci), D(Cj),∪Ck∈C\{Ci,Cj}D(Ck))}

In words, there is an edge e = �Ci, Cj� in GC if D(Ci) is con-
ditionally relevant to D(Cj) given the values of all other choice
variables. In what follows, we will assume that the choice vari-
ables graph GC given by this definition is acyclic. We will later
investigate the implications of relaxing this assumption.

GC encodes a set of relationships between its nodes similar to
those encoded by a Bayesian network, but rather than associ-
ating with each node Ci a conditional probability table (CPT)

6.2. the choice variables heuristic 109

which specifies in each entry the probability of each node’s tak-
ing some value in its domain given the values of its parent nodes,
it associates with each node a conditional cost table (CCT) that
specifies in each entry the cost of the problem of assigning to
Ci some value d ∈ D(Ci) given an assignment to its parent
nodes Par(Ci). As a strips problem, this is the cost of the goal
G = {d} from an augmented initial state s ∪ {vPar(Ci)}, where
{vPar(Ci)} denotes the values of the assignment v for the set of
choice variables Par(Ci). The operators of this problem are re-
stricted to the set Ov, which is computed as in Definition 6.3.
Differently from Definition 6.3, which specifies a problem whose
cost is the cost of the whole problem given certain assumptions,
here we wish to isolate the cost of each assignment to a choice
variable in a single subproblem, and therefore include the flu-
ents representing the assignment made to the set Par(Ci) in the
initial state of the problem.

In the CCT, the costs of each of these problems can be repre-
sented implicitly by means of an assignment-respecting heuristic
that given an assignment v is able to estimate the cost of the
modified planning problem in which only those operators that
respect v can be used. Existing delete-relaxation heuristics such
as those presented in Chapters 3 and 4 can easily accommo-
date this requirement by simply not considering those operators
when propagating costs or relaxed plans. Without making any
assumptions about the specific heuristic used, we denote the val-
ues of a heuristic respecting an assignment v by hv, and write
the estimated cost of such a problem hv(Ci = d | Par(Ci)). This
notation parallels that used in Bayesian nets for the conditional
probability of a node being instantiated to a value d given the
values of its parent nodes, and makes clear the relationship be-
tween the subproblems considered here and families in Bayesian
nets that consist of a node together with all of its parents. The
choice variables decomposition heuristic hcd can then be written
as follows:

110 heuristics with choice variables

C0

C1

C2

C3

Cg

Figure 6.1: A choice variable graph.

hcd(Π) = minv∈φ(C)

|G|�

i=1

hv(Cgi = gi | Par(Cg)) + (6.3)

|C|�

i=1

hv(Ci = v[Ci] | Par(Ci))

Note that while all possible assignments to non-goal choice vari-
ables are considered, the values of the goal choice variables are
forced to take on their (unique) values gi. This can be seen as
analogous to the notion of evidence in Bayesian nets, which are
nodes whose values have been observed and which can therefore
not take on other values.

As an example, consider the choice variable graph of a problem
with a single goal g shown in Figure 6.1. hcd would estimate the
cost of this problem in terms of the 5 subproblems corresponding
to setting the values of C0, C1, C2, C3, and Cg. The value of
the heuristic would then be given by:

hcd(Π) = minv∈φ(C)

�
hv(Cg = g | C2, C3) + hv(C0 = v[C0]) +

hv(C1 = v[C1] | C0) + hv(C2 = v[C2] | C0) +

hv(C3 = v[C3] | C1, C2)
�

In addition to the acyclicity of GC , Equation 6.3 makes one
more assumption that must be true for the heuristic to uphold

6.2. the choice variables heuristic 111

the admissibility and optimality guarantees of Proposition 6.4.
This is that the cost of no operator is counted in more than one
subproblem. To formalize this criteria, we extend the definitions
of relevance and conditional relevance to operators: we say that
operator o is (conditionally) relevant to fluent p (given A) if it
adds or deletes some fluent that is (conditionally) relevant to
p (given A). For the decomposition of Equation 6.3 to preserve
admissibility and optimality, it is then necessary that there is no
more than one Ci for each operator o with cost(o) > 0 such that
o is conditionally relevant to Ci given the set

�
Cj∈C\{Ci}D(Cj).

When this condition is not met, the cost of o may be counted in
more than one subproblem, leading to an inadmissible heuristic
even if the underlying heuristic used to compute the costs of
subproblems is admissible. There is a parallel to be drawn here
between the behaviour of hcd and that of the additive heuristic
hadd: in both cases, the cost of an action may be overcounted
when it is used in the (relaxed) plan in order to achieve more
than one subgoal whose cost is counted towards the cost of the
overall problem.

Proposition 6.7 (Admissibility and optimality of hcd). Given
a problem Π with a set of choice variables C such that the choice
variable graph GC is directed acyclic and each operator o of the
problem is conditionally relevant to at most one choice variable
given the other choice variables, and an admissible base heuris-
tic h, the decomposition hcd of Equation 6.3 is also admissible.
Furthermore, if h = h∗, then hcd = h∗.

Proof. Let π∗ be an optimal plan for Π, v the assignment to C
made by π∗, and π∗

i
a minimal subsequence in π∗ that consti-

tutes a plan for the subproblem of setting Ci = v[Ci]. Such a
subsequence must exist, since every valid plan assigns a value to
all Ci ∈ C by definition. Furthermore, the sets of operators with
non-zero cost in all π∗

i
must be disjoint, since each such operator

is conditionally relevant to at most one choice variable, and an
operator that is not conditionally relevant to Ci can be removed
from π∗

i
to give a smaller plan for the subproblem. Finally, each

π∗
i
must be optimal, since otherwise it could be replaced with

a lower cost πi resulting in a global plan of lower cost. If h is

112 heuristics with choice variables

admissible, then

hcd(Π) =

|G|�

i=1

hv(Cgi = gi | Par(Cgi)) +

|C|�

i=1

hv(Ci = v[Ci] | Par(Ci))

≤

|G|�

i=1

cost(π∗v(Cgi = gi | Par(Cgi))) +

|C|�

i=1

cost(π∗v
i (Ci = v[Ci] | Par(Ci)))

= cost(π∗)

and hcd(Π) is also admissible. If h = h∗, a similar argument
applies and hcd(Π) is optimal.

We now consider the values of hcd when cycles are present in
GC . The equation then encodes that each choice variable Ci

in the cycle can rely on some assignment to its set of parent
variables Par(Ci), and that in turn one of those variables may
directly or indirectly rely on an assignment to Ci, violating the
well-foundedness of the implicit global plan. To see how this
can affect the value of the heuristic, consider Figure 6.2. Delete
effects that ensure that a and b can only be set once have been
omitted for simplicity. Since each choice variable Ca = {a},
Cb = {b} has only a single value in its domain, there is a single
possible instantiation v of C. The optimal cost for this problem
is 6, resulting from instantiating either Ca or Cb with the cost 5
operator that has only s in its precondition, followed by applying
either oab or oba with cost 1. However, using h∗ as our underlying
heuristic in the definition of hcd we obtain:

hcd(s) = h(Cg = g | Ca, Cb) + h(Ca = a | Cb) + h(Cb = b | Ca)

= 0 + 1 + 1 = 2

in which the heuristic computation essentially encodes that the
instantiation of Ca relies on the instantiation of Cb and vice

6.2. the choice variables heuristic 113

s

a
oa, 5

Ca

b
ob, 5

oab, 1oba, 1

Cb

g
og, 0

(a) Problem with choice variables
C1 = {a}, C2 = {b}.

Ca

Cb

Cg

(b) Resulting choice
variables graph GC

with two node cycle
consisting of Ca, Cb.

Figure 6.2: A planning problem with a cyclic choice variable
graph.

versa. By extension of this example it can be seen that while
the acyclicity of GC is not a requirement for the admissibility
of hcd, it can result in estimates of lower cost than the optimal
plan, and is therefore a requirement for its optimality.

Computing hcd Efficiently

We now turn our attention to how to take advantage of the con-
ditional independence relations between choice variables implied
by Equation 6.3, showing how to adapt the recursive condition-
ing algorithm, originally defined as a method for exact inference
on Bayesian networks (Darwiche, 2001), to the planning set-
ting. Given a Bayesian network N and evidence e in the form
of an observed instantiation of a subset of the nodes of N , the
recursive conditioning algorithm operates by selecting a cutset
C that when instantiated results in two connected components
N l,N r that are conditionally independent of one another given
C. The method then enumerates the possible instantiations c
of C, recording each and solving N l and N r by applying the
same method recursively with the pertinent evidence. In enu-
merating the possible instantiations of the cutset, the values for
each node given in the evidence e are respected. When the net-

114 heuristics with choice variables

C→0 C0→1 C0→2 C1,2→3 C2,3→g

{}

{C0}

{C1}

{C2, C3}

Figure 6.3: A dtree for the choice variables graph
shown in Figure 6.1 resulting from the elimination ordering
�C0, C1, C2, C3, Cg�. Internal nodes are marked with cutsets.

work on which the method is called consists of a single node,
the probability corresponding to the current instantiation of the
node’s parents can be looked up directly in the associated CPT.
Given two conditionally independent networks N l,N r, the joint
probability given an instantiation c of the cutset is calculated
by multiplying together the probabilities calculated for each, and
these results are summed over the set of all possible instantia-
tions of C.

The recursive conditioning algorithm can be driven by a struc-
ture known as a dtree, a binary tree whose leaves represent the
families in N , where a family is a node together with its set of
parent nodes (Darwiche, 2001). The resulting algorithm is shown
in Figure 6.4. Each internal node d of the dtree corresponds to
a subnetwork N d of N , with the root node corresponding to the
full network, and specifies a cutset consisting of those variables
shared between its two children dl and dr which do not appear
in its acutset, defined as the set of variables that appear in the
cutsets of the ancestors of d. A dtree for the choice variable
graph of Figure 6.1 is shown in Figure 6.3. An instantiation of
all of the variables that appear in a node’s cutset and acutset
then ensures that all variables shared between its two children
are instantiated, resulting in two networks which are condition-
ally independent given the instantiation. A dtree node specifies
that recursive conditioning be applied to the associated network

6.2. the choice variables heuristic 115

by instantiating its cutset, and then applying recursive condi-
tioning to the resulting two networks N l and N r by using dl

and dr as dtrees for those.

Input: A dtree node D
Input: An assignment e
Output: The probability of the evidence e

function RC (D, e) begin
if D is a leaf node then

X ← variable associated with D
if X ∈ e then

return Prob(e[X] | ePar(X))
else

return 1
else if cacheD[econtext(D)] �= undefined then

return cacheD[econtext(D)]
else

p ← 0
for c ∈ φ(cutset(D)) do

p ← p+ RC(Dl, e ∪ c) · RC(Dr, e ∪ c)
cacheD[econtext(D)] ← p
return p

end

Figure 6.4: Recursive conditioning for calculating proba-
bility of evidence e in a Bayesian network.

To avoid repeated computations, each dtree node may also main-
tain a cache, which records for each instantiation y of its context,
defined as the intersection of the set of variables of the corre-
sponding subnetwork with the nodes of its acutset, the proba-
bility resulting from y. While this increases the space require-
ments of the algorithm, in many settings the associated gains
in time are of greater importance. Given an elimination order-
ing of width w for a network with n nodes, a dtree with width
≤ w can be constructed in linear time.1 With full caching, re-
cursive conditioning driven with such a dtree is then guaranteed

1Elimination orderings and width are beyond the scope of this thesis.
For an overview of the subject, see Bodlaender (1993).

116 heuristics with choice variables

to run in O(nw) time. While finding the optimal elimination
ordering for a graph which results in the lowest width dtree is
an np-hard problem, many greedy heuristics provide reasonable
performance in practice (Fattah and Dechter, 1996).

In order to calculate the value of hcd using recursive condition-
ing, we replace the CPTs associated with each family of the
graph with CCTs represented implicitly by a heuristic estima-
tor h, which rather than calculating the probability of some
instantiation of the node given the instantiation of its parent
nodes, estimates the cost of setting a choice variable to a certain
value given the instantiations of its parents in the choice variable
graph GC . To obtain the cost of the planning problem resulting
from instantiating the cutset of the choice variable graph asso-
ciated with the current node, the costs of the two components
are summed rather than multiplied, and the minimum such cost
is taken over all of the possible instantiations of the cutset. The
facts that the choice variables Cgi have only a single value gi and
hence must be assigned this value, and that choice variables may
already be assigned a value in the state from which the heuristic
is computed, can be seen as equivalent to evidence in the setting
of Bayesian networks, which specifies an observed instantiation
of a subset of the nodes.

The version of recursive conditioning resulting from these modi-
fications is shown in Figure 6.5. Since the choice variable graphs
that we consider are typically small and the time taken by com-
puting the value of a heuristic at each state is the largest fac-
tor in heuristic search planners’ runtime, we use full caching of
computed costs for each subproblem. We construct the dtree
used in the algorithm from the elimination ordering suggested
by the greedy min-degree heuristic, which orders the nodes last
to first in increasing order of their degree. Finally, the values
that choice variables have in the state from which the heuristic
is being computed which therefore cannot be changed, as well as
the single values of each of the goal choice variables, are given
to the algorithm as evidence.

Proposition 6.8 (Correctness of RC-h). When the choice vari-
able graph GC is acyclic, the RC-h algorithm computes the values
of the choice variable decomposition heuristic hcd (Equation 6.3).

6.2. the choice variables heuristic 117

Input: A dtree node D
Input: A set of choice variables C
Input: An assignment v to a subset of C
Input: A base heuristic function h
Output: A heuristic estimate hcd ∈ R+

0

function RC-h (D,v) begin
if D is a leaf node then

Ci ← the choice variable associated with D
return hv(Ci = v[Ci] | Par(Ci))

else if cacheD[vcontext(D)] �= undefined then
return cacheD[vcontext(D)]

else
hcd ← ∞

for c ∈ φ(cutset(D)) do
hcd ← min(hcd, RC-h(Dl,v∪c)+RC-h(Dr,v∪c))

cacheD[vcontext(D)] ← hcd

return hcd
end

Figure 6.5: Recursive conditioning for calculating hcd in a
planning problem with choice variables.

Proof. It can be shown by induction on the depth of the dtree
that the value calculated by recursive conditioning at each node
n of the dtree is

fv∈φ(vars(n)) gn�∈leaves(n) value(n
�,v)

where f is the function used to aggregate results from different
instantiations of the set of variables of the node n, vars(n), g is
the function used to aggregate the results of two subtrees for a
given instantiation, and value(n�,v) is the value returned from a
leaf node n� given instantiation v. When f = min, g =

�
, and

value(n�,v) = h(Cn� = v[Cn�] | Par(Cn�)), the result computed
by the algorithm is exactly the definition of Equation 6.3.

Proposition 6.9 (Complexity of RC-h). The number of calls
made to the underlying heuristic estimator h by the RC-h algo-
rithm is O(nw), where n is the number of nodes in the choice
variable graph GC and w is the width of the dtree used.

118 heuristics with choice variables

home

marketf1 (5)
1

marketf2 (1)
1

Cf

marketd1 (10)

10

10

marketd2 (5)

5

10

Cd

Figure 6.6: A problem in which food and drink must be bought.
Food is available at marketf1 and marketf2, while drink is avail-
able at marketd1 and marketd2. Numbers in parenthesis give the
cost of each good at the specified market, and values next to
each edge show the transportation cost for the edge.

Proof. Direct from results concerning the complexity of recur-
sive conditioning for computing the probability of evidence (Dar-
wiche, 2001).

We now give a short example of how the recursive conditioning
algorithm is used to calculate the values of hcd. We consider a
problem of the type discussed above, in which an agent must buy
two different types of goods, food and drink, and two different
markets are available selling each (Figure 6.6). The resulting
choice variable graph then constitutes a tree, with the choice
of the market at which to buy food not being dependent on
any choice variable, the choice of at which market to buy drink
being dependent only on at which market food is bought, and
the choice variables for the two goals have-food and have-drink
being dependent only on the market chosen for each type of
good. This choice variable graph and a dtree for the graph
resulting from the min-degree ordering are shown in Figure 6.7.
The RC-h algorithm begins at the root node of the dtree, and
must enumerate the possible instantiations of its cutset {Cf}.
marketf1 is selected as the first value, and the recursion proceeds
with a call to the right subtree. This is an internal node with
an empty cutset, so no further variables are instantiated. The

6.2. the choice variables heuristic 119

algorithm than recurses to the right child, which is a leaf node in
which the base heuristic is used to estimate the cost of the goal
have-food from the initial state {home,marketf1}, with actions
adding other values of the choice variable Cf disallowed. There
is a single possible plan for this component which consists of
buying food at marketf1, and this plan has cost 5, which is
returned to the parent node. The algorithm then proceeds to
evaluate the cost of the left node, which is the cost of making
marketf1 true from the initial state {home}, 1. Since the cutset
of the node is empty, no further instantiations are required and
the value 5 + 1 = 6 is returned to the root node. To estimate
the cost of the left subtree of the root, the algorithm now calls
itself recursively on the node with cutset {Cd}, instantiating it
first to marketd1. In the call to the right child, the cost of setting
marketd1 from initial state {home,marketf1} is evaluated, to give
cost 10, and in the left child, the cost of buying drink at marketd1
is evaluated, to give cost 10. The returned values are summed
in the internal node with cutset Cd to give cost 20. The value
resulting from Cd = marketd2 is calculated similarly, giving cost
5 + 5 = 10, which is lower than the previous instantiation, and
therefore returned to the root node, in which it is summed with
the cost calculated for the right child to give a final cost of
10 + 6 = 16 for the instantiation Cf = marketf1. The cost of
choosing Cf = marketf2 is computed similarly and turns out
to be 17, which is higher than the previous estimate, so 16 is
returned as the final value.

Note that on this problem the optimal delete relaxation plan
would consist of moving to marketf2 and buying food there,
then moving from home to marketf1 and from there to marketd2
to buy drinks there, for a total cost of 1 + 1 + 1 + 5 + 5 = 13.

Computation

The recursive conditioning algorithm avoids repeated computa-
tions by caching at each node the heuristic value computed for a
given instantiation of its context. However, since it is designed
for the setting of Bayesian nets in which it is only run once to
obtain the likelihood of given evidence, it tells us nothing about
whether values can be cached to avoid repeated computations

120 heuristics with choice variables

Cf Cd

Cgd
Cgf

(a) The choice variable
graph for the two mar-
kets problem.

Cd → Cgd Cf → Cd Cf Cf → Cgf

{Cd} {}

{Cf}

(b) A dtree for the choice variable graph resulting from the
min-degree elimination ordering �Cgd , Cgf , Cd, Cf �, with
cutsets shown for internal nodes.

Figure 6.7: Two markets problem. The families for the choice
variable graph, and therefore the leaf nodes of the dtree, consist
of Cf , Cf → Cd, Cf → Cgf , Cd → Cgd

in different states from which the value of hcd is computed. We
observe that the heuristic values hv(Ci = v[Ci] | Par(Ci)) do
not change from state to state for components in which there
is no non-choice fluent that is conditionally relevant to Ci given
Par(Ci). These values can then be cached in each leaf node of
the dtree the first time they are computed, and reused in later
heuristic computations. When the number of choice variables in
each component is small, this can substantially improve the cost
of computing the heuristic.

This caching scheme could be further extended to take into ac-
count in each component the values of the non-choice fluents
conditionally relevant to the target choice variable of the com-
ponent in the state from which the heuristic is computed. We
have not experimented with this approach as the size of the cache
at each leaf node would be unbounded, yet it may be possible in

6.3. domains 121

certain domains to obtain an increase in performance by caching
values only in components for which the number of conditionally
relevant non-choice fluents falls below some bound.

6.3 Domains

In this section we present a number of problems that can be
encoded using the choice variables formalism, and discuss some
non-intuitive features of the encoding that are required for the
heuristic to give optimal values when the base heuristic h is
taken to be the optimal heuristic h∗.

Minimum Cost SAT

As a canonical example of a constraint satisfaction problem, we
consider a version of the boolean satisfiability problem with three
literals per clause in which a satisfying assignment with mini-
mum cost must be found (MCSAT) (Li, 2004), and show how to
encode it so that the heuristic values found by hcd are optimal.
An MCSAT problem consists of a logical formula in conjunctive
normal form (CNF) in which each of the conjuncts is associated
with a weight, and the objective is to find an assignment such
that the total weight of the violated clauses is minimized. The
natural choice of choice variables for the problem then consists
of the sets {xi,¬xi} for each problem variable xi.

An acyclic interaction graph for the variables of an MCSAT
problem can be obtained by imposing an ordering over the set of
variables of the problem, and adding a directed edge between two
nodes xi, xj whenever xj appears as the highest-ranked literal
in a clause in which xi also appears. This suggests a planning
encoding in which variables which are not highest-ranked in any
clause can be set freely, while operators setting the values of
highest-ranked variables have preconditions that ensure that the
clauses for which they are highest-ranked are already satisfied, if
the assignment made by the operator itself does not satisfy the
clause. Logically, the operators of the problem proceed from the
following equivalence:

122 heuristics with choice variables

(x1 ∨ x2 ∨ x3) ⇐⇒ (¬(x1 ∨ x2) =⇒ x3)

This implies that to set the value of x3 to false, either x1 or x2
must already be true. We encode this set of relationships with
two operators for each variable in the problem, one of which sets
the variable to true and the other to false. The operator set-
xi-true then has as a precondition the conjunction of all of the
clauses in which it appears in negated form as the highest-ranked
variable, while the operator set-xi-false has as a precondition
those in which it appears positively.

As an example, consider the following SAT formula:

(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ ¬x4)

The set actions for variable x4, the only variable that is highest-
ranked in any of the clauses, are the following:

set-x4-false :�{unset(x4), (x1 ∨ x2)}, {¬x4,¬unset(x4), set(x4)}�

set-x4-true :�{unset(x4), (x1 ∨ x3)}, {x4,¬unset(x4)}, set(x4)}�

while all other variables xi can be set to true or false with the
single precondition unset(xi). The goals of the problem are then
set(xi) for all the variables of the problem.

Though this encoding is simple and intuitive, it does not fulfill
the conditions stated in Proposition 6.7, as each of the set-xi
actions has non-zero cost and is relevant to both the choice vari-
able Ci, since it adds one of its values, and to the goal choice
variable representing that a value for the variable has been set,
since it adds the fluent set(xi). To get around this, we introduce
a second set of actions finalize-xi for each variable xi. These ac-
tions have zero cost and the disjunctive precondition that xi has
already been set to true or false. The set(xi) fluents in the goal
are then replaced with the fluents finalized(xi) added by these
operators, ensuring that each of the set-xi operators are relevant
only to the choice variable to which they set a value, and that
each finalize-xi operator is relevant only to the associated goal
choice variable Cgi .

6.3. domains 123

Proposition 6.10 (Optimality of hcd on MCSAT). Given the
encoding described above, when h = h∗, hcd = h∗.

Proof. The choice variables graph GC for the encoding described
above constitutes a directed acyclic graph in which each of the
set− xi actions is conditionally relevant only to the choice vari-
able Ci corresponding to xi. Optimality then follows from Propo-
sition 6.7.

Proposition 6.11 (Time complexity of hcd on MCSAT). Given
an elimination ordering of width w for the choice variables graph
CG, the number of calls to the underlying heuristic h made by
the RC-h procedure is O(nw).

Proof. Given an elimination ordering of width w, the width of
the constructed dtree will be ≤ w. The total number of recursive
calls made by RC-h is then O(nw), where n is the number of leaf
nodes in the dtree, or equivalently, the number of variables in
the problem. The number of calls to the underlying heuristic h
is then also O(nw).

As delete relaxation heuristics based on the independence as-
sumption can be computed in time polynomial in the size of
the problem, the runtime of the algorithm when using such a
heuristic is then also bounded by O(nw), which is the complex-
ity bound of the MCSAT problem. Note that while the number
of calls to the base heuristic is exponential in the width, the
problem which must be solved in each call is simply choosing a
value for a variable xi given values for each of its parents Par(xi)
in GC , which are those variables which appear together with xi
in some clause in which xi is the highest-ranked fluent.

Hidden Markov Models

A hidden Markov model (HMM) is a dynamic Bayesian pro-
cess defined by H = �S,O, T, I, E�, where S is a set of states,
O is a set of observations, T is the transition probability func-
tion, with each T (s� | s) describing the probability of transition-
ing to state s� given that the current state is s, I is the initial

124 heuristics with choice variables

state probability function, with each I(s) giving the probability
that the initial state of the process is s, and E is the evidence
probability function, with each E(o|s) giving the probability of
observation o given that the current state of the process is s.
Given a sequence of observations �o1, . . . , ot�, the most probable
explanation (MPE) problem is that of computing the sequence
of states �s0, . . . , st� which has the highest probability of gener-
ating the observed sequence, where the probability of a sequence
of states’ generating some sequence of observations is given by
I(s0)

�
t

i=1
T (si | si−1)E(oi | si).

The MPE problem can be encoded as a planning problem Π =
�F, I,O,G� as follows:

• F = {statei(s), obsi(o), begin}, for i = 0, . . . , t, s ∈ S, and
o ∈ O

• I = {begin}

• O = {set-initial-state(s), transitioni(s, s�), emiti(s, o)}

• G = {obsj(oj)} for j = 1 . . . t

and each operator o = �Pre(o),Eff(o)� is described by

• set-initial-state(s) = �{begin}, {state0(s),¬begin}�, with
cost = −ln(I(s))

• transitioni(s, s�) = �{statei(s)}, {statei+1(s�),¬statei(s)}�,
with cost = −ln(T (s�|s))

• emiti(s, o) = �{statei(s)}, {obsi(o)}�, with cost =
−ln(E(o|s))

The optimal plans for Π then encode the most probable expla-
nations for the sequence of observations �o1, . . . , oj�. The use of
logarithmic costs in place of probabilities is a standard method
in probabilistic applications, where it is used to avoid handling
small floating point numbers that cannot be represented exactly.
It is especially useful in the planning setting of additive costs.
The choice variables C0, . . . , Ct for this problem can be chosen

6.3. domains 125

C0 C1

Cg1

. . . Ct

Cgt

Figure 6.8: The choice variable graph of width 1 that results
from the encoding of the MPE problem described below.

as the sets of fluents Ci = ∪s∈S{statei(s)}, resulting in a choice
variables graphGc of width 1, in which the state at each timestep
i depends only on the state at the timestep i − 1, and the ob-
servation at timestep i depends only on the state at timestep i.
(Figure 6.8).

Proposition 6.12 (Optimality of hcd on MPE for HMMs).
Given the encoding described above, when h = h∗, hcd = h∗.

Proof. The choice variables graph GC for the encoding described
above constitutes a directed tree in which the set-initial-state op-
erator is relevant only to C0, each of the transitioni operators is
relevant only to Ci+1, and each of the emiti operators is relevant
only to the goal choice variables, each of whose domains consists
of {obsi(oi)}. Optimality then follows from Proposition 6.7.

Proposition 6.13 (Time complexity of hcd on MPE for HMMs).
Given the optimal elimination ordering of width 1, the number
of calls made by RC-h to the underlying heuristic during each
computation is O(n).

Proof. Direct from Proposition 6.9.

We note that the use of the min-degree heuristic to obtain an
elimination ordering in a tree will always result in an optimal
elimination ordering of width 1.

126 heuristics with choice variables

6.4 Experimental Results

We compare the performance of the choice variable heuristic hcd

on the domains described above to that of a standard delete re-
laxation heuristic, the cost of the relaxed plan obtained from the
additive heuristic hadd (Chapter 3). We use the same heuristic
within the framework of hcd to obtain the heuristic estimates
for the cost of each component hv(Ci = v[Ci] | Par(Ci)). The
heuristics are used in the context of a greedy best-first search
with delayed evaluation, using a second open queue for states re-
sulting from helpful actions. Helpful actions for hcd are obtained
as those actions which are helpful in any one of the problem com-
ponents according to the underlying heuristic and which can be
applied in the current state. In general, the performance of hcd

is heavily dependent on the width of the choice variable graph
GC for the problem.

All experiments discussed below were run on Xeon Woodcrest
computers with clock speeds of 2.33 GHz, using a 2GB memory
limit and a time cutoff of 1800 seconds when appropriate.

Minimum Cost SAT

We generated MCSAT problems in the planning encoding de-
scribed above, with the number of clauses chosen to be the num-
ber of variables times 4.3, a ratio which has been shown to pro-
duce problems for which satisfiability testing is hard (Mitchell
et al., 1992). The number of variables in the problems ranged
from 5 to 34, and the cost of making each variable true or false
was set to be 5 and 1, respectively. Table 6.1 shows each heuris-
tics estimate of the cost of the problem, i.e. the result of evaluat-
ing the heuristics on the initial state. The choice variable heuris-
tic hcd computes the problem’s optimal cost, while the additive
heuristic hadd produces both overestimates and underestimates.
Problems for which no satisfying assignment is possible are re-
ported by hcd to have infinite cost with a single heuristic eval-
uation, while search with hadd requires a large number of node
expansions before this condition is proved. In our evaluation, we
therefore included only problems with satisfying assignments.

6.4. experimental results 127

Problem hadd hcd Problem hadd hcd

sat-5-21 14 17 sat-20-86 81 52
sat-6-25 16 26 sat-21-90 68 41
sat-7-30 27 15 sat-22-94 87 62
sat-8-34 26 16 sat-23-98 106 55
sat-9-38 46 29 sat-24-103 104 64
sat-10-43 24 22 sat-25-107 92 77
sat-11-47 36 31 sat-26-111 109 82
sat-12-51 48 20 sat-27-116 106 63
sat-13-55 42 37 sat-28-120 90 56
sat-14-60 52 26 sat-29-124 120 89
sat-15-64 62 31 sat-30-129 111 82
sat-16-68 51 36 sat-31-133 130 99
sat-17-73 50 41 sat-32-137 137 80
sat-18-77 88 46 sat-33-141 158 101
sat-19-81 66 55 sat-34-146 139 94

Table 6.1: Heuristic estimates for the initial states of MCSAT
problems. sat-x-y indicates a problem with x variables and y
clauses.

When used in the framework of a greedy best-first search with
delayed evaluation, hcd is able to solve the smaller problems that
we consider with much fewer heuristic evaluations than hadd.
In fact, since the heuristic is optimal for these problems, the
number of heuristic evaluations is roughly linear in the number
of variables for the problem, and therefore in the length of the
plan, since all plans for a given instance of the domain have the
same length (Figure 6.9). However, for the ratio of clauses to
variables that we consider, the interaction graph of the variables
is usually clique-like, resulting in a choice variable graph, and
therefore a dtree, whose width is unbounded and typically close
to the number of variables in the problem. The computation
of hcd therefore rapidly becomes infeasible, and hadd is able to
solve many more problems, 29 of the 30 compared to 20. The
higher informativeness of hcd does not pay off in terms of plan
cost either, with the eventual plans found by greedy best first
having roughly equal cost for both heuristics, with hcd finding
plans of only slightly less cost for the larger problems it is able

128 heuristics with choice variables

 10

 100

 1000

 10000

 100000

 1e+06

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

h
cd

h
add

Figure 6.9: Node expansions on the MCSAT domain.

to solve.

Hidden Markov Models

We generated most probable explanation problems on hidden
Markov models using the planning encoding described above,
keeping the number of states and the number of different possi-
ble observations in the model fixed at 15, and varying the length
of the observed sequence to be explained. Table 6.2 shows the
results of evaluating both heuristics for the initial states of the
problems. Recall that the costs used in the problem encoding
are the natural logarithms of the probabilities in the model; lin-
ear differences between the heuristic estimates therefore reflect
order-of-magnitude differences in the estimated likelihood of the
observed sequence. The hcd heuristic finds optimal explanations
for the sequence of observations that are several orders of mag-
nitude more likely than those found by hadd, with the effect
becoming more pronounced as the length of the observation se-
quence used is increased. In particular, for the largest problem

6.4. experimental results 129

Problem hadd hcd Problem hadd hcd

hmm-15-50 261.8 106.3 hmm-15-200 1387.5 484.5
hmm-15-60 521.7 122.1 hmm-15-210 1175.1 436.8
hmm-15-70 472.4 115.0 hmm-15-220 1545.1 520.3
hmm-15-80 735.9 191.0 hmm-15-230 3091.8 608.8
hmm-15-90 810.8 160.8 hmm-15-240 1207.8 605.8
hmm-15-100 724.3 239.4 hmm-15-250 2544.3 658.8
hmm-15-110 761.6 267.8 hmm-15-260 2819.8 618.5
hmm-15-120 549.7 302.3 hmm-15-270 1758.3 581.4
hmm-15-130 1184.7 258.8 hmm-15-280 1359.3 580.3
hmm-15-140 955.7 319.5 hmm-15-290 1587.6 728.5
hmm-15-150 1434.6 348.9 hmm-15-300 3089.3 717.3
hmm-15-160 1380.0 320.8 hmm-15-310 2170.5 810.8
hmm-15-170 1543.5 269.2 hmm-15-320 4532.7 804.7
hmm-15-180 1154.6 397.4 hmm-15-330 3274.1 754.2
hmm-15-190 1096.0 423.4 hmm-15-340 3111.0 860.0

Table 6.2: Heuristic estimates for the initial states of most prob-
able explanation problems on hidden Markov models. hmm-x-y
indicates a problem with x states and possible observations, and
an observed sequence length of y.

used, in which the length of the observation sequence is 340,
the optimal estimate given by the hcd heuristic shows that the
likelihood of the sequence is more than 100 orders of magnitude
greater than what the additive heuristic’s estimate suggests.

When the two heuristics are used in greedy best-first search,
search with hcd is able to scale up to much larger sequences of
observations than hadd, solving all 30 of the problems, compared
to search with hadd that solves only 21. This is due to the fact
that the choice variable graph for the problem is a tree with the
structure seen in Figure 6.8, and its width is therefore 1, inde-
pendently of the length of the observed sequence in the problem.
The min-degree heuristic is always able to find an optimal elim-
ination ordering for trees, resulting in a dtree with width 1 as
well. The complexity of computing hcd then grows linearly in
the size of the problem, and the optimal values computed allow
it to solve problems with a roughly linear number of heuristic
evaluations as well (Figure 6.10). The heuristic is also benefi-

130 heuristics with choice variables

 100

 1000

 10000

 100000

 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

h
cd

h
add

Figure 6.10: Node expansions on the HMM domain.

cial in terms of the cost of the plans that are found, with hcd

finding lower cost plans for all of the instances solved with both
heuristics, and the difference in cost growing with the size of the
problem (Figure 6.11)

6.5 Related Work

As stated above, our work contains several similarities to fac-
tored planning approaches, first proposed by Amir and Engel-
hardt (2003). Similarly to the technique presented here, fac-
tored planning relies on decomposing a planning problem into
several subproblems, or components. These subproblems are
then solved with a standard planner, which finds plans that mix
operators from within the component and pseudo-actions that
consist of some other component changing the value of a vari-
able shared between the two components. The number of times
d in which a different component changes the value of an in-
ternal variable in this manner is a parameter of the planning

6.6. conclusions 131

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

h
cd

h
add

Figure 6.11: Plan costs on the HMM domain.

algorithm. Brafman and Domshlak (2006) later showed that the
minimum number of times that some variable must change its
value in a plan is a key parameter in determining the complexity
of planning problems. Our approach differs from these in that
it aims to define a heuristic estimator for the problem rather
than lay out an algorithm that produces an explicit solution.
Furthermore, we focus on problems in which the variables that
are shared between components are restricted to having their
values changed at most once. However, since our methods are
aimed at producing a heuristic estimate for the problem and not
an explicit solution, they can easily be extended to this setting
with the single-change assumption constituting a relaxation of
the problem similar to the delete relaxation.

6.6 Conclusions

We have introduced a new type of invariant in planning that we
call a choice variable. A choice variable is a multivalued variable

132 heuristics with choice variables

whose values can be set at most once by any plan. By reason-
ing by cases about different assignments to these variables and
excluding the operators that violate the assignments, heuristics
that go beyond the delete relaxation in their estimates can be
obtained. Furthermore, this reasoning can be done efficiently
by adapting techniques previously proposed in the context of
graphical models to the planning setting, with the complexity of
the heuristic computation depending on the well-studied width
parameter of the graph that describes the interaction between
choice variables. More than a device for improving heuristic es-
timates on already existing domains, choice variables can also
be seen as a modelling tool for embedding common problems in
computer science that have graphical model-like structure into
planning problems, extending the range of problems for which
planning algorithms can be effectively used.

Part IV

Extending the Scope of

Classical Planning

133

Chapter 7

Compiling Soft Goals

Away

In this chapter we describe the problem of planning with soft
goals and discuss some previous approaches to the problem.
We then show how this type of problem can be compiled into
a standard planning problem with only hard goals and action
costs, and discuss the importance of cost-sensitive and non-
independence-assumption-based heuristics in solving the com-
piled problems. Finally, we evaluate the performance of off-the-
shelf satisficing and optimal classical planners on some compiled
problems and compare this to the performance of off-the-shelf
planners that deal with soft goals using dedicated algorithms.

7.1 Introduction

Planning with soft goals extends the classical model of planning
with a simple model of preferences over the final state that is
reached by the plan. This is done by associating with each fluent
p ∈ F a utility, with a utility of 0 indicating that plans are not
preferred on the basis of whether they make p true or not, and
a positive value indicating that between two plans of equal cost,
one of which results in a final state in which p is true and the
other in which in a final state in which p is false, the plan making

135

136 compiling soft goals away

p true is preferred. The magnitude of the utility represents how
much extra cost should be accepted by the planner in order to
make p true: if plan π makes p true and has cost c, and plan
π� does not and has cost c�, π is preferred to π� if the utility
conferred by achieving p is greater than the extra cost it incurs,
i.e. when c− c� < utility(p).

Formally, soft goals are described in strips with an extension
to the strips planning problem with costs (see Definition 1.6):

Definition 7.1 (strips with soft goals). A strips problem with
action costs and soft goals Pu = �F, I,O,G, c, u� consists of:

• A strips problem with costs P = �F, I,O,G, c�

• A utility function u : F �→ R+

0
that assigns to each fluent

in the problem a non-negative utility.

In the rest of this chapter, we refer to the subset of fluents as-
sociated with a positive utility as the soft goals of the problem,
and denote them with SG(P) = {f ∈ F | u(f) > 0}.

In planning problems with costs but no soft goals, the cost of
a plan is defined to be the summed cost of the operators that
appear in the plan (Definition 1.4). For planning problems with
soft goals, whether a fluent with non-zero utility is made true
or not in the final state resulting from the execution of the plan
must also be taken into account. In the following, we denote
this condition, p ∈ sI [π], with the notation π |= p. The utility
of a plan u(π) is then given by the following expression:

u(π) =
�

p:π|=p

u(p)− cost(π) (7.1)

A plan π for a problem with soft goals Pu is optimal when no
other plan π� has utility u(π�) greater than u(π). The utility
of an optimal plan for a problem that has no hard goals, i.e.
such that |G| = 0, is never negative, as the empty plan has
non-negative utility and zero cost.

We now present a compilation technique that given a planning
problem with soft goals transforms it into a problem with only

7.2. compiling soft goals away 137

hard goals and action costs. This problem can then be solved by
an off-the-shelf classical planner with no enhancements, taking
advantage of cost-sensitive heuristic planning techniques.

7.2 Compiling Soft Goals Away

Given a strips problem P with soft goals, an equivalent problem
P � with action costs and no soft goals can be defined whose plans
encode corresponding plans for P .

In the following, we write actions as tuples of the form o =
�Pre(o),Eff(o)�, where the effects can be positive (Adds) or neg-
ative (Deletes). We assume that for each soft goal fluent p, P
also contains a fluent p representing its negation. These can be
introduced in the standard way, adding p to the initial state if
p is not initially true, and including p in the Add and Delete
lists of all actions deleting or adding p respectively (Gazen and
Knoblock, 1997; Nebel, 2000). The problem P � with action costs
and no soft goals that is equivalent to the problem P with soft
goals can then be obtained by the following transformation:

Definition 7.2. For a STRIPS problem with action costs and
soft goals P = �F, I,O,G, c, u�, the compiled STRIPS problem
with action costs is P � = �F �, I �, O�, G�, c�� with

• F � = F ∪ S�(P) ∪ S(P) ∪ {normal-mode, end-mode}

• I � = I ∪ S(P) ∪ {normal-mode}

• G� = G ∪ S�(P)

• O� = O�� ∪ {collect(p), forgo(p) | p ∈ SG(P)} ∪ {end}

• c�(o) =

c(o) if o ∈ O��

u(p) if o = forgo(p)
0 if o = collect(p), end

where

• SG(P) = {p | (p ∈ F) ∧ (u(p) > 0)}

138 compiling soft goals away

• S�(P) = {p� | p ∈ SG(P)}

• S(P) = {p� | p� ∈ S�(P)}

• end = �{normal-mode}, {end-mode,¬normal-mode}�

• collect(p) = �{end-mode, p, p�}, {p�,¬p�}�

• forgo(p) = �{end-mode, p, p�}, {p�,¬p�}�

• O�� = {�Pre(o) ∪ {normal-mode},Eff(o)� | o ∈ O}

For each soft goal p in P , the transformation adds a dummy
hard goal p� in P � that can be achieved in two ways: with the
action collect(p) that has cost 0 but requires p to be true, or
with the action forgo(p) that has cost equal to the utility of p
yet can be performed when p is false, or equivalently when p is
true. These two actions can be used only after the end action
that makes the fluent end-mode true, while the actions from the
original problem P can be used only when the fluent normal-
mode is true prior to the execution of the end action. Moreover,
exactly one of {collect(p), forgo(p)} can appear for each soft
goal p in the plan, as both delete their shared precondition p�,
which no action makes true. As there is no way to make the
fluent normal-mode true again after it is deleted by the end
action, all plans π� for P � have the form π� = �π, end,π���, where
π is a plan for P and π�� is a sequence of |S�(P)| collect(p)
and forgo(p) actions in any order, the former appearing when
π |= p, and the latter otherwise.

The two problems P and P � are equivalent in the sense that
there is a correspondence between the plans for P and P �, and
corresponding plans are ranked in the same way. More specifi-
cally, for any plan π for P , there is a plan π� for P � that extends
π with the end action and a set of collect and forgo actions,
and this plan has cost c(π�) = −u(π) +α, where α is a constant
that is independent of both π and π�. Finding an optimal (max-
imum utility) plan π for P is therefore equivalent to finding an
optimal (minimum cost) plan π� for P �.

Proposition 7.3 (Correspondence between plans). For an ap-
plicable action sequence π in P , let an extension π� of π denote

7.2. compiling soft goals away 139

any sequence obtained by appending to π the end action followed
by some permutation of the actions collect(p) and forgo(p)
for all p ∈ SG(P), when π |= p and π �|= p respectively. Then

π is a plan for P ⇐⇒ π� is a plan for P �

Proof. (⇒) The new actions in P � do not delete any p ∈ F , so
any hard goal achieved by π will remain true in the final state
reached by π�, and we have that π� |= G. For all p ∈ F such
that u(p) > 0, either π |= p or π �|= p. In the first case, p� is
achieved by collect(p), in the second, by forgo(p), therefore
π� |= S�(P). Since G� = G ∪ S�(P), we have that π� |= G�.

(⇐) If π� is a plan for P �, then all hard goals G in P must
be made true by π� before the end action, as after this action
only collect and forgo actions can be applied and these can
not make any p ∈ F true. The plan obtained by removing the
end action and all collect and forgo actions must therefore
achieve G and thus is a valid plan for P .

Proposition 7.4 (Correspondence between utilities and costs).
Let π1 and π2 be two plans for P , and let π�

1
and π�

2
be extensions

of π1 and π2 respectively. Then,

u(π1) > u(π2) ⇐⇒ c(π�
1) < c(π�

2)

Proof. Let π be a plan for P and π� an extension of π. We
demonstrate that c(π�) = −u(π) +

�
p∈SG(P)

u(p). Since the
summation in this expression is a constant for a given problem
P , the assertion follows directly:

140 compiling soft goals away

c(π�) = c(π) + c�(end) +
�

forgo(p)∈π�

c�(forgo(p)) +

�

collect(p)∈π�

c�(collect(p))

= c(π) +
�

forgo(p)∈π�

c�(forgo(p))

= c(π) +
�

p:π �|=p

u(p)

= c(π) +
�

p∈SG(P)

u(p)−
�

p:π|=p

u(p)

= −u(π) +
�

p∈SG(P)

u(p)

Proposition 7.5 (Equivalence). Let π be a plan for P , and π�

be a plan for P � that extends π. Then,

π is an optimal plan for P ⇐⇒ π� is an optimal plan for P �

Proof. Direct from the two propositions above.

Optimizing the Compilation

While the problem resulting from the compilation is equivalent
to the original problem in the sense shown above, it increases
the state space of the problem by a large factor, which can have
a hugely detrimental effect on planners’ performance. Though
the state in which the end action is applied uniquely deter-
mines which of {collect(p), forgo(p)} can be applied for each
p ∈ SG(P), it does not specify the order in which they must ap-
pear. For a problem with n soft goals, this means that the part

7.2. compiling soft goals away 141

of the state space reachable with the end action must contain
|P(n)| different reachable states, in each of which one subset of
the n hard goals corresponding to the soft goals of the original
problem has been processed (Figure 7.1a). In a problem with
no hard goals, the end action can be applied in any state, and
this has the overall effect of increasing the size of the state space
by a factor of 2n. However, it turns out that this exponential
blowup can be avoided with the simple trick of enforcing a fixed
ordering p1, . . . , pm over the set of soft goals in P , preventing
the collect and forgo from being applied in any other or-
der. This is achieved by adding the dummy hard goal p�

i
as a

precondition of the actions collect(pi+1) and forgo(pi+1) for
i = 1, . . . ,m − 1. The result is that there is a single possible
extension π� of every plan π in P (Figure 7.1b), and the state
space of the problem is increased by only a factor of n. This
optimization is used in the experiments we report below.

Heuristics and the Soft Goal Compilation

While the compilation technique above permits the solution of
problems with soft goals directly by classical planners, it does
not tell us anything about whether good quality solutions that
take into account both the cost of achieving a soft goal and its
associated utility will be found. Indeed, it is easy to see that any
planner or heuristic that does not take into account action costs
will find very poor quality solutions to compiled problems of this
type. This is because for any problem P with n soft goals but no
hard goals, the plan π = �end, forgo(p1), . . . , forgo(pn)� will
minimize the plan metric |π|, the number of actions appearing
in the plan, as every plan must contain the end action and
at least one of {collect(pi), forgo(pi)} for i = 1, . . . , n. On
the other hand, planners and heuristics that take into account
action costs will attempt to estimate the cost of plans for each
p�
i
that have the form π = �π�, end,collect(pi)�, where π� is a

plan achieving the soft goal pi, and choose to achieve the newly
introduced hard goal p�

i
with the forgo(pi) action only if the

cost of achieving pi is estimated to be greater than the associated
utility u(pi).

142 compiling soft goals away

end

p�
1

p�
2

p�
3

p�
1
, p�

2
p�
2
, p�

3
p�
1
, p�

3

p�
1
, p�

2
, p�

3

(a) State space following end action with unordered soft goals.

end

p�
1

p�
1
, p�

2

p�
1
, p�

2
, p�

3

(b) State space
following end
action with
ordered soft
goals.

Figure 7.1: The soft goal ordering optimization for a problem
with 3 soft goals.

7.3. experimental results 143

7.3 Experimental Results

The formal results above imply that the best plans for a problem
P with action costs and soft goals can be computed by looking
for the best plans for the compiled problem P � with action costs
and no soft goals, to which standard classical planning tech-
niques can be applied. To test the practical value of the trans-
formation, we evaluate the performance of both optimal and
satisficing planning techniques for soft goals. Some problems in
the test suite contain preferences over conjunctions rather than
single fluents. Such preferences are handled with a variant of
the approach described above, detailed in Section 7.4.

The results shown in the three columns in Table 7.1 labelled
‘Net-benefit optimal planners’ are the results as reported by
the organizers of the 2008 International Planning Competition
(IPC6) (Helmert et al., 2008). All other results were obtained
using the same machines and settings as used in the competi-
tion: Xeon Woodcrest computers with clock speeds of 2.33 GHz,
with a time limit of 30 minutes and a memory limit of 2GB.

In the first set of experiments, we consider the problems used
in the Net Benefit Optimal (NBO) track of IPC6, in which soft
goals are defined in terms of goal-state preferences (Gerevini
and Long, 2006), and compare the results obtained by the three
optimal net-benefit planners with the results obtained by their
Sequential Optimal (SO) variants on their compilations.1 The
three planners entered in the NBO track of IPC6 were Gamer,
Mips-XXL, and HSP*

P
. The SO planners we test on the com-

piled versions of the NBO problems are the SO versions of Gamer
(Edelkamp and Kissmann, 2008) and Mips-XXL (Edelkamp and
Jabbar, 2008) and the two SO planners HSP*

F
and HSP*

0
(Haslum,

2008).2 These were ranked first, fifth, second, and third, respec-

1The compiled problems are currently available at http://ipc.
informatik.uni-freiburg.de/Domains.

2All versions of HSP* have a bug which may cause suboptimal or invalid
solutions to be computed in domains with non-monotonic numeric vari-
ables (numeric variables whose values may both increase and decrease) that
occur in preconditions of actions or goals (See http://ipc.informatik.
uni-freiburg.de/Planners). Such variables are present only in the trans-
port domain out of all those tested, yet plans computed by HSP* for both

http://ipc.informatik.uni-freiburg.de/Domains
http://ipc.informatik.uni-freiburg.de/Domains
http://ipc.informatik.uni-freiburg.de/Planners
http://ipc.informatik.uni-freiburg.de/Planners

144 compiling soft goals away

NBO SO
Domain G HP M G HF H0 M

crewplanning(30) 4 16 8 - 8 21 8
elevators (30) 11 5 4 19 8 8 3
openstacks (30) 7 5 2 6 4 6 1

pegsol (30) 24 0 23 22 26 14 22
transport (30) 12 12 9 - 15 15 9

woodworking (30) 13 11 9 - 10 14 7
total 71 49 55 (47) 71 78 50

Table 7.1: Coverage for optimal planners: The leftmost three
columns give the number of problems solved by each of the
planners in the Net Benefit Optimal (NBO) track of IPC6, as re-
ported by the competition organizers (G = Gamer, HP=HSP*

P
,

M = Mips-XXL). The rightmost four columns give the number
of compiled problems solved by the Sequential Optimal (SO) ver-
sions of these planners (G = Gamer, HF=HSP*

F
, H0=HSP*

0
, M

= Mips-XXL). Dashes indicate that the version of the planner
could not be run on that domain.

tively, in the SO track (Helmert et al., 2008). Three out of the six
domains from the NBO track of IPC6 involve numeric variables
that appear in the preconditions of actions. The SO version of
Gamer does not handle numeric variables, and we are therefore
unable to run Gamer on such problems. Numeric variables never
appear as soft goals and are left untouched by our compilation.

The data in Table 7.1 show that the two HSP* planners from the
SO track run on the compiled problems do as well as, or better
than, the best planner from the NBO track run on the original
problems with soft goals. The maximum number of solved prob-
lems for a domain is higher for the NBO track planners in only
a single domain, openstacks (7 vs. 6). In all other domains, SO
planners are able to solve a larger number of problems than the
maximum number solved by any NBO planner. Considering the

versions of the domain turn out to be valid (as verified by the VAL plan
validator, (Howey and Long, 2003)) and optimal in the instances in which
they can be checked against the costs of plans computed by other planners.

7.3. experimental results 145

NBS SCS
Domain S Y M L

elevators (30) 0 0 8 23
openstacks (30) 2 0 2 28

pegsol (30) 0 5 23 29
rovers (20) 8 2 1 17

total 10 7 34 97

Table 7.2: Coverage and quality for satisficing planners: The
entries indicate the number of problems for which the planner
generated the best quality plan (S = SGPlan, Y= YochanPS,
M=Mips-XXL, L=LAMA). The leftmost three columns are Net
Benefit Satisficing (NBS) planners, while LAMA is a Sequential
Cost Satisficing (SCS) planner.

performance of the NBO and SO variants of each planner, the
compilation benefits most the two versions of the heuristic search
planner HSP*, leaving the BDD planners Gamer and Mips-XXL
relatively unaffected. Interestingly, HSP*

0
using the compilation

ends up solving more problems than Gamer, the winner of the
NBO track (78 vs. 71). The drastically better performance of
the SO versions of HSP* compared to the net-benefit version is
the result of the simple scheme for handling soft goals in the
latter, in which optimal plans are computed for each possible
subset of soft goals in the problem (roughly), and a change in
the search algorithm from IDA* to A*.

In the second set of experiments, we consider the three domains
from the NBO track of IPC6 which do not contain numeric vari-
ables in the preconditions of actions, and the domain rovers from
the net-benefit track of IPC5. Domains containing numeric vari-
ables in the preconditions of actions are not considered due to the
lack of state-of-the-art cost-based planners able to handle them.
Domains other than rovers from the NB track of IPC5 are not
considered as they contain disjunctive, existentially qualified, or
universally qualified soft goals which our current implementa-
tion does not support. The satisficing net-benefit planners we
test on these problems are SGPlan (Hsu and Wah, 2008), the
winner of the net benefit track from IPC5, YochanPS (Benton

146 compiling soft goals away

et al., 2009), which received a distinguished performance award
in the same competition, and a satisficing variant of MIPS-XXL,
which also received a distinguished performance award in that
competition and competed in the optimal track of IPC6. We
solve the compiled versions of the problems with LAMA, the
winner of the sequential satisficing track from IPC6. YochanPS,
MIPS-XXL, and LAMA are anytime planners, and the results
discussed below refer to the cost of the best plan found by each
at the end of the evaluation period of 30 minutes.

Entries in Table 7.2 show the number of problems in each domain
for which the plan generated by a planner is the best or only plan
produced. We report this data rather than showing graphs of
plan utilities as the absolute difference between the quality of
plans is not meaningful in itself except when the shortest plans
(that ignore costs and/or soft goals) for the problem are signif-
icantly more costly. The results show that running a state-of-
the-art cost-based planner on the compiled problems yields the
best plan in 98 out of the total 110 instances, almost three times
the number of instances in which the best-performing native soft
goals planner, MIPS-XXL, gives the best plan. Furthermore, in
22 out of the 23 problems for which MIPS-XXL finds the best
plan in the pegsol domain, LAMA finds a plan with the same
quality. The problems in which satisficing net-benefit planners
outperform LAMA run on the compiled problems are therefore
very few.

These results appear to contradict the results reported by Ben-
ton et al. (2009), where the native net-benefit planner, YochanPS,
yields better results than a cost-based planner, YochanCOST,
run on problems compiled according to an earlier version of
our transformation (Keyder and Geffner, 2007). The discrep-
ancy appears to be the result of the non-informative cost-based
heuristic used in YochanCOST, which leads to plans that forgo
all soft goals, and the fact that they do not make use of the
optimization discussed at the end of Section 7.2, which results
in an unnecessary blowup of the state space.

7.4. extensions 147

7.4 Extensions

We have shown that it is possible to compile away positive util-
ities u(p) associated with single fluents p. We show now that
this compilation can be extended to deal with positive utilities
defined on formulas over fluents and to negative utilities defined
on both single fluents and formulas. Negative utilities stand for
conditions to be avoided rather than sought; for example, a util-
ity u(p∧ q) = −10 penalizes a plan that results in a state where
both p and q are true with an extra cost of 10. The compilation
of soft goals defined on formulas is based on the standard com-
pilation of goal and precondition formulas in classical planning
(Gazen and Knoblock, 1997; Nebel, 1999).

A positive utility on a logical formula A can be compiled away
by introducing a new fluent pA that can be achieved at zero cost
from any end state where A holds, and by assigning the utility
associated with A to pA. If A is a DNF formula D1 ∨ . . . ∨Dn,
it suffices to add n new actions a1, . . . , an with ai = �Di, pA�
for i = 1, . . . , n. If A is a CNF formula C1 ∧ . . . ∧ Cn, a fluent
pi is introduced for each i = 1, . . . , n, along with actions aij =
�Cij , pi� for j = 1, . . . , |Ci|, where Cij stands for the jth fluent
of Ci. We also introduce an action a = �{p1, . . . , pn}, pA� that
allows the addition of fluent pA in states where A holds. All the
newly introduced actions have zero cost, and must be applicable
in P � after the actions of the original problem P and before the
collect and forgo actions. The best extensions of any plan π
that achieves A in P will then achieve pA and use the collect
action to achieve the hard goal fluent p�

A
associated with pA at

zero cost.

A negative utility u(A) < 0 on a formula A in DNF or CNF can
be compiled away in two steps, by first substituting a positive
utility −u(¬A) on the negation ¬A of A and then compiling this
positive utility on a formula into a utility on a single fluent as
described above. This makes use of the fact that the negation
of a formula in CNF is a formula in DNF and vice versa.

148 compiling soft goals away

7.5 Related Work

The problem of planning with soft goals is also known as “plan-
ning with goal preferences”, “partial satisfaction planning”, and
“oversubscription planning”, and has previously been studied in
several works. One popular approach has been to heuristically
select a subset of the set of soft goals in the problem and treat
them as hard goals to be planned towards by a standard classical
planner. van den Briel et al. (2004) propose constructing this
goal set incrementally, maintaining at each step a relaxed plan
and the list of soft goals it achieves, and adding a soft goal to
the set when the estimated utility of the plan can be increased.
Later work extends their goal selection algorithm to incremen-
tally consider sets of goals and take into account negative inter-
actions or mutexes between them (Sanchez and Kambhampati,
2005). Smith (2004) select the set of goals by first converting the
problem into an orienteering problem and solving it to obtain
both a list of soft goals to be achieved and an order in which
to achieve them. The goals are then passed to the planner one
after the other in the suggested order.

The methods discussed above typically use heuristic search meth-
ods to solve the obtained problem that has only hard goals. An
alternative to this is to integrate information about the soft goals
directly into the heuristic, and avoid committing beforehand to
a subset of soft goals. In this vein, van den Briel et al. (2004)
propose a heuristic based on the relaxed planning graph which
first constructs a relaxed plan π for all of the soft goals of the
problem, and then performs a second pass to check for each soft
goal pi whether the cost of the actions in π that contribute only
to achieving pi exceeds the utility associated with pi. Bonet
and Geffner (2008) obtain a propositional encoding of the delete
relaxation problem that can include costs and penalties on the
fluents of the problem. This is then compiled in exponential
time into a form which allows the (admissible) optimal delete-
relaxation heuristic to be extracted from the model in linear time
at each state.

An alternative compilation approach that has been proposed is
to associate with each soft goal pi a numeric variable ni with
domain {0, 1} (Edelkamp, 2006). The utility for a plan is then

7.6. conclusions 149

expressed as u(π) =
�

n

i=1
ni ∗ u(pi)− cost(π), where u(pi) rep-

resents the utility associated with soft goal pi and ni represents
the value of the numeric variable in the final state achieved by
the plan. This transformation eliminates soft goals at the cost of
introducing a plan metric that contains state-dependent terms
(the values of the variables ni). Current planners, however, are
unable to effectively optimize for such metrics.

7.6 Conclusions

We have shown that soft goals, previously thought to add ex-
pressive power to the classical planning formalism, can be com-
piled away to yield a classical planning problem with action costs
whose solutions encode solutions to the original problem, with
only a linear increase in problem size. This planning problem
can then be solved by off-the-shelf planners, which our results
indicate perform much better on these problems than planning
algorithms that are specifically designed to consider soft goals.
A simple extension to our method also accommodates positive
or negative utilities, in other words penalties, on CNF or DNF
formulas made true by plans.

Part V

Conclusions and Future

Work

151

Chapter 8

Conclusions

We now summarize the contributions of the thesis, and briefly
discuss some ways in which the work presented here may be
extended.

8.1 Contributions

The contributions of this thesis that we feel to be of greatest
interest to the planning community are the following:

1. The computation of relaxed plans from the additive and
max heuristics hadd and hmax, which unifies the previously
existing hadd and hff heuristics, and offers the advantages
of both, namely cost-sensitivity, declarative, rather than
algorithmic definition, explicit relaxed plans, and hence,
no overcounting (in Chapter 3, and Keyder and Geffner
(2008)).

2. The set-additive heuristic hsa, which moves away from the
independence assumption for costs and instead applies it
to relaxed plans, obtaining closer approximations of the
optimal cost for the delete relaxation (in Chapter 3, and
Keyder and Geffner (2007, 2008))

153

154 conclusions

3. The characterization of previously existing delete-relaxation
heuristics in terms of a best supporter function that is
dependent upon the independence assumption and the re-
laxed plan extraction algorithm, and the relation of the in-
dependence assumption to concepts from research into hy-
pergraph problems (in Chapter 3 and Keyder and Geffner
(2008))).

4. The Steiner tree improvement procedure, the first algo-
rithm to allow the computation of suboptimal delete relax-
ation plans that do not make use of the independence as-
sumption (in Chapter 4, and Keyder and Geffner (2009b)).

5. The declarative definition of the complete set of causal
delete relaxation landmarks, and the use of this definition
to compute this set with algorithms similar to those used
for heuristic computation, without reliance on the relaxed
planning graph (in Chapter 5, and Keyder et al. (2010)).

6. The use of our methods for finding delete relaxation land-
marks to compute landmarks for the Πm problem, which
constitutes the first method for finding both conjunctive
landmarks and landmarks beyond the delete relaxation (in
Chapter 5, and Keyder et al. (2010)).

7. The characterization of a previously unexplored type of
invariant in planning that we call choice variables, and a
heuristic that exploits this invariant to obtain more ac-
curate estimates. Furthermore, our work allows problems
such as constraint satisfaction and graphical models to be
embedded in planning problems and solved efficiently, fa-
cilitating the use of planning methods by researchers in
other fields (in Chapter 6).

8. A compilation that shows that soft goals do not add ex-
pressive power to the planning problem and can be com-
piled away to obtain classical planning problems with ac-
tion costs that can be solved with off-the-shelf planners,
which perform better in the compiled problems than algo-
rithms specifically designed for dealing with soft goals (in
Chapter 7, and Keyder and Geffner (2009a)).

8.2. future work 155

8.2 Future Work

The work described in this thesis suggests a number of extensions
and directions for future work. Here we review some possibilities.
The order of presentation follows the order in which the issues
discussed appeared in the dissertation.

Exploiting the Independence Assumption

In Chapter 3, we introduced the set-additive heuristic that prop-
agates sets of actions constituting relaxed plans for the fluents
of the problem to obtain a global relaxed plan. We have also
investigated the propagation of other types of information in
these sets. Specifically, by choosing a pairwise mutex set of flu-
ents in the problem that make up a multivalued variable and
propagating these fluents themselves rather than the operators
that achieve them when they are encountered as preconditions of
an operator, heuristic estimates that respect delete information
concerning these fluents can be obtained (Keyder and Geffner,
2007). While the optimal delete relaxation plan for achieving
the required values of such a variable is a minimum spanning
tree over the graph defined by its transitions, the optimal non-
relaxed plan constitutes a tour, or a solution to the travelling
salesman problem (TSP) (Cormen et al., 2001). While the TSP
is intractable, several polynomial heuristics that give good re-
sults in practice have been proposed (Lin and Kernighan, 1973).
A suboptimal tour over the values contained in a set can then be
computed whenever a new plan is computed as the union of the
relaxed plans of the preconditions of an operator, and its cost
summed with the cost of the operators in the set to obtain the
cost of the semi-relaxed plan.

In our original formulation, when choosing multivalued variables
over whose values to compute a tour, we considered only those
multivalued variables that form the leaves of the causal graph,
in other words whose values can be changed with operators that
have no preconditions upon other variables. Vehicles in trans-
port problems, for example, fall into this category. How to com-
pute the values of this heuristic in a more general setting, for

156 conclusions

example when the causal graph is cyclic, is an open question.
A second issue is the automatic selection of variables that pro-
vide significant benefit when delete effects are considered, yet do
not result in TSPs that are too large to solve approximately in
practice.

Beyond the Independence Assumption

Our improvement procedure based on Steiner trees (Chapter 4)
is the first method proposed until now for obtaining estimates
for the delete relaxation of a problem that goes beyond the inde-
pendence assumption without paying the exponential overhead
of guaranteeing optimality. Several modifications to the proce-
dure may be considered in order to further improve the quality of
the estimation or lower its computational cost. Addressing first
the issue of quality, recall that the Steiner tree procedure parti-
tions the relaxed plan π into three sets in terms of a fluent y that
is the precondition of some operator o ∈ π: π−(y), the portion of
the plan required only in order to achieve y, π+(y), the portion
of the plan that depends on y, and π0(y), the portion of the plan
that falls into neither of the two categories. We considered an
improvement procedure based on the idea of improving π−(y),
yet there is no reason not to consider improvements to any one
of the plan portions. One approach would be to remove both
π−(y) and π+(y) from the plan and to attempt to find a lower
cost plan for the goals that were previously achieved by π+(y) in
the context of the state s augmented with the fluents supported
by π0(y). As each improvement step guarantees a decrease in
global plan cost, calls to each type of improvement algorithm
could be interleaved until a fixpoint in which no improvement is
possible is reached.

A second challenge in this area is to obtain better relaxed plans
that do not necessarily contain the fluents present in a best plan
according to some heuristic based on the independence assump-
tion. For an example of this, consider Figure 8.1. As no plan
obtained by a heuristic based on the independence assumption
contains an operator with precondition p, the Steiner tree im-
provement procedure cannot obtain the optimal plan for this
problem. This can be generalized to delete relaxation problems

8.2. future work 157

s

q1
3

q2
3

p
3 1

1

Figure 8.1: Goals of the problem are {q1, q2}. The Steiner tree
improvement procedure is unable to obtain this plan as the fluent
p required for the optimal delete relaxation plan is not present
in any of the plans based on the independence assumption.

in which the optimal plan does not overlap with the best plans
for the individual goals or preconditions.

Finally, the coverage obtained with this heuristic could be im-
proved by lowering the number of improvements made to the
relaxed plan, perhaps at the cost of worse quality. For this,
the fluent y could be chosen from a subset of the preconditions
of operators in the plan, rather than all possible preconditions.
In this context, it makes sense to consider only those fluents y
which are guaranteed to be in any valid relaxed plan, for exam-
ple the goals of the problem. A second option is to consider only
its delete-relaxation landmarks (Chapter 5).

Landmarks for the Delete Relaxation and Beyond

In Chapter 5, we discuss how to obtain landmarks for the global
planning problem that are not necessarily landmarks for its delete
relaxation. The approach suffers from two drawbacks. The first
of these is that these landmarks, while resulting in a significantly
more informative admissible heuristic when used in combina-
tion with optimal cost partitioning, do not perform well when
used with the uniform cost partitioning, which is much cheaper
to compute and results in better coverage. A possible avenue
of further research is then to investigate new cost partitioning
schemes which result in more informative heuristic estimates
than the uniform one without paying the computational over-
head of guaranteeing optimality.

158 conclusions

A second challenge for the Πm landmarks is that the delete re-
laxation problem defined by Πm for m > 1 is much larger than
than the delete relaxation problem Π+. The propagation proce-
dure used to find landmarks is then impractical, as it does not
reach a fixpoint within a reasonable amount of time. One pos-
sible way of addressing this issue is to use a Πm problem that
preserves the completeness and soundness of the landmarks that
are found, yet does not contain fluents and operators that are
redundant in the context of landmark finding. For an example
of this, consider a logistics problem with two trucks t1 and t2,
and the Πm fluents made up of the simultaneous position of the
two trucks, i.e. fluents of the form fm = (att1loci, att2locj). It
can be shown that the set of landmarks for such a fluent always
consists of the union of the landmarks for the two fluents consid-
ered separately, that is, LM(fm) = LM(att1loci)∪ LM(att2locj).
The removal of such fluents then results in a smaller delete re-
laxation problem with no loss of completeness or soundness. A
more general issue is to define independence criteria between flu-
ents for different types of computations, such as the use of the
Πm graph to obtain the hm heuristic in which the cost of a set
is equal to the most costly set of m fluents in the set.

Finally, here we have investigated the use of Πm landmarks only
in the context of generating admissible heuristics. Effective ways
of using them in the satisficing planning setting therefore re-
mains an open problem.

Heuristics with Choice Variables

In our presentation of choice variables (Chapter 6), we assumed
that they were given to the planner as additional information
along with the problem representation. To make our formu-
lation truly domain-independent, we plan to investigate in the
future methods for detecting this type of structure in the prob-
lem and choosing the choice variables to be used accordingly.
One challenge in this area will be to select choice variables while
imposing a limit upon the width of the resulting choice variables
graph GC .

We have also considered the idea of choice variables that can be

8.3. open challenges 159

assigned a value more than once in a valid plan. This would allow
the method to be applied to a greater range of planning problems
with the puzzle-like structure in which the type of reasoning
performed by the choice variables heuristic is effective. A second
way of extending the scope of this heuristic is to consider as
choice variable sets the possible achievers of a fluent for a given
instance in which it must be achieved. One example of this
would be to treat as a choice variable the possible achievers of
a goal or landmark fluent, and reason about the cost of the rest
of the plan given a commitment to achieving it with a certain
operator.

8.3 Open Challenges

While the heuristic search approach to classical planning has led
to unprecedented increases in the size and range of problems that
can be solved with planning techniques, in recent years the ben-
efits that can be obtained from ever more accurate admissible or
non-admissible approximations to the optimal cost of the delete
relaxation have diminished. Substantial improvements in per-
formance have then come from improvements to search such as
the introduction of enforced hill climbing (Hoffmann and Nebel,
2001), delayed evaluation and multiple open lists (Richter and
Westphal, 2010), and approaches that take into account prob-
lem structure in the form of landmarks (Richter and Westphal,
2010; Helmert and Domshlak, 2009) as well as causal chains and
delete information such as mutexes (Lipovetzky and Geffner,
2009). The work presented here on landmarks that take into ac-
count delete information (Chapter 5) and other new invariants in
planning problems (Chapter 6), as well as some of the work that
not included in this thesis that we discuss above (Section 8.2)
also represents steps in this direction.

However, important problems remain to be solved in this area.
Principal among these is the application of inference to puzzle-
like problems, which can be broadly characterized as the class of
problems in which achieving one subgoal requires undoing work
that has been done before to achieve other goals, which must
then be reachieved. While domain-specific heuristic search tech-

160 conclusions

niques have had great success in problems that fit this criteria
such as the 15-puzzle and the Rubik’s cube problems, domain-
independent problem solving techniques still have a long way to
go to match their performance. Existing inference techniques
that take into account delete information are either impracti-
cal, as they are too computationally expensive to be applied to
large problems, or require specific domain features that are not
generally present.

One approach to the first problem that we believe will yield sub-
stantial returns is to develop methods for identifying the compo-
nents of the problem that exhibit this type of structure, and solv-
ing only these components with inference methods that are able
to meaningfully reason about their interactions. The remain-
ing parts of the problem can then be solved with more scalable
delete relaxation techniques. Both the choice variables heuristic
presented in Chapter 6 and the TSP heuristic presented above
are examples of this type of decomposition; the challenge here
is to identify automatically the parts of the problem that merit
further computational effort and integrate the solutions to these
into solutions for the rest of the problem.

Another challenge here is to automatically detect the type of
inference that is required for the component: whether inference
concerning the changes in value of a single variable, such as
in the TSP heuristic, is sufficient, whether interactions among
graphical model-type variables, such as in the choice variables
heuristic, must be considered, or whether more general inference
about delete effects, such as that performed by the hm family of
heuristics, is required.

We look forward to facing these challenges.

Part VI

Appendix

161

Bibliography

Eyal Amir and Barbara Engelhardt. Factored planning. In Pro-
ceedings of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI 2003), pages 929–935. Morgan
Kaufmann, 2003. 104, 130

Giorgio Ausiello, Giuseppe F. Italiano, and Umberto Nanni. Hy-
pergraph traversal revisited: Cost measures and dynamic al-
gorithms. In Lecture Notes in Computer Science, pages 1–16,
1998. 19, 21, 29, 55

Christer Bäckström and Bernhard Nebel. Complexity results for
SAS+ planning. Computational Intelligence, 11(4):625–655,
1995. 6

Richard Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87–90, 1958. 37

J. Benton, Minh Do, and Subbarao Kambhampati. Anytime
heuristic search for partial satisfaction planning. Artificial
Intelligence, 173(5-6):562–592, April 2009. 145, 146

Avrim Blum and Merrick Furst. Fast planning through planning
graph analysis. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence – IJCAI-95, pages
1636–1642. Morgan Kaufmann, 1995. 53

Hans L. Bodlaender. A tourist guide through treewidth. Acta
Cybernetica, 11:1–23, 1993. 115

Blai Bonet and Hector Geffner. Planning as heuristic search.
Artificial Intelligence, 129(1–2):5–33, 2001. 8, 17, 18, 21, 31,
34, 53

Blai Bonet and Hector Geffner. Heuristics for planning with
penalties and rewards formulated in logic and computed
through circuits. Artificial Intelligence, 172(12-13):1579–1604,

163

164 bibliography

2008. 148

Blai Bonet and Malte Helmert. Strengthening landmark heuris-
tics via hitting sets. In Proceedings of the Twentieth European
Conference on Artificial Intelligence (ECAI 2010), pages 329–
334, 2010. 99

Blai Bonet, Gabor Loerincs, and Hector Geffner. A robust and
fast action selection mechanism for planning. In Proceedings of
the Fourteenth National Conference on Artificial Intelligence
(AAAI 1997), pages 714–719, 1997. ix

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne
Koller. Context-specific independence in bayesian networks.
In Proceedings of the Twelfth Conference in Uncertainty in
Artificial Intelligence (UAI 1996), pages 115–123, 1996. 104

Ronen I. Brafman and Carmel Domshlak. Factored planning:
How, when, and when not. In Proceedings of the Twenty-First
National Conference on Artificial Intelligence (AAAI 2006),
pages 809–814, 2006. 104, 131

Tom Bylander. The computational complexity of STRIPS plan-
ning. Artificial Intelligence, 69:165–204, 1994. 6, 7, 18, 19

Moses Charikar, Chandra Chekuri, Toyat Cheung, Zuo Dai,
Ashish Goel, Sudipto Guha, and Ming Li. Approximation
algorithms for directed Steiner problems. Journal of Algo-
rithms, pages 73–91, 1998. 25, 59

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. MIT Press, 2001.
6, 23, 30, 37, 57, 58, 59, 155

Adnan Darwiche. Recursive conditioning. Artificial Intelligence,
126(1-2):5–41, 2001. 104, 113, 114, 118

Edsger W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959. 37

Minh B. Do and Subbarao Kambhampati. Sapa: A scalable
multi-objective heuristic metric temporal planner. Journal of
Artificial Intelligence Research, 20:2003, 2003. 54

Stefan Edelkamp. On the compilation of plan constraints and
preferences. In Proceedings of the Sixteenth International
Conference on Automated Planning and Scheduling (ICAPS
2006), pages 374–377. AAAI Press, 2006. 148

Stefan Edelkamp and Shahid Jabbar. MIPS-XXL: Featuring

bibliography 165

external shortest path search for sequential optimal plans and
external branch-and-bound for optimal net benefit. In Sixth
International Planning Competition Booklet (ICAPS 2008),
2008. 143

Stefan Edelkamp and Peter Kissmann. Gamer: Bridging plan-
ning and general game playing with symbolic search. In Sixth
International Planning Competition Booklet (ICAPS 2008),
2008. 143

Eric Fabre, Loig Jezequel, Patrik Haslum, and Sylvie Thiébaux.
Cost-optimal factored planning: Promises and pitfalls. In Pro-
ceedings of the Twentieth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2010), pages 65–72,
2010. 104

Yousri El Fattah and Rina Dechter. An evaluation of structural
parameters for probabilistic reasoning: Results on benchmark
circuits. In Proceedings of the Twelfth Conference in Uncer-
tainty in Artificial Intelligence (UAI 1996), pages 244–251,
1996. 116

Richard Fikes and Nils Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial
Intelligence, 1:27–120, 1971. 5

Raquel Fuentetaja, Daniel Borrajo, and Carlos Linares L’opez.
A new approach to heuristic estimations for cost-based plan-
ning. In Proceedings of the Twenty-First International Florida
Artificial Intelligence Research Society Conference, pages 543–
548, 2008. 55

Giorgio Gallo, Giustino Longo, Sang Nguyen, and Stefano Pal-
lottino. Directed hypergraphs and applications, 1992. 19

Cenk Gazen and Craig Knoblock. Combining the expressiveness
of UCPOP with the efficiency of Graphplan. In Proceedings
of the Fourth European Conference on Planning (ECP 1997),
pages 221–233, 1997. 137, 147

Alfonso Gerevini and Derek Long. Preferences and soft con-
straints in PDDL3. In Proceedings of the ICAPS-06 Work-
shop on Preferences and Soft Constraints in Planning, pages
46–53, 2006. 143

Patrik Haslum. Additive and reversed relaxed reachability
heuristics revisited. In Sixth International Planning Competi-

166 bibliography

tion Booklet (ICAPS 2008), 2008. 143

Patrik Haslum. hm(P) = h1(Pm): Alternative characterisations
of the generalisation from hmax to hm. In Proceedings of the
Nineteenth International Conference on Automated Planning
and Scheduling (ICAPS 2009), pages 354–357, 2009. 87

Patrik Haslum and Héctor Geffner. Admissible heuristics for
optimal planning. In Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Scheduling
(AIPS 2000), pages 140–149, 2000. 86, 102

Malte Helmert. The Fast Downward planning system. Journal
of Artificial Intelligence Research, 26:191–246, 2006. 8, 12, 13,
102

Malte Helmert and Carmel Domshlak. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Proceed-
ings of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009), 2009. ix, 98, 102, 159

Malte Helmert, Minh Do, and Ioannis Refanidis. IPC 2008 deter-
ministic competition. In Sixth International Planning Com-
petition Booklet (ICAPS 2008), 2008. 143, 144

Jörg Hoffmann and Bernhard Nebel. The FF planning system:
Fast plan generation through heuristic search. Journal of Ar-
tificial Intelligence Research, 14:253–302, 2001. 7, 12, 17, 34,
40, 54, 159

Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search, 22(1):215–278, 2004. 80, 81, 95, 97, 101

Richard Howey and Derek Long. VAL’s progress: The automatic
validation tool for PDDL2.1 used in the international planning
competition. In Proceedings of the ICAPS 2003 Workshop on
the Competition: Impact, Organisation, Evaluation, Bench-
marks, 2003. 144

Chih-Wei Hsu and Benjamin W. Wah. The SGPlan planning
system in IPC6. In Sixth International Planning Competition
Booklet (ICAPS 2008), 2008. 145

Richard M. Karp. Reducibility among combinatorial prob-
lems. In Complexity of Computer Computations, pages 85–
103. Plenum Press, 1972. 58

Erez Karpas and Carmel Domshlak. Cost-optimal planning

bibliography 167

with landmarks. In Proceedings of the Twenty-first Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2009), pages 1728–1733, 2009. 94, 98, 101

Emil Keyder and Hector Geffner. Set-additive and TSP heuris-
tics for planning with action costs and soft goals. In ICAPS
2007 Workshop on Heuristics for Domain-Independent Plan-
ning: Progress, Ideas, Limitations, Challenges, 2007. 146,
153, 155

Emil Keyder and Héctor Geffner. Heuristics for planning with
action costs revisited. In Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI 2008), pages 588–
592, 2008. 153, 154

Emil Keyder and Hector Geffner. Soft goals can be compiled
away. Journal of Artificial Intelligence Research, 36:547–556,
2009a. 154

Emil Keyder and Hector Geffner. Trees of shortest paths vs.
steiner trees: Understanding and improving delete relax-
ation heuristics. In Proceedings of the Twenty-first Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2009), pages 1734–1739, 2009b. 154

Emil Keyder, Silvia Richter, and Malte Helmert. Sound and
complete landmarks for and/or graphs. In Proceedings of
the Twentieth European Conference on Artificial Intelligence
(ECAI 2010), pages 335–340, 2010. 154

Donald E. Knuth. A generalization of Dijkstra’s algorithm. In-
formation Processing Letters, 6(1):1–5, 1977. 37, 38

Xiao Yu Li. Optimization Algorithms for the Minimum-Cost
Satisfiability Problem. PhD thesis, North Carolina State Uni-
versity, 2004. 121

Shen Lin and Brian Kernighan. An effective heuristic algorithm
for the traveling salesman problem. Operations Research, 21:
498–516, 1973. 155

Nir Lipovetzky and Hector Geffner. Inference and decomposition
in planning using causal consistent chains. In Proceedings of
the Nineteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2009), 2009. 102, 159

Yaxin Liu, Sven Koenig, and David Furcy. Speeding up the cal-
culation of heuristics for heuristic search-based planning. In

168 bibliography

Proceedings of the Eighteenth National Conference on Artifi-
cial Intelligence (AAAI 2002), pages 484–491. AAAI Press,
2002. 37, 72, 85

Drew McDermott. A heuristic estimator for means-ends analysis
in planning. In Proceedings of the Third International Con-
ference on Artificial Intelligence Planning Systems (AIPS-96),
1996. ix

David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard
and easy distributions of sat problems. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI
1992), pages 459–465, 1992. 126

Bernard Nebel. Compilation schemes: A theoretical tool for
assessing the expressive power of planning formalisms. In
Proceedings KI-99: Advances in Artificial Intelligence, pages
183–194. Springer-Verlag, 1999. 147

Bernhard Nebel. On the compilability and expressive power
of propositional planning. Journal of Artificial Intelligence
Research, 12:271–315, 2000. 137

Judea Pearl. Heuristics. Addison Wesley, 1983. 8, 9, 10, 11, 17

Judea Pearl. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1988. ISBN 0-934613-73-7.
104

Julie Porteous, Laura Sebastia, and Jörg Hoffmann. On the
extraction, ordering, and usage of landmarks in planning. In
Amedeo Cesta and Daniel Borrajo, editors, Pre-proceedings
of the Sixth European Conference on Planning (ECP 2001),
pages 37–48, 2001. 95

H. Proemel and A. Steger. The Steiner Tree Problem:
A Tour Through Graphs, Algorithms, and Complexity.
Vieweg+Teubner Verlag, 2002. 25, 58, 59

Silvia Richter and Matthias Westphal. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research, 39:127–177, 2010. ix, 7,
13, 17, 45, 54, 101, 159

Silvia Richter, Malte Helmert, and Matthias Westphal. Land-
marks revisited. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008), pages 975–

bibliography 169

982, 2008. 82, 89, 95, 98

Gabriel Robins and Alexander Zelikovsky. Improved Steiner tree
approximation in graphs. In Proceedings of the Eleventh An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA
2000), pages 770–779, 2000. 25, 59

Romeo Sanchez and Subbarao Kambhampati. Planning graph
heuristics for selecting objectives in over-subscription plan-
ning problems. In Proceedings of the Fifteenth International
Conference on Automated Planning and Scheduling (ICAPS
2005), pages 192–201, 2005. 148

David E. Smith. Choosing objectives in over-subscription plan-
ning. In Proceedings of the Fourteenth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2004),
pages 393–401, 2004. 148

Menkes van den Briel, Romeo Sanchez, Minh B. Do, and Sub-
barao Kambhampati. Effective approaches for partial satisfac-
tion (over-subscription) planning. In Proceedings of the Nine-
teenth National Conference on Artificial Intelligence (AAAI
2004), pages 562–569, 2004. 148

Vincent Vidal and Hector Geffner. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence, 170 (3):289–335, 2006. 102

Alexander Zelikovsky. A series of approximation algorithms for
the acyclic directed steiner tree problem. Algorithmica, 18(1):
99–110, 1997. 25

Lin Zhu and Robert Givan. Landmark extraction via planning
graph propagation. In ICAPS 2003 Doctoral Consortium,
pages 156–160, 2003. 83, 95, 98

	Abstract
	Resumen
	Preface
	List of Figures
	List of Tables
	Background
	The Planning Problem
	The Classical Planning Model
	Factored Representations in Planning
	Complexity
	Planning as Heuristic Search
	Summary

	Delete Relaxation Heuristics
	The Delete Relaxation
	Introduction
	The Delete Relaxation in STRIPS
	Directed Hypergraphs and AND/OR graphs
	Special Cases of the Delete Relaxation

	Exploiting the Independence Assumption
	The Independence Assumption
	Unfolded Plans
	Relaxed Plans From Best Supporters
	The Set-Additive Heuristic
	Experimental Results
	Related Work
	Conclusions

	Beyond the Independence Assumption
	Steiner Trees and the Delete Relaxation
	Improvement Algorithms for Steiner Trees
	Improving Relaxed Plans
	Experimental Results
	Conclusions

	 Beyond The Delete Relaxation
	Landmarks for the Delete Relaxation and Beyond
	Introduction
	Optimal + Landmarks
	Landmarks for the m Problem
	Experimental Results
	Related Work
	Conclusions

	Heuristics with Choice Variables
	Introduction
	The Choice Variables Heuristic
	Domains
	Experimental Results
	Related Work
	Conclusions

	 Extending the Scope of Classical Planning
	Compiling Soft Goals Away
	Introduction
	Compiling Soft Goals Away
	Experimental Results
	Extensions
	Related Work
	Conclusions

	Conclusions and Future Work
	Conclusions
	Contributions
	Future Work
	Open Challenges

	 Appendix
	Bibliography

