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Abstract

Computationally Reliable Approaches of Contractive

MPC for Discrete-time Systemsa

Jian Wan
Ph.D Program of University of Girona in Information Technology

Supervised by
Dr. Josep Veh́ı and Dr. Ningsu Luo

The essence of MPC is to avoid solving the Hamilton-Jacobi-Bellman
equation by repetitively solving an open-loop optimal control problem instead,
which offers the significant ability to treat input and state constraints explicitly
at each step. Additional contractive constraint is usually needed to be in-
corporated into the open-loop optimization for guaranteeing the stability of the
closed-loop system. The resulting online constrained optimization must be
fulfilled within the time constraint imposed by the sampling time of an appli-
cation. Thus computational reliability and efficiency are two critical issues
in applying MPC, especially in applying nonlinear MPC, where normally com-
plex nonlinear programming problems are concerned. The thesis aims to
explore computationally reliable and efficient approaches of contractive MPC
for discrete-time systems. Two types of contractive MPC have been studied:
MPC with compulsory contractive constraint and MPC with a contractive se-
quence of controllable sets. Techniques based on convex optimization
and interval analysis are applied to deal with linear and nonlinear contrac-
tive MPC, respectively. Classical interval analysis is extended to zonotopes in
geometry for designing a terminal control invariant set in the dual-mode
approach of MPC. It is also extended to modal intervals in modality for
computing robust controllable sets with a clear semantic interpretation. The
tools of convex optimization and interval analysis have been combined further
to improve the efficiency of contractive MPC for various kinds of constrained
nonlinear uncertain discrete-time systems. Finally, the addressed two types
of contractive MPC have been applied to control a Micro Robot World Cup
Soccer Tournament (MiroSot) robot and a Continuous Stirred-Tank Reactor
(CSTR), respectively.

aThe LATEX2ε style of this dissertation was derived from a standard Cambridge

University PhD/MPhil thesis LATEX template written by Harish Bhanderi.
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Nomenclature

x A real scalar
x A real vector
A A real matrix
[a, b] A real interval
[a, b]∗ A real modal interval
X A real interval vector
X∗ A real modal interval vector
f(x) A real scalar function
f(x) A real function vector
f(X) A real interval function
f∗(X∗) A real modal interval function
Z A zonotope
P A polytope
PC The complement of the polytope P

Bm The m-dimensional unitary box
∅ The empty set
R The set of reals
Rn The set of n-dimensional real vectors
I(R) The set of real intervals
I(Rn) The set of n-dimensional real interval vectors
I∗(R) The set of real modal intervals
I∗(Rn) The set of n-dimensional real modal interval vectors
Ω The robust control invariant set
T The terminal set in the dual-mode approach of MPC
X The admissible state domain
U The admissible control domain
ε The bound of error tolerance
xT The transpose of the real vector x
|x|p The p-norm of the vector x, p = 1, 2, · · · ,∞
Ki(X, T) The i-step controllable set
K̃i(X, T) The i-step robust controllable set
K̃

q
i (X, T) The quasi i-step robust controllable sets

x(k + i|k) The state value at time instant k + i predicted at time instant k

u(k + i|k) The control input at time instant k + i calculated at time instant k
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Chapter 1

Introduction

1.1 Motivation

The essence of MPC is to avoid solving the Hamilton-Jacobi-Bellman equation by

repetitively solving an open-loop optimal control problem instead (Rao, 2000), which

offers the significant ability to treat input and state constraints explicitly at each step.

Additional contractive constraint is usually needed to be incorporated into the open-

loop optimization for guaranteeing the stability of the closed-loop system (de Oliveira

and Morari, 2000; Mayne et al., 2000). The resulting online constrained optimiza-

tion must be fulfilled within the time constraint imposed by the sampling time of an

application (Cannon, 2004). Thus computational reliability and efficiency are two crit-

ical issues in applying MPC, especially in applying nonlinear MPC, where normally

complex nonlinear programming problems are concerned. The thesis aims to explore

computationally reliable and efficient approaches of contractive MPC for discrete-time

systems. The interests of studying contractive MPC lie in its characteristics of reduced

control horizons and guaranteed stability, which are specially beneficial for real-time

applications. The emphasis of the thesis is on computationally reliable and efficient

approaches of contractive MPC for constrained nonlinear discrete-time systems, where

still exists many open problems and challenges. Numerical tools for linear systems

such as convex optimization and numerical tools for nonlinear systems such as interval

analysis are to be used and integrated to some degree for dealing with various issues

underlying contractive MPC.

1



1.2 State of the Art

1.2 State of the Art

A standard problem in control is to design a feedback control law that minimizes

an objective over an infinite horizon. The optimal solution of this problem can be

obtained in principle by solving the corresponding Hamilton-Jacobi-Bellman (HJB)

equation (Rao, 2000). This is often a difficult task. One exception is when the system

is linear, the objective is quadratic and there are no hard constraints on control inputs

or state variables. When either of these conditions is violated, general procedures for

solving the HJB equation do not exist (Rao, 2000). The essence of MPC is to avoid

solving such tough HJB equations by repetitively solving an open-loop optimal control

problem instead, which also offers the ability to treat state and control constraints

explicitly in every open-loop optimization. The control horizons of MPC are often se-

lected to be finite for rendering such open-loop optimizations tractable. So the selection

of finite control horizons in MPC is a compromise between optimality and tractability

of constrained control problems. It is pertinent to say that the selection of finite control

horizons in MPC is more to satisfy the requirement of feasibility and stability than to

guarantee optimality as all MPC schemes with finite control horizons are identically not

optimal in a strict meaning of optimality for closed-loop systems. However, for some

control systems such as the examples discussed in (Fernando, 2001; Garćıa-Gab́ın et al.,

2002), it is impossible to arrive to the steady state in finite steps and thus even large

control horizons cannot qualify terminal equality constraints imposed for guaranteeing

the stability of closed-loop systems. The meaning of selecting large control horizons is

therefore obscure for such kind of occasions. Moreover, large control horizons render the

resulting minimization tasks for MPC or minimax optimization tasks for robust MPC

extremely difficult and time-consuming, which is unfavorable for real-time applications.

In order to avoid high-dimensional optimizations associated with MPC configura-

tions of large control horizons, some structurally efficient control schemes were proposed

to reduce control horizons as well as computational burdens of corresponding optimiza-

tions underlying MPC in the literature (Cannon, 2004). Martin Sanchez and Rodellar

used a step-control signal along the control horizon and thus the number of unknown

control inputs was reduced to be a single one within the finite control horizon (Sanchez

and Rodellar, 1996). However, such an approach is only effective to stable systems.
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More efforts were made to enlarge the terminal set of MPC and thus a shorter control

horizon can drive the system to such an enlarged terminal set as well (Chen et al.,

2001; Limon et al., 2005a). Another research direction was to connect MPC strategies

with existing control methods for shortening control horizons of MPC. In (Soroush

and Kravaris, 1995), a shortest horizon nonlinear MPC was proposed and it turned

out to be an input-output linearizing (geometric) controller. In (Zhang et al., 2004;

Zhou et al., 2000, 2001), MPC was combined with Variable Structure Control (VSC)

through extending terminal sets in MPC to sliding manifolds in VSC and thus control

horizons can be selected to be relatively short. In fact, many dual-mode approaches of

MPC can be cast in the framework of VSC just as in (Fernando, 2001; Garćıa-Gab́ın

and Camacho, 2003; Garćıa-Gab́ın et al., 2005) because most control processes in MPC

can also be divided into two phases: the reaching mode and the terminal mode, which

correspond to the reaching mode and the sliding mode in VSC. However, a disadvan-

tage of using the sliding manifold of VSC as the terminal set in MPC is the so-called

chattering phenomenon, which is unfavorable for real-time applications.

A practical approach for reducing control horizons is to use contractive MPC, where

additional compulsory or existing contractive constraint is imposed on open-loop con-

strained optimizations to guarantee the stability of closed-loop systems (de Oliveira

and Morari, 2000; Limon et al., 2003; Yang and Polak, 1993a,b). Contractive MPC can

be further classified as MPC with compulsory contractive constraint and MPC with a

contractive sequence of controllable sets. For MPC with compulsory contractive con-

straint, feasibility tests are needed to find a feasible control horizon for satisfying the

imposed compulsory contractive constraint; for MPC with a contractive sequence of

controllable sets, one-step controllable sets are needed to be computed for generating

the feasible contractive constraint in advance. The computations of controllable sets

is quite straightforward for discrete-time linear or piecewise-affine systems with poly-

topes as their terminal sets, where the set computations can be performed efficiently

through polyhedral algebra, linear programming and computational geometry software

(Kerrigan, 2000; Rakovic et al., 2003). However, the computation of robust controllable

sets for general constrained nonlinear uncertain discrete-time systems is not straight-

forward and efficient. In (Bravo et al., 2005), a branch-and-bound algorithm based

on interval arithmetic was introduced to compute the inner approximations of control
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invariant sets for constrained nonlinear systems with a given bound of error tolerance.

This algorithm was reported to be extended in (Limon et al., 2003) to compute robust

controllable sets of constrained nonlinear systems with additive uncertainty, where the

computed robust controllable sets were utilized as a contractive sequence of sets to

formulate a robust MPC scheme. However, the modality of the interval vector for the

admissible state space and the modality of the interval vector for the admissible control

space are different: for a subbox of the admissible state space, it belongs to a control-

lable set if and only if for all states within the subbox there always exists an admissible

control that can drive them to the selected terminal set; for a subbox of the admissible

control space, it is a feasible control domain if and only if there exists one value within

the subbox which can drive the concerned subbox of the state space to the selected

terminal set. The bisection and the selection of the admissible state space and the

admissible control space were mixed in their approaches, where extra treatments of the

subboxes of the admissible domain, which was the combination of the admissible state

space and the admissible control space, were needed after each bisection and selection

of a subbox of the admissible state space (Bravo et al., 2005). The extra treatments of

the subboxes of the admissible domain were time-consuming since the members of the

set were numerous and the action of bisection and selection was frequent. Furthermore,

there was no semantic interpretation for the discard of the admissible state space: if

the action for a subbox of the admissible domain was to discard, this did not mean that

the subbox of the admissible state space could not be a part of the one-step controllable

set because it might be controllable to the selected terminal set for other parts of the

admissible control space. Systematic and efficient approaches for computing robust

controllable sets of general constrained nonlinear uncertain discrete-time systems with

a clear semantic interpretation are needed to be explored further.

In order to compute one-step controllable sets and implement the dual-mode ap-

proach of contractive MPC, a terminal control invariant set along with a local stabi-

lizing feedback control law is needed to be designed in advance. The optimality of the

designed terminal control invariant set can be judged according to its volume, where

a larger control invariant set is preferred for a shorter control horizon and an easier

stabilization (Cannon et al., 2003; Limon et al., 2005a). The analytical design of the

maximal control invariant set along with a local stabilizing feedback control law for
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a constrained nonlinear discrete-time system is quite challenging and usually the ob-

tained control invariant set is restricted to be an ellipsoid or a low-complexity polytope

(Cannon et al., 2003; Chen and Allgower, 1998; Kothare et al., 1996; Magni et al., 2001;

Michalska and Mayne, 1993). Approaches based on linear dynamic approximation to-

gether with Lipschitz bounds on the error of approximation were discussed in (Chen

and Allgower, 1998; Michalska and Mayne, 1993) to obtain a terminal control invariant

ellipsoid for constrained nonlinear systems. Another approach to obtain a terminal con-

trol invariant ellipsoid was based on a linear difference inclusion of the original nonlinear

system (Kothare et al., 1996). In (Magni et al., 2001), the local linear feedback control

law was designed according to the LQ method for the linearized system of the original

nonlinear system and the associated terminal control invariant ellipsoid was obtained

by an optimization. In (Cannon et al., 2003), a control invariant polytope was also

designed in an optimal way for an input-affine nonlinear system, where the advantage

of a control invariant polytope over a control invariant ellipsoid was demonstrated. The

design of a control invariant low-complexity polytope with respect to a local feedback

linearizing control law for input-affine nonlinear systems was further proposed in (Bacic

et al., 2005), where the designed invariant set along with the local feedback linearizing

control law was used in the terminal control of the dual-mode approach of MPC. In

fact, polytopes are usually the natural expression of physical constraints on state and

control variables leading to a more flexible and pertinent description of corresponding

control invariant sets (Blanchini, 1999). However, the design of a relatively complex

control invariant polytope, which is more likely to have a bigger volume, for a general

constrained nonlinear discrete-time system is still an open problem. Novel analytical

or numerical methods are needed to be explored further for the design of a terminal

control invariant polytope along with a local stabilizing feedback control law for general

constrained nonlinear discrete-time systems.

1.3 Outline

The thesis aims to confront some open problems addressed in the above section

and explore computationally reliable and efficient approaches of contractive MPC for

discrete-time systems. Concretely, interval analysis and its extensions are introduced
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to compute terminal control invariant sets and controllable sets offline for general con-

strained nonlinear discrete-time systems in a reliable way; MPC with compulsory con-

tractive constraint or a contractive sequence of controllable sets is adopted for imple-

menting MPC with a shorter control horizon, which renders the resulting open-loop

optimizations more tractable. Various numerical tools such as interval analysis, poly-

tope geometry and zontope geometry usually used separately in the literature are com-

bined further in the same framework of convex sets to improve the efficiency of their

applications in contractive MPC. The thesis is organized as follows:

. Chapter 1 addresses the motivation of the thesis, the state of the art for the

corresponding research issues and the outline of the thesis.

. Chapter 2 introduces the basic principle of MPC, the classification of general

MPC based on the system models considered, the classification of contractive MPC

based on the imposed contractive constraints.

. Chapter 3 addresses linear contractive MPC via convex optimization, where

both linear contractive MPC with compulsory contractive constraint and linear con-

tractive MPC with a contractive sequence of controllable sets are studied. A sliding

domain along with the equivalent control deduced from variable structure control is

designed in advance as the terminal control invariant set for the dual-mode approach of

linear contractive MPC to avoid the chattering phenomenon and convex optimization

methods such as linear programming are applied to obtain feasible control horizons and

one-step control inputs needed in implementing linear contractive MPC, respectively.

. Chapter 4 addresses nonlinear contractive MPC via classical interval analysis,

where zonotope geometry is also introduced as an extension of interval analysis in ge-

ometry. The solver of set inversion via interval analysis is extended to set inversion via

zonotope geometry for demonstrating geometrically whether a given zonotope is control

invariant or no under the related local stabilizing feedback control law. The solver of

global optimization for set inversion via zonotope geometry is also proposed to obtain

an optimal control invariant zonotope with the maximal volume. Both nonlinear con-

tractive MPC with compulsory contractive constraint and nonlinear contractive MPC
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with a contractive sequence of controllable sets are studied, where the solver of set

inversion via interval analysis is applied to find feasible control horizons and compute

controllable sets while the solver of global optimization via interval analysis is applied

to find one-step control inputs for nonlinear contractive MPC.

. Chapter 5 addresses nonlinear robust contractive MPC via modal interval anal-

ysis, where modal interval analysis is introduced as an extension of classical interval

analysis in modality, inclusion, semantics and rational. The solver of 1-dimensional

quantified set inversion in modal interval analysis is generalized to multi-dimensional

cases and it is applied to compute robust controllable sets of constrained nonlinear un-

certain discrete-time systems with a clear semantic interpretation. An interval-based

solver of constrained minimax optimization is also proposed to compute one-step con-

trol inputs for nonlinear robust contractive MPC with a contractive sequence of robust

controllable sets.

. Chapter 6 addresses nonlinear robust contractive MPC via hybrid numerical

tools, where classical interval analysis, polytope geometry and zonotope geometry are

combined further to improve the efficiency of former proposed approaches for nonlinear

robust contractive MPC. Concretely, robust controllable sets obtained as a union of

interval vectors or boxes are approximated innerly by polytopes and contractive MPC

is implemented by using polytopic robust controllable sets. The structures of nonlin-

ear discrete-time systems are also explored to simplify the corresponding computations

of polytopic robust controllable sets and the concept of quasi multi-step robust con-

trollable sets is also proposed for the computation of an approximation of multi-step

robust controllable sets directly for a specific kind of constrained nonlinear uncertain

discrete-time systems with affine control part.

. Chapter 7 addresses the application of the addressed two types of contractive

MPC to the control of a Micro Robot World Cup Soccer Tournament (MiroSot) robot

and a Continuous Stirred-Tank Reactor (CSTR), respectively.

. Chapter 8 draws the conclusions of the research work of the thesis and proposes

some potential directions for the future work.
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Chapter 2

Model Predictive Control

Model Predictive Control (MPC) has a quite unusual history, with separate strands

in system theory (where it is generally referred to as Receding Horizon Control), gener-

alized predictive control (where the initial intention was the improvement of adaptive

control) and in process control where its almost unique ability to handle hard con-

straints led to its wide-scale adoption in process industry (Mayne, 1999). More than

fifteen years after MPC appeared in process industry as an effective means to deal

with multi-variable constrained control problems, a theoretical basis for this technique

started to emerge (Camacho and Bordóns, 2005; Morari and Lee, 1999). So it might

be justifiably argued that the importance of MPC derives primarily from its industrial

success, a fact that delineates it from other design procedures that are, in general,

theoretically motivated.

After several years of mutual efforts from both theoretical researchers and indus-

trial practitioners, basic issues in MPC such as feasibility of the on-line optimization,

stability and corresponding closed-loop performance are largely understood for systems

described by linear models. Many progresses have also been made on these issues for

nonlinear models. But many questions still remain in practical applications, includ-

ing the reliability and the efficiency of on-line optimization configurations or schemes.

Moreover, most systems in practice are full of various uncertainties such as modeling

errors and exogenous disturbances. Novel MPC analysis and synthesis methods for

such nonlinear and uncertain systems are needed so as to guarantee robust stability

and tighter performance specifications of nowadays applications.
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2.1 The Essence of MPC

2.1 The Essence of MPC

A standard problem in control is to design a feedback control law that minimizes an

objective over an infinite horizon. The optimal solution of this problem can be obtained

in principle by solving the Hamilton-Jacobi-Bellman (HJB) equation (the dynamic pro-

gram that arises in control). This is often a difficult task. One exception is when the

system is linear, the objectives are quadratic and there are no hard constraints on the

inputs or states (Rao, 2000). In this case, the optimal cost function can be param-

eterized as a symmetric matrix and the feedback control law reduces to be a linear

quadratic regulator. When either of these conditions is violated, general procedures

for solving the HJB equation do not exist (Rao, 2000). The term Model Predictive

Control refers to a class of computer control algorithms that utilize an explicit model

to predict the future response of a plant. At each control interval, an MPC algorithm

determines a sequence of manipulated variable adjustments that optimize future plant

behavior subject to input and state constraints. The first input in the optimal sequence

is then sent into the plant and the entire optimization is repeated at subsequent control

intervals. Thus the essence of MPC is to avoid solving the HJB equation by repetitively

solving an open-loop optimal control problem instead, which also offers the ability to

treat input and state constraints explicitly at every optimization step.

Although there are various kinds of MPC configurations, the basic principle under-

lying them is quite similar. In the following, the algorithm of linear MPC is adopted

as an example for demonstrating the basic principle (Bemporad and Morari, 1999).

Let the model of the plant to be controlled be described by the linear discrete-time

difference equations in the state space:{
x(k + 1) = Ax(k) + Bu(k), k = 0, 1, · · ·
y(k) = Cx(k)

(2.1)

where x(k) ∈ Rn,u(k) ∈ Rm,y(k) ∈ Rp denote the state, control input and output,

respectively. Let x(k + 1|k) denote the value of x at time instant k + 1 predicted at

current time instant k. A receding horizon implementation is typically based on the
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2.2 Nonlinear MPC

solution of the following open-loop optimization problem:

J(x(k), {u(k + i|k)}M−1
i=0 ) = min

{u(k+i|k)}M−1
i=0

{xT (k + N |k)P0x(k + N |k) +

N−1∑
i=1

xT (k + i|k)Qx(k + i|k) +
M−1∑
i=0

uT (k + i|k)Ru(k + i|k)} (2.2)

subject to {
F1u(k + i|k) ≤ G1

E2x(k + i|k) + F2u(k + i|k) ≤ G2
(2.3)

and corresponding stability constraints, which are to guarantee closed-loop stability

through explicitly requiring that the state x shrinks in certain norm or enters into a

terminal region at the end of the prediction horizon (Mayne et al., 2000). P0, Q,R are

weight coefficients of the terminal state of the prediction horizon, intermediate states

and control in the cost function, respectively; N denotes the length of the prediction

horizon or output horizon, and M denotes the length of the control horizon or input

horizon (M ≤ N); F1, G1, E2, F2, G2 are specified coefficients of linear constraints on

control and state variables. The basic MPC law can thus be described in the following

algorithm:

1). Get the current state x(k);

2). Solve the optimization problem to get uOptimal(k + i|k)}M−1
i=0 ;

3). Apply only uOptimal(k) = uOptimal(k|k) to the system at time instant k;

4). k + 1 → k, return to 1.

2.2 Nonlinear MPC

Important issues such as feasibility of on-line optimization, closed-loop stability

and corresponding closed-loop performance for linear MPC have been studied exten-

sively and they are well addressed in (Mayne et al., 2000; Morari and Lee, 1999; Rawl-

ings, 2000). However, most systems in practice are inherently nonlinear. Furthermore,

higher product quality specifications, increasing productivity demands and tighter en-

vironmental regulations in process industry often require to operate systems along a

wider range of dynamics and (or) closer to the boundary of the admissible operating

regions. In such scenarios, linear models are usually inadequate to describe the process
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dynamics and nonlinear models have to be used (Findeisen and Allgower, 2002).

The basic principle of nonlinear MPC is similar to linear MPC except that the

system model considered is nonlinear:

x(k + 1) = f(x(k),u(k)), (2.4)

where f(x(k),u(k)) is a nonlinear function vector. Then the optimization problem en-

countered in nonlinear MPC becomes, in general, a non-convex nonlinear optimization

problem. This means that it is much more difficult to find a solution for the constrained

optimization and even a feasible solution is found, it can hardly be guaranteed to be

globally optimal. Furthermore, it was also recognized early in the development of opti-

mal control theory that, no matter how the control problem is solved, optimality does

not necessarily imply closed-loop stability, even when the model represents the true

plant perfectly. In the following subsections, current measures for tackling these two

tough issues — stability and optimization in nonlinear MPC are reviewed briefly.

2.2.1 Stability of Nonlinear MPC

In theory, the most straightforward way to modify nonlinear MPC algorithms to

achieve nominal stability involves setting the prediction horizon and the control horizon

to be infinite (Kouvaritakis and Cannon, 2001). With standard technical assumptions,

it follows directly from Bellman Principle of Optimality that the predicted open-

loop input and state trajectories match those in the closed loop. This implies nominal

stability because any feasible trajectory terminates at the desired steady state.

From a practical point of view, however, it is simply impossible to solve the nonlinear

MPC optimization with infinite horizons for a realistic problem. The focus of recent

research efforts has been moved to obtain a computationally tractable approximation

of the infinite horizon problem that still retains desirable closed-loop properties. An

early solution involves adding a terminal state constraint to the nonlinear MPC:

x(k + N |k) = xs, (2.5)

where xs is the targeted steady state. With such a constraint enforced, the cost function

for the controller becomes a Lyapunov function for the closed-loop system, leading to
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nominal stability (Keerthi and Gilbert, 1988). Unfortunately, such a constraint may be

quite difficult to be satisfied in real time: exact satisfaction requires an infinite number

of iterations for the numerical solution code. This motivated Michalska and Mayne

(Michalska and Mayne, 1993) to seek a less-stringent stability requirement. Their main

idea was to define a neighborhood T around the desired steady state xs within which

the system can be steered to by a constant linear stabilizing feedback controller. They

added to the nonlinear MPC algorithm a constraint of the form:

x(k + N |k) ∈ T. (2.6)

If the current state x(k) lies outside the terminal region T, then the nonlinear MPC

approach is implemented. Once inside the terminal region T, the control switches to

the previously determined constant linear stabilizing feedback controller. Michalska

and Mayne described this strategy as a dual-mode approach of MPC. Another idea of

guaranteeing stability is to incorporate a contractive constraint into the usual formu-

lation that forces the actual and not only the predicted state to contract at discrete

intervals in the future (de Oliveira and Morari, 2000; Yang and Polak, 1993a,b). From

this requirement, a Lyapunov function based on the contractive constraint can be con-

structed easily and therefore stability can also be established.

Most recent research activities are focused on quasi-infinite horizon nonlinear MPC

algorithms, first introduced by Chen and Allgower (Chen and Allgower, 1998). The

basic idea motivating this method is similar to that of the dual-mode approach. The

terminal constraint is imposed so that, at the end of the finite horizon, one can imagine

that a linear stabilizing feedback controller takes over. An upper bound for the objective

function can then be computed and this term is added as a terminal penalty to the

original finite horizon objective. This modified objective is then used regardless of

where the current state lies, so that it is not necessary to switch from one controller to

another.

2.2.2 Optimization of Nonlinear MPC

Computational complexity of online constrained optimization is another essential

issue in nonlinear MPC, especially for fast sampling applications, high-dimensional sys-

tems and control problems that demand the use of large prediction horizons. The per-
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formance costs and constraints of nonlinear MPC are in general non-convex functions of

the predicted control inputs, and their optimization calls for the use of numerical tech-

niques, whose demanding nature may exceed the time available for online computation.

A solution to the excessive computation burden is to look for sub-optimal MPC, where

global and exact solutions of non-convex and nonlinear optimization problems are not

needed and feasibility can imply stability instead (Scokaert et al., 1999). Another sub-

optimal approaches for nonlinear MPC include feedback linearization approximations

to optimal control Lyapunov functions and interpolations (Bacic et al., 2003; Bloemen

et al., 2002). Global optimization via interval analysis can also be applied to solve low-

dimensional nonlinear optimizations encountered in nonlinear MPC in a guaranteed

numerical way (Bravo et al., 2000; Hansen, 1992).

2.3 Robust MPC

The basic MPC algorithms described in the previous sections assume that the plant

to be controlled and the model used for prediction and optimization are the same, and

no unmeasured disturbance is acting on the system. The control performance of MPC

is thus highly dependent on the accuracy of the open-loop predictions, which in turn

depends on the accuracy of the system models. The difference between the plant and

the model is known as plant-model mismatch, which can cause the control performance

to be sluggish, overly conservative, or in the worst-case scenario, unstable (Wang, 2002).

Plant-model mismatches occur frequently due to modeling error, state estimation error

and unknown exogenous disturbances. Although the output feedback feature in MPC

can reduce the discrepancy between the actual and forecasted behavior of the systems,

MPC is not designed to explicitly handle plant-model mismatches. This is due to the

lack of explicit functional description of the control law for MPC, which is incurred by

the online optimization strategy at every control step. Thus the robust analysis and

synthesis have proven to be a fairly complicated and tough issue, even for linear MPC.

2.3.1 Linear Robust MPC

In order to address robustness issues in linear MPC, the following assumptions are

made on the basis of usual linear MPC formulation: the true plant Σ0 = (A,B, H,C,K) ∈
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S, where S is a given family of linear time-invariant systems and (or) an unmeasured

noise w(k) enters the system, i.e.,{
x(k + 1) = Ax(k) + Bu(k) + Hw(k)
y(k + 1) = Cx(k) + Kw(k),

(2.7)

where w(k) ∈ W and W is a given set (usually a polytope). Stability, constraint

fulfillment and control performance of MPC are referred to be robust if the respective

property is guaranteed for all possible Σ0 ∈ S,w(k) ∈ W (Bemporad and Morari, 1999).

As a part of robust MPC, it is necessary to arrive at an appropriate description of

the uncertainty, i.e. the sets S and W. This is difficult because there is very little expe-

rience and no systematic procedures are available. Several uncertainty sets S, W have

been proposed in the literature in the context of MPC (Bemporad and Morari, 1999).

Some of them are uncertainty on the impulse-response or step-response coefficients,

structured feedback uncertainty, multi-plant, polytopic uncertainty and bounded input

disturbances. It is also possible to adopt a stochastic uncertainty description instead

of a set-based description and develop an MPC algorithm that minimizes the expected

value of a cost function (Morari and Lee, 1999).

The minimum closed-loop requirement for robust MPC is robust stability, i.e., sta-

bility in the presence of uncertainties. In MPC, various design procedures achieve

robust stability in two different ways: indirectly by specifying the performance objec-

tive and uncertainty description in such a way that the optimal control computations

are to minimize the worst performance over the specified uncertainty range and thus

the min-max performance optimizations lead to robust stability (Lu and Arkun, 2000;

Scokaert and Mayne, 1998); or directly by enforcing a type of robust contraction con-

straint such as robustly invariant terminal sets, which guarantees that the state shrink

for all plants in the uncertainty set (Zheng, 1995). Except for guaranteeing stability

when synthesizing robust MPC laws, it is also necessary to enforce state constraints

robustly. Due to the curse of dimensionality for some min-max optimizations (Lee

and Yu, 1997), more efficient numerical methods such as Linear Matrix Inequalities

(LMIs) (Kothare et al., 1996; Wu, 2001) were introduced to solve the heavy minimax

optimization computations underlying robust MPC.
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2.3.2 Nonlinear Robust MPC

There are a few results on robustness of constrained MPC for nonlinear systems.

In (Michalska and Mayne, 1993), a dual-mode approach of receding horizon controller

was proposed and robustness under decaying additive uncertainties was achieved by a

proper choice of the terminal region. In (Magni et al., 2001), a robust MPC strategy

based on H-∞ cost function was presented. In (Limon et al., 2002), a robust MPC for

constrained nonlinear discrete-time system with additive uncertainties was presented.

It was based on uncertain evolution sets and interval arithmetic was used for the com-

putation of uncertain evolution sets. Interval arithmetic was also applied in the robust

analysis of predictive control in (Vehi et al., 2000). Interval arithmetic has gradually

turned out to be an appropriate and promising technique for the formulation and so-

lution of robust control problems in MPC, especially in nonlinear MPC. The interval

description of both parametric uncertainty and additive disturbances can be explored

further and constrained minimax optimization underlying nonlinear robust MPC can

also be fulfilled via interval arithmetic (Jaulin et al., 2001).

2.4 Contractive MPC

As addressed in the introduction, one of the main advantages of contractive MPC

is the reduced feasible control horizon, which is beneficial for simplifying the resulting

optimization. Contractive MPC is categorized into two groups here, which are to be

addressed in Subsection 2.4.1 and 2.4.2, respectively.

2.4.1 MPC with Compulsory Contractive Constraint

MPC with compulsory contractive constraint was studied in (de Oliveira and Morari,

2000; Yang and Polak, 1993a,b), where compulsory contractive constraints were usu-

ally in the form of contractive norms of state variables, i.e., the following additional

contractive constraint is imposed on the constrained optimization underlying MPC:

|x(k + N |k)|p ≤ α|x(k)|p, (2.8)

where N is the prediction horizon; | · |p is the p-norm of vectors; and α ∈ (0, 1] is the

contractive parameter for the norm. Since the control target is aimed to contract the

distance between the current state and the target state rather than reach to the target
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state directly, the feasible control horizon used in MPC with compulsory contractive

constraint can be relatively short. The control horizon can be usually selected to

be equal to the number of state variables. However, additional feasibility tests are

still needed to be fulfilled for guaranteeing the feasibility of the resulting constrained

optimization with the selected control horizon.

2.4.2 MPC with A Contractive Sequence of Controllable Sets

Consider the general constrained nonlinear uncertain discrete-time system:

x(k + 1) = f(x(k),w(k),u(k)), k = 0, · · · , (2.9)

where x(k) ∈ X ⊂ Rn is the system state; w(k) ∈ W ⊂ Rl is the uncertain parameters

and (or) additive disturbances; and u(k) ∈ U ⊂ Rm is the control input. The set X is

compact, while U and W are closed. According to the discussion in (Kerrigan, 2000),

the definitions of robust control invariant sets and robust controllable sets are as follows:

Definition 2.1 (Robust Control Invariant Set) The set Ω ⊂ Rn is a ro-

bust control invariant set for the system x(k + 1) = f(x(k),w(k),u(k)) if and only

if ∃u(k) ∈ U : x(k + 1) = f(x(k),w(k),u(k)) ∈ Ω,∀x(k) ∈ Ω,∀w(k) ∈ W. Specifically,

if the uncertainty of the system is not considered, the corresponding definition is nar-

rowed to be control invariant set.

Definition 2.2 (Robust Controllable Set) The i-step robust controllable set

K̃i(X, T) is the largest set of states in X for which there exists an admissible control

sequence {u(k) ∈ U}i−1
0 such that the terminal set T ⊂ Rn is reached in i steps, while

keeping the evolution of the state inside X for the first i− 1 steps, for all allowable dis-

turbance sequences, i.e., K̃i(X, T) , {x(0) ∈ X|∃{u(k) ∈ U}i−1
0 : {x(k) ∈ X}i−1

0 ,x(i) ∈
T,∀{w(k) ∈ W}i−1

0 }. Specifically, if the uncertainty of the system is not considered,

the corresponding definition is narrowed to be controllable set, which is to be denoted

by Ki(X, T).

The geometric condition for a set Ω to be robust control invariant is (Mayne and

Schroeder, 1997):

Ω ⊆ K̃1(X,Ω), (2.10)
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where K̃1(X,Ω) can also be denoted as K̃(X,Ω). The conservative definition of ro-

bust controllable sets is adopted here since {u(k) ∈ U}i−1
0 is an open-loop admissible

control sequence rather than an admissible time-varying state feedback control law

{u(k) = h(k)(x(k)) ∈ U}i−1
0 , which is more difficult to be designed in advance for

constrained nonlinear discrete-time systems.

The cost to compute the i-step (i ≥ 2) robust controllable set K̃i(X, T) directly

is somewhat heavy since it is a multi-dimensional optimization problem. In practice,

K̃i(X, T) can be approximated innerly via the following recursive procedure:

K̃i+1(X, T) = K̃(X, K̃i(X, T)), (2.11)

where K̃0(X, T) = T. If the terminal set T is selected to be a robust control invariant

set Ω, then K̃i(X,Ω) is also a robust control invariant set with

K̃i(X,Ω) ⊆ K̃i+1(X,Ω), (2.12)

where K̃i(X,Ω) is also referred to as the i-step robust stabilisable set (Kerrigan, 2000).

Such a geometric property of robust stabilisable sets can be applied to formulate a stable

and robust model predictive control scheme since a feasible control sequence, which

guarantees to drive the system from any initial state within K̃i(X,Ω) to Ω in i steps,

can be obtained basing on the feasible contractive sequence of robust stabilisable sets

(Limon et al., 2003). The benefit of MPC with a contractive sequence of controllable

sets is that the feasible control horizon is equal to one and thus the resulting constrained

open-loop optimizations are usually trivial.

2.5 Summary

This chapter has provided a brief introduction and literature review on linear and

nonlinear MPC. Two types of contractive MPC, i.e., contractive MPC with compulsory

contractive constraint and contractive MPC with a contractive sequence of controllable

sets have been introduced as a specific kind of MPC, which is also the main research

objective of the thesis. The definitions of (robust) control invariant set and (robust)

controllable set have also been introduced and they are to be widely concerned in the

following chapters.
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Chapter 3

Linear Contractive MPC via

Convex Optimization

As addressed in Chapter 2, the essence of MPC is to avoid solving the Hamilton-

Jacobi-Bellman equation by repetitively solving an open-loop optimization problem

instead. Then the main task underlying MPC is to formulate a corresponding mathe-

matical optimization problem as simply as possible and solve it as efficiently as possi-

ble. This chapter is focused on formulating and solving a specific class of mathematical

optimization problems for MPC — convex optimization for linear contractive MPC.

Although there are few open problems for linear MPC, the study of linear contractive

MPC via convex optimization is still meaningful since it provides the theoretical back-

ground for the further study of nonlinear contractive MPC. Moreover, many nonlinear

programming problems can be transformed or simplified to be a linear programming

problem and thus can be solved by convex optimization as well (Boyd and Vanden-

berghe, 2004). The terminal set of linear contractive MPC considered in this chapter is

extended from sliding manifolds in variable structure control to be a sliding domain and

thus the chattering phenomenon usually happened in the sliding mode can be avoided.

3.1 Convex Optimization

A convex optimization problem is one of the form:{
minimize f0(x)
subject to fi(x) ≤ bi, i = 1, · · · ,m,

(3.1)
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3.2 Polytope Geometry

where the functions f0, · · · , fm : Rn → R are convex, i.e., they satisfy

fi(αx + βy) ≤ αfi(x) + βfi(y) (3.2)

for all x,y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.

There are great advantages to recognize or formulate a problem as a convex opti-

mization problem. The most basic advantage is that the problem can then be solved,

very reliably and efficiently, using interior-point methods or other special methods for

convex optimization. These methods are reliable enough to be embedded in a computer-

aided design or analysis tool, or even a real-time reactive or automatic control system

(Boyd and Vandenberghe, 2004). There are also theoretical or conceptual advantages of

formulating a problem as a convex optimization problem. The associated dual problem,

for example, often has an interesting interpretation in terms of the original problem,

and sometimes leads to an efficient or distributed method for solving it (Boyd and

Vandenberghe, 2004).

3.2 Polytope Geometry

Polytope is a general class of convex sets widely used in convex optimization. Con-

cretely, polytope is a bounded polyhedron P ⊂ Rn, which can be described as (Kvasnica

et al., 2006):

P = {x ∈ Rn|Px ≤ q}, (3.3)

where P is a matrix of m × n and q is a vector of m. Basic polytope manipulations

are to compute the complement of a polytope, the intersection of two polytopes, the

set difference of two polytopes and the convex hull of a union of polytopes, whose def-

initions are as follows:

Complement: The complement of a polytope P = {x ∈ Rn|Px ≤ q} relative to

X ⊂ Rn is a union of polytopes PC := ∪m
i=1{x ∈ X|Pix > qi}, where Pi and qi are the

ith row of P and q, respectively.
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3.3 Linear MPC with Compulsory Contractive Constraint

Intersection: The intersection of two polytopes P = {x ∈ Rn|Px ≤ q} and

Q = {x ∈ Rn|Rx ≤ v} is a polytope P ∩ Q := {x ∈ Rn|Px ≤ q, Rx ≤ v}.

Set Difference: The set difference of two polytopes P = {x ∈ Rn|Px ≤ q} and

Q = {x ∈ Rn|Rx ≤ v} is a union of polytopes P \ Q := P ∩ QC .

Convex Hull: The convex hull of a union of polytopes Pi ⊂ Rn(i = 1, · · · , p) is a

polytope Hull(∪p
i=1Pi) := {x ∈ Rn|x =

∑p
i=1 αixi,xi ∈ Pi, 0 ≤ αi ≤ 1,

∑p
i=1 αi = 1}.

3.3 Linear MPC with Compulsory Contractive Constraint

This section addresses linear contractive MPC with compulsory contractive con-

straint, where linear programming is applied to find feasible control horizons as well as

corresponding control inputs for linear contractive MPC with compulsory contractive

constraint.

3.3.1 Problem Statement

Assume that the constrained linear discrete-time system to be controlled is described

by the following time-invariant state-space model:

x(k + 1) = Ax(k) + Bu(k), k = 0, 1, · · · , (3.4)

where x(k) ∈ X ⊂ Rn is a vector of n state variables and X is a compact set containing

the origin; u(k) ∈ U ⊂ Rm is a vector of m control inputs and U is a compact set

containing the origin. A dual-mode approach of MPC is adopted and the terminal

control invariant set T is designed in advance as a polytope P = {x|Px ≤ 1} along

with a local stabilizing feedback control law.

The concerned linear contractive MPC with compulsory contractive constraint is

the formulation of the following iterative optimization:

J(x(k), {u(k + i|k)}Mf−1
i=0 ) = min

{u(k+i|k)}
Mf−1

i=0

ξ (3.5)
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3.3 Linear MPC with Compulsory Contractive Constraint

subject to 
u(k + i|k) ∈ U, i = 0, · · · ,Mf − 1
x(k + i|k) ∈ X, i = 1, · · · ,Mf

Px(k + Mf |k) ≤ ξ
Px(k + Mf |k) < α · Px(k), α ∈ (0, 1],

(3.6)

where α is the contractive parameter for the value of Px, which can be interpreted

physically as the contractiveness of the distance to the target polytope; Mf is the

feasible control horizon for satisfying all the imposed constraints.

3.3.2 Feasible Control Horizon via Linear Programming

The main problem for applying linear contractive MPC with compulsory contrac-

tive constraint is to find a feasible control horizon Mf for satisfying all the imposed

constraints. This problem can be further formulated as a standard linear programming

problem since all imposed constraints are linear and linear programming can be ap-

plied to test whether a selected control horizon is feasible or no. If not, a larger control

horizon should be used for another feasibility test until a feasible control horizon Mf

has been found.

3.3.3 Contractive MPC via Convex Optimization

The optimal control inputs {u(k + i|k)}Mf−1
i=0 can be found simultaneously during

the feasibility test for a feasible control horizon Mf . The obtained control inputs can be

used to control the system sequentially when the state is outside the designed terminal

control invariant set (de Oliveira and Morari, 2000). Once the state enters the designed

terminal control invariant set T, the related local stabilizing feedback control law can

be applied instead to drive the state to the origin asymptotically.

3.3.4 Example

Consider the following constrained discrete-time linear system described by the

state-space model:{
x1(k + 1) = 0.9x1(k) + 0.1x2(k)
x2(k + 1) = −0.5x1(k) + 0.2x2(k) + u(k),

(3.7)

where x1(0) = 3, x2(0) = 3 and the control target is to drive the state variables of the

system to the origin asymptotically with the imposed control constraint u ∈ [−2, 2]
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3.3 Linear MPC with Compulsory Contractive Constraint

and the state constraint |x|∞ ∈ [−8, 8]. The dual-mode approach of MPC is adopted:

the system state is to be driven to a terminal control invariant set at first and then a

local stabilizing feedback control law is applied instead to drive the system state to the

origin asymptotically.

The terminal control invariant set is designed in advance according to the principle

of variable structure control, i.e., a sliding domain S = {x|s(k) = cx1(k) + x2(k) =

0, c ∈ [1, 2], x1, x2 ∈ [−4, 4]} is selected to be the terminal control invariant set and

the corresponding equivalent control ueq(x) within the sliding domain is selected to be

the related local stabilizing feedback control law for the terminal control invariant set.

The designed control invariant set for the system (3.7) is shown in Fig. 3.1. It is easy to

prove that sliding motions on S are asymptotically stable under the equivalent control

ueq on S, which also satisfies the control constraint, i.e., ueq(x) ∈ [−2, 2],x ∈ S.

Figure 3.1: A sliding domain is designed as the terminal control invariant set

The feasible control horizon as well as the related feasible control sequence can

be obtained efficiently by formulating the linear contractive MPC with compulsory

contractive constraint as a linear programming problem, where the convex hull of the
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3.4 Linear MPC with A Contractive Sequence of Controllable Sets

designed terminal control invariant set is employed instead to configure the linear pro-

gramming problem for finding the feasible control horizon as well as the related feasible

control sequence. The overall control processes for the dual-mode approach of linear

contractive MPC with compulsory contractive constraint starting from the initial state

(6.8, 7.2) and (−7.2,−5.8) are shown in Fig. 3.2, respectively. It can be seen that the

control strategy is effective for linear contractive MPC with compulsory contractive

constraint.

Figure 3.2: Linear contractive MPC with compulsory contractive constraint

3.4 Linear MPC with A Contractive Sequence of Control-

lable Sets

This section addresses linear contractive MPC with a contractive sequence of con-

trollable sets, where polytope geometry is applied to compute one-step controllable sets

offline and convex optimization is applied to compute one-step control inputs for linear

contractive MPC with a contractive sequence of controllable sets.
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3.4 Linear MPC with A Contractive Sequence of Controllable Sets

3.4.1 Problem Statement

Assume that the constrained linear discrete-time system to be controlled is described

by the following time-invariant state-space model:

x(k + 1) = Ax(k) + Bu(k), k = 0, 1, · · · , (3.8)

where x(k) ∈ X ⊂ Rn is a vector of n state variables and X is a compact set containing

the origin; u(k) ∈ U ⊂ Rm is a vector of m control inputs and U is a compact set con-

taining the origin. The dual-mode approach of MPC is also adopted and the terminal

control invariant set is designed in advance as a polytope T = {x|Tx ≤ 1}.

The considered linear contractive MPC with a contractive sequence of controllable

sets is the formulation of the following one-step optimization:

J(x(k),u(k|k)) = min
u(k|k)

ξ (3.9)

subject to 
u(k|k) ∈ U
Tx(k + 1|k) ≤ ξ
x(k + 1|k) ∈ Ki−1(X, T),

(3.10)

where x(k) ∈ Ki(X, T); Ki(X, T) is the i-step controllable set to the selected terminal

set T; and the resulting optimization can be interpreted physically as to minimize the

distance to the terminal polytope T.

3.4.2 The Computation of Controllable Sets via Polytope Geometry

The computation of one-step controllable sets for linear or piecewise-affine systems

is quite straightforward (Kerrigan, 2000). One-step controllable sets can be computed

efficiently via projection or Minkowski summation. Invariant Set Toolbox developed

by Dr. Eric C. Kerrigan is applied to compute one-step controllable sets needed for

implementing linear contractive MPC with a contractive sequence of sets.

3.4.3 One-step Control via Convex Optimization

Once one-step controllable sets have been computed in advance, the feasibility of

linear contractive MPC with a contractive sequence of controllable sets can be guar-

anteed. The one-step control inputs can be obtained via linear programming since the
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3.4 Linear MPC with A Contractive Sequence of Controllable Sets

optimization problem in (3.9) is a linear programming problem. Once the system state

has entered into the selected terminal control invariant set T, the related local stabi-

lizing feedback control law is applied instead to drive the system state to the origin

asymptotically.

3.4.4 Example

Consider the same example to the former section, one-step controllable sets are

computed recursively by Invariant Set Toolbox (Kerrigan, 2000), which are shown

in Fig. 3.3. It is worthy to note that the terminal control invariant set is a union of

two polytopes for this specific example and thus the overall one-step controllable set

at each recursion is the union of two one-step controllable sets with their respective

terminal control invariant polytope. This is different from existing approaches in the

literature, where the terminal control invariant set is usually selected to be one polytope.

Figure 3.3: The computed one-step controllable sets via polytope geometry

According to the computed one-step controllable sets, linear contractive MPC with

a contractive sequence of controllable sets can be formulated and the resulting control

processes of the dual-mode approach of MPC for the system (3.7) starting from the
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3.5 Summary

initial state (6.8, 7.2) and (−7.2,−5.8) are shown in Fig. 3.4, respectively. It can be

seen from Fig. 3.4 that the control strategy of linear contractive MPC with a con-

tractive sequence of controllable sets is effective since the system state has been driven

contractively along the computed controllable sets to the terminal control invariant set

and then to the origin asymptotically under the related equivalent control within the

selected sliding domain.

Figure 3.4: Linear contractive MPC with a contractive sequence of controllable sets

3.5 Summary

Convex optimization and polytope geometry have been introduced briefly in this

chapter. They have been applied to deal with issues in linear contractive MPC, where

linear programming has been applied to find feasible control horizons as well as a feasible

control sequence in linear contractive MPC with compulsory contractive constraint and

polytope geometry has been applied to compute one-step controllable sets for linear

contractive MPC with a contractive sequence of controllable sets. The terminal control

invariant set used in the dual-mode approach of linear contractive MPC has been

designed in advance as a sliding domain according to the principle of variable structure
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3.5 Summary

control. The chattering phenomenon usually happened in the sliding mode of variable

structure control has been avoided by the selection of a sliding domain as the terminal

set of MPC. The application of convex optimization and polytope geometry to linear

contractive MPC in this chapter has provided a theoretical background for the further

study of nonlinear contractive MPC in the following chapters.
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Chapter 4

Nonlinear Contractive MPC via

Classical Interval Analysis

As demonstrated in Chapter 3, convex optimization as well as polytope geometry

is a reliable and efficient numerical tool for linear contractive MPC. However, almost

all systems encountered in practice are inherently nonlinear, where usually complex

nonlinear optimizations are concerned instead. The former tool of convex optimiza-

tion as well as polytope geometry for linear contractive MPC is not directly suitable

for nonlinear contractive MPC and thus new tools are needed further. This chapter

introduces a reliable nonlinear numerical tool called classical interval analysis and ex-

plores its application in nonlinear contractive MPC with guaranteed feasibility and

stability. Classical interval analysis is further generalized to zonotope geometry to test

whether a given low-complexity polytope is control invariant for a constrained nonlinear

discrete-time system along with a local stabilizing feedback control law. The solver of

global optimization for set inversion via zonotope geometry is also proposed to design

a terminal control invariant zonotope with a local stabilizing feedback control law for

a general constrained nonlinear discrete-time system. One-step controllable sets for

nonlinear MPC with a contractive sequence of controllable sets are also obtained via

an interval-based algorithm of set computation.
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4.1 Classical Interval Analysis

4.1 Classical Interval Analysis

Classical interval analysis is based upon the very simple idea of enclosing real num-

bers in intervals and real vectors in boxes. Now classical interval analysis has become a

fundamental nonlinear numerical tool for representing uncertainties or errors, proving

properties of sets, solving sets of equations or inequalities, and optimizing in a global

way (Jaulin et al., 2001). Basic concepts and corresponding solvers of classical interval

analysis are described briefly in the following subsections.

4.1.1 Basic Concepts

The key concepts of classical interval analysis are interval arithmetic, inclusion func-

tion and subpaving, whose definitions are as follows (Jaulin et al., 2001):

Interval Arithmetic: Interval arithmetic is a special case of computation on sets,

which include real compact intervals [a, b] = {a ≤ x ≤ b, a ≤ b, x, a, b ∈ R}, real com-

pact interval vectors Xn×1 and real compact interval matrices Xm×n. The four elemen-

tary arithmetic operations (+,−,×,÷) are extended to intervals. Concretely, for any

such binary operator, denoted by ◦, performing the operation associated with ◦ on the

intervals [a, b] and [c, d] means computing [a, b]◦[c, d] = [{x◦y ∈ R|x ∈ [a, b], y ∈ [c, d]}],
where [◦] denotes the convex hull of {x ◦ y ∈ R|x ∈ [a, b], y ∈ [c, d]}. Correspondingly,

the set of all interval vectors in the domain of Rn is denoted to be I(Rn).

Inclusion Function: Consider a function f from Rn to Rm, the interval function

F from I(Rn) to I(Rm) is an inclusion function for f if ∀X ∈ I(Rn), f(X) ⊆ F(X). The

valid semantic statement for f(X) ⊆ F(X) is:

∀x1 ∈ [a1, b1] . . .∀xn ∈ [an, bn]∃z ∈ F(X) z = f(x1, . . . , xn). (4.1)

The natural inclusion function of f(X) can be obtained by replacing each occurrence

of every variable with the corresponding interval variable, by executing all operations

according to interval arithmetic, and by computing ranges of the standard functions

(Moore, 1966).
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4.1 Classical Interval Analysis

Subpaving: A subpaving of a box X ∈ I(Rn) is a union of non-overlapping sub-

boxes with non-zero width, where every subbox is a subset of the box X. A subpaving

of X is regular if each of its subboxes can be obtained from X by a finite succession of

bisections and selections.

The fundamental concepts of classical interval analysis can be integrated to set up

various solvers such as set inversion and global optimization. A basic operation within

these solvers is to bisect an interval vector into two sub-interval vectors. Taking the

interval vector X = [a1, b1] × · · · × [an, bn] as an example, its width is denoted to be

(Jaulin et al., 2001):

Width(X) = max
i=1,··· ,n

|ai − bi|, (4.2)

and the index j is denoted to be:

j = min
i=1,··· ,n

{i|(|ai − bi|) = Width(X)}, (4.3)

then the bisection Bisect(X) returns two sub-interval vectors LX and RX:{
LX := [a1, b1]× · · · × [aj ,

(aj+bj)
2 ]× · · · × [an, bn]

RX := [a1, b1]× · · · × [ (aj+bj)
2 , bj ]× · · · × [an, bn].

(4.4)

4.1.2 The Solver of Set Inversion via Interval Analysis

Contrary to the computation of inclusion functions of f(X) via interval arithmetic,

the opposite problem is to find the feasible subpaving of X with the known image

[a1, b1]×· · ·× [am, bm], i.e., to find Σx ⊆ X that satisfies f(Σx) ⊆ [a1, b1]×· · ·× [am, bm].

Many physical problems concerning nonlinear inequalities can be formulated as a set

inversion problem and the solver of set inversion via interval analysis or the algorithm

for set inversion via interval analysis can be applied to find the feasible solutions with

a given bound of error tolerance ε. The detail of the solver of set inversion via interval

analysis is shown in Algorithm 4.1 (Jaulin et al., 2001), where Σx is to store all feasible

solutions and Σb
x is to store the neighboring subboxes to Σx with Width(Xk) ≤ ε.

Algorithm 4.1: Set Inversion Via Interval Analysis (SIVIA)

In: f ,X, ε, Out: Σx, Σb
x

1. Initialize Stack = X and Σx = Σb
x = ∅;
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2. while Stack 6= ∅

3. Pop out a subbox Xk from Stack;

4. if F(Xk) ⊆ [a1, b1]× · · · × [am, bm], then Σx = Σx ∪Xk and return to 2;

5. elseif F(Xk) ∩ [a1, b1]× · · · × [am, bm] = ∅, then discard Xk and return to 2;

6. elseif Width(Xk) ≤ ε, then Σb
x = Σb

x ∪Xk and return to 2;

7. else

8. Bisect Xk to LXk and RXk, push them on Stack;

9. endif

10. endwhile

For example, for the following multi-affine characteristic polynomial of a closed-loop

control system (Jaulin et al., 2001):

P (s,p) = s3 + (p1 + p2 + 2)s2 + (p1 + p2 + 2)s + 2p1p2 + 6p1 + 6p2 + 3, (4.5)

where p1 and p2 are uncertain parameters of the system. The corresponding Routh

vector for the characteristic polynomial is:

r(p) =


p1 + p2 + 2
(p1 − 1)2 + (p2 − 1)2 − 1
2(p1 + 3)(p2 + 3)− 15

 . (4.6)

For P = [−3, 9]× [−3, 9] and a given bound of error tolerance ε = 0.5, the subpavings of

the parametric space computed via the solver of SIVIA are shown in Fig. 4.1, where

the parameters p1 and p2 covered by the yellow boxes, the blank boxes and the red

boxes correspond to stable cases (r(p) > 0), unstable cases (r(p) ≯ 0) and uncertain

cases, respectively.

4.1.3 The Solver of Global Optimization via Interval Analysis

Classical interval analysis can also be applied to realize global optimization in a

guaranteed numerical way. An algorithm for global minimization is demonstrated here

as an illustrative example since it is always possible to transform a global maximization

problem into a global minimization problem, for instance, by multiplying the cost
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Figure 4.1: An example of set inversion via interval analysis

function by −1 (Jaulin et al., 2001). The problem considered here is the minimization

of a scalar cost function f(x) over a compact set Σx ⊂ Rn:

min
x∈Σx

f(x). (4.7)

For an unconstrained global minimization problem, Σx is usually a very large box X

in I(Rn); for a constrained global minimization problem, the definition of Σx involves

additional equality and (or) inequality constraints, for instance, Σx might be defined

as:

Σx := {x ∈ Rn|h(x) ≤ 0,x ∈ X}. (4.8)

The solver of global minimization via interval analysis is illustrated in Algorithm

4.2 (Jaulin et al., 2001), where F (·) is an inclusion function of f(·), f̄ is the upper

bound of the global minimum, Lb denotes the lower bound of an interval function, and

F̂ brackets the global minimum by interval evaluations of f(·) over all subboxes in `.

Algorithm 4.2: Global Minimization Via Interval Analysis (GMVIA)

In: Σx, f(·), ε, Out: F̂ , `
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1. Φ := {Σx,∞}; f̄ := ∞; F̂ := ∅; ` := ∅;

2. while Φ 6= ∅

3. Pop out a subbox Xk from Φ;

4. if Lb(F (Xk)) ≤ f̄

5. if f(Mid(Xk)) < f̄

6. f̄ = f(Mid(Xk));

7. Remove from Φ any pair (Xi, Lb(F (Xi))) with Lb(F (Xi)) > f̄;

8. elseif Width(Xk) ≤ ε

9. Push (Xk, Lb(F (Xk))) on `;

10. else

11. Bisect Xk and push (LXk, Lb(F (LXk))) and (RXk, Lb(F (RXk))) on Φ;

12. endif

13. endif

14. endwhile

15. Remove from ` any pair (Xi, Lb(F (Xi))) with Lb(F (Xi)) > f̄;

16. For all Xi in `, F̂ = F̂ ∪ F (Xi), and finally F̂ := F̂ ∩ (−∞, f̄ ].

For example, to minimize the following scalar cost function

f(x, y) = (x− sin(2x + 3y)− cos(3x− 5y))2 + (y − sin(x− 2y) + cos(x + 3y))2 (4.9)

over x ∈ [−2, 2] and y ∈ [−2, 2] is a typical global optimization problem since the cost

function has several local minima, as shown in Fig. 4.2(a). The search process via the

interval-based solver of global minimization is shown in Fig. 4.2(b), where the yellow

subboxes are intermediate candidates of the global minimizer and the green subboxes

are final candidates of the global minimizer. The circled point on the blue box is as-

sumed to be the global minimizer under the given bound of error tolerance ε = 0.2

because the computed value of the cost function on it is smallest among the computed

values of the cost function on all vertices of other candidates.

4.2 Zonotope Geometry

This section extends the main concepts in interval analysis to zonotope geometry.

Concretely, the implicit definition of a zonotope can be regarded as an extension of an
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Figure 4.2: An example of global minimization via interval analysis

interval vector or a box in geometry; the explicit construction of a zonotope can be

transformed to be the Minkowski sum of polytopes; the bisection of a zonotope is also

proposed for the first time according to the idea of bisecting an interval vector; and

the zonotope inclusion can be applied for computing the dynamic evolution of nonlin-

ear systems as a kind of centered inclusion functions in contrast to natural inclusion

functions usually used in interval analysis.

4.2.1 Zonotope Definition

A zonotope is a centrally symmetric convex polytope and it is closely related to

interval analysis. Given a vector p ∈ Rn and a matrix H ∈ Rn×m, the zonotope Z of

order n×m is the set:

p⊕HBm = {p + Hz|z ∈ Bm}, (4.10)

where Bm is a box composed of m unitary intervals B = [−1, 1] and ⊕ is the Minkowski

sum of sets. Assume that H = [h1 · · ·hm], then the zonotope can also be regarded as a

set spanned by the column vectors of H, which are also called line segment generators:
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Z = {p +
m∑

i=1

αihi| − 1 ≤ αi ≤ 1}. (4.11)

Geometrically, the zonotope Z is the transferred Minkowski sum of the line segments

defined by the columns of the matrix H to the central point p. Specifically, the zonotope

Z degenerates to be an interval vector as well as a box when H is a diagonal matrix

or when m = 1. The mathematical concept of zonotopes has not yet been widely

used explicitly in the control literature. However, its implicit form, i.e., the Minkowski

sum of sets, has already been widely applied to approximate various kinds of invariant

sets such as the minimal robust positively invariant set and the minimal disturbance

invariant set in a recursive way for discrete-time linear systems (Ong and Gilbert, 2005;

Rakovic et al., 2005).

4.2.2 Zonotope Construction

The list of line segment generators is an efficient implicit representation of a zono-

tope in terms of which set operations such as the Minkowski sum and difference are

trivial. However, an explicit representation of a zonotope is needed for some operations

such as the judgement of inclusion and exclusion of a polytope to a zonotope. The

explicit representation of a zonotope is the zonotope construction problem aiming to

list all extreme points of a zonotope defined by its line segment generators. A relatively

efficient algorithm was proposed in (Fukuda, 2004) to address the zonotope construc-

tion problem, where the addition of line segments was replaced by the addition of

convex polytopes. For example, the construction of the zonotope Z = p⊕HB6, where

p =
[

2
2

]
and H =

[
0.4414 −0.5855 −0.0484 0.2570 0.2293 0.1498
−0.0016 −0.3930 0.3526 −0.2396 0.4257 −0.3117

]
,

can be transformed to be the Minkowski sum of three simpler zonotopes as well as

three polytopes, i.e., Z = Z1⊕Z2⊕Z3, where Z1 =
[

2
2

]
+

[
0.4414 −0.5855
−0.0016 −0.3930

]
B2,

Z2 =
[
−0.0484 0.2570
0.3526 −0.2396

]
B2 and Z3 =

[
0.2293 0.1498
0.4257 −0.3117

]
B2. Then the zono-

tope Z can be constructed and plotted as well by using polytope geometry softwares

such as Multi-Parametric Toolbox (Kvasnica et al., 2006), which is shown in Fig.

4.3.
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4.2 Zonotope Geometry

Figure 4.3: An example of zonotope construction

4.2.3 Zonotope Bisection

Similar to an interval vector or a box, a zonotope can be bisected as well. Taking

the zonotope Z = p⊕HBm as an example, where p ∈ Rn, H ∈ Rn×m and m ≥ n, the

maximum absolute value among all elements hij in H is denoted to be:

Max(H) = max
i=1,··· ,n,j=1,··· ,m

|hij |, (4.12)

and the index k is denoted to be:

k = min
j=1,··· ,m

{j|(|hij |) = Max(H), i = 1, · · · , n}. (4.13)

Then the zonotope Z can be bisected along the line segment generator hk, which is

addressed in Theorem 4.1.

Theorem 4.1 (Zonotope Bisection) The bisection Bisect(Z) along the line seg-

ment generator hk returns two sub-zonotopes LZ = (p− hk
2 )⊕ [h1 · · · hk

2 · · ·hm]Bm and

RZ = (p + hk
2 )⊕ [h1 · · · hk

2 · · ·hm]Bm.

Proof. Since Z = p⊕ [h1 · · ·hk · · ·hm]Bm, then Z = p⊕ [h1 · · ·hk · · ·hm][[−1, 1]1
· · · [−1, 0]k · · · [−1, 1]m]T∪p⊕[h1 · · ·hk · · ·hm][[−1, 1]1 · · · [0, 1]k · · · [−1, 1]m]T = LZ∪RZ,
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4.2 Zonotope Geometry

where LZ = (p− hk
2 )⊕[h1 · · · hk

2 · · ·hm]Bm and RZ = (p+ hk
2 )⊕[h1 · · · hk

2 · · ·hm]Bm. �

Taking the zonotope shown in Fig. 4.3 as an example, the bisection Bisect(Z) re-

turns two sub-zonotopes, which are shown in Fig. 4.4. It can be seen that the bisection

is not complete for the zonotope of order 2 × 6. The reason for the overlapping of LZ

and RZ is that the line segment generators h1, · · · ,h6 are not linearly independent or

redundant and then the parameters α1, · · · , α6 for a same point in z = p +
∑6

i=1 αihi

are sometimes not unique and those points with both positive and negative α2 in Z

belong to both LZ and RZ. However, for a zonotope Z with linearly independent line

segment generators, the bisection is complete, which is addressed in Theorem 4.2.

Figure 4.4: Bisection of a zonotope with redundant line segment generators

Theorem 4.2 (Complete Bisection) For a zonotope Z = p ⊕ HBn, where

p ∈ Rn, H ∈ Rn×n and Rank(H) = n, the defined bisection is complete, i.e., LZ and

RZ only share a face of dimension n− 1.

Proof. For Z = {p+
∑n

i=1 αihi|−1 ≤ αi ≤ 1}, assume that there exist −1 ≤ αL
1 ≤

1, · · · ,−1 ≤ αL
k ≤ 0, · · · ,−1 ≤ αL

n ≤ 1 and −1 ≤ αR
1 ≤ 1, · · · , 0 ≤ αR

k ≤ 1, · · · ,−1 ≤
αR

n ≤ 1, s.t. p +
∑n

i=1 αL
i hi = p +

∑n
i=1 αR

i hi, then
∑n

i=1(α
L
i − αR

i )hi = 0 while
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4.2 Zonotope Geometry

Rank(H) = n, so αL
k = αR

k = 0, i.e., LZ and RZ only share a face of dimension n− 1. �

Taking the bisection of the zonotope Z = p⊕HB2 as an example, where p =
[

2
2

]
and H =

[
0.6414 0.5855
−0.4016 0.7930

]
, since Rank(H) = 2, so the bisection is complete ac-

cording to Theorem 4.2, just as shown in Fig. 4.5.

Figure 4.5: Bisection of a zonotope with linearly independent line segment generators

4.2.4 Zonotope Inclusion

Using zonotopes, Kühn developed a procedure to bound the orbits of discrete-time

dynamic systems with a guaranteed sub-exponential overestimation. The following the-

orem introduces the zonotope inclusion operator of Kühn’s method (Kühn, 1998).

Theorem 4.3 (Zonotope Inclusion) Consider a family of zonotopes represented

by Z = p⊕MBm, where p ∈ Rn is a real vector and M ∈ In×m is an interval matrix.

A zonotope inclusion, denoted by �(Z), is defined by:

�(Z) = p⊕ [Mid(M) G]
[

Bm

Bn

]
, (4.14)
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4.2 Zonotope Geometry

where Mid(M) is the centered-point matrix of M and G ∈ Rn×n is a diagonal matrix

that satisfies:

Gii =
m∑

j=1

Diam(Mij)
2

, i = 1, · · · , n, (4.15)

where Diam(Mij) is the length of the interval Mij . Under these definitions, it results

that: Z ⊆ �(Z).

Given a possibly nonlinear one-order differential function f(x) : Rn → Rn,x ∈ X =

p⊕MBm, its centered inclusion function Fc(X) : f(X) ⊆ Fc(X) can be deduced by the

mean-value theorem (Jaulin et al., 2001), i.e.,

Fc(X) , f(p) +5xf(X)(X− p), (4.16)

where X − p = MBm. Thus the centered inclusion function Fc(X) of f(x) turns out

to be a family of zonotopes represented by Z = pnew ⊕MnewBm, where pnew = f(p)

and Mnew = 5xf(X)M , which can be further bounded by its corresponding zonotope

inclusion �(Z). This is the primary principle of Kühn’s method to bound the evolution

of dynamic systems by zonotopes, where centered inclusion functions are applied in-

stead of natural inclusion functions. Kühn’s method can be further extended to bound

the evolution of nonlinear uncertain discrete-time systems, which is addressed in the

following theorem (Alamo et al., 2003).

Theorem 4.4 (Uncertain Evolution) Given a one-order differential function

f(x,w),x ∈ X ⊂ Rn,w ∈ W ⊂ Rl, where X is a zonotope: p⊕HBm and W is a box,

consider the following:

• A zonotope q⊕ SBn : f(p,W) ⊆ q⊕ SBn.

• An interval matrix M = 5xf(X,W)H.

• A zonotope q⊕ SBn ⊕ �(MBm).

Under the above assumptions, it results that:

f(X,W) ⊆ q⊕ SBn ⊕ �(MBm).

Proof. Given a w ∈ W, the application of the mean-value theorem yields:

f(X,w) ⊆ f(p,w) ⊕ 5xf(X,w)HBm ⇒ f(X,W) ⊆ f(p,W) ⊕ 5xf(X,W)HBm ⊆
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4.2 Zonotope Geometry

q⊕ SBn ⊕5xf(X,W)HBm = q⊕ SBn ⊕MBm ⊆ q⊕ SBn ⊕ �(MBm). �

Consequently, zonotopes can also be applied to bound the evolution of general non-

linear uncertain discrete-time systems with reduced wrapping effects since zonotope

inclusions derived from the mean-value theorem are used instead of natural inclusion

functions, where a sort of linearization is performed for the range of functions (Alamo

et al., 2003). The reduced wrapping effect using zonotope evolution can be seen in an

illustrative example shown in Fig. 4.6, where the interval evolution and the zonotope

evolution of four steps for the nonlinear discrete-time system discussed in (Cannon

et al., 2003) with the same control sequence and the same initial state domain are

compared.

Figure 4.6: The zonotope evolution vs the interval evolution

4.2.5 Set Inversion via Zonotope Geometry

Given a dynamic system f(x), a zonotope X as an initial admissible domain and

the codomain T, the solver of set inversion via zonotope geometry is listed in Algo-

rithm 4.3, where ε is the bound of error tolerance and Σx,Σb
x are to store the feasible
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4.2 Zonotope Geometry

sub-zonotopes and the neighboring sub-zonotopes with Max(Hi) ≤ ε to all the feasible

sub-zonotopes, respectively.

Algorithm 4.3: Set Inversion Via Zonotope Geometry (SIVZG)

In: f , X, ε, Out: Σx, Σb
x

1. Initialize Stack = X and Σx = Σb
x = ∅;

2. while Stack 6= ∅

3. Pop out a zonotope Xi = pi ⊕HiB
m from Stack;

4. if Fc(Xi) ⊆ T, Σx = Σx ∪ Xi and return to 2;

5. elseif Fc(Xi) ∩ T = ∅, discard Xi and return to 2;

6. elseif Max(Hi) ≤ ε, Σb
x = Σb

x ∪ Xi and return to 2;

7. else

8. Bisect Xi to LXi and RXi, push them on Stack;

9. endif

10. endwhile

The solver of set inversion via zonotope geometry is similar to the solver of set

inversion via interval analysis and only the bisections and evolutions of interval vectors

are replaced by the bisections and evolutions of zonotopes (Jaulin et al., 2001), where

the initial admissible domain is broadened from boxes to zonotopes and the wrapping

effects have been reduced by zonotope evolutions instead of interval evolutions. Since

the bisection of a zonotope with redundant line segment generators is not complete, an

alternative approach is to bound the zonotope with redundant line segment generators

by a zonotope with linearly independent line segment generators at first and thus the

bisection of the bounding zonotope is complete. The bounding of a zonotope with re-

dundant line segment generators can be realized by using singular value decomposition

of the matrix H or a recursive algorithm proposed in (Bravo, 2004). Furthermore, an

initial admissible polytope can also be bounded by a zonotope with linearly independent

line segment generators using the center of the largest ball inscribed in the polytope

as the center of the bounding zonotope (Guibas et al., 2003; Kvasnica et al., 2006).

The illustrative examples for the bounding of a zonotope with redundant line segment

generators by a parallelogram and the bounding of a polytope by a parallelogram are
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4.2 Zonotope Geometry

shown in Fig. 4.7(a) and 4.7(b), respectively.

Figure 4.7: Bounding by a zonotope with linearly independent line segment generators

Once a polytope has been bounded by a zonotope with linearly independent line

segment generators, the solver of set inversion via zonotope geometry can be extended

to the set inversion problem with a polytope as the initial admissible domain. A direct

application of the solver in Algorithm 4.3 is shown in Fig. 4.8, where a polytope is ap-

proximated innerly by a union of zonotopes using a bounding zonotope of the polytope

as the initial admissible domain.

4.2.6 Set Inversion via Zonotope Geometry for Set Invariance Test

This subsection gives an illustrative example for the application of the solver of

set inversion via zonotope geometry to test set invariance in constrained control. Set

invariance plays a significant role in MPC, where a terminal control invariant set along

with a local stabilizing feedback control law is usually needed for the terminal control

of the dual-mode approach of MPC (Blanchini, 1999; Mayne et al., 2000). However,

the design of such a terminal control invariant set for a general constrained nonlinear
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Figure 4.8: Inner approximation of a polytope by a union of zonotopes

discrete-time system is still an open problem while the local stabilizing feedback control

law can often be designed in advance as a LQ problem for the corresponding linearized

system of the original nonlinear system (Magni et al., 2001). The proposed solver of

set inversion via zonotope geometry provides a numerical and geometric method to test

whether a given low-complexity polytope as well as a zonotope is control invariant or

no under the assigned local stabilizing feedback control law.

Taking the system discussed in (Cannon et al., 2003) as the illustrative example,

which is:{
x1(k + 1) = x1(k) + 0.01x2(k) + 0.01[µ + (1− µ)x1(k)]u(k)
x2(k + 1) = 0.01x1(k) + x2(k) + 0.01[µ− 4(1− µ)x2(k)]u(k),

(4.17)

where µ = 0.9, |u| ≤ 2 and |x|∞ ≤ 4. The local stabilizing feedback control law is se-

lected to be u = [−1.2131− 1.2128]x and the terminal set is a low-complexity polytope

P : |V x|∞ ≤ 0.9 1, where V =
[

0.1638 −0.3931
0.6066 0.6066

]
. The low-complexity polytope P is

1The original polytope in the paper of (Cannon et al., 2003) is |V x|∞ ≤ 1, however, an initial test

of u = [−1.2131−1.2128]x shows that the maximal value of u on it is 2.0002, which is not an admissible

control. Such a tiny violation might be induced by the computation errors for the vertices and so a

smaller polytope is adopted here for the following test.
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also a zonotope and it is to be bisected to test whether u = [−1.2131− 1.2128]X(k) ⊆
[−2, 2] and X(k + 1) = Fc(X(k), kX(k)) ⊆ P for all sub-zonotopes X(k), as shown in

Fig. 4.9. The test result using the solver of set inversion via zonotope geometry in Al-

gorithm 4.3 shows that all sub-zonotopes are control invariant under the related local

stabilizing feedback control law u = [−1.2131−1.2128]x, i.e., the dynamic evolutions of

all sub-zonotopes under the related local stabilizing feedback control law are all within

the selected polytope P. Then the provided polytope P has been demonstrated geo-

metrically to be a valid control invariant set. By testing various zonotopes, the solver

of set inversion via zonotope geometry can also be extended to design a terminal robust

control invariant zonotope for a general constrained nonlinear uncertain discrete-time

system in a numerical way.

Figure 4.9: Set inversion via zonotope geometry for set invariance test

4.2.7 Global Optimization for Set Inversion via Zonotope Geometry

Given an initial interval matrix M ∈ In×m, its width is denoted to be:

Width(M) = max
i,j

Width(Mij), i = 1, · · · , n, j = 1, · · · ,m, (4.18)
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where Width(Mij) is denoted to be the width of the interval Mij . The interval ma-

trix M can also be bisected into two sub-interval matrix LM and RM by bisecting the

widest member of its components. Using the bisection and selection of M, the solver

of global optimization for set inversion via zonotope geometry can be built to search a

biggest (robust) control invariant zonotope for a constrained nonlinear system with a

local stabilizing feedback control law u = kx, just as shown in Algorithm 4.4.

Algorithm 4.4: Global Optimization For Set Inversion Via Zonotope Geometry (GOFSIVZG)

In: M, ε, Out: Z

1. Initialize Stack = M and Z = ∅;

2. while Stack 6= ∅

3. Pop out an interval matrix Mk from Stack;

4. Test if �(Zk) = MkB
m is control invariant or no by SIVZG;

5. if �(Zk) is control invariant and Vol(�(Zk)) > Vol(Z), Z = �(Zk) and return to 2;

6. elseif Width(M) ≤ ε, return to 2;

7. else

8. Bisect Mk to LMk and RMk, push them on Stack;

9. endif

10. endwhile

As shown in Algorithm 4.4, the solver of global optimization for set inversion via

zonotope geometry searches the biggest control invariant zonotope starting from an ini-

tial zonotope derived from an initial interval matrix M. The zonotope inclusion of each

family of zonotopes represented by MkBm is passed to the solver of set inversion via

zonotope geometry for the test of control invariance with the related local stabilizing

feedback control law. It is worthy to note that the complexity and the volume of the

obtained optimal control invariant zonotope Z is closely related to the dimension and

the value of the selected initial interval matrix M. Furthermore, other kinds of local

stabilizing feedback control laws can be applied as well because the solver of set inver-

sion via zonotope geometry is applicable to a whatever nonlinear autonomous system

with first-order differentiability for deriving its centered inclusion function.
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Taking the highly nonlinear model of a Continuous Stirred-Tank Reactor (CSTR)

(Limon et al., 2003; Magni et al., 2001) as an example, assuming constant liquid volume,

the CSTR for an exothermic, irreversible reaction, A → B, is described by the following

dynamic model based on a component balance for the reactant A and an energy balance:{
ĊA = q

V (CAf − CA)− k0 exp(− E
RT )CA,

Ṫ = q
V (Tf − T ) + (−MH)

ρCp
k0 exp(− E

RT )CA + UA
V ρCp

(Tc − T ),
(4.19)

where CA is the concentration of A in the reactor, T is the reactor temperature,

and Tc is the temperature of the coolant stream. The constraints are 280K ≤ Tc ≤
370K, 280K ≤ T ≤ 370K and 0 ≤ CA ≤ 1mol/l. The objective is to regulate

CA and T by manipulating Tc. The nominal operating conditions, which correspond

to an unstable equilibrium Ceq
A = 0.5mol/l, T eq = 350K, T eq

c = 300K are: q =

100l/min,CAf = 1mol/l, Tf = 350K, V = 100l, ρ = 1000g/l, Cp = 0.239J/gK,

M H = −5× 104J/mol, E/R = 8750K, k0 = 7.2× 1010min−1, UA = 5 × 104J/minK.

The nonlinear discrete-time state-space model is obtained by defining the state vector

x = [CA − Ceq
A (T − T eq)/100]T , the manipulated input u = (Tc − T eq

c )/100 and by

discretizing the ODE with a sampling time M t = 0.03min using the Euler method,

which is the following discrete-time model:
x1(k+1)=x1(k)+0.03( q

V
(CAf−(x1(k)+Ceq

A ))−k0 exp(− E
R(100x2(k)+Teq)

)(x1(k)+Ceq
A ))

x2(k+1)=x2(k)+0.0003( q
V

(Tf−(100x2(k)+T eq))+
(−MH)

ρCp
k0 exp(− E

R(100x2(k)+Teq)
)(x1(k)+

Ceq
A )+ UA

V ρCp
(100u+T eq

c −(100x2(k)+T eq))),

(4.20)

A local stabilizing feedback control law u = [−0.0690 − 4.3387]x is designed in

advance according to the linearized model and the LQ method (Magni et al., 2001).

With the designed local stabilizing feedback control law, a control invariant zonotope

Z =
[

0.03 −0.01 0.02 0
0.01 0.01 0 0.02

]
B4 is obtained through the solver of global optimiza-

tion via zonotope geometry, where the initial searching interval matrix is selected to

be M =
[

[0,0.04] [-0.04,0]
[0,0.04] [0, 0.04]

]
; the bound of error tolerance for global optimization is

selected to be ε = 0.005 while the bound of error tolerance for set inversion is selected

to be ε = 0.05. The optimized zonotope can be demonstrated geometrically to be

control invariant, just as shown in Fig. 4.10.
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Figure 4.10: The optimized control invariant zonotope

4.3 Nonlinear MPC with Compulsory Contractive Con-

straint

Similar to linear contractive MPC with compulsory contractive constraint addressed

in Chapter 3, the main feature of nonlinear contractive MPC with compulsory con-

tractive constraint is also the imposed contractive constraint, usually in the form of

contractive norms of the state vector. However, feasible control horizons can hardly be

obtained analytically via local controllability analysis or numerically via linear matrix

inequalities and the resulting constrained optimizations are mostly non-convex because

of the nonlinearity of the system concerned. In the following subsections, the nonlin-

ear numerical tool of classical interval analysis is applied to confront such tough issues

encountered in nonlinear contractive MPC with compulsory contractive constraint.

4.3.1 Problem Statement

Assume that the constrained nonlinear discrete-time system considered is described

by the following state-space model:

x(k + 1) = f(x(k),u(k)), k = 0, 1, · · · , (4.21)
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where x(k) ∈ X ⊂ Rn is a vector of n state variables and X is a compact set containing

the origin to constrain the state; u(k) ∈ U ⊂ Rm is a vector of m process inputs or

manipulated variables and U is a compact set containing the origin to constrain the

control. The control target is to drive the system state to the origin asymptotically and

the control inputs are to be obtained iteratively via the following constrained open-loop

optimization:

J(x(k), {u(k + i|k)}Nc−1
i=0 ) = min

{uk+i|k∈U}Nc−1
i=0

[x(k + Nc|k)T P0x(k + Nc|k) +

Nc−1∑
i=1

xT (k + i|k)Qx(k + i|k) +
Nc−1∑
i=0

(u(k + i|k))T Ru(k + i|k)] (4.22)

subject to {
x(k + i|k) ∈ X, i = 1, · · · , Nc − 1
|x(k + Nc|k)|p < α · |x(k|k)|p,

(4.23)

where Nc is the control horizon and | · |p is denoted to the p-norm; α ∈ (0, 1] is the

contractive parameter for the p-norm of the state vector (de Oliveira and Morari, 2000).

4.3.2 Feasible Control Horizons via Set Inversion

The key issue of nonlinear contractive MPC with compulsory contractive constraint

is also to find a feasible control horizon Nc that renders |x(k + Nc|k)|p ≤ |x(k|k)|p as

well as x(k+ i|k) ∈ X, i = 1, · · · , Nc−1, which can be transformed to be a set inversion

problem in classical interval analysis, i.e., for a given Nc, it is a feasible control horizon if

the solution set for the admissible control sequence πu = {u(k|k),u(k+1|k), · · · ,u(k+

Nc − 1|k)} satisfying all the imposed constraints is not empty. Then the solver of set

inversion via interval analysis illustrated in Algorithm 4.1 can be applied directly to

see whether the solution set for the selected control horizon with a given bound of error

tolerance ε is empty or no: if the solution set is empty, the control horizon should be

prolonged for another test; if the solution set is not empty, then the selected control

horizon is feasible for all the imposed constraints including the imposed compulsory

contractive constraint.

4.3.3 Nonlinear Contractive MPC via Global Optimization

Once a feasible control horizon Nc has been obtained by the solver of set inver-

sion via interval analysis, the resulting constrained open-loop optimization can also be
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solved by the solver of global minimization via interval analysis (Wan et al., 2004b),

as addressed in Algorithm 4.2. The overall control scheme of the nonlinear contractive

MPC as well as the transferred feasibility test for a feasible control horizon is illustrated

in Algorithm 4.5.

Algorithm 4.5: Nonlinear MPC With Compulsory Contractive Constraint

In: x(0), α); Out: x(k)

1. Get the current state x(k);

2. if x(k) = 0

3. Stop;

4. else

5. Nc = 1, signf = 0;

6. while (signf = 0);

7. [signf , πOptimal
u ] = feasibletest(Nc);

8. Nc := Nc + 1;

9. endwhile

10. Apply πOptimal
u to the system;

11. endif

12. Return to 1 and circulate.

As shown in Algorithm 4.5, the feasibility test is an iterative algorithm with the

inherent transferred function feasibletest(Nc), which is to be solved via the solver

of set inversion via interval analysis. The initial control horizon Nc is set to be 1 and

the initial feasible sign signf is set to be 0, which stands for unfeasible cases. If the

feasible test demonstrates that there exists a feasible control sequence πu satisfying

all the imposed constraints, the transferred function renews the feasible sign signf

to be 1 and returns an optimal feasible control sequence πOptimal
u by the solver of

global minimization via interval analysis. Otherwise, the function feasibletest(Nc)

maintains the former value of the feasible sign signf and increases the control horizon

Nc for another feasibility test.
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4.3.4 Example

Consider the constrained nonlinear discrete-time system described by the state-

space model (Grimm et al., 2004):{
x1(k + 1) = x1(k)(1− u(k))
x2(k + 1) = u(k)

√
x2

1(k) + x2
2(k),

(4.24)

where x1(0) = 2, x2(0) = 2 and the control target is to drive the system state to the ori-

gin with the imposed control constraint u ∈ [0, 1] and the state constraint |x|∞ ∈ [−3, 3].

Using the control algorithm in Algorithm 4.5, the control process for the system is shown

in Fig. 4.11, where the system states x1, x2 are being stabilized asymptotically as time

goes on.

Figure 4.11: Nonlinear MPC with compulsory contractive constraint

4.4 Nonlinear MPC with A Contractive Sequence of Con-

trollable Sets

This section extends linear contractive MPC with a contractive sequence of con-

trollable sets discussed in Chapter 3 to nonlinear contractive MPC with a contractive
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sequence of controllable sets, where one-step controllable sets of the constrained non-

linear discrete-time system are to be computed in advance on the basis of the solver of

set inversion via interval analysis.

4.4.1 Problem Statement

The system to be considered is described by the following constrained nonlinear

discrete-time state-space model:

x(k + 1) = f(x(k),u(k)), k = 0, 1, · · · , (4.25)

where x(k) ∈ X ⊂ Rn is a vector of n state variables and X is a compact set containing

the origin; u(k) ∈ U ⊂ Rm is a vector of m control inputs and U is a compact set

containing the origin. The domains of X and U are assumed to be described by boxes

X and U, i.e., every component of the vectors is an interval. The control target is to

drive the system from the initial state x(0) to the origin asymptotically. The dual-mode

approach of MPC is adopted here: at first, the one-step control deriving from contrac-

tive MPC drives the system state into a selected terminal control invariant set T; then

the related local stabilizing feedback control law is applied instead to drive the system

state to the origin asymptotically. Assume that all controllable sets Ki(X, T), i = 1, · · ·
within the constrained state space have been obtained by computing one-step control-

lable sets recursively, then the one-step control inputs of nonlinear contractive MPC

with a contractive sequence of controllable sets can be obtained iteratively by solving

the following open-loop optimization:

min
u(k|k)∈U

[xT (k + 1|k)Qx(k + 1|k) + uT (k|k)Ru(k|k)] (4.26)

subject to

x(k + 1|k) ∈ Ki−1(X, T), (4.27)

where x(k) ∈ Ki(X, T), but x(k) does not belong to Ki−1(X, T); Q and R are weighted

positive definite matrices; and uOptimal(k|k) is the resulting optimal one-step control

input. The terminal control invariant set T can be designed in advance to be a control

invariant polytope along with a local stabilizing feedback control law u = kx (Cannon

et al., 2003).
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4.4.2 The Computation of Controllable Sets via Set Inversion

Assume that the terminal control invariant set T is designed to be a control invari-

ant polytope, then an inner approximation Σ− of the one-step controllable set K(X, T)

can be computed directly via an interval-based branch-and-bound algorithm based on

the solver of set inversion via interval analysis, which is listed in Algorithm 4.6, where

Σ− stores an inner approximation of K(X, T) as a union of interval vectors.

Algorithm 4.6: Controllable Sets Via Set Inversion

In: T,X,U, ε; Out: Σ−

1. Initialize Stack 1 = X, Σ− = ∅;

2. while Stack 1 6= ∅

3. Pop out a Xi from Stack 1;

4. Compute f(Xi,U);

5. if f(Xi,U) ∩ T = ∅

6. Discard Xi and return to 2;

7. endif

8. Initialize Stack 2 = U;

9. while Stack 2 6= ∅

10. Pop out a Uj from Stack 2;

11. Compute f(Xi,Uj);

12. if f(Xi,Uj) ∩ T = ∅

13. Discard Uj and return to 9;

14. elseif f(Xi, Mid(Uj)) ⊆ T

15. Σ− = Xi ∪ Σ− and return to 2;

16. elseif Width(Uj) ≤ ε, then discard Uj and return to 9;

17. else

18. Bisect Uj to LUj , RUj, push them on Stack 2 and return to 9;

19. endif

20. endwhile

21. if Width(Xi) ≤ ε, then Σ+ := Xi ∪ Σ+ and return to 2;

22. else

23. Bisect Xi to LXi and RXi, push them on Stack 1 and return to 2;
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24. endif

25. endwhile

As shown in Algorithm 4.6, if f(Xi,U)∩T = ∅, then for all u ∈ U, it is impossible

to drive the state Xi to the terminal control invariant set T at the next step, so Xi

does not belong to the one-step controllable set and it is to be discarded in Step 6;

however, only a part of U is tested in Step 12, i.e., f(Xi,Uj)∩T = ∅, so for all Uj , it is

impossible to drive the state Xi to the terminal set T at the next step, then Uj is to be

discarded instead in Step 13. On the contrary, if there exists a control vector Mid(Uj)

that renders f(Xi, Mid(Uj)) ⊆ T, then the subbox Xi can be driven to the terminal

control invariant set T via an admissible control vector Mid(Uj) at the next step, which

signifies that Xi belongs to the one-step controllable set and it is to be stored in Σ−. If

no judgement can be made for Xi or Uj and the widths of them are beyond the given

bound of error tolerance ε, just as in Step 16 and 21, they are to be discarded as well;

otherwise, Xi or Uj is to be bisected further for a finer judgement, just as shown in

Step 18 and 23. It is worthy to note that the bisection of the admissible state space

and the bisection of the admissible control space are separated by two nested loops in

Algorithm 4.6, which is different from the published algorithm in (Bravo et al., 2005)

where the admissible state space and the admissible control space were combined to be

bisected together and extra treatments of the subboxes of the admissible domain were

needed after each bisection and selection of the admissible state space.

4.4.3 One-step Control via Global Optimization

Once all one-step controllable sets Kj(X, T)(j = 1, · · · , N) within the constrained

state space have been obtained, the controllability of any initial state can be judged

accordingly. Assume that x(0) ∈ KN (X, T), i.e., the initial state is controllable to

the designed terminal set T in finite steps, then the nonlinear contractive MPC with

a contractive sequence of controllable sets is illustrated in Algorithm 4.7, where the

solver of global optimization via interval analysis in Algorithm 4.2 is applied to solve

the corresponding constrained nonlinear optimization problem.

Algorithm 4.7:One-step Control Algorithm Via Controllable Sets

In: x(0), Ki(X, T); Out: uOptimal(k|k),x(k)
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1. Get the current state x(k);

2. if x(k) ∈ T

3. Switch to the related local stabilizing feedback control law;

4. else

5. Find the i: i = minj=1,··· ,N{x(k) ∈ Kj(X, T)};

6. Compute uOptimal(k|k) with the contractive constraint x(k + 1|k) ∈ Ki−1(X, T);

7. Apply uOptimal(k|k) to the system;

8. endif

9. Return to 1 and repeat.

4.4.4 Example

The illustrative example considered is described by the following state-space model

(Cannon et al., 2003):{
x1(k + 1) = x1(k) + 0.1x2(k) + 0.1[µ + (1− µ)x1(k)]u(k)
x2(k + 1) = 0.1x1(k) + x2(k) + 0.1[µ− 4(1− µ)x2(k)]u(k),

(4.28)

where µ = 0.9, the control is constrained to |u| ≤ 2 and the state variables are con-

strained to |x|∞ ≤ 2. The terminal set T is designed to be a control invariant polytope

along with a local stabilizing feedback control law u = kx, where k = [−1.2131−1.2128]

(Cannon et al., 2003): 
0.8190 −1.9655
−0.8199 1.9655
3.033 3.033
−3.033 −3.033

x ≤


1
1
1
1

 . (4.29)

The selected terminal set T along with the local stabilizing feedback control law u = kx

can be demonstrated geometrically to be control invariant by using the solver of set

inversion via zonotope geometry, where every sub-zonotope is control invariant under

the related local stabilizing feedback control law, just as shown in Fig. 4.12.

The inner approximation of the first-step controllable set K(X, T) computed via the

interval-based algorithm in Algorithm 4.6 is a union of interval vectors, just as shown

in Fig. 4.13.
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Figure 4.12: The geometrical demonstration of control invariance

Figure 4.13: The first-step controllable set via classical interval analysis
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The following-step controllable sets can be computed iteratively with the renewed

terminal set T according to the interval-based algorithm in Algorithm 4.6 and the inner

approximation of the maximal robust controllable set with the bound of error tolerance

ε = 0.05 is reached at the 41th step, which is shown in Fig. 4.14.

Figure 4.14: The inner approximation of the maximal controllable set

The one-step control is to drive the state contractively along the computed control-

lable sets to the selected terminal control invariant set T based on the control algorithm

in Algorithm 4.6 and then the related local stabilizing feedback control law is applied

instead to drive the state asymptotically to the origin. Assume that the initial state

of the nonlinear system is at x(0) = (1.9,−1.5), the resulting control process of the

dual-mode approach of nonlinear contractive MPC with a contractive sequence of con-

trollable sets is shown in Fig. 4.15.

It can be seen from Fig. 4.15 that the one-step control approach based on the com-

puted controllable sets as well as the strategy of contractive MPC with unit control

horizon is guaranteed to be feasible and stable, i.e, the system can be driven contrac-

tively along the computed controllable sets to the selected terminal control invariant

set.
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Figure 4.15: Nonlinear MPC with a contractive sequence of controllable sets

4.5 Summary

Classical interval analysis and zonotope geometry have been introduced in this

chapter. The solver of set inversion via interval analysis has been extended to set

inversion via zonotope geometry, which has been further applied to test set invariance

in constrained control. The solver of global optimization for set inversion via zonotope

geometry has also been proposed to design a control invariant zonotope of the maximal

volume in a geometric way. The solver of set inversion via interval analysis has been

applied to find a feasible control horizon and compute controllable sets in nonlinear

contractive MPC with compulsory contractive constraint and nonlinear MPC with a

contractive sequence of controllable sets, respectively. The solver of global optimization

via interval analysis has been applied to compute optimal one-step control inputs in

both nonlinear contractive MPC with compulsory contractive constraint and nonlinear

contractive MPC with a contractive sequence of controllable sets.
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Chapter 5

Nonlinear Robust Contractive

MPC via Modal Interval Analysis

As addressed in Chapter 4, classical interval analysis can be applied to compute

controllable sets of constrained nonlinear discrete-time systems, where the state space

and the control space are described by corresponding classical interval vectors or boxes.

However, these two interval vectors have different modalities: for a subbox of the ad-

missible state space, it belongs to a controllable set if and only if for all states within

the subbox there always exists an admissible control input that can drive them to the

selected terminal set; for a subbox of the admissible control space, it is a feasible con-

trol domain if and only if there exists one value within the subbox which can drive the

concerned subbox of the admissible state space to the selected terminal set. Classical

interval analysis cannot distinguish these two types of physical interval vectors and

denotes them uniformly. Additional local searches and skills are needed in the classical

interval-based algorithm for computing controllable sets and thus the computation of

controllable sets there is not in a directly semantic and strictly mathematical way. Fur-

thermore, it would be more difficult to organize and interpret the computation of robust

controllable sets for constrained nonlinear uncertain discrete-time systems semantically

since another interval vector with its corresponding modality for characterizing the un-

certainty is concerned as well.

This chapter applies an extended interval analysis called modal interval analysis to

the computation of robust controllable sets for general constrained nonlinear uncertain
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discrete-time systems, where the interval vector for the admissible state space, the in-

terval vector for the admissible control space and the interval vector for the uncertainty

are all considered as modal interval vectors with corresponding modalities. The chapter

is organized as follows: modal interval analysis along with its solvers of quantified set

inversion and constrained minimax optimization is introduced in a comparative way

relative to classical interval analysis in Section 5.1; the generalized solver of multi-

dimensional quantified set inversion is applied to compute robust controllable sets and

the proposed solver of constrained minimax optimization is applied to compute one-step

control inputs for nonlinear robust contractive MPC of general constrained nonlinear

uncertain discrete-time systems in Section 5.2.

5.1 Modal Interval Analysis

Modal interval analysis is an extension of classical interval analysis obtained by

differentiating the existential and universal modalities of physical intervals encountered

in practical problems. The following subsections give a comprehensive and tutorial

introduction of modal interval analysis in a comparative way relative to classical inter-

val analysis and the solvers of quantified set inversion and constrained minimax opti-

mization, where modal interval analysis is treated as an extension of classical interval

analysis in modality, inclusion, semantics and rational.

5.1.1 The Initiative of Modal Intervals — Modal Extension

Physical intervals encountered in practical problems have two modalities: there

exists a value in [a, b](a ≤ b) that possesses a property or some properties concerned

and all values in [a, b](a ≤ b) possess a property or some properties concerned. Classical

interval analysis cannot distinguish these two types of physical intervals and denotes

them as [a, b](a ≤ b) uniformly (Jaulin et al., 2001). Modal interval analysis does

distinguish these two types of physical intervals and denotes them differently: [a, b]∗(a ≤
b) for those proper intervals that only require the existence of a value in the domain

of a ≤ x ≤ b to possess a property or some properties concerned; and [b, a]∗(a ≤ b) for

those improper intervals that require all values in the domain of a ≤ x ≤ b to possess

a property or some properties concerned, where [a, b]∗ and [b, a]∗ are denoted to modal
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intervals1. The concept of modal intervals is similar to the concept of objects in C++

programming since a modal interval contains not only a purely numerical interval, but

also a physical property of the numerical interval. A modal interval [a, b]∗ is therefore

a pair of a classical interval and a corresponding modality (Gardenes et al., 2001), i.e.,

[a, b]∗ := (Prop([a, b]∗), Q([a, b]∗)) =
{

([a, b],∃) if a ≤ b
([b, a],∀) if a ≥ b,

(5.1)

where Prop([a, b]∗) = [min{a, b},max{a, b}] is the classical interval domain and Q([a, b]∗)

∈ {∀,∃} is the modality of [a, b]∗. The lower and upper bounds of [a, b]∗ are denoted

to be Lb([a, b]∗) = a and Ub([a, b]∗) = b, respectively. The operator Dual is to change

the modality of a modal interval, i.e., Dual([a, b]∗) = [b, a]∗. It is interesting to note

that classical intervals are often treated implicitly as proper intervals with the modal-

ity of ∃ in classical interval analysis before the concept of modal intervals was proposed.

Accordingly, the modal interval vector X∗ ∈ I∗(Rn) is denoted to a vector whose

components are all modal intervals, where I∗(Rn) is denoted to the set of all n-

dimensional modal interval vectors. X∗ is usually divided into two sub-vectors ac-

cording to the modality of every component:

X∗ = [X∗
p,X

∗
i ], (5.2)

where X∗
p is composed of proper intervals with the modality ∃ and X∗

i is composed of

improper intervals with the modality ∀. The basic operation of bisecting a classical

interval vector can also be extended to modal interval vectors. Taking the modal

interval vector X∗ = [a1, b1]∗× · · ·× [an, bn]∗ as an example, its width is denoted to be:

Width(X∗) = max
i=1,··· ,n

|ai − bi|, (5.3)

and the index j is denoted to be:

j = min
i=1,··· ,n

{i|(|ai − bi|) = Width(X∗)}, (5.4)

then the bisection Bisect(X∗) returns two sub-modal interval vectors LX∗ and RX∗:{
LX∗ := [a1, b1]∗ × · · · × [aj ,

(aj+bj)
2 ]∗ × · · · × [an, bn]∗

RX∗ := [a1, b1]∗ × · · · × [ (aj+bj)
2 , bj ]∗ × · · · × [an, bn]∗.

(5.5)

1The notation for modal intervals in this thesis is different from the seminal paper on modal intervals

(Gardenes et al., 2001) and thus it only reflects the bias of the author for the introduction of modal

intervals and their relationships with classical intervals.
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5.1.2 The Quantifier of Modal Intervals — Inclusion Extension

The modality of a modal interval [a, b]∗ provides the quantifier for all properties pos-

sessed by the modal interval: for a proper interval, the quantifier is ∃x ∈ Prop([a, b]∗);

and for an improper interval, the quantifier is ∀x ∈ Prop([a, b]∗). The inclusion between

classical intervals [a, b] ⊆ [c, d](a ≤ b, c ≤ d) can be interpreted as: if there exists a

value x ∈ [a, b] that possesses a property or some properties concerned, then there also

exists a value y ∈ [c, d] that possesses the same property (properties). Accordingly,

the inclusion between modal intervals [a, b]∗ ⊆ [c, d]∗ can be extended to be (Gardenes

et al., 2001):

[a, b]∗ ⊆ [c, d]∗ ⇔ Pred([a, b]∗) ⊆ Pred([c, d]∗), (5.6)

where Pred([a, b]∗) and Pred([c, d]∗) are denoted to the sets of all properties possessed

by [a, b]∗ and [c, d]∗ with their corresponding quantifiers, respectively. The extended

modal interval inclusion of (5.6) can be further simplified as (Gardenes et al., 2001):

[a, b]∗ ⊆ [c, d]∗ ⇔ (a ≥ c, b ≤ d). (5.7)

This can be demonstrated by considering the quantifiers of modal intervals and the

definition of inclusion in (5.6). For example, for the case of a ≤ b, c ≤ d, i.e., their

modalities are both ∃, it is natural that [a, b]∗ ⊆ [c, d]∗ stands for a ≥ c, b ≤ d since if

there exists a value possessing a property or some properties in the domain of a ≤ x ≤ b,

there of course exists such a value possessing the same property(properties) in a bigger

domain c ≤ y ≤ d, e.g., [2, 3]∗ ⊆ [1, 5]∗; for the case of a ≥ b, c ≥ d, i.e., their modalities

are both ∀, it is also natural that [a, b]∗ ⊆ [c, d]∗ stands for a ≥ c, b ≤ d since if all

values in the domain of b ≤ x ≤ a possess a property or some properties, then obviously

all values in a smaller domain d ≤ x ≤ c possess the same property(properties), e.g.,

[5, 1]∗ ⊆ [3, 2]∗; for the case of a ≤ b, c ≥ d, i.e., Q([a, b]∗) = ∃ and Q([c, d]∗) = ∀, which

means that all values in the domain of d ≤ y ≤ c possess the property(properties)

possessed by an existential value in the domain of a ≤ x ≤ b, then a = b = c = d

must be satisfied and thus a ≥ c, b ≤ d is also satisfied; and finally, for the case of

a ≥ b, c ≤ d, i.e., Q([a, b]∗) = ∀ and Q([c, d]∗) = ∃, which means that there exists a

value in the domain of c ≤ y ≤ d possessing the property(properties) possessed by all

values in the domain of b ≤ x ≤ a, then [b, a] ∩ [c, d] 6= ∅ must be satisfied and thus
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a ≥ c, b ≤ d is satisfied as well.

The inclusion conditions between modal interval vectors can also be deduced accord-

ing to the definition of inclusion in (5.6) for each component of modal interval vectors.

Taking the 2-dimensional modal interval vectors [a, b]∗×[c, d]∗ ⊆ [e, f ]∗×[g, h]∗ as an ex-

ample, assume that [e, f ]∗ and [g, h]∗ are both proper modal intervals, then the inclusion

relationships between [a, b]∗× [c, d]∗ and [e, f ]∗× [g, h]∗ can be classified into four cases

according to the modalities of [a, b]∗ and [c, d]∗, i.e., Q([a, b]∗) = ∃ and Q([c, d]∗) = ∃;
Q([a, b]∗) = ∃ and Q([c, d]∗) = ∀; Q([a, b]∗) = ∀ and Q([c, d]∗) = ∃; Q([a, b]∗) = ∀ and

Q([c, d]∗) = ∀. These four cases are shown in Fig. 5.1(a), (b), (c) and (d), respectively,

where the white boxes denote the classic interval vector Prop([a, b]∗)×Prop([c, d]∗), the

yellow boxes denote the classic interval vector Prop([e, f ]∗)× Prop([g, h]∗) and the red

boxes denote their intersections.

Figure 5.1: The inclusion between two 2-dimensional modal interval vectors

Similar to classical intervals, the inner and outer roundings of [a, b]∗ ∈ I∗(R) for a

given scale are defined to be:{
Inn([a, b]∗) = [Right(a), Left(b)]∗

Out([a, b]∗) = [Left(a), Right(b)]∗,
(5.8)
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where Left(x) ≤ x, Right(x) ≥ x, x ∈ R. It is obvious that

Inn([a, b]∗) = Dual(Out(Dual([a, b]∗))), (5.9)

and thus the implementation of the inner rounding can be realized by the outer rounding

as well. According to the rule of inclusion in (5.7), the following relationship

Inn([a, b]∗) ⊆ [a, b]∗ ⊆ Out([a, b]∗) (5.10)

is always satisfied. However, the same relationship Inn([a, b]) ⊆ [a, b] ⊆ Out([a, b])

in classical interval analysis is not always satisfied since Inn([a, b]) is not always a

valid classical interval, e.g., Inn([1.346, 1.347]) for two-decimal digits is [1.35, 1.34] while

[1.35, 1.34] is not a valid classical interval (Gardenes et al., 2001).

5.1.3 The Function of Modal Intervals — Semantic Extension

Comparative to the interval function f(X) = [minx∈X f(x),maxx∈X f(x)],X ∈
I(Rn) defined in classical interval analysis, the modal interval function f∗(X∗) : I∗(Rn) →
I∗(R) is defined to be (Gardenes et al., 2001):

f∗(X∗) := [ min
xp∈Prop(X∗

p)
max

xi∈Prop(X∗
i )

f(xp,xi), max
xp∈Prop(X∗

p)
min

xi∈Prop(X∗
i )

f(xp,xi)]∗. (5.11)

Its counterpart modal interval function f∗∗(X∗) is defined to be:

f∗∗(X∗) := [ max
xi∈Prop(X∗

i )
min

xp∈Prop(X∗
p)

f(xp,xi), min
xi∈Prop(X∗

i )
max

xp∈Prop(X∗
p)

f(xp,xi)]∗. (5.12)

Naturally, f∗(X∗) degenerates to [minxp∈Prop(X∗
p) f(xp),maxxp∈Prop(X∗

p) f(xp)]∗ when all

components of X∗ are proper intervals, which is the case of f(X) in classical interval

analysis. Furthermore, f∗(X∗) = f∗∗(X∗) when all components of X∗ have the same

modality ∃ or ∀.

The semantic statement of (4.1) for f(X) ⊆ F (X) in classical interval analysis

can be extended accordingly for f∗(X∗) ⊆ F ∗(X∗) in modal interval analysis, i.e.,

f∗(X∗) ⊆ F ∗(X∗) is equal to (Gardenes et al., 2001):

∀xp ∈ Prop(X∗
p)Q(F

∗(X∗))z ∈ Prop(F ∗(X∗))∃xi ∈ Prop(X∗
i ) z = f(xp,xi). (5.13)

This is the fundamental semantic theorem in modal interval analysis since it provides

a semantic and physical interpretation for the modal interval function f∗(X∗) and its
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inclusion function F ∗(X∗) as well. The semantic theorem can be proved as follows

(Gardenes et al., 2001):

f∗(X∗) ⊆ F ∗(X∗) ⇔ ∀xp ∈ Prop(X∗
p)f

∗(xp,X∗
i ) ⊆ F ∗(X∗)

⇔ ∀xp ∈ Prop(X∗
p)

{
if F ∗(X∗) is proper, then Prop(f∗(xp,X∗

i )) ∩ Prop(F ∗(X∗)) 6= ∅
if F ∗(X∗) is improper, then Prop(F ∗(X∗)) ⊆ Prop(f∗(xp,X∗

i ))
⇔ ∀xp ∈ Prop(X∗

p)Q(F
∗(X∗))z ∈ Prop(F ∗(X∗))z ∈ Prop(f∗(xp,X∗

i ))

⇔ ∀xp ∈ Prop(X∗
p)Q(F

∗(X∗))z ∈ Prop(F ∗(X∗))∃xi ∈ Prop(X∗
i ) z = f(xp,xi).

It can be seen that the semantic statement of (5.13) in modal interval analysis

introduces both the quantifier ∀xp ∈ Prop(X∗
p) and the quantifier ∃xi ∈ Prop(X∗

i ) for

function variables while the semantic statement of (4.1) in classical interval analysis

only contains the quantifier ∀x ∈ X for all function variables. Such a semantic extension

is essential and complete in theory since many physical problems includes both ∀ and

∃ for function variables.

5.1.4 The Approximation of f ∗(X∗) — Rational Extension

Similar to the interval function f(X) in classical interval analysis, the modal in-

terval function f∗(X∗) can seldom be computed arithmetically since its bounds con-

cern complex minimax and maximin optimization problems. The inclusion function

F (X) computed directly through interval arithmetic is used instead in various solvers

of classical interval analysis to provide lower and upper bounds of the original in-

terval function f(X). Such a strategy can be extended to the computation of the

modal interval function f∗(X∗) as well. Modal interval arithmetic is defined to com-

pute an outer approximation f∗(X∗) ⊆ Outer(f∗(X∗)) as well as an inner approxi-

mation Inner(f∗(X∗)) ⊆ f∗(X∗) arithmetically and directly while the semantic the-

orem of (5.13) is applied to interpret such approximations. The outer approximation

Outer(f∗(X∗)) of f∗(X∗) can also be regarded as an inclusion function F ∗(X∗) of

f∗(X∗). In the following paragraphs, the rational extension for computing the inner

and outer approximations of the modal interval function f∗(X∗) arithmetically is to be

explained in detail.

Four elementary arithmetic operations (+,−,×,÷) between two modal intervals

[a, b]∗ and [c, d]∗ can be computed according to the definition of (5.11) or (5.12),
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i.e., f∗([a, b]∗, [c, d]∗) = [a, b]∗ � [c, d]∗(� = +,−,×,÷) or f∗∗([a, b]∗, [c, d]∗) = [a, b]∗ �
[c, d]∗(� = +,−,×,÷). It turns out that these two arithmetic extensions are equal

for (+,−,×,÷) and coincide with Kaucher’s complete arithmetic for classical intervals

(Kaucher, 1980). Such an arithmetic is adopted as modal interval arithmetic and the

semantic theorem of (5.13) is maintained to interpret the computation results of such

modal interval arithmetic.

Except for four elementary arithmetic operations, other operators between modal

intervals or one-variable operators for a modal interval can be computed according to

the definition of (5.11) or (5.12) as well. A general modal rational function can also be

computed by decomposing it into basic operations according to the syntactic tree of the

expression defining the function once all basic operators have been defined according

to the definition of (5.11) or (5.12). This is similar to the computation of natural inclu-

sion functions in classical interval analysis. Concretely, the modal rational *-extension

function fR∗(X∗) is defined to be the function from I∗(Rn) to I∗(R) determined by the

syntactic tree of the expression defining the function when all the operators concerned

are computed according to the definition of (5.11); the modal rational **-extension func-

tion fR∗∗(X∗) is defined to be the function from I∗(Rn) to I∗(R) determined by the

syntactic tree of the expression defining the function when all the operators concerned

are computed according to the definition of (5.12); the modal rational function fR(X∗)

is the function alike fR∗(X∗) or fR∗∗(X∗) when all its operators concerned are equal

according to the definitions of (5.11) and (5.12), i.e., fR(X∗) = fR∗(X∗) = fR∗∗(X∗).

Considering the modality, the frequency of occurrence and the monotonicity of every

component of X∗ in f∗(X∗), the further interpretable relationship between f∗(X∗) and

fR(χ∗) exists, i.e.,

f∗(X∗) ⊆ fR(χ∗), (5.14)

where χ∗ is transformed from X∗ according to the properties of its components. Then

the generally uncomputable f∗(X∗) can be approximated by the arithmetically com-

putable fR(χ∗) with the semantic interpretation of (5.13).

Approximations of f∗(X∗) obtained only by (5.14) are generally over-estimated due

to the potential multi-occurrence of some components of X∗. The technique of the
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branch-and-bound was introduced to compute more precise inner and outer approxi-

mations of f∗(X∗) (Herrero et al., 2005):

[ min
j={1,··· ,m}

max
k={1,··· ,n}

ajk, max
j={1,··· ,m}

min
k={1,··· ,n}

bjk]∗ ⊆ f∗(X∗), (5.15)

[ min
j={1,··· ,m}

max
k={1,··· ,n}

cjk, max
j={1,··· ,m}

min
k={1,··· ,n}

djk]∗ ⊇ f∗(X∗), (5.16)

where [ajk, bjk]∗ = Inn(fR(x∗pj
,X∗

ik
)); [cjk, djk]∗ = Out(fR(X∗

pj
,x∗ik)); {X∗

p1
, · · · , X∗

pm
}

is a partition of X∗
p and x∗pj

∈ Prop(X∗
pj

) for j = {1, · · · ,m}; {X∗
i1

, · · · ,X∗
in
} is a

partition of X∗
i and x∗ik ∈ Prop(X∗

ik
) for k = {1, · · · , n}; Inn(fR(x∗pj

,X∗
ik

)) is obtained

through inner roundings of every modal interval and every operator concerned when

computing fR(x∗pj
,X∗

ik
); and Out(fR(X∗

pj
,x∗ik)) is obtained through outer roundings

of every modal interval and every operator concerned when computing fR(X∗
pj

,x∗ik)

(Herrero et al., 2005). The precision of the inner and outer approximations of f∗(X∗)

is closely related to the partitions of X∗
p and X∗

i . Obviously, better approximations of

f∗(X∗) can be obtained with finer partitions of X∗
p and X∗

i .

5.1.5 The Solver of Quantified Set Inversion

In contrast to the computation of f∗(X∗) with the known domain X∗, the opposite

problem is to find the feasible solution in X∗ with the known codomain [a, b]∗, i.e., to

find all X∗ = [X∗
p,X

∗
i ] within an initial admissible domain X∗ that satisfies

∀xp ∈ Prop(X∗
p)Q([a, b]∗)z ∈ Prop([a, b]∗)∃xi ∈ Prop(X∗

i ) z = f(xp,xi). (5.17)

When the modality of all components of X∗ is ∃, this problem degenerates to be a tradi-

tional set inversion problem discussed in classical interval analysis; when the modality

of all components of X∗ is not uniformly ∃, this problem generalizes to be a quanti-

fied set inversion problem discussed in modal interval analysis (Herrero et al., 2005).

Many physical problems can be formulated mathematically as a quantified constraint

satisfaction problem and then the solver of quantified set inversion can be applied to

solve them. For example, to find the one-step robust controllable set K̃(X, T) is a

typical quantified constraint satisfaction problem and then K̃(X, T) can be obtained

numerically via the solver of quantified set inversion. Concretely, the problem of find-

ing the subset Σx ⊆ Prop(X∗) ⊆ I(Rn) within which there exists a control input
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u ∈ Prop(U∗) ⊆ I(Rm) to render the scalar function f(x,w,u) ∈ Prop([a, b]∗) for all

uncertain cases w ∈ Prop(W∗) ⊆ I(Rl) can be solved using the solver of 1-dimensional

quantified set inversion with the function f∗(X∗
p,W

∗
p,U

∗
i ), where X∗

p is a proper inter-

val with X∗
p = X∗, W∗

p is also a proper interval with W∗
p = W∗, U∗

i is an improper

interval with U∗
i = U∗ and the scalar function f(x,w,u) is usually to describe the

selected terminal set T as an ellipsoid. The solver of 1-dimensional quantified set inver-

sion for finding the inner and outer approximations of Σx with a given bound of error

tolerance ε is illustrated in Algorithm 5.1.

Algorithm 5.1: 1-Dimensional Quantified Set Inversion

In: [a, b]∗,X∗
p, ε; Out: Σ−, Σ+

1. Initialize Stack = X∗
p and Σ− = Σ+ = ∅;

2. while Stack 6= ∅

3. Pop out a X∗
p from Stack;

4. Compute Inner(f∗(Dual(X∗
p),W∗

p,U∗
i )) ⊆ f∗(Dual(X∗

p),W∗
p,U∗

i );

5. if Inner(f∗(Dual(X∗
p),W∗

p,U∗
i )) * [a, b]∗, then discard X∗

p and return to 2;

6. Compute Outer(f∗(X∗
p,W∗

p,U∗
i )) where f∗(X∗

p,W∗
p,U∗

i ) ⊆ Outer(f∗(X∗
p,W∗

p,U∗
i ));

7. if Outer(f∗(X∗
p,W∗

p,U∗
i )) ⊆ [a, b]∗

8. Σ− := X∗
p ∪ Σ−;

9. elseif Width(X∗
p) ≤ ε

10. Σ+ := X∗
p ∪ Σ+;

11. else

12. Bisect X∗
p to LX∗

p, RX∗
p and push them on Stack;

13. endif

14. endwhile

As shown in Algorithm 5.1, X∗
p is the initial search domain for Σx; ε is the bound

of error tolerance beyond which modal interval vectors are not to be bisected fur-

ther; Σ− and Σ+ are to store the inner approximation and the neighboring set to

the solution set Σx with Width(X∗
p) ≤ ε, respectively. The inner approximation of

f∗(Dual(X∗
p),W

∗
p,U

∗
i ) and the outer approximation of f∗(X∗

p,W
∗
p,U

∗
i ) are computed in

Step 4 and Step 6 according to (5.15) and (5.16), respectively; if Inner(f∗(Dual(X∗
p),W

∗
p,

U∗
i )) * [a, b]∗, then f∗(Dual(X∗

p),W
∗
p,U

∗
i ) * [a, b]∗ as well, which signifies ∃w ∈
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Prop(W∗
p)Q([b, a]∗)z ∈ Prop([a, b]∗)∀x ∈ Prop(Dual(X∗

p)) ∀u ∈ Prop(U∗
i ) z 6= f(x,w,u)

according to the opposite statement of the semantic theorem in (5.13), thus X∗
p does not

belong to the solution set Σx and it is to be discarded in Step 5; if Outer(f∗(X∗
p,W

∗
p,U

∗
i ))

⊆ [a, b]∗, then f∗(X∗
p,W

∗
p,U

∗
i ) ⊆ [a, b]∗, which signifies ∀x ∈ Prop(X∗

p)∀w ∈ Prop(W∗
p)

Q([a, b]∗)z ∈ Prop([a, b]∗)∃u ∈ Prop(U∗
i ) z = f(x,w,u) according to the semantic the-

orem in (5.13), thus X∗
p belongs to the solution set Σx and it is to be added into the

inner approximation Σ− of the solution set in Step 8; if no judgement can be made in

either Step 5 or Step 7, and the width of the modal interval vector X∗
p is not bigger

than the bound of error tolerance ε, it is to be added into the boundary Σ+ of the

solution set in Step 10; and finally, if no judgement can be made in either Step 5 or

Step 7, and Width(X∗
p) is bigger than the bound of error tolerance ε, it is to be bisected

into two sub-modal interval vectors LX∗
p, RX

∗
p in Step 12 and both of them are to be

pushed on Stack for further judgement.

The solver of 1-dimensional quantified set inversion in Algorithm 5.1 can be ex-

tended to f∗(X∗) : I∗(Rn) → I∗(Rm), where corresponding inclusion and exclusion

judgements between modal interval vectors are considered instead. Taking the 2-

dimensional quantified set inversion problem as an example, the known codomain

of the 2-dimensional function f(x,w,u) = f1(x,w,u) × f2(x,w,u) is assumed to be

[a, b]∗ × [c, d]∗, where [a, b]∗ and [c, d]∗ are also assumed to be proper modal intervals.

The problem is still to find the subset Σx ⊆ Prop(X∗) ⊆ I(Rn) within which there

exists a control input u ∈ Prop(U∗) ⊆ I(Rm) to render the 2-dimensional function

f(x,w,u) ∈ Prop([a, b]∗)× Prop([c, d]∗) for all uncertain cases w ∈ Prop(W∗) ⊆ I(Rl).

The extended solver of 2-dimensional quantified set inversion for finding the inner and

outer approximations of Σx with a given bound of error tolerance ε is illustrated in

Algorithm 5.2. Since the affirmative semantics for the solution set is the combina-

tion of the semantics for f∗1 ⊆ [a, b]∗ and f∗2 ⊆ [c, d]∗, thus Dual(U∗
i ) should occur

in one of f∗1 and f∗2 to ensure that there exists the same u ∈ Prop(U∗
i ) to render

f∗1 × f∗2 ⊆ [a, b]∗ × [c, d]∗ in Step 16 and Step 20. To require all u ∈ Prop(U∗
i ) to

satisfy f∗1 (X∗
p,W

∗
p, Dual(U

∗
i )) ⊆ [a, b]∗ or f∗2 (X∗

p,W
∗
p, Dual(U

∗
i )) ⊆ [c, d]∗ is strict and

thus U∗
i needs to be bisected in Step 25. Since f∗1 × f∗2 * [a, b]∗ × [c, d]∗ is equal to

f∗1 * [a, b]∗ or f∗2 * [c, d]∗, then the negative semantics for discarding modal interval

vectors is the direct combination of f∗1 * [a, b]∗ and f∗2 * [c, d]∗. However, the entire
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domain of U∗
i is tested in Step 5 and thus the corresponding X∗

p is to be discarded

in Step 6 while only a part of U∗
i is tested in Step 12 and thus only that part of

U∗
i is discarded instead in Step 13. It is worthy to note that the principle and the

structure of multi-dimensional quantified set inversion algorithm is similar to the 2-

dimensional case while only inclusion and exclusion judgements are performed between

higher-dimensional modal interval vectors.

Algorithm 5.2:2-Dimensional Quantified Set Inversion

In: [a, b]∗ × [c, d]∗,X∗
p,U∗

i , ε; Out: Σ−, Σ+

1. Initialize Stack 1 = X∗
p, Σ− = Σ+ = ∅;

2. while Stack 1 6= ∅

3. Pop out a X∗
p from Stack 1;

4. Compute Inner(f∗1 (Dual(X∗
p),W∗

p,U∗
i ))× Inner(f∗2 (Dual(X∗

p),W∗
p,U∗

i ));

5. if Inner(f∗1 (Dual(X∗
p),W∗

p,U∗
i ))× Inner(f∗2 (Dual(X∗

p),W∗
p,U∗

i )) * [a, b]∗ × [c, d]∗

6. Discard X∗
p and return to 2;

7. endif

8. Stack 2 = U∗
i ;

9. while Stack 2 6= ∅

10. Pop out a U∗
i from Stack 2;

11. Compute Inner(f∗1 (Dual(X∗
p),W∗

p, U∗
i ))× Inner(f∗2 (Dual(X∗

p),W∗
p, U∗

i ));

12. if Inner(f∗1 (Dual(X∗
p),W∗

p, U∗
i ))× Inner(f∗2 (Dual(X∗

p),W∗
p, U∗

i )) * [a, b]∗ × [c, d]∗

13. Discard U∗
i and return to 9;

14. endif

15. Compute Outer(f∗1 (X∗
p,W∗

p, U∗
i ))× Outer(f∗2 (X∗

p,W∗
p, Dual(U∗

i )));

16. if Outer(f∗1 (X∗
p,W∗

p, U∗
i ))× Outer(f∗2 (X∗

p,W∗
p, Dual(U∗

i ))) ⊆ [a, b]∗ × [c, d]∗

17. Σ− = Prop(X∗
p) ∪ Σ− and return to 2;

18. endif

19. Compute Outer(f∗1 (X∗
p,W∗

p, Dual(U∗
i )))× Outer(f∗2 (X∗

p,W∗
p, U∗

i ));

20. if Outer(f∗1 (X∗
p,W∗

p, Dual(U∗
i )))× Outer(f∗2 (X∗

p,W∗
p, U∗

i )) ⊆ [a, b]∗ × [c, d]∗

21. Σ− = Prop(X∗
p) ∪ Σ− and return to 2;

22. endif

23. if Width(U∗
i ) ≤ ε, then discard U∗

i and return to 9;

24. else
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25. Bisect U∗
i to LU∗

i , RU∗
i , push them on Stack 2 and return to 9;

26. endif

27. endwhile

28. if Width(X∗
p) ≤ ε, then Σ+ := Prop(X∗

p) ∪ Σ+ and return to 2;

29. else Bisect X∗
p to LX∗

p and RX∗
p, push them on Stack 1 and return to 2;

30. endif

31. endwhile

5.1.6 The Solver of Constrained Minimax Optimization

A general constrained minimax optimization problem can be formulated as:

min
x∈X0

max
y∈Y0

f(x,y),∀y ∈ Y0∃x ∈ X0 : g(x,y) ∈ C, (5.18)

where x ∈ X0 is usually referred to as the decision variable(s) and y ∈ Y0 is usually

denoted to uncertain parameters or additive disturbances; and then ∀y ∈ Y0∃x ∈
X0 : g(x,y) ∈ C is actually a constraint imposed only on x. Various application

problems concerning control and decision can be cast in the framework of constrained

minimax optimizations. According to the definition of f∗ in (5.11), the minimax value

of minx∈X0 maxy∈Y0 f(x,y) is equal to Lb(f∗(X∗
p,X

∗
i )), where X∗

p = X∗,X∗
i = Y∗

and Prop(X∗) = X0, Prop(Y∗) = Y0. The constrained minimax optimization problem

(5.18) can thus be transformed to the computation of the lower bound of f∗(X∗
p,X

∗
i ),

which is addressed in Section 5.1.4. Furthermore, the constrained minimax opti-

mization should be performed over the feasible set Σx of the imposed constraint:

∀y ∈ Y0∀x ∈ Σx : g(x,y) ∈ C. So the solver of traditional set inversion should

be applied in advance to obtain this feasible set Σx. The detail of the proposed solver

of constrained minimax optimization is illustrated in Algorithm 5.3.

Algorithm 5.3: Constrained Minimax Optimization Algorithm

In: C,X0,Y0, ε; Out: Ω

1. Initialize Stack 1 = X0 and Σ− = ∅;

2. while Stack 1 6= ∅

3. Pop out a X from Stack 1;

4. Compute the natural inclusion function G(X,Y0) of g(x,y);
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5. if G(X,Y0) ∩ C = ∅, then X is discarded;

6. elseif G(X,Y0) ⊆ C, then Σ− = X ∪ Σ−;

7. elseif Width(X) ≤ ε, then X is discarded;

8. else Bisect X to LX, RX and push them on Stack 1;

9. endif

10. endwhile

11. Initialize Stack 2 = Σ− and a = +∞, b = −∞;

12. while Stack 2 6= ∅

13. Pop out a X from Stack 2;

14. if Lb(Out(fR(X∗
p,y))) < a where Prop(X∗

p) = X,y ∈ Y0, then a = Lb(Out(fR(X∗
p,y)));

15. if Lb(Inn(fR(x,Y∗
i ))) > b where x ∈ X, Prop(Y∗

i ) = Y0, then b = Lb(Inn(fR(x,Y∗
i )));

16. endwhile

17. Ω = {Xm|F (Xm,Y0) ∩ [a, b] 6= ∅,Xm ⊆ Σ−}.

As shown in Algorithm 5.3, an inner approximation Σ− of the feasible set Σx of

the imposed constraint ∀y ∈ Y0∀x ∈ Σx : g(x,y) ∈ C is obtained via the solver of set

inversion via classical interval analysis from Step 1 to Step 10; then an inclusion domain

[a, b] for the constrained minimax function, i.e., minx∈Σx maxy∈Y0 f(x,y) ∈ [a, b], can

be obtained through the process from Step 11 to Step 16, where local points x ∈ X

and y ∈ Y0 are applied to compute the lower and upper bounds of this constrained

minimax function. However, local searches for optimal points x ∈ X,y ∈ Y0 and

bisections of those boxes with Width(X) > ε can be performed further to obtain a

more precise inclusion domain. This inclusion domain is used in Step 17 to find any

potential and feasible Xm to be stored in Ω that might result in the overall minimax

optimization value.

5.2 Nonlinear Robust MPC with A Contractive Sequence

of Robust Controllable Sets

The solvers of quantified set inversion and constrained minimax optimization are

applied in nonlinear robust MPC with a contractive sequence of robust controllable sets,

where the solver of quantified set inversion is applied to compute corresponding robust

controllable sets with a clear semantic interpretation and the solver of constrained
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minimax optimization is applied to obtain feasible one-step control inputs underlying

robust contractive MPC in a guaranteed numerical way.

5.2.1 Problem Statement

The system to be considered is described by the following constrained nonlinear

discrete-time state-space model with parametric or additive uncertainty:

x(k + 1) = f(x(k),w(k),u(k)), k = 0, · · · , (5.19)

where x(k) ∈ X ⊂ Rn is a vector of n state variables and X is a compact set con-

taining the origin; w(k) ∈ W ⊂ Rl is a vector of l uncertain parameters or additive

disturbances; u(k) ∈ U ⊂ Rm is a vector of m control inputs and U is a compact set

containing the origin. The domains of X,W and U are assumed to be described by

boxes where every component of the vectors is an interval. Such a model represents

a general class of practical systems with constrained state and control as well as un-

certain parameters or additive disturbances. The control target is to drive the system

from the initial state x(0) to a sufficiently small region around the origin asymptoti-

cally. The dual-mode approach of model predictive control is adopted here: at first, the

one-step control deriving from contractive MPC with a contractive sequence of robust

controllable sets drives the system state into a selected terminal robust control invari-

ant set T; and then the related local stabilizing feedback control law is applied instead

to drive the system state asymptotically to a sufficiently small region around the origin.

Assume that all robust controllable sets K̃i(X, T), i = 1, · · · , N within the con-

strained state space have been obtained by computing one-step robust controllable sets

recursively, the controllability of the nonlinear system with uncertainty is obvious: the

system is robustly controllable to the terminal set T if the initial state is within the

maximal robust controllable set. The control inputs can be obtained through the strat-

egy of robust model predictive control with feasible unit control horizon when the state

is outside the selected terminal set T, i.e., the one-step control inputs are obtained by

solving the following one-step minimax optimization iteratively:

uOptimal(k|k) = arg min
u(k|k)∈U

max
w(k)∈W

[xT (k + 1|k)Qx(k + 1|k) +uT (k|k)Ru(k|k)] (5.20)
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subject to

x(k + 1|k) ∈ K̃i−1(X, T), (5.21)

where x(k) ∈ K̃i(X, T), but x(k) does not belong to K̃i−1(X, T); Q and R are weighted

positive definite matrices for the cost function; and uOptimal(k|k) is the obtained op-

timal one-step control input. This one-step control scheme differs from traditional

minimax configurations of robust model predictive control, in which the control hori-

zon is usually selected to be large enough to satisfy corresponding terminal constraints

and the resulting multi-step minimax optimizations usually require extensive compu-

tation. The feasibility and stability of the closed-loop system with the unit control

horizon can be guaranteed since the state is driven contractively along the computed

robust controllable sets to the selected terminal set. Once the state enters the terminal

set, a local stabilizing feedback control is applied instead to drive the system state to

a sufficiently small region around the origin.

5.2.2 The Computation of Robust Controllable Sets via Quantified

Set Inversion

Assume that the terminal set T is selected to be a robust control invariant set as

well as a polytope, the solver of 1-dimensional quantified set inversion cannot be ap-

plied to compute one-step robust controllable sets with a polytope as the terminal set

since usually a bounded polytope cannot be described analytically by one inequality.

Furthermore, the computed first-step robust controllable set via an interval-based algo-

rithm should be a union of interval vectors as well as a union of polytopes and generally

a union of interval vectors cannot be described analytically. Then the inclusion and

exclusion conditions between a modal interval vector and a polytope or a union of poly-

topes are concerned instead in the solver of multi-dimensional quantified set inversion.

The inclusion relationship between a multi-dimensional modal interval vector and a

multi-dimensional polytope or a union of multi-dimensional polytopes can be deduced

as well according to the principle of inclusion in modal interval analysis. Taking the

inclusion of a 2-dimensional modal interval vector in a 2-dimensional polytope as an

example, the inclusion relationships are shown in Fig. 5.2, where the modalities of the

2-dimensional modal interval vector correspond to the four cases in Fig. 5.1. Thus the

i-step robust controllable set K̃i(X, T)(i = 1, · · · ,∞) of a 2-dimensional system can be
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approximated recursively via the solver of 2-dimensional quantified set inversion start-

ing from an initial 2-dimensional polytope. The inner approximation of the maximal

robust controllable set K̃−
∞(X, T) within the constrained state space is reached when

K̃−
N+1(X, T) = K̃−

N (X, T) for some N and thus K̃−
∞(X, T) = K̃−

N (X, T).

Figure 5.2: An example of the inclusion of a modal interval vector in a polytope

5.2.3 One-step Robust Control via Constrained Minimax Optimiza-

tion

Once the inner approximations K̃−
i (X, T)(i = 1, · · · , N) of all the i-step robust

controllable sets within the constrained state space have been obtained via the solver

of quantified set inversion, robust controllability of any initial state can be judged ac-

cordingly. Assume that x(0) ∈ K̃−
N (X, T), i.e., the initial state is robustly controllable

to the selected terminal set T in finite steps, then the one-step control algorithm via

robust controllable sets is illustrated in Algorithm 5.4.

Algorithm 5.4: One-step Control Algorithm Via Robust Controllable Sets

In: x(0), K̃−
i (X, T); Out: uOptimal(k|k),x(k)

1. Get the current state x(k);
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2. if x(k) ∈ T

3. Switch to the related local stabilizing feedback control law;

4. else

5. Find the i: i = mini=1,··· ,∞{x(k) ∈ K̃−
i (X, T)};

6. Compute uOptimal(k|k) according to (5.20) with the state constraint (5.21);

7. Apply uOptimal(k|k) to the system;

8. end

9. Return to 1 and repeat.

According to Algorithm 5.4, the one-step control algorithm measures the current

state in Step 1 and then judges whether the system state has arrived in the selected

terminal set T in Step 2. The related local stabilizing feedback control law is applied

if the state has arrived in the selected terminal set; otherwise, the algorithm finds

the smallest robust controllable set to which the current state belongs in Step 5; the

one-step control scheme is formulated according to the strategy of robust model pre-

dictive control with unit control horizon in Step 6 and the optimal one-step control

input uOptimal(k|k) is computed via the proposed solver of constrained minimax opti-

mization illustrated in Algorithm 5.3. It can be seen from the following feasibility and

stability analysis that any feasible solution that satisfies the imposed state constraint

is an effective control input for the system because such a control input is sufficient

to guarantee the feasibility and stability of the closed-loop system. Thus any feasible

control input that satisfies the imposed state constraint can be applied instead in the

control algorithm to avoid extra efforts for obtaining the exact optimal control input

uOptimal(k|k) in Step 6.

5.2.4 Feasibility and Stability Analysis

The feasibility of the addressed one-step control approach means that there always

exists a control input u that can drive the system state from the current robust con-

trollable set K̃−
i (X, T) to the next robust controllable set K̃−

i−1(X, T). The feasibility

of the addressed one-step control approach for a 2-dimensional system is demonstrated

in Theorem 5.1.
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Theorem 5.1. For any x(k) ∈ K̃−
i (X, T), there always exists an admissible u(k) ∈

U ⊆ I(Rm) that renders x(k + 1) ∈ K̃−
i−1(X, T), i = 1, · · · ,∞ for all uncertain cases

w(k) ∈ W ⊆ I(Rl).

Proof. For all robust controllable sets K̃−
i (X, T)(i = 1, · · · ,∞) computed by

the solver of 2-dimensional quantified set inversion, if Prop(X∗
p) ⊆ K̃−

i (X, T), then

Outer(f∗1 (X∗
p,W

∗
p,U

∗
i ))× Outer(f∗2 (X∗

p,W
∗
p, Dual(U

∗
i ))) ⊆ K̃−

i−1(X, T) or Outer(f∗1
(X∗

p,W
∗
p, Dual(U

∗
i )))× Outer(f∗2 (X∗

p,W
∗
p,U

∗
i )) ⊆ K̃−

i−1(X, T) is satisfied, and accord-

ing to the semantic statement in (5.13), ∀x(k) ∈ Prop(X∗
p)∀w(k) ∈ Prop(W∗

p)∃x ∈
K̃−

i−1(X, T)∃u(k) ∈ Prop(U∗
i ) x(k + 1) = x, i.e., the addressed one-step control ap-

proach is always feasible. �

The initial control invariant set T is selected to be a robust control invariant set, then

K̃i−1(X, T) ⊆ K̃i(X, T) for all i = 1, · · · , N according to the property of robust control

invariant sets, i.e., the computed robust controllable sets are the inner approximations

of a series of contractive sets. Thus the feasibility of the addressed one-step control

approach leads to the stability of the addressed one-step control approach since the

control inputs are to drive the system state contractively along the computed robust

controllable sets to the selected terminal robust control invariant set. Once the system

state enters the selected terminal control invariant set, the related local feedback control

law is applied instead to drive the system state asymptotically to a sufficiently small

region around the origin.

5.2.5 Example

As an illustrative example for demonstrating the addressed one-step control of con-

strained nonlinear uncertain discrete-time systems with a contractive sequence of robust

controllable sets, the system to be considered is described by the following discrete-time

state-space model (Cannon et al., 2003):{
x1(k + 1) = x1(k) + 0.1x2(k) + 0.1[µ + (1− µ)x1(k)]u(k)
x2(k + 1) = 0.1x1(k) + x2(k) + 0.1[µ− 4(1− µ)x2(k)]u(k),

(5.22)

where the control input constraint is |u| ≤ 2 and the states are constrained to |x|∞ ≤ 2.

Different from the discussion in Chapter 4, the system parameter µ is assumed to be
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uncertain here: µ ∈ [0.85, 0.95]. The terminal set T is selected to be a robust control

invariant polytope along with a local stabilizing feedback control law u = kx, where

k = [−1.2131− 1.2128] (Cannon et al., 2003):
0.8190 −1.9655
−0.8199 1.9655
3.033 3.033
−3.033 −3.033

x ≤


1
1
1
1

 . (5.23)

The selected terminal set T along with the local stabilizing feedback control law u = kx

can be demonstrated geometrically to be robust control invariant by using the solver

of set inversion via zonotope geometry in Algorithm 4.3, where every sub-zonotope is

robust control invariant under the related local stabilizing feedback control law u = kx,

just as shown in Fig. 5.3.

Figure 5.3: The geometrical demonstration of robust control invariance

The inner approximation of the first-step robust controllable set K̃1(X, T) can be

computed via the solver of 2-dimensional quantified set inversion, where the initial ter-

minal set T is only a polytope. The computed inner approximation of the first-step

robust controllable set with the bound of error tolerance ε = 0.05 is shown in Fig. 5.4.
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Figure 5.4: The inner approximation of the first-step robust controllable set

The following-step robust controllable sets can be computed recursively starting

from the computed inner approximation of the first-step robust controllable set, where

the renewed terminal sets for computing the following-step robust controllable sets are

a union of interval vectors as well as a union of polytopes. The inner approximation

of the maximal robust controllable set with the bound of error tolerance ε = 0.05 is

reached when K̃−
48(X, T) = K̃−

49(X, T), which is shown in Fig. 5.5.

The dual-mode approach of model predictive control is adopted to control the sys-

tem, i.e., the addressed one-step control is to drive the system state contractively along

the obtained robust controllable sets to the selected terminal set T, and then the local

stabilizing feedback control law is applied instead to drive the system state asymptot-

ically to a sufficiently small region around the origin. Assume that the initial state

of the considered nonlinear system is x(0) = (1.75,−1.6), the resulting robust control

process of the dual-mode approach of model predictive control is shown in Fig. 5.4,

where the uncertain parameter µ is a random number series between 0.85 and 0.95

during the control process and Q = R = 1.

It can be seen from Fig. 5.6 that the addressed nonlinear robust contractive MPC
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Figure 5.5: The inner approximation of the maximal robust controllable set

Figure 5.6: The robust control process with x(0) = (1.75,−1.6)
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5.3 Summary

with a contractive sequence of robust controllable sets is guaranteed to be feasible

and stable, i.e, the system can be driven contractively along the computed robust

controllable sets to the selected robust control invariant set despite of an uncertain

parameter during the control process.

5.3 Summary

Modal interval analysis has been introduced in a comparative way relative to classi-

cal interval analysis, where every concept of modal interval analysis has been derived by

extending a counterpart concept of classical interval analysis and modal interval analy-

sis has been treated as an extension of classical interval analysis in modality, inclusion,

semantics and rational. The solver of 1-dimensional quantified set inversion via modal

interval analysis has been generalized to multi-dimensional cases for computing robust

controllable sets of constrained nonlinear uncertain discrete-time systems with a clear

semantic interpretation. An interval-based solver of constrained minimax optimization

has also been proposed to compute one-step control inputs for the addressed nonlinear

robust contractive MPC with a contractive sequence of robust controllable sets in a

reliable way.

80



Chapter 6

Nonlinear Robust Contractive

MPC via Hybrid Tools

Using modal interval analysis, robust controllable sets of constrained nonlinear un-

certain discrete-time systems can be computed with a clear semantic interpretation,

as demonstrated in Chapter 5. Based on the computed robust controllable sets as a

contractive sequence of sets, nonlinear robust contractive MPC with a contractive se-

quence of robust controllable sets can be formulated and it turns out to be a robust

MPC scheme with feasible unit control horizon and additional contractive constraint.

However, the contractive sequence of robust controllable sets are represented by unions

of interval vectors therein and thus extra efforts are required to judge the inclusion of the

measured state to a union of interval vectors during the real-time control process, which

increases the memory and computational burdens of the control task. Furthermore, the

burden of off-line computations for robust controllable sets grows exponentially with

the total dimension of the state space and the control space, which makes the compu-

tation of robust controllable sets of high-dimensional systems prohibitively heavy.

In order to improve the efficiency of nonlinear robust contractive MPC with a

contractive sequence of robust controllable sets addressed in Chapter 5, some additional

measures are to be taken in this chapter. First, the computed robust controllable sets

are to be approximated innerly by polytopes in Section 6.1. The simplified nonlinear

robust contractive MPC with a contractive sequence of polytopic robust controllable

sets is also discussed in Section 6.1. The structures of various constrained nonlinear
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uncertain discrete-time systems are to be explored further in Section 6.2 and 6.3 to

reduce the total dimension of the state space and the control space needed to be bisected

during the computation of polytopic robust controllable sets.

6.1 Nonlinear Robust MPC with A Contractive Sequence

of Polytopic Robust Controllable Sets

This section addresses the computation of polytopic robust controllable sets for a

general constrained nonlinear uncertain discrete-time system and provides a general

framework for nonlinear robust contractive MPC with a contractive sequence of poly-

topic robust controllable sets. It is an extension and simplification of Chapter 5 since

robust controllable sets are represented by polytopes rather than unions of interval

vectors. The idea of distinguishing the modalities of intervals in modal interval anal-

ysis is also used implicitly in the proposed algorithm for computing polytopic robust

controllable sets although the algorithm is in the form of classical interval analysis.

The proposed approach in this section can be treated as a most general framework

of nonlinear robust contractive MPC with a contractive sequence of polytopic robust

controllable sets for constrained nonlinear uncertain discrete-time systems.

6.1.1 Problem Statement

The system to be considered is described by the following constrained nonlinear

uncertain discrete-time state-space model:

x(k + 1) = f(x(k),w(k),u(k)), k = 0, · · · , (6.1)

where x(k) ∈ X ⊂ Rn is a vector of n state variables and X is a compact set containing

the origin; w(k) ∈ W ⊂ Rl is a vector of l uncertain parameters and (or) additive

disturbances; u(k) ∈ U ⊂ Rm is a vector of m control inputs and U is a compact set

containing the origin. The domains of X, W and U are assumed to be described by

boxes X,W,U, i.e., every component of the vectors is an interval. The control target

is to drive the system state asymptotically from the initial state x(0) to a sufficiently

small region around the origin. The dual-mode approach of MPC is adopted here:

at first, the one-step control deriving from nonlinear robust contractive MPC with a

contractive sequence of robust controllable sets drives the system state into a selected
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terminal set T; and then a local stabilizing feedback control law is applied instead to

drive the system to a sufficiently small region around the origin.

Assume that all robust controllable sets K̃i(X, T), i = 1, · · · within the constrained

state space have been obtained by computing one-step robust controllable sets recur-

sively, then the one-step control inputs underlying nonlinear robust contractive MPC

with a contractive sequence of robust controllable sets can be obtained as well by solving

the following constrained minimax optimization iteratively:

min
u(k|k)∈U

max
w(k|k)∈W

[xT (k + 1|k)Qx(k + 1|k) + uT (k|k)Ru(k|k)] (6.2)

subject to

x(k + 1|k) ∈ K̃i−1(X, T), (6.3)

where x(k) ∈ K̃i(X, T), but x(k) does not belong to K̃i−1(X, T); Q and R are weighted

positive definite matrices; and uOptimal(k|k) is the resulting optimal one-step control

input. The terminal set T can be designed in advance to be a robust control invariant

polytope along with a local stabilizing feedback control law u = kx (Cannon et al.,

2003).

6.1.2 The First-step Robust Controllable Set Approximation Algo-

rithm

Assume that the terminal set T is designed to be a robust control invariant polytope

for the system (6.1), then an inner approximation of the first-step robust controllable

set can be computed directly by an interval-based branch-and-bound algorithm, which

is listed in Algorithm 6.1.

Algorithm 6.1: The First-step Robust Controllable Set Approximation Algorithm

In: X,W,U, T, ε; Out: Σx

1. Initialize Stack 1 = X, Σx = ∅;

2. while Stack 1 6= ∅

3. Pop out a Xi from Stack 1;

4. Compute f(Xi,wLocal,U);

5. if f(Xi,wLocal,U) ∩ T = ∅
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6. Discard Xi and return to 2;

7. endif

8. Initialize Stack 2 = U;

9. while Stack 2 6= ∅

10. Pop out a Uj from Stack 2;

11. Compute f(Xi,wLocal,Uj);

12. if f(Xi,wLocal,Uj) ∩ T = ∅

13. Discard Uj and return to 9;

14. elseif f(Xi,W, Mid(Uj)) ⊆ T

15. Σx = Xi ∪ Σx and return to 2;

16. elseif Width(Uj) ≤ ε, then discard Uj and return to 9;

17. else

18. Bisect Uj to LUj , RUj, push them on Stack 2 and return to 9;

19. endif

20. endwhile

21. if Width(Xi) ≤ ε, then discard Xi and return to 2;

22. else

23. Bisect Xi to LXi and RXi, push them on Stack 1 and return to 2;

24. endif

25. endwhile

As shown in Algorithm 6.1, wLocal in Step 4 and 11 relates to a local search

of the concrete value w(k) ∈ W: if there exists such a value wLocal that renders

f(Xi,wLocal,U) ∩ T = ∅, then for all u ∈ U, it is impossible to drive the state Xi to

the terminal set T in the case of wLocal at the next step, so Xi does not belong to the

first-step robust controllable set and it is discarded in Step 6; however, only a part of

U is tested in Step 12, i.e., f(Xi,wLocal,Uj) ∩ T = ∅, so for all Uj , it is impossible to

drive the state Xi to the terminal set T in the case of wLocal at the next step, then Uj

is discarded instead in Step 13. On the contrary, if there exists a control input such as

the middle value Mid(Uj) that renders f(Xi,W, Mid(Uj)) ⊆ T, then for all uncertain

cases w(k) ∈ W, the state Xi can be driven to the terminal set T via an admissible

control input Mid(Uj) at the next step, which signifies that Xi belongs to the first-step

robust controllable set and it is to be stored in Σx. If no judgement can be made for
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Xi or Uj and the widths of them are beyond the error tolerance ε, just as in Step 16

and 21, they are to be discarded as well; otherwise, Xi or Uj is to be bisected further

for a finer judgement, just as shown in Step 18 and 23.

6.1.3 The Revised Polytopic Approximation Algorithm

According to the first-step robust controllable set approximation algorithm in Al-

gorithm 6.1, the obtained inner approximation of the first-step robust controllable set

Σx is a union of boxes as well as a union of polytopes. The union of polytopes can be

further approximated innerly by one polytope according to the one-step set polytopic

approximation algorithm proposed in (Bravo et al., 2005). The benefits of representing

a robust controllable set by one polytope rather than by a union of boxes range from

reducing memory resources, facilitating the synthesis of real-time constrained control

and so on. The convex hull of the union of polytopes is used in the following revised

polytopic approximation algorithm for improving the efficiency of the published poly-

topic approximation algorithm through decreasing the number of complementary sets

as well as separating complementary sets and the contracted convex hull instead of

separating complementary sets and the contracted union of boxes during the process

of computing α-support hyperplane for each complementary set.

Assume that the convex hull of the union of polytopes H = Hull(Σx) as well

as its vertices has been obtained via vertex enumeration (Kvasnica et al., 2006), i.e.,

H = {x ∈ Rn|Hxx ≤ Kb} and its vertices are {vH
k }

nh
k=1, where nh is the number of

vertices on H. Then the complementary set C of Σx relative to its convex hull H is a

union of polytopes and it can be obtained by the set difference C = H \Σx = ∪nc
m=1Cm,

where nc is the number of polytopes in C. The vertices of each polytope Cm in C can

be obtained as well and they are assumed to be {vCm
j }ncm

j=1 , where ncm is the number

of vertices on Cm. The α−support hyperplane for Cm is a hyperplane cT
mx = 1 such

that (Bravo et al., 2005): cT
mx > 1 for every x ∈ Cm and α · cT

mx ≤ 1 for every x ∈ H,

where α ∈ [0, 1]. The computation of the α−support hyperplane for each Cm can be

transformed to be a linear programming problem, i.e.,

min
{cm,γ}

γ (6.4)
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subject to 
cT

mvCm
j > 1, j = 1, · · · , ncm

cT
mvH

k ≤ γ, k = 1, · · · , nh

γ ≥ 1
(6.5)

Once the α-support hyperplane for Cm is obtained, those {Cr|cT
mvCr

j > 1, j = {1, · · · , ncr}
, r ∈ {m + 1, · · · , nc} should be discarded to avoid redundant separation from its cor-

responding contracted convex hull. Then the resulting polytopic approximation for Σx

is to be:

Pa = ∩
ncf

m=1{x ∈ Rn|cT
mx ≤ 1} (6.6)

where ncf
is the number of all processed polytopes in C. The detail of the revised

polytopic approximation algorithm is shown in Algorithm 6.2.

Algorithm 6.2: The Revised Polytopic Approximation Algorithm

In: Σx; Out: Pa

1. H = Hull(Σx);

2. Pa = H;

3. C = H \ Σx = ∪nc
m=1Cm;

4. for m = 1 : 1 : nc

5. if Cm ∩ Pa 6= ∅

6. cm = arg min{cm,γ} γ;

7. Pa = Pa ∩ {x ∈ Rn|cT
mx ≤ 1};

8. end

9. end

6.1.4 The Following-step Robust Controllable Set Approximation Al-

gorithm

Once the inner approximation of the first-step robust controllable set Σx has been

approximated by one polytope Pa through the revised polytopic approximation algo-

rithm in Algorithm 6.2, the following-step robust controllable sets can be computed

iteratively by renewing the terminal set T with Pa
i in Algorithm 6.1, where i is the

polytopic approximation of i-step robust controllable set and Pa
1 = Pa. If the termi-

nal set T is designed to be robust control invariant in advance, then theoretically the
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computed first-step robust controllable set should contain it. However, the limitation

of the bound of error tolerance ε of the interval-based algorithm in Algorithm 6.1 and

the conservativeness of the polytopic approximation algorithm in Algorithm 6.2 might

lead to:

T " Pa
1. (6.7)

Then the obtained first-step polytopic robust controllable set Pa
1 is not robust control

invariant. A remedy for this problem is to replace Pa
1 by a union Pa

1 ∪ T in the com-

putation of the second-step robust controllable set and obviously Pa
1 ∪ T is a robust

control invariant set for the system (6.1). To obtain a union of polytopes as a robust

controllable set also happens in piecewise-affine and hybrid systems (Rakovic et al.,

2003). Generally, the terminal set T for computing K̃i(X, T) is renewed to be:

∪i−1
j=0P

a
j , (6.8)

where Pa
0 = T. Corresponding exclusion test and inclusion test between a box and a

union of polytopes are concerned instead in Step 5, 12 and 14 of Algorithm 6.1, respec-

tively. An illustrative example demonstrating the inclusion and the exclusion between

a box and a union of two polytopes is shown in Fig. 6.1.

Figure 6.1: The inclusion and the exclusion between a box and a union of two polytopes
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To judge whether a box is included in a union of polytopes can be transformed to

judge whether their set difference is empty, which can be further transformed to be a

linear programming problem as well (Kerrigan, 2000). The polytopic approximation

of the maximal robust controllable set K̃∞(X, T) within the constrained state space is

reached when Pa
N = Pa

N+1 for some N . Nevertheless, the polytopic robust controllable

set approximation algorithm can be simplified if Pa
i−1 j Pa

i for all i = 1, · · · , N , where

corresponding exclusion test and inclusion test are fulfilled just between two polytopes.

6.1.5 Nonlinear Robust Contractive MPC with A Contractive Se-

quence of Polytopic Robust Controllable Sets

Once all the polytopic robust controllable sets Pa
j (j = 1, · · · , N) have been obtained,

the robust controllability of any initial state can be judged accordingly. Assume that

x(0) ∈ ∪N
j=0P

a
j , i.e., the initial state is robustly controllable to the designed terminal

set T in finite steps, then the nonlinear robust contractive MPC with a contractive

sequence of polytopic robust controllable sets is illustrated in Algorithm 6.3.

Algorithm 6.3: Nonlinear MPC With Polytopic Robust Controllable Sets

In: x(0), Pa
j (j = 0, · · · , N); Out: uOptimal(k|k),x

1. Get the current state x(k);

2. if x(k) ∈ T

3. Switch to a designed local stabilizing feedback control law;

4. else

5. Find the i: i = minj=1,··· ,N{x(k) ∈ Pa
j };

6. Compute uOptimal(k|k) with the contractive constraint (6.3);

7. Apply uOptimal(k|k) to the system;

8. end

9. Return to 1 and repeat.

According to Algorithm 6.3, the control algorithm measures the current state in

Step 1 and then judges whether the system state has arrived in the terminal set in Step

2. A local stabilizing feedback control is applied if the state has arrived in the terminal

set T; otherwise, the algorithm finds the smallest polytopic robust controllable set to

which the current state belongs in Step 5; the one-step control scheme is formulated

88



6.1 Nonlinear Robust MPC with A Contractive Sequence of Polytopic
Robust Controllable Sets

according to the strategy of robust MPC with unit control horizon and additional

contractive constraint in Step 6, where K̃i(X, T) is denoted to ∪i
j=0P

a
j according to

the proposed algorithm of computing polytopic robust controllable sets. It can be seen

that any feasible solution that satisfies the contractive constraint is an effective control

input for the system since such a control input is sufficient to guarantee the feasibility

and stability of the closed-loop system. A feasible control input can be obtained as

well via an interval-based minimax optimization algorithm addressed in Chapter 5 in

a guaranteed numerical way.

6.1.6 Example

The illustrative example to be considered is (Cannon et al., 2003):{
x1(k + 1) = x1(k) + 0.1x2(k) + 0.1[µ + (1− µ)x1(k)]u(k)
x2(k + 1) = 0.1x1(k) + x2(k) + 0.1[µ− 4(1− µ)x2(k)]u(k),

(6.9)

where the control is constrained to |u| ≤ 2; the state variables are constrained to

|x|∞ ≤ 4; and the parameter µ is assumed to be uncertain: µ ∈ [0.75, 0.95]. The

terminal set T is selected to be a polytope along with a local stabilizing feedback

control law u = kx, where k = [−1.2131− 1.2128] (Cannon et al., 2003):
0.8190 −1.9655
−0.8199 1.9655
3.033 3.033
−3.033 −3.033

x ≤


1
1
1
1

 . (6.10)

The selected terminal set T along with the related local stabilizing feedback con-

trol law u = kx can be demonstrated geometrically to be robust control invariant by

using the solver of set inversion via zonotope geometry in Algorithm 4.3, where every

sub-zonotope is robust control invariant under the related local feedback control law

u = kx, just as shown in Fig. 6.2.

The first-step robust controllable sets with the bound of error tolerance ε = 0.025

and ε = 0.05 as well as their polytopic approximations are shown in Fig. 6.3(a) and

6.3(b), respectively. It can be seen from Fig. 6.3(a) that the terminal set is robust

control invariant since T ⊂ Pa
1 ⊂ K̃(X, T). Obviously, the obtained polytopic robust
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Figure 6.2: The geometrical demonstration of robust control invariance

controllable set with ε = 0.025 is bigger than the obtained polytopic robust controllable

set with ε = 0.05. Furthermore, the bigger bound of error tolerance ε = 0.05 renders

T * Pa
1 in Fig. 6.3(b). This case is more general since the polytopic approximation

is also conservative and might lead to T * Pa
1 as well. In order to demonstrate the

general principle of the proposed polytopic robust controllable set approximation algo-

rithm completely, the bound of error tolerance is selected to be ε = 0.05 for computing

all polytopic robust controllable sets.

According to the polytopic robust controllable set approximation algorithm, the

terminal set for computing the second-step robust controllable set is renewed to be a

union of polytopes: T∪Pa
1. All polytopic robust controllable sets within the constrained

state space can be computed iteratively with the bound of error tolerance ε = 0.05.

The computed polytopic robust controllable sets for the system are shown in Fig. 6.4.

The robust control processes of the dual-mode approach of MPC for the system

with the initial state x(0) = (−1.5, 1.1) and x(0) = (0.3,−2.1) are shown in Fig. 6.5,

where the system state has been driven contractively along the computed polytopic

robust controllable sets to the terminal robust control invariant polytope T and then
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Figure 6.3: The first-step robust controllable sets with ε = 0.025 and ε = 0.05

Figure 6.4: The computed polytopic robust controllable sets with ε = 0.05
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the related local stabilizing feedback control law is applied instead to drive the state

to a sufficiently small region around the origin.

Figure 6.5: The robust control processes of the dual-mode approach

6.2 Robust Contractive MPC of Nonlinear Systems with

Affine State Part

1 A general framework for computing polytopic robust controllable sets of con-

strained nonlinear uncertain discrete-time systems has been addressed in Section 6.1.

However, the computation burden of the proposed interval-based approach for comput-

ing polytopic robust controllable sets grows exponentially with the total dimension of

the state space and the control space. In this section, the structure of a specific kind

of constrained nonlinear uncertain discrete-time systems with affine state part is to be

explored further to improve the efficiency of the interval-based approach for computing

polytopic robust controllable sets.
1The initial idea of studying nonlinear discrete-time systems with affine state part was proposed by

Dr. J. M. Bravo during the external stay in Huelva and the author just embodied the idea by designing

all algorithms needed, selecting a suitable example and presenting the simulation results.
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6.2.1 Problem Statement

The constrained system considered is described by a nonlinear discrete-time state-

space model with the following structure:

x(k + 1) = Ax(k) + f(xNL(k),w(k),u(k)), k = 0, · · · , (6.11)

where x(k) ∈ X ⊂ Rn is a vector of n state variables; f(xNL(k),u(k),w(k)) is the non-

linear part of the system containing only part of the state variables xNL(k) ∈ Rp(p < n);

w(k) ∈ W ⊂ Rl is a vector of l uncertain parameters and (or) additive disturbances;

and u(k) ∈ U ⊂ Rm is a vector of m control inputs. The domains of X,W and U are

assumed to be compact sets described by boxes X,W,U, where every component of

the vectors is an interval. The terminal set T for the system is designed in advance to

be a robust control invariant set, i.e., for all x(k) ∈ T, there exists an admissible con-

trol input u(k) ∈ U such that f(x(k),u(k),w(k)) ∈ T for all uncertain cases w(k) ∈ W.

The nonlinear robust MPC with a contractive sequence of polytopic robust control-

lable sets is also adopted as the control strategy for the system (6.11). However, the

computation of polytopic robust controllable sets can be simplified here since only the

nonlinear part of the state space is needed to be bisected during the process of comput-

ing robust controllable sets. Assume that all robust controllable sets K̃i(X, T), i = 1, · · ·
within the constrained state space have been approximated innerly by computing one-

step robust controllable sets recursively, then the one-step control inputs underlying

robust MPC can be obtained as well by solving the following constrained minimax

optimization iteratively:

min
u(k|k)∈U

max
w(k|k)∈W

[xT (k + 1|k)Qx(k + 1|k) + uT (k|k)Ru(k|k)] (6.12)

subject to

x(k + 1|k) ∈ K̃i−1(X, T), (6.13)

where x(k) ∈ K̃i(X, T), but x(k) does not belong to K̃i−1(X, T); Q and R are weighted

positive definite matrices; and uOptimal(k|k) is the resulting optimal one-step control

input. The terminal set T can be designed in advance to be a robust control invariant

polytope.

93



6.2 Robust Contractive MPC of Nonlinear Systems with Affine State Part

6.2.2 The Computation of Robust Controllable Sets via Interval Anal-

ysis and Polytope Geometry

The one-step robust controllable set approximation algorithm for the specific sys-

tem (6.11) is based on interval analysis and polytope geometry. Concretely, interval

analysis is applied to branch and bound the nonlinear part f(xNL(k),u(k),w(k)) of the

system as well as the control space and polytope geometry is applied to compute sub-

controllable sets for each Xi
NL(k) and Uj(k) of their subpavings. Assume that ΣXNL

is the subpaving of XNL, ΣU is the subpaving of U and T = {x ∈ Rn|T x
t×nx ≤ T b

t×1}
is the terminal set, then the one-step robust controllable set approximation algorithm

is shown in Algorithm 6.4.

Algorithm 6.4: One-step Robust Controllable Set Approximation Algorithm

In: ΣXNL , ΣU, T; Out: Σx

1. Stack 1 = ΣXNL , Σx = ∅;

2. while Stack 1 6= ∅

3. Pop out a XNL from Stack 1;

4. Stack 2 = ΣU;

5. while Stack 2 6= ∅

6. Pop out a U from Stack 2;

7. Compute Σ = {x ⊆ Rn|T x
t×n ·Ax ≤ T b

t×1 − T x
t×nf(XNL,U,W)};

8. if Σ 6= ∅

9. Push Σ on Σx;

10. end

11. end

12. end

6.2.3 Polytopic Approximation of Robust Controllable Sets

The computed one-step robust controllable set Σx is a union of polytopes. The

revised polytopic approximation algorithm addressed in Section 6.1 can also be applied

to approximate the union of polytopes innerly by one polytope. However, the number

of the union’s complementary sets relative to its convex hull grows exponentially with
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the number of polytopes. It becomes difficult to obtain a polytopic approximation for

a high-dimensional systems. An alternative polytopic approximation algorithm is pro-

posed in this subsection.

Assume that the convex hull of the union of polytopes H = Hull(Σx) has been

obtained via vertex enumeration, i.e., H = {x ∈ Rn|Hx
m×nx ≤ Kb

m×1}. The principle

of the proposed polytopic approximation algorithm is to contract the convex hull H as

small as possible until the contracted convex hull Hc = α · H is a subset of Σx, i.e.,

Hc ⊆ Σx where α ∈ [0, 1]. This is equal to the optimization problem of maxα α subject

to Hc = Hc ∩Σx, where Hc ∩Σx is a union of polytopes. To judge whether a polytope

is equal to a union of polytopes can be transformed to judge whether the set difference

Hc \ (Hc ∩ Σx) or Hc \ Σx is empty, which can be further transformed to be a linear

programming problem, i.e., the polytope H = {x ∈ Rn|Hx
m×nx ≤ Hb

m×1} is empty if

and only if ζ > 0 where ζ = arg min ζ subject to Hx
m×nx ≤ Hb

m×1 + ζ · 1m×1. The

proposed polytopic algorithm is shown in Algorithm 6.5.

Algorithm 6.5: The Proposed Polytopic Approximation Algorithm

In: Σx, ε; Out: Pa

1. Initialize: [a, b] = [0, 1] and m = (a + b)/2;

2. H = Hull(Σx);

3. Hc = m ·H;

4. while (b− a) < ε

5. if Hc \ Σx = ∅

6. a = m, b = b;

7. else

8. a = a, b = m;

9. end

10. end

11. Pa = a ∗H.
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6.2.4 Nonlinear Robust MPC with A Contractive Sequence of Poly-

topic Robust Controllable Sets

Once all the polytopic robust controllable sets Pa
j (j = 1, · · · , N) have been obtained,

the robust controllability of any initial state can be judged accordingly. Assume that

x(0) ∈ ∪N
j=0P

a
j , i.e., the initial state is robustly controllable to the selected terminal set

T in finite steps, then the one-step robust control via polytopic robust controllable sets

is illustrated in Algorithm 6.6.

Algorithm 6.6: MPC Via Polytopic Robust Controllable Sets

In: x(0), Pa
j (j = 0, · · · , N); Out: uOptimal(k|k),x

1. Get the current state x(k);

2. if x(k) ∈ T

3. Switch to the related local stabilizing feedback control;

4. else

5. Find the i: i = minj=1,··· ,N{x(k) ∈ Pa
j };

6. Compute uOptimal(k|k) with the contractive constraint (6.13);

7. Apply uOptimal(k|k) to the system;

8. end

9. Return to 1 and repeat.

According to Algorithm 6.6, the control algorithm measures the current state in

Step 1 and then judges whether the system state has arrived in the terminal set in

Step 2. A local stabilizing feedback control law is applied if the state has arrived in the

terminal set; otherwise, the algorithm finds the smallest polytopic robust controllable

set to which the current state belongs in Step 5; the one-step control scheme is formu-

lated according to the strategy of robust MPC with unit control horizon and additional

contractive constraint in Step 6, where K̃i(X, T) is denoted to Pa
i according to the

proposed algorithm of computing polytopic robust controllable sets. It can also be seen

that any feasible solution that satisfies the contractive constraint is an effective control

input for the system since such a control input is sufficient to guarantee the feasibility

and stability of the closed-loop system. A feasible control input can be obtained as

well via an interval-based minimax optimization algorithm addressed in Chapter 5 in

a guaranteed numerical way.
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6.2.5 Example

The illustrative example to be considered is (Khalil, 2002):{
x1(k + 1) = x1(k) + 0.1x2

1(k)− 0.1u(k) · x3
1(k) + 0.1x2(k)

x2(k + 1) = x2(k) + 0.1u(k) + w,
(6.14)

where the control is constrained to |u| ≤ 3, the state variables are constrained to

|x|∞ ≤ 1 and w ∈ [−0.01, 0.01] is the additive disturbance.

The terminal set T is selected to be a polytope, as shown in Fig. 6.6. The inner

approximation of the first-step robust controllable set K̃(X, T) computed via the ad-

dressed algorithm is also shown in Fig. 6.6 and T ⊆ K̃(X, T), which also demonstrates

geometrically that the selected polytope is robust control invariant for the system.

Figure 6.6: The inner approximation of the first-step robust controllable set

The obtained inner approximation of the first-step robust controllable set is a union

of polytopes and it can be approximated innerly by one polytope via the proposed

polytopic approximation algorithm addressed in this section or the revised polytopic

approximation algorithm addressed in the former section, just as shown in Fig. 6.7.
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Figure 6.7: The comparison of two polytopic approximation algorithms

All polytopic robust controllable sets within the constrained state space can be

computed iteratively. The maximal polytopic robust controllable set is reached when

Pa
39 = Pa

40 and all the computed polytopic robust controllable sets are shown in Fig. 6.8.

The proposed one-step control process for the system with the initial state x(0) =

(−0.5,−0.8) is shown in Fig. 6.9, where the system state has been driven contractively

along the computed polytopic robust controllable sets to the terminal robust control

invariant polytope T.

6.3 Nonlinear Robust MPC with A Contractive Sequence

of Quasi Multi-step Robust Controllable Sets

1 The recursive computation of one-step robust controllable sets for general con-

strained nonlinear uncertain discrete-time systems via interval arithmetic is not so
1The initial idea of computing multi-step robust controllable sets was proposed by Dr. T. Alamo

during the external stay in Huelva and the author just embodied the idea by designing all algorithms

needed, selecting a suitable example and presenting the simulation results.
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Figure 6.8: All the computed polytopic robust controllable sets

Figure 6.9: The one-step robust control process
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efficient as the recursive computation of one-step robust controllable sets for general

constrained linear systems via polytope geometry since the state space as well as the

control space is needed to be bisected at each step. Furthermore, the one-step set

polytopic approximation is also needed to be fulfilled at each step, which also increases

the computation burden and contracts the obtained robust controllable sets frequently.

One-step robust controllable sets are to be generalized to quasi multi-step robust con-

trollable sets in this section. The structure of a specific kind of constrained nonlinear

uncertain discrete-time systems is to be explored and it turns out that quasi multi-step

robust controllable sets of such kind of systems can be computed directly and efficiently

via an interval-based algorithm as well. The section is organized as follows: correspond-

ing definitions and problem statement are introduced in Section 6.3.1; the computation

of the outer bounds of reachable sets via zonotope geometry is addressed in Section

6.3.2; the detail of the proposed quasi multi-step robust controllable set approximation

algorithm is illustrated in Section 6.3.3; the obtained polytopic representations of quasi

i-step robust controllable sets are applied in robust MPC as a contractive sequence of

sets in Section 6.3.4; finally, an illustrative example is given in Section 6.3.5.

6.3.1 The Concept of Quasi Multi-step Robust Controllable Sets

Consider the general constrained nonlinear uncertain discrete-time system:

x(k + 1) = f(x(k),u(k),w(k)), k = 0, · · · , (6.15)

where x(k)inX ⊂ Rn is the system state; u(k) ∈ U ⊂ Rm is the control input; and

w(k) ∈ W ⊂ Rl is the unknown disturbance. The set X is compact while U and W are

closed.

The cost to compute i-step (i ≥ 2) robust controllable set K̃i(X, T) directly is

somewhat heavy since it is a multi-dimensional optimization problem. In practice,

K̃i(X, T) can be approximated innerly via the following recursive procedure:

K̃i+1(X, T) = K̃1(X, K̃i(X, T)), (6.16)

where K̃0(X, T) = T. If the terminal set T is selected to be a robust control invariant

set Ω, then K̃i(X,Ω) is also a robust control invariant set with

K̃i(X,Ω) ⊆ K̃i+1(X,Ω), (6.17)
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where K̃i(X,Ω) is also referred to as the i-step robust stabilisable set (Kerrigan, 2000).

Such a geometric property of robust stabilisable sets can be applied in MPC since a

feasible control sequence, which guarantees to drive the system from any initial state

within K̃i(X,Ω) to Ω in i steps, can be obtained.

The interval-based one-step recursive procedure for computing controllable sets ad-

dressed in Chapter 4 can be extended to compute K̃i(X,Ω) as well. However, a direct

extension of such a branch-and-bound algorithm is not efficient since the subboxes of

the state space which do not belong to K̃1(X, K̃i−1(X, T)) are to be discarded at each

step although they possibly belong to K̃n(X, K̃i−1(X, T)), where n > 1. Furthermore,

the computed one-step robust controllable set is to be approximated innerly by one

polytope at each step, which contracts the computed one-step robust controllable sets

seriously and frequently. In order to improve the efficiency of the former interval-based

recursive procedure and decrease the frequency of contracting the computed robust

controllable sets, an alternative approach is to compute inner approximations of multi-

step robust controllable sets directly. The following concept of quasi multi-step robust

controllable sets is proposed to demonstrate the new approach:

Definition 6.1 (Quasi Robust Controllable Set) The quasi i-step robust con-

trollable set K̃
q
i (X, T) is the set of states in X within which certain admissible control

sequence {u(k) ∈ U}i−1
0 for each state guarantees to drive the system to the terminal

set T ⊂ Rn in i steps while keeping the evolution of the state inside X, for all allowable

disturbance sequences, i.e., K̃
q
i (X, T) , {x(0) ∈ X|{u(k) ∈ U}i−1

0 : {xk ∈ X}i−1
0 ,xi ∈

T,∀{wk ∈ W}i−1
0 }.

Obviously, K̃
q
i (X, T) is an inner approximation of K̃i(X, T) since the control se-

quences used in computing K̃
q
i (X, T) might not be as globally optimal as the control

sequences used in computing K̃i(X, T). However, K̃
q
i (X, T) can approach to K̃i(X, T)

closely when the control sequences used in computing it are well selected.

Certain control sequences used in computing quasi multi-step robust controllable

sets can be well selected sequentially for a specific kind of constrained nonlinear uncer-

tain discrete-time systems via linear programming, i.e., the systems with the following
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structure:

x(k + 1) = f(x(k),w(k)) + Bu(k), (6.18)

where x(k) ∈ X ⊂ Rn, u(k) ∈ U ⊂ Rm, w(k) ∈ W ⊂ Rl and X, U, W are all compact

sets described by boxes of proper dimensions. The terminal set Ω is selected to be a

robust control invariant set represented by a polytope containing the origin:

Ω = {x ∈ Rn|Tp×nx ≤ 1p×1}. (6.19)

The control sequence {u(k) ∈ U}i−1
0 used in testing whether it could drive a subbox X0

of the constrained state space X to the terminal set Ω in i steps for all uncertain cases

∀w ∈ W while computing K̃
q
i (X,Ω) can be obtained iteratively via linear programming

of the following problem:

J(X(k),u(k)) = min
{u(k)∈U,ξ}

ξ (6.20)

subject to

T f(X(k),W) + TBu(k) ≤ ξ, (6.21)

where f(X(k),W) is to be represented by a box bounding the zonotope inclusion of

its centered inclusion function and X(k)(k > 1) is to be represented by the zonotope

inclusion of the centered inclusion function of f(X(k− 1),W) + Bu(k− 1). Physically,

the linear programming is aimed to find an optimal control input u(k) which is most

likely to drive the system state into the target polytope Ω at each step. The evolution

of the system is to be bounded by zonotope inclusions with reduced wrapping effects.

6.3.2 The Computation of the Outer Bounds of Reachable Sets via

Zonotope Geometry

According to the problem statement, in order to compute quasi i-step robust con-

trollable set K̃
q
i (X,Ω) for the system (6.18), the admissible state space X needs to be

bisected into subboxes and then the control inputs {u(k) ∈ U}i−1
0 are to be obtained

sequentially for each subbox X0 of X via linear programming. X0 belongs to K̃
q
i (X,Ω)

if the computed control sequence {u(k) ∈ U}i−1
0 can drive all the states in X0 to the

terminal set Ω in i steps. The following definition of reachable sets is concerned while

computing the evolution of the system.
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Definition 6.2 (Reachable Set) Consider the system x(k+1) = f(x(k),u(k),w(k))

with the initial set of states X0 and certain admissible sequence of control inputs

{u(k) ∈ U}i−1
0 , then the reachable sets {X(k)}i

1 of the system are obtained from the

recursion: X(k + 1) = f(X(k),u(k), W).

Physically, X(i) is the set of all states that can be reached by the evolution of the

uncertain system at step i applying the sequence of control inputs {u(k) ∈ U}i−1
0 . If

X(i) ⊆ Ω, then the initial set of states X0 belongs to the quasi i-step robust controllable

set K̃
q
i (X,Ω).

The exact computation of {X(k)}i
1 is a difficult task. The natural inclusion func-

tion of f(x(k),u(k),w(k)) was used to calculate the outer bounds of reachable sets.

Although it is an efficient solution, the direct application of natural inclusion functions

for computing {X(k)}i
1 might produce large over-estimations of extract reachable sets.

An alternative way of obtaining the outer bounds of reachable sets with reduced wrap-

ping effects is to use zonotopes to bound the evolution of general nonlinear uncertain

discrete-time systems with reduced wrapping effects, just as discussed in Chapter 4.

An illustrative example for demonstrating the reduced wrapping effects is shown in Fig.

6.10, where an initial subbox of the state space along with a control sequence is proved

to be driven to a selected terminal set in four steps using zonotope evolutions while the

same initial subbox of the state space along with the same control sequence cannot be

proven to be driven to the selected terminal set in four steps.

6.3.3 The Computation of Quasi Multi-step Robust Controllable Sets

via Interval Analysis and Zonotope Geometry

Applying the iterative linear programming of control inputs in Section 6.3.1 and

zonotope evolutions of the system state in Section 6.3.2, the detailed algorithm for com-

puting quasi i-step robust controllable set is shown in Algorithm 6.7, where X,U,W

are the domains of state, control and disturbance described by boxes of proper dimen-

sions, Ω is the terminal robust control invariant set, i is the number of steps to be

computed, and ε is the bound of error tolerance. With these inputs, the algorithm

returns an inner approximation of K̃
q
n(X, T) represented by a union of subboxes of X,
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Figure 6.10: The comparison of zonotope evolution and interval evolution

which is to be denoted as Σi. The principle of the algorithm is as follows: for a sub-

box X0 of X, the algorithm first tests whether the i-step reachable set with ∀u ∈ U

intersects with the terminal set Ω in Step 5; if the intersection with Ω is empty, the

subbox X0 is to be discarded since it is impossible to drive this subbox to the target

set in i steps for all admissible control input u ∈ U; if the intersection computed is

not empty, then it is possible to drive this subbox X0 to the terminal set Ω in i steps

and the algorithm computes the evolution of the system state with a control sequence

{u(k) ∈ U}i−1
0 obtained iteratively via linear programming from Step 6 to Step 16; if

all system states starting from the initial subbox X0 have already arrived to the target

set Ω in less than i steps or in exactly i steps, as stated in Step 10, the subbox X0

belongs to K̃
q
i (X, T) and it is to be added to Σi in Step 11; Otherwise, the subbox

X0 is to be bisected in Step 20 for further judgements if its width is not beyond the

bound of error tolerance ε, which is on the contrary of Step 17. It is worthy to note

that the evolutions of the system state in both Step 4 and Step 9 are to be computed

via zonotope inclusions, where less wrapping effects are anticipated than corresponding

evolutions computed via interval arithmetic.
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Algorithm 6.7: Quasi i-step Robust Controllable Set Approximation Algorithm

In: X,U,W, Ω, i, ε; Out: Σi

1. Stack = X, Σi = ∅;

2. while Stack 6= ∅

3. Pop out a X0 from Stack;

4. Compute X(k) recursively by

X(k + 1)f(X(k),W) + BU, k = 0, · · · , i− 1;

5. if X(i) ∩ Ω = ∅, return to Step 3;

6. for k = 0 : 1 : i− 1

7. if X(k) ⊆ X

8. u(k) = min{u(k),ξ} ξ;

9. X(k + 1) = f(X(k),W) + Bu(k);

10. if X(k + 1) ⊆ Ω

11. Add X0 to Σi and return to Step 3;

12. end

13. else

14. Break and transfer to Step 17;

15. end

16. end

17. if width(X0) ≤ ε

18. Return to Step 3;

19. else

20. Bisect X0 into LX0 and RX0, push them on Stack and return to Step 3;

21. end

22. end

Taking the computation of quasi 3-step robust controllable sets as an example, the

four cases to be encountered according to the algorithm are shown in Fig. 6.11, where

the subbox A0 is to be discarded according to its evolution with ∀u ∈ U, just as stated

in Step 5; the subbox B0 is to be bisected for further judgement if its width is bigger

than ε, just as in Step 20, or it is also to be discarded if its width is not bigger than

ε, just as in Step 17; the subbox C0 and D0 belong to K̃
q
3(X,Ω) since the control

sequence applied can drive the system from any initial state in them to the target set
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Figure 6.11: An illustrative example of computing quasi 3-step robust controllable set

Ω in less than 3 steps and in exactly 3 steps, respectively. Zonotopes are applied to

bound the evolution of the system state for each case, which can also be seen in the

figure.

6.3.4 Multi-step Robust Control via Constrained Minimax Optimiza-

tion

The second quasi i-step robust controllable set, which is to be denoted as K̃
q2
i (X,Ω),

can be computed similarly once the polytopic approximation Pa of the first quasi i-step

robust controllable set K̃
q1
i (X,Ω) has been obtained via the polytopic approximation

algorithm illustrated in Section 6.1. Then the inner approximation of the maximal quasi

i-step robust controllable set K̃
q∞
i (X,Ω) within the constrained state space X can be

obtained as well through computing quasi i-step robust controllable sets recursively.

The system is robustly controllable to the target set Ω in finite steps if the initial state

is within the maximal quasi i-step robust controllable set K̃
q∞
i (X,Ω), which is assumed

to be reached when K̃
qM
i (X,Ω) = K̃

qM+1

i (X,Ω). The computed quasi i-step robust

controllable sets can be applied in robust MPC as a contractive sequence of sets, i.e.,

the control inputs for the constrained nonlinear uncertain discrete-time system can be
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obtained through the strategy of MPC with the known feasible control horizon i and

additional contractive constraint, which is to solve the following optimization problem

iteratively:

J(x(k), {u(k + j|k)}i−1
j=0) = min

{u(k+j|k)}i−1
j=0

{xT (k + i|k)P0x(k + i|k) +

i−1∑
j=1

xT (k + j|k)Qx(k + j|k) +
i−1∑
j=0

uT (k + j|k)Ru(k + j|k)} (6.22)

subject to {
x(k + j|k) ∈ X, j = 1, · · · , i− 1
x(k + i|k) ∈ K

qm−1

i (X,Ω),
(6.23)

where x(k) ∈ K̃
qm

i (X,Ω), but x(k) does not belong to K̃
qm−1

i (X,Ω); P0, Q and R are

weighted positive definite matrices; and {(u(k + j|k))Optimal}i−1
j=0 is the optimal con-

trol sequence of i steps, which can be obtained in a reliable and global way by the

interval-based global optimization algorithm. The resulting control algorithm of MPC

using quasi i-step robust controllable sets as a contractive sequence of sets is shown in

Algorithm 6.8, where all the control inputs of i steps obtained at each iteration are to

be applied to the system sequentially. Such an approach is guaranteed to be feasible

and stable according to the property of K̃
qn

i (X,Ω).

Algorithm 6.8: MPC Via Quasi i-step Robust Controllable Sets

In: x(k), {K̃qm
i }M

m=1, Ω; Out: {(u(k + j|k))Optimal}i−1
j=0

1. Get the current state x(k);

2. if x(k) ∈ Ω

3. Switch to the local stabilizing feedback control;

4. else

5. Find the j: j = minm=1,··· ,M{x(k) ∈ K̃
qm
i };

6. Compute {(u(k + j|k))Optimal}i−1
j=0;

7. Apply {(u(k + j|k))Optimal}i−1
j=0 to the system;

8. end

9. Return to Step 1 and circulate.
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6.3.5 Example

As an illustrative example, the system to be considered is (Khalil, 2002):{
x1(k + 1) = x1(k) + 0.1x2(k) + w(k)
x2(k + 1) = x2(k) + 0.1[x2

1(k) + p(k)x2
2(k) + u(k)]

(6.24)

where the control is constrained to |u| ≤ 3; the state variables are constrained to

|x|∞ ≤ 1; the additive disturbance is constrained to |w|∞ ≤ 0.01 and the uncertain

parameter is p ∈ [0.9, 1.0].

The initial robust control invariant set is designed to be a polytope Ω, which is

shown in Fig. 6.12. It is enlarged from a low-complexity polytope as well as a con-

trol invariant sliding domain, which is also shown in Fig. 6.12. The selected set Ω can

be demonstrated geometrically to be robust control invariant through computing corre-

sponding quasi one-step robust controllable set K̃
q
1(X,Ω), which satisfies Ω ⊆ K̃

q
1(X,Ω).

The computed first quasi one-step robust controllable set is a union of boxes as well

as a union of polytopes. One polytope to approximate the union of boxes innerly is

obtained via the revised polytopic approximation algorithm and it is shown in Fig. 6.12

as well.

The first quasi 2-step robust controllable set can be computed accordingly according

to the algorithm with the selected initial robust control invariant set Ω shown in Fig.

6.13, where interval arithmetic is applied to branch and bound the constrained state

space and linear programming is applied to compute optimal control inputs at each

step. The computed first quasi 2-step robust controllable set and its polytopic approx-

imation are shown in Fig. 6.13. The polytopic approximation of the first quasi 2-step

robust controllable set is also compared with two polytopic quasi one-step robust con-

trollable sets computed recursively from the target set Ω, as shown in Fig. 6.13 as well.

It can be seen that an approximation of the 2-step robust controllable set is obtained

directly by applying the quasi 2-step robust controllable set approximation algorithm

and thus an intermediate polytopic approximation is avoided comparative to the recur-

sive one-step approach, which is specially beneficial to high-dimensional cases where

corresponding computations for vertex numerations and complementary sets are heavy.
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Figure 6.12: The terminal set, the quasi one-step set and its polytopic approximation

Figure 6.13: The comparison of the one-step and two-step approach
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The second quasi 2-step robust controllable set starting from the polytopic repre-

sentation of the computed first quasi 2-step robust controllable set can be computed

similarly and thus the inner approximation of the maximal quasi 2-step robust con-

trollable set within the constrained state space can be obtained as well by computing

quasi 2-step robust controllable sets recursively, which is reached at Pa
20 = Pa

21 in this

case. The computed polytopic quasi 2-step robust controllable set sequence up to the

maximal polytopic quasi 2-step robust controllable set is shown in Fig. 6.14.

Figure 6.14: The polytopic quasi 2-step robust controllable set sequence

The computed polytopic quasi 2-step robust controllable sets can be applied in ro-

bust MPC as a contractive sequence of sets and the feasible control horizon is equal to

2. The control inputs are to drive the system sequentially along the computed polytopic

quasi 2-step robust controllable sets to the initial robust control invariant set. The two-

step robust control processes for the system with the initial state x(0) = (−0.7,−0.9)

and x(0) = (0.77, 0.6) are shown in Fig. 6.15, where P0 = 1, R = 0.1, Q = 0, the ad-

ditive disturbance w and the uncertain parameter p are random number series within

their domains during the control processes. It can be seen that the control scheme

guarantees to drive the system state contractively to the designed initial robust control
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invariant set despite of the additive disturbance and the uncertain parameter.

Figure 6.15: The two-step robust control processes

6.4 Summary

Interval analysis, polytope geometry and zonotope geometry have been combined

in this chapter to improve the efficiency of nonlinear robust contractive MPC with a

contractive sequence of polytopic robust controllable sets. Concretely, the computed

robust controllable sets via an interval-based branch-and-bound algorithm have been

approximated innerly by polytopes. The structures of two types of nonlinear systems

have been explored further to reduce the dimension needed to be bisected and the con-

cept of quasi multi-step robust controllable sets has been proposed to reduce the number

of polytopic approximations during the computation of polytopic robust controllable

sets.
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Chapter 7

Applications of Contractive MPC

The addressed two types of contractive MPC in the former chapters are to be

applied to control a Micro Robot World Cup Soccer Tournament (MiroSot) robot and

a Continuous Stirred-Tank Reactor (CSTR), respectively. Concretely, the control of

a MiroSot robot via contractive MPC with compulsory contractive constraint is to

be addressed in Section 7.1 and the control of a CSTR via contractive MPC with a

contractive sequence of polytopic controllable sets is to be addressed in Section 7.2.

The two practical examples used in this chapter are to demonstrate the applicability

of the addressed computationally reliable approaches of contractive MPC.

7.1 Example A — MiroSot Robot Control

Robot soccer has attracted more and more interests as an intriguing test bed for

intelligent control of dynamic systems in a multi-agent collaborative environment (Mes-

som, 1998). It is also a typical multi-disciplinary project, which involves in-depth

knowledge in the fields of motion control, radio communication, image processing and

strategy programming. The use of global vision has been increasing in robot soccer be-

cause of the emphasis on the coordination and cooperation of multiple robots (Pereira

et al., 2000a). In such a scenario, playing robots are controlled by a centralized com-

puting system through the visual information received from a camera mounted above

the playground. The motion control of such a configuration is usually difficult due to

large time delays in the image processing stage and the lack of local sensors. Various

methods have been applied to control mobile robots (Watanabe, 1996). Model predic-
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7.1 Example A — MiroSot Robot Control

tive control has also been applied to robotic control because of their inherent capability

of prediction for future states of time-delay systems in a straightforward way (Messom

et al., 2003; Pereira et al., 2000b). However, predictors were only used for predicting

the state of the target or the robot and obstacle avoidance as well as path planning

was not considered in their control algorithms.

In this section, an integrated predictive control algorithm is proposed to control a

MiroSot robot using global vision, where the stability of the time-delay system is to be

guaranteed by incorporating additional contractive constraint and obstacle avoidance

as well as path planning is realized automatically by incorporating additional distant

constraints into the open-loop optimization of control inputs. This section is organized

as follows: first, in Section 7.1.1, the dynamic model of the robot is deduced by taking

into account the whole process, which includes the vision system, the dynamic system

and the transmission system; then in Section 7.1.2, a predictive control algorithm with

automatic obstacle avoidance and inherent path planning is proposed for the control

of the resulting nonlinear time-delay dynamic system; the simulation result of the

proposed algorithm is provided in Section 7.1.3.

7.1.1 Modeling

The variables measured by the global vision system are the position (x, y) of the

geometric center of the robot and the angle θ between the main axis of the robot and

the axis X of the playing field, as shown in Fig. 7.1.

Applying the Newton’s second law, a dynamic model for the robot can be derived

as:
x(k)=x(k−1)+[v(k−1)T+(a1u1(k−d)+a2u2(k−d)+Fa1(k−1)+Fa2(k−1))T 2/m] cos(θ(k−1))

y(k)=y(k−1)+[v(k−1)T+(a1u1(k−d)+a2u2(k−d)+Fa1(k−1)+Fa2(k−1))T 2/m] sin(θ(k−1))

θ(k)=θ(k−1)+ω(k−1)+(a1u1(k−d)−a2u2(k−d))T 2/(2I),

(7.1)

where v and ω are the linear and angular velocity of the robot; Fa1 and Fa2 are the

friction forces at the contact line between the bearing and the floor; m represents the

robot mass and I is the inertia moment around the robot’s center of the mass G;

the robot is commanded by two signals, u1 and u2, which represent the magnitudes

of the voltage at the right and left motors, respectively; and the time delay between
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7.1 Example A — MiroSot Robot Control

Figure 7.1: The configuration of the MiroSot robot

the time of the action of these signals and the visualization of its effects is denoted by d.

The model in (7.1) is a physically-motivated approximate description of the system.

One of the problems in the model is that some terms such as friction forces, is difficult to

obtain; another relevant problem is that the velocity terms are not directly measured by

the vision system. These problems can be circumvented by an adequate parametrization

of the model followed by a consistent parameter estimation. The physical model can

therefore be re-written as:
x(k)=x(k−1)+c1vx(k−1)T+(c2u1(k−d)+c3u2(k−d)) cos(θ(k−1))

y(k)=y(k−1)+c4vy(k−1)T+(c5u1(k−d)+c6u2(k−d)) sin(θ(k−1))

θ(k)=θ(k−1)+c7ω(k−1)+c8u1(k−d)+c9u2(k−d),

(7.2)

where vx and vy are the projections of the linear velocity v on the axis X and Y, respec-

tively. It is important to note that the mass m, the sampling time T and the friction

forces Fa1, Fa2 are grouped together in parameters ci(i = 1, · · · , 9). The velocities vx,

vy and θ can be roughly approximated by:

vx(k−1)=
xk−1−xk−12

T
,vy(k−1)=

yk−1−yk−12
T

,θ(k−1)=
ω(k−1)−ω(k−2)

T
. (7.3)

Then the model (7.2) can be represented as an auto-regressive model with exogenous

inputs of the form:
x(k)=a1xx(k−1)+a2xx(k−2)+(b1xu1(k−d)+b2xu2(k−d)) cos(θ(k−1))

y(k)=a1yy(k−1)+a2yy(k−2)+(b1yu1(k−d)+b2yu2(k−d)) sin(θ(k−1))

θ(k)=a1θθ(k−1)+a2θθ(k−2)+b1θu1(k−d)+b2θu2(k−d).

(7.4)
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7.1 Example A — MiroSot Robot Control

Using the extended least-square method for estimation, the following model is obtained:
x(k)=1.3724x(k−1)−0.3724x(k−2)+(0.0096u1(k−d)+0.0119u2(k−d)) cos(θ(k−1))

y(k)=1.221y(k−1)−0.221y(k−2)+(0.0117u1(k−d)+0.0121u2(k−d)) sin(θ(k−1))

θ(k)=1.121θ(k−1)−0.121θ(k−2)−0.00396u1(k−d)+0.00422u2(k−d).

(7.5)

7.1.2 Contractive MPC with Compulsory Contractive Constraint

Based on the obtained model in (7.5), the control task of robotic interception is to

catch the target with a proper orientation; meanwhile, the robot does not collide with

obstacles during its movement to the target. The position of an obstacle is denoted

by (xob, yob). Thus the corresponding control problem to be solved is to compute a

sequence of control inputs u(k + i|k) = (u1(k + i|k), u2(k + i|k)) that drives the robot

from its current state (xk, yk, θk) to the desired state (xd, yd, θd) with additional con-

straints for keeping a distance from all obstacles and guaranteeing the stability of the

closed-loop system. The desired state of the robot is to be determined by the position

of the target and the angle of interception.

According to the principle of contractive MPC with compulsory contractive con-

straint, the sequence of control inputs {u1(k+i|k), u2(k+i|k)} is to be obtained through

minimizing the following cost function on the basis of satisfying all imposed constraints:

J(x(k), {u(k + i|k)}n−1
i=0 ) = min

{uk+i|k∈U}n−1
i=0

[x(k + n|k)T P0x(k + n|k) +

n−1∑
i=1

xT (k + i|k)Qx(k + i|k) +
n−1∑
i=0

(u(k + i|k))T Ru(k + i|k)] (7.6)

subject to
|u(k + i|k)|∞ ≤ U
|[x(k + i|k) y(k + i|k)]− [xob yob]|2 ≤ D
|[x(k + n|k) y(k + n|k)]− [xd yd]|2 < α|[x(k) y(k)]− [xd yd]|2, α ∈ (0, 1],

(7.7)

where n denotes to the length of the control horizon; U denotes the maximum ab-

solute value of control signals; D denotes the minimum distance between the robot

and the obstacle; and α determines the degree of state contraction for each open-loop

optimization (Wan et al., 2004c).
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7.1.3 Simulation

The simulation result for the proposed algorithm is shown in Fig. 7.2, where n = 12

and α = 0.95. It can be seen from the simulation result that the MiroSot robot has

been driven to the target place with the desired orientation and automatic obstacle

avoidance. It is worthy to note that the control strategy has also the capacity of inher-

ent path planning as it figures out a feasible path automatically with the consideration

of all imposed constraints (Wan et al., 2004a).

Figure 7.2: The control of a MiroSot robot with automatic obstacle avoidance

7.2 Example B — CSTR Control

Contractive MPC with a contractive sequence of polytopic controllable sets is ap-

plied to control a highly nonlinear model of a Continuous Stirred-Tank Reactor (CSTR)

(Limon et al., 2003; Magni et al., 2001), which is shown in Fig. 7.3.

Assuming constant liquid volume, the CSTR for an exothermic, irreversible reac-

tion, A → B, is described by the following dynamic model based on a component
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Figure 7.3: The configuration of the CSTR

balance for the reactant A and an energy balance:{
ĊA = q

V (CAf − CA)− k0 exp(− E
RT )CA,

Ṫ = q
V (Tf − T ) + (−MH)

ρCp
k0 exp(− E

RT )CA + UA
V ρCp

(Tc − T ),
(7.8)

where CA is the concentration of A in the reactor, T is the reactor temperature,

and Tc is the temperature of the coolant stream. The constraints are 280K ≤ Tc ≤
370K, 280K ≤ T ≤ 370K and 0 ≤ CA ≤ 1mol/l. The objective is to regulate

CA and T by manipulating Tc. The nominal operating conditions, which correspond

to an unstable equilibrium Ceq
A = 0.5mol/l, T eq = 350K, T eq

c = 300K are: q =

100l/min,CAf = 1mol/l, Tf = 350K, V = 100l, ρ = 1000g/l, Cp = 0.239J/gK,

M H = −5× 104J/mol, E/R = 8750K, k0 = 7.2× 1010min−1, UA = 5 × 104J/minK.

The nonlinear discrete-time state-space model is obtained by defining the state vector

x = [CA − Ceq
A (T − T eq)/100]T , the manipulated input u = (Tc − T eq

c )/100 and by

discretizing the ODE with a sampling time M t = 0.03min using the Euler method,

which is the following discrete-time model:
x1(k+1)=x1(k)+0.03( q

V
(CAf−(x1(k)+Ceq

A ))−k0 exp(− E
R(100x2(k)+Teq)

)(x1(k)+Ceq
A ))

x2(k+1)=x2(k)+0.0003( q
V

(Tf−(100x2(k)+T eq))+
(−MH)

ρCp
k0 exp(− E

R(100x2(k)+Teq)
)(x1(k)+

Ceq
A )+ UA

V ρCp
(100u+T eq

c −(100x2(k)+T eq))),

(7.9)

A local stabilizing feedback control law u = [−0.0690 − 4.3387]x is designed in

advance according to the linearized model and the LQ method (Magni et al., 2001).
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With the designed local stabilizing feedback control law, a terminal control invariant

zonotope is obtained via the solver of global optimization for set inversion via zonotope

geometry in Section 4.2.7, which is the following polytope:

0.31623 −0.94868
−0.31623 0.94868
−0.70711 −0.70711
0.70711 0.70711
−1 0
1 0
0 1
0 −1


x ≤



0.037947
0.037947
0.056569
0.056569
0.06
0.06
0.04
0.04


. (7.10)

The first-step controllable set to the selected terminal polytope can be computed

via Algorithm 4.6 and the obtained first-step controllable set can be approximated in-

nerly by one polytope via Algorithm 6.2. The computed first-step controllable set and

its polytopic approximation are shown in Fig. 7.4, where the bound of error tolerance

is ε = 0.001.

Figure 7.4: The first-step controllable set and its polytopic approximation
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The following-step controllable sets can be computed accordingly by renewing the

terminal set. The computed polytopic controllable sets of the discretized system are

shown in Fig. 7.5. The resulting control process of the dual-mode approach of nonlin-

ear contractive MPC with a contractive sequence of polytopic controllable sets for the

discretized system with the initial state (0.4mol/l, 326K) is shown in Fig. 7.6, where

the coordinates are transformed to be the original values of the controlled system.

Figure 7.5: The computed polytopic controllable sets of the CSTR

7.3 Summary

Nonlinear contractive MPC with compulsory contractive constraint and nonlinear

contractive MPC with a contractive sequence of polytopic controllable sets have been

applied to control a MiroSot robot and a CSTR, respectively. Simulation results have

demonstrated the effectiveness of contractive MPC for these applications.
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Figure 7.6: The dual-mode control process of the CSTR
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Chapter 8

Conclusions and Future Work

8.1 Contributions

Computationally reliable approaches of contractive MPC for discrete-time systems

have been studied profoundly in this thesis. Numerical tools for linear systems such

as polytope geometry and numerical tools for nonlinear systems such as classical inter-

val analysis, zonotope geometry and modal interval analysis have been introduced and

unified to some degree in the same framework of convex sets. Using the developed inte-

grated numerical tools, the terminal control invariant set along with a local stabilizing

feedback control law and robust controllable sets needed in the dual-mode approach

of contractive MPC can be computed geometrically for general constrained nonlinear

uncertain discrete-time systems. Concretely, the contributions or the main work of the

thesis in the main chapters are as follows:

Chapter 3:

• A sliding domain along with the related equivalent control deriving from variable

structure control is proposed as a terminal control invariant set for the dual-mode ap-

proach of linear contractive MPC.

• Linear contractive MPC with compulsory contractive constraint is formulated as

a linear programming problem and a contractive sequence of controllable sets with a

union of two polytopes as the terminal control invariant set is computed for linear con-

121



8.1 Contributions

tractive MPC with a contractive sequence of controllable sets.

Chapter 4:

• The bisection of a zonotope is proposed for the first time according to the idea

of bisecting an interval and thus the solver of set inversion via interval analysis can be

generalized to be the solver of set inversion via zonotope geometry. The generalized

solver of set inversion via zonotope geometry is applied to test geometrically whether

a given low-complexity polytope along with a local stabilizing feedback control law is

(robust) control invariant or no. The solver of global optimization for set inversion

via zonotope geometry is also proposed to obtain a control invariant zonotope of the

maximal volume for a general constrained nonlinear discrete-time system.

• The solver of set inversion via interval analysis is applied to test the feasibility

of nonlinear contractive MPC with compulsory contractive constraint and compute

controllable sets of constrained nonlinear discrete-time systems to formulate nonlinear

contractive MPC with a contractive sequence of controllable sets.

• The solver of global optimization via interval analysis is applied to obtain one-step

control inputs for nonlinear contractive MPC with a contractive sequence of control-

lable sets.

Chapter 5:

• The theory of modal interval analysis is introduced in a comparative way relative

to classical interval analysis, where every concept of modal interval analysis is derived

by extending a counterpart concept of classical interval analysis and thus modal interval

analysis is treated as an extension of classical interval analysis in modality, inclusion,

semantics and rational.

• The solver of 1-dimensional quantified set inversion via modal interval analysis is

generalized to multi-dimensional cases and an approximate solver of constrained mini-
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max optimization via interval analysis is also proposed.

• An algorithm based on the generalized solver of multi-dimensional quantified set

inversion via modal interval analysis is proposed to compute robust controllable sets of

constrained nonlinear uncertain discrete-time systems with a clear semantic interpre-

tation. The proposed solver of constrained minimax optimization is applied to obtain

one-step control inputs for nonlinear contractive MPC with a contractive sequence of

robust controllable sets.

Chapter 6:

• Two algorithms based on the concept of convex hull are proposed to approximate

a union of interval vectors or boxes innerly by one polytope.

• An algorithm based on classical interval analysis and polytope geometry is pro-

posed to compute polytopic robust controllable sets systematically for general con-

strained nonlinear uncertain discrete-time systems to formulate nonlinear robust con-

tractive MPC with a contractive sequence of polytopic robust controllable sets.

• An algorithm based on interval analysis and polytope geometry is proposed to

compute polytopic robust controllable sets for a specific kind of constrained nonlinear

uncertain discrete-time systems with affine state part.

• The concept of quasi multi-step robust controllable sets is proposed and an algo-

rithm based on interval analysis, zonotope geometry and polytope geometry is proposed

to compute polytopic quasi multi-step robust controllable sets for a specific kind of con-

strained nonlinear uncertain discrete-time systems with affine control part.

Chapter 7:

• An algorithm based on contractive MPC with compulsory contractive constraint

is proposed to control a MiroSot robot with the capacity of automatic obstacle avoid-
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ance and inherent path planning.

• Nonlinear contractive MPC with a contractive sequence of polytopic controllable

set is applied to control a CSTR.

8.2 Future Work

Numerical tools such as polytope geometry, zonotope geometry and interval analysis

are unified to some degree in the same framework of convex sets. Using the developed

integrated numerical tools, current research results on explicit MPC and hybrid con-

trol of linear and piecewise-affine systems can be extended to nonlinear systems as

well. Based on the research progress of the thesis, the following research topics can be

explored further:

• For contractive MPC with compulsory contractive constraint, the feasible control

horizon is usually equal to the number of the state variables. There might exist some

implicit relationships between local controllability and the feasible control horizon of

contractive MPC with compulsory contractive constraint. However, such analytical

relationships are needed to be explored further to provide the guideline of selecting

feasible control horizons for contractive MPC with compulsory contractive constraint

easily.

• Interval analysis is extended to zonotope geometry in this thesis. Then current

research results and applications of interval analysis can be extended to use zonotope

geometry as well to broad the initial search domain from boxes to zonotopes and reduce

the wrapping effect of dynamic evolutions.

• The numerical tools of zonotope geometry and interval analysis are powerful for

dealing with nonlinear systems. Thus current research results on hybrid control of lin-

ear and piecewise-affine systems in the literature can be extended to nonlinear systems

as well.
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8.2 Future Work

• The relationships between interval vectors or boxes, polytopes and zonotopes have

been explored in the thesis, where polytopes are the most general convex sets. Cur-

rent algorithms developed in the thesis are based on several uncommercial MATLAB

toolboxes such as INTerval LABoratory (INTLAB) by Dr. Siegfried M. Rump, Invari-

ant Set Toolbox (IST) by Dr. Eric C. Kerrigan and Multi-Parametric Toolbox (MPT)

by M. Kvasnica, P. Grieder and M. Baotic. A user-friendly and independent hybrid

polytope interface is needed to be provided in the near future for an easier and wider

application of them to MPC.
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Appendix A

Hybrid Polytope Interface

The most general convex sets are polytopes and all the convex sets considered in

the thesis such as interval vectors and zonotopes can be transformed to the format of

polytopes in Multi-Parametric Toolbox (MPT) (Kvasnica et al., 2006) or Invariant Set

Toolbox (IST) (Kerrigan, 2000). So MPT and IST play a central role in the unified

framework of convex sets, which is to be called Hybrid Polytope Interface (HPI) as

the name of all MATLAB routines developed in this thesis. On the other hand, the

introduction of nonlinear numerical tools such as interval analysis and zonotopes to

MPT and IST extends their capacities from treating not only linear and piecewise-affine

systems, but also nonlinear systems. The following sections introduce some primary

and conceptual MATLAB routines in HPI to fulfill the transformations from interval

vectors and zonotopes to polytopes in 2-dimensional cases, respectively. With the help

of these seminal routines in HPT and the existing toolboxes of INTerval LABoratory

(INTLAB) (Rump, 2006), MPT and IST, other researchers are anticipated to be able

to repeat the simulation results in the thesis or apply them in other research topics.

A.1 Transform from Interval Vectors to Polytopes

A.1.1 Transform An Interval Vector or A Box to A Polytope

The transform of a 2-D interval vector or a 2-D box in INTLAB to a polytope in

MPT is realized in the MATLAB file of box2poly.m:
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A.2 Transform from Zonotopes to Polytopes

Accordingly, a union of 2-D interval vectors or boxes can be transformed straight-

forwardly to be a union of 2-D polytopes, which is realized in the MATLAB file of

intu2polyu.m.

A.1.2 Approximate A Union of Boxes Innerly By One Polytope

The inner approximation of a union of 2-D boxes in INTLAB by one 2-D polytope

in MPT is realized in the MATLAB file of polytopica.m according to Algorithm 6.2:

The cost function used in polytopica.m is realized in the MATLAB file of costfunminp.m:

A.2 Transform from Zonotopes to Polytopes

A.2.1 Zonotope Definition

The zonotope definition is realized in the MATLAB file of zonotope.m as an object

under the directory @zonotope:
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A.2 Transform from Zonotopes to Polytopes

A.2.2 Zonotope Bisection

The bisection of a zonotope is realized in the MATLAB file of bisectzono.m under

the directory @zonotope:

A.2.3 Transform A Zonotope to A Polytope

A zonotope is a centrally-symmetric polytope and the construction of a 2-D zono-

tope is realized in the MATLAB file of zono2poly.m 1:

1The listed zono2poly.m is only for demonstrating the principle of the 2-D zonotope construction

via polytope additions while the actual algorithm used for the simulations of the thesis is more complex

because of extra treatments of potentially-degenerated polytopes.
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