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Abstract /Resum

Abstract

The first part of the thesis is devoted to the analysis on a capacity space, with capacities
as substitutes of measures in the study of function spaces. The goal is to extend to the
associated function lattices some aspects of the theory of Banach function spaces, to show
how the general theory can be applied to classical function spaces such as Lorentz spaces,
and to complete the real interpolation theory for these spaces included in [CeCIM] and [Ce].

In the second part of the thesis, we present an integral inequality connecting a function
space norm of the gradient of a function to an integral of the corresponding capacity of the
conductor between two level surfaces of the function, which extends the estimates obtained
by V. Maz’ya and S. Costea, and sharp capacitary inequalities due to V. Maz’ya in the
case of the Sobolev norm. The inequality, obtained under appropriate convexity conditions
on the function space, gives a characterization of Sobolev type inequalities involving two
measures, necessary and sufficient conditions for Sobolev isocapacitary type inequalities,

and self-improvements for integrability of Lipschitz functions.
Resum

La primera part esta dedicada a I’analisi d’un espai de capacitat, amb capacitats com a
substituts de les mesures en 1'estudi d’espais de funcions. L’objectiu és estendre als reticles
de funcions associats alguns aspectes de la la teoria d’espais de funcions de Banach, mostrar
com la teoria general pot ser aplicada a espais funcionals classics com els espais de Lorentz,
i completar la teoria d’interpolacié real d’aquests espais inclosos en [CeCIM] i [Ce].

A la segona part de la tesi es presenta una desigualtat integral que connecta la norma del
gradient d’una funcié en un espai de funcions amb la integral de la corresponent capacitat del
conductor entre dues superficies de nivell de la funcié, que estén les estimacions obtingudes
per V. Maz’yaiS. Costea, i desigualtats capacitaries fortes de V. Maz’ya en el cas de la norma
de Sobolev. La desigualtat, obtinguda sota condicions de convexitat pel espai funcional,

permet una caracteritzacio de les desigualtats de tipus Sobolev per dues mesures, condicions
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necessaries i suficients per desigualtats isocapacitaries de tipus Sobolev, i la millora de I'auto-

integrabilitat de les funcions de Lipschitz.



Introduction

The main concept in this thesis is the concept of capacity. A capacity, as a generic set
theoretic measuring device, is intimately associated to the idea of a function space -in much
the same way as Lebesgue measure is related to the usual LP spaces.

A first model example is given by the variational capacity. For m be a positive integer,
1 <p < oo, and 2 be a domain in the Euclidean n-space R™, the variational capacity is
defined as

/

Cron(K) i=nf{||¢||}yms; ® € C3°, ¢ > 1 0n K},

m,p
where K is a compact subset of R", C§°(R") denotes the class of all infinite continuously
differentiable functions on R™ with compact support, and WP = W™P(R™) the classical
Sobolev space with the usual norm
I6lEmsiey = 32 [ 1D70pd.
o <m 72

Capacity has classically entered in Analysis through removable singularity results and
boundary regularity criteria. But nowadays the concept of a capacity has become much
more a tool that is used in much the same way as measure is used. There is a desire to
integrate with respect to a capacity as if it really were an additive set function - which is
not. One way around this difficulty is to define such an integral using the distributional
form of a Lebesgue integral. This was first proposed by Choquet in his seminal work on

capacities [Ch], by defining for any measurable set F

/Efdc = /0°° Clz € E; f(x) > t}dt,

where f is a non-negative function and C' is a capacity. This new perspective provides a
tool to extend the traditional integral of a function with respect to an additive measure -
the Choquet integral.

Let (£2,%) be a measurable space. Sets will always be assumed to be in ¥ and functions
in Lo(€2), the set of all real valued measurable functions on (€2, ). A set function C' defined

on Y is called a capacity if it satisfies at least the following properties:
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(b) 0<C(A) < o0,
(¢c) C(A) <C(B)if AC B, and
(d) C(AUB) < ¢(C(A)+ C(B)) (c>1) (quasi-subadditive).

It is called concave if
C(AUB)+C(ANB) <C(A)+C(B).

The decreasing rearrangement f£ of f is
fo(e) = inf{t > 0; C{f| >t} <2} (2 >0),

and a quasi-subadditive capacity C such that C'(A4,) — C(A) whenever A, T A is called a
Fatou capacity.

The first part of this thesis contains a wide study of the analytical and topological
properties of the capacitary function spaces. The emphasis is placed upon the study of the
essential functional analytic elements such that a satisfactory theory can be developed in the
context of quasi-Banach spaces. The key results to study the properties of the capacitary
Lebesgue and Lorentz spaces are Theorem 1.2.17 and Theorem 1.2.19, which are the extended
versions of Fatou’s lemma and Hoélder and Minkowski’s inequalities.

For a capacity C, a property is said to hold C'—q.e. if the exceptional set has zero capacity,
and we say that {f, }hen C Lo(Q2) converges in capacity to f € Lo(Q) if C{|f, — f| > €} — 0
as n — 00, Ve > 0. Similarly, we say that {f,}nen is a Cauchy sequence in capacity if for
every € > 0, C{|f, — f,| > €} = 0asp,qg — oco.

The capacitary Lorentz spaces LP(C') (p,q > 0) are defined by the condition

1/q
| fllzracc) = (q fooo - O{|f| > t}q/pdt> <00, q< 00
sup;~.o tC{|f| > t}l/p < 00, q = oo.

and it is the capacitary Lebesgue space LP(C') = LPP(C') when ¢ = p.
Then, the third key result for our first objective: to set the basic properties of the
Lebesgue LP(C') and Lorentz spaces L™4(C') is the following one (see Theorem 1.3.11).
Theorem: A sequence {f,}nen I8 convergent in capacity to a function f if and only if
it is a Cauchy sequence in capacity. In this case, the sequence has a subsequence which is

C'—q.e. convergent to f.
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The key point in this result is a consequence for the capacity given by the Aoki-Rolewicz
theorem, that is, if C' is a capacity on (£2,X) with constant ¢ > 1 and (2¢)¢ = 2, f; = xa4,,

t=1,...,n and p = 1, we obtain

o( G AZ-)g <2 i C(A)e.

We show how the general theory can be applied to function spaces. As an application
of these results we show that the capacitary Lebesgue and Lorentz spaces are complete (see
Theorems 1.3.12 and 1.3.15).

We study also the normability of these spaces: Let u be a measure on (€2, ) such that
w(X) = [0,u(Q)] C [0,00], and let us suppose that C' is p-invariant, this meaning that
C(A) = C(B) if u(A) = u(B).

Definition: A capacity C' on (€2,) is called quasi-concave with respect to p if there
exists a constant v > 1 such that, whenever p(A) < p(B), the following two conditions are
satisfied:

(a) C(A) <~C(B), and

[

C(B) c(A)
(b) 2 < Vam:

this is, for all A, B € X,
p( )
< _
C(B) < ymax <1, )C’(A).

In the study of the normability of the capacitary Lebesgue spaces, a result is Theo-
rem 1.4.4:

Theorem: If the capacity C' is p-invariant and quasi-concave with respect to p, then
C(A) := sup { Z)\iO(Az‘); neN, Z)‘i =1, A >0, Z/\iM(Az‘) < M(A)}
i=1 i=1 i=1

defines a concave capacity which is equivalent to C, i.e. C' ~ L.
Let C' be a quasi-subadditive Fatou capacity, quasi-concave with respect to pu. We will
see that LP(C') is normable for 1 < p < oo. For that we define C as before and C by
C(A):= inf { lim 6’(An)} .

AnTA, AneyX (n—oo

n all this memoir, the symbol f < g will mean that there exists a universal constant ¢ > 0 (independent
of all parameters involved) such that f < cg, and the symbol f ~ g will mean that f < g < f.
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Then we will show (see Proposition 1.4.7) that, C is a concave Fatou capacity equivalent to
C. Therefore in Theorem 1.4.8 we see that if C' has the Fatou property, then C' = 5, and
hence, LP(C) = LP(C)(1 < p < 00), which is normable.

Since we are forced to work with a non-additive integral -the Choquet integral- the dual
spaces are not easily identifiable. However, we will see in Theorem 1.5.5 that for every
1 < p < o0, ¢ be the conjugate exponent of p, and C' a quasi-subadditive Fatou capacity,
the associate space of LP(C) is LI(C).

As it is known, interpolation of operators has many applications in different areas of
mathematics. In interpolation theory of linear operators, couples (By, B;) and (Ao, A1)
of Banach spaces, continuously contained in some Hausdorff topological vector space, and
linear operators T : Ag+ Ay — Bg+ B are considered. An interpolation method builds new
Banach spaces A and B, A — Ay + A; and B — By + By, such that if T : Ay — By and
T : Ay — Bj continuously, then also T': A — B. We say that A and B are interpolation
spaces for (Ao, A1) and (By, By).

The classical results which provided the main impetus for the study of interpolation in
se are the theorems of M. Riesz and of Marcinkiewicz. The way of proving Marcinkiewicz’s
theorem turned into the starting point to origin the definition of the real method of in-
terpolation. The proof allowed to J. L. Lions and J. Peetre (see [LiP, LiP1]) to construct
this method. In particular, if A = (Ay, A;) is a couple of Banach spaces, 0 < § < 1 and
0 < g < oo, the interpolation space Ay, is the Banach space of all f € Ay + A; such that

o . dt\1/a
Iflea = ([ @K 200 F) " <o,
0
where K(t, f; A) is the K-functional defined by

K (t, £ A) = inf { | follag + I Aillasi £ = fo+ fi .

We refer to [BeSh], [BK] and [BeLo] for general facts concerning interpolation theory.

We will say that a set A in (£2,%) is a null set for the capacity C' if C(A) = 0, and that
two capacities Cp, Cy in (€2, 3) have the same null sets if for every A € Q, Cy(A) = 0 if and
only if C(A).

First we obtain the description of K(t, f, LP(C), L>(C)) for a quasi-subadditive Fatou
capacity on (€2,3), 0 < p < oo and t > 0. With this formulas real interpolation follows easily
as in the classical case. In [Ce] it is proved that, for (Cy, Cy) be a couple of concave Fatou

capacities on (€2, ) with the same null sets and 0 < < 1,if 1 < po,p1 < 00, 1 < g, 1 < 00,
1/¢=(1—n)/q +n/q, and 1/p = (1 —n)/po +n/p, then
(LPo%(Co), LP 1 (C1))ng = LP(Coppyprasp);
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where Cy4(A) := |Ixallz(co).zc1)),- Here we extend this result to a more general class of
capacities (see Theorem 2.5.12). The capacities will be still supposed to be Fatou but the
Choquet integral will not be necessarily subadditive anymore, and parameters between zero
and one are also allowed.

Our main problem is then interpolation with change of capacities. We want to determine

for convenient parameters the interpolation space
(LPo%(Co), L1 (C1))ng
and, in particular we want to study
(L7 (Co), L7 (C1))nq-
Since LPi(C;) = (L*(C;), L), p; for a; = (1 — 6;)p;, we want to determine
(L (Co), L))oy o (L (C1), L))oy 1 Imag- (1)

One, in an earlier attempt, tries to apply classical reiteration theorems but we can not do it
because we have spaces with different capacities.

For 0 < p < oo and w be a weight in Ly(Q2)", the Lorentz space LP(w) is defined with

| fllrw) = </Q |f|pwpdu>1/p.

In the classical case Stein and Weiss proved that for 0 < p < oo and wy, w; weights in
Lo()*,

the quasi-norm

(). L (1)) = L (")
Moreover, we will see in Chapter 2 that (AP(wy), AP(w1)),, = AP(w) with
W =W, "W.
To deal with this problem in the case of capacities one suspects that
(LP(Co), LP(C1))yyp = LP(Cy"CY).

Observe that in (1) three spaces appear, namely L*(Cy), L*(C}), L*. In [CeCIM] the same
happens but in the Banach case, studied previously by other authors, and then, the result
follows as an application of those studies. So, it is natural to try to apply an extension of

Sparr’s method for triples of Banach spaces (see [AK]).
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Let n = 2, p;,q; € (0,00] and C; be quasi-subadditive Fatou capacities on (2,X), i =
0,1,2, with subadditivity constants ¢; > 1, such that for an arbitrary set A C €, then

Fix X = (Lrod(Cy), LP+4(Cy), LP»92(Cy)) and denote by R2 the set of vectors t = (t1,t2)
for which ¢; > 0,7 = 1,2. We will try to extend the construction in [AK] to our quasi-Banach
triple. As usual, for elements x € X(X), Peetre’s K-functional of the 3-tuple X is defined
for t € R by the formula

K<t>$§X> = inf {HtTOHLPMO(Co) + -+ to|| w2 || Lr2ee (C2)3 le x; € LPP9(C; )}

Let o € (0, 1] be the parameter in Aoki-Rolewicz’s theorem corresponding to a common
constant ¢ := max(co, ¢y, cz) in the triangle inequality for the quasi-Banach spaces in X,

Pi, ¢ € (0,00], i =0,1,2. We define S,, a modified Calderén operator, by the formula

(5.)() = ( L. i (12,2 5(s)| d—d—> Y er

with (2¢)? = 2 and consider the space

0o(X) = {f € B(X); Sy(S,K (- £ X))(1)? < o0},

The interpolation space Xe 4.k is defined, for © = (6, 0;) with 0,0, > 0 and 6+ 6, < 1,
by the condition
1 fllo.gx = 1K (, £ X)]leq < 0,

dty dta\1/a
lolow = ([ [ e st ) 0 < <o0)
1 b2

where

and the J-space X@g;‘] is defined as
l/q
[ flloqs == inf{( Z Z (27 Mo~ n01J(2m 2" Upn) > Z Z Umn}

where the operator J is given by J(t,v) = J(t,v;X) = max(||v|o,t1||v]1,t2]|v]l2) and
(Upmn) C A(X) satisfies that

( i i (2m9°2"91J(2m,2”,umn))q>1/q < oo.

m=—0o0 N=—00
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Definition: The Fundamental Lemma with the operator S, is valid for the 3-tuple X if
any element € 0,(X) can be represented as a series & = Y | _z» ), absolutely convergent
in X(X), where 7, € A(X), J(2% 21; X) < C[S,K (-, 2; X)](2¥), 2k = (2% ,2%) and k =
(ki, ko) € Z2.

Lemma: Let X = (LPo9(Cy), LP1% (Cy), LP»%2(Cy)). The Fundamental Lemma with the
operator S, is valid for X.

In Definition 2.3.1, we say that a quasi-Banach function lattice ® on R? with the measure
dt _ dty dts

¢ = G2 is a parameter of the o-real W}@ZﬁhOd if th(i operator S, is bounded in @, p € (0, 1].

As usual, the interpolation spaces Kg(X) and Jg(X) are defined by the quasi-norms

ko) = IEC F5X)]le,
I llsorry = nf {I7C,u(); Dlo; £ = D up convergent in ©(X), uy € A(X) },
k

and we will show in Theorem 2.3.2:

Theorem: Let p;, ¢ € (0,00], 7 =0,1,2 and X = (LPo®(Cy), L4 (CY), LP»%2(Ch)) be
a 3-tuple for which the Fundamental Lemma with the operator S, is valid. Then, for any
parameter © of the p-real method, we have that Kg(X) = Jo(X).

With these ingredients, the key result is Theorem 2.4.4 that cames from the Power
theorem of G. Sparr for quasi-normed abelian groups (see [Sp, Sp1]) and Theorem 2.3.2:

Theorem: Let p;,¢; € (0,00], i = 0,1,2, and 0 < p < 1. If 0 < Go,q1,9 < oo and

1 _ 1-p £ th
- = — - en
q do + q’

(L7 (Co). LP(Ca)) o (L7 (C1). L (C) )
= (L (Cy), LP1(Cy), LP%(C5)) (61 ,02).0-

where 0, = (1 — aq)p, 0 = (1 — p) + agp.
As an application we extend the results on real interpolation of capacitary LP(C') spaces
included in [Ce] and [CeCIM] to general capacities. The main objective is Theorem 2.5.12:
Theorem: Let Cy, C; be a couple of quasi-subadditive Fatou capacities on (€2, %) with
the same null sets and 0 < n < 1. If 0 < po,p1 < 00, 0 < qo, 1 < 00, + := 1;—0’7+pi1 and

T p
¢ =204 then, for Coo(A) = |xallzco)zc, (0< 0 < 1),

(meqo (C’O)7 Lpl,(h (Ol))n,q = Lp’q(C%g/p)-

For €2 be a subset of R™ and C' a quasi-subadditive Fatou capacity on (£2, B(£2)), a function
f:Q — Ris termed C-quasi-continuous on €2, denoted by f € QC, if given any € > 0, there
exists a relatively open set G C  such that C(G) < € and f is continuous on G°.
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More estimates for the K-functional with respect to the pair (LP°(C'), L>°(C')) similar
to those in [Ce] are developed, but restricted to the cone of quasi-continuous functions.
Proposition 2.7.4 is a result and states that, if f is a quasi-continuous function, not necessarily

positive, then
K(t, f; L (C) N QC, L= (C)NQC) == Kgcl(t, f; L (C), L>=(C)) ~ K(t, f; LP°(C), L>=(C)).

Hence, by denoting £74(C') = LP(C') N QC, we will show in Theorem 2.7.5:
Theorem:SupposethatO<¢9<1,0<p0<q§ooor0<p0§q<ooandl%::
Then

1—-6
po

(£72(C), £2(C))a g = £7(C).

A classical property of the Lebesgue measure spaces that still holds in the capacitary

setting is Theorem 2.8.4: For 0 < pg,p1 < 00, a € (0,1) and ]% = 1;_004 + 1%7

LP(C)1e P (C) = LP(C)

with equivalent quasi-norms. Finally we extend the classical theory of Orlicz spaces to gen-

eral Orlicz spaces, capacitary Orlicz spaces and we study their interpolation behaviour.

In the second part of this memoir we will study Sobolev inequalities. To show the con-
nection of this topic with capacities let us consider the following problem. Just consider the
problem of maximizing the area a of a plane domain 2 with rectifiable boundary of a fixed
length [. As it is known, the disk attach the maximum. The maximizing property of the

disk can be written as the isoperimetric inequality
drra < 12 (2)
For n € N, the n-dimensional generalization of (2) is

(Wbesng)nTi1 < Can,l(g), (3)

where ¢ is a domain with smooth boundary 6¢g and compact closure, and H,,_; is the n — 1-
dimensional area (see [EvGal]). How does this geometric fact concern Sobolev embedding
theorems? The answer is given in [FF] and [Ma05] where it is proved that:

Theorem: Let u € C§°(R™). There holds the inequality?

(/n |u]n7—110l:z:>nn1 < cn/ |Vu|dz,

2V f denotes the usual gradient of f when it exists.
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where the best constant is the same as in the isoperimetric inequality (3) and C§°(R"™) denotes
the class of all infinite continuously differentiable functions on R" with compact support.
V. Maz’ya as a fourth year undergraduate student discovered that isoperimetric and
isocapacitary inequalities are equivalent to Sobolev type inequalities. It turned out that
classes of domains and measures involved in embedding and compactness theorems could

be completely described in terms of length, area and capacity minimizing functions. If we

(/Q|u|qd,u>1/q < C/Q|Vu|dx, (4)

where ¢ > 1, 2 is an open subset of R™, i is an arbitrary measure on R" and u € C§°(),

consider the inequality:

then we have the following nice theorem.

Theorem: Inequality (4) with ¢ > 1 holds if and only if

()" < CHouoa(g)

for every bounded open set g with smooth boundary g C . This classical theorem shows
the relation between isoperimetry and Sobolev estimates.

Some capacities of potential theory are very useful to obtain bounds for some classical
operators. For example, Calder6n’s theorem shows that every u € W™P(R™) can be repre-
sented as a Bessel potential in the way u(z) = G,, % f(z), for all z € R" and f € LP, where
G is the L'- function with Fourier transform (1 4+ |¢[?)~%/2, £ € R", a > 0. With this, we

obtain the following potential theoretic capacity:
Cop(K) :=mf{||f|I5s; Gaxf>1on K, f >0 a.e.}

for « > 0 and 1 < p < co. This capacity is often refered as Bessel capacity. Easily it follows
the weak type inequality

Cop({Gax f>1}) <t7? f(z)Pdx
Rn

for any f > 0 a.e. on R™. Such an estimate have an analogy with the situation of operators

between measurable functions. Here, we are thinking of the operator
Go i LP — LP2(C,,).

The history of such inequalities really begins with V. Maz’ya in [Ma85|, where the ca-

pacitary strong type inequality was given. We adopt here the notation

C,(K) := inf { / IVolPdz; ¢ € C°(R™), ¢ > 1 on K}.
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The strong capacitary inequality for C), is

/]u\pdC’p < A/ |[VulPdz (1 < p <n). (5)

The fact that C), is a capacity and the definition of the Choquet integral make to think about
the possibility to obtain on the left part of (5) a real integral on (0, c0). The solution of this
problem was given first by V. Maz’ya in [Ma06].

If Lip,y (£2) is the class of all Lipschitz functions with compact support in a domain 2 C R”,
Wiener’s capacity of a compact subset K of €2,

cap(K, Q) = inf IVFI5  (f € Lipy(2)),

0<f<1,f=1 on K

extended in the obvious way for any p > 1 as the p-capacity

cap, (K, ) = inf IVAE  (f € Lipg(2)),

0<f<1,f=1 on K

was used by V. Maz’ya to obtain the Sobolev inequality

/ " cap, (Mo, M)A() < c(a,p) / IV fPPde,
0 Q

where M, is the set {z € Q;|f(x)| > t} with ¢ > 0. It has numerous extensions and has

been applied to the theory of Sobolev type spaces on domains in R”, Riemannian manifolds,

metric and topological spaces, to linear and non-linear partial differential equations, etc.
Some extensions to the setting of Lorentz spaces LP?(2) has been obtained in [CosMal,

where it is proved that

/0 P,y (ats M)A S 1V F gy (1 < 4 < 1) (6)

and

/O cap, g (Mats M)YPd(t) S 19 f 1% agcim ) (P < @ < ). (7)

From (6) and (7) they derive necessary and sufficient conditions for certain two-weight in-
equalities involving Sobolev-Lorentz norms, extending results obtained in [Ma05] and [Ma06].
For p and n be two Borel measures on () and p,q,r, s real numbers such that 1 < s <

max(p,q) <r < ooand ¢ > 1, V. Maz'ya and S. Costea characterize the inequality

11z < AVl oo + 1| psmsvoon)



Introduction 13

restricted to functions in Lipy(£2) by requiring the condition?
p(g)'" < K(Capp,q@? )P + n(G)l/s) (9 cC G ccC Q).

In the sequel we extend this result also for r.i. quasi-Banach spaces on 2 and 0 < p < 1.
The proofs of these new Lorentz-Sobolev inequalities in [CosMa] are based on the prop-

erties

[l @ T ||g||LPll(QM) < ||f+g||qu (1) (1<g<p)
||f||LIMI(QM + HgHqu (1) < ||f+g||LP7q(Q7M) (I<p<aq)

of the Lorentz (quasi-)norms, for f, ¢ disjointly supported functions. Since the constant in
the right hand side of the inequalities is one, they can be extended to an arbitrary set of
disjoint functions. A thorough study in the proofs allow us to see that the limitation of
these techniques is that it allows us to cover only certain particular kind of spaces because
of the lower estimates with constant one, and it does not apply to a wider class of spaces.
However, we will see that an extension is possible in the setting of (quasi-)Banach function
spaces with lower estimates, independently of the value of the constant, by means of new
techniques. The key point is a result due to N. J. Kalton and S. J. Montgomery-Smith on
the theory of submeasures. Our results have the advantage that they can be applied to many
examples.

In general, a Banach function space X = X () on (2,3, ) is called a rearrangement-
invariant (r.i. for short) space if g € X implies that all g-measurable functions f with the
same distribution function, that is, such that uy = p,*, also belong to X and || f|lx = ||g]|x-

Our aim in the second part of this thesis is to show that inequalities (6) and (7) can be
extended to other function spaces X = X (), with 2 endowed with the Lebesgue measure,
under certain convexity conditions on the Sobolev norm or quasi-norm. In the sequel, we

prove in Theorems 3.3.5 and 3.3.6 the inequality

/ 171 Capy (M, My)Pdt < c(a, p)|VFI%
0

under appropiate convexity conditions, where

Capy (Mg, My) = inf{||Vu|x; v € W(My, M)},

and W (M, M,) := {u € Lipy(M,); u = 1on a neighbourhood of My, 0 < u < 1}.

3The notation g CC G means that g is an open set whose closure is a compact subset of the open set G.
“Let f be p-measurable, the distribution function is ps(t) := pu{z € Q;|f(z)| > t},t > 0.
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In general, for a compact set K C 2 and an open set G C {2 containing K, we denote
W(K,G) :={u € Lipy(G); u = 1on a neighbourhood of K, 0 < u < 1},

Capx (K, G) := inf{||Vullx; u € W(K,G)}

and we will write Capy(-) = Capy/(+,2) when Q has been fixed.
Definition: A quasi-Banach function space X on (£2,3) is called p-convex if there exists

a constant M so that
n 1/p i 1/p "
[ 1) 7 < (S0al) " e, {fib, € X).
i=1 i=1

Definition: Let 0 < p < oco. A quasi-Banach function space X on (2, X)) satisfies an
upper p-estimate (a lower p—estimate) if there exists a constant M so that, for all n € N

and for any choice of disjointly supported elements {f;}" ; C X,

(1) < (n)™ (Suar)™ < w (S 150) )

In particular, necessary and sufficient conditions for Sobolev type estimates in rearrange-

ment invariant spaces involving two measures are developed, extending results of [Ma05], [Ma06]
and [CosMa]. Consider u and v be two Borel measures on 2, X a quasi-Banach function
space on €2, Y an r.i. space on (2, ) and Z an r.i. space on (€2, ). Under this conditions
we will prove (see Theorem 3.4.1):

Theorem: If X satisfies a lower p—estimate, then the following properties are equivalent:

(i) There is a constant A > 0 such that

[fllarery < AUVl + 1 fllarez)  (f € Lipg(€)).

(ii) There exists a constant B > 0 such that

oy (u(g)) < B(Capx(7,G) +vz(v(G))) (9 cCc G cC Q).

Here ¢x denotes the fundamental function of the r.i. space X defined in (3.2) and A'?(X)

represents the Lorentz space defined by the condition

* 1/p
oo = (o pxtustorr) ™ <o
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A characterization of Sobolev type inequalities and improvements of the integrability of
Lipschitz functions follow from our studies. Let X be a quasi-Banach function space on the
domain Q C R™, 1 a Borel measure on €2, and Y be an r.i. space on (€2, ). In Theorem 3.5.1
we see that if

, orlale)

Capx(9,G)

the supremum being taken over all sets g, G such that ¢ CC G cC R", then for every compact
subset K in (2,

< 00,

oy (u(K)) S Capx (K).

As an application of Theorem 3.3.6 and Theorem 3.5.1, Theorem 3.5.2 states:
Theorem: Let 0 < p < oco. If X satisfies a lower p—estimate, then the following proper-

ties are equivalent:
(1) oy (u(K)) < Capy(K) for every compact set K on (.
() [[fllareey STV Alx (f € Lipg(€2)).
(i) [[fllareery S IV Sllx (f € Lipg(€2)).

Moreover, for ¢ > p, if Y is g-convex or, if Y satisfies an upper g—estimate and ¢y (t)/t'/?

is quasi-increasing, then, for every f € Lip,(£2),

[ty S IVl = 1fllareey S IV < Iy STVl

In the particular case when X = LP, p € (1,n), and Y = L*® with s = n”—f; we recover the

well-known self-improvement of integrability of Lipschitz functions

/]

e = |[fllaro@s) SNV Fle-

To finish this chapter, we develop some extensions to the capacitary function spaces
studied in the first chapter of this memoir (see Theorem 3.6.1):
Theorem: Suppose 0 < p, s,q < oo, and let C' and C be two capacities on (€, %). If X

satisfies a lower g—estimate, then the following properties are equivalent:

(@) [[flleraey S IV Fllx + 1]

Loa(&) for every f € Lip,y(2).

(ii) C®)(g) < Capyx (7, G) + CO(G) for all sets g and G such that g cC G cc Q.
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Recall that C®) := C/? denotes the p-converification of C (see [Ce]).

As it is known, the Sobolev-Poincaré inequality is closely related with isocapacitary
inequalities. So that, we finish this memoir with an study of some Sobolev inequalities of
second order.

Let €2 be a domain of R™ with the Lebesgue measure m,,. Let f be a continuously differen-

tiable function with compact support in €. The classical version of the Pélya-Szego principle
states (cf. [K])

IV £olr) < IV £lze@),

where f° denotes the symmetric rearrangement of f, defined as

fo(@) = [Hwnla]®)  (z € R?),

where w,, = measure of the unit ball in R™. It is well-known that the isoperimetric and
isocapacitary inequalities are equivalent to Sobolev type inequalities (cf. [Ma85, Mall]).
A well-known principle, due to Maz’ya, and Federer and Fleming (cf. [Ma85], [FF|, [Fed],
and the references therein), is the equivalence between the isoperimetric inequality and the

Sobolev and Gagliardo-Nirenberg inequality

11 e < ellIVflllze,  (f € Lipg(R"),1 <p < n).

For 1 < p < n the exact value of the constant was found by Talenti [Tal] and Aubin [Au].

Maz’ya’s work also influenced specially the most recent work of J. Martin and M. Mil-
man. For instance, in [MMi3] the authors show some connections between symmetrization
inequalities and the isocapacitary inequalities due to Maz’ya.

As it is known, symmetrization is a very useful classical tool in PDE’s and the the-
ory of Sobolev spaces, being the symmetrization inequalities formulated frequently as norm
inequalities. A difficulty in that area is that the norm inequalities need to be proven sep-
arately for different classes of spaces. Moreover, one may lose information in the extreme
cases. Normaly, the end point Sobolev embeddings usually require a different type of spaces
(extrapolation spaces), and different geometries produce different types of optimal spaces.

In [MMil] and [MMiP] new symmetrization inequalities have been developed that can be
applied to provide a unified treatment of sharp Poincaré inequalities and sharp integrability
of solutions of elliptic equations. Moreover, in [MMi4] higher order symmetrization inequal-
ities are also given. On the other hand, A. Cianchi in [Cil] has characterized second-order
Sobolev-Poincaré inequalities in R™ with the Lebesgue measure and a Pélya-Szego principle

for second-order derivatives is established.
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In [MMi5] the authors provide, using isoperimetry and symmetrization, a unified frame-
work to study the classical and logarithmic Sobolev inequalities. In particular, they obtain
new Gaussian symmetrization inequalities and connect them with logarithmic Sobolev in-
equalities. In those inequalities, the isoperimetric function appears sistematically. For sec-
ond order derivatives we will see, in the appendix, that the inequalities depend on the square
of the isoperimetric function.

In the appendix, we will try to obtain second order Sobolev-Poincaré inequalities and to
characterize them. Let u be a Borel measure on 2 = R”, and assume that p is given by
dp(x) = ¢(z)dz, where ¢ € C(R"), ¢(z) > 0 for any x € R” and [, p(z)dz = 1. We define
the non-increasing rearrangement of f € Lo(R™) with respect to p (compare with (1.2)), as

fu(t) == inf{s > 0; p{[f] > s} <t} (0<t<1).

Let A C R™ be a measurable set, the p-perimeter (in the sense of De Giorgi) is defined
by

P.(A) = sup { Adm(h@p@))m h e CHR™, R, |h| < 1},

and the isoperimetric function I, is defined as the pointwise maximal function I, : [0,1] —
[0, 00) such that
Bu(A) = L(u(A)),

holds for all Borel sets A.

We will assume that the isoperimetric function (i.e., the isoperimetric profile) I, is a
concave continuous function, increasing on (0,1/2), symmetric about the point 1/2 that,
moreover, vanishes at zero.

M. Milman and J. Martin consider as a usual space, a Banach function space X on
(R™, 1) and they show that, if Y is also an r.i. space on (R", ), the X —Y Sobolev-Poincaré
inequality depends on the boundedness of the Hardy type operator

1/2 1 s
Q) = [ o775 = [ o @77

as shown in [MMil].
In [MMi3], it is shown that, if 0 < g € X(0,1) and supp g C (0,1/2), implies that 5

HngHY(o,l) S HQHX(O,l)a

For an r.i. Banach function space X on (R",u), X(0,1) is the r.i. space endowed with the Lebesgue
measure given by the Luxemburg theorem (see [BeSh, Theorem 4.2]).
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then for any f € Lip(R"), the Sobolev-Poincaré estimate holds

7= [ rau], <1911

It is observed that the reverse result holds only for measure spaces of isoperimetric Hardy
type.

Using similar techniques second order Sobolev-Poincaré inequalities are developed and
related with the boundedness of some Hardy type operators involving the square of the

isoperimetric profile on (R™, 11). We define a new operator A for g € X(0,1) by

1/2 s ~
B [ g = gt

t

and obtain a unified treatment of second order Sobolev-Poincaré inequalities in rearrange-
ment invariant function spaces.

By W?2X (1) we denote the classical second-order Sobolev space generated by the norm
in X,

[ llwzx( = Z 1 D7 || x(®n ) = Z 1D7¢]|x-

|lo|<2 lo|<2

Suppose that X and Y are r.i. spaces on (R™, ). We will show (see Theorem A.3.9) that:
Theorem: Assume that ax < 1 and A is bounded on X (0, 1). The following statements

are equivalent:

(i) For every g > 0 with supp ¢g C (0,1/2),

1
s \2ds
_ < =
H/t g(s)<lu(s)> s H?(O,l) ~ Hg”X(O’l)'

(ii) For every f € WX(p),

Fu(®) (IMY)YH)‘((OJ)'

1y S |

(iii) For every f € W2X(pu),

I |0 - sz (B2 o+
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If these properties are satisfied and f € W% ()%, then

Hf - /R fduHY S fllx + IV F o -

We will prove under the isoperimetric Hardy type condition in Theorem A.4.1 that: If
X and Y are r.i. spaces on (R", ) with @y < 1 and such that ||Q.9llv01) S ll9llx,) for
g >0, g€ X(0,1) supported on (0,1/2), then W2X(y) — Y, and for every f € WX ()

. . < 2
Alg7£1 If = Aslly S ld°fllx-

More precisely, ||f — Aflly S | fllx if Ay := pr+ [(f — py)dp with pe(z) == [ fdu+
St ([ 0if di)x;. Finally, for the Gaussian measure v we show in Theorem A.5.2 that, if

1f = Aslly Sl fllx — (f € W25 (y)),
then Q2 : X(0,1) — Y(0,1) and Q, : X(0,1) — Y(0,1) are bounded operators.

Topics covered in this dissertation: Statements of the problems
and main results

As we said, capacities, interpolation and Sobolev inequalities are the ingredients of this
dissertation. A brief description of the most important obtained results is provided. The
different problems will be treated in different chapters of this dissertation and they will be

contextualized in the corresponding chapters.

Chapter 1: Capacitary function spaces

Let (€2, ) be a measurable space. Sets will always be assumed to be in ¥ and functions
in Lo(€2), the set of all real valued measurable functions on (€2,3). A set function C'

defined on X is called a capacity if it satisfies at least the following properties:

(a) C(0) =0,

(b) 0 <C(A) < o0,

(¢c) C(A) <C(B)if AC B, and

(d) C(AUB) < c¢(C(A)+ C(B)) (c>1) (quasi-subadditive).

It is called concave if

C(AUB) + C(AN B) < C(A) + C(B).

672X (11) denotes the second-order Sobolev space with the norm generated by the norm in X.
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The Choquet integral is defined as

/de::/ooO{f>t}dt

0

if f > 0 is a measurable function in the sense that {f > ¢t} € X for every ¢t > 0.
One of the main problems is that we are forced to work with a non-additive integral,
the Choquet integral, so that the dual spaces are not easily identifiable and some
basic properties, such as the dominated convergence theorem, are not longer available.

Therefore, we must check all the classical properties to assure their validity.

In measure theory, measure convergence is a really useful concept and its facts. The
measure convergence must be understood as the convergence to zero of the measure
of the set between the graphs of a sequence of measurable functions {f,} and f.
As a capacity is an extension of a measure, our first natural question is to analyze
under which conditions on the capacity, we will have the corresponding theorem of
convergence of measurable functions. We will answer to this question in a general

case, in Theorem 1.3.11.

For a capacity C', a property is said to hold C'—q.e. if the exceptional set has zero
capacity, and we say that {f,}ien C Lo(2) converges to f € Lo(QQ) in capacity if
C{|fn — f] > €} — 0 asn — oo, Ve > 0. Similarly, we say that {f,}nen is a Cauchy
sequence in capacity if for every € > 0, C{|f, — f,| > ¢} — 0 as p,q — oo.

Theorem: A sequence {f,}nen is convergent in capacity to a function f if and only
if it is a Cauchy sequence in capacity. In this case, the sequence has a subsequence

which is C'—q.e. convergent to f.

The decreasing rearrangement f¢ of f is

fo(z) = inf{t > 0; C{|f]| >t} <z} (x> 0),
and a quasi-subadditive capacity C' such that C'(A4,) — C(A) whenever A, T A is
called a Fatou capacity. The Lebesgue space LP(C') (p > 0) is defined by the condition

o (fg|f|pd0)1/p<00> 0<p<oo
&(f) = inf{M > 0;C{|f| > M} =0} < o0, p=o0.

The Fatou property allows us to prove for a general quasi-subadditive Fatou capacity
C' on the measurable space (2, %), the completeness of the capacitary Lebesgue and

Lorentz spaces (see Theorems 1.3.12 and 1.3.15). Another interesting problem partially
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analized in [CeCIM] is the normability or not of the capacitary Lebesgue space LP(C)
under a strong condition. This is not possible in all the desirable generalization, but

we will see that it is possible under appropiate conditions.

Let u be a measure on (€2, ) such that pu(X) = [0, u(2)] C [0, 0], and let us suppose
that C' is p-invariant, this meaning that C(A) = C(B) if u(A) = u(B).

Definition: A capacity C' on (€,3) is called quasi-concave with respect to p if there
exists a constant v > 1 such that, whenever u(A) < u(B), the following two conditions

are satisfied:

this is, for all A, B € X,

1(B)
C(B) < ymax (1, m)cm).

In the study of the normability of the capacitary Lebesgue spaces with weaker condi-
tions, a key result is Theorem 1.4.4:

Theorem: If the capacity C' is p-invariant and quasi-concave with respect to u, then

C(A) = sup { Xn: NC(A); n €N, Xn: N=1,\>0, zn: Nipi(Ay) < M(A)}
i=1 =1 1=1

defines a concave capacity which is equivalent to C', i.e. C' ~ C7. As an application we
show, in Theorem 1.4.8, that if C' has the Fatou property, then LP(C) (1 <p<o)is

normable.

Chapter 2: Interpolation of capacitary Lorentz spaces

The way of proving Marcinkiewicz’s theorem allowed to J. L. Lions and J. Peetre
(see [LiP, LiP1]) to construct the real method of interpolation. In particular, if A =
(Ao, A1) is a couple of Banach spaces, 0 < # < 1 and 0 < ¢ < oo, the interpolation
space Ay, is the Banach space of all f € Ay + A; such that

o= ([ 0 k520 F) " <o

"In all this memoir, the symbol f < g will mean that there exists a universal constant ¢ > 0 (independent
of all parameters involved) such that f < cg, and the symbol f ~ g will mean that f < g < f.
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where K(t, f; A) is the K-functional defined by
K(t, £ A) = int {||follao + tlfillas; £ = fo+ fi}.

In the second chapter our objective is to extend the results on real interpolation of
capacitary LP(C) spaces included in [Ce| and [CeCIM] to general capacities, that is, to
the quasi-Banach case. In those articles the concavity of the capacities is needed. We

will avoid this restrictive property.

First we see that for 0 < p < 0o, C' be a quasi-subadditive Fatou capacity on ({2, %),
feLlr(C)+ L>(C), and t > 0,

1,200,150 = ([Tt = ) = ([ gewras)”

With these formulas, real interpolation follows easily as in the classical case (see The-
10

orem 2.5.2): Suppose0<c9<1,O<pg<q§ooor0<p0§q<oo,and11—): .

Then
(LP(C), L=(C))e,q = LM(C).

We want to determine for convenient parameters and capacities the interpolation space
(Lpo (CO)v L (Cl))nvq
Since LPi(C;) = (L*(C;), L™)g, p, for a; = (1 — 6;)p;, we want to determine

((La()(OU)v LOO)GOJUm (Lal (Cl)v LOO>917P1)77,!1' (8)

After a first look, one tries to apply classical reiteration theorems but we can not do

it because we have spaces with different capacities.

For 0 < p < 0o and w be a weight in Ly(2)", the Lorentz space LP(w) is defined with

the quasi-norm
1/
Il = [ 177w

In the classical case Stein and Weiss proved that for 0 < p < oo and wy, w; weights in
Lo(Q)T,
(LP (wo), LF(wn))yp = LP(wy "wy).

Moreover, we will see in Chapter 2 that (AP(wy), AP(w1)),, = AP(w) with

W =W, "W
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Therefore in the case of capacities one suspects
(LP(Co), LP(C1))yyp = LP(Cy"CY).

Observe that in (8) three spaces appear, namely L*(Cy), L*(Cy), L. It is natural
to try to apply an extension of Sparr’s method for triples of Banach spaces (see [AK]).

A thorough study of [AK], and the analytical and topological properties of the spaces
in our problem show that it is necessary to define an appropiate Calderén operator
in order to prove the key result (Theorem 2.4.4): Let p;, q; € (0,00] and C; be quasi-
subadditive Fatou capacities on (€2, %), 7 = 0, 1, 2 such that for an arbitrary set A C €2,
then

Co(A) =0« (C1(A) =0 <= Cy(A) =0,

that is, Cy, Ci, Cy have the same null sets. An application of the properties of the
modified Calderén operator defined in (2.5) and the Power theorem of G. Sparr (see [Sp,
Spl]) give, in particular, that:

((Lao (00)7 Loo)empm (Lal (Ol)’ LOO)917P1)777Q = (La()(OU)? L™ (01)7 Loo)ﬁlﬂ%]’

for By := (1 —01)n, B2 = 0p(1 —n) +nb:, and 1/q = lp;on + pll-

The capacitary Lorentz spaces LP?(C') (p,q > 0) are defined by the condition

00 1/q
i = L (001> 0va) " < o, g < oo
g (O] > 1177 < o, )

In general:

Theorem: Let 0 < < 1. If 0 < ¢, G1,q < oo and % = 1—(%)&4—(%, then

((Lpo,qo(cv(]), Lp27q2 (02))110,(707 (Lpl,lh (Cl>7 Lp27q2 (02))051,!71)##1
= (Lpo,qo (O()), L (Cl)a P> (02))(91,92)711’

where 0; = (1 — ay)p, 02 = ap(l — p) + aqp. As an application our main objective
follows in Theorem 2.5.12:

Theorem: Let Cy, C be a couple of quasi-subadditive Fatou capacities with the same

nullsetsaund0<77<1.IfO<]DO,]Dl<o<>,()<q0,q1§c~o,%::lpf—;’—i—pﬂl and
1

Li= I I then, for Cyg(A) = [[xall(zico)Licr)e, (0 <0 < 1),

(Lp(),qo (00)7 LPL(II(CI))mq = Lp’q(C%g/p)'
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Chapter 3: Conductor Sobolev type estimates and isocapacitary inequalities

For €2 C R™ be a domain, the extension of Wiener’s capacity of a compact subset K

of Q for p > 1, is the p-capacity (see Example 1.2.8)

cap, (K, Q) = inf IVAI  (f € Lipg(2))%.

0<f<1,f=1 on K

This was used in [Ma05] to obtain the Sobolev inequality

/ cap, (Mo, Mi)d(1?) < c(a, )|V FI2,
0

where M, is the level set {z € ; |f(z)| >t} for t > 0.

In [CosMal, the authors show some extensions to the setting of Lorentz spaces LP?(£2).

The proofs of the new Lorentz-Sobolev inequalities are based on the properties

11t + 190 < 1+ 0l (1 <a<p)
||f||LP,Q(QH) + Hg”qu () < ||f+9Hqu (p) (I1<p<gq)

of the (quasi-)norms for f, ¢ disjointly supported functions. Since the constant in the
right hand side of the inequalities is one, they can be extended to an arbitrary set
of disjoint functions. Nevertheless, the limitation of these techniques is that it allows
us to cover only certain particular kind of spaces because of the lower estimates with
constant one. We will see that an extension is possible for (quasi-)Banach function
spaces with lower estimates, independently of the value of the constant. The key point

is a result on the theory of submeasures. Our results can be applied to many examples.

Our aim is to extend these capacitary estimates when a general function space X
substitutes LP(€2) in the definition of cap,. Let {2 be a domain of R" endowed with
the Lebesque measure m,, and X = X () denotes a quasi-Banach function space on
Q2. For a compact set K C 2 and an open set G C 2 containing K, the couple (K, G)

is called a conductor and we denote

W(K,G) := {u € Lipy(G); u = 1on a neighbourhood of K, 0 < u < 1},

Each conductor has an X -capacity defined by

Capy (K, G) == inf{||Vux; u € W(EK,G)}.

8Lip, () is the class of all Lipschitz functions with compact support in a domain 2 C R” and V f denotes
the usual gradient of f € Lipy ().
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We will write Capy () = Capy(+,€2) when Q has been fixed.

Definition: A quasi-Banach function space X on (£2,Y) is called p-convex if there

exists a constant M so that
i 1/p i 1/p
(1) " =M (o 1) " men, {f3, € ).
i=1 i=1

Definition: Let 0 < p < o0o. A quasi-Banach function space X on (£2,3) satisfies
an upper p-estimate (a lower p—estimate) if there exists a constant M so that, for all

n € N and for any choice of disjointly supported elements { f;}!, C X,

H (Z IONE M(g )" ((g 1507)" < (Z 10)"]):

Then a new argument solves our main problem (see Theorem 3.3.6):

Theorem: Suppose 0 < p < oo and let @ > 1 be a constant. If X is a quasi-Banach

function space which satisfies a lower p—estimate, then

| eCans@T=atd A > 075 <alVAI (7 € Lin@))

where the constant ¢, depends on a, p, M) (X) and on the quasi-subadditivity constant

¢ of the quasi-norm in X.

Given 0 < p < oo, the Lorentz space A'?(X) associated to X is defined as’

{re 2@ Wlawwon = ([ 0 (oxtusto)at)” <oc}

0

with the usual changes when p = oco.

As an application of Theorem 3.3.6 we obtain an unnoticed fact: It could seem that
for improvements of integrability only truncations methods are needed. For instance,
in [KO]J it appears that inequalities of Sobolev-Poincaré-type are improved to Lorentz
type scales thanks to stability under truncations, but there also p-convexity is implicitly

used. It is well known that the Gagliardo-Nirenberg inequality

[fllnn-n SVl (f € Lipg(€2)),

9For X be an r.i. quasi-Banach function space on Q and u a totally o-finite measure on €2, ¢x is the
fundamental function of X defined in (3.2).
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. n n—1)s . aln/(n—1
allows us to see that, if p € (1,n), s = & and a = %, since || f|5. = ||| f] HL/:% ),
then || £35S [l F10 YV £[llze S 172 IV £l e, where p' is the conjugate expo-
s S|V fllze. Therefore, since L® — L% it follows that

nent of p. Hence || f]
[fl[psce SNV flLe-

But || fllatee(zsy = [[fllse S IV f]lzr and then, from Theorem 3.5.2, we will be able

to conclude that

/]

Lsp = HfHALp(Ls) SIVElle  (f € Lipy(2)),
and we obtain a self-improvement.
If p = n, the Trudinger inequality,

(f; fr(s)™

< ||V -

gives the estimates

1—n

1 -
plp()) = (1+1og ) ™ < Cappn (K)o S 19 e

But,
s = ([ e tetmtora)” = ([ (7))

If r < s < p, then L*" satisfies an upper p-estimate and .. (t)/t'/? is quasi-increasing,
so that, since [|fllz= = | fllavses) S IV 5]z, we will see for g < p that [|f]lzo~ =
| fllaveersry SNVl S |V flloea, and then || f||aresry S |V fle. Therefore, if

q < p, then we obtain the self-improvement

[fllzsw = N flare@ory SNV F e (F € Lipg(€2))-

In this sense, for p be a Borel measure on 2, and Y an r.i. space on (2, u), we will

show:

Theorem: Let 0 < p < oo. If X satisfies a lower p—estimate, then the following

properties are equivalent:
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(i) oy (u(K)) < Capy(K) for every compact set K on €.
(i) [[fllaveey STV Flx - (f € Lipg(€2)).

(i) [[fllaveery S IV Ilx - (f € Lipy(€2)).

Moreover, for ¢ > p, if Y is ¢-convex or, if Y satisfies an upper g—estimate and

@y (t)/tY/? is quasi-increasing, then, for every f € Lipy(Q),
[ llareey SNV lLx = 1 llaowy S IVl < 11y STVl

Appendix: Second order Sobolev-Poincaré estimates

We obtain a unified treatment of second order Sobolev-Poincaré inequalities in rear-

rangement invariant function spaces.

Let us consider R"™ with the Borel measure . We assume that p is given by du(x) =
¢(x)dz, where ¢ € C(R"), ¢(x) > 0 for any x € R" and [,, ¢(z)dz = 1.

For a Borel set A C R™, the p-perimeter (in the sense of De Giorgi) is defined by

P(4) = sup { /Adiv(h(x)gp(x))dx; he CR R, b < 1},

and the isoperimetric function I, is defined as the pointwise maximal function 7, :
[0,1] — [0, 00) such that

holds for all Borel sets A.

M. Milman and J. Martin show that, for X and Y r.i. spaces on (R", i), the X — Y
Sobolev-Poincaré inequality depends on the boundedness of @), defined by

1/2 s
Q= [ 0775

Suppose that X and Y are r.i. spaces on (R", i), and let us define a new operator A

for g € X(0,1) by »
I,(t d -
[ )77 = A
t ), i

We will show (see Theorem A.3.9) that:

Theorem: Suppose ax < 1 and A is bounded on X (0,1). The following statements

are equivalent:
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(i) For every g > 0 with supp g C (0,1/2),

1 2d
S S
| [ o(55) S, S Mol

(ii) For every f € W2X(u),

Fu(®) (Iugt)yHX(o,n'

1l 5 |

(iii) For every f € W2X(u),

2
<= - ra ( ) H -
17l £ @) = 5O(F7) || g + 1210

If these properties are satisfied and f € W2X ()0, then

7= [ rau]), S 1€ s + 1900

10172, X (1) denotes the second-order Sobolev space with the norm generated by the norm in X.
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Chapter 1

Capacitary function spaces

1.1 Introduction

The concept of a capacity has its origins in Electrostatics. Assume that K is a conductor
and that we take a charge distribution on K and let the charge move until reach the equilib-
rium. Call p the equilibrium distribution, so that (k) is the total charge. The Newtonian

potential of the measure p is defined as

_ [ dpy)
z —yl’

U*(x)

and it is the potential energy of a unit charge placed in . On that situation, it takes a

constant value V' on K. Define, following to Wiener, the capacity of K by

One may imagine that the boundary of K and any sphere of large radius surrounding K are
the plates of the condenser. Letting the radius of the sphere tend to oo, one gets an ideal
condenser, the boundary of K and the point co. Since U*(o0) = 0, Wiener capacity may be
understood as the capacity of this ideal condenser, and it does not depend on the charge.

Sets of zero capacity play the role of negligible sets for potential theoretic questions. The
fact that a ball and its boundary have the same capacity, being positive, implies that this
capacity is not an additive set function, that is, this capacity is not a measure. Frostman, a
student of M. Riesz, solved the problem of the equilibrium distribution showing in his thesis
(1935) that there exists a unique probability measure p on K (the normalized equilibrium
measure) such that U* is constant C-almost everywhere on K.

La Vallée Poussin gave an alternative description of this capacity. The capacity is the

31
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maximal charge of a charge distribution with potential bounded by 1, that is,
C(K) = sup{u(K);u >0, supp 4 C K and UH(x) < 1}.

In particular, a set K has positive capacity if and only if there exists a positive measure
supported on K with bounded potential.

Another definition of Wiener’s capacity can be given. One can show that

C(K) = int {%/ng(m)\zdx; ¢ € CE(RY), o= Ton K},

where C§° denotes the class of infinitely differentiable functions with compact support, and
the extremal ¢ of this formulation coincides with U*.

It was arround the fifthies when the concept of a capacity started to be used as a generic
set theoretic measuring device. Therefore, a capacity is intimately associated to the idea
of a function space -in much the same way as Lebesgue measure is related to the usual LP
spaces.

The desire to integrate with respect to a capacity was solved by Choquet in [Ch] using
the distributional form of a Lebesgue integral. The Choquet integral of f is defined by

/de — /OO Clo € B: f(z) > t)dt,
E 0

where f is a non-negative function and C() is a capacity. This new view provide a convenient
language to extend the traditional additive integral to a non-additive integral, the Choquet
integral. So that, it turns out to be necessary to study the essential functional analytic
elements such that a satisfactory theory can be developed in the context of quasi-Banach
spaces. The dual spaces are not easily identifiable and some basic properties, such as the
dominated convergence theorem or Fubini’s theorem, are not longer available.

There are well-known characterizations of negligible sets by means of capacities, Hausdorff
measures, arithmetical conditions, etc. and the significance of these concepts to existence
problems for harmonic and analytic functions, boundary behaviour, convergence of expan-
sions and to harmonic analysis. For instance, capacities, as extensions of measures, are very
useful for the study of the boundedness of certain operators.

For any subset E of R" and 0 < a < n, the a-dimensional Hausdorff content of E is
defined by

HY(B) =inf { >~ 6(Q;)" },

Jj=1
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where the imfimum is taken over all coverings of F' by countable families of cubes Q); with
sides parallel to the coordinate axes, and ¢(Q)) denotes the side length of the cube Q.
In the eighties, D. R. Adams proved in [A], using the BMO-H" duality, the strong type

inequality for f be a locally integrable function on R"

/Mf(x)dH“(x) < C/ f(2)[dH* (), 0 < a < n,

where M f is the Hardy-Littlewood mazimal function of f. Other results in the same direction
as well as some extensions can be found on [AH], [Ma85], [OV], and the references therein.
Capacities were used to analyze the non-removability of sets, where a compact set £ C C
is called removable for bounded analytic functions if, for any open set U D E, any bounded
analytic function f : U \ £ — C has an analytic extension to the whole U.
In 1947, L. Ahlfors (see [Ahl]) introduced the notion of analytic capacity to quantify the

non-removability of a set. The analytic capacity of a compact set F is:
Y(E) :=sup{|f'(c0)|; f : C\ E — Cis bounded analytic with || f]|s < 1},

where f’(00) is the derivative of f at oo, that is, f'(00) = lim, ., 2(f(2) — f(00)).
This capacity was used to adresses Painlevé’s problem. L. Ahlfors proved that E is
removable if and only if v(£) = 0, and more recently, X. Tolsa in [To] gave a characterization

of removable sets in terms of Menger curvature.

1.2 Capacities

Let (£2,3) be a measurable space. From now on, sets will always be assumed to be in 3 and
functions in Ly(€2), the set of all real valued measurable functions on (2,%). By L (Q) we
will denote the subset of all positive functions in Ly (€2).

1.2.1 Preliminaries

Definition 1.2.1. A set function C defined on % is called a capacity if it satisfies at least
the following properties:

(a) C(0) =0,
(b) 0 < C(A) < o0, and

(¢c) C(A) < C(B) if AC B.
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In this case, (2, %,C) is called a capacity space.

If moreover for all measurable sets A and B on X
C(AUB) < ¢(C(A) 4+ C(B)),

where ¢ > 1 is a constant, we say that the capacity is quasi-subadditive; it is subadditive if
c=1.
Given f € Lo(Q2), the distribution function Cy of f is defined similarly to the case of a

measure by
Cr(t) =C{|f| >t},t>0 (1.1)
and the decreasing rearrangement f¢ of f is defined as
fo(z) = inf{t > 0; C{|f| >t} <z}, x > 0. (1.2)
In this capacitary setting many of the basic properties remain true. Easily it follows that

fo(x) = sup{t; C{|f| <t} > x}
= /0 Xjo,0{| 1>t () dt

= sup (inf |f(a)|)

C(A)>z \acA
Besides, both functions C'y and f¢ are non-increasing. Using the most convenient of the
above equivalent definitions of the non-increasing rearrangement, the following properties
are easily proved:
(1) (xa)o = Xp.cy-
(2) If s = ZivzlakXAm AcNAj =0 (k#j)and a; > ag > -+ > ay > 0 = any1, then
* N
o= 21 (G — Q1) X[0,0(A1U--UAL)) -

(3) If s = chvzl bexr,, Fr C Fry1 and by, > 0 for every k, then
N
s6 =Y bxpor)-
k=1

4) If s = 25:1 ckXFys Fr O Fr+1 and ¢ > 0 for every k, then

N

So =Y X))oy (C(Fngr) :=0).
1
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(5) If ¢ : [0,00) — [0, 00) is non-decreasing and right-continuous, then
V(fDE = »(f6)-
For instance, (|f[")¢ = (f&)" (p > 0).
Let us show that the decreasing rearrangement of f is also quasi-subadditive.

Proposition 1.2.2. Let C be a quasi-subadditive Fatou capacity on (2,%) with quasi-
subadditivity constant c. Then, for x > 0,

(f +9e) < f2(5) + 96 (52): (13)

Proof. Suppose that A := f&(z1) + g5 (22) < 0o and let © = Cry (). Then
x=C{|f + gl > fa(@) + go(x2)} < cCr(fe(1)) + cCylge(wa)) < cay + cas,
so that
(f +9)tc(car + cxa) < (f + 9)o(x) <A = fo(ar) + go(@2). (1.4)

Taking then, 1 = 9 = x/2¢ in (1.4), it follows that

(f +9)c(x) < fo(r/2¢) + g0 (x/2¢). D
Proposition 1.2.3. Under the same condition of Proposition 1.2.2, for ti,ty > 0,

(f9)o(e(ty + ) < f&(t)go(ta)-
Proof. Consider a = f£(t1) and b = g5 (t2). We have the inclusion
{t € % |f)g(t)] > ab} C {t € Q| f(t)] > a} U {t € Qs ]g(t)] > b}

which implies by the right continuity that

Crolab) = C{t e Qi|f(B)g() > ab} < C({t € % 1F@)] > a} U{t € lg(t)] > b})
< cClte QIf(0)] > a} +cClt € lg(t)] > b}
S Ct1+Ct2.

Hence,

(f9)t(c(ti +t2)) < (f9)(Crglab)) = ab = f&(t1)ge(ta). O

For a given capacity C, a property is said to hold quasi-everywhere (C'—q.e. for short) if

the exceptional set has zero capacity.



36 1. Capacitary function spaces

Definition 1.2.4. Let f1, fa,... be elements in Lo(2). We will say that f, pointwise con-
verges to f, and we write f,, — f, when C{f, /4 f} = 0. Similarly, we say that f, T f when

fn - f and O{fn > fn—i—l} - 0

We will write A, T A or A, | A when x4, T xa or xa, | xa in the above sense,
respectively.

Let us remember that if fi, fo, ... are elements in Ly(2), then for every x € Q we have
that

liminf f;(z) := sup 1r>1f fi(z), limsup f;(z) := inf sup f;(x).
j >

i—00 1—00 T i>y
Therefore, the corresponding facts for lim sup and lim inf follow from their definitions.

Let us introduce now the main element, the main concept in this thesis.

Definition 1.2.5. Let f > 0. The Choquet integral is defined as

/de::/OOOC{f>t}dt€[0,oo],

where C is an arbitrary capacity on (£, ).

This integral is well defined and positive-homogeneous, that is,

/ade:a/de (> 0)

and such that [ fdC =0 if and only if f =0 C'—q.e.
Since {t > 0; C{|f| > t} < x} is the interval [f&(x), o0, by Fubini’s theorem, it follows

that .
| setwyie = [ir1ac.

/ fo(z)de = / / X(0.0{lf>ty) () dtdz
0 0 0

_ /OOO/OC{f|>t}dxdt:/OooC{\f| >t}dt:/\f\dC.

Proposition 1.2.6. Let C' be a quasi-subadditive capacity on (£, X) with quasi-subadditivity

Indeed,

constant c¢. The Choquet integral, defined on non-negative functions, is quasi-subadditive

with constant 2c.
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Proof. Let f,g > 0. The relation {f + ¢ >t} C {f > t/2} U{g > t/2} shows that
/(f+g)dC’ < /000 C{f>t/2yu{g>t/2})dt
< /OO (cCLf > 1/2) +cClg > 1/2) )t
0

< 2c(/fdo+/gdc). 0

Fifty years ago, G. Choquet proved in [Ch] that the Choquet integral is subadditive on

sets,
Joa+xwic < [xadac+ [pac,
if and only if

C(AUB) + C(AN B) < C(A) + C(B).

Then the Choquet integral is also subadditive on non-negative simple functions. For a direct
elementary proof see [Ce] and [CeCIM]. In this case we say that C' is strongly subadditive
or a concave capacity.

1.2.2 Examples

Let us present here some classical examples of capacities that appears naturally in Analysis,
specially in Potential theory. The capacities of the examples extend from compact sets to

other type of sets taking supremums.

Example 1.2.7. Let us remember that the analytic capacity v(E) of E C C be compact is
defined by

Y(E) = sup{|f'(c0)[; f : C\ E — C is bounded analytic with || f]|. < 1}.

We refer to [Pa] for details concerning this capacity, which is quasi-subadditive. In [Pa]

it is stated that, if Eq, Es, ..., F, are pairwise disjoint connected domains in C, then
VUL E) <~y(Erv+---+ E).

Example 1.2.8. If Lipy(£2) is the class of all Lipschitz functions with compact support in a
domain Q2 C R™, Wiener’s capacity of a compact subset K of €1 is

cap(K, Q) = inf IIVAIl;  (f € Lipg(Q),

0<f<1,f=1 on
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which extends in the obvious way for any p > 1 as the p-capacity

cap, (K, Q) = inf IV, (f € Lipy(€2)).

0<f<1,f=1 onK

Example 1.2.9. Let Q2 be a domain of R™ endowed with the Lebesgue measure m, and
X = X(9) a quasi-Banach function space on ), see Definition 1.3.2.

Given a compact set K C ) and an open set G C ) containing K, we denote
W(K,G) :={u € Lipy(G); u =1 on a neighbourhood of K, 0 < u < 1},
and as in [CosMa] (where X = LP? and Capy = capy’? ), we define
Capy (K, Q) := inf{||Vul|x; u € W(K,Q)}.
We denote by Capy () = Capx(+, Q) when 2 has been fized.

From the definition (see [Cos]), we will see in Chapter 3 that Capy is a capacity on .
Moreover, for any compact set £ C € and € > 0, there exists a neighbourhood G such that

CapX(Ka Q) S CapX(Ev Q) +€ (15>

for every compact set K, E C K C ). Indeed, there exists u € Lipy(Q2), v = 1 in a
neighbourhood of F such that

IVullx < Capy(E, Q) +e.

Therefore, there exists G; an open set on €2 containing E where u = 1. So that, we can find
a compact set K such that F C K C G since (G is open and FE is compact. Therefore since

u =1 in a neighbourhood of K it follows that
Capy (K, Q) < [|[Vul|x < Capy(F,Q) +e.

Similarly, for any compact set e C Q and any € > 0 there exists u € Lipy(f2), u > 1 in a
neighbourhood of e such that ||Vu||x < Capy(e, 2)+e. Since supp u is compact in the open
set €2, there exists an open set w such that supp u C w C @ C €2 and then, by definition,

Capy(e,w) < ||Vul|lx < Capx(e,2) + €.
Let E be an arbitrary subset of 2. The number

CapX (E7 Q) = Sup CapX(K7 Q)7

KCE
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where the supremum is taken over all compact subsets contained in E is called the X -capacity

of E relative to €2, and the number
Capx (E,Q) = ElfclfG Capx (G, ),

where the infimum runs over all open subsets of €2 containing F, is called the outer capacity
Capy(E,Q) of E C Q. A set E C Qs capacitable if

CapX<E7 Q) = CépX<E7 Q)

From the definitions, every open set in 2 is capacitable. If e is any compact set in €2, then
given € > 0, by (1.5), there exists an open set G such that Cap(G,Q) < Capy(e, Q) + &,
and consequently, all compact subsets of €2 are capacitable.

This capacity will be revisited on Chapter 3.

Example 1.2.10. Let (2,3, 1) be a measure space. A set function E on ¥ is called a

quasi-entropy function if it satisfies:
(a) 0 < E(A) < o0,
(b) E(A) if and only if u(A) =0,
(c) B(A) < E(B) f AC B,
(d) limy_o, E(Ag) = E(A) if A, T A, and
(e) E(AUB) < E(A) + E(B).
Therefore, every quasi-entropy function is a capacity.

Example 1.2.11. Let h be a continuous increasing function on [0,00) such that h(0) =
0, which is called a measure function in [Car/, and let u, be the corresponding Hausdorff
measure on R™. Let I or I denotes a general cube in R™ with its sides parallel to the azes.

In many problems, the Hausdorff capacity

En(A):= inf {ih(uﬂ)} (1.6)

ACUiozl Iy

is more convenient than py,, and it satisfies that E,(A) = 0 if and only if u(A) = 0.

n all this memoir, the symbol f < g will mean that there exists a universal constant ¢ > 0 (independent
of all parameters involved) such that f < cg, and the symbol f ~ g will mean that f < g < f.
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Ifh(t) = t* (@ > 0), it is customary to write H* instead of Ey,, and this capacity is called
the a-dimensional Hausdorff content presented in the introduction of this chapter.

If the measure function is h(z) := xlog(1/x) on [0,1/e] (h(x) := 1/e if x > 1/e), we
obtain the Shannon entropy, considered in [Fe]. This capacity is concave on dyadic cubes,
see [CeCIM].

Example 1.2.12. Let E be a quasi-Banach function space on the measure space (€2,%, ).
The associated capacity Cg is defined on (,%) as

Cp(A) = lxalle (A €X) (1.7)

This capacity is subadditive in the normed case and, as in the case of Hausdorff’s capacities,
there is a measure p such that Cr(A) = 0 if and only if u(A) = 0. It is a quasi-entropy

function.

Definition 1.2.13. Given o € R" and ¢ > 0, a real function g in R™ is said to be lower
semicontinuous at xq if, for every € > 0, there exists a neighbourhood U of xq such that
g(x) > g(xg) — ¢ forallz € U.

]? denotes the Fourier transform of f an integrable function.

Example 1.2.14. Let 1 < p < 0o and g : R* x R" — [0,00) be such that every g(-,y) is
lower semicontinuous and every g(z,-) is measurable.

Then by Cy,, we denote the capacity defined on every E C R"™ by

Con(B) =it { [ f47ays 0< 1 € 2. G1(0)i= [ gla) () dy = 1on E}.

For such a capacity, by a result due to Choquet, every Borel set B C R" is capacitable.
If g(z,y) is L(z — y) or Ga(w — y), where I(§) = [€]7*, Ga(§) = (1+ [¢[*)~/ and
0 < a < n, the corresponding capacities are the fundamental Riesz and Bessel capacities of

potential theory, R, , and B,.p, respectively. See [AH] and [Ma85] for an extended overview.

Example 1.2.15. The variational capacity C, on R" is defined for 1 <p <n as in [EvGa/
by
Cp(A) = inf{/ |Df|Pdx; f € KP,AC{f > l}o} (E°is the interior of E)

for any A C R™ with p* = n”—_’;)

KP:={f:R" = R;f>0,fec L (R"),Df € LP(R",R)},



1.2. Capacities 41

and using reqularization, for a compact set K in R™ we have that

C(K) = inf {/ Vo(@)lPdz; 0 < o € CRRY, K € {f > 13}

It is a countably subadditive and concave set function.

1.2.3 Fatou’s lemma

Let us show some extensions to capacities of well-known results in measure theory.

If f = g C—q.e. and C'is subadditive, then [ fdC = [ gdC since, if A= {f # g}, then
C{f >t} < c(({f >tnAYU{f > t}ﬂA)) < C{g >t}

This will be also true for any quasi-subadditive capacity C' such that C(A,) — C(A)
whenever A, T A, that is, that C' is Fatou or that C has the Fatou property.

Example 1.2.16. Every entropy is a Fatou capacity, so that, the Shanon entropy in Exam-
ple 1.2.11 is Fatou, and so is also C,.

As we assume that every quasi-Banach function space (see Definition 1.3.2) has the Fatou
property, then the capacities in Examples 1.2.8 and 1.2.9 are Fatou.

As far as we know, an interesting still open problem related with the analytic capacity is

to prove whether this capacity is Fatou or not.

Let us observe that, if C' is a Fatou quasi-subadditive capacity, then the countable union

of C'—null sets are also C'—null. Indeed,
CAAU---UA,) <™C(A)+--+C(A,) =0if C(Ax) =0 (VE € N),
and then

n—oo

O(BAQ = lim C(4,U---UA,) = 0.

Observe also that if x4 = xp C'—q.e., then since f,, := x4 — xp C'—q.e. it follows from
the Fatou property that C(A) = C(B).

From now on, we consider two functions, f and g, to be equivalent if they are equal
C'—q.e. In this case | f| and |g| are also equivalent and [|f|dC = [ |g|dC, since C{|f| >
t} = C{|g| > t} for every ¢t > 0. Thus, [ |f|dC =0 if and only if f =0 C—q.e.

Note that, if a Fatou capacity is subadditive, then it is o-subadditive, since finite subad-

ditivity in combination with the Fatou property imply countable subadditivity.
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As it is known (see [Fed, Lemma 2.4.6]) the classical Fatou lemma states that, if f1, fo, ...

are non-negative y-measurable functions where p is a measure on (€2, %), then

liminf/fndp > /liminffndu.

n—oo

Let us gather together some properties of capacities concerning sequence of functions

{fntnen C Lo(€2) which extend the corresponding facts for measures:
Theorem 1.2.17. The following properties are equivalent:
(i) C is a Fatou capacity.
(i1) |f| <liminf, |f,] = f& <liminf,(f,)&.
(i) [(liminf, |f,]) dC <liminf, [|f,|dC.
(i) 0< fu T f = (fe 1 Je

Proof. (iii) follows from (ii) and (i) follows from (iii) by taking f, = xa,-
Suppose now that C' satisfies (i) and that |f| < liminf, |f,|. Let A" := {|f] > ¢} and
At :={]|f.| > t}. Then,
At climinf AL = | ) (1) AL

m=1n=m

and by (i),
O(AY < nmc( N A;) < liminf C'(A),
so that
Xpo.o(an) < liminf xp,ocar))
and

(o)

felz) = /0 X[o.c(aty () dt < lim inf /0 Xo.c(ag)) (%) dt = lim inf (£,)5 (),
which is (ii).
Moreover, (i) follows from (ii) by taking f, = xa, and f = ya.
Suppose now that C' satisfies (i) and that 0 < f,, T f. Then (f,)5 < f& and hence
limy, oo (fr)e(x) < f&(x). Let AL := {|f.| > t} and A" := {|f| > t}. From (i) we obtain
that C'(A") = lim,, .., C(A%) and

o) = [ xweun@di= [ m oy @) < lim (1)) o
0 0 n—oo n—oo
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Corollary 1.2.18. Let C be a Fatou capacity on (2,%) and { f,}nen C Lo(€2). Suppose that
for all x € Q

(i) 0 < fi(z) < .. < fux), and
(ii) fulz) = f(2).

Then, fis a measurable function and fQ fndC =% fQ fdC.

Proof. Observe that fo f&(x)de = [ fdC. O

Holder and Minkowski inequalities are fundamental in the theory of Lebesgue spaces.
Let u be a measure, 1 < p < oo and q the conjugate exponent of p, that is, 1/p+1/q = 1.
Then

1/p 1/q
/|fg|d,u < /|f|pd,u (/ |g|qd;z> (Holder’s inequality)

expresses that functions in L9(u) give rise to bounded linear functionals on LP(u). This
inequality is sharp in the sense that given f € LP(u) there is a function g € L7(u) such that
the inequality becomes an equality. For this reason, improvements or extensions of Holder’s
inequality must necessarily be quite delicate.

In the case of capacities let us see that we can extend these inequalities without extra

assumptions.

Theorem 1.2.19. Let C' be a concave capacity on (£2,%), 1 < p < oo and q the conjugate
exponent of p. Then, Holder and Minkowski inequalities hold:

[ vsstac < ([ 1spac)™( [ tgirac)”

/|f+g|pd0 /|f|pd0 + (/Q|g|pd(])1/p. (1.8)

When p = oo the integral should be replaced by the essential supremum.

Proof. We write
[fgl = (LFIP) /P (lg|) /7.

Since
Vel = min{0e’ 1o+ (1 — 0)"} (b,e>0,0<60<1),

e>0
the inequality a < b%c'~? holds if and only if a < 0e’~*b+ (1 — 0)e’c for all € > 0. By taking
0 =1/p, a=|fgl,b=|[f", and c = |g|? we obtain |fg| < 0’} f[” + (1 — )e’|g|".
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Hence, since the capacity is concave, by [Ce, Theorem 5.1] it follows that

[ lsstac <ot [[(grac+a-o) [ jglrac
Q Q Q

Denote A = [, |f|PdC, B = [, ]g|?dC, and y(e) = 9e*" ' A+ (1 — 0)e” B. Then we have that
Jo 1fgldC < ~(e) for all € > 0. But v reaches its minimum at ¢y = A/B, so that

/|fg|d0<7(eo 39 - = /|f|pdc /p</ﬂ|g|qd0>1/q.

Minkowski’s inequality follows in the usual way. O

With the same arguments,

Corollary 1.2.20. Let C be a quasi-subadditive capacity on (£, X) with constant ¢ > 1 and
p,q > 1 conjugate exponents. Then

[ 1sstac < 2e( [ 1rac)”( [ lgrac)”
(/Qlf+g!pd0)1/p §4c2[(/glf|pd0>1/p+ (/Q|g|pdc>1/p]

A natural question is whether the concavity condition is necessary to obtain Holder’s

and

inequality with constant one. In the following example we see that this is true, concavity is

necessary to get Holder’s inequality, and consequently, Minkowski’s inequality.

Example 1.2.21. Let (2,3, 1) = (R,B(R),m), ¢(x) := aP forx € Ry, 1 < p < o0, and
define, for all A C R, C,(A) = p(m(A)) = m(A)P. For A, B C R} we have

CL(AUB) = (m(AUB)Y = (m(A) +m(B) — m(An B))
(m(A) +m(B))? < 2°(m(A)" +m(B))
2(C,o(A) + ColB)).

IN

Hence, C, is quasi-subadditive.

Let p’ be the conjugate exponent of p and C C Ry. We have that

1/p
Ixcllzec,) = (/fzx’édccp) = O, (O)'/P = m(C)

’ 1/p’ / /
HXCHLPI(CS,;) = (/{;X%dc(p) - C¢(C)1/p = m(C)p/p .
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It is easily seen that Cy, is not necessarily concave. Indeed, define A := [0,1] and take
b > 1. Then, for e > 0 taking B as (e,b) we have that C,(A) = 1, C(B) = (b — e)
Co,(AUB) = b, and C(AN B) = (1 — €)P. Hence, if € is selected so that (b — €)P
b+ (1 —€)? — 1, then we obtain

Co(A)+C,(B) < C,(AUB) 4+ C,(AN B).
Moreover,

sl lIxallr e,y = m(Bym(AP? = (b—e)

/ xaxsdC, = C,(AUB) = (1 —¢€)?
Q

and then, if € satisfies also that b — e < (1 — €)?, we get that Hélder’s inequality does not
hold.

1.3 Capacitary Lebesgue and Lorentz spaces

From now on, C' will represent a Fatou capacity on (£2,X) and ¢ > 1 its quasi-subadditivity
constant.

In this section we study the completeness of the capacitary Lebesgue and Lorentz spaces.

Definition 1.3.1. A mapping o : Lo(2)T — [0, o] is a function quasi-norm if for all f, g, fa,
n=1,2..1inLo(Q)", a € Ry and E be a measurable subset of 2, the following conditions
hold

(a) o(f) = 0= [ =0C—qe., olaf) = ao(f). of +9) < o(f) + o(g)-

(b) If0 < g < f C—q.e., then o(g) < o(f).

(c) IfO< fu 1 f C—d.e., then o(fn) T olf).

(d) If O(E) < oo, then o(xx) < 00

(e) If C(E) < oo, then [, fdC < Cgo(f) for some constant Cp, 0 < Cp < 0.

Definition 1.3.2. Let ¢ be a function quasi-norm on (2,3, C'). The space X = X (o) defined

X = {f € Lo(Q); o(| f]) < o0}

is called a quasi-Banach function space. Moreover, for f € X we define || f||x := o(|f])-
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We are going to carefully check those property of the usual Banach function spaces that
extend to our capacitary setting.

Using the same argument as in [BeSh] we first obtain the following lemma.

Lemma 1.3.3. Let X be a quasi-Banach function space on Lo(2) and suppose f, € X,
n=12, ..

(i) If 0 < f, T f C—q.e., then either f is not in X and ||f,|| T oo, or f € X and
[ Fallx 711 1l

(i) If f,, — f C—q.e. and lim, . || fullx < o0, then f € X and
171l < limint [,

Proof. See [BeSh]. i

Let us present a useful property of these capacitary Lebesgue and Lorentz spaces.

Definition 1.3.4. A vector subspace of Ly(£2), X, endowed with a quasi-norm it is called a
quasi-normed lattice if |f| < |g|, with g € X and f € Lo(Q), implies f € X and || f]x <
lgllx-

Let Lo(C) be the real vector space of all measurable functions, two functions being
equivalent if they coincide C'—q.e. We endow Lo(C') with the topology of the convergence
in capacity on every set of finite capacity and with the lattice structure given by the partial
order f < g, that is, f < g C—q.e.

In relation with Definition 1.3.1, we say that £ C Lo(C) is a quasi-normed capacitary

function space on (2, %, C') with constant k£ > 0 if

E={f €LC); o(f) < oo},

where o : L () — [0, 00] is a mapping which satisfies conditions (a), (b), (d) and (e) with
k = ¢ in Definition 1.3.1 and such that, if o(f) < oo, then the support {f > 0} is C-sigma-
finite, that is, {f > 0} = (U, 4 with C(€) < oo for every k € N. Then, we define on E

the quasi-norm ||f||g := o(|f|), that does not depend on the representative.

Theorem 1.3.5. For each quasi-normed capacitary function space E the following conditions
are equivalent:

(i) If sup,, | fulle = M < o0 and f, — f C-q.e., then f € E and ||f||g < liminf, ||f.||z-

(i) If 0 < f,, T f C-q.e., then lim, o(f,) = o(f).
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Proof. To prove that (i) implies (ii), let 0 < f,, T f C—q.e. If o(f) < oo, then o(f) =
£l < lim, || fulle = o(fa) by (i) and o(f,) < o(f) (n € N). So that lim, o(f,) = o(f). If
o(f) = oo, since f,, T fC—q.e, necessarily lim, o(f,) = oo because sup, o(f,) = M < o
would imply f € E by (i).

To prove the converse, suppose that (ii) holds and that { f,, }.en satisfies that sup,, || fu||z =
M < oo and f, — f C—q.e. Define g, := inf,,>, |fm| (n € N), so that g, T |f| C—q.e.
and ||f|lg = o(|f]) = lim, o(g,). Since g, < |fn| for every m > n, it follows that

0(gn) < inf,>n o(|fin]) and then || f||lg < limy, inf,,>, o(| fr|) = liminf, || f.|| & o
Conditions (i) and (ii) are called the Fatou conditions. If they hold, then we say that
has the Fatou property.

Theorem 1.3.6. Every quasi-normed capacitary function space E on (0,3, C) is continu-
ously imbedded in Ly(C).

Proof. Tt is sufficient to prove that the condition ||f,||z — 0 for {f,}.en C E implies
fn — 0 in capacity on any set €2y of finite capacity.

Assume the contrary, so that, there exists a set {0y with 0 < C'(2y) < oo and a positive
number ¢ such that for some subsequence f,,,, the inequality |f,, ()| > € is satisfied on a set
Q. C Qo with capacity C(Qx) > 6 > 0, for all £ = 1,2,... Then exq, (t) < |f.. (t)| and so
ellxaulle < || fallz- Since C(€y) < oo we have that

€
& [ xaud€ < clalls < Il
E

and letting k& — oo, it follows that limy C'(€2) = 0, which is impossible. So that, f,, — 0 in
capacity on any set of finite capacity. O
1.3.1 Capacitary Lebesgue spaces

The Lebesgue space LP(C) (p > 0) is defined by the condition

(fQ|f|pdC)1/p<oo, 0<p<oo

o (f) ::{ inf{M > 0;C{|f| > M} =0} <0, p=oc. (1.9)

Proposition 1.3.7. Let 1 < p < oo and C be quasi-subadditive with constant ¢ > 1. Then

0p 15 @ quasi-norm in LP(C). In particular, if C is concave, then g, is a norm in LP(C).

Proof. If C is concave, by Minkowski’s inequality (1.8), we obtain

op(f +9) < 0p(f) + 0,(9).



48 1. Capacitary function spaces

The remaining parts of (a) and (b) are obvious.
If C(F) < oo, then g,(xx) = C(E)Y? < co. Moreover, if f, T f C—q.e., then 0 < f; <
W <limy, oo fro = f C—qee., [P = limy,—o | fu]? C—q.e., and

tim o,(£,) = i [ [f,aC = [ \fpac = g,(6.

Finally assume that C(E) < co. Then, by Hélder’s inequality, [, fdC < o,(f)C(E)Y¥
where p’ is the conjugate exponent of p, and the proof in this case follows.
In the general case, by the corresponding Holder’s and Minkowki’s inequalities the proof
follows. O
Notice that, LP(C') is a quasi-normed lattice of Ly(Q2) for every p > 0.

As for Lebesgue function spaces, there are several descriptions of these “norms”:

Theorem 1.3.8.
oo 1/p
1 ey = el = AP0 :( | 1C{\f\>t}dt>

Proof. Let ¢(t) = t*. Then [~ (f&(t))dt = [ ¥(|f])&(t) dt and, if we denote g = 9 (| f]),

an application of Fubini’s theorem gives

/ got)dt = / / X[o.c{g>a}) (t) d di
0 0 0
= / / X[o,C{g>x})(t)dtd:r=/ C{g > x} dz,
0 0 0

this is, o™ (N5t dt = [~ CLo(If]) > t}dt.
Also, if x = (t), then

/ T O] > 1y dut) = / T OS] > v (@) da = / T Oflf)) > o} da

0

and [ C{If] > 1} dib(t) = [ CLo(If]) >t} o

Many important examples of capacities are not concave and the corresponding Lebesgue
spaces are quasi-normed lattices. Natural questions for these capacitary Lebesgue spaces are
to find the best constant in the "triangle inequality” and to analyze when the spaces are

complete.

Theorem 1.3.9. The functional || - || := || - |[zr(c) 45 quasi-subadditive, with constant c, =
(2¢)Y7 if 1 < p < 00 and ¢, = c/P2CP/P jf ) < p < 1.
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Proof. Suppose 1 < p < co. By (1.3),
o0 x T\ \P
r< [T (R(£) + o () o=l + i
If + 9 _/0 felg,) tae\sy)) de=2elfe+gell;

and the result follows from the estimates for LP(R™).

If p < 1, then since a? + 0P < 2'P(a + b)? (a,b > 0), we conclude that

15+ bl < / ) dy + / ge ) dy < 2 (1l + lgall)r,

and [|f + gl| < (20)'P20-P/2(|[£]] + || g]])- O
Now recall that, if || - || is a quasi-seminorm with constant ¢ > 1 and (2¢)? = 2, then, by

Aoki-Rolewicz’s theorem, there exists a o—seminorm || - ||* such that
LA < LA11E < 20 A1 (1.10)

This p—seminorm, constructed as in [BeLo, Section 3.10] by

W =it { ST = 1D g = £
j=1 i=1

allows to prove (1.10) and the triangle inequality. The p—homogeneity follows also very

easily in our case since obviously, if Z;Zl fj = f, then for A € R
IMFIF < D IAfNE = I Y1111
=1 j=1
so that |[Af]]* < |A|¢||f]]*. Conversely, if A # 0 and Af = g1 + -+ - + gn, then
A< DI glle = (A2 D llgslle
=1 j=1

and [A[?[[ " < [[ASI"
It follows from (1.10) that

|1 s 2ve(ha) < 2ve (S hsne) ™ (1.11)

In the special case f; = x4, and p = 1 we obtain

C(GAZ-)Q < QiC(Ai)@. (1.12)
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Definition 1.3.10. We say that { f, }nen converges to f in capacity if
C{|fn — fl > €} =0, asn — oo, Ve > 0.

Similarly, we say that {f,}nen s a Cauchy sequence in capacity if for every e > 0,
C{lf, — fql > €} — 0 as p,q — oo. That is, when for every e > 0 and n > 0, there exists
ng € N such that

C{|fp_fq’ > e} <7 (p,q > no).

Let us remark that, if the sequence { f,, },en converges to f in capacity, the relation

{lfp = fal > et C{lfy = 1 > €e/2} U{lfq = [I > €/2}

shows that { f,, }nen is a Cauchy sequence in capacity. Aoki-Rolewicz’s theorem allows us to

prove that the converse is also true in this capacitary setting.

Theorem 1.3.11. A sequence { f, }nen is convergent in capacity to a function f if and only
iof it is a Cauchy sequence in capacity. In this case, the sequence has a subsequence which is

C'—q.e. convergent to f.

Proof. If {f,}.en is a Cauchy sequence in capacity, there exists n; € N so that

O{|fp_fq| >2_k} <27* (p,qznk),

and we can suppose that n; < ng < ---.

We associate to {fn, tren the sets Ay == {|fu, — fupn| > 1/2%} and denote F,, :=
Uksm Ak- If j > i > m, we have that | f,, — fo,| < 1/277" on Q\ F,,,. In other words, the
par_tial sequence is uniformly Cauchy on Q\ F},, and then {f,, }ren converges uniformly to
f on Q\ F,,. The sequence {f,, }ren converges to a function f on E :=J_,(Q\ F,,) and,
by (1.11),

COQ\E) < lim C(Fy) = lim |xp,lloe) = Im fIxy,., alloe
1/e
: ; 1/e 0
%grgou;lxm ey = i 2 (];TZIIXAkllLl(cv))

= lim 2”9( 3 (J(Ak)e)l/g ~0.

k>m

IN

Since | fn, — fu,| = |fn, — f| pointwise, by the Fatou property

Cllfu = 1>t = O | fo, = fuy| > 0} < i Cfo, — fus| > 0} <&
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Finally, since {f,}nen is a Cauchy sequence in capacity which has a subsequence which
is convergent in capacity to f, then {f,},en converges to f in capacity. O

The topology and the uniform structure of LP(C') are given by the metric
d(f,9) = IlF =gl
where || - ||* is associated to || - || z»(cy by the Aoki-Rolewicz theorem.
Theorem 1.3.12. LP(C) (0 < p < o0) is complete.

Proof. It follows by the usual arguments of measure theory combined with (1.12): Let
{fn}nen C LP(C) be a Cauchy sequence. For each k € N, let nj, > ny_; be such that

(m,n > ng).

= fallr = [ 1= 5P dC < 5 >

If Ay = {|foesr — far[P > 1/2}, then C(Ag) < 2%/3F since

Cld)

1
ok k|fnk+1—fnk|pd0<§

Note that
Z|fnk+1 fw( )|<OO vt & UAk:

k>N

because |f,, ., () — fu.(t)] < 1/2%? if k > N. Therefore, there exists
F(t) = fur®) + D (fon () = fu,(0) =lim fi (1) Ve A= (] | Aw.
k=1 N=1k>N

and C(A) = 0 since, by (1.12)

and >, (2/3)%" < oco. Put f(t) :=01if t € A.
As ny — 00, |fu, (t) — fu(O)|P — |f(t) — fu(t)|P C—q.e. and, by the Fatou property (see
Theorem 1.2.17),

for n large enough. O
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Example 1.3.13. Although C, (see Example 1.2.15) is not a Caratheodory metric outer
measure, it follows from a general theorem due to G. Choquet that every Borel set B C R"

1s capacitable, this meaning that
sup{C,(K); K C B, K compact} = C,(B) = inf{C,(G); G D B, G open}.

Hence, LP(C,) defined in (1.9) by
o /p
LP(Cy) == {f € Lo(Q); | fllzrc,) == (p/o 1O f] > t}dt>1 < oo}

is an example of a capacitary Lebesque space. For more details, see [EvGal.

Remark 1.3.14. The absence of additivity for the Choquet integral makes it difficult to give
a description of the dual of LP(C). See for instance [A2, Section 4], where duality in the
case of Hausdorff and Bessel capacities is studied.

If p' is the conjugate exponent of p € [1,00], Hélder’s inequality shows that every g €
L (O)* defines a functional uy(f) := [ fgdC which is homogeneous and bounded on LP(C)*

an<a o) ([ )

but in general uy is not additive.

1.3.2 Capacitary Lorentz spaces

The capacitary Lorentz spaces LP?(C') (p,q > 0) are defined by the condition

1/q
[ fll oy = <qf000 OS] > t}Q/pdt) <00, <00
D,q —
sup,-o tC{| f| > t}7 < oo, q = 0o.

The space LP>°(C) is called the weak capacitary LP space.

Let us observe that for p,q > 0, || f||zra(cy = 0 if and only if f = 0 C'—q.e. and equivalent
functions have the same || - ||zp.a(c)-quasi-norm. Moreover, for every A € R, ||Af|zracy =
A llsa(c) and

1+ gllraey < 2¢([|fllzraey + [19llraie)-

Therefore, LP4(C) is a quasi-normed function space. Fasily it follows that, LP?(C) is a
quasi-normed lattice on Lg(2) for all p,q > 0.

In order to study the completeness of the Lorentz spaces LP4(C'), which are quasi-
normed spaces by considering equivalent two functions when they coincide C'—q.e., we fix a

o—seminorm || - ||* associated to || - || ze.a(c).-
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Theorem 1.3.15. LP?(C) (0 < p < 00, 0 < ¢ < o0) is complete.

Proof. Let us start with the case 1 < ¢ < oo, and let {f,}neny C LP9(C) be a Cauchy
sequence on this space. For every k£ € N, let n, € N so that

1
an mequ(c @ (m,nznk)

Define Ay, := {|fn,,, — [l > Qik} Then Ay C {|fopy — fal > t}ift < 2% and
5 7 | O s  ful >
0

Lk q o0 q
> /2 qtqlc(Ak>Pdt+/ Gt O fapsr — frn] > t}edt
0 1

oF
a Qik oe _ a q 1
= Clp] [, ful > b CA

3%
Hence, C(Ax) < i, Y, a < 00.
Moreover, if ¢ & (J,. y Ak, then ¢ & Aniq, so that |f.,(8) — fay,, (6)] < 1/2V%! and
then Y77 [ fup, (t) — fu, (t)| < 0o. Therefore, there exists

WE

F0) = fan )+ 3 o () = fon(5) = T o, (1

e
Il

1

for all t & A :=Ny_; Upon Ak, and C(A) = 0 since

C(A)f’g(?(UAk) QZCAk"<QZ<2pk>

E>N k>N E>N a

Define f(t) :=0ift € A.
As ny, — 00, | fn, (1) — fu(t)] — | f(t) — fu(t)] C—q.e. and then, by Theorem 1.2.17,

1 = ey = / G| — fol >ty bt
0
_ = q—1 ; _ %
- /0 g C{ i |, — 1] > 1)t
< lim @O C| fo, — ful > t}Pdt < €
—o0 Jo

for n large enough.
A similar argument applies to the case ¢ = 0o. Let {f,}nen C LP°(C) be a Cauchy
sequence and for all £ € N, let ny € N so that

1
||fn - meLp"X’(C) < @ (man > nk)7
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and define Ay, := {|fn,,, — fa,| > 1/2"}. Hence, Ay, C {|frn,,, — [ni] >t} if t < 1/2%.
Thus

1 1
55 Suptc{|fnk+1 - fnk| > t}p
t>0

3k
_ max{ S 1Oy, — Foil > 17, s 1O, — >t}1/p}

t>1/2k t<1/2

v

1 1
ﬁC(Ak)p

and C(Ag) < (2/3)kP.
If t & Upon Ak, then ¢ € Ayyr and |fry,,(8) = fan,, (8)] < 1/2VF1 Then,

o0

Zlfw — fo () Zlfnm S ORI

k=N+1

Therefore, there exists
f - fnl + ; fnk+1 fnk( )) = kh_)rgofnk(t)
for every t € A := (-1 Up=n Ak, where C'(A) = 0 since
C(A) < O( U Ak>p <2y <2y ((2/3)kp)p.

k>N k>N k>N

Put f(t) =0ift € A.
As ng — oo, |fn,(t) — fu(t)] — |f(t) — fu(t)] C—q.e. and then, by the Fatou property
(see Theorem 1.2.17),

If = fallroocy = SUPtC{]}i_{go |for — ful > t}?

< hm suptC{|fnk fnl > t}% <€

—)OOt

for n large enough.

Finally, in the case p > 0 and 0 < ¢ < 1, we observe that

flassier = ([~ am et > ptar) = ([ el > wnpian)’

0

and consider a Cauchy sequence {f,}nen C LP(C), so that for every k € N there exists
ng € N such that

(m,n > ng).

°° 1
an mequ :/ C{’fn fm‘ >U1/q} du < — 3k
0
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If Ak = {|forss — frnl > 35}, then A € {z € Q|fa,,,(2) = fo,(z)| > u!/?} when

ullt < Zkg Hence

1

1 2Fq 1.4q o 1.4
? > /0 C{|fnk+1 - f”k| > uq}pdu+/l C{‘fnkJrl B fnk’ > uq}pdu
2kq
1

okq q o0 1.4
> / C(AY du + / Cll s — fou] > s odu
0 1

okq
a1
Z C(Ak)pﬁa
and C(Ay) < %
37q
If t Uy n Ak, then
1
k=N+1

Therefore, there exists
F(@) = Far () + Y (fara (8) = fa (8) = Tim £, (1)
k=1

ift € A:=y_1 Upon Ak, and C(A) = 0 since, by (1.11),

2kPgap
cy <2y oy <2y i) < 0
k>N kSN 34

Put f(t) =0ift € A.
As ng — 00, | fn,(t) — fu(t)] — |f(t) — fu(t)] C—q.e. and then, by Theorem 1.2.17, it
follows that
1 = 1/q\ 2 1/
1f = fallrage) < m( lim C{|fu, — ful > u }PdU> <e€
q o k—oo

for n large enough. O

1.3.3 Some known results

Let us recall that in Example 1.2.14 for 1 < p < oo and g : R" x R"” — [0,00) be lower

semicontinuous (recall Definition 1.2.13), by C,, we denote the capacity defined on every

E C R" by

Cop(E) = mf /f pdy,O<f€Lp/g( )f(y)dyzlonE}.
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It follows from the definition that the potential Gf(x) = [ g(z,y)f(y) dy satisfies the

weak-type estimate
tPCy AGf >t} < / f(x)P dx,

and the very useful strong type inequality of K. Hansson
| Cwtgr>nar<afsera 0sreri<p<o
0

which may be represented as G : LP(R") — L»>(C,,) and G : L*(R") — L?(C,,), respec-
tively.

The dyadic version E¢ of the Haussdorf capacity (1.6), defined using dyadic cubes D,
instead of general cubes I}, has similar properties. For example, E{ is countably subadditive
since it is subadditive and Fatou.

The Shannon entropy was considered by R. Feffermann to obtain also weak-type entropic

estimates

tE{Mf >t} < A(/OO B f >t} dt)l/p
0

for the Hardy-Littlewood maximal function. This is, M : LP(E,) — L**(E,). Observe that
E,, satisfies the Fatou property. Moreover, for 1 < ¢ < oo and 1 < p < o0, in [CeCIM] we
find that

M : LP(E,) — LP(E,).

Similarly, in 1980, C. Calderén defined new entropies to obtain some convergence results
for singular integrals.

Let E be a quasi-Banach function space on the measure space (2,3, ) and recall the
definition of Cg in (1.7). We always assume that E has the Fatou property, so that C is
quasi-subadditive and Fatou.

For any Banach function space F, the function spaces L'(Cg) and M(Cg) := L"*°(CE)
are extremal in the sense that, if X is another Banach function space such that ||xallx =

lIxal| g for any measurable set A C €, then

LY(Cg) — X — M(Cg) = M(E).

1.4 Normability

To motivate the main problem of this section let us remember that the Choquet integral is

subadditive on sets,

/(XA+XB)dC§/XAdC+/XBdC,
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if and only if
C(AUB)+C(ANB) <C(A)+C(B).

Then the Choquet integral is also subadditive on non-negative simple functions and C' is
said to be concave.

Variational capacities and those of Fuglede and Meyers are examples of concave capaci-
ties. Instead, for the Hausdorff content we have that, Fj, is concave if n = 1, but not if n > 1
(see [Car]). In the case of entropies C'g associated to Banach function spaces, examples and
counterexamples of concave capacities are given in [CeCIM].

As we have shown, concave capacities give rise to normed LP-spaces, since Minkowski’s
inequality holds with constant one. In [Ce, Theorem 5.1] we see that for 1 < p,q¢ < oo,
LP4(C) is a normed space if and only if C%? is concave.

As many of the classical examples of capacities are not concave, a natural objective is to
try to study the possible normability of the capacitary Lorentz spaces for general capacities.
We want to determine when, for a non-concave capacity C, LP(C) is normable, this meaning
that there exists in LP(C') a norm which is equivalent to || - || r(c).

This problem can be solved only in special cases. The difficulties of this question can be
shown observing that, if n = 1, the Shannon entropy E, is concave and LP(E,) is a Banach
function space on [0, 1/e]. But, this is not true for LP(E,) on [0,1/e]™ if n > 1 although it
holds for LP(E%) and LP(E,) = LP(EY).

As for usual Lorentz spaces, one could try to substitute f& by

' / f&(s) (1.13)

which is decreasing and satisfies f*(t)c < f**(¢), and for every A € R by Proposition 1.2.2
(A=A (f+9)™ < 2ef + 2eg™

But this average function is unfortunately subadditive precisely when LP(C) (p > 1) are

normed spaces:

Theorem 1.4.1. f** is subadditive if and only if C' is concave.

Proof. It is clear that Cy(A) := min(C(A),t) is a Fatou capacity (remember that we
assumed that C'is a quasi-subadditive Fatou capacity). For a fixed ¢t > 0, f**(¢) is subadditive

if and only if C} is concave, since

/Ofé(S)dS = /0 dy/o X[o,C{f>y}>(8)dS=/o min({C{f > y},t) dy

= [ atin = win= [ irac
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Therefore, the theorem follows. O
For ¢t > 0 we consider the capacity C; defined previously. Let us observe briefly the most

important facts concerning f**.

1. As in the measure case (see [KrPS]): If f,g > 0 and 0 < a < 1, then by Holder’s
inequality it follows that:

e If C is concave, then (f*g'~)**(t) < 2(f)**(¢

)*(g) ().
e If C is quasi-subadditive, then (f*g'=®)**(t) < 2c(f)**(t)*(g)**(t)' .

Indeed, by Proposition 1.2.3 and Holder’s inequality with p = 1/a and ¢ = —

U u/c u/c
/O (f'gVa(t)dt = / (g es)eds = ¢ / (g ees/2 + es/2)ds

IA

u/c
c / (F)(s/2) (g5 /2)ds
u/2c
~ 2 / ()8 () (g (s)ds

2ol | " fetnas)’( / " s)
e [ setsias)" ([ eonas) "

IN

IN

Therefore,
gy ) < 20 ([ eas) ([ getoras) T = 2er e (g

In the particular case when C' is concave, ¢ = 1 and the conclusion follows.

2. Since (f + g9)(x) < fE(E) + 9&(%), it follows that

(f +g)™(t) < f**(%) +9" (5

Indeed,

t

970 = / U+ ops <1 [ (12 + o 2))ds

_ /fc du+/2t ()du}:f**(ziC)Jrg**(%).
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We do not have a satisfactory sufficient normability condition, but let us see a restrictive
one, which extends a known result for the usual Lorentz space.

In the rest of the section p will represent a measure on (€2, ) such that u(3) = [0, u(Q2)] C
[0, 00|, and we will suppose that C' is p-invariant, this meaning that C(A) = C(B) if u(A) =
1(B).

Definition 1.4.2. A capacity C on (2, %) will be said to be quasi-concave with respect
to w if there exists a constant v > 1 such that, whenever u(A) < u(B), the following two

conditions are satisfied:

(a) C(A4) <7 C(B), and

this is, for all A, B € %,

#(B)
C(B) < ymax (1, m)C’(A)

Example 1.4.3. As an example of this type of capacities consider J : [0, u(Q2)] — R an
increasing function such that J(t)/t is decreasing. It is readily seen that C(A) := J(u(A))
defines a p-invariant and quasi-concave capacity with respect to . For instance, C(A) :=
ox (u(A)) where px is the fundamental function of an r.i. space (see the definition in Chapter

3). Note that px is a quasi-concave function.

Theorem 1.4.4. If the capacity C is p-invariant and quasi-concave with respect to u, then
C(A) :=sup { Z)\iO(Az’>; n €N, Z)\i =1, A >0, Z/\iM(Az‘) < M(A)}
i=1 i=1 i=1

defines a concave capacity which is equivalent to C i.e. C' ~ C.

Proof. 1t is clear that C (A) > 0 and it is readily seen that C is increasing.
Let us show that

C(A) < C(A) < 29C(A). (1.15)

Obviously, C(A) < C(A). On the other hand, for € > 0 we can find Yo (A < p(A)
with Y ;A\, =1and \; >0 (i = 1,...,n) such that

p(A;)

C(A) —e < i NC(4)) < yi i max (1, )C(A) < 270(A)
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and (1.15) follows.
To prove that C is concave, let 0 < 6 < 1 and ¢ > 0. Given A, B € X, we can find
Yo ip(A) < p(A) with Y08 A, =1and A; >0 (¢ = 1, ...,n) such that

(1—0)5(A)—§ (1-0 Z)\C

and, similarly,

9C(B) — g < 9; N.C(B))
with 377 Nopu(By) < p(B), Y201 Ay =1and \; >0 (j =1,...,m).
Then (1 — 0)pu(A) +0p(B) = 325y (1 — 0)Aip(A) + 352, 9>\' p(B;) and
Do (T=0)\+377 0N, = 1. We can choose D € ¥ such that u(D) = (1-0)u(A)+6u(B),

and then

(1—0)C(A) +0C(B) — ¢ < Z (1 — ONC(A) + ieA;C(Bj) < C(D),

so that
(1-0)C(A) +6C(B) < C(D). (1.16)

Since C' is p-invariant, the same happens with C, and we may define ¢(s) := C(A) if
s = p(A), which is by (1.16) a concave function on [0, 1(€2)].
We claim that, if x,y >t > 0, then

ple+y—1)+et) < o) + oY), (1.17)
and the concavity of C follows by taking ¢ = (AN B), = u(A) and y = u(B), since then
p(t) = CANB), gz +y — 1) = p(u(A) + p(B) = p(AN B)) = p(u(AU B)) = C(AuUB),
and (z) + ¢(y) = C(A) + C(B).

To prove the claim, we may assume that 0 < ¢t < = < y and write
r=01-7t+71(x+y—1t), y=01-7N+7(x+y—1) (1,7 € (0,1)).

Since ¢ is concave,

(1- 5o+ el +y =0 < ola)

and

<1 = y—_t)go(t) + #__tmw(:v +y—1) < oy).
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Finally, by addition, (1.17) follows. o

Although we do not know whether C has the Fatou property, we can still define on LP(C)
the quasi-norm || ||, Which is equivalent to || f||Le(c), since C{[f| > t} ~ C{|f| > t}. Let
us denote by S the class of all simple functions and SP(C') =S N Lr(C) C L*(C).

Corollary 1.4.5. For 1 < p < oo, on SP(C) the functional || - ||, is a norm which
is equivalent to the quasi-norm || - ||Lec). Hence, if S is dense in LP(C), then LP(C) is

normable.

The following proposition shows that although we can not get the converse, we have an

approximation to it.

Proposition 1.4.6. If L'(C) (or SY(C)) is normable by a p-invariant norm || - ||«, that is
lIxalls = lIxsll« if p(A) = u(B), then C is also quasi-concave with respect to the measure .

Proof. Let || - ||, be an equivalent norm on L'(C). Then C(A) := |xalls defines a new
r

p-invariant capacity and C (A) ~ C(A). Moreove C is concave since
C(AUB)+C(ANB) < C(A) + C(B).

We can suppose 0 < (AN B) < u(A) < u(B) and define p(u(A4)) := C(A).

Lett = p(ANB), z = p(A), and y = u(B), sothat 0 < t < z < y and p(x+y—t)+¢(t) <
o(x) + ¢(y). In particular, if m € N and r > 0, then ¢(mr) < mp(r). Moreover, if a < b,
then there exists m > 2 such that (m — 1)a < b < ma and

p(b) _ plma) _mapla) . m _pla)
b — b — b a “m-1 a

Since x < y it follows that there is some m € N such that

ply) . m p(x)
Yy m—1 x

Y

which means that C is quasi-concave respect to the measure p, with constant v = 2. Since
C~C , C is also quasi-concave with respect to pu. O
In the rest of the section C' will be a quasi-subadditive Fatou capacity, quasi-concave
with respect to p. Let us see that LP(C') is normable for 1 < p < oo. Define C as in
Theorem 1.4.4 and C by
C(A):= inf { lim 5(An)}.

AnTA, AneyX In—oo
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Proposition 1.4.7. The capacity C is a concave Fatou capacity equivalent to C.

Proof. Let e > 0 and A, B € ¥ arbitrary. There exists {A, },en with A, T A such that
lim, o C(A,) < C(A) 4+ €. Since C ~ C, there exists ¢ > 0 such that C(4) < ¢C(A) for

all set A, and hence

l, lim C(A,) < lim C(A,) < C(A) +e.

C n—oo n—0o0
Then, by the Fatou property, lim,,_., C(A4,) = C(A). As C is equivalent to C, the equiva-
lence follows.

Moreover, there exist increasing sequences { A, }nen, {Bn }nen such that
lim C(A,) < C(A) +€/2,
lim C(B,) < C(B) + ¢/2.

Assume, without loss of generality, that C'(A) + C(B) < co. By the concavity of C' we have
that

lim [G(An UB,) +C(4,N Bn)} < lim O(A,) + C(By)

n—oo n—oo

= lim C(A,) + lim C(B,) < C(A)+C(B)+e

n—00 -

and then, since A, UB, T AU B and 4, N B,, T AN B by definition of C' we get that
lim [5(14” UB,) + C(A, N Bn)} > C(AUB) +C(ANB).

Then, the concavity follows.

Finally, let us prove the Fatou property. Let { A, },en with A, T A. Tt will be sufficient to
show that C(A) < lim,, ., C(A,). Assume that lim, ., C(A,) < co. For all n, there exists
(An, )2, such that A, T A, as m — oo and limy, e C(A,,) < C(4,) + . Considering

the sequence of sets B,, :== A,, , we have that B,, T A as n — oo. Then

C(A) < lim C(B,) = lim C(A,,) < lim C(4,)+e O

Theorem 1.4.8. If C has the Fatou property, then C = C. Hence, LP(C) = L?(C) and
LP(C) (1 < p < o0)is normable.
Proof. Suppose that C has the Fatou property. Let A C Q and e > 0. If A, T A, then
C(A) = lim O(A,) = O(4)
and there exists {A, }ren with A, T A such that
C(A) = lim C(4,) < C(A) +e.

n—oo

The proof then follows by letting ¢ — 0. O
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1.5 The associate space

As we observed in Theorem 1.2.19, for a concave capacity C', Holder’s inequality asserts that

/Q|fg|d0 < [ flleeccyllgllzacey, ¥V f € LP(C), g € LU(C), 1 < p < o0,

where ¢ is the conjugate exponent of p. We will see that in this case the inequality is sharp

in the sense that
lolliey =sup { [ 1£91dCs 1 € L2(©). i) < 1} (118)
Q

for all g € LY(C') and p, ¢ conjugate exponents.
In relation with Definition 1.3.1, if ¢ is a function quasi-norm on Ly(Q2)*, we define its

associate quasi-norm o on Lg(Q2)" by

dla)i=sup { | fodCif € La(@)" olr) < 1}
for all g € Lo(Q)*.

Theorem 1.5.1. Let C' be a capacity such that for all E C Q with C(E) > 0 there exists
Ey C E, 0 < C(Ey) < oo. Then, if ¢ is a functional quasi-norm on Lo(2)T, the associate

quasi-norm is itself a functional quasi-norm on Lg(Q)T.

Proof. We shall show that all the conditions in the Definition 1.3.1 are satisfied by ¢'.

If o(f) < 1, then f < oo C—q.e. Hence, if g = 0 C—q.e., then [, fgdC = 0 and so
0'(g) = 0. Conversely, if ¢'(g) = 0, then for all f € Ly(Q)* with o(f) < 1, it follows that
Jo f9dC = 0. If E C Q is measurable with 0 < C'(E) < oo, then 0 < o(xp) < 0.

Taking f = -*E= we obtain that

o(xe)
1
- / XE_ 0 = / gdC,
Q Q(XE) Q(XE) E

and then necessarily ¢ = 0 C'—q.e. in E. Suppose that there exists E such that C(F) > 0
and g # 0 on E. Then, by the assumption, there exists Fy C E with 0 < C(Fy) < co. Hence

for Ey, taking f = g();b;; 7. it follows that o(fo) =1 and
0

1
0= / XPo g0 = / gdC.
Q Q(XEO) Q(XEO) Eqy

So that, g = 0 in Ey but, since Ey C E, necessarily g # 0 in Ey. Hence, g = 0 C—q.e. In

both cases the remaining properties of (a) and (b) are easy to check.
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For the Fatou property, suppose that g,,g € Lo(2)T and 0 < ¢, T g C—q.e. Then
0 (gn) < 0'(g) for all n € N. Let us assume, without loss of generality, that ¢'(g,) < oo for
all n € N. Let £ < ¢/(g). There exists [ € Lo(Q)" with o(f) < 1 such that [, fgdC > &.
Now 0 < fg, T fg C—q.e., so the monotone convergence theorem (see Corollary 1.2.18)

shows that
/ fg,dC — / fgdC.
Q Q

Hence, there is N € N such that [, fg,dC' > ¢ for all n > N. It follows then that ¢'(g,) > &
(n > N), which shows ¢'(g,) T ¢(g) and establish property (c).

If C(E) < oo, then since p satisfies the property (e) in Definition 1.3.1, we obtain a
constant C'r < oo for which fQ xefdC < Cgo(f), and then ¢'(xg) < Cg < oc.

Finally, fix E such that C(E) < oo and assume that 0 < C'(F), otherwise there is nothing

to prove. In this case Cf; = o(xg) satisfies 0 < C < oo and g(g&’;)) = 1. Hence, for any
g € Lo(Q)+

/ gdC = Cj / é—;EgdC < Cpo'(g)
FE QVYE

which shows that property (e) holds for ¢'. ]
Given p a function quasi-norm on Lo(Q)" and ¢’ its associate quasi-norm, the Banach
function space X (¢') determined by ¢’ is called the associate space of X and is denoted by

X'. It follows that the norm of a function ¢ in the associate space X' is given by

lollxe = sup{ [ IfgldCss € X1l < 1}, (1.19)

From now on in this section, C' will denote a quasi-subadditive capacity on (£2, %) such
that for all £ C Q with C'(F) > 0 there exists Ey C F, 0 < C(Ep) < 0.

Theorem 1.5.2. Let 1 < p < oo and q be the conjugate exponent of p. If C' is concave and

Fatou, then for every measurable function g, the following properties are equivalent:
(i) g € LU(C).
(ii) fg € LY(C) if f € LP(C) and A = sup{ [, fgdC; || fllzr(c) = 1} < o0.

(i) sg € L'(C) if s is simple and B = sup{ [, sgdC; ||s||Lr(cy = 1} < 0.

It holds that ||g||a(cy = A = B.
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Proof. We can follow the same arguments as in the case of measures. It is clear that
B < A <||g||za(c) and that we can suppose that ¢ is not zero. We begin with the case p = 1,
g = 00. Given € > 0, we see that the set E := {|g| > B + ¢} has zero capacity. Indeed, if
C(F) > 0, there exists I C F such that 0 < C(F') < oo and for

f= sgn g
we have that || f|lz1) =1 and [, fgdC > B + e, which is impossible if f is simple. Then,

19llzoc) < B.

In the case ¢ < oo, if €2 is the union of an increasing sequence of sets Ej € X of finite
capacity, then let {sy}ren be a sequence of simple functions, zero outside Ey, |sx| < |g| and
such that limy s, = g C'—q.e. And denote

fo= skl 2 (ke N).
[EAly

It is immediate that || fx||zr(c) = 1 for all k € N and

gl Laey < li;ninf |skllLacy = ligninf/ | fresk|dC < lilgninf/ frgdC,

which is smaller than B if the f]s are simple functions.
In the case ¢ < oo, if 2 is not the union of an increasing sequence of sets E; € > with

finite capacity, observe that for g € L?(C) we have that

lollsicy = [ lolac = [ lglrac= [ jgprac
Q {g#0} Ux, An

where A,, ;== {1/(n+1) < |g(z)| < 1/n} (n € N) are sets with finite capacity. Let {s; }ren
be a sequence of simple functions, zero outside Ay, |sx| < |g|, such that limy s, = g C'—q.e.
and define fj, as before. It follows that || fi||zr(cy =1 for all k € N and

9]l za(cy < liminf ||sg]| Loy = lim inf/ | fesk|dC < lim inf/ frgdC,
k—o0 k—oo Us, A, k—o0 Us, A
which is smaller than B if the fs are simple functions. ]

The inequality (1.18) is sharp as we announced, that is, under the same conditions of
Theorem 1.5.2, L(C) is the associate space of LP(C').

As in the classical case, we obtain:

Theorem 1.5.3. Let X be a quasi-Banach function space on Lo()1 with associate space
X' If fe X and g € X', then fg is C-integrable (that is, the Choquet integral of |fg| is
finite) and

/Q £9ldC < 1 £lxllgllx
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Proof. Just follow the usual arguments, as in [BeSh, Theorem 2.4]. o

Theorem 1.5.4. Let 1 < p < oo and q be the conjugate exponent of p. Let us define for all
g c LO(Q)z

A=sup | /Q F9dC: | fllisiey = 1}, B = sup { /Q 39dC' s simple  [Js1o(c) = 1}-

The following equivalence holds,
A= B ~2c||g|zec)-

Proof. It’s clear that B < A < 2¢||g||ra(cy and that we can suppose that g is not zero.
We begin with the case p = 1, ¢ = co. Given € = (2¢ — 1)A > 0, we see that the set
E = {|g| > 4=} has zero capacity. Indeed, if C(E) > 0, there exists ' C E such that

0 < C(F) < oo and for

f= sgng
we have that || f||z1c) = 1 and [, fgdC = [, %d(] > A, which is impossible. Hence as

C(E) =0, then |g| < AC—q.e. Therefore, ||g||r=c) < A < 2¢||g]|1(c) and A =~ | g ().
In the case ¢ < 00, if {2 is the union of an increasing sequence of sets E}, € ¥, we proceed

as in Theorem 1.5.2 and we conclude that, in this case, ||g||rec) < B < A < 2c¢l|g||Le(o)-

If €2 is not the union of an increasing sequence of sets Fj € X of finite capacity, the proof

follows as in Theorem 1.5.2. O

Theorem 1.5.5. Let 1 < p < oo and q be the conjugate exponent of p. Then, (LP(C)) =
Li(C).

Proof. If g € LY(C), then A := sup{ [, f9dC; | fllzr(c) = 1} < 2¢[|f||Lacy < o0, and then
g € (LP(C))". Conversely, if g € (LP(C))’, then A < oo and ||g||rs(cy S A. Hence, g € LY(C).
O



Chapter 2

Interpolation of capacitary Lorentz
spaces

2.1 Introduction

In interpolation theory of linear operators, couples (By, B1) and (Ap, A1) of (quasi-)Banach
spaces, continuously contained in some corresponding Hausdorff topological vector space,
and linear operators T : Ag + A1 — By + By are considered. An interpolation method
builds new (quasi-)Banach spaces A and B, A — Ay + A; and B — By + By, such that if
T: Ay — By and T : Ay — B; continuously, then also T': A — B. We say that A and B
are interpolation spaces for (Ay, A1) and (By, By).

The real Peetre’s K-method, based on the classical Marcinkiewicz theorem for every
0 <6 <1land1<p< oo, determines interpolation spaces (Ao, A1), (Bo, B1)sp by means
of the K-functional

K (t, £ Ay = inf {follag + L fillasi £ = fo+ i, fi € Aiyi = 0,1},

The norm in (Ao, A1)g, is then defined as

o — dt\1/p
lelloy = (| @'t ) "

We refer to [BeLo|, [BK] and [T1] for general facts concerning interpolation theory, and
to [T2] and [T3] for general facts concerning function spaces.

The interpolation spaces for couples of Lebesgue, Lorentz and Orlicz spaces on given
measure spaces have been extensively studied, including the cases of quasi-Banach spaces
and 0 < p < oo. It is a natural question to determine if these interpolation results extend

to our capacitary setting.

67
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In [Ce] (see also [CeCIM]) it is shown that, if (Cp, Cy) is a couple of concave Fatou
capacities on (2, %) with the same null sets, 0 <7 < 1, 1 < po,p1 < 00, 1 < qo, 1 < 00,

1/p=(1-n)/po+n/p1, and 1/q = (1 —n)/q0 +n/q, then
(LP(Co), LM (C1))ng = L (Copyprasm)s (2.1)

where ngq(A) = HXAH(L(CO),L(Cl))e,q-

One of our goals is to extend this result. The capacities will be still supposed to be Fatou
but the Choquet integral will not be necessarily subadditive anymore, and 0 < p < 1 is also
allowed (See [CeMS]). Our main problem is then interpolation with change of capacities.

We want to determine, in particular, for convenient parameters the interpolation space
(L7 (Co), L (C1))nq-
Since LPi(C;) = (L*(C;), L™®)g, p; for oy = (1 — 0;)p;, we want to determine
((L*(Co), L) 0,005 (L*(C1), LX)61 p1 - (2.2)

The usual reiteration theorems do no work because we have spaces with different capacities.
In the classical case Stein and Weiss proved that for 0 < p < oo and wq, w; weights in
Lo(2)7,

(LP(wo), LP(w1) )y, = Lp(wé—nwl)‘
To deal with this problem in the case of capacities one suspects that

(LP(Co), LP(C1))yp = LP(Cy"CY).

Observe that in (2.2) three spaces appear, namely L*(Cy), L**(Cy), L*°. The problem will
be solved by extending Sparr’s method for triples of Banach spaces (see [AK]).

In non-linear potential theory, operators are applied to quasi-continuous functions. We
will see in Section 2.7 that our results on interpolation of capacitary Lebesgue spaces still
holds when we restrict them to quasi-continuous functions (see [CeMS1]).

A complex interpolation method was developed by J. L. Lions [Li3], A. P. Calderén [Ca]
and S. G. Krein [Kr| (see also [KrPS]). In his seminal paper [Ca], A. P. Calderén includes an
study of interpolation of Banach function spaces on a measure space, covering the concrete
cases of Lebesgue, Lorentz and Orlicz spaces. This is done by defining the so-called Calderén
products X3 ?X? as in Definition 2.8.1. In Section 8 we check how this Calderén method
applies to our capacitary setting.

Last section is devoted to the analysis of capacitary Orlicz spaces. The goal is to show
how the general theory can be applied, and to extend the classical interpolation theory of

Orlicz spaces to capacitary Orlicz spaces.
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2.2 Interpolation of quasi-Banach lattices

Let us present an extension of the interpolation method of G. Sparr for more than two
quasi-Banach lattices and let us extend (2.1). For that purpose, we need first to clarify some

concepts.

Definition 2.2.1. A vector lattice is a pair (X, P) where X is a real vector space and P C X
such that PN (—P) = {0}, P+ P C P, RtP C P and for x € X we have x > 0 if and only
if x € P.

Definition 2.2.2. A quasi-Banach couple (or a triple) of function spaces (Ao, A1) is said
to be a compatible couple (or triple) if they are continuously embedded in some Hausdorff

topological vector space.

From now on, let (€2, ¥) be a measure space and, without loss of generality, assume that
n=2. Aset Ain (Q,%,C) is called C—null if C(A) = 0.

Let p;,q; € (0,00] and C; be quasi-subadditive Fatou capacities on (2,%), i = 0,1,2,
with subadditivity constants ¢; > 1, such that for an arbitrary set A C €, then

that is, Cy, C1, Cy have the same null sets. Then we know that LP#%(C;) is a quasi-Banach
function space, 1 = 0, 1, 2.

Moreover, X = (LPo:%(Cy), LPr41(CY), LP»92(Cy)) is a compatible 3-tuple of quasi-Banach
spaces. Indeed, consider ¥ := LPo%(Cy) 4+ LP-2(Cy) + LP>%2(Cy) C Lo(€2) the space of all
elements of the form [ = Z?:o fifi € LPo%(C;), 1 = 0,1,2 with the quasi-norm

2
[flls := inf {||f0||LP0vq0(Co) +o el £ =) fir fi € LP(CY),i =0, 172}(2-3)
=0

It follows that X is a topological vector space and, if f € LPi%(C;) for ¢ € {0, 1,2}, since
0 € LPo%(C;) for all 4, then || f||s < || f||riai(c,) which means that LP»%(C;) — X, 1= 0,1,2.
It remains to show that ¥ is Hausdorff, that is, if ||f||x = 0 for some f € X, then
f =0 q.e. For that, suppose that || f||s = 0 for some f € X. Then, there exists a sequence of
elements fi € LP»%(C;), i € {0,1,2}, k € N such that f =37 fi and fi — 0 in LP%(C;)
as k — o0o. Then, there exists a subsequence {flgo,n}nEN such that fl?o,n — 0 Cy—q.e. as

ko — oo by Theorem 1.3.11. Considering {f{ }nen for i =0,1,2, we have

fo = 0in LP®(Cy) as ko, — 00, fi — 0 in LP»%(C;) as ko, — 00,1 € {1,2},
f,SOn — 0Cy —q.e. as ko, — o0.
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Hence, there exists a subsequence of {f; }nen,? € {0,1,2}, such that fi ~— 0C; —

q.e. as ky,, — oo. Considering {f{ }nen, i =0,1,2, we have that

fo = 0in LPo®(Co) as kyp — 00, fi,  — 0 in LPo%(C;) as ki, — 00,4 € {1,2}
fi. = 0C;—qe. as kyp, — 00, fi, —0C; — qe. as ky, — 0.

Finally reiterating this we have that f,iz_n — 0 C;—q.e. as ky,, — 00,7 = 0, 1,2, and moreover,
2 o fi,. = f. Then f =0 qe. in £.

Finally we show that these spaces are quasi-Banach function lattices. It follows that
(LPo%(C;), P) is a vector lattice, where P = {f : Q — R*; || f||zriai(c,) < 00,7 € {0,1,2}}.
Moreover, for ¢ € {0,1,2}, LP"%(C;) is a quasi-Banach function lattice.

Consider now the triple X = (LPo90(Cy), LPr4(C), LP»%(Cy)). We will denote by X;
the (i + 1)-component of the vector X, i = 0,1,2, and A(X) = X, N X; N X, will denote

the space of all elements common to Xy, X7, and X5 with the quasi-norm

1 Ixomxinx, = max{(Lfllxo, [[fllx [ fllx} - (F € Xo N Xy 0 Xa). (2.4)

Since we have a triple of quasi-Banach function lattices, 3(X) := LP>%(Cy) + LP19(Ch) +
LP>%((y) is a quasi-Banach function space with the quasi-norm || - ||5.

Let us denote by R2 the set of vectors t = (¢1,2) for which ¢; > 0, i = 1,2. Then, as
usual, for elements z € X(X), Peetre’s K-functional of the 3-tuple X is defined for t € R?
by the formula

2
K(t,2; X) = inf { 2ol ooy + -+ + tallall pmaaeniw = D @ s € (G .
=0

As in the classical case, the K-functional is a concave function of t.

To show that one can apply to X the methods of [AK] and [AKMNP], let o € (0,1]
be the parameter in Aoki-Rolewicz’s theorem corresponding to a common constant ¢ :=
max(co, c1, ) in the triangle inequality for the quasi-Banach spaces in X.

Define S,, a modified Calderén operator, by the formula

(S.)(t) = ( / i i (12,2 5(s)| d—d—> " er) 25)

where p is such that (2¢)¢ = 2 and consider the space

0o(X) = {f € D(X); S,(S,K (-, f; X))(1)? < o0}
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which allows us to extend the construction in [AK] to our quasi-Banach triple, as we will
show.

Let © = (0o, 0;1) with 6y, 6, > 0 and 6+ 6, < 1. The interpolation space Xe 4 is defined
by the condition

Iflloqn =K, f; X)lloq < oo

. dt, dt
lolloa = ([ [ e sttty )"
1 b2

and 0 < g < oo (with the usual change when ¢ = o0).

where

Also, as in the case of couples, the J-space Xe 4. is defined as

[e.9] o0

| fllongs = int { ( Z Z (270" J(2™ 2" u,) ) =3 > vl

m=—00 N=—00 m=—00 N=—00

where (U,,) C A(X) satisfies that

S G —mbpo—nbi m on q 1/a
S (@2 (27, 2" ) < o0,

m=—0o0 N=—00

and the operator J is defined as
J(t,v) = J(t,v;X) = max(||v]lo, trl[v]|1, t2][]]2)-

To use the construction in [AK] to our triple, in Section 3, we will show the following

embeddings Xe g — Xocox — 0,(X) for ¢ > 0.

Definition 2.2.3. We shall say that the Fundamental Lemma with the operator S, is valid

for the 3-tuple X if any element x € JQ(X) can be represented as a series
xr = Z T, (2.6)

absolutely convergent in X(X), where x;, € A(X) and
J(2F, 215 X) < C[S,K (-, z; X)](2). (2.7)

Here and below 2% = (2F1 2%2) where k= (k1, ko) € Z*, and C > 0 is a constant independent
of x and k.

Lemma 2.2.4. Let X be a 3-tuple consisting of the quasi-Banach function lattices LPi%(C;)
n (2,%) and p;,q; € (0,00], i = 0,1,2. Then the Fundamental Lemma with the operator
S, is valid for X.
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Proof. Observe that we must prove that every f € 0,(X) admits a representation as a sum
in ¥(X),
F=> h (feAX)),

where ), 7o ||fk||2 %) < and
J(2%, fi) < C(S,K (- f; X))(29).

To simplify some of the formulas, we will denote by K (-, f) = K(-, f; X) for f € ¥(X).
First of all, we show that for any k € Z? and f € %(X) there can be found non-
overlapping sets A;(k), j =0, 1,2, such that

¢ U?:O Aj(k) =1,

K25, ;. X) = {[lf X a0 | Lroao (o) + - - - + 22| FX o) | Lr202(c) }- (2.8)

For that, let us observe first that we can find f; € L% (C;), i = 0,1,2, such that

| foll rosso (o) + 2% | full Lovan ey + 22| fall przsoa () < 2K (2%, f; X) < o0

Define the sets

Ao(k) = {weQlfo(w)] > [filw)l},
Ai(k) = {w e Qi [fo(w)| < [fr(w)] [f1(w)] > [fo(w)[}, and
Ay (k) = {weQlfo(w)] < |AW)] < [f2(w)l}-
It follows then that U?:o Aj(k) = Qand f(w) =37 o (fxa,00)(w) for w e Q.
Moreover, since for i € {0, 1, 2},

2

2
P00 @)| < |3 firam )] € 3015 am () < 3£ xan(w)
j=0

7=0

and these spaces LPi%(C;) are vector lattices, we have that {fxa,u) }7 is an appropiate

descomposition. Therefore,

K25 f;X) > |follroao(co) + 2 | fill Lovas ony + 22| fol Lr2a (cn)
Il foxX Ao | £roo (o) + 25| Fixas aoll v eny + 27 | faX Az o) | zr2az ()
1 B

A%
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Now we shall construct the descomposition of f € ¢,(X) satisfying (2.6) in several steps,

using a special partition.

Step 1: Construction of a new familiy A;(k) with the monotonicity property. For k € Z?* we
define

Qo(k) = {s €Z*1 = min(l,Zkl*sl,ZkTsQ)}
Q;k) = {3 € 7228 = min(1,2k1_sl,2k2_32)} (j=1,2).
Let

Ak = | 46) (G=12), (2.9)

s€Q;(k)
Ap(k) =\ [ Ai(k). (2.10)
Then, A;(k) D A;(k), j = 1,2, and
Ag(k) C Ag(k). (2.11)

Let us see that there exists a constant C such that C'S,K (-, f; X) > K(-, f; X). Indeed,

we have that
2to 2t -
/ / min (
to t1 -
2to 2t1 -
t, t dsy d
/ / min (17_17_2)-[((817827f)i|gﬂﬂ
to Ju L 2t 89 51 89
/Qtz /2t1 - tl t2 ( )
min < Y g 0 _>K t17$2a f i|
t2 tl L 2t1 82
2t 2t -
2 ! ty t odsy d
Z / / min (17_17_2)K(t17t27f)] iﬂ
s Ju L 2ty 2ty 51 Sy
1
= @K@l,tm f)#(log2)*.
SQK('7 f; X)

t1 to eds; dss

LIl

51 52 51 52

(SeK (- £ X))

v

v

stl d52

Vv

1
S1 S2

Hence, K (-, f; X) < (

2
log 2)2/e
Moreover, it follows that, from (2.8), (2.9), (2.11) and last inequality, for a certain
constant C' > 0

X (10| Lro-a0 (o) + 2 1 X Ay g | oo ey + 221 FX dp o) £r2oo2 ()
< CS,K(+, f; X)(2).
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Let I'y, Ty : Z2 — Z2 be the operators
Iy(k) := (k1 — 1,k2), Ta(k) := (k1, ko — 1).
Then it follows that
A,(Ty(K)) € A(K) for j i, A(T;(K)) > A;(K). (2.12)
Step 2: Construction of elements from the intersection. For any 2% = (2,2%2) € R? we define

B(k) := Ag(k)\ U Ag(Ti(k)). (2.13)
Considering (2.10) and (2.12) it follows that
B0 = )[40\ J 4,0)]. (2.14)

By definition, since [f{xpa) < |f|X4,00 and |fIxBa) < [fIXa,m,00), ¢ = 1,2, it follows
that | f|xpu) € A(X) and for i = 1,2, we have

oki

xsullreacy < 2% xamao lea ey = 2287 fxaumsao)llzees o)
S 2K £ X) S 2C[S,K (-, f; X)](2" M),

Since S,K (-, f; X) is a non-decreasing function and (I';(k)); < k;, we obtain for i €

{1,2}

1 XBallronce < I X llzrowcn S CISK (- f; X)](2Y), (2.15)

2| Fxmaollrin ey < 2C18,K (-, f; X)](250) S 20[S,K (-, f; X)) (2).

Let
yk = | flxBa), k € Z°.
We have then that, y € A(X) and it follows, for C' = 2C, that

J(2% y; X) = ma‘X{HkaLPO’qO(CO)’2kl”kaLP1‘ql(Cl)72k2HkaLP2’q2(C2)}
S 2C[S,K (- [ X)](2%) = O[S, K (-, f; X)) (2%).
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Step 3: Construction of the required descomposition.
Let f € 0,(X) and Z* = U] 0§2(1). From (2.14) and (2.15) we have

Yo i gy < 2ZZ||yk||§<j

keZ? kecZ2 j=0
=2 Y ISy S )
keQo(1,1) J=1 keQ;(1,1)
= 2{c? Y 8K NI
keQo(1,1)

+ (20)@2 3 ([S@K(-z,ki‘)]@k))g}

A
[\
©
8!
=
@
s}
=
=
~
)
-

since

[\

> saC ey Y (B Iy

keQo(1,1) j=1 keQ;(1,1)
2k2+1 2k:1+1
ds, d
= Y (log2) *[S,K(- f)](2¥)" / / ke
ker(l 1) 51 52

1 2k 2h d81d82
+ Z Z og2 ( /2k2 1/2

=1 ke ( k-1 S1 S2

2k1+1
dsy ds
o227 Z /. / NS
g ke (11 2k 2k1 1 S2
/ / (ISAC f)](ﬂ)@@ ey
oko—1 Joki—1 Sj S1 S9
10g2 QZ /2

+ i Z /jk21 /k -1 (mln(l,1/81,1/32)[SQK("f>]<S)>Q?%}
y 2T -

€Q;(1,1

2k2+1

IN

+
HMM

2k2+1 2k1+1

/2 min(1,1/s1,1/s9)¢ [SQK("f)](S)g@@

51 52

AN

= SQ(SA)K(WJC;X)NLDQ‘
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Thus, the finiteness of ) ) ;- Hyk||§( x) implies the existence of an element g € 2(X)
such that ||S, —g|xx) — 0 as n — oo, where S,, is the n-essim partial sum. Moreover,
defining A,, = {|S,, — Sn+1| > €} we have that

C(An)\/g < /A |Sy — Spt1|dC < 4Cq||S, — 9”2(}2)-

Hence, C(A,) — 0 as n — oo. That is, {S,}, is a Cauchy sequence in capacity and
therefore, it is convergent in capacity to the function g, by Theorem 1.3.11. Moreover,
since it is pointwise convergent to f in X(X), we get that f = g C — q.e.
Below we shall show that the inequality

HEDR (2.16)

keZ?

holds quasi everywhere.
If (2.16) is correct, then for a € supp f we have that f(a) > 0 and then ), . yx(a) >

0. So that a € supp [}y k). Moreover, the series composed of the elements

¥ Yk
Zkez2 Yx

pointwise converges to f almost everywhere, since the series ZkEZQ Yk 1S pointwise

Tk =

convergent almost everywhere. From (2.16) it follows that

< wllsx)-

o f
kaHE(X) = —Zk 22 Yk Y] .
€ b

So that, the series ), 5> 71 is absolutely convergent in Y (X), and since it pointwise

converges to f, we get that its sum will be equal to f.

It follows from (2.16) and the lattice property of X;, ¢ = 0,1,2 that
J(Qk, Tk, X) = max (ka“LPO’qD(Co)a 2k1 ”kame (C1)> 2]@ kaHLPQvQQ (CQ)>
< max ([oielzrom iy 2 oillm on . 2 il )
= J(2%p6X) < C[S,E( £ X))(24).

Therefore, the elements x, where k € Z? satisfy the requirements of the Lemma. It
remains only to prove inequality (2.16).

It follows from the definition that, if a € B(k), then |f(a)] = |f(a)xpw(a)] =
lyk(a)| and then (2.16) holds almost everywhere. Moreover, if a € (supp f)¢ !, then

For A C Q, A denotes the contrary of A, that is, Q '\ A.
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f(a) = 0 and hence (2.16) holds. So, (2.16) holds almost everywhere on (J, .. B(k) U
(supp f)¢ = C. To finish, it is enough to prove that the contrary of 5, C =
supp f\ Uxeze B(k), has zero capacity. We have that

1f = IxXOpBwllsx) = I(f = FXUpB0) Xsupp flls(x)

= H (f Xsupp £X [UkeZQB(k)u(ukEzz B(k))c]

_ fXUkeZQB(k)Xsupp f)HZ()_()
= Iixelsco.

Since all the capacities have the same null sets, if we prove || fx¢|/sx) = 0, then it will
be proved that C' has zero capacity. Take € > 0. From the definition of the set Ay(m)

(m=(m, m)), using that f € 0,(X), we deduce for sufficiently large m that

2
m 1
If = Faomllsm < )2 15 Ao 225030y 5
=1

< 20[S,K( i X))(2)/2" < &/2.

Moreover, since XUyega BN Ao(m)] < XUycz2 B then, by the lattice property,

1f — fXUkezzB(k)”E()_() <|If- qukeZ2 [B(k)on(m)]Hz(X)

and
If = fXUkeZQ[B(k)ﬂAo(m)}”E()_() S Nf- fXAo(m)HZ(X)
+ X Agm) — IX0 iy (BN A (m)] I2(%)
(There is a constant associated with the quasi-norm || - |5y in the quasi-Banach

case, but finally this fact does not affect the conclusion). It is clear that in order to

prove (2.16) it is enough to show that

HfXAO(m) — F XUy [BOOIN Ao (m)] HZ(X) < €/2. (2.17)

To prove (2.17) we shall consider the sets
Qm,l = {k: (k’l,kg) S ZQ,l <k < m,t = 1,2}

and
O ={k=(ki,ks) € Z°kj=land | <k; <m fori+j}, j=12
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It follows from the definition (2.13) that

Ao(k) € B(k) U OAO(Fi(k)). (2.18)

i=1

In particular,
2
Ap(m) C B(m) U UAO(F m
i=1

and for T';(m), which is certain k, we have that
2 —
Ap(Ti(m)) € B(Ti(m)) U (] Ag(T';Ts(m)).

Therefore
2

Ap(m) € B(m) U|_JB(Ii(m)) U | ] Ao(T';T(m)).

i=1 ij

Repeatedly using the embedding (2.18), we continue this process of replacing the sets
Ay(s) for s € Q,,;, and we obtain

Am)c | BUlJ | Als)

keQm,l Jj=1 SeQZn,l

Therefore, taking into account (2.11) and the descomposition, we have

2
HfXAo(m) - qukezz[B(k)nAO(m)]HE(X) S Z Z ”fXAO(s)”z(X)

=1 J
J seQ]

2
Z Z HfXAo(S)HE(X)

=1 J
J sGmel

2
Z Z ||fXA0(s)||LP0,q0(CO)

7j=1 SEQj

AN

N

1,1

> Y KensX)

1 J
Jj= SGQmJ

AN

We also note that, if s € O’

m,l’

then s; =l and [ < s; < m for ¢ # j. Hence
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2

> K2 f;X) 2. <HfXAo<s)HLPo’qo(Co> +) 2

J J i=1
seQ s€Q] ¢

12

IXais) HL%%(@))

2

< > (xalonen + D 2" 1 Xai ey

seq | i=1,i#]
/ — m—1
+ 2 famllmney) < 201K (£ X))

since, by definition of F;”_l(m), we know that it has the value [ in the j component
and m in the rest. It follows from the fact f € o,(X) that, for a fixed m, as | — —o0,
ol (m) (in the limit) has a zero coordinate, since 27> = 0, and then, the minimum

inside the integral will be zero, which means
[S.K (-, f: X)) — 0.

Now (2.17) follows from this and the proof is finished. o

2.3 The Equivalence theorem

In 1964 J. L. Lions and J. Peetre [LiP1] proved one of the most important theoretical results

in interpolation theory, the so-called reiteration formula for couples of Banach spaces X:
(X907QO> X917Q1)777q = Xe#b 0= (1 - 77)90 + 77917 (2'19)

where 0y # 01, 0 <1 < 1 and Xy, is defined in an analogous way in the case of triples. This
formula also holds for quasi-Banach spaces (see [BeLo)).
The classical proof of the formula (2.19) is based on the so-called Equivalence theorem
for the K— and J— methods:
Xogx = Xo,g.0,

which is valid for any couple X = (Xy, X;) of quasi-Banach spaces (cf. [BeLo, Theorem
3.11.3]).

G. Sparr defined the K — and J— functionals and the corresponding interpolation spaces
for (n + 1)-tuples X = (Xo,...,X,), as for couples, and tried to extend the reiteration
formula (2.19) to (n + 1)-tuples and he showed that, if an analogue of the Equivalence
theorem is valid for X, then an analogue of the Lions-Peetre reiteration formula is also true.

But there are troubles with the Equivalence theorem for n > 1. Even for a good triple, such
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as a triple of Hilbert spaces, the classical method of proving the reiteration theorem does
not work.

In 1997 I. Asekritova and N. Krugljak showed in [AK] that the Equivalence theorem is
in fact valid for any n-tuple of Banach function lattices. In particular, it holds for triples
of weighted LP spaces. The proof of the result of Asekritova-Krugljak is rather complicated
and uses significantly the structure of the Banach function lattices.

Here we will check that this also holds for the quasi-Banach triple X considered in the

previous section with the properties of the modified Calderén operator defined in (2.5).

dt _ dty dty ;
t ot to ts

called a parameter of the p-real method if the operator S, is bounded in ®, o € (0, 1].

Definition 2.3.1. A quasi-Banach function lattice ® on R with the measure

One of the main parameters of the real method is ®g , for 1 < g < co. In this lattice, the
norm is denoted by || f|e.q, where t=© = t1—90t2—61’ © = (0p,01),0;, >0 (i=0,1),6p+6, <1
and ¢ € [1, 00].

In order to follow, in a similar way, the construction in [AK] we have to show that for
0<g<ooandfy+6 =1, )_(907917(1;;{ — UQ(X'). For that, we show first that Xgo,ghoo;;( —

0,(X) and then we will see that Xg, g, o:r = Xog.0,.00:5 -

)_(90,91700;;( — ag()_(): Let f € )_(90791700;;(. Then ||f||X90’01700;K < 00, and hence

% 1 1 dsq d
SeK(L,1, f; X)? = /2 [min (1,—,—)5§08I905318591K(31,32,f)]@ﬂﬁ
R

S S9 S S9o
l 1 1
< /
R

3 _ 001 o Tt
i |:m1n <17 Sl’ 82)81 82 ] H‘f”XQ(),@l,OO,K < m?

S1 S2

since for [ be the surface min(1,t;,¢5) = 1 we have that

11 eds) d odty dt
/ [mln (1, -, —) 8?0331} ﬂﬂ S / |:t1—90t2—91:| 1 2
R% S1 S2 S1 82 RZ ty to

iy s

= /[min(l,tl,tz)tl_eotgel]g
I t1 o

2
= > / (min(1, ¢y, t9)t; ©t; "]

and all the integrals are finite.

X90,91,q;K — X90,01,oo;K: For f € X90,91,q;K7 we have that
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dt, dt
/ (t1—00t2—91K<t1’t27f))Q_1_2 < 00,
B2 t1 1o
and
2t d d 1/q
oKt ) S ( / / LI (0 K (1,12, ) )
to t1
ds; d
= 2(/ / 2t1 00 2t2) 91K(t1’t2’f))qﬁﬁ>
to 51
2to 2t1 d d 1/(]
< o [ / (553" K (0, )" 252
£ S1 S2
2t 2t
2 1 ds+ d 1/q
< / / OIK(Sbszaf))qiﬁ)
to S1 So
S 2||f||X90,917q;K7
therefore

—604—0 v
swp [6508° K (b1t £ 0] = 50 < 20 s
t1,t2€R 4

We have proved that we can apply in similar way the construction in [AK].

We define the interpolation spaces Ke(X) and Jg(X) by the quasi-norms

Ifllkoy = IEC f5:X)]e.

o = inf {HJ(.,u(-);X)H@; f =", convergent in £(X), u, € A(X)}.
k
Theorem 2.3.2. Let p;,q; € (0,00], i = 0,1,2 and X = (LPo9(Cy), LPra1(CY), LP>92(Ch))
be a 3-tuple of quasi-Banach spaces for which the Fundamental Lemma with the operator S,

is valid. Then, for any parameter © of the p-real method, we have that
Ko(X) = Jo(X).

Proof. The embedding Jo(X) — Kg(X) follows from the definitions of the quasi-norms
and the fact that the operator S, is bounded in ©.

The opposite embeding follows from the fact that the Fundamental Lemma with the
operator S, is valid for the 3-tuple X. Let f € Kg(X). By definition, this means that
K(-, f; X) € ©. Hence, since S, is bounded in ©, we get that S,K(-, f; X) € O, ie., f €
0,(X). Therefore a descomposition of f into a series satisfying (2.6) and the estimate (2.7)
is possible.

Let

Qu = {s = (51,8); 2" < s; < 2FT i =12}, k€ Z°.
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We define
u(s) = > (log2) zixg,(s),

keZ?

where zy is the k—summand in the decomposition (2.6) of f. Then

and for any s € R?, from (2.7) and the concavity of the K-functional, we have
J(s,u(s); X) < C'1S,K (- f; X)](s) (2.20)

with constant C' > 0 independent of s and f € o,(X).
Applying || - |le to both sides of (2.20) we deduce that, from the boundedness of the

operator S, in ©, Kg(X) — Jo(X) and this completes the proof of the theorem. o

Observe that it holds for n bigger than two and the proof follows in analogous way.

Remark 2.3.3. It should be note (see [BK]) that in the case of couples of Banach spaces,
the Equivalence theorem holds if and only if the operator S is bounded, where S is the

corresponding operator in the Banach case (p = 1).

2.4 The Reiteration theorem

Let H := {(6p,01);60 > 0,6, > 0 and 6y + 0, < 1}, and let us remember that the spaces
Xogx = X(90791)7q;[( are defined for 0 < ¢ < oo and © = (6y,0;) € H, as the set of all
f € Lo(Q) for which
[ fllegr = IEK( f; X)llog < o0,
where for g = K(-, f, X)
lolloi= ([ | @ 0 ) P2 @< o)
o Jo 1 b2

In [AKMNP], we find that for X = (Xy, X1, Xs) be a triple of quasi-Banach function
lattices, A = (A1, \o) € H and ©; = (0},0}) € H,i=0,1,2,if © = (1 - A\; — X2)Og + A0, +
X205, then

(Xequo’ X@17Q1’X@2,q2)5\,q = X97q7

whenever

the vectors O, ©1, O, are not colinear.
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Corollary 2.4.1. Let X = (LPo9(Cy), LPr4(Cy), LP»%(Cy)), where p;, q¢; € (0,00], i =

0,1,2. Under the same conditions
(X00,001 Xor.01: X62.0:)0g = Ko,y © = (1= M = A2)00 + i1 + X202

whenever

the vectors ©g, ©1, 05 are not colinear.

Proof. Observe that in this case we have that LPo%(Cy), LP*9(CY) and LP*%(Cy) are quasi-
Banach function lattices on Q. Then the theorem follows by [AKMNP, Theorem 2.1]. ]

We will use the following simple fact concerning triples X = (X, X1, X5) of arbitrary
quasi-Banach spaces (cf. [AKMNP]):

Lemma 2.4.2. If0 < ap,a1,n < 1, 0; = n(1 — ay), and 03 = nay + (1 — n)ag, then

((XOa X2) oo, 13K (X17X2>a1,1;K)7771;K C Xoax

and
Xoa C ((Xo, X2) o130, (X1, XZ)al,l;J),ml;J'

Let us remember here the Power theorem of G. Sparr (see [Sp]). Let Ald 0 < ¢ < oo,

denotes the Banach space A with its norm || - || 4 replaced by the functional
a— |lall%-

This functional does not in general define a norm on A but still it will be useful here. Within
the framework of an interpolation theory for normed abelian groups such functionals can be
used sistematically. If A = (Ay, Ay,..., Ay) is a Banach (n 4+ 1)—tuple, q = (90, q1, -, Gn),
0<q <oofori=0,1,...,n, then we set

Al = (Al Al Alandy,

n

With t = (tg,t1,...,t,) € R"™! and s = (sg, 81, ..., $,) € R"™! we write
ts = (toSo, t181, ey tnsn)

and
t/S = (tQ/SQ,tl/Sl, ,tn/sn)

Theorem 2.4.3. (Power theorem of G. Sparr) Let n = ¢0/q with 1/q = > 0;/q; (or
q=> 1 omqi). Then
(AG,pq;K)[q] = (A[q})n,p;K
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Proof. See [Spl, Theorem 7.1]. o

The same holds for quasi-Banach triples.
Theorem 2.4.4. Let p;,q; € (0,00, 1 =0,1,2, and 0 < p < 1. If 0 < Go,G1,q < 00 and

L 1o omoyp
- = — —_ en
q do +q1’

(L7 (), L% (C) ) aguays (L7 (Cr), L% (C2))ar 1)
— (LpO,qo (00)7 Lpl,q1<cl)7Lp27Q2 (02))(91792)7(]’

where
(91 = (1 — ocl)u, 92 = Oé()(l - M) + Q1.

Proof. For 1 < ¢ < oo, the proof follows using the Power theorem for quasi-Banach couples
(see [BeLo, TH.3.11.6]), by Lemma 2.4.2 and by [Spl, Theorem 7.1](cf. [Sp1]).
For 0 < ¢ < 1 we have that, for n := %

[((XOa X2)ao7§ov (Xla X2)a1,§1)u q] - ((XOv X2)ao do> (Xla X2>a1 q1) 1

by the Power theorem for quasi—Banach spaces. We can find 0 < fy, 81 < 1 such that for

So 1= O‘g—?’ = O‘éql and, for sg := %}30) and s; := %ﬁo‘l) it follows that
((XO7 X2>ao do» (Xla X2)a1 q1) 1 = ((Xgo’ XSQ)ﬁo,la (Xfla X§2)ﬂ1,1>7):1

— S0 S1 89
- (XO 7X1 7X2 )/\1)\2,17

where Ay := (1 — 81)n, A2 := Bo(1 — n) + Gin. Last equality follows by using Lemma 2.4.2

and the Equivalence theorem. Finally, by the Power theorem of G. Sparr for triples of quasi-

normed abelian groups, for 6; = % =pu(l—ay) and b, = AQqSQ = (1 — p) + o p, it follows
that

(Xgonf27X§2>/\1,)\2,1 = (X07X17X2>gl d

7927q.

Corollary 2.4.5. Let X = (LPo9(Cy), LP+a1(CY), LP>92(CYy)), where pi,q € (0,00], i =
0,1,2 and 0 < g < co. Then

((Lpo,qo (00)7 Lpz,q2<c«2))927q’ ([/191,(11(01)7 [ P2:42 (02))627(1)97(1
= (LP90(Co), LM (Ch), LP(C5)) 01,0200

01
(1-02) *

where 6 =

Proof. This follows immediately from last theorem by putting ag = a3 = 6, Go = G1 = ¢
and p = 601/(1 — 05). o
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2.5 Interpolation of capacitary Lorentz spaces

Let us remember that, if A = (A, A;) is a couple of quasi-Banach spaces, 0 < 6 < 1 and
0 < ¢ < oo, the interpolation space Ay, is the quasi-Banach space of all f € Ay + A; such
that

1/q

< . dt
I£lea = ([ @K1 200 <,
0
where K(t, f; A) is the K-functional,

K (t, £ A) = inf {follag + HLfillasi £ = fo+ fi fi € Aiyi = 0,1},

We refer to [BeLo] and [BK] for general facts concerning interpolation theory.

Let 0 < p < 0o. From now on, let (€2, X) be a measurable space and C' a quasi-subadditive
Fatou capacity on (2, %). To calculate K(t, f) = K(t, f; LP(C), L°(C')) we will follow the
usual construction (see e.g. [BeLo, Theorem 5.2.1.]), with f&(¢) instead of the classical non-

increasing rearrangement.

Theorem 2.5.1. Let 0 < p < oo and f € LP(C) + L>(C). Then for allt > 0,

Kt £ 2200220 = ([ min(C{1A1 > ). 0y

and

& 1/p
Kt ri©.05C) = ([ fotwrar)”
0
Proof. Let 0 < f € LP(C) + L*>(C). For ¢t > 0 given, let

y*=inf{y > 0;C{f >y} <7} = f&(t"),

and consider

o) = [ X @iy = (7@~ ')

*

and

*

gi1(x) = /Oy X{rsuy(@)dy = (y* — f(z))-.
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Then f = go+ g1 and {go > y} = {f >y +y*}. So that

1900y = /0 py?IC{f >y 4y hdy
y* %)
< / py" T C{f > y+y*dy +/ py"C{f > y}dy
0 y*

*

< /Oy py? T O{f > y*}der/:pyp‘lC{f > y}dy
< C{f >y Iy + /:py”‘lc{f > y}dy
S Py + /Oo YOS > y)dy.
-
Hence,

K(t5) < Naollsier + Hlanllimicy
& 1/p
< (tp<y*>p+ [ et =) v

Y

( / IOl f >y}dy) p_|_ (tp/oy* yp_ldy>1/p
: </ ol > y}dy+tp/0y* yp—ldy>1/p
(

/ P~ min(C{f > y}, tp)dy>

0

Moreover, as it is shown in [Ce]-(5), there exists Q(t) C Q such that

K(t, f) ~ |fxa;mllee) + tf xae,mllce) = [l follr@) + tl fille )

with fo :== fxa,) and fi == fxo,@). Just consider f = fo + fi such that || follzec) +
t fill ooy < 2K(t, f) and take Q(t) = {[fo| > | f1]}-
If f = x4, then

K(t,xa) =~ inf{C(Ag) + tC(A1); A= AgU Ay, AgN Ay =0} ~ min(C(A),1).
Now, since x{rs>yt = X{fo>y} + X5y (fo, f1 are disjointly supported),

min(C{f >y}, t) ~ K(t, Xir>9) S C{fo > v} + tixgasellze©)

Using now that

3 o 1/p
il =07 ( [ xonlicndy)



2.5. Interpolation of capacitary Lorentz spaces 87

we obtain that

K(t, f) ~

2

~ p—1 e P - p—1 r
( v C{fo> y}dy> + (t y ||X{f1>y}”L°°(C)dy>
0 0

(/ yHC{fo > yh + t”llX{f1>y}||L°°<0>)dy>

0

(/OOO y*~ min(C{f > y}7tp)dy>1/p

The first description of the K —functional then follows.
1/
To prove now that K (¢, f) ~ (fo fély pdy) p, let

and f1 := f — fo.

folw) == { fl@) = fe@) gy i (@) > fa)

0, otherwise

Define E := {z € Q; fo(z) # 0}. Then E = {z € Q;|f(x)] > f&(t?)},

C(E) < t? and, since f£ is constant on [C(E), t*],

Kt f) < lfollwre) + tlAllz=e)

s ([wrwi- fé(t”))’”dC) )

s ( /0 ~ fem)yds) / feeryds) "
< < /0 — FA(P)) Pds / FE(EP) Pds o
< {/0 — ) pds+/ Fa () pds} v

< ( / fesyrds) .

Conversely, consider f = g+ h with g € LP(C) and h € L*°(C). Then, by the properties
of f& and by Theorem 1.3.8, we obtain

[ storas

- / (FP())ds < / (lgP + 1) (s)ds
/0 (g)es) + ()5 (s)ds = / (gi:(s))Pds + / (s (s))Pds

N

N

P
/ (9c(s))Pds + °h5(0)” S 96l r @y + 0 I L
0

l9llZe(cy + AL ey < lgllzre +tHhHLw<c>)-

AN
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Taking infimum over all descompositions it follows

(/ Cretras) " skep. o

Once we have the description of K (¢, f; LP(C), L*>°(C)) for any positive p and f € Ly(£2),

real interpolation follows easily as in [BeLo, Theorem 5.2.1]:

Theorem 2.5.2. Suppose 0 < 0 < 1,0 <py < qg< 00 or0<p <q< o0, and}%zlp—_oe.
Then
(L7(C), L=(C))oq = LPI(C).
Proof. It follows from Theorem 2.5.1 that
00 tP
| tminets > ghndy= [ ray
0 0
So that, using Minkowski’s inequality (¢/po > 1),
1/q
s = ([ ¢omee pr)
o </ oq / f2(s)P0 S)Q/podt)l/q
= (/ —6po+po/ f ytpo po >q/p0 dt>1/q
0
! > dt\po/ady\1/
< </ <yq/po/ t(l—(’)q(fé(ytpo))q?)po q_y> o
0 0 Y
e o N4ds\ /e > v \4ds\1/a
S ([ (Fre) )" = (] (2re) )"
0 S 0 s
. . 1/q
Then || fllog S 1 lzsaey since |fluoaiey = ( f7 (s fe(s)) %) .
Conversely,
> . ads\1/a e ads\ /4
ey = ([ (220:6)" )" = (| (55 5e0))"S)
0 S 0 S
N o0 120 px /1m0 q@ 1/q: (1-0)po 0 a/po dt\ 1/4q
_</0 (t fC(t))t) <O(t f(t)> t)
o tro . 1/po\ adt\ 1/a
s ([ (o) setomas) ™))" = 15l
0 0 t
where in the last inequality we have used that f7& is decreasing. O

In the case of a single quasi-subadditive Fatou capacity [Ce, Theorem 6.6.] is extended

by reiteration:
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Theorem 2.5.3. Let 0 < pg,p1,qo, 1 < 00, po # p1 and 0 <n < 1. Then
(L7 (C), 17 (C)) = 17(C)
with l = 1_—" + ok

Proof Let 0 < 7 < min(pg, p1, 90, 1) and (1 —6;) :==r/p; (i =0,1). If 0 := (1 —n)0y + b1,
since 1/p = (1 — @) /r, then Theorem 2.5.2 gives

(LP(C), LPHI(C))yg = (L7(C), L2(C))ag.a0, (L7(C), L7(C)) o101 )n.a-
By reiteration (cf. [BeLo, Theorem 3.11.5]) we obtain that
((LT(C)7 LOO(C))GOHO’ (LT(C)v Loo(c»elylh)n»q = (Lr(c)a LOO(C))G,Q'
And, again from Theorem 2.5.2, (LP>%(C), LP+2(C)), , = LP(C). o

We want to consider interpolation with change of capacities so that, let (Co, C) be
a couple of capacities on (,¥) with the same null sets. We will denote by L!(C) =
(L'(Cy), L' (Cy)) and, for every ¢ > 0,

[Co +tC1](A) := K(t, xa; L*(C))
as in [Ce].
Remark 2.5.4. Let us observe that, since Cy and C are capacities with the same null sets,
Iz ccoy = N1+ oo (en)-
First of all, let us see that we can extend [CeCIM, Lemma 6.5].

Proposition 2.5.5. Let Cy, C be two concave Fatou capacities with the same null sets and
r > 0. Then

K(ty, b, f; L™ (Co), L™ (Ch), L) = K(ty, f; L(C) + 1,07, L)
~ / min((C) + HCOVIf| > yh ta)dy,
0

where C") .= CY" denotes the r-convexification of C.

Proof. We have that, since the power of the capacities are at least quasi-subadditive, then
K(tl,tmf' L™ (Co), L™H(Ch), L)

I folliracwy + trll fillraeny + tall folle }

f= f0+f +f2 {

- {[eotinl>naeen [ e0Ual > e gl
f= f0+f1+f2 0

~ inf {/ (C(()T){\fd >t} —|—t1C£T){|f1’ > t})dt+t2‘|f2HLoo}
f=fotfi+f2

= K(to, f; L(C + ,C), L™).
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Since
K(ts, f; LIC + 1,C{7), 1) / min((C) + HCU){|f| >y} to)dy,

the result then follows. O

Remark 2.5.6. From [Ce], for concave capacities, we can obtain more interpolation results.
For instance, since L' (C) = L(CY/"),

(17(C), L¥)ay = IPI(CV") = 7€) = 174(C)
if0=1—-1/p 0<p<oo)orf=1—r/p 0<r<p=rp).

Theorem 2.5.7. Let Cy, Cy be a couple of concave Fatou capacities with the same null sets

and 0 <n < 1. If0 < py,p1 <00, 0 < qo,qn <00, +: =124 1 andlzzlg—on%—qﬁl, then,

7 p Po P1 q
for Cyo(A) = |Ixallzco),Lc1))e, (0 <0 < 1),
(Lpovqo (CO), [pPLa (Cl))mq — Lp,q(C;l’q/p)'

Proof. Let 0 < r < min(po,p1,qo,q1). Since ¢; > r, i = 0,1, then, by Remark 2.5.6, we
have that
L (Cy) = (L"Y(CH), L®)prge (1= 0i:=1/ps),

and by Theorem 2.4.4,

(meqO(CO)? Lera (Cl))mq = (Lr’l(C(J)? LTJ(Cl)? Loo)cn,amq = Xal,a?.,qv

where a; = (1 — 61)n, as := 0y(1 — n) + 1. Hence, by Proposition 2.5.5, it follows that

A, [ (e [ min (60 +000) 01> whon)an) P

where, by Theorem 2.5.1, we have that
dt

/000 (252_0‘2 /OO min ((C’ér) + tlcy)){|f| > y},t2>dy)q—

0

, dt
~ / ty K (ta, f; L(Cy G + 1. Gy ))7Loo)qt_2
2
_ q = 1
- ||f|| C(T‘)+t C(T)) Loo) 2,q ||f||LiTQ q(C(7)+t C(’”))
o0 _ r 11—«
~ / y () + 6O If] > )y,
0
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On the other hand, since C\"(A) = C;(A)V/",
(O + 607 (A) = K (1, xa5 L(Co)™, L(C)™),

and K(t", |g|"; Xo, X1) ~ K(t,g; Xér),Xl(T))r, it follows that

[ @ - a1 > )y
a- Ot2)q

~ / YU oy L(Co), L(C) 2 dy
0

_ / YT (Co + £C1)
0

Hence,

a- az)q dtl

HfHchl 2,9 = / tl alq/ ! CO +trCl){|f’ > y} dy_

~ /0 s e, L) g2 4/, y_”f”L“CW a)

We present here Theorem 2.5.7 and 2.5.11 because, although they follow from some other
results proved later on, they show the process followed to attach our objective. We think
that the proof could be of interest for the reader.

A capacity C' is called semiadditive if there exists a constant ¢ > 1 such that

(UA) <D0l ({ndaen € 3).

and it is o-subadditive if moreover ¢ = 1. Observe that each concave capacity is semiadditive

and every semiadditive capacity is quasi-subadditive.

Lemma 2.5.8. Suppose that Cy and Cy are both (countably) semiadditive. Then:
(1) If { fx }ren are non-negative disjointly supported functions, then

K(6Y 0) £ 30K (1ALt (O)

(it) K(t, f[;L*(C)) ~ [;"[Co + tC ){|f] > y}dy = || fll 2 (1coecn) -

Proof. (i) Note that (s fisy) = XU, (isu) = Dohet Xifi>y) and

|34
k=1

. Q(H{fk >y}) <e ; Vidlme,  G=0,1)
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We can consider descompositions fx = fro+ fr1 (with fi; non-negative, i = 0,1, and k € N)

so that, the functions fio (and also fx 1) are disjointly supported. Hence

(e Sr0) < ]Sl 15l )
ka (C)) < in ka,o Ll(Co)+ ka,l Li(e)
k=1 k=1 k=1
S inf {3 Ml + 13 Mlloen
k=1 k=1

= Y K(t fi; LXC)),

(ii) We may assume that f > 0. We have that K(t, f; L'(C)) ~ || follLrco) + tllfillzr s
where fo, fi are disjointly supported functions such that fo + fi = f. Thus, x{;s,y =

X{fo>y} T X{f1>y} and

K(t, f:L(C)) =~ / " Collfo > yhdy + / T O > gy

0 0

— /OOO(CO{fO >y} +tCi{fi > y})dy

2 [ ICoricis >y
0
For the reverse estimate, since f <%, 2k+1X{2k<f§2k+1}, from (i) we get

K(t, f;LY(C)) < Y 2"[Co+tCy] {28 < f < 2"}

keZ

< 4) 2Co+ ] {f > 2}

keZ
< 4/ Co+tC{f > yhdy. O
0

Remark 2.5.9. Let E(A) = |xallrac) for A€ X, and 0 < u < 1 such that (2¢)* =2 if c
15 the quasi-subadditivity constant of C'. Then

LY(E) = LP*(C) — LP9(C) — LP"(C) — LP>(C) (0 <u < q<r1 < 00).
Indeed,
00 1/u
11| ey = (/ ?Ju_IHX{If>y}||1iw(0)dy> :
0

where

° _ aq 1/q
IXqssullzrae) > (/ SO0y > s} ds)
0

= (3)"etn>wp
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so that

o0 1/u
e = (470 [ 5104151 > 017y) " = s
0
and it follows, for u smaller than ¢, that
LPH(C) — LP(C).

Recall that, since f£ is decreasing, for » > 0 it follows that

tYP (L) = (f/( U £ (4))" ds)l/r < (p/o( SP A (s)) d8>1/r’

r s
and LP"(C) — LP>(C).
Also, LP4(C) — LP7(C) if ¢ < r < o0, since || f|lpr < || fllp.q With ¢ = (p/q)"=9/7 as in
the usual case (cf. [BeSh, Proposition 4.2, Chapter 4]).

Remark 2.5.10. Let Cy and Cy be quasi-subadditive Fatou capacities on (§2, X) with the same
null sets. Let X = (Xo, X1, X2) = (L"(Cy), L™(C1), L>®) where 0 < r < 00, 0 < q,q0, ¢1 < 00,
and suppose that 0 < u < 1. Let é = % + %. Then

X(éo,él),q = ((X07X2)907q07 (X17X2)491,q1)u,q’
Indeed, by the power theorem,
((XOv X2)907QO7 (Xb X2>91,q1) (<X07 X2)00 q’ (le XQ)Zi,ql)TIJ’

if n = pg/q. We choose 0 < By, 51 < 1 so that fygo/Bo = 01q1/ 51, and if 59 = go(1—6p) /(1 —
Bo), s1=q(1 —01)/(1 = B1) and sy = qobo/Bo = ¢161/ 51, then

((XO7 X2)90 q0’ (Xl’ X2)01 ql) ((XSO’ X§2)50717 (Xf17 XSQ)ﬁhl)??J
From Theorem 2.3.2, Lemma 2.4.2, with Ay = (1 — 1) and Ay = (1 — 1) Sy + np, it follows
((X807X82)ﬂ0 17(X1 7X ) )?71 - <X807Xf17X52)(A1 A2),1

An application of the Power theorem for triples of quasi-Banach spaces (cf. [Sp]) gives,

for 6_0 = ,u(l — 01) and 51 = (1 - ,U)e() + ,UA91,

(6% X3 X50) et = X 1) 0

Thus as announced
((XO? X2)90,q7 <X17 X2)91,q>u7q = X(e_o,él),q'
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Theorem 2.5.11. Let Cy, Cy be a couple of semiadditive capacities with the same null sets
1._12m_ n 1._ 1=, n

and 0 <np < 1. If0 < po,p1 < o0, 0 < qo,q1 < 00, 5= ootk and iRl sl then,

for Cog(A) = [Ixallwco).Lin, (0 <8 <1),

(L7 (Co), L1 (C1))pg = LPUCoppprafn)-

Proof. Choose 0 < r < min(po, p1, qo,q1). Then, by Theorem 2.5.2; for (1 — 6y)pp = r and
(1 —01)p; = r we have

(L (Co), LM (C1))g = (L7(Co)y L7)t9,05 (L7(C1), L0101 )

and, if X = (L"(Cy), L"(C}), L™®), then by the Remark 2.5.10,

((LT(CO)> LOO>90,QO> (LT(Cl)u LOO)Gl,th)??,q = A01,02,9
Since [Cy + t1C4] is a quasi-subadditive capacity
K(t, by, f; X) = K(ta, f; L"([Co + 11C1]), L)

and, since by Theorem 2.5.1,
r 00 > r—1_ . r Lr
K(t, 5270, 2%(0) = ([ min(C{l) > ). t')dy)
0
it follows that
_ o0 ] . , , 1/r
Kt o, £330 = (o min((Co+ GO > o) 6)dy)
0

So that

q dtg dtl

B B o) 1/r
q _ —011—02 r—1_s r r
||f||X§1,§2,q /R?,_ [tl t2 </0 Y mln([oo * thl]{|f| g y}7t2)dy) :| t? tl ’

where by Theorem 2.5.2,

/OOO [592(/000 y"~! min ([Co + 1 CAIf| > y},t§>dy>l/rr%

i

— = —02q T T e8] ~ q
_/0 t2 K(t27f7L ([00+t101])7L ) tg — ||f||(LT([CO+t;‘CI]),LOO)9_27q

(1-02)q

:/ Y [Co + O I > w3 T dy.
0
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Thus, since 1;—62 =1/p,

*® 5 o , a1-6y)  di;
I, = [0 [ e >
0 0

[ a(1— 92) 1d7'
= / P + O] > ) Ty T
0 0
/ gl / P [Co+ rO{If] > gy
0 0

1

,

1 [ o q/PdT
S-S A N G Co+701]{\f!>y}) T,

T Jo 0

and
[ee)
/ B —np - 1 a/pdr
||X{\f|>y}||?L]f<co>,u<cl>>%,q/p —/O (T K (7, X 1591 L' (Co), L (01))> —
Hence, if we define Cp4(A) := |[xall(z1(co).21(c1))s,» then it follows that
~ = -1 q/p
HfHXe .05 o /0 yq HX{|f|>y}”(Ll(CO)le(Cl))np/m,q/P HfHqu TIP/PLQ/P). 0

Theorem 2.5.12. Let Cy, Cy be a couple of quasi—subaddz’tive Fatou capacities with the same
null sets and 0 <n < 1. If 0 < pg,p1 < 00, 0 < qo, q1 < 00, p. —Tl—l—ﬂ- and 1 =114
then, for Cyq(A) = [Ixallwico)Licie, (0 <0 <1),

(LP2(Co), L1 (C))gg = LPH(Ce g )

Proof. Let 0 < r < min(po, p1, G0, q1). By Theorem 2.5.2 and the Remark 2.5.10 we get, for
(1 —0p)po =r and (1 — 6;)p; = r, that

(LPo(Cy), Lpl’q1<01>>n,q = ((L"(Cy), Loo)eo,qm (L"(Ch), Lm>91,q1)ﬂ»q

= (L"(Co), L"(C1), L®)g, g.g» 01 = (1 = 01)n, 02 = Op(1 — 1) + 0.
Now we estimate K (ty,ts, f; L"(Cy), L"(C}), L™). Easily, it follows that
K(ty, to, f; L"(Co), L™(CY), L) = K(ty, f5 L' (Co + 11CY), L)
and hence, by Theorem 2.5.1, we get that
Kt to fiL7(C0), 1 (€.2%) = ([ minl(Co+ 6C) {111 > ) t5kdy)
As in Theorem 2.5.11 we estimate

15,
. dty dt
9175 92 / " Co + t1C > ty)d = T
/ / : y" ! min (( 0 OS> vl ) y) } b

The proof then follows since % =1/p. ]
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2.6 Applications to classical Lorentz spaces

Let p,q > 0, u be a measure or weight on R”, and w be a weight on R*. The classical

Lorentz spaces A7(w) are defined by the condition

> . ds\1/a
g = ([ st s) ™ < .
0

where f} is the decreasing rearrangement of f with respect to p defined as in (1.2) with g

instead of C. If p = ¢, Ab(w) = ALP(w) and || f]laz(w) = (fo o ds) . Moreover,
if w=1, AL(1) = LP(pu) and ALP(1) = LP(p).

Some basic questions concerning these spaces are the following ones:

1. Are they normed or quasi-normed function spaces?
2. Is there an imbedding A7% (w) — AP4 (w) for 0 < go < q1 < 007

3. Find the weights for which classical operators (such as the Hardy operator Sf(z) =
Jy f(x)dz) are bounded from AL (wg) to AP! (wy).

Two good references for these topics are [CSo] and [CRSo].

In [CRSO] it is proved that for 0 < p < 00, 0 < g < 00, ALY(w) is quasi-normed if and
only if fo s)ds < [ w(s)ds for each r > 0. And, AB%(w) — A9 (w) continuously if
0<q <q S 0.

Let us show in this section that classical Lorentz spaces are capacitary Lebesgue spaces.
Denote W(A) = [, w(t)dt. By [CRSo, Proposition 2.2.5] it follows that

1/p 1/p
Il = ( / fitsyw(s)s) = ( / P W0, u{1f] > 1)) dt)

0
so that AP (w) = LP(C) for C(A) = W0, u(A)), which is a Fatou capacity. It follows then
that A?(w) is a normed space precisely when C'is concave, and this means that I is concave.

But such a remark can be also applied to new Lorentz spaces obtained from some other

well known symmetrization methods of analysis as:
e Spherical symmetrization: fi(y) = f;(only[") = fooo X{f|>s)+ if xa= = x%. Also for

the Steiner symmetrization of order k£ (1 < k < n).

e Multidimensional symmetrization, f5, where f; is defined in [BPSo| as follows: For a
set A C R?, A5 = {(5,1); 0 < ¢ < Xj,}, where E(s) is the s-section {y € R; (s,y) €

E}. Then s} is defined for a simple functlon s, and finally f5 := limg(sg)3,

||f||Ag(v) = ||f2*||LP(v)-
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e Discrete rearrangements on trees as in [GDS].

In [BSo], S. Boza and J. Soria consider increasing transformations A — R(A) on mea-
sure spaces with the Fatou property, A, T A = R(A,) T R(A), that allow to define the

corresponding rearrangement of functions

frW) 3_/0 Xr{f>t} () dt,

that brings pass to unify various Lorentz spaces found in the literature, included all the

mentioned above:
* o p—1 1/P
£ 1= Wl = ([ o0 WRAIS] > 1)) de) ™
Obviously A% (w) = LP(Cw,r) if we define the capacity Cyr as
Cwr(A) = W(R{|f] > t}),

and our results on capacities apply to this special case.

As a final example, let us show how interpolation of capacitary Lebesgue spaces can be
used in interpolation of classical Lorentz spaces, (AP°(wyp), AP (wy))n» (0 < po,p1 < 00). We
have shown that if Cjy and C are quasi-subadditive Fatou capacities on (€2, %) with the same

null sets, 0 < pg,p1 < oo and 0 < n < 1, then

(Lp0(00)> Lpl(cl))n,p = LP(Cop/pi 1) (1/p= (1 —=mn)/po+n/p1),

where
Cog(A) = |Ixallr(co).r (1)),

We start from the identity (A'(wp), A'(w))g1 = A'(w), where W = W)~ W?. Consider
APi(w;) = LPi(C;) with C; = WjoR (j =0,1). Then

(AP (wp), AP (w1))yp = (L7 (Co), L' (C1))yp = LP(Co1)

with 8 = np/p;.
Since 0971(14) = HXAH(Ll(Co),Ll(C1))9,1 = HXAHAl(w) =Wo R(A) and LP(CQJ) = Ap(w), it
follows that
(AP (wo), AP (wr))y,p = AP(w)

with
_ 1—
W = ”fol Gufle _ ”fé n)p/po”zlnp/pl‘
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2.7 Interpolation of quasi-continuous functions

Often the interest in Potential theory is in the Choquet integral of special class of functions,
such as the class of quasi-continuous functions.
In this section, 2 will be a subset of R™ and C' will be a quasi-subadditive Fatou capacity
on (2,B(£2)). A function f: Q — R is termed C-quasi-continuous on € if given any € > 0,
there exists a relatively open set G C 2 such that C(G) < ¢ and f is continuous on G°.
Note that the classical theorem of Egorov implies that any Lebesgue integrable function
¢ on ) is m,-quasi-continuous there. Notice also that the potential Gf(z) for f € L, in

Example 1.2.14 is C, p-quasi-continuous on R".

Proposition 2.7.1. If C' is an outer capacity on subsets of ) be an open subset of R™, and

Ok 1S a sequence of continuous functions on § with compact support such that for p > 0,

/ 65 — BPAC — 0
Q
as k — oo, then ¢ is C'-quasi-continuous on §2.

For more details about it, see [Ch] and [Mall].

As we showed, the theory of capacities of Potential theory is very useful to obtain bounds
for some classical operators. The class of quasi-continuous functions appears frequently in
this framework. Therefore we will use this section to the study of a particular problem of
interpolation when we restrict us to this setting.

We are interested in obtaining results on interpolation of capacitary function spaces
on R™ of quasi-continuous functions, starting from previous results on general capacitary
function spaces contained in [CeCIM], [Ce] and [CeMS]. This means to obtain a result about
restriction of interpolation to the subspace QC' of C'—quasi-continuous functions.

Our goal is to prove that the restriction of the K-functional of the couple (LP(C), L>(C))

to quasi-continuous functions f € QC' is equivalent to
K(t, f; I(C) N QC, L®(C) N QC).

Then we will apply this result to identify the interpolation space of the couple of ” capacitary
Lorentz spaces” (LPo%(C) N QC, LP+1(C) N QC).
For 0 < py < oo, consider the spaces L*°(C') and L>°(C). For every t > 0, we have that

= Kqcl(t, f; LP°(C), L>(0)).

K(t, f; L?(C), L=(C)) < K(t, f; L"(C)NQC, L=(C)NQC)
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Proposition 2.7.2. If f is non-negative, then
K(t, ;1°(C), L=(C) = inf (I(f = Nt llzro(c) + I min(f, Mllz=(c)) -
Proof. By definition, since f = (f — A)4 + min(f, A) for all A > 0, we have that
K(t, £ 17(C), I¥(C)) < int (17 = N llusiey + ] min(f, Ml z(cr) -
To prove the reversed estimate, let € > 0 and choose fy, fi > 0 such that f = fy + f1 and
| follro(cy + tl| fill ooy < K (2, f5 LP(C), L>(C)) + €.

£ X = [|filli=e). then f — A < fo and 0 < (f — Xy < fo. Hence |(f = Vs umie) <
| follzsoey and. | min(f, 0wy < [lfyllzo(c)- Thus

inf (I1(f = N)llzm(e) +tl min(f, Nl (c))
<N = Nt llzroey + tl min(f, X <o)

< follzro(cy +tll fill Lo (o

< K(t, f; LP(C), L7(C)) + ¢

and the estimate follows. O
Proposition 2.7.3. If f € QC' is non-negative, then
Koolt, f; L7 (C), L=(C)) = K(t, f; LP(C), L=(C)).

Proof. If f € QC is non-negative, then for all A\ > 0 we have that (f — A\); € QC and
min(f, \) € QC since they are non-negative. Then, for all A > 0,

Koot, [; L7(C), L=(C) < [(f = M llzwo(oy + t min(f, A)[ o= (o)

and hence

Kacl(t, f; 17°(C), L2(C)) - < inf ([[(f = M lluroce) + ¢l min(f, M) (o))
= K(t, f; LP(C), L*(C))

by Proposition 2.7.2. O
Let us now show that K(t, f; LP°(C), L>(C)) = K(t,|f|; LP°(C), L>=(C)). Obviously,

K(t, f; I (C), L(C)) < K(t, |f]; I*(C), L*(C)).
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To prove the reversed inequality, let € > 0 and choose f, € LP°(C), fi € L*>°(C) such that
f=Jfo+ j1and

[ follzeocy + tllfillc) < K(, f; LP(C), L=(C)) + .
Define .
={ " i 2
Then s(f)f = s(f)(fo+ f1) = s(f)fo + s(f) f1, which means that [f| = s(f)fo + s(f) /1
with || follzeocy = Is(f) follro(cy and || fillz(cy = [Is(f) fillzoe(c)- Then

K@ [f1; L7(C), L=(C)) < [s(f)follzeocy + tlls(f) fill 2oy
< K(t, f; L7(C), L=(C)) + e

and letting ¢ — 0 we get that
K (L, |fl; L™(C), L>(C)) < K(t, f; L™(C), L=(C)).
Since K (t,|f]; LP°(C), L>(C)) = K(t, f; LP°(C'), L>(C)), we conclude
I1f1lfzro )L, = I1f zro (@), ())ay-
Proposition 2.7.4. Let f be a quasi-continuous function, not necessarily positive. Then

Kqo(t, f; P(C), L¥(C)) = K(t, f; I (C), L*(C)).

Proof.
Koc(t, f; L(C), L*(C)) = Kqc(t, 7 — [ L7(C), L*(C))
< Koolt, f1; L7(C), L=(C)) + Kocl(t, f~; L (C), L>=(C))
< Koc(t, | f[; LP(C), L2(C)) + Kqc (i, | f1; L (C), L=(C))
= 2Kqc(t, |f1; L(C), L>(C)) = 2K (¢, | f|; L™ (C), L=(C))
=2K(t, f; L™ (C), L™(C)) < 2Kqc(t, f; L™ (C), L=(0))
since | f| € QC. i

Thus, for 0 < # < 1 and ¢ > 0, we have that

(o) 0 dt 1/‘1
Iflamereca=creon, = ([ ¢ KQca,f))q?)
0

S I llzeoey,zo()e,
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Hence

(LP(C), L>(C))ga NQC — (L (C) N QC, L= (C)NQC)g,

and therefore
(LP(C), L*>(C))g e NQC = (L (C) N QC, L=(C) N QC)g4. (2.21)

By denoting £71(C') = LP4(C') N QC, we obtain:

Theorem 2.7.5. Suppose that) < 0 < 1,0 <py<qg<ooor0<py<qg<oo cmal}—l7 = 1p;09'
Then
(£7(C), £2(C))o,q = £7(C).
Proof.
(£7(C), £%(C))og = (L™(C)NQC, L¥(C)NQC)o,q
= (LP(C),L>=(C))e, N QC = LP1(C) N QC = £P(C)
by (2.21) and Theorem 2.5.2. o

Corollary 2.7.6. Take 0 < pg,p1,qo,q1 < 00, po # p1 and 0 <n < 1. Then
(£7(C), £ (C))gq = £9(C)

gy 1. 1-m n
with = = —1 + L,
p PO + p1

Proof. Let 0 < r < min(po,p1,qo,q1) and choose 1 — 6; = -0 =0,1 Then, if 0 =

1 —n)fy + nby, since : = =2 we get
0o +1n 5 g

r

(Lo (C), &1(C))ng = ((£7(C), £2(C))b0.00, (£7(C), £7(C))01.01 )ng
= (£(0),£2(0))oq
= £PC)=LP(C)NQC
= (LP(0), L1 (C))ng NQC
by Theorem 2.7.5, [BeLo, Theorem 3.11.5], and Theorem 2.5.3. ]
Let Cy, C; be quasi-suabdditive Fatou capacities on (2, B(£2)), 0 < po, p1, 90, 1 < 00 and
O<77<1,anddeﬁne%::1p;0"+%andé:
still open problem in this setting is to check the existence or not of a concrete capacity C'

such that

L . .
= —qO" + qﬂl. As far as we know, an interesting

(£77(Ca), £ (1)) = 27(O).
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2.8 Calderén products

A natural question in the capacitary setting is if any pair of LP(C') spaces is a Calderén
product. In this section we will see that, as in the case of measures, it holds for general
capacities.

Now, in analogous way to Banach function spaces on measure spaces, we can define
Calderdén products of quasi-normed capacitary function spaces with the same basic proper-

ties.

Definition 2.8.1. Let X, and X, be quasi-normed capacitary function spaces on (§2,%,C)
and let o € (0,1). The Calderén product of Xo and X, denoted by X = X3 X, is the
class of all f € Lo(C) such that

[FO < Afe@I A () (2.22)
for everyt € Q, A >0, fo € Xo, and f1 € Xy with || follx, < 1, [[fillx, < 1.

We endow the linear space X with || f||x := inf A, where the infimum is taken over all A
satisfying (2.22).
Note that {f # 0} is C-sigma-finite and that, if we define on Ly(C)

0alf) = { 171 é}céi

then X = {f € Lo(C); 0a(f) < oc}. For every f > 0 we can also write

oulf) =inf {X > 0; f S AR Fi2 0, Ifillx, £ 1G=0,1)}

with inf ) = oo.

Then o, satisfies all the required properties to define a quasi-normed capacitary function
space and || f||x = oa(|f]). Indeed, to check that o,(f) = 0 if and only if f = 0 C'—q.e., note
that the condition || f||x = 0 means that there exist A, — 0 in R} and functions fy, € X,
and f1, € Xy with || fonllx, <1, [ finllx, <1 such that

[F(O)] < Al fon 1 frat)]*.

Then {f # 0} is sigma-finite and the sequences yo,, := A}L/Q(l_a)|fo,n! and vy, = )\%/20‘|f1’n|
(n € N) converge to zero in X and X7, respectively. By Theorem 1.3.6 and Theorem 1.3.11,
they converge to zero in capacity on every set A C {f # 0} of finite capacity and, by passing

to subsequences, they can be supposed to be convergent to zero C'—q.e. on A. Then

11—« «
tim Al fon ()1 fra (D1 = Tim (A2 ol ) (N2 ol ) =0
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C—q.e. on A, and f = 0. Hence, | - ||x is a quasi-norm.
From now on in this section, X, and X; will be two quasi-normed capacitary function
spaces on (€2,3,C). With any pair of quasi-normed function spaces, as we did in (2.3)

and (2.4) we may canonically associate a couple of embedded spaces in the following way:

(a) XoNX; consists of the elements common to Xy and X;. The quasi-norm is introduced
by
”fHXoﬁXl = maX{HfHXm HfHXl} (SL’ S XO N Xl)?

and

(b) Xo+ X denotes the set of elements of the form = = u + v, where u € Xy, v € X7, and

it is equipped with the quasi-norm

2/ xo+x, = mf{[Jullx, + [[v]lx, },
where the infimum is taken over all elements u € X, v € X; whose sum is equal to x.
Proposition 2.8.2. The space X&_aXf 18 intermediate between Xy and Xy, that is,
XoN X, CX)7 XY C Xo+ X4
with continuous inclusions, i.e., Xo N X1 — X&‘C“Xf‘ — Xy + Xi.

Proof. If f € XqN X3, then for all ¢

If(t)|>1“<|f(f)!>“’

O] = [F@®F @) = |If ll%“"f“l“?ﬁ(ufnx 171l

which implies that f € X;~*X{ and

£l xa=oxe < IS, < I1Fllxons,

Moreover, if | f(£)| < Al fo(8)]*=*|f1(t)]|*, where fo and f; satisfy the required conditions
in the definition, then |f(¢)| < M (1 — a)|fo(t)] + a|fi(t)|} and so

I fllxorx: < A1 = a)lfol + al filllxo4x;
S MO =) follxerx, +all fillxorx, ) <A

which implies that f € Xy + X; and

[fllxorx S [ fllxp-exe O
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Theorem 2.8.3. The space X&_C“Xla 18 complete.

Proof. Let {f,},en be a sequence such that > | f.|lx < oo. Given € > 0, we can find
)\n > 0, fO,n - Xo,flm € X1 with ||f0,n||Xo < 1 ”f1n||X1 < 1 and /\ < ||anX + o that
satisfy [fu(t)| < Aulfon (D' fra()[*. Then 35, A < 32, (Ifullx + 57) < oo and for all

SOl < S Ml o2 fralt)®
= S X (rhal)  (shne)

EAn)\n ‘fO,n (t) |

By Corollary 1.2.20 applied with exponents 119 =1l—aand % = ato fu(t)P =
and g,(t) == <E)\n>\n ’fl,n(t)‘) , it follows that

EICIIESD DEY Z( om0 _a(z = fn®)])
< K (an<t>p>””<2gn<t>0“
= k-;An-(ZZ lon®l) <ZZ Clal)”

The functions in brackets are defined C'—q.e. and belongs to Xy and X;. This implies that
Yonlfal € X. We write f(t) = >, fu(t) for all t. Then, |f(¢)| < >, |fa(t)| and therefore
f € X with

1Fllx < kD I fallx

Applying this inequality to f(t) — SN f.(t) = > 41 fn(t), we obtain

N ]
Hf—an <k |fallx,
n=1 X N+1
which tends to zero when N — oo. Necessarily limy . ZnN:1 fo=1f C—q.e. O

Theorem 2.8.4. Let 0 < pg,p; < o0, a € (0,1) and % = 1;—0‘“ + p%' Then
L(C)' =L ()" = L*(C)

with equivalent quasi-norms (or equal norms in the normed case).
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Proof. Let Xy = LP(C) and X, = LP*(C). If f € X;~*X{, we consider A > 0 such that

[f@O] < Alfo@' 1 f1(0)]* as in (2. 22) Then [f(£)[" < M[fo(8)|"=*?|f1(t)|* and taking
f o= 1fol=P g = |fi]or,p' = 11’—';)17, p’ = 2—;, it follows, by Holder’s inequality, that

/Q fPdC < / Lol P £y PdC = AP / Fllgtt)lde

(1 a)p
s o [intrac) ™ ( [ 1nwrac)”
Q
= N[ Sl AT < a7,

from which we obtain the first inclusion LPo(C)'=*Lr1(C)* — LF(C).
Conversely, suppose f € LP(C). Then for all ¢

p/Po y— p/p1 o
/(@) ) < /(@) )

1 £1P/Po]| oo () I £1P/P1]| Lo

1 £llzecer

1 l-a, o
~ I i (SOP)F 5 = 170
11y
and therefore f € X = LPo(C)' =L (C)* with || fllx < [|f]lzr(c)- i

Remark 2.8.5. If [Xo, Xi], has the Fatou property, then

ol a1 [l ixo,xa)a < llolli 21l
holds for every xy € Xy and x; € X; (see [KrPS, Chapter 4]).

A natural question is to determine whether the space X = X; *X{ has the Fatou
property. Let us see that if both spaces have the Fatou property, then the general Calderén

product has also the same property.

Theorem 2.8.6. Let 0 < o < 1. If Xy and X, have the Fatou property, then X = X} “X¢
has also the Fatou property.

Proof. Let 0 < f,, T fC—q.e. and L := lim,, 0,(f,), so that g,(f) > L since 0,(f) > 0a(fn)
for every n. If L = oo, obviously g,(f) = oo = L.
Suppose then that L < oo and choose € > 0. We can find

fo S Mafonfi M <Lte |finlx <1, fin 20, (i=0,1)

and then
f= hmfn < hmlnf)\ f o ST



106 2. Interpolation of capacitary Lorentz spaces

where || liminf,, f;,|x, < liminf, || f;»]x, <1 by Theorem 1.3.5. So that f; := liminf, f;,, €

X; and || fil|x, < 1. Moreover, A := liminf, \, < L 4 ¢ and

QOz(f) <A

Thus, 0,(f) < L+ ¢ for every € > 0 and hence o,(f) < L. o

2.8.1 Operators between Calderén products

Let (Xo,X7) and (Yp,Y1) be two couples of quasi-Banach capacitary function spaces and
6 € (0,1). Denote by Xy and Yj the spaces Xé_eXf and YOI_QYIG, respectively.

Definition 2.8.7. Let X and Y be quasi-Banach capacitary function spaces. An operator
T:X —Y is called sublinear if

T(ax)=al(z) Va>0),T(x+y) <T(x)+T(y) Vz,yeX).
We say that T' is bounded from X to Y if there exists C' > 0 such that
[T(z)]y < Cllzlx (Vo e X).

As in the usual case, positive sublinear operators interpolate for capacitary Calderon

products:

Proposition 2.8.8. If T is a positive sublinear operator which acts boundedly from Xy to
Yo, and from Xy to Y7, then it acts boundedly from Xy to Yy as well.

Proof. If x > 0 and = € Xj, then there exist A > 0 and z; € X; with ||z;]|x, <1 (: =0,1)
such that
z(t) < Mao(®)|* 0|21 (1)|? for all ¢.

Equivalently, there exist A > 0, ; € X;, ||2;]|x, < 1 such that for all € > 0
z(t) < M1 = 0)e?)zo(t)] 4 00|z, (2)]}.
Therefore, since T is positive and sublinear,

T(x) < [TO(1 = 0)e  lao| + 0|1 [})]
< N1 =0T (|ao|) + € NOT (|21]).

~Y

By defining
G(e) == e A1 — O)T(|xo|) + €' 7ONIT(|1])
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and minimizing this function of ¢ we get

T(|ol)
T(l1l)

T(x) < inf Gle) = G(

e>0

) = AT (o) T (],

where T'(z;) € Y; is such that there exists C; € (0,00) a constant such that ||T'(x;)||y, < C;.
Hence, T'(z) € Yy and | T(2)]y, < Ca~?CY) 2| x, - o

~

There are concrete situations where it is not necessary that 7' > 0 (see [Se]).

2.8.2 Rearrangement and Calderon products

Let (Q,%,C) be a o-finite capacity space and f a measurable function on ¥, integrable on

sets of finite capacity. We associate to f the function f** defined in (1.13).

Definition 2.8.9. We say that two functions g and g are equicapacitable on Q if for all
A>0
C{z € Qs fg(x)] > A} = C{w € & [g(x)] > A}

Definition 2.8.10. Let X be a quasi-Banach lattice. We define X* as the set
X" :={feLyC); f"e X}

with || fllx+ = || f*||x. Then X* is a vector space that satisfies properties (a), (b), (¢) and
(d) of Definition 1.3.1.

Indeed, for f,g € Lo(C) such that f**, g** € X, by the properties of X

If +gllx- =10+ 9)"lx < 17+ 97 Mx S N7 x + g™ [lx = [1f x4 [lgllx--

Moreover, for { f,, }nen € X* such that f, T f C—q.e., we have (f,)& T f&. Hence, (fn)™ T f™
and || fol[x= T |I£]

Let Xy and X; be Banach lattices on Q and 0 < a < 1. Then, X; *X{ is a Banach
lattice.

Let us study the relation between (X)'~*(X;{)® and X* = (X; *X?)* for 0 < o < 1.
Let us see that still in this capacitary setting, this can be partially analized.

Let f € (X5)'*(X7)*. Then, there exist A > 0, g € X and h € X7 with norm less than
one such that | f(¢)| < Mg(t)|'*=*|h(¢)|*. Hence, by (1.14),

x+. Property (d) follows by the same property for X.

(D™ < IM(g@F 1)) < 2| A(g(0)™) = (1A(E)[*)".

It follows that || f]|x~ < [A] and (X3)'2(X7)® — (X, *XP)*.
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The proof of (X3 *X¢)* — (XZ)'™*(X;)® under some additional conditions is much

more complicated but still can be done it. The function f¢ is related to Cf(t) as follows:

Celfe®] = t, folCr(t)] = ¢, (2.23)

and hence

FACHIF (@)1} = [f ()] (2.24)

Consider now the Hardy operators P and () defined as

(PA)(t / f(s)ds, (@)t / 1) (2.25)

By definition f** = P f¢.
If g > 0, then we have for t > 0

QP = /Otgw){/%}dw/m[%
:/ d+// 1Y G = (Pg) 1) + (Qo)().

On the other hand, if g; and g, are non-negative functions, by Holder’s inequality it

follows that
o0 d
Qi a) = [ s
%) l1—a 0o o
< 2| [Ta02] ][ a0®] - 20@n) @

v

Now we are ready to show that the following condition implies the desired result, where
the condition is: The function f in X must have finite norm and the operators Pf and Qf
should be bounded in Xy and Xj;.

Proposition 2.8.11. If the function f in X has finite norm and the operators Pf and Qf
are bounded in Xo and X, then (X) *X&)* — (Xg)'=*(X7)e.

Indeed, let ¢ be a bound for the norms of the operators P and () in Xy and X;. Suppose
that f € (X3 °X¢)* and let us denote by [[f| = ||fllxt expy- Then, if A > [ f]], there
exist two functions g; > 0 and g» > 0 in Xy and Xj, respectively, such that ||¢1||x, < 1,
1g2llx, < 1 and f**(t) < Aga(t)'~“ga(t)* for all #. Let

1 1 ) )
hy = g@gh hy = EQQQ, hi(0) = oo, hi(4+00) = tlingo hi(t) (i = 1,2).
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Then, we obtain that Qf** < AQ(g1 “95) < 2eA(Qg1) ~*(Qg2)® = 2c*Ah; *hg. On the
other hand, since f** = P f{, whence we find that
QI =QPfoc=Pfo+Qfc = fo
which combined with the preceding inequality gives
f& <26 AhT RS,

Define now fi(x) := hi{Cy(|f ()} and fo(x) := ho{Cy(|f(2)])}. Since |f(x)| and f&(t)
are equicapacitable, fi(x) = h{C(|f(x)|)} is equicapacitable (i = 1,2) with h,{C(f5(2))},
which is a non-increasing function since h; is non-increasing. Consequently (f;)& = hi[Cr(fE)],
except perhaps at the points of discontinuity of (f;)5. Now the first inequality in (2.23) and
the non-increasing character of h; imply that h; {C¢[f&(t)]} < hi(t), and then (f;)&(t) < h;i(2),

except perhaps at the points of discontinuity of (f;)5,. Hence we obtain
kK * 1
it = P(fi)c < Ph; = C—QPQ%‘-
Since the operators P and () are bounded in Xy and Xy, and their norms do not exceed
e, fi* € X;oy and ||f*|lx,_, < 1 which implies that f; € X/, ¢ = 1,2. Now from the
inequality (2.24) it follows that
f@)] < fe{CIf ()]}
< 2M{Cy (| f (@) [} ho{ Oy [| f () 13
= 23N f1(2) 7 fo(2) .
Since f; € X; ) and || fil x>, < 1fori=1,2, it follows that f € (X§)'~*(X})*. Its norm

as an element of this space does not exceed 23\ = 2¢3(|| f|| + €), and since € is arbitrary the

desired conclusion follows,
(X)) (X)) = (X XP)" = (Xg) 7 (X])™.

Moreover, if Xo = LP(C), X; = LP*(C) and § = ©-2 + & then X, “X{ = L*(C). By
definition (LP(C))* = {f € L°(C); f* € LP(C)}. If f € (LP(C))*, then, since || f||r(c) <
00, there exist g € LP°(C') and h € LP*(C') with norms less than one such that

1O < I fllweey-lg@ P IhE)]
and hence
LP(C)" = ((LP(C)") (L7 (C))™ = (L (C) = LP (C)*),
where, by Theorem 2.8.4, we have that
LP(O) P (C)* = LP(C).
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2.9 Capacitary Orlicz spaces

From now on, let C' be a quasi-subadditive Fatou capacity on (2, ) with quasi-subadditivity
constant ¢, and ¢ : [0,00) — [0, 00] an unbounded increasing function such that ¢(0) = 0,
which is neither identically zero nor identically infinite on (0, co).

We define the Orlicz class Po(yp) to be the set of all functions f € Ly(£2) for which

MP(f) = polf) = / (f1)dC < oo,

and
L?(C) = {f € Lo(Q); || fllp < o0},

where

fllp := inf{A > 0; MP(A~" f) < 1},
The space L?(C) is called a capacitary Orlicz space.

Definition 2.9.1. A function H on [0,00) (or on a linear space) is called quasi-convex with
constant 3 > 1, if

HAz+ (1=Ny) <p{AH(z)+ (1 - XN)H(y)} for 0 <A <1landz,y>0.

Let us observe that, as in the usual case, by the quasi-subadditivity of the Choquet
integral (see Proposition 1.2.2), if ¢ is quasi-convex, then M¥ is also a quasi-convex function.
We say that ¢ satisfies the Ay—condition if there exist so > 0 and ¢ > 0 such that

©(2s) < cp(s) <oo (59 <5< 00). (2.26)

Let C be a finite capacity and ¢ a quasi-convex function with the As;—condition. Then
Po(p) is a linear subspace of Lo(€2). Indeed, let f € Po(p), define E = {|f| > so} and
F:=Q\ E. Then 2f € Po(yp) since

/Q S2fdC < [E (21 f1)dC + /F o(21f])dC
< /E co(|1)dC + / o2/ f)dC
< /E co(|f)dC + / (250)dC < 0.

Suppose now that f € Po(p) and let o be any scalar. Choosing n € N with 2" > |a], we

see that 2" f € Po(p). Hence, since ¢ is increasing

MP(af) < / H(2]F)C < oo

Q
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and so that af € Po(y).
On the other hand, if f, g € Po(p), then since 2f,2g € Po(p)

M(f +g) = M2 (2(20) + 5(20)) < 268{ M (2f) + £ M#(20) )
and f+ g € Po(p).
Proposition 2.9.2. Let ¢ be an increasing function. Then
f=0 C—qe & M?Fkf)<1VEk>DO0.

Proof. If f = 0 C—q.e., then M¥(kf) = 0 for all £ > 0. Conversely, suppose that
M?(kf) <1 for all £ > 0, but for some € > 0 we have |f| > ¢ on £ C Q with C(F) > 0.
Then

MP(kf) = / (K FAC > / o(ek)dC = C(E)p(ck).

E
Since (s) T oo as s | oo, we obtain a contradiction. ]

Proposition 2.9.3. Let ¢ be a convex function and C' a concave capacity. Then, M¥ is a

convex function and || - ||, is @ norm on Po(p).
Proof. Obviously, M¥ is a convex function.

(i) If f =0 C—q.e., then M?(kf) = 0 for all £ > 0 and hence ||f||, = 0. Conversely, if
| fll, = 0, then we have that for all £ > 0, M¥(kf) < 1 and then, by Proposition 2.9.2,
f=0C—q.e.

(i) Trivially, |3f1, = 8]/, for any 8 € R.

(iii) Take now f,g € Po(y), ’y = [|flle + llgll, < oo and define a := L2 and g .= lole.
Then M“’( ), M‘P(

7o 1 and by convexity

llglle

(fv ) G uﬂwﬁﬁugu)“”:l’

so that ||f + glle <v=|flle +1l9lle- -

Briefly let us observe that LP(C) can be seen as an Orlicz space. Certainly, if we take
o(t) = tP, then
1
I =it {3 > 0:5 [ If@pac <1}
AP Jo

and L¥(C) = LP(C) with || f| ey = | fllzr(c), for any p € (0, 00).
We know that LP(C) is complete also when 0 < p < 1. In this case, ¢ is a p-conver

function in the following sense:
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Definition 2.9.4. Let 0 < s < 1. The function ¢ : [0,00) — [0, 00) is called s-convex (resp.

(s)-convex) if
olat; + Bty) < a’p(t1) + B°p(ta) for each t1,ts € [0, 00)
and all o, B > 0 such that o + 3° =1 (such that a + 3 =1).

Observe that every convex function is 1-convex. Every (s)-convex function is s-convex,

but let us see below that the converse does not hold.

Example 2.9.5. Let 0 < p <1 and ¢(t) := t?. Then ¢ is p-convex. Indeed, if o, > 0 are
such that o? + P =1 and t;,t5 € [0,00), then

platy + Bta) < (at1)? + (Bt2)? = aPo(t1) + Bo(t2),
but ¢ is not (p)-conver.
Let ¢ be any s-convex function, 0 < s < 1 and define
Ly(C) = {f; Jim p,(Af) =0}

Trivially, L,(C) C L¥?(C).

Modular spaces were first defined by H. Nakano in 1950 (see [Nak]) on vector lattices.
Independly, another version was introduced by J. Musielak and W. Orlicz around 1959
(see [Mu] and [MuO]).

Let X be a real vector space on Ly(£2). A functional p : X — [0, 0] is called a modular

if it satisfies the following conditions:
(a) p(r) =0 =2 =0,
(b) p(—z) = p(x) for each x € X, and
(c) plax + By) < p(z) + p(y) for z,y € X, a, 5 > 0 such that o+ § = 1.

A functional p : X — [0, 00] is termed a pseudo-modular if it satisfies the weak condition
(a”), that is, p(0) = 0 and, (b) and (c). The pseudo-modular p is said s-conver, 0 < s < 1, if

plaz + By) < a’p(x) + B°p(y) for z,y € X and a, f > 0 such that o’ + 5° = 1.

From now on in this section, s will denote a positive real number, 0 < s < 1.
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Proposition 2.9.6. Let ¢ be an s-convex function and C' a concave capacity. Then, p, s

an s-convex pseudo-modular on Ly(§2).
Proof. It follows observing that ¢ is increasing, s-convex, and C'is concave. O

Theorem 2.9.7. If p is an s-conver pseudo-modular in L,(C), then L,(C) = L?(C) and

an s-norm can be defined on L,(C) as follows

| fll4,s := inf {A > 0;%(%) < 1}.

Proof. If f € L¥(C), then p,(Aof) < 0o for some Ay > 0 and, if 0 < A < Ag, then

00 = 5o (3301) = (5 0l + (1= 20) < (5) pe0a) =0

as A — 0, so that f € L,(C).
Now, let us show that || - ||, s satisfies the properties of a norm. That, || f||,s = 0 if and

only if f =0 C'—q.e. follows with a direct proof. The same holds with the identity
IMfllg.s = IAIP[1 fllp,s for all X € R.

Finally, let f, g € Lo(2) and u,v > 0 such that || f|l,s < u, ||g|lps < v. Then

(f+g>_ ( A S 7 )
Pe\w+o)s) = P\t o) sutls " (ut 0)i/s ol/s

u f v g )
< < 1.
- u+va<u1/s> +u+v'%<vl/s -

Thus, [|f + glle.s < 1 flles + llgllo.s: O
By Proposition 2.9.6 and Theorem 2.9.7 it follows that, if ¢ is s-convex and C'is concave,

then L,(C) = L¥(C) and || - ||, is an s-norm. In this case, L,(C) is called a modular

capacitary Orlicz space or a capacitary s—convex space.

Remark 2.9.8.

s = int {0y > 000, (1) <1}

ul/s

_ (inf {ul/s > O%P@(#) < 1})3
= (w0 (L) <1}) =1l
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By Theorem 2.9.7 and Remark 2.9.8, if p is an s-convex pseudo-modular in L, (C), then
| - |l is & quasi-norm on L¥?(C'). Indeed, let f, g € Lo(£2). Since 0 < s < 1, it follows that

1+ glly = (1F + glloo)™™ < 2= (IFIL + Nglls) = 2(1f s + Nol)-

Proposition 2.9.9. Let ¢ be an s-convex function. Then || - ||, is a quasi-norm on L?(C').

Proof. Observe that, since ¢ is s-convex, if 0 < a < 1,
p(a'*t) = p(a'*t + (1 = a)'/°0) < ap(t)

and hence, for 0 < A < 1, o(At) < A(t). The proof of the first two properties of a
quasi-norm follow trivially.

Let f,g € L?(C) and take u'/* > [|(2¢)/* f||, and v/¢ > ||(20)1/Sg||@ Then, by convexity
and the quasi-subadditivity (see Proposition 1.2.2), defining 6 := - it follows that

u+v ’

f+g / ut>  1fl v gl
Vo) = el )
<U+’U)1/s — QQO (U+’U)1/s ul/s + (u+v)1/5 vl/s ¢

< [ (ee( M) 0oy (J21))ac
< [ (Zo(BLy 1 0o (BT ac

< eM@((%)l/sf) +(1- e)M@(@@Usg) <1.

ul/s pl/s

So that || f + g, < (u+v)Y* < 2Y5(ul/* + v'/%) and then,

1F +glle < @) *(Iflle + llglle)- o
Theorem 2.9.10. Let ¢ be an s-convex function. Then,
(1) || fx — fllos — 0 as k — oo if and only if p,(A(fx — f)) — 0 as k — oo, for any A > 0.

(it) {fx}r is a Cauchy sequence in L¥(C') with respect to || - ||, if and only if p,(A(fx —
f1)) — 0 as k,l — oo, for all A > 0.

Proof. If p,(Afx) — 0 as k — oo for all A > 0, then there exists k) € N such that

ng((%;fﬁ) <1 for each k > ky and A > 0.

Hence, | frllp,s < 55 for all k > ky and X > 0, and so || fi |45 — 0 as k — oco.
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Conversely, if || fx||,s — 0 as k — oo, then, given € > 0, there exists k). € N such that
pw(j‘ﬂ;’;) <1 forall k > k), and

ALl
_ 1/s
poMf) = [ (e (3 ac
A
/ (egp( |1J/Cl;’) +(1- e)gp(O))dC’
Q €
B M
= o).
Hence, for all € > 0, there exists ky. € N such that p,(Afy) < € for all k& > k)., and so
po(Afr) — 0 as k — 0 for any A > 0.

IA

The proof of (ii) is similar. o

Corollary 2.9.11. If ¢ is an s-convex function, then for each sequence { fi}ren C Lo(£2)

and f be any measurable function, the following properties hold:
(1) || fx — fllo — 0 as k — oo if and only if p,(A(fr — f)) — 0 as k — oo, for all A > 0.

(i) {fx}tren s a Cauchy sequence in L¥(C') with respect to || - ||, if and only if p,(A(fir —
f1)) = 0 as k,l — oo, for all A > 0.

Proof. It follows by Theorem 2.9.10 and Remark 2.9.8. O

Assume now that ¢ is an increasing convex function. Note that (L#(C),| - ||,) is a
quasi-normed space by Proposition 2.9.9. It is a normed space when C' is concave by Propo-
sition 2.9.3.

Theorem 2.9.12. Let C' be a concave capacity and @ an increasing convex function. Then
(LP(C), || - |l5) ts a Banach function space.

Proof. Let { f, }nen be a Cauchy sequence in (L¥(C), ||-]|,) and zo := sup{z € R; ¢(z) = 0}.
Then, 0 < zy < oo since the set {z € R; p(z) = 0} is relatively compact in R.
Moreover, by Corollary 2.9.11, there exists k,,, > 0 (m,n € N) such that

First note that, A,,, = {w € Q; k| fr(w)— fin(w)| > 20} € ¥ is at most o-finite. Indeed,
if for k € N we define By, := {w € Q; kpn|frn(w) — fin(w)| > 20 + k~1}, then A, = U, B
and C'(By) < oo for all k, since

C(Belan + 1) = [

By,

oo + K1)dC < / ol — fonl)AC < 1.

By,
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Therefore, each A,,, is o-finite and so is A := Um7n21 A
On A¢, kpu|fo — fin] < @ so that, in A | f,(w) — fm(w)| — 0 uniformly. Hence, there is
a measurable function go on A¢ such that f,(w) — go(w) and |go| < g, for all w € A°.

Let us write €2 for A temporarily. Then, for all B € ¥ with C(B) < co we have that

C(B N {|fn - fm| Z €|}) = C(B N {Qp(kmn|fn - fm|) Z Sp(kmne)})
| #tkanls, = fulhac

IN

1
©(kmne)
1

P (kmn€) '

IN

Since ky,, — oo and € > 0 is fixed, {f, }nen is a Cauchy sequence in capacity on B. Then,
by Theorem 1.3.11, this sequence has a subsequence which is pointwise convergent on B to
some f, and also on (U, Bk since C(By,) < oo for all k € N. Then, there exists a subsequence
{fn; }ien such that f,, — fC’—q.e.

Let f := fXA + goxae. Hence, f,, — f C—q.e. But, since {f, }nen is a Cauchy sequence,
it follows that | f,||, — p. By the Fatou property (see Theorem 1.2.17)

Jue()e = o [ o( 2 )ae <o

Thus, f € L?(C).
By continuity, for £ > 0 given,

O(| frny = fu,1k) = o(If = fu,1k) C — q.e. as i — oo,

and if ng > 1 is choosen such that n;, n; > ng implies k;,,; > k, then

[ ol = FuDAC < [ ol fo = £, DC < 1.
0 Q
Hence, letting n; — oo, || f — fu,ll, < k7' and the result then follows. o

Theorem 2.9.13. Let ¢ be an increasing convezx function. The space (L¢(C),| - |ly) is a

quasi-Banach function space on (£, %).

Proof. Let {f,}nen be a Cauchy sequence in (L?(C'),| - ||,). By Corollary 2.9.11 for every
A, > 0, there exists N € N such that M?(A(f,, — fin)) < n for all n,m > N.

Define for € > 0, the sets A, = {z € LN fu(x) — fin(z)] > €} (m,n > N). It follows
that
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CAm)ole) < / P falz) = fu(@))dC < (n,m > N).

Therefore, by Theorem 1.3.11, {\f, }en converges in capacity to some function A\f and it
has a subsequence {\f,, }xeny which is convergent to A\f C'—q.e. Hence, from the continuity
of ¢,

(Al fu(@) = far(@)]) = @Al fulz) = f(2)]) € —q.e. in Q,

and by Fatou’s property (see Theorem 1.2.17),

MEAGa =) = [ Jim Alfu(a) = (@) hdC
< ligglwa(A(fn — fu)) <m (n = N).

Thus, ||f, — fll, — 0 as n — oo, and f € L?(C). o

Proposition 2.9.14. Let ¢ be an s-convex function. Then, f, — f in | - ||, implies that
there exists { fn, }32, such that f,, — fC—q.e.

Proof. By Corollary 2.9.11, p,(A(f, — f)) — 0 as n — oo, for any A > 0. Hence, for
all A\,n > 0, there exists N € N such that, p,(A(f, — f)) < n for all n > N. Defining
Ap ={r € L A|fu(z) — f(x)| = €} for n > N, it follows that

@) < [ 0N = F@)DAC <1 (0= N).

n

So that, {\f,}nen converges in capacity to Af and, by Theorem 1.3.11, it follows that
{A\fi}nen has a subsequence {\f,, }ren convergent to A\f C'—q.e. ]

Finally, let us analyze the completeness of the space L¥(C) with respect to the quasi-
norm || - ||, when ¢ is only s-convex. Let us see that, in general, for an s-convex function ¢,
we need to imposse the continuity of ¢ to obtain the completeness of the capacitary s-convex
space.

Observe fist that not all s-convex function is continuous.

Example 2.9.15. Let 0 < s <1 and k > 1. Define for u € R,
flu) = {uﬂiis)ifo <u<l, kulifu> 1}.
The function f is non-negative, discontinuous at w = 1, s-convexr and it is not (s)-convez.

Theorem 2.9.16. Let ¢ be a continuous s-convez function. Then (L?(C), ||-||,) is complete.
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Proof. For all \,n > 0, there exists N € N such that
P M(fu = fm)) <n (m,n=N).

Thus, by defining A,, ,, := {z € Q; A fu(x) — fin(z)| > €} for € > 0, we have that

C(Anm)p(e)

IN

/A o ful@) — ful)])dC

< peAUn—=fm)) <n (myn = N).

Hence, by Theorem 1.3.11, it follows that {Af, },en is convergent in capacity to a function
Af and {\f, }ren contains a subsequence {\f,, }reny which is convergent to Af C' —q.e. in €.

Hence, from the continuity,
pAlfu(2) = o (@)]) = oAl fulz) = f(2)]) C = q.e in
and by Fatou’s property,
PN = 1) = lmninf o, (M = fu)) <1 (02 N)
Thus || f, — fll, — 0 as n — o0, and f € L¥(C). o

Example 2.9.17. Let (2,%, 1) be a measure space, and ¥(t) = t'7 (0 < p < 1) which
is concave and continuous. Then Cy(A) = ¥ (u(A)) defines a concave Fatou capacity
(see [Ce]).

Take now ¢(t) := t? a continuous p-convez function. Then, the space L¥(C') defined by

the condition ||f||, < oo is quasi-Banach. We called it a capacitary p-convex space.

Example 2.9.18. Let 0 < p <1 and C be some concave Fatou capacity. The space

LP(C) = {f € Lo(Q); (/OooptplC{\f] > t}dt); < oo}

15 also a quasi-Banach space endowed with the quasi-norm

= int >0 [ (Y ae <1},

1

which coincides with || f| r»cy := <f0°o ptP | f| > t}dt) ’
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2.9.1 Interpolation of capacitary s-convex spaces

Definition 2.9.19. Let ¢ be a positive function on Ry such that, for every A € Ry with
some constant C' = C()), it holds

p(\r) < Cop(a).
Therefore, for certain pg, p1 we have that
o(Ax) < C'max( A\, \P)p(z).
In this case we say that ¢ is of lower type py and upper type p;.

Assume further that ¢ is continuous increasing with (R, ) = R, so that, ! exists and
is continuous increasing too. Then, in [GuP] it is proved that, if ¢ is of type (pg,p1) where
po > 0, then o=t is of type (p; ', py ).

We say that a positive function p on R, is quasi-concave if it is equivalent to a concave
function. In [P] we find that p is pseudo-concave if and only if p is of lower type 0 and upper

type one. In other words, we have with a suitable C'
p(Az) < Cmax(1,\)p(x). (2.27)
The class of functions satisfying (2.27) will be denoted by B(C).

Remark 2.9.20. To develop the theory it is convenient to introduce the homogeneous func-
tion
R(z,y) = zp(y/z).
Then p is in B(1) if and only if R is non-decreasing in each variable separately (that is,
x <z’ implies R(x,y) < R(z',y) and y <y implies R(x,y) < R(z,y')). In fact, it fulfils

always in the strong sense
v <a2',y<y = R(z,y) < R(",y).
Given p € B(1), for any two finite positive sequences {z,}, and {y,},, it follows that

Z R(zy,yy) < 2R( Z Ly Z yﬁ)’

and for any two positive sequences {z,}72; and {y,}72,

Z R(xy, yy) < ZR( Z T Z yn)
n=1 n=1

n=1
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(see [P]).
Let us show that every s-convex function is of positive lower type. Indeed, if ¢ is s-convex,
then for all a > 0, taking 8 = (1 — a®)"/* and y = 0, it follows that

plaz) = p(az + 50) < a’p(z) + 5°p(0) = a®p(z).
Then, the conclusion follows.

Definition 2.9.21. A function p : X — [0, 00| is called a quasi-modular if it satisfies the

following properties:
(a) p(x) =0 <=2 =0,
(b) p(Ax) < p(x) if [A <1, p(=2) = p(z),
() limy o p(Ax) = 0 if p(x) < 0,
(d) p((z+y)/h) < k(p(x)+ p(y)) for certain constants h and k.
From now on, let ¢ be a continuous function on Ry, ¢(0) = 0 and such that ¢|(,c0)

is increasing. If ¢ has positive lower type, then p,(f) := [, ¢(|f])dC is a quasi-modular.
Moreover the space L¥?(C) is locally bounded.

Proposition 2.9.22. Let ¢ be a continuous function with positive lower type. Then (L?(C), ||-

o) is a quasi-Banach function space.
Proof. It follows with similar techniques to the ones in Theorem 2.9.16. O

Proposition 2.9.23. Let ¢, ¢y and @, be continuous increasing functions on R, where ¢
-1
is of positive lower type and it can be expressed by ¢! = goglp(%) with p quasi-concave.
0
Assume that
|1 |

/%WMWSQJZQLIMSWmC—>
Q |ao

Then
/ H(la))dC < 2e(Co+ Cy)
Q

holds, where ¢ is the subadditivity constant associated with the capacity.

Proof. Following [GuP], put b; := ¢;(|as|),i = 0,1, and b = by + b;. We have that ¢y, o)
are increasing, by < b and b; < b. So that ¢y (b)) < @5 (b), ¢y (b)) < ¢7'(b) and by
Remark 2.9.20,

lal < R(Jaol, |as]) = Rlq " (bo), @1 (b1)) < R(epg ™ (b), 01" (b)) = ™ (b)-
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Invoking the positive lower type of ¢ and integrating respect to the quasi-subadditive ca-

pacity we conclude that

/Q p(lal)dc < / (vollaol) + w1 (|ardC
< 2c{/Qgpo(\aODdC+/ngl(\aﬂ)dC} < 2¢(Cy + CY). O

Remark 2.9.24. Last proposition can be given with the following interpretation. Let Xy, X1
be two rearrangement invariant (that is, X satisfies that, if f € X and g is measurable such
that py = py?, then g € X and || f|lx = |lgllx) quasi-Banach function spaces of measurable
functions on €2, a capacity space equipped with a positive capacity C, and p be a quasi-concave

X1

function. We introduce X = Xop( ) to be the space of those measurable functions h for

which one can find a constant C and functions ag € Xo and ay € Xy such that

11 < Clanlp (1)

We equip X with || - ||x = infg C. We can see, with the usual techniques, that || - ||x is a
quasi-norm and hence, X becomes a quasi-Banach space. The proof of the completeness of

X follows with similar techniques to the ones in Theorem 2.9.16.

If p=po for 0 < a <1, then X = X; *X{ and we get the Calderdn product.

Let ; be continuous increasing functions on R, and consider X; = L¥(C),i = 0,1. It

follows that ©) )
L@l 90—
L#(C LA(C), ot =pylp | 2 ).
( )p (LWO(C)> - ( )7 2 Yo P (9001
Now, we consider the same interpolation method as in [GuP]. Let X = (X,, X;) be any

quasi-Banach couple and let p be a quasi-concave function.

< Xo, X1, 0 >= {a € X(X); there exists u = {u, } ez, v, € A(X)
such that (12) and (13) are satlsﬁed}

where

(12) a = Zuywith convergence in ¥(X)
veZ
(13) For all F' C Z finite and every real sequence {{, },er, & < 1 we

Sy 278 uy
have || Z HXO <C

VEF veF p(2’/ HX

2Recall that ps(X) := p{z;|f(z)] > A}, A > 0.

< C with C independent of F' and &.
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We equip < X, p >=< Xy, X1, p > with the quasi-norm
||CLH<X,p> =inf C.

It follows that, if p is of lower type 0 and upper type 1, then ||al| ¢ ,~ is a quasi-norm and
< X, p > is quasi-Banach function space.

Let ¢o and ¢, be continuous increasing functions on R such that ¢;((0,00)) = (0, 00),i =
0,1. Let p € B(1) and define ¢ by ¢~! = p;'p (%1). With similar techniques to the ones
in [GuP], it follows that L?(C), L#°(C) and L#'(C') are quasi-Banach spaces if ¢q and ¢,

have positive lower type.

Theorem 2.9.25. Assume that both po and p1 have positive lower type and that one of them,
—1

say o has finite upper type. Assume that p € B(1). Then ¢ defined by ¢~ = @y 'p (%)
0

satisfies L¥(C) —< L#(C), p >.
Proof. It follows similarly to the analogous in [GuP, Theorem 7.1]. O

We have to remark that we were not able to get the converse in Theorem 2.9.25 because

we do not have a capacitary Fubini’s theorem.

Theorem 2.9.26. Under the same conditions of last theorem, ¢ defined by =t = gp&%(@)

%o
satisfies L¥(C) — L¥°(C)p (fié%)

Proof. Let f € L¥(C) with norm smaller than one and define the function ¢ (¢) := gpo(%) —
tf]

<p1(m). By hypothesis, 9 is decreasing, continuous and lim;_.q ¥ (¢) > 0, lim; . ¥ (f) < 0.
Thus, there exists a unique ¢ such that ¢ (¢) = 0. Denote this ¢ by h(t). Then h is continuous.

Defining 2 = YL and y = 4L we have that, since ¢ (¢) = 0, then po(z) = ¢1(y). Moreover

p(t) p(t)?
¢~ po(x)) = | f] and ¢(|f]) = po(x) = ¢1(y). Thus

/Q*OO (%) dC = /Qso<|f|>dc <1,

L#1(C)
L#0(C)

and we can write |f| as an element in L (C)p ( ) . So that, the proof follows. g

Corollary 2.9.27. Let g and ¢y be continuous increasing functions on Ry with ¢;((0,00)) =
21
(0,00),i = 0,1, both of positive lower type and finite upper type. Define p~' = @y'p (%)
0
for p be a quasi-concave function in B(1). Then

L?(C) = L*(C)p (éZ:—Eg;) —< Ly(C),p>.
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By Theorem 2.8.4, it follows that for 0 < py < 00,0 < p; < 00, a € (0,1) and % =
11—« o
po | p1’
LP(CY' P (C)* = LP(C) —< LP°(C), LP(C), pa > -
See [P1, Theorem 2.2]. o

In the limit case it follows:

Theorem 2.9.28. Let ¢y be a continuous increasing function on Ry of positive lower type
and finite upper type such that py((0,00)) = (0,00). Define p~' = ¢y'p (%) for any
0

quasi-concave function p in Bt (1). Then

L=(C)
Lyo(C)

L9(0) = 17O (T ) =< (L L™(Chp >

holds with equivalence of norms.

Proof. See [GuP, Theorem 9.1]. o
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Chapter 3

Conductor Sobolev type estimates
and isocapacitary inequalities

3.1 Introduction

Recall that for 2 C R™ be a domain, the extension of Wiener’s capacity of a compact subset
K of Q for p > 1, is the p-capacity (see Example 1.2.8)!

cap (K.Q) = inf V[ (f € Lipy(®)).

0<f<1,f=1 on K

It was used in [Ma05] to obtain the Sobolev inequality

/0 " cap (Mo, M)A(?) < c(a, p) |V ]2, (3.1)

where M, is the level set {z € Q; |f(z)| > t} for t > 0. Recall that for f € Lip(2), the usual
gradient of f is defined by

v sup @) = 1 0)

degy—0  dz,y) = V()| (z€Q)

and zero at isolated points.

This “conductor inequality” is a powerful tool with applications to Sobolev type imbed-
ding theorems, which for p > 1 plays the same role as the co-area formula for p = 1.

With its variants, (3.1) has many applications to very different areas, such as Sobolev in-
equalities on domains of R™ and on metric spaces, to linear and non-linear partial differential

equations, to calculus of variations, to Markov processes, etc. (See eg. [AH], [AP], [Ci], [Dal,

'Lip(2) denotes the class of all Lipschitz functions on € and Lip,(£2) the ones with compact support on
Q.

127
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[DKX], [Han], [Ko84], [MMi], [MMil], [MMi2], [Ma85], [Mall], [Ma05], [Ma06], [MaN], [MaP],
[Ral, [V99], and the references therein).

An interesting extension based on the Lorentz space LP?(Q2) (1 < p < oo, 1 < g < o0)
was obtained in [CosMa].

Our aim is to extend these capacitary estimates when a general function space X sub-
stitutes LP(§2) or LP4(€) in the definition of cap, and cap, .

The proofs of these new Lorentz-Sobolev inequalities in [CosMa] are based on the prop-

erties

i+ 190 < 1+ 0l (1 <a<p)
[y @) T Hg“qu (Qp) = “f‘*‘QHqu (p) (I1<p<gq)

of the Lorentz (quasi-)norms, for f, ¢ disjointly supported functions. Using the fact that
the constant in the right hand side of the inequalities is one, they can be extended to an
arbitrary set of disjoint functions, and LP9 satisfies lower estimates with constant one (see
Section 2).

A perusal in the proofs allow us to see that the limitation of these usual techniques is
that it allows us to cover only certain particular kind of spaces because of the lower estimates
with constant one, and it does not apply to a wider class of spaces.

However, we will see that an extension is possible in the setting of (quasi-)Banach function
spaces with lower estimates, independently of the value of the constant, by means of new
techniques different to the ones followed by V. Maz’ya and S. Costea. The key point is a
result due to N. J. Kalton and S. J. Montgomery-Smith on the theory of submeasures. Our
results can be applied to many examples, which include Lebesgue spaces, Lorentz spaces,
classical Lorentz spaces, Orlicz spaces, mixed Norm spaces, etc.

It could seem that for improvements of integrability only truncations methods are needed.
In [KO] it appears that inequalities of Sobolev-Poincaré-type are improved to Lorentz type
scales thanks to stability under truncations, but there also p-convexity is implicitly used.
In this sense, we will characterize Sobolev type inequalities in the setting of rearrangement
invariant (r.i. for short) spaces. Under appropriate conditions on the space X (see Theo-

rem 3.5.2) and for any 0 < p < 0o, we show the equivalence of the following properties:
(i) For every compact set K on Q, ¢y (u(K)) S Capy(K).
(i) [fllsoy S IVl (f € Lipg(£2)).

(i) [[flareevy S IV llx (f € Lipg($2)),
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where ¢y denotes the fundamental function of Y (see (3.2)) and A”?(Y') (0 < ¢ < 00) is the
Lorentz space defined in (3.12). Moreover, under the appropiate conditions on Y, we show
that

[ llsree vy S IVl < 1 lareey S IV < Iflly SIVAL,  (f € Lipg(2)).

In the particular case when X = LP, p € (1,n), and Y = L*® with s = n”T’;, we recover

the well-known self-improvement of integrability of Lipschitz functions

[fllzsw = [ Fllarewsy S NV Fllze-

As an application of the Sobolev capacitary inequalities, we derive necessary and sufficient
conditions for Sobolev type inequalities in rearrangement invariant spaces involving two
measures, recovering results obtained in [CosMal, [Ma05] and [Ma06] for Lorentz spaces.
We show that under appropiate conditions on the r.i. spaces the following properties are

equivalent:

@) Ifllarryy SNV Fllx + [ fllavezy  (f € Lipg(€2)).
(il) ey (p(g)) S Capx(9.G) + vz(¥(G)) (9 cCc G cCc Q).2

To finish we develop some extensions to the capacitary function spaces studied in Chapter

1. All the developments on these chapter are summarized in [CeMS2].

3.2 Preliminaries

Let (2,3, 1) be a measure space. Recall that a quasi-Banach function space X is a quasi-

Banach linear subspace of Lg(€2) with the following properties:

(a) Lattice property: Given g € X and f € Ly(2) such that |f| < |g|, then f € X and
1fllx <llgllx-

(b) Fatou property: 0 < f, 1 f pae. = [|fully 1 [1f]lx-

Assume that p is a measure on 2. A quasi-Banach function space X on €2 is said to be

rearrangement invariant (v.i. for short) if f € X, g € Lo(Q2) and g;; < f: imply g € X and
lgllx < Ifllx-

2The notation ¢ CC G will mean that g and G are two open sets in R™ such that g is a compact subset
of G.




130 3. Conductor Sobolev type estimates

Definition 3.2.1. Let X be an r.i. quasi-Banach function space on €2. The fundamental
function of X (see [BeSh] and [BeR]) is defined as

px(t) = lxall  (u(A) =1). (3.2)

3.2.1 Convexity conditions

As we said in the introduction, certain convexity conditions are needed.

Definition 3.2.2. A quasi-Banach function space X on € is called p-convex or p-concave

if there exists a constant M so that

H<iz:;|fi|p>l/pH < M(g”ﬂHp)Up (neN, {fi}i; C X)

or
(1) <M (1) | e, (53 € x),
=1 =1

respectively.

Definition 3.2.3. Let 0 < p < oo. A quasi-Banach function space X on ) satisfies an
upper p-estimate or a lower p—estimate if there exists a constant M so that, for alln € N

and for any choice of disjointly supported elements {f;}, C X,

H(i 59) " < M(g 15)" (33)

or

, (3.4)

() < ua (1)
i=1 =1

respectively. The smallest constant M in (3.3)(resp. in (3.4)) is called the upper p-estimate
(resp. lower p-estimate) constant and it will be denoted by M (X) (resp. M, (X)).

Example 3.2.4. Let (2, %, p) be a measure space. For 1 < q < p, L™ (u) satisfies a lower
p-estimate with constant one, and for 1 < p < q < oo it satisfies an upper p-estimate and a

lower q— estimate with constants one. Easy proofs of these facts can be seen in [CosMa).

Example 3.2.5. Since > - | |g;|” = | > 1, ¢:|" when {g;}Iy C X are disjointly supported,

if X is p—concave, then X satisfies a lower p-estimate.



3.2. Preliminaries 131

Proposition 3.2.6. If a Banach lattice X on ) satisfies an upper, respectively, lower r-
estimate for some 1 < r < 0o, then it is p-convex, respectively q-concave, for every 1 < p <

r<q<oo.

In [CSo], in connection with these properties, it is observed a similar one for the classical

Lorentz spaces on R™. The property observed by M. J. Carro and J. Soria is the following:

Definition 3.2.7. Let 0 < p < oo and X be a Banach lattice on Q2. Let {E;}°, be a
collection of pairwise disjoint measurable subsets of 0, Ey := J;=, E;, and f € X. We say

that X satisfies a weak lower p—estimate if the following inequality
Y e < lxefll%
i=1

holds. The condition follows if and only if it holds for two disjoint sets A, B.

Proposition 3.2.8. Let X be a Banach lattice on ). Then, X satisfies a lower p-estimate
with M) (X) = 1 if and only if X satisfies a weak lower p—estimate.

Proof. Let {E;}2, be a collection of pairwise disjoint measurable subsets of 2, Fy := U2, E;

and f € X. Defining x; := fxg, we have that, for n € N

- 1/p u
(X llzil) ™ < M) Y- i)
=1 =1

Then, for all n € N, >0 @ ||P < || Y00, zill” < || fxr, ||, and therefore letting n — oo we
get that

0o n

>zl = lim Yl < ] fs P
n—00

i=1 =1

The converse follows taking, for {f;}7, C X disjointly supported, f =>"", fi. ]

We will see more facts related to these properties in the last section of this chapter.

3.2.2 Examples

For the sake of the reader convenience, let us present some examples of spaces satisfying this
kind of properties.

A function F : (0,00) — (0,00) is called quasi-increasing (resp. quasi-decreasing) if
F(s) S F(t) (resp. F(t) S F(s)) for any 0 < s < t. Moreover, F' is said quasi-superadditive
if there exists a constant d > 0 such that F(z) + F(y) < dF(z +y) for all 0 < z,y < o0,

and it is said superadditive when d = 1.
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Example 3.2.9 (Classical Lorentz spaces or Weighted Lorentz spaces). In the second chap-
ter we showed that classical Lorentz spaces are capacitary Lebesgue spaces. Now our focus is
in the convexity properties of these spaces.

The Weighed Lorentz space Aﬁ(w) 1s the class of all measurable functions in R™ such
that

g = ([ fiterutois) ™ < oo,

where f; denotes the decreasing rearrangement of f with respect to ji (compare with (1.2)).
This spaces were introduced in 1951 by [Lo]. It is shown in [Lo] that the condition of w being

non-increasing is necessary and sufficient for || - ||r () to be a norm.

These spaces are r.i. and hence, by Luxemburg’s theorem, we can reduce them to the
measure space (R, m). When the measure is the Lebesgue measure, we write f* instead of
fr and AP(w) instead of AP (w).

As in the study of capacitary Orlicz spaces, the As-condition (see (2.26)) is also useful
here. Let W (t) := fotw(s)ds. In [CSo, Corollary 2.2] we see that || - |5z () is a quasi-norm
if and only if W satisfies the Ay-condition.

These spaces were studied among others by S. Reisner [Rei], S. Ya. Novikov [No] and
C. Schiitt [Sch] generalizing results of J. Creekmore [Cre] relative to LP?. One of the first
attempts to study their convexity nature was done in [Ray|. AP(w) is p—convex (resp. p-
concave) if and only if w is, up to an admissible change, non-increasing (resp. non-decreasing),
where the change from w; to wy is admissible if W and W5 are equivalent.

Let us observe that the distribution function of f with respect to the measure u(x)dz is
Nely) = f{z;lf(x)|>yx} p(z)dz. We have that

1 fllazw) = “?J(/Oklft(y)w(t)dt) v

and hence, for 0 < p,q < 0o, AP¥(w) is the space of all measurable functions in R" such that

N ) 1/p
lgior = o [ witrar)

These spaces satisfy the following chain of embeddings

Lr(dy/y)

< 0.
La(dy/y)

...Aﬁ,l(w) cC---C Aiz(w) C---C AZ#](U)) C.-C AZ’OO(U)),

for p < ¢. And in the case w = 1, AL:9(w) is the Lorentz space LP9(y).
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Let us observe that the spaces Aﬂ’q(w) are, in fact, weighted Lorentz spaces if ¢ < oo, and

they coincide with the spaces Af(w,), where

wy(z) = (/01" w(t)dt)q/p_lw(x).

In [CSo] it was proved:

Proposition 3.2.10. Let py < p1. Then WP/Po is quasi-superadditive, that is, for every

{tk}k C R+, -
(Z (/ kw(s)ds>pl/p0>p0/pl < C’/ ' kw(s)ds,
: 0 0

if and only if, AT (w) satisfies a lower p;—estimate.

Proof. To prove the necessary condition, we use the fact that for 0 < p < oo

[ o= ["or (7w,

and the Minkowski integral inequality to obtain

Zka o) = Z(/oooypo1(/()A?£(y)IU(t)dt>dy)pl/po
P

- </oo p0_1<z</)\¢£(y) (t)dt>p1/po)po/p1d )pl/Po
0 k 0
o) Zk/\“o(y) 1/
- c(/ ypo_1</ " w(ar)ay)"
0 0

= C(/Ooypo1(/Oxgokfk(y)w(t>dt>dy>p1/po
- CHka AZO (1)

1/
Conversely, (f(f'“ w(s)d > " ||kaAP0 , where (f)r, = X(0.4,)- If for ¥ € R"

Fk<x> - X(tk—lvtk—l"l‘tk)(/’LO(B(O? |l’|))),

then one can easily check that (Fy)» (s) = (fi);, and the F}’s have pairwise disjoint supports.

Therefore,

([ weas)™™ = Sy, - SRy,
k 0 .
Lkt P1/Po
CIIZFkHAPO (/O w(5>d5> m

IN
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A considerable amount of work has been done to study the properties of these spaces. It
is well-known that AP(w) is p-convex with constant one when w is decreasing, and p-concave
with constant one when w is increasing. Moreover, if 0 < r < p < oo, then AP(w) is r-convex
if and only if for some ¢ > 0, W (t)/t?/"=¢ is quasi-decreasing (see [KaMa]), and if r > p,
then AP(w) is not r-convex.

If w is decreasing, by [KaP, Theorem 1], for » > p and p/r + 1/s = 1, the r-concavity
constant of AP(w) is
(i Jo ws)”s} 1/r

sup [—
1 t
>0 : fo w

Moreover, if 0 < [Jw(t)dt < oo and [t Pw(t)dt < oo, then, for p < r < oo, AP(w)

satisfies a lower r—estimate if and only if

¢
t_p/r/ w(s)ds
0

is quasi-increasing. In particular, for 0 < p < 0o, AP(w) is p-concave if and only if W(t)/t is
quasi-increasing (see [KaMa, Theorem 7 and 8]).

The classical Lorentz spaces generalize many known spaces in the literature. If w(t) :=
tP/a=1 then we obtain the Lorentz space LIP(2). If w(t) := t?/771(1 + log(t))*?, then we
obtain the Lorentz-Zygmund space, that is, AP(w) = L9P(LogL)*(2) (see e.g. [BeR)).

More generally, a positive function b is called slowly varying on (1,00) in the sense of
Karamata (s.v. for short), if for each € > 0, ¢°b(t) is quasi-increasing and t~b(t) is quasi-

decreasing. For example, the following funtions are s.v.

b(t) = exp(y/logt) and b(t) = (e + logt)*(log(e +logt))? for a,3 € R.

If w(t) = t¥P~1p(max(t,1/t))? with b s.v., then A%(w) is the Lorentz-Karamata space
L, ,5(82) (see e.g. [Nev]).

For the classical Lorentz spaces the fundamental function is @ar () = WP Therefore,
these previous results sujest a possible relation between these properties for a quasi-Banach

function space X on Ly(€2) and the behaviour of px(t)/t.

Definition 3.2.11. Given 0 < p < 0o and a quasi-Banach lattice X, X = {x; |z|P € X}

denotes the p—convexification of X eqquiped with the quasi-norm ||z||xw = |||2[?|/.

It is clear then that X®) is 1-convex (resp. l-concave) if and only if X is 1/p-convex
(resp. 1/p-concave). Notice also that a quasi-Banach space is normable if and only if it is

1—convex (see [KaMal, Preliminaries]).
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Theorem 3.2.12. Assume that X is a Banach function space on (RT,m). If X has a lower

(t)q+6

q— estimate, then there exists € > 0 such that 2% 7 is quasi-increasing on [0, o).

Proof. Suppose first that ¢ = 1 and that X has a lower g—estimate over (RT,m). Let
0<s<tn=I[Y, f = Xzt iy, i =1,...2n. It follows that f* = X(0,4] and || fillx =

2n  ’2n
By the lower estimate, there exists C' > 0 such that

H;’;ﬁ

Since 2n = 2[£] > £ then 5~ < s; and then,

2n

= ex(0) 2 O( D IAllx) = C2npx(t/2m).

px(t/2n) CtQOX(S>.

t _—
2n s

2n
> (C— 2n) =
2 C ; tox(t/2n) = Ct

Therefore, ‘pXT(S) is quasi-increasing. Hence, since @ is increasing, it follows that there exists
e > 0 such that @ is also quasi-increasing.

Let now g # 1 and suppose that X has a lower g—estimate. Since for a Banach lattice
(see [KaMaP]) it follows:

¢.(X) := inf{g > 0; X is ¢ — concave},
= qu(X) =inf{g > 0; X satisfies a lower ¢ — estimate} = ¢(X),

then for all ¢ > 0, X is ¢ + e-concave. Therefore, there exists p € R such that ¢+ =1/p
and X is 1/p-concave. Then, X () is 1-concave and hence, it has a lower 1—estimate. Then,

¢y @) ox (t)ate O
t

by before, is quasi-increasing, that is, . is quasi-increasing.

Remark 3.2.13. If X has an upper q—estimate, then there exists € > 0 such that %

is quasi-decreasing on [0, oco].

It is our feeling that these results can be the starting point of a project to try to develop

in the earlier future.

Example 3.2.14 (I',(w)). Suppose that the weight w (any non-negative function) satisfies
that for 0 < p < oo and x > 0,

0<W(z)= / w(t)dt < oo and Wy(x) == xp/ t7Pw(t)dt < oo.
0 T
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FEasily it follows that

o 1/p
Dy(w) = {1 € Lo(92)s ey = ( / F @y dr) < oo}
0
s a quasi-Banach function space with the Fatou property, where recall that
@) =inf{A>0; u{z € Q|f(x)] > A} <t}, QCR"

and f*(t) :=t~1 fot f*(s)ds.

Assume that w satisfies that ¢77 fotw(s)ds < 77 sPw(s)ds and the non-degeneracy
conditions fol sPw(s)ds = [ w(s)ds = oo. In that case, ¢r, (w) ~ W,/? (see [KaMall).

Theorem 3.2.15. Under the previous conditions on w and 1 < p < oo, the following

conditions are equivalent:
(1) T'p(w) is p-convex (resp. p-concave).
(11) T'p(w) satisfies an upper p—estimate (resp. a lower p—estimate).
(111) W,(x)/z is quasi-decreasing (resp. quasi-increasing),
(iv) @r,w)/x"/? is quasi-decreasing (resp. quasi-increasing).
Proof. Under these conditions, by [KaMal, Corollary 1.9] it follows that
Dy(w)" = (Tyw)) = A7 (0),
where v(z) = V'(x), 1/p+1/p' =1, and

Vi) = ( / h tpw(t)dt>_1/ s

So that, there exists a weight v such that A” (v) is a normable space and it is a predual of
I, (w), that is A’ (v)* is lattice isomorphic to I',(w). Thus T',(w) is p-convex or satisfies an
upper p-estimate if and only if A”'(v) is p’-concave or satisfies a lower p/-estimate, respectively
(cf. Proposition 1.d.4 in [LiZa]).

Moreover, V (z)/x is quasi-increasing if and only if W, (x)/z is quasi-decreasing. Now, as
we know, A? (v) is p'-concave if and only if V (z)/z is quasi-increasing. Therefore, (i)-(iii) are
(w) = Wy and hence (iii) is equivalent

to (iv). o

equivalent. Finally, the conditions on w yield that gp{ip
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Moreover, if ¢7P fotw(s)ds < [ s7Pw(s)ds and 1 < p < r < oo then, by [KaMal, Theo-
rem 3.3], it follows that I',(w) satisfies a lower r—estimate if and only if (' =1/") [ s7Pw(s) ds
is quasi-increasing.

ForO<p<Tlandr>1, orforl<p<r<oo, I'y(w)is r—concave if and only if
tp=1/r)=e /00 s Pw(s)ds
t

is quasi-increasing for some £ > 0. For more details see [KaMal].

Example 3.2.16 (Musielak-Orlicz spaces). A two variable real function ¢(u,t) : [0,00) X
Q — [0,00) will be called a Musielak-Orlicz function if for a.a. t € Q, u — ¢(u,t) is
increasing and continuous with ¢(0,t) = 0, ¢(u,t) > 0 for u > 0 and lim,_,« ¢(u,t) = oo,
and for all w > 0 the function t — ¢(u,t) is S-measurable. If ¢ is convex with respect to u
we say that it is a Young function (see [Kal] and [KaZ2]).

The Musielak-Orlicz space Ly4(€2) is then defined as the set of equivalence classes of

measurable functions f : € — R such that

/Q SOF ()], £)du(t) < oo

for some A > 0. Under the norm

£l :=inf {= > 0: [ o1z Haute) < 1},

L4(Q2) is a Banach space. If ¢ does not depend on t, then Ly(Q2) is an Orlicz space.

Let L4(£2) be an Orlicz space over a non-atomic measure space, 1 < p <2 < ¢ < oo, and
1(2) < oo. Then, if there exists u > 0 such that

d(Au) S ANo(u) (A > 1 and u > wy),

then L4(€2) is r-concave for all r > ¢ and hence, it satisfies a lower r—estimate. If ;1(Q2) = oo,
then the above inequalities have to hold for all u > 0.
For 0 < g < 00, L4(2) satisfies a lower g—estimate if and only if

d(Au) < Ap(u) for all A > 1 and all w.

Given 0 < ¢ < oo (resp. 0 < p < ©0), it is said that ¢ satisfies condition A (resp.

condition A*P) if there exists K > 0 and a non-negative integrable function h such that

¢(hu,t) < KX(@(u,t) + h(t))  (resp. ¢(Au,t) = KN (¢(u,t) — h(t)))
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forall A\ > 1, u >0 and a.a. t € (.

Given a Musielak-Orlicz function ¢, the lower indice a(¢) is defined as follows

a(¢) = sup{p; ¢ € A™}.

If a(¢) > 0, it is well-known that the quasi-norm || - || is g-concave for 0 < ¢ < co. Moreover,

for a quasi-normed space (Ly(2), || - ||) and 0 < ¢ < oo,
L4(92) satisfies a lower ¢ estimate < ¢ satisfies condition A%

For more details about it, see [Kal] and [Ka2].

Function spaces that are not rearrangement invariant may also be considered:

Example 3.2.17 (Mixed norm L spaces). The space L1(€)[LP ()] for 1 < p,q < oo,
defined by the condition

1= ([ ([ 1o dn@)"” duaw) " <,

satisfies a lower pg—estimate with constant one.

Indeed, if f and g are two disjointly supported functions, it follows from [BP, Theorem
1] that | f + g[["* = [Lf[| + llg[".

In the case LP"(1,)[. .. [LP*(p1)]] we have a lower py - - - p,—estimate with constant one.

Example 3.2.18 (Mixed norm weighted Lorentz spaces). Suppose 1 < p,q < oo and, for a
measurable function f on Q =y x Qy, denote f;(x,t) the decreasing rearrangement of f
with respect to the second variable y, when the first variable x is fized (see [BKPSo]).

Letu and v be weights on Q. and Qa, u such that U(x) == [ u(t) dt is quasi-superadditive.
Then the space A1(v)[AP(u)] defined by the condition

£ Aoy ar ) = (/OOO [(/Ooo(f;(.,t))pu(t)dt)*<s)]q/pv(s)ds)l/q o

also satisfies a lower pg—estimate.

Indeed, AP(u) satisfies a lower p—estimate (see [CSo, Lemma 3.2]).
Let 0 < a < 1. If we apply Holder’s inequality to the scalar product in al_%x—i—(l—a)l_%y

for 1 < p < oo, we obtain

(Jzf + [yP)P > a* e+ (1 —a) 5y,
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So that, if f, g € AP(u) are disjointly supported, then

1/p
My (W @)If + gllarwr = (1) + N9l
> ' )| fllavey + (1 =)' 7] gllar),

if0<a<l1.
Let now f, g € A%v)[AP(u)] be disjointly supported. Then,

Mip) (AP (u ))||f+9!oAq 0)[AP(u)]
:M(p)(Ap(u))</0 [(/0 (f+g>z("t)pu(t)dt)*(s)]q/pv(s)ds)l/q

> ([ gy + (1= 0 (5 g ol)ds)

0
1-L -5
> a | fllasar) + (1= a) 7| gl asw)arc))-

Finally, choosing
1/ 1R ) 2

||f| winr) T 1918w arw)
it follows that

1

M(p)(Ap(u»Hf +g||/\q(v)[/\”(u > (Hf” 0)[AP (u)] + H!JHAq (v)[AP(u )]>pq-
Observe that, if U is superadditive, then M, (A?(u)) = 1.

Remark 3.2.19. In Example 3.2.9, if w is decreasing (resp. increasing), then for all ¢ > p,
AP(w) is g-concave with constant one (resp. q-convex with constant one for all 0 < q < p) if
and only if AP(w) is isometric to LP. See [KaP, Corollary 4].

For a Lorentz-Karamata space, we have (see [EP])
> q \1/4
las = ([ [0 onie)] )
0
o 1/q
_ (/ f*(t)Qt‘I/p—lb(t)th) = 1 fllasce),
0

where w is the weight defined as w(s) := s9/P~'b(s)9, s > 0. For q > p, since b is s. v., then

w9 and w are quasi-increasing. Then for 0 < x <y
@ y
W)+ W(y) = / w(s)ds + / w(s)ds
0 0
x T+y x Tty
/ w(s)ds + / w(s —x)ds < / w(s)ds + / w(s)ds = W(x +y).
0 T 0 T
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Therefore ’
(W@ + Wiy )™ < Wiw) + Wiy) S W(a+y),

and WP is also quasi-superadditive. Hence, by [CSo, Lemma 3.2], AP(w) satisfies a lower
g-estimate and also A1(w). For ¢ < p, by [KaMa, Theorem 6], AP(w) is not q-concave.
A function ¢ is said to satisfy (RC) if

¢law)  ¢((1 = a))

¢(u) ¢(v)
Assume that ¢ is an Orlicz function, that is, ¢ is strictly increasing and continuous with
lim, oo ¢(u) = 00, ¢(0) = 0 and ¢(1) = 1. When u(Q) < oo, if ¢(u'/?) satisfies (RC),
by [HKT, Corollary 3.3/, it follows that L () satisfies a lower p-estimate with constant one.
If u(Q) = oo, then ¢(u/?) satisfies (RC) if and only if Ly(SY) satisfies a lower p-estimate

with constant one.

>1 for allu,v>0and 0 <a<1.

3.3 Sobolev capacitary inequalities

Submeasures: If A is an algebra of subsets on (2, a set-function ¢ : A — R is called
monotone if it satisfies () = 0 and ¢(A) < ¢(B) whenever A C B, and that ¢ is normalized

when ¢(€2) = 1. A monotone set-function ¢ is a submeasure if
$(AUB) < ¢(A) + ¢(B)
whenever A, B € A are disjoint, and ¢ is a supermeasure if
¢(AU B) > ¢(A) + ¢(B)
whenever A, B € A are disjoint.

Definition 3.3.1. For any 0 < p < oo, we say that a monotone set-function ¢ satisfies an

upper p-estimate if ¢P is a submeasure, and a lower p-estimate if ¢P is a supermeasure.

In the proof of Theorem 3.3.5, we shall use [KMo, Theorem 2.2|, where it is shown that,
if 0 < p <1 and ¢ is a normalized supermeasure which satisfies an upper p-estimate, then

there exists a measure p on €2 such that ¢ < g and p(Q2) < K, where

2
(20 — 1)'/7

p:

For a more complete treatment, see [KMo] and the references quoted therein.
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From now on, let €2 be a domain of R” endowed with the Lebesgue measure m, and
X = X () a quasi-Banach function space on €.
Given a compact set K C Q and an open set G C 2 containing K, the couple (K, G) is

called a conductor and we denote
W(K,G) := {u € Lipy(G); u = 1on a neighbourhood of K, 0 < u < 1}.
Each conductor has an X -capacity defined by
Capy (K, G) = inf{||Vul|x; v € W(K,G)},

that for X = LP4 recovers the capacity Capy = cap;,/f from [CosMa].
We will write Capy(-) = Capy/(-, ) if © has been fixed.
From the definition (see [Ma85], [Ma05] and [Cos|) we have:

Theorem 3.3.2. The set function (K,G) — Capy(K,G), where K is a compact subset of
the open set G C ), enjoys the following properties:

(i) If K1 C Ky are compact sets in G, Capy (K1, G) < Capy(Ks, G).
(11) If Q1 C Qs are open sets and K is a compact subset of Qy, then

(iii) If {K;}32, is a decreasing sequence of compact subsets of G with K := ;- K;, then

Capy (K, G) = lim Capy(K;, G).

(iv) If {Q;}2, is an increasing sequence of open subsets of Q with Q :=J;2, Q; and K s

a compact subset of 2y, then

Capy (K, ) = lim Capy (K, €Y;).

Proof. (i) Let u € W(K3,G), then u € W(K;,G). Hence by definition, we get that
CapX(Kl, G) S CapX(Kg, G)

(i) Let €1 C Qy be two open subsets and K be a compact subset of 2. Hence K is a
compact subset of Q. Let u € Lipy(£2;). Extending u by zero, we have that u € Lip,(Q2).
Hence W (K, Q) C W(K,Qy), and therefore

Capy (K, ) < Capy (K, Q).
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(iii) Let {K;}°; be a decreasing sequence of compact subsets of G with K := (.2, K;.
Let b := lim; ., Capy (K, G). Consider any u € W (K, G). There exists, by definition, an
open set F in €2 such that K C E C G where u = 1. We have that

KcFEcC{reQu(x)=1} CsuppuCG

is compact, and hence {u = 1} is compact. Therefore for sufficiently large j, since K; | K,
we have K C K; C E and then
lim Capy (K,,G) < Capy(K;.G) < |Vulx.

1— 00

Taking infimum over all v € W(K, G) the conclusion follows.

(iv) Let {€2;}32, be an increasing sequence of open sets with Q := U?,Q;, and K be
a compact subset of ;. Let b := lim; o, Cap(K, ;). Consider any u € W(K,Q). Since
supp u is a compact subset of the open set 2 then, for large i, u € Lipy(€2;) and u = 1
in a neighbourhood of K. Hence u € W(K,Q;) and Capy(K,Q;) < [[Vu|x. Therefore,
lim; o Capy(K,€Q;) < ||Vulx and taking infimum over all W (K, (), we see that b <

Cap(K, ).
Moreover, since €2; C € and both are open subsets, by (ii), Capy (K, ) < Capy (K, ;)
for all 7 € N and then the reverse inequality follows. O

With similar techniques to the ones in [Cos| we obtain:

Proposition 3.3.3. Let G C R" be an open set and {K;};en a sequence of compact subsets
inG. If K :=UrF_ K, C G, then

k
Capy (K, G) < Z Capx (K, G),

i=1

where k > 1 is a positive integer.

Proof. Suppose that k = 2. Consider any u; € W(K;, G) and define u := max(u, us). We
have that u; € Lip(G), u; = 1 in a neighbourhood of K; and u; = 0 on G and uy € Lip(G),
us = 1 in a neighbourhood of K, and us = 0 on 0G. Hence u € Lip(G), v = 1 in a
neighbourhood of K7 U K, u = 0 on 0G. Then u € W(K; U Ky, G) where K; U K> is
bounded on G. Therefore Capy (K3 U Ky, G) < ||Vul|x.

Moreover |Vu| < max(|Vuy|,|Vus|). Define f; := max(|Vul,|Vuz|) and fi := |Vuy|,
fa :=|Vug|. Then

Vullx < lIfsllx < [lfr + follx < I fillx + I f2llx,
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Capy (K1 U Ky, G) < ||[Vullx <[[Vur|x + [[Vus| x

and, taking infimum over W(K;, G) (i = 1,2), we obtain that Capy (K1UK>, G) < Capy (K1, G)+
Capy (Ks, G).

Suppose now that for all k& < m we have that Capy (U, K;,G) < 3%, Capx(K;, G)
and let K = m. Then

k-1 k-1

Capy (U™, K;,G) = Capy (Km ulJ K., G) < Capy (K, G) + CapX( | K. G)
=1 =1

k m
< Capyx(Kn,,G)+ ZCapX(KZ-,G) = ZCapX(K,-,G).

=1

With similar techniques to the ones in [CosMa] we get:

Proposition 3.3.4. Let X be an r.1 space satisfying a weak lower 1—estimate. Suppose that
Q1, ..., are k pairwise disjoint open sets and K; are compact subsets of Q; fori=1,... k.
Then

CapX<UK1,UQ> ZCapX Ki Q).

Proof. A finite induction on k would prove it, so we can assume that k = 2. Let u €
Lipy (€4 U Q9) and u; := xq,u, i = 1,2. Consider ¢ € {1,2} and v; be the restriction of u to
;. Then v; € Lipy(€2;). We notice that u; can be regarded as the extension of v; by 0 to
QU Q.

If ue W(K; UK, Q3 UQy), then u € Lipy(€; U€s) and v = 1 in a neighbourhood of
K, U K,. Hence, since v; = ulg,, it follows that v; = w on K; C §; for ¢ € {1,2}. Then
v; € Lipy(£2;) and v; = 1 on a neighbourhood of K;, that is, v; € W (K, ;).

Conversely for ¢ € {1,2}, if v; € W(K;,2;), then v; € Lipy(€;) and v; = 1 in a neigh-
bourhood of K;. Therefore, since v; = ulg,, it follows that v = 1 in a neighbourhood of
Ky U Ky, v1 + vy = u. And, since v; € Lip,(€2;), then w is Lipschitz on € U Qy, which gives
ue W(K; UK, Q1 UQ) .

Since €2; and €2y are disjoint and v = wuy + ug, with the functions u; supported on €2;
for i = 1,2, we obtain that u = uxgo,u0, = u(xa, + Xa,) = U1 + ug and, by the weak lower

1—estimate

X0, Vullx + [[xe, Vullx < |Ixo,ue, Vullx = [[Vul|x.
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For i € {1,2}, in §; we have that u; = v;, and then
X, Vuillx + lIxe, Veallx - < [[Vua|lx + [V x.
Therefore, since u € W(K; U Ky, Q1 UQy), it follows that
Capy (K1 U Ky, Q1 Uy) > Capy(Ky,Q1) + Capy (K2, Q)

and in general too. O
As we showed in Example 1.2.9, for this capacity every open and every compact set in 2
is capacitable. Recall that X = X () is a quasi-Banach function space on 2 endowed with

the Lebesgue measure m,,.

Theorem 3.3.5. Suppose 0 < p < 0o and let a > 1 be a constant. If X is a Banach function

space that satisfies a lower p—estimate, then

/0 "0 Capy (T al}. {1f] > 3) <V (7 € Liny(®) (3.5)

where ¢ is a constant that depends on a,p and My (X).

In particular,

& d
/0 #Capx ({If] > 1P < eVl (f € Ling(2), (3.6)

where ¢ depends on p and M, (X).

Proof. Without loss of generality, assume that ||V f|lx < oo, and that f > 0, since

VI < V£
Since X is a Banach function space, the set-function
IV flxallx
oA) =" — (AeB(Q)
IV £l

is a submeasure. Moreover, using that X satisfies a lower p—estimate, we conclude that, if

Ay, -+, Ay are disjoint, then

1 1/p
G(A U---UA,) > mwmm---wmn))/ . (3.7)

Let us consider the set-function 1, defined by

o) = sup { 3 )}, 35)



3.3. Sobolev capacitary inequalities 145

the supremum being taken over all finite partitions (A4y,--- , A,) of A.
It follows from (3.7) and (3.8) that

Y
5 < ¢ <, (3.9)
(M(p) (X))p
and we claim that 1) is a supermeasure that satisfies an upper min(p, 1/p)— estimate. Indeed,
given any ¢ > 0 and two disjoint sets A and B, choose finite partitions A = [J*, A;,
B =Jj2, B; such that

PAN — ) £ A and p(B)(1 <) < Y (B)

Then { Dy }7e™ = {A}ie, U{By}}2, is a partition of AU B which satisfies

Y(A)(1—e) +y(B 1—5<Z¢” )+ (B))

Ng+Np

< Y (Dy) <P(AUB)

and 1) is a supermeasure.
Let 7 = min(p, 1/p). Recall that 1 satisfies an upper r—estimate if ¢)" is a submeasure.
Suppose first p > 1, that is r = 1/p, and let A, B be disjoint sets. If (Cy,...,C,) is a

partition of AU B, then, since ¢ is a submeasure,

(Zere)” = (Sewwnauw@ne)”
1/p

< (Z (p(CiNA) + ¢(CiN B))p)

i

= |tecnay+ocinby|,

|tocin |

— (chwm) 4 (ZgprﬂB)) o

< YA+ y(B).

IN

+ H{(’b (CinB)tic He

Therefore, taking the supremum over all partitions we obtain that

W(AUB) = SUpZ P (Cy) < (¢(A)1/p + ¢(B)1/p)p
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and /P is a submeasure.
If p<1and (Cy,...,C,) is a partition of AU B, then, since ¢ is a submeasure, using
that

(z+yP <a’+y"  (z,y>0),

we have that

IN

I
< —~
=
O
i)
N

(o) < (X enay+ocns))

)+ (S ercnn)

<
Therefore, taking the supremum over all partitions we obtain that
Y(AUB) =sup Y ¢"(Ci) < (B(AY + (B

and 9P is a submeasure.
We normalize 1 and define
(A
o) = 22
P(Q)
a normalized supermeasure which satisfies an upper r—estimate. Thus, by [KMo, Theorem

2.2], there is a measure x4 on € such that
p<n and w(@Q) < K, (3.10)

Now, if My := {|f| >t} = {f >t} for t > 0, the function (t) := u(M,) is decreasing on
(0,00) and the limits v(0) and ~y(oc0) exist, so that
> dt , N dt
| ao=2@n = _tw [ 60-2nF

e—0,N—o0 c

as an improper integral.
We have

p(My) = pu(My \ M) + pp(May)
and therefore

&t _
'

dt

/OOO (M \ M) /OOO (u(My) — p(My)) = 1(Mp) log a.
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By (3.9) and (3.10) we obtain

= dt o0 (M \ M,
/0 (Mt\Mat)—>/0 oM\ M) / ¢_\>t
> ), 0\
_ 1 /°° H|vf|XMt\Mat Xﬂ
v Jo IvAs ot
so that
/OOO IV 1 X a0\ M i% < p(Q)u(Mo)loga ||V % (3.11)

< K, Mgy (X)Ploga ||V % -

) =min { {00 1

Since f € Lip,(2), an easy computation shows that

Consider now

1
|VAt(f>| = (a — 1)t|vf|XMt\Mat

and obviously

IV fIxanate [ = (@ =D [IVACHII% -

Moreover, since Ay(f) € W (Mo, M,),

H |vf|XMt\Mat 1)9( > (a - 1)ptpcapX(Mat7 Mt)pu

and the proof of (3.5) with

M) (X)PK, loga
(a—1)p

c:=c(a,p, Mpy (X)) =

ends by inserting the last estimate in the left hand side of (3.11).

If p =1, then X satisfies a lower 1—estimate and it follows from [LiZa, Proposition 1.f.7]
that X is g-concave for all ¢ > 1. Therefore, X can be equivalently renormed so that, with
the new norm, it satisfies a lower ¢-estimate with constant one. Hence, the result follows
with similar arguments to those in [CosMa].

The capacitary inequality (3.6) follows using (3.5) with a = 2 and

CapX (Mat> < Capx (Mata Mt)-
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In this case
2Pc = 2pc(2,p, M(p)(X)) = M(p)(X))pK,Qplng O

Theorem 3.3.5 can be extended to the setting of quasi-Banach spaces using Aoki-Rolewicz’s
Theorem (see e.g. [BeLo, Section 3.10]):

Theorem 3.3.6. Suppose 0 < p < 0o and let a > 1 be a constant. If X is a quasi-Banach

function space which satisfies a lower p—estimate, then

| e (M= s > 0)"F < allVhl% (f € Lin),

where the constant ¢ depends on a,p, M) (X) and on the quasi-subadditivity constant ¢ of
the quasi-norm in X.

In particular,

| rco i1z 07 < 2alVAE (€ Lin@)

with ci depending on p, M) (X) and c.

Proof. The proof of Theorem 3.3.5 can be adapted to this case as follows.
By Aoki-Rolewicz’s Theorem, if g is defined as (2¢)? = 2, there is a 1-seminorm || - [|*
such that, for all f € X,

LA < 1A% < 21170

Endowed with this 1-seminorm X satisfies a lower p/o—estimate, since, if fi,---, f, are

disjointly supported functions in X, then

(Z(an i) (anznp)

=1

< 2M(p)<X)Q

Now consider
1h(A) = sup {Z qzsp/@(A,-)}
i=1
with .
IV £l xall”

=T



3.3. Sobolev capacitary inequalities 149

With the same arguments as in Theorem 3.3.5, it can be shown that 1) is a supermeasure

that satisfies an upper r-estimate and the proof ends in the same way, now with

22P/e K, log aM, (X )P
C = Cl(aapv ¢, M(P) (X)) = (& — 1)p(p) )

for o such that (2¢)¢ =2 and r = min(p/o, 0/p). o

Definition 3.3.7. An extended real-valued function f is called upper semicontinuous at a
point xq if for every e > 0, there exists a neighbourhood U of xy such that f(x) < f(x¢) + &
for all x € U. The function s called upper semicontinuous if it is upper semicontinuous at

all points in the domain.

As a remark, we observe that the function
Capy (M, My)

in Theorem 3.3.5 is certainly a measurable function. For that is enough to show that is

upper semicontinuous.

Lemma 3.3.8. Let f € Lipy(Q2) and a > 1 be a constant. Then the function ¢ : t —

Cap y (My, My) is upper semicontinuous.

Proof. Let ty > 0 and ¢ > 0. There exists u. € W (M, My,) such that |Vu||x <
Capy (Mgyy,, My,) + €. Since u. = 1 in a neighbourhood of My, there exists an open set g

neigbourhood of M, such that u. =1 in g.

For A\; > 0 we have that My, C My,—»,). Since m C g, for A\; > 0 small enough we
have that m Cg.

Since u. = 0 on dM,,, then supp u. is a compact subset of M,;,. Hence, there exists an
open set G such that supp u. C G CC M,,. For all Ay > 0 we have M, .\, C My,. So that,
there exists Ay small enough such that G C Miyix,-

Then, for A < min(A;, \y) we have that m C g, and G C My, . From the choice
of g and G we have that u. € W(K, Q) whenever K C g and G C . In particular, for

K = Myu,—y and Q = M1\ we have that, u. € W(Mgyuo—»), Miy+2) being |Vu.||x <
Capy (M, My,) + €, and hence

Capx(Matg—r), Mig1a) < [|Vue||x < Capy(Magy, My,) + €.

Therefore, Cap x (Ma(to—r)s Mig4r) < Capy(May,, My,) when ¢ — 0 for A < min(Aq, Ag).



150 3. Conductor Sobolev type estimates

Let t be close enough to to meaning that |t —to| < min(\;, Ay). If t < o, then My, C My,
M,, C M,. There exists A > 0 small enough such that t = t, — A\. Hence, by Theorem 3.3.2,
(i), since My,4x C My, C My, —»

CapX (M_at7 Mt) = Ca‘pX (M_at? Mto—)\) S CapX (M_ata Mto-i-)\)

= CapX(Ma(tO*A)a Mio1x) < Capy (Mg, My, ).

If t > tg, then there exists A > 0 such that ¢t = ¢ty + X\. There exists n* € N such that
1/(n*4+1) < X < 1/n*. Using the monotonicity of Capy, we deduce that

CapX (M_at’ Mto) < CapX(Matov Mto) te
for every ¢ close enough to ty. Since J,-,,« My, 41/n = My,, by Theorem 3.3.2, (iv),
CapX (M_at7 Mto) = nh—{go CapX (M_at> Mt0+1/n)

and the result follows. m]

3.4 Sobolev-Poincaré estimates for two measure spaces

In [CosMa], characterizations for Sobolev-Lorentz type inequalities involving two measures
are proved, extending results obtained in [Ma05] and [Ma06]. Here, we extend those results
and derive with similar methods necessary and sufficient conditions for such Sobolev type
inequalities involving two rearrangement invariant spaces subjected to appropriate convexity
conditions.

Let p be a Borel measure on () and let X be an r.i. quasi-Banach function space on §2.
Recall that the distribution function of f is defined (see (1.1) changing C' by u) as

pp(A) o= pf{r € G| f(z)] > A}, (A= 0),

and the Lorentz spaces AP4(X) associated to X are for 0 < p < 0o
o 1/q
20x) = { il = (| o eoxtus)an) < oo} (0<q <o) (1)
0

with the usual changes when ¢ = co (when p = g we obtain the space AP(X)). Notice that,
if X = L', then AP9(LY) = [P,
It is well-known that for 0 < ¢y < ¢; < 00

AP®(X) C APD(X).
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Moreover, if X is a Banach space, then
AYX) C X C AP (X).

In fact the spaces AM(X) and AM*°(X) are respectively the smallest and largest r.i. spaces
with fundamental functions equal to ¢x.

From now on in this section, let ;4 and v be two Borel measures on €2 and 0 < p < oo.
Let X be a quasi-Banach function space on (£2,m,), Y an r.i. space on (€, u), and Z be an

r.i. space on (2, v).

Theorem 3.4.1. Suppose that X satisfies a lower p—estimate. Then, the following proper-

ties are equivalent:

(i) There is a constant A > 0 such that
[fllarery < AUVl + 1 Fllavez)  (F € Lipg(2)).
(i) There exists a constant B > 0 such that
vy (n(g)) < B(Capx (g, G) + ¢2(v(G)) (9 cC G Q).

Proof. (i) = (i) : Choose g CC G CC 2 and consider f € W(g,G). Since g C {f > 1}, it
follows that

p

IA

oy (1(g))

[ ettty 2 myar < [ ovtuts > oypa

PIFIZ iy S IV FI% + 1

IN

with )
_ 1
lny < | 020Gt = o2V G)P
0
and (ii) follows by taking infimum over all functions f € W (g, G).

(ii) = (1): From M, = {|f| > t} C supp f and My C M, if a > 1, py(u(My))? <
Capx (Mo, My)P + oz (v(M,))?, and Theorem 3.3.6 yields

o 1/p
£l = ([ @5 o a0 Pads)
0

a{ ( /OO sP Capy (M 44, Ms)pds>
0

+ </0<>0 Sp_lwz(y(Ms))pds)l/p}

S VA + 1 llavez). O

1/p

A
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Remark 3.4.2. Taking X = LP%(Q,u), Y = L*P(Q,n) and [ € Lipy(Q2), since LP(Q, u) =
AYP(X) and LP(Q, ) — L™P(Q, p) then, since the relation of our capacity with the ones
in [CosMa] for X is Capy(Mys, M;) = cap,, ,(Mat, M)'/? | then we see that Theorem 3.4.1,
(1) is an extension of [CosMa, Theorem 5.1, i)].

Analogously, for X = LPU(Q,p), Y = L¥9(Q,n) and f € Lipy(Q?), then we see that
Theorem 3.4.1, (i) is an extension of [CosMa, Theorem 5.1, ii)].

Let us remark that under the same assumptions of Theorem 3.4.1, one also has the

equivalence of the properties

[fllareery S IVFAIx - (f € Lipg(2)),

and
ey (u(g)) S Capx(g,G) (g CC G CC Q).

3.5 Isocapacitary and Sobolev type inequalities

Let X be an r.i. space on R". Maz’ya’s classical method shows that

Ifllx S IVl (f € Lipg(R™))
if and only if, for every Borel set A,
px(ma(A)) S my(A),
where m} is Minkowski’s perimeter (see [Mall] or [EvGa]) defined as

m(A) := liminf mn (A1) = ma(4)
" ' h—0 h ’

where A := {z € R";dgn(x, A) < h}.
As shown in [MMi2], the following self-improvement property follows for f € Lip,(R™)

[fllareecx) SNVl < 1fllx SNVAlL < M llarx S TV AL

This Sobolev self-improvement obtained in the case ¢ = 1 is also extended to the case ¢ > 1

as
[fllazexy S NV Fllza < ([ fllaveacx) S NV Flze-

In particular, if X is g—convex, then the space

X ={f 11177 € X Il = N1l
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is an r.i. space and

AM(X) = A(X(p) C X C AV (X))

In summary, in terms of the X, scale of spaces, on Lipschitz functions we have the

following equivalences (see [MMiP])

[ fllareox)) S IV lze & [ fllaax,y) SNVl < (1 fllx, STV

In this section we shall extend this result to the setting of r.i. quasi-Banach spaces. As an
application of Theorem 3.3.6, we characterize Sobolev type estimates in terms of isocapacitary
inequalities.

From now on, Q will be a domain in R", X a quasi-Banach function space on (£2,m,,),
i a Borel measure on 2, and Y an r.i. space on (£, ). An isocapacitary inequality is an
inequality of the form Capy(K) > J(u(K)), where J is a non-negative function and K is

any compact set in €).

Proposition 3.5.1. If
sup ey (1g))
CapX <g7 G)
the supremum being taken over all sets g, G such that g CC G CC R", then for every compact
subset K in 2,

< 00,

oy (u(K)) S Capx(K).

Proof. Let K be a compact subset in Q and d := d(K,¢) > 0. Denote A, = 1/n and
consider the smallest n € N, n*, such that 1/n* < d. For each n > n*, let

G(A\n) ={z € Y d(K,x) < A}, K(A\,) i =H{2 € Q;d(K,z) < A\, }.

Then ,>,- G(An) = K and .. K(A,) = K. Since

ey ((G(M)) S Capx(G(Ar)) (k= n),

by the properties of Capy,

Py (u(K)) < lim oy (u(G(M))) S lim Capy (G(Ar)) = Capx (K),

k—oo

and the result follows. m]

Theorem 3.5.2. Let 0 < p < oo. If X satisfies a lower p—estimate, then the following

properties are equivalent:
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(1) oy (W(K)) < Capy (K) for every compact set K on .
(ii) [fllaveey SNV FlIx  (f € Lipg(2)).

(i) [|fllarvery SNV Flx  (f € Lipg(2)).

Moreover, for ¢ > p, if Y is q-convex or, if Y satisfies an upper q—estimate and @y (t)/t'/?

is quasi-increasing, then, for every f € Lipy(2),

[fllareery S NIV lLx = 1 llawyy S IVl < [1flly STV FAlx (3.13)

Proof. (i) = (i) If a > 1, by Theorem 3.3.6 we have

s < ([0 oxumypar)”

0

S (/ tpflcaPX(Mﬁpdt) ’

0

Oop—l T p 1/p
< o [ 7 Capy (s, M,ds) S (VS |x
0

(ii) = (i11) Observe that AMP(X) C AV>*(X).
(#4i) = (¢) Trivial using Proposition 3.5.1.
To prove (3.13), if Y is g-convex, then, by Remark 3.2.13, W( ) s quasi-decreasing and

1 1 1
1l = IS < A1ty = IO -

Then (3.13) follows.
If Y satisfies an upper g—estimate and oy (t)/t'/? is quasi-increasing, then it also satisfies

an upper p—estimate and then, for every simple function s = )" a;xa, with A; N A; = 0 if

v = H <ZanAi)l/p )
) = M® (X)(Z |ai|pgpy(M(Ai))p>1/p'

Since ¢y is also the fundamental function of A (Y) and ¢y (t)/t'/? is quasi-increasing,

i # j we obtain

Islly = | >

<Mp) (

we know that A'?(Y") satisfies a lower p—estimate (see [KaMa, Theorem 8]). Hence

1/p 1/p
(D lail ey (uany) ™ = ( v)
1/p
p —
(S 4) = ol

(2
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Then, by the Fatou property, for every positive function f we have

11l < A ave -

Therefore, i [|fl|y1py S [IVFlx, then [[flly S [V fllx. Conversely, if [|flly S [V f]lx,

Y

then, since Y «— Ab(Y), it follows that || f|[sreyy S |[Vf]lx, and we conclude that
[fllarery STV Flx- O

Remark 3.5.3. Theorem 3.5.2 is to be compared with the results in [MMi2, Section 1].

Let us consider some examples: It is well-known that the Gagliardo-Nirenberg inequality

I/

o= SVl (f € Lipg(9)),

(n—=1)

n

allows us to see that, if p € (1,n), s = ;£ and a = =, since || f

s(n—=1)/n a—
LA™ S el AV Al S 1]
Hence || fllzs < ||V f]lze- Therefore, since L* < L, it follows that

s aln/(n—1
2o = IAANEY, then

s/p’
LS

|V fl|L», where p’ is the conjugate exponent of p.

[fllzsee STVl

But || f[[arec(zsy = [|f]
Theorem 3.5.2, we conclude that

Looe S|V flze and then, since LP satisfies a lower p-estimate, from

I/

ror = [[fllaresy S IV Flle  (f € Lipy(2)),

and we have obtained a self-improvement.

If p = n, then we start from the Trudinger inequality,

(fg fr(s)a

< ||V -

which gives the estimate

1—n

o(u(K)) = <1 + log ﬁ)" < Cap.(K),
and then
[fllarnee) S IV e
But,

AV () = ( /0 N t"*l(w(uf(t»)"dt) - ( /01 ($>n%)”n_
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If r < s < p, then we know (see Example 3.2.4) that L®" satisfies an upper p-estimate

and @ps-(t)/tV/? is quasi-increasing, so that, since || f||rsee = || f|lareeze) S IV ]| 1r,s

I/

roee = |[fllaveeory S IVl S UV lea (¢ <p),

and then || f||ave(zery S |V f]|ze. Therefore, if ¢ < p, then we obtain the self-improvement

I1f

pow = || fllavezsry SNV Fllea  (f € Lipg(€2)).

3.6 Extension to capacitary function spaces

Let us extend the results to the capacitary function spaces considered in [Ce], [CeMS]
and [CeMS1].
Let us recall that by a capacity C' on a measurable space (2, %) we mean a set function

defined on ¥ satisfying at least the following properties:
(a) C(0) =0,
(b) 0 < C(A) < o0,
(c) C(A) <C(B)if AC B, and
(d) Quasi-subadditivity: C(AU B) < ¢(C(A) + C(B)), where ¢ > 1 is a constant.

Then the capacitary Lorentz spaces LP4(C') are defined by

* 1/q
ey = (a [ 6> i) < o

0

Hence, Theorem 3.3.6 states that, if X satisfies a lower p-estimate, then

[fllzreapy S IVl (f € Lipg(§2)).

Recall that by C® := C'? we denote the p-converification of C (see [Ce] or Proposi-
tion 2.5.5).

Theorem 3.6.1. Suppose 0 < p,s,q < oo, and let C' and C be two capacities on (0, %). If

X satisfies a lower g—estimate, then the following properties are equivalent:

(i) N fllzraey SNV Fllx + 11

(ii) C®(g) < Capy(7,G) + C(Q) for all sets g and G such that g cC G cC €.

Loa(&) for every f € Lipy(2).
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Proof. (i) = (ii) Choose g CCG CCQ and any f € W(g,G). Then || f| rracy S IV fllx +
Id , so that

L2 (C)

1 /q
cWig) < ([ s > epyvar) " S IVl + 1]

0

Ls»(C)>

and || fllpen@) = (fol c{lf| > s}P/stp)l/P < C©)(@). Taking the infimum over all f €
W (g, G) we conclude that

CP(g) < Capy (3. G) + CW(Q).

(ii) = (i) Consider f € Lipy(£2) and take for @ > 1 and ¢ > 0 the open sets, g := My,
and G := M,. By hypothesis we have C®)(My,) < Capy (Mg, My) + 6’(5)(Mt), and then, by
Theorem 3.3.6,

o — 1/q
HfHLp,q(c) S (/ SqflCapX(Mas,Ms)q(LS)
0

+ (/oo sq_lé(s)(Ms)qd:s)l/q

0

< IVAlx + IS

stq(é)' [
In a similar way,

Theorem 3.6.2. Let 0 < p,q < co. Suppose that X satisfies a lower q—estimate and let C'

be a capacity on (Q,%). The following properties are equivalent:

(i) | fllracy SNV flix for every f € Lipy(S2).
(i) C¥)(g) < Capy (g, G) if g cC G cC Q.

Assume that X is an r.i. quasi-Banach space. If we define C'(A4) := ¢x(m,(A)), then
LP(C) = AP(X) is a Banach space.

Indeed, since px is continuous except possibly at the origin, C' is a Fatou capacity on
(Q,m,,) and LP(C') is complete. Moreover, C' is my,-invariant and quasi-concave with respect
to m, and, by Theorem 1.4.4 and Proposition 1.4.7, there exists a Fatou concave capacity
C7 which is equivalent to C'. For such a capacity, LP(C}) is a normed space and, by the
equivalence, LP(C}) ~ AP(X).
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3.7 Indices of r.i. spaces

Definition 3.7.1. Let (2, %, 1) be a measure space, and X be a Banach lattice on (2,3, u).
X is said to be order continuous if and only if there is an equivalent lattice norm || - ||; on
X such that for all {x,}32, C X such that x,, converges weakly to x and ||z,|;1 — ||z||1,

then ||z, — x|; — 0.
Let us observe that every separable Banach space is order continuous.

Definition 3.7.2. Let (2, X, u) be a measure space. A Banach function lattice X on (2,3, u)
is called a Kothe function space if for each E € ¥ with u(E) < oo we have that xgp € X
and xxg € L'(u) for allx € X.

As in [CwNS], a Banach lattice X is said to satisfy an equal norm upper p-estimate
(e.n.u. p-estimate for short) respectively, equal norm lower p-estimate (e.n.l. p-estimate for
short) if there exists a constant C' < co such that every finite sequence {z,}2_, of disjointly

supported norm one elements in X satisfies

N
| >
n=1

< ON/P
X — b

respectively,

N
NP < H
C ; Tnl|,
Any Banach lattice which satisfies an upper p-estimate satisfies an e.n.u. p-estimate. It is
interesting to note that there exist Banach lattices X which do not satisfy a lower p-estimate
even though they satisfy an equal norm lower p-estimate.
Let X' be the associate or Kothe dual of any Banach lattice X. As it is observed
in [CwNS], when X is order continuous or X satisfies the Fatou property, X' is a norming

subspace of the dual X* (that is, ||z| = sup{|z*(z)|;2* € X', ||z*|| = 1}).

Definition 3.7.3. For any Banach lattice X, the Cwikel-Nilsson-Schetmann indices are
given by
p(X) :=sup{p > 0; X satisfies an upper p-estimate}

q(X) :=inf{q > 0; X satisfies a lower g-estimate}.
Moreover, we define

¢.(X) := inf{q > 0; X satisfies an equal norm lower g-estimate}
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Pe(X) :=sup{p > 0; X satisfies an equal norm upper p-estimate}.

In [CwNS]| we find the following result:

Lemma 3.7.4. Let X be a Banach lattice of measurable functions and suppose that p €
[1,00]. Let p’ such that 1/p+1/p = 1.

(i) If X satisfies an upper p-estimate, then X' satisfies a lower p'-estimate.
(11) If X satisfies an e.n.u. p-estimate, then X' satisfies an e.n.l. p'-estimate.
(i1i) If X satisfies a lower p-estimate, then X' satisfies an upper p'-estimate.

In each case the constant which appears in the estimate satisfied by X' is equal to the constant

which appears in the estimate satisfied by X .

Remark 3.7.5. If X' is a norming subspace of X*, the dual of X, then obviously X is
closed isometric subspace of its second Kéthe dual X”. In that case it is easy to combine (i)
and (1) of the preceding lemma and to obtain that: X satisfies an upper, respectively, lower

p-estimate if and only if X' satisfies a lower, respectively, upper p'-estimate.
Then in [CwNS, Lemma 2.3] it’s proved:

Lemma 3.7.6. Let X be a Banach lattice of measurable functions. Then

(1) qe(X) = q(X).

(11) If the associate space X' of X is a norming subspace of the dual of X, then also
pe(X) = p(X).

Proof. Clearly ¢(X) > ¢.(X) and p(X) < p.(X). For the proofs of the reverse inequalities
we may assume that ¢.(X) < oo and p.(X) > 1. (Otherwise the results are trivial).

First, to show that ¢(X) < ¢.(X), it is sufficient to show that X satisfies a lower s-
estimate for every number s < oo with the property that X satisfies an e.n.l g-estimate for
some ¢ < s: Suppose then, for such ¢ and s, that C' is the constant appearing in the lower ¢-
estimate inequalities for X. Let x1, 29, ..., x5 be any finite sequence of disjointly supported

functions in X. We may suppose without loss of generality that ||z1]| > [Jz2|| > ... > ||lzn].
Then, forall 1 <k < N,
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)1/q < OV

k
=G e

< Ck~ 1/q

Z ol

[

N

Z%H.
1

]:

Zm | < kY

Consequently,

(Sit) " ze(Sw) "

and, since > 7o k%7 < oo, this shows that X satisfies a lower s-estimate and yields (i).
Finally, to establish p(X) > p.(X) and therefore (ii), we must show that, whenever X

satisfies an e.n.u. p-estimate for some p and 1 < s < p, then X satisfies an upper s-estimate.

S

j=1

By part (ii) of [CwNS, Lemma 2.1], X’ satisfies an e.n.l. p/-estimate. So, since p’ < s’ < o0,
we can apply the preceding argument to show that X’ satisfies a lower s'-estimate. Then,
using the remark, we see that X satisfies an upper s-estimate as required, and the proof is
complete. 0.

Let X be an r.i. Banach function space on (€2, %, ). It is well-known, by the Luxzemburg
theorem (see [BeSh, Theorem 4.2]), that any r.i. Banach function space X on (€2, 1) can be
represented as an 1.i. space X (0, (£2)) on the interval (0, u(Q2)) with Lebesgue measure and

I9llx = 119l (0,0 for every g € X.
For each ¢t > 0, let E; denotes the dilation operator defined on Ly((0,00)) by

(Erf)(s) = f(st) (0 < s < 00). (3.14)

Let hx(t) denotes the operator norm of Fj as an operator from X (0, 00) to X (0,00). The
Boyd indices of X (see [BeSh, Chapter 3, Section 5]) are the numbers ay and @x such that
log(hx(t log(hx(t
o<t<t  log(?) I<t<oo log(t)

In [LiZa, Proposition 2.b.5] we observe that for X be an Orlicz function space, the
Cwikel-Nilsson-Schetmann indices are related to the upper and lower Boyd’s indices. The
same holds for Lorentz spaces. Certainly, if Y is an Orlicz function spaces, then

1 1

Qy Qy .
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So that, a natural question is: Is there any relation between the Boyd indices of an r.i.
space and the Cwikel-Nilsson-Schetmann indices. Let us analyze briefly this question.

Every r.i. Banach function space X on L(2) satisfies the Fatou property. Then, for X
be an r.i. function space, it follows that p(X) = p.(X), ¢(X) = q.(X).

For every 0 < s < oo, the "new” dilation operator Dy is given by D, = Ey/s, where I/
was defined in (3.14), that is,

(Dsf)(t) := f(t/s), 0 < s <o00,0<t<o00, fe€Ly(0,00)).

Geometrically, the operator Dy dilates the graph of f(¢) by the ratio s : 1 in the direction
of the ¢ axis. It is obvious that Dy acts as a linear operator of norm one on L* and of
norm s on L'; hence, D, is bounded on every r.i. function space X and || D,||x < max(1,s).
Clearly, (D;f)* < Dyf* for every f and s and hence, ||Ds|| on an r.i. function space X can
be computed by considering only non-increasing functions f. Since, for every non-increasing
f>0andevery 0 < r < s < oo, wehave D, f < D,f, it is clear that || D] is a non-decreasing
function of s. Also note that, for every r and s, D,D, = D,,. We have

[Dys | < (1D 1 Ds -

It is necessary to observe that, if f is a measurable function, then D, f can be written as
fi+ fo+ -+ fn, where the f; are mutually disjoint and each f; has the same distribution
function as f. Hence, QLX is the supremum of all the numbers p which have the following
property: there exists a number k so that, for every choice of an integer n and of a function
f having norm one, we have

1fr 4+ full < kP,

where the {f;}7, are disjointly supported and they have the same distribution function as

f. Similarly, ELX is the infimum of all the numbers ¢ for which there is k£ so that, for every

n and {f;}", as above,
Ifr 4+ full = B,

After this observation it follows that, if an r.i. function space satisfies an upper p-estimate,

then p < i Certainly, p(X) < i := px, where py denotes the Boyd indices in [LiZa)].

In general t > p(X), % <7q(X). To see that, consider for 1 < p < oo, t > 0 and

a

w(t) == I#, the weighted Lorentz function space A,(w, (0,00)) of all measurable function

for which
o 1
HfHAp(w,(O,oo)) ::/0 f(t)Wdt < OQ.
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For every non-increasing function f in A,(w, (0,00)) and every 0 < s < oo we have that

< f(t/s) dt — (8)1—1/;) = f(u) du

0 ptl/P o 0 pul/p ’

Hence, i = }% which is bigger than one for all p > 1. Moreover, easily it follows that

Ap(w, (0,00)) satisfies an upper l-estimate but it does not satisfy an upper p-estimate for

p > 1.

Definition 3.7.7. Let ¢ : Rt — R™ such that p(1) =1 and p € C*™®. Then, ¢ is called a

function parameter if

0 < ap = inf =3, < 1.

B0 (t) = b ()

In [CSo, Proposition 4.2] it’s proved:

Proposition 3.7.8. Let ¢ be a function parameter and let {a,}, be a sequence of positive

numbers such that )" a, < co. Then, for every 1/a, < q < o0, > ¢¥a,) < @13, an).

Let X be a g-convex r.i. space. It can be equivalently renormed in such a way that, X
with the new norm has a fundamental function that is a function parameter. Then, let us
see that A(X(y) satisfies a lower 1-estimate with constant one if ¢ > ——. Indeed, consider

PX

f and g be disjoint functions. By [CSo, Proposition 4.2], it follows that

1 Fllacey + lollacxy) = / ox (py ()7t + / ox (g (1))1dt
o0 q
< [ et + o)
0
_ / ox (o8t = | + gllace,)

The conclusion follows by induction on n.
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Appendix A

Second order Sobolev-Poincaré
estimates

A.1 Introduction

It is well-known that the symmetrization inequalities are intimally related with the isocapac-
itary inequalities. In [MMi3] the authors discuss the connection between Maz’ya’s capacitary
inequalities and the method of symmetrization by truncation. Here we will study only sym-
metrization inequalities, so that, we called this part an appendix instead of a chapter because
here capacities do not apppear.

Symmetrization is a very useful classical tool on this area. New symmetrization in-
equalities have been developed in [MMil], [MMi2], [MMi3], [MMi4] and [MMiP], and they
can be applied to provide a unified treatment of sharp Poincaré inequalities, concentration
inequalities and sharp integrability of solutions of elliptic equations. These inequalities com-
bine three features: the inequalities are pointwise rearrangement inequalities, incorporate
in their formulation the isoperimetric profile and are formulated in terms of oscillations.
In [MMil, MMi3] the Poincaré inequality, for isoperimetric Hardy type measure spaces, it is
completely characterized in terms of the boundedness of a Hardy type operator from X (0, 1)
to Y(0,1), and in [MMi3] the authors show some connections between symmetrization in-
equalities and the isocapacitary inequalities due to Maz'’ya.

Moreover, very recently, A. Cianchi and L. Pick [CiL] have characterized the optimal
range and domain norms in the Sobolev-Poincaré inequality for the Gaussian measure and
functions of bounded variation. Similarly, in [MMi5], the authors, using isoperimetry and
symmetrization, obtain new Gaussian symmetrization inequalities and connect them with
logarithmic Sobolev inequalities. In those inequalities, the isoperimetric function appears

sistematically. For second order derivatives we will see below that the inequalities depend
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on the square of the isoperimetric function.

Using similar techniques to the ones in [MMi2], [MMi5] and [MMi3], in this appendix we
study second order Sobolev-Poincaré inequalities (see Theorem A.3.9) and we relate them
with the boundedness of some Hardy type operators involving the square of the isoperimet-
ric profile and of the Boyd indices of the r.i. spaces (see Section 2). Our main results are
Theorem A.3.9 and Theorem A.4.1. Let us note that the previous results gave us Propo-
sition A.4.2, where the second order Sobolev-Poincaré inequality follows directly from the
classical Sobolev-Poincaré estimate. In the Gaussian case we obtain Theorem A.5.2, which
is the converse of Theorem A.4.1. To finish, with similar techniques to the ones in [Cil],
we describe the optimal range and domain for the second order Sobolev-Poincaré inequality

when dealing with the Gaussian measure.

A.2 Background

From now on, as in [BO§], set R™ and let p be a Borel measure in R™ given by du(z) = ¢(z)dz,
where ¢ € C(R"), ¢(x) > 0 for any x € R" and [, ¢(x)dz = 1.

For a measurable function u : R™ — R, the non-increasing rearrangement of u € Lo(R™),
u,, is defined as in (1.2) with z instead of C'. Since u, is decreasing, the function u*, defined
by

1 t
url) = /0 o (s) ds,
is also decreasing and, moreover,
uy, < uy (u+v)y <uy +ov
By definition, we have that
Kk u**(s) — uj, (S) uosc(s)
(w7 (5) = — 20tk (A1)

Let us denote by f* the non-increasing rearrangement of f respect to the Lebesgue
measure on R”, m,,.

Let A C R™ be a measurable set, the p-perimeter (in the sense of De Giorgi) is defined
by

P,(A) = sup { /Adiv(h(x))gp(x)dac; h € Cy(R",R™), |h| < 1},

and the isoperimetric function I, is defined as the pointwise maximal function I, : [0,1] —
[0, 00) such that
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holds for all Borel sets A. The isoperimetric profile I, is supposed to be a concave continuous
function, increasing on (0,1/2), symmetric about the point 1/2 that, moreover, vanishes at

zero. So, the isoperimetric profile is such that for 0 <t <1
(1) L,(0) = L,(1) = 0,
(2) L(t) = 1,(1 = 1),
(3) I,(t) is concave.

Since [, has a maximum at ¢ = 1/2 and ,(0) = 0, then I“T(s) is decreasing on (0,1/2) and
ﬁ is increasing.

A concave continuous function, I : [0, 1] — [0, 00), increasing on (0,1/2) and symmetric
about the point 1/2, with 7(0) = 0, and such that [, > I, will be called an isoperimetric
estimator for (R", p).

Furthermore, let W1 (u) = Wh(p, R™) denotes the weighted Sobolev space containing

all functions u € L'(u, R") with weak derivatives u,, € L*(u, R™), i =1,...,n and

1 fllwiig = [lullpgrey + VUl 21 urn)- (A.2)

Theorem A.2.1. If I :[0,1] — [0,00) is an isoperimetric estimator on (R™ ), then the
following statements hold and are in fact equivalent (in [MMi3, Theorem 1] the result is done
for functions in f € Lip(R")) :

(i) Isoperimetric inequality: For every Borel set A C R"

I(u(A)) < Pu(A).

(ii) Ledoux’s inequality:

|t = spas< [190d (rewhi)

(iii) Maz’ya—Talenti’s inequality:
d
(~FY()1(s) <+ Ve (f e W),
{IfI>fi(s)}
(iv) Oscillation inequality:
) = 50 < [ IVAO (F W), (A3

(v) Pdlya—Szego inequality:

A[(—f;)’(S)I(S)]*(T)dTS/O IVfr)dr (f € WH(w).
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Proof. As soon as we know the validity of the oscillation inequality for f € Wh(u), we
can proceed as in [MMi3, Theorem 1] to see that the rest hold and that all are, in fact,
equivalent. Therefore, we only need to develop (iv).
To distinguish, by W (R") we denote the first order Sobolev space with respect to
LY(R™,m,) and, by Iz» and Pg» the isoperimetric function and the perimeter on (R™,m,,).
We proceed as follows: first we obtain (A.3) for f € W!(R™) and then we extend to our
setting.

For a measurable f : R" — R, let
fT =max(f,0) and f~ = min(f,0).
If fe WHY(R"™), then fT, f~ € WH(R") and
VI =V s and VI~ = V£ x(<oy-

This implies that functions on W1!(R") remain invariant under the operation of truncation,

i.e., given a measurable g and 0 < t; < 5, the truncation gff of ¢ is defined by
gff = min{max{0,g — t1},to — t1}
and therefore, if g € WU(R"), then g;> € W (R") and
Vgi: = VX{n<g<ia}-

On the other hand, given f € W1(R"), the Fleming-Rishel formula states that

/R" Vf(@)lde = /_oo Pen({f > s})ds.

Applying this result to |f];2, we get
[ vi@lde = [ Pl > s (2.)
{ti<IfI<t2} 0

v

| st > s = [ B (4111 > s} s

where the second inequality holds thanks to the isoperimetric inequality.

Observe that, for 0 < s <ty — 14,

{12 2} < mpa(s) < HIfL >
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Consequently, by the properties of Ig», we have

/0 2=t IRn(mfff(S))dS > (ta — t1) min(Zpn ([{|f] > t1}]), Ten ([{If] > t:1}]))- (A.5)
For s > 0 and h > 0, pick t; = f*(s + h) and t3 = f*(s). Then

s< {1z £} <mpals) <[{IfI > s+ W)} < s+ (A.6)

Combining (A.4), (A.5) and (A.6), since I is an isoperimetric estimator, it follows that

(f*(S) — f(s+ h)) min (I(s + h), I(s)) < / IV|f|(z)|dx.

{F* (sth)<[fI<f*(s)}

At this stage we can continue as in [MMi3, from (3.8)], and we obtain that if f € Wh1(R"),
then

t 1

=10 g1 [ 9@ o< (AT)

We can extend this result to our setting in the following way. We consider p be a finite
measure on R™ defined by du = ¢(z)dz, where ¢ € C(R"™), p(x) > 0 for any z € R™ and
Jgn ©(@)dz = 1. Furthermore, W' (1) denotes the weighted Sobolev space defined in (A.2).
It is plain (since we are still working on R") that functions on W'!(y) remain invariant
under the operation of truncation.

Let M C R™ be a measurable set and recall that the p-perimeter (in the sense of De
Giorgi) is defined by

P,(M) = sup { /Mdiv(h(x))go(x)d:c; h € Cy(R",R™), |h| < 1}.

The theory of sets with finite p-perimeter is imbedded in the framework of the space of BV-
functions, denoted by BV (p, R™), and it is defined as the set of all functions u € L*(u, R™)
such that

|1Dul| v = sup { / u(@)div(h(z))p(z)dz; h € CLR™,R™), |h| < 1} < .

Notice that if M has finite p-perimeter, then y, € BV (¢, R") and P,(M) = ||Dxum|sv-
Moreover, if u € W (y), then || Dul|py = ||[Vul|| 1 rn)-

On the other hand, the co-area formula for functions states that

Mmhv=/mﬂﬁﬁ>%Ms (u € BV(¢,R")

—00
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and therefore,
N O / |Vu(x)|p(x)de = / P,{u > s})ds (u € WhHp, R™) = WH(p)).
R” —00

Thus, using the same argument that above, we obtain that inequality (A.7) is valid for

Whl(p) functions (by considering now rearrangements with respect to the measure yu).
Hence, the oscillation inequality holds for functions in Wh!(p) and, as in [MMi3], we can

see that the result follows. O
Suppose f € Wi(u) and let m; be a median of f:

p{f = myp} >1/2 and p{f <my} > 1/2.
It follows that [ |f —my|du ~ [ ‘f — Jan fdu‘ dj.

Let us recall the L'(p)-Poincaré inequality that we will use later (see [EvGal):

J 1= mldi < s [195@)dn (A9

A.3 Second order Sobolev-Poincaré inequalities

In [MMi], as an application of (A.1) and (A.3), characterizations of the Sobolev-Poincaré
inequality are given. In the same direction, in this section we will obtain pointwise second
order inequalities to characterize second order Sobolev-Poincaré inequalities. Our main result
is Theorem A.3.9. For that, some previous results are needed and so are presented before.
Let f be a locally integrable function having weak derivatives of all orders up to 2. We
denote by d*f the vector (D f), =2 of all derivatives of order 5 = 2. It is easy to see that

V| f S ARl k=1,2.

Let W¥1(u) be the corresponding Sobolev space of k-order given by L*(u, R™) and let us
define the Hardy type operator

1/2 1
ng(t) :/t Q(S)I (s) 3:/t g(S)X(O’1/2)<S)IM(s)’

as in [MMi3].
Proposition A.3.1. Suppose 0 <t < 1/2. Then:

(i) For every f € Whi(p),

1/2 ds
!Vf\Z*(t)S/t (VI () = VL)) — + 20V il
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(ii) For every f € W(p),

(1)

L= ) (1) = F5= fose(t) < Qui@*F(0) + 201V fllzi

(iii) For every f € W2 (),

5015413 0)

I,(t)\2 Kok * *ok
(Y )~ ) < sl 0) +
Proof. Let f € Wbl (1) and denote by g := |V f].

(i) Just apply (A.1) to gosc and note that g7*(1/2) < 2||V f|lz1(

(ii) From (i) and from (A.3), since |[V|Vf|| < |d*f], if 0 < ¢t < 1/2, then

1/2
VAL = / ((g5:(5) ~ 35D = +6°1/2)

1/2
s/t e G )2 2V fll

Let us observe that, if 1/2 <t < 1, then [V f[3*(t) < 2[[V f|L1(y

(iii) Write the oscillation inequality as

(Y (o) - 0 < 2B
and g7 (t) = g*(t) — g,(t) + g5 (t). By using that
G (0) = g1(0) < = |ET ),
1,(t)
we arrive to the pointwise second order estimate (iii). m]

Proposition A.3.2. Let 0 <t <1/2 and k = 2,3. Then,

foret) S —={ QLT £ +Z!Id”fHL1m@ (M} (F e W),

I#( )

Proof. For k = 2 this is proved in Proposition A.3.1. Let k = 3 and 0 < ¢t < 1/2. Tt follows
that

et (PAY" 2L [ ) b 19 )
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It can be proved that

1/2 d
A < [ O~ W) 2 2

172y du
< d3 *ok bl 9 d2
< [ e 2 g,

and then, defining Qgg(t) = 1, it follows the result for k& = 3:

2 2 p |k ds 2 3 p|*x 2 1
[ RO S QI+ I Q) :

“w
Remark A.3.3. Proposition A.3.2 is valid for any k € N.
In the case k > 4, let us suppose that for all k < m — 1 we have that

LAONS  (TuOYE2f ok proo gy 4 S (1
Fue®(22) 2 (7)) @ da s + 21 (D)},
and let now k = m. It follows by hipothesis of induction that

o) (21)

t

m—3 m2 . .
=) @ O + D Il @ (D),
j=1
and

" () S QuUd™ ) + 1™ fll -

Then

Q0 < Q@ (QU W) + 1™ fllexge )
= QUm0 + QD@ ™ g,

since @, and the powers are lineal, and

et (22)"

t
I — m—1 A A
= (SO g i w + 31 Sl (00 )
j=1
Corollary A.3.4. For f € W' (u)

£ @) S QUUE S ) + IV Flla o (Qu)(®) + 111
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Proof. By Proposition A.3.1(ii), if 0 < ¢ < 1/2,

1/2 d
o< f T QU I 6) + 209 s} -+ 2 s

12
Q)0 + 2V gy [ g Ml

If 1/2 <t <1, then f;*(t) < f;7(1/2) < 2[[f[l1(w)- o

By X = X(R", 1) we always denote an rearrangement invariant (r.i. for short) Banach
function space on R™ endowed with the probability measure p and such that 1 € X. In that
situation, L>®(u) < X < L'(u) (see [BeSh]).

It is well-known, by the Luzemburg theorem (see [BeSh, Theorem 4.2]), that any r.i.
Banach function space X on (R", ) can be represented as an 1.i. space X(0,1) on the
interval (0, 1) with Lebesgue measure and ||g|lx = [|g} ||z (0,1) for every g € X.

Let us recall that the Boyd indices of X (see [BeSh, Chapter 3, Section 5]) are the

numbers ay and @y such that

log(hx(t) .. log(hx(t))
= _— = f _—
T TR oty T M T ds T log(h)

Q

Y

where hx () is the norm of E;/; defined in (3.14).

For the usual Hardy operators P and @ defined in (2.25)!, it is well-known that P is
bounded on X (0,1) if and only if the upper Boyd indice @x is smaller than 1, and Q is
bounded if and only if the lower Boyd indice ay is bigger than 0. In fact, if 0 < a < ay,

the operator
1/ ds
a t)=— “ -
Qualt) = 5 [ ()
is also bounded on X (0, 1) (cf. [BeSh, Chapter 3]).
If Y is also an r.i. space on (R", i), the X —Y Sobolev-Poincaré inequality depends on

the boundedness of the Hardy type operator

1/2 1
Q)= [ 0775 = [ axonme)7

as shown in [MMi3]. By WH¥(u) we denote the classical Sobolev space generated by the

norm in X. Let us see that the same holds for functions in WX (y):

1Recall that
@
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Theorem A.3.5. If for any 0 < g € X(0,1) with supp g C (0,1/2),

HngHY(O,l) N ||9||X(0,1)a (A,9)

then, the following Sobolev-Poincaré estimate holds:
1= [ ran] <1951 ew ), (A.10)
]Rn

Proof. Let f € W'¥(p), and write

1/2
fi(t) = / (—f)(s)ds + £(1/2), te (0,172,

Thus,
Il = 15 lron S 15 xeualron
12
< | [ dsHm + 10/
< H /”2 )75 0+ A0l
< A OLson + Il by (49
< |||Vf|||x+||f||L1(u)>

where the last inequality follows by the Pélya—Szego inequality in Theorem A.2.1.
Therefore, by (A.8), since X «— L'(u),

= [ sau, < wwsine s |
R~ Rm
S N9l + 1955190

Remark A.3.6. In [MMi3, Section 5 and 6] J. Martin and M. Milman showed that it is
possible to characterize the Sobolev-Poincaré inequality on probability spaces of isoperimetric
Hardy type.

In the case of R™ with the Gaussian measure vy, as it is shown in [MMi3], (A.9) and (A.10)
are equivalent due to the fact that (R™,~) is of isoperimetric Hardy type.

Since the operator @), is associated to the Sobolev-Poincaré inequality, we will try with
Qi when dealing with second order derivatives.
From the definition, by Fubini’s theorem, if g > 0 and supp g C (0,1/2),

= 1/2/ rore = 1/2‘(’(”(1#;) [ )
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From now on, X and Y are supposed to be r.i. spaces on (R", ). Observe that ),1 €
X(0,1) means that 1,(t)/t € X(0,1), @x < 1 means that P is continuous on X (0, 1), and
then ||f*|l g1y = [[fllx. Moreover, if ay > 0, then Q,1 € X(0,1) since 0 < s < 1/2,
s S 1u(s).

Let us define a new operator A for g € X(0,1) by

1/2 s B
10 / os) 7o o= Aglt).

t u(8)

Since I“T(t) is decreasing on (0, 1/2), if A is bounded in X (0, 1), then

12 s L(t) [Y? ds
son = [ 1555 o 177 L 155 s S 100
HQH HX(O,l) \ I#(S) £(0,1) n . Z—H(S) %(0,1) H HX

and I1,(t)/t € X(0,1).

Remark A.3.7. If A is bounded on X (0, 1), then it follows that Q,, is also bounded. There-
fore for Y = X, the X-X Poincaré inequality holds by Theorem A.3.5.

By W2X(u) we denote the classical second-order Sobolev space generated by the norm
in X,

Iglwzxy = D ID7Gllx@nsm = D ID70]x.

o|<2 lo|<2
Proposition A.3.8. Ifay < 1 and A is bounded on X (0,1), then, for every f € W2X(u),

‘ L.(t)

LR
[CACEFHON

< ||d? \Y%
; fon) ¥ = fllx + IV £l

L,(t)
t

2
< a2 \Y% :
) | on, S 12715+ 19 s

Proof. Suppose that g > 0 is supported by (0,1/2). Since I“T(t)Qg(t) = A(I“S(S)g(s)> (1), it
follows that

Since X — L'(u), by Proposition A.3.1, (i) for all 0 < ¢ < 1/2,

Lu(t)
St

Lu(t)
Tt

Q). 5|

X(0,1)

g(t)H I

X(0,1)

1/2 d
VO < [ 9T = 19 T+ 209 o
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For every f € WX (u), let us denote by g = |V f|. Therefore, since A is bounded on

X(0,1) and |V|Vf|| < |d%f], by the oscillation inequality it follows that

I

4 :
t

t
S M F1 Ol ko + IV Fllzag-

X(0,1)

By (ii) of Proposition A.3.1, if ax < 1, then

|- (22 S NG5 + [ 22910

t
S I fllx + 1V Flg. O

NEO] I (e O O RO IS A R

X(0,1)

Theorem A.3.9. Suppose that oy < 1 and A is bounded on X(0,1). The following state-

ments are equivalent:

(i) For every g > 0 with supp g C (0,1/2),

1
s \2ds
_ < .
| ] 56(755) S, S ol

i
(i) For every f € WX (p),

f;(t) (]u(t))2

<
I1£lly € t

X(0,1)

(iii) For every f € W% (u),

I <] 0 - o (L) 10

t
If these properties are satisfied and f € WX (u), then
7= [ rau]), S 1 s + 1900

Proof. (i) =>(ii) If 0 < ¢t < 1/4, then

2t 1/2 1
fien = 2e-ngnen=2 [ sresss [ 6T = [ e

and for g(s) := (I“S(S)>2f;(5)X(O,1/2)(S)

(A.11)

ds

S
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I15C00ron < 2500 Olen S | [ fi6xom®S
t

S

(ii) ==(i) Consider g with supp g C (0,1/2) and let us define

Bug(t) = /t19(5)<1;5))2%’ >0,

Hence, since this operator is decreasing, let f € Lo(R") such that f;(t) = B,g(t). Then,

/t 96)(7 ?s)>2%<jﬂt(t)>2HX<o,n'

I

Y (0,1)

/tl a isﬂ (zﬂis>>2f;<s>x<o,l/2><s>} %Hmn < lllx 0

I

s \2ds

Iy = Wlson = | [ 06 (255) %] 0 %

Let us define now h(u) := g(u)l“t(t) e (u € (0,1)). Since

[oig S C) = 52 [ g = o o<,

u(8)) s\t

and A is bounded on X (0, 1), then

If1ly = [1Buglly o,y S 100 1x0,1) = 9l %0,1)-

(i) ==(iii) Observe that for every f € W% (u)

HfHY = ”f:HY(o,l) < ||f;*HY(0,1) ,S ”f:*X(0,1/2)”Y(0,1)7

and we have
1/2 d
o ® < [ U6 = 600 + 57012

Then, it follows that

i 5 oo - oD il

(ili) ==(i) Let g > 0 with supp g C (0,1/2) and define for all 0 < ¢t < 1/2, h(t) = B,g(t).
Then, it follows that h(t) < Qg(t).
Consider u € Lo(IR") such that uy(t) = h(t). We have that |lully = [[h(t)|y(,1) and then,

Lu(t)
t

2
HX(O,I)

IOl S [0 ® = o) (H2) [, + IO
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By Fubini’s theorem we can observe that

) =0 = 7 [ o) (75 ) s

Therefore, since the function s/1,(s) is increasing on (0,1/2), P is bounded on X (0, 1),

and

t -1

00 -t (2) <2 [ gtoyas = Pt

then

S llgllxon + 1@

H /t g<8)<ljs))2%

Finally, let us observe that for all 0 <t < 1/2,

Y (0,1)

10 = [ o)1) "% £ Quatt < Aot

and, since X < L!(u) and A is bounded on X (0, 1), then it follows that

! S 2ds
< S il < < o
ol < | [ o6 (755) 5 g S 190lisan < sl

Therefore, (i) follows by addition of the inequalities.
To finish let us show that (iii) implies (A.11): Let f € WX (u). Since P and A are
bounded on X (0, 1), by Proposition A.3.8

£y < N fllx + IV Fllzag + 1/l 2

Therefore, considering now g := f — [ fdu, by (A.8), it follows that

lglly 1 fllx + 11V fllzrge + I = mgllzag

1 fllx + IV flligy O

ZANRZA

Remark A.3.10. Let us observe that, in Theorem A.3.9, without any condition on the
indices and on A, (i) implies (ii) and (i) implies (ii). (ii) implies (i) if A is bounded on
X(0,1), and (iii) implies (i) if ax < 1 and A is bounded on X (0,1).
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A.4 Second order Hardy type operators

Let us see now that the second order Sobolev-Poincaré inequality follows from the bounded-
ness of the operator @, from X (0,1) to Y(0,1). In the next section we will see that for the
Gaussian measure the corresponding characterization follows.

A probability measure space (R", u) is of isoperimetric Hardy type (see e.g. [MMi3]) if
for any given isoperimetric estimator I, the following properties are equivalent for every r.i.
spaces X = X(R", ), Y =Y(R", u) :

(i) There exists a constant ¢ = ¢(X,Y) such that for any f € Lip(R"™),
7= [ tan], <elvrix (A12)
(i) There exists a constant ¢; = ¢;(X,Y’) such that for any 0 < g € X(0, 1) with supp g C
(0,1/2),
1Qr9lly 0.1y < cllgll 0,1y, (A.13)
where @) is defined as ), with I instead of I,,.

From now on, assume that p is such that (R", ) is of isoperimetric Hardy type. We will
denote for f € Ly(R"),

Ay ¢=P+/(f—P)dM
with

p(z) ::/fdqui:(/@ifdu)xi.

Let f € W2X(pn). Then |[Vf| € W'X(u). Moreover, if we assume that Q, is bounded
for positive functions from X (0,1) on Y (0,1), then, by Theorem A.3.5, it follows that

VA = [ IV fldp| < N4 fllx.
Y

Let us start now from WY () and consider Z = Y. We have that ||f — [ fdulz <
|V f|ly, and then @, : Y (0,1) — Z(0,1) is bounded. Therefore
@ X(0,1) = 2(0,1)
is bounded on positive functions supported on (0,1/2).

Hence, if @, : X(0,1) — Y(0,1) is bounded on positive functions supported on (0,1/2),

then for the same kind of functions

Q2 : X(0,1) = Y (0,1).
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Theorem A.4.1. Ifax < 1 and Q, : X(0,1) — Y(0,1) is a bounded operator (i.e.

||Qu9||Y(o,1) S HgHX(O,l) ifg=>0), then
(a) WX (u) =Y, and

(b)
If = Aslly SIEfllx  (f € WX (w)). (A.14)
Proof. (a) Suppose f € WZ’X(,u) and let 0 < t < 1, so that, by Corollary A.3.4,
@) S QA FIE) (@) + IV fll o (QuL) () + | fll 22wy

Consequently, since f; < fi* and @, is bounded from X(0,1) to Y(0,1), then Q,1 €
Y (0,1) and

1Al < 15 o S M fE o + IV Al @utlliv o + Iz

By condition ax < 1, since X — L'(p), it follows that

£l S M F 17 k0 + IV Al + 1l 2 1f e o

(b) Suppose f € WX (1) and apply Corollary A.3.4 to g = f — Ay € W% (1) to obtain
lglly S NQa(%gl:) vy + IVl llQullv 0.0y + gl 2

By the basic Poincaré inequality,

1Vl

- [orau],, <310 g Sl
i=1

and similarly, using the definition of p,

ol = [ =~ [ s £ IV = Bl S 15
=1

Therefore, it follows that ||g|ly < ||d*f]x- m
Proposition A.4.2. Ifax < 1 and for every f € WH¥ (),
7= [ tan], <1951

then
i — < |42 2.X
inf (If = Aslly SN flle (F € W2 (w).
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Proof. By hipothesis, by the equivalence of (A.12) and (A.13) in particular for I, for every
0<ge X(0,1) with supp g C (0,1/2),

1
ds H
s = con < lall<o-
| [ 9075 0, = 100von S sl
Then, by Theorem A.4.1, for every f € W2X(u),

. N < 2
At If = Ally Slldfllx. o

A.5 Examples: The Gaussian measure space

As in [MMi3], we consider R" endowed with the Gaussian measure vy = +,,, where for A C R"

v(A) ::/4¢n(x) dz, ¢n(x) = (2;)”/2e|x2/2.

In that situation the isoperimetric problem is solved by half-lines (cf. [Bor85] and [Bob]).
The isoperimetric inequality for v was found by V. N. Sudakov and B. S. Tsirelson [ST],
and by C. Borell [Bor], and the Gaussian isoperimetric profile (or Gaussian isoperimetric
function), is defined as

L(t) =¢(@7'(t)  (0<t<1),

where ® : R — (0,1) is the distribution function for ~,, extended by ®(—o0) = 0 and

O(+00) =1 ) ) )
®(r) :/ ¢1(s)ds :/ W6_82/2 ds.

The Gaussian isoperimetric profile is such that for 0 <t <1

(2) I(t) = I,(1 =),
(3) I1(t) = =1/1,(1),
(4) IL,(t) is concave, and

(5) I,(t) ~ t(log(1/t))*/? on [0,1/2]; more precisely, lim; ., ﬁ =1.
As noticed in [MMil], the operator Qog, defined on functions g > 0 supported by (0,1/2),

as

L,(t)

Ag(t) = Qlogg(t) = ’YT/t g<3)

ds
L,(s)

= (1 Jog(L/0)"* [ (s)(1+ log(1/5))"* .
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for any 0 < a < ay, is dominated by Q, since, using that ¢*(1 + log(1/t))*/? is increasing

near zero,
o 10 log(1/0)7

Ag(t) = TETB )1+ 10g(1/9) 2 S Quat)

Hence, if ay > 0, then A is bounded on X (0,1) (cf. [MMi5, Section 2.3]).

Remark A.5.1. If ay > 0, then also Q. is bounded on X (0,1), since
1/2 ds L(t) [Y? ds
t = S < 7_/ S .

Moreover, if ay > 0, since A is bounded on X (0,1), then, by [MMi3, Theorem 5,a],
it follows that the X —Y Sobolev-Poincaré inequalitiy holds. And then, since (R™,7) is of
isoperimetry Hardy type, Q. is bounded from X (0,1) to Y (0,1).

Note that

/2 p1/2 w < -
)= [ ] et 1 = Aa) - Qal).

since

" ds -~ 1/2 12N[7(t)_j’y(r>
/tfv(s)_(_bgt)/ — (=logr)Y/? ~ :

Condition Q%1 € X(0,1) implies @,1 € X(0,1). Indeed, Q,1(t) = ftl/Z(Ly(S))_ldS is an
unbounded continuous function which decreases to 0 on (0,1/2), and then (,1(a) = 1 for

some a € (0,1/2). For every t < a,

1/2 s
G0 = [ Q160775 > @110 - Q1)

and, if a <t <1/2, Q,1(t) < Q,1(a) = 1. So Q41 < X(0,q @31 + X(a1) and [[Q,1]|z(01) < 0.
In the Gaussian case, Theorem A.4.1 has the following converse:

Theorem A.5.2. Suppose that

If = Aslly SHEfllx (f € W2E().

Then for every g > 0 with supp g C (0,1/2),

||Q39||Y(0,1) S ||g||)’((0,1)7
||Qv 9||17(0,1) < ||9H)’((0,1)-
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Proof. Take g > 0 so that supp g C (0,1/2) and define

f(2) = Qg(®(ar) = / (@9 ]d—()

which is a function that only depends on x1, and in this case

p(a:):/fd7+</81fdv>x1.

Moreover,
o f1a) =~ GBI = ~(Qu) (@)
and

01 f(z) = g(®(x1)), |d*f(z)| = |07 f(x)] = |g(P(x1))].

Consequently, £3(t) = (Q24)(1). [V15(t) = (@) (). [d2f13(t) = g5(1). By substracting
and adding A to f, we obtain

1Q%glv o = If1ly S N fllx + 1Al = llgllx + [ As]y,

where it is easily checked that

1ALy S Az + 101 f ey = 1Q3glh + 1@l

By (A.10), [|@ygllr < llglls, and |@3glh + [1Q~9llr < N9l < llgllx0,) and we conclude
that
||Q§9||Y/(0,1) S ||9||X(0,1)-

With a similar approach we obtain the same conclusion for @,. O

A.6 Optimal second order Sobolev-Poincaré embed-
dings

In the appendix we showed that some of the developments done for first order derivatives
can be extended, somehow with the same techniques, to higher-order derivatives. In this
last section we want to obtain descriptions of the optimal range and domain for second order
Sobolev-Poincaré inequalities in R™ with the Gaussian measure. We will follow the proofs
used by A. Cianchi and L. Pick in [CiL], where they studied the optimal range and domain
in the Sobolev-Poincaré inequality.

From now on, let X and Y be r.i. spaces on (R", 7). We say that Y is the optimal range

for X in the Gaussian second order Sobolev-Poincaré inequality (A.14) if
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(a) inequality (A.14) holds, and

(b) if Z is any r.i. space on (R™, ~) such that (A.14) holds with Y replaced by Z, then
Y — Z.

Analogously, the space X is said to be the optimal domain for Y in the Gaussian second

order Sobolev-Poincaré inequality (A.14) if
(a) inequality (A.14) holds, and

(b) if Z is any r.i. space on (R",v) such that (A.14) holds with X replaced by Z, then
4 — X.

Finally, we say that (X,Y’) is an optimal pair in the Gaussian second order Sobolev-
Poincaré inequality (A.14) if Y is the optimal range for X and, simultaneously, X is the
optimal domain for Y.

Recall that given an r.i. space X, the associate space of X (see (1.19)) is

X' = {qb € Lo(R™); [ |o(z)(x)|dy(x) < oo for every ¢ € X},
R”l

equipped with the norm
[¢llx = sup ¢ () (x)]dy ().
lllx <1 JR™

The Lorentz-Zygmund spaces LP"(LogL)*(0, 1), introduced by C. Bennett and K. Rud-
nick (see [BeR]), are defined by the conditions

1/r
L41/p(log €)@ £ rﬂ)
[ lisotostyony = | (B EPUED S OIE) T <00 r <oc

SUPgs<q t/P(log €)* f*(t) < oo, r = 00.
Also exp LA(0,1) = L>>>=1/8(0,1) and LP(LogL)*(0,1) = LPP/?(0, 1).
Although we got quite a characterization of inequality (A.14), let us present other de-

scriptions of the norms of the optimal range and domain spaces in inequality (A.14). Denote
by Y (0,1/2) the subspace

{f € Lo(R™); 1fX0.1/2)v01) < o0}

Theorem A.6.1. Let X be an r.i. space such that ax < 1, and let'Y be the r.i. space whose

associate norm is given by

£l = 1Ay = | P(£7°(5)

S u

Lo(R™)).
(s) Iv(u)> (U)HX’(O,l/Q) (f € Lo(R"))
Then'Y is the optimal range for X in the Gaussian second order Sobolev inequality (A.14).

I

o
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Proof. It is enough to prove that

u

HP (f:*(s)ﬁ Ly(u)> () HX/(0,1/2)

o

defines an r.i. norm for any f € Lo(R™). The positive homogeneity and non-triviality follows
as usual. The triangle inequality follows by the subadditivity of the operator f — f7* and
the fact that X’(0,1/2) is an r.i. Banach space. The lattice and the Fatou properties follow
by the properties of the decreasing average f* and the r.i. norm in X(0,1/2). Moreover,

I < (i) I o

Finally, since ||g||z/(0,1/2) > [ |g|dm,, we obtain that ||g|ly:.1) > [ |g|dmn.

S ||1||X'(0,1/2) < 0.

X'(0,1/2)

Let g € Lo(R™). By Fubini’s theorem applied two times we obtain that

/1/2/1/2 () du dS
glu
lgll % 0,1/2)<1 I u I (S)

/ / / du ds
= sup su dt
gl %0,1/2)<1 ||f||y/(o <l ) 1,(s)

‘Y(O 1)

u
= sup P<f**(s) >(u)‘ =1
17+ (0,1 <1 T (s) Iy (u) X1(0,1/2)
Therefore,
[ ot s o < Dollonsn < sl
7(3) 701 = gllx,1/2) > 11911%(0,1)

Hence, for ¢ > 0 supported on (0, 1/2)
A H < \ .
H 9—Qg P01) ||9||X(0,1)

Then,

1/2 ds 1/2 12 ds
Qalvan = [ 975 o < il [ ot

Hence, by Theorem A.4.1, it follows that

< o .
7(0.1) HgHX(O,l)

1f = Aplly SN fllx - (f € W*E ().

To show that Y is the optimal range for X, suppose that Z is another r.i. space such
that

If = Apllz SN fllx— (F € WE(y)).
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Then, by Theorem A.5.2, for all g > 0 with supp g C (0,1/2), it follows that

|’Q39HZ(0,1) S HQHX(O,l) = ”9“)‘((0,1/2)-

Therefore, since

2 iz du ds
w | / / I T T H ;
lgll 2 (0,1/2)<1 (u) I,(s)11z(0,0)

1/2 /2 p1/2 du  ds
= sup it / / dt
||gux(o 1/2><1 £l 2201y <1 ) I, (s)

P %M @)

v v

||f||z/(o n<t X1(0.1/2)°

it follows that || f[|y+ 1) S I[fllz/0,1)- And hence, Y < Z and Y is the optimal range for X.
O

From now on, for u € Ly(R"), h ~ u means that there exists a measure preserving map
H:(0,1) — (0,1) such that h = h} o H = u} o H.

Lemma A.6.2. Let Y be an r.i. space satisfying’
exp L*(R",7) < Y — L(LogL)"*(R",~) (A.15)

and ay < 1. Define

/2 r1/2

7”

Jullx = sup (u € Lo(R™)).

(r)  1,(¢) HY(O,l)

Then ||-||x is an 1.i. norm and X is the optimal domain forY in the Gaussian second order
Sobolev embedding (A.14) .

Proof. Since @y < 1, we obtain that P is bounded on X (0, 1), that is, @x < 1. Since Q?Y
is bounded on positive functions supported on (0,1/2), then as in Theorem A.6.1 we obtain
that the hipothesis of Theorem A.4.1 holds. Therefore, by Theorem A.4.1, it follows that

If = Aslly S fllx - (f € W*E ().

Moreover, if Z is another r.i. space satisfying the same inequality, by Theorem A.5.2 we
see that, for all g > 0 with supp g C (0,1/2) we obtain that [|g[|¢o1) = Q29llv1) <

2The spaces exp L?(R™, v) and L(LogL)'/?(R",~) where used by A. Cianchi and L. Pick in [CiL] in their
study of the Sobolev-Poincaré inequality.
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19/ z(0,1) Which implies Z(0,1) < X(0,1) and hence X is the optimal domain for ¥ in the
Gaussian second order Sobolev embedding (A.14).

To see that || - ||x defines an r.i. norm we proceed as in [CiL]. We can see the lattice
property and the triangle inequality thanks to the same properties for Y(0,1) and some
classical facts in measure theory. Indeed, consider f,g € L§(R") such that f < g a.e. in
R™. Then, for any nonnegative function h ~ f, there exists, by [BeSh, Chapter 2, Corollary
7.6], a measure preserving map H : (0,1) — (0,1) such that h = hl o H = f> o H, and,
since f7 < g2 in (0, 1), then h < gy o H. Moveover, g5 o H ~ g since both functions are

equimeasurable (see [BeSh, Chapter 2, Corollary 7.2]). Hence,

1fllx < Nlgllx- (A.16)

The lattice property is consequence of (A.16).

Now, let us see the triangular one. First, observe that for any simple functions f, g in
R™ and & in (0, 1) such that h ~ f+ g, there exists simple functions hy and hy on (0, 1) (see
Examples 1.4, 1.6, Proposition 7.4, Corollary 7.6, and the paragraph before Example 7.7 in
[BeSh, Chapter 2]) such that

hy~ f, hg ~gand h=hs+ hy. (A.17)

Then, let now f,g € Lo(R™). It is well-known, from measure theory, that there exists a

sequence of nonnegative simple functions { f;} and {gx} such that

fe /" |f] and g, /" |g] as k — oo,

and, in particular,

Tim (fic+ g0); = (1] + lgl); in (0,1) (A.18)

by the properties of the decreasing rearrangement.

Given any h € L{(0,1) such that h ~ |f|+ |g|, there exists a measure preserving map H
such that h = hXoH = (|f|+]g|);0H. Then, defining the sequence {hy} by hy = (fi+gr)i0H
for k € N, we obtain that

hi, ~ fr + gi for k € N,

and, by (A.18),
lim Ay = h in(0,1).

k—o0

Moreover, by the subadditivity of the average function and by definition, it follows that

h (s) = (fe +96) 7 (s) < fi7(s) + 957 (s) < [7(s) +97(s) (s €(0,1),k €N). (A.19)
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Since fr and g are integrable, by (A.19) we see that hy is also equiintegrable in (0, 1) that

is, hy, is integrable and equimeasurable with fi + gr. Moreover, since the functions ; ( L 171( o)

are bounded for r € (t,1/2) and ¢ € (s,1/2), then the function [h(—())ﬁ is equiintegrable in

r € (t,1/2),t € (s,1/2). Therefore, by the monotone convergence theorem,

VR Ry a2 2R d
i [ Seria =l taig e )

Since the r.i. spaces have the Fatou property (recall Section 2 of Chapter 3), then, by (A.20),
it follows that

V212 gy 2 p 7“
| ] < ]| [ e

Therefore, taking supremum in (A.21) over all h € L (0, 1) such that h ~ | f|+|g|, we obtain

1/2  p1/2 h (7") dt
< fim; fH/ / ) _H , A.22
Il +lollx < smint | [ ar ] (4.-22)

We have sequences of functions hy such that h; ~ fir + gx. To finish, we need to find

two sequences related by ”equivalence” with the sequences {fx} and {gx}. For that, let us

observe that, by (A.17), there exists two sequences of functions {hy, } and {hg, } such that
hy, ~ fi, hg, ~ gr and hy, = hy, + hy, fork € N,

Furthermore, there exists two sequences of measure preserving maps {Hy, } and {H,, } such
that
hfk = (hfk)* oHy, = (fk)* o Hp, < I oHy, ~ [* for k € N,

and the same for g, replacing fi. by gr and f by g. Therefore,

/1/2 /1/2 hkmdr i H
- ,

<[ H/ /1/2 RoXaanl

- Y(Ol L,(t) Iy (o,

. / /1/2 Oka dr dt +”/ /1/29 o gk(T)dr dt H

N s t Ly(r) ['y(t) Y(0,1) s t Ly(r) L,(t) Iy o)

< |fllx +lgllx — (keN). (A.23)

By (A.16), since |f + g| < |f| + |g] a.e. in R™, it follows that ||f + gllx < |IIf] + lg]llx-
Hence, by (A.22) and (A.23), it follows the triangular inequality

If+gllx < [fllx +llgllx  (f;g9 € Lo(R")).
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To finish, let us see the rest of the required properties. Suppose that {f;} is a sequence
in Ly (0,1) such that f 1 f a.e. in (0,1). We have that || fxl|z0,1) < [lfes1llx(01) for & € N
by the lattice property. Furthermore, if & is any function such that h ~ f, then h = f> o H
for measure-preserving transformations H. Consequently, we have that f; = f,jV oH /
fioH =h~ ffor k€N, so that ||fk||;((0 1 /" IIfll%01)- By the inclusions we obtain that

11]lx N H/ / 1 dt H/ / dt H
X1 = 17(7“ 7(0,1) . ]V(t) Y(0,1/2)

5 \?2 5
~ HX(O’I/z)(S)(IV(sQ exp L4(0,1) H([ﬂs)) expL4(0,1/2)NH =0y < o0
and
1/2 *(7") dt
san 2 | [ [ 28 ()H
I,

1/2 p1/2 gt
= > . o
=[] >1|L(Logw(m) > ooy

Let us recall the Hardy-thtlewood mequalzty which states for every ¢, € Lo(R™) that

[ @b < [ o

Define the Hardy type operator T, 5 on Ly(0,1) as (cf. [CiL])

2 2
T,2f(s) = <IWT(S)>QSUPS&"§1/2 fW")(ﬁ) , s€(0,1/2]
S<s)> fr(1/2), se(1/2.1]

(u_

Lemma A.6.3. Let Y(0,1) and Z(0,1) be r.i. spaces. If T. o is bounded from Y'(0,1) to
7'(0,1), then, there exists a constant C(Y, Z) such that

JA A T I R ot

for every h € L (0, 1).
Proof. It follows by Fubini’s theorem twice applied, the boundedness of the operator, and

the Hardy-Littlewood inequality. O

Theorem A.6.4. Let Y be an r.i. space such that exp L*(R",v) — Y. If T, o is bounded on
Y'(0,1) and @y < 1, then, (A.15) holds, and the optimal domain X for Y in the Gaussian
second order Sobolev inequality (A.14) fulfils

1/2 1/2u*(r) dt
ull v ~ T dr H
e Y A A~ =1~ i

for u € Lo(R™), with absolute equivalence of constants.
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Proof. The function f(s) = 1 € Y’(0,1). Therefore, T, of € Y’(0,1), that is, (17§S))2 €
Y’(0,1) and hence (1+log(1/s)) € Y'(0,1). Therefore, exp L*(0,1) — Y”(0,1) and Y (0,1) —
L(LogL)'4(0,1).

Then, by definition,
1/2 1/2 dr
< =l /0. € Lo(R™)).
1 505515 e < M = 15lsan. (€ Lo@)
Hence, (A.14) holds for Y and X.
Conversely, by Lemmas A.6.2 and A.6.3 applied to the case Y (0,1) = Z(0, 1) we conclude
that, for f ~ h,

LR VA = S VA <o e
*T L(r) v(0,1) ~ (r) " L,(t) Iy
12 f (7") dt
< ~ .
- H/ / t)H(o,1) 1]z

Then, Z — X and the proof follows. O

To calculate the optimal domain and range for certain Sobolev spaces, we will make use

of the following result from [Muc].
Proposition A.6.5. Let 1 < p < oo and v,w in L (0,1).

fo < Cllvfller,y if and only if

e For every [ € Li(0,1), <
Lr(0,1)
WX(s,1)

X(0,s)
1%

< Q.
LP'(0,1)

sup

0<s<1 LP(0,1)

o For every f € Lg(0,1),

(s) JJ f(r)

< Cllwfllroa) if and only if
Lp(o,1)

X(s,1)
14

< 0.

su
P L' (0,1)

0<s<1

wWX(0,s)

LP(0,1)
The following proposition is a special case of a more general result in [GoBP].
Proposition A.6.6. Let p € [1,00) and v,w € L§(0,1).

e For every f € Ly(0,1)

/01 Q?ﬁ% (; Er)ff? (1) w(t)dt 5 / e

y

if and only if

sup Jo wit)dt < 0. (A.24)

<<t (I,(s) /s>2p [ u(t)dt
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e For every f € Ly(0,1)

/01 < sup ( : >2f§*(r)>pw(t)dt < /01 (P (t)dt

t<r<1 N (1)

if and only if either p =1 and

b gt

sup s 1y(t)

0<s<1 fos v(t)dt
orl <p<oo, (A.24) holds and

/

o ([ ) o) ([ (Gragap) o) <=

v 0

As an application, it follows that our operator T, 5 is bounded on LP?(LogL)*(0,1) for
p=qg=1land a>0,and for 1 <p<oo,1 <g<ooand a€R.

Theorem A.6.7. (i) Let p € [1,00). Then for every f € WL (v)
If = Asllzoosrye S Nl £l e (A.25)
Moreover, (LP, L?(LogL)?) is an optimal pair in (A.25).
(ii) For every f € W™ ()
1f = Afllesp e S 10 fl e (A.26)
Moreover, (L>, exp L) is an optimal pair in (A.26).
(iii) Let 3 € (0,00). Then for every f € WL ()

If =2l 2y S 12 fllexp - (A.27)

L1-8
Moreover, (exp L®, exp L%) is an optimal pair in (A.27).
Proof. (i) Let us take LP. Then the optimal range fulfils, by Theorem A.6.1 and Hardy’s

inequality

Iflson = |[P(F )5 57 )@

v Y

1
1+ log(1/u)

~ ‘

ron = |1 (@

LP'(0,1)
and, by [EKP, Theorem 2.7], it follows that since m is increasing

1
1+ log(1/u)

~ || fll e (Logryr(0,1)-

()

LP'(0,1)
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Set now Y = LP(LogL)?(0,1). Then, Y'(0,1) = L” (LogL)” (0,1) and hence, T, is
bounded on Y’(0,1). Therefore, by Theorem A.6.4 and Proposition A.6.5, it follows that

/2 p1/2 pr(p di
lson = || [ [ s
’ s Jio Ly(r)  L,(t)llLeog Lyr(0,1)
S Q2 < I llLeo)-

Conversely,

H/ /1/2 : t)(l—i—log(l/s)) o

Jxwsata+togtassn [ [ S

Then, L? is the optimal domain for LP(LogL)P in inequality (A.25).
(i) It follows similarly to [GoBP, Proposition 4.4, ii].
(iii) Consider now exp L’ = X. By Theorem A.6.4 and Proposition A.6.6 the optimal

range for X is given by
*ok U 2
— J(u o~ u
+(8) Iﬁ,(u)>( )HL(logL)l/ﬁ(0,1/2) ;i )< L(u ))
2 *

/01/2 [wr(s)ﬂ%—bg(l/s))l/ﬁdsg/1/2 sup S (r)

2 ()? 0 s<r<iyp (B2

1/2 . 1/8-1
| 556 (1+1080/9) " ds < U fllpos oo
0

) > || fllzro,)-

S u

1oy = [P 6=

L(LogL)/#(0,1/2)

(1 +1log(1/s))Pds

12

Conversely, by Hardy-Littlewood’s inequality

f:*<s>(%@)2

o

HfHY'(o,l)

L(LogL)'/#(0,1/2)

1/2 1/8
> [ 5 (108/9) " ds = Ul
0

Therefore, Y’'(0,1) = L(LogL)*/#~1(0,1), so that Y = exp L7, To see that exp L? is the
optimal domain for exp LT in inequality (A.27) we proceed as in [GoBP, Proposition 4.4,
] O
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