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Prologue

This thesis is a memory of my doctoral work concerning the theoretical analysis
of dynamically generated baryons resonances with charm in free space as well
as the study of the properties of the charmed baryon resonances and charmed
mesons in hot and dense matter. These studies have given rise to the following
scientific contributions:

• C. E. Jiménez-Tejero, I. Vidaña, A. Ramos. Open charm baryon resonances
beyond the zero range approximation. Phys. Rev. C 80, 055206 (2009).

• C. E. Jiménez-Tejero, L. Tolós, I. Vidaña, A. Ramos. Charm Hadrons in
Dense Matter. Few Body Systems, 50, 351-353 (2011).

• D. Gamermann, C. E. Jiménez-Tejero, A. Ramos. Radiative decays of dy-
namically generated charmed baryons. Phys. Rev. D, 83, 074018 (2011).

• C. E. Jiménez-Tejero, L. Tolós, I. Vidaña, A. Ramos. Open charm meson in
nuclear matter at finite temperature beyond the zero range approximation.
Phys. Rev. C, 84, 015208 (2011).

Other parts of my doctoral work, such as the study of hypernuclei with strange
and/or charm content, are not included in this thesis. The preprints in preparation
concerning these studies are the following:

• C. E. Jiménez-Tejero, I. Vidaña, A. Ramos. Binding energy of Λ hypernuclei
from realistic hyperon-nucleon interactions.

• C. E. Jiménez-Tejero, I. Vidaña, A. Ramos. Λc properties in finite nuclei
within a microscopic many-body approach.
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dispuesto a ayudar y ser un apoyo importante y a las últimas incorporaciones
Axel y Marina.

A los miembros del grupo de f́ısica hadrónica y nuclear, con los que he pasado
momentos memorables. En especial a Volodya, Artur, Assum y Muntsa.

Además de hacer una tesis, he tenido la oportunidad de ejercer la docencia
en varias asignaturas de la carrera. He compartido buenos momentos, y también



he aprendido mucha f́ısica con los profesores y compañeros de laboratorio. Gra-
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universitario. Muchas gracias a todos: Aina, Ábalon, Alicia, Anna, Àlex, Eneko,
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Lisa, Manuela, Noelia, Pilar, Richard, Sandra, Tamara y Xevi.

Y finalmente, un gracias infinito a mi familia, por todo su cariño y apoyo.





A mi familia





Contents

1 Introduction 23

1.1 The discovery of charm . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 From quarks to hadron molecules . . . . . . . . . . . . . . . . . . . 26

1.3 Charmed baryon spectrum . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 The TVME and the local approach . . . . . . . . . . . . . . . . . . 39

1.5 Goals of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

I Free space 43

2 Two body scattering formalism 45

2.1 The meson-baryon interaction . . . . . . . . . . . . . . . . . . . . . 46

2.1.1 The t-channel vector meson exchange kernel . . . . . . . . . 46

2.1.2 The zero-range approximation . . . . . . . . . . . . . . . . 52

2.1.3 The Weinberg-Tomozawa kernel . . . . . . . . . . . . . . . 52

2.1.4 On-shell kernels . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 The Bethe-Salpeter equation . . . . . . . . . . . . . . . . . . . . . 54

2.2.1 The Lippmann-Schwinger equation . . . . . . . . . . . . . . 57

2.2.2 The on-shell reduction of the B-S equation . . . . . . . . . 59

2.3 Characterization of bound states . . . . . . . . . . . . . . . . . . . 64

2.3.1 Pure bound states and resonances . . . . . . . . . . . . . . 64

2.3.2 Couplings to the different channels . . . . . . . . . . . . . . 66

9



10 CONTENTS

2.3.3 Cusps or threshold effects . . . . . . . . . . . . . . . . . . . 67

2.3.4 Last remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Charm versus strangeness 71

3.1 The Λc(2595) and the Λ(1405) resonances . . . . . . . . . . . . . . 72

3.2 Toy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Results for the charm sector . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Results for the strange sector . . . . . . . . . . . . . . . . . . . . . 83

4 Charmed baryon resonances 87

4.1 Going beyond the zero range approximation . . . . . . . . . . . . . 88

4.2 Results for the C = 1 sectors . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Λc resonances (I = 0, S = 0) . . . . . . . . . . . . . . . . . 93

4.2.2 Σc resonances (I = 1, S = 0) . . . . . . . . . . . . . . . . . 95

4.2.3 Ξc resonances (I = 1/2, S = −1) . . . . . . . . . . . . . . . 97

4.2.4 Ωc resonances (I = 0, S = −2) . . . . . . . . . . . . . . . . 101

4.2.5 Resonances of five quarks . . . . . . . . . . . . . . . . . . . 102

4.3 Dependence on model parameters . . . . . . . . . . . . . . . . . . . 103

4.4 The Λc(2595), Σc(2800), Ξc(2790) and Ξc(2980) resonances . . . . 105

5 Radiative decays of charmed baryons 109

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Radiative decay calculation . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



CONTENTS 11

II In-medium 125

6 Charmed hadrons in hot and dense matter 127

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Charmed sectors and free space ingredients . . . . . . . . . . . . . 129

6.3 Medium and finite temperature effects . . . . . . . . . . . . . . . . 130

6.4 In-medium results . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4.1 Cold matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4.2 Finite temperature . . . . . . . . . . . . . . . . . . . . . . . 145

7 Summary and Conclusions 149

Resumen 157

7.1 Espacio libre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Medio nuclear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Appendices 163

A The SU(4) meson-baryon coefficients 163

B Numerical solution of the L-S equation 175

B.1 Check of numerical stability . . . . . . . . . . . . . . . . . . . . . . 178

C Baryon-baryon-meson coupling constants 181

Bibliography 189



12 CONTENTS



List of Figures

1.1 The QCD coupling constant as function of the energy scale. . . . . 27

1.3 Charmed and strange baryon spectrum. . . . . . . . . . . . . . . . 37

2.1 Leading order tree level diagrams. . . . . . . . . . . . . . . . . . . 46

2.2 The zero–range approximation of the t-channel vector exchange

contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Diagrammatic representation of the Bethe-Salpeter equation. . . . 55

2.4 Diagrams representing the expansion of the Bethe-Salpeter equation. 56

2.5 The Λc(2595) resonance generated with the on-shell T (
√
s) matrix

for two regularization schemes of the meson–baryon propagator. . . 62

2.6 On-shell TVME kernel for the diagonal DN transition as a func-

tion of
√
s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Illustration of the transition of a pole from the fourth to the second

Riemann sheet, by varying the cut-off parameter. . . . . . . . . . . 68

3.1 Fit to the mass difference M(Λ+
c π

+π−)−M(Λ+
c ) plot. . . . . . . . 72

3.2 Sketch of the location of the Λ(1405) and the Λc(2595) resonances

between their respective first and second thresholds. . . . . . . . . 75

3.3 Dependence of the position of the resonances in the charm and

strange sectors for various models. . . . . . . . . . . . . . . . . . . 77

3.4 Cut-off dependence of the DN and πΣc resonances for the on-shell

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

13



14 LIST OF FIGURES

3.5 Cut-off dependence of the DN and πΣc resonances for the off-shell

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Cut-off dependence of the KN and πΣ resonances for the on-shell

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Cut-off dependence of the KN and πΣ resonances for the off-shell

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Dependence of t/m2
v on

√
s for different transition amplitudes. . . 88

4.2 The Λc(2595) for the off-shell TVME and TVMEt→0 models. . . . 89

4.3 Transition amplitude for the (I = 0, S = 0, C = 1) sector . . . . . 106

4.4 Transition amplitude for the (I = 1, S = 0, C = 1) sector. . . . . 106

4.5 Transition amplitude for the (I = 1
2 , S = −1, C = 1) sector . . . . 107

4.6 Transition amplitude for the (I = 1
2 , S = −1, C = 1) sector. . . . 107

5.1 Diagrams needed for the evaluation of the radiative decay of dy-

namically generated baryons. . . . . . . . . . . . . . . . . . . . . . 115

6.1 Imaginary part of the I = 0 and I = 1 DN → DN scattering

amplitudes at ρ0 and T = 0 MeV. . . . . . . . . . . . . . . . . . . . 136

6.2 The D and Ds self-energies and spectral functions at ρ0 and T =

0 MeV, for q = 0 MeV/c. . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 The imaginary part of the DsN → DsN scattering amplitude at

ρ0 and T = 0 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 The D̄ and D̄s self-energies and spectral functions at ρ0 and T =

0 MeV, for q = 0 MeV/c. . . . . . . . . . . . . . . . . . . . . . . . 141

6.5 The I = 0 DN → DN scattering amplitudes for different values

of ρ and T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.6 The D meson spectral function for different values of ρ, T and q. . 143

6.7 The Ds meson spectral function for different values of ρ, T and q. . 144

6.8 The D̄ meson spectral function for different values of ρ, T and q. . 145

6.9 The D̄s meson spectral function for different values of ρ, T and q. . 146

7.1 Summary of the results shown in Tables 3.6 and 3.7. . . . . . . . . 150

7.2 Summary of the results shown in Tables 4.4, 4.6, 4.8 and 4.10. . . . 152



LIST OF FIGURES 15

B.1 Dependence of the T matrix with the mapping employed. . . . . . 180

B.2 Dependence of the T matrix with the number of integration points,

and form factor employed. . . . . . . . . . . . . . . . . . . . . . . . 180



16 LIST OF FIGURES



List of Tables

1.1 The six flavors of quarks with their respective properties, mass and

quantum numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Quantum numbers (JP ) for a baryon and a meson in the tradi-

tional QM picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Quantum numbers (JP ) for different types of baryonic molecules. . 30

1.4 Quark components of the strange and charmed hyperons. . . . . . 34

1.5 Charmed baryons ordered by the year of the first observation. . . . 35

3.1 Branching ratio for the Λc(2595) decay modes. . . . . . . . . . . . 73

3.2 Properties of the Λc(2595) and the Λ(1405) resonances. . . . . . . 74

3.3 Summary of the effective coupled-channel models. . . . . . . . . . 76

3.4 SU(4) coefficients for the (I = 0, S = 0, C = 1) sector. . . . . . . 78

3.5 SU(3) coefficients for the (I = 0, S = −1, C = 0) sector. . . . . . 79

3.6 Parameters of the DN and πΣc resonances. . . . . . . . . . . . . . 82

3.7 Parameters of the KN and πΣ resonances. . . . . . . . . . . . . . 86

4.1 Meson-baryon states with C = 1 . . . . . . . . . . . . . . . . . . . 90

4.2 Experimental charmed baryon resonances with JP = 1
2

−
or un-

known. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 The coupled channel effect for the (I = 0, S = 0, C = 1) sector. . 93

4.4 Resonances in the (I = 0, S = 0, C = 1) sector. . . . . . . . . . . 94

4.5 The coupled channel effect for the (I = 1, S = 0, C = 1) sector. . 95

17



18 LIST OF TABLES

4.6 Resonances in the (I = 1, S = 0, C = 1) sector . . . . . . . . . . . 96

4.7 The coupled channel effect for the (I = 1
2 , S = −1, C = 1) sector. 98

4.8 Resonances in the (I = 1
2 , S = −1, C = −1) sector . . . . . . . . . 99

4.9 The coupled channel effect for the (I = 0, S = −2, C = 1) sector. 100

4.10 Resonances in the (I = 0, S = −2, C = 1) sector . . . . . . . . . . 101

4.11 The coupled channel effect for the (I = 1
2 , S = 1, C = 1) sector. . 102

4.12 Resonance parameters in the (I = 1
2 , S = 1, C = 1) sector for

different cut-off values. . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.13 Dynamically generated C = 1 baryons that can be identified with

the measured resonances. . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Couplings of the Λc(2595) pole to the different channels. . . . . . . 112

5.2 Couplings of the Σc(2800) pole to the different channels. . . . . . . 113

5.3 Meson-baryon couplings of the Ξc(2790) and Ξc(2980) resonances. 114

5.4 Results for the radiative decay of the Λc(2595) → Λcγ compared

with other theoretical approaches. . . . . . . . . . . . . . . . . . . 120

5.5 Comparative results of the radiative decay of the Λc(2595)→ Σ+
c γ

with other theoretical approaches. . . . . . . . . . . . . . . . . . . 122

6.1 Meson-baryon states involved in DN , D̄N , DsN , or D̄sN interac-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Charmed baryon resonances involved in the study of in-medium

charmed mesons properties. . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Nucleon scalar (Σs) and vector (Σv) self-energies for various den-

sities and temperatures. . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1 The SU(4) Cij,v coefficients for (I = 0, S = 0, C = 1). . . . . . . . 164

A.2 The SU(4) Cij,v coefficients for (I = 1, S = 0, C = 1). . . . . . . . 166

A.3 The SU(4) Cij,v coefficients for (I = 1
2 , S = −1, C = 1). . . . . . . 168

A.4 The SU(4) Cij,v coefficients for (I = 2, S = 0, C = 1). . . . . . . . 168

A.5 The SU(4) Cij,v coefficients for (I = 3
2 , S = −1, C = 1). . . . . . . 169

A.6 The SU(4) Cij,v coefficients for (I = 0, S = −2, C = 1). . . . . . . 170

A.7 The SU(4) Cij,v coefficients for (I = 1, S = −2, C = 1). . . . . . . 171

A.8 The SU(4) Cij,v coefficients for (I = 1
2 , S = 1, C = 1). . . . . . . . 171



LIST OF TABLES 19

A.9 The SU(4) Cij,v coefficients for (I = 3
2 , S = 1, C = 1). . . . . . . . 172

A.10 The SU(4) Cij,v coefficients for (I = 1
2 , S = −3, C = 1). . . . . . . 172

A.11 The SU(4) Cij,v coefficients for (I = 1
2 , S = −1, C = −1). . . . . . 172

A.12 The SU(4) Cij,v coefficients for (I = 1, S = 0, C = −1). . . . . . . 173

A.13 The SU(4) Cij,v coefficients for (I = 0, S = 0, C = −1). . . . . . . 173

C.1 The α and β coefficients for the channels involved in the radiative

decay of resonances into Λc and Σ+
c . . . . . . . . . . . . . . . . . . 183

C.2 The α and β coefficients for the channels involved in the radiative

decay of resonances into Ξ+
c and Ξ′+c . . . . . . . . . . . . . . . . . . 184

C.3 The α and β coefficients for the channels involved in the radiative

decay of resonances into Ξ0
c and Ξ′0c . . . . . . . . . . . . . . . . . . 185

C.4 The α and β coefficients for the channels involved in the radiative

decay of resonances into Σ++
c . . . . . . . . . . . . . . . . . . . . . . 186

C.5 The α and β coefficients for the channels involved in the radiative

decay of resonances into Σ0
c . . . . . . . . . . . . . . . . . . . . . . . 187



20 LIST OF TABLES



Notation

We present the different abbreviations and symbols which will appear in this

thesis

B-S Bethe-Salpeter

L-S Lippman-Schwinger

KSFR Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin

W-T Weinberg-Tomozawa

s, t, u Mandelstam variables

TVME t-vector meson exchange

DR Dimensional regularization

S Strangeness

C Charmness

T Topness

B Bottomness

I Isospin

J Total angular momentum

P Parity

L Orbital angular momentum

l Relative orbital angular momentum
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Q Electric charge

σi Pauli matrices

γi Gamma matrices

q (q) quark (antiquark)

u Up

d Down

s Strange

c Charm

b Bottom

t Top

M Meson

B Baryon

R Resonance

mi Mass of the meson i

Mi Mass of the baryon i

λ Cut-off momentum

f Meson coupling constant

g Universal coupling constant

Γ Resonance width

gi, gRBM Coupling of a resonance to a meson–baryon channel (i)

gBBM Baryon-baryon-meson coupling

gγMM Photon–meson–meson coupling

T Temperature

ρ0 Normal nuclear saturation density
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Introduction

1.1 The discovery of charm

The Quark Model (QM), proposed independently by Gell-Mann [GM64] and

Zweig [Zwe64] in 1964, was already established in the early seventies. In 1968

it was shown in a series of deep inelastic experiments at the Stanford Linear

Accelerator Center (SLAC) [B+69a, B+69b] that protons were not elementary

particles. Nevertheless, the physics community were reluctant to identify those

smaller point-like objects as quarks. Particle physicists were aware of the QM

but there was a sense that quarks might just be a mathematical framework to

understand the complexity of the nature but not necessarily the reflection of

physical real objects. On the one hand, there was a zoo of particles with a variety

of different properties, and all of them could fit in the QM by the combination of

three different quarks in the case of baryons and of a quark and an antiquark in the

case of mesons. However, there were no traces of a particle that could be identified

23
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as a quark. At that time, the theory of Quantum Chromodynamics (QCD) was

in the process of development. The formalism was beginning to show that there

was a reason why a quark cannot be seen by itself1, but that idea did not really

spread so much. The physics community needed a stronger experimental proof

of the real existence of quarks. This proof finally arrived in November of 1974,

giving name to the so-called, “November revolution”.

By that time there were two big experimental facilities in the United States

where experiments were going in parallel with one another. Although they worked

quite differently, both of them contributed to a big discovery. On the one hand, the

SLAC facility was upgraded to channel positrons and make them collide against

electrons. It was a matter–antimatter clean collision, converting the initial energy

in the creation of new particles. Besides, researchers at the Brookhaven laboratory

were running the same kind of experiment but in the other way around, selecting

electron-positron pair events from the data of proton-target collisions. In the

summer of 1974 the Ting’s group at Brookhaven noticed something special in the

data, a bump in the cross-section around 3 GeV. It was a very unusual signal

because it was very narrow and it had a high statistic in the rate of events,

many orders of magnitude higher than anything seen before. That bump was

indicating a new sort of particle in nature, a resonance decaying into a muon–

antimuon pair around 3 GeV. Meanwhile, the Burton Richter’s team at SLAC

hit energies around 3 GeV in November of 1974, where particles were appearing

at hundred times the regular event rate. This is where both stories converge, the

particle discovered at SLAC was exactly the same which was discovered by the

Brookhaven’s group. Both papers were submitted at the same time to a journal

in 11th of November of 1974 [A+74a, A+74b] and two years later they shared

the Nobel Prize. Since the finding of the particle was a two discoverers success,

it was finally referred as J/ψ2. The very special features about the J/ψ particle

were its narrowness, which means that it lives for a really long time, combined

with its high mass3. Almost immediately it was understood that the J/ψ was a

1When two quarks are separated in a high-energy collision, the color force creates a quark
and an anti-quark pair out of the vacuum.

2The first letter J looks like the Chinese character for Ting’s name and SLAC group proposed
the greek letter ψ in connection to the SPEAR accelerator.

3Particles of such high masses were expected to decay more rapidly via strong processes.
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meson hiding a new kind of property.

Years before the “November revolution” there were predictions of a fourth

type of quark in nature. By that time, the quark picture, composed of two light

quarks and one heavy one, was not symmetric. The light up (u) and down (d)

quarks make most of the ordinary matter and have 2/3 and−1/3 electrical charge,

and the strange (s) quark is a heavier version of the d quark but unstable. The

question easily arises and a heavy partner of the u quark was expected to exist.

In 1964, J. Bjorken and S. L. Glashow suggested [BG64] the existence of a new

type of quark, which they named “charm” (c), because its incorporation in the

QM would make the quark picture very elegant. However, at that time it was still

an speculative idea without the support of a firm theoretical prediction. On top

of that, there was no experimental evidence yet. As the years went by, stronger

arguments were made by S. L. Glashow, J. Iliopoulos, and L. Maiani [GIM70].

Their proposal, now called “GIM mechanism” from the initials of the three au-

thors, was a convincing argument for the existence of the still undiscovered charm

quark to solve a number of problems that particle physicists were facing at that

time4. The fact that the mass of the J/ψ particle was twice the predicted mass

for the charm quark, induced to understand that it was a meson made up of a

charm and an anti–charm quark pair, a system called “charmonium”. Then, a

whole industry of charm began in particle accelerators, all the new open (charm

content C 6= 0) and hidden (C = 0) charmed baryons and mesons predicted in

QM where found experimentally.

The “November revolution” was not about new ideas, it was about converting

the idea of a quark from an abstract proposition to a well established entity in

nature. The finding of the J/ψ particle was a critical event that lead physicists

to believe in quarks as the building blocks of hadrons.

4The flavor-changing decay modes involving the Z-Boson in weak interactions were predicted
but not observed to happen. The GIM mechanism naturally suppress Flavor Changing Neutral
Currents (FCNC) as well as transitions in weak interactions, by the introduction of the charm
quark, whose mass should be at the GeV scale.
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Name Mass [MeV] JP Q
e

I I3 (S,C,B,T)

“up” u 1.7− 3.3 1
2

+ 2
3

1
2

1
2

(0,0,0,0)

“down” d 4.1− 5.8 1
2

+ − 1
3

1
2
− 1

2
(0,0,0,0)

“strange” s 101+29
−21

1
2

+ − 1
3

0 0 (-1,0,0,0)

“charm” c 1270+70
−90

1
2

+ 2
3

0 0 (0,1,0,0)

“bottom” b 4200 + 70 1
2

+ − 1
3

0 0 (0,0,1,0)

‘top” t 172000± 900± 1300 1
2

+ 2
3

0 0 (0,0,0,1)

Table 1.1: The six flavors of quarks with their respective properties, mass and quantum
numbers.

1.2 From quarks to hadron molecules

Nowadays, it is generally accepted that QCD is the underlying theory of the

strong force. Quarks (see Table 1.1) are the fundamental constituents which in-

teract via the strong force, by the interchange of particles called gluons5. We do

not observe isolated quarks in nature but bound states of quarks called hadrons.

Hadrons are classified in two groups, baryons and mesons which have half-integer

and integer spin, respectively. In the most common and simple picture, baryons

are described as a compound of three quarks and mesons as a quark–antiquark

pair. Before going into more details on the hadron spectrum, we will give a gen-

eral description of the highly non linear nature of the strong force and of the

main theoretical techniques employed to understand it. As QED, QCD depends

on a coupling constant which defines the strength of the interaction between con-

stituents. To understand the main features of the strong force we show the energy

dependence of the QCD coupling constant in Fig. 1.1 in which we can distinguish

two different energy regimes. For high momentum transfer Q (or short distance),

the coupling constant αg reaches small values so that a perturbative expansion

5QCD was built in analogy to QED, the theory of the electromagnetic force between charged
particles interacting via the emission and absorption of photons.
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correlations, estimates of theoretical uncertainties, in gen-
eral, are performed in widely different ways, using different
methods and different ranges of parameters.

The presence of correlations, if using the equations given
above, is usually signalled by χ2 < ndf. Values of χ2 > ndf,
in most practical cases, are a sign of possibly underestimated
errors. In this review, both these cases are pragmatically han-
dled in the following way:7

In the presence of correlated errors, described by a co-
variance matrix C, the optimal procedure to determine the
average x of a sample of measurements xi is to minimise
the χ2 function

χ2 =
n∑

i,j=1

(xi − x)
(
C−1)

ij
(xj − x), (17)

which leads to

x =
(∑

ij

(
C−1)

ij
xj

)(∑

ij

(
C−1)

ij

)−1

(18)

and

"x2 =
(∑

ij

(
C−1)

ij

)−1

. (19)

The choice of Cii = ("xi)
2 and Cij = 0 for i "= j re-

tains the uncorrelated case given above. In the presence
of correlations, however, the resulting χ2 will be less than
ndf = n − 1. In cases where correlations between a particu-
lar pair of measurements i and j are known or expected, the
corresponding non-diagonal matrix elements Cij and Cji

are set to ρ"xi"xj , where ρ is the respective correlation
coefficient ranging between 0 (uncorrelated) and 1 (100%
correlation).

If the resulting χ2 is still smaller than ndf, the method
proposed in [82] will be applied: an unknown additional,
common degree of a correlation f is introduced between all
measurements, by choosing Cij = f ×"xi ×"xj for i "= j ,
and f is adjusted such that χ2 = ndf.

In cases where the assumption of uncorrelated errors re-
sults in χ2 > ndf, and without knowledge about which of the
errors "xi are possibly underestimated, all individual errors
are scaled up by a common factor g such that the resulting
value of χ2/ndf, using the definition for uncorrelated errors,
will equal unity.

Note that both for values of f > 0 or g > 1, "x in-
creases, compared to the uncorrelated (f = 0 and g = 1)
case.

7Since most measurements and their respective experimental and theo-
retical errors are defined and estimated in different ways, in this review,
as already done previously, only the total uncertainties are considered,
and no attempt is made to consistently separate experimental and the-
oretical errors.

4.2 Determination of the world average

The eight different determinations of αs(Q
2) summarised

and discussed in the previous sections are listed in Table 1
and are displayed in Fig. 5. The energy dependence of these
results exactly follows the expectation of the QCD predic-
tion of the running coupling. It is therefore straightforward
to extrapolate all measurements of αs(Q

2) to the common
scale of MZ , using the procedures and equations given in
Sect. 2. The corresponding values of αs(MZ0) are listed in
Table 1 and displayed in Fig. 6. Applying (14), (15) and

Fig. 5 Summary of measurements of αs as a function of the re-
spective energy scale Q. The curves are QCD predictions for the
combined world average value of αs(MZ0 ), in 4-loop approximation
and using 3-loop threshold matching at the heavy quark pole masses
Mc = 1.5 GeV and Mb = 4.7 GeV. Full symbols are results based
on N3LO QCD, open circles are based on NNLO, open triangles and
squares on NLO QCD. The cross-filled square is based on lattice QCD.
The filled triangle at Q = 20 GeV (from DIS structure functions) is
calculated from the original result which includes data in the energy
range from Q = 2 to 170 GeV

Fig. 6 Summary of measurements of αs(MZ0 ). The vertical
line and shaded band mark the final world average value of
αs(MZ0 ) = 0.1184 ± 0.0007 determined from these measurements

Figure 1.1: Summary of measurements of the strong coupling constant of QCD as func-
tion of the energy scale. There are two distinct energy regimes, confinement
at low energies and asymptotic freedom at high energies. Plot taken from
[Bet09].

is allowed for calculations. This region is referred to as the asymptotic freedom

regime and it gives information on the interaction of quarks and gluons at short

distances, where they interact weakly and behave as free particles. However, when

Q approaches small values, the constant αg increases dramatically and therefore

one cannot longer rely on perturbative methods. In this low-energy regime quarks

and gluons interact strongly and therefore are confined into hadrons. In this way,

to study hadron spectroscopy, which lay in the Q ≈ 1 GeV region, one has to

build non-perturbative methods that can describe the rich spectrum of hadrons

observed.

The only approach to exactly solve QCD at low energy is lattice QCD theory.

This method has the power of calculating the hadron spectrum from first princi-
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ples (quarks and gluons) without any assumption. It is formulated in a discrete

space-time lattice and the only parameters are the bare masses of the quarks

and the strong coupling constant. The physical quantities have a well behaved

limit when the lattice spacing a tends to zero, and gives the continuum QCD.

However, validating QCD through lattice theory needs high time consuming nu-

merical simulations and the size of the uncertainties depend on the computer

technology, which needs to be improved.

Alternative and complementary methods to lattice have also been developed

to understand QCD at low energies. Typically employed are the phenomenolog-

ical models such as an effective field theory inspired on QCD. In this kind of

approaches, one has to build a theory which describes the specific system with

hadronic degrees of freedom, ignoring the substructure at higher energies (quarks

and gluons). Specifically in this thesis we will focus on studying one sort of baryon

resonances using effective field theory techniques.

Now, let’s go back again to the hadron spectrum. In one side, it is accepted

that the most common observed baryons are made of three quarks (qqq) or of a

quark–antiquark pair (qq) in the case of mesons. In Table 1.2 we show the different

meson and baryon JP states that one can build in the mentioned traditional

configurations, depending on the total spin of the quarks and the orbital angular

momentum (L). The QM is mostly interested in describing hadrons with no

angular momentum L = 0, also called ground state hadrons. As we show in

Table 1.2, taking into account the spin and the parity of a quark ( 1
2

+
) and of an

anti–quark ( 1
2

−
), the quantum numbers for the ground state baryons in the qqq

configuration correspond to JP = 1
2

+
, 3

2

+
, while JP = 0−, 1− correspond to the

ground state mesons in the qq configuration. Apart from the traditional picture

of hadrons, there is no fundamental rule which forbids any other kind of bound

states between quarks. The complete wave function for a baryon can be expressed

(excluding gluon degrees of freedom) as a superposition of many configurations

|B >→ |qqq > , |qqqqq > , |qqqqqqq > ... (1.1)

and for a meson

|M >→ |qq > , |qqqq > , |qqqqqq > ... (1.2)



1.2. FROM QUARKS TO HADRON MOLECULES 29

Baryon (qqq) Meson (qq)

spin JP (L = 0) JP (L = 1) spin JP (L = 0) JP (L = 1)

↑↓↑ 1
2

+ 1
2

−
, 3

2

− ↑↓ 0− 1+

↑↑↑ 3
2

+ 1
2

−
, 3

2

−
, 5
2

− ↑↑ 1− 0+, 1+, 2+

Table 1.2: Quantum numbers (JP ) for a baryon and a mesons in the traditional QM
picture for different values of the orbital angular momentum, L = 0, 1.

Those configurations different from the traditional ones are called exotic. The fact

that some of the observed baryons (mesons) do not fit with the QM predictions

for the qqq (qq) configuration support the idea of the existence of other exotic

types of bound states.

In this thesis we are interested on studying the baryon resonances which can

be formed from the interaction of a meson and a baryon. Such baryons and in

general all hadron molecules are referred as dynamically generated resonances as

their existence depends on the attractive character of the dynamics between the

interacting hadrons. As we will see, the Λ(1405) resonance from the strange sector

and its charm counterpart, the Λc(2595) resonance, are both good examples of an

exotic baryon in the spectrum. We show in Table 1.3 different baryon molecules

that can be formed from the interaction of ground state mesons, pseudoscalar 0−

or vector 1−, and ground state baryons with 1
2

+
or 3

2

+
.

A series of pioneer works [BF61, Wyl67, DWR67, LW67, Raj72, SW88], based

on a t-channel vector meson exchange force, already predicted a wealth of s-wave

baryon resonances generated by coupled channel dynamics with effective hadronic

degrees of freedom rather than quarks and gluons. The earlier approaches have

been readapted in the last decade to the modern language of chiral Lagrangians

[KSW95, NRA01a, OR98, MO00, OOR00, OM01, NRA01b, IOVV02, LK02,

GRNRAVV03, ORB02, ROB02, JOO+03, OPV05, BNW05, BMN06, HJH08,

HJR08]. Also, many resonances in the light SU(3) sector, which cannot be de-

scribed properly by quark models [CI86] unless substantial meson-baryon compo-

nents are included [GVV08], have been identified with dynamical states generated
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Baryon molecule (qq)(qqq)

meson⊕baryon JP (L = 0) JP (L = 1)

0− ⊕ 1
2

+ 1
2

− 1
2

+
, 3

2

+

0− ⊕ 3
2

+ 3
2

− 1
2

+
, 3

2

+
, 5

2

+

1− ⊕ 1
2

+ 1
2

−
, 3

2

− 1
2

+
, 3

2

+
, 5

2

+

1− ⊕ 3
2

+ 1
2

−
, 3

2

−
, 5

2

− 1
2

+
, 3

2

+
, 5

2

+
, 7

2

+

Table 1.3: Quantum numbers (JP ) for the different baryonic molecules which can be
dynamically generated from the interaction of a meson (0− or 1−) and a

baryon ( 1
2

+
or 3

2

+
), for two different values of the relative orbital angular

momentum, L = 0, 1.

from the interactions of mesons of the pseudoscalar 0− octet with the 1
2

+
ground

state baryons. Some consequences of these studies, such as the two-pole nature of

the Λ(1405), are confirmed through the analysis [MOR05, JOS09] of different ex-

perimental reactions [TEFK73, P+04, B+77]. In recent years it was demonstrated

that, besides the s-wave baryon resonances, many more states can be generated

dynamically. Baryon resonances with JP = 3
2

−
were studied based on the leading

order chiral Lagrangian with the decuplet 3
2

+
fields [KL04a, SOVV05, RSMO06,

DOS06b]. D-wave baryon resonances were also generated dynamically with vector

meson degrees of freedom [LWF02, GRNS06, TGRN08, GOV09, SSOV10, OR10].

Another promising line of research is the recent interpretation of low lying pos-

itive parity states like the JP = 1
2

−
resonances as molecular states of two pseu-

doscalar mesons (0−) and one baryon ( 1
2

+
) [MTKO08b, MTKO08a, KMTO08,

JKE08, KEJ08]. All these results support the so-called hadrogenesis conjecture,

formulated a few years ago by Lutz and Kolomeitsev, according to which res-

onances not belonging to the large-Nc ground state of QCD are generated by

coupled-channel dynamics [LK02, LK01, Lut02, LWF02, LK04b].

The coupled-channel unitary scheme was extended to include the charm de-
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gree of freedom for the first time by Lutz, Kolomeitsev and Hofmann in [KL04a,

KL04b, LK04b, HL04, HL05, HL06, LK04a, LK05], and later by other authors

[GOSVV07, GO07, TSBM04, MR06], motivated in part by the clear parallelism

between the behavior of the Λ(1405) in the C = 0, S = −1 sector with the

Λc(2595) in the C = 1 and S = 0 one.

In all the mentioned models, which generate resonances dynamically, an in-

teraction based on the t-channel exchange of vector mesons is used as the driving

force for the s−wave scattering of pseudo-scalar mesons off ground state baryons.

The limit t → 0 is implemented, leading to a vector type Weinberg-Tomozawa

(W-T) zero-range interaction. To be consistent with the spin-flavor Heavy Quark

Symmetry that develops in this heavy sector [IW89, Neu94, MW00], the vector

mesons and J = 3
2

+
baryons have recently been included in the basis of meson-

baryon states, employing a static spin-flavor SU(8) scheme [GR+09] similar to

that developed in the light sector [GRNS06, TGRN08].

1.3 Charmed baryon spectrum

Charmed baryons refer to the set of baryons which contain at least one charm

quark. The charm flavor can be introduced by extending the SU(3) symmetry

group to the SU(4) one, which represents the baryon spectra made of u, d and s

light quarks. Therefore, the SU(4) decomposition of a three-quark state reads:

q ⊗ q ⊗ q ≡ 4⊗ 4⊗ 4→ 20S ⊕ 20′MA
⊕ 20′MS

⊕ 4S (1.3)

where the 20S-plet is symmetric under the interchange of any two quarks, the

20′MA
- and 20′MS

-plets have mixed symmetry and describe the same states, and

the 4-plet is symmetric. Here the 20-plet and the 20′-plets explain all the charmed

baryons in the ground state.

Due to Pauli exclusion principle the baryon wave function must be antisym-

metric6 and then the 20-plet and the 20′-plets are paired with the J = 3
2 and

6The total wave function of a baryon is

|Ψ >A= |Ψcolor >A ×|ΨspinΨflavorΨspace >S , (1.4)

where A and S refers to antisymmetric and symmetric character of the wave function.



32 CHAPTER 1. INTRODUCTION

Figure 1.2: The SU(4) multiplets made of u, d, s and c quarks. The 20-plet (a), the
20′-plets (b) and the 4-plet. Taken from PDG [N+10].

the J = 1
2 baryons, respectively, as it is illustrated in Fig. 1.2. The SU(3) light

baryon multiplets are contained in the SU(4) representation and form the basis

of the 20-plet and the 20′-plets, as it can be seen in the Figure. If the symmetry

were exact, all baryons would acquire the same mass. The multiplets containing

only u and d quarks exhibit an almost excellent isospin symmetry (mu ≈ md ≈ 0)

but due to the finite mass of the strange quark (ms ≈ 150 MeV) the SU(3) is an

approximated although still well behaved symmetry that describes the spectra of

strange baryons. In the case of the SU(4) symmetry group, although it is largely

broken by the large mass of the charm quark (mc ≈ 1.2 GeV) it works surpris-

ingly well when describing the charmed baryon spectra. All the observed baryons

are described in the Particle Data Group (PDG) [N+10] and are classified by

its mass7, name8, and isospin (I)9. Thus, the baryons made of u, d quarks are

7The mass of a state is the energy where the maximum of the peak is located.
8The name of the different baryons are related to the flavor content.
9There are baryons with different isospin number because the u and d quarks have I = 1

2
(see Table 1.1).
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named as N (I = 1
2 ) or ∆ (I = 3

2 ). If they consist on two u, d quarks and one s

quark they are referred as Λ (I = 0) and Σ (I = 1). Those with one u or d quark

and two s quarks are called Ξ (I = 1
2 ) and in the absence of u and d quarks they

are called Ω (I = 0) (see Fig. 1.4). If we replace one of the s quarks in the latter

configurations by a c quark the suffix c is added to the particle names and then

we obtain the Λc, Σc, Ξc and Ωc charmed baryons. If replacing two s quarks by

two c ones we have the doubly charmed baryons, Ξcc and Ωcc. Finally, the triply

charmed baryon is the Ωccc state10.

The spectrum for the Λc and Σc states is expected to be similar to the strange

one and in the case of Ξc states the number of excited states is supposed to be

richer than that of the Ξ spectrum, as it contains both strange and charm flavor.

The study of charmed hadrons is receiving an increased attention thanks to

the efforts of a series of collaborations, both at lepton colliders (CLEO, BELLE,

BaBar) and hadron facilities (CDF@Fermilab, PHENIX and STAR@RHIC,

FAIR@GSI, ALICE@LHC). The new results confirm with better statistics pre-

viously seen charmed states and are also giving rise to the discovery of a large

amount of new hadrons.

At present, 37 charmed baryons are known and they are grouped in 21 isospin

multiplets. All of them have charm content C = 1, doubly or triply charmed

baryons are still missing in the spectra. In the Table 1.5 we show the different

charmed baryons ordered by the first experimental observation of at least one

of the isospin multiplets. As it can be seen, the number of charmed baryons

detected has increased considerably in the last years since the first measurement

of the Σc(2455)++ state [C+75] in 1975. We also represent the different charmed

states in Fig. 1.3 (white panels) and compared with the best established isospin

multiplets with strange content S = −1 (grey panels).

Most of the charmed ground state baryons which belong to the SU(4) mul-

tiplets have been observed. In Fig. 1.3 they are represented with a solid circle

(JP = 1
2

+
) or a solid square ( 3

2

+
). The still experimentally missing charmed

baryons are the iso-doublet states Ξcc with JP = 1
2

+11 and the triply charmed

10The same is applied if we replace the s quark by a b quark, and then the b suffix is added
to the particle name. Baryons containing the t quark are not expected to be observed because
of the short time decay.

11Note that there are evidences of a doubly charmed state at 3520 MeV, which is assigned
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Strange Charm

C=0 C=1 C=2 C=3
Baryon qqq Baryon qqq Baryon qqq Baryon qqq

Λ0 uds Λ+
c udc 7 7

Σ+ uus Σ++
c uuc 7 7

Σ0 uds Σ+
c udc

Σ− dds Σ0
c ddc

Ξ0 uss Ξ+
c usc Ξ++

cc ucc 7

Ξ− dss Ξ0
c dsc Ξ+

cc dcc

Ω− sss Ω0
c ssc Ω+

cc scc Ω++
ccc ccc

Table 1.4: Quark components of the strange baryons and the charmed ones, with charm
content C = 1, 2 or 3.

state, the Ωccc (JP = 3
2

+
). Note that the isoscalar Λc and Λ ground states with

JP = 3
2

+
are forbidden states, as well as the JP = 1

2

+
quantum number for the

strange Ω− ground state. Moreover, in the Ξc spectrum there are two additional

ground state baryons with JP = 1
2

+
, named as Ξ′+c and Ξ′0c , which belong to

the mixed symmetry 20′-plets. In addition to the charmed baryons of the ground

state, there exists a whole spectrum of excited resonances. Despite of the well es-

tablished status of most of the charmed baryons, none of their JP quantum num-

bers have been measured with the exception of the excited Λc(2595)+ (JP = 1
2

−
)

and Λc(2880)+ (JP = 5
2

+
) states. The rest of the JP quantum numbers are de-

duced from their decay modes or by comparison of the measured masses with the

expectation from QM.

In particular, we want to determine whether some of the excited baryon states

in the spectrum behave more as a baryon molecule dynamically generated from

the s-wave interaction of a meson and a baryon, instead of being a genuine qqq

state. The states with negative parity are candidates of being that sort of baryon

molecule for s-wave interaction, and, depending on the interacting particles (see

to the production of the Ξ+
cc state with JP = 1

2

+
[M+02].



1.3. CHARMED BARYON SPECTRUM 35

First observation Particle

1975 Σc(2455) [C+75]

1980 Λ+
c [C+80]

1983 Ξc [B+83]

1985 Ω0
c [B+85]

1993 Λ+
c (2625) [A+93a]

Σc(2520) [A+93b]

1995 Λ+
c (2595) [E+95]

Ξc(2645) [A+95]

1999 Ξc(2815) [A+99]
Ξ′c [J+99a]

2001 Λ+
c (2880) [A+01]

Λ+
c (2765) [A+01]

Ξc(2790) [C+01a]

2005 Σc(2800) [M+05a]

2006 Ξc(2980) [C+06a]
Ξc(3080) [C+06a]
Ω0
c(2770) [A+06]

2007 Λ+
c (2940) [A+07a]

2008 Ξc(2930) [A+08a]
Ξc(3055) [A+08b]
Ξc(3123) [A+08b]

Table 1.5: Charmed baryons ordered by the year when the first member of every iso-
multiplet was observed in the different isospin families, the Λc (I=0), Σc
(I=1), Ξc ( 1

2
) and Ωc (I=0).
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Tab. 1.3), they can have JP = 1
2

−
, 3

2

−
or 5

2

−
. We have already commented in Sec.

1.2 that models based on a coupled-channel aproach and Chiral Lagrangians have

succesfully described states from the light sector which did not fit in the QM, like

the already mentioned Λ(1405) resonance. Historically, it was the first time that

a resonance, having a mass difficult to be reproduced in the QM, was proposed to

be a meson-baryon (KN) bound state [DT59b]. This state is predicted to have

JP = 1
2

−
and can be dynamically generated in coupled channels models from

the interaction of pseudoscalar mesons (0−) with 1
2

+
baryons. In addition to the

Λ(1405), the success of coupled-channel models is extended to all the negative

parity states in the strange sector. The Λ(1670) and the Ξ(1690) resonances can

also be dynamically generated from the interaction of pseudoscalar mesons (0−)

and baryons ( 1
2

+
) [KL04a]. Besides, the 1

2

−
resonances can also be generated from

the interaction of vector mesons (1−) with baryons. This is the case of the Λ(1800)

and the Σ(1750) resonances, both with 1
2

−
, which are generated in [OR10] as 1−⊕

1
2

+
molecules, as well as the Ξ(1950) with unknown JP quantum numbers. With

respect to the 3
2

−
states, they are also well described with dynamical models and,

like the 1
2

−
states, they also admit different descriptions. The coupled channel

models which employ pseudoscalar mesons (0−) and baryons with 3
2

+
as main

ingredients can dynamically generate the Λ(1520), the Σ(1670) and the Ξ(1820)

resonances [KL04a, SOVV05]. Moreover, the Λ(1690) state can be generated with

two different descriptions, a 0− ⊕ 3
2

+
[KL04a, SOVV05] and a 1− ⊕ 1

2

+
molecule

[OR10].

There are many more states in the strange sector which are succesfully ex-

plained from the dynamical point of view but are not presented in Fig. 1.3 be-

cause they are out of the energy range we want to show in order to compare

with the charm spectrum or because they are qualified with less than three stars

in the PDG. These states are the Σ(2000) ( 1
2

−
), the Λ(2000) and the Ξ(2120)

and are generated as a 1− ⊕ 1
2

+
molecule in [OR10]. The Σ(2000) resonance is

also identified in [SSOV10] as a 1− ⊕ 3
2

+
molecule together with many more

states. Particularly interesting is the Σ(1940) state with JP = 3
2

−
because it

admits a dynamical description with all the possible meson-baryon ingredients,

pseudoscalar mesons with 3
2

+
baryons [KL04a, SOVV05] and vector mesons with

1
2

+
baryons [OR10] or with 3

2

+
baryons [SSOV10]. From all the well established
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Figure 1.3: The experimental charmed baryons (white panels) and the best established strange
baryons (grey panel). Solid lines refers to 4-star baryons, dashed lines to 3-star baryons

and dotted lines to baryons with less than 3-stars. The JP are shown for each state.
The mass for all the excited charmed states is shown. In the strange spectrum the name
labels are only shown for negative parity states because the are candidates of being
s-wave dynamically generated resonances. The lines marked with a circle belong to the
same SU(4) 20′-plet, those with a square belong to the 20-plet and the triangles up and

down point to the 1
2
− and 3

2
− 4-plet.
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strange baryon resonances, the only negative parity states which at present can-

not be found in the literature as dynamically generated are the Σ(1775) and the

Λ(1830) resonances, both with JP = 5
2

−
.

In the charmed spectrum there are some negative parity states which are also

good candidates of being baryons dynamically generated. There are two states

in the Λc spectrum which are considered to be the charmed counterparts of the

Λ(1405) and the Λ(1520) resonances, the Λc(2595) [HL05, MR06, GR+09] and the

Λc(2625) [HL06] states with JP = 1
2

−
and JP = 3

2

−
, respectively. Moreover, there

is the Λc(2880) state which is suggested to have JP = 5
2

+
and the Λc(2940) state,

with unknown quantum numbers, which lays very close to the D∗N threshold and

it is predicted to be a D∗N molecule with JP = 1
2

−
[HLLZ07, GR+09].

In the Σc spectrum there is the Σc(2800) resonance with unknown quantum

numbers for which the JP = 3
2

−
was suggested [M+05a, A+05]. The fact that

it is dynamically generated in [HL06] with such quantum numbers supports this

idea. However, the JP = 1
2

−
quantum numbers can not be discarded from the

data.

In the Ξc spectrum there are the Ξc(2790) and the Ξc(2815) states, interpreted

as the JP = 1
2

−
and 3

2

−
charmed analogs to the Ξ(1690) and Ξ(1820) resonances

from the strange sector. The Ξc(2980) state with unknown quantum numbers is

proposed to have JP = 5
2

+
as a charmed-strange partner of the Λc(2880) state,

and the Ξc(3080) state is suggested to have JP = 1
2

+
, 3

2

+
[CC07, EFG08].

We have also included in Tab. 1.5 and Fig. 1.3 for the charm sector those

isospin multiplets whose existence is not reliable nowadays and therefore are

qualified with less than three stars in the PDG, the Λc(2765)+, Ξc(2930), Ξc(3055)

and Ξc(3123), with unknown quantum numbers and marked with dotted lines in

Fig. 1.3.

Particularly in this thesis, we are going to study baryon resonances as molec-

ular bound states of a pseudoscalar meson and a 1
2

+
baryon, and therefore all

the states with JP = 1
2

−
or unknown quantum numbers are candidates of being

identified with the baryon resonances generated dynamically in our model.
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1.4 The t-channel vector meson exchange and

the local approach

A common feature of all the mentioned works which generate resonances dynami-

cally (see Secs. 1.2 and 1.3) is the use of a local, zero-range interaction, the origin

of which can be traced back to the t → 0 approximation in a t-channel type

vector meson exchange diagram. This procedure is justified for on-shell meson-

baryon transitions, MB → M ′B′, which are diagonal (M ′B′ = MB) and hence

the value of t is small as long as one is not too far from threshold. It also holds

for non-diagonal amplitudes (M ′B′ 6= MB) that show a moderate difference

of masses between the initial and final mesons and baryons involved, as is the

case of meson-baryon scattering within the light SU(3) world. However, in the

heavy sector one also finds charm-exchange processes for which the difference

of masses between the external mesons are comparable with the mass of the

charmed vector meson being exchanged. This clearly signals the breakdown of

the zero-range approximation which is no longer reliable for these non-diagonal

transitions. While one may still argue that many of the dynamically generated

states are triggered by a single dominant meson-baryon interaction component

and, hence, their energy can be well estimated by the pole position of an un-

coupled calculation involving only diagonal amplitudes, the corresponding width

will however be determined by non-diagonal amplitudes and will therefore de-

pend on whether the t → 0 approximation is implemented or not. Moreover,

it is well known that some resonances owe their origin to a particularly strong

coupling between different channels, hence involving non-diagonal transitions, in

which case the t→ 0 approximation is not at all appropriate for these states. In

this thesis we will focus on the study of dynamically generated charmed baryon

resonances but defining the interaction between the pseudoscalar meson and the

ground state baryon beyond the zero-range approximation.
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1.5 Goals of the thesis

The main objective of this thesis is to study baryon resonances generated from

the dynamical interaction of two hadrons. We are interested on this study as

an alternative approach to explain the increasing number of observed charmed

states which apparently do not fit into the traditional three quark picture of a

baryon. In particular, we study baryon molecules with JP = 1
2

−
which can be

formed from the attractive interaction of a pseudoscalar meson (0−) and a ground

state baryon ( 1
2

+
) in s-wave (L = 0). We focus on this particular sort of baryon

molecules because, being the lightest ones within a given set of quantum numbers,

they are in general the most stable molecules. Therefore our aim is to contribute

to the understanding of the observed charm baryon spectra by checking if the

dynamical origin can explain those states which are candidates to be a baryon

resonance with JP = 1
2

−
. The important feature of our model is the description

of the meson-baryon interaction in terms of the t-channel vector meson exchange

which is fully solved without any approximation.

The first part of the thesis is devoted to study these sort of baryon molecules

in free space. In order to learn about the nature of a baryon it is important to

study its different types of decays. For this reason, we will calculate the strong

decays of dynamically generated resonances into meson–baryon components, as

well as the electromagnetic transition of such hadron molecules into the lowest–

lying ground states. This first part is organized in four Chapters.

In Chapter 2 we present the two–particle scattering formalism, and the differ-

ent kernels which describe the interaction of a low lying pseudo-scalar meson with

a ground state baryon. Moreover, we will introduce the Bethe-Salpeter equation

from which we obtain the coupled channel scattering amplitudes. Every resonant

state, extracted from a pole in the scattering matrix, will be characterized by a

set of specific parameters. In Chapter 3 we employ a series of simplified toy mod-

els, derived from the previous Chapter, to perform a comparative study between

the Λc(2595) and the Λ(1405) resonances, which belong to the charm and the

strange sector respectively. In Chapter 4 we analyze in detail the effects of going

beyond the t → 0 approximation and focus on the study of the C = 1 baryon

resonances, using the full t-dependence of the t-channel vector exchange kernel,
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instead of the t→ 0 approximation. In order to extend our understanding on the

nature of the excited baryons, we study in Chapter 5 the radiative decay of some

of the dynamically generated resonances obtained in the previous Chapter into

the respective JP = 1
2

+
ground state baryons.

In the second part of the thesis (Chapter 6) we will include medium and

temperature effects on the formalism to study the properties of the charmed

baryon resonant states in hot and dense matter. This will allow us as well to

study the properties of charmed mesons (D,D,Ds andDs) in the nuclear medium

which will be simultaneously dressed in the self-consistent calculation for the first

time. The behavior of these mesons will influence the charmonium production

whose suppression is connected with the possible formation of quark-gluon plasma

at a dense matter and high temperature scenario.
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Part I

Free space

43





2

Two body scattering formalism

In this Chapter, we present the free space meson-baryon scattering formalism that

we are going to use in the first part of the thesis. In Section 2.1 we will introduce

the meson-baryon interaction, from which the t-channel vector meson exchange

(TVME) and the Weinberg-Tomozawa (W-T) kernels will be constructed. The

Bethe-Salpeter (B-S) equation and the reductions applied to solve it are the

subjects of Section 2.2. Finally, in the last Section, we will explain the theoretical

characterization of resonances.

45
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Figure 2.1: Leading order tree level diagrams. Solid lines corresponds to the baryons
and dashed lines to mesons. From left to right, t-, s- and u-channel exchange
diagrams.

2.1 The meson-baryon interaction

There are three different tree level diagrams that contribute to the low energy

meson-baryon interaction up to the order O(p) in momentum space, as shown

in Fig. 2.1. For the s-wave amplitude, the most important piece is the t-channel

vector meson exchange diagram. In addition to this term, there are also the s-

channel and the u-channel Born terms. The contribution of the s- and u-channel

exchange diagrams in the strange sector have been studied in several works. The

s-term mainly contributes to the p-wave interaction, and in [KSW95] it is shown

that neglecting the u- and s-terms in a first approach to KN dynamics in s–

wave brings no appreciable differences in the analysis. Also in [OM01] the most

appreciable contribution of the s- and u-channel exchanges to the total amplitude

strength is found to be about 20% of the t-channel term for energies of about

100 MeV away from the KN threshold. In the charm sector, at the energies of our

interest, the t-channel exchange diagram is the one that contributes most to the

s-wave meson-baryon interaction strength and we will neglect the contribution of

the s- and u-channel diagrams. The kernel derived from the t-channel diagram

will be shown in the following lines.

2.1.1 The t-channel vector meson exchange kernel

The previous considerations allow us to identify a t-channel exchange of vector

mesons as the driving force which describes the s-wave scattering between pseu-

doscalar mesons in the 16-plet (see matrix in Eq. (2.3)) and ground state baryons

in the 20-plet (see expressions in Eq. (2.6)) SU(4) representations, in such a way

that it respects chiral symmetry for the light meson sector. For this purpose we
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follow the original work of Hofmann and Lutz [HL05], where they exploited the

universal vector meson coupling hypothesis. The SU(4) interaction Lagrangian

which couples two pseudoscalar mesons and a vector meson field is defined as

LSU(4)
PPV = i

4 g
([

(∂µ Φ[16]) ,Φ[16]

]
−V

µ
[16]

)
, (2.1)

with the Φ[16] matrix of pseudoscalar mesons written down as

Φ[16] =



π0 + η√
3

+
√

2
3η

√
2 π+

√
2 K+

√
2 D̄0

√
2 π− −π0 + η√

3
+
√

2
3η
′ √

2 K0 −
√

2 D̄−

√
2 K̄−

√
2 K̄0 − 2η√

3
+
√

2
3η
′ √

2 D̄−s

√
2 D0 −

√
2 D+

√
2 D+

s

√
2ηc


,

(2.2)

and the vector meson matrix, V µ[16], as

V µ[16] =



ρµ0 + ωµ
√

2 ρµ+
√

2 Kµ
+

√
2 D̄µ

0

√
2 ρµ− −ρµ0 + ωµ

√
2 Kµ

0 −
√

2 D̄µ
−

√
2 K̄µ

−
√

2 K̄µ
∗0

√
2 φµ

√
2 D̄s,µ

−

√
2 Dµ

0 −
√

2 Dµ
+

√
2 Ds,µ

+

√
2 J/Ψµ


. (2.3)

The factor g is the universal coupling constant which can be related to the meson

coupling constant denoted as f , in accordance with the Kawarabayashi-Suzuki-

Fayyazuddin-Riazuddin (KSFR) relation [KS66, RF66]. It must hold with the
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interaction (Eq. (2.1)) and is defined as

g2 =
(m

(v)
[9] )2

2 f2
, (2.4)

with m
[9]
v being a representative mass of the light vector mesons from the nonet,

that is (ρµ, φµ, ωµ and Kµ). The value of g is typically taken to be g ≈ 6.6, which

comes from considering the average mass of the light vector mesons and repro-

duces the width of the ρ meson decaying into two pions, taking f = fπ ≈ 93 MeV

in Eq. (2.4). The baryon-baryon-vector meson vertex in SU(4) is described as

LSU(4)
BBV = 1

4 g

4∑
i,j,k,l=1

B̄
[20]
ijk γ

µ
(
V

[16],k
µ, l Bijl[20] + 2V

[16],j
µ, l Bilk[20]

)
, (2.5)

where the baryon fields, represented by the tensor Bijk, form a 20-plet in SU(4).

The indices i, j, k denote the quark content with the following identification,

1→ u, 2→ d, 3→ s, 4→ c:

B121 = p, B122 = n, B132 =
1√
2

Σ0 − 1√
6

Λ,

B124 =
2√
6

Λc, B
141 = −Σ++

c , B142 =
1√
2

Σ+
c +

1√
6

Λc,

B143 =
1√
2

Ξ′+c −
1√
6

Ξ+
c , B144 = Ξ++

cc , B213 =
2

sqs
Λ,

B231 =
1√
2

Σ0 +
1√
6

Λ, B232 = Σ−, B233 = Ξ−,

B234 =
2√
6

Ξ0
c , B

241 =
1√
2

Σ+
c −

1√
6

Λc, B
242 = Σ0

c ,

B243 =
1√
2

Ξ′0c +
1√
6

Ξ0
c , B

244 = −Ξ+
cc, B

311 = Σ+,

B313 = Ξ0, B314 =
2

sqs
Ξ+
c , B341 =

1√
2

Ξ′+c +
1√
6

Ξ+
c ,

B342 =
1√
2

Ξ′0c −
1√
6

Ξ0
c , B

343 = Ωc, B
344 = Ωcc (2.6)
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The t-channel vector meson exchange contribution, or TVME kernel, can be built

from the meson-meson-vector (2.1) and baryon–baryon–vector (2.5) Lagrangians

defined above, as

Vij(qi, qj) =
1

2
g2
∑
v

Cij,v
t−m2

v

(
6qj+ 6qi

2
−
q2
j − q2

i

2m2
v

(6qj− 6qi)
)

, (2.7)

being the qi (qj) the initial (final) meson momentum and mv the vector meson

mass. The quantities 6qi ( 6qj) are explicitly written down

6qi = γµqiµ ; 6qj = γµqjµ , (2.8)

in terms of the gamma matrices γµ = {γ0, γ1, γ2, γ3}, and the t–Mandelstam

variable is defined as

t = (qi − qj)2

= m2
i +m2

j − 2 (ωi(~qi)ωj(~qj)− ~qi~qj) ,
(2.9)

where ω(qi) (ω(qj)) represents the energy of the initial (final) meson. The SU(4)

coefficients, Cij,v, denote the strength of the interaction between a pseudoscalar

meson and a ground-state baryon mediated by the exchange of a vector meson (v).

They are presented in Appendix A for different isospin (I), strangeness (S) and

charm (C) sectors and channels (i, j). The kernel interaction is defined in such a

way that positive Cij,v coefficients give attraction and negative give repulsion to

the transition. To write explicitly the t-channel vector meson exchange diagram

one has to project the kernel into the initial and final baryon states, with initial

and final momenta pi and pj , respectively,

〈Vij〉 = u(pj)Vij(qi, qj)u(pi) , (2.10)

where the function u(pi) and its adjoint u(pj) (u(pj) = u†(pj)γ
0) are the Dirac

four component spinors, normalized as uu = 1:

um(p, σ) =

√
E(~p ) +M

2M

(
1
~σ~p

(E(~p )+M)

)
χm , (2.11)
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being M and E(~p ) the mass and energy of a baryon with momentum ~p, ~σ the

Pauli matrices and χm the two–component spinor wave function for spin up

(m = 1
2 ) or spin down (m = − 1

2 ).

The total energy of the system P 0 and the center of mass momentum ~P are

given by

P 0 = ω(~q ) + E(~p ) ; ~P = ~q + ~p . (2.12)

Working in the center-of-mass frame, ~P = 0, we have for the initial and final

meson and baryon momenta

~qi = −~pi ≡ ~ki ; ~qj = −~pj ≡ ~kj . (2.13)

Inserting the quantities 〈6qi〉 and
〈
6qj
〉

into Eq. (2.10), where

〈6qi〉 = u 6qiu
= N [ωi(~ki) + Ei(~ki)−Mi

+
~ki~kj

(Ei(~ki) +Mi)(Ej(~kj) +Mj)
(ωi(~ki) + Ei(~ki) +Mi)] ,

(2.14)

we obtain:

〈Vij〉 =
N

4

∑
v

Cij,v
α+ β cos θ

a+ b cos θ
, (2.15)

where the factor N comes from the normalization of the Dirac spinors:

N =

√
Mi + Ei(~ki)

2Mi

√
Mj + Ej(~kj)

2Mj
, (2.16)

and θ is the angle between the initial and the final relative momenta. The func-

tions a, b, α and β, which also depend on the relative momenta, are defined

as
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a = m2
i +m2

j − 2ωi(~ki)ωj(~kj)−m2
v

b = 2|~ki||~kj |
α = ωi(~ki) + Ei(~ki) + ωj(~kj) + Ej(~kj)−Mi −Mj

−
m2
j −m2

i

m2
v

(
ωj(~kj) + Ej(~kj)− ωi(~ki)− Ei(~ki) +Mi −Mj

)
β =

|~ki||~kj |
(Ei(~ki) +Mi)(Ej(~kj) +Mj)

(ωi(~ki) + Ei(~ki) + ωj(~kj) + Ej(~kj) +Mi +Mj

−
m2
j −m2

i

m2
v

[ωj(~kj) + Ej(~kj)− ωi(~ki)− Ei(~ki) +Mj −Mi]) ,

(2.17)

with

ωi(~ki) =

√
~k2
i +m2

i ; ωj(~kj) =
√
~k2
j +m2

j

Ei(~ki) =

√
~k2
i +M2

i ; Ej(~kj) =
√
~k2
j +M2

j .

(2.18)

Assuming spherical symmetry, one can expand the kernel in partial waves:

Vi,j;l =
2l + 1

2

∫ 1

−1

d (cos θ) 〈Vij〉Pl(cos θ) , (2.19)

where Pl(cos θ) are the Legendre polynomials. Since we want to study resonances

with relative angular momentum l = 0, we project the kernel in s-wave1, therefore

obtaining the expression of the TVME kernel which describes the interaction

between pseudoscalar mesons with ground state baryons in s-wave:

Vij;l=0(~ki,~kj) =
N

8
g2
∑
v

Cij,v

(
2β

b
+
αb− βa
b2

ln

(
a+ b

a− b

))
. (2.20)

1The Legendre polynomial for l = 0, P0(cos θ) = 1.
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−→

Figure 2.2: The zero–range approximation of the t-channel vector exchange contribu-
tion.

2.1.2 The zero-range approximation

For the specific case of t� m2
v we can make the approximation t→ 0 in Eq. (2.7),

and we get the scattering kernel for contact interactions, TVMEt→0:

Vij;l=0(~ki,~kj)t→0 = − N

4
g2
∑
v

Cij,v
m2
v

α . (2.21)

One can also arrive to the same expression by expanding the logarithm of

Eq. (2.20) in the limit b
a → 0 up to the linear term in b

a and setting a = −m2
v.

2.1.3 The Weinberg-Tomozawa kernel

The lowest order chiral Lagrangian of SU(3) that couples the octet of light pseu-

doscalar mesons to the octet of ground state baryons is given by

LMB = < Biγµ∇µB > −M < BB >

+
D

2
< Bγµγ5{uµ, B} > +

F

2
< Bγµγ5[uµ, B]) > ,

(2.22)

where u is the SU(3) matrix of mesons φ and B is the SU(3) matrix for baryons,

both of which can be found for example in [OR98], M is the baryon mass and D

and F are the low energy constants which are related to the axial charge of the

nucleon fixed to D = 0.8 and F = 0.46, respectively [JOO+03]. The Weinberg-

Tomozawa (W-T) term of the Lagrangian is obtained by expanding the covariant

derivative in Eq. (2.22) at the level of two meson fields

LW−T =
1

4f2
< Biγµ[φ(∂µφ)− (∂µφ)φ,B] > . (2.23)
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We obtain the W-T interaction kernel by projecting the tree-level amplitude in

s-wave,

VW−Tij;l=0 (
√
s) = − N

8f2
CW−Tij αW−T , (2.24)

being CW−Tij the W-T coefficients, and the factor αW−T defined as

αW−T = ωi(~ki) + Ei(~ki) + ωj(~kj) + Ej(~kj)−Mi −Mj . (2.25)

We can also derive the W-T kernel from the expression of the zero–range ap-

proximation to the TVME kernel, TVMEt=0, given in Eq. (2.21). The first ap-

proximation is to consider that the mass of the vector mesons, mv, is very big

compared to the mass of the pseudoscalar mesons in the initial and final state.

Next, we re-write the kernel as a function of f instead of using the universal

coupling constant g through the KSFR relation (Eq. (2.4)). Finally, considering

that the masses of the vector mesons are all equal, we arrive to the expression

for the W-T kernel (Eq. (2.24)), where the W-T coefficients are given, for a cer-

tain initial and final channel, as the sum over the SU(4) coefficients presented in

Appendix A for all possible vector–mesons interchanged:

CW−Tij = κ
∑
v

Cij,v . (2.26)

The factor κ has been introduced to account for the fact that, in the charm sector,

the mass of the exchanged meson in charm exchange transitions is almost twice

that of the transitions mediated by non-charmed mesons. Therefore, the factor κ

is unity except for the charm exchange transitions where κ = (mv

mc
v
)2 ≈ 1

4 .

2.1.4 On-shell kernels

In the center-of-mass frame ~P = 0, we calculate the initial and final on-shell

momentum, |~koni |, |~konj |, from the expression

√
s = ω(~kon) + E(~kon) , (2.27)
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obtaining

|~koni,j | =
1

2
√
s

√
(s− (Mi,j +mi,j)2)(s− (Mi,j −mi,j)2) . (2.28)

In this way, we get the on-shell expressions for the TVME kernel and its zero

range approximation TVMEt→0 changing, in Eqs. (2.20) and (2.21), the functions

a, b, α and β of Eq. (2.17) by aon, bon, αon and βon:

aon = m2
i +m2

j − 2ωi(~k
on
i )ωj(~k

on
j )−m2

v

bon = 2|~koni ||~konj |

αon = 2
√
s−Mi −Mj −

m2
j −m2

i

m2
v

(Mi −Mj)

βon =
|~koni ||~konj |(

Ei(~koni ) +Mi

)(
Ej(~konj ) +Mj

)
(

2
√
s+Mi +Mj −

m2
j −m2

i

m2
v

(Mj −Mi)

)
.

(2.29)

and, for the on-shell W-T term, changing in Eq. (2.24) the factor αW−T to αonW−T :

αonW−T = 2
√
s−Mi −Mj . (2.30)

2.2 The Bethe-Salpeter equation

The scattering of two–particles is a relevant dynamical problem of elementary par-

ticle physics. Before the Bethe-Salpeter equation was published in 1951 [SB51],

the scattering matrix was typically calculated using perturbation theory. How-

ever, perturbation theory can never generate a bound state. The reason is that

the generation of a bound state is accompanied by the appearance of a pole in

the scattering matrix, and any finite sum of perturbative Feynman diagrams can

never create such a pole. On the contrary, it is possible to generate the required

pole if one sums over an infinite number of diagrams. The work of E. E. Salpeter

and H. A. Bethe [SB51], introduced the possibility to reach this as an alterna-

tive method to a perturbative expansion. An approximation to the two–body
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= +V V

Figure 2.3: Diagrammatic representation of the Bethe-Salpeter equation.The black area
corresponds to the Tij matrix and the open circles correspond to the kernel
Vij .

scattering amplitude is obtained by solving the relativistic Bethe-Salpeter (B-S)

equation [SB51]. Within the B-S formalism, the scattering matrix, Tij , is given

by an integral equation in momentum space. Suppressing the spin (J), isospin

(I), strangeness (S) and charm (C) quantum numbers for simplicity, the meson–

baryon B-S equation takes the form:

Tij(ki, kj ;P ) = Vij(ki, kj ;P )

+ i
∑
l

∫
d4k

(2π)4
Vil(ki, kn;P )Dl(k, P )D̃l(k;P )Tlj(k, kj ;P ) ,

(2.31)

where ki, kj are the relative four momenta of the initial and the final states and

k is the momentum of the meson propagating in the intermediate loop, whereas

P is the total four momentum of the system. The sum over the index l refers to

the different coupled-channels involved in the particular sector studied. Vij is the

kernel which describes the interaction between the meson and the baryon, and

the Dl and D̃l functions are the baryon and meson propagators, respectively

Dl(k;P ) =
1

6P− 6kn −Ml + iη
; D̃l(k;P ) =

1

k2
n −m2

l + iη
. (2.32)

The B-S amplitude is obtained by summing the contribution to all powers of the

interactions contained in the kernel and the meson–baryon propagator. It is the

oldest and simplest two-body relativistically covariant scattering equation whose

theory and applications have been extensively developed in many branches of

physics [B-S]. The off-shell nature of the B-S equation and the inelastic effects

which are built into it constitute the main difficulties of the equation. Since it

is an off-shell equation it depends explicitly on four variables. Furthermore, to

get the solution of the exact B-S equation is an even more difficult task due to
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= + + +...

Figure 2.4: Diagrams representing the expansion of the Bethe-Salpeter equation. The
black area corresponds to the Tij matrix and the open circles correspond to
the kernel Vij .

the presence of poles along the integration contours, contained at the meson and

baryon propagators. In order to deal with this complication, a lot of approximated

solutions have been considered. One of the alternatives which handles the diffi-

culty with poles along integration contours is to replace the four dimensional B-S

equation by a three dimensional reduction, integrating out the time component,

k0, a procedure which yields to the Lippmann-Schwinger (L-S) type equation of

non-relativistic quantum mechanics [LS50]2.

Another approximation typically employed is the on-shell reduction of the

B-S equation. In this approximation the kernel is split into an on- and an off-

shell part [OOR00]. In a one loop diagram, it can be explicitly shown that the

contribution from the off-shell part goes into renormalization of couplings and

masses and can be omitted in the calculation. These arguments can be extended

to higher order loops and then Vil and Tlj can be factorized outside the integral

of Eq. (2.31). This simplifies the coupled integral equations to a set of algebraic

equations:

T onij = V onij + V onil G
on
l T

on
lj −→ T onij = (1− V onil Gonl )−1V onlj , (2.33)

where

Gonl =
∑
l

∫
d4k

(2π)4
Dl(k, P )D̃l(k;P ) . (2.34)

Both approximations to the B-S equation will be described in the following lines.

2The Lippmann-Schwinger equation is the Schrodinger equation for two-particle scattering,
with causal boundary conditions, written as an integral equation.
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2.2.1 The Lippmann-Schwinger equation

We start describing the Lippmann-Schwinger (L-S) equation or three-dimensional

reduction of the B-S equation. First of all we will make a simplification over the

baryon propagator as we are only concerned with the positive energy contribution,

which, in the center of mass frame ~P = 0, P = (
√
s, 0), reads

Dl(k;P ) =
1

6P− 6kn −Ml + iη
−→ Ml

El(~k)

ulul√
s− k0 − El(~k) + iη

, (2.35)

where Ml and El(~k) stand for the mass and the energy of the intermediate baryon,

and k is the relative four-momentum. With respect to the meson propagator it

is useful to split it into the positive and negative energy parts

D̃l(k;P ) =
1

k2
n −m2

l + iη
−→ 1

2k0

(
1

k0 + ωl(~k)− iη
+

1

k0 − ωl(~k) + iη

)
,

(2.36)

where ml and ωl(~k) =
√
~k2 +m2

l are the mass and the energy of the intermediate

meson. The next step is to perform a k0 integration that we separate in two parts,

taking into account the expressions (2.35) and (2.36):

I1 =

∫ ∞
0

dk0

k0

1
√
s− k0 − El(~k) + iη

1

k0 + ωl(~k)− iη
,

I2 =

∫ ∞
0

dk0

k0

1
√
s− k0 − El(~k) + iη

1

k0 − ωl(~k) + iη
.

(2.37)

We calculate the k0 integration by contour integration, continuing the contour

along the real line into the upper or lower half plane. The contours in the respec-

tive half planes are completed by describing a semicircle and returning to the

real line avoiding the respective poles of the propagator. By taking the limit of

infinitely large radius of the semicircle (no contribution in this limit is obtained

from the integrals along the arcs of the semicircles), the k0 integral along the real

line can be evaluated as a sum of the contribution of the residues of the poles
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inside the contour: ∮
γ

f(z) dz = 2πi

n∑
k=1

Res(f, z0
k) . (2.38)

Specifically in the case of simple poles we apply the following equation to calculate

the residues

Res(f, z0) = lim
z→z0

(z − z0)f(z) , (2.39)

which in turn implies the following results

I1 = 0 ; I2 = 2πi
1

ωl(~k)

1
√
s− El(~k)− ωl(~k) + iη

. (2.40)

Defining

Tij = uiTijuj , (2.41)

we obtain the L-S equation after the k0 integration

Tij(~ki,~kj ;
√
s) = Vij(~ki,~kj)

+
∑
l

∫ ∞
0

dk3
n

(2π)3
F (~k)Vil(~ki,~kn)Gl(~kn;

√
s)Tlj(~kn,~kj ;

√
s) ,

(2.42)

where the propagator reads

Gl(~kn;
√
s) =

Ml

El(~kn)2ωl(~kn)

1
√
s− El(~kn)− ωl(~kn) + iη

. (2.43)

Since the L-S integral equation diverges at large values of the relative momenta

|~k|, one needs to regularize it. Taking into account that the L-S equation must be

solved numerically we have inserted in Eq. (2.42) a form factor regulator, F (~k),

which depends on a cut-off momentum. Apart from regularizing the integral, the

form factor introduces and encodes the complex structure of hadrons in the model.

Along the thesis, we will check the dependence of the results with two types of

form factors, the dipolar FD(~k) and the gaussian FG(~k) one, which contain the
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correspondent cut-off parameters, λD and λG, respectively:

FD(~k) =
λD

2

(λD
2 + ~k2)2

; FG(~k) = exp

[
−~k2

2λG
2

]
. (2.44)

We note that the L-S equation employs, for a given value of the total scattering

energy
√
s, the transition potential between any arbitrary pair of the relative

momenta within the cut-off value. In the case of the TVME kernel, the full

dependence on the momentum transfer is kept. This procedure follows the same

spirit of the usual meson-exchange models of the nucleon-nucleon interaction

[MHE87], also applied to meson-baryon scattering models [BHMG+90, MGHS90,

HDH+95, HKMS07].

In order to solve the L-S equation, we can use any of the kernels with off-shell

momenta that we have already presented in Section 2.1, the TVME (Eq. (2.20)),

the TVMEt→0 (Eq. (2.21)) and the W-T (Eq. (2.24)) kernel. For instance, we

will devote the next Chapter to compare the various models that we can build

taking into account the particular approximation to the B-S equation and the

different kernels we have presented. For a detailed description of the numerical

integration of the L-S equation, see Appendix A, where we have also shown the

numerical stability of the L-S equation with respect to the type of mesh applied in

the integration, as well as the dependence of results to the form factor employed.

2.2.2 The on-shell reduction of the B-S equation

The problem of solving the B-S equation in on-shell approximation is reduced to

solving the meson-baryon propagator integral of Eq. (2.34) which also diverges.

Thus, it is necessary to apply regularization techniques, as in the L-S integral

equation. We present two regularization methods typically adopted in literature

for the B-S equation in on-shell approximation, the dimensional regularization

and the the cut-off momentum regularization. After that, we will show the dy-

namical generation of a resonance with both approximations, taking the case of

the Λc(2595) resonance as an example.
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• Dimensional regularization

The advantage of using dimensional regularization (DR) techniques in order to

solve divergent integrals is that translational invariance and gauge invariance is

preserved [Lei75]. Contrary to the cut-off method, the DR regularization is less in-

tuitive and is based on the replacement of a four dimensional integral (Eq. (2.34))

by an n–dimensional one:∫ ∞
0

d4k f(k) −→
∫ ∞

0

dnk f(k) . (2.45)

We integrate in n dimensions and replace n→ 4− η, obtaining the finite part of

the loop function for the physical limit η → 0

GDRi (
√
s) =

2Mi

16π2

{
ai(µ) + ln

M2
i

µ2
+
m2
i −M2

i + s

2s
ln
m2
i

M2
i

+

|~koni |√
s

ln
M2
i +m2

i − s− 2|~koni |
√
s

M2
i +m2

i − s+ 2|~koni |
√
s

}
,

(2.46)

with |~koni | the modulus of the on-shell momentum of channel i (see Eq. (2.28)).

The subtraction constants ai(µ) for each channel, which determine the finite

part of the loop at the renormalization scale µ ≈ 1 GeV [MR06], are calculated

following the work [HL05] as GDRi (
√
s =

√
m2
i +M2

i ) = 0, where the channel i

is the lightest one for an specific sector. On top of that, some of them can be

re-adjusted, remaining close to its natural size ai(µ) ≈ −2 [OOP99, OM01], in

order to reproduce experimental data.

• Cut-off regularization

As we already mentioned in our discussion of the L-S equation, an obvious choice

to regularize a divergent integral is to integrate it for a very large momentum

instead of integrating it to infinity. The analytical expression obtained regulariz-

ing the integral (Eq. (2.34)) with a cut-off momentum, λ, through a dipolar form

factor type is [OOP99]:
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Gcuti (
√
s) =

2Mi

16π2

{
ln

(
m2
iM

2
i

λ4

)
− M2

i −m2
i

s
ln

(
m2
i

M2
i

)

+ 2
M2
i −m2

i

s
ln

1 +

√
1 +

m2
i

λ2

1 +

√
1 +

M2
i

λ2

− 2 ln

(
1 +

√
1 +

m2
i

λ2

)(
1 +

√
1 +

M2
i

λ2

)

+
4k2
i

s

ln
s−M2

i −m2
i + 4|~koni |2

√
1 +

m2
i

λ2

−s+M2
i −m2

i + 4|~koni |2
√

1 +
m2

i

λ2

+ ln
s+M2

i −m2
i + 4|~koni |2

√
1 +

m2
i

λ2

−s−M2
i −m2

i + 4|~koni |2
√

1 +
m2

i

λ2

 .

(2.47)

Although the cut-off momentum regularization does not preserve the symmetries

that DR does, we introduce it here to simplify the comparison between the off-

shell models (using the L-S equation) and the on-shell ones (using the on-shell

reduction to the B-S equation) presented in Chapter 3. All models will be reg-

ularized with the cut-off method using a common single parameter, the cut-off

λ.

• Cut-off versus dimensional regularization

In the following, we want to show that different regularizations schemes applied

to the loop function (see Eq. (2.34)) can reproduce the same results by vary-

ing in a reasonable way the specific parameters in each model. In Fig. 2.5 we

show the modulus of the total T matrix for the coupled-channel system in the

(I = 0, S = 0, C = 1) sector. We want to reproduce the Λc(2595) resonance,

which will be explained in detail in the next Chapter, at 2595 MeV and width

Γ = 3 MeV. We calculate the T matrix with the on-shell approximation and

describe the meson-baryon interaction with the W-T kernel (Eq. (2.24)), but us-

ing different regularizations of the loop. The parameters to be fitted are the f

meson coupling constant coming from the kernel, and from the loop propagator,
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Figure 2.5: The Λc(2595) resonance generated with the on-shell T (
√
s) matrix for two

regularization schemes of the meson–baryon propagator. The solid line cor-
responds to the cut-off regularization, and the dashed line is the result ap-
plying dimensional regularization. Parameters have been fitted to reproduce
in both models the position and width to 2595 MeV and having a width of
3 MeV, respectively. For simplicity, the T matrix has been normalized to
unity in both models.

the subtraction constants in the DR scheme or the parameter λ in the cut-off

regularization scheme. As it is shown in Figure 2.5, tuning the parameters we are

able to reproduce the same results for the Λc(2595) resonance. For the cut-off

regularization, the parameters are fixed to f = 1.35fπ and λ = 913.5 MeV/c,

and for the DR scheme at a regularization scale µ = 1 GeV, f = 0.9fπ and the

subtraction constant for the second channel (which mostly dominates the reso-

nance), a2(µ) = −1.922. This relation between the parameters from the cut-off λ

and the dimensional regularization parameters, µ, ai(µ), are in accordance with

the “natural” values discussed in the studies done in [OOP99, OM01], where the

following relations are given

µ ≈ 1.2λ ; ai(µ) ≈ −2 . (2.48)
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• Singularities of the on-shell TVME kernel

Unlike the case of the L-S equation, we will not solve the B-S equation with

the full TVME kernel in on-shell approximation. As we will see in the next Sec-

tion, a bound state is described by the presence of a pole in the T matrix in a

certain meson-baryon channel. However this discontinuity must not arise from

the interaction kernel Vij itself [LK02]. As we can see in the TVME equation of

the kernel (Eq. (2.20)) for on-shell momenta, one finds an infinite which comes

from a logarithmic divergence in the kernel when the limit aon → bon is ful-

filled (see Eqs. (2.29)). These singularities, which occur at subthreshold energies,

naturally arise from the non-local character of the t, s or u-channel exchange

diagrams [LK02]. For the TVME kernel, working with a certain diagonal channel

for simplicity, the logarithmic divergences appear at

|~kon|2 → −m
2
v

2
. (2.49)

Using Eq. (2.28) relating the total energy of the system
√
s with the on-shell

momentum |~kon|, we see that the logarithmic divergences appear at subthreshold

energies. In Fig. 2.6 we show the on-shell TVME kernel for the diagonal DN

channel depending on
√
s. One can see two peaks where the kernel goes to minus

infinite, each one coming from the different vector meson interchanged, the ρ and

the ω meson. These artifacts are located at important energies for the treatment

of the meson-baryon dynamics and then we cannot obtain the T matrix using

the on-shell reduction of the B-S equation with the TVME kernel. On the other

hand, the L-S equation is suitable to be employed in order to calculate the T

matrix with the TVME kernel. In this case, the a→ b limit for off-shell energies

(see Eqs. (2.17)) is never fulfilled because the off-shell momenta used in the

intermediate states of the integral equation are independent of the total energy,

and they always fulfill |~k|2 ≥ 0, which will not produce any singularity in the

kernel.
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Figure 2.6: On-shell TVME kernel for diagonal DN channel depending on
√
s.

2.3 Characterization of bound states

2.3.1 Pure bound states and resonances

Experimental cross sections present pronounced peaks in the neighborhood of a

resonance when the incident energy is varied. Those bumps can be parametrized

with a Breit-Wigner function. We extract two parameters from the fit, the posi-

tion of the maximum M , called the mass of the resonance, and the full width Γ

that the peak presents at half its maximum (FWHM), inversely proportional to

its time-decay. Theoretically, both parameters are extracted from the T matrix

whenever it presents a pole. The loop propagator contained in the T matrix has

branch points at every channel of two particles, and therefore we need to search

for poles of the T matrix in the complex energy plane. For that purpose we need

to consider Riemann sheets. We can expand the T matrix in a Laurent series

around the pole position z0,

T ij =
aij−1

z − z0
+ aij0 +O(z − z0) . (2.50)
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The first contribution is called Breit-Wigner term and contains the pole, whose

real and imaginary parts correspond to the mass and halfwidth of the resonance,

z0 = M − iΓ
2 .

The physical meaning of a pole in the T matrix depends on the Riemann sheet

it is located. Those poles that we can find in the real energy axis, or physical

(first) Riemann sheet, are called pure bound states and they are located below

the lightest threshold. In this case, the bound-states are stable states that cannot

decay via the strong force in any meson–baryon channel of the sector to which it

belongs, and thus the bound-state presents a zero width. However, the so called

resonance–poles, which are poles of the T matrix located over threshold, can only

be found for complex energies, in unphysical Riemann sheets. A resonance–pole

represents an unstable system which decays into a more stable one.

The T matrix can be defined on the complex energy plane by analytical con-

tinuation, see e.g. [SSL09, NRA01b]. Since the energy is a function of the mo-

mentum squared p2, the T matrix is a single-valued function of the momentum

p, but a double–valued function for the energy E. Therefore, there are two pos-

sible Riemann-sheets of complex energy, which are specified by the sign of the

imaginary part of the momentum p, the physical one with Im(p) > 0 and the

unphysical one with Im(p) < 0. For a multichannel case, the analytic structure of

the T matrix becomes more complicated as there are two sheets for each channel.

Therefore, an n-channel system gives rise to 2n Riemann sheets, which will also

be specified by all the set of signs of Im(pi).

From all the possible unphysical sheets, we will just consider the sheet which

has the biggest influence into the real energy axis. We will refer to this unphysical

sheet as the “second Riemann sheet”, and the T–matrix poles in this sheet are

the ones which reflect as resonance-poles for real energies.

Since the kernel is real, the second Riemann sheet is defined by changing the

sign of the imaginary part of the momentum for open channels, mi +Mi < E, in

the propagator function. In that case, the discontinuity of the propagator at the

threshold in the real axis is known to be two times its imaginary part [IOVV02].

Therefore, knowing the propagator in the first Riemann sheet, Gi, one determines

the propagator in the second Riemann sheet, G2nd
i , as
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G2nd
i (
√
s) =

{
Gi(
√
s) at Re(

√
s) 6 mi +Mi ,

Gi(
√
s)− 2iIm [Gi(

√
s)] at Re(

√
s) > mi +Mi .

(2.51)

Since we cannot explore the entire half-complex plane numerically, we choose a

finite region for the search of poles in the second Riemann sheet. Those poles

with Im(
√
s) ≥ 300 MeV are dismissed. It means that we are neglecting poles

with Γ > 600 MeV, whose influence in the real axis is negligible.

2.3.2 Couplings to the different channels

The position of a pole in the second Riemann sheet of the T matrix, T 2nd, does not

depend on the meson-baryon channel. However, the value of the residues around

the pole depends on the specific transition, from a channel i to j, explored. The

residue aij−1 from Eq. (2.50), is related to the couplings of the resonance to the

different channels as

aij−1 = gigj . (2.52)

We can extract the couplings from the pole in the complex energy plane of the

T matrix in several ways. We can calculate it numerically as

gigj = lim
z→z0

(z − z0)T 2nd
ij (z) , (2.53)

with the pole position z0 = M−iΓ
2 . It can also be extracted by contour integration

along a certain path around the pole position z0

aijn =
1

2πi

∮
T 2nd
ij (z)

(z − z0)n+1
dz , (2.54)

and numerically calculated through an iterative procedure [D+11]:

∂

∂z

(
1

T 2nd
ij (z)

)∣∣∣
z0

=
1

gigj
. (2.55)
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2.3.3 Cusps or threshold effects

A pole of the T matrix located in other Riemann sheets can reflect in real energies

as a cusp located at a certain threshold, therefore it may also leave a distinct

signal in the experimental cross section. In scattering matrix theory, a cusp can be

properly called a particle because it arises from a pole in the T matrix. However,

they are not considered resonances but threshold effects from the experimental

point of view.

As an example, let’s take the simplest case of a two channel system. The

surface of the two channel T matrix has four sheets. As discussed before, the

Riemann sheets are classified by the sign of the imaginary part of the momentum:

• Sheet I, Im(p1) > 0 and Im(p2) > 0.

• Sheet II, Im(p1) < 0 and Im(p2) > 0.

• Sheet III, Im(p1) < 0 and Im(p2) < 0.

• Sheet IV, Im(p1) > 0 and Im(p2) < 0.

On the one hand, a pole located on the sheet I (physical sheet) will appear

as a pure–bound state for a real energy under the first threshold, as explained

above. Moreover, poles in the sheet II would leave a characteristic resonance–

pole structure at the energy range between both thresholds (second Riemann

sheet). Besides, a pole located at the sheet III will not have any influence in

the real axis [FH64]. However, it can be shown that a pole on the sheet IV will

be reflected itself as a cusp in the scattering matrix at the energy of the second

threshold [FH64]. The height or strength of this cusp increases as the pole position

gets closer to the real axis in sheet IV. If we manage to vary the position of the

pole, it can jump into the sheet II, and then it may become a visible resonance

peak in the real axis located in between the two thresholds.

An example of this case is shown in Fig. 2.7 for a reduced two channel system,

πΣc and DN , of the isospin I = 0, strangeness S = 0, and charm C = 1 sector.

The two thresholds are located at 2591 MeV for πΣc states and 2806 MeV for

DN ones. To see this effect, we force the DN bound state (which experimen-

tally is located at 2595 MeV) to move from one sheet to another through the
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Figure 2.7: We represent the modulus of the total T matrix for two channel system in
the (I = 0, S = 0, C = 1) sector with respect to

√
s. We have solved

the T matrix with the on-shell reduction of the B-S equation, using the
W-T kernel and regularizing the loop with a cut-off λ. We force the DN
bound state to move from the DN threshold, where it appears as a cusp
structure (solid lines), to energies below threshold, where it becomes a visible
resonance (dashed lines) by varying the cut-off parameter from 220 MeV/c
to 500 MeV/c. The f meson coupling constant parameter has been fixed to
f = 1.15fπ.

DN threshold, by varying the cut-off parameter applied to regularize the meson-

baryon propagator. As the cut-off value is increased from 220 MeV to 500 MeV,

the DN state evolves from a cusp at the DN threshold (pole in the sheet IV) to

a clear resonance in between the πΣc and DN thresholds (pole in the sheet II).

The solid lines represent situations in which the pole is found in sheet IV, while

the dashed lines correspond cases in which the pole is located in sheet II and the

aspect is typically the one of a resonance.

2.3.4 Last remarks

There are some advantages in looking for poles in the complex energy plane

instead of, for example, parametrizing the different bumps of the T matrix to a
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Breit-Wigner function. As an example, one may consider the case when there are

two resonances which are so close to each other in the real axis that one cannot

disentangle them by analyzing the T matrix in the physical sheet. Looking for

poles in the complex energy plane may definitely decide whether the bump in

the T matrix is due to a single resonance or the structure is the result of various

resonances that overlap each other. This is the case of the double-pole nature

of the Λ(1405) resonance in the strange sector which will be studied in detail in

the next chapter. The Λ(1405) was measured in the sixties [ASZ65], and even

before its discovery, it was dynamically generated theoretically as an unstable

KN bound state [DT59b]. However, it was few decades later when the existence

of two poles contributing to the invariant πΣ mass distribution of the nominal

Λ(1405) was pointed out in [OM01], and was thoroughly analyzed [JOO+03]

in the context of chiral models. The wide width of the second pole discovered,

together with its close location to the energy position of the KN bound state,

made it difficult to be distinguishable by just analyzing the T matrix for real

energies.

In summary, we will analyze those resonances over threshold which can be

related to poles located on the second Riemann sheet, and the pure bound-states

below the energy threshold as singularities of the T matrix in the real energy

axis, and they will be characterized by the mass M , width Γ and couplings to

the different channels gi.
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3

Charm versus strangeness

This Chapter is an attempt to study and compare the Λ(1405) and the Λc(2595)

resonances which belong to the strange (S = −1) and charm (C = 1) sectors,

respectively. The Λ(1405) is a baryon resonance and its discovery in the six-

ties [ASZ65] implied for the first time in hadronic physics the need to find al-

ternative ideas to the formation of baryon resonances, different from the 3-quark

excited state established in the quark model. The existence of the Λc(2595) res-

onance was predicted many years ago but discovered only three decades after

the Λ(1405) [E+95]. The Λc(2595) can be considered the charmed homologous

of the Λ(1405), sharing with it a common physical origin. We will analyze, in a

simplified manner, the similarities and differences of these resonances with the

representative effective models described in the previous Chapter.

71
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Figure 3.1: Fit to the mass difference M(Λ+
c π

+π−) − M(Λ+
c ) plot, taken from the

published article of the first observation of Λc(2595), from CLEO experi-
ment [E+95]. The largest peak at a mass difference of 342 MeV/c2 is related
to the Λc(2625)+ −→ Λ+

c π
+π− and the smaller but significant one at a

mass difference of 308 MeV/c2 corresponds to the first observation of the
Λc(2595)+ decaying into the Λ+

c π
+π− channel.

3.1 The Λc(2595) and the Λ(1405) resonances

The Λc(2595) charmed baryon was first observed by the CLEO collaboration in

1995 [E+95], and it was the fourth charmed baryon detected since the Σc(2455)

was discovered in 1975 [C+75]. The Λc(2595) was observed as a peak in the

M(Λ+
c π

+π−) − M(Λ+
c ) mass difference spectrum, together with the already

known at that time Λc(2625) resonance (see Fig. 3.1). After the first observation of

the Λc(2595) resonance three more laboratories, Fermi National Accelerator Lab-

oratory (FNAL) [BFPY03], ARGUS [A+97] and Johns Hopkins University (JHU)

[F+96], also confirmed its existence. Nowadays, the Λc(2595) resonance is one of

the best established resonances over the 17 charmed baryons detected. It has

C = 1, isospin I = 0, spin 1
2 and charge +1. The mass of the resonance is

2595.4 ± 0.6 MeV and its total width is 3.6+2.0
−1.3 MeV. It is experimentally seen

in the Λcππ decay mode but never in the Λcπ one, so it seems that the Λc(2595)

is the first excited resonance of the isoscalar Λc rather than of the isovector Σc

state. The branching ratios, or likelihood of the Λc(2595) to decay to a particular
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Λc(2595)+ decay mode Branching ratio Γi/Γ

Pure 2-body
Σ++
c π− 0.24
Σ+
c π

0 0.24
Σ0
cπ

+ 0.24

Pure 3-body
Λ+
c π

+π0 0.19
Λ+
c π

0π0 0.09

Table 3.1: Branching ratio for the Λc(2595) decay modes, taken from PDG [N+10].

mode [N+10], are given in Table 3.1. It can be appreciated that 3-body Λcππ de-

cays represent only 1/3 of the total, whereas most of them come from the 2-body

Σcπ decay modes. The Λc(2595) resonance decays almost certainly in s-wave, and

expecting that total angular momentum and parity of Σc are JP = 1/2+ (not

proven yet), the values for the Λc(2595) are JP = 1
2

−
.

It can be useful to compare the results of the charm sector with the hierarchy

of the known baryons which are present in the strange sector. The idea is to

explore how similar is the spectrum of charmed baryons to that of the strange

ones. The Λc(2595) is well known to be the charmed counterpart of the Λ(1405)

resonance in the strange sector, by replacing a s quark with a c quark. The reason

why it is important for us to understand the characteristics of the Λ(1405) is that

similar physics should be involved in the Λc(2595) resonance and, in general, in

several resonances of the charm spectrum.

The Λ(1405), discovered in 1965 [ASZ65], has strangeness S = −1, isospin

I = 0, spin 1
2 and charge 0. Its mass and width are, M = 1405.1+1.3

−1.0 MeV and

Γ = 50±2 MeV, respectively. It has a special relevance in hadron physics because

it opened a crucial debate regarding its nature, whether the Λ(1405) is a 3-quark

excited state, or it has a dynamical origin, i.e. qualifies better as a molecular

state generated by the interaction of a meson and a baryon. This new dynamical

origin considered for the first time for the Λ(1405) was motivated by the failure

of the constituent quark model in the prediction of the mass of the resonance.

The quark model has been a very powerful guide in order to classify hadrons

found experimentally, however the Λ(1405) is an exception. The quark model

prediction for the mass of the Λ(1405) is approximately 80 MeV higher than the
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Λc(2595) Λ(1405)

JP 1
2

− 1
2

−

(I, S, C) (0, 0, 1) (0,−1, 0)

Q +1 0

M [MeV] 2595.4± 0.6 1405.1+1.3
−1.0

Γ [MeV] 3.6+2.0
−1.3 50± 2

Decay modes πΣc,Λcππ πΣ

Table 3.2: Comparison, for the Λc(2595) and for the Λ(1405), of the main characteristics:
quantum numbers, mass, width and main decay modes [N+10].

experimental value. This discrepancy was explained in terms of threshold effects

(the KN threshold is just above the Λ(1405) resonance), and also by the fact

that the quark model calculations are restricted to 3-quark states. Therefore,

this inconsistency strongly suggests the importance of the dynamical origin for

the nature of resonances like the Λ(1405).

The first theoretical studies of the dynamical character of resonances were

carried out by Richard Dalitz [DT59b, DT59a, DT60], in particular applied to

the analysis of the Λ(1405) resonance. These studies led to the idea that the

Λ(1405) was not a regular resonance and that it could be explained as the re-

sult of an unstable bound state of the KN meson baryon system. The work of

Dalitz and others [BF61, Wyl67, DWR67, LW67, Raj72, SW88] was adapted in

recent years to the language of chiral Lagrangians. This has allowed the the-

oretical prediction of the dynamical character of many of the light resonances

in the SU(3) sector. In the particular case of the JP = 1/2− resonances, they

can be generated dynamically from the interaction in s-wave of mesons of the

pseudoscalar 0− octet with the 1/2+ ground-state baryons. The two-pole na-

ture of the Λ(1405), firstly announced in the theoretical work of [OM01] and

deeply analyzed in [JOO+03], is an important consequence of these studies that

have been confirmed through analyses [MOR05, JOS09] of different experimen-

tal reactions [TEFK73, P+04, B+77]. This implies that the observed Λ(1405)
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πΣ(2591)

Λ(1405)
Λ(2595)

c

c

πΣ(1330) ΚΝ(1433)

DN(2806)

Figure 3.2: The Λ(1405) resonance is placed between the πΣ and KN thresholds and
the Λc(2595) between the πΣc and DN ones. The difference is that the
Λ(1405) is close and below the second threshold, KN , while the Λc(2595) is
just a few MeV above the first threshold, πΣc.

resonance is not the effect of one single pole, but a superposition of the effect

of two resonances located around 1405 MeV, which couple to different meson-

baryon channels. The low mass resonance is predicted to have a large width and

couples mostly to πΣ channels while the higher mass resonance has a narrower

width and couples mainly to the KN one. It has already been confirmed that

this KN molecular state is located around 1420 MeV [JOS09] from experimental

data in [B+77] where particles were detected by the bubble chamber, although

some more phenomenological models predict it at lower energies [EAY10].

The experimentally tested dynamical origin of the Λ(1405) is the main mo-

tivation of this thesis which aims at extending the study to the baryons in the

charm sector. There are some similarities between the Λ(1405) and the Λc(2595)

states, but the dynamics involved in each resonance look different. Despite of the

experimentally accepted two double pole structure of the Λ(1405), the Λc(2595)

resonance seems to have a single pole structure. Both resonances are placed in

between the lightest and the second meson-baryon thresholds (see Fig. 3.2) but

the location of each resonance in between the respective thresholds makes them

to have different properties. These differences are going to be analyzed through

the implementation of different effective models which will be explained below.
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```````````B-S equation
kernel

WT TVMEt→0 TVME

On shell
Model 1: Model 2: 7

WTon TVMEont→0

Off shell
Model 3: Model 4: Model 5:

WToff TVMEofft→0 TVMEoff

Table 3.3: Summary of the different models we get by combining two different ap-
proaches of solving the B-S equation and three types of kernels. Models 1
and 2 solve the on-shell scattering equation and models 3, 4 and 5 solve the
off-shell scattering equation. The WT kernel is implemented in models 1 and
3, the TVMEt→0 is applied in models 2 and 4, and only model 5 uses the
complete TVME kernel. The TVME cannot be applied to solve the on-shell
scattering equation due to the appearance of a non-physical infinite each
time that the interchange of the vector meson between the pseudo-scalar me-
son and the ground state baryon takes place, as it was already explained in

previous Chapter, when the |~kon|2 → −m
2
v

2
limit is fulfilled.

3.2 Toy models

We will consider five different effective models to analyze each sector, which result

from the combination of two different approaches of solving the B-S equation and

three different kernels (see Table 3.3). Both ways of solving the B-S equation were

already shown in the previous Chapter, as well as the different kernels considered.

We will respectively call “off-shell” to the three-dimensional reduction of the

B-S equation or L-S equation (see Eq. (2.42)), and “on-shell” to the on-shell

approximation (see Eq. (2.33)). Note that we get five models and not six because,

as it was already said in the previous Chapter (see Section 2.2.2 in Chapter 2),

the full TVME kernel (see Eq. (2.20)) can not be applied to solve the on-shell

B-S equation due to the appearance of non-physical infinities in the kernel when

the |~kon|2 → −m
2
v

2 limit is fulfilled.

With respect to the three different kernels considered, WT, TVMEt→0 and

TVME type (see Eqs. (2.24), (2.21) and (2.20)), they will be built using on-shell
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Figure 3.3: Both panels show the position of the resonances for the different coupled-
channel systems considered, in the case of charm (left panel) and strange
(right panel) sectors. The cut-off is fixed in each sector for the whole system
of coupled-channels (marked with star symbols) to reproduce the position
of the Λc(2595) and of the Λ(1420) resonance. The square symbols indicate
the position of the resonances when the three most important channels are
coupled and the diamond symbols are the results when just the first and
second channels are considered. There are no important differences between
coupling all channels and the case of coupling three channels. Therefore,
each sector will be reduced to a three coupled-channel problem.

or off-shell energies depending if they are applied to solve the on-shell or off-shell

scattering equation, respectively.

To obtain the T matrix from the off-shell solution of the L-S equation one

necessarily has to regularize the integral with a form factor which depends on

a cut-off λ (see Eq. (2.44)). To compare more easily between the off-shell and

on-shell approaches we will also solve the on-shell T matrix regularizing the loop

integral with a cut-off, instead of solving it with the dimensional regularization

method as it is usually employed in the on-shell models. This cut-off will be

our free parameter to fix the different models to the experimental information

available in each sector: the Λc(2595) resonance in the charm sector, and the

Λ(1420) resonance in the strange one.

Another parameter we need to fix is the meson coupling constant (f) in the

WT kernel or the universal coupling constant (g) in the TVMEt→0 and TVME
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πΣc DN DsΛ

πΣc 8(ρ)
√

6(D∗) 0

DN
√

6(D∗) 3(ρ), 3(ω) 2
√

3(K∗)

DsΛ 0 2
√

3(K∗) 2(φ)

πΣc DN DsΛ

πΣc 8 κ
√

6 0

DN κ
√

6 6 2
√

3

DsΛ 0 2
√

3 2

Table 3.4: The SU(4) coefficients for the (I = 0, S = 0, C = 1) sector. On the
left: the Cij,v which are included at the TVMEt→0 and TVME kernels.
The particle inside the parenthesis is the vector meson interchanged be-
tween the meson and the baryon in a specific transition. On the right: the
CWT
ij =

∑
V Cij,v coefficients corresponding to the W-T kernel. The reduc-

tion factor κ = (mv/m
C
v )2 ≈ 1/4 is introduced in transitions driven by

charmed vector meson exchanges (D∗,Ds and J/ψ).

ones, already introduced in the previous Chapter. Using the KSFR relation in

Eq. (2.4) that relates f with g, we will choose f as the common parameter for

all the different kernels and it will be fixed to the value f = 1.15fπ, where

fπ ≈ 93 MeV is the pion decay constant. This value of f has been commonly

used for the strange sector in this kind of studies [GRNRAVV03, JOO+03, OR98]

and we will also employ it for simplicity in the charm sector.

In order to simplify the analysis to the most important aspects the mini-

mum number of channels will be considered. Reducing each sector to the first

two channels would imply to have the most simple coupled channel problem, as

both experimentally tested resonances, Λc(2595) and Λ(1420), decay into the first

channel and couple strongly to the second one. However, we have found necessary

to include one more channel in each sector (ηΛ in the strange sector and DsΛ

in the charm one) to keep the most relevant aspects of the full coupled-channel

model, while still keeping the simplicity, as it is shown in Fig. 3.3.

In Tables 3.4 and 3.5 we show the SU(4) and SU(3) coefficients for the reduced

system of three channels, which have been employed for the different kernels (the

complete Tables are given in Appendix A). When the sign of the coefficients for

the diagonal transitions is positive it means attraction between channels (in our

sign convention), and one expects to find a bound state for an energy close to

that meson-baryon threshold. In the case of the charm sector the three diagonal
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πΣ KN ηΛ

πΣ 8(ρ)
√

6(K∗) 0

KN
√

6(K∗) 3(ρ), 3(ω) 3
√

2(K∗)

ηΛ 0 3
√

2(K∗) 0

πΣ KN ηΛ

πΣ 8
√

6 0

KN
√

6 6 3
√

2

ηΛ 0 3
√

2 0

Table 3.5: The SU(3) coefficients for the (I = 0, S = −1, C = 0) sector. On the
left: the Cij,v coefficients which are included at the TVMEt→0 and TVME
kernels. The particle inside the parenthesis is the vector meson interchanged
between the meson and the baryon in a specific transition. On the right: the
CWT
ij =

∑
v C

v
ij,v coefficients corresponding to the W-T kernel.

transitions are attractive but we will only look at the bound states generated

by the first two channels, the πΣc and the DN , because we wish to analyze the

Λc(2595) resonance, which appears as a DN bound state. Apart from that, a

bound state generated by the DsΛ ↔ DsΛ transition is expected to be located

in the vicinity of the DsΛ threshold at 3084 MeV, being too far from the energy

range we are interested in. However in the strange sector the third channel does

not introduce any additional bound state because the coefficient of the diagonal

transition ηΛ↔ ηΛ is zero. The coefficients of the first two channels are identical

to the charm sector ones, with the only difference of the non-diagonal transitions

in which the vector meson interchanged in the charm sector is the D∗ while in

the strange sector is the K∗.

In summary, we have five different models to analyze each sector, the charm

case is presented in Section 3.3 and the strange sector in Section 3.4. Both of them

are simplified to a three coupled channel problem, and the models just depend

on one free parameter, the cut-off momentum λ. We will vary this cut-off so as

to study how the position of the resonances behaves in each model (see Figs. 3.4,

3.5 and 3.6, 3.7) and finally, we will fix it to the value that reproduces more

accurately the experimental information in each sector, showing the numerical

results (mass of the resonances, width and couplings) in Tables 3.6 and 3.7.
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3.3 Results for the charm sector

We find two resonances in the charm sector, each of them coupled differently

to the first two channels, πΣc and DN . They appear as bound states of the

πΣc ↔ πΣc andDN ↔ DN transitions when solving the uncoupled-channel case.

Therefore we will refer to them as πΣc and DN resonances, respectively. We can

see in Fig. 3.4 (on-shell models) and Fig. 3.5 (off-shell models) the dependence

of both resonances with the cut-off.

At first glance, we observe that the on-shell models gives rise to a milder

dependence on the position of the resonances with the cut-off than the corre-

sponding off-shell models (first two panels in Fig. 3.5). This behavior is more

pronounced in the case of the πΣc resonance. In on-shell models the πΣc res-

onance acquires a wide width and its position, which barely changes with the

cut-off, is always located above the πΣc threshold while in the off-shell models it

always appears below it. The fact that the πΣc resonance is so stable with the

cut-off in on-shell models gives rise to a crossing with the DN resonance for a

particular value of the cut-off.

Particularly interesting is the case of the non-local TVMEoff model shown

in the third panel of Fig. 3.5. Although the dependence of the DN resonance

with the cut-off is qualitatively similar in the on- and off-shell models, it is the

TVMEoff model the one that produces the most stable DN resonance against

changes in the cut-off, which must be increased by 600 MeV/c in order to move

the DN resonance from the upper DN threshold to the lower πΣc one.

In Table 3.6 we present for the different models, the mass, width and couplings

of the DN and πΣc resonances for the cut-off parameter that reproduces the

position of the Λc(2595) resonance as a DN molecule located at the energy of

2595 MeV. In general, the predicted widths for the Λc(2595) resonance in the

different models are slightly smaller than the experimental value of 3.6+2.0
−1.3 MeV,

but this is justified from the fact that 1/3 of the width comes from 3-body meson-

meson-baryon decay modes while our models just account for 2-body meson-

baryon interactions.

We will continue the analysis of Table 3.6 commenting on the difference be-

tween on- and off-shell models, excluding for the TVMEoff model which has no
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B-S On-Shell Off-Shell

Kernel WTon TVMEont→0 WToff TVMEofft→0 TVMEoff

λ [MeV/c] 763 722 682 640 1174

M [MeV] 2595 2595 2595 2595 2595

Γ [MeV] 6 0.5 1 0.2 0.7

gπΣc 1.2 0.31 0.46 0.19 0.4

gDN 8.0 8.6 11 12 10

gDsΛ 4.1 3.5 6.9 5.8 5.3

M [MeV] 2635 2603 2377 2326 2182

Γ [MeV] 87 63 0 0 0

gπΣc 2.1 2.2 6.1 7.0 10.0

gDN 3.7 1.3 4.6 1.7 3.2

gDsΛ 2.2 0.54 2.0 0.52 1.0

Table 3.6: Masses (M), widths (Γ) and couplings (gi) of the DN and πΣc resonances
once the cut-off has been fitted to reproduce the Λc(2595) resonance or DN
molecule.

equivalent on-shell model to compare with. The on-shell approaches using the WT

and TVMEt→0 kernels require larger values of the cut-off than the correspond-

ing off-shell ones. This difference comes essentially from the numerator which is

basically proportional to the sum of the incoming and outgoing meson energies,

ω(~kin) + ω(~kout) with ω(~k) =
√
k2 +m2. Considering the Λc(2595) resonance, it

is easy to see that for the on-shell cases the DN ↔ DN interaction is less intense

than for the off-shell ones because the resonance lies below the DN threshold

and the on-shell meson energies, built from negative k2
on values, are smaller than

the off-shell ones, obtained from positive k2
off values.
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The essential difference between the WT and the TVMEt→0 kernels (either on-

or off-shell) lies in the second term of the TVMEt→0 interaction. Since this piece

of the kernel makes the interaction to be smaller for the non-diagonal transitions

like πΣc ↔ DN , the couplings of the Λc(2595) to πΣc states are smaller and

therefore the width of the resonance as well. This effect can be appreciated in

both on-shell and off-shell approaches where the widths of the Λc(2595) and its

coupling to πΣc states are considerably smaller for the TVMEt→0 kernel than for

the WT one.

Finally, we will briefly advance some remarks as far as the difference between

the off-shell TVMEt→0 and TVME models is concerned, as they will be treated

with more details in the next Chapter. We observe that the t → 0 kernel needs

a much smaller cut-off to generate the Λc(2595) resonance at its position than

the finite range interaction. As we will show in Chapter 4, this difference comes

from the smaller strength of the diagonal matrix elements in the non-local kernel

compared to those of the local one. Another difference is that the local model

presents a much narrower width for the Λc(2595) than the non-local one, and

this is due to the different magnitude of the non-diagonal matrix elements, which

are larger in the finite range approach. As we will see in Fig. 4.1 of Chapter 4,

the positive character of the variable t for non diagonal transitions explains this

difference.

3.4 Results for the strange sector

In the strange sector we also find two poles coupled to πΣ and KN channels.

Similarly to the charm sector we will refer to them as πΣ and KN resonances,

respectively. Many of the already analyzed aspects of Fig. 3.4 and 3.5 in the

charm sector are also valid for the strange one (see Figs. 3.6 and 3.7). One of

them is the behavior of the resonance that couples mostly to the first channel,

the πΣ resonance, which acquires a width for certain values of the cut-off in on-

shell models, while in the off-shell models it always appears under the lightest

threshold. We find that, in general, the position of the resonances for on-shell

models shows a milder dependence on the cut-off value, as we found for the

charm case. In contrast with the charm case, there is no crossing between the
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resonances because the πΣ resonance always appears under the KN one for both

on- and off-shell models.

In Table 3.7 we present, for the different models, the mass, width and cou-

plings of both resonances for the cut-off parameter that reproduces the position

of the Λ(1420) resonance as a KN molecule located at the energy of 1420 MeV.

Depending on the model, the Λ(1420) resonance shows a variety of widths which

go from 17 MeV to 42 MeV. We can apply for Table 3.7 the same discussion

between the different models that we have made for Table 3.6 in the previous

Section. One difference worth to mention is the smaller couplings of both reso-

nances to the KN channel, compared to the coupling of the charmed resonances

to the DN one. However, for those models in which the strange resonances are

located above the πΣ threshold, their coupling to the first channel is bigger than

for the charmed resonances. Therefore, their width is much wider than for the

charmed resonances. Also the cut-offs in the strange sector are smaller than the

ones in the charm sector since the systems are placed in different energy domains,

separated about 1000 MeV/c from each other.

As we obtained for the charm sector, the resonances are further apart in off-

shell models than in on-shell ones. We can compare our results on the strange

sector with other works in literature. The πΣ and KN resonances are 40 −
60 MeV far apart in on-shell models (see Table 3.7), in agreement with [BMN06,

GRNRAVV03, JOO+03, OR98], where the separation between both resonances

is less than 70 MeV. However, in the off-shell models the separation between both

resonances is bigger. The off-shell approaches of Table 3.7 show that both reso-

nances are 130-180 MeV far and, in the off-shell model developed in [HKMT10],

the distance between them is around 100 MeV. The discrepancy between our off-

shell approaches and that of the [HKMT10] can be a consequence of the simplicity

of our one-meson exchange model, in contrast with the one in [HKMT10], where

box-diagrams and σ-exchange terms, among other things, are also included.

An important consequence of the closeness of the resonances in on-shell models

is the overlap between the two bound states. In the strange sector this is the origin

of the so-called “two-pole nature” of the Λ(1405), meaning that the experimental

resonance observed around 1405 MeV is actually the superposition of the two

poles, the narrower one at higher energy couples more strongly to KN states
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B-S On-Shell Off-Shell

Kernel WTon TVMEont→0 WToff TVMEofft→0 TVMEoff

λ [MeV/c] 615 560 580 506 770

M [MeV] 1420 1420 1420 1420 1420

Γ [MeV] 40 17 42 19 20

gπΣ 1.7 0.94 1.25 0.89 0.95

gKN 2.9 2.6 3.0 3.0 2.9

gηΛ 1.5 1.1 2.1 1.6 1.6

M [MeV] 1380 1358 1241 1293 1260

Γ [MeV] 115 109 0 0 0

gπΣ 2.8 2.5 4.3 3.6 4.3

gKN 2.6 1.6 4.6 3.0 3.2

gηΛ 0.8 0.4 1.9 0.95 1.1

Table 3.7: Masses (M), widths (Γ) and couplings (gi) of the KN and πΣ resonances
once the cut-off has been fitted to reproduce the Λ(1420) resonance or KN
molecule.

and the wider one at lower energy couples more strongly to πΣ states, as seen

in the first two columns of Table 3.7. However, in spite of the overlap of the two

states also present in the charm sector with on-shell models (see Fig. 3.4), this

“two-pole nature” has not been experimentally identified. The reason lies in the

very different relative couplings of the two states found by the models to the πΣc

and DN channels. The DN state at 2595 MeV couples relatively very weakly

to πΣc, becoming very narrow and, therefore, standing out very distinguishably

from the πΣc state that, in the on-shell models, appears only few MeV higher in

energy but is much wider and will essentially contribute as a background.



4

Dynamical generation of charmed baryon

resonances

One of the main interests of this thesis is to study the effects of going beyond

the zero range approximation in the t−channel vector-exchange driving force.

For this purpose, we will explore the different open-charm meson-baryon sectors

by solving the Lippman-Schwinger (L-S) equation with the TVME kernel. This

is an extension of the work of Hofmann and Lutz [HL05] in which the t → 0

approximation was applied to the kernel. We will justify the need of dealing with

the t-dependence and discuss its effects on the dynamical generation of baryon

resonances obtained in the model, some of which can be clearly identified with

recently observed states.

87
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4.1 Going beyond the zero range approximation

In Chapter 3 we already introduced the differences that the resonances present

depending on the model we use. In this Section we are particularly interested in

understanding the importance of the non-local terms in the meson-baryon inter-

action by comparing the off-shell TVME (Eq. (2.20)) and TVMEt→0 (Eq. (2.21))

kernels. Both models will account in this Chapter for the complete set of coupled

channels and we will fix the universal coupling constant to g = 6.6, as in the work

of Hofmann and Lutz [HL05], instead of considering the meson coupling constant

f = 1.15f MeV used as a common parameter in the toy models of the previous

Chapter.

In order to illustrate the validity of the t → 0 approach we show in Fig. 4.1

the value of t/m2
v as a function of

√
s, where mv is the mass of a representative

meson exchanged, which we take to be the ρ meson mass for diagonal transitions
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defined in Eq. (2.21) (dashed line). The incoming and outgoing relative

momenta ~ki and ~kj have been taken equal to 0.

and the D∗ meson mass for charm exchange ones. To accomplish this, we use

Eq. (2.9) which is given in terms of on-shell energies and momenta (Eq. (2.28)).

The range of energies goes roughly between the πΣc and DN thresholds, thereby

covering the region of the JP = 1
2

−
resonance Λc(2595), which is a prime example

of a dynamically generated open charmed baryon state in various approaches

[LK05, TSBM04, LK04a, HL05, HL06, MR06]. It also expands beyond the DN

threshold for about 300 MeV in order to explore the energy region that will be

relevant in future studies of the D-meson self-energy in the nuclear medium. As

one can see, the value of t/m2
v is only close to zero for diagonal transitions around

their corresponding energy threshold, and its size is comparable to one at energies

of interest in the present study. For the non-diagonal πΣc → DN transition, t/m2
v

never goes to zero and acquires values of the order of 0.5.

We compare in Fig. 4.2 the results obtained using the non-local off-shell kernel

(Eq. 2.20) with those taking the limit t → 0 (Eq. (2.21)). We represent the
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(I, S) States

( 1
2
,−3) K̄Ωc

(0,−2) K̄Ξc, K̄Ξ′c, DΞ, ηΩc, η
′Ωc, D̄sΩcc, ηcΩc

(1,−2) πΩc, KΞc, KΞ′c, DΞc

( 1
2
,−1) πΞc, πΞ′c, K̄Λc , K̄Σc, DΛ, ηΞc, DΣ, ηΞ′c

KΩc, DsΞ, η′Ξc, η
′Ξ′c, ηcΞc, D̄sΞcc, D̄Ωcc, ηcΞ

′
c

( 3
2
,−1) πΞc, πΞ′c, K̄Σc, DΣ

(0, 0) πΣc, DN , ηΛc, KΞc, KΞ′c, DsΛ, η′Λc, ηcΛc, D̄Ξcc

(1, 0) πΛc, πΣc, DN , KΞc, ηΣc, KΞ′c, DsΣ, η′Σc, D̄Ξcc, ηcΣc

(2, 0) πΣc

( 1
2
, 1) KΛc, DsN , KΣc

( 3
2
, 1) KΣc

Table 4.1: Coupled-channel meson-baryon states with charm C = 1 and all possible
combinations of isospin, strangeness (I, S).

imaginary part of the scattering amplitude of the elastic process DN → DN , as

a function of
√
s for zero incoming and outgoing relative momenta. We can see

that, by adjusting the cut-off value conveniently, both models of the kernel can

generate this state dynamically. However, the zero range approximation needs

a cut-off value of λ = 553 MeV/c while the finite range interaction requires a

substantially larger value of λ = 903 MeV/c1.

This is easily understood from the fact that the DN → DN diagonal matrix

elements of the non-local kernel, largely responsible for generating the resonance,

are smaller in magnitude than those of the local one. The large difference between

the cut-off momenta is just a reflection of the importance of the non-local terms

1Note that the cut-offs generating the DN bound state at the position of the Λc(2595),
are slightly smaller than the ones shown in Table 3.6 for the toy models of previous Chapter.
There are two reasons that can explain this. The first one is that the DN bound state feels
more attraction when coupling all the channels. The second one has to do with the value set
for g = 6.6, which is equivalent to consider f = fπ . This value is lower than the one chosen in
the previous Chapter f ≈ 1.15 fπ and therefore the strength of the kernel gets increased.
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in this problem. Once the Λc(2595) resonance is conveniently located to its ex-

perimental position by both prescriptions, there remain substantial differences in

its width. The local kernel produces a very narrow resonance, of width 0.15 MeV,

while the resonance generated by the finite range kernel has a width of 0.5 MeV,

closer to the empirical value of 3.6+2.0
−1.3 MeV. Again, this is due to the different

magnitude of the non-diagonal matrix elements DN → πΣc, which are larger

in the finite range approach. We also observe that the results obtained with the

low cut-off in the approximation t→ 0 for the Λc(2595) agree (mass, width and

couplings) with former studies of meson-baryon resonances of Hofmann and Lutz

in [HL05] and Garcia-Recio et al., in [GR+09].

The results of Figs. 4.1 and 4.2 clearly point to the need of exploring the effects

beyond the t→ 0 approximation, an attempt that is taken in the present work by

considering the full t-dependence of the scattering kernel given by Eq. (2.20). The

amplitudes describing the scattering of the pseudoscalar mesons off the ground-

state baryons are obtained by solving the L-S equation (see (2.42)), already intro-

duced in Chapter 2. Our results for the properties of the baryon resonances with

charm in various strangeness and isospin sectors are shown in the next Section.

4.2 Results for the C = 1 sectors

All the possible isospin (I) and strangeness (S) sectors with charm C = 1 that can

be built from the s-wave scattering of pseudoscalar mesons with JP = 1
2

+
baryons

are shown in Table 4.1, together with the corresponding meson-baryon coupled

channels. In this work, we will first study the cases in which some resonance with

either JP = 1
2

−
or unknown spin-parity has already been observed. This includes

the sectors with isospin, strangeness quantum numbers (I, S) = (0, 0), (1, 0) and

( 1
2 ,−1), corresponding respectively to Λc, Σc and Ξc states, the experimental

information of which is gathered in Table 4.2. We will next explore the sector

(I, S) = (0,−2) of the Ωc states which so far has no experimental evidences for

JP = 1
2

−
states. Finally, we will comment on the (I, S) = ( 1

2 , 1) sector that can

only be realized with the presence of 5 quarks. The rest of the C = 1 sectors

of Table 4.1 will not be commented in this Section because they do not present

bound states in the model, nor there is experimental evidence of resonances with
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Resonance JP I, S Γ[MeV] Decay modes Status

Λc(2595)+ 1
2

−
0, 0 3.6+2.0

−1.3 Λcππ, Σcπ ***

Λc(2765)+ ?? ?, 0 ∼ 50 Λcππ *

Λc(2940)+ ?? 0, 0 17+8
−6 DN , Σcπ ***

Σc(2800) ?? 1, 0 75+22
−17(Σ++

c ),62+60
−40(Σ+

c ) Λcπ ***
61+28
−18(Σ0

c)

Ξc(2790) 1
2

− 1
2
,−1 < 15(Ξ+

c ), < 12(Ξ0
c) Ξ′cπ ***

Ξc(2930) ?? ?,−1 36± 13 ΛcK *

Ξc(2980) ?? 1
2
,−1 26± 7(Ξ+

c ), 20± 7(Ξ0
c) ΛcK̄π,ΣcK̄ ***

Ξc(3055) ?? ?,−1 17± 13 ΛcK̄π,ΣcK̄ **

Ξc(3080) ?? 1
2
,−1 5.8± 1.0(Ξ+

c ) ΛcK̄π,ΣcK̄ ***
5.6± 2.2(Ξ0

c) Σ∗cK̄

Ξc(3123) ?? ?,−1 4± 4 Σ∗cK̄ *

Table 4.2: Masses, widths, decay modes and status of experimental C = 1 baryon res-
onances with JP = 1

2

−
or unknown. The expected isospin I and strangeness

content S are also shown.

such quantum numbers.

Since the value of the cut-off λ is the free parameter of our model, and given

the limited amount of data for charmed baryon resonances, it will be adjusted to

the position of the well-known Λc(2595) resonance, and the same value will be

used for the other sectors explored in this work. We also investigate the effect of

a gaussian-type form factor, as well as the dependence of our results on the value

of the cut-off employed.

In the following we will present the results for each sector. Firstly, we will

present the map of the bound states generated for the decoupled channel sys-

tem, in order to visualize which are the diagonal channels responsible for the

appearance of resonances and how they move when all the channels are coupled.

Note that diagonal channels with positive Cii,v coefficients (see Eq. 2.7) will be in

general those generating a bound state. After that, we will present the couplings
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Λc resonances (I = 0, S = 0)

Diagonal Threshold Diagonal Decoupled Coupled
channels E [MeV] Cii,v M, Γ [MeV] M, Γ [MeV]

πΣc ↔ πΣc 2591 8(ρ) 2270, 0 2168, 0

DN ↔ DN 2806 3(ρ), 3(ω) 2652,0 2595, 0.5

ηΛc ↔ ηΛc 2832 0 7 7

KΞc ↔ KΞc 2963 3(ρ),−1(ω), 2(φ) 2942, 0 2805, 0.01

KΞ′c ↔ KΞ′c 3070 3(ρ),−1(ω), 2(φ) 3052, 0 3070(cusp)

DsΛ↔ DsΛ 3085 2(φ) 3085(cusp) 3085(cusp)

η′Λc ↔ η′Λc 3243 0 7 7

ηcΛc ↔ ηcΛc 5265 0 7 7

D̄Ξcc ↔ D̄Ξcc 5307 3(ρ),−1(ω), 4(J/ψ) 5265, 0 5248, 7

Table 4.3: We show, for the (I = 0, S = 0, C = 1) sector, the different diagonal
transitions with the threshold of the channels in the first and second column.
The coefficients of the diagonal channels are given in the third column with
the specific vector meson interchanged. The positive diagonal coefficients give
attraction to the transition, generating a bound state (fourth column) in the
uncoupled system. When we couple the channels, each bound state changes
its position and acquires a width if it can decay in at least one channel.

of each resonance to the different channels. As the cusp-like structures do not

appear as infinities in the second Riemann sheet of the complex energy plane,

they will be omitted from the table of couplings.

4.2.1 Λc resonances (I = 0, S = 0)

In this sector there exists the experimental Λc(2595) resonance, already intro-

duced in the previous Chapter, which has been extensively studied in various

works in recent years [TSBM04, LK04a, HL05, HL06, MR06].

Our search of resonances in this sector produces five pure bound states and

a cusp structure in the decoupled-channel system shown in the fourth column of

Table 4.3. When the channels are coupled, the pure bound-state at 3052 MeV
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Λc resonances (I = 0, S = 0)

M [MeV] 2168 2595 2805 5248

Γ [MeV] 0 0.5 0.01 7

Couplings |gi|

πΣc(2591) 10.5 0.32 0.004 0.44

DN(2806) 3.02 11. 0.21 0.33

ηΛc(2832) 0.08 0.42 2.16 0.24

KΞc(2963) 0.12 0.52 4.26 0.39

KΞ′c(3070) 4.79 0.23 0.004 0.21

DsΛ(3085) 1.30 6. 0.19 0.19

η′Λc(3243) 0.14 0.69 0.006 0.50

ηcΛc(5265) 0.41 2. 0.02 1.4

D̄Ξcc(5307) 0.57 0.05 1.1 4.17

Table 4.4: Masses, widths and couplings of the resonances in the (I = 0, S = 0, C = 1)
sector.

moves towards the KΞ′c threshold, which is the meson-baryon channel which

generates the resonance, and then it becomes a cusp-like structure. However,

in [HL05, GR+09] the KΞ′c state appears as a resonance located at 3036 and

3053 MeV, respectively. Also, the cusp structure at the DsΛ threshold (see fourth

and fifth columns in Table 4.3) appears as a resonance in [HL05, GR+09] located

at 3038 and 3153 MeV, respectively. In Table 4.4 we show the widths and cou-

plings of the bound states to the various meson baryon states, omitting the cusp-

like structures. The first and second resonances at 2168 and 2595 MeV where

already studied in the last Chapter for a simplified model, and couple mostly to

the first and second channel, respectively.

The Λc(2595), which is basically a DN state, couples very weakly to its only

possible decaying channel πΣc, thereby explaining its narrowness. We obtain an

even narrower resonance at 2805 MeV, which is a KΞc bound system, a state also
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Σc resonances (I = 1, S = 0)

Diagonal Threshold Diagonal Decoupled Coupled
channels E [MeV] Cii,v M, Γ [MeV] M, Γ [MeV]

πΛc ↔ πΛc 2424 0 7 7

πΣc ↔ πΣc 2591 −1(ρ), 3(ω) 2581, 0 2551, 0.15

DN ↔ DN 2806 −1(ρ), 3(ω) 2805, 0 2804, 5

KΞc ↔ KΞc 2963 −1(ρ),−1(ω), 2(φ) 2963(cusp) 2963(cusp)

ηΣc ↔ ηΣc 2999 0 7 7

KΞ′c ↔ KΞ′c 3070 −1(ρ),−1(ω), 2(φ) 3070(cusp) 3070(cusp)

DsΣ↔ DsΣ 3162 2(φ) 3162(cusp) 3162(cusp)

η′Σc ↔ η′Σc 3410 0 7 7

D̄Ξcc ↔ D̄Ξcc 5307 −1(ρ),−1(ω), 4(J/ψ) 5307(cusp) 5307(cusp)

ηcΣc ↔ ηcΣc 5432 0 7 7

Table 4.5: The same as Table. 4.3 but for the (I = 1, S = 0, C = 1) sector.

found around the same energy in [HL05] and [GR+09]. Note that this resonance

couples non-negligibly to DN and it could explain part of the structures seen

below 2.85 GeV in the D0p invariant mass spectrum measured by the BaBar

collaboration [A+07b]. The fourth bound state, which appears at 5248 MeV,

couples mostly to the last channel D̄Ξcc, and, although it can decay in to the

first eight channels, it is quite narrow because couples weakly to all of them.

There is no evidence for Λc states over 3000 MeV yet, but, as far as we know

there are no experimental studies analyzing resonances at such high energies.

4.2.2 Σc resonances (I = 1, S = 0)

Using the same cut-off that generates dynamically the Λc(2595) resonance in the

(I, S, C) = (0, 0, 1) sector, we predict four cusps and two narrow resonances at

2581 and 2805 MeV (see Table 4.5) that appear right below the thresholds of the

channels to which they couple mostly, namely πΣc and DN , respectively. The
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Σc resonances (I = 1, S = 0)

M [MeV] 2551 2804

Γ [MeV] 0.15 5

Couplings |gi|

πΛc(2424) 0.05 0.27

πΣc(2591) 3.7 0.16

DN(2806) 1.17 2.12

KΞc(2963) 0.04 0.20

ηΣc(2999) 0.74 0.11

KΞ′c(3070) 2.15 0.14

DsΣ(3162) 0.58 1.80

η′Σc(3410) 0.04 0.19

D̄Ξcc(5307) 0.85 0.15

ηcΣc(5432) 0.12 0.56

Table 4.6: Masses, widths and couplings of the resonances in the (I = 1, S = 0, C = 1)
sector

position of the πΣc state moves 30 MeV backward in energy when the channels

are coupled while the DN state remain almost at the same energy position,

as it can be seen from Table 4.5. The couplings of both states with respect

to the different channels are shown in Table 4.6. Since the Σc(2551) resonance

couples negligibly to its only allowed strong decaying channel, πΛc, it appears

as a narrow peak which makes it easy to miss given the energy resolution of the

meson-baryon invariant masses built up in the present experiments. The couplings

to the different meson-baryon states of the second Σc resonance at 2804 MeV

allow one to identify it with the state found in [HL05] at a substantially lower

energy, 2680 MeV, using a subtraction method to regularize the loops, as well as

that found in [MR06] around 2750 MeV, using a cut-off method which preserves

isospin symmetry in the regularization scheme. Our result is obviously closer
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to that of the latter work. The Belle Collaboration reported recently [M+05b]

an isotriplet of excited charmed baryons, Σc(2800), decaying into Λ+
c π
−, Λ+

c π
0

and Λ+
c π

+ pairs and having a width of around 60 MeV with more than 50%

error. Although this resonance has been tentatively assumed to decay to Λcπ

pairs in d-wave and its spin parity estimated to be JP = 3/2−, actual angular

distributions have not been measured and the fits to Λcπ spectra cannot rule out

s-wave type decays. Hence, our state at 2805 MeV could be easily identified with

the Σc(2800) resonance, provided three-body decay mechanisms not accounted

for in our model, could explain the large width observed experimentally.

4.2.3 Ξc resonances (I = 1/2, S = −1)

The results in this sector are presented in Tables 4.7 and 4.8. We will start

directly by the analysis of the results obtained for coupled-channels in Table 4.8,

where, apart from the four cusp structures placed at KΛc, KΩc, DsΞ and DsΞcc

thresholds, we predict several bound states which we explain in detail in the

following lines.

The two pure bound states at 2515 and 2549 MeV are placed less than one

pion mass above the Ξc member of the JP = 1
2

+
ground state antitriplet,

(Λ+
c ,Ξ

+
c ,Ξ

0
c), and below the mass of the Ξ′c member of the JP = 1

2

+
sextet,

(Σ0
c ,Σ

+
c ,Σ

++
c ,Ξ′ 0c ,Ξ

′+
c ,Ω0

c). This implies that these bound states would decay

electromagnetically through the emission of Ξcγ pairs and may have been de-

tected at photon energies of about 50 and 80 MeV in the experiment where the

Ξ′c was observed [J+99b]. Although no apparent signals are reported, we note that

the limited statistical significance of the spectra measured in [J+99b] prevents one

from ruling out the existence of these bound states. Moreover, their production

rate would also be somewhat inhibited by the fact that they are predominantly

5 quark-component states. Note also that, lowering gradually the value of the

cut-off to somewhat below 700 MeV, the first state at 2515 MeV eventually be-

comes a resonance, but quite narrow due to its weak coupling to the first channel,

whereas the second state at 2549 MeV, which is πΞc molecule, rapidly becomes

so wide that it would be difficult to be distinguished from the background.

In addition, our model gives three more resonances above the πΞc threshold

and below 3 GeV, placed at 2733, 2840 and 2977 MeV. The local model of [HL05]
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Ξc resonances (I = 1/2, S = −1)

Diagonal Threshold Diagonal Decoupled Coupled
channels E [MeV] Cii,v M, Γ [MeV] M, Γ [MeV]

πΞc ↔ πΞc 2609 4(ρ) 2601, 0 2549, 0

πΞ′c ↔ πΞ′c 2715 4(ρ) 2715, 0 2515, 0

K̄Λc ↔ K̄Λc 2779 2(ω) 2779 (cusp) 2779 (cusp)

K̄Σc ↔ K̄Σc 2946 4(ρ), 2(ω) 2786, 0 2733, 34

DΛ↔ DΛ 2985 2(ω) 2983, 0 2977, 4

ηΞc ↔ ηΞc 3018 0 7 7

DΣ↔ DΣ 3062 4(ρ), 2(ω) 2887 2840, 0.58

ηΞ′c ↔ ηΞ′c 3124 0 7 7

KΩc ↔ KΩc 3192 4(ρ) 3185, 0 3192 (cusp)

DsΞ↔ DsΞ 3288 4(ρ) 3268, 0 3288 (cusp)

η′Ξc ↔ η′Ξc 3428 0 7 7

η′Ξ′c ↔ η′Ξ′c 3534 0 7 7

D̄sΞcc ↔ D̄sΞcc 5408 4(ρ) 5408 (cusp) 5408 (cusp)

D̄Ωcc ↔ D̄Ωcc 5429 4(ρ) 5429 (cusp) 5382, 7

ηcΞc ↔ ηcΞc 5450 0 7 7

ηcΞ
′
c ↔ ηcΞ

′
c 5556 0 7 7

Table 4.7: The same as Table. 4.3 but for the (I = 1
2
, S = −1, C = −1) sector.

also obtains three resonances in this energy region, located in general at somewhat

lower masses and showing a different order of appearance, as can be inferred

from the values of their couplings to the different meson-baryon components.

More specifically, the lowest resonance in the local model appearing at 2691 MeV

and coupling strongly to DΣ should be identified with our middle resonance at

2840 MeV. The next two resonances appear quite close in the scheme of [HL05],

at 2793 MeV and 2806 MeV, coupling mostly to K̄Σc and DΛ, respectively, while
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Ξc resonances (I = 1/2, S = −1)

M [MeV] 2515 2549 2733 2840 2977 5382

Γ [MeV] 0. 0. 34 0.58 4 7

Couplings |gi|

πΞc(2609) 0.65 4.47 0.05 0.06 0.31 0.33

πΞ′c(2715) 4.84 0.76 1.77 0.01 0.22 0.22

K̄Λc(2779) 0.48 3.21 0.19 0.10 0.19 0.32

K̄Σc(2946) 6.90 1.01 7.37 0.93 0.16 0.31

DΛ(2985) 1.03 0.30 0.96 1.54 2.95 0.48

ηΞc(3018) 0.13 1.04 0.13 0.18 0.10 0.11

DΣ(3062) 2.91 0.89 3.64 8.82 1.74 0.41

ηΞ′c(3124) 4.04 0.59 3.47 0.46 0.07 0.14

KΩc(3192) 4.40 0.68 1.47 0.07 0.21 0.22

DsΞ(3288) 1.74 0.15 0.92 4.71 2.51 0.27

η′Ξc(3428) 0.16 0.05 0.15 0.53 0.06 0.49

η′Ξ′c(3534) 0.01 0.03 0.09 0.11 0.28 0.01

D̄sΞcc(5408) 0.02 0.01 0.25 0.35 0.71 2.34

D̄Ωcc(5429) 1.10 0.53 1.18 0.24 0.03 2.48

ηcΞc(5450) 1.17 1.10 0.55 0.04 0.03 1.34

ηcΞ
′
c(5556) 0.04 0.08 0.26 0.33 0.82 0.04

Table 4.8: Masses, widths and couplings of the resonances in the (I = 1
2
, S = −1, C =

−1) sector.

in our case they are further apart from each other, at 2733 and 2977 MeV. The

crossing in the ordering of states is another consequence of the non-local scheme

employed in the present work, which gives rise to somewhat different transition

amplitudes than those obtained with local models.
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Ωc resonances (I = 0, S = −2)

Diagonal Threshold Diagonal Decoupled Coupled
channels E [MeV] Cii,v M, Γ [MeV] M, Γ [MeV]

K̄Ξc ↔ K̄Ξc 2963 3(ρ), 1(ω),−2(φ) 2962, 0 2959, 0

K̄Ξ′c ↔ K̄Ξ′c 3070 3(ρ), 1(ω),−2(φ) 3068, 0 2966, 1.1

DΞ↔ DΞ 3189 3(ρ), 1(ω) 3114, 0 3117, 16

ηΩc ↔ ηΩc 3246 0 7 7

η′Ωc ↔ η′Ωc 3656 0 7 7

DsΩcc ↔ DsΩcc 5528 −2(φ), 4(J/ψ) 5528 (cusp) 5528 (cusp)

ηcΩc ↔ ηcΩc 5678 0 7 7

Table 4.9: The same as Table. 4.3 but for the (I = 0, S = −2, C = 1) sector.

The resonances we obtain over 3 GeV can be compared with the results

in [HL05], where a KΩc molecule at 3114 MeV is related with a cusp struc-

ture that in our model appears at 3192 MeV (see fifth column in Table 4.7), and

a very wide resonance, coupling mostly to DΩcc channel at 4274 MeV [HL05], in

our model is placed at 5382 MeV with a much narrow width (see Table 4.8). This

big difference in the width of the DΩcc state is due to the much bigger coupling

of the resonance to the η′Ξc channel in [HL05] than in our model.

Recently, several Ξc states have been observed by the CLEO [C+01b], Belle

[C+06b] and BaBar [A+08b] collaborations, out of which the three star possible

candidates to be identified with one of our states are at 2790, 2980 and 3080 MeV

(see Table 4.2). A change of the cut-off value within a reasonable range could bring

any of our two lower mass resonances (excluding our bound states) to agree in

position with the Ξc(2790) but the width would turn out to be twice wider than

the observed one in the case of the lower mass state. The Ξc(2980) could be easily

associated to either one of the two higher mass states found here below 3 GeV.

However, the experimental analysis of [A+08b] concludes that the Ξc(2980)+

state decays in about 50% of the cases into Σ++
c K− pairs, which makes our state

at 2840 MeV, showing a stronger coupling to K̄Σc, the most likely candidate to
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Ωc resonances (I = 0, S = −2)

M [MeV] 2959 2966 3117

Γ [MeV] 0. 1.1 16

Couplings |gi|

K̄Ξc(2964) 1.36 0.43 0.51

K̄Ξ′c(3070) 2.04 4.49 0.27

DΞ(3189) 2.03 1.68 5.34

ηΩc(3246) 1.67 3.69 0.24

η′Ωc(3656) 0.10 0.07 0.35

DsΩcc(5528) 0.17 1.17 0.19

ηcΩc(5678) 0.28 0.21 1.03

Table 4.10: Masses, widths and couplings of the resonances in the (I = 0, S = −2, C =
1) sector.

be associated to the Ξc(2980).

4.2.4 Ωc resonances (I = 0, S = −2)

In this sector we predict the existence of a bound state at 2959 MeV, near the

lowest threshold, two resonances placed at 2966 and 3117 MeV as can be seen in

Tables 4.9 and 4.10, and a cusp structure at the DsΩcc threshold . The possible

bound state could be detected through the decay into Ωcγ states with photons of

Eγ = 260 MeV in the center-of-mass frame. The resonance placed at 2966 MeV

is very narrow (Γ = 1.1 MeV) according to the low coupling of the resonance to

the only channel in which it can decay (K̄Ξ′c) and the little available phase space.

The resonance at 3117 MeV with a width of Γ = 16 MeV is a DΞ molecule that

can decay to K̄Ξc and K̄Ξ′c states.

The work of [HL05] also finds three states but placed at lower energies, 2839,

2928 and 2953 MeV, which follows the trend observed for other sectors. The

pattern of couplings to the various meson-baryon states also differs a little owing
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(I = 1/2, S = 1)

Diagonal Threshold Diagonal Decoupled Coupled
channels E [MeV] Cii,v M, Γ [MeV] M, Γ [MeV]

KΛc ↔ KΛc 2779 −2(ω) 7 7

DsN ↔ DsN 2908 0 7 7

KΣc ↔ KΣc 2946 4(ρ), −2(ω) 2946 (cusp) 2946 (cusp)

Table 4.11: The same as Table. 4.3 but for the (I = 1
2
, S = 1, C = 1) sector.

to the different interaction model used. The highest energy resonance in [HL05],

coupling strongly to K̄Ξ′c and ηΩc, would correspond to our middle one, while

the lowest one in [HL05], coupling strongly to DΞ, would be the equivalent to

our resonance at higher energy.

4.2.5 Resonances of five quarks

We have also analyzed the sectors corresponding to resonances that cannot be

realized with only three quarks and, therefore, their existence would be signalling

the presence of pure five quark states. Out of the three possible sectors, namely

(I, S, C) = (2, 0, 1), ( 1
2 , 1, 1) and ( 3

2 , 1, 1), we only find hints of a possible

resonance in the case (I = 1
2 , S = 1, C = 1), where we see a cusp-like structure

placed at the threshold of the KΣc channel to which the state couples more

strongly. This behavior is shown in Table 4.11 and in the first column of coupling

constants displayed in Table 4.12, which have been obtained using our nominal

cut-off value of 903 MeV/c. According to the mechanism discussed in [TGRN08],

the coupling constants should vanish if the resonance was placed right at the KΣc

threshold, which explains the smallness of their values. In order to see whether

the cusp structure would eventually become a clear resonance with a slight change

of parameters, we also display in Table 4.12 our results for two other values of

the cut-off, 1200 and 1400 MeV. One can clearly see that the cusp structure

becomes a more bound and wider resonance as the cut-off value increases, while

the coupling constants become larger.
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(I = 1/2, S = 1)

λ [MeV/c] 903 → 1200 → 1400

M [MeV] 2946 (cusp) → 2941 → 2924

Γ [MeV] narrow → 5 → 12

Couplings |gi|

KΛc(2779) < 10−3 → 0.04 → 0.10

DsN(2908) < 10−3 → 0.84 → 1.68

KΣc(2946) < 10−3 → 1.79 → 3.59

Table 4.12: Masses, widths and couplings of the resonances in the (I = 1
2
, S = 1, C = 1)

sector for different cut-off values: 903, 1200 and 1400 MeV/c.

4.3 Dependence on model parameters

We finalize this Chapter by exploring the dependence of our results on the shape

and size of the form factor employed, which are ingredients of the model that are

not constrained by symmetry arguments.

First, by replacing the dipole-type form factor by a Gaussian one

(see Eq. (2.44)), we are able to adjust the position of Λc(2595) with a Gaus-

sian cut-off value of λ = 543 MeV/c. The corresponding width is exactly the

same as that found for the dipole-type form factor as it is shown in panel b) of

Fig. B.2 on Appendix B.

When exploring the other sectors, the Gaussian form factor gives rise to the

same resonances, some of them slightly displaced by at most 50 MeV from the

position found with the dipole-type form factor but having essentially the same

width. Retaining the dipolar form factor, we next explore the effects of varying

the value of the cut-off λ between 600 and 1200 MeV/c, that is, up to 300 MeV/c

below and above the nominal value of 903 MeV/c used in this work. This variation

produces changes in the positions and widths of the resonances within certain

ranges, the general trend of which are summarized in the following points:
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Theory Experiment
(I, S) λ M main Γ M Γ

[MeV/c] [MeV] channel [MeV] [MeV] [MeV]

(0, 0) 903 2595 DN 0.5 2595.4± 0.6 3.6+2.0
1.3

Λc

(1, 0) 1100 2792 DN 16 2801+4
−6 75+22

−17 (Σ++
c )

Σc 2792+14
−5 62+60

−40 (Σ+
c )

2802+4
−7 61+28

−18 (Σ0
c)

814 2790 K̄Σc 55 2789.1± 3.2 < 15 (Ξ+
c )

( 1
2
,−1) 980 2790 DΣ 0.5 2791.8± 3.3 < 12 (Ξ0

c)
Ξc

655 2970 DΣ 1.2 2971.4± 3.3 26± 7 (Ξ+
c )

960 2970 DΛ 5.1 2968.0± 2.6 20± 7 (Ξ0
c)

Table 4.13: Masses, widths and main coupled channel of states that can be identified
with well established resonances in various sectors.

• A resonance that lies far below –by 50 to 200 MeV– the meson-baryon

threshold to which it couples more strongly may change its position by an

amount comparable with the variation of the cut-off value. The larger the

cut-off the more bound the resonance becomes.

• The width of the resonance only changes appreciably for cut-off values that

move the resonance above the threshold of a meson-baryon channel to which

the resonance couples significantly.

• Weakly bound resonances change their positions more moderately, at most

by 10 MeV for changes of cut-off values within 100 MeV/c. In this case, the

width tends to increase as the resonance becomes more bound because of the

disappearance of the distortions induced by the closeness of the threshold,

a phenomenon also known as Flatté effect [Fla76].
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4.4 The Λc(2595), Σc(2800), Ξc(2790) and Ξc(2980)

resonances

Having explored the systematics to the cut-off changes, we finally summarize in

Table 4.13 the states which, taking an appropriate cut-off value within the range

explored, could be identified with a well established resonance of JP = 1
2

−
or

unknown spin-parity. These states are the Λc(2595), Σc(2800), Ξc(2790) and the

Ξc(2980), and they will be represented in Figs. 4.3, 4.4, 4.5 and 4.6, respectively,

as the modulus square of the coherent sum of all transition amplitudes going to

a final meson-baryon state to which the resonances can decay, namely:∑
M ′B′

| CRM ′B′TM ′B′→MB(
√
s) |2 , (4.1)

where the values of the coefficients CRM ′B′ would depend on the specific reaction

used to excite the resonance and, in this graphical example, have all been taken

to one.

The amplitudes have been calculated for zero incoming and outgoing relative

momenta. To compare to actual experiments, one should use the appropriate

excitation coefficients and transition matrix elements going to the on-shell final

momentum. Therefore, the results in the Figures should be considered merely

illustrative. In general, a resonance couples dominantly to a given channel and

the value of the maximum of Eq. (4.1) is basically proportional to the modulus

squared of the product of the resonance couplings to the dominant and decaying

channels, gM ′B′ and gMB , and inversely proportional to the resonance width Γ.
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Figure 4.3: Modulus square of the coherent sum of all transition amplitudes going to
any of the possible final meson-baryon decaying channels, as a function of√
s, for the (I = 0, S = 0, C = 1) sector. The incoming and outgoing

relative momenta ~ki and ~kj have been taken equal to 0.
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Figure 4.4: The same as Fig. 4.3 but for the Σc(2800) resonance in the (I = 1, S =
0, C = 1) sector.
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Figure 4.5: The same as Fig. 4.3 but for the Ξc(2790) resonance in the (I = 1
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5

Radiative decays of charmed baryons

In this Chapter we study the radiative decay of dynamically generated JP = 1
2

−

charmed baryons into the ground state of JP = 1
2

+
baryons. Since different

theoretical interpretations of these baryonic resonances, and in particular of the

Λc(2595), give different predictions, a precise experimental measurement of these

decays would be an important step for understanding their nature. After a general

introduction we will review the baryon resonances that are taken into account in

this study and present the radiative decay formalism in Section 5.2. Results are

presented in Section 5.3.

109
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5.1 Introduction

The decay modes of a resonance may provide a way of learning about the nature

of the state: whether it fits in the conventional qqq-baryon or qq̄-meson picture

or it has a more exotic interpretation. In particular, the radiative decays into

lower lying states may represent a significant part of the decay width when the

hadronic modes are suppressed by phase-space restrictions or/and small values

of the coupling constants. Note that electromagnetic transitions are also useful in

the determination of the quantum numbers of states decaying into a final hadron

with well established quantum numbers.

Radiative decays of ground state heavy flavored baryons have been stud-

ied within many different approaches, like Heavy Hadron Chiral Perturbation

Theory (HHCPT) [C+93, Che97, Sav95, BPS00] –an approach which combines

Heavy Quark (HQ) symmetry with the chiral symmetry in the light sector–, em-

ploying light-cone QCD sum-rules [ZD99], supplementing HQ symmetry with a

SU(2Nf )×O(3) symmetry in the light diquark system [TKO01], or implementing

also dynamical effects for the internal quark structure of the hadrons within the

relativistic three-quark model (RTQM) [IKLR99, IKL99] or other non-relativistic

quark models [DSVD94, FR97, MPV09].

Many of the former approaches have also been applied to obtain the radiative

decays of excited heavy flavored baryons, such as the Λc(2595). A first quali-

tative estimation was given in [Cho94], where the HHCPT formalism was ex-

tended to include the lowest lying excited baryon doublet, Λc(2595) (JP = 1
2

−
)

and Λc(2625) (JP = 3
2

−
). The results of [TKO01] were obtained by exploiting

the alternative light diquark SU(2Nf )×O(3) symmetry. Radiative decays of ex-

cited charmed baryons were also calculated within the relativistic quark model

of [IKLR99, IKL99], as well as using light-cone QCD sum-rules in [Zhu00]. All

these works consider the excited heavy baryon as being an orbital excitation of

the three-quark Qqq system with a unit of angular momentum inserted between

the heavy quark Q and the light diquark qq. A different perspective is provided

by the model of [Cho96], for example. This model considers the excited Λc(2595)

and Λc(2625) as being D∗N bound systems in the first excited state of a harmonic

potential adjusted phenomenologically to reproduce the spin-averaged excitation
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energy. Another example is the model of [DFG+10] which considers the radiative

decay of the Λc(2940) in a hadronic D∗N molecular picture.

In the present Chapter we study the radiative decays of excited baryons in

the C = 1 sector. We focus on the resonances Λc(2595), Σc(2800), Ξc(2790)

and Ξc(2980), all having JP = 1
2

−
, which have been generated as meson-baryon

molecular states on several models based on coupled-channel dynamics [TSBM04,

LK04a, LK05, HL05, HL06, MR06, GR+09, JTRV09]. The radiative transitions

to baryons of the JP = 1
2

+
ground state multiplet proceeds, as we will see,

through the coupling of the photon to the various meson-baryon components of

the resonance, as determined by the coupled-channel dynamical model of this

thesis. This is essentially different from the quark models for which, in the heavy

quark limit, the photon only couples to the light diquark system. Therefore, a

precise measurement of the radiative decays of excited heavy flavored baryons

could help in understanding their internal structure.

The radiative decays of dynamically generated charmed mesons have already

been addressed recently. In [GDO07, FGLM07, LS08], the radiative decay of the

D∗s0(2317) meson has been studied from the point of view that it is generated

dynamically mainly from the interaction of the D meson with a kaon. Also ra-

diative decays of the puzzling X(3872) have been calculated from the point of

view that this state is a D∗D̄ + c.c. molecule [DFG+10]. More recently, many

different radiative decays of the controversial X, Y and Z states have been an-

alyzed assuming that their structure is determined by the interactions of two

vector mesons [LMO10, MNHO11, BMO11].

This chapter is organized as follows: in the next Section we review the dynam-

ically generated JP = 1
2

−
baryon resonances from the interaction of ground state

baryons with pseudo-scalar mesons and present the framework for evaluating the

diagrams needed in the calculation of the radiative decays of the resonances. The

results of the calculation are discussed in Section 5.3.
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gRBM
MB 2595 + i0.25 [MeV]

πΣc 0.06− i0.31

DN −0.13 + i11

ηΛc −0.005 + i0.42

KΞc −0.006 + i0.52

KΞ′c 0.03− i0.23

DsΛ −0.06 + i6

η′Λc −0.01 + i0.69

ηcΛc 0.02− i2

D̄Ξcc 0.007 + i0.05

Table 5.1: Coupling coefficients gRBM of the Λc(2595) pole to the different channels

5.2 Radiative decay calculation

We start this Section by reviewing the meson-baryon states presented in Ta-

ble 4.13 from previous Chapter for which we are going to study its radiative de-

cay. The complex values of the coupling of the resonances to the various charged

meson-baryon states are listed in Tables 5.1 to 5.3. The radiative reaction we

study is given by:

B∗(P, χi) → γ(K, ε)B(Q,χf ) , (5.1)

where P , K and Q are four-momenta which are related by P = K +Q, ε is the

photon polarization and χi and χf are the polarization of the initial and final

spin 1
2 baryons B∗ and B, respectively.

For the evaluation of these radiative decays, we follow a gauge invariant scheme

already used for non-charmed resonances [BBMN05, DOS06a, Dor07, GOD07].

As shown there, the mechanisms for the decay of the resonance B∗ into γB are
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gRBM
MB 2792 + i8.16 [MeV]

πΛc 0.19 + i0.53

πΣc −0.28 + i0.12

DN −0.60− i3.6

KΞc 0.31 + i0.28

ηΣc 0.06− i0.21

KΞ′c −0.13 + i0.24

DsΣ 0.42 + i3.1

η′Σc −0.05− i0.35

D̄Ξcc 0.22 + i0.28

ηcΣc 0.13 + i1

Table 5.2: Coupling coefficients gRBM of the Σc(2800) pole to the different channels

given by the diagrams of Fig. 5.1, where the photon couples to the constituent

mesons and baryons. The amplitude for the radiative decay has the structure:

− iM = Tµνε
ν χ̄fσ

µχi , (5.2)

with σµ = (0, ~σ), where σi are the usual Pauli matrices. For the tensor Tµν , there

are five possible independent Lorentz structures that one can construct with the

two independent four-momenta:

Tµν = agµν + bPµP ν + cPµKν + dKµP ν + eKµKν .

This expression is simplified by noting that, due to the Lorentz condition

ενK
ν = 0, the terms with the coefficients c and e in Eq. (5.3) will not con-

tribute to the radiative decay amplitude of Eq. (5.2). Moreover, gauge invariance

imposes TµνK
ν = 0 and we obtain:

(
a+ d(PK)

)
Kµ + b(PK)Pµ = 0 , (5.3)
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gRBM
MB 2790 + i0.25 [MeV] 2970 + i2.5 [MeV]

πΞc 0.01 + i0.06 0.008− i0.37

πΞ′c 0 + i0.002 −0.25− i0.08

K̄Λc −0.06− i0.22 0.1 + i0.17

K̄Σc −0.003− i1.5 −0.17 + i0.03

DΛ 0.08− i2.1 −0.21− i3.2

ηΞc −0.07− i0.33 0.08− i0.02

DΣ −0.03 + i12. −0.07− i1.76

ηΞ′c −0.001− i0.73 −0.02− i0.05

KΩc −0.003 + i0.08 −0.21 + i0.15

DsΞ −0.08 + i6.54 0.18 + i2.8

η′Ξc 0.005− i0.76 −0.007− i0.08

η′Ξ′c 0.004 + i0.16 −0.01− i0.31

D̄sΞcc 0.04 + i0.44 −0.02− i0.006

D̄Ωcc −0.03 + i0.03 −0.03 + i0.04

ηcΞc −0.007− i1 0.05 + i0.91

ηcΞ
′
c −0.01− i0.46 0.04 + i0.9

Table 5.3: Coupling coefficients gRBM of the Ξc(2790) and Ξc(2980) poles to the differ-
ent channels

from where we conclude that b = 0, while a and d are related through

a = −d(PK). The expression for the amplitude can be further simplified if we

work in the rest frame of the decaying baryon (~P = ~0) and take the Coulomb

gauge (ε0 = 0). In this way only the a term contributes to the amplitude. More-

over, the a coefficient is more easily calculated through the d coefficient, using

the above mentioned relation, a = −d(PK). This is so because, as we will show,

the integral for evaluating the d coefficient converges and only the (b) and (c)

diagrams of Fig. 5.1 contribute to it.
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P−K

q−K
q

P−q

Figure 5.1: Diagrams needed for the evaluation of the radiative decay of dynamically
generated baryons.

The amplitude for diagram 5.1(b) is given by:

−iM = −igRBMgBBMgγMM

∫
d4q

(2π)4

1

(q −K)2 −m2

× 1

q2 −m2

2M

(P − q)2 −M2
χ̄f (q −K)σχi(2q −K)ε , (5.4)

where gRBM is the coupling of the resonance to its meson and baryon constituents,

gBBM is the coupling of the baryonic current to a meson, gγMM is the coupling

of the meson to a photon, and m and M are masses of the meson and baryon in
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the loop, respectively. Using the Feynman parameterization

1

abc
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1(

x(a− b) + y(c− b) + b
)3 , (5.5)

and the identity ∫
d4q′

1

(q′2 + s+ iε)3
=
iπ2

2

1

s+ iε
, (5.6)

together with the relation between the a and d terms of the amplitude, one finds

the following contribution of diagram 5.1(b) to the a term:

−iMa
(b) = gRBMgBBMgγMM

2M

(4π)2

∫ 1

0

dx

∫ 1−x

0

dy

x(y − 1)

s+ iε
2PK , (5.7)

s = x
(
P 2(1−x)−M2+m2−2yPK

)
−m2 . (5.8)

Analogously, one can calculate the contribution coming from the diagram in Fig.

5.1 (c) as:

−iMa
(c) = gRBMgBBMgγBB

2M

(4π)2

∫ 1

0

dx

∫ 1−x

0

dy

−yx
s+ iε

2PK , (5.9)

s = x
(
P 2(1−x)−m2+M2−2yPK

)
−M2 . (5.10)

The value of the gRBM couplings appearing in Eqs. (5.7) and (5.9), relating

the resonance to its meson–baryon constituents in the isospin basis, are listed

in Tables 5.1 to 5.3 of the previous Section. The couplings of the mesons to the

photon, gγMM , and those of the baryons to the photon, gγBB , are eQ where Q

is the electric charge (−1, 0, 1 or 2) of the meson or the baryon which emits the

photon. Finally, the coupling of the mesons to the ground state baryons is given
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by:

gBBM = αi
D + F

2f
+ βi

D − F
2f

(5.11)

where D + F = 1.26, D − F = 0.33 [OR98]. We have taken f = 1.15fM with

fM = fπ = 93 MeV for light mesons and fM = fD = 165 MeV for heavy mesons.

The coefficients αi and βi, which depend on the SU(4) flavor structure of the

interaction, have been obtained from the Lagrangian for the interaction of the

ground state spin 1
2

+
baryons and the pseudo-scalar mesons, which is constructed

in the following.

Our prescription of field definition for the baryons is that of [HL05] and was

already presented in Chapter 2, in Eq. (2.6) and the pseudo-scalar meson field is

represented by the following matrix:

Φ =



π0
√

2
+ η8√

6
+ η15√

12
π+ K+ D̄0

π− π0
√

2
+ η8√

6
+ η15√

12
K0 −D−

K− K̄0 −2η8√
6

+ η15√
12

D−s

D0 −D+ D+
s

−3η15√
12


(5.12)

The Lagrangian for the BBM interaction reads:

LBBM =

√
2

4f

4∑
i,j,k,l=1

B̄ijkγµ
(

(D + F )∂µΦklBijl

− 2(D − F )∂µΦjlBilk
)
. (5.13)

Note that the physical η, η′ and ηc fields are related to the mathematical η8

and η15 fields, belonging to the pseudo-scalar meson fifteen-plet, and the singlet
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η1 field. The mixture is given by:


η1

η8

η15

 =



1
2
√

3

√
2
3

1
2

2
√

2
3 − 1

3 0

1
6

√
2

3 −
√

3
2


.


η

η′

ηc

 . (5.14)

Therefore, in order to obtain a Lagrangian for the physical fields, we need to add

to Eq. (5.13) an interaction of the baryon current with the singlet field η1:

L′BBM = LBBM

+

√
2

4f
(DδD + FδF )

1

2

4∑
i,j,k=1

B̄ijkγµBijk∂µη1 , (5.15)

where the coefficients δD = − 1√
2

and δF = 3√
2

are obtained by consistently

imposing that processes where the ηc meson couples to light baryons (N , Λ, Σ

or Ξ) should vanish.

The complete Lagrangian L′BBM of Eq. (5.15) allows us to determine all

coupling constants gBBM , which we write in the form of Eq. (5.11). The specific

values of the αi and βi coefficients for all the transitions needed in the different

radiative decays are collected in Tables C.1 to C.4 of the appendix C.

With all the required ingredients having been established, one can finally

obtain the radiative decay width from:

Γ =
1

π

∣∣∣∣∣∑
i

Ma
i

∣∣∣∣∣
2

Eγ
M

mB∗
(5.16)

where Eγ is the photon energy, Ma
i = Ma

(b) +Ma
(c), and the sum runs over all

contributing intermediate MB channels.
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5.3 Results

We evaluate the following radiative decays:

Λc(2595) → Λcγ (5.17)

Λc(2595) → Σ+
c γ (5.18)

Σ+
c (2800) → Λcγ (5.19)

Σ++
c (2800) → Σ++

c γ (5.20)

Σ+
c (2800) → Σ+

c γ (5.21)

Σ0
c(2800) → Σ0

cγ (5.22)

Ξ+
c (2790) → Ξ+

c γ (5.23)

Ξ0
c(2790) → Ξ0

cγ (5.24)

Ξ+
c (2790) → Ξ′+c γ (5.25)

Ξ0
c(2790) → Ξ′0c γ (5.26)

Ξ+
c (2980) → Ξ+

c γ (5.27)

Ξ0
c(2980) → Ξ0

cγ (5.28)

Ξ+
c (2980) → Ξ′+c γ (5.29)

Ξ0
c(2980) → Ξ′0c γ , (5.30)

The theoretical decay widths obtained from the imaginary part of the pole posi-

tion for these dynamically generated states are usually smaller than the experi-

mental observed decay widths. The model considers only meson baryon channels

where the meson is a pseudo-scalar coupled in s-wave with a JP = 1
2

+
baryon. In

the case of the heavier resonances the model is probably missing possible three

body decays of the resonance, or channels where the meson and the baryon be-

long to different multiplets than those assumed here, and this should partially

explain the small widths found for the theoretical resonances. In any case one

must assume some uncertainties for the couplings listed in Tables 5.1 to 5.3.

We calculate the uncertainties in the radiative decay widths assuming a 20%

uncertainty in the gRBM couplings. In order to do that we follow the same method

used in [GDO07]: we generate random sets for the couplings of each resonance
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Channel ΓΛcγ [IKLR99] [Zhu00] [Cho96]
[KeV] [KeV] [KeV] [KeV]

π+Σ0
c 1.2(+) − − −

π0Σ+
c <0.1(+) − − −

π−Σ++
c 0.7(−) − − −

D0p 9.1(+) − − −
D+n 83.4(+) − − −
ηΛc <0.1(+) − − −
K+Ξ0

c <0.1(+) − − −
K0Ξ+

c <0.1(+) − − −
K+Ξ′0c <0.1(+) − − −
K0Ξ′+c <0.1(+) − − −
D+
s Λ 13.5(+) − − −

η′Λc <0.1(+) − − −
ηcΛc <0.1(+) − − −
D̄0Ξ+

cc <0.1(+) − − −
D−Ξ++

cc <0.1(−) − − −
Total 274 115 36 16

±0.4

Table 5.4: Results for the radiative decay of the Λc(2595)→ Λcγ compared with other
theoretical approaches. The sign in brackets indicates the sign of the ampli-
tude, so one can know when the interference between the channels is con-
structive or destructive.

to the channels with a 20% uncertainty around the values listed in Tables 5.1 to

5.3. For each resonance we generate 30 sets of random couplings and calculate

the radiative decay for each set. Our final result for the radiative decay width is

the averaged value of the widths calculated with each random set, while the un-

certainty in the radiative decay width is the standard deviation from the average.

We start showing the results for the Λc(2595), which is the analog in the charm

sector of the Λ(1405) in the strange one and, therefore, is a good candidate for

being a meson-baryon molecular state. The radiative decay widths are:

ΓΛc(2595)→Λcγ = (274.3± 52.0) KeV ,

ΓΛc(2595)→Σ+
c γ

= (2.1± 0.4) KeV .
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These values are also collected in Table 5.4 and 5.5, where the contribution to

the width coming from each intermediate channel is also shown, together with

the sign, (+) or (−), of the corresponding amplitude. This allows one to analyze

the constructive or destructive character of the interferences between the various

channels. First of all, we note the tremendous difference in size, of two orders of

magnitude, between the radiative decay rate of the Λc(2595) into Λcγ and Σ+
c γ

states. To understand the origin of this difference we focus on the most important

contribution, which corresponds to the D+n intermediate state in both cases.

First of all, the ratio between the couplings D+n → Λc and D+n → Σ+
c is 3.8,

as can be inferred from the α and β coefficients of Table C.1. Moreover, the

different kinematical variables of the two processes produce a D+n loop which

is, for Λcγ decay, a factor 2 larger than for Σ+
c γ decay. The square of these two

factors, together with the ratio of photon energies, which are Eγ = 290 MeV

for Λcγ and Eγ = 138 MeV for Σ+
c γ, explain the factor 100 difference between

the D+n contributions to both decays. We also note that there are constructive

interferences between the most important contributions (D0p, D+n, D+
s Λ) to

Λcγ decay, which enhance even further this rate compared to the Σ+
c γ one.

The experimental width for the decay of the Λc(2595) is 3.6 MeV and around

80% of it comes from the channel πΣc which corresponds to a width of around

2.9 MeV. Our coupling for this channel is |gπΣc
| = 0.32 resulting in a width of

0.5 MeV. Changing our coupling to |gπΣc
| = 0.76 would result in a width around

2.9 MeV. Calculating the radiative decay of the Λc(2595) with this new absolute

value for the coupling to πΣc states we obtain:

ΓΛc(2595)→Λcγ = (289.1± 53.3) KeV ,

ΓΛc(2595)→Σ+
c γ

= (7.9± 1.5) KeV .

Therefore, we obtain qualitatively similar results when a realistic coupling of the

Λc(2595) resonance to Σc states is employed. Correcting manually the couplings

of the other resonances for which there is some experimental data on their decays

has an even smaller effect on the results than those observed in the case of the

Λc(2595)→ Σ+
c γ decay.

In Tables 5.4 and 5.5 we also compare our results to those obtained by other
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Channel ΓΣ+
c γ

[IKLR99] [Zhu00]

[KeV] [KeV] [KeV]

π+Σ0
c 0.3(−) − −

π0Σ+
c 0 − −

π−Σ++
c 0.2(−) − −

D0p 0.1(+) − −
D+n 0.8(−) − −
ηΛc 0 − −
K+Ξ0

c <0.1(+) − −
K0Ξ+

c <0.1(−) − −
K+Ξ′0c <0.1(−) − −
K0Ξ′+c <0.1(+) − −
D+
s Λ 0 − −

η′Λc 0 − −
ηcΛc 0 − −
D̄0Ξ+

cc <0.1(−) − −
D−Ξ++

cc <0.1(−) − −
Total 2.1 77 11

±52.0

Table 5.5: Results for the radiative decay of the Λc(2595)→ Σ+
c γ compared with other

theoretical approaches. The sign in brackets indicates the sign of the ampli-
tude, so one can know when the interference between the channels is con-
structive or destructive.

calculations performed within the relativistic quark model [IKLR99], using light-

cone QCD sum-rules [Zhu00], or adopting a bound D∗N picture for the Λc(2595)

[Cho96]. We observe a large diversity of results. Note also that the two orders of

magnitude difference between the radiative decays into Λcγ or Σcγ states found

in the present thesis is not obtained by any of the other models displayed in

Tables 5.4 and 5.5, nor by the HHCPT results of [Cho94], which estimated partial

widths of the same order of magnitude. Obviously, the tremendous differences

between models calls for a measurement of these decay modes which could bring

essential information about the nature of the Λc(2595).

The radiative decays of the other resonances, for which there is no experimen-

tal observation nor other theoretical predictions, are:

ΓΣ++
c (2800)→Σ++

c γ = (51.0± 9.1) KeV
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ΓΣ+
c (2800)→Σ+

c γ
= (28.4± 3.3) KeV

ΓΣ0
c(2800)→Σ0

cγ
= (9.1± 1.5) KeV

ΓΣ+
c (2800)→Λcγ

= (33.5± 8.8) KeV

ΓΞ+
c (2790)→Ξ+

c γ
= (249.6± 41.9) KeV

ΓΞ0
c(2790)→Ξ0

cγ
= (119.3± 21.7) KeV

ΓΞ+
c (2790)→Ξ′+c γ = (0.8± 0.5) KeV

ΓΞ0
c(2790)→Ξ′0c γ

= (1.3± 0.4) KeV

ΓΞ+
c (2980)→Ξ+

c γ
= (56.4± 19.2) KeV

ΓΞ0
c(2980)→Ξ0

cγ
= (2.5± 1.7) KeV

ΓΞ+
c (2980)→Ξ′+c γ = (40.1± 6.9) KeV

ΓΞ0
c(2980)→Ξ′0c γ

= (9.2± 1.0) KeV

It would also be interesting to see whether our predictions, based in a molecular

picture for these resonances, are also very different from those obtained in quark-

model theoretical approaches.



124 CHAPTER 5. RADIATIVE DECAYS OF CHARMED BARYONS



Part II

In-medium

125





6

Properties of charmed hadrons in hot

and dense matter

In this Chapter we study the behavior of the dynamically-generated baryonic

resonances in hot dense and matter, as well as the spectral features of the open

charm mesons (D, D̄, Ds and D̄s), within a self-consistent coupled-channel ap-

proach that considers the full t-dependent TVME interaction kernel. The in-

medium scattering amplitudes are obtained by solving the L-S equation at finite

temperature including Pauli blocking effects, baryon dressing, as well as D, D̄,

Ds and D̄s self-energies taking their mutual influence into account. We pay a

particular attention to the influence that the dressed mesons exert on each other.

127
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6.1 Introduction

The study of charmed hadrons in the nuclear medium has received an increased

attention in the past years. Nuclear medium modifications have been lately in-

corporated in the study of charmed resonant states, such as the Λc(2595) to test

their dynamics in the nuclear medium. The properties of open-charmed mesons

in nuclear matter can influence the charmonium production in hot dense matter,

which might indicate the formation of the quark-gluon plasma phase of QCD at

high density and temperature [MS86]. Another exciting scenario is the possible

formation of D-mesic nuclei [TLT+99, GRNT10] and of exotic nuclear bound

states like J/Ψ in nuclei [BST90, LMS92, KTT11]. From the experimental side,

the physics program of the CBM experiment as well as part of the PANDA col-

laboration at FAIR [FAI] will be devoted to the properties of open and hidden

charm in dense matter. In particular, the physical goal is to extend to the heavy-

quark sector the GSI program for in-medium modifications of hadron properties

in the light sector, and to provide insight into the charm-nucleus interaction.

Works based on mean-field approaches provided important shifts for the D

and D̄ open-charmed meson masses [TLT+99, STT99, Hay00, MBSB+04], which

alters the formation of charmonium [ABMRS08]. Some of those models have

been recently revised [HTK09, MM09, KM10]. A different perspective is offered

by models that, working within coupled-channel unitarized schemes, go beyond

mean field and provide the spectral features of the charm mesons in symmetric

nuclear matter at zero [TSBM04, MR06, LK06] and finite temperature [TSBS06,

TRM08]. Lately, this meson-baryon basis has been extended to incorporate Heavy

Quark Symmetry (HQS). In this way, not only D-meson but also D∗-meson

features have been studied [TGRN09].

A common feature of the previous models is the use of an interaction ker-

nel in the zero-range approximation (t → 0). However, as we have justified in

the Chapter 4, the zero-range approximation is not valid for charm-exchange

processes because the difference in masses between the external mesons is com-

parable with the mass of the charmed vector meson being exchanged. For this

reason, to study the properties of the open-charmed mesons and the different res-

onant states, we will implement in this Chapter the in-medium and temperature
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(I, S, C) Channels

( 1
2
,−1,−1) D̄sN(2908) D̄Λ(2985) D̄Σ(3062)

(0, 0,−1) D̄N(2806)

(1, 0,−1) D̄N(2806)

(0, 0, 1) πΣc(2591) DN(2806) ηΛc(2832) KΞc(2963) KΞ′c(3070)

DsΛ(3085) η′Λc(3243) ηcΛc(5265) D̄Ξcc(5307)

(1, 0, 1) πΛc(2424) πΣc(2591) DN(2806) KΞc(2963) ηΣc(2999)

KΞ′c(3070) DsΣ(3162) η′Σc(3410) D̄Ξcc(5307) ηcΣc(5432)

( 1
2
, 1, 1) KΛc(2779) DsN(2908) KΣc(2946)

Table 6.1: Coupled-channel meson-baryon states involved in DN , D̄N , DsN , or D̄sN
interactions. The energy threshold of each state is given in brackets.

effects in our coupled-channel formalism for the non local TVME kernel.

6.2 Charmed sectors and free space ingredients

In this Section, we will firstly introduce the coupled channel sectors which will be

employed to study the in-medium open-charmed mesons, and next we will review

the results obtained from the coupled-channel approach employed in [JTRV09]

and presented in Chapter 4. After that, we will implement in Sec. 6.3 the main

sources of medium effects in our coupled-channel formalism and, finally, we will

present the results in Section 6.4.

Since the properties of the D, D̄, Ds and D̄s mesons in a hot and dense

environment will be determined, respectively, from the DN , D̄N , DsN and D̄sN

amplitudes, we list in Table 6.1 the corresponding set of coupled channels in each

of the related isospin (I), strangeness (S) and charm (C) sectors.
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Given the limited amount of data for charmed baryon resonances, and in

order to simplify the analysis, the cut-off λ is adjusted to 903 MeV/c, a value that

reproduces the position of the well-known JP = 1
2

−
Λc(2595) having (I, S, C) =

(0, 0, 1), and the same value is used for the other sectors explored in this work.

In Table 6.2, we summarize the position, width and most important couplings

of the dynamically generated states appearing in the various (I, S, C) sectors

listed in Table 6.1. Note that there are no resonances in the singled-channel

(I, S, C) = (0, 0, −1) and (1, 0, −1) sectors of the D̄N interaction. In the

other C = −1 case, having (I = 1
2 , S = −1), we find a pole just below the

DsN threshold. The remaining cases have C = 1 and, although they were deeply

analyzed in Chapter 4, we briefly comment here a few essential characteristics

that will be useful for our discussion of the in-medium results in the next Section.

In the (I = 0, S = 0) sector, apart from the Λc(2595) resonance to which we

fit the model, there is another very narrow one at 2805 MeV, just below the

threshold for DN states but coupling very little to them. We also predict two

narrow resonances in the (I = 1, S = 0) sector at 2551 and 2804 MeV, right

below the thresholds of the channels to which they couple more strongly, namely

πΣc and DN , respectively. In the (I = 1
2 , S = 1) case, we predict a cusp-like

structure placed at the threshold of KΣc, the channel that shows the largest

coupling to this state.

6.3 Medium and finite temperature effects

The are two main sources of medium effects to consider. One is the Pauli blocking

effect, which is a consequence of the exclusion principle according to which the

nucleon in the intermediate loop function cannot be placed in those states al-

ready occupied by the nucleons of the Fermi sea. The allowed intermediate states

of the perturbative expansion must have momenta larger than the Fermi momen-

tum and, consequently, the position of the dynamically generated states shifts

to higher energies. Another way of justifying this effect is by realizing that the

in-medium meson-nucleon interaction is expected to be less attractive because

the intermediate nucleons need more energy to access free or empty states. The

other in-medium effect is related to the fact that the properties of all mesons and
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(I, S, C) M,Γ Main decay modes
[MeV] |g|(channel)

( 1
2
, −1, −1) 2906, 0 1.3(DsN), 1.1(DΛ), 1.9(DΣ)

(0, 0, 1) 2595, 0.5 0.31(πΣc)
∗, 11(DN), 6.0(DsΛ),2.0(ηcΛc)

2805, 0.01 0.04(πΣc)
∗, 0.27(DN), 2.2(ηΛc), 4.3(KΞc)

(1, 0, 1) 2551, 0.16 0.05(πΛc)
∗, 3.7(πΣc), 1.1(DN), 2.1(KΞ

′
c)

2804, 5 0.27(πΛc)
∗, 0.14(πΣc)

∗, 2.1(DN), 1.8(DsΣ)

( 1
2
, 1, 1) 2946 < 10−3(KΛc)

∗, < 10−3(DsN)∗, < 10−3(KΣc)

(cusp)

Table 6.2: Dynamically generated baryon resonances with open charm in various
(I, S, C) sectors for a cut-off momentum λ = 903 MeV/c. The Table shows
the position (M) and width (Γ) of the resonance, together with the couplings
to the most important meson-baryon channels, as well as the couplings to the
channels in which it can decay (marked with an asterisk).

baryons are modified in the medium due to their interactions with the Fermi sea

of nucleons, also called particle dressing. The effect of the finite temperature in

nuclear matter will compensate the Pauli-blocking effect because baryons close to

their respective Fermi seas will move upwards to higher momentum states, leaving

the lowest momentum states partially occupied. Consequently, as the tempera-

ture increases the possibility of accessing states below the different Fermi seas

becomes larger.

Pauli blocking, medium modification of the baryon energy spectra and fi-

nite temperature effects can be incorporated in the coupled-channel equations

by simply replacing the free baryon propagator (Eq. (2.43) in Chapter 2) by the

in-medium one,

G(p0, ~p, ρ, T ) =
M

E(|~p |, T )

[
1− n(~p, ρ, T )

p0 − E(|~p |, T ) + iε
+

n(~p, ρ, T )

p0 − E(|~p |, T )− iε

]
, (6.1)

where (p0, ~p ) is the total four-momentum of the baryon in the nuclear matter rest
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ρ [fm−3] T [MeV] Σs [MeV] Σv [MeV] Σv − Σs ΣvY(c)
− ΣsY(c)

0.16 0 360.1 281.7 −78.4 −52.3

0.16 100 304.7 281.7 −23 −15.3

0.32 0 496.5 421.5 −75 −50

0.32 100 428.8 421.5 −7.3 −4.9

Table 6.3: Nucleon scalar (Σs) and vector (Σv) self-energies for the densities and tem-
peratures explored in this thesis. The last columns show the value of the
baryon self-energy at zero momentum.

frame and n(~p, ρ, T ) is the usual Fermi–Dirac distribution function. Similarly to

the in-medium D meson study of ref. [TRM08] the nucleon energy spectrum,

EN (|~p |, T ), is taken from a Walecka-type σ − ω model [Kap06]

EN (|~p |, T ) =

√
~p 2 + (MN − Σs(T ))2 + Σv . (6.2)

The values of the nucleon scalar (Σs) and vector (Σv) self-energies for the densities

and temperatures explored in this thesis are given in Table 6.3. The hyperon

(Y ) and charmed baryon (Yc) energy spectra are similarly given as

EY(c)
(|~p |, T ) =

√
~p 2 + (MY(c)

− ΣsY(c)
(T ))2 + ΣvY(c)

. (6.3)

Assuming that the σ and ω fields couple only to the u and d quarks, the scalar

and vector self-energies of the hyperons and charmed baryons can be written in

terms of Σs and Σv, as

ΣsY(c)
=

2

3
Σs , ΣvY(c)

=
2

3
Σv . (6.4)

The resonances that play a relevant role in the properties of the open-charmed

mesons do not couple significatively to baryons having only one light (u or d)

quark. Therefore, we disregard the dressing of this type of baryons (Ξc, Ξ′c, Ξcc).
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The nuclear medium effects on the mesons can be incorporated by including

their corresponding self-energies, Πm(q0, ~q, ρ, T ), in the meson propagator

Dm(q0, ~q, ρ, T ) =
1

q2
0 − ~q 2 −m2

m −Πm(q0, ~q, ρ, T )
, (6.5)

being (q0, ~q ) the four-momentum of the meson. This is done in practice through

the corresponding Lehmann representation of the meson propagator

Dm(q0, ~q, ρ, T ) =

∫ ∞
0

Sm(ω, ~q, ρ, T )

q0 − ω + iε
dω −

∫ ∞
0

Sm̄(ω, ~q, ρ, T )

q0 + ω − iε dω , (6.6)

where Sm(m̄)(ω, ~q, ρ, T ) is the spectral function of the meson m(m̄):

Sm(q0, ~q, ρ, T ) = − 1

π
Im (Dm(q0, ~q, ρ, T ))

= − 1

π

Im (Πm(q0, ~q, ρ, T ))

|q2
0 − ~q 2 −m2

m −Πm(q0, ~q, ρ, T )|2 .
(6.7)

We note here that in this thesis only the D, D̄,Ds and D̄s mesons have been

dressed by self-energy insertions. Mesons π,K, η, η′ and ηc have not been dressed,

as neglected also in [MR06, TRM08, TGRN09]. The reason is that the states

containing these mesons couple weakly to the DN and DsN ones and, therefore,

it is expected that approximating the π,K, η, η′ spectral functions by the free-

space ones, i.e., delta functions, will not influence much the in-medium properties

of the D and Ds mesons. We emphasize, however, that the present work addresses

for the first time the simultaneous dressing of the D and Ds mesons in the charm

C = 1 sector, and that of the D̄ and D̄s mesons in the charm C = −1 one.

The loop function for the free case given by Eq. (2.43) must now be replaced by

the one including the medium and temperature effects on the baryon and meson

propagators, as given by Eqs. (6.1) and (6.6). Using the Imaginary Time (or
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Matsubara) Formalism [Mat55] we obtain:

G
(I,S,C)
k (P0, ~P ,~k, ρ, T ) =

Mk

Ek(|x~P + ~k |, T )(∫ ∞
0

dω Sm(ω, y ~P − ~k, ρ, T )
1− n(x~P + ~k, ρ, T ) + f(ω, T )

P0 − ω − Ek(|x~P + ~k |, T ) + iε

+

∫ ∞
0

dω Sm̄(ω, y ~P − ~k, ρ, T )
n(x~P + ~k, ρ, T ) + f(ω, T )

P0 + ω − Ek(|x~P + ~k |, T )− iε

)
,

(6.8)

where P0 = q0 + Ek(|~p |), ~P = ~q + ~p and ~k = y~p− x~q, with x = Mk/(mk +Mk)

and y = mk/(mk + Mk), are the total energy, total momentum, and relative

momentum of the meson-baryon pair in the nuclear matter rest frame, n is the

Fermi distribution of the baryon and f is the Bose enhancement factor of the

meson. In practice, given the nuclear densities and temperatures explored in this

Chapter, we can set f = 0 for all mesons and n = 0 for all baryons except

for nucleons. One might argue that the Bose enhancement factor for the pions

should not be ignored. However, as tested in [TRM08], the DN amplitudes are

insensitive to this factor due to the reduced coupling to πΣc states resulting from

the heavy mass of the meson exchanged in the transition potential.

The in-medium scattering amplitudes T are obtained by directly solving the

coupled-channel L-S equation (Eq. (2.42)) with the medium modified loop func-

tion (see Eq. (6.8)). The in-medium self-energies for the D, D̄,Ds and D̄s mesons

are then obtained by integrating the in-medium diagonal scattering amplitudes

over the nucleon Fermi sea as

ΠD(D̄)(q0, ~q, ρ, T ) =

∫
d3p

(2π)3
n(~p, ρ, T ) [T

(I=0)

D(D̄)N
(P0, ~P , ρ, T )

+ 3T
(I=1)

D(D̄)N
(P0, ~P , ρ, T )] ,

(6.9)

for D and D̄, and as

ΠDs(D̄s)(q0, ~q, ρ, T ) = 4

∫
d3p

(2π)3
n(~p, ρ, T ) T

(I=1/2)

Ds(D̄s)N
(P0, ~P , ρ, T ) , (6.10)

for Ds and D̄s.
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Finally, we note that the self-energies Πm (m = D, D̄,Ds, D̄s) must be de-

termined in a self-consistent way since they are obtained from the in-medium

scattering amplitudes TDN , TD̄N , TDsN and TD̄sN , which contain the loop func-

tions G
(I,S,C)
DN , G

(I,S,C)
DsY

(DN case); G
(I, S,C)

D̄N
(D̄N case); G

(I,S,C)
DsN

(DsN case); and

G
(I,S,C)

D̄sN
, G

(I,S,C)

D̄Y
(D̄sN case), that are themselves functions of the self-energies

Πm.

6.4 In-medium results

6.4.1 Cold matter

We will start discussing our results for the C = 1 mesons, D and Ds. First of

all, we note that their in-medium properties will be influenced by the charm

C = 1 baryonic resonances that couple significatively to DN and DsN . From the

results presented in Chapter 4, summarized in Table 6.2, we find the well known

Λc(2595), coupling very strongly to DN states in the (I = 0, S = 0) sector, and

two other resonances, Σc(2551) and Σc(2804), coupling also significatively to DN

in the sector (I = 1, S = 0). The cusp-like structure found in the (I = 1/2, S = 1)

sector shows also a sizable coupling to DsN states.

In Fig. 6.1, we show the imaginary part of the DN amplitude at normal

nuclear matter saturation density, ρ0 = 0.17 fm−1, and zero temperature, as a

function of the center-of-mass energy P0, covering an energy range that includes

the most relevant resonance in each isospin sector, I = 0 (left panel) and I = 1

(right panel), for various approximations. The amplitude in free space (ρ = 0) is

also shown (thin-solid lines), as a reference. When only Pauli blocking effects are

included (dashed line) we observe that the Λc(2595) and Σc(2804) states appear

displaced to higher energies, by about 60 and 50 MeV, respectively. This repulsive

effect is well known, and has to do with the loss of phase space associated to the

fact that the nucleons are forced to occupy empty states that are located at

momentum states above the Fermi momentum. However, when the dressing of

the D meson is incorporated self-consistently (dotted line) the Λc(2595) resonance

moves to substantially lower energies and the Σc(2804) dilutes. This is naturally

explained in terms of the D-meson strength distribution which, as we will see,
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Figure 6.1: Imaginary part of the I = 0 (left panel) and I = 1 (right panel) DN → DN
scattering amplitudes in nuclear matter at normal saturation density ρ0 and
zero temperature, as function of the total energy P0, for a total momentum
~P = 0 and various approximations.

shows a quasiparticle peak at a lower energy than in free space and a pronounced

peak at even lower energies related to Λc(2595)N−1 excitations. The reduced in-

medium DN threshold opens decay channels for the Σc(2804)→ Λc(2595)N−1N

which, therefore, broadens considerably. As for the Λc(2595), its position is very

sensitive to the low energy strength of the D spectral function and, together with

the large coupling to DN states, explains why the resonance acquires such a large

amount of attraction.

In [MR06], where the TVME in the t → 0 limit is employed, a similar be-

havior is observed for the Λc(2595). The repulsive shift with respect to the free

space position due to Pauli blocking effects is compensated by the attractive self-

consistent dressing of the D meson. However, the shift is smaller in [MR06], as it

can be seen from Fig. 5 of this reference (model B). Moreover, this TVME (t→ 0)

model also generates a Σc resonance, which lies around 2795 MeV for model B.
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This structure melts down as the dressing of D mesons is incorporated, because of

the opening of new absorption channels, and stays close to the position with only

Pauli blocking effects, in agreement with our present results. In the TVME model

of [LK06] both resonances are generated but the Σc one is localized at a much

smaller energy, around 2620 MeV. In that work the self-consistent dressing of D

mesons results in an attractive shift for both Λc and Σc dynamically generated

resonances, in contrast to our results. Within the SU(8) Weinberg-Tomozawa

model of [GR+09], where heavy-quark spin symmetry is implemented, the Σc

state lies around 2900 MeV and has a different spin, J = 3/2. In this scheme, the

Σc resonance couples strongly to the D∗N channel instead of DN and behaves

similarly in matter as the Λc(2595) [TGRN09].

It is clear from Table 6.2 that the sizable coupling of the Λc(2595) resonance

to the DsΛ channel and that of the Σc(2804) to DsΣ states, makes it advisable

to consider also the medium modifications of the Ds meson in the intermediate

DsY loops of the DN amplitude. This is a quite arduous task that, up to our

knowledge, has been attempted for the first time in this thesis. Our results,

represented by the dash-dotted lines in Fig. 6.1, clearly show the importance

of such dressing. The strength of the dressed DsY loop gets diluted, making

the Λc(2595) to appear 35 MeV higher in energy with respect to the case of

considering free DsY loops. The changes on the Σc(2804) resonance are more

moderate. Finally, including the baryon self-energies (solid line), which produce

attraction in the baryon spectrum at ρ0 and T=0, moves the resonances to lower

energies due to the fact that the threshold for intermediate DN states has also

been lowered.

The real and imaginary parts of the D and Ds self-energies and spectral

functions at normal nuclear matter saturation density and zero temperature are

shown in Fig. 6.2, as functions of the meson energy, q0, and for a meson momen-

tum q = 0 MeV/c. The approximations displayed include: Pauli blocking effects;

the additional self-consistent dressing of the given meson; and, in the case of

the D meson, the additional dressing of the Ds meson in the DsY intermediate

states coupling to DN . Results obtained when baryon self-energies are taken into

account are also shown.

The features discussed for the DN amplitude in Fig. 6.1 are also reflected
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Figure 6.2: Imaginary (upper panels) and real (middle panels) parts of the D (left panel)
and Ds (right panel) meson self-energies and spectral functions (lower pan-
els), as functions of the meson energy q0, at normal nuclear matter saturation
density, for q = 0 MeV/c and different approximations. The mass of the D
meson and the function q2

0 −m2
D (left panel) and the mass of the Ds meson

and the function q2
0 −m2

Ds
(right panel) are shown for comparison.

in the imaginary part of the D-meson self-energy displayed in the upper left

panel of Fig. 6.2. The middle panel shows the corresponding real part of the

self-energy, Re Π(q0, ~q = 0), together with the function q2
0 −m2

D (thin solid line),

such that the crossing points of these two functions signal the appearance of

pronounced maxima in the spectral function, as long as the imaginary part does

not show a pronounced minimum there. Actually, the distribution of the D-meson

strength shown in the lower-left panel is very rich. All the approximations give a

quasiparticle peak located around 35 MeV below the free D-meson mass, signalled

by a thin vertical dotted line. In addition, each resonance leaving a signature in
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the self-energy produces a resonant-hole excitation peak in the spectral function,

located at a somewhat different value of energy due to the complex structure of

the self-energy. The common behavior is that the resonance-hole modes in the

spectral function get displaced, with respect to the energy signalling the mode

in Im(Π), in the direction of moving further away from the quasiparticle peak.

In the case of Pauli blocking, we can clearly distinguish three of such modes at

1590 MeV, 1625 MeV and 1910 MeV associated to Σc(2551)N−1, Λc(2595)N−1

and Σc(2804)N−1 excitations.

When meson dressing is incorporated, only the Λc(2595)N−1 excitation mode

is clearly visible. The Σc(2804)N−1 mode merges with the quasiparticle peak, and

the Σc(2551)N−1 one is no longer visible in the spectral function as compared to

the Λc(2595)N−1 mode. A similar behavior has been observed in [MR06, TRM08].

In contrast, in [LK06], the Σc(2804)N−1 mode appears at a much lower energy

and mixes with the Λc(2595)N−1 one, while the quasiparticle peak of theD meson
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experiences a repulsive shift of 32 MeV. It is also worth mentioning that in the

SU(8)-inspired model of [TGRN09] the quasiparticle peak appears at slightly

lower energies than the free mass but the D-meson spectral function shows a

completely different shape due to the different resonant-hole composition of the

D-meson self-energy.

The imaginary part of the Ds self-energy, displayed in the upper right panel

of Fig. 6.2, shows only a small enhancement at around 2 GeV. This is a reflection

of the enhanced cusp found in the (I = 1/2, S = 1, C = 1) amplitude at the

KΣc threshold [JTRV09]. This structure generates a small but non-negligible

amount of strength in the Ds spectral function to the right of the quasiparticle

peak, which barely moves from its free location. This is in contrast to [LK06],

where a resonance is generated dynamically 75 MeV below the DsN threshold,

and the corresponding resonance-hole state in the spectral function appears on

the left-hand side of the quasiparticle peak.

In spite of the featureless aspect of the Ds spectral function in our model,

this relocation of strength from the quasiparticle peak to higher energies dimin-

ishes the size of the DsY loops involved in the coupled-channel problem. There-

fore, the simultaneous dressing of the D and Ds mesons in our self-consistent

coupled-channel model produces a less bound Λc(2595) resonance in nuclear mat-

ter, as already shown in Fig. 6.1. From Fig. 6.2 we can see that the corresponding

Λc(2595)N−1 excitation mode of the D-meson spectral function appears approx-

imately 40 MeV higher in energy than when only the D-meson dressing is con-

sidered. Finally, including the dressing of the baryons moves the Λc(2595)N−1

structure to higher energies by 27 MeV because the attraction felt by the Λc(2595)

resonance in the medium is smaller than that felt by the dressed nucleon.

The in-medium properties of the C = −1 mesons, D̄ and D̄s, will be deter-

mined by the behavior of the corresponding D̄N and D̄sN amplitudes in the

nuclear medium. In Fig. 6.3 we display the imaginary part of the D̄sN amplitude

at normal nuclear matter saturation density and zero temperature as a function

of the center-of-mass energy P0, for various approximations: free (thin-solid line),

Pauli blocking (dashed line), the self-consistent calculation including only the

dressing of Ds (dotted line) or including both Ds and D dressings (dash-dotted

line), and, finally, the full calculation that also incorporates the dressing of the
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Figure 6.4: The same as Fig. 6.2 for the D̄ (left panels) and D̄s (right panels) mesons.

baryons (solid line). This is the most interesting of the C = −1 sectors consid-

ered since the D̄sN system develops in free space a subthreshold bound state at

2906 MeV that couples significatively to D̄sN states. Therefore, this pole will

be very sensitive to the medium effects. Indeed, when only Pauli blocking effects

are considered, the pole moves about 40 MeV towards higher energy as expected.

We observe very drastic changes when the dressing of the D̄ and D̄s mesons

is incorporated. The reason is that, as we will see, the in-medium quasiparticle

peak of the D̄s meson experiences a strong attraction. This moves the in-medium

threshold for D̄sN states below the position of the resonance, making its decay

possible and quite probable due to the significant coupling to these states. When

the baryon self-energies are included, the amplitude shifts towards lower energies

by an amount consistent with the attraction felt by the dressed baryons.
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Figure 6.5: Imaginary part of the I = 0, DN → DN scattering amplitudes in nuclear
matter at ρ0 (left panel) and 2ρ0 (right panel), as functions of the total
energy P0, for a total momentum ~P = 0 and two temperatures, T = 0 (solid
lines) and T = 100 MeV (dashed lines). The calculation in free space is also
given for reference.

The D̄ and D̄s self-energies and spectral functions are shown in Fig. 6.4 as

functions of q0, including Pauli blocking effects, the additional self-consistent

dressing of the given meson, and, in the case of the D̄s, incorporating also the

dressing of the D̄ meson in the D̄Y intermediate states coupling to D̄sN . Re-

sults when baryon dressing is included are also shown. Again the thin solid lines

indicate the q2
0 −m2

D̄
(left panel) and the q2

0 −m2
D̄s

functions (right panel). The

self-energy of the D̄ mesons is quite smooth due to the absence of resonances

in the D̄N sector. The repulsive character of the D̄N amplitude gives rise to a

quasiparticle peak in the D̄ spectral function appearing at higher energy than

the D̄ meson mass, by 30 MeV in the case of considering Pauli blocking effects

only, or by 35 MeV when the additional self-consistent dressing of the D̄ meson is

also taken into account. The repulsive mass shift obtained in [TRM08, LK06] is

somewhat smaller, of the order of 20 MeV for both cases. On the other hand, the
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Figure 6.6: The spectral function of the D meson at ρ = ρ0 (upper panels) and ρ = 2ρ0

(lower panels), two temperatures, T = 0 (solid lines) and T = 100 (dashed
lines) and two values of momentum, q = 0 MeV/c (left panels) and q =
450 MeV/c (right panels). Dotted lines indicates the free mass of the meson

self-energy of the D̄s meson shows a richer structure, which, in the case of Pauli-

blocking, it is seen as a bump in the spectral function around 2000 MeV. This is

a reflection of the presence, in the D̄sN amplitude, of a pole at 2906 MeV, which

appears shifted about 40 MeV to higher energies when Pauli blocking effects are

incorporated (Fig. 6.3). The dressing of the D̄s meson smears this structure in

such a way that one barely sees any trace of it in the corresponding spectral func-

tion. Moreover, the delta-like quasiparticle peak, appearing 60 MeV below the

free D̄s mass when only Pauli blocking effects are considered, moves to slightly

lower energies when the D̄s meson is dressed. Considering the additional dressing

of the D̄ meson in the related D̄Y loops produces a substantial change in the D̄s
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Figure 6.7: The same as Fig. 6.6 for the Ds meson.

self-energy. This is easy to understand from the results of Table 6.2, where we

see that the pole at 2906 MeV couples also very strongly to D̄Y states. The loss

of attraction in the region of the quasiparticle peak moves it towards a higher

energy. Finally, the effect of including the dressing of the baryons moves the Ds

quasiparticle peak further up which ends being around 40 MeV below the free

mass. Our findings differ again quite strongly from those of [LK06], which are

dominated by an exotic coupled-channel molecule at 2780 MeV [HL05], which is

the equivalent to the pole at 2906 MeV found in the model of [JTRV09] and used

in the present Chapter.

As a consequence, the spectral function for the D̄s meson found in [LK06]

shows two distinct peaks, the quasiparticle one located about 10 MeV above the

free D̄s mass, and a narrow resonance-hole mode located 150 MeV below.
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Figure 6.8: The same as Fig. 6.6 for the D̄ meson.

6.4.2 Finite temperature

In Fig. 6.5 we display the behavior of the Λc(2595) resonance at two densities, ρ0

and 2ρ0, and two temperatures, T = 0 and T = 100 MeV. Results are presented

for the complete model that includes the self-consistent meson self-energies and

the dressing of the baryons. We observe that the in-medium resonance at T = 0

appears below the free space position, by 75 MeV for ρ0 and 50 MeV for 2ρ0.

This behavior can be essentially understood from the stronger Pauli blocking

effect at 2ρ0. The changes associated with temperature are also very significant.

As already seen in [TRM08], increasing the temperature broadens the Λc(2595)

considerably due to the spreading of the D-meson strength because of the effect

of smearing of the Fermi motion effects.

The effect of density and temperature in the spectral functions of the D,
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Figure 6.9: The same as Fig. 6.6 for the D̄s meson.

Ds, D̄ and D̄s mesons are shown in Figs. 6.6 to 6.9, where we compare results

for two temperatures, T = 0 (solid lines) and T = 100 (dashed lines), and two

densities, ρ = ρ0 (upper panels) and ρ = 2ρ0 (lower panels), for two values of

momentum, q = 0 MeV/c (left panels) and q = 450 MeV/c (right panels), in

the case of the complete self-consistent calculation, which includes Pauli blocking

and dressing of mesons and baryons. A common behavior in all spectral functions

is that increasing the temperature moves the quasiparticle peak towards its free

location. This is a reflection of the reduced size of the self-energy, because, being

built up from an average over the smeared thermal Fermi distribution, involves

higher momentum components for which the meson-nucleon interaction is weaker.

Except for a few cases, increasing the temperature gives rise to wider quasiparticle

peaks because of the increase of collisional width. However, the opposite effect

is seen for the D meson in Fig. 6.6. As already discussed in [TRM08], this is
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due to the fact that the strength under this peak also receives contributions from

Σc(2804)N−1 hole excitations, which are washed out by temperature as any other

resonant-hole mode. Consequently, the peak of the D-meson spectral function

becomes narrower and more symmetric as temperature increases, similarly to

what is found in [TRM08].

The density effects observed in the spectral functions are also clearly under-

stood. In general, we find that the self-energy roughly doubles its size when going

from nuclear matter at normal nuclear matter saturation density to a system

which is two times denser. This is consistent with the low density limit behavior

and points at a weak density dependence of the in-medium meson-nucleon ampli-

tude in this density region. This is the reason why, in general, the quasiparticle

peak of the spectral functions at 2ρ0 are found approximately twice further away

from the free space position and are twice wider than in the case of ρ0.
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7

Summary and Conclusions

The purpose of this thesis has been to study the properties of the dynamically

generated baryon resonances and mesons in the charm sector. We have solved

the Bethe-Salpeter (B-S) equation through a coupled channel procedure in order

to obtain the scattering matrix. We have looked for poles in the second Riemann

sheet and have characterized the different bound states with the position, width

and couplings of the resonance to the different channels. This method has allowed

us to understand the differences and similarities between the Λ(1405) resonance

from the strange sector and the Λc(2595) resonance from the charm one. More-

over, we have identified some of the s-wave baryon resonances (with C = 1 and

JP = 1
2

−
) obtained in our model with observed experimental states, and have

studied its radiative decay into the ground state baryons. By including in our

model the temperature and the in-medium effects we have understood the prop-

erties of the charmed baryon resonances and mesons in hot and dense matter.

The analysis and conclusions of the results are summarized in the following lines.
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Figure 7.1: Summary of the results obtained in Chapter 3 for the different models ap-
plied to study the Λc(2595) and the Λ(1405) resonances. The upper panel
shows the resonances that couple mostly to πΣc (triangles) and DN (cir-
cles) channels while in the lower panel, the resonances that couple mostly to
πΣ (triangles) and KN (circles) states are plotted. The error bars represent
the width of each resonance and the dashed lines indicate the meson-baryon
decay channels in each sector. For more details, see Tables 3.6 and 3.7.

In Chapter 3 we have compared two different flavor sectors with I = 0,

focussing on the characteristics of the Λc(2595) resonance versus those of the

Λ(1405) resonance. We have chosen a set of five different coupled-channel mod-

els, according to the different kernels employed (WT, TVMEt→0 and TVME)

as well as to their on- and off-shell character in the unitarization procedure. In

Fig. 7.1 we present a summary of the results where the position of the resonances

are shown for the different models, once the cut-off is conveniently adjusted to

reproduce the Λc(2595) resonance in the C = 1 sector and the Λ(1420) resonance

in the S = −1 sector.

• All models reproduce the experimental information on the Λc(2595) and

the Λ(1420) resonances, as dynamically generated DN and KN states,
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respectively.

• The predicted widths agree with the order of magnitude of the experimen-

tal ones. The Λc(2595) resonance is much narrower than the Λ(1420) one.

This is in agreement with the experimental data because the Λc(2595) cou-

ples relatively weakly to πΣc states and it lies only few MeV above their

threshold, in contrast with the Λ(1420) resonance, located about 90 MeV

above the πΣ threshold.

• In general, the resonances are further apart in off-shell models than in on-

shell ones for both sectors, as it can be appreciated in Fig. 7.1. For this

reason, the resonances which couple mostly to the first threshold (the πΣ

and the πΣc resonances) acquire a certain width for on-shell models, while

in off-shell ones they lay below the lightest threshold.

In Chapter 4 we have studied charmed baryon resonances with J = 1
2

−
ob-

tained from a coupled channels unitary approach using the full t−dependence

of the TVME driving force. For that purpose we have solved the L-S equation

to obtain the scattering amplitude. To the best of our knowledge, all previous

models of dynamically generated baryon resonances in the charm sector rely on a

local zero-range interaction, which is obtained by neglecting the four-momentum

transfer t in front of the mass of the exchanged vector meson squared, m2
v. We

have analyzed in detail the effects of going beyond the t→ 0 approximation and,

taking as reference the I = 0, C = 1, J = 1/2 sector of the Λc(2595) resonance,

we fix the model with a cut-off regularization value of 903 MeV/c. We summarize

the results obtained for the C = 1 sectors in Fig. 7.2.

• We have illustrated that the value t/m2
v is not at all negligible in the heavy

sector, especially for charm-exchange amplitudes which produce a large

value of the four-momentum transfer due to the large difference between

the masses of the mesons involved in the transition.

• Compared to the local models, our approach obtains basically the same

amount of resonances in all sectors but appearing, in general, at somewhat

larger energies because the diagonal amplitudes, largely responsible for gen-

erating the bound states, are smaller in magnitude. The non-local approach
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Figure 7.2: Summary of the C = 1 baryon resonances with JP = 1
2

−
obtained for

the different (I, S) sectors in Chapter 4, for λ = 903 MeV/c. From left to
right we show the results for the Λc, Σc, Ξc and Ωc baryon families. The
open circles are the predicted resonances in our model and the open squares
are the experimental ones. The different meson-baryon decay channels for
each sector are represented with dashed horizontal lines. For details on the
width and couplings of the resonances to the different channels, see Tables
4.4, 4.6, 4.8 and 4.10 for the predicted resonances and Table 4.2 for the
experimental ones. We have omitted, for the sake of clarity, the resonances
placed at 5248 MeV and 5382 MeV in the Λc and Ξc spectrum, respectively.
The arrows relate the resonances obtained in our model to the experimental
states they could be identified with (see Tab. 4.13).

produces wider resonances because of the larger value of the non-diagonal

amplitudes when t 6= 0.

• Varying the cut-off parameter within a reasonable range, we are able to

locate some of our states, marked with circles in Fig 7.2, at the energy

position of a measured resonance. In particular, we suggest the identification

of the Λc(2595), Σc(2800), Ξc(2790) and Ξc(2980) as dynamically generated

resonances.
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• In general, the widths of the states produced by our model are smaller than

the experimentally observed ones, since we do not account for three-particle

decay channels.

• We find a possible resonance in the sector with quantum numbers

(I, S, C) = ( 1
2 , 1, 1) that can only be realized by the consideration of a

minimum of five quarks. The cusp-like structure observed at the threshold

of the KΣc channel for a cut-off value of 903 MeV/c, becomes a more bound

and wider clear resonance as the cut-off value increases.

In Chapter 5 we have studied the radiative decay width of the dynamically

generated charmed baryon resonances from Chapter 4, into ground state baryons

with JP = 1
2

+
.

• We have obtained a sizable value for the one-photon radiative width of

the Λc(2595) resonance. This resonance decays radiatively mostly into Λcγ

states, with a partial rate of ΓΛc(2595)→Λcγ = (274.3 ± 52.0) KeV, while

only a tiny amount of the width, ΓΛc(2595)→Σ+
c γ

= (2.1 ± 0.4) KeV, is due

to the decay into Σcγ final states. Our results are very different, in size and

distribution among decay channels, to what is found by other approaches

in the literature.

• We have also presented predictions for the radiative decay of other excited

charmed baryons. The radiative decay widths of the Σc(2800) and Ξc(2980)

resonances are found to be relatively small, of the order of a few tenths of

KeV. However, the transitions Ξc(2790)+ → Ξ+
c γ and Ξc(2780)0 → Ξ0

cγ

are substantially larger, worth exploring experimentally.

• The sizable value of some widths, especially those of the Λc(2595) and the

Ξc(2780) resonances, makes the study of these radiative reactions a very

useful tool to obtain information about the characteristics of these charmed

baryons.

In Chapter 6 we have studied the properties of open-charmed mesons, D,

D̄, Ds and D̄s, in nuclear matter at finite temperature within a self-consistent

coupled-channel approach which uses, as meson-baryon interaction, a full
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t-dependent vector meson exchange driving force. The in-medium scattering am-

plitudes are obtained by solving the L-S equation at finite temperature including

Pauli blocking effects, the self-consistent D, D̄, Ds and D̄s self-energies, paying

a particular attention to their mutual influence, and the dressing of the baryons.

• We have analyzed how our dynamically generated resonances are affected

by density and temperature. As in other similar approaches, the resonances

that couple strongly to intermediate states involving nucleons, move up-

wards in energy when Pauli blocking effects are considered, as a conse-

quence of the loss of phase space. When the self-consistent dressing of the

charmed mesons is incorporated, the resonances gain attraction again.

• We have seen that dressing the Ds meson has a non-negligible effect on

the DN amplitude and on the properties of the D meson. Therefore, we

conclude that is necessary a simultaneous in-medium treatment of the D

andDs mesons. Similarly, the in-medium properties of the D̄s and D̄ mesons

are interrelated and must also be considered together.

• The spectral functions of theD and D̄s mesons are quite rich. At T = 0 MeV

and normal nuclear matter density one finds a quasiparticle peak located

below the corresponding free meson mass, as well as strength associated to

resonant-hole excitations. In the particular case of the D meson, a narrow

Λc(2595)N−1 excitation peak is clearly visible.

• In general, increasing the temperature has the effect of moving the quasi-

particle peak towards its free location making it wider, as a consequence of

a milder meson-baryon interaction and a larger amount of collisions. The

exception found for the D-meson is naturally explained in terms of the

mixing of the quasiparticle peak with a resonant-hole mode.

• For the densities explored, up to twice nuclear matter normal saturation

density, we have found that the density effects follow the linear behavior

expected for the low density regime: the self-energy roughly doubles its size

when going from nuclear matter at normal saturation density to a system

which is two times denser, indicating a mild density dependence of the

in-medium meson-baryon interaction amplitudes.
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We are aware that imposing the aproximate heavy quark symmetry observed

in nature, according to which all types of spin interactions vanish for infinitely

massive quarks, would imply treating heavy pseudoscalars and heavy vector

mesons on an equal footing. Therefore, our approach should be extended to the

vector mesons such that it also includes, for instance, the D∗N and D∗sY channels

in the C = 1, S = 0 sector. This has been already considered by the SU(8) in-

spired approaches, which employ local meson-baryon interactions involving both

JP = 0− and 1− mesons, as well as JP = 1/2+ and 3/2+ baryons. Vector meson-

baryon interactions induced by vector meson exchange can also be built using,

for instance, the V V V lagrangians of the local hidden gauge formalism. However,

the coupling of V B states to PB states is not a trivial task in the framework of

non-local models. Therefore, incorporating the coupling to states involving vector

mesons in our approach, which uses a coupled-channel formalism, an interaction

that goes beyond the t → 0 limit, and, in the case of hot and dense matter, the

simultaneous consideration of the in-medium D and Ds (D̄s and D̄) meson self-

energies, requires an enormous computational effort that goes beyond our means.

We hope that, by first identifying which channels play a relevant role and which

ones might be omitted, we can make progress toward this goal in the nearby

future.
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Resumen

El objetivo principal de esta tesis es el estudio de las resonancias bariónicas gene-

radas a partir de la interacción dinámica entre dos hadrones. Estamos interesados

en este estudio como un enfoque alternativo para explicar el creciente número de

estados con encanto observados experimentalmente, y que aparentemente no en-

cajan con la imagen tradicional de un barión como part́ıcula compuesta por tres

quarks. En particular, se estudian las moléculas bariónicas con números cuánticos

JP = 1
2

−
que se forman a partir de la interacción atractiva en onda-s (l = 0), de

un mesón pseudoescalar (0−) y un barión del estado fundamental ( 1
2

+
). Por lo

tanto, nuestro cometido es contribuir a la comprensión del espectro experimen-

tal de bariones con encanto, comprobando si un origen dinámico puede explicar

aquellos estados que son candidatos potenciales a ser una resonancia bariónica

con JP = 1
2

−
.
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7.1 Espacio libre

La primera parte de la tesis está orientada a estudiar este tipo de bariones molecu-

lares en el espacio libre. Con el fin de aprender sobre la naturaleza de un barión es

importante estudiar sus diferentes tipos de desintegración. Por esta razón, vamos

a calcular el desintegración fuerte de cada resonancia generada dinámicamente en

los canales mesón-barión disponibles y la transición electromagnética de estos ba-

riones al estado fundamental o de más baja enerǵıa. El esquema de los diferentes

Caṕıtulos que conforman esta primera parte es el siguiente.

En el Caṕıtulo 2 presentamos el formalismo para la dispersión de dos part́ıcu-

las y los diferentes potenciales que describen la interacción entre los mesones

pseudoscalares y los bariones del estado fundamental. Además, introducimos la

ecuación de Bethe-Salpeter (B-S) a partir de la cual obtenemos la amplitud para

cada canal. Cada resonancia, extráıda como un polo en la matriz de dispersión

para enerǵıas complejas, se caracteriza por un conjunto de parámetros espećıfi-

cos, masa, anchura (inversamente proporcional a la vida media) y el acoplo que

presenta la resonancia a cada uno de los canales meson-barión.

En el Caṕıtulo 3 se han estudiado dos sectores de diferente sabor, ambos con

I = 0, centrándonos en las caracteŕısticas de la resonancia Λc(2595) (C = 1) y

comparándola con la resonancia Λ(1405) (S = −1). Para llevarlo a cabo, hemos

escogido un conjunto de cinco modelos diferentes basados en el acoplamiento de

canales. Los modelos se diferencian los unos de los otros por el carácter “on-shell”

y “off-shell” en el proceso de unitarización, aśı como por los potenciales empleados

(WT, TVME t→0 y TVME). Todos los modelos reproducen los datos experimen-

tales disponibles sobre las resonancias Λc(2595) y Λ(1420), y las generan de forma

dinámica como estados ligados meson–barión, DN y KN , respectivamente. Las

anchuras calculadas teóricamente están en concordancia con el orden de magni-

tud de las medidas experimentales. Tal y como se observa en el experimento, en

nuestros cálculos la resonancia Λc(2595) es mucho más estrecha que la Λ(1420).

Esto se debe a que la resonancia Λc(2595) acopla débilmente al canal πΣc, en-

contrándose a tan sólo unos pocos MeV por encima de este umbral, en contraste

con la resonancia Λ(1420), la cual está situada a unos 90 MeV por encima del

umbral πΣ. En general, las resonancias se encuentran más separadas en los mo-
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delos “off-shell” que en los modelos “on-shell”. Esta es la razón por la cual las

resonancias que se acoplan en su mayoŕıa al primer umbral (πΣ y πΣc) se si-

tuan por encima de él y por lo tanto adquieren cierta anchura en los modelos

“on-shell”. Sin embargo, en los modelos “off-shell” se encuentran por debajo del

umbral y en consecuencia carecen de anchura.

En el Caṕıtulo 4 hemos estudiado las resonancias bariónicas con C = 1 y

números cuánticos J = 1
2

−
, utilizando el potencial de intercambio de mesones

vectoriales TVME, sin ninguna aproximación. Para llevarlo a cabo, hemos re-

suelto la ecuación de Lippmann-Schwinger (L-S) para obtener la amplitud de

dispersión. En modelos anteriores a nuestro trabajo, donde también generan re-

sonancias bariónicas con encanto de forma dinámica, la interacción entre mesón

y barión quedaba descrita con un potencial local, que se obtiene despreciando

el cuadrimomento transferido t con respecto al cuadrado de la masa del mesón

intercambiadomv. Hemos analizado en detalle los efectos de ir más allá de la apro-

ximación t → 0. Tomamos como referencia el sector de I = 0, C = 1, J = 1
2

−

para ajustar la resonancia Λc(2595) a su posición experimental. Para ello, ajus-

tamos el parámetro con el que limitamos la integral divergente del propagador

mesón-barión a un valor de 903 MeV/c. Destacamos que el valor de t/m2
v no es

en absoluto despreciable en el sector del encanto, sobre todo para las amplitudes

en las cuales ocurre el intercambio de encanto, debido a la gran diferencia de

masas de los mesones que participan en dichas transiciones. En comparación con

los modelos locales (t → 0), con nuestro enfoque obtenemos la misma cantidad

de resonancias en todos los sectores. La diferencia está en que aparecen, en ge-

neral, a enerǵıas un poco más altas debido a que las amplitudes diagonales del

potencial son de menor magnitud que para los modelos locales. La aproximación

no-local produce resonancias más anchas debido al mayor valor de las amplitudes

no diagonales cuando t 6= 0.

En el Caṕıtulo 5 se han estudiado las anchuras de desintegración radiactiva de

las resonancias bariónicas con encanto (generadas dinámicamente en el Caṕıtulo

4) en los estado bariónicos de más baja enerǵıa (JP = 1
2

+
). Hemos obtenido un

valor considerable para la anchura electromagnética de la resonancia Λc(2595).

Esta resonancia se desintegra principalmente en estados Λcγ, con una tasa par-

cial de ΓΛc(2595)→Λcγ = (274,3 ± 52,0) KeV, mientras que tan sólo una parte
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de las veces se desintegra en estados Σcγ, obteniendo una anchura radiactiva de

ΓΛc(2595)→Σ+
c γ

= (2,1 ± 0,4) KeV. Nuestros resultados son muy diferentes a los

obtenidos por otros métodos en la literatura, en cuanto al tamaño y distribución

de los canales de desintegración. También hemos presentado predicciones acerca

de la desintegración radiactiva de otros bariones con encanto. Las achuras de de-

sintegración radiactivo de las resonancias Σc(2800) y Ξc(2970) son relativamente

pequeñas, del orden de unas pocas décimas de KeV. Sin embargo, las transicio-

nes Ξc(2790)+ → Ξ+
c γ y Ξc(2790)0 → Ξ0

cγ son considerablemente más grandes, y

por lo tanto merece la pena validarlas experimentalmente. El valor considerable

de determinadas anchuras, en especial para las resonancias Λc(2595) y Ξc(2790),

hace que el estudio de estas reacciones sea una herramienta muy útil para obtener

información sobre las caracteŕısticas de estos bariones con encanto.

7.2 Medio nuclear

En la segunda parte de la tesis hemos incluido en el formalismo los efectos del

medio y de la temperatura finita para estudiar las propiedades de las resonan-

cias bariónicas con encanto en la materia densa y a altas temperaturas. Además,

esto nos permitirá estudiar las propiedades de los mesones encantados (D, D,Ds

y Ds) en el medio nuclear. El comportamiento de estos mesones influirá en la

producción de “charmonium”(estados cc) cuya supresión está relacionada con la

posible formación de plasma de quark y gluones en materia densa y caliente. Para

describir la interacción mesón-barión seguimos utilizando el potencial no-local de

intercambio de mesones vectoriales, TVME. Las amplitudes de dispersión en el

medio nuclear se obtienen resolviendo la ecuación de L-S a temperatura finita,

incluyendo los efectos de bloqueo de Pauli para fermiones y la autoenerǵıa que

los mesones D, D̄, Ds, y D̄s desarrollan en el medio, prestando especial aten-

ción a su influencia mutua. Del mismo modo tenemos en cuenta la autoenerǵıa

que los bariones experimentan en el medio nuclear. Hemos analizado cómo las

propiedades de las resonancias generadas dinámicamente se ven afectadas por

la densidad y la temperatura. Las resonancias que se acoplan fuertemente a los

estados intermedios de los nucleones se desplazan energéticamente hacia arri-

ba cuando se consideran los efectos de bloqueo de Pauli, como consecuencia de
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la disminución del espacio de fase. Cuando se incorpora la autoenerǵıa de los

mesones encantados de manera autoconsistente, las resonancias vuelven a ganar

atracción de nuevo. Hemos comprobado que la incorporación de la autoenerǵıa

de los mesones Ds tiene un efecto no despreciable en la amplitud DN y también

en las propiedades del mesón D. Por lo tanto, es necesario el tratamiento de los

mesones D y Ds en el medio nuclear de manera simultánea. Del mismo modo, las

propiedades de los mesones D̄s y D̄ en el medio también están interrelacionadas

y deben ser consideradas en conjunto. Las funciones espectrales de los mesones

D y D̄s son muy ricas en estructura. Para T = 0 MeV y una densidad normal

de materia nuclear se encuentra un pico de cuasipart́ıcula por debajo de la masa

libre del mesón. También se encuentran por debajo de esta enerǵıa los llamados

picos de “resonancia-hueco”, que en el caso del mesón D es un pico de excita-

ción, Λc(2595)N−1, claramente visible. En general, el aumento de la temperatura

tiene el efecto de mover el pico de cuasipart́ıcula hacia el lugar que ocupa en el

espacio libre. Debido a que las interacciones entre mesón-barión son más débi-

les y hay muchas más colisiones por el efecto de la temperatura, el pico se hace

más ancho. El pico de cuasipart́ıcula para el mesón D no se comporta según este

patrón. Esta excepción se debe al solapamiento del pico de cuasipart́ıcula con un

pico de excitación “resonancia-hueco”. Hemos encontrado que los efectos de la

densidad en las autoenerǵıas de los mesones siguen el comportamiento esperado

para las densidades exploradas, que van hasta el doble de la densidad normal

de saturación de la materia nuclear. La autoenerǵıa duplica su tamaño al pasar

de la materia nuclear con densidad de saturación normal a un sistema dos veces

más denso, lo que indica que las amplitudes mesón-barión en el medio tienen una

dependencia leve con la densidad.
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A

The SU(4) meson-baryon coefficients

We present the SU(4) coefficients, Cij,v, which denote the strength of the inter-

action between a pseudoscalar meson and a ground-state baryon mediated by the

vector meson interchange in the different isospin (I), strangeness (S) and charm

(C) sectors and channels (i, j). The first and second column at the tables show the

initial (i) and the final (j) meson-baryon states, the third column (v) denotes the

possible vector mesons interchanged (ρ,K∗,K
∗
, ω, φ,D∗, D∗s , D

∗
, D
∗
s, J/Ψ) and

the fourth column is the value of the coefficient. We only show in the tables the

coefficients which are different from 0.
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(I = 0, S = 0, C = 1)

i j v Cij,v

πΣc πΣc ρ 8

DN D∗
√

6

KΞ′c K∗ 2
√

3

DΞcc D∗
√

6

DN DN ρ 3

ω 3

ηΛc D∗ −
√

2

DsΛ K∗ −2
√

3

η′Λc D∗ −2

ηcΛc D∗ 2
√

3

ηΛc KΞc K∗ −2
√

3

DsΛ Ds −2
√

2/3

DΞcc D∗ −
√

2

KΞc KΞc ρ 3

ω −1

φ 2

DsΛ D∗ −
√

2

DΞcc Ds
√

6

KΞ′c KΞ′c ρ 3

ω −1

φ 2

DsΛ D∗ −
√

6

DΞcc Ds
√

2

DsΛ KΞ′c φ 2

η′Λc Ds 2/
√

3

ηcΛc Ds −2

η′Λc DΞcc D∗ −2

ηcΛc DΞcc D∗ 2
√

3

DΞcc DΞcc ρ 3

ω −1

J/Ψ 4

Table A.1: The SU(4) Cij,v coefficients for (I = 0, S = 0, C = 1).
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(I = 1, S = 0, C = 1)

i j v Cij,v

πΛc DN D∗ −
√

6

KΞc K∗ 2

DΞcc D∗
√

6

πΣc πΣc ρ 4

DN D∗ 2

KΞ′c K∗ 2
√

2

DΞcc D∗ 2

DN DN ρ −1

ω 3

ηΣc D∗
√

2/3

DsΣ K∗ −2

η′Σc D∗ 2/
√

3

ηcΣc D∗ −2

KΞc KΞc ρ −1

ω −1

φ 2

DsΣ D∗
√

6

DΞcc Ds
√

6

ηΣc KΞ′c K∗ −2
√

3

DsΣ Ds 2
√

2/3

DΞcc D∗ −
√

2/3

KΞ′c KΞ′c ρ −1

ω −1

φ 2

DsΣ D∗ −
√

2

DΞcc Ds
√

2

DsΣ DsΣ φ 2

η′Σc Ds −2/
√

3

ηcΣc Ds 2

η′Σc DΞcc D∗ −2/
√

3

DΞcc DΞcc ρ −1

Continued on next page
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Continued from previous page

(I = 1, S = 0, C = 1)

i j v Cij,v

ω −1

J/Ψ 4

ηcΣc D∗ 2

Table A.2: The SU(4) Cij,v coefficients for (I = 1, S = 0, C = 1).

(I = 1
2
, S = −1, C = 1)

i j v Cij,v

πΞc πΞc ρ 4

KΛc K∗
√

6

DΛ D∗ −
√

3/2

DΣ D∗ −
√

3/2

DΩcc D∗ −3

πΞ′c πΞ′c ρ 4

KΣc K∗ −
√

2

DΛ D∗ −3/
√

2

DΣ D∗ 1/
√

2

KΩc K∗ 2
√

3

DΩcc D∗
√

3

KΛc KΛc ω 2

DΛ Ds 2

ηΞc K∗ −
√

6

DsΞcc D∗
√

6

KΣc KΣc ρ 4

ω 2

DΣ Ds −2

ηΞc K∗ −3
√

2

DsΞcc D∗
√

6

DΛ DΛ ω 2

ηΞc D∗ 1/
√

6

Continued on next page
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Continued from previous page

(I = 1
2
, S = −1, C = 1)

i j v Cij,v

ηΞc D∗ 1/
√

2

DsΞ K∗
√

6

η′Ξc D∗ 1/
√

3

η′Ξ′c D∗ 1

ηcΞc D∗ −1

ηcΞ
′
c D∗ −

√
3

ηΞc DΣ D∗ −
√

3/2

DsΞ Ds −2

DsΞcc Ds −2

DΩcc D∗ −1

DΣ DΣ ρ 4

ω 2

ηΞc D∗ 1/
√

2

DsΞ K∗ −
√

6

η′Ξc D∗ −
√

3

η′Ξ′c D∗ 1

ηcΞc D∗ −2
√

3 + 3/2

ηcΞ
′
c D∗ −

√
3

ηΞc KΩc K∗ 2
√

3

DsΞ Ds −2/
√

3

DsΞcc Ds −2/
√

3

DΩcc D∗ 1/
√

3

KΩc KΩc φ 4

DsΞ D∗ −2

DΩcc Ds 2

DsΞ DsΞ φ 4

η′Ξc Ds
√

2

η′Ξ′c Ds
√

2/3

ηcΞc Ds −
√

6

ηcΞ
′
c Ds −

√
2

η′Ξc DsΞcc Ds
√

2

Continued on next page
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Continued from previous page

(I = 1
2
, S = −1, C = 1)

i j v Cij,v

DΩcc D∗ −
√

2

η′Ξ′c DsΞcc Ds
√

2/3

DΩcc D∗
√

2/3

ηcΞc DsΞcc Ds −
√

6

DΩcc D∗
√

6

DsΞcc DsΞcc J/Ψ 4

DΩcc K∗ −2

ηcΞ
′
c Ds −

√
2

DΩcc DΩcc J/Ψ 4

ηcΞ
′
c D∗ −

√
2

Table A.3: The SU(4) Cij,v coefficients for (I = 1
2
, S = −1, C = 1).

(I = 2, S = 0, C = 1)

i j v Cij,v

πΣc πΣc ρ −4

Table A.4: The SU(4) Cij,v coefficients for (I = 2, S = 0, C = 1).
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(I = 3
2
, S = −1, C = 1)

i j v Cij,v

πΞc πΞc ρ −2

DΣ D∗
√

6

πΞ′c πΞ′c ρ −2

KΣc K∗ 2
√

2

DΣ D∗ −
√

2

KΣc KΣc ρ −2

ω 2

DΣ Ds −2

DΣ DΣ ρ −2

ω 2

Table A.5: The SU(4) Cij,v coefficients for (I = 3
2
, S = −1, C = 1).
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(I = 0, S = −2, C = 1)

i j v Cij,v

KΞc KΞc ρ 3

ω 1

φ −2

DΞ Ds
√

6

DsΩcc D∗ −2
√

3

KΞ′c KΞ′c ρ 3

ω 1

φ −2

DΞ Ds
√

2

ηΩc K∗ −2
√

6

DsΩcc D∗ 2

DΞ DΞ ρ 3

ω 1

ηΩc D∗ −2/
√

3

η′Ωc D∗ −2
√

2/3

ηcΩc D∗ 2
√

2

ηΩc DsΩcc Ds −2
√

2/3

η′Ωc DsΩcc Ds 2/
√

3

DsΩcc DsΩcc φ −2

J/Ψ 4

ηcΩc Ds −2

Table A.6: The SU(4) Cij,v coefficients for (I = 0, S = −2, C = 1).
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(I = 1, S = −2, C = 1)

i j v Cij,v

πΩc KΞ′c K∗ −2
√

2

DΞ D∗ −2

KΞc KΞc ρ −1

ω 1

φ −2

DΞ Ds
√

6

KΞ′c KΞ′c ρ −1

ω 1

φ −2

DΞ Ds
√

2

DΞ DΞ ρ −1

ω 1

Table A.7: The SU(4) Cij,v coefficients for (I = 1, S = −2, C = 1).

(I = 1
2
, S = 1, C = 1)

i j v Cij,v

KΛc KΛc ω −2

DsN D∗ −
√

6

DsN KΣc D∗
√

6

KΣc KΣc ρ 4

ω −2

Table A.8: The SU(4) Cij,v coefficients for (I = 1
2
, S = 1, C = 1).
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(I = 3
2
, S = 1, C = 1)

i j v Cij,v

KΣc KΣc ρ −2

ω −2

Table A.9: The SU(4) Cij,v coefficients for (I = 3
2
, S = 1, C = 1).

(I = 1
2
, S = −3, C = 1)

i j v Cij,v

KΩc KΩc φ −4

Table A.10: The SU(4) Cij,v coefficients for (I = 1
2
, S = −3, C = 1).

(I = 1
2
, S = −1, C = −1)

i j v Cij,v

DsN DΛ ρ
√

6

DΣ K∗
√

6

DΛ DΛ ω −2

DΣ DΣ ρ 4

ω −2

Table A.11: The SU(4) Cij,v coefficients for (I = 1
2
, S = −1, C = −1).
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(I = 1, S = 0, C = −1)

i j v Cij,v

DN DN ρ −1

ω −3

Table A.12: The SU(4) Cij,v coefficients for (I = 1, S = 0, C = −1).

(I = 0, S = 0, C = −1)

i j v Cij,v

DN DN ρ 3

ω −3

Table A.13: The SU(4) Cij,v coefficients for (I = 0, S = 0, C = −1).
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B

Numerical solution of the L-S equation

in free space

In this appendix we will show how to get the numerical solution of the L-S

equation already presented in Chapter 2:

Tij(~ki,~kj ;
√
s) = Vij(~ki,~kj)

+
∑
l

∫ ∞
0

dk3
n

(2π)3

F (~kn)Ml

El(~kn)2ωl(~kn)

Vil(~ki,~kn)Tlj(~kn,~kj ;
√
s)

√
s− El(~kn)− ωl(~kn) + iη

.
(B.1)

In free space and for a s-wave interaction, none of the members in the integrand

depends on the solid angle, thus the problem is reduced to solve the integral of
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the modulus of the relative momenta kn:

Tij(ki, kj) = Vij(ki, kj)

+
∑
MlBl

∫ ∞
0

dkn
(2π)2

F (kn)Mlk
2
n

El(kn)ωl(kn)

Vil(ki, kn)Tlj(kn, kj)√
s− El(kn)− ωl(kn) + iη

.
(B.2)

For that purpose we apply the Sokhotskyi-Plemelj formula:

1

f(x) + iη
= P

1

f(x)
− iπδ(f(x)) , (B.3)

and taking into account that the delta function of f(x) is given by

δ(f(x)) =
∑
i

δ(x− x0
i )

|f ′(x0
i )|

, (B.4)

being x0
i the roots of the function f , the integral I gets

I =

∫ ∞
0

dkn
(2π)2

F (kn)Mlk
2
n

El(kn)ωl(kn)

Vil(ki, kn)Tlj(kn, kj)√
s− El(kn)− ωl(kn)− iπη

= P

∫ ∞
0

dkn
(2π)2

F (kn)Mlk
2
n

El(kn)ωl(kn)

Vil(ki, kn)Tlj(kn, kj)√
s− El(kn)− ωl(kn)

− iπF (k0)Mlk0

(2π)2
√
s
Vil(ki, k0)Tlj(k0, kj) .

(B.5)

To solve the singularities of the former integral I, that appear when we get a zero

in the denominator, we apply a method which consist on the substraction and

the addition of another integral (Ĩ) which present the same behavior around the

singularity or pole. This method was suggested by M. I. Haftel and F. Tabakin

in 1970 [MIH70]. The trick lies on considering the numerical substraction of:

Ĩ =
F (k0)Mk0

(2π)2
P

∫ ∞
0

dk
k

E(k)ω(k)

Vil(ki, kn)Tlj(kn, kj)√
s− E(k)− ω(k)

, (B.6)

and the addition of its analytical solution:

Ĩ =
F (k0)Mk0

(2π)2

1√
s

ln |
√
s

M +m
− 1 | Vil(ki, k0)Tlj(k0, kj) . (B.7)
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In the way we can suppress the numerical instabilities due to singularities with-

out altering the value of the integral I. Making a discretization of the relative

momenta, Eq. B.1 can be written as

Tij(ki, kj) = Vij(ki, kj) +
∑
Mlml

∑
n

wnVil(ki, kn)G̃(kn)Mlml
Tlj(kn, kj) , (B.8)

where G̃(kn)Mlml
is a diagonal matrix of (N + 1) × (N + 1) dimensions defined

as

G̃(kn)Mlml
=


F (kn)Mlk

2
n

El(kn)ωl(kn)
1√

s−El(kn)−ωl(kn)
, n < N + 1 ,

F (k0)Mlk0
(2π)2

(
−ΓMlml

+ 1√
s

ln |
√
s

Ml+ml
− 1|+ i π√

s

)
, n = N + 1 ,

(B.9)

and

ΓMlml
=

N∑
n=1

wn
kn

El(kn)ωl(kn)

1√
s− El(kn)− ωl(kn)

, (B.10)

We incorporate one more dimension (one more column and row) in order to

perform the substraction of the pole, making G̃ = 0 when n = N + 1 when there

are no singularities in order to facilitate the calculation.

The points of the mesh and their corresponding weights can be treated with

different types of mappings, like the logarithmic mapping:

kn = C ln

(
1 + xn
1− xn

)
; wn = C

2

1− x2
n

vn , (B.11)

with

C =
kN

ln
(

1+xN

1−xN

) , (B.12)

or the tangential one:

kn = C̃ tan
(πxn

2

)
; wn = C̃

π

2
cos−2

(πxn
2

)
vn , (B.13)
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with

C̃ =
kN

tan
(
πxN

2

) , (B.14)

where xn are the Gaussian points taken from 0 to 1 and vn are the corresponding

Gaussian weights. The constants C and C̃ are chosen by fitting the maximum

momentum kN = kmax to an appropriate value. The result of the integral must

not depend on the kind of mapping we choose, as one can see in Fig. B.1 of this

appendix, where it is shown how the use of the logarithmic or the tangential

mapping do not alter the results for the position and width of the Λc(2595) reso-

nance, once we choose the proper number of points in the mesh which make the

integral stable. After the discretization of the integral we can solve the Lippmann-

Schwinger equation by using the inversion method:

T = V + V GT −→ T = (1− V G)−1V . (B.15)

The dimension of the final matrix Tij(ki, kj ;
√
s) for each value of

√
s, depends

on the number of meson-baryon channels of an specific (I, S, C) sector and the

number of points considered for the external mesh in the relative momenta, thus

the dimension gets fixed to Nchannels(N + 1)×Nchannels(N + 1).

B.1 Check of numerical stability

We present in Figures B.1 and B.2 three different tests to check the stability of

the position and width of the Λc(2595) resonance. In panel a) of Fig. B.1 we build

two different mappings, the logarithmic and the tangential one, from a Gaussian

mesh with n = 24 points taken from 0 to 1, as we can observe from the subfigure

located in the upper-right corner of the panel. In panel b) of the same figure we

plot the imaginary part of the T matrix with respect to the type of mapping

chosen in order to discretize the integral (with the number of integral points n

and the form factor fixed). In panel a of Fig. B.2 the T matrix is plotted but

with respect to the number of points considered in the numerical integration once

we chose a specific mapping and a form factor type, and in panel b of the same
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figure the same is plotted but with respect to the form factor employed, once

the number of points of the mesh and type of mapping have been fixed. We can

observe in these figures how the use of any of the form factors, and any of the

mapping does not change the position and width of the Λc(2595) resonance, thus

considering it as a stable result. We can see that the results are stable for n ≥ 24

points, which is the number of points we choose to present the different results

in the chapters where the L-S equation is solved, in free space (Chapters 3, 4

and 5), and in hot and dense matter (Chapter 6).
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Baryon-baryon-meson coupling constants

This Appendix gives the values of the coefficients αi and βi that define, according

to Eq. (5.11), the BBM coupling constants gBBM , needed in the diagrams that

determine the various radiative decays.

181



182 APPENDIX C. BARYON-BARYON-MESON COUPLING CONSTANTS

Λc Σ+
c

MB α β α β

π+Σ0
c − 1√

3
− 1√

3
1 -1

π0Σ+
c − 1√

3
− 1√

3
0 0

π−Σ++
c − 1√

3
− 1√

3
-1 1

D0p 2√
3

− 1√
3

0 1

D+n − 2√
3

1√
3

0 1

ηΛc
√

2

3
√

3

5
√

2

3
√

3
0 0

K+Ξ0
c − 1

3
√

2

5

3
√

2

1√
6

1√
6

K0Ξ+
c − 1

3
√

2

5

3
√

2
− 1√

6
− 1√

6

K+Ξ′0c − 1√
6

− 1√
6

1√
2

− 1√
2

K0Ξ′+c
1√
6

1√
6

1√
2

− 1√
2

D+
s Λ − 2

√
2

3

√
2

3
0 0

η′Λc
1

3
√

3
− 5

3
√

3
0 0

ηcΛc
2
√

2
3

−
√

2
3

0 0

D̄0Ξ+
cc

1√
3

− 2√
3

-1 0

D−Ξ++
cc − 1√

3

2√
3

-1 0

π0Λc 0 0 − 1√
3
− 1√

3
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Λc Σ+
c

MB α β α β

ηΣ+
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√
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−
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√
2
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Table C.1: The α and β coefficients for the channels involved in the radiative decay of
resonances into Λc and Σ+
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Continued from previous page
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Table C.2: The α and β coefficients for the channels involved in the radiative decay of
resonances into Ξ+

c and Ξ′+c
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Table C.3: The α and β coefficients for the channels involved in the radiative decay of
resonances into Ξ0

c and Ξ′0c . We only show the coefficients for channels with
charged particles.
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Table C.4: The α and β coefficients for the channels involved in the radiative decay of
resonances into Σ++

c . We only show the coefficients for channels with charged
particles.
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Σ0
c

MB α β

π−Λc − 1√
3
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√
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Table C.5: The α and β coefficients for the channels involved in the radiative decay of
resonances into Σ0

c . We only show the coefficients for channels with charged
particles.
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