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Improvements in the Ray Tracing

of Implicit Surfaces based on

Interval Arithmetic

A dissertation presented to the Universitat de
Girona in partial fulfillment of the requirements
of the degree of DOCTOR OF PHILOSOPHY

By

Jorge Eliécer Flórez Dáz

Advisors

Dr. Mateu Sbert

Dr. Josep Veh́ı

Girona, Spain
November, 2008





Abstract

Implicit surfaces are useful in many areas related to computer graphics. One of their
main advantages over other representations is that they can be easily used as primitives
for modeling (using Constructive Solid Geometry or blending). However, they are not
widely used for this purpose because the models created with implicit surfaces take a
long time to be rendered.

When a precise visualization of an implicit surface is required, the best option is to
use ray tracing. If simple surfaces are rendered, then the results are suitable, however,
thin features can be missed in models that have thin parts, and are not rendered. These
problems are caused by the truncation performed in the floating-point representation in
the computers: some bits are lost in the mathematical operations during the intersection
tests between the rays and the surfaces.

Many authors have used Interval Arithmetic in the intersection test to solve the prob-
lems related with point sampling, that cause the loss of intersection points, however,
there are still two open problems in the ray tracing of implicit surfaces based on Interval
Arithmetic:

• Ray tracing is slow, and Interval Arithmetic is slow too. Many floating-point
operations are required for every Interval Arithmetic operation (besides rounding).
For that reason, the ray tracing becomes even slower.

• Although Interval Arithmetic has been applied to replace point sampling during the
intersection tests, the application of Interval Arithmetic to replace point sampling
in the distribution of the rays inside the pixel, has not been studied. This also
causes loss of thin parts of the surface in the final image.

In this work algorithms to deal with those problems are presented. The research is
based on Modal Interval Analysis, which is a logical completion of classic interval analysis
that includes tools for solving quantified uncertainty. Modal interval Analysis gives the
mathematical foundations used in the development of these algorithms.

The efficiency of the ray tracing of implicit surfaces is improved by means of the
evaluation of groups of rays instead of individual ones, which permits thus saving com-
putational time in the entire ray tracing process. The quality of the visualization is
improved by means of the creation of an adaptive anti aliasing algorithm. Using this
strategy, it is possible to evaluate areas of the pixels instead of points. The efficiency
of animated scenes composed by implicit surfaces is also improved. The improvement is
achieved by means of an algorithm that exploits the coherence between frames.

This research also shows how it is possible to reduce the rendering time by means of
the use of cluster of computers and also by means of graphic processing cards, where the
improvement in efficiency is between two and three orders of magnitude.
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1
Introduction

This chapter presents an overview of the background of the thesis, describing the moti-
vation, the objective, and the contributions to the state-of-the-art in the guaranteed ray
tracing of implicit surfaces based on Interval Arithmetic.

It is a challenge to correctly render an implicit surface. Although simple surfaces do
not suffer from visualization problems, some surfaces and models in which they are used
as primitives could suffer reliability problems.

Efficient methods to solve those problems are required. Although there are many
approaches dealing with them, there are still some improvements that can be performed.
In this thesis, we focus in the development of improved approaches based on Modal
Interval Arithmetic.

1.1 Motivation

Finding methods to perform correct visualizations of implicit surfaces has been the
subject of study by several authors in the last two decades. The main objective of
these works is to perform reliable intersections tests for ray tracing scenes conformed by
implicit surfaces.

When an implicit surface is ray traced, some small and thin features disappear in
the final visualization. This problem is related with the use of point sampling in the
intersection test. Point sampling fails because floating-point arithmetic in the computer
can not represent all the set of real numbers. Such loss of reliability causes the miss
of roots in the intersection test, and pixels are classified as empty, although the surface
indeed lies inside the pixel.

There are different approaches that can be used to solve this problem, like Lipschitz
constants, Affine Arithmetic or Interval Arithmetic. Although these approaches deal
with the quality in the visualization, the challenge of achieving both quality and efficiency
is not well afforded. One of the causes of the lack of efficiency is ray tracing, which is
a slow method, although more reliable than other alternatives like the rendering of
polygonized implicit surfaces.

The problem of efficiency is more noticeable when Interval Arithmetic is used. This
arithmetic requires to replace the traditional floating-point operations for interval ones.
Every interval has bounds composed by two floating-point numbers, and every operation
(add, subtract, multiplication, division and so on) requires floating-point operations
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between those bounds. This implies an extra computational cost, specially when ray
tracing is used.

Another problem is related with point sampling at pixel level. Although ray tracing
could be reliable, some surfaces are still not correctly rendered because the rays miss
the thin parts of the surfaces crossing a pixel. This is still an open research area for
guaranteed ray tracing of implicit surfaces using Interval Arithmetic.

1.2 Why Interval Arithmetic?

Interval Arithmetic has been proved to be very helpful in the solution of problems caused
by truncation and rounding of real numbers in the computer. Researchers in different
areas like structures, control, robotics, chemistry and medicine have solved problems
that occur when the floating-point arithmetic of the computer is used (a quick search in
internet can return hundreds of results about applications of interval arithmetic).

Also, the application of Interval Arithmetic is very simple and intuitive. In most
of the cases, it is used by way of libraries called by the applications when the inter-
val operations are required. There are several public and commercial versions written
in programming languages like ALGOL, PASCAL, FORTRAN, MODULA and C++.
Generally, the libraries are defined by means of classes which implement the interval op-
erators. This allows independent functioning between the computer graphic applications
and the Interval Library.

Moreover, there is an Interval Arithmetic Community which is actively working in the
development and improvement of the interval theory. Any improvement in the interval
theory can be put in the Interval Library without affecting the algorithm that uses the
library (see figure 1.1).

These advantages have made interval arithmetic a good candidate to solve reliabil-
ity problems in the intersection test for ray tracing of implicit surfaces, although the
problems of efficiency and point sampling at pixel level must be studied and solved.
Particulary, this thesis is based in Modal Interval Analysis, which is an extended version
of the classic interval arithmetic.

Modal Interval Analysis permits to deal with many mathematical problems, defining
a logical statement of these problems and giving the tools and theorems to solve them.

1.3 Objective of the Research

The main objective is to develop algorithms to obtain a correct visualization of any
implicit surface, including those surfaces with thin parts, when ray tracing with interval
arithmetic is used. The proposed solution must take advantage of the potential of the
“intervals” to exploit coherence and, in this way, improve the quality of the visualization
and also reduce the time spent in the ray tracing process.

In this thesis, the term “quality” will refer to a correct rendering of the surface, that
is, if all the parts of the surface appear in the final image. Moreover, an algorithm is
“guaranteed” when this kind of quality is assured. The term “efficiency” will refer to
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Figure 1.1: The ray tracing using interval arithmetic works performing calls to an inde-
pendently interval arithmetic library. New versions of interval libraries can
be used without affecting the ray tracer.

the rendering time, that is, an algorithm is more efficient than another if it takes less
time to render the surface.

To accomplish this objective, this thesis deals with the following specific objectives:

1. To apply Modal Interval Arithmetic to improve the efficiency by means of the
exploitation of coherence. Groups of rays can be evaluated with the same compu-
tational cost as an individual ray.

2. To improve the quality of the rendered surfaces, creating an adaptive anti aliasing
algorithm. Point sampling can be replaced for an adaptive algorithm that evaluate
areas of the pixels instead of points, improving the quality of the final image.

3. To prove that the solutions presented can be ported to other environments. The
algorithms are tested over two approaches widely used by Computer Graphics
researchers to improve efficiency: a parallelized algorithm and an implementation
on GPU (Graphic Processing Unit).

1.4 Description of the contents

The thesis has the following chapters:
Chapter 2 is a general introduction to implicit surfaces, explaining its definition, repre-

sentation and visualization techniques. The objective of this chapter is to give a general
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knowledge about implicit surfaces. The reader of this thesis can find this chapter useful
to understand how the implicit surfaces are used in the context of computer graphics.

Chapter 3 presents a general introduction to interval arithmetic. It goes from the
classical interval arithmetic basis, to the concepts of Modal Interval Analysis. This
chapter contains the mathematical foundations to develop the algorithms introduced in
this thesis.

Chapter 4 introduces the state of the art of the application of interval analysis in
computer graphics, focusing on implicit surfaces. It also stresses on different interval
algorithms to ray trace the implicit surfaces.

Chapter 5 contains the first contributions of this thesis. It starts explaining the interval
arithmetic techniques used to accelerate the ray tracing process. This is done by means of
the creation of a structure in image space, in which beams are used instead of individual
rays. This chapter also includes algorithms that use interval arithmetic to replace the
point-sampling in the adaptive anti aliasing approaches, creating better visualizations of
the implicit surfaces.

Chapter 6 presents an application in the rendering of animations composed by implicit
surfaces. Here, interval analysis is used to accelerate the rendering time of such scenes.
Interval algorithms are used to exploit the coherence in space and time of the animation,
improving the time obtained with traditional techniques.

Chapter 7 offers two improvements in efficiency for the algorithms presented in chapter
5. Chapter 7 starts with the description of an algorithm that works in parallel in many
computers. The second part is the description of an algorithm working in GPU (Graphic
Processing Unit) in which details for the construction of an interval library in GPU are
provided.

This thesis concludes with a summary of the results of this thesis and future work.
The appendix includes a extensive bibliography about the subject of this thesis.

1.5 Contributions of the research

This major contributions of this research to the state-of-the-art in the ray tracing of
implicit surfaces are:

• A method to work with a set of rays simultaneously. In this way, the number of
intersection tests required in a traditional ray tracing algorithm are reduced, and
consequently, the the computational time is also reduced.

• An efficient and reliable method to trace shadow rays, which is less complex than
other techniques like beam tracing for polygonized surfaces.

• An anti-aliasing algorithm, in which beams are used to scan the area of the pixel
completely. Using this technique, it is possible to obtain better results than anti
aliasing techniques based in point sampling.

• A method to exploit spatial coherence which works with beams and it is completely
based on interval arithmetic.
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• A method to exploit spatial and time coherence in the animation of scenes com-
posed by implicit surfaces. Consecutive frames can be rendered using the same
spatial structure and beam reducing the rendering time of the whole animation.

• A parallel version of the beam tracing of implicit surfaces running on a cluster of
computers. Image space coherence is used to reduce the communication between
computers.

• An algorithm working on GPU which includes a GPU-based interval arithmetic
library where rounding was correctly implemented.
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Authors: Jorge Flórez, Mateu Sbert, Miguel A. Sainz, Josep Veh́ı
Congress: GAMM-IMACS International Symposium on scientific computing,

computer arithmetic and validated numerics
Place: Duisburg (Germany), 2006

Guaranteed Adaptive Antialiasing using Interval Arithmetic.
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2
Implicit surfaces

2.1 Introduction

Implicit surfaces are used in computer graphics for the modeling of geometric objects.
They are useful for represent deformations and blending. They are also combined to
generate complex models through Constructive Solid Geometry Operations. Although
the mentioned uses of the implicit surfaces, its principal weakness is the amount of
time required for its direct visualization (for example, using ray tracing [28]), and also
the difficulty of controlling the shape of the surfaces during a quick visualization in an
interactive environment [14, 80, 81].

For these reasons, they are not as popular as the parametric representations of the
surfaces (for example, polygonal meshes), which can render models in a relatively small
time.

But despite of the mentioned weaknesses, implicit surfaces are a flexible way to create
complex models, as they offer a great tractability of a set of points by means of simple
equations. That is, they allow to classify points to be inside, outside or in a surface
defined by an implicit function.

They are also used in the representation of point data, for example, in imaging medical
data and reconstructing objects represented by means of sets of points [11, 98, 79, 73].

In this chapter, the mathematical definition of an implicit surface is introduced. More-
over, the different methods to represent and the techniques to visualize implicit surfaces
are presented.

2.2 Definition

An implicit surface is the set of solutions of an equation defined by:

f(x, y, z) = 0
�� ��2.1

where f : Ω ⊆ R3 → R.
Besides, it is possible to classify points “inside” or “outside”. Indeed, only the sign

must be verified [15, 94], that is, positive results indicate points outside the surface,
negative ones indicate points inside. A result equal to zero indicates points in the
surface (see figure 2.1).
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Figure 2.1: An implicit function can be used to define points to be inside or outside the
surface.

To apply lighting effects, the normal of the surface must be calculated. The angle
between the normal at a point of the surface, and a vector from that point pointing to
the light, indicates how much illumination must be applied to that point.

The normal at a point (p) of the surface is defined by means of the gradient of the
function:

n = ∇f(p) =
(

∂f(p)
∂x

,
∂f(p)

∂y
,
∂f(p)

∂z

) �� ��2.2

The gradient point outwards the surface. Negating the surface will invert the normals.
In the case of non-differentiable functions, the gradient can be approximated by the

following function:

n = ∇f(p) =
(

f(p +4x)− f(p)
4x

,
f(p +4y)− f(p)

4y
,
f(p +4z)− f(p)

4z

) �� ��2.3

In this research, this kind of approximation is only used for illumination purposes.

2.3 Illumination model

In this section, the Phong illumination model is explained. This model is one of the
most used in computer graphics, and will be applied in all the images generated in this
thesis. The vectors involved in the process are: −→e , vector from the point to the eye;

−→
l ,

vector to the light; −→n , the surface normal; −→r , the reflection ray (see figure 2.2).
According to this illumination model, the color of a point in the surface must be

proportional to the cosine of the angle between the direction of the light
−→
l and the

normal at the point −→n :
c = c0 max(0,−→n ·

−→
l )
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in which the max function is used to catch those cases in which the dot product is
negative (the angle is bigger that 90o). In those cases, it is supposed that the light does
not arrive to the point.

Figure 2.2: Geometry of the Phong illumination model.

The intensity of the light source and the reflectance of the surface can affect the
illumination at the point. Thus, the terms cr and cl are included:

c = cr cl max(0,−→n ·
−→
l )

in which cr is the diffuse reflectance, that indicates the fraction of light reflected by the
surface, and cl is the light intensity.

In a real scene, there is some light surrounding all the objects. It is a common practice
to add a term ca to represent this light:

c = cr (ca + cl max(0,−→n ·
−→
l ))

�� ��2.4

It is also possible to add highlights to the surfaces. The idea is to add more illumination
to the points in which the reflection ray −→r and the vector from the point to the eye −→e
have a small angle (see figure 2.2a).

To obtain a maximum illumination when −→r = −→e , and that gradually falls when the
angle between these vectors grows, the dot product between −→e and −→r must be used.
That is:

ch = max(0,−→e · −→r )p
�� ��2.5

in which ch is a term that indicates the fraction of the spot of the highlight corresponding
to the current point. The positive term p is used to control the size of the spot. The
maximum function is used to catch those cases in which the dot product is negative.

The vector −→r corresponds to the vector
−→
l reflected about −→n (show figure 2.2b). This

vector can be calculated as:
−→r =

−→
−l + 2(

−→
l · −→n )−→n .
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In this model, 2.4 and 2.5 indicate the illumination values corresponding to the diffuse
reflectance and the highlights. Those values should be added to obtain the illumination
received by the eye (c) in the current point:

c = cr (ca + cl max(0,−→n ·
−→
l )) + max(0,−→e · −→r )p

�� ��2.6

2.4 Representation of the Implicit Surfaces

This section describes two of the most common representations: algebraic surfaces and
blob surfaces.

2.4.1 Algebraic surfaces

These surfaces are defined by polynomials whose degree indicates the degree of the
algebraic surface. The degree indicates the number of intersections between the surface
and a line [15]. For example, a plane has degree 1 while a sphere has degree 2. The use
of polynomials has the advantage of being less expensive (in rendering time) than any
general analytical representation.

The most known algebraic surfaces are the quadrics (polynomials of degree two).
Those surfaces are easily rendered with few parameters to control its shape, and also,
it is possible to use homogeneous coordinates to apply affine transformations. Typical
quadric surfaces are the sphere, cylinder and cone (figure 2.3).

Figure 2.3: Classical quadrics surfaces: ellipsoid, cylinder and cone

2.4.2 Blobs

The blobs are the sum of gaussian distributions inspired in the density distribution
of molecules. These surfaces were used for the first time by Blinn [12] to render an
animation of the DNA for the Cosmos series by Carl Sagan, in which each atom was
approximated by a gaussian field.

The sum of Gaussian fields generates a blend among the surfaces. Blinn proposed the
function:

f(x, y, z) =
∑ n

i=1
bie

−air
2
i − 1

�� ��2.7
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in which every function is centered at term r. The term r is calculated as ri(x, y, z) =√
(x− xi)2 + (y − yi)2 + (z − zi)2. The term b represents the height of the function,

and a the standard deviation. The effect of the blob function can be changed adjusting
those parameters. Figure 2.4 shows an example of a blob function. The exponential

Figure 2.4: An example of the sum of gaussian fields

function defines a gaussian field that tends to infinity while the exponential tends to
zero. That means that every gaussian field has influence over the others no matter
the distance between them. Soft objects [104] computes field values using a polynomial
approximation with a limited distance. Every field is generated by different objects like
points, lines or boxes.

2.5 Visualization Methods

This section covers two of the visualization methods more frequently used and referenced
in the bibliography about implicit surfaces: polygonization and ray tracing. Ray tracing
is covered in more detail, as it is one of the main focuses of the present thesis.

2.5.1 Polygonization of Implicit Surfaces

This method consists in creating polygons that represent the implicit surface. Polygons
are easily rendered in modern graphics systems, for that reason, it is the preferred
method when interactive visualization is required.

In a polygonization, the intersections between surfaces and a cubic cell enclosing part
of the surface are calculated to define the vertices (see figure 2.5). Those vertices have to
be ordered to create convex polygons [14]. The quality of the result depends on the size
of the cell, that is, if the cells are too large the details of the surface may be lost, and a
small size could create too many polygons which make difficult the rendering process. It
is possible to solve this problem applying adaptive methods in which the size of the cell
depends on the detail of the surface. In this kind of algorithm some cracks can appear
in surfaces between the shared faces of the nodes. In order to solve this, it is possible
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Figure 2.5: An example of the process to generate polygons in a cell. On the right, a
polygonized sphere generated using BlobNetStudio 3.1

to replace the edges of the less subdivided cells with the edges of the smallest cells [9].
However, those methods are difficult to implement, for that reason, the methods with
fixed cells are preferred [14].

2.5.2 Ray Tracing Implicit Surfaces

In 1980, Whitted [101] proposed a method to generate high quality images using basic
geometric models. This method evolved in what is known as ray tracing, where the
behavior of rays of light interacting with objects in the nature is simulated: the rays
bouncing on the objects arrive to our eyes and we can see the features of the surface
(color, transparency, etc.). Indirect light can also rebound from one surface to another
and arrive to our eyes (see figure 2.6). Using this rendering technique, it is possible to
obtain realistic visualization of different kinds of scenes. In nature, the light rays are
emitted by the light sources. After bouncing at the objects, some of the rays arrive at
the eye. It could be computationally expensive to try to simulate rays from the light
source in the scene, as many of these rays never arrive at the eye. For that reason, it is
better to model the inverse process, that is, to trace the rays from the eye and look for
further intersections with the objects in the scene.

The Ray Tracing Algorithm

Ray tracing is a method that works pixel by pixel (pixel is short for “picture element”,
that is, one element of the rectangular array in which most of the computer graphics
images are presented). One or more rays are traced for every pixel in an image plane
or screen. The objective is to find intersections among rays and objects. The idea is to
check if one object is “seen” through a pixel. Generally, the first intersection with the
first object is needed, because the others are occluded.

Figure 2.7 presents the process of constructing a ray. The point c represents the
origin or view point. A ray starting at this point is sent through a pixel in screen (in
the direction −→cs) or image plane represented by the point s. These rays are referred to
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Figure 2.6: Light rays bouncing at different objects arriving at the eyes. The image plane
in the figure is crossed by the rays; this plane can contain a representation
of the 3D scene in 2D space.

uvw system, while the object has its own system xyz. This independence of view rays
allows the scene to be viewed from any arbitrary position (in [84] there is an excellent
explanation of the geometry of arbitrary view positions in ray tracing).

Figure 2.7: Definition of a ray crossing a screen. If the ray intersects any surface, the
color is calculated and assigned to the pixel in the screen.

If there are intersections between the ray and an object behind the screen, the shading
color is calculated taking into account the direction of the normal at the intersection
point of the surface, and the position of the lights. The contribution of indirect light is
also calculated. The sum of all the contributions is used to assign the shading color of
the pixel.
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Intersection tests

A ray is defined by:
x = cx + t(xs − cx),

y = cy + t(ys − cy),

z = cz + t(zs − cz)

where (cx, cy, cz) is the origin or view point; (xs, ys, zs) is the point where the ray crosses
the screen, and t is the parameter of the ray.

The intersection between an implicit function f(x, y, z) = 0 and a ray is defined for
the equation:

g(t) = 0
�� ��2.8

where g(t) is the intersection function defined by:

g(t) ≡ f(cx + t(xs − cx), cy + t(ys − cy), cz + t(zs − cz))
�� ��2.9

So, the intersection test for a ray is to find whether the equation 2.8 has roots.
These solutions of t are replaced in the parametric ray to find the intersection point

and the normal value.
There are many techniques to find the roots of the equation 2.8 like bisection or Newton

method [85]. In [32], fuzzy techniques are used in the intersection test to classify the
surfaces in certainty intersecting, certainty non intersecting and potentially intersecting.
Interval arithmetic [65], Lipschitz constants [57], or even Corner and Taylor methods
[36] can be used to create reliable intersection test.

Efficient Ray Tracing

Ray tracing algorithms lack efficiency. There are many works devoted to solve this
problem. Dirk et al. performed a classification for the different approaches proposed in
this subject [41]. According to this work, there are three major strategies to accelerate
the ray tracing process: faster intersections, tracing fewer rays and generalized rays.
The category of “faster intersections” covers the techniques that reduce the number of
intersection tests performed between rays and surfaces. The majority of the techniques
used to reduce the computation time of implicit surfaces are in this category.

The most basic technique to accelerate ray tracing is the bounding volume. In this
technique, a volume which contains an object is created. The intersection test with the
volume must be less expensive than the intersection with the object itself. The first
proposed bounding volume was the sphere [101] because it has the more efficient shape
to perform the intersection test. Every object in the scene was covered with a sphere; if
any ray intersects the sphere, the ray is then tested for the objects inside it. This method
can be improved by the use of a hierarchy of bounding volumes [77]. In this manner,
the number of intersection tests is log(n) for n objects [15]. This kind of hierarchical
structure is the most used when the bounding boxes are oriented parallelepipeds. In this
case, the rays must be transformed to the space of the boxes to make less complicated
intersection test.
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Another technique is the space subdivision [41], in which the space surrounding the
objects is subdivided, discarding the boxes without objects inside. The space can be
subdivided in a regular grid (figure 2.8), in which a set of objects is associated with
every box. The smaller box which contains objects is known as voxel. The boxes must
be ordered, and the ray is tested for the boxes, looking for the first intersection. In
this technique, it is important to traverse the ray, in which the output point of the ray
from one box must be calculated to identify the next box which should be checked. This
technique was first applied by Cleary et al. [24], and later by Fujimoto et al. [33]

Figure 2.8: Regular Grid, with a ray traversing the cell. Objects must be checked for
intersection.

Moreover it is possible to perform a nonuniform subdivision of space, to make finer
subdivisions in regions with more objects. In [40] the subdivision is performed in eight
parts, and each part is evaluated so as to detect intersection of the objects with any of
the faces of the box; in this case, the object is added to a list for the current evaluated
node. This technique is known as Octree (see figure 2.9). In [55], regular and adap-
tive subdivision methods are integrated. The voxels in a regular grid are recursively
subdivided depending on object density.

Figure 2.9: Octree subdivision
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Although any z-buffer algorithm can be used to render it, the final voxels can be
directly ray traced. Every voxel has its own information about position and normals,
which facilitates the ray tracing process.

The main problem of this technique is that it requires high resolution (small size of
voxels) to obtain good quality images, needing too much memory to store the voxels.
Stolte et al. [91] proposed an algorithm to select only meaningful voxels and discard
empty areas. The flexibility of this technique facilitates the representation of a model in
cylindrical coordinates into a rectangular representation [92].

Other techniques deal with the direction of the rays. Those techniques are known as
directional techniques. In the majority of these techniques, the scene is still subdivided
in voxels but also the directions are discretized in regions called direction cells. Subse-
quently, the origin of the ray is enclosed in a cube with windows, and every window is
checked in order to know which objects could be seen through it (figure 2.10).

Figure 2.10: The ray is checked against the voxels that can be seen through the window
crossed by the ray. In this case, the green voxels will be checked

This technique can be applied for the acceleration of primary rays [6], used in the
light sources to accelerate the calculation of shadows [43], or used in the acceleration of
general intersection calculation [69].

2.6 Conclusions

In this chapter a general introduction to implicit surfaces, was presented. The impor-
tance of implicit surfaces becomes clear when the different possibilities of application
are known. In speed, implicit surfaces are not a challenge to surfaces represented by
polygons, but many of their properties make them attractive. They have particular
applications, like deformations and collision detection [15] or CSG models [72, 10], with
more flexibility than parametric surfaces.
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3
Interval Analysis

3.1 Introduction

Interval Analysis [67, 66] is a mathematical theory that deals with rounding problems
that occur due to the use of floating point arithmetic. The computers have limited
floating point registers to represent real numbers. However some real numbers have no
finite representation, for that reason, those numbers have to be rounded. That situation
causes problems of numerical imprecision that propagate inside the algorithms especially
in the recursive ones. Although it is possible to work with a larger number of bits to
represent the numbers, this set of numbers is, indeed, a representation of digital numbers
that do not have the properties of the set of real numbers [86].

A naive example can demonstrate this problem:

a = random()
b = random()
c = a + b
c = c - a - b

It is expected that the variable c contains a value equal to zero, though that is not
always the case when this short algorithm is tested in a desktop computer.

There are many research areas in which Interval Arithmetic has been applied to keep
the numerical precision, like control engineering and supervision [5, 99] and geometric
modeling and computer graphics [1, 75].

There are other well documented “catastrophic” examples that could be avoided by
using Interval Arithmetic according to the interval community (www.math.psu.edu \
dna \ disasters). For example, a Patriot missile battery failed due to the accumulation
of rounding errors. Another example is the explosion of the Arianne 5, caused by an
overflow error.

In this chapter, the construction, operations and properties of Interval Arithmetic are
introduced. There is also an introduction to Modal Interval Analysis which completes
the definition of Classical Interval Analysis by means of the application of quantifiers to
the intervals.
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CHAPTER 3. INTERVAL ANALYSIS

3.2 Definition

The numeric computation of theoretical problems in a computer requires that real num-
bers R are represented with a limited quantity of decimal places. It is possible to use a
large number of decimal places, but still there are real numbers that can not be repre-
sented. This means that when a problem is represented from theory to the computer,
we are indeed working with a set of digital number(DI), also called machine numbers
or floating point numbers.

The real numbers provide a logic support to the models in which continuous mag-
nitudes are used. However, the computer performs truncation of real numbers. It is
possible that some part of a real value will be missed (see figure 3.1). The operations

Figure 3.1: The image represents the selection of an upper bound for an interval in the
set of digital numbers. If truncation is applied then the actual value is lost.
A rounding to the next digital number is required to keep the value.

should be restricted to an interval, obtained by means of rounding, which gives opera-
tional identification to the calculated values.

Given two real values a,a, an interval A is defined as follows:

A = [a, a] := {x ∈ R | a ≤ x ≤ a}
�� ��3.1

in which a and a are known as the infimum and the supremum of the interval respectively.
To keep the exact representation of the number, rounding must be performed to the

next digital number, smaller than x (infimum), and to the next digital number, bigger
than x (supremum). This rounding is performed to accomplish the definition of the
intervals (equation 3.1). The use of Interval Arithmetic with digital numbers provides
control for rounding errors automatically.

In the construction of the intervals (which are represented as I(R)), many of the
properties of real numbers are lost (e.g. distributive law) and others like the inclusion
relation are obtained.
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3.3. RELATIONS BETWEEN INTERVALS

Computers work with the set DI, for that reason, a set of intervals with bound in DI
(I(DI)) must be used for the algorithmic operations. This means that while I(DI) allows
the operations over the set DI to be performed in the computer, an analytic model of
the operations and relations of the intervals can be established with the set of classic
intervals I(R).

As intervals are not real numbers anymore, the real algorithms can not be translated
without some modifications into interval arithmetic. It should be mentioned that “new
algorithms and new ideas have to be provided in order to take full advantage of Interval
Arithmetic” [75]. Interval Arithmetic explains how to deal with the set I(R), defining
properties and operations between them. The operations and relations in I(R) are easily
defined between the bounds of the intervals.

3.3 Relations between Intervals

The relations between intervals are equivalent to some relations between the bounds.
Although the definition of the relations is not evident in many cases, there is a general
assumption of the most useful definition in every case. What is important is to obtain
similar relations to the real numbers.

3.3.1 Equal operator

Definition:

A = B := (∀a ∈ A)(∃b ∈ B)(a = b), (∀b ∈ B)(∃a ∈ A)(b = a)

In function of the bounds:
A = B ⇔ a = b, a = b

3.3.2 Less than

Definition:
A < B := (∀a ∈ A)(∀b ∈ B)(a < b)

In function of the bounds:
A < B ⇔ a < b

3.3.3 Less or Equal than

Definition:

A ≤ B := (∀a ∈ A)(∃b ∈ B)(a ≤ b), (∀b ∈ B)(∃a ∈ A)(a ≤ b)

In function of the bounds:
A ≤ B ⇔ a ≤ b, a ≤ b
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3.3.4 Inclusion

Definition:
A ⊆ B := (∀a ∈ A)(a ∈ B)

In function of the bounds:
A ⊆ B ⇔ a ≥ b, a ≤ b

3.3.5 Incidence

Definition:
A =/ B := (∃a ∈ A)(∃b ∈ B)(a = b)

The definition is equivalent to A ∩B 6= Ø.

In function of the bounds:

A =/ B ⇔ max(a, b) ≤ min(a, b)

3.4 Interval Arithmetic Operations

The Interval operations are based on the theory of sets. In this way, it is possible to
define the operations by means of the bounds of the intervals.

There are some conditions that must be accomplished by interval operations:

• The result of an interval operation must be another interval.

• The constraint of an interval operation between particular intervals must coincide
with the same operation between reals.

• All the operations between particular elements of both intervals must be contained
in the interval result. This is known as the inclusion principle of Interval Arith-
metic. This principle allows the theory of interval arithmetic to implemented into
a machine arithmetic working with digital numbers.

According to these conditions, the operations are defined by the expression:

AwB = {awb : a ∈ A, b ∈ B}

in which w can be any of the operations: +,−, ∗, /.
The general equation of the Interval Arithmetic operations is:

AwB = [min(awb, awb, awb, awb),max(awb, awb, awb, awb)]
�� ��3.2

According to definition 3.2, the basic four operations are defined as:

[a, a] +
[
b, b

]
=

[
a + b, a + b

]
[a, a] −

[
b, b

]
=

[
a− b, a− b

]
[a, a] ∗

[
b, b

]
=

[
min(ab, ab, ab, ab),max(ab, ab, ab, ab)

]
[a, a] /

[
b, b

]
= [a, a] ∗

[
1
b
, 1

b

]
if 0 /∈

[
b, b

]
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3.5 Modal Intervals

Modal Interval Analysis (MIA) [35] is a logical completion of classic interval analysis
that includes tools for solving quantified uncertainty. To accomplish that objective, the
classic interval is associated with a quantifier (∀,∃).

A modal interval is defined as a pair (I, Q) where “I” is a classic interval and “Q” is a
modal quantifier, either universal (∀) or existential (∃). The set of the modal intervals is
represented by I∗(R). If the modal interval is associated with an existential quantifier it
is called “proper” interval. In the case where the interval is associated with a universal
quantifier, it is called “improper”. The canonical representation of a modal interval is:

• Proper interval: X = [a, b] = ([a, b]′,∃) if a ≤ b

• Improper interval: X = [a, b] = ([b, a]′,∀) if a ≥ b

• Point-wise interval: X = [a, b] = ([a, b]′, {∃,∀}) if a = b

in which the quotation mark in [a, b]′ indicates a classic interval.
A point-wise interval can have universal or existential quantifier, that is, the interval

can be considered as proper or improper.
The process of construction of modal intervals is completed with the concept of modal

quantifier Q defined by:

Q (x,X) P (x) :⇔
{

(∃x ∈ X ′)P (x) if X = (X ′,∃)
(∀x ∈ X ′)P (x) if X = (X ′,∀)

which defines the set of real predicates accepted by a modal interval A = (A′, QA):

Pred((A′, QA)) := {P (.) ∈ Pred(R) | Q(x, (A′, QA)) P (x)}.

This definition of the modal quantifier Q compels a change to the classical notation
for the quantifiers. Hereafter,

∃(x,X ′) will be used instead of (∃x ∈ X ′)

∀(x,X ′) will be used instead of (∀x ∈ X ′)

Through the identification of a modal interval with the set of those real predicates
which it accepts: X ↔ P (X) arises the inclusion of two intervals as the inclusion of the
set of predicates that they accept, that is to say, if X, Y ∈ I∗(R)

X ⊆ Y :⇔ Pred(X) ⊆ Pred(Y )

Using their canonical coordinates X = [x1, x2] and Y = [y1, y2], this inclusion main-
tains the traditional modus operandi ; that is to say,
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[x1, x2] ⊆ [y1, y2] ⇔ (x1 ≥ y1, x2 ≤ y2) .

Figure 3.2 shows the geometrical representations of modal intervals and the inclusion
relation.

Figure 3.2: a) Geometrical representation of modal intervals. b) Inclusions and inequal-
ities.

The lattice operations “meet” and “join” on I∗(R) for a bounded family of modal
intervals A(I) := {A(i) = [a1(i), a2(i)] ∈ I∗(R) | i ∈ I} (I is the index’s domain) are
defined by

∧(i, I) A(i) = A ∈ I∗(R) is such that ∀(i, I) X ⊆ A(i) ⇔ X ⊆ A,

∨(i, I) A(i) = B ∈ I∗(R) is such that ∀(i, I) X ⊇ A(i) ⇔ X ⊇ B,

annotated (A∧B) and (A∨B) for the corresponding two-operands’ case. The result,
as function of the interval bounds, is

∧
i∈I

A(i) = [max
i∈I

a1(i),min
i∈I

a2(i)]∨
i∈I

A(i) = [min
i∈I

a1(i),max
i∈I

a2(i)]

With these operations the set of modal intervals is a reticle for this ⊆-relation, while
the classic intervals are not, therefore, modal intervals are a reticular completion of the
set of classic intervals. Both operators are isotonic, i.e., if Ai ⊆ Bi for every i ∈ I, then∧

i∈I

Ai ⊆
∧
i∈I

Bi and
∨
i∈I

Ai ⊆
∨
i∈I

Bi

In the set of the real numbers there are two relationships: ≤ and ≥ and the extension
of these relationships to intervals is defined by
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[x1, x2] ≤ [y1, y2] :⇔ (x1 ≤ y1, x2 ≤ y2) .

which leads to the lattice operators “min” and “max”: for a bounded family of modal
intervals A(I) := {A(i) ∈ I∗(R) | i ∈ I}

min
i∈I

A(i) = A ∈ I∗(R) is such that ∀(i, I) X ≤ A(i) ⇔ X ≤ A;

max
i∈I

A(i) = B ∈ I∗(R) is such that ∀(i, I) X ≥ A(i) ⇔ X ≥ B.

and computationally

min
i∈I

A(i) = [min
i∈I

a1(i),min
i∈I

a2(i)]

max
i∈I

A(i) = [max
i∈I

a1(i),max
i∈I

a2(i)].

The set of the modal intervals is also a reticle for this ≤-relation. Figure 3.3 shows
geometrical representations of the meet, join, min and max operators for two intervals.

Figure 3.3: Meet, join, max and min lattice operators

3.5.1 Semantic extensions

In the classic set-theoretical interval analysis, one extension of a Rn to R continuous
function z = f(x1, ..., xn) is the interval united extension Rf of f . For the interval
argument X ′ = (X ′

1, ..., X
′
n) ∈ I(Rn) it is defined as the range of f -values on X ′

Rf (X ′
1, . . . , X

′
n) := {f(x1, . . . , xn) | x1 ∈ X ′

1, . . . , xn ∈ X ′
n}

= [min{f(x1, . . . , xn) | x1 ∈ X ′
1, . . . , xn ∈ X ′

n},
max{f(x1, . . . , xn) | x1 ∈ X ′

1, . . . , xn ∈ X ′
n}]

To obtain the estimates for the united extension, the set-theoretical interval rational
extensions fR(X ′

1, . . . , X
′
n) are defined like their corresponding real-rational functions

f(x1, . . . , xn) replacing
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1) their numerical arguments x1, . . . , xn by the interval arguments X ′
1, . . . , X

′
n and

2) their “real” arithmetic operators ω by their corresponding interval operations
which, in the common case of the truncated computations of any actual arith-
metic, must be the outwards directed ωR because of the inclusion

X ′ωY ′ ⊆ X ′ωRY ′ := Out(X ′ωY ′).

where Out represents the outer rounding of the interval X ′ωY ′

Rational interval functions have the property, fundamental to the whole body of In-
terval Analysis, of being “inclusive”, that is, for X ′

1 ⊆ Y ′
1 , . . . , X

′
n ⊆ Y ′

n the relation

fR(X ′
1, . . . , X

′
n) ⊆ fR(Y ′

1 , . . . , Y
′
n)

holds, assuming that no division by intervals, which contains zero, occurs.
The relation between both extensions is

Rf (X ′
1, . . . , X

′
n) ⊆ fR(X ′

1, . . . , X
′
n),

where fR(X ′
1, . . . , X

′
n), is computable from the bounds of the intervals X ′

1, . . . , X
′
n, and

usually represents an overestimation of Rf (X ′
1, . . . , X

′
n).

In Modal Interval Analysis, the similar role to Rf is played by the semantic ∗ and
∗∗-functions, denoted by f∗ and f∗∗ (star and double-star functions), and defined by

f∗(X) :=
∨

xp∈X′
p

∧
xi∈X′

i

[f(xp, xi), f(xp, xi)] =

= [ min
xp∈X′

p

max
xi∈X′

i

f(xp, xi), max
xp∈X′

p

min
xi∈X′

i

f(xp, xi)]

and

f∗∗(X) :=
∧

xi∈X′
i

∨
xp∈X′

p

[f(xp, xi), f(xp, xi)] =

= [max
xi∈X′

i

min
xp∈X′

p

f(xp, xi), min
xi∈X′

i

max
xp∈X′

p

f(xp, xi)]

which have the property of inclusion f∗(X) ⊆ f∗∗(X). Also, X ⊆ Y ⇒ (f∗(X) ⊆
f∗(Y ), f∗∗(X) ⊆ f∗∗(Y )).

In some cases, it may occur that f∗ = f∗∗. Classic examples are the arithmetic
operators, which according to the previous definitions, can be calculated by means of
operations between the bounds of the intervals [86].

The following semantic theorem, give logical interpretation to the semantic extensions.
∗-semantic theorem: Let X ∈ I∗ (Rn) and Z ∈ I∗ (R), then

f∗(X) ⊆ Z ⇔ ∀(xp, X
′
p) Q(z, Z) ∃(xi, X

′
i) z = f(xp, xi)
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∗∗-semantic theorem: Let be X ∈ I∗ (Rn) and Z ∈ I∗ (R), then

f∗∗(X) ⊇ Z ⇔ ∀(xi, X
′
i) Q(z, Dual(Z)) ∃(xp, X

′
p) z = f(xp, xi)

This means that it is possible to reduce a logical expression into interval inclusions.
Both semantic theorems make equivalent a logical formula, with intervals and functional
predicates where the universal quantifiers precede the existential ones, to an interval
inclusion.

For example, for the real function f(x, y) = x + y, having X = [1, 3] and Y = [3, 2],
the result is [1, 3] + [3, 2] = [4, 5]. According to ∗-semantic theorem we obtain:

∀(x, [1, 3]′)∃(z, [4, 5]′)∃(y, [2, 3]′)x + y = z

and according to ∗∗-semantic theorem we obtain:

∀(y, [2, 3]′)∀(z, [4, 5]′)∃(x, [1, 3]′)x + y = z

.
Even though functions f∗ and f∗∗ are optimal in the semantic sense, these theorems

do not explicit the process of computation of the interval Z which fulfills f∗ ⊆ Z or
f∗∗ ⊇ Z, i.e., intervals which are an outer estimate of f∗ and an inner estimate of
f∗∗. In fact, excepting the arithmetic operators, in general the calculation of f∗ and
f∗∗ can not be reached for any direct computation. If the continuous function f is a
rational function, there exist modal rational extensions which are obtained by using the
computing program defined by the syntax tree of the expression of the function: if f is
a Rn to R rational function, its rational extension to the modal intervals X1, . . . , Xn,
represented by fR(X1, . . . , Xn), is the function fR from I∗(Rn) to I∗(R) defined by the
computational program indicated by the syntax of f when the real operators, supposed
JM-commutable functions, are transformed into their semantic extensions. Modal ra-
tional interval functions are not interpretable but they also have the property of being
isotonic, i.e., for X1 ⊆ Y1, . . . , Xn ⊆ Yn the relation

fR(X1, . . . , Xn) ⊆ fR(Y1, . . . , Yn)

holds assuming, that no division by intervals containing zero does occur.

3.5.2 Interpretability and optimality.

The solution to the problem of computing the semantic extensions f∗ and f∗∗ consists in
relating them by means of inclusion relations to some rational extensions. Computations
with fR(X) must be done with external truncation of each operator to obtain inclusions
f∗(X) ⊆ fR(X), and with inner truncation to obtain inclusions fR(X) ⊆ f∗∗(X). In
many cases the rational extension fR(X) is optimal, i.e.,

f∗(X) = fR(X) = f∗∗(X),

47



CHAPTER 3. INTERVAL ANALYSIS

and, except rounding, both semantic theorems are applicable to the computed interval
fR(X) providing a logical meaning to it.

MIA provides a collection of results about inclusions or equalities which solve part of
the double problem of interpretability of modal rational extensions and computability of
semantic extensions. Important results about the interpretability of rational extensions
are the following theorems:

Theorem 1. *-interpretability of modal rational functions: If the improper
components of X are uni-incident in fR(X), and if Out(fR(Prop(X))) does exist, then

Out(fR(X)) ⊇ f∗(X),

where Out represents the outer rounding of the interval fR(X).

Theorem 2. **-interpretability of modal rational functions: If the proper
components of X are uni-incident in fR(X), and if Out(fR(Prop(X))) does exist, then

Inn(fR(X)) ⊆ f∗∗(X),

where Inn represents the inner rounding of the interval fR(X).
A real function f is called x-totally monotonous for a multi-incident variable x ∈ R if

it is uniformly monotonous for this variable and for each one of its incidences, considered
as independent variables.

Theorem 3. *-interpretability with total monotony: Let X be an interval
vector, and fR defined in the domain Prop(X) and totally monotonous for a subset
Z of multi-incident components. Let XDt∗ be the enlarged vector of X, so that each
incidence of every multi-incident component of the subset with total monotonicity is
included in XDt∗ as an independent component, but transformed into its dual if the
corresponding incidence-point has a monotony-sense contrary to the global one of the
corresponding Z-component; for the rest, the multi-incident improper components are
transformed into point-wise intervals defined for any of their points. Then

f∗(X) ⊆ fR(XDt∗).

Theorem 4. **-interpretability with total monotony: Let X be an interval
vector, and let fR be defined on the domain Prop(X) and totally monotonous for a
subset Z of its multi-incident components. Let XDt∗∗ be the enlarged vector of X, such
that each incidence of every multi-incident component of the subset with total mono-
tonicity is included in XDt∗∗ as an independent component. It should be transformed
into its dual if the corresponding incidence-point has a monotony-sense contrary to the
global one of the corresponding Z-component; for the rest, the multi-incident proper
components are transformed into point-wise intervals defined for any of their points.
Then,

fR(XDt∗∗) ⊆ f∗∗(X).
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Theorem 5. Interpretability in multi-incidence case (general case): if fR(X)
has improper multi-incident components and Xt∗ is obtained replacing those components
by point-wise intervals defined by any of the points of their domains, then,

f∗(X) ⊆ fR(Xt∗).

This theorem is useful when it is not possible to perform monotonicity tests.
It is possible to obtain better results if the concept of tree-optimality is applied. A

modal rational function fR(X) is tree-optimal if, in its syntax tree, any of its non-
uniformly monotonous operators is follow downwards only by one variable operators.

Theorem 6. Coercion to optimality: Let X, fR and XD be defined under the
conditions of previous theorems 3 and 4, and let fR be tree-optimal on the domain
Prop(X). In this case,

f∗(X) = fR(XD) = f∗∗(X).

This theorem is very useful for solving the problem especially in the case when the
function involved in the logical formula verifies the optimality conditions because, in
this case, the rational computation fR(XD) is equal to f∗(X), except rounding, and
the *-semantic theorem makes it equivalent to the logical formula.

Example: Let us consider the continuous function f from R2 to R defined by f(x, y) =
xy

x+y with X = [2, 3] and Y = [4, 3].

The function f is totally monotonous respect to x and y, because ∂f
∂x and ∂f

∂y are
bigger than zero for the domain of the variables. Taking the multi-incident components
as independent components:

f(x1, y1, x2, y2) =
x1y1

x2 + y2
,

the partial derivatives are ∂f
∂x1

> 0, ∂f
∂x2

< 0, ∂f
∂y1

> 0 and ∂f
∂y2

> 0 for the domain
of the variables.

With these conditions, we will show the application of three theorems:

1. According to Theorem 5, the improper multi-incident components are replaced by
point-wise intervals, Xt∗ = ([2, 3], [4, 4], [2, 3], [4, 4]). The result is

fR(Xt∗) =
X [4, 4]

X + [4, 4]
= [1.1428, 2].

2. According to Theorem 3, taking into account the monotonicity of the function
presented in the last paragraph, XDt∗ = ([2, 3], [4, 4], [3, 2], [4, 4]). In this case,

fR(XDt∗) =
X [4, 4]

Dual(X) + [4, 4]
= [1.3333, 1.7144].
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3. According to Theorem 6, and taking into account the monotonicity of the function
presented in the last paragraph, XD = ([2, 3], [4, 3], [3, 2], [3, 4]). The result is

f∗(X) = fR(XD) =
XY

Dual(X) + Dual(Y )
= [1.3333, 1.5].

The best approximation is obtained with fR(XD), which is the theorem that better
fits the monotonicity conditions of the function. The worst approximation is obtained
for fR(Xt∗). In this example, f∗(X) = fR(XD) ⊆ fR(XDt∗) ⊆ fR(Xt∗).

3.6 Conclusions

In this chapter, the different properties and operations of Interval Analysis were intro-
duced. As it was explained, the Interval Arithmetic can be applied in many areas of
research to control rounding problems, and Computer Graphics is not an exception.

There is also an overview of Modal Interval Analysis, which completes the definition of
the Classical Interval Analysis by means of the application of Quantifiers to the definition
of Intervals. The Modal Interval theory gives meaning to the improper intervals; in
classical intervals, an improper interval has no meaning, and in the most of the cases
such intervals are converted to proper intervals without any logical explanation. Modal
Interval Analysis gives an explanation for such cases by means of application of the
different theorems included in this chapter. These theorems set the basis bricks to hold
the theory developed and to improve the ray tracing of implicit surfaces (chapter four).
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4
Applications of Interval Analysis to Implicit

Surfaces - State of the Art

4.1 Introduction

As was explained in the previous chapter, Interval Analysis is a reliable tool that deals
with rounding problems on computers. It has been used to solve problems in areas like
structural assessment [34] and control [99]. There are also many researchers in the area
of computer graphics working in different applications of Interval analysis like in the
design of geometric models [1], in collision detection [87], to carry a description of an
approximation error in the transfer of data between CAD/CAM systems [82], the ray
tracing of parametric surfaces [4, 97] and in the ray tracing of implicit surfaces [65].

Interval Analysis has been used mainly in computer graphics for the creation of reliable
subdivision algorithms. Those algorithms can evaluate areas or space to detect the
“existence” of surfaces or curves. This allows the creation of structures like octrees or
quadtrees in a reliable way. Moreover, the majority of these applications are devoted to
implicit surfaces.

This chapter starts with an introduction of different interval subdivision algorithms
used in computer graphics. The second section presents a survey of the different tech-
niques applied to perform Reliable Ray Tracing, stressing on Interval Arithmetic (The
improvement of those techniques is the main subject of this thesis). The last section also
includes a comparison between the Interval approaches applied to find the roots during
the intersection tests to know the efficiency in each case.

4.2 Recursive subdivision algorithms

There are many techniques to represent geometric objects, like polygonal representations,
space subdivision techniques, bicubic parametric patches and constructive solid geometry
[100]. The visualization process using interval analysis involves characteristics of more
than one of those techniques, although the most used approach is the space subdivision.
This is used to represent the object geometrically, and then apply any rendering strategy
like z-buffer or ray tracing.

Space subdivision methods (like octrees) are intended to subdivide the space enclosing
the object. In the octree method, if a cubic region is enclosing an object, and we cut
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down every face of the cube trough the middle, we will obtain eight new cubes. Each
new cube (also called octant) must be evaluated to confirm if it contains any part of
the object. This subdivision process continues until a small size of the octants or a
predefined subdivision level is achieved. This process creates an octree structure with
the spatial information of the object that can be used to create a direct visualization, or
to accelerate other visualization techniques.

4.2.1 Space Subdivision using Interval Arithmetic

This technique can be applied either in the object space or in the viewing volume [93].
The subdivision algorithm performs recursive subdivisions in the object space to generate
eight boxes called octants. An octant consists in a cubic region defined by three intervals,
each one representing values for the bounds of the octant for every dimension (x,y,z).
The octants that do not contain any point of the surface are discarded.

This process allows the generation of structures that describe the object geometrically.
The creation of structures like octrees is straightforward. An octree is a structure that
represents the occupancy of many objects in a three-dimensional scene (see figure 4.1).
The two dimensional version of this structure is called quadtree. An octree is a tree in
which the nodes represent regions and its leaves are smaller regions that contain part of
the objects.

Figure 4.1: The recursive subdivision of the space into octants (left) is described by
means of an octree (right).

Bloomenthal [13] used octrees to approximate and implicit surface with a polygonal
representation. Stolte et al. [93] created an octree structure to store the voxels generated
by the subdivision algorithm. In that work, every voxel contains the information about
color and a normal vector, which facilitates the process of rendering.

It is possible to use this algorithm to represent operations between many implicit
functions. Suffern et al. [94] introduced a technique to render the intersection of two
implicit surfaces based on an octree. They used interval arithmetic to discard regions
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that do not contain one of both surfaces. If the region contains both surfaces it is
further subdivided and the same analysis is made in the new two regions. In [54] a
similar process is applied using parametric functions.

The octants that contain any part of the surface must be subdivided into another
eight parts that have to be evaluated to know if they contain part of the solution set.
These verifications are accomplished by means of an inclusion function using interval
arithmetic.

Given an implicit surface defined by f(x, y, z) = 0, and a cubic region or box defined
by three interval values X, Y , Z, to know if the surface intersects the box, the united
extension (section 3.5.1) of f to the box (X,Y ,Z),

F (X, Y, Z)

is used. The algorithm works as follows: if 0 ∈ F (X, Y, Z), the region may include part
of the surface. Otherwise, the region can be definitively discarded.

The regions of space that contain part of the surface must be subdivided recursively
and computed again until a determined size is achieved, which has to be selected ac-
cording to the level or resolution required. At the end of the algorithm, a list of boxes
that contain part of the surface are obtained, but part of these boxes might contain
regions that are not solution of the problem. The subdivision algorithm using inclusion
functions is illustrated in the figure 4.2.

This algorithm has many weak points as was exposed by Bühler [17]. The most
relevant defect of this algorithm is related to the number of subdivisions required to
arrive at a high resolution, which results in an expensive computing time.

Although the process is useful when it is used for three dimensional cases, the same
principle can be applied for two dimensions [51, 70]. A 2D version of the algorithm can
be used to rasterize algebraic curves [96, 51, 70, 61].

4.2.2 Improving the subdivision process

There are many techniques to improve the subdivision process. The principal objective
of those techniques is to allow the design of fast and robust subdivision algorithms.

An adaptive version of the subdivision algorithm deals with the curvature of the
surface during subdivision processes. Balsys et al. [9] developed an adaptive algorithm
to improve the creation of an octree structure. This work solved the problem of cracks
that occurred for differences in depth between adjacent nodes. In [70, 94, 52], the
adaptive techniques are used to guarantee that subdivisions are small enough to contain
parts of a curve with high curvature. This is performed by evaluating the gradient of
the curve in every subdivision; a big gradient means that the curve changes so much
inside the region, hence small boxes to represent the curvature have to be generated [51].
Carvalho et al. [20] provided some conditions to stop the recursive subdivision process
only when the cells are small enough and do not contain closed loops.

Bühler [17] developed an Implicit Linear Interval Estimation (ILIE) which consists in
a linear enclosure of an object adapted to its topology. Every cell is reduced to parts
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containing only the corresponding ILIE, which reduces the number of subdivisions for
the entire process, decreasing thus the computational time.

Stander and Hart [89] showed how the critical points of a function affect the topology
of an implicit surface. They used interval arithmetic to find those points, and afterwards,
they modified the polygonization to accommodate the changes in the topology. Martin
et al. [64] presented the comparison of many interval methods to plot algebraic curves.
It is a very interesting work that compares the advantages and drawbacks of different
interval methods applied to create subdivision structures in 2D.

Duff [30] developed an Interval application of constructive solid geometry using a
tree in which the leaves are implicit functions. The algorithm takes into account the
information of the whole tree in every subdivision, obtaining a complete scene with
many objects correctly rendered in the same scene.

4.3 Reliable Ray Tracing of Implicit Surfaces

This section covers the improvements developed by many authors to perform a reliable
ray tracing of implicit surfaces. These works are focused in the creation of reliable

Evaluate(intervals X, Y, Z) {
If (0 ∈ F(X,Y,Z)) {

If (X or Y or Z ≤ threshold)
add (X,Y ,Z) to solution List

Else
subdivide X into X1 and X2

subdivide Y into Y1 and Y2

subdivide Z into Z1 and Z2

Evaluate(X1,Y1,Z1)
Evaluate(X1,Y1,Z2)
Evaluate(X1,Y2,Z1)
Evaluate(X1,Y2,Z2)
Evaluate(X2,Y1,Z1)
Evaluate(X2,Y1,Z2)
Evaluate(X2,Y2,Z1)
Evaluate(X2,Y2,Z2)

Endif
Else

// The octant is rejected
Endif

Figure 4.2: Interval algorithm for the evaluation of the space occupied by an implicit
surface.
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intersection test. The authors applied different numerical techniques to control the
loss of roots caused by the use of point sampling algorithms based in floating point
arithmetic on the computers. This kind of problem causes that some thin parts of the
surfaces disappear during the rendering process [18, 65]. Although those surfaces are
indeed special cases, it is desirable to obtain a complete and reliable ray tracer, in which
those problems will not appear during the visualization. Also, rounding problems cause
some defective frames during the generation of animations [57].

Another problem of ray tracing is related with the efficiency of the algorithms. Whitted
[101] reported that 95% of time is spent in the intersection tests for complex scenes. Ray
tracing is slow because it requires many intersection tests for every pixel in the screen.
This time is higher when implicit surfaces are rendered (because of the more expensive
intersection tests), an even higher when Interval Arithmetic is used to keep the reliability
in the intersection test.

4.3.1 Point Sampling Approach

The intersection test can be performed in two different steps: root finding, in which the
first interval containing a root is selected, and root refinement, in which the interval
having the root is reduced until a small size is achieved [12]. The key in the first step is
to guarantee that the interval contains only one root for the implicit function. This step
is usually more complicated and can be solved using fast methods, like classical bisection
(figure 4.3a). However, this method can cause problems (figure 4.3b), like convergence
to a wrong root or miss the roots.

Figure 4.3: (Top) Root finding using a classical bisection. (Bottom) The algorithm could
converge to another root or even miss the root.
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In chapter 1, the general equation for the intersection test between a ray and an
implicit surface was introduced (equation 2.9). Bisection is an algorithm that performs
a binary search in the parameter of the ray (t) looking for roots. This is the most classical
approach that can be applied in both root finding and root refinement (see figure 4.4).

Function Bisection([t1, t2])
tm = (t1 + t2)/2
If f(tm) = 0

tm is a root
Else

If (t2 − t1) < threshold
There are not roots

Endif
if f(t1) ∗ f(tm) < 0

Bisection(t1,tm)
Else

Bisection(tm,t2)
Endif

Endif

Figure 4.4: Bisection algorithm.

An alternative to Bisection is the Newton Method. In this method the refinement is
performed using the form: ti+1 = ti − f(ti)

f ′(ti)
. The advantage of Newton method is that

it converges quadratically, while Bisection converges linearly. However, Newton method
may converge to any of the roots or in some cases diverge as was explained by Hart [47].
Bisection does not diverge, but may converge to any of the roots.

An example of the problem with the use of any method based in point sampling is
presented in figure 4.5a&b. If the initial intervals are big (figure 4.5a) then many roots
are lost. Using a smaller size in the intervals, the problem is not totally solved as can
be seen in figure 4.5b. Moreover, small intervals mean that the algorithm lost efficiency
(it has to evaluate more intervals). The problem is solved using a reliable approach like
Interval Arithmetic (figure 4.5c&d). Even using a small precision in the bisection, the
result is better (figure 4.5c). The result is correct when the bisection arrives to machine
precision (figure 4.5d).

56



4.3. RELIABLE RAY TRACING OF IMPLICIT SURFACES

Figure 4.5: Images obtained with point sampling in root finding for a crosscap surface,
using an interval size of 0.001 in a) and 0.0001 in b). Images c) and d) are
obtained using Interval Arithmetic Bisection. In c) the subdivision arrives
to 0.0001; in d) the bisection arrives to machine precision.

4.3.2 Interval Arithmetic Approach

Mitchell [65] proposed the use of Interval Arithmetic to perform the root finding in a
reliable way. The united extension of the intersection function f is (see equation 2.9):

F (T ) = f(cx + T (xs − sx), cy + T (ys − sy), cz + T (zs − sz))
�� ��4.1

The values cx, cy and cz indicate the view point and the values xs ,ys and zs indicate the
point in which the ray crosses the screen, and T is an interval parameter. The difference
with the classical definition is in the use of the interval variable T , which takes interval
values instead of single real numbers.

Function 4.1 is known as “inclusion function” for the Implicit Surface. This function
can be evaluated using any interval value of T . If the result of the evaluation is 0 /∈ F (T ),
it is sure that there are no roots for the current value of T . However, this function can
not be used to perform the opposite test, that is, to know if for any value of T then a
root exist. This occurs because in every interval operation, the bounds of the interval are
rounded up and down to guarantee that any possible result is not missed. This rounding
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includes values that are not part of the evaluation of the function, for that reason, the
zero value could be included in one of the rounding operations. The inclusion function is
then used only to perform rejection test. To know if there is only one root in the interval,
then the united extension F ′ of the derivative f ′ is used. The algorithm proposed by
Mitchell is presented in figure 4.6. Mitchell’s algorithm starts performing the evaluation

Function Mitchell(T as [t1, t2])
If 0 ∈ F (T )

If 0 /∈ F ′([T ])
If f(t1) ∗ f(t2) ≤ 0

Root refinement over T
using Bisection or Newton method

Endif
else

T1=[t1, (t1 + t2)/2]
T2=[(t1 + t2)/2, t2]
If width(T1) ≥ threshold

Mitchell(T1)
Else

Root refinement over T1
using Bisection or Newton method

Endif
If width(T2) ≥ threshold

Mitchell(T2)
Else

Root refinement over T2
using Bisection or Newton method

Endif
Endif

Else
reject T

Endif

Figure 4.6: Mitchell’s algorithm for root finding.

of an interval T using the inclusion function. In the case that zero is contained in the
result, the derivative of the implicit function is evaluated using the interval value of T
(this derivative can be another inclusion function). If zero does not belong to the result
of the evaluation of the derivative, the signs of the evaluation of the implicit function in
the bounds of the interval T are checked to see if they are different. If the conditions
are satisfied, then it is sure that the interval T only contains one root, and can be used
in a root refinement process. If the result of the evaluation of the inclusion function and
also the derivative are both zero, the interval is bisected and the process must start over
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with the new intervals.
Another consideration is the width that the intervals can achieve before finishing

the root finding and start the root refinement. For example, when the roots are in
the tangent, the convergence will be always to these multiple roots. In that case, the
derivative is zero in all the cases, and the algorithm only finishes when the small value
allowed for an interval is achieved.

In the other cases, there is not mathematical guarantee that the small allowed interval
contains roots. To solve that, the threshold can be set as machine precision, in which
the probability of have roots is bigger [18].

Mitchell did not use rounding up and down in his interval operations (rounding is
described in section 3.2). He considered that the use of floating point arithmetic in
single precision was enough to render the surfaces he proposed. The reason Mitchell did
not use this feature of Interval Arithmetic is that it increases the computational time in
the rendering process.

Finally, this algorithm proposes to solve the root refinement using any classical point
sampling method, like bisection, Newton or another fast enough method to render the
surfaces. This is done because, according to Mitchell, Interval Arithmetic is slow to
perform this process.

4.3.3 Improving the Interval Arithmetic Approach

Reliable techniques can be used in all the operations involved in the intersection test.
If the root finding algorithm is performed using a classical interval bisection (the same
algorithm of the previous section without derivative verification), the efficiency of the
algorithm can decrease drastically.

Capriani et al. [18] show that there are interval algorithms for root finding, both
reliable and fast enough to render an implicit surface.

The Interval Newton method is a reliable approach, which is faster than a classical
interval bisection. Interval Newton method has often quadratical convergency [67], but
requires derivatives. The Interval Newton method for root finding is presented in figure
4.7.

Capriani et al. proposed an important improvement of the Interval Newton method
by means of an Alefeld-Hansen operator. The operator is obtained from the case when
0 ∈ F ′(T ). If T = [t1, t2] it is possible to define [44, 2]:

1
F ′(T )

=


[1/t2,∞] if t1 = 0
[−∞, 1/t1] if t2 = 0
[−∞, 1/t1] ∪ [t2,∞] otherwise

Using extended arithmetic [45], the operator is the following:

AH(T ) =
[
midpoint(T )− f(midpoint(T ))

F ′(T )

]
∩ T

�� ��4.2

The Alefeld-Hansen operator can be added to the Interval Newton method to test
the cases where 0 ∈ F ′(T ). As appointed in [18], the result for the evaluation of this
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operator can be an empty set, a single interval or two intervals (T1, T2), in which
width(T1) , width(T2) ≤ 1/2 width(T ). This means that the operator has quadratic
convergence in many cases. When the operator returns two intervals, both of them must
be used to evaluate the function recursively. This algorithm is presented in figure 4.8.

The previous algorithms require the use of the derivative of the function. This is
a disadvantage when non-derivable functions have to be rendered. In those cases, a
classical interval bisection is an alternative that works fine, although it is not efficient.

San Juan-Estrada et al. [78] proposed an algorithm to optimize the classical branch-
and-bound strategy which is based on the classical Interval bisection algorithm. Basi-
cally, they propose a set of conditions that must be achieved during the bisection process.
They stated that for an interval [t1, t2], and its midpoint tm, if F ([t1, t1]) ∗ F ([tm, tm]) ≤
0 then the interval [tm, t2] is rejected. This algorithm is called MRF .

Function Newton(T as [t1, t2])
If 0 ∈ F (T )

If 0 /∈ F ′([T ])
tm = t1 + (t1 + t2)/2
NT = tm− f(tm)

F ′(T )

If NT ∩ T is empty
There is no root

Else
Newton(NT ∩ T )

Endif
else

T1=[t1, (t1 + t2)/2]
T2=[(t1 + t2)/2, t2]
If width(T1) ≥ threshold

Newton(T1)
Else

T1 is the root
Endif
If width(T2) ≥ threshold

Newton(T2)
Else

T2 is the root
Endif

Endif
Else

reject T
Endif

Figure 4.7: Interval Newton method for root finding.
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Function Alefeld-Hansen(T as [t1, t2])
If 0 ∈ F (T )

If 0 /∈ F ′([T ])
tm = t1 + (t1 + t2)/2
NT = tm− f(tm)

F ′(T )

If NT ∩ T is empty
There is not root

else
Alefeld-Hansen(NT ∩ T )

Endif
Else if 0 /∈ f(tm)

AH(T ) = (tm− f(tm)
F ′(T ) ) ∩ T

If AH(T ) = ∅
There is no root

Else
If AH(T ) generates one interval T1

Alefeld-Hansen(T1)
Else if AH(T ) generates two intervals T1,T2

Alefeld-Hansen(T1)
Alefeld-Hansen(T2)

Endif
Endif

Else
T1=[t1, (t1 + t2)/2]
T2=[(t1 + t2)/2, t2]
If width(T1) ≥ threshold

Alefeld-Hansen(T1)
Else

T1 is the root
Endif
If width(T2) ≥ threshold

Alefeld-Hansen(T2)
Else

T2 is the root
Endif

Endif
Else

reject T
Endif

Figure 4.8: Interval Newton method with Alefeld-Hansen operator.
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In another algorithm called MRFro [78], they introduced some conditions to improve
the bisection test. This algorithm evaluates F [t1, t2] only when F ([t1, t1]) ∗ F ([t2, t2]) >

0, because F ([t1, t1]) ∗ F (t2, t2) ≤ 0 assures that 0 ∈ F ([t1, t2]), which is not true if
rounding is taken into account. Rounding can introduce values that can fulfill the
equation, but this is not true for the original values considered in the interval. However,
this assumption was enough for the surfaces rendered in the work presented by San
Juan-Estrada et al.

4.3.4 Comparison of different Interval approaches

As can be seen in the previous sections, there are many different Interval approaches to
guarantee the intersection tests in ray tracing implicit surfaces. This section covers a
comparison of the efficiency of the methods. The surfaces used in the test are presented
in figure 4.9. These surfaces were rendered by means of a ray casting method (only
primary rays) using one ray per pixel.

Figure 4.9: Surfaces used to compare the interval methods for ray tracing implicit sur-
faces. a) Sphere. b) Drop surface. c) Kusner-Shmitt. d) Crosscap. e) Chubs
surface. f) McMullen K3 Model. g) Horned Cube. h) Gumdrop Torus.

Five methods to find roots were tested: the algorithm proposed by Mitchell, the In-
terval Newton method, the Interval Newton method using the Alefeld-Hansen operator,
the MRFro algorithm and an algorithm that combines the conditions of MRFro al-
gorithm and the Interval Newton method. The images have a resolution of 300x300
pixels, and were rendered in a Pentium 4 computer. The results are presented in table
4.1. In the methods that require the use of derivatives to evaluate the intersection test
(Interval Newton method, and with Alefeld-Hansen operator), we use the derivative of
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the function in closed form to avoid possible precision errors.

Sphere Drop Chubs Crossc. Gumd. H. McMul. Kusn.-
Torus cube K3 Schm.

Mitchell 20 36 98 80 240 99 102 75
Newton 28 47 94 96 260 180 123 94
N.+Al.-Han. 27 46 92 99 202 166 110 86
MRFro 48 103 188 105 541 272 276 210
MRFro+Newt. 55 96 174 151 380 283 221 173

Table 4.1: Comparison of different Interval methods for the intersection test: 1. Mitchell
algorithm, 2. Newton method, 3. Newton + Alefeld-Hansen, MRFro and
MRFro + Newton method (time in seconds).

The time results are better for the sphere, and the worst times are for the Gumdrop
torus for all the tested methods. The algorithm proposed by Mitchell is faster for a
naive surface like the sphere, but when the complexity is high, the Newton+Alefeld-
Hansen method achieve a better time. Also the Newton method is faster, but not as
fast as the Newton + Alefeld-Hansen one. This means that the extra check performed
in the Alefeld-Hansen operator is compensated with the better convergence obtained for
complex surfaces. In the case of naive surfaces, it is better to apply a naive method (like
Mitchell’s one).

The MRFro algorithm is the slower in all the cases. This occurs because this method
does not use extra information of the surface, like the derivative. When extra information
is added to MRFro (like a Newton subdivision), the method improves the efficiency for
complex surfaces like Gumdrop torus but not for naive ones like the sphere.

Figure 4.10 shows graphically the results. The surfaces were ordered intentionally
from the less computationally expensive to the more expensive ones. This indicates a
kind of complexity that increases from left to right. Also, a high time indicates less
efficiency and viceversa. In this case it is possible to say that the figure represents a
complexity vs. efficiency test, in which a point in the top-left of the graphic indicates less
complexity of the implicit function and high efficiency of the method, and a bottom-right
point indicates high complexity of the function and low efficiency in the method.

The Mitchell, Newton and Alefeld-Hansen methods have an efficiency with almost
linear behavior when the complexity grows. The MRFro and MRFro-Newton algorithms
tend to lose efficiency when the complexity is increasing. Also, the behavior in all the
methods based in the derivative of the ray parameter (Mitchell, Newton,Newton+Alefeld-
Hansen) is similar. It is remarkable that Alefeld-Hansen, and also Newton operators are
as fast as the reliable version of Mitchell’s algorithm which use intervals only for root
finding. This means that it is possible to use interval operations in all the process (root
finding and root refinement) without losing efficiency. Also, we have not found any vi-
sual difference in the different approaches for the tested models. This indicates that all
the methods converge to the same first root during intersection test. Note that, as we
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will see in next chapter, this first root is not always correct.

Figure 4.10: Results for the comparison of the Interval methods to ray tracing implicit
surfaces for the different tested surfaces. Differences in quality are not
noticeable for using the different methods.

4.3.5 Other reliable approaches

Lipschitz Constants based methods

Given an implicit function h(t), if there exists a constant L such that for any values t1,
t2 accomplish ([15]):

|h(t1)− h(t2)| < L|(t1 − t2)|

then L satisfies the Lipschitz condition and it is known as Lipschitz constant. If t1
becomes too similar to t2, then

|h(t1)− h(t2)|
|(t1 − t2)|

< L

represents the derivative of the function, in which L measures the rate of change of the
function between t1 and t2.

The L-G surfaces method [57] is based in the Lipschitz constants to develop a reliable
intersection test in the ray tracing of implicit surfaces. The method works using two
steps (using Lipschitz constant L in the first step and G in the second one, hence the
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name of the method). First, an octree structure is created for the implicit function f(x),
where x ∈ R3, for which the Lipschitz constant L exists:

‖f(x1)− f(x2)‖ = L‖(x1 − x2)‖
�� ��4.3

The rate change of the function can be used to know which boxes contain part of the
surface. Let x0 be the center of a box, and d be the distance from the center to any
vertex, if |f(x0)| > Ld then the box can be discarded. Otherwise, the box is subdivided
in eight parts. Some boxes can be accepted or rejected checking the vertices (if some
vertices are inside and some are outside then the box contains part of the surface) but
some case are conflictive as is shown in figure 4.11.

Figure 4.11: Spheres with center xa and xb do not intersect the surfaces because
f(xa)/La < R and f(xb)/Lb < R. Sphere with center xc may intersect
the surface because f(xc)/Lc > R

In a second step, the surface is ray traced using the structure created in the first step.
A Lipschitz constant G that fulfills:

‖g(t1)− g(t2)‖ = G‖(t1 − t2)‖
�� ��4.4

is used to know the rate of change of the function g(t), which is the function used in the
intersection test to find the roots for the parameter of the ray.

Let t1 and t2 be the entry and exit points of a ray in a voxel, tm = (t1 + t2)/2 and
d = (t2 − t1)/2. If |g(tm)| > Gd then there is only one root between t1 and t2. The
algorithm for the intersection test is presented in figure 4.12 ([15]).

Another method based in Lipschitz constants is Sphere Tracing [48]. This method
is similar to L-G Surfaces, but uses Lipschitz bounds instead of Lipschitz constants.
A Lipschitz bound is any constant that satisfies the function, not always the smallest
one. In this method, a Lipschitz bound for a function giving the distance to a surface,
must be found. The Lipschitz bound for an implicit function f(x) must fulfill: |f(x)| <
L ∗ d(x, f−1(0)), in which d(x, f−1(0)) is the signed distance bound.
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Affine Arithmetic

De Cusatis et al. [27] introduced the use of affine arithmetic to ray casting implicit
surfaces. Interval Arithmetic can generate overestimation in some interval operations,
because boxes are considered in the evaluations of interval variables. Affine arithmetic
is proposed to control the overestimation, because the approximation is performed over
a parallelogram (figure 4.13). Affine arithmetic converges quadratically while interval
bisection using Interval Arithmetic converges linearly.

In Affine Arithmetic, a quantity x is defined by the affine form:

x̂ = x0 + x1ε1 + . . . + xnεn

which is a polynomial of degree 1. The noise symbols εi are unknown but lies between
-1 and 1. The same noise symbol may contribute in the uncertainty of two or more
quantities. This indicates some partial dependency between the underlying quantities.

The algorithm to use Affine Arithmetic is basically the same than a classical bisection
using Interval Arithmetic. The difference is the use of an affine Arithmetic Library
instead of an interval one, in the calculation of united extensions. As happens with
Interval Arithmetic, the basic arithmetic operations and functions can be extended to
handle affine forms [90].

However, the improvements reported in the use of Affine Arithmetic in the ray casting
of implicit surfaces [27] were against the basic algorithm proposed by Mitchell, but not
against a faster method like Interval Newton method. Also, it has been proved that
Affine Arithmetic is a special case of the centered form of Interval Arithmetic [36].

Intersection Lipschitz(t1,t2)
Compute G for t1, t2
tm = (t1 + t2)/2
d = (t2− tm)/2
If |g(tm)| > Gd

If F (t1) ∗ F (t2) < 0
Compute using Newton method

Else
There is not intersection

Endif
else

Intersection Lipschitz(t1,tm)
Intersection Lipschitz(tm,t2)

Endif

Figure 4.12: Intersection test using Lipschitz constants.
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Figure 4.13: Approximation of a function in an interval [a,b]. a) Using Interval Arith-
metic. b) Using Affine Arithmetic.

4.4 Conclusions

In this chapter, the different applications of Interval Arithmetic in the creation of sub-
division structures and also in the creation of reliable intersection tests for ray tracing
implicit surfaces were introduced. Interval Arithmetic provides an easy way to test the
three axis of a box to know if it intersects the surface. This technique can be improved
by means of an study of the surface to perform more subdivisions in critical section of
it, like loops or parts with high curvature.

Moreover, different techniques to perform reliable intersection tests between rays and
implicit surfaces were introduced. The majority of methods for reliable intersection
test are intended to work with Interval Arithmetic, which replaces the operations over
real numbers using interval operations. There are different approaches, for example,
the based in the derivatives (like Newton methods) and also others that create some
conditions to improve the bisection process. Although the use of derivatives improves
the efficiency, a derivative can not be easily obtained for all kinds of implicit surfaces.
A comparison was presented to know the behavior of different methods against a set of
varying complexity surfaces.

There are other reliable techniques that do not use Interval Arithmetic. One of them
is Affine Arithmetic, which is similar to Interval Arithmetic but implements some affine
operations. A different approach is the use of Lipschitz constants, which are reliable
enough to perform ray tracing of implicit surfaces. However, the main disadvantage
of Lipschitz techniques is that they require the calculation of the Lipschitz constants
for every surface to be considered. This loss of generality makes these methods less
attractive when general ray tracers are required.
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5
Beam tracing implicit surfaces

5.1 Introduction

In the previous chapter, different Interval approaches to create reliable intersection tests
in the ray tracing of implicit surfaces were presented. When point sampling is used,
some surfaces are not well rendered, that is, some parts of the surfaces do not appear in
the final image. Ray tracing algorithms which work with Interval Arithmetic solve those
problems, but unfortunately, they are not efficient, specially when they are compared
with non-reliable algorithms based in floating point arithmetic.

According to Arvo and Kirk [41], ray tracing can be accelerated by: 1) the reduction
of the average cost of the intersection test, or 2) the reduction of the total number of rays
intersected, or 3) by replacing individual rays with groups of rays. Because the nature
of Interval Arithmetic is to evaluate “intervals” which contain “set of values”, the third
kind of acceleration approach could be applied directly using the interval arithmetic.
Here, the concept of ray coherence can be considered, that is, similar rays are likely to
intersect the same objects in the scene.

This chapter shows a new method to exploit the coherence of rays to accelerate the
process of ray tracing implicit surfaces. Interval theory can be adapted to study the
behavior of many rays simultaneously, which means that areas of the image space can
be studied to know the coherency of objects “seen through it”.

Coherency is obtained by means of two algorithms called rejection test and inclusion
test. They permit the identification of sets of rays in which either all the rays intersect
the surface, or all the rays miss the surface. The results of these tests are used to create a
new subdivision structure that improves the ray tracing process. Modal Interval theory
(summarized in chapter 3) gives the set of theorems that support the algorithms used
in this chapter.

The rejection and inclusion test are also used to create an efficient anti aliasing algo-
rithm for ray tracing. This algorithm allows the creation of images with better quality
than images obtained with classical interval techniques using less computational time.

5.2 Types of Coherence

There are many types of coherence [95], four of which are applied in ray tracing algo-
rithms: object coherence, image coherence, frame coherence and ray coherence.
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Object coherence occurs because objects in space tend to be connected or to be in
close positions in space. All the techniques that subdivide the space of the objects take
advantage of this type of coherence.

The subdivision methods have two different approaches: subdivision by objects, and
subdivision by space [62]. In the first type, the scene is subdivided taking into account the
position of the nearby objects, creating bounding volume hierarchies. In the second type
of subdivision, the scene is subdivided in cells. Every cell is tested to know which objects
cross it, and the intersection test is performed only in these objects. The subdivision
can be either performed in cells with the same size or can be adapted according with
the distribution of the objects in space.

The image coherence is based in the same concept of Object coherence, but taking
into account that the coherence in this case is studied in the 2D image plane. That is,
the same coherence of the 3D objects can be projected in the 2D plane.

The frame coherence is the image coherence with a temporal dimension. This means
that during animation, successive frames tend to be similar in small changes of time.
This requires not chaotic changes in eye and light positions [41].

Ray coherence occurs when similar rays have similar behavior. Rays starting in similar
points and having similar directions tend to intersect the same objects. In this case, it
should be more efficient to process groups of rays instead of individual rays. However,
this is not always the case, due to the cost of calculating the intersection between groups
of rays and objects is higher than the use of individual rays [62]. One of the most
characteristics works using this type of coherence was performed by Speer et al. [88]. In
this work, the ray tree generated for the first-generation ray is used in the construction
of the secondary ray trees.

5.3 Generalized Rays

This section covers the different techniques used to take advantage of ray coherence.
This kind of coherence is hard to exploit [41], although there are some algorithms that
use it successfully. The idea is that similar rays can intersect the same objects, being
possible to deal with many rays simultaneously (see figure 5.1).

These techniques are based in the generation of 3D structures that keep the informa-
tion about the set of rays. Using those structures it is possible to trace the set of rays
simultaneously. However, those techniques require some restrictions, for example, in the
type of object to use [62] or in the use of different concepts to approximate the exact
intersection test [41].

There are three main approaches: cone tracing [3], pencil tracing [83] and beam tracing
[50].

In cone tracing, the generalized rays are represented by a cone conformed by an apex,
a center line and a spread angle. To calculate reflections and refractions, the new center
line is calculated using a standard ray tracing technique. The new virtual origin and
angle is calculated taking into account the surface curvature. This technique treats the
aliasing problems by means of the calculation of the part of the cone blocked by the
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objects. However, due to the complexity in the calculation of intersections and parts of
the cone that are covered by the objects, the method only deals with spheres, planes
and polygons. This method also facilitates some light effects like the representation of
penumbrae.

Another proposal is pencil tracing. In this case, the rays nearby to a special ray (called
the axial ray) are grouped. These rays (called paraxial rays) are represented by a 4D
matrix which represents the deviations in position and direction from the axial ray. This
matrix system can be combined with the matrices for every surface in the environment
to represent the propagation of the rays. The disadvantage of this method is that the
surfaces have to be smooth, because the system can not deal with discontinuities. In
those cases, the method requires of individual rays instead on pencils.

Finally, the beam tracing replaces individual rays with beams which consist in a set
of rays with a common apex crossing planar polygons. This means that this method is
restricted to objects with planar polygonal facets. When a beam intersects an object, a
new beam with a new polygonal section is generated (see figure 5.2). The remainder of
the beam can be complex forms that require a method that can operate with arbitrary
polygons.

The reflected beams have a new virtual eye which is calculated using a linear trans-
formation (see figure 5.3). This preserves the nature of the reflections as beams.

A beam tree to keep the information of reflected and refracted beams can be con-
structed in a similar way that standard ray tracing. In this case, a previous ordering of

Figure 5.1: Similar rays can intersect similar objects. However, there are some exceptions
as it happens with group 2. In this case, two rays have intersections while
one of them misses the object.

71



CHAPTER 5. BEAM TRACING IMPLICIT SURFACES

the objects is needed to assure that the operations were performed over the near objects.

Figure 5.2: A new complex polygonal section is created when a beam is occluded by an
object.

Figure 5.3: A new reflected ray is generated by means of the calculation of a new eye
position.
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5.4 Exploiting coherence for Implicit Surfaces

The current methods for ray coherence work very well for a small set of objects: in the
majority of cases, those methods require objects with polygonal faces to work.

The coherence over implicit surfaces is a different problem, in which, due to the
different types of surfaces, the only available information is the definition of the surface.
Although ray coherence is hard to achieve [41], using Interval Arithmetic the problem
can be solved using only the definition of the surface and the Interval theory to deal
with many rays simultaneously.

In this section a new beam definition for implicit surfaces is used to create an accel-
eration structure for ray tracing. Interval Analysis works with sets of numbers instead
of single ones, replacing the floating point arithmetic for an Interval Arithmetic, which
naturally replaces the operations over real numbers. This means that using an interval
library for the interval operations, and using the properties of intervals, it is possible to
deal with a set of rays simultaneously (see figure 5.4).

Figure 5.4: A beam intersecting a naive implicit surface.

5.4.1 Definition of the Beam

Using Interval Arithmetic it is possible to define a beam crossing many pixels inside a
unique structure. This is performed defining a beam which consists of a set of rays.
These rays are enclosed in a pyramid in which the apex is the eye position and the base
is an area in image space.

The objective is to use the beam to classify different regions in image space. Because
the coherence of 3D objects is preserved when those objects are projected over a 2D
plane, this method can use this coherence to create cells or boxes in the screen. The
information of the beam crossing the screen is saved in the box formed by the intersection
of the beam and the screen; these boxes will represent the direction of the beam.

Let us suppose that the screen is inside an horizontal plane at a distance zs from the
origin of coordinates. An interval (Xs, Ys) contained in the screen defines, together with
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the eye position, a beam. This interval (Xs, Ys) can be outside the projection of the
surface on the screen, it can be inside this projection or it can partially intersects it.
These three cases are equivalent to:

1. The beam misses the implicit surface completely.

2. The beam completely intersects the implicit surface.

3. The beam partially intersects the implicit surface.

The two first classes correspond to a specific semantic of Modal Interval Analysis
which are solved using Modal Interval theorems. The first case will be called rejection
test and the second one inclusion test (see figure 5.5). The last case occurs when the two
previous tests fail, and usually means that the beam has rays intersecting the surface,
but some rays do not have intersection.

Figure 5.5: Two cases of intersections between a beam and a surface. The first case
occurs when the beam misses the surface. The second case represents an
intersection among the surface and all the rays that compose the beam.

Once different areas or regions in the screen are obtained, different criteria can be
selected to ray trace these regions. It is obvious that rejected areas will not be ray traced,
but areas in which the beam completely intersects the surface can be ray traced using
less rays. Some examples will be introduced in further sections to show the advantage
of these strategies.
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For a simple ray the intersection test works to determine whether the equation 2.8 has
some solutions. From any interval point of view, this fact means

0 ∈ fR(xs, ys, T
′)

where T ′ is the interval of variation of the ray parameter t. The subdivision algorithms
need to arrive to machine precision because in that condition 0 ∈ F (X) is often achieved
[18].

For a beam, as xs, ys become intervals in the screen, the intersection test must be
split between a rejection test and an inclusion test. Modal Interval Analysis (introduced
in chapter 3) will give the tools to perform the evaluation of the two test presented in
this chapter, because the required semantics are not allowed by classic interval theory.
Although the rejection test can be achieved using the classical approach, it is presented
using modal interval semantics to keep the coherence in all the algorithms presented.

5.4.2 Rejection test

The objective of this test is to detect when a beam, crossing a region of the screen defined
by two intervals X and Y , completely misses an implicit surface. This is equivalent to
say that all the rays inside the beam miss the implicit surface. In this case, for all the
values of Xs, and for all the values of Ys, there are no roots for any value of the parameter
t ∈ T :

(∀xs ∈ Xs) (∀ys ∈ Ys) (∀t ∈ T ) f(cx + t(xs−cx), cy + t(ys−cy), cz + t(zs−cz)) 6= 0
�� ��5.1

which is equivalent to

¬((∃xs ∈ Xs) (∃ys ∈ Ys) (∃t ∈ T ) f(cx + t(xs − cx), cy + t(ys − cy), cz + t(zs − cz)) = 0).�� ��5.2
In accordance with the semantic theorems (see section 3.5.1), this logical formula is
equivalent to

[0, 0] * f∗∗(Xs, Ys, T ) = f∗(Xs, Ys, T )

with Xs, Ys and T proper intervals. From the theorem 1 of Section 3.5.2, for this relation
it is sufficient that

[0, 0] * Out(fR(Xs, Ys, T ))
�� ��5.3

where Out means the external rounding of the rational extension fR of the function f
to the proper intervals Xs, Ys and T . This indicates that it is enough to know if zero is
not contained in the rational calculation to accomplish the semantic of the expression.

Using this, it is possible to implement the test to perform a fast trimming of screen
regions that do not contain intersections with the implicit surface. That is, an algorithm
using this test can identify regions with pixels that should be shaded with the background
color.

The algorithm explained in this section can reject regions image space that correspond
to beams missing the surface. This algorithm is presented in figure 5.6.
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The algorithm performs a branch-and-bound process over the parameter of the ray,
evaluating the function fR(T,Xs, Ys) with every interval T . The Intervals Xs, Ys are
fixed to an area of the screen to be scanned. The intervals in which 0 /∈ fR(T,Xs, Ys)
are rejected.

The criterion used to stop the bisection process is:

Width(T ) < εT ≡ (T.Upper bound− T.Lower bound) < εT

To select εT , the user has to take into account that a coarse precision could make that
the algorithm does not eliminate enough regions without intersections. Using a high
precision, the first root will be found, but the time of the bisection process is increased.
Because we only want to discard empty regions, we do not need to use a high precision.
Using an εT value of 10−3, the results obtained are good (see the results at the end of
this section).

To perform a trimming algorithm over image space, a branch-and-bound process must
be performed in the screen over X and Y values. For every generated box, the rejected
test can be used to reject boxes without rays intersecting the surface. When a box of the
screen is evaluated and the test fails, the box is bisected and the test must be performed
for the new two boxes.

Function Reject(Intervals Xs,Ys,Zs)
T=Interval(0,t)
add T to front of ListT
While ListT is not empty

T = front of ListT
If Width(T ) < εT

Exit While
EndIf
If 0 /∈ fR(Xs, Ys, T )

Drop T from ListT
Else

Bisect T into T1,T2

Add T1,T2 to front of ListT
EndIf

End While
If empty(ListT)

Box does not have Intersections
Else

Box can have Intersections
EndIf

Figure 5.6: Rejection test to detect if a beam crossing a box misses the surface com-
pletely.
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Some examples of the rejection test are presented in figure 5.7. The blue boxes were
rejected using only one rejection test that has the same complexity of an intersection
test using a single ray. In this case, it is only necessary to ray trace the yellow boxes
that represent boxes that could have rays intersecting the implicit surface.

Figure 5.7: Some examples of the rejection test. At the top of the image, there are
some implicit surfaces: Sphere, Blobby, Steiner and Gumdrop torus. At the
bottom, the results of the rejection test in screen space for every surface.

Table 5.1 summarizes the results for a ray tracing process combined with the trimming
strategy, and a classic ray tracing using individual rays. Although the trimmed area of
the screen is almost 50% of the area in all the cases, the time saved is not necessary
50%, because the intersection test is faster in pixels in which the rejection test is true.
To illustrate this, the time that a ray casting algorithm takes over the rejected boxes is
shown in table 5.2. The table presents the average time per pixel. The times for a ray
casting over the non-rejected boxes is given in table 5.3.

Surface trimming trimming + Classic % Saved time
time ray tracing ray tracing

Sphere 0.79 41.46 53.22 22.07 %
Blobby 1.33 64.17 107.59 40.34 %
Steiner 1.59 94.43 152.63 38.13 %
Gumdrop torus 3.6 381.62 544.95 29.97 %

Table 5.1: Comparison between a classical Interval ray tracing and a ray tracing using
the trimming strategy (time in seconds).

As can be seen in tables 5.2 and 5.3, the intersection test takes more time in pixels
corresponding to non-rejected boxes than rejected boxes. This occurs because the inter-
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section test for rays intersecting the implicit surface must arrive at a smaller precision
to obtain the value for the intersection. Rays that do not intersect the implicit surface
are rejected before a small precision is achieved.

Figure 5.8 shows a color map for the Steiner surface in which the time that the inter-
section test takes at every pixel is color encoded. The pixels in which the intersection test
fails take less time than pixels inside the implicit surface. Also note that the intersection
tests take the maximum time on the borders of the surface.

Figure 5.8: Color map to represent the time that the intersection test takes for every
pixel in a Steiner surface.

Surface Boxes Pixels Time Time/pixel
Outside

Sphere 92 33105 12.54 0.00038
Blobby 171 59204 44.74 0.00076
Steiner 132 46958 59.79 0.00127
Gumdrop torus 156 33087 166.93 0.0050

Table 5.2: Time in seconds for ray tracing rejected boxes.

Surface Boxes Pixels Time Time/pixel
Inside

Sphere 648 57496 40.67 0.00071
Blobby 350 31397 62.84 0.00200
Steiner 488 43643 92.84 0.00213
Gumdrop torus 648 57514 378.02 0.00657

Table 5.3: Time in seconds for ray tracing boxes in which the rejection test fails.
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5.4.3 Inclusion Test

The objective of this test is to detect those beams that completely hit an implicit surface.
The test allows to know if for a box in the screen all the rays crossing it intersect the
implicit surface. That is, for all the values of Xs, and for all the values of Ys, must exists
a root for the parameter T . Formally:

(∀xs ∈ Xs) (∀ys ∈ Ys) (∃t ∈ T ) f(cx + t(xs−cx), cy + t(ys−cy), cz + t(zs−cz)) = 0
�� ��5.4

which in accordance to the *-semantic theorem of the Modal Interval Analysis it is
equivalent to the modal interval inclusion:

f∗(Xs, Ys, T ) ⊆ [0, 0]
�� ��5.5

in which Xs,Ys are proper intervals, and T is an improper one.
To get a good approximation of f∗, the rational extension of the function is used:

f∗(Xs, Ys, T ) ⊆ f∗(Xs, Ys, t) ⊆ Inn(fR(Xs, Ys, t))

where Inn means the inner rounding of the rational extension fR. This last expression
is true because the improper interval T ⊆ t in accordance with Theorem 1 of section
3.5.2. Also, for every t1, ..., tn ∈ T ′

f∗(Xs, Ys, T ) ⊆ Inn(fR(Xs, Ys, t1)) ∧ ... ∧ Inn(fR(Xs, Ys, tn))

which shows that if the meet of the intervals obtained by means of the rational calcula-
tions for different values of t ∈ T is contained in [0, 0], then,

Inn(fR(Xs, Ys, t1)) ∧ ... ∧ Inn(fR(Xs, Ys, tn)) ⊆ [0, 0],
�� ��5.6

then 5.5 is true. The values of t used in the rational calculation can be the bounds of
the intervals obtained by means of subdivisions of the interval T ′. The inclusion test is
presented in figure 5.9.

The algorithm in table 5.9 performs a branch-and-bound process over the parameter
T . The lowest and highest values of the interval (infimum and supremum) at every
subdivision step over T , are used to evaluate the inclusion function. After that, the
meet operation of those two intervals is calculated. The meet operation between two
intervals generates a new interval, in which the new infimum value is the maximum of
the two infimum, and the new supremum is the minimum of the two supremum. This
operation is also performed with the meet obtained in the previous subdivisions steps.
If the value of the meet contains zero, the box currently evaluated represents an inside
region.

To optimize the process, both tests (rejection and inclusion) must be evaluated in the
same algorithm to obtain a 2D structure to take advantage of coherence in image space
(see figure 5.10). The inclusion test is only true when 0 ∈ meet. Otherwise, the list
of values of T must be evaluated at the end of the inclusion test. If that list is empty,
the beam misses the surface (the rejection test is true). If that list is not empty then
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both tests failed. This means that the region is undefined, that is, it can contain rays
intersecting and missing the surface.

To further improve the ray tracing process over included boxes (boxes in which the
inclusion test is true), it is necessary to calculate a small space of solutions for the
parameter T . The rays must locate the roots in this space instead of a big value of the
parameter T . This is similar to the calculation of the entry and exit values of a ray in a
bounding box. The entry and exit point calculated for every ray conform to an interval
in which the intersection test operates for the surfaces contained in the box. In the case
presented here, the calculation of these values is performed previously for all the beam,
and not for every ray. The new value of T for every box in screen is obtained taking the
nearest and the farthest intersection between the beam and the surface (see figure 5.11).
This interval is the initial space to search roots for every ray traced in the box.

The nearest and the farthest intersection points are calculated during the subdivision
process using the result of the rational calculation performed in the bounds of interval
T . If a result is bigger than 0, the infimum of the result is saved in a vector. If the
result is less than 0, the supremum value is saved in another vector. After that, the
maximum of the minimums and the minimum of the maximums are used to create the

Function Inclusion(Intervals Xs,Ys)
Meet=[−∞,∞]
T=Interval(0,t)
add T to front of ListT
While ListT is not empty

T = front of ListT
If Width(T ) < εT

Exit While
End If If 0 ∈ fR(Xp, Yp, T )

Ra = fR(Xp, Yp, T.Inf)
Rb = fR(Xp, Yp, T.Sup)
Meet = Meet ∧Ra ∧Rb

If 0 ∈ Meet
The Beam Intersects completely the surface

Else
Bisect T into T1,T2

Add T1,T2 to front of ListT
Endif

EndIf
End While

Figure 5.9: Algorithm to perform the inclusion test. This test determines if a beam
completely intersects the implicit surface.
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final interval value of T called TFinal. This value, which represents the set of values of
t for all the rays traced in the set, is used to determine the regions covered by shadows
(see the next section).

Function EvaluateBox(Intervals Xs,Ys)
Meet=[−∞,∞]
T=Interval(0,t)
add T to front of ListT
While ListT is not empty

T = front of ListT
If Width(T ) < εT

Exit For
EndIf
If 0 ∈ fR(Xp, Yp, T )

Ra = fR(Xp, Yp, T.Inf)
Rb = fR(Xp, Yp, T.Sup)
Meet = Meet ∧Ra ∧Rb

If 0 ∈ Meet
The Beam Intersects completely the surface
End Function

Else
Bisect T into T1,T2

Add T1,T2 to ListT
EndIf

Else If 0 /∈ fR(Xp, Yp, T )
Drop T from ListT

Else
Bisect T into T1,T2

Add T1,T2 to front of ListT
EndIf

EndFor
If empty(ListT)

Box does not have Intersections
Else

Box can have Intersections
EndIf

Figure 5.10: Combined algorithm to apply the reject and inclusion tests in a box.
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Figure 5.11: The distance between the nearest and the farthest point of Intersection is
used to give a final value for T .

5.4.4 Identification of boxes inside a shadow

The structure of the previously generated boxes works with primary rays. However, it is
possible to add information to identify which boxes of the structure may be in a shadow.

The algorithm presented in this section will be used to detect in which boxes the
shadow rays must be traced, and other boxes in which the trace of shadow rays is not
necessary. If the boxes that do not require the trace of shadow rays are detected, then
this time will be saved.

The algorithm proposed in this section rejects the boxes that are directly illuminated.
The boxes that remain when this algorithm is used, may be in shadow or not, but the
test cannot decide. Shadow rays must be traced in those boxes.

The problem of identifying the intersection area of a beam over an implicit surface is
not easy to solve, because that area can have any shape. This problem is less complicated
for polygonal objects because the intersection is always performed over plane objects.

In the previous section, we found the range of intersection points for which the indi-
vidual rays of the beam intersect the implicit surface (TFinal). This interval indicates
the range of final values of t for all the rays in the beam. Using this interval, it is possible
to calculate the set of intersection points between the beam and the surface, and trace
an arbitrary beam from the light source to this set of points (see figure 5.12).

The shadow beam is traced only for the boxes for which the inclusion test for the
primary beam is true (that is, for boxes in which the corresponding beam completely
intersects the implicit surface). Given the final value of the interval TFinal calculated for
the box, the intersection values are calculated as follows:

Xsh = cx + TFinal ∗ (Xs − cx)
�� ��5.7

Ysh = cy + TFinal ∗ (Ys − cy)
�� ��5.8

Zsh = cz + TFinal ∗ (zs − cz)
�� ��5.9

In this case, (cx, cy, cz) represent the coordinates of the origin of the primary ray and
Xs, Ys define the area of the screen in which the primary ray was traced, and zs defines
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the distance from the origin of coordinates to the plane that contains the screen.

Figure 5.12: A beam from the light source is traced to detect boxes covered by shadows.
a) If the shadow beam intersects an object, the area covered by the beam
can be under a shadow. b) If the shadow beam is not intersecting an object,
the area is not under a shadow.

Using the position of the light, and the calculated values of Xsh, Ysh, Zsh it is possible
to define a shadow beam. The problem is then reduced to perform a rejection test, in
which is sufficient that:

[0, 0] * Out(fR(Xsh, Ysh, Zsh, T ))

For this rejection test, the definition of any implicit surface is used, replacing the values
of X,Y ,Z of the shadow beam in the corresponding values of the implicit function. The
application of a rejection test was already explained in section 5.4.2

The rejection test for the shadow is evaluated only for those boxes in which the
corresponding primary beam (the beam traced from the view point) completely intersects
the surface. Moreover, this rejection test must be performed for all the surfaces in the
scene.

The objective is to identify if between the light and the box there is any surface
blocking the beam emanating from the light. In that case, every pixel corresponding
to the box must be checked for shadows. In the other case, that is, if there is not any
object blocking the light that arrives at a box, the pixels corresponding to the box are
not checked for shadows.

Figure 5.13 shows the structure generated for a set of spheres. The rejection test for
primary rays was true for the blue boxes. For red and yellow boxes, the inclusion test
is true. The yellow boxes represent the parts of the surfaces that may be covered by a
shadow. Those boxes are found using the rejection test for shadow beams (remember
that this test is only used in boxes in which inclusion test was true). Boxes that fail
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both test generally correspond to the borders of the surfaces. Figure 5.13 also shows
the results of the ray tracing process over the structure previously generated. Using
a classic interval ray tracing, this image is obtained in 38 minutes (using 9 rays per
pixel; 394045 view and shadow rays). Using the structure of boxes and, tracing 9 rays
in undefined areas, 1 ray in inside areas and tracing shadow rays only in shadow boxes,
the visualization process takes 16 minutes (using 188641 primary and shadow rays).

Figure 5.13: Some boxes in shadow in a scene composed by a set of spheres.

5.4.5 Experimentation and results

Three surfaces are used to measure the efficiency of a ray tracing process using the
structure of boxes in image space: an Orthocircle surface, a Blobby surface and a Drop
surface (see figure 5.14). The surfaces are rendered at 300x300 pixels, using 9 rays per
pixel. For this test, a Pentium 4 (2,4Ghz) computer was used.

A structure of boxes, as was explained in the previous sections, is generated for each
surface. Only one ray is traced for boxes that correspond to beams intersecting the
surface, and nine rays for undefined boxes, that correspond to the borders of the surfaces.
For the classic ray tracing, a uniform grid was generated. The results are compared with
a classic ray tracing process using interval arithmetic (see table 5.4).

In this section we are using beams only to generate the acceleration structure. In the
next section, we will explain an anti aliasing strategy using beams instead of single rays
to compute the intersection tests, in order to improve the quality of the images obtained.

According to table 5.4, the improvement is more than twice for the surfaces tested.
The quality of the images obtained by means of our acceleration structure, tracing only
one ray in inside boxes, and using the classic ray tracing approach with nine rays per
pixel, is the same. However, note that the the thin part connecting the drop with the
main body in the figure 5.14c is still not perfect. In the next section, this problem is
solved with an anti aliasing approach using beams instead of rays.
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5.5 Removing Aliasing using Interval Arithmetic

5.5.1 Aliasing

In computer graphics, aliasing refers to the jagged edges that appear in the visualization
of surfaces. Its principal manifestation is high contrast of the border color over the
background color. This occurs because a sampling process is needed to work with pixels
which are discrete entities.

When frequencies are greater than the Nyquist Limit (one cycle every two pixels)
aliasing effects appear in the visualization. This limit is determined by the pixel size
[41]. This problem is shown in figure 5.15. If an inadequate number of samples is applied
then alias can appear as low frequencies [16].

Ray tracing is a discrete algorithm, for that reason, the problem of aliasing is inherent
to it. There are three main approaches to solve aliasing problems in ray tracing: super
sampling, adaptive sampling and distributed sampling (see figure 5.16).

Super sampling is based on a uniform distribution or rays inside the pixel. Indeed,
lots of rays are traced for every pixel, and the final color of the pixel is obtained by
means of the average of the colors for every ray traced [41]. To avoid aliasing problems,

Figure 5.14: Surfaces used to test the efficiency of the structure of boxes. a) Orthocircle,
b) Blobby surface, and c) Drop surface.

Presented Method Previous technique
Surface Time Rays Traced Time Rays Traced % Improvement
Orthocircle 8,8 68631 21,1 375003 139%
Blob 11,6 58273 35,6 414406 205%
Drop 35 460495 106 1620000 202%

Table 5.4: Comparison between a classic Interval Ray Tracing process and a ray tracing
using the structure of boxes generated by means of the inclusion and rejection
tests (time in minutes).
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a big number of rays should be traced, but there could be some frequencies that can
produce alias. Adaptive sampling [101] can solve these problems reducing the aliasing
in the edges. In this approach, the pixel is recursively subdivided in small areas and
new rays are traced in the edges. If the colors for the neighbor rays traced in the edges
of an area of the pixel are too different, the area is again subdivided until a threshold
for the size of the area is achieved. If the colors are similar, the subdivision is finished
and the different values are weighted to obtain the final shade color of the pixel. The
disadvantage of this method is that it requires a large number of rays which decrease
the efficiency of the ray tracing process.

A variation of super sampling is distributed sampling, in which a non-regular distri-

Figure 5.15: An incorrect sampling over a signal with high frequency (top) can generate
a low frequency alias (bottom).

Figure 5.16: Aliasing techniques for ray tracing in a pixel. Supersampling (left), Adap-
tive sampling (center) and Distributed sampling (right).
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bution of the rays is used to replace aliasing for noise, which is less noticeable for the
human eye [41].

Using the boxes structure presented in the previous sections, an efficient anti aliasing
process can be implemented. As was pointed out in the last section, undefined boxes
correspond to border areas that always need an anti aliasing process. However, boxes
that are completely included can also have aliasing due to the variation of the surface
inside the box. In the example of figure 5.17, the blobby surface has a small sphere that
is part of the surface. That sphere causes aliasing in its borders.

Figure 5.17: A blobby surface with aliasing (left). The same surface without aliasing
(middle). The aliasing must be corrected in the borders of the surface but
also in the small sphere that is inside the surface (right).

To use the structure of boxes to improve the efficiency of an anti aliasing process, a
new constraint can be added during the creation of the structure. The objective is to
find those boxes included in the surface that can produce aliasing. The constraint must
be the size of the final width of the value of TFinal. The width of TFinal represents the
distance between the first and the last ray intersecting the surface in the beam; if that
distance is too big, the box must be subdivided and the new boxes evaluated. Using this
strategy, the different aliasing regions are identified as seen in figure 5.18. The borders
of the small sphere are identified as aliasing regions because the width of the final value
of T for those boxes is big, this is, there is a big distance between the first and the
last intersection of the beam. After that, many rays must be traced in the undefined
boxes (green color), and also in the boxes in a shadow; in the red boxes, only one ray
needs to be traced. It is possible to use super sampling, adaptive sampling or distributed
sampling in aliasing boxes.

5.5.2 Improving the point sampling process

The anti aliasing approaches presented in the last section are based in point sampling.
The disadvantage of this approach is that thin features of the surfaces can be missed by
the rays (see figure 5.19).

There are many approaches to solve aliasing caused by missing objects. Whitted [101]
used bounding boxes for small objects. If a ray intersects a bounding box, the sampling
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rate is increased to guarantee that view rays do not miss the object. Although effective
in most of the cases, this technique does not work very well with long thin objects [37].

The approaches that are based on gathering information of a continuous set of rays as
cone tracing, beam tracing and pencil tracing, can replace the use of infinitesimal rays.
The main disadvantage of these proposals is that they require computationally complex
intersection tests.

In this section, an Interval Arithmetic Anti aliasing strategy (IAA) based in an adap-
tive anti aliasing process is presented. This method uses the machinery developed to
create the structure of boxes in image space to accelerate the ray tracing process; that
is, the rejection and inclusion test are used to evaluate areas of the pixel instead of areas
of the screen. Interval arithmetic guarantees that any part of the surface is not missed
during the process.

The IAA algorithm is performed by means of a subdivision process over the pixel

Figure 5.18: The structure of boxes can be used to identify aliasing areas in image space.

Figure 5.19: When point sampling is used, some thin features of the surfaces can be
missed.
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area. At the beginning of the process, a beam is traced for the whole area of the pixel.
If the rejection test is true, then the pixel is shaded with the background color.

If rejection test fails but the inclusion test is true, then the dot product between the
beam and the surface normal is calculated as follows: if a beam completely intersects
the surface, the value of Tfinal is returned by the inclusion test. This value is used to
calculate the interval values of X, Y and Z, corresponding to the intersection between
the beam and the surface (see equation 5.7). Using an interval version of the derivatives
of the implicit function in x, y, z, it is possible to obtain the vector (Nx, Ny, Nz) which
represents the set of normals of the surface in the intersected area. This vector can be
obtained replacing the values of X, Y, Z in the derivatives obtained in last step. In the
case of a ray, the vector from the view point (cx, cy, cz) to an intersection point (x, y, z) is
defined as (xs−cx, ys−cy, zs−cz). For a beam, the intersection is composed by intervals,
then replacing the real values for interval values we obtain (X − cx, Y − cy, Z − cz).
The estimator is obtained by means of the interval dot product between the vectors
(Nx, Ny, Nz)) and (X − cx, Y − cy, Z − cz), which is equivalent to:

(Nx(X − cx), Ny(Y − cy), Nz(Z − cz))
�� ��5.10

Although other estimators could be used, this is chosen because it is simple to imple-
ment and gives enough information about the variation of the curvature of the surface
to detect regions with potential aliasing.

If the width of the interval dot product between the beam and the normals is bigger
than a predefined threshold, the pixel is subdivided in four sections or sub pixels. Also
if both tests fail, then the pixel is subdivided in four sections.

A beam must be traced for every sub pixel and the process started in every new area.
When the estimator in a sub pixel is equal or less than the threshold, the average of the
normals is used to calculate the Phong shading of the sub pixel. Also, the subdivision
process continues until the area of the sub pixel is less or equal to another threshold.
This threshold determines the number of samples allowed per pixel. In the examples
of the next section, the maximum threshold allowed is a depth of 4 in the subdivision
tree. When this threshold is achieved, the first surface intersected by the beam is used
to calculate the shade color for the current area.

Finally, the pixel is shaded using the average of the areas and the shading values of
every sub pixel.

Figure 5.20 shows an example of the IAA algorithm over a pixel. First, all the area
of the pixel is scanned (Figure 5.20a). Because the surface is not completely covering
the pixel, the area of the pixel must be subdivided (Figure 5.20b). For the new four
sections, only the right-bottom section is completely covered by the surface. If the
estimator is accomplished for this section of the pixel, the section is not subdivided
and Phong shading can be calculated (Figure 5.20c). The other sections are subdivided
and evaluated. Some of the new sections are covered by the surface (red color). Blue
boxes must be shaded with background color, while yellow regions are undefined (Figure
5.20d).

The IAA algorithm can visualize features that are hard to detect with ray tracing using
point sampling. This is the case with the Teardrop surface (Figure 5.21). According to
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Paiva et al., even when a robust polygonal approximation of this surface is used, it is
not possible to render the thin feature that joins the drop with the main body [71].

A Chub’s surface (Figure 5.22) has many sections connected in just a few pixels which
are correctly rendered using the IAA algorithm.

Figure 5.20: An example of the IAA algorithm over a pixel.

Figure 5.21: A drop surface rendered using point sampling (left) and IAA algorithm
(right).
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Figure 5.23 shows the advantage of IAA over an adaptive anti aliasing method based
on point sampling. When point sampling is used, nothing is known about variations
of the surface between neighboring rays. Using IAA, the details inside the whole pixel
are taken into account. In this case, the beam is subdivided because the surface has
too much variation in the area covered by the beam. If in the new set of beams the
smaller and the bigger values of the estimators are too different, then those beams must
be subdivided again.

5.5.3 Experimentation and results

The IAA method was tested on the surfaces presented in figure 5.24. The comparisons
have been performed against an adaptive anti aliasing algorithm based on point sampling
(using a reliable algorithm based on interval arithmetic for the intersection test). Both
techniques were applied to the classical interval ray tracing algorithm based on a branch-
and-bound strategy. All the examples were generated using a resolution of 500x500

Figure 5.22: When anti aliasing strategies based in point sampling are used, some details
of the surface disappear (top-right). Using IAA, these details are well
rendered (bottom-right).
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pixels. This resolution is enough to show the improvements in the quality of the final
visualization. Higher resolution images will be shown in the final chapter of this thesis,
where we use acceleration techniques to avoid the high rendering times.

Figure 5.24 (a and b) shows a Twist with shadows. Fine details of the shadow are not
well visualized using point sampling (a). Using IAA, those details are better visualized
(b). Problems in the visualization of the point sampling example occur because shadow
rays miss the thin details of the Twist. The visualization of figure 5.24(a) takes 27
minutes; figure 5.24(b) takes 20 minutes. The time difference is due to the fact that
IAA detects pixels without much variations inside, using one single test. In the point
sampling test, at least four rays are traced for every pixel. Figure 5.24(c) shows an
example of a blobby surface visualized with the IAA algorithm in 15 minutes. Figure
5.24(d) represents the Tri-trumpet. Details of that surface are presented in figure 5.24(e)
for adaptive point sampling and figure 5.24(f) for IAA. Using our method, the borders
look better and the image is created in 8 minutes. Using point sampling, the sections
appear separated although interval arithmetic is used for the intersection tests. Using
point sampling, the algorithms takes 7 minutes.

5.6 Conclusions

This chapter introduced an alternative algorithm to improve the efficiency of the ray
tracing process when interval arithmetic is used. The idea is to combine many rays in
one beam, and evaluate it as a unique ray. Interval arithmetic has been demonstrated

Figure 5.23: Advantage of IAA to estimate the variation in the implicit surface. Using
point sampling, nothing is known about the variation between two points.
Using IAA the variation is detected.
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to be a good tool to exploit the coherence when many rays are analyzed simultaneously.
The results demonstrate that this technique can improve the efficiency even twice in
some cases.

An algorithm that improves the quality of the images obtained from the ray tracing of
implicit surfaces was also introduced. We have shown that point-sampling anti aliasing
techniques can generate some noticeable problems in the visualization of the implicit
surfaces, even when interval arithmetic is used in the intersection test. The algorithm
provided solves those problems, and also it is possible to combine it with the beams to
improve the overall efficiency of the rendering process.

The algorithms presented also include the creation of secondary beams, in particular of
shadow beams. The definition of shadow beams involve of complicated intersection tests
when algorithms based on beam tracing are applied. This can be even more complicated
when applied to implicit surfaces, because the intersection between the primary beam
and the surface can have any shape. In the algorithm for shadows presented in this
chapter, the problem is solved in an easy and reliable way. It is even more efficient

Figure 5.24: Experimental images. An image with thin features is not correctly rendered
using point sampling (a). Using IAA the result is better (b). The method
can be used for general surfaces, like a set of blended spheres (c). Also, a
surface with critical points like the Tri-trumpet (d) is not correctly rendering
using point sampling (e), but the critical points are detected using IAA (f).
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than other approaches, because many areas without shadows can be discarded at the
beginning of the process; the algorithms do not have to look for shadows in those areas.

The algorithms presented are faster than other reliable algorithms based on Interval
Arithmetic. However, these algorithms are still slower than non reliable ones. This is
the cost to pay if a correct representation of the surface is needed.
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6
Exploiting coherence to improve the

efficiency in Animated Scenes

6.1 Introduction

This chapter presents an application of the contributions introduced in the previous
chapter, to the animation of scenes composed of implicit surfaces.

In the previous chapter, the algorithms were devoted to improve the quality of the
images and the efficiency of the rendering process, but over individual images. To im-
prove the efficiency of animated scenes, a spatial structure is needed. This structure
will be used to exploit space coherence and reduce the rendering times. For that reason,
this chapter starts with the explanation of the creation of such structure, in this case, a
regular grid. Moreover, a new traversal method to work with beams instead of rays will
be described. Interval arithmetic is used to maintain the numerical reliability in all the
process.

To exploit temporal coherence, the position of the surface in a fixed number of frames
is added as an interval variable in the transformations applied to the implicit surface.
This process creates an special surface that contains all the positions of the surface for
a desired number of frames.

6.2 Creation of space structured scenes

In the previous chapter, image space coherence was used in the interval approach to
accelerate the tracing of primary and shadow beams. This section explains that it is
also possible to apply acceleration techniques to exploit space coherence by means of
space structured scenes. The scenes will be structured by means of a regular grid, which
can be easily adapted to work with beams.

In a previous work, Gonzalez [62] presented a technique to work with octrees and
beams. In that work, the structure is used to accelerate the tracing of beams only to
primary rays, although the same octree is used to trace shadow and reflection rays. The
initial beams are generated by means of the projection of the octants in the screen. Every
face of the octant seen through the screen is used to trace a beam. The other parts of
the screen are supposed to be empty, so rays are not traced there and the background
color is set in the pixels corresponding to these areas.
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The main differences between the technique presented in [62] and the work presented
in this chapter is the use of interval arithmetic. This helps to keep the reliability in the
creation of the structure and the traversal of the beams.

6.2.1 Creation of the regular grid structure

In chapter 4, an explanation of the process of creation of an octree structure using
interval arithmetic was presented. The creation of a grid is not so different, because the
evaluation of the space in x,y and z is performed in the same way.

Duff [30] described the creation of structured scenes by means of CSG (Constructive
Solid Geometry) operations, using Interval Arithmetic. He subdivided the space of the
scene until a precision equal to the pixel size is achieved. During subdivision, CSG
operations are tested in every cell. In other works, Lipschitz constants are used to
perform the evaluation of CSG operations [29].

In the algorithm presented in this chapter, a regular grid is used to create a structure
of the scene for further beam tracing. The object space in the scene is subdivided in a
predefined number of boxes or cells, and every one is scanned to look for the implicit
surfaces crossing it. Having an implicit surface f(x, y, z) = 0, to know if the surface
crosses a cell defined by (X,Y ,Z), the united extension of f to the cell, F (X, Y, Z) is
used. If 0 ∈ F (X, Y, Z), the region may be crossed by the surface. In the other case, the
region can be definitively discarded.

Moreover, the CSG operations are evaluated in every cell. The allowed operations are
union (f1 ∪ f2), intersection (f1 ∩ f2), and difference (f1 − f2). The CSG tree is only
evaluated for the surfaces crossing the cell. A surface that is not crossing the cell is
represented as an empty set in the CSG tree.

6.2.2 Traversing of the regular grid

The objective of the spatial structure is to identify the areas of the object space that
need to be ray traced (space coherence). When a ray is traced, a test to determine the
intersection between a cell and a ray is performed. Only the cells intersected by the ray
are considered in the intersection test between the surfaces crossing this cell and the ray.
This intersection test is only performed with cells having at least one surface crossing it
[25].

However, the traversing of a beam containing a set of rays is different because the same
beam can intersect many cells at the same time. To determine the boxes intersected by
the beam, the direction of the beam in x, y or z (in space coordinates) is selected. This
is done taking the normalized directions of the four vector composing the corners of
the beam and selecting the one with the bigger absolute value. The boxes are scanned
advancing in the coordinate selected as direction, but only for the boxes covered by the
other two coordinates of the beam.

Figure 6.1 represents a 2D scenario to facilitate the understanding of the process. In
this case, the output is a line instead of an area. The propagation direction is supposed
to be in the z axis. The adaptation of this process to a 3D case is straightforward. Every
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Figure 6.1: A propagation of a beam inside a regular grid structure.

row in direction z is checked, but only the cells covered by the interval X are considered
for the evaluation of the intersection test (cells in blue). The interval covering the cells
in x coordinate is calculated as follows:

X = x0 + (Xa − x0)T

having:

T =
Z − z0

Za − z0

in which Xa, Za are the intervals representing the direction of the beam and x0, y0 are
real values representing the view point. The value of Z is obtained taken the minimum
and maximum values of z for the current row of cells in the grid.

The algorithm continues looking for cells covered by X in every row of cells in the
grid.

In every cell, the corresponding interval value of the parameter of the beam (TV )
must be calculated. This value represents the minimum and maximum value in which
the roots are searched for the parameter T . This value is calculated as follows:

TV = Tz ∧ Tx

where
Tz =

Vz − z0

Za − z0
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and,

Tx =
Vx − x0

Xa − x0

in which the cell is defined by the intervals Vx and Vz. Once the first surface intersecting
the beam is reached, the algorithm calculates the shading value for the corresponding
point in the screen.

6.3 Constructive Solid Geometry among surfaces in a Cell

The creation of scenes composed by implicit surfaces can be performed by means of
Constructive Solid Geometry Operations (CSG) or other approaches as in [103], where a
method that allows arbitrary compositions of models that make use of blending, warping
and Boolean operations is proposed.

There are two ways to perform CSG operations in ray tracing over implicit surfaces.
First, the maximum and minimum operations defined by Ricci [76]. And second, the
operations over implicit functions defining volumes as point-sets.

Let f1(x, y, z) and f2(x, y, z) be two functions intersected by the same ray. Let t1 and
t2 be the roots found for the intersection functions for f1 and f2 respectively.

For every operation, one of the roots t1 or t2 is taken:

• Union : max(t1, t2)

• Intersection : min(t1, t2)

In the case of f1−f2, the intersection between f1(x, y, z) and −f2(x, y, z) is calculated.
This is, if t1 is the root found for f1 and t2 is the root found for −f2, then the root taken
is min(t1, t2).

Ricci operations require an intersection test for every surface to perform maximum
and minimum operations between the roots found for the parameter of the ray.

On the other hand, when volumes are defined, the CSG tree can be evaluated during
the intersection test for every surface in the cell. In the algorithm presented in this
chapter, the operations will be performed using this approach, although Ricci operations
can be easily implemented.

In every subdivision step of the parameter T , the CSG operations must be tested.
Having the functions f1 and f2, the CSG operations are tested in every subdivision step
in the following way:

• Union: F1(T ) ≤ [0, 0], or F2(T ) ≤ [0, 0]

• Intersection: F1(T ) ≤ [0, 0], and F2(T ) ≤ [0, 0]

• Substraction: F1(T ) ≤ [0, 0], and F2(T ) ≥ [0, 0]

Note that the negation operation over a function is represented by the set of points
“outside” the surface. This means that the supremum of the results of the evaluation
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of the function, must be checked for values either equal or bigger than zero. Figure
6.2 presents some images generated by means of the CSG operations using volumes as
point-sets.

Figure 6.2: Some images created by means of CSG Operations.

6.4 Improvement of the efficiency in animations

As was explained earlier in this thesis, the visualization time of ray traced scenes in-
volving implicit surfaces is high, especially when interval arithmetic is involved. Even
without Interval arithmetic, the animation of implicit surfaces suffers of the same prob-
lem.

Many techniques to improve the efficiency of animation, exploiting the temporal co-
herence, have been proposed. Chapman [21] assumes that if a pixel has the same color
in the frames a and b, all the frames between them must have the same color. Oth-
erwise, the frame at which the pixel changes the color is searched in between frames.
This method could fail in some cases because a pixel could have the same color in two
non-consecutive frames, but have a different color between them. Chen et al. [22] used
morphing techniques to interpolate scenes of a stationary scene in which the view point
is moving.

Another way to reduce time in recalculating intersections between rays and objects
is the reprojection [8, 49]. In this technique, the intersection points of primary rays in
a frame are stored, and then projected to the camera in the following frames. Rayskip
approach [28] compares a ray with the neighbor rays and also with rays from the previous
frame to search for the portion of the ray that is not likely to hit the surface.

Glassner [39] suggest to convert a 3D dynamic scene to a 4D static one. To achieve
this, an acceleration structure is created adding the time as fourth dimension. This
is more efficient than calculating a structure for every frame. This method requires a
previously knowledge of the changes of the objects during animation.

6.4.1 Using Interval Analysis to exploit temporal coherence

In this section, interval arithmetic is used to define a set of positions for an object in
a defined number of frames. The changes over an object that are previously known at
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every frame r, will be defined using the following notation:

(x, y, z) = TR(x1, y1, z1, r)

in which x1, y1, z1 are the original coordinates of the object, and TR is the transforma-
tion applied to the frame r to obtain the new coordinates x, y, z. A transformation is
defined by a 4x4 matrix that can represent a rotation, a scale, a translation or any other
transformation that could be represented by a 4x4 matrix. Indeed, this is equivalent to:


x
y
z
w

 = M


x1

y1

z1

1



in which M represents the transformation matrix.
The transformation in a range of frames r and r + n, in which n represents a defined

number of frames, can be defined as:

(X, Y, Z) = TR(x1, y1, z1, [r, r + n])

in which X, Y, Z are intervals representing all the values of x, y, z obtained in the range
of frames defined by the interval [r, r + n].

This allows the creation of a new structure that contains all the spatial positions that
the surface will achieve between the frames r to r + n.

To apply this technique, the interval [r, r + n] is replaced in the parameter defined for
the transformation. That is, in a rotation, [r, r + n] will represent an angle; in a scaling,
[r, r + n] will represent a scale factor, and so on. For example, if a surface is rotated 30o

in x in frame r, and 35o in x in frame r +1, then the corresponding values for a rotation
in the transformation matrix are replaced by the interval values:

M =


1 0 0 0
0 cos([30,35]) -sin([30,35]) 0
0 sin([30,35]) cos([30,35]) 0
0 0 0 1



The surface obtained with this kind of transformation will be called n-surface, that
is, a surface defining the spatial positions or changes of a surface in n animation frames
simultaneously. This means that it is not necessary to interpolate either the positions
of the objects or pixel color between frames, because the method guarantees that the
coordinates obtained correspond to the changes performed by the object in the range of
frames. For example, if an object performs a fast movement between frames (figure 6.3),
then other methods can produce cracks because that behavior is not detected. Using

100



6.4. IMPROVEMENT OF THE EFFICIENCY IN ANIMATIONS

intervals, a fast movement between frames is registered in the interval coordinates. A
similar approach is proposed in [39], in which the acceleration structure is converted to
4D, adding the time as another dimension. The main difference with our approach is
the application of interval arithmetic and beam tracing to exploit temporal coherence,
as is explained in the following section.

Figure 6.3: Difference between the interpolation of frames using interval arithmetic and
other interpolation methods.

6.4.2 Use of a regular Grid for n frames

The algorithm that will be presented in this section requires a regular grid to exploit
spatial coherence for the n-surfaces. For a defined number of frames n, only one grid
must be used.

Figure 6.4 represents three frames of an animation. In a regular animation, three
grids are needed. If interval arithmetic is applied, only one grid must be created for the
n-surfaces.

The process starts evaluating the implicit surface with the cell Xc, Yc, Zc, but applying
the transformation for the interval [r, r + n] to define a n-surface. The transformation
must be applied for the values Xc, Yc, Zc as follows:

(X, Y, Z) = TR(Xc, Yc, Zc, [r, r + n])

Given an implicit surface f(x, y, z), the cell may contain a part of the n-surface if
0 ∈ F (X, Y, Z), in which

F (X, Y, Z)

is the united extension of f .
This will create a grid that contains the spatial distribution of cells for the n-surfaces

defined in the interval [r, r + n]. Once the grid is created, the traversal is performed
against the cells containing the n-surfaces. When a beam intersects a cell, the intersection
test is performed for every frame, and for the implicit surfaces represented by the n-
surfaces crossing the cell. Also, the transformations for the surfaces are performed only
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Figure 6.4: Creation of a regular grid for an animated sequence.

for the corresponding frame. The results obtained for every frame are stored in a buffer.
At the end of the traversal, the buffers are used to generate the number of frames of the
animation represented by the n-surfaces.

One problem of this approach is that a fast movement of a surface can create a big
n-surface, for which the beam tracing will decrease the efficiency of the algorithm. To
solve this, the algorithm tests the size of the values X, Y , Z for the n-surface, against
the values for one of the frames. If the difference is bigger than a desired threshold,
the n-surface is rejected for the current number of frames. In this case, the frames
corresponding to the n-surface are rendered one by one. However, this problem does not
appear in the experimentation presented in this chapter, because a random movement
of the objects was not represented.

An example of the traversal process is presented in figure 6.5. The scene is composed
of two objects and a light point with different positions in three animation frames. A
ray for a pixel (xp, yp) of the screen is traced and traversed against the n-surfaces (figure
6.5a). The ray hits the first n-surface, and the intersection test is performed with the
surface defined for the first frame (figure 6.5a). Because the ray hits the surface, a
shadow ray (with direction to the position of the light for the first frame) is traced
against the n-surfaces to look for an intersection. In this case, the point is not in a
shadow. Because the point was already found, it is used to calculate the illumination
that must be applied to the pixel (xp, yp) in the buffer corresponding to the first frame.

The intersection test is then performed for the first surface but in the position defined
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Figure 6.5: A ray traversing a scene (three frames).

for the second frame (figure 6.5b). Because the ray also hits the surface in the second
frame, a shadow ray is traced against the light in the position defined for the second
frame. In this case, the shadow ray hits the second n-surface, for that reason, the
intersection test is performed over the second surface in the position defined for the
second frame. This intersection test fails (the shadow ray does not hit the surface). As
in the first frame, the pixel (xp, yp) of the buffer of the second frame is shaded using the
information obtained from the current intersection point.

The case of the third frame is similar to frame two: the ray hits the surface for the
third frame and a shadow ray is traced against the light in its position for this frame
(figure 6.5c). In this case, the shadow ray intersects the second n-surface, and also the
second surface for the position defined for this frame. The pixel (xp, yp) of the buffer of
the second frame is shaded using the information obtained from this point.

The previous method is efficient because:

1. the regular grid is not created for every frame

2. only one beam is traced for all the corresponding pixels of the frames defined in
the interval [r, r + n]
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With 1 we save the time required to create the grid, which is negligible if the range
of frames n is small. With 2 we avoid the time required to create a new beam and to
traverse it in the grid. To achieve the full efficiency of the algorithm presented, the view
point must be static. This is not a problem because the movement of the view point can
be applied directly to the scene (OpenGL works the same way). The effect obtained is
the same in both cases (figure 6.6).

Figure 6.6: Representations of the movement of the view point in a scene.

6.5 Experimentation

The algorithm was tested for an animation of an orthocircle surface defined as:

((x2 +y2−1)2 +z2)((y2 +z2−1)2 +x2)((z2 +x2−1)2 +y2)−(a2)(1+b(x2 +y2 +z2)) = 0

in which the parameters a and b can take different values in every frame to change the
shape of the surface.

Also, both the position of the surface and the camera are changed during visualization
(see figure 6.7).

The test was performed using 5 frames of the animation to create the n-surface. Every
5 frames the algorithm creates a grid to perform the ray tracing for the five images
corresponding to the frame.

The method was tested against the same animation, using one grid for every frame. In
both cases, ray tracing is performed by means of beams, and Interval Arithmetic to keep
reliability (see chapter 5). Results of the comparison are presented in figure 6.8. The
rendering time is improved between 40% and 54%. The quality of the images obtained
is the same, using acceleration and rendering the frames independently.
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Figure 6.7: Eight frames of the animation of the orthocircle surface (from left to right
and top to bottom).

In a second example, a set of spheres moving out from the center of the scene was
rendered (see figure 6.9). The conditions were the same that in the last experiment. In
this case the improvement was between 32% and 66%. According to the time results
(figure 6.10), the improvement is not as regular as the previous experiment, because
more objects are rendered in the last frames.

For this experiment, we measured the time used for the grid creation. For an animation
frame to frame it was between 14 and 18 seconds for each frame. For a n-surface it was
between 15 and 22 seconds for n equal 5. This means that we can save at least 65 seconds
every 5 frames for the grid creation process.

The visual results are the same when the animation is created frame by frame or using
n-surfaces.

6.5.1 An extreme experiment

In this experiment, an animation with a fast change between frames is tested. In this
case, a morph between a chubs surface and a Mc Mullen k3 surface is performed. The
color is also changed in a small value for every frame. In figure 6.11 it is possible to
see the big rate of change in only eight consecutive frames. Also, the surface is rotated
in x and y and the point of light moved. This experiment fails in approaches based in
interpolation, because the color of every pixel is different between frames (although it is
hard to see it directly, the parameter is changed in a small value in every frame). Also,
the change of almost every part of the surface between frames makes difficult to use any
interpolation approach.

Figure 6.12 shows the result of the application of the n-surfaces compared by a frame-
to-frame approach. For this case, the efficiency obtained with the n-surfaces is 10%.
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Figure 6.8: Results for the animation of the orthocircle (100 frames).

This means that even in this complex example, the method presented here obtain some
improvement over the frame-to-frame version.

6.6 Conclusions

This chapter introduce an application of the concepts introduced in this thesis in the
animation of scenes composed of implicit surfaces. This method has two drawbacks: the
movement of the surfaces must be known in advance, to compute the n-surface, and the
efficiency decreases when the change between surface positions is high.

Interval arithmetic can be used to exploit coherence between consecutive frames, re-
ducing the rendering time. Although the method was tested for beams, it is expected to
obtain similar results using rays.

Also, a technique to exploit spatial coherence was introduced. This was explained by
means of a regular grid, although it can be applied to any other kind of structure, like
an octree or bounding boxes.
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Figure 6.9: Eight frames of the animation of the spheres emerging from the center of the
scene (from left to right and top to bottom).

Figure 6.10: Results for the animation of the spheres (100 frames).
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Figure 6.11: Eight consecutive frames of the morph (from left to right and top to bot-
tom).

Figure 6.12: Results for the morph animation (100 frames).
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7
Parallel and GPU Improvements for the
Interval Ray Tracing of Implicit Surfaces

7.1 Introduction

This chapter presents two new versions of the reliable algorithms for ray tracing implicit
surfaces. The first is a parallel version running in a pc cluster. There are lots of ray
tracing versions for parallel systems in the literature. However, the contribution here is
a reliable version using interval analysis to take advantage of coherency, which permits
the evaluation of many rays simultaneously.

The second version is implemented over a Graphics Processing Unit (GPU). The GPUs
are hardware devoted to mathematical-intensive operations related to 3D graphics. The
modern ones have special units that allow programmable capabilities within the GPU.
This feature has been used to create general purpose applications, as ray tracing. There
are many recent applications of ray tracing performed on a GPU, but few devoted to
implicit surfaces, and none of them takes care of reliable things like interval arithmetic
using correct roundings. In this chapter, a fully reliable version is introduced, being a
main contribution of the GPU implementation.

7.2 Parallel and reliable ray tracing of Implicit Surfaces

Ray tracing is an algorithm that can be easily parallelized because every ray can be
treated independently of the others. Ray tracing requires a high computation cost, for
that reason, many parallel approaches have been proposed to distribute the work in the
processors, reducing the entire computation time.

As was pointed out in previous chapters, ray tracing of implicit surfaces based on
Interval Arithmetic is computationally expensive. Although a well designed sequential
algorithm can improve the efficiency, it is desirable to take also advantage of a parallel
architecture to improve even more the computation time.

This section includes a parallel version of a ray tracing algorithm for implicit surfaces
which takes advantage of the image coherence to reduce communication among proces-
sors. Although the idea of parallelism implies certain independence of rays, we extend
this idea by means of the sharing of beams using sets of rays instead of individual ones.
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In this way, a more homogeneous task is sent to every node, which guarantees an efficient
use of the processors in the system.

7.2.1 Approaches to create a parallel ray tracing

There are two main approaches to create a parallel version of a ray tracing process:
the image space subdivision in which the pixels are distributed among the processors
and object space subdivision, in which the different objects composing the scene are
distributed.

In the image space subdivision, the pixels of the screen are subdivided in many inde-
pendent domains which are distributed in every processor available in the system. One
characteristic of this approach is that every processor must have access to all the objects
of the scene to trace the rays over them. A solution is to store the information of the
scene in every node of the system. Due to the high memory capacity of the modern com-
puters and the use of hardware systems with shared memory, the copy of the scene can
be accessed by every computer in the system [58, 7, 63]. The image can be distributed
in connected areas [53] or unconnected like sequences of lines of the screen [38].

The Object space subdivision tries to solve the problem of distributing and sharing a
complex scene in all the processors. If there is a big enough scene that it is not possible
to be saved in the memory of one computer, the scene must be distributed between
the different processors. The scene is subdivided in small parts which are processed
individually an the results are joined in a final image [24, 60, 74, 68, 46].

The objective here in this chapter is to implement a parallel ray tracing algorithm
based on the ideas presented in the previous chapter, for that reason, the parallel ap-
proach must facilitate the distribution of areas of the screen instead of individual rays or
parts of the scene. In that sense, it seems obvious to choose an image space subdivision
approach. That method supposes that the scene is distributed and accessible for all the
processors in the system. We will suppose that every workstation involved in the process
has enough memory to store all the scene, which consists in complex surfaces or groups
of them.

7.2.2 Algorithm specification

The data to be processed consists in areas of the image plane (in this case the com-
puter screen) which has to be subdivided recursively, and every box generated must be
evaluated to know if the rays intersect the implicit surface.

The algorithm that performs image space subdivision was parallelized over a cluster
with four workstations. Every workstation has two processors, that is, eight processors
are available in the virtual network. In this approach, every processor will share areas of
screen representing sets of rays. Also, the surfaces must be replicated in every computer
in the network. There are processors distributed in different computers, for that reason,
a dynamic load balancing strategy is proposed to distribute work in different computers,
and a multi-thread approach is applied in every computer, in which the processors share
memory.
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The evaluation of areas is performed in every processor in which some regions without
rays intersecting the implicit surface are quickly eliminated reducing the time required by
an evaluation pixel by pixel. The boxes that still contain pixels with rays intersecting the
surface are recursively subdivided and shared between processors until a desired precision
is achieved. The final boxes which contain the pixels that represent the surface, must
be ray traced pixel by pixel using an interval ray tracing algorithm.

7.2.3 Communication strategy

The model introduced is entirely distributed. In the selected model, every workstation
is connected with the others (see figure 7.1). This means that the messages are delivered
directly between workstations instead of processors. This configuration reduces the
distance path of the messages among processors, which facilitates the balancing of work.
On the other hand, this kind of configuration could increase the amount of messages in
the network. However, due to the hardware availability in which the communication is
performed between four workstations, this situation does not affect the load balancing
performance at all.

Figure 7.1: System connection used in the communication strategy.

Every workstation manages a list of boxes in memory which is shared between the
two processors. This unique list facilitates the distribution of the work among the
workstations. The process starts with some set of the rays assigned to every workstation.
The set is determined by a rectangular area or box of the screen. This initial box is
subdivided and the new boxes added to the list in memory. Although the term “box”
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generally implies a 3D structure, in this chapter box will imply a rectangle in the screen.
This assumption is taken from interval analysis, in which the therm “box” can imply 2D
or 3D.

There is one thread running on each processor. Every thread takes boxes from the back
of the list and starts a bisection process to generate small boxes. This process continues
until the boxes achieve a small size; the size allowed for a box in this algorithm is 0.025
of the initial screen size. During the process, every box is evaluated to know if that box
has rays intersecting the surface. If that is not the case then the box is not put in the
list, that is, the box is rejected. This means that only boxes with rays intersecting the
surfaces are shared between processors.

To know which boxes have to be rejected, the rejection test 5.1 is used. With the
values of X and Y of every box, a branch-and-bound over parameter T is started until
a small precision is achieved. The algorithm as works in each workstation of the cluster
is presented in figure 7.2.

Figure 7.2: Algorithm working in each workstation.

7.2.4 Dynamic load balancing

Transferred data

The initial data of the process are the entire set of pixels in the screen. To share the
work among the processors, the screen is subdivided in four equal parts and every part
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sent to any of the available workstations. The data shared with the processors are the
boxes of the list in memory of every workstation. The boxes contain information about
x and y coordinates, and the current minimum value of the parameter T for the set of
pixels of the screen that the box represents.

Workload placement strategy

Both processors in each workstation have the information about the state of the list of
boxes, but they do not know the state of the other processors in other workstations. The
only available information about the other processors is the route to communicate with
the other workstations. For that reason, the only decision that a processor could take is
to offer help to the other processors when it knows that it will soon become idle.

The length of the list is the index used by the algorithm to detect when the processor
is close to being idle. This occurs when a list has less boxes than some predefined
threshold. In this study case, the threshold is two boxes, which is enough to guarantee
that the processor does not achieve the idle state. This index is good because it does
not need to be recalculated, so the computation involved in this task is inexpensive.

Also, it is not necessary to keep equal amounts of work in all the processors, because
the only need is that they do not become idle at any moment to obtain full occupation
during all the process. For that reason, it is not necessary to calculate a complex index.

When a pair of processors in a workstation are approaching the idle state, the first
processor in detecting the situation sends a request for work to the other workstations
and waits for some boxes. When a processor in a workstation receives this request,
it sends the 40% of its boxes. This value was obtained by experimentation: the best
efficiency was obtained in the majority of the tests with this value.

Global termination

If the list of boxes of a given workstation is empty, and this workstation does not receive
any additional work from the other ones, then we suppose that all workstations are close
to finishing their work. The given workstation stops the request process, and sends a
message to inform that it has terminated its work.

In this situation, it could occur that the processor is idle while others have some work
to do, but a distribution of work when all processors are finishing their works is more
expensive than to make the processor wait for the others. In the experiments, the idle
state does not take more than one second using this approach.

The message to inform the termination of the work is sent to one of the workstations,
because only one workstation is defined to collect the final results. When this worksta-
tion has finished its work and has received the messages of termination from the other
workstations, the independent results are received and joined to shape the final complete
visualization.
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7.2.5 Dynamic load balancing performance

To evaluate the performance of the Load Balancing algorithm, the Steiner surface has
been selected to develop the test. The screen was subdivided into four sections, and
each one was sent to a workstation: left-up for workstation 1, right-up to workstation
2, left-down to workstation 3 and right-down to workstation 4. The rendering process
was started over the four workstations independently, that is, the workstations do not
communicate with each other.

The times obtained in the evaluation of separate sections were different as was ex-
pected, even when the surface was symmetrically subdivided. The left-up section takes
the more computation time because it contains a ray that emerges from the center of the
surface that have to be ray traced, which means this section has more pixels to be pro-
cessed. The right-down section spends the least time in all the process. The distribution
of the boxes after this preliminary test is presented in figure 7.3.

Figure 7.3: A parallel work without Dynamic Load Balancing.

The Steiner surface is visualized in 318 seconds using a sequential version of the
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algorithm. Using the Load Balancing strategy, with four workstations with 2 processors
each one, the time to process the surface is 39,5 seconds. The four sections take the same
time in the process. The workstation 4 processed all the boxes assigned to its section,
and even some boxes from the other three sections of the screen. Workstations 2 and 3
processed only a part of its assigned boxes, but also some boxes of the workstation 1,
which was the busiest one (see figure 7.4).

Figure 7.4: Distribution of the boxes using a Dynamic Load Balancing strategy.

7.2.6 Results

The algorithm was implemented in C++ using socket programming. The algorithm runs
in four HP Proliant DL145 workstations with two AMD Opteron processors of 2.6 GHz.
each one. The computers are connected by a switched 100 MBit Ethernet.

The algorithm was tested over four surfaces: orthocircle, steiner, bath and weird.
The figure 7.5 illustrates the graphical result of the parallel algorithm over the tested
surfaces.
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The complexity of the surfaces is considered according to the time that the sequen-
tial version of the algorithm takes to visualize them. The less complex surface is the
orthocircle, and the more complex is the weird surface.

The parallel algorithm was tested using the proposed surfaces. The table 7.1 shows
the results using one, two, four and eight processors respectively.

Table 7.1: Times for one, two, four and eight processors in the system.

Surface 1 proc. 2 proc. 4 proc. 8 proc.
Orthocircle 119 60 31.8 15.2
Steiner 318 161.2 80.4 40
Bath’s sextic 2210 1107 553 276.8
Weird 2634 1321 660.6 332.2

To evaluate the algorithm, the speed-up and the efficiency were calculated (see table

Figure 7.5: Tested surfaces: a) orthochircle, b) steiner, c) bath, d) weird.

116



7.3. RELIABLE RAY TRACING ON THE GPU

7.2). The speed-up is calculated as the ratio between the time to run the algorithm in
one processor and the time taken to solve the same problem over more processors (The
table shows those values for 2, 4 and 8 processors). In this experiment, the algorithm has
a speed-up almost linear because idle states barely occurs due to dynamic load balancing
algorithm. The efficiency obtained for eight processors is from 97% to 99% as is shown
in the last column of the table. That means that 97% to 99% of the time the processors
were performing useful computation on the boxes, and 1% to 3% of the time is spent in
other tasks such as communication, list management and also idle states.

Table 7.2: Speed-up and efficiency for 2,4 and 8 processors, measured for the four sur-
faces.

2 proc. 4 proc. 8 proc.
Surface Speed-up Efficiency Speed-up Efficiency Speed-up Efficiency
Orthocircle 1.983 99.17 3.742 93.55 7.829 97.86
Steiner 1.973 98.64 3.955 98.88 7.950 99.38
Bath’s sextic 1.996 99.82 3.996 99.91 7.984 99.80
Weird 1.994 99.70 3.987 99.68 7.929 99.11

7.3 Reliable Ray tracing on the GPU

Ray tracing polygonal meshes on the GPU is not a new issue [23, 19]. There are also
works over implicit surfaces on the GPU [102], but when this thesis was written, there
was only one work which implements a ray tracing of implicit surfaces using Interval
Arithmetic on the GPU [59]. However, the interval library used in [59] does not take
care of the rounding. As was explained in chapter 3, rounding is essential to keep the
reliability during the evaluation of the implicit function. This is even important in the
modern GPUs because they use only single precision in the floating point operations.
This section includes the description of an algorithm that performs a completely reliable
ray tracing in the GPU.

7.3.1 GPU overview

The GPU (Graphics Processing Unit) is a special hardware devoted to accelerate graphic
processing. The GPU hardware works in a different way that CPU. GPUs were conceived
as hardware accelerators for graphics programming interfaces like Direct X and OpenGL.
GPUs are based in a dataflow model in which there are sequential series of steps. This
model is known as graphic pipeline. A scene described by vertices (in OpenGL or Direct
X) is taken as input of the pipeline. The output from one step is taken as input of
another, and the final output of the process is an image made by pixels. Also, the
computation is performed in parallel in an array of fragments, in which every fragment
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generally corresponds to a final pixel in the screen. The general schema of the GPU
pipeline is presented in figure 7.6.

Figure 7.6: Graphic pipeline of the GPU.

Before primitive assembly and also raster operations there are three programmable
units which allow a more flexible use of the graphic pipeline. The vertex processor works
on properties of vertices like color, position and texture coordinates. The fragment
processor can perform operations to modify fragments by accessing the interpolated
values obtained during rasterization. Also, the last models of graphic cards include a
geometry shader, which is executed after the vertex shader. The geometric shader can
generate a new primitive or even eliminate an existing one. This shader works over the
vertices that were sent at the beginning of the graphic pipeline.

7.3.2 Interval Arithmetic Library on GPU

The main problem in ray tracing using interval arithmetic on the GPU is the implemen-
tation of rounding operations. Fortunately, there are many studies of how arithmetic
operators work in the graphics hardware [42, 31]. Because the behavior of those opera-
tions have variations depending of the manufacturer and the model, we had to select one.
However, similar analysis can be performed for any other model in order to implement
the interval operations using a correct rounding. In this chapter, a GeForce 8800 GTX
model from Nvidia was selected for the development of the interval library.

The GeForce 8800 GTX has 16 blocks that can perform SIMD floating point operations
such as addition and multiplication in single precision, but rounding toward plus infinity
or less infinity is not supported. Every block can execute a pack of 32 floating point
additions, multiplications, multiply-and-adds or integer additions, bitwise operations,
comparison, or evaluations of the minimum or maximum in 4 clock cycles. As there
is no 32-bits integer multiplication in hardware, evaluating such operation requires 16
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clock cycles for a pack.
To perform the ray tracing process, the Interval library was developed in the CG

language. This language is similar to the C language, and was created to facilitate the
programming of graphic cards. Before CG, the programming of the graphic cards was
performed in assembler language.

Every interval operation was programmed as an independent function in which the
interval values are vectors of two float values. The advantage of CG is the portability to
the graphic cards of the two main vendors: Nvidia and AMD ATI. In our implementation,
the interval operations do not run in parallel; only ray tracing process was implemented
to run in parallel.

7.3.3 Rounding

GPUs do not support rounding modes toward plus or minus infinity which is required
for interval arithmetic operations. To perform rounding, a ULP (Unit in the Last Place)
must be subtracted or added to the results of the operations. According to Kahan [56],
a ULP(x) is “the gap between the two finite floating-point numbers nearest x, even if x
is one of them”.

According to the studies performed by Collange et al. [26] for the GeForce 8800 GTX,
the rounding can be obtained by the multiplication of the results by 1+2−23 for positive
infinity, and by 1− 2−23 for rounding to negative infinity. However, the solution can be
lost when underflow occurs; in that case, the result returned is 0.

The Addition operation is presented in figure 7.7 as an example. Addition has faithful
rounding, that is, the error is strictly less than 1 ULP. First, the addition is performed
between two input parameters (vectors of two float values) in step 2. In step 3 and 4,
the values for the rounding to positive infinity 1+2−23 and negative infinity 1−2−23 are
defined. In 5 and 6, the rounding is obtained by the multiplication of the previous result
and the rounding values. Here, the minimum and maximum results of the operations
are calculated to prevent errors like overflow.

7.3.4 Intersection test

The intersection test is performed by means of a program running in the fragment shader.
This program contains the instructions to perform the intersection test in every pixel
of the screen. The rejection test is performed as it was described in section 5.4.2. This
means that a beam is used instead of individual rays. The root is found by means of
an interval bisection, which is implemented using a ping-pong strategy to perform the
iterations of the algorithm. This strategy can be performed using Frame Buffer Objects
(FBO), rendering the intermediate results to textures [42]. The ping-pong consists in a
recursive rendering between two textures, in which the output of the processing of all the
fragments for the first texture is put in a second one, and the output of the processing
over the second texture is again put in the first one, and so on.

In general applications on GPU, the textures are used as two dimensional arrays that
store float variables. Every position of the textures contains four channels (red, green,
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blue and alpha channels) that represents the color for a potential pixel. A float value
can be stored in every channel; those values are used to store the information needed to
calculate the intersection point in every pixel.

In the algorithm presented in this section, these textures must cover all the pixels
of the screen, in this way, a fragment will be used for every pixel in the screen. The
ping-pong process is presented in the figure 7.8.

At each iteration, the interval T must be bisected and each new section must be
evaluated. The evaluation instructions are the same for each interval T , and these
instructions remain in the instruction cache of the GPU. The position of every pixel
in the screen corresponds to every position of the texture. The position information is
available during the execution of the fragment program, which is used to determine the
pixel that is being processed.

The values for the parameter T are also stored in every position of the texture. The
red channel (R) is used to store the number of subdivisions performed over the parameter
T in the current fragment, in power of two. This means that a one in the red channel
indicates that the parameter is currently subdivided in two, a value of two indicates a
subdivision in four sections and so on. The value of the green channel (G) indicates the
subdivision currently evaluated in the current level of subdivision.

A value less than one in R or G indicates that the current fragment is inactive.
This occurs during the intersection test in a fragment, when a root is not found. Those
fragments are no longer processed, while processes in other fragments can be still looking
for roots.

The calculation of the current value of T used to evaluate the implicit function is as
follows:

T = [
maxT

2R
(G− 1) ,

maxT

2R
(G)]

�� ��7.1

where maxT represents the size of parameter T defined at the beginning of the process.

float2 sumI(float2 I1, float2 I2) {
1: float2 result;
2: result = I1 + I2;
3: float one minus 2 23=1-1.0/8388608;
4: float one plus 2 23=1+1.0/8388608;
5: float2 to zero=result*one minus 2 23;
6: float2 to inf=result*one plus 2 23;
7: float lower=min(to zero.x,to inf.x);
8: float upper=max(to zero.y,to inf.y);
9: return float2(lower,upper);

}

Figure 7.7: Addition operation with rounding.
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This value of T and the current values of R and G for the fragment are used to evaluate
the implicit function.

The evaluation is performed for every position of the texture individually. The process
starts with a one in R and a one in G, which indicates that at the beginning, the param-
eter T is bisected and the first section is evaluated. The algorithm for the intersection
test in GPU, is presented in figure 7.9.

The ping-pong process is performed in a fixed number of steps. This number of steps
can vary from surface to surface, but, in all the experiments that we performed, 100
steps was enough to obtain a correct visualization of the surfaces.

The fragment process finishes when: a) every fragment is processed until the number
of subdivisions is reached, or b) when the process for the fragment does not find roots,
or c) when the difference between the maximum and the minimum value of the current
evaluated section of the parameter T is smaller than 0.00001. In the last case, the values
of R and G are set to R = −R and G = −G to indicate that this fragment does not
need to be processed anymore. A conditional at the beginning of the process evaluates
that flag: if the red or green channel have negative numbers, the process is avoided for
the fragment.

Once the ping-pong process finishes, the values of T for every fragment are calculated
using the values in R and G (see equation 7.1). If G or R have negative values (in the
case of fragments that found a root), those values are taken as positive. The shading

Figure 7.8: A ping-pong algorithm is used to perform the evaluation of the implicit
function. Every position of the texture contains the information needed to
calculate the intersection test.
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value can be determined using the final values of T . This last step is done in another
fragment program, executed at the end of the ping-pong process.

An example of the subdivision process is presented in figure 7.10
If the currently evaluated position does not contain any roots (case 1 and 4), then the

level of subdivision remains unchanged, and the position value is incremented by one.
When an evaluated section contains roots (case 2, 3 and 5), that section must be sub-
divided and the new sections evaluated. This means that the value of R is incremented
by 1, and G becomes equal to G ∗ 2 − 1, which puts the current level of subdivision in
the next section of T that has not been evaluated.

In case a given section does not include any root, a test is done to determine whether
the given section correspond to the first or second part of the interval T . In the first
case, the value of R is incremented in 1 so that the next subdivision will be evaluated
at the next step. In the second case, the next section of the previous bisection must be

Algorithm for the Fragment Program
→ (R=Red channel; G=Green channel)

If R < 1 or G < 1
Fragment inactive: leave process

Endif
T = [(maxT/2R) ∗ (G− 1), (maxT/2R) ∗ (G)]
If width(T )<0.00001

Inactivate the fragment (R = −R, G = −G)
Else

Calculate Xp,Yp using position of the fragment
If 0 ∈ fR(Xp, Yp, T )

R = R + 1
G = G ∗ 2− 1

Else
If G%2 = 0

R = R− 1
G = G/2 + 1
If G > 2R

Discard the fragment(G = 0, R = 0)
Endif

Else
G = G + 1

Endif
Endif

Endif

Figure 7.9: Fragment program used to perform the intersection test.
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evaluated. The value of R is decremented, and G is updated.

7.3.5 Anti-aliasing approach

To improve the quality of the generated images, more rays can be traced at the borders
of the surfaces, in which aliasing is more noticeable. The rejection and inclusion test are
used to determine these borders. As was explained in previous chapters, rejection test
is used to detect beams that miss the surface, and the inclusion test is used to detect
beams that completely intersect the surfaces. Beams that do not fulfill both test, are on
the borders of the surface, that is, the beam contains rays intersecting and rays that do
not intersect the surface.

The anti aliasing is performed by means of a super sampling; in this technique, every
pixel is traced with a constant number of rays, and the color calculated for every ray
intersecting the surface is averaged to obtain the final color of the pixel. In this case, a
beam is used to represent a set of rays.

A regular texture can have 1024x1024 positions that can be used to represent a beam.
At the beginning, only one fragment will represent a set of rays, for that reason, some
fragments will not be used, saving computation effort. This idea is presented in figure
7.11.

The process start reserving a set of fragments for every pixel. The results presented
in the next section were obtained using 9 fragments per pixel. At the beginning of
the process, only one fragment is used (figure 7.11a). This fragment will process the
intersection test for a beam crossing all the area of the pixel. According to the algorithm
used for the intersection test presented in last section (see figure 7.9), doing G = 0 and
R = 0 is enough to inactivate a fragment.

Figure 7.10: Subdivision process performed over every fragment. The values of subdi-
vision and position are stored in a texture. The red cross indicates the
position of the root.
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If the beam is crossing a border of the surface, the current fragment must be re-
initialized to process a smaller area of the pixel. Other fragments must be also activated
to process its corresponding areas of the pixel. This means that a new beam must
be traced in every fragment to process its corresponding areas (figure 7.11b). Those
fragments can be activated doing G = 1 and R = 1.

Figure 7.11: a) One fragment is used to evaluate the pixel. b) If the beam is crossing
a border, then other fragments are activated to evaluate more sub-areas of
the pixel.

The detection of borders is performed using the meet operation, as was explained in
section 5.4.3. A border is found when for a beam that intersects the surface, 0 /∈ meet.
The value of the meet operation can be saved in the blue (B) and alpha (A) channels:
the minimum of the meet is saved in B and the maximum in A. Those channels were not
used in the intersection test presented in last section, for that reason, they are available
to store other values. The pseudocode for the anti aliasing algorithm is presented in
figure 7.12.

Figure 7.13 represents a texture to be processed, in which the yellow spheres represent
the fragments that are performing the intersection test. Those fragments will represent
an area that correspond to nine rays (In this case, those fragments are in the left-up
position of the beam). In the other fragments, a zero in the red channel disables further
processing.

If a root is found and the inclusion test fails (the beam contains rays intersecting and
other missing the surface), the fragments near to the main fragment are activated. Those
fragments are used to calculate the intersection test for a proportional area of the pixel
according to the number of fragments activated. If there are nine fragments available,
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the area is subdivided in nine parts. Also, the fragment that started the subdivision
(the yellow one) is reactivated to calculate a part of the area of the pixel.

In figure 7.13, the green spheres represent the fragments activated after the first subdi-
vision step. Other fragments are disabled (excepting the yellow fragment that correspond
to the evaluated area) during this process, then the entire calculation power of the GPU
is used only in them.

When the number of subdivisions set at the beginning of the process is reached,
another fragment program is run. This program averages the colors of the pixels. In the
case of fragments that covers a big area (the initial yellow fragments), the color is not
averaged and used as final color for the corresponding pixel. In the case of fragments
corresponding to borders of the surface, the color of all the fragments is averaged and
put as final color for the corresponding pixel, as was shown in the right of the figure
7.13.

7.3.6 Results

The algorithm was tested on a DELL 670 Workstation, with a Xeon processor (3 GHz)
and 3 Gigabytes of RAM Memory, using a GeForce 8800 GTX GPU. The resolution
selected for the images was 1024 x 1024 (1048576 pixels). In this first test, the anti
aliasing strategy is not used. OpenGL is used to create an initial rectangle that covers
all the screen. This makes the GPU use the fragment shader over all the pixels in the
screen.

Two surfaces that have thin parts are rendered: a Drop (figure 7.14a) and a Tri-
thrumpet (figure 7.14c). Figure 7.14b shows a line connecting the drop with its body; it
is not possible to obtain this result using a ray tracing algorithm based in point sampling.
Also, the tri-thrumpet have thin connections which are correctly rendered (figure 7.14d).

The execution time of the GPU algorithm is also compared with a CPU ray tracing
algorithm based on an interval bisection. In this case, the anti aliasing version on GPU
was used, using nine rays per pixel. The size of the final images is 340x340. Figure 7.15

Anti aliasing Algorithm
Reserve n fragments per pixel
Activate one Fragment
Execute the Intersection test
If the beam is intersecting a border

Re-activate the current fragment and activate the other fragments
Execute the Intersection test in every fragment

endif
Calculate the color for every active fragment
Average the color for active fragments

Figure 7.12: Fragment program used to perform the intersection test.
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shows four surfaces used to test the efficiency and exhibit the quality of this algorithm.

Times are given in table 7.16. Note that the time required to render these surfaces with
the GPU is two orders of magnitude faster. The execution time measured corresponds
to the time necessary to load the data and instruction, execute the program and get the
final results in both CPU and GPU version.

Those results shows that a GPU implementation is much faster than a CPU implemen-
tation. However, the algorithm has many limitations compared with a CPU implementa-
tion, like a more elaborated anti aliasing strategy. Other characteristics like acceleration
structures or illumination models are harder (but not impossible) to implement in GPU
than CPU.

Figure 7.13: An anti aliasing strategy for ray tracing on GPU. Only a fragment repre-
senting a set of rays is used (in yellow). If that beam crosses a border of
the surface, more fragments are used to calculate a more accurate color (in
green). In the right, the final image is obtained averaging the color obtained
in the processed fragments. During the process, many fragments are not
processed saving computation effort of the GPU.
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7.4 Conclusions

In this chapter the reliable algorithm for ray tracing implicit surfaces was improved by
means of two new algorithms: a distributed version and an algorithm running in a GPU.

The results of the two implementations show that it is possible to improve the efficiency
if there is special hardware available. It is remarkable that the improvement in efficiency
using a GPU is between 2 and 3 orders of magnitude.

The coherency between neighboring rays in the ray tracing algorithm fits in the pre-
sented hardware implementation to improve the efficiency: in the distributed implemen-
tation is used to reduce the number of rays shared between workstations, and in the
second case to reduce the number of fragments used in a anti aliasing algorithm.

Figure 7.14: A Drop surface (a) showing in detail the thin section (b). Also a Tri-
trumpet surface (c), and a detail (d).
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Figure 7.15: Some tested surfaces: a) Sphere, b)Kusner-Schmitt, c) Tangle and d) Gum-
drop torus.

Figure 7.16: Comparison of CPU Times vs. GPU times for four surfaces (in seconds).
Surface CPU GPU
Sphere 300 2
Kusner-Schmitt 720 2
Tangle 900 3
Gumdrop Torus 1080 3
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8
Conclusion

This thesis is concluded by summarizing the contributions presented in the previous
chapters. Moreover, some directions for possible future works in the subject of this
thesis are presented.

8.1 Contributions

This thesis has contributed to the state-of-the-art in the ray tracing of implicit surfaces
in the following items:

• Ray tracing based on interval arithmetic has been extended to work with a set of
rays simultaneously. This permits the exploitation of coherence in image space,
reducing the number of intersection tests required in a traditional ray tracing
algorithm. The result of this is the reduction of computational time required
for the ray tracing of implicit surfaces based on interval arithmetic. This makes
the technique applicable in algorithms in which both efficiency and reliability are
required.

• An efficient method to trace shadow rays has been presented. This method is
efficient and reliable, without the complexity of other techniques like beam tracing
for polygonized surfaces. Moreover, it is possible to discover areas that are not
under shadow. Computational time is saved if shadow rays are not traced for
those areas.

• An anti-aliasing algorithm based on interval arithmetic theory has been presented.
The thin details of the surfaces are detected because the beams scan the surface of
the pixel completely. Problems related with point sampling disappear using this
technique. Moreover, the adaptive algorithm introduced can be used to reduce
computational effort in regions with low level of aliasing, obtaining better results
than traditional anti aliasing algorithms based in point sampling.

• A method to exploit spatial coherence has been also presented. Although it was
used for animation purposes, the same algorithm can be used to structure a static
scene. The innovation of this technique is that it works with beams and it is
completely based on interval arithmetic, which guarantees the reliability during all
the process. The application of CGS operations in this method was also introduced.
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• The spatial and time coherence was used to improve the rendering of scenes com-
posed of implicit surfaces. A method to introduce those variables directly in the
definition of the surfaces was presented. In this way, consecutive frames can be
rendered using the same spatial structure and beam, which reduces the rendering
time of the whole animation. The results show that spatial and time coherence
can be efficiently exploited using interval arithmetic.

• A parallel implementation has been obtained for a cluster of computers. This
permits further reduction of the time required for ray tracing based on interval
arithmetic. Image space coherence can be used to reduce the communication be-
tween nodes. This occurs because areas that do not need to be ray traced are
discarded before they are transmitted.

• An algorithm working on the GPU was developed. This algorithm was based on a
GPU-based library where rounding was correctly implemented. The improvement
obtained in time was two orders of magnitude, which makes the use of GPU a good
alternative to improve efficiency for methods based on interval arithmetic.

It is possible to conclude that, although interval arithmetic increases the computa-
tional time of the algorithms, the same arithmetic can be used to exploit coherence to
reduce these times. Also, quality of the visualization can be improved replacing point
sampling by algorithms working for entire sets of values, instead of some samples.

This means that it is possible to keep the reliability obtained thanks to the use of this
arithmetic when efficiency of the algorithm is also required, but with the benefit of a
better visualization. This statement was demonstrated in the contents of this thesis.

8.2 Future work

Besides the contributions presented, there are some open improvements that should be
undertaken. The first one is related to the exploration of alternatives based in GPU.
Every year, GPUs are improving their performance at higher rates than CPUs. Also,
new features are constantly included, allowing a flexible use of the GPU. As an example,
the new models of GPU include a new programable unit to modify the geometry before
the rasterization. There is also a new language called CUDA, developed by NVidia,
that allows to easily exploit parallelism of the GPU. This language which is similar to
C language, permits the use of the GPU as a co-processor, avoiding the need to fit the
programs to the traditional graphics pipeline. These new features should be used to
implement a reliable beam tracing of implicit surfaces running in GPU. There are other
hardware alternatives like the new architecture of Intel called Larrabee, that could also
be considered to compare the efficiency with an implementation in GPU.

Although there are several approaches to render implicit surfaces using graphics hard-
ware, there are two issues that were not deeply studied. First, an efficient approach
requires that most of the computations should be done in the GPU, because the transfer
from main memory to GPU is slow. This includes the construction of acceleration struc-
tures, ray traversing and intersection test all in GPU. Also, it is desirable to combine
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both approaches presented in chapter 6. That is, we are planning to work with a cluster
of computers in which all the processing related to ray tracing in every computer is done
by the GPU. We expect that such distributed algorithm could improve the efficiency of
our implementation up to three orders of magnitude.

Taking advantage of the efficiency obtained with the GPU, there is other improvement
that can be undertaken: the trace of secondary beams. This thesis works with primary
and shadow beams. Reflection beams were not taken into account. This problem can be
complex, due to the different shapes obtained for the intersection between the primary
beams and the implicit surface. We are planning to study different ways to apply Interval
Arithmetic to exploit coherence for reflection beams, taking advantage of the efficiency
obtained by means of the use of the GPU.
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