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1 PRESENTATION 

The present thesis, entitled Molecular Quantum Similarity in QSAR: Applications in Computer-

Aided Molecular Design, is the summarised memory of the work developed during the period of 

four and a half years in fulfilment of the requirement for the defence and obtaining of the Ph.D.† 

degree in Theoretical and Computational Chemistry. Held in the subgroup of Molecular 

Quantum Engineering (EMQ)‡, in the Institute of Computational Chemistry (IQC)‡ of 

University of Girona (UdG)‡, the advisory directives have been provided by Professor Ramon 

Carbó-Dorca. In addition, the tight collaboration with the other components of the group, Emili 

Besalú, Lluís Amat, David Robert, and, specially, Xavier Gironés, has not only been 

enlightening but also productive.  

 

The long journey of doctorate began in 2000, with the instruction learned in the first edition of 

the Interuniversity Course in Theoretical and Computational Chemistry, held in Castelló. 

This training provided the foundation for the basic knowledge in the theoretical chemistry field. 

Already in the lab, the following stage was devoted to the learning of the basic gear of 

Quantum Similarity Theory and QSAR techniques, as well as to the initiation in computing 

strategies. This primary learning phase concluded with the elaboration of the master research 

project to obtain the Advanced Studies Diploma (DEA) ‡, defended in June 2001.  

 

After this period, several research projects have been proposed and have prospered, resulting in 

different publications. Among the ensemble of cooperation opened with other scientific research 

groups that conforms this thesis, some of them are still in progress. 

                                                      
† Doctor of Philosophy 
‡ Acronyms derived from Catalan language 
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2 STRUCTURE OF THE MEMORY 

The structure of the memory, composed by five chapters, has been conceptually divided into 

two differentiated parts. On one hand, the theoretical background section, which is composed 

by Chapter 2 and Chapter 3, begins with a historical review compiling the previous 

antecedents in the literature. Then, the specific techniques useful to follow the discursion of the 

presented work are discussed in detail. These methodological chapters follow a conducting 

thread throughout theoretical methods, computational tools and statistical techniques leading to 

the comprehension of the ultimate purpose: the understanding of the nature manifested in the 

mechanistic and chemical behaviour of any particular system. On the other hand, the Chapter 

4, devoted to applications and results, deepens into specific practical applications, showing the 

framework of the theory. Exceptionally, after the concluding remarks, an annex with the 

printouts of various contributions is appended.  

 

Next, the content of the chapters is briefly described. 

 

■ Chapter 1. Introduction. 

This preliminary chapter attempts to overlook the driving insights of this work, as well 

as to present a brief sketch that will guide the reader throughout the development of the 

dissertation. 

 

■ Chapter 2. Quantum Similarity Theory. 

This is an introductory chapter were the main concepts and definitions related to 

quantum similarity theory are presented. This chapter begins with a historical revision, 

the mathematical formulation, and the type of quantum similarity measures, followed by 

a brief enumeration of the multiple applications derived from the seminal idea. Without 

deepening into computational facets, the section supplies a clear perception of the 

methodologies employed in the calculation of Molecular Quantum Similarity Measures 

(MQSM). 

In the second section of the chapter, the basic theoretical background of the topological 

approach, based on graph theory, is also sketched. From this basis, the connection 

between quantum similarity theory and the classical topological approach is derived, 

and the resulting Topological Quantum Similarity Indices (TQSI) are properly defined. 
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■ Chapter 3. QSAR Analysis.  

This episode presents the new Computer-Aided Molecular Design (CAMD) advances 

and highlights the recent development of Quantitative Structure-Activity Relationships 

(QSAR) techniques. First, it introduces the historical birth and development of QSAR 

techniques. The QSAR field has significantly evolved since its qualitative origins, to the 

actual three-dimensional and higher dimensional models, going through the linear free 

energy relationships, the Hansch analysis, and the QSAR based on topological 

descriptors. In addition, this section also describes the generation of descriptors, the 

statistical treatment of Similarity Matrices (SM), and the validation of results. The most 

common chemometric techniques are also emphasised; among them, the multivariate 

dimensionality reduction and statistical validation techniques. The statistical tools are 

not exclusive from QSAR but they can be applied to any data set. In any case, the 

objective is to build a mathematical model relating the molecular descriptors with the 

experimental data, namely the biological activity.  

 

■ Chapter 4. Applications of Quantum Similarity Measures to QSAR. 

This chapter illustrates some technical aspects of the process. Here, a exposition and 

analysis of the obtained results by employing similarity measures as a source of 

molecular descriptors, as well as the influence of several factors in the QSAR model, 

are discussed. Also the chronological synthesis of the evolution suffered in the different 

procedures involved in the QSM calculation is presented. Here, practical application 

examples are displayed, some of them complemented by the contributions annexed at 

the end of the memory. They cover several fields of interest, i.e. pharmacology, toxicity, 

and property studies. 

 

■ Chapter 5. Conclusions.  

Finally, the last chapter includes the final considerations and summarises the concluding 

remarks, together with future perspectives. Besides, a succinct enumeration of the 

published contributions in journals, and poster and oral communications, is listed. 

 

■ Annex. Contributions.  

The printouts of three published papers have been annexed as an appendix.  
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5 

1 GENERAL INTRODUCTION  

Computer-Aided Molecular Design (CAMD), together with computational chemistry, is a 

relatively new discipline of chemistry with outstanding projection. The possibility to virtually 

design new useful compounds with well-defined properties reducing the high costs of 

experimental synthesis has recently promoted the investment in theoretical research.  

 

Nowadays, CAMD methods are of special relevance in the rationalization of the discovery of 

compounds with specific pharmaceutical properties and drug research and development. Hence, 

the effective design of chemical structures with the desirable therapeutic properties is directed 

towards Computer Aided-Drug Design (CADD) [1-5], a well established area of CAMD [6], 

among others. These techniques comprise new methodologies, such as molecular modelling, 

computer simulation, and the recently rationalized and systematized discipline of Quantitative 

Structure-Activity Relationships (QSAR). 

 

The main applications of CAMD are the elucidation of the basic requirements for a compound 

to elicit a determined activity, the simulation of the binding between a ligand and the receptor, 

the proposal of new mechanisms to comprehend biological processes, the prediction of chemical 

reactivity, the discovery of new active principles or prototypes, the screening for active lead 

compounds, and the prediction of activities for non-synthesised analogues. These applications 

convert CAMD in a highly suitable tool to be used in molecular design, and, in particular, in 

drug design.  

 

The process to synthesise new drugs usually implies first of all the discovery of the potential 

active principle of interest. Once identified the candidate structure, there is a research of 

analogue compounds with the optimal desired properties, which improve the biological activity 

and the pharmacokinetic characteristics, and simultaneously diminish the secondary effects and 

the toxicity. The biological phases include animal and human testing for the activity, specificity, 

bioavailability, lack of toxicity, and, also, medical need, manufacturing requirements, and 

market potential, among others. The drug discovery process, founded in error-prone methods, 

has the attached inconvenient of high costs in time and money.  
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In recent years, pharmaceutical companies have complemented the conventional drug discovery 

technologies by rational drug design. Thus, trial-and-error chemistry-based discovery methods 

have been assisted by computer-based techniques, automated assays, and other advanced 

systems. Advances in combinatorial chemistry, and biotechnologies such as genomics and 

proteomics, have improved the productivity of the research and development processes. 

Integrated disciplines are synergistically applied to the drug discovery process in 

interdisciplinary projects.  

 

Illustratively, combinatorial chemistry analyses enormous libraries of millions of compounds 

by means of High Throughput Screening (HTS) methods. HTS screens large numbers of 

compounds selected from a library against a biological target, id est. a protein playing a 

fundamental role for a particular disease. Afterwards, data mining techniques identify novel 

valid patterns in the data, potentially useful to analyse the data sets.  

 

In the last decades, thanks to the improvements in computer speed and capacity, computer-

based methodologies increased thousand-fold the number of lead compounds available for 

further research. But not only the number of viable drug candidates increased, but also the costs 

and time consumed in various drug discovery processes was dramatically reduced, improving 

the efficiency of the drug development. 

 

However, only one in 5000 early drug candidates makes it through the discovery process. 

Besides, provided that new chemical entities that may potentially be turned into drugs need to 

be screened for toxicity and viability in human treatment applications and, most importantly, 

safety, only one out of ten compounds succeeds in clinical trials. Thus, although emerging 

technological advances have helped to increase the speed of the early stages of the drug 

discovery process, they have not been of much help in the trial stages, which are the most time-

consuming and costliest parts of the process. For example, in 2003, the estimated costs of 

bringing one single new drug to market were estimated to have risen to 1200 million dollars [7]. 

 

One of the first approaches to reduce these costs were attempted by correlating the biological 

function of a compound with its chemical structure, expressed in terms of molecular structural 

descriptors, by means of the so-called QSAR techniques.  
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Within the QSAR approach, the descriptor variables are not physically measured but computed; 

hence, they are easy and cheap to generate even for large molecular sets. QSAR analysis 

attempts to build a mathematical equation that models the behaviour for a series of compounds, 

in order to provide insight into structure-function or structure-activity relationships. One of the 

objectives is the comprehension of the factors influencing the behaviour of a set of structurally-

related compounds and, once obtained the relationship, the activity for untested compounds of 

interest is predicted by extrapolation. In particular, in the pharmacological context, QSAR serve 

to reject and identify the best drug candidates for toxicity and clinical experiments, or, more 

generally, to convert structural classes of compounds in potential drugs.  

 

QSAR assume that the biological activity of a compound is a consequence of its chemical 

structure [8-9]. Based on the similarity principle, which states that similar molecules possess 

similar properties, QSAR allow generating descriptors for molecular structure. The similarity 

principle hypothesis requires a procedure to measure the molecular similarity, provided by 

Molecular Quantum Similarity Theory. 

1.1 Molecular Quantum Similarity (MQS) 

The notion of similarity is deeply attached to the human knowledge. In the quotidian perception 

of objects and even situations, unconscious associations in terms of similarity are continuously 

established by applying hidden criteria. The similarity concept is also tightly attached to 

science. The establishment of comparative measures between geometrical shapes was already 

proposed in the ancient Greece. Later, within the field of chemistry, the periodical table of 

elements [10] was founded in similarity criteria between atomic species.  

 

However, the systematization of cognitive processes leading to the evaluation of similarity is 

not evident. In the chemistry domain, different proposals have attempted to answer the question: 

“how similar is a molecule to another?” Therefore, is crucial to have a sound definition of 

unbiased quantitative measures of molecular similarity. But the arbitrary definition of similarity 

is necessarily linked to the analysed molecular aspect.  

 

In the nineteenth century, quantitative similarity measures derived from a topological point of 

view were established using the chemical graph theory [11-12], yielding the so-called 

Topological Indices (TI) [13].  
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More recently, taking advantage of computational advances, molecules could be considered as 

objects ruled by quantum mechanics. The first quantitative measure of Molecular Quantum 

Similarity (MQS) between two molecules founded on quantum mechanical concepts was 

formulated by Carbó [14]. Since any quantum system can be completely characterised by a 

wave function resulting from Schrödinger equation, Carbó proposed a numerical comparative 

measure using the superposition of electronic charge densities of two molecules as a comparing 

source. This significant definition resulted in the so-called Molecular Quantum Similarity 

Measures (MQSM), calculated as the volume integral between the corresponding Density 

Functions (DF) of the two compared objects, weighted by a non-differential positive definite 

operator, namely the quantum similarity operator. The global set of quantum similarity 

measures, which compares all the possible pairs of quantum objects of the system, is expressed 

in matrix form. MQSM constitute a simple way to obtain relationships between the compared 

quantum objects, by identifying the characteristics of electronic density that vary from a system 

to another. 

 

This definition is not only still active but have also been developed in the IQC by Carbó and 

collaborators, emphasizing its mathematical meaning [15-17], reviewed in several reported 

works [18-22], and extensively applied to the resolution of problems of different nature [23-25]. 

This research line has also been pursued by other investigation groups. Among them, the work 

of Cioslowski [26], Allan and Cooper [27], and Richards [28-29], are particularly relevant. In 

addition, from a different perspective, Herndon [30-31] substituted the quantum mechanical 

magnitudes by elements of graph theory and topology. This approach was followed by Mezey 

[32-33], Ponec [34-41], and other authors [42-44]. 

 

Illustratively, the interest in the topic has stimulated the publication of different monographic 

reviews [45-51] and the biennial international congress Girona Seminar on Molecular Similarity 

(GSMS) [52-54], forum of discussion of the advances in the matter.  

1.2 Quantitative Structure-Activity Relationships (QSAR) 

The QSAR methods include all the techniques with the objective to establish empirical or 

theoretical patterns for the behaviour of biologically active families of compounds, with the aim 

to efficiently acquire the optimal activity. The QSAR analysis presupposes a relationship 

between the properties of a molecule and its structural characteristics, and attempts to build 

simple mathematic models to describe the biological or chemical behaviour for a set of 

compounds [55-57]. 
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QSAR techniques are applied upon analogues of an active principle with an experimentally 

determined activity. Usually, these compounds are formed by a common pattern and variable 

substituents or fragments. Then, the molecular descriptors defined to characterise the molecular 

structural features of the series are stored in a matrix of molecular descriptors. The column 

vectors of the matrix act as the independent variables in the correlation equation that relates 

them with the vector of experimental biological properties.  

 

The QSAR analysis comprises as well the definition of molecular descriptors as the statistical 

techniques used to treat these descriptors. On the other hand, chemometrics provides the 

statistical tools required to build the mathematical models and to enhance their predictive 

capacity [58-59]. Usually, the model is validated using members excluded from the training 

series and comparing the predicted values with the experimental ones. The subsequent phase is 

the prediction of the activity for non-synthesised products with the aim to distinguish the active 

analogues from the non-active ones, and to improve the effectiveness of the process. 

 

The increasing importance of the QSAR topic has resulted in several specialised journals 

(Journal of Medicinal Chemistry; Quantitative Structure-Activity Relationships; Journal of 

Computer-Aided Molecular Design; Journal of Molecular Modelling; SAR and QSAR in 

Environmental Research), monographic books [60-62], and congresses (European QSAR 

symposium; International Workshop on QSAR’s in the Human Health and Environmental 

Sciences; Techniques in Pharmacophore Development), and associations (The QSAR and 

Modelling Society).  

1.3 Molecular Similarity in QSAR 

Once implemented the QSAR techniques, the molecular similarity was considered as a valid 

tool to generate molecular descriptors [63-65]. In our lab, the so-called Similarity Matrices 

(SM), obtained by means of similarity integrals between density functions of the molecules 

being compared have been used as the source of molecular descriptors. The first application of 

molecular similarity in QSAR dates back from 1983 [66]. Since then, similarity measures have 

been used in QSAR studies [67-71], either within the classical formulation of Carbó Indices 

[72-73], topological similarity indices [74-75], or other [76-80].  
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In our lab, the application of quantum similarity to QSAR was initially qualitative. To such an 

extent, the representation of quantum objects was defined [81-82], and physico-chemical 

properties were associated with spatial groupings [83-85]. Afterwards, the connection between 

the expected value of a physical observable and quantum similarity measures was described 

[86]. The practical implementation of this work resulted in the theoretical protocol of 

application for quantum similarity matrices in QSAR [87-89], together with different illustrative 

examples, either in QSTR [90-92], QSPR [93-95] or QSAR of pharmacological interest [96-

102].  

 

The main drawback of the practical application of MQSM to QSAR analysis is the number and 

size of compounds. Normally these studies deal with big molecular sets formed by large 

molecules [104-106] difficult to analyse at an ab initio level [107-108]. Indeed, in the MQSM 

definition there is the implicit alignment of the compounds [109-110]. In particular, the research 

of the optimal molecular superposition may be the computational bottleneck of the process 

because it may imply the repeatedly computation of similarity measures [111]. Some measures 

were adopted to alleviate these problems. On one hand, the Atomic Shell Approximation 

(ASA) [112-117], developed by Constans [120] and optimised by Amat [121-122], computes 

approximated molecular electronic density functions. On the other hand, optimization 

techniques used for the pairwise molecular superposition are based either in the maximal 

similarity alignment rule, implemented by Constans [123-124], and the Topo-Geometrical 

Superposition Algorithm (TGSA), by Gironés [125-126]. 
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2 OVERVIEW 

One of the principal research axes of the EMQ group has been devoted to molecular similarity, 

not only from its foundation, but also from the seminal independent work of Professor Ramon 

Carbó-Dorca, who envisaged the first formal definition of a quantitative measure of molecular 

similarity [14]. Thus, the research group has been historically implicated in all the aspects 

related to molecular similarity, from conceptual foundations based on theoretical quantum 

chemistry [22,127-129] to specific applications developed for particular study cases of interest, 

going through the development of new methods [130-138], id est., the computational 

evolvement and the methodological implementation of statistical [139] and mathematical tools 

[140-149] yielding novel software [22,150], and the systematizing of application procedure 

protocols using different approaches [25,87,132,151-152]. To such an extent, with the leitmotif 

of molecular similarity as a wrapping background, this work harnesses several previous 

contributions of molecular similarity that constitute its precedents, following the initial 

investigation line opened in the master research project, entitled Application of Molecular 

Quantum Similarity Measure to the study of Quantitative Structure-Activity Relationships. 

 

In particular, several single motivations have impelled the different studies compiled in this 

memory. But the resolution of specific problems has a unifying objective, focused on the 

application of molecular similarity concepts in QSAR analysis, with the aim to develop 

QSAR models for specific study cases pharmacologically relevant. 

 

Within the contextualised frame of molecular similarity, the object of study in every case leaded 

to the differentiation of the general QSAR into the separated branches of QSTR, and QSPR, 

referred to toxicological or property studies, respectively, depending on the considered 

investigation case. For the sake of simplicity, these variants will be generally named as QSAR 

throughout this thesis. 

 

It must be noted that two different representations of molecules have been used, in regard to the 

treatment of the density function. In the more general case, molecules are described by means of 

the global density function and similarity measures between all the possible pairs of compounds 

of the series were computed. In this case, the superposition process and conformational analysis 

have special relevance. The second approximation is founded on the partition of molecules into 

fragments. Here, the electronic densities used to define the molecular fragments, were used to 

calculate similarity measures defined upon the fragments.  
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In particular, the most relevant contributions of this thesis to all this enginery can be succinctly 

outlined in chronological order. The track of the outdoors collaborations carried out in 

temporary research stays contextualises the evolution of the present research memory. 

 

■ Application of the Classical MQSM protocol, which had already been elaborated in 2000, 

at the beginning of the Ph. D., by the preceding EMQ group. Conventional Molecular Quantum 

Similarity Measures (MQSM) were computed by employing the preexisting software [64-65,89-

90], implemented by Robert [117] and Gironés [118], by using the Atomic Shell Approximation 

(ASA) [119-123] for the electronic densities, and the maximum similarity alignment rule [124] 

or the Topo-Geometrical Superposition Algorithm (TGSA) [125] for the molecular 

superposition. 

 

In this initial phase, the work fructified in a QSTR study on polycyclic aromatic hydrocarbons, 

and two QSAR models for the antimalarial activity on series of 1,2,4-trioxanes, cyclic peroxy 

ketals, and artemisinin derivatives.  

 

►Gallegos, A.; Robert, D.; Gironés, X.; Carbó-Dorca, R. Structure-Toxicity Relationships of Polycyclic 

Aromatic Hydrocarbons using Molecular Quantum Similarity. J. Comput.-Aid. Mol. Des., 15(1), 2001, 

67-80. 

 

► Gironés, X.; Gallegos, A.; Carbó-Dorca, R. Antimalarial Activity of Synthetic 1,2,4-Trioxanes and 

Cyclic Peroxy Ketals, a Quantum Similarity Study. J. Comput.-Aid. Mol. Des., 15(12), 2001, 1053-1063. 

 

► Gironés, X.; Gallegos, A.; Carbó-Dorca, R. Modeling Antimalarial Activity: Application of Kinetic 

Energy Density Quantum Similarity Measures as Descriptors in QSAR. J. Chem. Inf. Comput. Sci, 40, 

2000, 1400-1407. 

 

■ Implementation and Computational Development of Topological Quantum Similarity 

Measures (TQSM) materialised in the TOPO program. This software was evolved together 

with Gironés, and taking as precedent the former work of Besalú [153] and Lobato [154153-

157]. The definition uses the so-called Topological Quantum Similarity Indices (TQSI) 

resulting from Atomic Quantum Similarity Measures (AQSM), as a source of descriptors 

[158-161].  
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The calculation of TQSI only depends on the molecule; thus, the alignment process for each 

molecular pair was avoided. Here, taking into account the study cases used in the previous 

research line, several contributions were envisaged. QSAR studies for the carcinogenic power, 

the antimalarial activity, and the aquatic toxicity were performed for the molecular families 

considered in the preceding section. Also a third study applying TQSI to QSPR, QSTR, and 

QSAR problems o various sets is in progress.  

 

► Gallegos, A.; Gironés, X.; Carbó-Dorca, R. TOPO. Institute of Computational Chemistry, University 

of Girona, Girona, 2000. 

 

► Besalú, E; Gallegos, A.; Carbó-Dorca, R. Topological Quantum Similarity Indices and Their Use in 

QSAR: Application to Several Families of Antimalarial Compounds. In MATCH-Communications in 

Mathematical and in Computer Chemistry (Special issue dedicated to Prof. Balaban). Diudea, M.; 

Ivanciuc, O. (Eds.) MATCH-Commun. Math. CO, 44, 2001, 41-64. 

 

► Gallegos, A.; Gironés, X.; Carbó-Dorca, R. Topological Quantum Similarity Measures: applications in 

QSAR. In Proceedings of the 5th GSMS. Sen, K. (Ed.) Nova Press. In press. 

 

► Gallegos, A.; Gironés, X. Topological Quantum Similarity Indices based on Fitted Densities: 

Theoretical Background and QSPR Application. To be submitted. 

 

■ Novel Application of Quantum Self-Similarity Measures (QS-SM) in the partitioned study 

of molecules by molecular fragments. The application of this definition for each compound in 

series of chemicals with a single common backbone and different substituents, also avoided the 

costly bottleneck superposition process of aligning every two molecules. This research line is 

headed by the Professor Robert Ponec of the Institute of Chemical Process Fundamentals of 

the Czech Academy of Sciences in Prague, and has been synergistically developed by Amat 

[162-166] and Gironés [167-168]. In particular, the collaboration starting from a temporary 

research stay in the winter 2001 is nowadays still active. 

 

The conjunct work resulted in a contribution applied on the study of several sets of anti-

tuberculotic benzoxazines.  

 

► Gallegos, A.; Carbó-Dorca, R.; Ponec, R., Waisser, K. Similarity approach to QSAR. Application to 

antimycobacterial benzoxazines. Int. J. Pharm., 269, 2004, 51-60. 
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These families were independently examined by means of combinatorial chemistry procedures. 

Using COMBINATOR [169], a virtual molecular library of 3D benzoxazines was generated 

[170]. The computer code calculates the series of all the possible structures formed by the 

combination of the generation basis with all the various substituents, by placing different 

selected fragments as substituents at different molecular sites. This molecular generation basis 

consists of a substitution pattern defined by the substituents, the substitution sites, and the 

common backbone.  

 

■ Application of a QSAR study based on both experimental, quantum theoretical 

parameters, and physicochemical properties, with a pharmacological insight. This study 

was carried out under the supervision of Professor Mark Cronin [171-172], from the QSAR 

and Modelling Research Group of the School of Pharmacy and Chemistry, in the Liverpool 

John Moores University, in the spring 2002.  

 

In particular, the molecular series of study consisted of a semiquantitative analysis of estrogenic 

activity, where the experimentally measured biological activity had been classed into two 

discrete categories.  

 

► Gallegos Saliner, A.; Amat, L.; Carbó-Dorca, R.; Schultz, T.W.; Cronin, M.T.D. Molecular Quantum 

Similarity Analysis of Estrogenic Activity. J. Chem. Inf. Comput. Sci., 43, 2003, 1166-1176. 

 

■ Finally, not specially related to the MQSM research field, the Electron Localization 

Function (ELF) [173-175] was used to investigate maximal probability domains for linear 

molecules [177-178]. Professor Andreas Savin directed this work, carried out in the fall 2002 

and beginning 2003, in the Laboratoire de Chimie Théorique of the Centre Nationale de 

Recherche Scientifique (CNRS), of the Université Pierre et Marie Curie of Paris. 

 

► Gallegos-Saliner, A.; Carbó-Dorca, R; Lodier, F.; Cancès, E.; Savin, A. Maximal Probability domains 

in Linear Molecules. In, Proceedings of the 6th GSMS. Sen, K. (Ed.) In press. 

 

■ As a future project, a collaboration with Professor Patrick Bultinck [135,179-180] from the 

University of Ghent to conceptualise, develop, and implement a new Chiral Molecular 

Quantum Similarity Measure has been envisaged. This new measure would intend to 

differentiate the similarities and dissimilarities between two chiral molecules [181-184]. 
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The underlying physical laws necessary for the mathematical theory  

of a large part of physics and the whole of chemistry  

are thus completely known, and the difficulty is only that  

the exact application of these laws  

leads to equations much too complicated to be soluble. 

 It therefore becomes desireable  

that approximate practical methods  

of applying quantum mechanics should be developed,  

which can lead to an explanation  

of the main features of complex atomic systems  

without too much computation. 
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1 INTRODUCTION 

The characteristics and behaviour of substances are partially conditioned by their structure, that 

is, compounds have different functions because they have different structures. Thus, it can be 

considered that in chemistry, function follows form. Quantum mechanics principles postulate 

that the geometric and electronic structure of a molecule contains the features responsible for its 

physicochemical properties and biological activity. However, it is not obvious that these 

features can be discerned in a simple way. In addition, in quantitative structure-function studies, 

there is the conceptual difficulty of relating structures, which cannot be simply depicted by a 

number, with properties, most of which are represented by numbers. By using a set of well-

understood mathematical parameters as descriptors of molecular structure, complex 

physicochemical and biological behaviour of molecules can be described. Such approaches 

differ from the traditional QSAR methodology, where selected simpler physicochemical 

properties are employed to predict the function of molecules. Indeed, mathematical descriptors 

have a direct structural interpretation and they offer a deeper insight into the structural factors 

governing molecular properties.  

 

In particular, the characterization of chemical structure has been forever of great interest, 

although the term was not properly described until 1861 by the Russian chemist Butlerov [1]. 

Butlerov defined chemical structure as the type and manner of the mutual binding of atoms in a 

compound, without specifying the nature of bonding. The links existing between atoms in 

molecules were depicted as dotted or continuous lines [2], solid rods [3], or even as tubes of 

force [4]. Structural formulas drawn with straight lines connecting the bonded atoms were first 

published in 1858 by the Scottish chemists Couper [2], and in 1864 by Crum Brown [5-7]. 

From those times, several characterization levels of molecular structures have been described, 

from the simple enumeration of atoms to complex metabolic simulations. 

 

Thus, the characterization of a structure is represented by an ordered set of components with 

some information on the relationship between the components. Such information can be given 

in a form of a list of the components that imply the labelling of atoms and bonds (molecular 

codes), or in the form of the count of components of various types, describing the mathematical 

properties of a structure (structural invariant). Different structural molecular description levels, 

ordered by the increasing amount of provided information, are listed below:  
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a) List of type of atoms that constitute the molecule.  

 

b) Empirical formula, that is, the simplest stechiometric formula indicative of the proportion 

of different atoms.  

 

c) Molecular formula, indicative of the number of atoms of each type. It corresponds to the 

formula necessary to calculate the exact molecular mass.  

 

d) In contrast to the monodimensional constitutional information provided by the preceeding 

formulas, the bidimensional structural formula represents the arrangement of atoms using 

the topology of the molecule, and the connectivity of the constituting atoms.  

d.1) The graph, a variant of the structural formula, omits the type of atom and nature of 

bonding.  

d.2) Also, the simplified hydrogen-supressed graphs, employed in organic chemistry for 

structure representation, are widely used. 

d.3) It has to be remarked that alternative representations at a similar level have been 

designed, for example Simplified Molecular Input Line Entry Specification (SMILES) [8].  

 

e) Three-dimensional structure describes the structure of the molecule as a three-

dimensional entity with the atoms situated in specific positions in the space (x,y,z, 

coordinates), thus providing geometrical and spatial information.  

 

f) Resolutions of Schrödinger equation independent or dependent of the time, which include 

the description of charge distribution. They can constitute the most accurate description, 

depending on the level of theory used to solve them.  
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a) Type of atoms C and H 

b) Empirical formula CnH2n+2 

c) Molecular formula C4H10 

d) 2D Structural formula 

  H    H    H    H 

       H – C – C – C – C – H 

  H    H    H    H 

         d.1)  Graph 

 

         d.2) Hydrogen-suppressed graph 
 

         d.3) SMILES CCCC 

e) 3D Structure 

 

f) Schrödinger equation 
ˆ

ˆ

H E
dH i
dt

Ψ = Ψ
Ψ

Ψ =
 

Figure 1. Levels of characterization for butane. 

 

For the formulation of structure-function relationships, different descriptors can be employed, 

depending on the theoretical basis adopted for the description of the structure of molecules: 

- Quantum similarity descriptors, based on quantum mechanical concepts 

- Topological descriptors, based on graph-theoretical concepts 

- Quantum similarity-based topological descriptors, founded on the intersection of 

quantum similarity and classical graph theory 

 



30  MQS in QSAR: Applications in CAMD 

 

 

The first approach considers the three-dimensional geometrical structure of molecules, derived 

from quantum mechanical calculations. Schrödinger equation provides the theoretical tools to 

calculate density functions, which describe the electronic characteristics of molecules at 

different levels of theory, i.e. semiempirical, and ab initio, in order of increasing precision. 

Then, quantum similarity theory, presented in detail in Section 3, employs density functions to 

construct quantum similarity measures, used as source for descriptors, as exposed in Section 4. 

The second approach, treated in Section 5, pictures molecules as planar graph structures, and is 

focused on the topological description of molecules. Graph-theoretical descriptors are based on 

binary connectivity or adjacency tables, which account for the presence or absence of 

connections between atoms. Finally, a connection between classical graph theory and the 

general theory of quantum similarity can be also envisaged, as shown in Section 6, leading to 

the quantum similarity-based topological indices, which have into account as well the 3D spatial 

disposition as the structure-based description of the system. 
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2 INTRODUCTION TO SIMILARITY  

2.1 The concept of similarity 

In human conscience, the intuitive concept of similarity is deeply attached to knowledge. In 

everyday life, several unconscious associative mechanisms based on experience allow to 

establish common characteristics and differences among the perception of several objects, 

events, or situations, i.e., the usual contexts for similarity. In an instinctive way, the human 

mind continuously compares new knowledge with background knowledge, using criteria 

founded on experience. Therefore, a new concept is acquired when some similarities and/or 

dissimilarities are processed among the new information received and the previous one [9-10]. 

 

The first scientific-like contributions to the similarity concept date back to the ancient Greek 

philosophy. Concretely, the logical inference process of analogy consists of a relational process 

based on the systematic comparison between structures, in order to analyze their common and 

distinctive features. Using the properties and relations between objects as a kind of thinking 

involved in various cognitive tasks, analogy allows making inferences based on the 

correspondences found between objects. In a philosophical interpretation of science, similarity 

attempted to explain the characterization of matter from the basic elements: fire, air, water, 

and earth. In chemistry, incidentally, the principle of analogy is the basis to assume that similar 

molecules possess similar properties, and this is the foundation of empirical relationships 

between structure and activity. 

 

In the frame of mathematics, similarity had been rationally used by Pythagoras to formulate the 

well-known theorem, based on the similarity of triangles. Indeed, similarity is undoubtedly an 

important geometrical and spatial concept. Particularly, some models for rational number 

concepts are based on similarity; for example, ratio and proportion [11].  

 

Mathematicians use the term similar to describe objects that have the same shape but not 

necessarily the same size, that is, proportional objects with the same ratio. However, this is not a 

precise definition for similarity; to delimit this definition it has to be taken into account that, on 

one hand, the qualifier “not necessarily” includes congruent figures as a special case of similar 

figures and, on the other hand, the necessary conditions for objects to have the same shape need 

to be defined.  
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For example, two geometrical figures are considered to have the same shape if their 

corresponding angles are equal and the corresponding sides are proportional. To state the matter 

differently, two objects are similar if they can be transformed (by translations, reflections or 

rotations) only changing their position in a plane, so that they can be enlarged or reduced. The 

enlargement refers to similarity transformations that make a figure bigger, whereas the 

reduction is therefore regarded as an enlargement with a scale factor between 0 and 1. 

 

In chemistry, the periodical table of the elements was predicted in 1869 by Mendeleev [12], 

from the observation and comparison of the similar chemical behaviour and reactivity of 

elements. From the systematization of atomic properties, the elements were classified into a 

table, with empty gaps corresponding to the substances still unknown. Mendeleev was able to 

predict not only the non-discovered elements but also their physico-chemical properties, by 

noting patterns of the combination ratio of well-classified elements. 

 

Summarizing, the concept of similarity can be directly related to the relative comparison 

between different systems. Notwithstanding, although in the human’s intuitive concept of 

similarity there is a notion of degree of similarity, the process to establish similarities and 

analogies is often heuristic and subjective, and hence difficult to systematize. Thus, it is only 

meaningful to compare two objects with respect to a third one. Similarity does not exist in 

absolute terms but it is a relative term. Besides, similarity can be performed between the 

representations of molecular structures but also between numerical descriptors obtained by 

conversion of those structures. In particular, for scientific purposes, the quantification of 

similarity, univocally calculated from well-defined parameters, has been forever of great 

interest.  

2.2 Molecular Quantum Similarity 

The definition of a similarity measure between two chemical systems is a crucial question in 

theoretical chemistry. Specially, the description of quantitative measures for molecular 

similarity has been carefully examined in the bibliography 13]. Molecular similarity attempts 

to answer the question: “how similar is a molecule to another?”. There is not a unique answer 

for this question, but it depends on the molecular aspect to be analyzed, such as functional 

groups or common substructures. Considering that atoms and molecules can be regarded as 

Quantum Objects (QO), a rigorous definition of similarity is based on quantum mechanics 

theory, which deals with the information regarding such microscopic systems. Thus, molecular 

similarity measures can be naturally based on well-defined theoretical quantum mechanical 

descriptors, derived from the molecular electronic structure. 
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Quantum mechanics provides a feasible way to attach a descriptive function to each molecule. 

According to quantum mechanics postulates, since all the information that can be extracted from 

a quantum system is contained in its wavefunction, density functions constitute a suitable 

source for similarity descriptors. Thus, from the subsequent definition of a similarity measure, 

founded on quantum similarity theory, quantum objects can be described in a quantitative 

way, and, therefore, their degree of similarity can be evaluated. The ability to measure the 

similarity between a pair of items provides the capacity to construct new objects with better 

characteristics than the first ones, as will be shown afterwards. Moreover, quantum similarity 

theory can be also based as a frame to compare general shapes, conformations of points, 

distance functions on graphs, matrix eigenspectra, distributions, etc. [14].  

 

Historically, the quantification of the similarity between two molecular structures based on 

quantum chemistry was firstly proposed by Carbó et al. in 1980 [15]. In this seminal paper, 

Carbó provided a general numerical definition for the measure of similarity between two 

molecules based on the comparison of their molecular electronic densities, hence founding 

quantum similarity theory. Afterwards, the same research group has devoted to its theoretical 

development [16-24], and comprehension of the quantum mechanical meaning of similarity 

measures [25], soundly based on mathematical foundations [26-28]. Concerning to the 

implementation of novel procedures, it must be noted the deduction of adjusted electronic 

density functions [18,21,29-34], and the design of new algorithms for molecular superposition 

[35-36]. In the application frame, the definition of new measures, and their practical 

applications [16,37] have also been extensively developed. 

 

Simultaneously, other research groups adopted quantum similarity, extending the 

implementation of the theory to various fields and envisaging new applications, therefore 

producing a great deal of interesting results. Among the most relevant contributions, the work of 

Richards [38-49], who quantified similarity measures substituting density functions by 

electrostatic potentials [51-52], the measures proposed by Cioslowsky [53-56], the similarity 

measures defined upon momentum-space density functions of Allan and Cooper [57-64], and 

the work of other authors [65-74] must be noted.  

 

Besides, from another point of view, Herndon substituted quantum mechanical descriptors by 

topological indices derived from graph theory. Herndon studied the quantification of a measure 

of similarity synthesizing graph theory and molecular similarity [75-80]. This topological 

approach was also pursued by Mezey [81-91], and Ponec [92-99], who studied the electronic 

effects in several organic reactions, among others. 
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Since then, molecular similarity has had a great success, entailing the publication of several 

monographs [10,100-107], and joining scientists of all over the world in the biannual Girona 

Seminar on Molecular Similarity, which has recently celebrated its sixth edition [108-110].  
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3 QUANTUM MECHANICS AND THE ROLE OF DENSITY 

FUNCTION 

3.1 The Wavefunction: First postulate of Quantum Mechanics 

The first postulate of quantum mechanics [111-113] states that every state of a quantum object, 

i.e. a physical system formed by a numerable assembly of microscopic particles, can be 

described by means of a function depending on the variables of the system: time and 

coordinates of position. This complex mathematic function, from which all the information of 

the system can be extracted, is the so-called wavefunction, ( );tΨ r . In a stationary state, the 

time-dependent wavefunction can be separated by means of the variable separation technique in 

the product of a time-independent wavefunction by a time-dependent function: 

( ); ( )· ( )t f t=Ψ r Ψ r  (1) 

In the particular case of molecular systems, the Born-Oppenheimer approximation [114] 

qualitatively assumes that nuclei are much more massive than electrons. This allows considering 

nuclear charges nearly fixed with respect to the motion of electrons. Working within this 

approach, the nuclear and electronic motion can be separated. Thus, the configuration of nuclei 

is fixed, so that the system’s nuclear positions are composed of a set of constant nuclear 

coordinates, and the electronic wavefunction depends only parametrically on the spatial nuclear 

coordinates.  

The state time-independent electronic wavefunction for N-particles can be defined as:  

( ) 1 2, ( , ,..., , )N=Ψ r R Ψ r r r R  (2) 

where the vector r collects the coordinates for N particles, while R describes the wavefunction 

dependence upon a parameter set.  

3.2 Born’s interpretation: Probability distribution Density Function 

However, although the wavefunction gives probabilistic information about the position of the 

particles in the system, it has no physical meaning by itself. Even more, in systems with a large 

number of particles, it is not easy to treat. Instead, the probability distribution of the Density 

Function (DF), expressed in terms of the wavefunction,Ψ , and its complex conjugated, *Ψ , 

has the advantage of gathering all the information in a more handy way.  
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2ρ = =*Ψ Ψ Ψ  (3) 

In addition, the squared module of the wavefunction is positive definite by construction, and has 

an attached physical significance. The first description of the physical sense of the squared 

module of the wavefunction can be attributed to Born [116], and is gathered in the seminal 

quantum mechanics books of von Neumann [117], and Dirac [118]. The Born’s interpretation 

of the wavefunction states that, in a stationary state, the probability of finding a particle in a 

given infinitesimal volume element dV can be expressed as: 

2*dP dV dV= =Ψ Ψ Ψ  (4) 

Then, the probability density function or the probability distribution function, also called 

charge density, is expressed by the differential equation: 

2dP
dV

= Ψ  (5) 

The numerical probability value to find a given particle in a specific region of the space,ω , can 

be calculated by integration of the previous equation within the domain of interest:  

( ) *P dP dV
ω ω

ω = =∫ ∫Ψ Ψ  (6) 

Therefore, from the classical quantum mechanics point of view, Born endowed the solution of 

the Schrödinger equation [119] with a statistical meaning of physical significance. Thereby, the 

wavefunction set of a microscopic system conveniently transformed into its squared module 

produces a set of probability density functions, giving the probability of finding the electron in a 

volume element dr at a given position r, and a fixed time t: 

( ) ( ) ( ) ( )2*dP d d dρ= = =Ψ r Ψ r r Ψ r r r r  (7) 

The probability distribution function results in: 

( )dP
d

ρ= r
r

 (8) 
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Thus, consistent with the physical interpretation of ( )dρ r r , the distribution of probability of 

encountering a particle within this infinitesimal volume is comprised between 0 and 1. Hence, 

the probability is normalized to the unit, that is, the probability that an electron exists in the 

whole space is complete, and so the integral over the entire space, Ω, yields the total probability 

of presence:  

( ) ( ) ( ) ( )* 1P d dρ
Ω Ω

Ω = = =∫ ∫r r Ψ r Ψ r r  (9) 

Besides, the wavefunction applied over an electronic system can also define the distribution of 

electronic charge density, which accounts for the electronic charge concentration of the system 

in the space. When this definition is adopted, the integral over the whole space gives the total 

number of electrons in the molecule, N: 

( ) ( )P d Nρ
Ω

Ω = =∫ r r  (10) 

This interpretation was consistently put on a firm theoretical basis by Von Neumann [117], who 

set the whole quantum theory into the frame of his operator algebra. 

3.3 Experimentally measurable properties: Fifth postulate of Quantum 

Mechanics 

From the canonical interpretation of quantum mechanics, any microscopic system wavefunction 

set, conveniently transformed into a square module, produces a set of probability density 

functions. DF is the adequate tool that has to be used for interpreting the experimental 

behaviour of particle systems, such as atoms and molecules. Accordingly, DF plays a leading 

role in quantum mechanical systems description. 

In particular, the fifth postulate of quantum mechanics states that once known the DF of the 

system in a precise internal energy state, all the compatible observable property values of the 

system, ω , which are experimentally measurable, can be formally extracted from it as 

expectation values, ω , of its associated hermitian operator, Ω , acting over the corresponding 

wavefunction, Ψ :  

ω
Ω

=
Ψ Ψ

Ψ Ψ
 (11) 

Assuming a normalized wavefunction, the denominator can be cancelled: 
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( ) ( ) ( )* dω = Ω = Ω∫Ψ Ψ Ψ r r Ψ r r  (12) 

In the case of physical observables associated to non-differential hermitic operators, the 

expected value of the operator can be expressed as a function of the electronic density, ρ: 

( ) ( )dω ρ ρ= Ω = Ω∫ r r r  (13) 

Thus, the obtaining of the similarity degree between two compared systems in a unique system 

state can be formally performed like a statistical expectation value technique.  

3.4 Density Function construction 

In consequence, in order to define and interpret Quantum Similarity Measures (QSM) 

according to classical quantum mechanical principles, the description of microscopic systems 

can be set up with the following algorithm:  

1) Construction of the mathematical Hamiltonian operator, H , representing the set of 

different interactions acting upon the quantum object. 

2) Computation of the state energy-wavefunction pairs, { },E Ψ , by solving the 

Schrödinger equation independent of the time: H ε=Ψ Ψ  

3) Evaluation of the state DF, computed from the squared module of the wavefunction: 
2ρ = =*Ψ Ψ Ψ  

The formation process of DF starting from the original system’s wavefunction can be expressed 

by way of the generating rule [2424], ( )ρℜ Ψ → , which summarises the three steps of the 

quantum mechanics algorithm: 

( ) ( ) ( ){ }2H Hρ ρ ∗ +ℜ → = ∀ ∈ → ∃ = = ∈Ψ Ψ C Ψ Ψ Ψ R  (14) 

where the wavefunction and the Hamiltonian are explicitly defined over the Hilbert complex 

field H(C), whereas the DF is defined over the real field H(R+). Thus, quantum mechanical 

density functions are elements of a Hilbert semispace, positive definite and normalized in the 

usual sense, that is, submitted to convexity conditions:  

( ) ( ) 1dρ ρ+∈ ∧ =∫r R r r  (15) 
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In the particular case where the quantum system is a molecule, the real density function contains 

all the information of the distribution of electrons. Once known the electronic wavefunction for 

the stationary system, ( )1 2, ,..., NΨ x x x , where ix  includes all the variables of the particle i, its 

electronic DF is expressed as the product of the wavefunction and its conjugated:  

( ) ( ) ( )*
1 2 1 2 1 2 1 2 1 2, ,..., ... , ,..., , ,..., ...N N N N Nd d d d d dρ =x x x x x x Ψ x x x Ψ x x x x x x  (16) 

The previous equation corresponds to the probability of finding the electron 1 in a dx1 

configuration, simultaneously with the electron 2 in a dx2 configuration, and successively with 

the N electrons. Explicitly, the density function depends on the spatial and spin coordinates of 

the particles: 

( ) ( ) ( ) ( ) 2
1 1 1 1 1 1 1 1,..., ; ,..., ,..., ; ,..., ,..., ; ,..., ,..., ; ,...,N N N N N N N Ns s s s s s s s= =*ρ r r Ψ r r Ψ r r Ψ r r  (17) 

3.4.1 First-order Density Function 

For practical purpose, i.e. for use in molecular comparison, the dimensionality of the density 

function can be reduced using the McWeeny and Löwdin theoretical development [120-122]. 

A p-th order density matrix element can be defined by integrating ρ  over the entire system 

particle coordinates except p of them.  

( ) ( ) ( )( ) *
1 2 1 1 2 1 1 2, ... , ,..., , ,..., , ,..., , ,..., ...p

p p N p p N p p N

N
d d d

p
ρ + + + +

 ′ = Ψ 
 

∫ ∫x x Ψ x x x x x x x x x x x x x  (18) 

The diagonal elements of the density matrix allow the derivation of the p-th order DF element. 

As a useful particular case, the integration over the N-1 position coordinates yields the first-

order electronic density function, ( ) ( )1
1ρ x . The first-order DF is defined as the probability of 

finding one electron, indistinguishable from the N-1 remaining electrons in the molecule, with 

the dx1 configuration.  

( ) ( ) ( ) ( )
*1

1 1 2 1 2 2... , ,..., , ,..., ...N N NN d dρ = ∫ ∫x Ψ x x x Ψ x x x x x  (19) 

From the previous expression, the first-order spatial electronic density function, which indicates 

the probability to find an electron with an independent spin at dr1, results from integrating all 

the N spin coordinates and the N-1 spatial coordinates: 

( ) ( ) 2(1)
1 1 2 1 2 2 1... , ,..., ; , ,..., d ...d  d ...dN N N NN s s s s sρ = ∫ ∫r Ψ r r r r r  (20) 
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Certainly, for a given molecular structure, its corresponding wavefunction can be computed for 

a chosen system’s state and, from this one, the first-order density function can be easily 

evaluated. Although any density function order could be used, the first-order state electronic 

density functions have been chosen for being sufficiently well behaved. Thus, in the 

construction of QSM for practical purpose, that is, for use in molecular comparison, first-order 

DF are considered to be good candidates to be used, even though higher order DF can be 

employed as well. 

For the sake of simplicity, the first-order density function, ( ) ( )1
1ρ r , will be expressed omitting 

the superscript and subscript, i.e. ( )ρ r . 

3.4.2  Ab initio Density Function 

In particular, in molecules and electronic systems, many-electron wavefunctions are constructed 

by multiplying monoelectronic wavefunctions that describe the molecular electronic structure. 

The monoelectronic wavefunctions describing the particles of the system are constructed by 

means of Molecular Orbitals (MO), ( )Ψ i x , where x depends on the spatial and spin 

coordinates. A spatial molecular orbital ( )iψ r is a function of the position vector r describing 

the spatial distribution of an electron. This spatial wavefunction is constructed by means of a 

basis function set that, for the sake of simplicity in the calculation of the associated integrals, is 

usually formed by Gaussian functions.  

 

Within the Linear Combination of Atomic Orbitals – Molecular Orbital (LCAO-MO) 

approximation [123], each molecular orbital is expressed as a linear expansion of basis 

functions, that is, Atomic Orbitals (AO), { }( )µφ r . If the set of spatial orbitals was complete, 

then, any monoelectronic wavefunction could be exactly expanded as a linear combination of 

spatial basis functions: 

( ) ( )
1

i icµ µ
µ

ψ φ
∞

=

= ∑r r  (21) 

where the subscript µ is for the basis functions and i for the molecular orbitals.  

 

Unfortunately, in practice, it is not possible to work with an expansion with an infinite number 

of basis functions. Therefore, the set of spatial molecular orbitals is restricted to a finite set of k 

known basis functions{ }( ) 1,2,...kµφ µ =r .  
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( ) ( )
1

  1,2,...
k

i ic i kµ µ
µ

ψ φ
=

= =∑r r  (22) 

Thus, the finite set of basis functions only spans a certain region of the complete space, so that 

the results can be only considered as exact within the subspace spanned by the orbital set used. 

For this reason, it is important to choose a basis set that describes the molecular orbitals with a 

reasonable accuracy and computationally affordable at the same time. 

 

The total charge density of a closed-shell molecule can be described at the Hartree-Fock level 

within the molecular orbital theory [124] as a sum of charge densities, expressed by means of 

the mentioned spatial molecular orbitals, where each occupied molecular orbital contains two 

electrons:  

( ) ( ) ( ) ( )
2 22 *2 2

i

N N

i i
i i

ρ ψ ψ ψ= =∑ ∑r r r r  (23) 

As pointed before, ( )dρ r r is the probability of finding any electron in dr at r. Considering 

normalized molecular orbitals, the probability of finding an electron within the whole space is 

just the number of electrons involved in the system: 

( ) ( )
2 22

2 2 1
N N

i
i i

d d Nρ ψ= = =∑ ∑∫ ∫r r r r  (24) 

where N is the total number of electrons and N/2 is the number of occupied molecular orbitals. 

 

If the molecular orbital expansion (22) is inserted into the expression for the charge density 

(23), then the first-order electronic density function can be expressed as a double sum upon all 

the basis function pairs: 

( ) ( ) ( ) ( ) ( )
2

* * *2
N

i i
i

c c Pµ µ ν ν µν µ ν
µ ν µν

ρ φ φ φ φ= =∑∑ ∑ ∑r r r r r  (25) 

Where cµi , cνi are coefficients of atomic orbitals, ( ){ }µφ r is the basis function set of spatial 

atomic orbitals and { }Pµν  are the elements of the density matrix or charge and bond order 

matrix, defined from the AO coefficients as:  
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2
*2

N

i i
i

P c cµν µ ν= ∑  (26) 

Given a set of known basis functions, { }µφ , the P matrix specifies completely the charge 

density ( )ρ r , directly related to the expansion coefficients c by (26). 

3.4.3 Density Function of a molecular fragment 

Alternatively, the holographic electron density theorem [125] states that all the information 

contained in the total electronic density of a molecule is also included in the local density cloud 

of any nonzero volume fragment.  

Using the LCAO-MO approximation, the DF of a fragment X belonging to the molecule A is 

defined as:  

( ) ( ) ( )*X
A

X A
Pµν µ ν

µ ν

ρ φ φ
∈ ∈

= ∑ ∑r r r  (27) 

where ν is calculated over all the basis function of the A molecule, whereas µ is only used for 

the basis functions centred in the atoms belonging to the studied fragment X.  

This definition of fragment density provides an additive partition of the total molecular 

electronic density [126]. For example, when the density is divided into all the possible 

fragments formed by a single atom, the total density of the whole molecule, ( )Aρ r , can be 

generated by adding all the atomic contributions, ( )aρ r :  

( ) ( ) ( ) ( ) ( )*    A a a
a a A

Pµν µ ν
µ ν

ρ ρ ρ φ φ
∈ ∈

= ∧ =∑ ∑∑r r r r r  (28) 

3.5 Fitted Density Function 

Nowadays, precise theoretical ab initio studies of large molecular systems or transition metal 

complexes are usually limited by the number and kind of atoms involved, due to the high 

computational requirements. Thus, in spite of the progressive growth in the capacity of 

calculation of current computers, the systematic study of such complex molecular systems has 

motivated the development of approximated DF sufficiently accurate so as to be able to replace 

the ab initio DF [127-133] 
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Taking into consideration the generic expression of the density function at the Hartree-Fock 

level (25), the main ab initio calculation hindrance is generally located in the computation of 

cumbersome four-center integrals, which appear in the calculation of quantum similarity 

measures of two molecular systems. Specially, when the optimization procedure for alignment 

requires multiple evaluations of many-centre similarity integrals, the calculations are highly 

time-consuming, thus making the computations at ab initio level unaffordable and limiting the 

use of ab initio QSM to small molecular systems, due to the current computational limits.  

 

Therefore, the development of simplified electron densities, symbolized as ( )ρ r , has been 

widely used not only to overcome the problem of the bottleneck superposition process in the 

computation of quantum similarity measures, but also to accelerate any related DF calculation.  

 

For free atomic systems, the wavefunction can be expressed as a sum of squares corresponding 

to a spherically symmetric subshell [134]. Consequently, the electron density function of 

closed-shell atoms can be modelled by means of an integral Gaussian transform over the 

radial coordinate:  

( ) ( ) 2

0

rf e dζρ ζ
∞

−= ∫r r  (29) 

which can be approximated by truncating the previous expression as a finite sum  

( ) 2
i

k
r

i i
i

w f e ζρ −≈ ∑r  (30) 

that is, a linear combination of exponential 1S Gaussian functions, where the coefficients of the 

functions, if they are positive-valued, indicate non-negative occupancies. 

 

Thus, the basis function set of atomic orbitals can be built as a linear combination of Gaussian 

functions φa: 

( ) ( )
1

k

a a
a

gµ µφ ϕ
=

= ∑r r  (31) 

where { }aϕ is the normalized 1S-type Gaussian Type Orbital (GTO) basis set, and { }aig are 

the coefficients. Then, the first-order ab initio DF involves products of two centres or indices: 



44  MQS in QSAR: Applications in CAMD 

 

 

( ) ( ) ( ) ( ) ( )* * *
a b a b

A A a b

P P g gµν µ ν µν µ ν
µ ν µ ν

ρ φ φ ϕ ϕ
∈ ∈

= =∑∑ ∑∑ ∑∑r r r r r  (32) 

After a simple diagonalization plus a unitary transformation of the basis set, the initial 

expression of DF can be transformed into the linear combination: 

( ) ( ) 2
i i

i
w Sρ = ∑r r  (33) 

In the literature, different fitting algorithms for first-order electronic density functions have been 

reported [130, 135], but not all of them take into account the conditions needed to obtain a 

definite positive density. 

In the first MQSM calculations [15,17,136-143] a Complete Neglect of Differential Overlap 

(CNDO) approximation was used. The electronic density was described only by means of 

valence shell spherical functions.  

3.5.1 Atomic Shell Approximation (ASA) 

In order to avoid expensive computational calculations, the molecular DF has been adjusted 

using the Atomic Shell Approximation (ASA). This approximation can reduce the 

computation time several orders of magnitude without a significant loss of accuracy. Moreover, 

in order to assure the probabilistic meaning of the original electron density functions, the 

expansion coefficients are restricted to be positive-valued.  

 

The ASA has been developed as a theoretic model of adjustment of density functions, widely 

implemented, for the calculation of molecular electronic densities used in the computation of 

MQSM [144-145]. This electron density fitting algorithm constitutes a way to adjust the first-

order molecular electronic density functions at the Hartree-Fock level to linear combinations of 

spherically symmetric functions. In addition, the ASA DF must fulfill two conditions: it must be 

normalized to one or to the number of electrons, and possess positive definite coefficients. 

Provided that the electronic density is previously calculated at a given computational level and 

with a specific basis function set, and then the ab initio densities are fitted to the 1S functions, 

this methodology can be considered to be based on ab initio calculations. 

 

The molecular electron density is expressed as a linear expansion of spherical 1S functions: 

( ) ( ) 2
;ρ α

∈

= ∑ASA
A i i i

i A
w Sr r  (34) 
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where i refers to the atomic shells, { }iw are the positive definite ASA coefficients, and { }iS is 

the set of normalized 1S Gaussian type orbitals:  

( ) 2
3

4
; iri

i iS e ααα
π

− =  
 

r  (35) 

so that ( ) 1ASA
Aρ =∫ r . 

 

Alternatively, the spherical 1S functions, {Si}, can be atom-centred, that is, positioned 

at the atomic coordinates {ra}.  

( ) ( ) 2
;ASA

i i a i
i A

w Sρ α
∈

= −∑r r r  (36) 

where the basis functions are defined as: ( ) ( )2
3

4
; i ai

i a iS e ααα
π

− − − =  
 

r rr r   

The ASA coefficients, iw , are restricted to accomplish the convexity conditions in order to 

obtain positive definite values. These constraints preserve the statistical meaning of DF, 

providing a fitted DF with the suitable features of a probability distribution, which has a 

physical quantum mechanical meaning.  

  1i i
i A

w i w+

∈

 
∈ ∀ ∧ = 

 
∑R  (37) 

To ensure a positive definite DF in the whole domain, the ASA coefficients must be positive 

definite: 0 iw i≥ ∀ , so that ,iw i+∈ ∀ ∈R A . 

 

Furthermore, the coefficients can be also normalised to the number of electrons of the molecule, 

N: 

i
i

w N=∑  (38) 

When the latter normalization condition is imposed, the integral of the DF in the whole space 

gives the total number of electrons. Also, the expansion coefficients are the occupation 

numbers, ni, for the corresponding atomic shells: 
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( ) 2
i i i

i A i A
w S d n N

∈ ∈

= =∑ ∑∫ r r  (39) 

Therefore, the molecular electron density can be pictured as a superposition of spherical atomic 

shells, whose occupations are the variational coefficients. 

 

The simplified electron density clouds, constructed as linear combinations of Gaussian type 

functions can be obtained from a fitting procedure and readily evaluated. The procedure consists 

on the optimization of the set of coefficients of the linear expansion { }iw  by minimizing the 

quadratic error integral function between the ab initio and the approximated density function, 
( )2ε , while conserving the weighting coefficients positive definite. 

The set of coefficients that minimizes ( )2ε is obtained by solving the linear equation system: 

rrr dAA  )()(
2ASA(2) ρρε −= ∫  (40) 

Nevertheless, this approximation has some disadvantages. First, the number of atoms to be 

calculated is restricted by the limit of the ab initio calculation. Thus, the previous computations 

make the study of macromolecules cumbersome. Then, the adjustment of the ab initio density 

function to the ASA one is computationally expensive, especially with increasing molecular size 

or number of basis functions. Finally, the calculations cannot be used several times; instead, the 

whole adjustment for each molecule must be done each time. 

3.5.2 Promolecular Atomic Shell Approximation (PASA) 

The main limitation in any adjustment method of DF is the ab initio DF calculation. This 

problem is not especially significant for atoms; however, for big molecular systems with a large 

number of particles the capacity of computation is critical. In molecular quantum similarity 

studies, in addition to the size of the molecules studied, the aforementioned optimization of the 

pairwise relative position of all the compounds studied results in nonviable ab initio 

calculations. In order to avoid costly molecular ab initio calculations, a promolecular 

approximation [146-148] has been implemented to the previous development. 
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The Promolecular ASA (PASA)  density function represents the atoms in a molecule as neutral 

entities of spherical shape, with a radial dependence equal to the isolated atoms, providing a 

precise three-dimensional electron distribution. The promolecular description of the charge 

density distribution employed is based on the sum of atomic ASA densities, previously fitted to 

an ab initio atomic basis set. Although the schemes providing a partition of a given molecule 

into its atomic components are not possible to derive from the quantum mechanical postulates, 

the concept of a promolecule has been used in many theoretical electron density distribution 

analyses. These theoretical schemes have been useful to obtain chemical information belonging 

to bonding interactions between atoms.  

 

The PASA approximation [30-31,33,107,149], considers molecular densities as a sum of 

discrete contributions formed by atomic densities. The independent atomic contributions, 

)(rASA
aρ , are generated with parameterized ASA atomic densities: 

( ) ( )PASA ASA
A a a

a A
Pρ ρ

∈

= ∑r r  (41) 

where ( )PASA
Aρ r is the promolecular density function, and Pa represents the total charge over the 

atom a, and is usually approximated by the atomic number, Za. 

 

The atomic density functions fitted to an ab initio basis set, are built by means of a linear 

combination of 1S Gaussian functions:  

( ) ( ) 2ASA
a i i

i a
w Sρ

∈

= ∑r r  (42) 

where the subindex i symbolizes the functions in atoms, a and A represent atoms, and 

molecules, respectively, { }iw  are the adjusted PD coefficients of the linear expansion, and 

{ }iS the gaussian 1S functions. 

 

 The coefficients and exponents of the adjusted atomic DF are also obtained by minimizing the 

measure of the integral of the quadratic error functions in relation to the ab initio atomic 

densities. Once calculated the atomic densities, they are stored in a database to construct the 

molecular functions.  

 

In this case, the convexity conditions are: 
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  1+

∈

 
∈ ∀ ∧ = 

 
∑i i
i a

w i wR  (43) 

The coefficients are normalized to the unity, 1i
i A

w
∈

=∑ , due to the fact that each DF is weighted 

by Pa, preserving the statistical meaning of the charge distribution definition, normalized to the 

total number of electrons of the molecule. Substituting the atomic DF in the molecular DF 

definition and integrating over the whole space: 

( ) ( ) 2
ρ

∈ ∈ ∈ ∈ ∈

= − = = =∑ ∑ ∑ ∑ ∑∫ ∫PASA
A a i i a a i a

a A i a a A i a a A
d P w s d P w P Nr r r r r  (44) 

Accordingly, the normalization condition is accomplished, whereas in the atomic adjustments 

the ASA functions have been normalized to the unit.  

 

The promolecular approach considers molecular densities like an ensemble of superposed 

atomic densities. This approximation is confirmed by the accuracy of PASA densities, which 

have been demonstrated to be sufficiently efficient for QSM purposes. The main advantage of 

this approximation is that only atomic density functions are adjusted to an ab initio calculation, 

instead of fitting the whole density function. This allows constructing the molecular density 

simply by adding the adjusted atomic density functions in the given geometry. For each atom, 

density functions are retrieved form a database, so that coefficients and exponents are calculated 

once and, afterwards, to obtain the PASA DF, only the molecular coordinates and the data for 

the atom are needed. In this sense, the PASA approximation resembles the semiempiric 

methods; as long as the latter use previously calculated parameters, the former takes the 

previous fitting to build density functions. So the PASA can be considered as a semiempiric 

method that provides adjusted density functions. 

 

Furthermore, the PASA DF can be also used as a starting point for molecular adjustments [34]. 

In this way, only a refinement of the coefficients to be adapted to the molecular environment is 

needed, and the procedure is effectively accelerated.  
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Using the PASA approximation, the calculations for atomic systems are affordable, even using 

complex methods and large basis sets. Only the atom type, the atomic coordinates and an 

adjusted basis of atomic functions are needed. However, the obtained ASA density functions 

still have some limitations, for instance, the incomplete description of the charge migration in 

the regions surrounding the nucleus. Hence, most of the atomic density is concentrated in the 

nuclei, with low diffusion. The collapse of the DF upon the atomic nuclei influences the 

description of the bond formation in the molecules: at some levels, the ab initio methods allow 

the visualization of the interatomic bonds, while the ASA densities cannot. This is an intrinsic 

problem of using only spherical functions. The assumption that atoms in molecules are of 

spherical shape, as free atoms in gas phase, presupposes some limitations in the description of 

the molecular electronic charge distribution. Essentially, the deformations produced around 

bonded atoms cannot be modulated using only spherical functions centred on atomic 

coordinates. However, if the procedure is adapted for spherically symmetrical and nuclear 

centred fitting functions improved by locating additional fitted spherical functions outside 

atomic nuclei, a better description of the detailed structure of molecular electron density can be 

obtained. To such an extent, supplementary functions, with centres that differ from the atomic 

coordinates, have been aggregated in order to improve ASA densities. The so-called 

Multicenter ASA (MASA) densities try to simulate the electron cloud deformation of atoms in 

a molecule and to remove some of the deficiencies of the spherical representation of ASA 

densities.  

 

In addition, the promolecular density presents some lacks in the description of bond regions. 

These deficiencies have been evidenced by means of the density deformation maps, formulated 

as the difference between the molecular electron density and the superposition of the ground-

state densities of the atoms in a molecule.  

 

3.5.3 ASA adjustment method 

In the ASA fitting algorithm, the parameters to be optimized are the coefficients of the 

expansion { }iw , and the exponents { }αi . The k number of functions, i.e., atomic shells, is 

arbitrarily defined.  

( ) ( ) 2
,

k
ASA
A i i i

i a
w Sρ α

∈

= ∑r r  (45) 
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The first adjustment technique to fit the ASA DF was a variant of the least squares method, 

using a Lagrange multiplier to optimize the coefficients, and keeping the normalization 

condition in order to obtain positive definite coefficients [30,144]. The proposed method assigns 

a saturated basis of ASA functions [150] to the considered system. Then, the algorithm selects 

the shells or functions with the optimal exponents and the PD coefficients. 

 

The initial ASA exponents are generated by means of a geometric even-tempered sequence 

[151-153]. The use of even-tempered basis functions in the least squares fitting provides 

truncated basis sets with positive coefficients and, thus, the fitted densities belong to a subset of 

all the functions generated by the even-tempered series.  

 

Also, the initial ASA coefficients of basis functions are required to minimize the ( )2ε function. 

With such purpose, the weighting coefficients are optimized using the Elementary Jacobi 

Rotations (EJR) technique [154-155]. The EJR technique is a norm-conserving procedure 

based in orthogonal transformations that transforms a vector conserving its norm. It was initially 

developed in the adjustment of atoms [30,33,107], and, afterwards, it has also been applied to 

molecules [34]. The distinctive features of the designed algorithm is the definition of a new 

vector of coefficients, x, that generates the ASA coefficients: 
2= ∀i iw x i . Consequently, the 

elements of the w vector are positive and, moreover, the norm of x vector is the unit: 
2 1= =∑ ∑i i

i i
x w , so that the two convexity conditions are fulfilled. In order to accelerate the 

optimization algorithm of the ASA coefficients an alternative development of the Taylor 

truncated series has been implemented when applying the EJR transformation to get 

trigonometric functions. Finally, the exponents of basis functions are refined and optimized 

using a Newton-type method [156]. 

 

Pnce the atomic basis function has been parameterized employing the promolecular 

approximation, only the atomic coordinates need to be known and the parametrized ASA 

function set must be specified to generate automatically the electronic density of any molecule. 

Different atomic ASA basis functions have been adjusted for several basis sets; ASA exponents 

{αi;a} and expansion coefficients {wi;a} for several atomic basis sets can be found in a WWW 

page [145]. Among the calculated databases, some of them can be mentioned:  

• ASA functions for atoms H to Kr, fitted to an ab initio HF calculation with the 

3-21G basis set [31,157-160]. The atoms have been described using more than 

a set of ASA functions: a single 1S Gaussian function for H and He, 3,4, and 5 

functions for the series Li-Ar, and 5 functions for the series K-Kr. 
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• ASA adjusted coefficients and exponents for atoms H to Rn, adjusted to a 432-

Huzinaga basis, specially indicated for heavy atoms [33,161,162-164]. 

• ASA functions for H to Ar adjusted to the 6-21G basis set [158-159]. 

• ASA functions for H to Ar adjusted to the 6-311G basis set [165-166]. 

 

The main objective of the ASA adjustment is the description of molecular densities with a low 

computational cost and good accuracy, to obtain an efficient calculation of MQSM. In order to 

achieve their suitability, comparative studies between MQSM generated from ab initio DF, and 

MQSM derived from ASA DF have been performed with different basis sets, and compared by 

means of isodensity surfaces at different levels [21,31-32,145-149]. Taking into account the 

reduction in the complexity of the expression and in the computational cost, in all the studied 

cases, the differences between the similarity measures calculated using ab initio and ASA DF 

were less than 2% [34], and so the ASA electron density can be considered sufficiently accurate 

for the practical implementation of quantum similarity measures.  
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4 MOLECULAR QUANTUM SIMILARITY MEASURES 

(MQSM) 

4.1 General Definition of MQSM  

Quantum similarity measures are based on the psychological perception of similarity and they 

are founded in the obvious similarity principle: “the more similar are two molecules, the more 

similar are their properties”. This affirmation requires a procedure to compare the two 

molecules: quantum similarity attempts to give a quantitative measure of the degree of 

similarity between two quantum objects, basing on the comparison of their densities [167].  

 

To quantify the degree of similarity between the compared systems, the previously mentioned 

statistical expectation value technique can be employed. Thus, a general Molecular Quantum 

Similarity Measure (MQSM) can be defined by means of an integral measure computation 

between the DFs attached to the involved molecular systems [15]. The DFs are multiplied and 

integrated over the electronic coordinates in a convenient domain. So, MQSM can be also 

defined as the scalar product between the first order molecular DFs associated to the compared 

molecules, and weighted by a bielectronic non-differential and positive definite operator.  

( ) ( ) ( ) ( )1 1 2 2 1 2 ,AB A B A BZ d dρ ρ ρ ρ +Ω = Ω = Ω ∈∫∫ r r r r r r R  (46) 

where A and B are the two quantum objects of study, { }1 2,r r  are the sets of electron coordinates 

associated with the corresponding wavefunctions, { },A Bρ ρ  the corresponding first-order 

density functions or electron probability densities, and ( )1 2,Ω r r the positive definite weighting 

operator, depending on two-electron coordinates. 

 

Within the LCAO-MO approach, the MQSM at the Hartree-Fock level is expressed as the 

cumbersome four-center integral: 

( ) ( ) ( ) ( ) ( ) ( )* *
1 1 1 2 2 2 1 2,  AB

A A B B

Z P P d dµν λσ µ ν λ σ
µ ν λ σ

φ φ φ φ
∈ ∈ ∈ ∈

Ω = Ω∑∑∑ ∑ ∫ ∫ r r r r r r r r  (47) 

These integrals can be readily evaluated if approximated electronic density functions are used 

instead of ab initio ones, as has been shown in the previous section. If an ASA adjusted density 

function is used, the quantum similarity measure is reduced to: 
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( ) ( ) ( ) ( ) 22
1 1 2 2 1 2,AB i j i j

i A j B

Z w w S S d d
∈ ∈

Ω = Ω∑∑ ∫ ∫ r r r r r r  (48) 

By construction, due to the presence of the positive definite integrands, i.e. the operator and DF, 

the values of the integral are always real and positive definite: ( )ABZ +Ω ∈ R  

 

From the practical point of view, given two molecules and supposing that the respective 

wavefunctions { },A BΨ Ψ  are known, the Schrödinger equation is solved at an arbitrary level 

for both molecules, and the density matrix connected with the wavefunction pair can also be 

computed. Then, given a set of n objects M and their corresponding density functions, there is 

always the possibility of computing the whole array of QSMs between molecular pairs. The 

global set of QSM, which compares all the possible pairs of quantum objects, is also expressed 

in matrix form, by means of the quantum Similarity Matrix (SM): { }ijZ=Z , where 

[ ], 1,i j n∈ . The similarity matrix of dimension ( )n n× is defined as:  

( ){ },ijZ i j M= Ω ∀ ∈Z  (49) 

This matrix can be also considered as an hypervector formed by a set of column vectors: 

{ }1 2, ,..., n=Z z z z , where each column (or row) vector, az , is formed by the collection of all 

the QSM related to the quantum object a, that is all the QSMs between the a-th molecule and 

each element of the set, including itself. Consequently, every vector az  is interpreted as a 

discrete N-dimensional representation of the a-th structure.  
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Figure 2. Generic quantum similarity matrix, Z, for n quantum objects, 
with the ( )1 / 2n n +  pairwise calculations for the upper triangle. 
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The elements of the squared SM are the similarity measures between all the possible pairs of 

density functions of the considered molecular data set. Any homogeneous SM is symmetric, so 

the QSM between two molecules is identical independently of the order of the comparison of 

the QO. This fact is used to compress the information only in the upper or the lower triangle of 

the matrix. The order of magnitude of the different types of QSM is highly connected to the 

structural form of the molecule, and to the presence of heavy atoms. Due to the particular 

construction of the SM, the diagonal elements of SM bring out information on the size of the 

compound.  

 

Quantum similarity matrices contain all the information of the system, act as discrete 

representations of quantum objects, and subsequently their elements can be used for the 

generation of molecular quantum descriptors, where every descriptor, zi, is collected in the 

columns of the SM. Similarity matrices are universal in the sense that it can be obtained from 

any molecular set and for any molecule in the set, and unbiased, because in the building process, 

there are no other choices than those provided by the knowledge of the involved DFs and the 

QSMs. 

4.2 Types of Molecular Quantum Similarity Measures 

Depending on the information being requested, several weight operators can be chosen, 

producing different types of MQSM: 

4.2.1 Overlap QSM 

The simplest and most intuitive usual election for the positive definite weight operator is the 

Dirac’s delta distribution, ( ) ( )1 2 1 2, ,δΩ =r r r r . This choice transforms the general QSM 

definition into the so-called overlap-like QSM [15], which gives a measure of the volume 

enclosed in the superposition of both electronic density functions:  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2  AB A B A BZ d d dρ δ ρ ρ ρΩ = − =∫∫ ∫r r r r r r r r r  (50) 

The Dirac’s delta function provides a physically intuitive definition, and it is computationally 

affordable. The overlap-like MQSM provides information on the concentration of electrons in 

the molecule, and indicates the degree of overlap between the compared molecules. For heavy 

elements and small interatomic distances, the overlap-like QSM increases.  
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4.2.2 Coulomb QSM 

If the Ω operator is adopted to be the Coulomb operator, ( ) 1
1 2 1 2, −Ω = −r r r r , this yields the 

Coulomb-like MQSM [136], which represents the electronic repulsive Coulomb energy between 

the two charge densities: 

( ) ( ) ( )1 2 1 2
1 2

1 AB A BZ d dρ ρΩ =
−∫∫ r r r r

r r
 (51) 

The Coulomb operator acts as a weight for the density functions overlapping. Considering the 

molecular density function as an electron distribution in the space, this expression is anything 

but the extension of the Coulomb law for continuous charge distributions, and therefore, it can 

be considered, in some sense, as an electrostatic potential descriptor. This operator gives a 

measure on the Coulomb bielectronic repulsion between electronic distributions, and it is 

associated to electrostatic interactions.  

4.2.3 Kinetic Energy QSM 

This definition employs the Kinetic Energy Density Function (KE DF), instead of the 

electronic DF [168]: 

( ) ( )∑ ∇=
i

iiw 2rr ϕκ  (52) 

The KE DF can be derived from the statistical expectation value technique:  

( ) ( ) ( )∫∫∫ =Ψ∇Ψ∇=Ψ∇Ψ−= rrrr dddK κ*2*2  (53) 

Using KE DF, similarity measures are expressed as:  

( ) ( ) ( )1 1 2 2 1 2,  AB A BZ d dκ κ= Ω∫ r r r r r r  (54) 

When the overlap operator is used, the measure also brings information on the shared volume 

between both distributions: 

( ) ( )∫= rrr dZ BAAB κκ   (55) 

Although it has been successfully applied in QSAR studies [169], this QSM is still in 

development phase. 
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4.2.4 Molecular Quantum Self-SM 

The Molecular Quantum Self-Similarity Measure (MQS-SM) is obtained, independently of 

the operator, when comparing a system with itself. It is related with the electronic charge 

density occupation in the space, that is, it provides information on the charge concentration of 

the considered QO. So, this type of measure is useful to distinguish local molecular differences 

from a charge density concentration point of view. Taking =A Bρ ρ in the general definition,  

( ) ( ) ( ) ( )1 1 2 2 1 2 ,AA A AZ d dρ ρΩ = Ω∫∫ r r r r r r  (56) 

When the selected operator is the overlap operator, self-similarities can be considered as the 

square of the norm of density function in the chosen metric, and they can be extracted from the 

diagonal of quantum similarity matrices.  

( ) 2
AA A A AZ ρ ρ ρΩ = =  (57) 

ZAA quantities have been used as simple molecular descriptors in QSAR analysis, in order to 

describe certain molecular properties such as hydrophobicity, and the electronic effects 

produced by substituents [170-173]. 

4.2.5 Fragment Quantum Self-SM 

This is a particular case of QS-SM, obtained from the comparison of particular substructures of 

two identical objects. That is to say, this measure is calculated taking the corresponding part of 

the squared norm of the density function belonging to the fragment of interest. Self-similarities 

occupy the diagonal of similarity matrices, as in the preceeding case: 

( ) ( ) ( ) ( )1 1 2 2 1 2 ,X X X
AA A AZ d dρ ρΩ = Ω∫∫ r r r r r r  (58) 

The use of molecular descriptors defined upon molecular fragments [174-176] is partly based on 

the holographic theorem of the electronic density, which assures that the information contained 

in the total electronic density of a molecule is also present in the local density of any molecular 

fragment [125]. Provided that a wealth of molecular properties is usually closely associated with 

the presence of certain molecular fragments or functional groups, which can be regarded as 

pharmacophores, it can be assumed that focusing on the active fragment rather than on the 

whole molecule can improve the structure-function relationship.  
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In particular, fragment QS-SM can aid to the rationalization of the effect of systematic structural 

variation of substituents on the observed biological activity in the series of structurally related 

molecules. Indeed, they provide the detection and localisation of the fragment most likely to be 

responsible for the observed activity. 

4.2.6 Triple-density QSM  

In this particular case, the Ω operator is replaced by a third density function, ( )3CρΩ = r : 

( ) ( ) ( )∫∫∫= 321231, rrrrrr dddZ BCACAB ρρρ  (59) 

This measure relates the volume shared among three density functions, allowing in this way to 

measure the similarity between two objects A and B, taking a third object C as a reference. 

Given a set of n objects, there are n possible triple density similarity matrices, where each 

member of the set acts as an operator [142,177]. 

4.2.7 Tuned QSM  

This QSM simultaneously combines different operators in the calculation. Thus, taking linear 

combinations of different measures, a new similarity matrix can be obtained, enhancing the 

characterization of the system [178-179]: 

( )∑
=

Ω=
m

i
iic

1
ZZ  (60) 

where ( )iΩZ  are the quantum similarity matrices obtained with the previous definitions, ci are 

the expansion coefficients, and m the number of similarity matrices. In order to preserve the 

properties of similarity measures and with the aim to clarify the interpretation of the resulting 

matrix, the convexity conditions are imposed to the coefficients{ }ic : 
1

0,     1
m

i i
i

c i c
=

≥ ∀ ∧ =∑ . 

These constraints allow the direct association of the coefficient to the unitary percentage of 

contribution of each matrix, thus clarifying the interpretation of the resulting matrix.  

 

Given m initial similarity matrices, there are infinite combinations of coefficients to obtain 

infinite new similarity matrices. However, the calculation of coefficients in tuned similarity 

matrices maximizes the capacity of prediction of the model. 
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4.2.8 Boltzmann QSM  

Another problem related with molecular structures is the conformational degree of freedom. 

QSM depend on molecular geometries and this means that, for compounds with conformational 

freedom, a particular conformer must be chosen. Different conformers of the same type can 

yield different results when performing a QSM calculation because a small variation in the 

geometry of the molecules compared may substantially vary the similarity measure. Usually, as 

an arbitrary decision criterion, the conformer used is the one with the lowest energy, unless the 

studied property is explicitly requires a specific active conformer.  

 

A rational alternative would be taking several representative conformers for each molecule, 

obtaining an amplified similarity matrix. Another possibility more rigorous would be 

performing a combined similarity measure with a Boltzmann term [180], depending on the 

energy:  

( ) ( )( )
∆ ∆− −

=
A A B Bc E c E

RT RTc
AB ABZ Z e e  (61) 

where ZAB is a QSM between two conformers of molecules A and B, and cA and cB are the 

weights of each conformer, ∆EA and ∆EB the differences of energy of the two conformers in 

relation to the conformer of minimum energy, R the gases constant, and T the temperature. This 

would yield a global similarity measure for both molecules, optimizing simultaneously the 

position and the energy. The only disadvantage of these calculations is their expensive 

computational cost.  

4.2.9 Other QSM  

In the bibliography, other types of MQSM have also been defined and applied for the generation 

of QSAR descriptors. Some of them are the electrostatic potential QSM [181-182], 

interelectronic repulsion energy MQSM [183-185], and gravitational QSM [186] and 

Cioslowski QSM [20,53,187], defined respectively as the squared Coulomb and Overlap QSM. 

 

Recently, self-similarity measures on Fermi hole densities [188], and similarity measures using 

momentum-space electron densities [60-63,189-191], defined from momentum-space 

wavefunctions instead of spatial wavefunctions have also been defined. In this case, the position 

wavefunction is transformed into the momentum-space one by means of a Fourier 

transformation:  
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( )
( )

( )3
2

1

2
ie d

π
−Ψ = Ψ∫ prp r r  (62) 

The electronic density, the individual orbitals, and the basis functions are related in the space p 

in an analogous way as in the space r. 

4.2.10 QSM defined over other QO 

In addition, as a methodology based on quantum mechanics, quantum similarity can be applied 

to any microscopic system, i.e. quantum object, described by a Hamiltonian. Apart from 

molecules, QSM have been extended to other quantum objects, for instance, quantum similarity 

measures have been described between atoms [192, 257], atomic nuclei [23,193-194], atomic 

and molecular orbitals [195], and second order (intracule and extracule) densities [196-197].  

 

The comparison between the values of similarity measures among different types of operators 

has been reported in the bibliography [20,187, 202]. 

4.3 Normalization and mathematical transformations of QSM 

Once the quantum object set and the weight operator have been defined, the MQSM becomes 

unique. Nevertheless, the value of the similarity measure between two objects does not report 

conceptual information on the degree of the similarity of the compared objects. For that reason, 

the similarity matrix elements can be transformed and combined to obtain normalized or scaled 

values. These mathematical transformations on the QSM yield the so-called Molecular 

Quantum Similarity Indices (MQSI), or more generally, Quantum Similarity Indices (QSI), 

which can be numerically manipulated in an easy way, and intuitively interpreted.  

 

QSI can also be used as molecular descriptors in QSAR studies, in the same way as QSM. In 

fact, QSI do not produce new information on molecular similarity relationships, so the election 

of any one of them should not be decisive for the derived results. Several transformations of 

similarity measures can be described, but the most common are the Carbó index and the 

Euclidean distance index.  

4.3.1 Carbó Index  

This is the most used index, defined in the seminal paper [15]. This index is equivalent to the 

normalization of the similarity measure value ZAB in relation to the self-similarities of A, ZAA, 

and B, ZBB. Mathematically, it can be expressed as: 
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AB
AB

AA BB

ZC
Z Z

=  (63) 

CAB varies in the interval (0,1]. The nearer to the unit, the more similar are the compared 

objects, while a value approaching to zero indicates that the two objects are dissimilar. The 

exact unity value is only obtained when both compared objects are the same, that is, in the case 

of self similarity measures, where 1ABC = , that is, an object is identical to itself. 

 

Geometrically, the Carbó index can be interpreted as the cosine of the angle subtended by the 

involved density functions, considered in turn as vectors. The Carbó index is a correlation-like 

or cosinus index, also called C-class index. 

cosA B
AB AB

A B

C
ρ ρ

α
ρ ρ

= =
 

(64) 

4.3.2 Euclidean distance index 

This is another typical transformation [136] that can be defined according to the classical 

definition of distance:  

( )
1

1

kp k

ab j
j

d x
=

 
= ∆ 

 
∑

 
(65) 

where 
j jj a bx x x∆ = −  is the distance between the objects a and b, and 2k =  for the Euclidean 

distance definition. So, the Euclidean distance between two any QO A and B is defined as:  

( )2
ab a bd x x= −  (66) 

Therefore, the Euclidean distance index is expressed as:  

2AB AA BB ABD Z Z Z= + −  (67) 

DAB is comprised within the interval [0,∞) but, conversely to the previous case, values close to 

zero imply a greater similarity between the compared objects. So, if the two compared objects 

are identical, DAB=0.  
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Geometrically, this index can be interpreted as the norm of the difference between the density 

functions of the compared objects. The Euclidean distance index can be defined as a distance or 

dissimilarity index, also called a D-class index. 

( )2
AB A B A BD ρ ρ ρ ρ= − = −  (68) 

4.3.3 Stochastic Transformation 

Besides fromtransformations of QSM into QSI, another possible scaling can be performed by 

means of a stochastic transformation [198-199]:  

1

1

N

AB AB AC
C

S Z z
−

=

 
=  

 
∑  (69) 

Such transform provides a stochastic SM, { }ABs=S , where the sum of elements of each row 

has been used as a scale factor. This procedure creates an alternative uniform non-symmetric 

SM, whose columns can also be used as new descriptors for a given molecular set, and be 

interpreted as discrete probability distributions.  

4.3.4 Other normalisation indices 

Other common similarity indices defined in the bibliography are the Hodgkin-Richards [41], 

the Tanimoto [200], and the Petke [201] indices. Some studies comparing the QSM generated 

by different operators and several QSI have been reported in the literature [20,187 ,202]. 

4.4 Dependence of QSM on the relative orientation of the objects 

Similarity measures have a strong dependence with the relative orientation of the objects 

compared. So, it is necessary to establish an alignment criterion to superimpose the structures in 

an appropriate way. The three-dimensional superposition implies the positioning of an object in 

relation to another object. In the particular frame of molecular similarity, this alignment can 

help to interpret and understand the molecular data.  

 

The energy of a chemical system that allows the molecular recognition with a biological target 

is given by nuclear and electronic forces, and interaction energies of solvation. The energy also 

depends on the molecular conformation and weak interactions with the environment. These 

properties are intimately linked with the spatial disposition of the molecule. Then, if atoms with 

similar characteristics are located in the same positions, it can be assumed that they will elicit 

similar effects.  
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Those molecular regions that share the same space for a molecular series is generalized as the 

pharmacophore, that is, the common molecular region that due to its interactive characteristics 

is supposed to be the responsible for the activity of the molecules. Consequently, several 

techniques require systematized, effective, fast overlapping methods for the molecular 

alignment, in order to interpret the data.  

 

The determination of the optimal molecular alignment has become a widely studied problem 

with application in several chemistry fields. Some of the most common uses of molecular 

superposition are applied to X-ray crystallography, and protein structural research. In particular, 

several applications are the quantification of the similarity between a given structure optimized 

with different methods, the quantitative comparison of molecular stereochemistry [203], the 

computer-based search for the determination of the distortion caused by chemical substitution in 

crystals [203-205], and pattern recognition for the determination of pharmacophores in three-

dimensional structural databases [206-208]. Within the QSAR field [209], the COmparative 

Molecular Field Analysis (CoMFA) [210], and the techniques based on three-dimensional 

similarity [211-212], also demand efficient alignment methods.  

 

The molecular superposition is conceptually simple and even intuitively evident when two 

similar molecules are compared. However, the practical computational implementation faces the 

combinatorial problem, provided that the number of possible ways to overlap two molecules 

may be high. Indeed, if different conformations are considered, the problem dealing with 

flexible bonds becomes more complicated, and even more when the size and the number of 

molecules increases. The molecular superposition techniques can be mainly classified into 

atom-based techniques, founded on the alignment of atoms, fragments, or common 

substructures, and field-based techniques, which superpose molecular force fields (i.e. 

electrostatic or steric), volumes or surfaces. Other employed techniques are genetic algorithms 

[213], techniques based on symmetry [214], molecular skins [215], and local overlaps [216]. 

 

The first works in molecular alignment were iniciated in the seventies, with the contributions of 

Gavuzzo [217], McLahan [218], Gerber and Müller [219], and Redington [220]. These works 

are based in the minimization or maximization of a function, which depends on the relative 

position of molecules in the space. For instance, the minimization of the weighted sum of 

distances between atoms [221], or the maximization of the molecular similarity measure, 

considered here.  
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The use of similarity indices as a basis for the alignment has also been proposed by means of 

the Monte Carlo method [222] and the gradient method [223]. Other possibilities are the flexible 

superposition of molecules [224], the superposition of dissimilar molecules [225], or the 

approaches related to graph theory that align the molecule according to subgraph coincidences 

[226-229]. 

 

In contrast, other methods take the values of common physicochemical properties as the basis 

for the superposition. These properties may be different molecular fields simulating steric, 

hydrophobic, shape or electrostatic effects [230-232], calculated in three-dimensional grids 

[216,233-234], or fields analytically adjusted [235-236].  

 

The computation of similarity measures obviously requires the superposition of the two 

molecules being compared. The dependence of MQSM on the relative position of the molecular 

structure can be included in the general definition: 

( ) ( ) ( ) ( )1 1 2 2 1 2;  , ;AB A BZ d dρ ρΩ Θ = Ω Θ∫∫ r r r r r r  (70) 

where A and B are the studied molecules; ( )1ρA r , ( )2ρB r the corresponding density functions, 

( )1 2,Ω r r a positive definite bielectronic operator, and ZAB is the resulting quantum similarity 

measure. The Θ operator represents the transformation of the coordinates of B in relation to the 

A coordinates, due to the similarity measure dependance on the relative position of both 

molecules in the space.  

 

In the IQC, several methods for molecular alignment have been proposed. Initially, in the first 

works with polyatomic molecules, the structures were superposed in basis to the alignment of 

dipole moments [235-236]. However, this procedure, only valid for polar molecules, had serious 

drawbacks. The most relevant alignment algorithms used for molecular superposition in the 

calculation of QSM are the so-called maximum similarity superposition algorithm, and the topo-

geometrical superposition algorithm.  

4.4.1 Maximum Similarity Superposition Algorithm  

The maximum similarity superposition algorithm was proposed by Constans [35], and 

implemented in the MOLSIMIL program [237]. This field-based method considers that the 

optimal alignment provides the maximum value of the similarity measure for a given similarity 

operator. Thus, the algorithm maximizes the value of the similarity integral to find the optimal 

superposition between each pair of molecules.  
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( ) ( ) ( ) ( )1 1 2 2 1 2; max  , ;AB A BZ d dρ ρ
Θ

Ω Θ = Ω Θ∫∫ r r r r r r  (71) 

being A and B the two compared molecules, and Θ the set of translations and rotations needed to 

superimpose in an optimal way the object B with the object A, considered as fixed in the space. 

Thus, Θ symbolizes the transformation of B coordinates in relation to the A coordinates, that is, 

the relative orientation between the two objects. This procedure provides a rigorous 

superposition criterion between two molecules, yielding different alternative alignments when 

different operators are used. 

 

The method orientates the molecule B by means of translations and rotations, in a way that 

maximizes the similarity integral. Being { }, ', ''a a a and { }, ', ''b b b  triads of the molecules A and 

B, respectively, first, the pair ab  is exactly aligned in such a way that the axis described by the 

segments 'aa  and 'bb  coincide. Finally, the ''b  atom is rotated so that the planes described by 

{ }, ', ''a a a and { }, ', ''b b b coincide. This process is systematically repeated for all the possible 

triads of atoms in both molecules, keeping the value that maximizes the similarity measure. The 

algorithm includes an atomic similarity threshold that must be surpassed as a constraint to 

restrict the atoms to be compared.  

 

To find the maximum of similarity an intensive search is performed, involving a large number 

of intermediate superpositions, where the similarity measure is evaluated. The superposition 

providing the maximum similarity is taken as the optimal. Provided that similarity measures are 

products between densities, the contribution at each point is highly sensitive to the existence of 

atomic nuclei and to the type of atom. As a consequence, this method can superimpose weighty 

atoms, due to their high concentration of the total molecular density. These elements act as 

density wells that compel the superposition in basis to them, putting aside possible common 

skeletons formed by several light atoms. So, when molecules contain heavy atoms up to the 

third period (such as Br or I), the optimization algorithm of molecular orientations might find as 

an optimal alignment the one that superimposes a heavy atom with the common skeleton, thus 

precluding the correct alignment of the common backbone. Thus, depending on the composition 

of the molecules being compared, this superposition does not provide intuitive alignments, since 

the density of the common molecular substructure is not important enough in comparison with 

the corresponding density of heavy atoms. Hence, in these cases, there may be a loss of 

chemical sense, reflected in low intuitive alignments. Some possible inconsistencies may be 

avoided by considering local similarities [238]. 
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Besides, the algorithm performs an exhaustive search that consists of analyzing different 

positions and evaluating the similarity measure at each step. As a consequence, the method is 

computationally quite expensive. However, the computational cost can be reduced by 

simplifying the levels of the optimization cycles.  

 

Alternatively, similarity can also be evaluated form other field types, apart from electron 

densities. Thus, to diminish the cost of the process, electronic densities can be approximated by 

expansions centered in the atoms -the statregy employed in the present case, with the calculation 

of ASA DF-, electrostatic potentials, steric surfaces or the volume, or representations based on 

grids [236]. All these methods overlap the coincident zones.  

 

In order to avoid these superpositions chemically not relevant, an alternative algorithm has been 

proposed.  

 

Figure 3. Alignment of steroids by the maximum similarity superposition algorithm. 

 

4.4.2 Topo-Geometrical Superposition Algorithm (TGSA) 

The Topo-Geometrical Superposition Algorithm (TGSA) was proposed by Gironés [36], and 

programmed and implemented by the same author [239]. 

 

In contrast to the maximum alignment superposition algorithm, this atom-based method 

considers that the optimal superposition aligns the molecules in basis to a common skeleton, 

taking only into account atomic types and interatomic bond lengths, that is, atomic numbers and 

coordinates. With such purpose, the algorithm examines all the atomic pairs within the molecule 

and aligns the largest molecular substructure common to a series of molecules, orienting the 

molecular matching towards the matching of such substructure. The method is only based on 

topological and geometrical considerations, where the molecular topology is embedded in the 

form of comparisons between bond distances. Given two molecules, the superposition is unique 

and it does not depend on the type of operator chosen to perform the similarity measures. 
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First, the molecular coordinates and the atomic numbers are read from the output from a pool of 

commercial programs. Once stored, the molecular coordinates are reordered in basis to the 

decreasing atomic number, in order to determine in a simple way the number of non-hydrogen 

atoms of the molecule. Considering that the superposition of hydrogens is not significant, and 

with the aim to save computational requirements, hydrogen atoms are not included in the 

process.  

 

The next step consists of the definition of the atomic pairs, the so-called diads. A diad is defined 

only if the involved atom pairs are bonded and, it is thus determined by the number of bonds. 

Once the diads have been defined, within each molecule, every diad is compared to all diads of 

the other molecules by means of their interatomic distances, using a given length threshold. The 

threshold takes into account the fluctuations in backbone atom conformations produced by the 

presence of different substitutions within a molecule. This procedure allows discarding the 

bonds that do not belong to the common skeleton.  

 

Once all the diads have been compared, the algorithm creates atomic triads by adding a third 

atom to the selected diads. This supplementary atom must be bonded to at least one atom of the 

considered diad. In geometrical terms, this step generates a triangle or a plane, where atoms 

occupy the vertices of the triangle, and the sides correspond to effective chemical bonds. The 

triangles obtained for one molecule are compared to all the triangles obtained for the second 

molecule by means of their interatomic distances, within the same distance threshold adopted in 

the diads comparison. If the three distances of both compared triangles are similar, both triads 

also are considered similar and stored. The triads that do not fulfill this criterion are 

automatically discarded. After having completed this comparison, the selected triads are 

superposed, and the resulting molecular alignment is univocally determined.  

 

The process is repeated for all the atoms and the algorithm chooses the alignment that 

maximizes the number of atoms superimposed, minimizing the fit index. The fit index, CAB, is 

used as the criterion to compare two interatomic distances, and it is calculated contrasting the 

absolute value of their difference with a fixed threshold: 

= AA BB
AB

AB

d d
C

d
 (72) 

where 
2

, ,
1 1= =

= −∑∑
A Bn n

AB i A j B
i j

d x x , n is the number of atoms and x the molecular coordinates.  
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CAB,, comprised within [0,1], evaluates the quality of superposition. It indicates a better 

alignment when CAB approaches the unit, with the ideal case of two identical structures =1 ABC . 

 

The TGSA method considers the molecules as rigid bodies, and does not allow flexibility in the 

structures (neither rotation nor variations in distances and bond angles). It is designed to operate 

with homogeneous sets of molecules, and does not yield good results with structurally diverse 

molecules, provided that the pairwise alignments are restricted to common skeleton recognition. 

In contrast, it is able to recognise a common substructure, thus providing a coherent alignment 

with chemical intuitive sense. The procedure is simple and has low computational requirements. 

To solve such drawbacks presented in the stuy of non-rigid, flexible conformations, the TGSA 

algorithm has been recently improved to enable handling rotatable bonds [240].  

 

Figure 4. Pairwise molecular alignment between artemisinin and a derivative. 

 

 

Figure 5. Molecular alignment solution for a molecular 
set of 17 synthetic 1,2,4-trioxanes over artemisinin. 

 

Peroxi 

Peroxi 
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As observed in Figure 4, both structures are aligned around the peroxy bridge present in 

artemisinin and the rest of the molecular structures belonging to the set. This fact is again 

evidenced observing Figure 5, where the entire molecular set is overlaid according to this 

substructure. Hence, the molecular skeleton has been detected and superposed [169]. 

4.5 Applications 

Several applications of quantum similarity theory have been developed in different 

computational fields since the publication of the seminal paper by Carbó et al. [15]. Some of the 

most rellevant among them are outlined next: 

Analysis of the charge distributions. The comparison and analysis of the charge concentration 

either in different species or in the same specie calculated at different levels allows the 

determination of the effect of solvation [243], and the comparative analysis between different 

methods of calculation [84,250-252]. 

Determination of the quality of a basis function set [253], study of the effect of the basis 

functions on similarity measures [254], and quantification and improvement of Density 

Functional Theory (DFT) parameters [255-256]. 

Determination of the optimal geometry optimization method. Given a molecular structure 

experimentally determined, its geometry can be optimized at different theoretic levels (ab initio, 

DFT, semi-empirical, or Molecular Mechanics (MM)  level) with different basis. Afterwards, 

the similarity between densities obtained by different approaches and ab initio densities are 

calculated on a single structure, used as a template. Those methods that provide a density that 

resembles the more to the ab initio density of the original structure can be considered as suitable 

models to model compounds structurally related to the template [169].  

Evaluation of atomic properties within a molecule [188192,257] from fragment self-

similarity calculations between the different atoms constituting the molecule, and Modelization 

of properties in atomic nuclei. [23,193-194] from similarity measures between nuclear density 

functions [258-259].  

Determination of transition states and the behaviour in intramolecular reactions [260-261] 

using similarity measures between reagents and products of reactions and the respective 

transition state. These calculations elucidate if a reaction is product-like or reactant-like, thus 

analyzing and quantifying the Hammond postulate [262]. More generally, also the assistance 

for the Classification of reaction paths [191], and the classification of other quantum objects 

[263] is possible. 
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Applications related with molecular reactivity [264], and Quantification of the effects of 

substituents in chemical reactivity [172, 174-175] from self-similarity measures of the 

functional group involved in the process, as well as the Determination of molecular chirality 

[265-266]. 

 

Priorization of orbitals for the calculation of truncated configuration interactions [267-

268] from similarity calculations between atomic and molecular orbitals, and Reduction of the 

number of cycles in SCF calculations [269]. 

 

Finally, the most used application in our lab is the Generation of descriptors for their use in 

QSAR, which will be extensively revised in the following section. 

4.6 Molecular Quantum Similarity in QSAR 

Once established the theoretical basis of quantum similarity theory, quantum similarity was 

considered a valuable tool to generate molecular descriptors for their use in QSAR. The first 

work where similarity measures were applied to QSAR dates from the 1983, when a work of 

Martin et al was published [270]; afterwards, this work was extended to a qualitative study of 

molecular activity using electrostatic potential distributions [180-182,271-273]. In a similar 

way, Richards used Carbó indices obtained by comparison of electrostatic potentials as 

molecular descriptors for the construction of predictive models [51]. Richard also used 

electrostatic potentials as a basis for the calculation of similarities for their use in QSAR [52]. 

Besides, graph theory has also been included in the molecular similarity frame. Thus, Rum 

and Herndon [275] built a matrix of molecular similarity indices, comprised between 0 

(completely dissimilar objects) and 1 (identical objects), whose columns were used as molecular 

descriptors in a multilinear regression model and provided a definition of molecular similarity 

based on graph theory [80]. Good described a protocol of application of similarity measures in 

QSAR [276-278] using reduction of dimensions and statistical validation of the results for the 

prediction models and the transformation of results into Carbó indices. Chemometric tools will 

be considered and revieed in more detail in a following section. 

 

Following the research line headed by professor Carbó, initially, molecular quantum similarity 

was applied in a qualitative way in QSAR studies, associating the spatial groupings of 

molecules with the value of physico-chemical properties, and interpreting the different 

groupings as a function of molecular activities [143,279].  
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Afterwards, the existence of an operator relating the similarity measures with the molecular 

activity, that is, a physical observable, was postulated [241]. The practical implementation of 

these concepts in a theoretic protocol of application of quantum similarity matrices in QSAR 

has been afterwards established [149, 242-245]. Also, within the QSAR frame, the connection 

between MQS and graph teory has been theoretically examined and extensively applied [202], 

yielding the so-called Topological Quantum Similarity Indices (TQSI).  

 

Finally, according to the application field of interest, MQS has been applied in QSAR problems 

with pharmacological insight, oriented to the rationalization and prediction of activity of drugs 

[169,178-179,241,280-281], in the evaluation of toxicity, in the so-called QSTR 

[24,187,185,282-283]. In particular, in QSPR studies, the constants associated to carboxylic 

acids have been described [174], as well as the stability of proteins [174]. 
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5 CLASSICAL TOPOLOGICAL APPROACH  

5.1 Introduction to Graph Theory  

Graph theory is a subdiscipline of discrete mathematics closely related to both topology and 

combinatorics, which is concerned with the study of the mathematical properties of a structure 

and its components. In fact, graph theory provides a way to represent entities by means of 

graphs, schemes of connections between points by way of lines, in such a way that each line 

connects two points, thus providing the natural mathematical framework for the quantitative 

codification of classical chemical bonding ideas [284-288]. An account of the historical 

development of such ideas can be found in a review by Rouvray [289-290].  

 

The application of graph theory to chemistry [291] results in chemical graph theory [292], 

which can be considered as a branch of theoretical chemistry. It is concerned with molecular 

representation and handling chemical graphs [293], that is, structural models representing the 

topological structure of chemical systems. Hence, chemical graph theory analyses the 

connectivity in a chemical system and can be used to characterize structurally a compound by 

applying the topological method.  

 

Topology is the part of algebra that studies the connections of elements within a set and their 

mutual position. Topology deals with all the various pieces of an object identified by breaking 

up its constitutive parts. Applied to molecules, topology has evolved to a new discipline called 

molecular topology. Molecular topology collects structural information concerning 

connectivity and ramification, mainly derived from structural intuitive information embedded in 

chemical systems. Therefore, what it is really important is how many atoms are in the molecule 

and their disposition and arrangement: if they form a linear or branched chain, a ring or a 

combination of them, and the number and type of connections between them, thus providing the 

description of the manner in which atoms are bonded in a molecule. 
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In chemistry, the representation of molecules by means of graph theory only provides 

information about the topological planar structure of the molecules. Hence, the topological 

analysis regards molecules as topological entities rather than geometric ones, so that the real 

three-dimensional morphology of the molecule is not important; the nature and length of 

chemical bonds and angles between bonds are of minor interest. Also, it is usually insensible to 

the type of atoms forming part of the molecule, although heteroatoms and multiple bonds can be 

also represented as vertex and edge-weighted molecular graphs [293-295] by means of the so-

called topochemical parameters. These parameters are properly weighted graphs that represent 

the heterogeneity of atom types and bonding pattern.  

 

The classical topological approach [296-297] relates the chemical structure constitution (the 

two dimensional model of a molecule represented by a structural formulae) with a non-

dimensional quantitative scalar numerical entity characteristic of the compound. This univocally 

calculated mathematical invariant is the so-called topological index (TI). To derive topological 

indices, the topological structure of molecules is represented by graphs. Characterizing a 

molecule by a single number represents a considerable loss of information: a three-dimensional 

object (molecule) is described by a one-dimensional object (topological index). However, 

relevant structural information is still retained in the topological index. To translate chemical 

structures into a single number, graph theory visualizes chemical structures as mathematical 

object sets [298] consisting of vertices, which symbolize atoms, and edges, linking a pair of 

vertices, which represent covalent bonds or shared electron pairs. In this notation, adjacent 

vertices stand for pairs of covalently linked atoms situated at a topological distance of one.  

5.1.1 Historical Revision 

The beginnings of classical graph theory date back from the first half of the eighteenth century, 

when Euler solved the so-called problem of the seven bridges of Königsberg. Euler published a 

discussion [299] on the probability of strolling around the city of Konigsberg, crossing each of 

its seven bridges that connect two islands and the mainland once and only once, without 

retracing their steps. 

 

   

Figure 6. Illustration of the problem of the seven 
bridges of Königsberg [300]. 
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Euler realized that all problems of this form could be represented by symbolizing the areas of 

land by vertices, and the bridges by arcs or connecting lines. From a diagrammatic graph 

representation, he proved that the solution was related to the geometry of position and that 

crossing the seven bridges in a single journey was impossible.  

 

 

Figure 7. Diagrammatic representation of the 
problem of the seven bridges of Königsberg. 

 

Independently, the scientist and philosopher Rugjer Josip Bošković [301] introduced the idea of 

representing atoms as points in space [302]. Bošković’s fundamental idea was that substances 

have different properties because they have different structures. He estimated unknown 

quantities from emipirical equations, founding the origin of the structure-property concept. In 

this way, he was able to account for the existence of different substances. Bošković’s model 

may be considered as the forerunner of a topological model for the structure of matter, although 

the word topology was not used until 1836 by Listing, who reported a paper [303] where he 

described the fundamentals of topology for quantification and modelling purposes.  

 

The considerable convenience of having a two-dimensional depiction of molecular species 

readily available introduced chemists into two-dimensional thinking and neglecting three-

dimensional implications. The structural formula was transformed into the mathematical device 

known as chemical graph. Indeed, mathematicians began taking interest in the structural 

formula because they recognized such formulas as examples of topological graphs.  

 

Specially, the term graph, referring to diagrams showing analogies between chemical bonds in 

molecules and graphical representations of mathematical invariants, was coined by the 

mathematician Sylvester [304]. Sylvester introduced the term graph into both chemical and 

mathematical literature [305], and proposed the key idea of representing chemical graphs by 

mathematical invariants that could in turn be employed to characterize the chemical species 

from which they were originally derived. The invariants usually described as topological indices 

[306] have been employed for the prediction and interpretation of a wide range of physical and 

other properties of chemical species [307-308]. Thus, he demonstrated that a molecule can be 

represented by a connectivity or adjacency table [309]. 
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Also, important applications of chemical graphs derive from the work of Cayley. Cayley had 

the idea of representing members of homologous series of molecules by graphs. This kind of 

representation enabled Cayley to enumerate the number of structural isomers for several 

chemical series [310-311].  

 

Since the initial development of the seminal bases of topology, founded by Euler, graph theory 

evolved from the classical topological approach, firstly introduced by Boŝković, to nowadays. 

The work of several individuals from several different fields contributed to the development of 

graph theory, i.e. the applications of Gauss and Kirchoff in electrical circuits [312], the 

publication of Listing describing the Möbius band, among others. From that point, graph theory 

began to be used as a calculation tool to solve different and varied problems: Lord Kelvin was 

influenced by a work of Helmholtz on vortices, and the connectivity of surfaces was studied by 

Riemann. The connectivity in the three dimensional Euclidean space extended to n dimensions 

was examined by Betti, whereas Poincaré put the idea of connectivity on a rigorous basis and 

introduced the concept of homology in a series of papers in 1895.  

 

Today, topology is an active field in modern mathematics. As an illustrative example, a curious 

topological problem that was recently solved was to determine how many colours are needed to 

colour an ordinary map so that no two regions that share the same border have the same colour. 

In 1976, Kenneth Appel and Wolfgang Haken used a computer to prove that four colours are 

sufficient, no matter how large the map is, or how many regions are in the map. 

5.1.2 Applications 

Graph theory is a field of mathematics that has a lot of applications in several fields, in addition 

to physics and chemistry. Within chemistry, graph theory has been applied to problems from a 

wide range of research areas. By describing the most general geometric features of molecules, 

topology and graph theory provide a suitable basis for answering the old question of how to 

derive the properties of chemical compounds from their structures. As a result, the construction 

of abstract chemical graph theory has become a very powerful tool for the topological 

characterization of chemical structures in such diverse areas as drug and new materials design, 

modelling of surface phenomena crystals and polymers, and assessing toxicities of chemicals in 

the environment.  

 

In organic chemistry, the structure of molecules has been traditionally represented by the use 

of schematized diagrams representing only the backbone of carbons and heteroatoms. Graph 

theory allows the analysis of these graphs and the derivation of numerical quantities known as 

topological indices.  
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The interest of developing new graph descriptors for organic compounds revived in recent 

years, when topological indices found new applications in molecular similarity and diversity 

assessment [314], database mining, and virtual screening of combinatorial libraries [315-317]. 

In drug design, similarity and dissimilarity based methods have been very useful in the rational 

selection of candidate chemicals [318], database screening [319], and risk assessment [320].  

 

The use of molecular similarity methods is based on the structure-property similarity principle. 

This notion states that similar structures usually have similar properties [10,321-322]. 

Intermolecular similarity can be defined in terms of the number of structural features and their 

mutual arrangements common to two chemical species [323]. The structural features used to 

quantify similarity vary with the level of organization to which the chemical species belong, 

atomic, molecular, macromolecular, etc. It is also dependent on the mode of representation of 

the species, choice of the set of structural descriptors, and the selection of the particular 

mathematical function used to quantify similarity from the chosen set of descriptors. Methods 

for quantitative molecular similarity analysis of chemicals give an ordered set of molecules 

(analogs) structurally related to the chemical of interest. The properties of the related analogs 

can then be used to estimate properties of the candidate chemical [318]. Similarity has been 

quantified using empirical and non-empirical properties or parameters. In particular, graph 

theoretical parameters such as topological indices have been used in the quantification of 

molecular similarity [10,321,324-329], with the aim to select efficiently some new active drugs 

from the hundred of thousands of compounds available from the data sources at the disposal of 

the pharmaceutical chemists. 

 

There have been many attempts to design effective molecular structural indices, within the 

fields of QSPR, QSAR, and quantitative drug design. Topological indices derived from graph 

theory have been used as structural descriptors in QSPR and QSAR models [330-333]. Most 

applications have been in pharmacology and toxicology [334-336], but also many other physical 

and chemical molecular properties have also been modelled and predicted. Indeed, the selection 

of the adequate set of topological indices is not evident since numerous TIs have been described 

in the literature.  

Various physicochemical parameters have been used jointly with connectivity indices, 

topological charge indices, electrotopological indices and geometrical indices in order to get 

solid models able to predict the pharmacological, biological, physical or chemical activity. 

Topological indexes have demonstrated their utility in the prediction of the diverse physical, 

chemical and biological and even analytical properties for different types of compounds, and on 

the design of new lead drugs.  
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Thus, one of the oldest and most successful QSPR approaches relies on the topological 

paradigm. Within this field, numerical correlation between quantities derived from topological 

graphs and physicochemical or biological properties usually produces acceptable results. The 

success of topological models relies in the possibility of estimating the properties of new 

chemical compounds from the molecular structure, encoded in a numerical form with the aid of 

various descriptors, i.e. molecular graph descriptors and topological indices [337-341].  

 

The first applications of graph theory to QSPR models were introduced in 1947, by Wiener, 

which determined the boiling point of a set of aliphatic hydrocarbons [353351]. Afterwards, a 

number of well-known indices have been gradually introduced. The variety of these graph-

theoretical descriptors has spectacularly increased in last decade; nowadays, in the literature, 

hundreds of topological indices, suitable to describe different properties, are reported. In the last 

few years, also the necessity of describing the three-dimensional character of molecular 

structures has contributed to the development of three-dimensional indices [381]. The main 

application of topological descriptors is to quantitatively correlate structures and properties of 

biologically active compounds [382]. But it has to be taken into account that, whereas chemical 

structures are discrete entities, their properties show a continuous variation, expressed within a 

certain numerical range. Since then, many new TIs have been added for Quantitative Structure-

Property Relationship (QSPR) and Quantitative Structure-Activity Relationship (QSAR) studies 

[296]. 

5.2 Characterization of structures: representation by means of graphs  

Mathematically, a graph is the application of a set on itself, that is, a collection of elements of 

the set and of binary relations between these elements. Graphs are two-dimensional objects, but 

they can be embedded or realized in spaces of higher dimensions. In terms of its pictorical 

representation, a graph is a mathematical structure formed by a set of points and a set of lines 

that join some or all pairs of points. Points are also referred as vertices, nodes, and junctions, 

and lines as edges, axis, segments, arcs, and branches. A graph edge symbolizes a binary 

relation between the vertices that connects. A graph is a topological rather than a geometrical 

concept, and hence metric lengths, angles, and three-dimensional spatial configurations have no 

meaning.  

 

Formally, a Graph { },G V E  is formed by a non-empty and finite set of vertices 

{ }1 2, ,..., kV v v v= , and edges { }1 2, ,..., qE e e e= , in such a way that each line joins two points.  
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The two-dimensional realization of a graph is a set of vertices (points) and of edges (lines) 

joining these vertices. A graph can be visualized by a diagram where the vertices are drawn as 

small circles or dots, and the edges as lines or curves connecting the appropriate circles. Mainly 

due to their diagrammatic representation, graphs are used as structural models in science, and, in 

particular, in chemistry.  

 

In chemistry, graphs can be used to represent a variety of chemical objects such as molecules, 

reactions, crystals, polymers and clusters. The common feature of chemical systems is the 

presence of sites and connections between them. Sites can be atoms, electrons, molecules, 

molecular fragments, intermediates, etc., while the connections between sites can represent 

bonds, reaction steps, van der Waals forces, etc. Chemical systems can be represented by 

chemical graphs using a simple conversion rule: sites are replaced by vertices and connections 

by edges. Thus, chemical structures can be represented by a special class of structural graphs, 

the so-called chemical graphs, molecular graphs or constitutional graphs. 

 

Molecular graphs are non-directed planar chemical graphs that represent the constitution of 

organic compounds. In the representation of chemical species by means of molecular graphs, 

individual atoms are represented by vertices, whereas covalent bonds or shared electron pairs 

are depicted by edges linking a pair of vertices.  

The representation is the so-called symmetric tree, that is, a symmetric connected graph without 

circuits (acyclic) and non-directed connecting lines, i.e. there is a single path between each pair 

of vertices. A graph is connected when between each pair of vertices exists at least one path 

connecting them, where a path is an alternating sequence of vertices and edges, with each edge 

being incident to the adjacent vertices, and with no repeated vertices. Simple connected graphs 

express the connectedness of atoms in molecules, with a single edge between any pair of 

neighbouring, adjacent atoms. The chemical nature of atoms is neglected, thus dealing with a 

reference molecular skeleton. To simplify the manipulation of molecular graphs hydrogen-

suppressed or hydrogen-depleted graphs are often used. Such graphs represent only the 

molecular skeleton, omitting hydrogen atoms and their bonds, and leaving only the non-

hydrogen atoms, i.e., second or higher-row atoms, whose principal quantum number is n ≥ 2. In 

this notation, adjacent vertices linked by a connecting axis stand for pairs of covalently linked 

atoms situated at a topological distance equal to one. Then, the different atoms or vertices are 

assigned an arbitrary number.  
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Virtually, all molecules, whether arbitrarily defined as rigid or non-rigid, can be represented by 

a chemical planar graph [342]. For this reason, it is meaningful to define molecular structure 

as an equivalent class of chemical graphs [343]. Such a definition associates an extended, fuzzy, 

vibrating and rotating molecular entity with an unchangeable, static mathematical structure of 

well-defined connectivity.  

 

As previously commented, in graph representation, the geometrical features of organic 

compounds, such as bond lengths or bond angles, are not taken into account and the chemical 

bonding of atoms is regarded as the most important characteristic. However, this kind of 

representation has as a disadvantage the loss of information from the information reported by 

the real three-dimensional molecular geometry to the knowledge provided by the graphs, 

represented in a bidimensional plane. In the particular cases where the three dimensional 

geometry is crucial for their properties, geometrical parameters can be included in the 

description of the structure. 

5.3 Associating graphs with matrices 

Hence, in order to establish structure-function relationships, the chemical structure of a 

molecule visualized as a graph must be codified into a numerical form. In computing, graphs 

can be associated into the so-called Topological Matrices (TM). From the topological matrix 

elements derived from a molecular graph, topological indices are mathematically derived in a 

direct and unambiguous manner. Graph invariants can be used as sets of molecular descriptors 

to perform a comparative regression analysis and study how different properties of a set of 

molecules depend in the same structural factors.  

 

The association of graphs with matrices is the link between the graphical description and the 

numerical description by means of invariants, which are calculated from connectivity matrices. 

These are squared symmetric matrices of order n being n the number of vertices, symmetrical in 

relation to the principal diagonal. The rows and columns labeling the TM elements correspond 

to the numeration of vertices that, in turn, correspond to the enumeration of atoms. It has to be 

noted that the numbering is arbitrary.  

 

A labelled chemical connected graph may be associated with several matrices that account for 

connectivity, adjacency, and distance. Particularly, the most commonly used indices in graph 

theoretical representation can be coded by means of an attached topological matrix, and the 

topological distance matrix, which have been the source of generation of many topological 

indices.  
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5.3.1 Topological matrix 

The topological or adjacency matrix (T), used by Cayley, codifies the vertices and the edges of 

a graph, and contains information on the connectivity between atoms, independently of the 

nature of bonds and the type of atoms. The elements of the topological matrix are composed by 

the unity if the associated vertices are directly connected, and by zero otherwise. Self-

connections are not allowed in the adjacency matrix of a graph, so that it is a diagonal-zero 

matrix, (Tii = 0). From the chemical point of view, the topological matrix can be regarded as a 

table of connections, where Tij non-null entries indicate that atoms i and j are bonded. 

5.3.2 Topological distance matrix 

The topological or graph distance matrix (D), introduced in graph theory by Harary [286], 

accounts for the topological length, namely the topological distance, or the number of edges or 

bonds in the sequence defining the shortest path between two vertices or atoms. It is constructed 

taking the integer value of the number of bonds separating the considered vertices or zero 

otherwise, in the case of non-bonded atoms. The distance of an atom to itself is considered to be 

null (Dii=0). The ij position value of the k-th potency of T gives the number of paths of length k 

from vertex vi to vertex vj. So, the distance matrix of a graph can be generated using powers of 

the corresponding adjacency matrix and the distance matrix [344]. 

5.3.3 Valence vector 

Finally, the topological valence of a vertex is defined as the number of axis of incident to the 

vertex. The valence vector (v) is calculated as the sum of entries in i-th row or j-th column of 

the topological matrix, which indicates the coordination of an atom, that is, if an atom is 

primary, secondary, tertiary or quaternary. The excess or default of valence can be obtained by 

directly comparing the topological valence with the chemical valence of elements.  

 

Table 1 shows the definition of the above-mentioned matrices, being n the number of atoms in 

the molecule and nb the length of the shortest path between the vertices vi and vj.  
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Table 1. Definition and symbols of classical topological 
arrays used in chemical graph theory. 

Definition Symbol 

1 if atoms i and j are bonded
0 if atoms i and j are not bondedij


= 


T  T(nxn) 

b

0 if i=j
n  if i jij


=  ≠

D  D(nxn) 

1

n

i ij
j

T
=

= ∑v  v(n) 

 

5.4 From matrices to indices 

Topological matrices can be used as a source to derive univocally calculated molecular 

descriptors that contain topological information embedded in the molecular structure. These 

structural invariants, called Topological Indices (TI), can be collected in an ad hoc manner in 

the matrix form. 

 

Thus, topological indices are scalar numerical descriptors mathematically derived in a direct and 

unambiguous manner from structural graphs. These univocal numerical quantities can be used 

for the structural characterization of molecular graphs of chemical structures, and its calculation 

must be independent of the arbitrary numeration chosen for the graph. In fact, the term graph 

theoretical index would be more accurate than topological index, although traditionally these 

invariants are referred to as topological indices. Since isomorphic graphs possess identical 

values for any given topological index, these indices are referred to as graph invariants. Two 

graphs are isomorphic if there is a one-to-one correspondence between the vertices so that 

preserves the adjacencies between axes. Isomorphic graphs can give the appearance of being 

graphically very different.  

 

Alternatively, TI can be regarded as mathematical relationships related to the count of 

components of various types accounting for the properties of the structure they characterize. In 

this correspondence, each structure has a single descriptor associated, but not vice versa; one 

index may correspond to more than a graph. So it is desirable that the indices present low 

degeneracy. Given a list of invariants of structures, in a general case it is not possible to 

reconstruct the structure.  
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TQSI contain tridimensional information of the molecular structure (Euclidean distances 

between atoms) and, also, chemical information due to the fact that the overlap matrix elements 

have been obtained using a basis set depending on the nature of the atoms entering into the 

molecule. Thus, TQSI could be able to distinguish between rotamers, conformers contrarily to 

the classical TI.  

Geometry-dependent and three-dimensional structural invariants for the characterization of 

molecular structures comprise the three-dimensional geometric information content present in 

chemical structures, and consequently, they can discriminate geometric isomers as well as 

conformational isomers. Graph-theoretically derived topological indices have found numerous 

applications to the prediction of physico-chemical properties and structure-activity relations. 

 

There is an always-increasing proliferation of topological indices in the literature. For that 

reason, a list of desirable properties has been proposed by Randić [351-352]: 

- Direct structural interpretation 

- Good correlation with at least one molecular property 

- Good discrimination of isomers 

- Locally defined 

- Generalizable 

- Linearly independent 

- Simplicity 

- Not based on physical or chemical properties 

- Not trivially related to tother indices 

- Efficientcy of construction 

- Based on familiar structural concepts 

- Correct size dependence 

- Gradual change with gradual change in structures 

 

The first TIs, able to characterize the ramification of a graph, were introduced in the late 40s by 

Wiener [353-357], Platt [358-359], and Gordon et al. [360]. Various definitions of topological 

indices have been used in order to obtain molecular descriptors. The most relevant are the 

indices formulated by Wiener [353], Hosoya [361], Randić [362], Kier and Hall [337-

338,363], Balaban [364], Schultz [366-367] and Harary [368]. Also, Zagrev indices (M1 and 

M2) [369], the Largest Eigenvalue [370] and Xu index [371] have been formulated. More 

recently, information theoretic J index, shape kappa indices, hyper Wiener, electrotopological 

state indices, and three-dimensional analogs of TI by Trinajstic and Todeschini have also been 

formulated.  
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5.4.1 Wiener Index 

In 1947, Wiener introduced an index to relate the structure of hydrocarbons with 

phsycochemical properties such as boiling points [354], molar refraction, heat of formation 

[355], steam pressure as a function of temperature [356], and superficial tension [357]. The 

Wiener Path Number (WPN) [353] can be defined as the total number of bonds among all the 

pairs of atoms in a graph. The number of paths can be calculated from the topological distance 

matrix as the half-sum of the elements of this matrix: 

∑ ∑
=

−

+=

=
n

i

n

ij
ijDWPN

1

1

1

 (73) 

where n is the number of atoms, and Dij are the elements of distance matrix, that is, the number 

of bonds in the shortest path between i and j.  

 

Wiener also defined a number of polarity, p3, obtained in the computation of the number of 

paths of length three. The Wiener Index (W) is defined as the summation of Wiener path 

number and the polarity number: 

3pWPNW +=  (74) 

Both Wiener path number and Wiener Index increase with the size of the molecule, but tend to 

diminish with molecular ramification.  

5.4.2 Hosoya index 

The Hosoya index (ZA) was defined in 1971 [361] for non-directed graphs, as follows: 

( )∑
=

=
2

0

/n

i

AA kpZ  (75) 

where p(k) is the number of ways in which such k bonds are chosen from the graph that no two 

of them are connected. By definition, pA(0)=1 i pA(1)=nb. 

 

The Hosoya index was firstly used to correlate with several of the thermodynamic quantitites of 

saturated hydrocarbons, such as the boiling point. 
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5.4.3 Randić Index of molecular ramification 

The molecular ramification index was introduced by Randić in 1975, as the connectivity index 

[362]. Based in the classification of bonds in molecular graphs, is one of the most widely used 

topological indices in QSAR analysis. Randić classified the kind of bond between atoms, 

depending on the number of atoms bonded to each terminal vertex. The contribution to each 

type to the index is the inverse of the product of the square root of both valence vectors. The 

sum of all contributions for all k axis (within a total of m axis) constitute the Ramificaton Index 

of Randić (R), which classifies molecules attending to their ramifications:  

( )1

1m

k i j
k

R
v v=

= ∑  (76) 

The expression of calculation of Randić index can also be modified to work directly with the 

adjacency matrix:  

( )
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1 1

n n
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i j i
i j k

T
R

v v

−

= = +

= ∑ ∑  (77) 

For molecules with the same number of atoms, the index decreases when ramification increases. 

Randić index was satisfactorily correlated in alkanes with the boiling point, heat of formation 

and steam pressure. Besides, valences can be modified to include the effect of heteroatoms.  

5.4.4 Generalized Connectivity Indices 

Introduced and posteriorly developed by Kier and Hall [337-338,363], this kind of connecting 

graph can be divided into five types: the trivial, the path, the cluster, the path-cluster and the 

chain graph. Connectivity indices are calculated adding terms corresponding to all the 

connected subgraphs of the main graph, attending to a given order, where the subgraph order is 

the number of vertices that form it. A generalized connectivity index of order m and type t, m
tχ , 

is defined as:  

( )

1

1

1tn m
m

t
i j i s

v
χ

+

=

= ∑∏  (78) 

where nt is the number of connected subgraphs of type t, with m vertices.  

5.4.5 Balaban index 

Balaban index (B) was introduced in 1982 [364] as one of the less degenerated indices. It 

calculates the average distance sum connectivity index, according to the equation: 
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where ne is the total number of axes (bonds) of the molecule, and (D)i represents the sum of 

topological distances from the vertex i to all the other vertices of the graph, extended for all the 

possible axes. µ is the number of cycles of the molecule, also called cyclomatic number, which 

expresses the deficiency of hydrogen in hydrocarbons, and it can be calculated using: 

1+−= nmµ  (80) 

being m the number of axes and n the number of vertices. Balaban index measures the 

ramification and it tends to increase with molecular ramification. It has been satisfactorily 

correlated with octane numbers of alkanes [365]. 

5.4.6 Schultz Index 

The Schultz index (MTI) was introduced by Schultz in 1989, as the molecular topological index 

[366-367]. It takes into account the effect of adjacency and distance matrices and the valence 

vector, and it is computed as: 

∑
=

=
n

i
ieMTI

1  

 (81) 

where ei represent the elements of the row matrix of order n, calculated as follows: 

( )[ ]iie DTv +=  (82) 

Hence, in this way,  

( )[ ]∑
=

+=
n

i

MTI
1

DTv  (83) 

5.4.7 Harary Number 

The Harary number (H) was introduced in 1991 by Plavšić et al. [368] in honour of professor 

Frank Harary, due to his influence in the development of graph theory and, especially, to its 

application in chemistry [286]. This index is defined from the inverse of the squared elements of 

the distance matrix according to the expression: 
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where D-2 is the squared inverse distance matrix. 

5.4.8 Other indices 

Other indices are Zagrev indices (M1 and M2), the largest eigenvalues index (x1), and Xu index 

(Xu), defined as follows: 
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( ))(max1 TsEigenValuex =  (86) 
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6 FROM CLASSICAL TOPOLOGICAL APPROACH TO 

QUANTUM SIMILARITY THEORY 

The graph-theoretical approach to QSPR is based on the use of topological indices for encoding 

the structural information [291,296,372-376]. The term topological index [361] indicates a 

characterization of a molecule (or a corresponding molecular graph [296]) by a single number. 

The need to represent molecular structure by a single number arises from the fact that most 

molecular properties are recorded as single numbers. The ordinary connectivity indices derived 

from a graph theory suffice for the prediction of many physical properties. However, geometry-

dependent three-dimensional characterization of molecular structures is an important topic in 

several areas, such as computer enumeration, construction and representation of stereoisomers 

of molecules. So, for the prediction of properties of other molecules, i.e. molecules containing 

heteroatoms, purely graph theoretical indices may not suffice. The pharmaceutical and chemical 

community needs extended tools capable to extract complex information, derived from the 

three-dimensional (3D) molecular structure, provided that classical topological indices derived 

from topological matrices only provide part of the spatial information of a molecule.  

 

Three-dimensional topological indices derived from molecular graphs have been defined as 

topographic indices, which include the 3D structural characterization of the molecules and can 

difference cis/trans, gauche/anti isomers [345-348]. Those geometry dependent structural 

invariants derived from geometry-based matrices are based on the comparison of shape and 

three-dimensional topology of molecules. 

 

Some 3D variants of well-known TI can be also defined; such indices are the 3D Wiener path 

number (3DW), 3D Shultz index (3DMTI) and the 3D Harary number (3DH). Their definition is the 

same as the related ones appearing in Table 2, but the matrix of distances entering into the 

index computation is the one collecting all the euclidean distances between pairs of atoms 

present in the molecule.  

 

Also, a link between classical topological approach and the general quantum similarity theory 

can be sketched [21]. The same techniques for construction of TI have been generalised not only 

from classical topological matrices to geometry matrices [349-350], but they have also been 

extended to the use of QS matrices.  
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As a result, a new kind of three-dimensional molecular indices have been described: the so-

called TQSI [21,199,247,377-378]. These novel descriptors, which also account for further 

three-dimensional information, have been computed using the program TOPO, completely 

developed at the Institute of Computational Chemistry [202]. TQSI can be defined using the 

classical construction according to the theoretical framework, but replacing the classical 

topological matrices by matrices derived from quantum similarity calculations [246].  

6.1 Topological Quantum Similarity Matrices 

In contrast to integer classical topological matrices, the three-dimensional structure of molecules 

can be included in classical graph theory by codifying molecules with real matrices. Geometry-

based real matrices are sensitive to details of molecular architecture and, besides from 

connectivities between atoms, they also describe the kind of atoms and nature of bonds. For 

example, it may happen that two atoms are not directly bonded but they are close enough to 

present chemical interactions. Also, the effect of heteroatoms, as well as the 3D structure of the 

molecules, is considered. The inclusion of atomic distinction and 3D structure can be introduced 

using QS tools, which describe atoms by means of functions and take into account the 

optimized 3D structure of molecules. Hence, classical TM are replaced by QS matrices, which 

codify and describe the 3D molecular structure. Also, the topological distance matrix is replaced 

by the Euclidean distance matrix. Consequently, each matrix has its own associated real valence 

vector.  

6.1.1 QS Matrix 

The previously defined integer topological matrix can be substituted by similarity matrices 

resulting from an interatomic quantum similarity measure, and calculated between each pair of 

atoms of a given molecule: 

( ) ( ) ( ) ( )1 1 2 2 1 2 ,   ij i jZ d dρ ρΩ = Ω∫∫ r r r r r r  (88) 

where the non-differential positive definite operator, Ω, can be replaced by the Overlap or 

anyother similarity operator. This matrix accounts for the three-dimensional structural 

information and provides information on the strength of the interaction between atoms. In order 

to obtain comparable values to the classic topological matrix, the diagonal elements are set to 0. 

( ) ( )1 2 1 2   if 

 0  if 
i j

ij

d d i j
Z

i = j

ρ ρ ≠= 


∫∫ r r r r
 (89) 
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The entries of this matrix are defined as the interatomic overlap QS integrals between two 

Gaussian functions, for atoms i and j. The values of these normalized integrals are real numbers, 

comprised between 0 and 1, that substitute the integer values of the TM. The superposition of an 

element with itself gives the unity; however, the diagonal is composed by zeros, whereas the 

other elements are zero or close to zero in the case of far atoms.  

 

Analogously to the overlap QS Matrix (S), other QS definitions can be employed, i.e. the 

Cioslowski matrix [53] (C’), where ij ijC S′ = 2 , the electronic repulsion or Coulomb matrix (C), 

the gravitational matrix (G), etc. 

6.1.2 Euclidean Distance Matrix 

In addition to the use of QSM, the topological distance has been also replaced by the Euclidean 

distance between every pair of atoms [202]. The distinction between these two kinds of 

distances has been made from the index definition itself, clearly separating the 2D indices, 

calculated with the integer matrix, from the 3D ones, obtained with the real matrix, which 

characterises the 3D geometry of a molecule by including spatial information.  

 

Whereas the topological DM only considers the shortest path equivalent to the number of bonds 

between two atoms, independently of the geometry of the molecule, the Euclidean DM regards 

the effect of non-bonded close atoms. This matrix of interatomic distances is simply derived 

from the X-ray crystallographic data or from the optimized coordinates of output file of 

geometry optimization programs. 

 

The Euclidean distance matrix associated to a molecular structure is calculated as:  

,  if  
0,  otherwise

ij ij

ij

D d i j

D

= ≠

=
 (90) 

where 

( ) ( ) ( )2 2 2

ij i j i j i jd x x y y z z= − + − + −  (91) 

where ( ), ,i i ix y z  and ( ), ,j j jx y z are the coordinates of the nuclei i and j, respectively. In a 

connex graph, the elements of the distance matric, dij, belong to the Euclidean metric: 
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0    0  ≥ ∧ = ⇔ =

=

+ ≥

ij ij

ij ji

ij jk ik

d d i j

d d

d d d

 (92) 

From the computational point of view, the diagonal elements are directly defined as null, and 

only the upper or lower triangle elements are computed, due to the symmetry of these matrices. 

 

The Euclidean matrix is a generalization of the topological distance matrix in the sense that the 

classical topological matrix only contains the distances between the chemically bonded atoms. 

In contrast, the geometry-based matrix contains the distances between all the nuclei in the 

molecular structure, and depends on bond angles and dihedral angles. Thus, the distance matrix 

associated to the molecular graphs gives information about of chemical bonding (adjacency) but 

not on the geometry. Geometrical distance matrix reflects interactions through space, while 

topological and distance matrix reflects interactions through bonding.  

6.1.3 Valence Vector 

Similarly, the valence vector also is computed from the entries of the QS matrix. In some 

previous studies, the concept of similarity, embedded with topological indices, was successfully 

applied to the calculation of physicochemical properties [378] and QSAR studies [247].  

6.2 Topological Quantum Similarity Indices (TQSI) 

As in the classical topological approach, appropriate manipulations of the elements embedded in 

the TQSMs permit to generate TQSI [24]. Besides, the structural invariants derived from the 

classical topological matrix lead to degeneracies since many entries in the adjacency matrices 

are zeros. As a result, isomers which differ geometrically cannot be differentiated by the indices 

derived from the adjacency matrix. 

 

In contrast to geometry-dependent structural invariants, graph-theoretically derived indices 

depend only on the topological matrix and thus they do not correlate directly to with the three-

dimensional structure or the compactness of the molecule in question in the three-dimensional 

space. Graph-theoretically derived indices are, however, easier to compute as they depend only 

on the connectivity. 
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TQSI can be calculated from a modified formulation analogous to the classical formulation 

[247,380]. The indices used in this work are: Wiener (W) and Wiener Path Number (WPN), 

Randić (R), Schultz (MTI), Balaban (B)  and Hosoya (Z)  indices, Harary Number (H), and the 

generalised connectivity indices (mχt) of Kier and Hall.  

 

In order to obtain the respective TQSI, it is only necessary to invoke the same mathematical 

generating rules for classical indices but replacing the numbers coming from the TM by the 

ones arising from TQSM. The valence vectors are replaced by the ones generated from the 

respective TQSM, and the topological distance matrices are substituted in the TQSM case by 

the three dimensional Euclidean distances [24,247].  

 

Table 2 shows the definition of several TQSI, where the summations run over the same integer 

indices (thus, the discretised molecular bond structure is also considered) but new indices 

include, in some way, information about the molecular 3D structure. Z represents any choice of 

the operator Ω providing different forms of TQSI. 
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Table 2. Definition of TQSI. 
†3D analogous of classical TI; they are not properly TQSI, provided 
that the definition does not include the interatomic similarity matrix, Z. 

Index Definition 
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Where p3 is the number of atoms separated by three bonds in the molecule, the symbol [B]i 

stands for the i-th row of matrix B, µ is the number of cycles, ne is the number of edges of the 

related graph, (D)i stands for the sum of distances from vertex i and nt is the number of 

connected subgraphs of type t. Within the classical approach, pT(i) is the number of ways to 

draw i non-adjacent bonds in the molecular graph. As a particular case, it is defined pT(0)=1. 
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6.3 Molecular example  

H3C

H2
C

OH  
 2

1

3  

Structural 

formula 

Hidrogen Suppressed 

graph 

Numbering of 

atoms 

Figure 8.  Molecular characterizations for etanol molecule. 
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Figure 9. Classical Topological Matrices for ethanol molecule 

 

In the hydrogen-suppressed form, only n=3 atoms are relevant. In Table 3 the employed 

cartesian coordinates and the full topological valences attached to every atom have been 

indicated. 

Table 3. Optimised cartesian coordinates for the molecular 
skeleton C2-C1-O. The topological valence is referred to the 
original graph considering the hydrogen atoms. 

Cartesian coordinates / a.u. 
Atom 

Topological 

valence x y z 

C2 4 -0.85096 2.7269 0.0000 

C1 4 0.0000 0.0000 0.0000 

O 2 2.6827 0.0000 0.0000 

 

TQSM and the corresponding valence vectors are shown together with the euclidian distance 

matrix. 
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Table 4. Lower triangles of the TQSM and euclidian distance matrix attached to the ethanol 
molecule. 
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The Randić index coming from each of the matrices T, S and C can be calculated as follows: 
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Within the classical topological formulation, the Randić index is equivalent to the connectivity 

path one [337]: T
P

T χ=χ 1 . In the TQS-based approach, it can be realised that these indices may 

have different values. This is due to the contribution of the Tij terms into the first one, while in 

the later only topological valences are present. For the ethanol molecule, the connectivity path 
A
Pχ1  indices are 

21 =χ=χ TT
P  

( ) ( ) ( ) ( )
3524.2

66051.01217.1

1

62892.01217.1

111

2
1

2
1

2
1

31
2
1

21

1 =
×

+
×

=+=χ
SSSS

S
P

vvvv  

( ) ( ) ( ) ( )
4485.4

33953.062955.0

1

3041.062955.0

111

2
1

2
1

2
1

31
2
1

21

1 =
×

+
×

=+=χ
CCCC

C
P

vvvv  
and from here it can be seen how different TQSM can really lead to different index values. 

 

Concerning the Hosoya index, the pT(0) and pZ(1) contributions can be computed as:  
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When you can measure what you are speaking about,  

and express it in numbers, you know something about it;  

but when you cannot measure it,  

when you cannot express it in numbers,  

your knowledge is of a meager and unsatisfactory kind.  

It may be the beginning of knowledge,  

               but you have scarcely, in your thoughts,  

advanced to the stage of science. 

 

Popular Lectures & Addresses 1891-1894 

William Thomson (Lord Kelvin) 
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1 INTRODUCTION 

Our society is faced with challenges such as new diseases like AIDS, drug resistance, and 

aggressive agricultural pest control processes, which can have a chemical agreement. Thus, 

there is an urgent need of predictive models for health hazard purposes, id est.; to design new 

drugs with improved properties and diminished side-effects, and to assess the safety of some 

chemicals, i.e. cosmetics. In addition, the assessment of the risk of chemicals released to the 

environment and the evolvement of environmentally benign synthetic methods is strongly 

required [1-2]. Furthermore, there is also a demand on scientific methods that replace or at least 

refine and reduce the use of laboratory animals. In particular, the U. S. Environmental 

Protection Agency (EPA) [4], and the European Centre for the Validation of Alternative 

Methods (ECVAM) [4] aims to develop and implement non-animal alternative tests into 

regulatory and validation procedures. These methods should be used in the design, and 

evaluation of experimental tests, and in the selection of appropriate test chemicals for validation 

studies. 

 

Although the Chemical Abstracts Service registers an always-increasing number of 

pharmaceutical lead compounds every year, there is still a tremendous need to design quickly 

new drugs for curing human diseases. However, the cost to bring a new drug onto the market 

has dramatically risen. Therefore, the high cost in money and time of discovering and 

developing effective medicines has raised the investment of pharmaceutical companies. 

Notwithstanding, many of the concepts and methodologies applied to the design of 

pharmaceutically interesting compounds can be also applied to other compounds of scientific or 

commercial interest.  

 

For a long time, medicinal chemists have systematically modified lead compounds with the 

driving force of synthetic feasibility, experience, and intuition. Using traditional techniques, it 

may take months to synthesise a new compound for biological testing. However, over the last 

decades, important contributions to the design of biologically active new compounds reducing 

experimental research costs come from rational molecular design strategies [5-7], such as 

biostructural research, computer-assisted data handling, data storage, retrieval, and processing 

from chemical databases [8-10], molecular modelling, and, specially, structure-based design, 

structure-function correlation studies, and other statistical techniques.  
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In rational drug design for human health hazard, and environmental risk assessment purposes, 

several statistical mathematical techniques are employed to unravel information obtained from 

the available biological and chemical data, and to obtain a sound chemical insight of the 

problem for several applications. Among the most useful applications, priority setting, risk 

assessment, classification and labelling for regulatory purposes must be remarked. But the 

discovery of biologically active compounds and their development as drugs is a highly complex 

process which involves many scientific disciplines [11], i.e. structural, cell, and molecular 

biology, microbiology, biochemistry, synthetic inorganic and organic chemistry, medicinal 

chemistry, biophysical chemistry, toxicology, pharmacology, natural products chemistry, 

chemical ecology, mathematics, computing, and information technology, among others. Hence, 

selected and clinically tested drugs developed from bioactive molecules require specific 

conditions. Thus, not all the biologically active compounds are suitable to be used as drugs due 

to toxicity, unfavourable side-reactions, or pharmacokinetics. So, after the synthesis and aside 

from the desirable therapeutic properties, the testing and approval of many rigorous tests are 

required to ascertain whether the compounds are worthy of becoming drugs. Therefore, there is 

not just one technique of computational chemistry that plays a leading role in drug discovery, 

but rather an integrated approach of experimental science with computational techniques. 

 

Both molecular modelling techniques and quantitative statistical methods may be useful in 

elucidating structural information of active compounds. Since a biological effect seldom 

depends on just one or two chemical properties, the multidimensional problem takes into 

account a large number of factors, rationalised to cover a broad parameter space. In order to be 

able to deal with complex data sets, consisting of more than one biological activity and many 

descriptors, advanced statistical and computational tools have been developed in the field of 

chemometrics. The term chemometrics, coined in the 1970s, is the chemical discipline that uses 

statistical and mathematical methods for selecting and optimizing procedures for the analysis 

and interpretation of data. These techniques allow the rapid retrieval and prediction of molecular 

and biological properties by means of multivariate methods and artificial intelligence techniques 

[12-16].  
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The strategy of structure-based molecular design has been proven to be very successful in the 

pharmaceutical industry [17]. However, when structural information about the biological target 

is lacking, the strategy of lead finding involves the synthesis and testing of widely diverse 

compounds. The systematic variation of substituents in a molecule has been the subject of 

various studies in the past. As it is not straightforward to select a representative subset of 

substituents that adequately covers the multidimensional parameter space, relevant properties 

derived from large sets of property descriptors and selected by using statistical techniques can 

be used to make rational choices.  

 

Besides, combinatorial chemistry has arrived on the scene; nowadays, instead of manually 

synthesising all compounds, it is possible to assemble chemical building blocks in all 

combinations, generating large virtual libraries of structurally related compounds by means of 

automated procedures [18]. High Throughput Screening (HTS) and data mining techniques 

screen the databases with a defined query, usually a pharmacophore, testing hundreds up to 

millions compounds, and looking for relevant information. In absence of a known 

pharmacophore these techniques can also detect the most occurring fragments. Combinatorial 

approaches seek to maximise the structural diversity of the final library, i.e. the degree of 

heterogeneity, that is, the structural range or dissimilarity, to ensure the coverage of the largest 

possible expanse of chemical space in the search for bioactive molecules [19]. These 

computational tools improve molecular diversity and the chance of lead discoveries. The ready 

availability of chemical structure databases plays an important role in enhancing the drug 

discovery approach [20]. These databases find increasing use in environmental, inorganic, and 

organic chemistry. The combinatorial chemistry supporting technologies not only have risen the 

number of compounds synthesised and tested for every new chemical entity, but also provide a 

far more cost-effective approach to the discovery of bioactive compounds, in comparison with 

traditional approaches that require the sequential synthesis and testing of individual molecules. 

  

Hence, as the economical resources for chemical synthesis and biological testing are limited, 

there is a need for preventing or at least slowing down further increases in the synthesis of 

compounds too specific. A promising way to achieve this purpose is to investigate the causes of 

diseases and the possibilities of intervention at the molecular level and to design promising test 

compounds by means of statistical experimental design techniques.  
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Experimental design methods can be divided into two categories. On one hand, methods for the 

direct optimization of lead compounds, only suitable in the final stages of an optimization 

procedure. These methods usually cover only a limited area of the parameter space surrounding 

a previously identified active compound. Therefore, active compounds located in other areas 

cannot be detected. On the other hand, methods for the systematic investigation of the parameter 

or descriptor space, applicable at any stage of the search for new drugs. These techniques 

provide a strong basis to derive reliable qualitative and quantitative structure-function 

relationships. These methods, which can be used for the complete coverage of the descriptor 

space by a minimum number of compounds, analyse if the potential drug presents an 

appropriate pattern of properties in the correct spatial arrangement.  

 

Computer-Aided Molecular Design (CAMD) or, more specifically, Computer-Aided Drug 

Design (CADD), is a unifying discipline focused on the prediction of chemical reactivity for 

non-synthesised, virtual structures. CAMD emphasises the development of predictive tools for 

molecular properties in order to understand structure-function relationships. Rational molecular 

design assisted by computer embraces an interdisciplinary combination of methodologies of 

computational chemistry and information technology that aims to discover and design new and 

useful compounds. The main techniques of computational chemistry are molecular graphics and 

data visualization, quantum chemistry, molecular dynamics and mechanics, and structure-based 

methods, such as molecular and homology modelling, molecular databases and diversity 

analysis, receptor-based pharmacophore modelling, docking, scoring, and Quantitative 

Structure-Activity Relationships (QSAR). CAMD techniques have a wide application in 

several fields of chemistry, such as organic chemistry, medicinal chemistry, environmental 

chemistry, guest-host chemistry (design of enzyme inhibitors, clinical analytical reagents, and 

catalysts), and also agricultural, veterinary, human health, and materials science (polymer 

chemistry, supramolecular chemistry, semi-conductors, and nonlinear phenomena), among 

others. 

 

However, in relation to the application of computers as tools in the drug design process, it is 

important to emphasise that computers cannot substitute for a clear understanding of the system 

being studied. That is, the computer is only an additional tool to gain better insight into the 

chemistry and biology of the problem. Researchers have attempted for many years to develop 

drugs based on rational drug design methods [21]. Easy access to computational resources was 

not available when these efforts began. Hence, attempts consisted primarily of statistical 

correlations of structural descriptors with biological activities. However, as access to high-speed 

computers and graphics workstations became common, this field evolved into what is nowadays 

known as rational drug design or computer-assisted drug design. 
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Structure-function correlation studies aim at broadening the understanding of relationships 

between molecular intrinsic chemical features, and biological properties. Particular cases of 

these studies are the Quantitative Structure-Activity Relationships (QSAR), and 

Quantitative Structure-Property Relationships (QSPR), which extend the same notion to 

general physicochemical property prediction, and Quantitative Structure-Toxicity 

Relationships (QSTR), within the environmental and health sciences field. For the sake of 

simplicity, throughout this work they will be generally named as QSAR [22-24]. 
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2 COMPUTER-AIDED MOLECULAR DESIGN  

 Starting in the 1950s, improving computer technology made possible the transformation of 

quantum mechanics from a pencil and paper attempt assisted by a hand calculator to a feasible 

task, where interesting molecular properties could be computed by solving the Schrödinger 

equation. Different treatments of quantum chemists were approached. On one hand, the rigorous 

application of the theory, confined to small molecules with only few atoms, that is, the so-called 

ab initio (from first principles) approach, of interest for theorists. On the other hand, the 

semiempirical molecular orbital approach, going before theoretical purity to render the methods 

applicable to large enough molecules of biological and commercial interest. In 1964, the Lilly 

pharmaceutical company initiated a research program to exploit this approach in the study of 

drugs. Meantime, several empirical modelling methods were developed by physical organic 

chemists, allowing the three-dimensional conformational treatment of large biologic systems. 

These so-called molecular mechanics methods, faster than either ab intio or semiempirical 

quantum methods compute simulations and relative energies of large biomolecules, including 

enzymes, nucleic acids, polypeptides and proteins. Besides, in the 1960s and 1970s other 

physical organic chemists developed methods for computing the lipophilicity of compounds, 

with strong implications in drug design. Specially, the lipophilic o hydrophilic character of a 

compound determines its ability to cross the membrane’s lipid barrier. If a medicine is 

administrated, the drug has to dissolve in the aqueous environment to enter the blood and then 

pass through several membranes to reach the receptor.  

 

Nowadays, one of the main goals of drug research is to discover ligands (potential drugs) that 

are predicted to interact favourably and bind strongly to its intended host (receptor active site), 

without interfering with the operation of other bio-macromolecules in the living organism. 

Alternatively, this procedure can be reversed to search for hosts that interact strongly with a 

given ligand.  
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Whereas most drugs are ligands, only few ligands are drugs, because even small variations in 

chemical structure can influence whether the compound will be curative, physiologically inert, 

or toxic. Receptor sites have the ability to first attract and then bind to a ligand through 

hydrophobic interactions, and electrostatic interactions between oppositely charged atoms or 

groups, such as hydrogen bonding interactions. In addition, solvation energies of the ligand and 

receptor site are also important because partial to complete desolvation must occur prior to 

binding. To a rough approximation, compounds possessing similar shape, volume, lipholicity, 

electronic distribution, and chemical stability, cause similar effects in a biochemical system. 

The tools to simulate and visualise these molecular properties, which determine the occupation 

of the “lock” by the “key”, are provided by computational chemistry. As organic and physical 

chemists search for guest-host systems with specificity in binding and catalysis, the basic 

concepts of molecular field analysis, receptor mapping, and molecular recognition [25], or how 

enzymes recognise and bind the proper substrates, are unifying tools in this research area. 

Basically, CAMD entails a collection of computer-based methods that study molecular 

structures and properties and allow the determination of activities as well as the access of prior 

knowledge of databases. Computational tools make possible the discovery of new molecules 

with useful characteristics or old molecules with new uses.  

 

However, the optimum fit of a ligand in a receptor site does not guarantee that the desired 

activity of the drug will be enhanced or that undesired side effects will be diminished. 

Moreover, this approach does not consider the pharmacokinetics of the drug, and therefore this 

approximation is dependent upon the amount of information that is available about the ligand 

and the receptor. In order to simulate the behaviour of an unknown chemical system, ideally, 

three-dimensional structural information for the receptor and the ligand-receptor complex from 

X-ray diffraction or Nuclear Magnetic Resonance (NMR) are required to assist in building 

models of the ligand and receptor. Or, at least, a simplified description of the system obtained 

by modelling is required. From here, the need for enhanced uses of molecular mechanics and 

dynamics, molecular orbital calculations, and chemical information technology becomes 

apparent. Despite the simplifications, the model should capture the essence of a particular 

property or process of interest. In CAMD, molecular models are subjected to computational 

experiments to deduce information about their properties and thereby to ascertain which 

hypotetical new molecular structures will have the desired properties. The modelling methods in 

CAMD, although there are not yet good enough to predict exactly how a molecule will behave 

in a test system or what properties a compound will have, can provide helpful information, 

especially if they are used in a complementary or even synergistic way.  
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The fundamental concept behind CAMD relies in the fact that molecular and electronic 

structure underlies all physical and chemical properties of molecules, including their biological 

activity. These physical particles determine the reactivity and the physical properties of the 

compound that, in turn, describe the interaction of the molecule with other molecules. The 

interactions influence solubility, lipophilicity, association, and stability, which affect transport 

of a compound to the active site. The drug-receptor interactions also define how well the 

compound attaches to the receptor by first being recognised as complementary to the receptor 

structure in shape and electronic structure. The affinity between the compound and the receptor 

determines how well a biochemical or conformational change in the receptor is induced. The 

latter change is eventually observable in the patient as a therapeutic response to the drug. 

 

In applying this approach, it must be noted that lead molecules must be aligned so that the 

active functional groups of molecules are overlapped in the space. Therefore, conformational 

analysis is desirable, the extent of which is dependent on the flexibility of the compounds under 

investigation and the presence of rotatable bonds. So, once the active conformer is found, the 

molecule should be rotated to be aligned with the other molecules in the study. To guess the 

active conformer, the number of possible conformations can be restricted using aromatic drugs 

with ring systems. In this way, an inflexible active lead compound is chosen so that 

conformations of the more flexible leads mimic the inflexible ones. Another strategy is to find 

the lowest energy conformers of the most rigid compounds and superimpose them. 

Conformational searching on the more flexible compounds is done while applying distance 

constraints derived from the structures of the more rigid compounds. Ultimately, all of the 

structures are superimposed to generate the pharmacophore. This template may then be used to 

develop new compounds with functional groups in the desired positions. In applying this 

strategy, the minimum energy conformers are assumed to bind most favorably in the receptor 

site although, in fact, there is no a priori reason to exclude higher energy conformers as the 

source of activity. Another difficulty in alignment is that the active functional groups in the 

pharmacophore are usually unknown. 

 

Based on the available information, either ligand-based or receptor-based molecular design 

methods can be applied. Ligand-based design uses a known set of ligands, but an unknown 

receptor site, whereas receptor-based design starts with a known receptor, such as a protein 

binding site or supramolecular host. Both approaches are actually very similar. 
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2.1 Receptor-based approach 

The receptor-based approach applies when a reliable model of the receptor site is available. 

With the availability of the receptor site, docking techniques design ligands that interact 

favourably at the site. The first phase is to determine the structure of the binding site using 

standard structural analysis from X-ray diffraction, NMR, homology modelling, or calculations 

involving molecular orbital or molecular mechanics and molecular dynamics techniques. In the 

absence of structural information, homology of the unknown receptor sequence with known 

structures that have been identified through database searches may be a good starting point. 

Thus, 2D substructure searches include functional groups, and connectivity; 3D substructure 

searches are related to spatial relationships, definition of ranges for distances and angles, and the 

stored conformation usually taken to be the lowest energy conformation. 3D conformationally 

flexible searches, involve rotation around all freely rotatable bonds, the consideration of many 

conformations to generate a large number of hits, and the consideration of guest-host chemistry. 

Several three-dimensional databases can be used as source [26-29]. 

 

The next phase is to generate a query for database searching. The query is generated by building 

a simplified model of the receptor site. This model may be based on a pharmacophore, which 

identifies few specific interactions that are responsible for the binding. These interactions 

include hydrogen bond donors and acceptors, charged groups, and hydrophilic regions such as 

hydrocarbon side chains, and phenyl groups. The pharmacophore can be generated by visual 

inspection or by computational techniques. In general, it is assumed that the active site 

properties are complementary to active lead drugs (ligands). The receptor must also minimise 

steric repulsion and maximise favourable Van der Waals interactions. To guess the shape of the 

active site, the 3D-volume occupied by the active leads is examined. The receptor model, which 

must not have groups that extend into the volume occupied by the drug, is taken as the 

combined Van der Waals surfaces of the active leads. In docking-based searches, the model is 

based on an analysis of steric interactions over the receptor site. Typically, a solvent accessible 

surface map is generated and binding pockets are identified on the host surface.  
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The next phase is to search databases for new ligands that may bind to the chosen receptor. The 

searches can be from the bidimensional substructure (functional groups and connectivity), steric 

search (docking), or three-dimensional substructure searches (spatial conformation, and 

pharmacophores). The three-dimensional pharmacophore is used in conformationally flexible 

searches for ligands that match the spatial distribution of the receptor. Alternatively, the 

receptor pocket can be used with auto-docking to find ligands that avoid close-contacts. The 

3D-pharmacophore approach and the binding pocket approach are actually very similar, and 

queries can be fashioned that incorporate aspects of both approaches. Pharmacophores 

emphasise a few specific and varied types of interactions, while binding pockets emphasise 

steric interactions over the entire ligand. The results of the database search may be used directly 

or modified to produce candidates for further study, which constitute the design element of the 

procedure. The new ligands or hosts are then assessed for the use at hand. This assesment first 

involves docking the new molecule and evaluation of the full interaction by molecular orbital 

calculations or molecular mechanics. Next, calculations are done to predict the binding constant 

or activity of the compound. Prediction of the binding constants is usually performed using 

Gibb's free energy perturbation studies based on either Monte Carlo or molecular dynamics 

simulations. Activity predictions are usually based on QSAR extrapolation. Increasingly these 

QSAR predictions are based on the 3D-QSAR used to generate the pharmacophore in the search 

stage. Finally, the candidates are synthesised and tested in the laboratory.  

2.2 Ligand-based approach 

The ligand-based approach is applicable when the structure of the receptor site is unknown, but 

a series of compounds has been identified to exert the activity of interest. To be used most 

effectively, structurally similar compounds with high activity, with no activity, and with a range 

of intermediate activities are required. Recognition site mapping attempts to identify a 

pharmacophore, which is the template derived from the structures of the compounds. In this 

case, the pharmacophore is a three-dimensional space representation of the collection of 

common functional groups within the group of active compounds, complementary to the 

geometry of the receptor site. It can be pictured as a search query used to search a database for 

compounds with might have similar biological activity.  
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Ligand-based design starts with a group of ligands that have known binding constants or 

biological activities. The first phase is to determine the structure of the ligands using the same 

elucidation techniques as before. The next phase is to generate a query for database searching, 

based on a pharmacophore, as in receptor based design. The pharmacophore can be also 

generated by visual inspection or by statistical techniques, such as 3D-QSAR, which maps the 

steric, charge, and hydrogen bonding interactions into a 3-D grid for each known ligand. These 

maps are then compared to find features that the active compounds have in common. The map 

of common features is then converted into a pharmacophore. The next phase is to search 

databases for new ligands that may also bind to the chosen receptor. 2D-substructure searches 

based on the known ligands can be used, but such searches have not been very successful. 

Instead, the 3D-pharmacophore is used in conformationally flexible searches for ligands that 

match the spatial distribution of the known ligands. The remainder of the phases are identical 

for ligand and receptor based design.  
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3 OVERVIEW OF QUANTITATIVE STRUCTURE-ACTIVITY 

RELATIONSHIPS 

QSAR attempt to correlate structural molecular properties (descriptors) with functions (i.e. 

physicochemical properties, biological activities, toxicity, etc.) for a set of similar compounds, 

by means of statistical methods. As a result, a simple mathematical relationship is established:  

Function = f (structural molecular or fragment properties) (1) 

QSAR techniques include from chemical measurements and biological assays to the statistical 

techniques and interpretation of results.  

 

Applications of QSAR can be extended to any molecular design purpose, including 

environmental sciences, prediction of different kinds of biological activity by correlation of 

congeneric series of compounds, lead compound optimization, classification, diagnosis and 

elucidation of mechanisms of drug action, and prediction of novel structural leads in drug 

discovery. 

3.1 Objective 

The goal of structure-activity modelling is analyse and detect the determining factors for the 

measured activity for a particular system, in order to have an insight of the mechanism and 

behaviour of the studied system. For such purpose, the employed strategy is to generate a 

mathematical model that connects experimental measures with a set of chemical descriptors 

determined from the molecular structure for a set of compounds. The model derived should 

have as good predictive capabilities as possible to predict the studied biological or 

physicochemical behaviour for new compounds. The factors governing the events in a 

biological system are represented by a multitude of physicochemical descriptors, which can 

include parameters to account for hydrophobicity, electronic properties, steric effects, and 

topology, among others. These descriptors were determined empirically in the past but, more 

recently, they can be calculated by using computational methods. 
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In particular, in CADD, the analysis of statistical relationships between molecular structural 

features and the therapeutical effect of a medicine derived by correlation facilitates the 

understanding of how chemical structure and biological activity relate. The building of a model 

with relevant and consistent chemical descriptors provides insight into various underlying 

biological processes; and the prediction for new compounds increases the number of candidate 

compounds to be considered.  

 

In summary, the objectives of QSAR models are to allow the prediction of biological activities 

of untested and sometimes yet unavailable compounds, and to provide insight of which relevant 

and consistent chemical properties are determinant for the biological activity of compounds.  

3.2 Underlying principles  

The QSAR approach, based in the numerical representation of chemical structure, aims to 

understand how structural variation affects the biological activity of a class set of compounds. 

The main assumption is that the factors governing the events in a biological system are 

represented by the descriptors characterizing the compounds, whose biological activity is 

expressed via the same mechanism. So, QSAR attempt to find what features of a molecule 

affect its activity and what can be modified to enhance their properties. Hence, for a series of 

biologically active molecules, any systematic variation in chemical structure from one to 

another is expected to be reflected in a proportional analogous variation in the biological 

response.  

 

The QSAR paradigm is based on the assumption that there is an underlying relationship 

between molecular structure and biological activity, which arises from this systematic variation. 

Also, it is assumed that the multivariate physicochemical description of the set of compounds 

reveals these analogies. All physical, chemical, and biological properties of a chemical 

substance can be computed from its molecular structure, encoded in a numerical form with the 

aid of various descriptors. 

 

However, it is important to remark the difference between correlation and causation. A 

satisfactory QSAR correlation does not mean that a particular descriptor causes the efficient 

action of a compound. The lack of evidence on causation might be complemented by additional 

information on the various mechanisms leading to the biological activity.  
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Indeed, QSAR is based in the well-known similarity principle, which states that similar 

compounds have similar activities. In addition, in linear relationships, besides from the afore-

mentioned similarity principle also the neighbourhood principle holds. This principle states that, 

in principle, molecules located in the same region of the descriptor space present similar 

activity. 

3.3 QSAR model 

QSAR expresses a multivariate mathematical relationship between a set of physicochemical 

properties or descriptors, {xij}, and a experimental function or biological activity, {yi}. The 

QSAR relationship is expressed as a mathematical model, quantitative in the sense that it is used 

to account for the observed activity. For a compound i, the linear equation that relates molecular 

properties, x1, x2…, to the desired activity, y, is:  

1 1 2 2 ...i i i in n iy x b x b x b e= + + + +  (2) 

Expressing the previous equation in a compact form for the general case of n selected 

descriptors, xj, the QSAR equation results into: 

1

n

i ij j i
j

y x b e
=

= +∑  (3) 

where b are the linear slopes that express the correlation of the particular molecular property xij 

with the activity yi of the compound i; and ei is a constant. The slopes and the constant are often 

calculated using regression analysis. In this work, only the models with a single dependent 

variable, or y observation will be considered, although some models can deal with several 

biological activities. The strength of a QSAR model depends on the quality of this variable.  

The independent variables, so-called descriptors, are usually physicochemical properties that 

describe some aspects of the chemical structure, which may be either experimentally or 

theoretically determined. The improper choice of independent variables can result in poor 

QSAR models. In a typical QSAR study, a large number of descriptors can be used; however, 

attention must be paid to overfitting, because with enough parameters any model can be 

successfully correlated. The final QSAR equation seeks to find the smallest number of 

descriptors that can adequately model the activity of the compounds in the study. The maximum 

recommended ratio is a single independent variable to five compounds.  
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3.4 Conditions for applicability of QSAR 

To develop a valid and reliable QSAR model, there are a number of conditions related to the 

different aspects that conform the model that must be fulfilled [30-31]. The biological activity 

of the series of compounds should be related to the physicochemical properties being 

considered. Also, the activities of the chemicals covered should be elicited by the same 

elucidated mechanism, which is both common and relevant. A related chemical structure is not 

strictly required; however, it is often difficult, if not impossible, to determine the mechanism of 

action, whereas it is usually less difficult to establish chemical similarity. Hence, QSARs are 

generally developed for congeneric molecular series, that is, for sets of chemically similar 

compounds, in the hope that they will also have the same mechanism of action. The compounds 

with a different mechanism of action are likely to fit the correlation only poorly and to appear as 

outliers. Therefore, the main required conditions to build a valid QSAR model regard the 

leading areas involved in the development such models.  

3.4.1 Selection of Compounds  

The selection of appropriate chemical sets to develop QSAR models is of great importance to 

obtain valid results [41]. A suitable set should consist of those chemicals that exert a given 

activity effect via a common mechanism that can be modelled by a single QSAR equation.  

3.4.1.1 Homogeneity  

The requirement of chemical similarity and homogeneity of compounds implies that the 

investigated system must have the same mechanism of influence and that there are some limits 

on the variability and diversity of chemical structures and properties. Thus, the absence of 

influential outliers (compounds that do no fit the model), and strong clustering is desired. 

Clustering occurs when several classes of compounds can be separated into different subgroups. 

In this case, the option o treat each class independently must be considered. 

3.4.1.2 Representativity  

The selection of the set of compounds must span the chemical domain of interest, according to 

the definition of the chemical space. Therefore, a wide range as possible of relevant chemicals 

must be selected to assess its utility. For such purpose multivariate design [32] known as 

Statistical Molecular Design (SMD) can be used [33]. A variety of selection procedures has 

been proposed including non-statistical methods [36], Cluster Analysis (CA) [37], Factorial 

Design (FD), Fractional Factorial Design (FFD) [38], Central Composite Design (CCD), 

Principal Component Analysis (PCA) [39] and D-Optimal Design (DOD) [40, 43].  
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3.4.2 Selection of Descriptors 

Concerning the physicochemical or structural descriptors, especially when a large number of 

descriptors are calculated, some of them may content redundant information, resulting in the 

collinearity problem. The parameters used in QSAR should be meaningful, and easily 

interpretable, in physical terms. Thus, the selected descriptors should provide valuable insight 

into the mechanism [34]. 

3.4.3 Biological data 

Concerning to the experimental activity, high quality and reliable biological data is required. 

Biological activities should have been measured in a consistent manner, by using well 

standardised assays with a clear and unambiguous endpoint [34]. Ideally, the data source should 

come from the same protocol and, if possible, the same laboratory. In data extracted from the 

literature, it is convenient to take only a single source into account. Besides, mechanistic 

insights of the chemicals must be attentively considered, in order to have a basis to detect and 

reject outliers of the model. Finally, it must be taken into account that biological measurements 

are subjected to experimental error.  

 

The methods to evaluate biological and, in particular, toxicological endpoints are in order of 

increasing complexity: in silico methods, accounting for electronic and general molecular 

properties, in vitro methods, which provide a satisfactory description at cellular level, and in 

vivo methods, suitable to more detailed studies on specific organs and individuals.  

3.4.3.1 Types of data 

Biological data can be distributed on a continuous scale, so that a quantitative QSAR equation 

can be derived by means of correlation techniques, or sometimes it can be classified into 

discrete categories. For example, a chemical may be classified as either active or inactive, or in 

several classes according to the potency of the activity.  

In such cases, other statistical techniques, such as classification methods must be applied, in 

which the physicochemical properties of the compounds are used to discriminate between 

activity and inactivity. If more than two such properties are used, they can be combined into 

principal components, and a plot of two major principal components may distinguish the 

different classes. 
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3.4.3.2 Data scaling 

Logarithmic expressions are usually used for different reasons. From one point of view QSARs 

represent free energy changes, and by analogy the logarithm is used. From another point of 

view, sometimes an effective compound has a low concentration for the production of the 

desired effect. In QSAR studies, it is often desirable to have a higher activity value for the more 

effective compounds. Therefore, it is very common to transform the concentration for a desired 

effect, [C], to an activity by a logarithmic expression, log (C) or log (1/C), which increases with 

compound efficacy. Also, biological data is often skewed, so that logarithmic transforms fit the 

data to a normal distribution.  

3.4.4 Some advice 

Finally, QSAR models should be simple, transparent, and mechanistically comprehensible [34]. 

Although statistical techniques will be considered afterwards in detail, it is important to remark 

that overfitting and non-linearity of data should be avoided, whereas transparency and 

validation of the model are strongly recommended.  

 

In summary, the so-called SETUBAL principles [42] are required to obtain a valid QSAR 

model. These principles state some conditions for the successful development of QSAR models 

that should:  

 

1) Be associated with a defined pharmacotoxicological endpoint which it serves to predict 

2) Take the form of an unambiguous and easily applicable algorithm for predicting the 

endpoint 

3) Ideally have a clear mechanistic basis 

4) Be accompanied by a definition of the domain of its applicability 

5) Be associated with a measure of goodness-of-fit, assessed by internal validation 

6) Be assessed in terms of its predictive predictive capacity by external validation 

 

Complementary to the desired principles, there are a number of caveats to be borne in mind for 

the valid application of QSAR: 

 

- QSAR can be applied only to pure compounds. Some work has been undertaken on 

their application to mixtures but, up to now, there are no firm guidelines for their use in 

this respect.  

- The set of compounds used to derive the QSAR should be selected from knowledge, or 

assumptions, of a common mechanism of action. The training set should also be chosen 

to cover appropriate ranges of parameter values. 
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- The parameters or descriptors used in the QSAR equation should be selected on the 

basis of mechanistic considerations, in order to provide mechanistic interpretation.  

- For comparative purposes, concentrations or doses must be in molar, not weight, units.  

- Each QSAR should be validated by investigating its predictive ability using the test set, 

a different set of compounds, which should cover the same ranges of parameter space.  

- The QSAR should not be applied outside of its domain of validity, i.e. outside of the 

parameter space covered by the training set.  

3.5 QSAR Steps 

The strategy for QSAR development in drug design consists of several iterative steps, based 

on statistical experimental design and multivariate data analysis, which hopefully lead to the 

design of compounds with the desired activity profile [43-45].  

1) Formulation of classes of similar compounds 

The first step consists of the selection of the biological activities of interest, the choice of 

structural domain (structural class) and the choice of structural features to be varied. Since the 

mechanism of biological action usually differs between different types of compounds, it is not 

desirable that QSARs are based on compounds too diverse structurally. Thus, the ideal situation 

corresponds to classes of chemically and biologically similar compounds were, within each 

class, all the compounds are structurally similar and function according to the same mode of 

action. However, the compounds must be dissimilar enough to cause some systematic change 

in the biological activity.  

 

The formation of classes of similar compounds consists on dividing the series of compounds of 

interest into categories on the basis of their chemical structure. This may be achieved according 

to their general backbone, their substituents, reactivity, and knowledge of the biological 

mechanism. If the subsequent data analysis reveals that the compounds do not form a 

homogeneous class, new classes should be defined.  

2) Quantitative description of structural variation and choice of the QSAR model 

To appropriately describe the structural variation, in general, several descriptor variables are 

required to contain sufficient relevant information about the biological phenomenon. For that 

reason the structural description is multivariate. However, is difficult to predict in advance 

which descriptor variables will be useful.  
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Thus, it is convenient to have a set of independent design variables, which might have an 

influence on the biological effect. However, in the optimization of molecules, where 

substitution patterns or the whole molecular structure is changed, usually is not possible to 

discern design variables that can be changed independently of each other.  

3) Selection of the training set of compounds (series design) 

For any QSAR model, it is of crucial importance that the training set selected to calibrate the 

model exhibits a well-balanced distribution and contains representative compounds. This 

calibration can be attained by a systematic selection of the training set, where the major 

structural features are varied systematically and simultaneously.  

4) Synthesis and Biological testing 

Provided that the biological testing should be minimised, the basic idea is to subject merely the 

representative training test to extensive testing, in order to obtain a broad and stable picture of 

their biological properties. The response matrix contains biological variables that span as many 

aspects of the biological profiles of the investigated compounds as possible. The more 

biological tests are performed, the better the stability of the resulting QSAR model is, and this 

lead to an improved predictive capability. The testing of a few representative compounds saves 

time and thus money and adheres to the principles of animal welfare. Biological measurements 

are commonly recorded as dose-response curves, showing the relationships between the 

administered doses and the responses that they elicit.  

5) QSAR development: data analysis 

To calculate the best mathematical expression linking together the physicochemical descriptors 

and biological responses, information regarding the essential features of the chemical and 

biological data structure is obtained. There may be need o transform some of the descriptors 

variables, or delete compounds (outliers), exhibiting deviating chemical and/or biological 

properties. The QSAR analysis also provides information on whether a descriptor variable is 

relevant for a certain application.  

6) Validation and predictions for non-tested compounds 

Finally, the final purpose of a QSAR is to predict the biological activities of non-tested 

compounds, which belong to the class under investigation. However, the predictive ability of 

the model first is verified experimentally. This is accomplished by biological testing of some 

additional compounds in the same way as the training se and then comparing the experimental 

finding with the values predicted by the QSAR. If the QSAR predicts within acceptable limits, it 

may be used for a more extensive prognostication. The prediction errors should be compared 

with the precision and range of the biological measurements obtained.  
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It is desirable that the compounds in the validation set adequately span the physico-chemical 

domain and the biological activity range of interest. Conveniently, the validation set may be 

selected according to a statistical experimental design in order to result in a series of 

representative compounds.  

7) Data analysis and interpretation of results for the proposal of new compounds 

In fact, any QSAR development is an iterative cycle, in which the steps are repeated a number 

of times, until sufficient knowledge about a class of compounds is obtained in order to either 

design compounds with the desired activity profile or to conclude that such a profile cannot be 

attained.  
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4 ORIGINS AND EVOLUTION  

4.1 The birth of QSAR 

Strictly, the first attempt to correlate properties accounting for chemical and physical behaviour 

with structures begun about 2500 years ago with Plato. Plato described a gasification reaction 

as a transformation of fire into air in an aqueous solution, assuming the knowledge of the 

structure of the reactants.  

aqueous
solution

Fire = pyramid
2 Fire  1 Air  Water = icosahedron

Air = octahedron


→ 

  

(4) 

Mendeleev could be also considered as a predecessor of QSAR, as a result of the predictions of 

new elements and their properties that lead him to the construction of the periodic table of 

elements in 1869 [46]. 

 

But reasonably tracing back the history of QSAR, the first trials to relate a biological response 

or a physicochemical property of a series of compounds with a structural feature were reported 

in the nineteenth century. The earlier studies were, of course, qualitative. Quantitative analyses 

where the bioactivity is mathematically related to a set of parameters using statistical 

considerations came later on.  

 

In 1863, Cros observed that the toxicity of alcohols in mammals increased as the solubility of 

the alcohols in water decreased [47]. Afterwards, in 1968, Crum-Brown and Fraser postulated 

that there ought to be a relationship between physiological activities and chemical structures 

[48-49]. They proposed an equation linking changes in biological activity to changes in 

chemical structure but they did not show a way to characterise chemical structure in quantitative 

terms. From this basis, Richardson expressed the chemical structure as a function of solubility 

[50].  

 

Opening the field of QSPR, considered to be comprised within QSAR, Mills developed in 1884 

a QSPR for the prediction of melting and boiling points in homologous series, accurate to better 

than one degree [51]. Later, Richet correlated toxicities of a set of alcohols, ethers and ketones 

with aqueous solubility [52] establishing the empirical principle “Plus ils sont solubles, moins 

ils sont toxiques”, that is, « more they are soluble, less they are toxic ». 
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In the 1900's, Meyer from University of Marburg and Overton from University of Zurich, 

working independently, noted that the narcotic potencies of organic compounds depended on 

their lipophilicity. Basing on biological experiments, they correlated partition coefficients with 

anaesthetic potencies [53-55]. Besides, Overton also determined the effect of functional groups 

in the increase or decrease of partition coefficients [56]. Afterwards, Lazarev in St. Petersburg 

continued where Overton and Meyer left off, applying partition coefficients to the development 

of industrial hygiene standards. Lazarev reported correlations on a log scale, and developed a 

system for estimating partition coefficients from chemical structure. 

 

But the earliest mathematical formulation is attributed to Ferguson, who announced a principle 

for toxicity. He observed the increase in anaesthetic potency when ascending in a homologous 

series of either n-alkanes or alkanols to a point where a loss of potency, or at least no further 

increase occurred, using physical properties such as solubility in water, distribution between 

phases, capillarity and steam pressure [57]. 

 

Little additional development of QSAR occurred until the work of Louis P. Hammett within the 

organic chemistry field, who is considered to be the father of Linear Free Energy Relationships 

(LFER). In fact, QSAR methodology as applied nowadays is attributed to the independent 

contemporary publications of the Free-Wilson model [58] and the Hansch model [59]. 

4.2 Linear Free-Energy Relationships (LFER) 

In the mid-1930s, Hammett observed that the addition of substituents to the aromatic ring of 

benzoic acid had an orderly and quantitative effect on the dissociation constant. He also 

observed a similar effect on the dissociation of other organic acids and bases [60-61]. From 

empirical observation, he consequently derived the following linear relationship, the so-called 

Hammett equation (1953): 

log
o

K
K

ρσ=  (5) 

or 

log
o

k
k

ρσ=  (6) 
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where the slope ρ is a proportionality reaction constant pertaining to a given equilibrium that 

relates the effect of substituents on that equilibrium to the effect on the benzoic acid 

equilibrium. σ is a parameter that describes the electronic properties of aromatic substituents, 

i.e. electron-withdrawing or donating power.  

These relationships are termed linear free energy relationships because they recall the 

equation relating the free energy, G∆ , to an equilibrium constant, K, or rate constant, k. In 

other words, the energetics of the reaction is related to concentration measurements by 

logarithmic relationships. 

lnG RT K∆ = −  (7) 

The Hammett's correlation to describe the reactivity of aromatic systems was instrumental to the 

ulterior derivation of QSAR as a discipline by Hansch and his colleagues in the late 1960s. 

Besides, it was the first study that partitioned the molecule and explained its activity from its 

fragments, instead of referring to its totality. 

 

Closely related to Hammett’s equation, Taft worked on the steric effects (ES) and derived the so-

called Taft equation [62-63]: 

* *log S
o

k E
k

ρ σ δ= +
 

(8) 

Working in the same direction, Swain studied the effects of field and resonance. He investigated 

the variation of reactivity of a given electrophilic substrate towards a series of nucleophilic 

reagents, deriving the linear free-energy relation, called Swain-Scott equation [64]:  

log
o

k sn
k

=
 

(9) 

where n is a measure of the nucleophilicity characteristic of the reagent and s is a mesure of the 

sensitivity to the nucleophilicity of the reagent characteristic of the substrate. He also derived 

the Swain-Lupton equation, a dual parameter approach to the correlation analysis of 

substituent effects, which involves a field constant (F) and a resonance constant (R). [65]  

 

Free and Wilson partitioned the molecule in a different manner as Hammett. They postulated 

that the biological activity of a molecular set can be related with the addition of substituents, 

taking into account the number, type and position in the parent skeleton. Thus, they formulated 

an additive model, where the activity is discretized as a simple sum of contributions [58]: 
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1log ia
C

µ= +∑
 

(10) 

where C is the molar dose, ai the group contribution of the substituent Xi and µ the biological 

activity of the parent structure. In this additive model, the descriptors, also called indicator 

variables, codify the presence or absence of particular structural characteristics. They are 

assigned the binary values of 1 and 0, accordingly.  

 

But the first application of the Free-Wilson type analysis (properly defined 8 years later) had 

already been reported in 1956 by Bruice et al. [66]. Also, Bocek and Kopecký [67-68] 

developed Free-Wilson models including crossed terms in order to consider the probable 

interactions among close substituents.  

 

Afterwards, Fujita and Ban simplified the Free-Wilson equation estimating the activity for the 

non-substituted compound of the series [69]. 

 

Besides, in the middle 50's, centering on the year 1954, the work from several laboratories came 

together to offer a quantitative explanation and relationship to a biological activity. The work 

focused on the carcinogenicity of polycyclic aromatic hydrocarbons. Daudels, Pullmans, and 

Coulson studies used valence bond theory and molecular orbital theory to quantify the 

involvement of certain bonds in an event initiating the onset of a carcinogenic outcome. From 

the basis of theoretical structure descriptors, the theory of the K and L regions illustrating a 

possible mechanism of the hydrocarbons was derived [70-71].  

 

QSAR based on Hammett's relationships use electronic properties as descriptors of the structure. 

Difficulties were encountered when investigators attempted to apply Hammett-type 

relationships to biological systems, indicating that other structural descriptors were 

necessary. To deal with the complexity of biological systems, independently of Free-Wilson 

analysis, Hansch and Fujita based their model on empirical searches among multiple descriptors 

and data analysis methods to predict regularities. To such an extent, for the first time, pencil and 

paper were substituted by computers.  
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4.3 Hansch Analysis 

The origins of QSAR as practiced today began with the research of Robert Muir, a botanist at 

Pomona College, who was studying the biological activity of plant growth regulators. In 

attempting to correlate the structures of the compounds with their activities, he consulted his 

colleague in chemistry, Corwin Hansch [72].  

 

Later on, Hansch and Fujita published a LFER related model considered to be the formal 

beginning for QSAR [73-74]. Their fragment and additive group contribution theory added two 

things to what had been done before: the use of calculated properties to correlate with biological 

activities, and the recognition that multiple properties may influence the biological activity. 

With such purpose, they implemented the use of the computer to fit QSAR equations.  

 

Starting from the hypothesis that substituents on a parent molecule have a quantitive 

relationship with biological activity, they used Hammett sigma parameters to account for the 

electronic effect of substituents did not lead to meaningful QSAR. However, Hansch recognised 

the importance of the lipophilicity, expressed as the octanol-water partition coefficient, on 

biological activity. This parameter provides a measure of the bioavailability of compounds, 

which determines, in part, the amount of the compound that gets to the target site. 

The so-called Hansch equation [75] was developed to correlate physicochemical properties with 

biological activities can be expressed in a general form by:  

( )21log log log ...a P b P c k
C

σ= + + + +
 

(11) 

where C is the molar concentration that produces the biological effect; P is the octanol/water 

partition coefficient and σ is the electronic Hammett constant.  

 

The definition of a parabolic model and the combination of different physicochemical properties 

in one model allowed for the first time the description of SARs which could not be correlated 

with a single term. As an alternative to logP values, a lipophilicity parameter π can be used, 

defined in an analogous way as the Hammett’s electronic parameter σ. In addition, Rudolf 

Zahradnik formulated Hansch-type relationships relatively early [76-78]. 

 

The combination of Hansch and Free-Wilson analysis in a mixed approach widens the 

applicability of both QSAR methods. SAR are now developed using a variety of parameters as 

descriptors of the structural properties of molecules.  
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4.4 Topological Studies 

Paralelly to these techniques, but avoiding the use of phsysicohemical parameters, the molecular 

topology was developed. It considers that the biological activity is related with the molecular 

topological characteristics, numerically represented by means of the distance and connectivity 

indices.  

 

The modern formulation of topological studies is due to Wiener [79], Kier and Hall [80-81], 

Randić [82], Hosoya [83], Balaban and Platt [84], among others. More recently, Rum and 

Herndon [85-86], have also used similarity matrices derived from bidimensional topological 

descriptors. Also, the aforementioned TQSI, widely exposed in the second half of Chapter 3 

provide a structure-based insight on the molecular structure characterization.  

4.5 Spatial Methods: 3D-QSAR 

More recently, the need to include the influence of the conformations and stereochemistry in 

QSAR studies has opened the three-dimensional QSAR field.  

These new techniques, which introduce three-dimensional parameters in the description of 

compounds, allow calculations extensive to the space surrounding the molecules and require the 

alignement of the molecules to a common pharmacophore. An application example of these 

QSAR techniques is the interaction study of a ligand with a receptor, where the molecules are 

approximated in three dimensions. The interactions are governed by electrostatic and steric 

factors. This method takes into account the different conformations, stereoisomers, enantiomers, 

and diastereomers of the studied compounds.  

 

The first approach dealing with electrostatic and steric interactions of molecules with their 

environment taking into account 3D shape was the Comparative Molecular Field Analysis, 

CoMFA [87-88]. Nowadays is still a common technique in the modelling of receptor and 

ligand. Later, Good and Richards [89-91] compared the electronic similarity between molecules, 

using the CoMFA superposition and then they correlated the topological indices using Neural 

Networks and Partial Least Squares.  

 

Also, 4D-QSAR [92-93] and 5D-QSAR [94-95] have been developed as representation of 

ensembles of conformations, allowing for the representation of multiple conformations, 

orientation and protonation states. 
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5 MOLECULAR DESCRIPTORS 

A common issue in QSAR is how to describe molecules and their properties. The nature of the 

descriptors used and the extent to which they encode the structural features related to the 

biological activity is a crucial part of a QSAR study [96]. It has been estimated that more than 

3,000 molecular descriptors are now available [97-99]. Most of them can be theoretically 

calculated by using commercial software packages such as ADAPT [100-101], OASIS [102], 

CODESSA [103], and DRAGON [99], among others. 

 

From the extensive available bibliography, some of the most widely used in order of increasing 

complexity are the topostructural, topochemical, geometrical, relativistic, and biodescriptors. 

The main descriptors used to characterise chemical compounds can be arbitrarily classified in 

different fashions. The more general overview classes them into three groups:  

 

- Empirical parameters derived from organic chemistry, employed in the classical QSAR 

models, using for example the Hansch analysis. Initially, these models were based on several 

varieties of physicochemical descriptors, classified into electronic, hydrophobic, and steric. But 

afterwards descriptors of diverse type were also included, i.e. experimental properties like 

solubility, melting point, boiling point, spectroscopic descriptors, etc.  

 

- Properties theoretically determined: this group includes topological descriptors, parameters 

derived from computational chemistry. The great advantage of theoretical descriptors is that 

they are calculable for not yet synthesised chemicals. 

 

- More recently, from the eighties, the so-called tridimensional descriptors have apperared 

into scene. These parameters, used in the so-called 3D-QSAR techniques, take into account the 

three-dimensional structure of molecules and they may require a molecular superposition 

procedure. This group includes molecular similarity indices and topological quantum similarity 

indices. 

 

Besides, the influence of a structural characteristics in the activity can be localised to a part of a 

molecule or it may also be global. This is another usually employed classification pattern of 

descriptors. 
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5.1 Substituent constants or parameters based on fragment constants or 

physicochemical parameters 

An important amount of these descriptors belongs to the empirical parameters category derived 

from physical organic chemistry. These parameters focus on how chemical reaction rates 

depend on differences in molecular structure. The characterization of these differences in 

structure, due to different substitutions of functional groups on to a fixed core pattern, leads to 

the development of substituent constants. These constants relate the effect of substituents on a 

reaction centre from one type of process to another.  

5.1.1 Electronic Substituent Constants 

They describe electronic interactions and they are a direct result of the empirical observation of 

certain chemical systems, where substituents have the same relative effects on the rates of 

reaction equilibria, regardless of the reaction. 

Hammett’s constant σ [60]. It is the pionering electronic substituents descriptor, and the 

subsequently determined constants for substituents in the positions orto, meta and para [104], 

which define the electronic properties of the aromatic substituents. They can also be of 

conformational type, for example, the conformational energy of a particular compound. 

5.1.2 Hydrophobic Substituent Constants 

The hydrophobicity can be experimentally determined for a substituent working within a set of 

derivatives from the lipophilicity coefficient π, or from the partition coefficients [105-106]. 

Partition Coefficient (log P). The natural logarithm of the octanol/water partition coefficient is 

the relative affinity of a compound for an aqueous or lipid medium, closely related with the 

absorption transport, and partitioning phenomena of a drug in a biological system. The 

octanol/water partition coefficient is measured by placing the compound in a separatory funnel 

with octanol and water. Octanol and water are immiscible, and the compound under study 

partitions between the two phases. The concentration of the compound in the two phases and 

hence the partition coefficient are a measure of the hydrophobic-hydrophilic character of the 

compound. The more hydrophobic, the larger are P and log P. Log P is a common descriptor in 

QSAR studies because drugs must often cross membranes. Cell membranes are composed of 

phospholipids, which have hydrophobic tails that produce a very hydrophobic environment in 

the middle of the membrane bilayer. In the absence of active membrane transport, more 

hydrophobic drugs have an easier time getting through a membrane [104-107].  
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5.1.3 Steric Substituent Constants 

They parametrize the possible interferences with the molecular reactions in homologous series 

of compounds, by the description of molecular shape and size. These descriptors parameterise, 

for instance, how well a ligand fits the receptor site, and the nature and relative positions of 

appropriate functional groups on the ligand, which affect the type and strength of the interaction 

with complementary groups on the receptor. 

Taft steric parameter. The Taft steric parameter, ES, is the first steric parameter developed by 

Taft [108], which describes the intramolecular steric effects on the rate of reaction.  

Charton’s steric constant. From the previous wrok, Charton solved some of the limitations of 

Taft method [109], introducing the so-called Charton’s steric constant. 

STERIMOL parameters. Developed by Verloop et al. [110], they characterize the steric 

features of substituents in more complex biological systems. 

5.2 Whole molecule representations 

Some of the descriptors derived from entire molecular structures are extensions of the 

substituent constant approach but many of them are completely new. In addition, several of 

them are based on the spatial conformation of compounds; for that reason, they require a 

molecular superposition process.  

5.2.1 Electronic whole molecule descriptors 

These descriptors are derived from a three-dimensional conformation of the molecule, and, 

thus, they are dependent of the modelling program employed. They distinguish from the 

electronic substituent constants in that a single value is assigned for a given compound. The 

values range from experimental to semi-empirical and to quantum mechanical values 

derived from molecular orbital calculations; also some of them are derived from 

thermodynamics. They may encode either general features of the entire molecule or local 

features of a specific site [111-112]. Electronic descriptors include polar and energetic 

descriptors.  

5.2.2 Polar descriptors 

They describe the force fields acting on the molecule, and thus they encode the effects or 

strength of different intermolecular interactions. 
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Intermolecular forces. They encode the strength of polar-type interactions [115], They can be 

either experimentally determined or theoretically calculated by using quantum mechanical 

techniques. The more commonly recognized intermolecular forces arise from the following 

interactions: ion-ion, ion-dipole, dipole-dipole, dipole-induced dipole, dispersion forces, 

hydrogen bonding [113].  

Molecular polarizability and molar refractivity. They are a measure of a molecule of being 

polarized. These descriptors are calculated from the refractive index [114] and the molar 

volume. 

Ionization constants. They encode ionic interactions and they provide information about the 

absorption and distribution of a drug [116]. 

5.2.2.1 Energetic Descriptors 

They are obtained by molecular orbital calculations and they mainly describe electronic 

interaction. Some examples of these descriptors are: electrostatic potentials, bond order, 

atomic charges, number of hydrogen bond donors and acceptors, measures of the π-π 

donor-acceptor ability of molecules, and, specially, reactivity indices. 

Reactivity indices. The energy of the highest occupied molecular orbital, EHOMO, is a 

quantitative measure for the chemical reactivity of the compound-ionization potential of a 

molecule. The energy of the lowest unoccupied molecular orbital, ELUMO, accounts for the 

electron affinity [117]. The HOMO-LUMO band gap energy can also be employed. These 

magnitudes provide measures of overall susceptibility of a molecule to loose a pair of electrons 

to an electrophile or to accept an electron pair from a nucleophile.  

5.2.3 Geometric descriptors 

They provide information about the shape and size of active compounds, as well as the degree 

of complementarity of a ligand and the receptor. They are developed from three-dimensional 

models of molecules, and derived from molecular surface area calculations. 

Molecular volume. It is an overall measure of molecular size, calculated by placing a sphere on 

each atom with the radius given by the Van der Waals radius of the atom. The most widely used 

volume estimation technique was developed by Pearlman [118]. 

Molecular surface area. Molecular surface area can be calculated by using some 

approximations proposed by Lee and Richards [119], Herman [120], and Pearlman [121].  

Charged partial surface area. It provides information on surface area and charge information 

to understand the properties influenced by interactions in polar molecules [122]. 
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5.2.4 Topological descriptors 

These descriptors are based on the connection table for a molecule, a compact representation of 

connectivity within a molecule. Their values may be or not independent of the three-dimentional 

conformation.  

5.2.4.1 Structure-based descriptors or information-content indices 

They count the frequency of occurrence of a substituent or substructures present in molecules as 

indicator variables: such as number of bonds and number of atoms. 

5.2.4.2 Topological indices 

They have been treated in more extension on the second half of Chapter 3. Derived from graph 

representation of chemical structures, they attempt to encode the size, shape, or branching in the 

compound by manipulation of graph-theoretical aspects of the structures [123]. Among the most 

important, there are the molecular connectivity indices [81], Wiener index (sum of the chemical 

bonds existing between all pairs of heavy atoms in the molecule), Zagreb index (sum of the 

squares of vertex valences), Hosoya index, Kier and Hall molecular connectivity index (a series 

of numbers designated by order and subgraph type, that emphasize different aspects of atom 

connectivity within a molecule), Kier & Hall valence-modified connectivity index, Kier & Hall 

subgraph count index, Kier's shape indices, Kier's alpha-modified shape indices, Molecular 

flexibility index, and Balaban indices.  

5.2.4.3 Electrotopological descriptors 

The electrotopological state indices are numerical values computed for each atom in a molecule, 

which encode information about both the topological environment of the atom and the 

electronic interactions due to all other atoms in the molecule. The topological relationship is 

based on the graph distance to each other atom. 

5.2.4.4 Kappa indics 

The constitute a series of graph theoretical indices developed by Kier, which relate to the 

molecular shape of the molecule [124-126]. 

5.2.5 Quantum Similarity Indices  

Derived from quantum mechanical calculations, they also take into account the three-

dimensional conformation. They can be calculated either as molecular QSI or fragment QSI 

they have been extensively exposed in the first half of Chapter 3.  

5.3 Other descriptors  

Receptor Surface Analysis (RSA) Descriptors. They calculate the energy of interaction 

between each point on the receptor surface and each model to the study table. 
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Molecular Field Analysis (MFA) Descriptors. They evaluate the energy between a probe and 

a molecular model at a series of points defined by a rectangular or spherical grid. 

Molecular Shape Analysis (MSA) Descriptors. Also called pharmacophoric descriptors or 3D 

Keys. They constitute a collection of combinations of three features (triplets) and four features 

(quadruplets) in the 3D space for all conformers. The features can be negative and positive 

charges, negative and positive ionisable groups, hydrogen bond donors and acceptors, 

hydrophobic groups, aromatic rings, etc. 

Absorption-Distribution-Metabolism-Excretion (ADME) Descriptors. They help to the 

understanding and prediction of drug responses, based on a balance of potency, selectivity, 

pharmacokinetics, and toxicity profiles required for an ideal drug as well as the minimization of 

undesired potential side effects. ADME descriptors can be used to predict problematic new 

chemical entities at an early stage of development, thus reducing drug discovery expenses, 

minimising the development, and evaluation time for successful candidates, and used to 

populate or bias libraries with molecules that are likely to yield developable leads. 
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6 STATISTICAL ADJUSTMENT AND MULTIVARIATE 

ANALYSIS TECHNIQUES 

6.1 Introduction 

Statistical methods are the mathematical foundation for the development of QSAR models. 

Multivariate chemometric methods [31] are applied when it is not easy to extract enough 

relevant information for the problem from single original variables. The applications of 

multivariate analysis, data description, classification, and regression modelling, are combined 

with the ultimate goal of interpretation and prediction of non-evaluated or non-synthesised 

compounds [127]. 

 

Modelling techniques can be roughly classified into two different categories. Quantitative 

regression techniques aim to develop correlation models by using statistical adjustment 

techniques. Complementary, qualitative pattern recognition techniques are devoted to the 

descriptive data analysis and classification. Besides, methods for the quantitative analysis of 

continuous properties or methods for the semiquantitative analysis of categorical properties or 

continuous properties partitioned into discrete classes can be applied, depending on the type of 

variables being studied. 

 

Among an increasing pool of different modelling methods, the selection of the appropriate 

method for the statistical analysis is crucial [128]. There is an important number of regression 

analysis methods available in the literature and Multiple Linear Regression (MLR), also 

termed as Ordinary Least Squares (OLS) [129], can be considered as an easy interpretable 

regression-based method, indicated for QSAR analysis. Some of its variants are simple linear 

regression, multiple linear regression, and stepwise multiple linear regression.  

 

Recently, such methods have been substituted by multivariate projection methods, namely 

projection to latent variables, such as Principal Component Regression (PCR) and Partial 

Least Squares (PLS) [130], which in turn reduce the information content of data matrices. 

Thus, these techniques project multivariate data into a space of lower dimensions, reducing 

obviously the number of dimensions, and indeed providing insight to visualise, classify, and 

model large sets of data. The position of the observations on the new space is given by the 

scores and the orientation of the plane in relation to the original variables is indicated by the 

loadings.  
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Also, more sophisticated methods, like Adaptive Least Squares (ALS), Canonical 

Correlation Analysis (CCA), Continuum Regression (CR), and the non-linear Genetic 

Function Approximation (GFA), and Genetic Partial Least Squares (G/PLS) have appeared 

into scene.  

 

Besides, in QSAR field other methods to perform classification studies have been extensively 

developed. The so-called Pattern Recognition (PARC) analysis methods [131-132], i.e. 

discriminant analysis and decision trees, can be applied to classify compounds in a model. 

PARC methods are based on a set of classes that contain a number of observations mapped by 

variables, guidelines, and rules, so that new compounds can be classified as similar or dissimilar 

to the members of the existing classes. The main assumption to compare the similarity of 

observations within each class is the application of the principle of analogy. Thus, pattern 

recognition techniques [133-134] such as Linear Discriminant Analysis (LDA), k-Nearest 

Neighbours (kNN), Principal Component Analysis (PCA), Correspondence Factor 

Analysis (CFA) and Factor Analysis (FA), Non-Linear Mapping (NLM), Canonical 

Correlation Analysis (CCA), Cluster Analysis (CA), and Artificial Neural Networks (ANN) 

provide qualitative information on the property-structure relationships, by means of 

representation techniques.  

6.2 Overview for the choice of the method 

There is no single method that works best for all problems and that has the perfect balance of 

predictivity, interpretability, and computational efficiency. 

Simple linear regression 

The simple linear regression method performs a standard linear regression calculation to 

generate a set of QSAR equations that include one equation for each independent variable. Each 

equation contains one variable from the descriptor set. This method is suitable for exploring 

simple relationships between structure and activity. 

Multiple linear regression 

The Multiple Linear Regression (MLR) [135] is an extension of the classical regression method 

to more than one dimension. MLR calculates QSAR equations by performing standard 

multivariable regression calculations using multiple variables in a single equation.  
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Sepwise multiple linear regression 

The stepwise multiple linear regression is a commonly used variant of MLR. In this case, also a 

multiple-term linear equation is produced, but not all independent variables are used. Each 

variable is added to the equation at a time and a new regression is performed. The new term is 

retained only if the equation passes a test for significance. This regression method is especially 

useful when the number of variables is large and when the key descriptors are not known.  

 

However, if the number of variables exceeds the number of structures, alternative methods such 

as projection methods should be considered. 

Principal Components Analysis 

The Principal Components Analysis (PCA) method [136] does not create a model but searches 

for relationships among the independent variables. PCA creates new variables (the principal 

components) which represent most of the information contained in the independent variables.  

Principal Components Regression 

The Principal Components Regression (PCR) method uses linear regression to create a model 

using the principal components as independent variables.  

Partial Least Squares 

The Partial Least Squares (PLS) regression method [137-138] carries out regression using latent 

variables from the independent and dependent data that are along their axes of greatest variation 

and are most highly correlated. PLS can be used with more than one dependent variable. It is 

typically applied when the independent variables are correlated or the number of independent 

variables exceeds the number of observations. Under these conditions, it gives a more robust 

QSAR equation than multiple linear regression.  

Genetic function approximation 

Genetic Function Approximation (GFA) applies the natural principles of evolution of species 

that assume that conditions that lead to better results prevail over the poorer ones. So, 

improvement is obtained by recombination of independent variables, that is, reproduction, 

mutation, and crossover. This method provides multiple models that are created by evolving the 

random initial models using the genetic algorithm. The method is good for generating QSAR 

equations dealing with a large number of descriptors. GFA can build linear and higher-order 

polynomials, splines, and other nonlinear equations.  
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Genetic partial least squares 

Genetic Partial Least Squares (G/PLS) is a variation of GFA that is derived from two methods: 

GFA and PLS. Both GFA and PLS are valuable analytical tools for datasets that have more 

descriptors than samples. 

 

Simple and multiple linear regression are very quick and easy to interpret, but do not work when 

the number of independent variables is larger than or even comparable to the number of 

molecules.  

 

Stepwise multiple linear regression and genetic function approximation work with any number 

of variables but do not perform well if important information is spread over more of them than 

can be included in the model.  

 

Partial least squares can handle any number of independent variables, but creates only linear 

relationships. Genetic partial least squares offers automatic creation of nonlinear terms, 

combining the best features of GFA and PLS. 

 

The advantage of PLS over PCR is that when the dependent variable information is used 

directly when regressing, the model very often turns out to be better for prediction purposes, and 

handles noisy data better than PCR. 

 

In summary, MLR is considered a reverse classical regression method placing all weight on the 

dependent variable when regressing; this means that the prediction error is minimised. On the 

other hand, PCR is considered a forward inverse regression method placing all weight on the 

independent variable, hence minimising the calibration error. PLS uses both variables equally. 

Depending on the nature of the data and the intended use of the model each of the methods has 

qualities that must be considered in each case. 

6.3 Pre-treatment of data 

Before applying some multivariate analysis methods, and for the sake of quality of results, a 

previous treatment of the data is required. Depending on the method to be used and the amount 

of data available, the data set needs to be transformed by means of pre-processing methods in 

order to enhance the information. 
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6.3.1 Scaling and centring 

The results of projection methods depend on the normalisation of the data. Descriptors with 

small absolute values have a small contribution to overall variance; this biases towards other 

descriptors with higher values, and leads to biased principal components. With appropriate 

scaling, equal weights are assigned to each descriptor, so that the more important variables in 

the model can be focussed. 

 

In order to give all variables the same importance, they are standardised by autoscaling. The 

standard procedure consists of normalising each variable to mean centring and variance scaling. 

Centring sets the mean value to zero, that is, moves the centre of the entire the data set to origin 

by subtracting the mean value from each variable. This gives all variables the same distance 

from origin. Scaling sets the variance to one for all variables. This means that all variables get 

equal importance or weight in the model.  

i

ii
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x 1x  (12) 

xi is the original column vector of descriptors, ( )1 2, ,... T
i i i nix x x=x , ix  is the arithmetic mean, 

i
sx is the standard deviation, and i′x  the transformed vector of autoscaled variables. 

 

These transformations are recommended for ease of interpretation and numerical stability, but 

do not lead to changes in the coefficients or weights of variables and does not alter the 

interpretation of the results.  

6.3.2 Data correction and compression 

If the data have skew distributions or systematic error, specially when handling with 

spectroscopic data, they may need to be linearized.  

6.3.3 Other transformations 

Furthermore, a variable may contain one or a few extreme measurements that may influence the 

model. If the variables differ in range, variation, and size, they are often transformed, so that 

their distribution is consistent with chemical and biological theory. Activity variables with a 

range covering more than one order of magnitude of ten can be logarithmically transformed, and 

the same applies to structure descriptor variables. By transforming them to a frequency, or a 

scale domain, important information can be more easily extracted. Another example of such 

transforms is the Fourier transform. 
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6.4 Construction of the predictive model: Linear Regression Analysis 

Regression models help to build models, estimate their predictive ability, and find underlying 

relationships between descriptors. The first part of data analysis consists of using the data to 

determine values of parameters in the model so that the model fits the data well. The most 

general purpose of regression techniques is to construct a model to represent the dependence of 

several independent predictor or observable variables on dependent criterion or explicative 

variables. This relationship is expressed in the form of an equation that expresses dependent 

variables, y, in terms of independent variables, X. Therefore, MLR predicts y from the 

knowledge of X variables, which can be either quantitative or qualitative. Also, X parameters 

may be the selected principal axis resulting from a MDS configuration from a reduction 

dimensionality process.  

 

In particular, in this thesis, for the analysis applied to a QSAR study, the main goal is to 

correlate a biological property, forming a column vector (y), with molecular descriptors, 

arranged in the columns of the so-called data matrix (X). The columns are associated with 

variables or descriptors, whereas the objects, in this case, the molecules, are associated with the 

rows. The model can then be used to predict activities for new molecules, or screening a large 

group of molecules with unknown activities among other uses. Usually, the prediction model is 

elaborated using the parameters calculated for a well-determined data of a training set on the 

unknown test set. If the training set is a sufficiently representative pattern of the system, then, it 

can be assumed that the introduction of new elements with an unknown property will not affect 

their stability and that confident predictions can be attempted.  

 

A model's ability to provide insight into the system is as important as its predictive ability. 

Possibly more valuable than being able to predict an activity or property is to get insight into 

underlying relationships between descriptors. Finally, validation methods are needed to 

establish the predictive capacity of a model on test data and to help determine the complexity of 

an equation that the amount of data justifies. 

 

Regression methods can be classified according to the parameters being optimized. Linear 

regression methods fit parameters to data so as to minimise the sum-of-squared residual 

errors. Some of them have the side effect of minimising or maximizing other quantities at the 

same time. 
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6.4.1 Simple Linear Regression Analysis 

 In the simplest case, i.e. the simple linear regression, there is a single independent x variable, 

and a dependent y variable. Thus, a one-term linear equation is produced separately for each 

independent variable. This is useful for discovering some of the most important descriptors; 

however, it ignores the interaction of multiple descriptors. The goal of a linear regression 

procedure is to fit a regression x/y line through the points (observations) so that the squared 

deviations of the observed points from that line are minimised.  

 

The regression equation in a two-variable or two dimensional space is defined by the equation: 

a b= +y x  (13) 

where the response variable y can be expressed in terms of the variable x by means of two 

parameters: the constant a and the slope b. The constant is also referred to as the intercept, and 

the slope as the estimator, the regression coefficient or b coefficient.  

 

The coefficients {a,b} are usually determined by a least squares estimation. Once determined 

the { },a b coefficients the experimental property can be estimated:  

'i iy a bx= +  (14) 

where y’ is the adjusted value of y.  

 

The regression line expresses the best prediction of the dependent variable, ŷ , given the 

independent variable x. However, there is usually a substantial variation of the observed points 

around the fitted regression line. The deviation of a particular point from the regression line, 

that is, the distance of the experimental value y from the adjusted value y’, is called quantified 

by the residual error ( ′e = y - y ). The smaller the variability of the residual values around the 

regression line relative to the overall variability, the better is the prediction. Customarily, the 

degree to which the predictor (x) is related to the dependent (y) variable is expressed by the 

correlation coefficient r, whose values are comprised between 0 and 1.  

 

To estimate a and b regression coefficients, the least squares method finds the values that 

minimize the sum of squared residuals: 
2min e  
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From successive demonstrations, it follows that the expressions for the slope and the intercept 

are, respectively:  
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or  

a y bx= −  (18) 

being 
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= ∑ the arithmetic means (average values) of x and y.  

 

The sign of b coefficients is an indicator of the relationship between variables. If b is positive, 

then the relationship of this variable with the dependent variable is positive; if b is negative so 

the relationship is, and if b is equal to zero there is no relationship between the variables. 

 

A fundamental principle of least squares methods is that the variance of the dependent variable 

can be partitioned according to the source. Thus, it can be demonstrated that the total sum of 

squared values of the dependent variable equals the sum of squared predicted values plus the 

sum of squared residual values. Stated more generally,  
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Taking the following definitions, 
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the balance of variances can be stated in another way: 

T R ESS SS SS= +  (23) 

The term SST on the left is the total sum of squared deviations of the observed values of the 

dependent variable from the dependent variable mean. The terms on the right are SSR and SSE. 

SSR is the sum of squared deviations explained by the regression model, of the predicted values 

from the dependent variable mean, and SSE is the residual sum of the squared deviations of 

error, of the observed values from the predicted ones, that is, the sum of the squared residuals. 

The standard error of the estimate is a measure of the accuracy of predictions. As the difference 

between observed and predicted approaches zero ( 0ESS � ), the sum of the squares due to 

regression approaches the sum of the squares about the mean ( R TSS SS� ). Thus, the sum of the 

squares of the residuals (SSE) can be considered a measure of goodness of fit. SST is always the 

same for any particular data set, but SSR and the SSE vary with the regression equation. 

6.4.2 Multiple Linear Regression Analysis 

In the multivariate case, i.e. MLR analysis, when there is more than one independent variable, 

the regression cannot be visualized as a line in the two-dimensional space, but it can be 

computed just as easily. 

 

The regression model also assumes a linear relationship between m molecular descriptors and 

the response variable. This relationship can be expressed with the single multiple-term linear 

equation:  

0 1 1 2 2 ... m mb b b b= + + + + +y x x x e  (24) 

The MLR analysis estimates the regression coefficients, { }ib , by minimising the residuals, e, 

which quantify the deviations between the data (y) and the model (y’), as in the case of simple 

linear regression.  
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The multiple regression model can be also expressed compactly using matrix notation [139-

140].                             

y = Xb + e  (25) 

In this case, the vector containing the activity value, ( )ny , experimentally calculated for n 

objects, i.e. chemicals, is ( )1 2, ,..., T
ny y y=y . The matrix of descriptors calculated for the n 

objects and m associated descriptors, ( )n m×X , is { }1 2 mX = x , x , ..., x  . b is the column 

vector of regression coefficients ( )T
0 1 2, , ,..., mb b b b=b , and e is the error vector. The first 

column of b is composed by constants (b0); this column becomes zero after the centring. 

Regression coefficients represent the independent contributions of each independent variable to 

the prediction of the dependent variable. 

 

yi, xij, and ei respectively represent the activity, the j-th descriptor, and the residual value 

between the experimental value and the adjusted one, for a compound i. 

 

Analogously as before, to estimate a and b regression coefficients, the least squares method also 

minimises the sum of the squares of the residuals: 
2min e , taking into account that, in turn, 

the residuals are defined from the adjusted values ( ′e = y - y = y - Xb ): 

( ) ( )
1

 2

n

i=

=∑ T2 T
i

T T T T T T

T T T T T

e e e = y - Xb y - Xb =

       = y y - b X y - y Xb + b X Xb =
       = y y - b X y + b X Xb  

(26) 

By applying the minimisation condition, the first partial derivative must be equal to zero:  

              

S∂
= −

∂

=

T T

b

T T

2X y + 2X Xb = 0
b

X Xb X y
 (27) 

One of the ways for solving the system above is to premultiply both sides of the matrix formula 

by the inverse matrix XTX to give 

1−
  

T Tb = X X X y  (28) 
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The condition for existence of the least squares solution is that the inverse product of matrices, 

XTX, exists, so that it is non-singular. This, in turn, requires that X is non-singular, i.e. the 

columns of the X matrix are linearly independent, in order that no column of X may be written 

as a linear combination of other columns of X. In this case, the system of equations is of full 

rank, ( n m> ), and there is a unique solution. 

 

When the number of descriptors m is close to or greater then the number of molecules n, 

( n m≈  or n m< ), b cannot be estimated by multilinear regression because X is not full-rank, 

the TX X determinant is null, and ( )-1TX X is not defined. In this case, there is a linear function 

relating predictor variables and so the descriptors are linearly dependent. The problem of 

collinearity [135] can be solved by suppressing descriptors or by using other Multivariate 

methods. 

 

Using the calculated values of the correlation coefficient, the values of the experimental 

property are estimated. The vector with experimental properties can be related with the adjusted 

properties fitted by the linear model, ( )' ' '
1 2, ,...,

T

ny y yy' = , by means of the expression:  

            

 =  
=

-1T Ty' Xb = X X X X y

Hy  
(29) 

The prediction matrix or hat matrix of ( )n n× dimension that relates the observed values with 

the adjusted ones has been defined as: { }ijh  =  
-1T TH = X X X X , that is: 

T
ij i jh   

-1T= x X X x , where ( )1 2, ,...T
i i i ikx x x=x is the i-th row of X matrix.  

6.5 Conditions 

In the usual models, the calculations are based on three simplifying assumptions: independence 

of observations, normality of the sampling distribution, and uniformity of residuals.  
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6.5.1 Independent variables 

Independence of observations refers to the notion that the value of one datum is unrelated to any 

other datum. Observations that are not independent are also said to be correlated or 

interdependent. MLR assumes the predictor variables X to be linearly independent or 

orthogonal. So the method fails when the descriptors are correlated or collinear. The method 

also requires at least as many molecules as independent variables. However, to produce reliable 

results minimising collinearities and the possibility of chance correlations, typically the ratio of 

compounds to variables should be at least five to one [141]. When the number of independent 

variables is greater than the number of molecules, multiple linear regression cannot be applied. 

6.5.2 Linear relationship 

The dependence of y on X to construct the QSAR model is assumed to be linear, while the real 

world is always non-linear. Thus, it is not easy to obtain the exact functional relationship 

( )f=y X , because there is the influence of the random residual e, acting as a perturbating 

term.  

6.5.3 Normal distribution 

If the study was repeated many times, the expected sampling distribution for the y values of the 

statistic is assumed to follow normal distribution. This means that the typical error has the same 

average magnitude for every subject and that the condition of homodedasticity holds.  

 

The residuals are uniform if their mean is zero and their scatter or standard deviation is the same 

for any subgroup of observations. If there are non-uniform residuals, the heteroscedasticity 

condition prevails. In this case, there are two possible solutions: to fit a non-linear model instead 

of a straight line, or transform the data to obtain a straight line. The most common 

transformations are log transformation and rank transformation. 

6.5.4 Other 

The available data of a given system consists of uninteresting information, termed as noise, and 

the data of interest. Noise is partly random, but it can also be systematic, due to inadequacies in 

structure descriptors, as well to deficiencies in the model. If the data set contains a lot of noise, 

MLR model can fail.  

 

If there is a low degree of coherence between X and y, MLR can also fail. The lack of 

selectivity, i.e. all X information is used in the regression, irrespective of its correlation with y, 

is also another drawback. 
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6.6 Reduction of Dimensions: Multivariate Data Analysis Methods  

Usually, molecular descriptor matrices can not be directly used as independent variables in the 

MLR analysis due to their lack of homogeneity, the high correlation between descriptors, or the 

excessive number of involved descriptors. If the number of descriptors is larger than the number 

of compounds, some of them may be redundant. Thus, previous to the MLR analysis, normally 

a reduction of variables is necessary in order to obtain a concentrated set of significant 

underlying variables, not correlated between them, loosing the minimum amount of 

information.  

 

The goal of many multivariate analysis methods is to find a mathematical function of the 

multivariate data to define a relatively small number of new latent variables possessing the 

maximum amount of information relevant for the problem. The latent variables, obtained as 

statistical scores, are also called factors, components, coordinates, or principal properties. 

They are orthogonal and can, thus, be used in multiple linear regression. 

 

Graphically, multidimensional data are transformed, and projected into a more intuitive space 

of lower dimensionality, with a minimal loss of information. These transformations suppress 

the dimensions contributing with an insignificant percentage of information. Thus, the basic 

features behind the data are extracted and visualised into a pictorical form, with the aim of 

interpretation. In this way, the dimensionality of complex multivariate data is effectively 

reduced.  

 

Several multivariate analysis methods try to explain an extended set of variables by means of a 

reduced number of new latent variables. These methods can be grouped into linear, i.e. 

Principal Component Analysis (PCA), Principal Component Regression (PCR), Linear 

Discriminant Analysis (LDA), Partial Least Squares (PLS), and Factor Analysis (FA), and non-

linear methods, i.e. Quadratic PLS (QPLS), Non-Linear Mapping (NLM), Artificial Neural 

Networks (ANN). Besides, the techniques can be also described by the criterion optimized in 

each particular case (i.e. variance, covariance, correlation, discriminating power…). The 

objective is to represent the multivariate data by a minimum number of latent variables. The 

extracted latent variables are orthogonal and can, thus, be used in Multiple Linear Regression 

(MLR) [135].  
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In this thesis, only some widely used statistical techniques for multivariate analysis used in 

QSAR studies such as Principal Component Analysis (PCA) [142], Principal Coordinates 

Regression (PCR) [143-144], and Partial Least Squares Regression (PLS) [130,137] will be 

presented in detail.  

 

Given a set of original variables, ( )n m×X , the main goal is to find k new latent variables or 

scores, ( )n k×T , where k m≤ , and to determine the contribution of these new variables to the 

original ones by means of the coefficient matrix or matrix of loadings, ( )m k×P . The 

decomposition of the variables matrix corresponds to the matricial equation:  

TX = TP + E  (30) 

where E is the residual error matrix.  

The main objective is to determine the coefficient matrix P. Once decomposed the original 

variables matrix, the MLR equations can be built between the experimental properties y and the 

new transformed variables T.  

 

In particular, Multidimensional Scaling Techniques (MDS) [145] seem to be a suitable 

method to treat the similarity or dissimilarity data, as proximities. The reduction dimensionality 

methods for similarity matrices try to map the original proximities { }ijp into distances ijd of a 

multidimensional space. These distances are expressed as a function of a configuration matrix 

X. [146]. The mapping between proximities and distances is specified by means of a function of 

representation: 

( ): ij ijf p d→ X  (31) 

or more generally: 

( ) ( ): ij ijf g p d→ X
 (32) 

where pij is the quantitative measure of the proximity between two objects and 

( )ijg p represents a transformation of the original proximities. In this particular case, pij would 

correspond to the Zij elements of the similarity matrix Z, and ( )ijg p  could be the elements of a 

similarity indices matrix.  
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In practice, it is not possible to find an exact function, but a configuration X that approximates 

the distances between points to the original proximities. The choice of the parameter defining 

the error measure yields different types of reduction techniques.  

 

Each point in the multidimensional space of configuration X is described by: 

( )1 2, ,...,i i i imx x x=x  (33) 

  

where xia is the projection of the object i in the axis a. This vector is the coordinates vector of 

the object i. The origin of coordinates is assumed to be ( )0,0,...,0=0 . 

 

Mathematically, the distance between two points i and j that belong to a Euclidian space 

corresponds to the length of the segment of their connecting line 

( ) ( )
1

22

1

m

ij ia ja
a

d x x
=

 
= − 
 
∑X  (34) 

This distance depends on the X configuration. This equation can be rewritten in terms of vectors 

as:  

( ) ( ) ( ) 22 T

ij i j i j i jd = − − = −X x x x x x x
 

(35) 

The matrix of Euclidian distances satisfies the following constraints:  

0    ,
0    

, ,

ij

ii

ij ik jk

i j

i
i j k

δ

δ
δ δ δ

≥ ∀

= ∀
+ ≥ ∀  

(36) 

6.6.1 Classical Scaling  

Classical Scaling [143-144] was one of the first multivariate analysis tools used in the treatment 

of similarity matrices. This technique considers the objects as points in a multidimensional 

Euclidean space and finds the coordinates for these points so that the distances between them fit 

the original similarities.  

 

To develop the classical scaling formalism, it is usually supposed that the T coordinates matrix 

is known for a set of n points in a Euclidian space. The squared distance matrix can be 

constructed from the T coordinates matrix:  
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( )2 2 2= − = −T T T T TD c1 +1c TT c1 +1c B  (37) 

 

where TB = TT is the so-called scalar product matrix, 1 is a n-dimensional unitary vector and c 

is a vector with the diagonal elements of B as components.  

 

The solution provided by classical scaling tries to identify the primitive proximities with 

distances between points in a multidimensional space. The solutions of the method are invariant 

in relation to translations of the data set. The coordinate origin usually is selected to coincide 

with the centre of gravity of the points.  

 

There are two ways of treating the proximity matrices of quantum objects. The first one is to use 

a dissimilarity quantum similarity index (D class) and, afterwards, find the T matrix by means 

of spectral decomposition. The second consists of using the Gower transformation from the 

Carbó indices and transform the elements of the distance matrix. Both transformations, as well 

as the direct use of original similarities, do not influence the final result of the projection; that is, 

the quality of the model remains unchanged.  

 

Taking the transformed, squared and centred, quantum similarity matrix Z as D, the B matrix 

can be easily obtained. Afterwards, the T matrix is obtained from B by means of the spectral 

decomposition:  

T TB = TT = V∆V  (38) 

1
2T = V∆  (39) 

where V is the matrix of eigenvectors, and ∆ is a diagonal matrix of eigenvalues of B. B is 

symmetric and, hence, its eigenvalues are always real and the associated eigenvectors can be 

taken as orthogonal [147]. The eigenvalues are ordered in descendent order, according to the 

magnitude of the associated eigenvalue.  

 

In classical scaling, the dimensions are nested, that is, the first and second principal coordinates 

of the whole solution coincide with the bidimensional solution. Thus, once defined the 

similarity matrix, classical scaling only needs to be calculated once, independently of the 

dimensionality of the prediction model. Hence, out of the total number of the generated 

variables set, it is possible to use only a selected subset as a source of QSAR parameters. 
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The classical scaling technique considers similarity matrices as distance matrices and, thus, it 

neglects the diagonal elements, considered as nulls. But, in fact, the self-similarities that occupy 

the diagonal of the quantum similarity matrices are non-null elements, different from each other. 

To avoid the loss of information derived from this assumption, original matrices can be 

transformed into similarity indices that lead to matrices with uniform diagonal elements, 

without relevant information.  

 

The transformation of a normalized similarity matrix element zij, where 0 1ijz≤ ≤ , and 0iiz = , 

into a Euclidean distance matrix element can be done using the Gower and Legendre 

transformation [148]: 

1ij ijzδ = −
 (40) 

It has been demonstrated that when transforming a Euclidean distance matrix by classical 

scaling, there always exists an exact solution where the distances between the points in the 

multidimensional space exactly fit the original distances [143,149]. 

 

The goodness of fit of the model can be quantified by means of scree plots [150]. The 

eigenvalues associated to the eigenvectors of B matrix define a proportion of the variation 

between the points, V(m): 

( ) 1

1

m

i
m i

n

i
i

V
λ

λ

=

=

=
∑

∑
 

(41) 

The numerator calculates an extended sum for all the selected subspace, while the denominator 

takes the complete solution, all the eigenvectors.  

 

The scree plot plots the values of V(m) function versus the dimensionality (number of 

components) of the space. As the number of dimensions increases, the configuration approaches 

to the ideal one, and the V(m) function approaches the unit. These curve representations present 

often a bow: they increase monotonally, until a given dimension; from that point, the increase 

rate is lower. This limit indicates that the addition of new dimensions to the configuration does 

not lead to a better description. Thus, this point is an adequate selection criterion to deduce the 

number of dimensions for a classical scaling configuration.  
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Another way to define the loss of information function is by means of the stress function [151-

152], defined as:  

( ) 2

,
ij ij

i j
Stress p d = − ∑ X

 
(42) 

The main application of Quantum Similarity in this field consists of describing a set of external 

data, i.e. molecular properties, with the principal coordinates of the system [153-154].  

6.6.2 Principal Components Analysis 

Principal Component Analysis (PCA) is one of the oldest and most widely used data reduction 

techniques to reduce the dimensionality of a multivariate data set of descriptors X [136, 155-

157]. It seeks to determine a new set of variables -referred to as Principal Components (PC)- 

describing the data in order of decreasing variance with the purpose to express the main 

information in the variables by a lower number of variables, called the principal components of 

X. Equivalently, PCA can be described as a method to determine the natural dimensionality of 

the dataset allowing subsequent embedding of the data into a space of lower dimensionality 

within a margin of prescribed original variance percentage. 

 

The first axis, the so-called first Principal Component (PC1), describes the maximum 

variation in the whole data set; alternatively, it can be also pictured as the direction of greatest 

variance. The second PC describes the maximum remaining variance, and so forth, with each 

axis orthogonal, that is, linearly independent, to the preceding axis. Some of the last 

components may be discarded to reduce the size of the model and avoid over-fitting. In effect, 

this method reduces the size of the model to the amount of data available.  

 

The PC technique is sensitive to scale changes; thus, X columns must be previously centred and 

scaled. 

 

PCA method aims to extract the maximum amount of variance of the initial variables. To such 

an extent, the original descriptors are described by means of linear combinations of principal 

components or scores, T: 

→T T T T
1 1 2 2 k kX = TP X = t p + t p + ... + t p + e  (43) 
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Mathematically, the number of PCs which can be extracted from a data matrix is usually equal 

to m, the number of original variables. With this number of components, the data matrix can be 

exactly reproduced. However, this is not a desired result, since it would not lead to a reduction 

of the dimensionality of the data space. The goal is to find the minimum number of components, 

k, such that in the space they span, the original variables can be represented without loss of 

relevant information. These components reflect the basic effects behind the data. The non-

selected components are assumed to represent irrelevant or residual information comprising 

errors of measurement and errors in the model.  

 

Thus, the objective of PCA is the decomposition of ( )n m×X  in k principal components or factor 

score vectors ( )n k×T -characteristic of the features of the objects - and k loading vectors ( )m k×P - 

characteristic of the measurements-, where k m< . 

 

The PCA method studies the decomposition of the covariance matrix between the predictor 

variables. The starting point is to evaluate the principal components of the covariance matrix R: 

TR = X X  (44) 

This equation can be solved by diagonalising R using the standard Single Value 

Decomposition (SVD) procedure. Scores and loadings are obtained from the resulting 

eigenvectors and eigenvalues, where eigenvalues represent the variance contribution of the 

components in decreasing order, and the eigenvectors are the PC.  

 

To carry out the SVD factorization of R, it must be assumed that X is a centred, quadratic and 

orthonormal, i.e. orthogonal and normalized, data matrix. Then, it follows that XT is also 

orthonormal. For such a matrix it can be demonstrated that: T TX X = XX = I , so that 
T -1X = X . 

 

The SVD of X may be written as:  

TX = TDP  (45) 

where T is an ( )n n× orthonormal matrix, P is a ( )m m×  orthonormal matrix, and D is a 

( )n m×  diagonal matrix. The non-negative diagonal elements 1,..., kd d  of D matrix, where 

{ }min ,k n m= , are called the singular values.  
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Appropriately applying the rules for transposing a matrix product, 

=

T

T T T

R = X X
     PD T TDP

 (46) 

Since T is orthogonal, TT T = I , and so T T TD T TD = D D = ∆ , where ∆  is a diagonal matrix 

with non-negative values.  

 

Then, the decomposition of R from the SVD of X can be expressed as  

= TR P∆P  (47) 

 where { }1,..., kdiag λ λ∆ = contains the eigenvalues of TX X in its diagonal. It can be assumed 

that the singular values are in decreasing order so that 1 2 ... 0kλ λ λ≥ ≥ ≥ ≥ .  

 

By using that P is orthonormal, it is also possible to write  

T = XP  (48) 

There are two cases to be considered in the formation of ∆ : 

 

1) When m n≤ , TD D  is a ( )n m×  diagonal matrix with diagonal elements  

2   1,...,m md m nλ = ∀ =  
(49) 

If the singular values of X are all strictly positive, then so are the eigenvalues of R and R is 

positive-definite.  

 

2) When m n> , TD D  is a ( )m m×  diagonal matrix with diagonal elements  

2   1,...,m md m nλ = ∀ =  

0      1,...,m m n mλ = ∀ = +  

(50) 

Even if the singular values of X are all non-negative, there are still m n−  null eigenvalues of R 

and so R is positive semi-definite. This is a result of R being singular, that is, the set of m 

vectors can not be linearly independent.  

 

3) If the eigenvalues are both positive and negative, then R is called indefinite.  
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In the particular case where X is a ( )n n×  square symmetric matrix, a number λ such that there 

exists a non-zero vector p so that λ=Rp p  is called an eigenvalue of R, and p is called the 

corresponding standardised eigenvector. Any scalar multiple of p is then also an eigenvector 

for the same eigenvalues. Then the set of equations i i iλ=Rp p 1,....,i n=  may be written in 

matrix form as follows: RP = P∆  where { }1,..., ndiag λ λ=∆  

Since P is orthonormal, T -1P = P  so by right-multiplying the equation by PT: TR = P∆P  or 
 

1

n

i i i
i

R λ
=

=∑ Tp p  (51) 

If R is positive semi-definite, the so-called eigenvalue or spectral decomposition of R, 
TR = P∆P  leads to the same result as the SVD. In that case, the matrices of the SVD for R are: 

T = P  

D = ∆  
(52) 

Mathematically, each extracted PC (score) is orthogonal to the previously generated PCs 

( 0i j =
Tt t m for i j≠ ) and describes a decreasing percentage of the variance of the original X 

matrix.  

 

Similarly, the loading vectors are also orthonormal, that is, orthogonal ( 0i j =
Tp p ) and scaled to 

the unity ( k
TP P = I ), i.e.; normalized. The components of the eigenvectors are the weights of 

the original variables in the PCs, and form the columns of the orthonormal P matrix.  

 

The eigenvalues represent the percentage of variance explained for each associated PC. But 

there is not a unique solution of P to verify the previous equation. Thus, an additional condition 

is introduced, whereby the components are determined in sequence, in such a way that the first 

component accounts for the largest amount of correlation in R, the second component for the 

next largest amount of correlation, and so on. Thus, the PCA analysis chooses the first principal 

component that explains the maximum amount of variance o the variables.  

 

The factor scores and loadings can be obtained in many different ways. NIPALS algorithm was 

developed in 1923 [158], later modified in 1966 [159-160], and SIMPLS algorithm [161] 

resulted from work by de Jong in 1993. Singular value decomposition is another commonly 

used method for calculating scores and loading [162]. 
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In practice, in the PCA analysis the NIPALS (Nonlinear Iterative Partial Least Squares) 

algorithm is usually employed to find the principal components of R. In order to find the 

minimum number of components necessary for data reproduction within residual error, the 

components are added step by step to the model. After each step, the data matrix is reproduced 

and the procedure is continued until only non-systematic noise remains. The first component is 

substracted from the other variables and subsequently the second PC is selected with the same 

criterion: 

2 1 1
T= −X X t p  (53) 

and so on: 

1 1 2 2
T T T

k k k= − − − −X X t p t p t p…  (54) 

The essence of the PCA method is to decompose the X matrix as 

 

T T T
1 1 2 2 k k k

T
k k k

X = t p + t p + ... + t p + X
   = T P + X  

(55) 

where Tk and Pk contain the first k columns of T and P, respectively. k is chosen in such a way 

that Xk is small and represents only noise, while the term T
k kT P  represents the salient features 

of X. In order to accomplish this, k must be chosen in such a way that the terms ignored 

correspond to zero or negligible eigenvalues. In order to help rationalize the choice of k, taking 

into account that the percentage of variance attached to each component is proportional to its 

eigenvalue, the relative size of the eigenvalues is expressed as a percentage of the sum of all 

eigenvalues: 

1

1

100
... k

λ
λ λ

×
+ +  

(56) 

and this percentage is interpreted as the percent variation explained by the corresponding 

principal component. Also, the cumulated percentages are used, so that the percent variation 

explained by the first k components is: 

1 k

1 j

100λ λ
λ λ
+ +

×
+ +
"
"  

(57) 
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Normally, the majority of the variance contained in the original variables matrix can be 

reproduced by means of the first components k m< . It can be assumed that the first PCs are a 

valid representation of X, because the residual variance can be assumed as negligible 

background noise. The obtained loading vectors are important to discriminate between relevant 

and redundant X descriptors, and to understand the score vectors, which inform on the 

similarities and dissimilarities between the studied objects in the model. 

 

The graphical representation of the PCs is obtained by plotting the first PC vs. the second, and 

eventually vs. the third. In addition, the scores or loadings for each principal component can be 

plotted against each other in order to examine the data structure, and to allow the visualisation 

of relationships in the descriptor space.  

6.6.3 Principal Components Regression 

Principal Components Regression (PCR) method, applies the scores from a PCA 

decomposition as regressors in the QSAR model. Hence, a multiple-term linear equation is 

built, based on a principal components analysis transformation of the independent variables.  

 

The PCA method, after choosing a suitable value for k, assumes that the important features of X 

have been retained by Tk . Provided that score components are orthogonal and contain the 

majority of the variance of X, they are adequate as regression variables for y using MLR: 

1 1 2 2 ... k kq q q→ = + + + +y = Tq + e y t t t e  (58) 

where qi are the regression coefficients describing the relationship between the response 

variable (y) and the k score components (T) , and e is the error term. Analogously to MLR, the 

minim squared solution in the estimation of q is:  

( )-1T Tq = T T T y  (59) 

where q is the so-called vector matrix of regression coefficients for T. 

 

For prediction with PCR, it is necessary to turn to X again. The substitution of T by XP yields:  

  
+y = Tq e

= XPq + e  
(60) 

The matrix Pq  is called the regression matrix, and may be compared with the vector b of 

MLR: 
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b = Pq  (61) 

However, this method does not work well if some of the variables contain a lot of variance but 

do not correlate with activity. Such variables may be given a high loading in the components, 

pushing out other variables more relevant to activity.  

6.6.4 Partial Least Squares  

PCR and PLS regression differ in the methods used for extracting factor scores. PCR produces 

the weight matrix reflecting only the covariance of the predictor variables, while PLS regression 

includes the response variables y in the process of reduction of the variables, and so the 

covariance is between the independent and dependent variables.  

 

The most important aspect of the algorithm is that the score vectors for X and Y are calculated 

interdependently, with the score vector used as starting point for each iteration. In this way the 

Y data affects the decomposition of X, and the other way around. 

 

PLS is a generalization of regression of particular interest in QSAR because, unlike MLR, data 

with strongly correlated (collinear), noisy or numerous X variables can be analyzed. In addition, 

several activity variables, Y, can be modelled simultaneously. Therefore, PLS is able to 

investigate complex structure-activity problems, to analyze data in a more realistic way, and to 

interpret how molecular structure influences biological activity. PLS gives a reduced 

statistically robust solution and, in fact, it contains MLR as a special case when a MLR exists. 

Besides, scores and loadings provide useful information about the correlation structures of the 

variables, and the structural similarities or dissimilarities between compounds.  

 

In this thesis, only the particular case considering a single response variable, y, that is, the 

process is called PLS1, will be presented in detail.  

  

It has to be noted that, first, it is convenient to autoescale the data matrix X, so that each column 

has a mean of zero and a unitary standard deviation.  

 

The goal of PLS, is to seek the direction in the space of X, which yields the biggest covariance 

between X and y. This direction is given by a loading vector, such as the unitary weight vector 
w : 
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T

T
=

X yw
X y

 
(62) 

The scores, t, to be used in the regression are linear combinations of the original variables, X, 

calculated as:  

T

Xwt =
w w  

(63) 

By definition 1T =w w , so that the previous expression can be simplified to =t Xw , where the 

columns of W are weight vectors for the X columns producing the corresponding factor score 

matrix T. The loading vector p needed for the calculation of the residuals of the new model can 

be obtained by regression of X with t. 

T

T

X tp =
t t  

(64) 

To make possible the estimations of y on t, it is necessary to calculate q, by means of ordinary 

least squares procedures: 

q =
T

T

y t
t t  

(65) 

Finally, the new X residuals are calculated from the previous component:  

1
T

k k k+ = −X X t p  (66) 

1k k kb+ = −y y t  (67) 

The iterative process is repeated until a certain tolerance limit between two consecutive 

iterations of y is smaller than a given threshold.  

 

Analogously o the PCA, the regression coefficients bPLS are useful for the interpretation of the 

model, and o predict external compounds as = PLSy Xb . The bPLS coefficients are then 

calculated as:  

( ) 1−
= T

PLSb W P W q
 

(68) 
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where W, P, and qT are calculated from their k components.  

 

This algorithm is also called the orthogonalized PLS algorithm, because the estimated scores 

and the weight vectors are orthogonal ( 1T
i j =t t and 1T

i j =w w , where i j≠ ). If the number of 

extracted components k is equal to the number of descriptors contained in X, then the PLS 

solution is equal to the MLR solution.  

 

The iterative PLS method was originally designed by Wold [163]. Afterwards, several variants 

of the PLS algorithm have been proposed. Between them, the algorithm by Martens, which 

considers non-orthogonal scores and weights [164], and the PLS2 algorithm, for the case of 

more than a single column in Y, must be remarked. 

6.6.5 Other methodologies 

Neural Networks. Artificial Neural Networks (ANN) method [165-167] is a system inspired in 

the human brain, composed of many simple processing units operating in parallel, the so-called 

neurones. This discipline is also known with the names of parallel distribution, 

neurocomputation, natural intelligence systems or learning algorithms. In any case, the 

objective is to simulate the multiple shells of the simple neurones, where each neuron is 

attached to a number of neighbouring neurones with variable coefficients of connectivity that 

represent the force of these connections. The learning process consists of adjusting the 

coefficient so that the network provided as an output the appropriate results.  

 

Other methods are non-linear regressions [168-171], which can be linear, non-linear and 

polynomial, PARAFAC decomposition [172-173], Multilinear PLS regressions [174],an 

extension of the PLS2 model, multimode regression of principal covariances [175], and 

Hybrid Intelligent Systems (HIS), among others. 

6.7 Selection of variables 

In any QSAR study, the driving purpose is to build a QSAR model relating the independent 

variables matrix, X, with the property vector, y. The ( )n m× data matrix may contain the m 

original molecular variables or transformed components. Independently of the provenance of X 

elements, before deducing the MLR model, the selection of variables is required in order to 

choose the descriptors that will act as descriptors in the QSAR model. The main goal in this step 

is the obtaining of the best QSAR model, using the minimum number of parameters, k, so that 

k m< . 

 



Quantitative Structure-Activity Relationships   173 

 

There are different criteria to establish the best model and different methodologies to choose the 

variables.  

 

There are statistical adjustment methods that imply an intrinsic variables selection, such as 

MLR [185], discriminant analysis [186], PLS [187-189], and more recently evolutive and 

genetic algorithms, such as k-nearest neighbours regression [190] or neural networks [191-192].  

 

In MLR analysis, the determination of the variables to be selected cannot be made by means of 

the r correlation coefficient, because it progressively augments with the addition of new 

parameters to the MLR equations. Instead, other parameters that will be presented in the 

following section may indicate if the model is over-parameterised for the inclusion of an 

excessive number of descriptors. To conclude, there are also methods that contribute to select 

the optimal descriptors, by eliminating redundant descriptors or descriptors contributing with 

negligible information. These methods are based on the elimination of linear combinations of 

descriptors, descriptors with a small variation coefficient or, like in the PCA, with small 

associated variance.  

6.7.1 Selection independent of the external variables  

The most common case considers a data matrix transformed by means of any multivariate 

analysis technique, where the matrix has been reduced in order to alleviate computational costs 

and optimise the results. In this situation, the obvious selection of variables comes from the 

choice of the k leader factors, components or coordinates. For example, in PCA studies the 

common choice is made according the maximal variance, in order to define a subspace of 

dimension k that fits the original data. In the PCR analysis, also the leader k vectors are selected 

in order of decreasing eigenvalues.  

 

Alternatively, in classical scaling techniques, the resulting configuration keeps the cardinality of 

the original matrix, that is, the configuration has the same number of components. The most 

obvious selection is to choose the k axis with the maximum eigenvalue, which provide the best k 

dimensional space that fits to the primitive data: 

1 2 1 2...     ...k kλ λ λ⇔x x x; ; ; ; ; ;  (69) 
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The main drawback of this selection independent of the external variables is that it assumes that 

the property correlates better with the axis that describe better the differences between the 

members in the set, but this is not necessarily true [176]. In QSM, the first PCs contain 

information on the more external structural differences of molecules. However, if the property is 

not associated to these structural characteristics, the regression parameter may not contribute 

significantly to the predictivity of the model.  

6.7.2 Most Predictive Variable Method 

Conversely, selection techniques dependent on the external variables allow the selection of 

other principal axis subspaces than the subspaces of maximal variance, which have into account 

the studied property. The most predictive variable method, MPVM [177-178] reorders the 

principal axis following an expression that measures the individual correlation of each axis with 

the external data (y):  

( ) ( )
( )∑ −

=

j
jj

i
i yy λ

χ 2

2T
2 ,

xy
yx

 

(70) 

where y is the properties vector, xi is the i-th principal axis, and λj the eigenvalue corresponding 

to each principal coordinate. Hence, principal axes are arranged according to the decreasing 

value of the χ2 coefficient:  

( ) ( )yxyx ,..., 22
1 pii χχ >>

 (71) 

This method [179] chooses the k predictive variables that maximize the ( )
2X k determination-like 

coefficient:  

( ) ( )∑
=

=
k

ik
1

22 ,X
α

αχ yx
 

(72) 

Thus, MPVM selects the principal axes that project better the data to be correlated. The limit 

case is when the axis is identical to the property vector; then, the projection is maximal and this 

vector is the selected as the more predictive one.  

 

In order to avoid the participation of variables with low variance and to avoid the 

parameterisation of background noise, a filter can be imposed [180]. In this way, only the 

principal axes with a variance higher than a certain threshold are selected. 
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6.7.3 Nested Summation Symbols method 

However, in the MPVM, the correlation measure between the axes and the experimental data is 

individual and does not take into account the inclusion of new parameters that can affect the 

total model. Stated differently, the maximal individual correlation does not ensure the maximal 

collective correlation. An alternative is the Nested Summation Symbols (NSS) method [181-

184], which scans all the principal axes. This technique, applicable to any matrix, systematically 

searches the best descriptors among all the possible combinations of variables of the data set. 

Hence, NSS algorithm performs all the possible combinations of the total set with m descriptors 

over k parameters, which is the number of descriptors to be selected 
m
k
 
 
 

. This mathematic 

procedure allows selecting the most statistically significant MLR model generated with k 

parameters by generating loops of different profundity. The main inconvenient of this method is 

the high computational cost due to the high number of combinatorial possibilities when k is 

relatively small.  

6.8 Evaluation of the quality of the model: Statistical Adjustment 

Parameters  

The basic descriptive statistics [193] summarises specific features of the independent variable 

data set, such as count of elements, minimum, and maximum value that define the range of data; 

mean, standard deviation, variance, covariance, PRESS, and median; kurtosis (thickness of the 

tails of a distribution curve), and skewness (symmetry of the distribution of values), and other 

parameters like F statistic and Student t statistic.  Besides, confidence intervals assess the 

significance, that is, the precision, of statistical parameters, by indicating reference limits within 

the value of the statistics is reasonably declared. 

 

The two most important aspects of precision are reliability and validity. Reliability refers to the 

reproducibility of a measurement; poor reliability reduces the ability to track changes in 

experimental measurements. The reliability can be quantified simply by taking several 

measurements on the same subjects, and studying changes in the mean, standard deviation, and 

other parameters such as the Retest correlation, Kappa coefficient, and Alpha reliability, which 

refer to the reproducibility of values of a variable.  
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Validity refers to the agreement between the value of a measurement and its true value. Poor 

validity reduces the ability to characterize relationships between variables in descriptive studies. 

Validity is quantified by comparing the measurements with values that are as close to the true 

values as possible. The main measures of validity are the estimation equation, the typical error 

of the estimate, and the validity correlation, among others.  

 

Once built the model, the goodness of fit quantitatively measures the precision of the fit, that 

is, the extent to which an estimated equation fits the data. It can be evaluated by means of the 

standard and typical deviation, but the most commonly quoted statistic used to such an extent 

is the correlation coefficient, and the related coefficient of multiple determination. Atlhough 

goodness of fit for models in which the dependent variable is discrete or cathegoric is not 

straightforward, various analogs of the correlation coefficient can be used. 

 

The measures of sensitivity and specificity can also be regarded as measures of goodness of fit. 

Sensitivity is obtained when positive experimental results coincide with predicted ones (true 

positives); in contrast, if negative experimental values agree with negative predictions (true 

negatives), then specificity occurs. Parallely, an active compound which is predicted to be 

inactive is a false negative, whereas an inactive compound predicted to be active is named false 

positive.  

 Pred (+) Pred (–)  

Exp (+) a b a+b 

Exp (–) c d c+d 

 a+c b+d N 

 

 
asensitivity

a c
=

+  
(73) 

dspecificity
b d

=
+  

(74) 

 false positive c=  (75) 

 false negative b=  (76) 
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Finally, the evaluation of the stability of the model can be inspected by means of the leave-

one-out cross-validation method. Also the biological confidence in reproducibility and the 

confidence in the source of data should be carefully inspected.  

6.8.1 Standard Deviation 

Standard Deviation (SD) is the squared root of the variance, or the Root Mean Square (RMS) 

error of deviations.  

( )2

1

n

i
i

y

y y
s

n

−
=

−

∑
 

(77) 

where 1n −  is he number of degrees of freedom, i.e. the number of parameters to be determined 

is subtracted from the total number of parameters.  

 

This is the standard deviation usually employed in statistics, which measures the dispersion of a 

data set in relation to the arithmetic mean, that is, it is a measure of the magnitude of the 

residuals, accounting for accuracy. 

 

Conversely, the standard deviation of the dependent variable, before trying to fit any model 

represents the amount of variation in the dependent variable, and the error represents the 

variation left over after fitting the model. 
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6.8.2 Variance 

The variance is the average of the squared standard deviation from the mean. Sums of squares 

are directly related to variances. 
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1.1.1 Typical Deviation 

The typical deviation of the adjusted data, also known with the name of Standard Deviation of 

Errors of Calculation (SDEC), is expressed as:  

( )2'

1

n

i i
i

y y

n
σ =

−
=
∑

 

(81) 

In contrast to the aforementioned standard deviation, the typical deviation ponders the residual 

sum of the squared deviations.  

1.1.2 Covariance 

Covariance is the average of product of deviations from means, for the {xi,yi} pairs, namely, the 

: 

( )( )
1

n

i i
i

XY

x x y y
c

n

− −
=

−

∑
 

(82) 

This measure, that depends on the scaling of the features, describes the relationship between the 

x and y features. The covariance is the mean value of all the pairs of differences from the mean 

for independent variables multiplied by the differences from the mean for dependent variables. 

If x and y are not closely related to each other, they do not co-vary, so the covariance is small, 

so the correlation is small. If x and y are closely related, CXY turns out to be almost the same as 

the product of standard deviations of x and y, so the correlation is almost 1. 

 

All variances and covariances of a multivariate data set can be arranged in a symmetric matrix, 

with the variances located in the main diagonal. The covariance matrix describes the dispersion 

of multivariate data. Highly correlated features make C singular and then the inversion of 

impossible.  

The regression coefficient b can be redefined in terms of variance and covariance: 2
XY

x

cb
s

=  

1.1.3 Correlation coefficient 

The correlation coefficient is a normalized covariance independent from scaling: XY

x y

cr
s s

=  that 

measures the quality if adjustment, that is, the degree of correlation between x and y, and detects 

if the variables contain redundant information, and thus they are highly correlated.  
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Substituting the corresponding identities in the previous equation:  
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(83) 

The correlation coefficient is a measure of the degree of linearity of the relationship, i.e. it 

indicates the extent to which the pairs of numbers for these two variables lie on a straight line.  

 

The correlation coefficient can be also pictured using vector notation. If two vectors of the same 

length are correlated, the angle between them approaches zero and the cosine approaches one. 

 

 
Then the normalized correlation coefficient between the two variables x and y is computed as: 

cos rθ = . 

 The correlation coefficient is comprised between -1 and 1,  

1 1r− ≤ ≤  (84) 

Variables positively correlated have 0 1r> > , and those negatively correlated have 

1 0r− < < . For perfect linearity, 1r = ± . If there is no linear trend at all, but there is a random 

scatter of points, the value of r is close to zero.  

 

Correlation coefficients for the variables in a dataset are compiled in a correlation matrix, which 

shows the correlation of one descriptor with another, and thus the relationships among 

descriptors. This matrix is a symmetric matrix in which the diagonal elements are one and the 

off-diagonal elements are the correlation coefficients for the appropriate variable pairs. The 

correlation coefficients for independent variables that are not correlated, i.e. orthogonal 

variables, are zero.  
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The addition of new parameters to the model always increases the r value, unless the new 

parameter is a constant of a linear combination of other parameters, which would not produce 

any effect. The increase in r when adding new parameters can result in overfitting, that is, a 

spurious correlation which parameterises the background noise. 

6.8.3 Multiple determination coefficient 

The multiple determination coefficient is the squared correlation coefficient used to describe the 

goodness-of-fit of the data. It informs about how well the model reproduces the experimental 

data. However, when a large number of free parameters intervene in the model, r2 can arbitrarily 

be close to the value of one.  

2
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An alternative definition of the squared correlation coefficient can be deduced [193]: 
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Using the abbreviated notation, the goodness-of-fit of the model can be expressed by:  

2 1 E R

T T

SS SSr
SS SS

= − =
 

(87) 

The multiple determination coefficient is a quantitative measure of the precision of adjustment 

for the fitted values to the observed ones, which measures the fraction of the variance explained 

by the model. The coefficient mainly informs if the variation of y explained by the regression 

equation permits to assume that there is a linear relationship between y and x..  

 

The squared coefficient multiplied by 100 is the percent of total variance explained by the 

model. This percentage expresses the strength of the relationship between x and y.  

 

r2 is defined in the [0,1] interval, that is, it ranges from 0 to 1. The closer to the unity, the more 

similar are the adjusted values to the experimental ones. The limit case, when r2=1, is obtained 

when all the residuals are null, that is, the residual sum of the squares approaches to zero, and, 

thus, the model fits exactly the data.  
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It must be noted, however, that a coefficient close to the unit does not mean that the model is 

good; the simple addition of parameters to the regression induces an ever-increasing of r2, even 

if the newly added descriptor does not contribute to the model. To determine the predictive 

capacity of the model, other measures are required.  

6.8.4 Statistical significance 

A method to check if there are too many parameters in the model is to calculate the probability 

of obtaining a statistical result only by chance. The statistical significance or importance is the 

probability of obtaining statistical results only by chance. The statistical significance of two 

MLR models with the same number of points and the same number of parameters m can be 

easily evaluated, by means of the direct comparison of the corresponding correlation 

coefficients. However, when the number of points or parameters is different, it is not trivial to 

decide which model is the most statistically significant. Models can be compared using a 

recently proposed analytical criterion [194], based on the calculation of the probability that a 

model with a given correlation coefficient r is obtained accidentally. The probability is 

computationally calculated by simulating thousands of random correlations and comparing the 

obtained percent correlation explained with the original one. This probability is given by P, 

where n and m denote the number of data points and the number of parameters, respectively.  
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Given a ( )n m× matrix of independent variables { }ijx=X , and a vector of dependent 

parameters ( )1 2, ,..., T
ny y y=y , first the r coefficient is calculated. Then the same correlation 

is analyzed using a set of variables randomly generated, instead of the original y and X. The 

correlation coefficient R of the MLR generated with the stochastic variables is probably inferior 

than the initial value of r. Repeating the same experiment a number of times, there is a non null 

probability P, that the correlation coefficient for one of the variables set randomly generated is 

equal o superior than r. This probability depends on the number of points n, on the value of the 

correlation coefficient R and the number of parameters m; the lesser the value of P, the most 

difficult is to obtain a correlation with R r> . A simple geometric model that calculates 

analytically the probability P given the n, m, r values has been proposed. If the probability to 

obtain randomly the same result is high, the model must be rejected.  

 

These probabilities are directly related to the so-called confidence level of a correlation, CL: 
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( )% CL 100 1-P  = ∗  (89) 

6.8.5 Fischer statistic  

The Fischer statistic parameter is one of several variance-related parameters that can be used to 

compare two models differing by one or more variables. This statistic is used to determine 

whether a more complex model is significantly better than a less complex one.  

( ) 2, 1 RSSF k n k
ks

− − =  (90) 

The F statistic is computed and compared with standard tabulated values. If F is larger than the 

tabulated value, the more complex model can be accepted as significant. The F statistic is 

related to the t Student statistic by F = t2.  

where s2 is an unbiased estimate of the residual or error variance, and ( ), 1k n k− −  are the 

degrees of freedom.  

6.9 Statistical plots 

Other tools that provide visual information about the model can be easily obtained by graphical 

representation. Graphical examples for statistical plots can be found in the chapter of application 

examples.  

 

The plot of predicted versus experimental data displays the activity predicted by a QSAR 

equation against the experimentally measured or observed activity. The data are plotted as a 

scatter plot, where each point represents one structure of the molecular set. The QSAR equation 

is plotted as a regression line, which should ideally form a straight line drawn through origin 

with slope 1. This standard plot may be useful to identify outliers. 

 

The plot of residuals displays the residuals, that is, the differences between predicted and 

observed activities, for a QSAR equation and set of structures. This plot is usually presented as 

a histogram, plotting residual values against observations, each observation representing the 

data for a single structure. 

 

The depiction of the cross-validated or the raw correlation coefficient versus the number of 

descriptors aids to select the number of descriptors that presents a satisfactory compromise 

with the qulity of adjustment. 
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For randomisation tests, usually q2 (or 2
CVr ) is represented against the adjustment correlation 

coefficient (r2) for all the generated models, marking distinctively the real obtained model with 

those calculated with the permuted responses.  
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7 EVALUATION OF THE PREDICTIVE CAPACITY OF THE 

MODEL: VALIDATION TECHNIQUES 

Once the regression equation is obtained, in addition to the goodness of fit and the stability of 

the model, it is also important to evaluate the robustness and the predictive capacity or 

validity of the model before using the model on the interpretation and prediction of the 

biological activity.  

 

To validate a method is to establish the reliability and relevance of the method for a particular 

purpose. The reliability refers to the reproducibility of results, the relevance is related to the 

scientific use and practical usefulness, and the purpose refers to the intended application. The 

validation of a QSAR model is the process by which the predictive ability of a QSAR and the 

mechanistic basis are assessed for practical purposes. Validation assesses if the model 

accurately represents the reality, from the perspective of the intended model application. 

 

It must be paid special attention to outliers, structures with a residual greater than two times the 

standard deviation of the residuals that do not fit the model. Once identified, diagnostic data that 

help making decisions about them should be examined. Outliers should be iteratively removed 

from the observations used to calculate the QSAR equation, and then the equation recalculated 

until the satisfactory results were obtained. 

 

It may happen, for example, if the structure of one or more elements of the training set differs 

significantly form the rest, that these elements determine the quality and shape of the model. 

Several procedures can be used to check the reliability and significance of the model, i.e. that 

the size of the model is appropriate for the quantity of data available of non synthesised 

compounds, as well as provide some estimate of how well the model can predict activity for 

new molecules. There are two techniques to determine the confidence and robustness of the 

model, namely internal and external validation techniques. 

7.1 Internal Validation 

Internal validation uses the dataset from which the model is derived without adding new 

elements to the model and checks for internal consistency. The quality of the model can be 

internally calculated using different criteria. 
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7.1.1 Cross-validation technique 

The most used process to determine the stability of a predictive model is by means of the 

analysis of the influence of each of its elements upon the final model. To such an extent, the 

Cross-Validation (CV) technique is extensively employed as an internal validation method of 

statistical models [195-197]. The procedure derives a new model using a reduced set of 

structural data. The new model is used to predict the activities of the molecules that were not 

included in the new-model set. This is repeated until all compounds have been deleted and 

predicted once. The cross-validation process consists on extracting a certain number of objects, 

k, of the initial set, construct a new model with the remaining n k− data, and use the reduced 

model to predict the dependent variable of the objects initially excluded. The process is repeated 

as many times as necessary until the vector with all the predicted values of the properties is 

obtained 

T
1 2ˆ ˆ ˆ ˆ( , ,..., )ny y y=y  (91) 

That is, the process is performed until all molecules have 
1
1

n
m
− 

 − 
predictions, where n is the 

number of molecules on the set and m the number of extracted molecules. The depth of the CV 

study depends on the number of extracted elements, m, of the data set. 

 

Usually, one element of the set is extracted each time, and then the model is recalculated using 

as a training set the 1n − remaining objects, so that the property value for the extracted element 

is predicted once for all compounds. This process is repeated n times for all the elements of the 

initial set, thus obtaining a prediction for each object. This is the so-called leave-one-out 

(LOO) method.  

 

Analogously, other stability measures of the prediction models can be defined when leaving out 

more than a molecule of the system at each time. These procedures are generally termed leave-

n-out or Leave-many-Out (LmO) CV method. In this case, if k molecules are removed at 

once from a total set of n molecules, then k n× regressions are performed.  

 

The capacity of prediction of the model can be obtained by two coefficients: the coefficient of 

prediction (q2), and the CV coefficient of correlation (rCV).  

 

From the predicted values for each object, the Predictive Residual Error Sum of Squares 

(PRESS) is calculated [198]: 
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where cvˆiy is the predicted y value by cross-validation: ( )Tcv cv cv cv
1 2ˆ ˆ ˆ ˆ, ,..., ny y y=y .  

 

It must be noted the difference between PRESS and the Total Sum of Squared deviations SST 

used in the definition of r2 that was between the experimental property and the fitted value by 

the model. 

 

By analogy with the expression of the coefficient of multiple determination, an estimation of the 

correlation coefficient of the cross-validation procedure, that is, the coefficient of prediction q2 

is defined from PRESS:  
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where SST is the quadratic deviation of the observed values in relation to their arithmetic mean, 

and PRESS has been defined before.  

 

q2 is by definition smaller or equal (in the limit case where 2 2 1r q= = ) than the overall r2 for a 

QSAR equation. It is used as a diagnostic tool to evaluate the predictive power or the goodness 

of prediction of an equation generated using a regression method.  

 

The actual computational advances allow the achievable realisation of CV with a deeper 

profundity. Besides, improved algorithms, which do not require the recalculation of MLR 

models, have been effectively conceived.  

 

Another possibility is to calculate directly the cross-validated correlation coefficient between 

the original y and the predicted ŷ response variables, which can be represented by rcv [199]. This 

definition is analogous to the coefficient of multiple determination, but replacing fitted MLR 

values by CV predicted ones. rcv is defined within the interval [-1, 1], and it is calculated as the 

correlation coefficient but replacing the fitted by predicted activity. It must be noted that the 

squared coefficient 2
cvr may lead to inverted predictions due to the loss of the sign of rcv. To such 

an extent, usually the cross-validated values, ŷ are represented versus the experimental ones, y, 

in a bidimensional graph, ad the sign of the slope of the fitted line is examined. 
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However, the calculation of rcv is computationally expensive. The CV predicted value of 

properties can be also calculated by means of the diagonal elements of the Hat matrix [129], 

thus avoiding the time-consuming expensive calculation of all the MLR models involved in the 

cross-validation. If the data of the p element is eliminated, the predicted property for p can be 

calculated as: 

� 1
1

n

pi ip
i ppp

y h y
h ≠

=
− ∑

 
(94) 

Once calculated � py , the q2 and rcv coefficients can be evaluated. In this case, it can be 

demonstrated that the predictions for each element are not required in the expression of the 

PRESS; instead, the remaining objects are considered. 
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PRESS is simply calculated by means of the CV cv
ESS . However, this demonstration is only 

valid in absence of selection of variables.  

 

However, in contrast to the r2 parameter, the coefficient of prediction q2 can be negative, 

ranging in the interval ( ,1]−∞ ; so, the notation between parenthesis is recommended. The 

negative q2 values, 2 0q < , are easy o interpret: when the predictions of the model are worst than 

if the arithmetic mean of y vector was assigned as the predicted value for the data, the 

numerator of q2 is negative. Consequently, the q2 coefficient is smaller than zero. This indicates 

an awful predictive capacity. If 2 0q = , the model considers the mean of activity or, in general, 

any arbitrary constant as the predicted value. This case is indicative of a null predictive 

capacity. Finally, when 2 0q > , the model has the ability to correctly predict the model in a 

variable extent, varying according to the absolute value of 2q . The closer to the unity, the better 

predictiviness is achieved. As reference values, the commonly accepted values for a satisfactory 

QSAR model are 2 0.8r > , and 2 0.5q > .  
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rcv and q2 parameters can be used to determine the number of descriptors of the optimal model. 

Conversely to the classical adjustment coefficient, r, which augments with the progressive 

addition of parameters into the regression, the q2 coefficient presents a curve with a maximum 

that corresponds to the optimum number of parameters and after this maximum, the curve 

decreases monotonally. This means that the increase of the number of parameters of the model 

always improves the adjustment of data but it is not related to the predictivity of the model. The 

limit case is when the number of parameters is equal to the number of elements of the system; in 

this case, the adjustment should be perfect, whereas the predictive capacity would be 

insignificant. Indeed, the descriptors of the model could be random values perfectly fitted to the 

data.Thus, the difference between both parameters can be indicative of the stability of the 

model. As a reference value, if 2 2 0.3r q− > , this may indicate the presence of outliers, the 

selection of irrelevant descriptors, an insufficient number of data points, or the obtaining of an 

overfitted model, among others. 

 

Another indicator of the quality of the model is the standard deviation between the original 

property values and the adjusted or predicted values. The value of σ is a measure of the error in 

adjustment or predictions. The smaller the σ, the better the model is.  

 

It is important to note that when dealing with a reduced dimension data matrix, the prediction of 

each activity should be carried out by means of reduces models generated in the same 

conditions as the global model.  

7.1.2 Randomization test 

Another procedure to test the validity of the model is the randomization test. Even with a large 

number of observations and a small number of terms, an equation can still have very poor 

predictive power. This can come about if the observations are not sufficiently independent of 

each other. One way to test for this is by randomization of the independent variable. The set of 

activity values is re-assigned randomly to different molecules, and a new regression is 

performed. This process is repeated many times. If the random models' activity prediction is 

comparable to the original equation within a given estimated confidence level, the set of 

observations is not sufficient to support the model. 
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A typical random test [200] consists on arbitrarily permuting the response activity vector a 

certain considerable number of times. The new random vector is used as the real one to build a 

QSAR model in the same conditions as the original one, and analyse the capability of the 

prediction of the new ordered vector by means of the rcv and q2 values. The random test analyses 

the ability of the model to derive real structure-activity relationships.  

 

If the model is correct, there must be a clear separation between the original fitted and predicted 

values and the values obtained from the random test. Instead, if relevant models are obtained 

using randomly ordered activity vectors, the model is suspicious of correlating whatever 

external data set. This may be an indication of overfitting, i.e.; an excess of degrees of freedom, 

or in other words, the number of descriptors is too large in comparison with the number of 

compounds.  

 

There are different types of random tests, depending on the freedom of the model to select the 

data o the restriction to the regression descriptors that provide the optimal model. To avoid 

overparameterisation embedded in sophisticated statistical methods, the random test must be 

carried out allowing a totally algorithm that recalculate the regression coefficient and reselects 

the most predictive variables for the model without aprioristic conditions.  

 

The common representation of the results of the random test is by means of a bidimensional 

graph representing q2 versus r2
cv, distinctively marking the points corresponding to the original 

activity data from the eventually generated ones. When the random test is satisfactorily 

achieved, there exists a clear separation between the original points and the random ones. If the 

test is not achieved, the points appear mixed, and the randomly generated models may even 

achieve more significant coefficients than the original one. In this case, the model is considered 

as spurious and it should be rejected. If there is not a clear separation, that is, only a number of 

points corresponding to random models approach the real one, the correlation between the 

permuted and the original activity vectors must be re-examined. If there is a significant 

correlation, this could indicate that the random vector does not significantly differ from the 

original one, or that permutations would have interchanged molecules with similar property and 

descriptors values. This could lead to results similar to the originals. In this case, the random 

test should be repeated.  
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7.2 External validation 

Any model, even with excellent goodness of fit and satisfactory predictions, may lack of a real 

relationship between structural descriptors and activity. To evidence the existence of chance 

correlations [201], a reliable validation procedure must be carried out. The definitive validity of 

the model is examined by mean of external validation, which evaluates how well the equation 

generalizes. Two possible methods to carry out this method, canbe envisaged.  

7.2.1 External test set 

If a sufficiently large series of molecules with known activity is available, the original data set 

can be split into two subgroups, the training set and the test set. The training or calibration set 

is used to derive an adjustment model that is after used to predict the activities of the test or 

validation set members. Alternatively, also an external object set that has not been included in 

any phase of the construction of the model can be used as test set.  

 

The obtained predictions of the new generated model for the test set determine the validity of 

the model. If the activity data is known, predictions are carried out on the same family with 

known activity that does not intervene in the exploration series. 

 

The parameters quantifying the quality of prediction of the external test set may be the same 

used for the internal validation (q2, rcv, σ of prediction), substituting the CV predicted values in 

the formulas.  

 

The Standard Deviation of Errors of Prediction (SDEP) or the Sum of Squares Prediction Errors 

(SSPE) are extensively used to account for the variability:
 

( )2T T

1

ˆ
n

i i
i

SSPE y y
=

= −∑
T

 (96) 

 where nT is the number of molecules of the test set, Tˆiy is the prediction, and T
iy the real 

activity value.  

7.2.2 Internal test set  

An inconvenient of this validation method is the availability of enough data to split the original 

set into two significant sets. If the set is not large enough, this method can be statistically in 

viable. Alternatively, an internal test set (ITS) can be simulated [202] using a procedure 

methodologically similar to LOO but with the total absence of intervention o the molecule 

extracted form the calculation thus achieving real predictions.  
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However, in some dimension reduction techniques, the PC for the test set can not be obtained 

directly from the descriptors between new objects and objects from the training set. Besides, it 

is erroneous to accept that the training set reduced space corresponds to the test set one. To such 

an extent, the dimension of the total set is reduced ad then the test set coordinates are extracted. 

Thus the elements of the test set contribute in the reduction of dimensions process. Although the 

model might not seem totally transparent, the effect of the test set on the calibration model is 

minimal and does not include the effect of the property.  
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8 DATA CLASSIFICATION: QUALITATIVE ANALYSIS OF 

DISCRETE PROPERTIES  

Sometimes it is more desirable to obtain a qualitative association between structural descriptors 

and a biological property. Obviously, the required information to fit numerical values is higher 

than the information required to discriminate among discrete values range.  

The motivation for this type of study can be either in compounds with a naturally grouped 

distribution of property values into discrete classes, in the case of continuous properties tat can 

be partitioned into categorical groups according to a predetermined threshold, and even in the 

case of originally discrete value properties, i.e. where experimental studies classify the 

compounds as active or inactive.  

 

In the particular case of Quantum Similarity, reduction of dimension and selection of variables 

techniques allow the construction of subspaces of similarity where the objects can be 

graphically represented as points. Thus, structural similarity can be associated to the geometric 

proximity in the graph. In this way, qualitative information can be extracted on structure-

property relationships from the distribution of the points in the space.  

The main objective of analysis discriminant techniques [128-134] is to find a linear 

combination of factor that best discriminate between different classes. In Linear Discriminant 

Analysis (LDA), the mathematic functions defined to separate the classes are linear. 

Afterwards, the prediction for new object is based on the localization of the point-molecule in 

the subspace. The proximity of this new object to any class determines the prediction.  

Cluster Analysis (CA) and Cluster Significance Analysis (CSA) [203-204] divide objects into 

isolated groupings, namely clusters, k-nearest neighbours (k-NN) [205] detects false 

connections between objects, and facets theory [206] provides a systematic scheme to relate 

regions with features of the data by partiotioning the multidimensional space in the regions, so-

called facets diagrams. Also, SIMCA (Soft Independent Modeling Class Analogy method) 

has been developed fro pattern recognition and classification. 

 

The partition of a continuous property into discrete classes can be done by different ways. In 

principle, the number of groups that can be considered can be any number; with a maximum 

corresponding to the total number of compounds. If the property presents values grouped in k 

ranges, the classes are simply constituted by the ranges. Conversely, if the distribution of the 

values is continues, the criterion to partition the property is only based in a homogenous 

distribution of the range, that allows classes with different size.  
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To determine the limits between classes the following expression is used:  

( )max min      1,..., -1n y y n k
k

− =
 

where ymax and ymin are the maximal and minimal value of the property, k is the number of 

classes.  

However, in QSAR studies, usually a rough separation into two groups, active versus inactive, 

is often considered.  

 

Given a data matrix X for a set of binary classified compounds, two groups of compounds must 

be formed. The objective is to find two group classification functions, D1, and D2,  

1 1 1 2 2

2 1 1 2 2

...

...
D a X a X
D b X b X

= + +
= + +  

(97) 

such that 

1 2

1 2

  1,...,
  1,...,

D D k
D D k n

> ∀
< ∀ +  

(98) 

The coefficients ai and bj are the discriminant weights obtained by a multiple regression 

procedure. Classification functions define a line, plane, or, in general, a surface (hyperplane) 

between the groups. The difeference between the two group classification functions is called the 

linear discriminant function, D12.  

12 1 2D D D= −  (99) 

The similarity subspaces can be selected using different methodologies, connected with the 

selection of variables technique.  

The subspaces of maximal variance are selected according to the amount of variance 

explained by the subspace, determined by the eigenvalues ordering. The criterion to use this 

selection corresponds to the assumption that maximal variance dimensions provide the optimal 

subspace. These subspaces reflect the more external structural differences among the compared 

molecules. If a real grouping into classes is obtained connected with the discretisation of the 

property, the property can be related to a specific type of substituent or other characteristics of 

the structure of the molecules.  

The subspaces of optimal variables utilise the parameters selected by the MPVM variables 

selection technique used in classical scaling to explain the data.  
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Besides, other criteria to select the subspaces have also been developed. Among them, a 

method based on the search of the bidimensional space that minimises the number of crossings 

among objects of different classes [207] can be mentioned. 
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The tangible, the real, the solid,  

is explained by  

the intangible, the unreal, the purely mental.  

Yet that is what we chemists are always doing,  

wave-mechanically or otherwise. 
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1 INTRODUCTION 

In this chapter, several application examples of the previously exposed methodology are 

presented in order to illustrate the feasibility of the implementation of theoretical abstract 

principles and methods to the resolution of practical issues in chemistry-based applications.  

 

On one hand, in connection with different methods to obtain structural descriptors for 

molecules, this section presents some cases using Quantum Similarity Indices (QSI), obtained 

from Quantum Similarity Theory (QST). Molecular descriptors are expressed by means of 

Quantum Self-Similarity Measures (QS-SM), Overlap MQSM, Coulomb MQSM, and Kinetic 

MQSM, whereas descriptors for particular functional groups are defined using Fragment 

Quantum Self-Similarity Measures (QS-SM). Besides, several studies dealing with different 

three-dimensional topological quantum similarity indices (3D-TQSI) derived from graph 

theory are discussed. 

 

On the other hand, attending to the classification of the specific action of studied molecular 

families, this chapter has been organised in relation to the type of function exerted. On one 

hand, the studies related to molecular toxicities have been compiled in a section devoted to 

Quantitative Structure-Toxicity Relationships (QSTR), i.e. estimation of the percutaneous 

absorption of carcinogenic compounds, and study of the aquatic toxicity of environmental 

pollutants. On the other hand, the cases dealing with biological acivities of pharmacological 

interest, such as antimalarial, estrogenic, and antituberculotic activities, have been gathered in 

the Quantitative Structure-Activity Relationships (QSAR) section. Sometimes, a particular 

molecular set has been studied by using different methods. 

 

In addition, studies can be qualitative, quantitative or semi-quantitative, depending on the 

type and expression of activity values. Concerning the purposes, studies can be intended for 

drug discovery, environmental risk or health hazard assessment, etc. For all the models, the 

results are displayed with the corresponding statistical parameters that account for their quality, 

accuracy and reliability.  

 

In the present work, the protocol for the development of a QSAR model with predictive 

capabilities for any study case follows the following steps: 
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1) Compilation of the information related to the molecular set and the experimental 

properties or activities of study, extracted from the literature. At this point, it must be 

remarked that experimental data should be carefully handled, regarding not only the 

biological meaning, but also paying attention to the accomplishment of the first 

SETUBAL principle [1], and adequately referencing the bibliographic sources. 

 

2) Molecular modelling of compounds, using graphic assistants for the edition and initial 

cleaning of structures. In this section, structures for molecular data sets have been 

displayed in tables in order to provide a graphical insight and to picture the molecules. 

In this work, the software used for this purposes is WebLab ViewerPro [2], and 

HyperChem [3].  

 

3) Geometry optimisation for each molecule of the family at different levels of theory. 

According to the complexity of the method, there are several possibilities, i.e. molecular 

mechanics force field, approximate semi-empirical methods, ab initio optimisation 

level, etc. Due to the size of the studied molecules and the specific purposes, it has been 

demonstrated that in most cases an optimisation at the semi-empirical AM1 level [4] 

carried out with Ampac [5] or Mopac [6] packages, is enough to perform the 

comparison between density functions. Even in some particular studies the Sybil 

molecular mechanics force field calculated with PC-Spartan [7] is sufficient.  

 

4) From the optimised molecular geometry, the calculation of the approximated Density 

Function (DF) is performed. As exposed in the methodological section, usually the 

first-order Atomic Shell Approximation (ASA) DF fitted to a 3-21G basis set is 

sufficiently accurate [8-9]. 

 

5) Molecular alignment may be required for the calculation of descriptors. In this thesis, 

the superposition process has been carried out by using programs entirely developed in 

the laboratory, i.e. the Maximum Similarity Superposition Algorithm [10], and the 

Topo-Geometrical Superposition Algorithm (TGSA) [11]. 
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6) Computation of descriptors, employing programs that read the output files of the 

optimization program, and define the type of atoms, exponents, xyz coordinates, 

effective atomic charges, topological matrices, etc. The programs also involve the 

gathering of molecular indices in matrices of descriptors, where each row represents a 

molecule, whether each column symbolises an index. As remarked before, two different 

classes of indices have been used, namely Quantum Similarity Indices (QSI) and 

Topological Quantum Similarity Indices (TQSI). QSI have been calculated using either 

the first version [12] or the graphical interface version of MOLSIMIL [13], developed 

by Amat et al., while TQSI have been computed with TOPO [14]. In addition, in one 

study, TSAR [15] was used for the authomatic generation of indicator variables and 

other structural descriptors.  

 

7) Selection of descriptors and building of the statistical model. In this phase, besides 

from computational details of the statistical protocol, i.e. correlation, dimensions 

reduction, and variables selection methods, relevant data such as the number of 

molecules, number of parameters, the equation, and other statistical parameters 

accounting for the quality of adjustment and goodness-of-fit of the model must be 

reported in order to achieve a transparent, reproducible model. Also, statistical plots can 

provide valuable graphical and intuitive information. In most cases, self-developed 

software by the Institute has been used [16-17], although in specific studies commercial 

statistical packages such as MINITAB [18] have been employed. 

 

8) Validation of the model, by means of internal validation, and, if there are further 

available data, external validation techniques. In this project the Leave-One-Out Cross-

Validation (LOO-CV) process, along with random tests have been carried out and, in 

some cases, external test sets of untested molecules have been used for further 

predictions. Such validation techniques have been used using the programs 

aforementioned, in the previous point.  

 

9) Finally, the last but not less important step is involved with the interpretation of the 

model, and the deduction of conclusions, which should provide chemical insight into 

the poblem.  
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2 QUANTITATIVE STRUCTURE–TOXICITY RELATIONSHIPS  

2.1 Dermal penetration of Polycyclic Aromatic Hydrocarbons 

Introduction 

 

Polycyclic aromatic hydrocarbons (PAHs) are a group of over hundred different chemicals, 

formed during the incomplete burning of coal [19], oil and gas [20], garbage [21], or other 

organic substances like tobacco or charbroiled meat [22]. PAHs are usually found in the 

environment [23] as a mixture containing two or more of these compounds, such as soot. The 

exposure to polycyclic aromatic hydrocarbons usually occurs by breathing air contaminated by 

wild fires or coal tar, or by eating foods that have been grilled.  

 

Existing an early documented evidence [24] of their mutagenic and carcinogenic properties, as a 

result of their impact in human health, the evaluation of dermal penetration is of great 

importance in hazard assessment programs [25-28]. Thus, quantitative structure-activity 

relationships (QSAR) have been constructed to estimate PAHs carcinogenic power, using 

different empirical and theoretical methods [29-34]. 

 

The study is focused on the application of similarity matrices to the study of the carcinogenic 

power of two different sets of commercially available PAHs, for which QSAR models were 

constructed. Two reported properties, discrete levels of carcinogenic activity [35] in the first 

example, and in vitro percutaneous absorption in rat skin [36], in the second one, have been 

examined for correlation.  

2.1.1 Semiquantitative Classical Study of 78 PAHs 

In the first application example, the molecular set was made of 78 PAHs, divided into two 

subsets responding to structural criteria, that is, the presence or absence of methyl substitutions. 

The splitting of the whole set resulted in two subsets of 32 non-methylated and 46 methylated 

PAHs. 

 

Provided that the sources did not collect experimental data obtained in homologous conditions, 

a discrete classification into classes, attending to the carcinogenic power, was adopted [37-41]. 

Thus, the property discretization leads to a semiquantitative study, which only discriminates 

between active (A) and inactive (I) compounds.  
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Table 1. Structures and carcinogenic activities for 78 PAHs. A: Active; I: Inactive; NA: not available. 

Non-methylated PAHs 

No Compound Act No Compound Act 

1 Dibenzo[3,4:9,10]pyrene A 17 Benzo[1,2]pyrene I 

2 Benzo[3,4]pyrene A 18 Phenanthrene I 

3 Dibenzo[3,4:8,9]pyrene A 19 Triphenylene I 

4 Dibenzo[3,4:6,7]pyrene A 20 Benzo[1,2]naphthacene I 

5 Dibenzo[1,2:3,4]pyrene A 21 Dibenzo[3,4:5,6]phenanthrene I 

6 Naphto[2,3:3,4]pyrene A 22 Picene I 

7 Dibenzo[1,2:5,6]anthracene A 23 Tribenzo[1,2:3,4:5,6]anthracene I 

8 Tribenzo[3,4:6,7:8,9]pyrene A 24 Dibenzo[1,2:5,6]pyrene I 

9 Dibenzo[1,2:3,4]phenanthrene A 25 Phenanthra[2,3:1,2]anthracene I 

10 Tribenzo[3,4:6,7:9,10]pyrene A 26 Benzo[1,2]pentacene I 

11 Dibenzo[1,2:5,6]phenanthrene I 27 Anthanthrene I 

12 Benzo[1,2]anthracene I 28 Benzene I 

13 Chrysene I 29 Naphtalene I 

14 Benzo[3,4]phenanthrene I 30 Pyrene I 

15 Dibenzo[1,2:7,8]anthracene I 31 Benzo[ghi]perylene I 

16 Dibenzo[1,2:3,4]anthracene I 32 Coronene I 

Methylated PAHs 

No Compound Act No Compound Act 

33 7,12-dimethylbenz[a]anthracene A 58 3-methylbenzo[c]phenanthrene I 

34 6,12-dimethylbenz[a]anthracene A 59 6-methylbenzo[c]phenanthrene I 

35 
6,8,12-

trimethylbenz[a]anthracene 
A 60 6-methylbenz[a]anthracene I 

36 2-methylbenzo[a]pyrene A 61 12-methylbenz[a]anthracene I 

37 4-methylbenzo[a]pyrene A 62 6-methylanthanthrene I 

38 11-methylbenzo[a]pyrene A 63 6,12-dimethylanthanthrene I 

39 12-methylbenzo[a]pyrene A 64 1-methylbenzo[c]phenanthrene I 

40 1-methylbenzo[a]pyrene A 65 2-methylbenzo[c]phenanthrene I 

41 4,5-dimethylbenzo[a]pyrene A 66 10-methylbenzo[a]pyrene I 

42 3-methylbenzo[a]pyrene A 67 6-methylchrysene I 

43 1,2-dimethylbenzo[a]pyrene A 68 3-methylbenz[a]anthracene I 

44 2,3-dimethylbenzo[a]pyrene A 69 1-methylbenz[a]anthracene I 

45 3,12-dimethylbenzo[a]pyrene A 70 11-methylbenz[a]anthracene I 

46 1,3-dimethylbenzo[a]pyrene A 71 9-methylbenz[a]anthracene I 
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Methylated PAHs 

No Compound Act No Compound Act 

47 1,4-dimethylbenzo[a]pyrene A 72 2-methylbenz[a]anthracene I 

48 5-methylbenzo[c]phenanthrene A 73 5-methylbenz[a]anthracene I 

49 5-methylchrysene A 74 8-methylbenz[a]anthracene I 

50 6,8-dimethylbenz[a]anthracene A 75 2-methylpyrene I 

51 7-methylbenz[a]anthracene A 76 4-methylpyrene I 

52 5-methylbenzo[a]pyrene A 77 1-methylpyrene I 

53 7-methylbenzo[a]pyrene A 78 7,10-dimethylbenzo[a]pyrene I 

54 6-methylbenzo[a]pyrene A 79 6,10-dimethylbenzo[a]pyrene NA 

55 1,6-dimethylbenzo[a]pyrene A 80 8-methylbenzo[a]pyrene NA 

56 3,6-dimethylbenzo[a]pyrene A 81 9-methylbenzo[a]pyrene NA 

57 4-methylbenzo[c]phenanthrene I    

 

 

Table 2. Summary of the molecular data set and the statistical protocol. 

Molecular Data Set 

Compounds Polycyclic Aromatic Hydrocarbons (PAHs) 

Type of Compounds 32 non-methylated PAHs and 46 methylated PAHs  

Number of Compounds 78 

Activity Binary activities {0,1} 

Computational Details  

Molecular Modelling WebLAb Viewer Pro modelling 

Geometry Optimization Semiempirical AM1 level [4], using Ampac-6.55 [5] 

Density Function Fitted first-order Promolecular ASA (PASA), 3-21G basis set 

MQSM Operator Overlap operator 

Molecular Alignment Maximum similarity superposition algorithm 

Reduction of Dimensions Principal Components Analysis (PCA) 

Selection of Variables Most Predictive Variables Method (MPVM) 

Correlation Method Multiple Linear Regression (MLR) 

Validation 
Internal Leave-One-Out Cross-Validation (LOO-CV) 

External test set 
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Results and discussion 

 

Table 3. Results of the optimal QSAR model for the non-methylated PAHs subset. 

32 non-methylated PAHs subset 

 Adjustment Cross-Validation 

Number 

of PCs 

% Correct 

Classification 

% Correct 

classification for 

carcinogenic 

compounds 

% Correct 

Classification 

% Correct 

classification for 

carcinogenic 

compounds 

4 93.8 90.0 84.4 80.0 

Missclassified molecules: (2/32)  7,22 

  

  

Table 4. Results of the optimal QSAR model for the methylated PAHs subset. 

46 methylated PAHs subset 

 Adjustment Cross-Validation 

Number 

of PCs 

% Correct Cl 

assification 

% Correct 

classification for 

carcinogenic 

compounds 

% Correct 

Classification 

% Correct 

classification for 

carcinogenic 

compounds 

5 87.0 83.3 84.8 79.2 

Missclassified molecules: (6/46)  33,48,50,51,61,67 

 

 

Table 5. Results of the optimal QSAR model for the entire PAHs set. 

78 entire PAHs set 

 Adjustment Cross-Validation 

Number 

of PCs 

% Correct 

Classification 

% Correct 

classification for 

carcinogenic 

compounds 

% Correct 

Classification 

% Correct 

classification for 

carcinogenic 

compounds 

3 82.1 70.6 80.8 70.6 

Missclassified molecules: (14/78)  4,7,13,22,25,33,34,35,38,48,49,50,51,67 

Missclassified molecules correctly predicted in their subset: 4,13,25,34,35,38,49 
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In this particular case, integer binary numbers {0,1} were arbitrarily assigned to the active and 

inactive classes, respectively, and thereafter the multilinear regression was carried out. The 

adjusted and cross-validated activities were classified into a category attending to a pre pre-

established threshold of r2=0.5. Besides, instead of the continuous r2 and q2 coefficients, the 

quality of the models was assessed by means of the percentage of correct classifications, and the 

percentage of correctly classified carcinogenic compounds. 

 

The common backbone, made of fused benzenes, without the presence of 5-member rings or 

bonds connecting rings, facilitated exact atom-atom superpositions, more favorable for overlap 

MQSM. For all the subsets valuable semi-quantitative SAR models were obtained. Indeed, a 

great number of misclassified compounds were found to be misclassified by other methods. In 

the case of the non-methylated and the methylated subsets, comparable results were found with 

four and five principal components for the optimal model, respectively. The general trend is a 

slight decrease in the percentages of the cross-validated results.  

 

However, for the entire set, there is a significative difference of the percentage of correct 

classification between the totality of compounds and the carcinogenic ones. This evidences that 

the model concentrates the misclassifications in the active compounds. Besides, the lessening in 

the predictivity is expected because of the structural heterogeneity of the molecular set, 

negatively influencing similarity-based QSAR approaches. The same set had been studied with 

different techniques, i.e., electronic index methodology (EIM), principal component analysis 

(PCA), and neural networks (NN), based on the local density of states (LDOS) theory [42-45]. 

Comparisons with the different studies show that the MQSM improve the description of the 

system, indicating that a global density approach encodes relevant information for the 

characterization of PAHs carcinogenicity. 

 

Table 6. Comparison among different QSAR methodologies. NM: non-

methylated PAHs; M: methylated PAHs. 

Method 32 NM PAHS 46 M PAHS Full set of 78 PAHS 

EIM 84.4 73.9 78.2 

PCA 84.4 78.3 80.8 

NN 93.8 78.3 84.6 

MQSM 93.8 87.0 82.1 
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 Finally, three compounds without experimentally measured activity were predicted using 

MQSM. Two of them were found to be unequivocally active, in agreement with the previously 

reported assignments.  

 

2.1.2 Quantitative Classical Study of 60 PAHs 

In the second case, a quantitative study of continuous data was performed. The molecular set 

consisted of 60 polycyclic aromatic hydrocarbons, made up of three to seven fused aromatic 

rings, in a particularly rigid conformation.  

 

The toxicity, i.e. the percutaneous absorption, measured in vitro on rat skin sections, was 

expressed as the percentage of applied dose (PADA) penetrating the skin following the protocol 

of application [35,46-48]. The activity ranges from 0,7 to 50% for the very active and inactive 

compounds, respectively.  

 

It has been found that dermal penetration of PAHs with 1 or 2 aromatic rings was difficult to 

measure because of the volatility and loss from the skin surface during the biological essays. 

For this reason, interest was primarily focused on the carcinogenic PAHs, mainly comprised 

within 4 and 6 ring structures. 
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Table 7. Molecular data set: structures for the 60 Polycyclic Aromatic Hydrocarbons 
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Table 8. Structures and dermal penetration (PADA) values (%) for 60 PAHs. 

No Compound %PADA No Compound %PADA 

1 Coronene 0.7 31 3-ethylfluoranthene 20 

2 Dibenzo[a,l]pyrene 2 32 Triphenylene 20 

3 9,10-diphenylanthracene 6 33 
7,8,9,10-

tetrahydroacephenanthrene 
20 

4 Perylene 7 34 2,3-benztriphenylene 20 

5 Dibenzo[a,i]pyrene 8 35 Benzo[c]phenanthrene 20 

6 3-methylcholanthrene 8 36 1-methylpyrene 22 

7 9-benzylidenefluorene 8 37 3,9-dimethylbenz[a]anthracene 24 

8 7,10-dimethylbenzo(a)pyrene 8.3 38 2,3-benzofluorene 25 

9 Indeno(1,2,3-cd)pyrene 9 39 1,2-benzofluorene 25 

10 Dibenz[a,h]anthracene 9.4 40 9-benzylfluorene 26 

11 Benzo[e]pyrene 10 41 9-m-tolylfluorene 29 

12 Benzo[g,h,i]perylene 10 42 Pyrene 30 

13 9-p-tolylfluorene 10 43 2-ethylanthracene 30 

14 6-ethylchrysene 10 44 10-methylbenzo[a]pyrene 32 

15 9-cynnamylfluorene 11 45 1-methylanthracene 33 

16 6- methylbenz[a]anthracene 14 46 2-methylfluoranthene 33 

17 Benzo[k]fluoranthene 14 47 3,6-dimethylphenanthrene 33 

18 Benzo[a]pyrene 15 48 Benzo[a]anthracene 35 

19 3-ethylpyrene 18 49 Fluorene 36 

20 
1-methyl-7-

isopropylphenanthrene 
20 50 2-methylphenanthrene 38 

21 2-(tert-butyl)anthracene 20 51 9-ethylfluorene 38 

22 9-phenylanthracene 20 52 1-methylphenanthrene 40 

23 3-methylcholanthrene 20 53 9,10-dihydrophenanthrene 40 

24 10-methylbenz[a]anthracene 20 54 9-vinylanthracene 40 

25 5-methylbenz[a]anthracene 20 55 Anthracene 42 

26 9,10-dihydroanthracene 20 56 Fluoranthene 42 

27 9-phenylfluorene 20 57 1-methylfluorene 49 

28 1,2,3,6,7,8-hexahydropyrene 20 58 2-methylanthracene 50 

29 n-butylpyrene 20 59 
4H-

cyclopenta(d,e,f)phenanthrene 
50 

30 
5,6-dihydro-4H-

dibenz[a,k,l]anthracene 
20 60 Phenanthrene 50 
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At first sight, the carcinogenicity is primarily concentrated on the structures comprising from 

four to six aromatic rings, according to the postulates/assumptions of the K-L-M “bay region” 

theory [49-54]. 

 

Figure 1. The K, L, M and bay regions of a polycyclic 
aromatic hydrocarbon: benzo[a]anthracene. 

 

Table 9. Summary of the molecular data set and the statistical protocol. 

Molecular Data Set 

Compounds Polycyclic Aromatic Hydrocarbons (PAHs) 

Type of Compounds 3 to 7 fused aromatic rings 

Number of Compounds 60 

Activity % of penetrating applied dose (PADA) 

Computational Details 

Molecular Modelling WebLAb Viewer Pro modelling 

Geometry Optimization Semiempirical AM1 level [4], using Ampac-6.55 [5] 

Density Function Fitted first-order Promolecular ASA (PASA), 3-21G basis set 

MQSM Operator Coulomb operator 

Molecular Alignment Maximum similarity superposition algorithm 

Reduction of Dimensions Principal Components Analysis (PCA) 

Selection of Variables Most Predictive Variables Method (MPVM) 

Correlation Method Multiple Linear Regression (MLR) 

Validation 
Internal Leave-One-Out Cross-Validation (LOO-CV) 

Random Test 

 

Results and discussion 

 

Concerning the choice of the operator, the presence of five-membered rings and internal single 

bonds hinders an exact intermolecular atom-atom matching, so that the similarity contribution 

of the Overlap operator is very low. Therefore, the Coulomb operator has been chosen.  
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Table 10. Optimal QSAR model for the dermal penetration of 60 PAHs (3 PCs). 

No PCs Selected PCs r2 q2 

3 1, 2, 13 0.684 0.634 

Equation 1 2 131.263 0.489 0.914 23.173= − + + +y x x x  
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Figure 2. Predicted vs. Experimental. Cross-validated vs experimental 
percutaneous absorption values. 
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Figure 3. Randomization test for the optimal model. The randomized 
responses (100) have been marked with circles, and the correctly 
ordered activity has been marked with a cross. (r2

cv/q2 vs r2) 

 

Most of the experimental measurements of dermal penetration are expressed in integer 

percentages, preventing from the estimation of slight differences in the activity. Indeed, 16 

compounds presenting exactly the same PADA value have the highest residuals in the model, 

which might result in a decrease of the quality of the prediction model.  

 

However, in the random test examination, the clear separation between real data and the random 

ones ensures a reliable structure-property relationship. Besides, comparisons with other QSAR 

approaches show that the application of MQSM to QSAR produces comparable results [55-58]. 
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Appended Contribution 

 

The results of Sections 2.1.1 and 2.1.2 have been gathered in the following contribution, which 

has been appended in the annex. 

 

►Gallegos, A.; Robert, D.; Gironés, X.; Carbó-Dorca, R. Structure-Toxicity Relationships of Polycyclic 

Aromatic Hydrocarbons using Molecular Quantum Similarity. J. Comput.-Aid. Mol. Des., 15(1), 2001, 

67-80. 

 

In order to test the application of topological quantum similarity measures to QSAR, topological 

similarity-based descriptors were computed for three different families, which exhibit different 

kinds of toxicity.  

 

In the first case (Section 2.1.3), the dermal penetration of the set of 60 commercially available 

polycyclic aromatic hydrocarbons studied in the preceding section (Section 2.1.2) was 

correlated with the computed TQSI. Thereafter, the Inhibitory Growth Concentration (IGC) of 

two families, one composed by 30 aliphatic alcohols and amines and, the other, by 48 selected 

anilines, was also studied, in Sections 2.2.1, and 2.2.2, respectively. 

 

For the calculation of the so-called Topological Quantum Similarity Indices (TQSI), it must be 

reminded that the classical construction according to the theoretical graph theory framework, 

has been used, but replacing the classical topological matrices by matrices derived from 

Quantum Similarity (QS) calculations, due to the connection between chemical graph theory 

and quantum similarity. TQSI, which also account for further three-dimensional information, 

have been computed using the program TOPO [14]. Concretely, the traditionally defined integer 

topological matrix has been substituted by the interatomic Quantum Similarity Measure with a 

similarity weight operator, which is calculated between each pair of atoms of a given molecule. 

Similarly, the valence vector also has been computed from the entries of the similarity matrix. 

In addition to the use of QSM, the topological distance has also been replaced by the three-

dimensional Euclidean distance between every pair of atoms. Thus, the obtained three-

dimensional indices obtained with the real matrix include spatial information. 
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2.1.3 Topological Study of 60 PAH 

2.1.4  

Table 11. Summary of the molecular data set and the statistical protocol. 

Molecular Data Set 

Compounds Polycyclic Aromatic Hydrocarbons (PAHs) 

Type of Compounds 3 to 7 fused aromatic rings 

Number of Compounds 60 

Activity % of penetrating applied dose (PADA) 

Computational Details  

Molecular Modelling WebLAb Viewer Pro modelling 

Geometry Optimization Semiempirical AM1 level [4], using Ampac-6.55 [5] 

Density Function Fitted first-order ASA DF, 3-21G basis set 

MQSM Operator Coulomb interatomic QSM 

Molecular Alignment Not needed 

Correlation Method Partial Least Squares (PLS) 

Validation Leave-One-Out Cross Validation (LOO-CV) 

 

Results and discussion  

 

Table 12. Statistical results obtained in the optimal model. 

Total No of 

Indices 
N0 Descriptors r2 q2 

13 5 0.6940 0.6524 

 

In this case, after computing a total of 13 indices including the above mentioned up to third 

order, the best model was chosen as the one with 5 descriptors. The optimal model, obtaining 

the values of r2=0.694 and q2=0.652 yielded satisfactory results.  
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Figure 4. Cross-validated versus experimental percutaneous 
absorption values. 

 

As the plot evidences, as in the previous study a possible cause for the poor results in 

correlation and prediction of this set can be due to the peculiar distribution of the experimental 

data. In most cases, the measurement of the dermal penetration is expressed by an integer 

number, precluding the appreciation of slight differences within the studied activity. For 

example, the 16 molecules with exactly the same PADA value of 20%, present the highest 

residuals in the model. 
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Figure 5. Randomization test for the optimal model. The randomized 
responses (100) have been marked with circles, and the correctly 
ordered activity have been marked with a cross in bold face. 

 

The same series of PAHs had also been previously studied using only Quantum Similarity 

Theory, employing overlap and Coulomb measures. When analyzing the results, it was observed 

that the quality of the models with Coulomb MQSM was notably better than those built 

employing overlap MQSM, because of the particular structure of the studied set, which did not 

allow an exact intermolecular atom-atom matching. 
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2.2 Aquatic toxicity of Environmental Pollutants 

2.2.1 Topological Study of 30 aliphatic alcohols  

The second application example of TQSI was constituted by 30 aliphatic alcohols and amines 

[60]. Toxicity tests were performed using the Tetrahymena pyriformis population growth assay, 

which includes several parameters, such as the initial pH, the temperature, the shape and the 

volume of the culture system, the amount of medium and the age and volume of inoculums. 

Further references concerning the method can be found in some reviews by Holz, Cameron and 

Levy [61-63].  

 

For each toxicant, the IGC50 (50% inhibitory growth concentration) was determined for three 

replicates at different concentration, having into account that specific absorbance and 

concentration are directly proportional.  

 

QSARs were examined using the logarithm of the inverse of the IGC50. The structures and the 

activity values of the first molecular set, the family composed by 30 aliphatic alcohols and 

amines, are shown in Table 13. 

 

Table 13. Relative toxicity for 30 aliphatic alcohols and amines. 

Nº Compound (LogIGC50)-1 Nº Compound (LogIGC50)-1 

1 Methanol -2.77 16 3-pentanol -1.33 

2 Ethanol -2.41 17 2-methyl-1-butanol -1.13 

3 1-propanol -1.84 18 3-methyl-1-butanol -1.13 

4 1-butanol -1.52 19 3-methyl-2-butanol -1.08 

5 1-pentanol -1.12 20 (tert)pentanol -1.27 

6 1-hexanol -0.47 21 (neo)pentanol -0.96 

7 1-heptanol 0.02 22 1-propylamine -0.85 

8 1-octanol 0.5 23 1-butylamine -0.7 

9 1-nonaol 0.77 24 1-maylamine -0.61 

10 1-decanol 1.1 25 1-hexylamine -0.34 

11 1-undecanol 1.87 26 1-heptylamine 0.1 

12 1-dodecanol 2.07 27 1-octylamine 0.51 

13 1-tridecanol 2.28 28 1-nonylamine 1.59 

14 2-propanol -1.99 29 1-decylamine 1.95 

15 2-pentanol -1.25 30 1-unidecylamine 2.26 
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Table 14. Summary of the molecular data set and the statistical protocol. 

Molecular Data Set 

Compounds Aromatics 

Type of Compounds Aliphatic alcohols and anilines 

Number of Compounds 30 

Activity (LogIGC50)-1 (IGC : Inhibitory Growth Concentration)  

Computational Details 

Molecular Modelling WebLAb Viewer Pro modelling 

Geometry Optimization Semiempirical AM1 level [4], using Ampac-6.55 [5] 

Density Function Fitted first-order ASA DF, 3-21G basis set 

MQSM Operator Coulomb interatomic QSM 

Molecular Alignment Not needed 

Correlation Method Partial Least Squares (PLS) 

Validation Leave-One-Out Cross Validation (LOO-CV) 

 

Results and discussion 

 

Table 15. Statistical results obtained in the optimal model. 

Total No of 

Indices 
N0 Descriptors r2 q2 

13 4 0.8875 0.8587 

 

In this case, the model described with 4 parameters was chosen as the optimal. As can be easily 

regarded, good results were obtained, with coefficient values above 0.8, which achieve 

significant results.  
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Figure 6. Cross-validated versus experimental inhibition growth 
concentration values, for the set of 30 aliphatic alcohols and amines. 
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Figure 7. Randomization test for the optimal model. 
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The cross-validated versus adjusted plot reveals that the normal aliphatic amines are slightly 

more toxic than the aliphatic alcohols. This probably reflects a pH effect due to the basicity of 

the amines. Besides, the randomization test shows that results corresponding to altered data do 

not reach statistically significant levels, with q2 lower than 0.3 for all cases. 

 

2.2.2 Topological Study of 48 amines  

The third application example of TQSI was constituted by 48 anilines. This set was studied in 

the same conditions as the previous one.  

 

Table 16. Relative toxicity for 48 anilines. 

Nº Compound LogIGC50
-1 Nº Compound LogIGC50

-1 

1 2-methylanilline -0.55 25 4-phenylaniline 0.95 

2 2-ethylanilline -0.25 26 2,4-dimethylaniline -0.30 

3 2-propylanilline 0.06 27 2,5-dimethylaniline -0.35 

4 2-isopropylanilline 0.10 28 2,6-dimethylaniline -0.43 

5 2-phenylanilline 0.86 29 3,4-dimethylaniline -0.29 

6 2-fluoroanilline -0.31 30 3,5-dimethylaniline -0.37 

7 2-chloroanilline -0.09 31 2,3-dichloroaniline 1.02 

8 2-bromoanilline 0.46 32 2,4-dichloroaniline 0.56 

9 2-iodoanilline 0.35 33 2,5-dichloroaniline 0.58 

10 3-methylanilline -0.43 34 2,6-dichloroaniline 0.33 

11 3-ethylanilline -0.12 35 3,4-dichloroaniline 1.14 

12 3-phenylanilline 0.78 36 3,5-dichloroaniline 0.71 

13 3-fluoroanilline 0.04 37 2-chloro-4-methylaniline 0.24 

14 3-chloroanilline 0.09 38 2-chloro-5-methylaniline 0.20 

15 3-bromoanilline 0.52 39 2-chloro-6-methylaniline 0.12 

16 3-iodoanilline 0.61 40 3-chloro-2-methylaniline 0.45 

17 4-methylanilline -0.02 41 3-chloro-4-methylaniline 0.45 

18 4-ethylanilline 0.04 42 4-chloro-2-methylaniline 0.35 

19 4-propylanilline 0.49 43 5-chloro-2-methylaniline 0.51 

20 4-isopropylanilline 0.21 44 2,3,4-trichloroaniline 1.35 

21 4-butylaniline 1.05 45 2,4,5-trichloroaniline 1.30 

22 4-pentylaniline 1.67 46 2,4,6-trichloroaniline 1.01 

23 4-hexylaniline 2.04 47 3,4,5-trichloroaniline 1.51 

24 4-octylaniline 2.34 48 2,6-dichloro-3-methylaniline 0.69 
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Table 17. Summary of the molecular data set and the statistical protocol. 

Molecular Data Set 

Compounds Anilines 

Number of Compounds 48 

Activity (LogIGC50)-1 

Computational Details  

Molecular Modelling WebLAb Viewer Pro modelling 

Geometry Optimization Semiempirical AM1 level [4], using Ampac-6.55 [5] 

Density Function 
Fitted first-order Promolecular ASA (PASA), 3-21G basis set 

For systems with Iodine, Huzinaga basis set was used 

MQSM Operator Coulomb interatomic QSM 

Molecular Alignment Not needed 

Correlation Method Partial Least Squares (PLS) 

Validation Leave-One-Out Cross Validation (LOO-CV) 

 

Results and discussion 

 

Table 18. Statistical results obtained in the optimal model. 

Total No of 

Indices 
N0 Descriptors r2 q2 

10 7 0.8229 0.7904 

 

In this case, attending to the larger size of the set, a greater number of descriptors had to be 

considered in order to appropriately describe the molecular system. Concretely, seven 

descriptors have to be considered in order to satisfactorily describe the system.  

 

In this set, molecule 24 was removed, because the model depicted a log IGC50
-1 of 5.70 for the 

measured 2.34. This was considered as an outlier, because of the great difference between the 

measured and the predicted value. 
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Figure 8. Cross-validated versus experimental inhibition growth 
concentration values, for the set of 48 anilines. 
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Figure 9. Randomization test for the optimal model. 
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In the two latter cases, a study of Wayne et al. [64] performed QSAR calculations modelling the 

data using least squares regression (general linear model procedure) and measuring the model 

adequacy with the coefficient of determination and the root of the mean square for error.  

 

In comparison with this work, those models resulted in a better quality; however, as no 

prediction studies were made, the comparison cannot be considered as complete. In the second 

set, a value of r2=0.952 was achieved, while in the third one a r2=0.872 was obtained. It has to 

be taken on account that, in both cases, the inverse of the logarithm of IGC50 was correlated to 

the logarithm of Kow, the logarithm of 1-octanol/water partition coefficient, as the independent 

variable. 

 

Contribution 

 

► Gallegos, A.; Gironés, X.; Carbó-Dorca, R. Topological Quantum Similarity Measures: applications in 

QSAR. In Proceedings of the 5th GSMS. Sen, K. (Ed.) Nova Press. In press. 
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3 QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS  

3.1 Antimalarial Activity 

Introduction 

Malaria is an infectious disease endemic in many parts of the world [65], caused by protozoan 

parasites of the genus Plasmodium. Mostly located in tropical and subtropical areas, it is 

estimated that hundreds of million people worldwide are affected by malaria and it is considered 

a major cause of death [66]. 

 

Several problems for controlling malaria in these regions, aggravated by inadequate health 

structures and poor socioeconomic conditions, have propitiated an increasing resistance to the 

drugs used to combat the Plasmodium parasite. 

 

The spread of drug-resistant Plasmodium Falciparum clones, the most widespread and 

dangerous, present an increasing immunity against traditional therapies used to inhibit the 

synthesis of the parasite [67], such as chloroquine [68]. To such an extent, the need for new 

antimalarial drugs with unconventional structures and novel modes of action to be used for the 

treatment of pervasive strains of drug-resistant P. Falciparum have impelled the periodic 

introduction of new antimalarial drugs [69-70]. 

 

In present times, two natural peroxides, artemisinin - a naturally occurring peroxidyc cadinane 

sesquiterpene [71-72]- and yingzhaosu –endoperoxide- [73-75], both of them possessing potent 

antimalarial activity, have been discovered to be active against chloroquine resistant strains of 

Plasmodium falciparum. Thus, the total synthesis [76] and structure-activity relationships 

studies [76-81] of these compounds have opened a new era in chemotherapy of malaria. Due to 

the complex structure of the natural products, structurally simpler 1,2,4-trioxanes and cyclic 

peroxy ketals have been synthesized and tested for antimalarial activity [82-84]. 

 

The first study is devoted to the establishment of QSAR models for different sets of potential 

antimalarial drugs, using quantum similarity measures. The first application example tests the 

correlation of two series of synthetic 1,2,4-trioxanes with different biological responses of the 

parasite Plasmodium Falciparum (IC90 and ED90).  
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The second application case deals with the activiy (IC50) of set of cyclic peroxy ketals, and the 

third application case treats two molecular sets composed by artemisinin derivatives, in which 

the 50% inhibition of synthesis and reduction of hidrofolate (IC50) in different Plasmodium 

Falciparum clones were studied, applying Kinetic Energy-based Quantum Similarity Measures 

to QSAR.  

 

In the fourth application case and so forth, molecular topological indices capable to grasp 

complex information coming from the three-dimensional (3D) molecular structure were 

described. In order to illustrate the application of the TQSI, the results for the QSAR models 

related to five molecular families of antimalarial agents are presented. 

3.1.1 Classical Study of 20 and 7 Synthetic Trioxanes  

In the first case, quantitative QSAR models for two molecular sets of 1,2,4-trioxanes were built 

using molecular quantum similarity measures (MQSM). The molecular sets were composed by 

20 and 7 1,2,4-trioxanes, respectively. Besides, the QSAR results for the antimalarial set 

composed by 20 1,2,4- Trioxanes were qualitatively analyzed. 

 

 

Figure 10. Parent structure of 1,2,4-trioxanes.  

 

For the set composed by 20 antimalarial compounds, the analyzed properties consist of the 

concentration (in ng/ml) of the drug able to inhibit 90% of synthesis and reduction of 

hydrofolate (IC90) in the parasite. In vitro experiments have been performed studying two 

specimens: the P. Falciparum W2, from Indochina, and D6 clone, from Sierra Leone. Due to the 

wide range of values present in reference [81], a logarithmic scaling has been adopted to 

uniform the activity data.  

 

For the smaller set formed by 7 compounds, the biological activity is the same (but in mg/kg). 

However, it has been measured in the P. Berghei in vivo (ED90). In this case, as the range of 

values is narrower, no scaling was performed.  
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Table 19. Structures and observed in vitro (log IC90) activities of the set of 20 1,2,4-trioxanes. 

n Structure 

P.falciparum 
Indo-China 

W2 
log IC90 

P.falciparum 
Sierra Leone 

D6 
log IC90 
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Table 20. Structures and observed in vivo 
(ED90) activities of the set of 7 1,2,4-trioxanes. 

n Structure 
P.beghei 
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Table 21. Summary of the molecular data set and the statistical protocol. 

Molecular Data Set 

Compounds 1,2,4-trioxanes 

Number of Compounds 20  

Activity 
Log IC90 Plasmodium Falciparum for Indo-China (W2) strain 

Log IC90 Plasmodium Falciparum for Sierra Leone (D6) strain 

Compounds 1,2,4-trioxanes 

Number of Compounds 7 

Activity ED90 Plasmodium Berguei  

Computational Details  

Molecular Modelling PC Spartan software package [7] 

Geometry Optimization built-in Sybyl Molecular Mechanics force-field 

Density Function Fitted first-order Promolecular ASA (PASA), 3-21G basis set 

MQSM Operator Overlap operator 

Index transformation Carbó index 

Molecular Alignment Topo-Geometrical Superposition Algorithm (TGSA) 

Reduction of Dimensions Principal Components Analysis (PCA) 

Selection of Variables Most Predictive Variables Method (MPVM) 

Correlation Method Multiple Linear Regression (MLR) 

Validation 
Internal Leave-One-Out Cross-Validation (LOO-CV) 

Random Test 

 

Results and discussion 

 

In this case, the optimization was carried out using the built-in Sybyl Molecular Mechanics 

(MM) force-field. This choice was made according to a previous study [81], where a 

comparison between molecular mechanics and ab initio procedures was carried out, proving the 

superiority of MM in these molecular sets, and thus saving computational time. 

 

Taking into account that the studied molecular sets share common structural features, the Topo-

Geometrical Superposition Algorithm (TGSA) is used as it performs pairwise superpositions 

according to the molecular backbones. This molecular superposition method overlays the 

molecules according the maximal common substructure shared by the analyzed molecules.  

 

The normalized scaling of the MQSM has been done by means of the Carbó index 

transformation. 
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Table 22. Statistical parameters for P. falciparum Indo-china W2 clone. Optimal 
model marked in italics nd bold face. 

#PCs r2 q2 σN PCs used 

1 0.524 0.446 0.771 2 

2 0.631 0.489 0.679 1, 2 

3 0.722 0.578 0.589 1, 2, 7 

4 0.757 0.589 0.550 1, 2, 3, 7 

5 0.797 0.592 0.504 1, 2, 3, 5, 7 

6 0.828 0.646 0.462 1, 2, 3, 5, 7, 11 

Equation 2
90log 2.912 7.166 2.083 4.948 1.272WIC = − − + +1 2 3 7x x x x  

 

Table 23. Statistical parameters for P. falciparum Sierra Leone D6 clone. Optimal 
model marked in italics nd bold face. 

#PCs r2 q2 σN PCs used 

1 0.519 0.423 0.663 2 

2 0.575 0.427 0.623 1, 2 

3 0.757 0.629 0.472 1, 2, 7 

4 0.789 0.662 0.439 1, 2, 7, 11 

5 0.795 0.621 0.433 1, 2, 4, 7, 11 

6 0.801 0.540 0.426 1, 2, 4, 5, 7, 11 

Equation  730142039665102680616
90 .....IClog D +−+−= 11721 xxxx  

 

Table 24. Statistical parameters for P. Berghei. Optimal model marked 
in italics nd bold face. 

#PCs r2 q2 σN PCs used 

1 0.643 0.270 2.76 6 

2 0.852 0.428 1.78 4, 6 

3 0.929 0.708 1.23 4, 5, 6 

4 0.976 0.789 0.721 3, 4, 5, 6 

Equation 791552376711531690 ....ED +−−−= 654 xxx  
 

As evidenced in the quoted set of equations, the most descriptive PCs are not necessarily those 

accounting for maximal variance. 
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Figure 11. Cross-validated versus experimental antimalarial activity 
values over P. falciparum W2. 
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Figure 12. Cross-validated versus experimental antimalarial activity 
values over P. falciparum D6. 
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Figure 13. Cross-validated versus experimental antimalarial activity 
values over P. Berguei. 
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Figure 14. Randomization test for the optimal P. falciparum W2 
model. The randomized responses have been marked with dots, and 
the correctly ordered activity with a cross. 
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Figure 15. Randomization test for the optimal P. falciparum D6 
model. 
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Figure 16. Randomization test for the optimal P. Berguei model. In 
this case, 61 dots, which were q2 < 1.5, were eliminated. 
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As observed, a clear separation is present between the actual models and the permuted ones, 

none of them yielding to q2 > 0.5, or furthermore being negative. As a matter of fact, the last 

random test lacks of 61 points that were removed because –300 < q2 < -1.5, and no clear 

representation could be obtained. In this way, it can be concluded that real QSAR have been 

discovered, and that no fortuitous correlations or overparameterizations exist in the reported 

models. 

 

A further analysis of the results obtained in the equations may help in the interpretation  of 

QSAR models. The first set is ideal to carry out this analysis provided that it is composed by 

assorted different substitutions. This molecular set includes two different biological activities, 

which correlate fairly well (r2=0.796), when applying the logarithmic transformation. This fact 

explains both the resemblance in the statistical results, and the elections and relevance of the 

optimal PCs, which were chosen in the same order, except for the last one.  

 

The subsequent step involves an analysis of the PCs chosen to see how the molecular point 

clouds are distributed in the lower dimensional space. As example, the first and second PCs are 

plotted in Figure 17.  
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Figure 17. Plot of the first versus de second PC for the molecular set 
of 20 1,2,4-trioxanes. 
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As it can be observed, a clear 4-cluster pattern is present, grouping molecules according to clear 

substructural features:  

- Molecules 1–5, which present small aliphatic, but no aromatic, substitutions, present high 

activity.  

- Molecules 6–9, which have an aromatic substitution and a phenyl group in the region where 

the two main ring fuse, present low activity.  

- Molecular 10–17, which present phenyl groups at both sides of the fusion region, present high 

or very high activity.  

- Molecular 18–20, which have a benzene ring fused to the main backbone, present low activity.  

 

Thus, it can be seen the influence of these phenyl groups in the biological activity and how it is 

reflected in this simple two-dimensional space. From this observation, it can be deduced that 

any novel structure falling in the first, or better in the third, cluster would possess a high activity 

against both breeds of P. Falciparum. In this way, computational design should be guided to 

those structures substituted with two phenyl groups at both sides of the ring fusion area and 

tested with different functional groups.  

 

A a conclusion, in the present study, molecular quantum similarity measures were applied to 

correlate systematically the antimalarial activity of 1,2,4-trioxanes. Satisfactory quantitative 

models were obtained using a small number of descriptors based on Principal Components 

Analysis, achieving also good results in Leave-One-Out Cross Validations (LOO-CV) and 

random tests. In addition, a qualitative analysis of the results for the antimalarial set composed 

by 20 1,2,4- Trioxanes was carried out, revealing structural information about the data set. The 

molecules were clustered according to common structural features, which in turn explained the 

biological activity. When two phenyl substitutions are present in the molecule, it seems that the 

biological activity tends to increase.  

 

3.1.2 Classical Study of 20 Cyclic Peroxy Ketals 

In the second antimalarial study case, a quantitative QSAR models for a series of 20 cyclic 

peroxy ketals was built using molecular quantum similarity measures (MQSM). 

 

The biological property studied in the 20 cyclic peroxy ketals set [85] also consists of inhibition 

of the metabolism to hydrofolate, but 50% (IC50) in nM concentration units. Similarly to the 

first antimalarial set, activity values were taken in logarithmic scale. 
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Table 25. Structures and observed (log IC50) activities of 20 cyclic peroxy ketals. 
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Figure 18. Parent structure of cyclic peroxy ketals. 

 

 

Table 26. Summary of the molecular data set and the statistical protocol. 

Molecular Data Set 

Compounds Cyclic peroxy ketals 

Number of Compounds 20  

Activity Log IC50  

Computational Details  

Molecular Modelling PC Spartan software package [7] 

Geometry Optimization built-in Sybyl Molecular Mechanics force-field 

Density Function Fitted first-order ASA DF, 3-21G basis set 

MQSM Operator Coulomb operator 

Index transformation Carbó index 

Molecular Alignment Topo-Geometrical Superposition Algorithm (TGSA) 

Reduction of Dimensions Principal Components Analysis (PCA) 

Selection of Variables Most Predictive Variables Method (MPVM) 

Correlation Method Multiple Linear Regression (MLR) 

Validation 
Internal Leave-One-Out Cross-Validation (LOO-CV) 

Random Test 

 

Results and discussion 
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Table 27. Statistical parameters for P. falciparum. The optimal QSAR model has 
been marke in italics and bold face. 

#PCs r2 q2 σN PCs used 

1 0.546 0.414 0.225 2 

2 0.592 0.418 0.214 1,2 

3 0.738 0.607 0.171 1,2,6 

4 0.778 0.691 0.158 1,2,3,6 

5 0.795 0.656 0.151 1,2,3,4,6 

Equation 50log 1.739 10.188 4.042 11.379 2.107= − − − +IC 1 2 3 6x x x x  
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Figure 19. Cross-validated versus experimental antimalarial activity 
values. 
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Figure 20. Randomization test for the optimal P. falciparum. The 
randomized responses have been marked with dots, and the correctly 
ordered activity with a cross. 

 

The results are comparable to the previous study case.  

 

Contribution 

 

► Gironés, X.; Gallegos, A.; Carbó-Dorca, R. Antimalarial Activity of Synthetic 1,2,4-Trioxanes and 

Cyclic Peroxy Ketals, a Quantum Similarity Study. J. Comput.-Aid. Mol. Des., 15(12), 2001, 1053-1063. 

 

3.1.3 Study of 18 and 15 artemisinin derivatives 

In this study, quantitative QSAR models were built for two molecular sets, composed by 18 and 

15 artemisinin derivatives, respectively. 

 

For the set composed by 18 antimalarial compounds, the analyzed property werethe nanomolar 

concentration of the drug able to inhibit 50% synthesis and reduction of hydrofolate in the NF54 

strain (choloroquine sensitive) of P. falciparum in vitro (IC50) [86], as reported in a previous 

work [87].  
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Figure 21. Parent structure of artemisinin derivatives. 

 

For the second series, the studied property is also IC50; however, the activity were measured 

relative to the artemisinin value when tested in vitro in human blood over P. falciparum 

Indochina (W2) and Sierra Leone (D6) clones [88], following a procedure proposed by 

Desjardins [89-90]. These clones present an interesting resistance to drugs: whereas the W2 

strain is chloroquine-resistant and mefloquine-sensitive, the D6 breed is sensitive to chloroquine 

and resists mefloquine. This fact allows evaluating the effect and mechanism of action of a 

novel drug in this widely mutated parasite. The relative potency of these compounds has been 

adjusted according to IC50 values and then multiplied by the ratio between molecular weight of 

the analog and molecular weight of artemisinin. A logarithmic scaling has been applied to the 

last set of activities due to the wide range of values present in reference [88]. 
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Table 28. Molecular structures and biological activities of a set of 18 artemisinin derivatives. 
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Table 29. Biological activities of a set of 15 artemisinin derivatives. 

N R1 R Log IC50 (D6) Log IC50 (W2) 

1 H CH3 2.000 2.000 

2 CH3 H 1.944 2.049 

3 CH3CH2 H 3.323 2.828 

4 CH3(CH2)2 H 1.301 1.255 

5 (CH3) 2CH H 1.724 1.653 

6 EtO2CCH2 H 2.365 2.365 

7 C6H5CH2 H 0.477 0.000 

8 p-ClC6H4(CH2)2 H 2.057 2.104 

9 C6H4(CH2)3 H 2.342 2.449 

10 CH3 CH3(CH2)3 2.265 2.410 

11 CH3(CH2)2 CH3(CH2)3 1.447 1.519 

12 C6H5CH2 CH3(CH2)3 0.000 0.000 

13 p-ClC6H4(CH2)2 CH3(CH2)3 1.633 1.724 

14 C6H4(CH2)3 CH3(CH2)3 1.591 1.681 

15 EtO2CCH2 CH3(CH2)3 3.141 3.359 

 

 

Table 30. Summary of the molecular data set and the statistical protocol. 

Molecular Data Set 

Compounds Artemisinin derivatives 

Number of Compounds 18  

Activity IC50
 Reduction of hydrofolate in the NF54 strain 

Compounds Artemisinin derivatives 

Number of Compounds 15 

Activity 
Log IC50 Plasmodium Falciparum for Indo-China (W2) strain 

Log IC50 Plasmodium Falciparum for Sierra Leone (D6) strain 
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Computational Details  

Molecular Modelling PC Spartan software package [7] 

Geometry Optimization Built-in Sybyl Molecular Mechanics force-field 

Density Function Fitted Promolecular ASA (PASA) KE DF, 3-21G basis set 

MQSM Operator Kinetic Energy operator  

Index transformation Carbó index 

Molecular Alignment Topo-Geometrical Superposition Algorithm (TGSA) 

Reduction of Dimensions Principal Components Analysis (PCA) 

Selection of Variables Most Predictive Variables Method (MPVM) 

Correlation Method Multiple Linear Regression (MLR) 

Validation 
Internal Leave-One-Out Cross-Validation (LOO-CV) 

Random Test 

 

Results and discussion 

 

The choice of the best geometry optimization method was made after performing a comparative 

analysis between different optimization methodologies over the artemisinin molecule. The 

comparison was carried out using the following methodologies: Sybyl Molecular Mechanics 

(MM) force field and AM1, both included in PC Spartan, and using a direct ab initio method, 

which in this case corresponds to a restricted Hartree-Fock with the 3-21G* basis set, 

implemented in Gaussian 98 [91]. From the optimized molecular coordinates of artemisinin, the 

electronic DF was constructed within the previously discussed promolecular ASA, and MQSM 

involving the Coulomb operator have been carried out. The quantum similarity results over the 

artemisinin molecule were given in terms of Carbó Indices, resulting from the comparison of the 

different geometries of artemisinin. 

 

 Table 31. Upper triangle of the Carbó Index 
matrix for artemisinin used to compare the different 
computational optimization methodologies. 

Sybyl AM1 HF/3-21g* 

1.000 0.978 0.985 

 1.000 0.980 

  1.000 
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From the results, it is evidenced that in this case all methods lead to very close structures. 

However, there is a very important difference in computational time required to complete the 

calculations: whereas the Sybyl process was completed in a few seconds, AM1 and ab initio 

methods lasted some minutes and several hours respectively. In this way, the Sybyl 

methodology was chosen to optimize the geometry due to its accuracy and efficiency regarding 

these molecular sets. 

 

Promolecular ASA Kinetic Energy (KE) DF with atomic densities fitted to a 3-21G basis set has 

been used. It has been shown that, at low and high DF values, the electronic and the KE DF 

behave almost in the same way, reflecting the molecular shape and the atomic locations 

respectively. However, at intermediate values some relevant differences become visible, like an 

oversize of the heavier atoms and the appearance of interatomic maxima. These features 

preclude a different description of the electronic distribution based on KE concepts. 

 

 

Table 32. Statistical parameters for the proposed QSAR models. 

P. falciparum 

strain 
# PCs PCs used 

% Variance 

explained 
r2 q2 σN 

NF54 4 2,4,9,16 27.775 0.754 0.561 2.140 

D6 4 4,6,14,15 19.503 0.767 0.520 0.580 

W2 4 1,4,14,15 37.693 0.821 0.576 0.575 

 

Table 33. QSAR equations for the different models. 

700.7446.74280.16179.12956.11ICNF54
50 +−−−= 16942 xxxx  

826.1965.5563.32620.4900.1IC log D6
50 ++−+= 151464 xxxx  

841.1822.5241.30507.2276.4IC log W2
50 ++−+= 151441 xxxx  

 

 

As it can be seen seen, not always the PCs accounting for the maximal variance are those related 

to the activity. In the studied molecular sets, even the chosen PCs explain less than 40% of the 

whole variance, they are able to provide an acceptable description. 
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Figure 22. Cross-validated versus experimental antimalarial activity 
values over P. falciparum NF54. 
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Figure 23. Cross-validated versus experimental antimalarial activity 
values over P. falciparum D6. 
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Figure 24. Cross-validated versus experimental antimalarial activity 
values over P. falciparum W2. 
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Figure 25. Randomization test for the optimal P. falciparum NF54 
model. The randomized responses have been marked with dots, and 
the correctly ordered activity with a cross. 
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The proposed models were subjected to a random test procedure to assess that they were not 

built up from an excess of parameters. Thus, in each molecular set, a hundred activity vectors 

were generated from randomized permutations of the original ordered one. All proposed models 

presented a clear separation between the original solution and the randomized ones, which 

clearly achieve values of q2 below 0.5, or furthermore being negative. As an example, the 

compilation of the results for the P. falciparum NF54 set is presented. Similar results are 

obtained for the remaining studied systems. 

 

 

Figure 26. 2D distribution of the antimalarial compounds according to 
the first two chosen PCs. 

 

The first two most predictive PCs spread the molecules of the first molecular set in the 2D space 

are presented. As it can be seen, both PC 16 and 2 behave differently. PC 16 scatters the 

molecules according to the weight of the substitution, roughly collapsing the heavy substitutions 

nearby the origin and distributing the light ones along the sides. PC 2 mostly acts as a 

substituent discriminator. In the negative part of PC 2, most of the compounds presenting 

oxygen are present (2, 3, 4, 5, 6, 7, 8), those compounds having an aluminum atom are 

approximately located in the middle of the axis (16, 17, 18) and finally the nitrogenated 

substitutions are present in the positive part of PC 2 (11, 12, 13, 14).  
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Exceptions to this rule are compound 1, which only contains a ketonic substitution, compound 

9, which contains oxygen but is located with the nitrogen group, and compound 15, which 

contains a nitrogen and it is located too close to the aluminum containing substitutions. 

Compound 10 contains a sulfur and is located between the oxygen containing rings and the 

heavier substitutions with aluminum. 

 

Kinetic Energy based molecular quantum similarity measures were applied to correlate 

sistematically the antimalarial activity of various artemisinin derivatives, yielding satisfactory 

correlations for all antimalarial activities in all studied molecular sets.  

 

Contribution 

 

► Gironés, X.; Gallegos, A.; Carbó-Dorca, R. Modeling Antimalarial Activity: Application of Kinetic 

Energy Density Quantum Similarity Measures as Descriptors in QSAR. J. Chem. Inf. Comput. Sci, 40, 

2000, 1400-1407. 

 

3.1.4 Topological study of five series of antimalarial compounds 

A series of five antimalarial sets of compounds, were studied following the same statistical 

protocol.  

 

Table 34. Summary of the protocol. 

Computational Details  

Molecular Modelling WebLAb Viewer Pro modelling 

Geometry Optimization Semiempirical AM1 level [4], using Ampac-6.55 [5] 

Density Function Atomic densities described by 1S GTO basis functions 

MQSM Operator Coulomb or Cioslowski interatomic QSM 

Molecular Alignment Not needed 

Reduction of Dimensions Nested Summation Symbols (NSS) Algorithm 

Correlation Method Multiple Linear Regression (MLR)  

Validation Leave-One-Out Cross Validation (LOO-CV) 

 

Once given the molecular geometry, for practical purposes, a simple set of 1S GTO basis 

functions was employed in order to describe atomic densities, instead of ASA DF: 
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being T
iv  the topological atomic valence of the atom i. The function exponent ζi parameter can 

be numerically modulated for every atom, acoording to the following table:  

 

Table 35. Atomic exponents (in a.u.) 

Atom Exponent 

H 3.436350 

C 0.467380 

N 0.497510 

O 0.530530 

F 0.548240 

S 0.249715 

Cl 0.268040 

Br 0.196090 

 

The classical topological matrix was computed for all the systems. In addition, similarity 

operators were used to compute the Atomic Quantum Similarity Measures (AQSM); in 

particular, the Coulomb, and the Cioslowski operators. The matrices resulting from the 

similarity measures allow to reproduce, among others, the classical TI formulation for indices 

such as: Wiener (W) and Wiener Path Number (WPN), Randic (χ), Schultz (MTI), Balaban (B) 

and Hosoya (Z) indices, Harary Number (H), the generalised connectivity indices (mχt) of Kier 

and Hall, and so on. Of course, the topological distance matrices were substituted in the TQSM 

case by the three dimensional euclidean distances, in such a way that the resulting indices 

included information about the molecular 3D structure. 

 

The optimized structures were sent to the program package developed in our laboratory where 

the TM and TQSI were computed [92]. During the phase of molecular indices generation, some 

additional restrictions were considered in order to reduce the amount of data to be analysed: the 

generalised connectivity indices of Kier and Hall were computed only up to order 9 and only 

contributions up to also order 9 were considered to obtain the Hosoya index. 
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Once the TQSI matrices were obtained, each array was sent to a multiple linear regression 

program. All the combinations of 2, 3 and 4 descriptors were generated and the ones attached to 

the highest values of the q(2) coefficient have been reported. The linear correlation coefficients 

arising from a true leave-one-out cross-validation procedure, r2
cv, and the data fitting, r2, are 

reported. Except for particular cases which are specifically indicated, the statistical significance 

parameter coming from the Snedecor F-test, p, is lesser than 0.0001 for all the correlation 

coefficients attached to the cross-validation processes. 

 

3.1.4.1 Topological study of 15 artemisinin analogs 

This molecular family is composed by a set of 15 3-alkyl substituted analogs of artemisinin 

[88]. In vitro activities against W2 and D6 strains of Plasmodium falciparum are reported in the 

original article in terms of relative IC50 value. The relative activity was computed as the relative 

quantity  

( ) ( )
( ) ( ) nartemisiniana

ananartemisini

WIC
WIC

log50

log50100   

where W stands for the molecular weight [88]. 
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Figure 27. General molecular structure of the 3-alkyl 
substituted analogs of artemisinin molecules of system 1. 
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Table 36. Activities and structures of the molecules of system 1.  

Relative activity 
Molecule R’ R 

D6 W2 

1 H CH3 100 100 

2 CH3 H 88 112 

3 CH3CH2 H 2102 673 

4 CH3(CH2)2 H 20 18 

5 (CH3)2CH H 53 45 

6 EtO2CCH2 H 232 232 

7 C6H5CH2 H 3 1 

8 p-ClC6H4(CH2)2 H 114 127 

9 C6H5(CH2)3 H 220 281 

10 CH3 CH3(CH2)3 184 257 

11 CH3(CH2)2 CH3(CH2)3 28 33 

12 C6H5CH2 CH3(CH2)3 1 1 

13 p-ClC6H4(CH2)2 CH3(CH2)3 43 53 

14 C6H5(CH2)3 CH3(CH2)3 39 48 

15 EtO2CCH2 CH3(CH2)3 1382 2285 

 

 

Table 37. Summary of the molecular data set.  

Molecular Data Set 

Compounds 3-alkyl substituted analogs of artemisinin 

Number of Compounds 15 

Activity 
Relative Activity (IC50 Plasmodium Falciparum, D6 strain) 

Relative Activity (IC50 Plasmodium Falciparum, W2 strain) 

 

Results and discussion 
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Table 38. Linear models having a maximal r2
cv value for every set of descriptors. The variable y 

stands for the logarithm of the D6 activity. 

Nº descr. r2 r2
cv Linear model equation (log D-6 activity) 

2 0.590 0.422 y = 0.0107418 WPNT - 0.00570827 pT(3) + 1.09179 

3 0.839 0.720 y = -14.2616 S
Pχ

4  + 6.81012 C
Pχ

4  + 20.4000 C
CHχ8  - 13.0016 

4 0.933 0.851 
y = 13.9258 T

PCχ4  – 5.88954 T
PCχ5  - 19.1486 S

Pχ
6  +  

    8.31544 C
Pχ

8  - 0.961919 

 

Table 39. Linear models having a maximal r2
cv value for every set of descriptors. The variable y 

stands for the logarithm of the W2 activity. 

Nº descr. r2 r2cv Linear model equation (log D-6 activity) 

2 0.631 0.476 y = 0.0121877 WT - 6.46274·10-3 pT(3) + 0.262345 

3 0.854 0.744 y = -3.98021 T
Pχ

8  + 1.88598 C
Pχ

4  - 13.6583 C
CHχ6  + 2.47056 

4 0.961 0.897 
y = 2.54094 Tχ  – 6.07153 S

Pχ
5  – 52.5154 S

Pχ
8  + 

11.4215 C
Pχ

8  + 4.32928 

 

In both series of results a qualitative improvement of the model was obtained when 3 

descriptors were considered. The linear equations involving 4 descriptors were also indicated 

but the possibility to deal with an over-parameterised model should be taken into account. This 

idea can be also applied to other families presented in this study. 

 

3.1.4.2 Topological study of 17 artemisinin analogs 

This family is composed by a set of 17 analogs of 10-deoxoartemisinin substituted at positions 

C-3 and C-9 [93]. In vitro molecular activities are of the same nature as the ones reported for the 

previous system. 

O

H
R

O
R'

O
O

H H

 

Figure 28. General molecular structure of the analogues of 
10-deoxoartemisinin antimalarial molecules of system 2. 
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Table 40. Activities and structures of the molecules of system 2. Activity 
obtained in reference [79] in the same way as previously. 

Relative activity 
Molecule R’ R 

D6 W2 

1 CH3 CH3 659 567 

2 CH3 H 237 190 

3 CH3 CH3CH2 914 466 

4 CH3 CH3(CH2)2 473 550 

5 CH3 CH3(CH2)3 5826 2090 

6 CH3 CH3(CH2)4 170 145 

7 CH3 C6H5(CH2)3 5073 2506 

8 CH3 p-ClC6H4(CH2)3 6991 3317 

9 CH3CH2 H 10 10 

10 CH3(CH2)2 H 722 685 

11 CH3(CH2)3 H 653 556 

12 (CH3)2CHCH2 H 183 250 

13 C6H5(CH2)4 H 336 380 

14 C6H5(CH2)2 H 6 2 

15 p-ClC6H4(CH2)3 H 13 28 

16 (CH2)2CO2Et H 422 506 

17 (CH2)2CO2H H 0.09 0.09 

 

Table 41. Summary of the molecular data set.  

Molecular Data Set 

Compounds analogues of 10-deoxoartemisinin 

Number of Compounds 17 

Activity 
Relative Activity (IC50 Plasmodium Falciparum, D6 strain) 

Relative Activity (IC50 Plasmodium Falciparum, W2 strain) 
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Results and discussion 

Table 42. Linear models having a maximal r2
cv value for every set of descriptors. The variable y 

stands for the logarithm of the D6 activity. 

Nº descr. r2 r2
cv Linear model equation (log D-6 activity) 

3 0.711 0.486 y = 44.6304 T
Cχ

4  - 5.62376 S
Cχ

3  + 2.12991 C
PCχ5  - 18.6223 

4 0.808 0.639 
y = 33.6116 T

Cχ
3  - 7.93018 T

PCχ4  - 37.1546 S
Cχ

3  + 

2.65114 C
PCχ5  - 6.38758 

 

Table 43. Linear models having a maximal r2
cv value for every set of descriptors. The variable y 

stands for the logarithm of the W2 activity. 

Nº descr. r2 r2
cv Linear model equation (log D-6 activity) 

3 0.699 0.478 y = -6.40997 T
Pχ

7  + 2.43942 C
Pχ

4  + 1.27781 C
PCχ7  – 14.8043 

4 0.824 0.657 
y = 31.5817 T

Cχ
3  – 7.79599 T

PCχ4  - 34.9313 S
Cχ

3 + 

2.77878 C
PCχ5  - 6.50120 

  

Table 44. Linear models having a maximal r2
cv value for every set of descriptors. The variable y 

stands for the logarithm of the D6 activity. The models were obtained without considering the 
molecule number 17. 

Nº descr. r2 r2
cv Linear model equation (log D-6 activity) 

2 0.611 0.460 y = 2.32173·10-5 pT(9) - 22.0545 C
CHχ7  + 12.0052 

3 0.682 0.541 y = 6.33065·10-6 ZT – 1.03067 C
Pχ

7  - 29.0119 C
CHχ7  +19.2279 

4 0.837 0.744 
y = -6.99820 T

Pχ
3  + 4.42378·10-3 3DMTIS - 3.17224 C

Cχ
3  + 

1.57109 C
PCχ7  + 24.2764 

 

Table 45. Linear models having a maximal r2
cv value for every set of descriptors. The variable y 

stands for the logarithm of the W2 activity. The models were obtained without considering the 
molecule number 17. 

Nº descr. r2 r2
cv Linear model equation (log D-6 activity) 

2 0.613 0.443 y = 2.18192·10-5 pT(9) - 20.7077 C
CHχ7  + 11.3316 

3 0.762 0.627 y = 33.2729 BT -7.59291 S
PCχ4  +5.73675·10-3 MTIC –48.8439 

4 0.881 0.784 
y = -7.09264 T

Pχ
3  + 4.58703·10-3 3MTIS - 7.39280 S

Cχ
3 + 

1.57086 C
PCχ7  + 26.5073 
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In the experimental paper [93] the authors reported some results related to qualitative SAR but 

no satisfactory QSAR equations were obtained even using, among others, topological and 

connectivity/shape indices from the Tsar [94] program. The present results show how the 

combination of several kinds of TQSI activates a synergic effect which leads to acceptable 

linear models. 

 

Molecule 17 exhibited a very low value of both experimental values. The point lies quite far 

away from the remaining molecular data. The model was enhanced just removing the analogue; 

such an effect can be related to the fact that activity of molecule number 17 is substantially 

different from the ones corresponding to other molecules of the same family and having similar 

chemical structures. 

 

3.1.4.3 Topological study of 21 β-metoxyacrylates 

The antimalarial system 3 is constituted by 21 β-metoxyacrylates having different linkers 

against chloroquine-sensitive (NF54) and chloroquine-resistant (K1) P. falciparum in vitro [95]. 

Activity was reported as IC50 in nmol l-1, a quantity derived from the original data of reference 

[95]. 
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Figure 29. Molecular structures of the molecules of system 3. 
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Table 46. Molecular structures and activities of the antimalarial 
molecules of system 3. 

Activity 
Molecule Structure 

NF54 K1 

1 L = CH2CH2SCH2 14.4 75.8 

2 L = CH2CH=CHCH2 8.31 21.5 

3 L = CH2CH=CHCH2SCH2 4.29 6.15 

4 L = CH2CH2ON=C(CH3)CH2 0.42 1.6 

5 L = CH2CH=CHCH=CHCH2 0.15 0.39 

6 L = (CH2)6 1.38 3.9 

7 
L = O  

0.91 4.2 

8 X = H 2.5 11.5 

9 X = 2-Cl 0.25 1.01 

10 X = 2-CN 1.51 4.63 

11 X = 3-F 4.43 24.8 

12 X = 3-CF3 20.1 43. 

13 X = 3-Br 15.3 78.6 

14 X = 4-Cl 1.47 5.64 

15 X = 2,4-di-CF3 0.13 0.28 

16 X = 2,4-di-Cl 0.08 0.26 

17 X = 2,4-di-Me 0.09 0.14 

18 X = 2-Cl, 4-F 0.16 0.51 

19 X = 3-MeO, 2-NO2 0.27 1.40 

20 
CF3

CF3CO2Me

O  

385.4 868.6 

21 CF3

CF3

MeO2C

O

 

>11000 >11000 

 

 



Applications of QSM in QSAR  265 

 

Table 47. Summary of the molecular data set.  

Molecular Data Set 

Compounds β-metoxyacrylates 

Number of Compounds 21 

Activity 
Log IC50 for chloroquine-sensitive NF54 strain 

Log IC50 for chloroquine-resistant K1strain 

 

Results and discussion 

 

Table 48. Linear models having a maximal r2
cv value for every set of descriptors. The variable y 

stands for the logarithm of the NF54 activity. aThe statistical significance parameter is p=0.00062. 

Nº descr. r2 r2
cv Linear model equation (log D-6 activity) 

2 0.652 0.508a y = -4.26130 S
Pχ

3  + 14.9392 S
Pχ

7  + 8.06932 

3 0.797 0.726 y = -2.62207 T
Pχ

3  + 9.55966 T
Pχ

7  – 6.38591 C
Pχ

8  + 8.78029 

4 0.815 0.750 
y = -2.45384 T

Pχ
3  + 10.6961 T

Pχ
7  – 7.62112 C

Pχ
8  - 

0.328296 S
Pχ

2  + 9.22398 

 

Table 49. Linear models having a maximal r2
cv value for every set of descriptors. The variable y 

stands for the logarithm of the K1 activity. 

Nº descr. r2 r2
cv Linear model equation (log D-6 activity) 

3 0.759 0.676 y = -1.03123 pT(1) + 12.5640 T
Pχ

7  - 9.69714 C
Pχ

8 + 13.4701 

4 0.870 0.766 
y = 1.99351 T

Pχ
0  - 13.4758 S

Pχ
3  + 71.7140 S

Pχ
9  - 

50.3532 C
Cχ

8  + 12.3526 

 

Linear models obtained for the two reported activities (molecules number 20 and 21 were 

discarded). For the last molecule only a unique semiquantitative value is available. Apparently, 

good results are obtained when considering molecule number 21 but this could be due to the 

artificial and ambiguous extrapolated experimental value attached to it. On the other hand, the 

low activity of molecule number 20 also seemed to distort the molecular data cloud. If the first 

19 molecules are taken into account, the molecular activity distribution becomes more uniform 

and satisfactory models are obtained. 
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3.1.4.4 Topological study of 17 flavines 

 This molecular group consists on a series of 17 3-methyl-10-(substituted-phenyl)flavins. The 

activity was reported as the action versus the lethal parasite Plasmodium vinckei in mice [82-

100]. In particular, activity was given as the effective dose (in mmol kg-1 10-3) required 

obtaining a parasitemia of 40% in 48h (ED40) [82]. 
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Figure 30. General structure of the 3-methyl-10-
(substituted-phenyl)flavins of molecular system 4. 

 

Table 50. Molecules and biological activity 
conforming the antimalarial system number 4. 

Molecule Structure ED40 

1 4-Br 38.4 

2 4-Cl 38.8 

3 3,5-di-Cl 40.2 

4 3-CF3 79.3 

5 3-Cl, 5-Me 85.7 

6 4-F 103 

7 3,5-di-Me 105 

8 4-CF3 135 

9 4-OMe 138 

10 3-Br 148 

11 4-Cl, 3-Me 182 

12 3,4-di-Me 210 

13 3,5-di-OMe 219 

14 3-Cl 229 

15 H 248 

16 4-Et 281 

17 3-Cl, 4-Me 456 
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Table 51. Summary of the molecular data set.  

Molecular Data Set 

Compounds 3-methyl-10-(substituted-phenyl)flavins 

Number of Compounds 17 

Activity ED40 Plasmodium vinckei 

 

Results and discussion 

 

Table 52. Linear models having a maximal r2
cv value for every set of descriptors. The variable y 

stands for the logarithm of the ED40 activity. aStatistical significance p=0.0013. 

Nº descr. r2 r2
cv Linear model equation (log ED40 activity) 

3 0.679 a 0.510a y = 0.0443328 pT(2) – 16.3798 T
Pχ

9  + 3.17847 S
Pχ

3  +8.07947 

4 0.777 0.673 
y = 9.44469·10-3 MTIT - 1.41134 T

Pχ
5  - 0.0111852 3DMTIS - 

967.435 S
Cχ

7  + 77.8123 

 

3.1.4.5 Topological study of 27 phenothiazine derivatives 

This family was constituted originally by 27 phenothiazine derivatives [97] with capacity to 

inhibite the Plasmodium falciparum cysteine protease falcipain activity. IC50 for inhibition of 

falcipain activity measured as the hydrolysis of Z-Phe-Arg-AMC [83]. 
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Figure 31. Molecular structures of the 16 
molecules taken form reference [83] which 
conform the system number 5. 
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Table 53. Biological activities and codification of the molecules of 
system number 5. 

Molecule R R1 R2 IC50 

1 Cl H H 40 

2 Cl CH3 CH3 30 

3 Cl H C6H5 10 

4 Cl H 3-CH3OC6H4 20 

5 Cl H 4-CH3OC6H4 10 

6 Cl H 2,3-(CH3O)2C6H3 10 

7 Cl H 3,4-(CH3O)2C6H3 30 

8 Cl H 4-ClC6H4 4 

9 Cl H 2,4-Cl2C6H3 10 

10 F CH3 CH3 60 

11 F H C6H5 20 

12 F H 3-CH3OC6H4 20 

13 F H 2,3-(CH3O)2C6H3 20 

14 F H 2,4-Cl2C6H3 10 

15 F H 4-ClC6H4 5 

16 F H 3,4-(CH3O)2C6H3 20 

 

Table 54. Summary of the molecular data set.  

Molecular Data Set 

Compounds phenothiazine derivatives 

Number of Compounds 16 

Activity Log IC50 Plasmodium Falciparum cysteine falcipain 

 

Results and discussion 

Table 55. Linear models having a maximal r2
cv value for every set of descriptors. The variable y 

stands for the logarithm of the ED40 activity. aStatistical significance p=0.0053. 

Nº descr. r2 r2
cv Linear model equation (log ED40 activity) 

1 0.575a 0.437a y = -7.18658 C
CHχ7  + 3.91614 

2 0.765 0.671 y = 24.7079 S
CHχ8  - 0.680162 C

Pχ
2  + 1.67282 

3 0.884 0.811 y = 1.35265 C
Pχ

3  - 16.0903 C
CHχ7  - 8.27100 C

Pχ
9  + 6.72932 
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Several trials were carried out among this molecular set and no satisfactory results were yet 

obtained except for one case. If the set of 11 molecules having a sulphur atom is considered, a 

good linear model was obtained with 2 descriptors. Results could apparently be improved by 

means of the construction of models involving 3 or more descriptors but this could be a spurious 

result arising from the system over-parameterisation. 

 

General Conclusions 

 

For each family of n members a matrix of descriptors of dimension n m×  (where n is the 

number of molecules and m is number of descriptors) was obtained. Originally, for all the 

systems m was 46 3 138× = because the matrix of indices was obtained by juxtaposition of the 

tree kinds of available, classical topological, Coulomb, and Cioslowski matrices. Then, after 

removing null or other kind of irrelevant columns (for instance, those originating linear 

dependencies), for the studied system 4 the parameter m became 121 and 126m =  for the rest. 

 

From the obtained linear models it can be seen that connectivity indices are used many times 

and, among them, these of higher order are commonly requested. Indices derived from the 

classical topological matrix are used but many indices coming from matrices S and C are also 

employed too. These facts indicate that this approach really contributes to improve the old 

methodological capabilities. Nevertheless, at least for the families studied here, only in some 

cases the Hosoya index or its contributions are used and, when requested, only those coming 

from the classical definition occur in the models. The presence or absence of indices in the 

linear models is related to the nature of the studied molecular sets and activities 

 

Contribution 

 

► Besalú, E; Gallegos, A.; Carbó-Dorca, R. Topological Quantum Similarity Indices and Their Use in 

QSAR: Application to Several Families of Antimalarial Compounds. In MATCH-Communications in 

Mathematical and in Computer Chemistry (Special issue dedicated to Prof. Balaban). Diudea, M.; 

Ivanciuc, O. (Eds.) MATCH-Commun. Math. CO, 44, 2001, 41-64. 
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3.2 Estrogenic Activity 

Introduction 

 

Endocrine disruptive (ED) chemicals [98] are present in the aquatic environment as pollutants, 

and in food and water as antioxidants and metabolites of other anthropogenic chemicals [99]. 

These environmental estrogens may result either from naturally occurring compounds, i.e. 

plants, phytoestrogens and agricultural products, or synthetically produced chemicals, such as 

pesticides, plastics, combustion by-products. 

 

Endocrine disrupting chemicals can bind to estrogen receptors (ER), thus interfering with 

genetic functions such as sexual development and reproductive fecundity [101]. Due to the 

deleterious effects on human health and the environment [102], the U.S. Environmental 

Protection Agency (EPA), and the Endocrine Disruptor Screening and Testing Advisory 

Committee (EDSTAC) [103] have run several screening and testing programs to identify such 

compounds and develop various computational tools to model ligand binding to the ER [104-

106].  

Thus, SAR studies have been used extensively since the 1930s [107] to model the interactions 

between a ligand and receptor and to estimate the effects of estrogenic compounds for hazard 

identification, human health risk assessments [108] and wildlife exposure studies [109], in order 

to avoid costly empiric evaluations based on in vivo and in vitro bioassays [110-112]. In 

particular, several 3D-QSAR similarity studies predict ligand-hormone receptor binding 

affinities, i.e. the Comparative Molecular Field Analysis (CoMFA) [113-114] approach, and the 

Common Reactive Pattern approach (CoRePa) [115-116]. 

3.2.1 Semiquantitative study of 120 Aromatic Compounds  

This study is based on the analysis of the reported in vitro estrogenicity data of a source of 120 

structurally diverse aromatic chemicals that constitute estrogenic endocrine disruptors. The 

study attempted to develop structure-based methods to evaluate predict the ability of 

compounds to promote an estrogenic effect, and identify potential ligands.  

 

The main molecular features required for the pharmacophore to bind to the estrogenic receptor 

[117-118] have clear analogies with the the estradiol molecule, considered to be one of the most 

potent estrogens: 
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- A hydroxy (phenolic) group at the C-3 position of the aromatic A-ring  

- A ketone or alcohol functional group at site 17  

- Four hydrophobic centers, corresponding to the A to D rings of estradiol 

- A hydrophobic group at the para position relative to the phenolic hydroxy group 

- The shape of the ligand must be constrained to fit the estrogen receptor pocket 

 

 

Figure 32. Structure of estradiol molecule 

 

The studied compounds consisted of a group of 120 assorted aromatic compounds, covering a 

wide range of chemical classes, with a broad degree of structural diversity, including 

bisphenols, benzophenones, flavonoids, biphenyls, phenols and other aromatic and bi-aromatic 

chemicals. 
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Figure 33. Structure for 120 compounds. 

 

For the development of SARs for the estrogenic gene activation, the whole set was split into 

five classes attending to the chemical group/substitution, following the classification of Schultz 

[119].  
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FUNCTIONAL GROUP 

CLASSIFICATION 
STRUCTURES 

Phenols OH

 

Bisphenols OH

 

Benzophenones 

O

 

Flavonoids O

A C

B

 

Biphenyls 
 

Figure 34. Functional group categories. 

 

Besides, a more fundamental structural basis classification criteria [120], was used to split the 

complete set into several categories, attending to their topological structure, that is, compounds 

with only one aromatic ring, biphenyl-like structures, two aromatic rings separated with one 

bridging atom, molecules with either two or three bridging atoms. 

 

The reported biological activity, gene expression for the α-human estrogen receptor (hERα) was 

measured in vitro using the recombinant yeast assay [121], performed according to the protocol 

of Schultz et al [122]. For each compound, the concentration eliciting an activity equal to 50% 

of the positive control 17ß-estradiol was determined. Those compounds with a maximum gene 

expression at a concentration less than 50% of 17ß-estradiol were noted as being detectable, but 

that an EC50 could not be established. For modelling purposes, experimental data were classified 

as active (A) or inactive (I) [123].  
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N. CLASS Classification STRUCTURES 

1 A single aromatic ring 

 

2 Two directly bonded aromatic rings 
 

3 
Two aromatic rings separated by one 

bridging atom 
 

4 
Two aromatic rings two benzene rings 

separated by two or three bridging atoms 

 

Figure 35. Fundamental structural basis for classification. 

 

Table 56. Structures and relative estrogenic gene activation for 120 compounds. 

N Compound EC50
 Binary 

Activity 
1 17-β-estradiol 3.91e-11 A 

2 4,4'-diethylethylene bisphenol 9.11e-11 A 

3 4,4'-cyclohexylidene bisphenol 4.43e-08 A 

4 4,4'-thiodiphenol 7.15e-08  

5 Bis (4-hydroxyphenyl) methane 8.15e-08 A 

6 4,4'-ethylidene bisphenol 2.28e-07 A 

7 Bisphenol A 4.28e-07 A 

8 4,4'-(1,3-adamantanediyl) bisphenol 6.10e-07 A 

9 4,4'-dihydroxybenzophenone 6.33e-07 A 

10 Bis(4-hydroxyphenyl)sulphone 7.50e-05 A 

11 1,1,1-tris(4-hydroxyphenyl)ethane 1.03e-03 A 

12 4,4'-dimethoxybiphenyl non active I 

13 4,4'-dipyridyl non active I 

14 2,4-dihydroxybenzophenone 4.23e-08 A 

15 2,2',4,4'-tetrahydroxyl benzophenone 1.98e-07 A 

16 4-chloro-4'-hydroxy benzophenone 4.20e-07 A 

N Compound EC50
 Binary 
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Activity 
17 3-hydroxybenzophenone 4.93e-07 A 

18 4-hydroxybenzophenone 9.84e-07 A 

19 2,3,4-trihydroxybenzophenone 1.27e-06 A 

20 2,4,4'-trihydroxybenzophenone 1.41e-07 A 

21 2,2'-dihydroxybenzophenone non active I 

22 4,4'-dichlorobenzophenone non active I 

23 2-hydroxybenzophenone non active I 

24 4-methoxybenzophenone non active I 

25 4-chlorobenzophenone non active I 

26 4-methylbenzophenone non active I 

27 4-nitrobenzophenone non active I 

28 Benzophenone non active I 

29 Genistein (4',5,7-trihydroxyisoflavone) 1.81e-07 A 

30 Biochanin A (5,7-dihydroxy-4'-methoxy isoflavone) 6.87e-07 A 

31 Naringenin (4',5,7-trihydroxyflavanone) 2.30e-05 A 

32 Morin hydrate (3,3',5,5',7-pentahydroxyflavone) 8.80e-05 A 

33 Daidzein (4',7-dihydroxyisoflavone) 4.92e-05 A 

34 Phloretin (2',4,4',6'-tetrahydroxychalcone) 1.80e-05 A 

35 4'-hydroxychalcone 1.40e-05 A 

36 Apigenin (4',5,7-trihydroxyflavone) no EC50 - 

37 Genkwanin (4',5-dihydroxy-7-methoxyflavone) no EC50 - 

38 Galangin (3,5,7-trihydroxyflavone) non active I 

39 Baicalein (5,6,7-trihydroxyflavone) non active I 

40 Chrysin (5,7-dihydroxyflavone) non active I 

41 Flavone non active I 

42 Flavanone non active I 

43 Trans-chalcone non active I 

44 2',4',6'-trichloro-4-biphenylol 1.29e-09 A 

45 2',3',4',5'-tetrachloro-4-biphenylol 6.30e-09 A 

46 2',5'-dichloro-4-biphenylol 3.00e-08 A 

47 4'-chloro-4-biphenylol 5.98e-08 A 

48 2',3',4',5'-tetrachloro-3-biphenylol 1.58e-07 A 

49 2,2',5'-trichloro-4-biphenylol 1.78e-07 A 

50 2',5'-dichloro-3-biphenylol 2.04e-07 A 

51 4,4'-biphenyldiol 2.63e-07 A 

N Compound EC50
 Binary 
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Activity 
52 4-(1-hydroxyethyl) biphenyl 7.88e-06 A 

53 3-hydroxybiphenyl 9.18e-06 A 

54 4-hydroxybiphenyl 1.15e-06 A 

55 4-(2-hydroxypropyl)biphenyl 1.84e-06 A 

56 4-biphenylmethanol 2.12e-06 A 

57 3-chloro-4-biphenylol 3.82e-06 A 

58 2-chloro-4-biphenylol 3.82e-06 A 

59 2-hydroxybiphenyl 1.84e-05 A 

60 4-methoxybiphenyl 3.39e-05 A 

61 2',5'-dichloro-2-biphenylol 5.23e-05 A 

62 3,4',5-trichloro-4-biphenylol non active I 

63 3,3',5,5'-tetrachloro-4,4'-biphenyldiol non active I 

64 Biphenyl non active I 

65 4-(1-adamantyl)phenol 8.55e-09 A 

66 4-(4-bromophenyl)phenol 2.37e-08 A 

67 Ethyl-4'-hydroxy-4-biphenyl carboxylate 5.03e-08 A 

68 Benzyl-4-hydroxybenzoate 1.07e-07 A 

69 Isoamyl-4-hydroxybenzoate 1.17e-07 A 

70 2-ethylhexyl-4'-hydroxy benzoate 1.36e-07 A 

71 4-cyclohexylphenol 1.39e-07 A 

72 Nonyl-4-hydroxybenzoate 1.65e-07 A 

73 4-(tert-octyl)phenol 1.77e-07 A 

74 Phenyl-4-hydroxybenzoate 2.28e-07 A 

75 4-phenoxyphenol 2.62e-07 A 

76 N-(4-hyroxyphenyl)-2-naphthylamine 4.15e-07 A 

77 4-(benzyloxy)phenol 5.43e-07 A 

78 4-hydroxyoctanophenone 8.85e-07 A 

79 Benzyl-4-hydroxyphenyl ketone 9.20e-07 A 

80 4-hexanoyl resorcinol 9.38e-07 A 

81 4-heptyloxyphenol 1.88e-06 A 

82 4-octylphenol 1.89e-06 A 

83 Resorcinol monobenzoate 1.95e-06 A 

84 Butyl-4-hydroxybenzoate 2.01e-06 A 

85 4-hydroxydiphenylmethane 2.12e-06 A 

86 2-hydroxydiphenylmethane 2.12e-06 A 

N Compound EC50
 Binary 
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Activity 
87 4-cyclopentyl phenol 2.41e-06 A 

88 4-hexyloxyphenol 4.02e-06 A 

89 3-hydroxydiphenylamine 4.20e-06 A 

90 4-(tert-pentyl)phenol 4.76e-06 A 

91 4-n-pentylphenol 9.50e-06 A 

92 4-pentyloxyphenol 1.73e-05 A 

93 4-butoxyphenol 1.88e-05 A 

94 N-benzyl-4-hydroxyaniline 6.27e-05 A 

95 Ethyl-4-hydroxybenzoate 7.52e-05 A 

96 4-hydroxypropiophenone 8.32e-05 A 

97 2-(4-hydroxyphenyl)-5-pyrimidinol 1.33e-04 A 

98 4-propoxyphenol 1.64e-04 A 

99 4-propylphenol 1.84e-04 A 

100 2-(benzyloxy)phenol 2.50e-04 A 

101 4-(Imidazol-1-yl)phenol 1.25e-03 A 

102 4-(4-hydroxyphenyl)-2-butanone 1.22e-03 A 

103 4-ethylphenol No EC50 - 

104 4-methylphenol non active I 

105 phenol non active I 

106 5-pentylresorcinol non active I 

107 Homovanillyl alcohol non active I 

108 1-(4-hydroxyphenyl)-1H-tetrazole-5-thiol non active I 

109 Phenyl hydroquinone non active I 

110 1-benzyl-4-hydroxypiperidine non active I 

111 4-phenylpyridine non active I 

112 2-(4-hydroxyphenyl)ethanol non active I 

113 O-(2-hydroxyethyl) resorcinol non active I 

114 1-benzyl-3-pyrrolidinol non active I 

115 Toluene non active I 

116 Chlorobenzene non active I 

117 Benzyl benzoate non active I 

118 Isoamyl benzoate non active I 

119 Methyl benzoate non active I 

120 Benzene non active I 
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Table 57. Summary of the molecular data set and the statistical protocol. 

Molecular Data Set 

Compounds Aromatic compounds 

Type of Compounds 
Bisphenols, benzophenones, flavonoids, biphenyls, phenols 

and other aromatic and bi-aromatic chemicals 

Number of Compounds 120 

Activity EC50 for the α-human estrogen receptor (hERα) 

Computational Details  

Molecular Modelling WebLAb Viewer Pro modelling 

Geometry Optimization Semiempirical AM1 level, using MOPAC 6.0 [6] 

Density Function Fitted first-order Promolecular ASA (PASA), 3-21G basis set 

MQSM Operator Overlap MQSM 

Molecular Alignment Maximum similarity superposition algorithm 

Reduction of Dimensions Principal Components Analysis (PCA) [18] 

Correlation Method Stepwise Multiple Linear Regression [18] 

Classification Method Multidimensional Discriminant Analysis (MDA) [18] 

Validation 
Internal Leave-One-Out Cross-Validation (LOO-CV) [18] 

External test set 

 

Results and discussion 

 

For purposes of statistical analysis, active compounds were assigned a value of 1, and inactive 

compounds a value of 0. The accuracy of the predictions for active compounds was calculated 

by dividing the number of active compounds correctly assigned by the model by the total 

number of active compounds; conversely, the accuracy on the predictions for inactive 

compounds was calculated as the proportion of correctly predicted inactive compounds, out of 

the total number of inactive compounds. Finally, the overall accuracy of the model was also 

calculated, considering all the compounds. 

 

Molecular quantum similarity indices (MQSI), which mainly encode information regarding 

steric or electrostatic distribution on the surface of the molecule, and indicator variables, 

indicating the presence or absence of explicit structural features were computed [15]. Besides, 

additional physico-chemical properties were also calculated. To account for hydrophobicity, the 

logarithm of the octanol-water partition coefficient was calculated using the KOWWIN 

software [124].  
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Table 58. Physico-Chemical Descriptors and Indicator variables. 

Descriptor Abbreviation 

Logarithm of octanol-water partition coefficient Log P 

Molecular weight MW 

Number of atoms At 

Number of carbons C 

Number of hydrogen bond donor groups HB_don 

Number of hydrogen bond acceptor groups HB_acc 

Number of hydroxyl groups  OH 

Number of hydroxyl groups in para-position p-OH 

Number of rings R 

Number of benzenes Bz 

Number of phenols Ph 

 

Overlap MQSMs, highly sensitive to exact atom superpositions, provide similarity terms with 

reliable values, due to the fact that all the compounds in the data set have at least one aromatic 

ring. The use of this type of this measure mainly accounting for steirc interactions is in 

agreement with previously published studies [125]. 

 

Table 59. Multilinear Discriminant Analysis Classification for the entire set, made of 117 
compounds with available reported activity values. The optimal model has been marked in 
italic face. 

No Descriptors 
Selected 

Descriptors 

%Corr.Class. 

(adjustement) 

%Corr.Class. 

(cross-validation) 

# Ph 0.838 0.838 1 

# Ph, PC3, 0.829 0.829 2 

# Ph, PC3, # C 0.880 0.872 3 

# Ph, PC3, # C, # Rings 0.872 0.855 4 

 

Table 60. Results for the optimal QSAR model for the entire set. (% CC= percentage of correct 
classifications; % CCCV= percentage of correct classifications for cross-validation.) 

Adjustment Cross-Validation 

% CC 
% CC for 
estrogenic 

compounds 

% CC for 
inactive 

compounds 
% CC 

% CC for 
estrogenic 

compounds 

% CC for 
inactive 

compounds 

88.0 103/117 
90.1 

(73/81) 

83.3 

(30/36) 

87.2 

(102/117) 

88.9 

(72/81) 

83.3 

(30/36) 
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Table 61. Misclassified compounds. 

Compound Binary 
Activity 

Predicted 
Activity Misclassification 

21 0 1 False positive 

23 0 1 False positive 

52 1 0 False negative 

55 1 0 False negative 

56 1 0 False negative 

60 1 0 False negative 

62 0 1 False positive 

63 0 1 False positive 

66 1 0 False negative 

80 1 0 False negative 

84 1 0 False negative 

95 1 0 False negative 

109 0 1 False positive 

112 0 1 False positive 

 

 

Table 62. Analysis of the misclassified compounds. (aintram HB stands for intramolecular 
Hydrogen Bonding). 

False Positives False Negatives 

N Explanation N Explanation 

21,23 OH form intram HBa with 
a carbonyl group  

52,55, 
 56,60 

absence of phenolic group, but O 
could could act as a weaker HB 

acceptor 

66 biased MQSM for the presence of a 
heavy atom (Br)  

80,84,95 lack of the appropriate hydrophobic 
area 

62,63 OH form a weak intram 
HBa with a neighboring Cl 

109,112 no clear explanation 
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Table 63. Selected optimal model for the fundamental structure-based classes. 

Fund. Struc. 
Class 

Number 
of 

molecules 
N Selected 

Descriptors % CC % 
CCCV 

Misclassified 
Compounds 

Predicted 
Activity 

 
37 3 

p-OH, log 

P, PC6 

97.3 

(36/37)
91.9 104 

1 False 

positive 

 
28 3 

PC14, PC4, 

PC17 

92.9 

(26/28)
82.1 47, 57 

2 False 

negatives 

 
28 2 

p-OH, 

PC20 

92.9 

(26/28)
89.3 17, 86 

2 False 

negatives 

 

23 2 Ph, PC1 
100 

(23/23)
100 - - 
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Figure 36. Predicted versus experimental activities. 

 

The complete data set was split into a training and a test set, maintaining approximately the 

same number of molecules and a proportional ratio of active and inactive compounds for both of 

them. Test set selection was made according to two criteria. First, the two sets were chosen on 

the basis of the distribution of the three most significant descriptors, in order to ensure that 

training and evaluation sets contained chemicals representative of the diversity of structures. 

From knowledge of the spatial distribution of the compounds in the 3-D descriptor space, they 

were selected to provide a representative sample of structural diversity in both sets.  
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Figure 37. Second Principal Component (PC2) versus First Principal 
Component (PC1). 
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Figure 38. 3D descriptor space plot, where empty dots stand for the 
inactive compounds, while summation symbols stand for the active ones.  

 

In a second approach to test set selection, the test set was extracted from the whole set randomly 

to ensure that the results were not conditioned for the distribution of the data. For the sake of 

comparison, training and test sets were swapped and modelling and validation reperformed.  
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Table 64. QSAR results for the training and test sets. 

Training Test Test Set Selection 

Criteria N. % CC % CCCV N. % CC Misclassified Compounds 

59 77.9 76.3 58 87.9 23, 39, 40, 97, 98, 99 
3D distribution 
of descriptors 58 91.4 84.5 59 83.1 

21, 24, 56, 60, 62, 78, 80, 95, 

96, 109 

59 83.1 79.7 58 62.0 

38, 40, 42, 44, 46, 48, 50, 52, 

54, 56, 58, 60, 69, 71, 73, 75, 

83, 87, 91, 93, 99, 101 random 

58 89.7 87.9 59 79.7 
21, 23, 39, 41, 55, 63, 68, 90, 

96, 98, 102, 106 

 

For the complete data set, the most important descriptors were some of the constitutional 

parameters accounting for structural features, such as the number of phenols and the number of 

carbons, together with the third principal component extracted from the matrix of molecular 

quantum similarity indices. The presence of a phenolic OH group resembling the 3-hydroxyl 

group of the estradiol molecule seems to be essential for effective binding to estrogen receptor. 

In addition, the number of carbons is indicative of the hydrophobic contribution from the ligand. 

Finally, the third principal component, accounting for the 4.3% of the total variation of the 

similarity indices, was found to be the most predictive. 

 

With the same tendency, within the class-based models classification it can be observed that 

most of the models include indicator variables, but the model corresponding to the bi-phenyl-

like structure class. This may possibly be due to the exact interatomic alignment of the rigid 

biphenyl common pattern. 

 

Comparison of results for the complete data and for separate classes indicates that slightly 

poorer results were obtained for the entire data set. For the whole set, results are biased to 

produce a greater percentage of false positives than false negatives. For drug discovery, false 

positives are of concern due to the unjustified cost of synthesizing a chemical with a low 

probability of being efficacious. Conversely, for regulatory purposes, the main goal is to 

minimize the rate of false negatives, in order to avoid any threat to public health; thus, results 

could be indicative of the utility of this model for health hazard assessment. As expected, cross-

validated results for almost all the models showed a slight decrease in classification rate. 
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Concerning the results for the training and test tests, it can be observed that, in relation to the 

predictive ability of the test sets selected from knowledge of the 3D distribution of the 

descriptors was comparable to that for the complete data set. However, in the randomly chosen 

test sets, the correct classification rates were lower. The decrease in the predictivity of the 

models due to the test set selection method is to be expected. Analysis of the results for the 

different test sets indicates that more than the half of misclassified compounds in the two former 

test sets coincides with the misclassified ones in the latter cases.   

 

The fact that almost the totality of compounds belonging to the first test set have been 

incorrectly assigned in the other test subsets, may be an indication of some intrinsic features in 

the remaining compounds hindering the structure-activity relationship; thus, some important 

information might be missing from these models and the selection of the test set. Conversely, 

for the misclassified compounds from the complete set, the classes based on fundamental 

structure and the test and training sets do not coincide. A reason for this behaviour could be the 

different type of information encoded in the different descriptors used to build the models.  

 

Concerning the predictivity of the models, three compounds (36, 37 and 103) do not possess an 

experimentally measured estrogenic binding affinity. When the complete set of molecules was 

used to predict the binding ability of these ligands, the model suggested all three compounds to 

be unequivocally active. This is in agreement with results obtained in the literature [126-128]. 

 

Computer-based methods provide the possibility to screen for potential estrogens, and predict 

their activity. Therefore, quantum similarity in conjunction with the use of structural descriptors 

is a valuable tool for QSAR and computer-aided drug design. The assignment of experimental 

data into discrete categories is useful in the use of high throughput screening (HTS) to identify 

lead compounds, especially in noncongeneric libraries where there is no common structure. The 

use of this qualitative approach allows for the correlation between chemical structures and 

discrete activities to be obtained, at least for preliminary compound selection. The success of the 

different proposed approaches confirms that, whereas hydrophobicity and the presence of some 

functional groups play a central role in determining toxic potency, the electronic effects derived 

from QST are able to discriminate between active and inactive estrogen ligands. 

 

Appended Contribution 

 

► Gallegos Saliner, A.; Amat, L.; Carbó-Dorca, R.; Schultz, T.W.; Cronin, M.T.D. Molecular Quantum 

Similarity Analysis of Estrogenic Activity. J. Chem. Inf. Comput. Sci., 43, 2003, 1166-1176. 
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3.3 Antituberculotic Activity  

Introduction 

 

The current search for new antimycobacterial agents is very urgent as tuberculosis has become a 

major emerging opportunistic infection. The most common pulmonary tuberculosis is caused by 

infection by inhalation of the bacteria Mycobacterium tuberculosis and affects mainly the 

respiratory system, but also includes other vital organs.  

 

In the past decades, tuberculosis cases began to increase even in the industrialized world. In 

addition, also the infections caused by atypical mycobacterial strains, e.g., Mycobacterium 

avium complex, show a rising occurrence among children, elderly, and HIV-infected patients 

[129-131], thus becoming a serious health problem.  

 

Nowadays, although the mortality within the infected has significantly decreased, tuberculosis 

continues to be a devastating disease worldwide and is believed that approximately one-third of 

the world’s population harbours Mycobacterium tuberculosis and it is at risk for developing the 

disease [132]. Indeed, it is estimated that about 8 million new cases of tuberculosis and 3 

million deaths from this disease occur annually around the world [133]. 

 

Since the discovery of the first effective drug in the 1940s [134-135], no new drugs appeared on 

the market for 30 years. However, the developing resistance to conventional antituberculotics 

[136] has stimulated the research of new compounds. To such an extent, several QSAR studies 

[137-140] are devoted to the discovery of first line drugs.  

 

In the course of the research into potential antimycobacterial and antifungal agents attention 

have been turned to benzanilides, thiobenzanilides, and related compounds. These groups of 

compounds are characterized by a wide spectrum of biological activities depending on the type 

of substitution [141-143]. It is known that the replacement of oxo group by thioxo group leads, 

in general, to the increase in the antimycobacterial activity [144]. 
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3.3.1 Fragment-based Study of benzoxazines 

In particular, this example case is focused in the study of benzoxazines, a very prospective 

group of new antimycobacterial compounds [145], which have been synthetized and tested for 

antimycobacterial activity.  

 

QSAR models were carried out using fragment self-similarity measures, in order to provide a 

theoretical rationale for the observed increase of antimycobacterial activity induced by the 

replacement of the oxo group in 3-aryl-2H-1,3-benzoxazine-2,4(3H)-diones by sulphur. 

Especially, the antimycobacterial activity in six series of substituted 3-phenyl-2H-1,3-

benzoxazine-2,4(3H)-dithiones and 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2,4(3H)-diones was 

examined.  

 

Table 65. Molecular sets of antituberculotics. Number of molecules and parent structures 
for each set. The number preceding each substituent indicates its position in the phenyl 
ring. 

SET 
Number of 

Molecules. 
DERIVATIVES 

PARENT 

STRUCTURE 

M 9 
6,8-dichloro-3-phenyl-2H-1,3-

benzoxazine-2,4(3H)-dione [146] 

O

N

O

O

X

B r

B r

 

N 8 
6,8-dibromo-3-phenyl-2H-1,3-

benzoxazine-2,4(3H)-dione [146] 

O

N

O

O

X

C l

C l

 

S 11 3-phenyl-2H-1,3-benzoxazine-

2,4(3H)-dione [147] 

O

N

O

O

X  

U 8 
3-phenylquinazoline-2,4(1H,3H)-

dione [147] 

H
N

N

O

O

X  

Y 5 
6,8-dichloro-3-phenyl-2H-1,3-

benzoxazine-2,4(3H)-dithione [148] 

O

N

S

S

X

C l

C l

 

Z 5 
3-phenylquinazoline-2,4(1H,3H)-

dithione [148] 

H
N

N

S

S

X  
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Table 66. Classification into subclasses and numbering for molecular structures of the entire antituberculotic set. 

SUBST. M N S U Y 
 

Z 
 

       

4H 

M01 N01 S01

 

U01 

 

Y01

 

Z01 

 
       

4CH3 

M02 N02 S02

 

U02

 

Y03 Z03

 
       

4Br 

M03 N03 S03

 

U03

 

Y02

 

Z02

 
       

4OCH3 

M04 N04 S04 U04

  

       

4Cl 

M05 N05 S05

 

Y04 Z04

       

3Cl, 4Cl 

M06 N06 S06 U05

 

Z05

       

3Cl 

M07 N07 S07

 

Y05
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SUBST. M N S U Y 
 

Z 
 

3NO2 

M08

 

S10 U07

  

       

4N(CH3)2 

M09 N08 S12

   

       

3F   

S08

   

       

4F   

S09 U06

  

       

4NO2   

S11

   

       

3CH3, 

4 CH3 
   

U08
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Antimycobacterial activities of the sets have been evaluated in vitro [146-147], using 

Mycobacterium tuberculosis CNCTC My 331/88, i.e. different standard strains of mycobacteria, 

obtained from the Czech National Collection of Type Cultures (CNCTC), of the Institute of 

Public Health of Prague. The reported activity was expressed as the Minimum Inhibitory 

Concentration (MIC), i.e. the lowest concentration of a substance at which the inhibition of the 

growth occurs measured in µmol/l [147]. In order to have a narrower range of values, activity 

values for the tuberculous strain were logarithmically transformed.  

 

Table 67. Distinctive substitution and antituberculotic activity (My 331/88) for each compound. Those activities 
marked with an asterisk have not been precisely measured. 

Compound Substitution Log (M.tub) Compound Substitution log (M.tub) 

M01 4H 1,8 S07 3Cl 1,491 

M02 4CH3 1,5 S08 4F 2,097 

M03 4Br 1,5 S09 3NO2 1,204 

M04 4OCH3 1,8 S10 4NO2 1,204 

M05 4Cl 1,2* S11 4N(CH3)2 2,097* 

M06 3Cl, 4 Cl 0,9 U01 4H 2,699 

M07 3Cl 0,9 U02 4CH3 2,699 

M08 3NO2 1,2 U03 4Br 2,398 

M09 4N(CH3)2 2,1* U04 4OCH3 2,097* 

N01 4H 1,8 U05 3Cl, 4Cl 1,792* 

N02 4CH3 1,2 U06 4F 2,097* 

N03 4Br 1,2 U07 3NO2 2,398 

N04 4OCH3 2,1 U08 3CH3, 4CH3 2,398 

N05 4Cl 1,2 Y01 4H 0,903 

N06 3Cl, 4Cl 0,9 Y02 4Br 1,204 

N07 3Cl 0,9 Y03 4CH3 0,602 

N08 4N(CH3)2 1,8* Y04 4Cl 0,903 

S01 4H 2,097 Y05 3Cl 0,602 

S02 4CH3 1,792 Z01 4H 1,505 

S03 4Br 1,491 Z02 4Br 1,204 

S04 4OCH3 1,792 Z03 4CH3 1,204 

S05 4Cl 1,204 Z04 4Cl 1,505 

S06 3Cl, 4Cl 0,903 Z05 3Cl,4Cl 1,204 

 

It has to be noted that the activity for the compound S08 was not available. 
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Table 68. Summary of the molecular data set and the statistical protocol. 

Molecular Data Set 

Compounds Benzoxazines 

Type of Compounds 
3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones 

3-phenyl-4-thioxo-2H-1,3-benzoxazine-2,4(3H)-diones 

Number of Compounds 46 

Activity Log (MIC), MIC: Minimum Inhibitory Concentration  

Computational Details 

Molecular Modelling WebLAb Viewer Pro modelling 

Geometry Optimization PC Spartan software package [7] 

Density Function Fitted first-order Promolecular ASA (PASA), 3-21G basis set 

MQSM Operator Overlap Operator, QS-SM applied to fragments 

Molecular Alignment Not Needed  

Reduction of Dimensions Principal Component Analysis (PCA) 

Selection of Variables Most Predictive Variables Method (MPVM) 

Correlation Method Multiple Linear Regression (MLR) 

Validation Internal Leave-One-Out Cross-Validation (LOO-CV) 

 

Results and discussion 

 

For the development of QSAR, the original empirical parameters used as descriptors in QSAR 

equations were replaced by the corresponding theoretical counterparts based on appropriate 

similarity and/or self-similarity measures. 

0
full X

X AAAA
X fragments

activity b Z b Z a
=

= + +∑   

X
X AA

X fragments

activity b Z a
=

= +∑   

where full
AAZ stands for QS-SM for the whole molecule, and X

AAZ stands for a fragment QS-SM. In 

order to rationalize the observed biological activity in the studied series of compounds, the 

broad class of all possible single, two and three-parameter multilinear QSAR models was 

scrutinized.  

 



292  MQS in QSAR: Applications in CAMD 

 

Table 69. Full set of QSAR models considered. Fri represents the i-th fragment, and full stands for the 
similarity measure corresponding to the whole molecule. 

One-parameter 

Model 

Two-parameter 

model  

Two-parameter 

Model 

Three-parameter 

model  

Full    

fr1 fr1 ; full fr1 ; fr2 fr1 ; fr2 ; full 

fr2 fr2 ; full fr1 ; fr4 fr1 ; fr4 ; full 

fr3 fr3 ; full fr1 ; fr5 fr1 ; fr5 ; full 

fr4 fr4 ; full fr1 ; fr6 fr1 ; fr6 ; full 

fr5 fr5 ; full fr2 ; fr3 fr2 ; fr3 ; full 

fr6 fr6 ; full fr3 ; fr5 fr3 ; fr5 ; full 

fr7 fr7 ; full   

 

The statistical importance of the aforementioned models was evaluated using the statistical P 

analytical importance criterion [149] and the related confidence level of a correlation, CL.  

 

This fragment-based similarity approach can be used even in the situation where the fragment 

responsible for the observed activity is not known beforehand. In the present case, the 

systematic scrutiny of theoretical QSAR models associated with different molecular fragments 

was used for the detection and localization of the fragment most likely to be responsible for the 

observed activity.  

 

4
6

3

2

5

X

1

 

Figure 39. Numbering of atoms for the definition of 
molecular fragments considered as potential 
pharmacophores in the studied series of compounds. 
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Table 70. Definition of the molecular fragments. * O2, O5 and O6 can be correspondingly 
replaced by S2, S5 and N6. 

Fragment 
Fragment 

Number 

Number 

of Atoms 
FRAGMENT 

C1=O2 1 2 

O

N

O

O

X

C

 

C4=O5 2 2 

C
O

N

O

O

X  

N3-C1=O2 3 3 

O

N

O

O

X

C

 

N3-C4=O5 4 3 
C

O

N

O

O

X

C

 

O6-C4=O5 5 3 

C
O

N

O

O

X

C

 

N3-C4=O5-(O6) 6 4 

C
O

N

O

O

X

C

 

C1=O2-N3-C4=O5-(O6) 7 6 

C
O

N

O

O

X

C
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Results and discussion 

Table 71. Selected QSAR equations and statistical significance of best QSAR models for individual sets of 
molecules. 

Set Na Fragmentb r2 r2cv Pc % CLd Slope Intercept 

M 9 fr1 0,755 0,720 0,0023 99,77 -1069.578 119918.184 

N 8 fr5 0,511 0,430 0,0463 95,37 -333.623 64292.314 

N 8 fr1 0,510† 0,428 0,0467 95,33 -948.510 106344.478 

S 11 fr5 0,558 0,509 0,0083 99,17 -232.364 44779.629 

S 11 fr1 0,553† 0,504 0,0087 99,13 -732.153 82087.273 

U 8 fr4 0,150 0,008 0,3438 65,62 260.272 -42728.963 

Y 5 full 0,634 0,512 0,1070 89,30 0,000 0,547 

Z 5 fr3 0,277 0,036 0,362 63,80 -662,325 588694,097 
aNumber of molecules in the set. bLabel of the fragment. cPreviously defined probability. dConfidence 

Level. † Second best correlation model  

 

Table 72. Summary of best QSAR models for the data sets formed by joining several series of molecules.   

Set Na Fr.b r2 r2cv Pc % CLd Slope Intercept 

M/N 17 fr1 0,622 0,597 1,692E-04 99,98 -1007.783 112989.913 

 14‡ fr1 0,531 0,491 3,131E-03 99,69 -1194.523 133926.466 

M/N/S 28 fr1 0,524 0,506 1,338E-05 100,00 -684.817 76780.271 

 24‡ fr1 0,422 0,395 5,967E-04 99,94 -651.294 73021.824 

S/U 19 fr1 0,618 0,595 6,609E-05 99,99 -226.356 25379.508 

 15‡ fr1 0,768 0,750 1,834E-05 100,00 -288.370 32332.312 

U/Z 13* fr1 0,795 0,776 4,300E-05 100,00 -0.0014 2.4766 

 13* fr5 0,795 0,776 4,300E-05 100,00 -0.0014 2.5483 

 10‡* fr1 0,943 0,935 3,067E-06 100,00 -0.0016 2.7031 

 10‡* fr5 0,943 0,935 3,067E-06 100,00 -0.0016 2.7889 

Y/Z 10 fr1 0,613 0,564 7,396E-03 99,26 -77,709 65023,499 

S/Z 16 
fr3 

fr5 
0,566 0,499 4,405E-03 99,56 

164,868 

-171,624 
6004,685 

M/N/S/ 

U/Y/Z 
39‡ 

fr1 

fr5 
0,593 0,569 9,900E-08 100,00 

0.0292 

-0.0303 
4.0303 

aNumber of molecules in the set. bLabel of the fragment. cPreviously defined probability. dConfidence 

Level. ‡Compounds with not exactly measured activities omitted. *Comparable models could be obtained 

using practically any of the fragments. 

 



Applications of QSM in QSAR  295 

 

The universality and flexibility of the similarity approach is demonstrated by the formulation of 

analogous theoretical QSAR models for wider data sets formed by joining several series of 

compounds.  

 

From the whole set of analyzed QSAR models it can be deduced that the most statistically 

important correlations were in almost all cases obtained using single-parameter equations. In 

addition, a more careful inspection revealed that descriptors the most often repeating in 

successful models were always associated with the fragments fr1 and fr5. This result is very 

interesting since these fragments just involve oxo and thioxo groups, whose role in determining 

the antimycobacterial activity of the studied series of molecules was the main goal of the 

scrutiny in this study.  

 

For the series S, for which the traditional approach yielded satisfactory correlations using two-

parameter correlation equations [149], comparable or even better accuracy could be obtained 

using theoretical QSAR models based on single-parameter equations employing fragment 

similarity measures associated with fragments fr1 or fr5; 

cba ++= πσ-1(MIC) log   

20.99%CL   0.008P
10n   10.38F   0.234s   0.865r

873.1273.0826.0(MIC) log -1

==
====

−+= πσ
  

º cPba ++= log(MIC) log -1 σ   

98.72%CL   0.013P
10n   8.64F   0.25s   0.844r

084.3log313.0826.0(MIC) log -1

==
====

−+= Pσ
  

The sets U, Y and Z exhibit a slightly more complex situation. For these cases, the best QSAR 

models were obtained using the fragment similarity measure associated to other fragments but 

fr1 and fr5. However, the statistical importance of these correlations was very low so that it is 

difficult to speak of reasonable correlation. This is attributed to the relatively small number of 

molecules in sets Z and Y and, also, to the fact that the antimycobacterial activity of some of the 

studied molecules is so low that they are practically inactive [149]. 
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Besides, empirical QSAR models were also reported for some of the extended data sets [148-

146]. The models achieved in this study are comparable or even better to those previously 

reported. Thus, for example, the following empirical QSAR correlations were reported for the 

joined series M and N [146], but in contrast to the three-parameter empirical model,  

99.68%CL   0.003P
14n   9.14F   0.234s   0.856r

680.1057.0293.0675.0(MIC) log

==
====

+−−−= Iπσ
  

the proposed theoretical approach leaded to a comparable statistical significance with a single-

parameter equation, using the self-similarity measure associated with the fragment fr1 as the 

corresponding descriptor. 

1 21 C
AAlog( ) -1194.523Z 133926.466

n 14   r 0.728   P 0.003   %CL 99.69

OMIC − == +
= = = =

  

Similarly, the reported QSAR model for the joint series Y and Z [148] required the use of seven 

indicator variables, while only a single parameter equation based on the self-similarity measures 

associated with the fragment fr1 was again needed to obtain the same quality correlation using 

the similarity approach. 

1 21 C
AAlog( ) -77.709Z 65023.499

n 10   r 0.783   P 0.007   %CL 99.26

OMIC − == +
= = = =

  

Another example of the broad applicability of similarity approach concerns the joint set of 

molecules involving the series S and U for which a single-parameter theoretical QSAR model 

could again be formulated although no analogous QSAR model based on traditional approach 

was reported so far. 

( )
99.99%CL  0.000066   P0.786r   19n

508.25379356.226log 211

====
+−= =− OC

AAZMIC   

This joined set is interesting because it combines the series U that involves the set of the 

practically inactive 3-phenylquinazolines with the set of active benzoxazines. The reasons for 

this successful correlation are clearly visible from the representation of experimental activiy 

versus self-similarity measures for fr1. While the scatter of the data within the inactive series U 

is relatively significant so that no reasonable correlation with fr1 exists, the inclusion of the 

active series S improves the situation dramatically. This is due to the big difference in the 

activity of the molecules in sets S and U, which dominates the successful correlation of the 

combined sets S/U. 
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Figure 40. Experimental activity versus self-similarity measures for 
fr1, for the joint set S/U, where de circles symbolize the compounds of 
set S, and the crosses the ones of set U. 

 

A similar advantage of the theoretical approach is also evident from the fact that comparable 

theoretical QSAR models can be formulated for the more extensive series of molecules 

involving all the studied sets, for which no analogous empirical equation has been reported 

using the traditional approach.  

Thus, for example, the following two-parameter QSAR model was found for the extensive set 

of molecules involving the joint series M, N, S, U, Y and Z. 

( )
001%CL  0.00000009   P0.770r   39n

0303.40303.00292.0log 546211

====
+−= ==− − OCO

AA
OC

AA ZZMIC   
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Summarizing the above results, it can be concluded that the reported similarity approach is in 

complete harmony with previous experimental studies. Thus, for example, the replacement of 

the oxo group in the position 2 by the corresponding thioxo group was reported as the main 

factor responsible for the observed increase of antimycobacterial activity [148]; hence, it is 

interesting that it is just the fragment involving these groups (fr1), which was found to yield the 

best theoretical QSAR correlations with the experimental activity. A similar albeit weaker 

activating effect was also reported to accompany the replacement of the oxo group by thioxo in 

the position 4 and the importance of this particular group (fr5) is again clearly revealed by the 

fact that the corresponding similarity measure was detected as the second most successful 

molecular descriptor in the reported theoretical QSAR models. On the other hand, the 

replacement of O by NH in the series of benzoxazines and quinazolines is clearly accompanied 

by the drop of the activity which is also well reproduced by the calculated descriptors.  

 

While traditional QSAR models were able to describe the activity only within each of the six 

sets of studied molecules individually, the present approach is much more general and a single 

universal QSAR model describing the activity of all the 39 studied molecules in all the studied 

series together has been successfully built.  In particular, the replacement of the oxo group by 

the thioxo group in position 4 on the benzoxazine ring of the antitubercular 3-(phenyl)-2H-

benzoxazine-2,4 (3H)-diones increases the activity, as well as the similar replacement in 

position 2. 

 

Appended contribution 

 

► Gallegos, A.; Carbó-Dorca, R.; Ponec, R., Waisser, K. Similarity approach to QSAR. Application to 

antimycobacterial benzoxazines. Int. J. Pharm., 269, 2004, 51-60. 
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1 FINAL CONCLUSIONS 

This memory deals with several aspects related to the calculation and implementation of 

Quantum Similarity Measures (QSM). The application of Quantum Similarity Indices (QSI) as 

molecular descriptors in the prediction of the functionality of chemical compounds illustrates 

the theoretical background for the relationships between molecular structure and a 

physicochemical property (Quantitative Structure-Property Relationships, QSPR), biological 

activity (Quantitative Structure-Activity Relationships, QSAR) or toxicity (Quantitative 

Toxicity-Property Relationships, QSTR). The use of Quantum Similarity Theory (QST) in the 

development of QSAR for application in Computer-Assisted Molecular Design (CAMD) or, 

more specifically, in Computer-Assisted Drug Design (CADD), leads to several general 

conclusions:  

I) The application of Molecular Quantum Similarity (MQS) to QSAR yields not only 

acceptable but also satisfactory results in the construction of diverse structure-

function correlation studies, such as QSPR, QSAR and QSTR. In general, structure-

function correlation studies can reveal the environmental, chemical, biological, 

toxicological, or pharmacological information embedded in molecular structures. 

Thus, the application of Quantum Similarity (QS) in the QSAR framework allows 

the satisfactory description of functions, i.e. physical properties, biological activities, 

or molecular toxicities, associated to molecular sets. This approach has been 

implemented in different fields such as medicinal chemistry, environmental 

chemistry, and protein engineering, among others. Hence, QSAR provide valuable 

information about the biological behaviour of potential drugs, thus establishing a 

pattern for CADD, which may aid in rational-based medical research. Thus, QSAR 

enable the resolution of several problems such as the development of new therapies 

and the design of novel drugs to fight against drug-resistant infectious diseases like 

malaria and tuberculosis, or degenerative mutagenesis, like carcinogenicity and 

estrogenicity. This accurate methodology, developed with adequate mathematical 

and computational tools, leads to a faster, cheaper and more comprehensive 

synthesis of new products, avoiding or at least reducing experimental synthesis and 

testing with animals. In comparison with the high cost of in vitro and in vivo assays, 

such rational-based design strategies carry a low cost, which may aid to effectively 

reduce the cost of launching new products into the market.  
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II) The applicability of QS for the generation of descriptors in QSAR correlation studies 

yields valuable results for molecular systems of diverse interest using relatively 

simple statistical methodologies. The use of Molecular Quantum Similarity 

Measures (MQSM) in QSAR has several characteristic features of special interest for 

application in CAMD: 

IIA) The substitution or at least complementation of traditional 

empirical parameters by theoretical descriptors based in Quantum 

Mechanical (QM) calculations provides a proved alternative way to 

develop QSAR models with good predictive capacities. Besides, 

similarity-based descriptors constitute not only a reliable source to 

derive QSAR but also a valuable complement to other descriptors 

and even other procedures. QSI, easily derived from well-defined 

QM principles, constitute a source of general consistent unbiased 

and homogeneous theoretical descriptors, useful to establish sound 

and reliable QSAR analyses. In summary, the application of MQS 

to QSAR provides unbiased Quantum Object (QO) descriptors, 

alternative to classical empirical molecular parameters 

IIB) The building of QSAR models within the molecular similarity 

frame can be considered as limited and self-contained, provided 

that the calculation choices are constrained to a few variables such 

as the selection of the similarity operator, the normalization or 

scaling of descriptors, and the statistical methodology 

IIC) The low computational cost results in affordable computational 

resources and time requirements 

III) QSM constitute a natural source of chemical structure description for quantum 

objects, namely atoms and molecules. In particular, MQSM provide an accurate and 

complete degree of description of the information encoded in molecular structures. 

In the QSAR domain, several approximations based on QS can describe different 

representations of molecular structure:  
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IIIA) The first description considers the global electronic density of 

objects, including the spatial disposition of the compared 

molecules, that is, the three-dimensional structure in the space. 

This approach, which may require requires an alignment process to 

compare molecular structures, employs the whole Density Function 

(DF) as a source to generate MQSM, i.e. quantum chemical 

descriptors that parameterise molecular speciation and reactivity. 

IIIB) A second approach, derived from the first one, is founded on the 

partition of the global density of molecules in fragments. For such 

purpose, Fragment Quantum Self-Similarity Measures (QS-SM) 

are used as descriptors to analyse the basic structural requirements 

for a given activity. QS-SM defined for fragments not only can 

model electronic properties due to the effect of substituents, but 

they can also identify a specific activity or property with the 

corresponding functional group or fragment located in the 

particular molecular region that exhibits the active or reactive 

chemical process. The detection of common molecular regions 

responsible for a biological response allows the obtaining of a 

pattern with the active regions, of high interest for drug design 

purposes. In special, fragment descriptors can be derived from the 

substitution of a common structure template in a set of congeneric 

compounds. 

IIIC) Finally, the simple two-dimensional representation of structures by 

molecular graphs can be combined with the quantum similarity 

theory background. The inclusion of quantum mechanical 

parameters in the classical topological approach constitutes an 

alternative method for the calculation of molecular descriptors. The 

application of QST together with classical graph theory yields the 

obtaining of the so-called Topological Quantum Similarity Indices 

(TQSI). Classical topological matrices, based in distances and 

connectivity, have been substituted by topological quantum 

similarity matrices, which also take into account three-dimensional 

information. The satisfactory results obtained with this new 

procedure reveal the connection between molecular topology and 

the general theory of quantum similarity.  
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IV) The use of several approximations in the methodology allows the efficient 

application of QSM. The reduction of the computational cost permits the application 

of QSM to a high number of molecules or to large molecular systems of biological 

interest. To mention some approaches,  

IVA) The first step to save computational costs can be a comparative 

analysis between different geometry optimization methods to 

choose the best compromise between accuracy and cost for the 

obtained descriptors  

IVB) Fitted first-order electronic Density Functions (DF) for atoms can 

be computed with the Atomic Shell Approximation (ASA), at 

different levels of theory depending on the selection of the adjusted 

basis function set. Indeed, the density function for molecules can 

be accurately described by the use of the Promolecular ASA 

(PASA), implemented as an extension of ASA. The formulation of 

PASA density simply consists in the addition of the individual 

ASA density contributions for the atoms that conform the 

molecule. Despite its simplicity, the obtained QSM do not 

significantly differ from those derived from ab initio DF, but the 

amount of time and computational effort required to calculate the 

density are effectively reduced 

IVC) The molecular superposition process is crucial in some molecular 

similarity studies founded in three-dimensional descriptors. The 

molecular pairwise alignment to compare two compounds can be 

rapidly performed using the Topo-Geometrical Superposition 

Algorithm (TGSA), as an alternative to the costly maximization of 

the molecular similarity integral that requires the repeatedly 

computation and optimization of QSM. TGSA, based in 

geometrical and topological concepts, compares the maximum 

common substructure of the compared molecules. One of the main 

advantages of this method consists of its comprehensive simplicity, 

and the coherence with chemical intuition. In addition, the absence 

of any kind of quantum mechanical or semi-empirical calculations 

results in a fast algorithm able to perform large amounts of 

alignments within reasonable time limits 
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V) A general protocol for the generation of predictive QSAR models based on the 

application of MQSM in QSAR has been presented. The protocol comprises 

molecular modelling, generation of descriptors, and statistical correlation and 

validation techniques. In particular, several different applications have been 

envisaged:  

VA) Quantitative studies for the derivation of numerical QSAR 

correlations, expressed by mathematical equations. For such 

purposes, simple linear QSAR models have been developed by 

means of Multiple Linear Regression (MLR) techniques. The 

elaboration of simple linear models combined with simple selected 

statistical methods allows a more direct interpretation of results 

VB) Semiquantitative studies for the qualitative classification of 

compounds into categorical classes using Linear Discriminant 

Analysis (LDA) techniques. The biological activity of molecular 

series can be estimated in a discrete manner, thus establishing a 

pattern for classification 

VC) Besides, rigorous statistical validation techniques have been 

adopted for the QSAR models in order to assess that no chance 

correlations or over-parameterised models have been obtained. In 

addition to the internal Cross-Validation (CV) and the computation 

of random tests, real predictions have been attempted by using 

external test sets, when further data was available 
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VI) Different molecular activities have been tested for correlation. In most application 

examples, satisfactory correlations were obtained using a relative small number of 

molecular descriptors, and affordable computational requirements. Even if other 

methodologies might provide better results, it must be emphasized that the procedure 

used along this work, as well as the generation of molecular descriptors, has not been 

manipulated. Hence, the exposed QSAR protocol consists of a methodological 

pathway made of unbiased and universal MQSM descriptors able to characterize 

different molecular activities without introducing further information than those 

provided by quantum similarity based on electronic density functions, although 

additional refinements or statistical tools may be applied to the procedure in order to 

improve the results according to each molecular set under study. In summary, the 

application of MQSM to QSAR provides comparable or even better results to other 

highly predictive and widely established QSAR approaches. Additionally, it has 

been shown that most of the information characterized by the original descriptors is 

contained in molecular DF, the basis of MQSM, and can be extracted from MQSM 

using simple linear transformations. Thus, it can be concluded that, by combining 

internal and external validation techniques, real predictive QSAR models have been 

achieved  
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2 FUTURE PERSPECTIVES 

As future objectives, several options have been envisaged. In complex biological systems, such 

as receptor-ligand systems, although in some cases experimental data from molecular geometry 

may be available, in other cases they are not. Hence, the minimum energy conformation of the 

isolated molecule is assumed to elicit the biological activity. However, it must be remarked that 

this approximation might lead to suspicious results. 

 

In the case of non-rigid molecules with rotatable bonds, the same assumption holds. Thus, the 

inclusion of flexibility in molecular alignment, allowing the rotation of torsion bonds and slight 

variations in angle and bond distances, has been already considered and implemented. Related 

to the urgent need to register the effect of bioactive conformations, the idea of developing a new 

Chiral MQSM that takes into account the molecular stereochemistry of biological systems has 

been projected. 

 

Besides, the further deepening into the interpretation of QSAR models based in similarity has 

been always a desired aim in order to provide a stronger reliable structure-based insight into the 

knowledge of chemical problems. 
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A non-exhaustive compilation of the acronyms used throughout this thesis is listed below. It 

must be noted that the notation is the same, independently of the number, i.e. singular or plural, 

of the term.  

 

3D-QSAR Three-dimensional QSAR 

ADME Absorption-Distribution-Metabolism-Excretion  

ALS Adaptive Least Squares  

AM1 Austin Model 1 

ANN Artificial Neural Networks  

AO Atomic Orbital 

AQSM Atomic Quantum Similarity Measures  

ASA Atomic Shell Approximation 

CA  Cluster Analysis  

CADD Computer-Aided Drug Design 

CAMD Computer-Aided Molecular Design 

CCA Canonical Correlation Analysis  

CCD Central Composite Design  

CFA  Correspondence Factor Analysis  

CNDO Complete Neglect of Differential Overlap 

CoMFA Comparative Molecular Field Analysis 

CoRePa Common Reactive Pattern approach  

CR Continuum Regression  

CS Classical Scaling 

CSA Cluster Significance Analysis  

CV Cross-Validation 

DF Density Function 

DFT Density Functional Theory 

DME Density Matrix Element 

DOD D-Optimal Design  

EC50 Effective Concentration for 50% of maximal effect 

ECVAM European Centre for the Validation of Alternative Methods  

ED50  Effective Dose for 50% of maximal effect 

EIM Electronic Index Methodology 

EJR Elementary Jacobi Rotations 
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ELF Electron Localization Function  

EPA  Environmental Protection Agency  

ER Estrogen Receptor 

FA Factor Analysis  

FD Factorial Design  

FFD Fractional Factorial Design  

FW Free Wilson Analysis 

G/PLS  Genetic Partial Least Squares  

GFA Genetic Function Approximation  

GTO Gaussian-Type Orbital 

hERα α-human Estrogen Receptor  

HIS Hybrid Intelligent Systems  

HOMO Highest Occupied Molecular Orbital 

HTS High Throughput Screening  

IC50 Inhibitory Concentration for 50% of maximal inhibition 

IGC50 Inhibitory Growth Concentration for 50% of maximal growth inhibition 

KE Kinetic Energy 

KE DF Kinetic Energy Density Function 

kNN k-Nearest Neighbours  

Kow Octanol-water partition coefficient 

LCAO Linear Combination of Atomic Orbitals 

LD50 Letal Dose at which 50% of species die 

LDA  Linear Discriminant Analysis  

LDOS Local Density Of States 

LFER Linear Free Energy Relationships  

LmO Leave-many-Out  

log P Partition coefficient octanol/water 

LOO Leave-One-Out 

LUMO Lowest Unoccupied Molecular Orbital 

MASA Multicentre ASA 

MCF-7 Human breast cancer cells 

MDS Multidimensional Scaling Techniques  

MFA Molecular Field Analysis  

MIC Minimum Inhibitory Concentration 

MLR Multiple Linear Regression  

MM Molecular Mechanics 
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MO Molecular Orbital 

MPVM Most Predictive Variables Method 

MQS Molecular Quantum Similarity 

MQSI Molecular Quantum Similarity Indices 

MQSM Molecular Quantum Similarity Measure 

MQS-SM Molecular Quantum Self-Similarity Measure 

MSA Molecular Shape Analysis  

MTI Schultz index 

NIPALS Nonlinear Iterative Partial Least Squares 

NLM Non-Linear Mapping  

NMR Nuclear Magnetic Resonance  

NMR Nuclear Magnetic Resonance  

NSS Nested Summation Symbols  

OLS Ordinary Least Squares  

PARC Pattern Recognition  

PASA Promolecular ASA 

PC Principal component 

PC1 First Principal Component  

PCA Principal Component Analysis 

PCR  Principal Component Regression  

PLS Partial Least Squares  

PRESS Predictive Residual Error Sum of Squares  

Q2 Cross-validated explained variance 

QM Quantum Mechanics 

QO Quantum Object 

QPLS Quadratic PLS  

QS Quantum Similarity 

QSAR Quantitative Structure-Activity Relationships 

QSI Quantum Similarity Index 

QSM Quantum Similarity Measure 

QSPR Quantitative Structure-Property Relationships 

QS-SM Quantum Self-Similarity Measures  

QST Quantum Similarity Theory 

QSTR Quantitative Structure-Toxicity Relationships 

RMS Root Mean Square  

RSA Receptor Surface Analysis  
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SAR Structure-Activity Relationships 

SD Standard Deviation  

SDEC Standard Deviation of Errors of Calculation  

SDEP Standard Deviation of Errors of Prediction  

SDEP  Standard Deviation of Errors of Prediction  

SIMCA Soft Independent Modelling Class Analogy method 

SM Similarity Matrix 

SMD  Statistical Molecular Design  

SSPE  Sum of Squares Prediction Errors  

STO Slater-Type Orbital 

SVD Single Value Decomposition  

TGSA Topo-Geometrical Superposition Algorithm 

TI Topological Index 

TM Topological Matrix 

TQSI Topological Quantum Similarity Index 
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Look for the bare necessities  
The simple bare necessities  

Forget about your worries and your strife  
I mean the bare necessities  

Old Mother Nature's recipes  
That brings the bare necessities of life  
Wherever I wander, wherever I roam  

I couldn't be fonder of my big home  
The bees are buzzin' in the tree  

To make some honey just for me  
When you look under the rocks and plants 

 And take a glance at the fancy ants  
Then maybe try a few  

The bare necessities of life will come to you  
They'll come to you!  

 
Look for the bare necessities  

The simple bare necessities  
Forget about your worries and your strife  

I mean the bare necessities 
That's why a bear can rest at ease  

With just the bare necessities of life  
Now when you pick a pawpaw  

Or a prickly pear  
And you prick a raw paw  

Next time beware  
Don't pick the prickly pear by the paw  

When you pick a pear  
Try to use the claw  

But you don't need to use the claw  
When you pick a pear of the big pawpaw  

Have I given you a clue ?  
The bare necessities of life will come to you  

They'll come to you!  
So just try and relax, yeah cool it  

Fall apart in my backyard  
'Cause let me tell you something little britches  

If you act like that bee acts, uh uh  
You're working too hard  

And don't spend your time lookin' around  
For something you want that can't be found  

When you find out you can live without it  
And go along not thinkin' about it  

I'll tell you something true 
The bare necessities of life will come to you 

 

Baloo’s Song 

Terry Gilkyson 


	Contents
	Preface
	1. Presentation
	2. Structure of the memory
	3. Acknowledgements
	Introduction
	1. General introduction
	2. Overview
	References
	Quantum similarity theory
	1. Introduction
	2. Introduction to similarity
	3. Quantum mechanics and the role of density function
	4. Molecular quantum similarity measures (MQSM)
	5. Classical topological approach
	6. From classical topological approach to quantum similarity theory
	References

	Quantitative structure-activity relationships
	1. Introduction
	2. Computer-aided molecular design
	3. Overview of quantitative structure-activity relationships
	4. Origins and evolution
	5. Molecular descriptors
	6. Statistical adjustment and multivariate analysis techniques
	7. Evaluation of the predictive capacity of the model: validation techniques
	8. Data classification: qualitative analysis of discrete properties
	References

	Applications of quantum similarity measures to QSAR
	1. Introduction
	2. Quantitative structure-toxicity relationships
	3. Quantitative structure-activity relationships
	References

	Conclusions
	1. Final conclusions
	2. Future perspectives
	3. List of publications
	4. Contributions to conferences

	Annex: Contributions
	Acronyms



