ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a I'acceptacio de les seglents
condicions d'Us: La difusié6 d’'aquesta tesi per mitja del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel-lectual Gnicament per a usos privats
emmarcats en activitats d’'investigacio i docéncia. No s’autoritza la seva reproduccié amb finalitats
de lucre ni la seva difusio i posada a disposicio des d'un lloc alie al servei TDX. No s’autoritza la
presentacio del seu contingut en una finestra o marc alie a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentacio de la tesi com als seus continguts. En la utilitzacié o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusién de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual Gnicamente para usos
privados enmarcados en actividades de investigacién y docencia. No se autoriza su reproduccién
con finalidades de lucro ni su difusion y puesta a disposicidon desde un sitio ajeno al servicio TDR.
No se autoriza la presentacién de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentacion de la tesis como a sus
contenidos. En la utilizacién o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate
the name of the author

Architectural Support for High-Performance
Hardware Transactional Memory Systems

by

Marc Lupon i Navazo

Submitted in Fulfillment of the
Requirements for the Degree

Doctor of Philosophy
Programa de Doctorat: Arquitectura de Computadors

Supervised by

Grigorios Magklis
Antonio Gonzalez Colas

Departament d’Arquitectura de Computadors

Universitat Politecnica de Catalunya

November 8, 2011

"Per als meus pares, Isa i Emili, que sempre

m’han ajudat, indlis sense saber-ho”

Vi

Vii

Acknowledgments

Son moltes les persones les quals m’han ajudat durant taqess, estic convengut que
sense elles no hauria acabat aquest llarg cami. No setisi jus comencés pel meu director,
en Grigoris, no només per guiar-me durant tots aquests @ingsperqué s’ha preocupat per
mi en tot moment, i encara avui é€s capag¢ d’aguantar lessrfeeeires”. També vull agrair al
meu co-director, I’Antonio, per donar-me I'oportunitat fée el doctorat, aconsellar-me en tot

moment i ensenyar-me que és la recerca.

M’agradaria seguir per tota la gent que m’ha fet més engatla la vida al campus, ja
sigui prenent cafés al bar, posant la decoraci6 de Nadabala o jugant a futbol als migdies.
C)scar, Ifaki, Beacco, Enric, Niko, Javi, Demos, Gemma,iX@enn&, Manu, Miquel, Marc,
Eduard, membres de la sala C6-E208, jugadors del DEE+, gkgirdnas i resta de companys
d’ARCO, d'IBRC i del DAC: moltes gracies a tots! També vatirair al Mark D. Hill i a tota

la gent del Wisconsin Multifacet Project per fet la mevaesta a Madison més agradable.

Per acabar, vull donar les gracies a les meves dues fapidide sang i 'adoptiva. Tinc la
sort d’haver crescut amb en Ferran, Dani, Vidi, Gus, Mariesd; Puyi, Torra, Rafa, Maurici,
Ndria, Ricard, Oriol, Albert i molts altres que segur mido. Amb amics com ells es pot

superar qualsevol entrebanc, i tota anécdota es tornacardrimesborrable.

Finalment vull donar les gracies als meus avis; ells em maemyar laimportancia d’intentar
ser sempre treballador i bona persona. També a la meva gerimna, ella és la tnica que em
coneix millor que jo mateix. | als meus pares, Isa i Emili,cpgr sense ells no seria ni una

desena part de la persona que sbc avui en dia.

viii

Abstract

Parallel programming presents an efficient solution to@kliture multicore processors.
Unfortunately, traditional programming models depend mygmmmer’s skills for synchroniz-
ing concurrent threads, which makes the development ofleasaftware a hard and error-
prone task. In addition to this, current synchronizatiochteques serialize the execution of
those critical sections that conflict in shared memory and fimit the scalability of multi-

threaded applications.

Transactional Memory (TM) has emerged as a promising progriag model that solves
the trade-off between high performance and ease of use. Inti@lsystem is in charge of
scheduling transactions (atomic blocks of instructioms) guaranteeing that they are executed
in isolation, which simplifies writing parallel code and,the same time, enables high con-
currency when atomic regions access different data. Amdirfgrans of TM environments,
Hardware TM (HTM) systems is the only one that offers fastcetien at the cost of adding

dedicated logic in the processor.

Existing HTM systems suffer considerable delays when tixeg@e complex transactional
workloads, especially when they deal with large and cont@nttansactions because they lack
adaptability. Furthermore, most HTM implementations agehocand require cumbersome
hardware structures to be effective, which complicateddhsibility of the design. This thesis
makes several contributions in the design and analysisetlist HTM systems that yield good

performance for any kind of TM program.

Ouir first contribution, BRSTM, introduces a novel mechanism to elegantly manage specul
tive (and already validated) versions of transactionad dstslightly modifying on-chip memory
engine. This approach permits fast recovery when a transatitat fits in private caches is dis-

carded. At the same time, it keeps non-speculative valussfiware, which allows in-place

memory updates. ThusABTM is not hurt from capacity issues nor slows down when it loas t

undo transactional modifications.

Our second contribution includes two different HTM systeimet integrate deferred reso-
lution of conflicts in a conventional multicore processohiet reduces the complexity of the
system with respect to previous proposals. The first onsgFM, combines different-mode
transactions under a unified infrastructure to gracefullgdie resource overflow. As a result,
FUSETM brings fast transactional computation without requgradditional hardware nor extra
communication at the end of speculative execution. Thergkome, $ECTM, introduces a
two-level data versioning mechanism to resolve conflicta speculative fashion even in the

case of overflow.

Our third and last contribution presents a couple of trulyillle HTM systems that can
dynamically adapt their underlying mechanisms accordirthe characteristics of the program.
DYNTM records statistics of previously executed transactionselect the best-suited strategy
each time a new instance of a transaction stangaPSM takes a different approach: it tracks
information of the current transactional instance to cleaitg priority level at runtime. Both
alternatives obtain great performance over existing malsothat employ fixed transactional

policies, especially in applications with phase changes.

Table of Contents

Acknowledgments

Abstract

List of Figures

List of Tables

1 Introduction

1.1

1.2

1.3

1.4

15

Transactional Memory
HTM Systems: Problems and Limitations
Thesis Contributions
131 RASTM e
1.32 RSETMand ECTM

1.3.3 DyNTMand SVAPTM oo

Relationship to My Previously Published Work

Thesis Organization

2 Background on Transactional Memory

2.1

Transactional Memory Systems

2.1.1 Software Transactional Memory Systems

Xi

Vii

XVii

XXili

10

12

13

14

Xii

2.1.2 Hardware Transactional Memory Systems
2.2 Hardware Transactional Mechanisms «.....
2.2.1 ACCESSSUMMAIY v o i e e e e e e e e e
2.2.2 DataVersion Management
2.2.3 ConflictManagement..
2.2.4 Building High-Performance HTM Systems
2.3 EagerHTM Systems it
2.3.1 Bounded HTM Systems
2.3.2 Hardware-accelerated TM Systems
2.3.3 Hybrid TMSystems
2.3.4 Unbounded HTM Systems
24 LazyHTM Systems e e e

2.5 Reutilizing Transactional Mechanisms

Experimental Methodology

3.1 Simulation Infrastructure
3.1.1 Modeling Hardware Support,

3.2 System Configuration e
3.21 BaseCMPParameters
3.2.2 Reference HTMsystems

3.3 Transactional Workloads
3.3.1 Transactional Benchmark Suites
3.3.2 Transactional Workload Characterization
3.3.3 Discussion about Transactional Workload Behavior.

3.4 Performance Metricsand Methods

36

37

38

39

40

Xiii

4 A Log-Based Hardware Transactional Memory with Fast Abort Recovery 52
4.1 Motivation 55
42 TheRASTM System e e 59

421 FRASTMOVerview 59
4.2.2 Hardware Support 60
4.3 The Transactional L1 Cache Coherence Protocol 61
4.4 FASTM Transactional Operations 2 6
4.4.1 Transactional Stores L 63
442 Transactional Loads 4 6
4.4.3 Transactional Cache Replacements 65
444 Committing Transactionsu. 66
4.45 Aborting Transactions 67
4.5 FASTM with Wake-up Notification 68
451 ConflictTracking 68
4.5.2 The Wake-up Mechanism 69
45.3 FASTM-WN: Examples of Wake-up Notification 69
4.6 FASTMwith Selective Logging 70
4.6.1 The Selective Logging Mechanism. 71
4.6.2 Pushing Physical AddressesinthelLog 72
4.6.3 FASTM-SL: Adding Selective Logging toASTM 73
4.6.4 DISCUSSION 74
4.7 Evaluation 57
4.7.1 FASTM Performance Analysis 76
4.7.2 FASTM-WN Performance Analysis 81
4.7.3 FASTM-SL Performance Analysis 83

4.7.4 FASTM Conflict Resolution Analysis 85

XV

4.8 Related Work on Eager HTM Systems 87
4.9 Conclusions 09
Speculative Hardware Transactional Memory Systems with bcal Commits 92
51 Motivation 59
5.2 AFused HTM System with Local Commits 97
521 RSETMOVEIVIEW o o ot e e e e e e e 97
5.2.2 Hardware Support 98
5.2.3 FHRSETM Modes of Execution 99
5.2.4 The Unified Transactional L1 Cache Coherence Protocol 100
5.2.5 HRSETM Lazy Transactional Operations 102
5.2.6 Lazy Conflict ManagementiruBETM 107
5.2.7 Simultaneous Execution of Eager and Lazy Transaction 108
5.3 A Speculative HTM System with Early Overflowing Updates 109
531 SPECTMOVEIVIEW oo e 110
5.3.2 PartialConsistency 111
5.3.3 Overflowlsolation, 21
5.3.4 Coherence States: Codification and Implementation. 113
54 Evaluation 151
5.4.1 HRJSETM Performance Analysis 116
5.4.2 S$ECTM Performance Analysis 119
5.4.3 Local CommitAnalysis 012
5.4.4 Eager and Lazy Execution Analysis 122
5.4.5 FRJISETM and SPECTM Execution Analysis 124
5.5 Related WorkonLazy HTM System 126
5.6 Conclusions 281

6 High-Performance Adaptive Hardware Transactional Memoly Systems
6.1 Motivation
6.2 A Dynamically Adaptable HTMSystem

6.2.1 DYNTMOVEIVIEW e e e e e e e e e

6.2.2 ProgrammingModel

6.2.3 Transactional Mode Selector
6.2.4 A Highly-Efficient Policy for Eager and Lazy Transacts
6.3 A High-Performing HTM with Swapping Execution Modes
6.3.1 SVAPTMOVEIVIEW o e
6.3.2 Hardware Support
6.3.3 SVAPTM Execution Mode Transitions
6.4 Evaluation
6.4.1 DvNTM Performance Analysis
6.4.2 SWAPTM Performance Analysis
6.5 Results Roadmap: AGeneralView
6.5.1 Low-contention Applications
6.5.2 Medium-contention Applications
6.5.3 High-contention Applications
6.6 Related Work on Contention-Aware HTM Systems

6.7 Conclusions

7 Conclusions

7.1 SUMMANY . . . o e e e e e e e e e e e e

7.2 Future Work

7.2.1 EagerHTMSystems

7.2.2 LazyHTM Systems

7.2.3 DynamicHTMSystems

XV

XVi

Bibliography 173

XVii

List of Figures

1.1

1.2

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

Lock- and transactional-based multithreaded exeasitio. 3
Intrinsic properties of the HTM systems proposed inthésis 6
Implementations and properties of STM and HTM systems. 14
Hardware implementations of the acccess summary mischan. 18
Design options when implementing signatures 20
Data version management alternatives in HTMsystems 22
Conflict management alternatives in HTM systems 24
Eager versus lazy transactional execution 25
Base system configuration 38
Clustering TM workloads according their charactesssti. 49
Percentage of time spent in abort recovery under 1&diecLogTM-SE . . . 54
Abort rate distribution of 16-threaded LogTM-SE exémmg 55

Percentage of overflowing transactions in single-ttedd_ogTM-SE executions 56

Percentage of time spent in overflowing transactionmglesthreaded LogTM-

Store buffer implementation of an HTM system withearMV 57

Speedup of LogTM-SE, Ideal early VM, Store Buffer (8 m#y and Store

Buffer (32 entries) implementations, 58

XViii

4.7 Hardware supportford&STM 60
4.8 TMESI coherence protocol transitions 61
4.9 Non-conflicting TStore (a) and conflicting TLoad (b) indfM 64
4.10 Transactional replacements (a), commits (b) and sfoend d) in BSTM . . 65
4.11 Examples of the wake-up notification mechanism 70
4.12 L1 Cache replacement actionssFM-SL 73

4.13 Distributed execution time of low-contention (top, tB2eads) and medium-
and high-contention (bottom, 16 threads) TM applicationdes LogTM-SE
(L), FASTM (F) and Ideal () H-TM systems 77

4.14 Performance improvement oA$TM-SIG (S), FASTM (F) and Ideal VM (1)
HTM systems over LogTM-SE in low-contention (top, 32 thr&eahd medium-
and high-contention (bottom, 16 threads) TM applications 78

4.15 Speedup ofASTM-WN over FASTM in 16-threaded medium- and high-contention
TMapplications 81

4.16 Network conflicting messages per transaction of 1€atted medium- and high-

contention TM applications inASTM and FASTM-WN 82

4.17 Number of active cores during 16-threaded medium- @gtd-dontention exe-

cutions iNn ASTM-WN e 82

4.18 Normalized execution time of variable- and coarsérgrhTM applications un-

der 16-threadedASTM (F), FASTM-SL (S), and Ideal () HTM systems 83
4.19 Software log size inASTMand FASTM-SL 84

4.20 Distributed executed time of low-contention (top, B2ads) and medium- and
high-contention (bottom, 16 threads) TM applications undegTM-SE (L),
FASTM (F) and Ideal () HTMsystems 86

5.1 Percentage of time spent in arbitration under 32-tle@ddCC-Dist 95
5.2 Average network messages in the commit phase under@2dibd TCC-Dist . 96

5.3 Base system configuration and transactional hardwamosiufor DY'NTM . . 98

XiX

5.4 State-transition diagram of the unified transactiorfatache coherence protocol 101

5.5 Conflicting transactional stores ivgETM 103
5.6 Conflicting transactional loads iwBETM 104
5.7 Retarded directory updates in$eTM o 106
5.8 Local Commits and Abort Notification indlSETM 107
5.9 Partial consistency: Coherence transitions and ebdyt aotification 112

5.10 Unbounded hardware support for partial consistenty,(selective logging (c)

and overflow isolation (d) iINEECTM 114
5.11 Codification and implementation of cache coherendessta 115

5.12 Distributed executed time of low- and medium-contant{top, 32 threads)
and high-contention (bottom, 16 threads) TM applicatiomgder TCC-Dist (D),
FUSETM (F) and TCC-Loc (L) HTM systems 117

5.13 Normalized BSETM execution time of applications distributed by the trarisa

tional mode 118

5.14 Speedup achieved in low-contention (top, 32 threau$hayh-contention (bot-
tom, 16 threads) applications in TCC-Dist (DREXTM (S) and TCC-Loc (L) . 119

5.15 Normalized commit time under 32-threaded TCC-Dist, (DJC-Sel (S) and
TCC-Loc (L) 121

5.16 Average network messages in the commit phase unddnw@2died TCC-Dist
(D), TCC-Sel (S)and TCC-Loc (L), 221

5.17 Distributed executed time of low- and medium-contant{top, 32 threads)
high-contention (bottom, 16 threads) TM applications urieieger ARSTM (E)
and Lazy TCC-Loc (L)HTM systems 312

5.18 Distributed executed time of low- and medium-contant{top, 32 threads)
high-contention (bottom, 16 threads) TM applications uAdeC-Loc (L), FUSETM (F)
and PECTM (S)HTMsystems it 125

6.1 Speedup over opposite fixed-policy (eager or lazy) HTMeayps 133

XX

6.2 Conflict management in eager, lazy and dynamically aiidgpHTM systems . 134

6.3 Hardware support for the Transactional Mode Selector. 137
6.4 TMS selection (top) and THT update (bottom) algorithms... 138
6.5 Resolving eager/lazy conflicts iRTM 140
6.6 Transiting from eagertolazy andviceversa 141
6.7 Detecting long transactions iW&PTM 143
6.8 Switching execution modes iM&PTM 145

6.9 Distributed executed time of low- and medium-content{top, 32 threads)
high-contention (bottom, 16 threads) TM applications urfelesTM-IVM (E),
TCC-Loc (L)and YNTM (D) HTM systems 149

6.10 Distributed executed time of low- and medium-contant{top, 32 threads)
high-contention (bottom, 16 threads) TM applications urieETM (F), Stat-
ically Programmed (P) andMNTM (D) HTM systems 150

6.11 Normalized DPNTM execution time of applications distributed by the trarisa

tional mode 151

6.12 Speedup achieved in low-contention (32-threadg,defi high-contention (16-
threads, right) applications byUSETM, DYNTM-Ov, DYNTM-Ab and DyNTM 151

6.13 Speedup achieved in low-contention (32-threadg,defi high-contention (16-
threads, right) applications byUSETM, FUSETM-HP, DYNTM-EP and DYnTM 152

6.14 Distributed executed time of low- and medium-contantitop, 32 threads) and
high-contention (bottom, 16 threads) TM applications urfekesTM-IVM (E),
TCC-Loc (L) and SYAPTM (W) HTM systems 153

6.15 Speedup over best-performing fixed-policy HTM of lowe anedium-contention
(top, 32 threads) and high-contention (bottom, 16 thredtisppplications un-
der SPECTM (S), FUSETM (F), DYNTM (D) and SNAPTM (W) 154

6.16 Speedup achieved over TCC-Loc in low-contention (@@xthreads) and high-
contention (bottom, 16 threads) applications RESTM (S), SNAPTM-TLD (T),
SWAPTM-EST (E) and SIAPTM (W) o o oo 155

XXi

6.17 DyNTM and SVAPTM execution time of low-contention (left, 32 threads) and

high-contention (right, 16 threads) applications distidal by the transactional

mode 156
6.18 Scalability analysis of HTM systems on low-contentamplications 158
6.19 Scalability analysis of HTM systems on medium-contenapplications 159

6.20 Scalability analysis of HTM systems on high-contem@gplications 161

XXii

XXiil

List of Tables

2.1

2.2

3.1

3.2

3.3

3.4

3.5

4.1

4.2

5.1

5.2

6.1

6.2

Classification of eager HTMsystems 27
Classification of lazy HTMsystems 33
Base system parameters o e 39
Input parameters of TM applications 43
TM applications grouped by the size of their transastion. 45
TM applications grouped by the size of their transaetidime 46
TM applications grouped by the size of their transaeti@ontention 48
Overflow, abort and software abort rates for variablet evarse-grained 16-

threaded executions under LogTM-SBsFM and FASTM-SL 80
Data VM characteristics of eager HTMsystems 89
Resolving eager-lazy conflicts iw§ETM 109
Characteristics of lazy HTM implementations 127
Resolving eager-lazy conflicts iyRTM 139

Data VM and CM characteristics of high-performance HTygtems 164

XXIV

Chapter 1

Introduction

The emerging shift toward Chip Multiprocessor (CMP) aretiitires [28, 57, 62] moved the
pressure of how to exploit effectively hardware resourcethé programmer [87]. While in
the past software developers were able to transparentgdspe sequential applications using
processors with ever higher instruction-level paralieligl27], nowadays they are forced to
write multithreaded applications in order to extract tldavel parallelism. Thus, the success
of future generation CMP processors highly depends on thaoity to widely adopt parallel

computing as a standard programming paradigm.

Most parallel programming models have relied during desamteblocking synchroniza-
tion for mutual exclusion of critical sections in multit@ed applicationsi.€., chunks of in-
structions that atomically modify shared memory variahledthough it is well-known that
protecting critical sections witltocks—atomic variables that are acquired (released) before (af-
ter) executing the critical section—is error-prone, itdacomposability and may limit overall

performance [29].

So far, two distinct strategies have been followed when ldeigg parallel software using
blocking synchronization. Easy-to-usearse-grainlocking protects a large amount of code
with the same lock, which in turn serializes critical sei@nd, therefore, limits application’s
scalability. Difficult-to-develogfine-grainlocking employs small critical sections to increase
the performance of parallel programs, but tuning an apidicais extremely hard and may

lead to programming errore.Qg, deadlocks) [118]. This difficult to address trade-off betw

high performance and ease of use has encouraged researtferoata@e, lock-free parallel

programming models [53].

This thesis deals with how to incorporate hardware suppomadern CMP environments
for Transactional Memory [49], possibly the most promisjagd broadly accepted) non-blocking
parallel programming approach. To this end, in this thesstny to show how programmer-
friendly multithreaded applications can achieve good grerbnce when the system devotes

part of its transistor budget to enhance concurrency.

1.1 Transactional Memory

Transactional Memory (TM) provides a parallel paradignt theilitates application writing
without sacrificing performance [102]. In TM, the programmaecomposes the application
in different threads that are executed simultaneously, taed encapsulates blocks of code
that access shared memory instdensactions Like in database systems, the underlying TM
mechanisms guarantee that transactions followAtDeproperties [41]Atomicity (transactions
are either fully completed or not executed at altpnsistency (completed transactions can be
deterministically ordered) ardolation (transactions must not report data races withuroemt

threads during their execution).

Efficient TM systems employ speculation in order to execrgedactions concurrently. On
the one hand, this technique allows the system to get ridadldeks (all transactions are even-
tually executed) and enables the composition of atomiddslbecause deadlocking is no longer
possible. On the other hanalptimisticTM execution permits the system to run simultaneously
transactions from independent threads, wpissimistidocking execution serializes critical
sections, even when they do not access the same data. Iqoense, TM systems commonly
perform (and scale) better than systems that utilize hawéd locks, especially when they

execute many-threaded or coarse-grained applications.

In contrast to blocking synchronization schemes, in TM &dfistem, not the programmer,
who ensures the correct execution of the program. Progragilanguages designed on top of

a TM system just need to provide semantics to defwherea transaction starts and finishes,

Situation 1 Situation 2 Situation 3 ® Wr@A

Lock Tx Lock Tx Lock Tx O Wr@B

acq(l) Acquire lock

acq(l) T acq(l) acq(l) T T acq(l) acq(l) T T
! ! l rel(l) Release lock
+ acq(l) T i T i X Waiting
; ; i L A
rel(l)\acq(l) . reI(I)\ acq rel(l) . acq(l) — Begin/End Tx
X Conflict
3k Abort

Figure 1.1: Lock- and transactional-based multithreaded executions

hiding from the useihow the transaction is executed. Thus, all synchronizatiomtsvare

carried out implicitly, which simplifies significantly thesdelopment of parallel software.

In order to provide safe and efficient transactional exeoytthe system must implement
a set of invisible mechanisms to verify at runtime that thel fpfperties are not violated.
Therefore, befor&eommittinga transactioni(e., finishing speculative execution and making
transactional statglobally visible) the system must check that canflicts(i.e., memory access
that breaks the isolation invariant) involving this tractsan exist. However, if a violation is
reported, the system may potentiadligort (i.e., undo all the memory modifications performed

inside the transaction) one of the conflicting transactemmd restart it from its very beginning.

Figure 1.1 shows the differences between lock-based andattdonal-based executions.
While locking techniques block the execution of criticattens when running a piece of
code protected by the same lock, the transactional (sge®)latrategy permits non-conflicting
transactions to execute—and even commit—in parallel é8dn 1 and 2). Nonetheless, Situa-
tion 3 generates a conflict between two transactions, whintiyzes the abort of the requesting
transaction. Notice that this scenario does not hurt coanagy compared to the lock-based
execution, given that, in the worst case, the aborted tctiosawill restart at the time that the
conflict disappears—this happens when the conflicting &etiten commits, which approxi-

mately coincides with the time that the lock is released ubttecking synchronization.

Environments that sustain TM can be implemented exclusinedoftware (Software Trans-
actional Memory [48, 77,104, 110], STM for short), mostlyhardware (Hardware Transac-
tional Memory [45, 49, 84, 97], HTM for short) or a combinatiof the two (Hybrid Transac-

tional Memory [31, 63, 65], HYyTM for short). Complete spezifiions of TM systems can be

found in [46], where Harrigt al. cover in detail the large TM design space up to early 2010.

The majority of STM systems use software locksldoally hold the ownership of data
objects, and record the memory locations accessed withnsactions in software structures,
which must be constantly traversed during transactionat@ton. Hence, STM systems in-
cur considerable delays when running transactional cadéackt, some researchers claim that
STM is just a testing tool to familiarize users with the TM gramming model [18]. Instead,
HTM systems devote silicon to accelerate transactions|tieg in significantly less overheads
than STM systems, although they lose the portability to dggamon-HTM) systems. More-
over, HTM systems are more robust, preserving strong isoléetween transactional and non-

transactional code [17].

HyTM systems propose an interesting compromise betwegnperforminghardware and
flexible software [31]. As in any compromise, it is difficult to knowastly where the optimal
software-hardware division lays. Moreover, any fully-dhaare TM system requires software to
enable virtualization of large transactions. As a consegeemost HTM systems can somehow

be considered hybrid approaches.

Among all the flavors of TM proposed by today, we think that HENhe one that offers the
best alternative, especially in terms of performance. Wievethat, if the TM programming

model becomes ubiquitous, it will be through some HTM impdatation [33].

1.2 HTM Systems: Problems and Limitations

To the best of our knowledge, almost all proposed HTM desidearly fall into one of
the two possible categories: they can be eidsgeror lazy. Each category defines a set of
actions that must be taken when the system has to resolve ip@msonsistencies introduced
by in-flight transactions. This mechanism, commonly knowrcenflict managemer(CM),
also establishes the strategy that the system follows whaling with the speculative state, a

group of rules commonly known agrsion managemeiiyM).

Existing HTM systems fix the CM and VM policies at design timEhe qualitative and

guantitative analysis performed in this thesis shows tifetible HTM systems are faced with,

at least, one of the following limitations that discouralgeit implementation: (a) thegerform
poorly when executing non-trivial transactional workloads, {iBytdo not scale on many-core
systems, (c) theinardware cost istoo expensive or (d) the complexity of the system makes its

implementation not affordable.

Eager HTM systems [5, 49, 84, 97]—those that resolve cosflistsoon as they happen—
present a major variation on their design: they use oppss#gegies to manage data versioning.
Late (also known as lazy) VM systems rapidly recover the transaat state in hardware—it is
kept in local caches—nbut utilize either software or very pter (and inefficient) hardware im-
plementations to maintain overflowing dait@{ memory lines evicted from local caches), while
early (also known as eager) VM systems employ slow software tomeshe pre-transactional
state, but handle overflows gracefully by storing in-plagecsilative data values. Because of
this both approaches may suffer important performancelfenavhen executing applications
with large transactions—early VM systems spend a lot of tieo®vering aborts, while late VM

systems slow down transactional execution due to resowed @w.

Lazy HTM systems [20, 45, 112]—those that resolve conflitthea time a transaction at-
tempts to commit—are forced to impleméaite data versioning; therefore they are also affected
by the slow-on-overflow issue. As the majority of lazy HTM s introduce specialized (and
cumbersome) structures to buffer the overflowing spemaatiate, they increment the hardware
cost when compared to eager HTM systems. Moreover, lazy HyiS#ems require arbitration
and communication with shared resources at commit timedR22,24], which (i) substantially
delays transactional execution, especially in applicatithat frequently commit transactions,
(ii) increases the complexity of critical system elemeastsgh as the directory or the coherence

protocol, and (iii) hurts the system scalability.

Most importantly, fixed-policy (either eager or lazy) HTMssgms establish the CM strat-
egy at design time, taking always the same decision to resaluflicts for the whole execution.
It is widely known that eager and lazy HTM systems have theangiths and weaknesses [14],
but, unfortunately, they are too inflexible in the way theynage transactional contention, re-
sulting in a significant performance opportunity loss whexytdeal with complex transactional

workloads that combine transactions of different size aarthble contention [16].

vish Eager VTM s?/:::Tn:a TCC [THigh
HTMs
Resolve Conflict Management gpecylate EazyHTM Hardware
Complexity < > Cost
Lazy
LogTM-SE HTMs
Low — = Low
Slow Aport Recovery Fast Fast Commit Phase Slow

Figure 1.2: Intrinsic properties of the HTM systems proposed in thisihe

1.3 Thesis Contributions

All the above has led us to conceifiree differenthigh-performance HTM systems based on
efficient eager and lazy HTM approaches. What is more, oyrgsals enable thesalability of
coarse-grained TM applications, while keeping tlesign simple (system complexity remains

under affordable limits) and requiridgtle hardware cost.

This thesis tackles the major problems across the HTM despgiee. Our first contribu-
tion, FASTM, presents a novel solution for managing data versionmgager HTM systems,
whereas our second proposals/SETM and SPECTM, improve on prior lazy HTM works by
including lightweight hardware to support multiple versoof the speculative state in a typical
cache coherence protocol. Our last contributiongNDM and SVAPTM, integrate opposite
conflict management policies in a single framework to sdaleetmost profitable strategy ac-
cording to the application characteristics. Figure 1.Z@ns a pictorial overview of the HTM
systems presented on this thesis and compares them witkkmeslin, state-of-the-art HTM

implementations.

1.3.1 RsTM

The data VM mechanism is possibly the main limitation facfoeager HTM systems when
executing large transactions. Late VM systermg(VTM [97]) suffer important overheads on
commits and on resource overflows, while early VM systeeng,(LogTM-SE [130]) experi-
ment long delays in case of abort, given that the old statecisvered using software. Looking

at the available HTM systems, one could conclude that thet@®bmings of each VM style

are inherent to its design philosophy, which defihew (software or hardware) anghere(in

private or in shared resources) the speculative/non-gaistate is kept.

Our first contribution, BSTM (log-based HTM with fast abort recovery), is a departure
from this thinking by observing that the important thing v is whothe owner of the specu-
lative state is anavhenthe state should become visible to the rest of the systermdiuthere
or howthe (non-)speculative state is stored. ThussFM breaks with the VM implementation
dichotomy and proposes a change in the design philosophybrid VM alternative that takes
advantage of the strong points of both approacheactelerate commits and abortswvhile
implementing asimple overflow policy—in fact, FASTM can be seen as an early VM system
with a late VM implementation. These VM properties becomeauirement for complex TM

workloads, which are believed to represent future traiaait applications.

1.3.2 RJSeETM and SPEcTM

Early work on lazy HTM systems propos&l hocmechanisms to implement a coherence
and consistency model based on transactions (TCC [45] fat)shThese designs introduce
some modifications (few of them non-trivial) on differenydas of standard CMP configuration
(memory hierarchy, coherence protocols, on-chip dirgcteiic) that increase the complexity
of the design. Although recent proposals have tried to gdimerthe TCC approach to integrate
it in a traditional CMP environment [22, 92], most soluticstdl require extra communication

on commits and specialized hardware to buffer non-valaidtga.

Our second contribution seeks to decouple data versiomorg €onflict management by
adapting transactional mechanisms under conventiongk(dike) hardware. We show how
this goal can be achieved through the implementation of igstndt HTM systems. BSETM in-
troduces dlexible and simple VM framework to track (and defer if necessary) memory vi-
olations from lazy-mode transactions without adding wrafible complexity in the system.
Moreover, by extending its VM strategy to enable multiplesiens of the same data and de-
ferring directory updates, the system is ablegmove data transfers and communications
at commit time, which is very useful in applications with short transaetio RUSETM (fused

HTM system with local commits) also offees eager mode of execution for those transac-

tions that exceed private resourcesso the system does not have to provide complex hardware

support for boundless lazy transactions.

FUSETM falls back to “on-demand” resolution of conflicts for oflewing transactions,
which may restrict overall concurrency.PECTM (speculative HTM system with early over-
flowing updates) tries to overcome this limitation by offeyia two-level data versioning mech-
anism: multiple copies of a line are allowed in the first legathes, whereas a single copy
is permitted after evicting the line toward the upper lewalshe memory hierarchy. This ap-
proachenables deferred conflict management for any kind of transaton—even for those

that exceed private buffers.

1.3.3 DvNTM and SwarTM

Prior HTM systems fix the conflict management policy at desigre. Fixed-policy HTM
systems are faced with numerous issues that limit the cogroey of transactional applications.
Experiments presented on this thesis show that the two gr@@gger or lazy) of HTM systems
do not respond equally to all types of workloads, which ic@lugiven the unknowns about the
behavior of future TM applications. A truly flexible HTM thabuld select the ideal execution
mode for each transaction at runtime would be more adeptadindenith many different types

of workloads.

Our last contribution pursues the design of such a fullydflexH TM system. More specif-
ically, we propose two such systemsyNDT M (dynamically adaptable HTM system) combines
eager and lazy transactions simultaneouslghoose the best performing mode of execu-
tion for each dynamic instance of a transactionyNOM uses a simple (and local) predictor
to dynamically decide at the beginning of a transaction #&-Buited (eager or lazy) execu-
tion mode. The election, which is hidden from the programrisebased on the behavior of
pastinstances of the same transaction. This system greathedatms fixed-policy HTM sys-

tems [112].

Once the philosophical barrier of eager versus lazy HTMesystis crossed, a whole new
class of opportunities for research is opened¥nDM is only the first implementation. One
interesting optimization is\BAPTM (high-performing HTM system with swapping execution

modes), a dynamic alternative thewitches the transactional mode of execution of trans-

actions on the fly SwAPTM offers early VM for unbounded lazy transactions, therehy
transactional execution mode is not restricted by the ditkectransaction. WAPTM analyzes
the characteristics of eadidividual instance of a transaction to decide its performance impact,

and then adjusts the underlying hardware to select the ndesjuate system configuration.

1.4 Relationship to My Previously Published Work

FASTM [71] was published in thd’roceedings of the 18th International Conference on
Parallel Architectures and Compilers TechnigU®ACT'09), along with co-authors Grigorios
Magklis and Antonio Gonzalez.ASTM was motivated by a potential study that had appeared
in Lupon’s Master Thesis [69] and by the limitations foundiletevaluating a log-based store-
buffered HTM system [70], a study that was published inRineceedings of the 9th Workshop
on MEmory Performance: DEaling with Applications, systemd architecture§MEDEAQS).

This thesis extends earlier published work by proposing wasiations in the design and
evaluating the system with a wider spectrum of benchmarkdigh®t description of the se-
lective logging and wake-up notification mechanisms fag AV can be found in a Technical
Report [75]. This thesis complements previous work with titked discussion of hardware

alternatives that permit virtual address logging.

The FUSETM system was published in tiroceedings of the 43rd International Symposium
on Microarchitecturg MICRO’10) under the label of thiazyexecution mode for BNTM [72].
This thesis describes theJBETM system in a greater detail and provides a more exhaustive
characterization. TheF&ECTM system together with the hardware support for unboundey |

transactions is described in a Technical Report [74].

Respect to PNTM [72], this thesis presents a more accurate discussionrelsged work
and describes from top to bottom the implementation of th#licd management policy and
the configuration of the transactional mode selector. Thekkwn SNAPTM is currently under

submission. An early version of that creation is descrilmea Technical Report [73].

10

1.5 Thesis Organization

This thesis dissertation is organized as follows. Chaptevidws the state-of-the-art of TM
systems, paying more attention to those that include haedswgport. The chapter starts given
an historical overview of TM proposals and follows discagsihe mechanisms that forge mod-
ern HTM proposals and how they are implemented. Then, ievevhow these mechanisms are
used to build fixed-policy (either eager or lazy) HTM systepwinting out the main limitations

of prior work.

Chapter 3 presents the experimental methodology followeough this thesis. It begins
explaining how the simulation infrastructure models thecgssor, the memory hierarchy and
the transactional hardware support. Then, the chapteradefire base CMP configuration and
the system parameters utilized along the evaluation, hegetith the reference HTM systems
implemented as baselines. After that, it exposes the TMhaadk suites used to evaluate the
correctness and the performance of the proposed HTM systdassifying them into different
categories. Finally, the chapter ends explaining the éxmatal methods and metrics adopted

in the evaluation.

The next three chapters describe the contributions of @@areh. All three chapters briefly
introduce the work with a motivation section, and presenigapicture of the contribution.
Then, they explain the intrinsic details of the proposaigdiware support, memory operations,
transactional mechanisms and so on) and some design ogtiioniz. From that point, each
chapter evaluates the proposed implementations and cesfiem with baseline HTM archi-
tectures. After that, a qualitative comparison againsiteel work is performed, concluding

with a summary of the exposed ideas and results.

Chapter 4 presentsABTM as a revolutionary eager HTM system with a novel data versi
management mechanism, and extends the proposal with twtioaddl implementation vari-
ants. Chapter 5 describeg$ETM and SPECTM as pure, not-so-complex lazy HTM designs.
It also analyzes the benefits and drawbacks of using spaeutainflict management and com-
pares BSETM'’s and SPECTM'’s performance againstdSTM. Chapter 6 takes the results of the
prior chapter to motivate the evolution to two unified, trélgxible and adaptive HTM systems

(DYNTM and SNAPTM). After detailing the innermost parts of both alternasy this chapter

11

studies how transactional applications behave under dected HTM systems to show the

importance of implementing high-performing designs.

Chapter 7 concludes the research presented on this thelstevanues for future work.

12

13

Chapter 2

Background on Transactional Memory

In the late 70’s, Lomet came up with the idea of using datali@sesactions when accessing
shared data [68]. It was not until two decades ago thoughnwezlihy and Moss introduced
the concept of Transactional Memory (TM) as a new progrargnmaradigm that intended
to make lock-free mechanisms more efficient than blockinmchkgonization techniques [49].
Since then, many researchers have taken different apmedohconstruct efficient TM sys-
tems. This section starts describing those alternativesfalows presenting the mechanisms
underneath hardware-assisted TM (HTM) systems. Aftersyataeviews most notable HTM
(fully-hardware, hardware-accelerated and hybrid TM) lengentations and discusses their

complexity, performance and hardware cost.

2.1 Transactional Memory Systems

A large amount of environments combine different degredsaofiware and software sup-
port to execute speculative transactions. Harris (secditibe [46]) joined Larus and Rajwar
(first edition [64]) to synthesize a computer architect@eure that offers an extensive survey
of the state of the art on TM systems, as of early spring 2010ugdated TM bibliography can

be found in the University of Wisconsin website [1].

We draw some impressions about most commonly used traosaktsystems in Figure 2.1,

which shows a graphical representation of some TM impleatiEmis and their basic properties.

14

[—————— —— - T ——— - o ———— ———— [———— -
| | I I
o I stTM | | HaTM ! | HyTM ! I HTM |]
1gn | I HE [I Low
1 I
-~ \-I-//-L : : O rexsiimy O — 6 —
I [T 1l |
I ASTM DSTM I I SigT™ I I FlexTM I I TCC DATM :
| I I | PhTM 1 1 EazyHTM :
: RSTM : | HASTM ! I UfoT™ | : Sk |
OneTM
I I I g o I
L2 merr | RTM I ! RockHTM 1 I LogTM vTM I
A I I .
Low | L PERFORMANCE i High
I M\ 1| L | (x|
- — +—H—)H HARDWARE cosT H+ i -+ —>
O :O‘ AR A A

Figure 2.1: Implementations and properties of STM and HTM systems

As it can be seen, software strategies are cheaper and mxiteefldout achieve poor perfor-
mance compared to hardware-assisted TM systems. The fiofosubsections highlight the

main features of software- and hardware-based TM appresache

2.1.1 Software Transactional Memory Systems

Shavitet al. proposed Software Transactional Memory (STM) as a frieimtrface to ex-
ecute transactional applications in mainframe system@][1& STM, memory accesses within
transactions have to access a software library that implevaitomatic, object-grained locking
and track version numbers using data structures. In ordeedp the system consistent, soft-
ware libraries must synchronize transactional reads oat@gdupon those structures, limiting

the concurrency of the parallel execution (see Cascaviidtldl. for more details).

STM systems provide high flexibility and can easily be rediddoreover, they (i) can con-
veniently handle transactions of any size or durationréijuire simple validation and (iii) can
run on legacy hardware—which makes them serviceable fodélelopment of transactional
programs. Nonetheless, software monitoring sacrificepeance and power, as it requires
explicit (programmed by hand) calls to system librarieshetime a memory location is ac-
cessed, which results in the execution of additional im$imns. In order to overcome this vital

constraint, several STM systems have been proposed.

15

Dynamic STM (DSTM [48)) is a deferred update STM system immated as a library
usable in C++ or Java. It introduces a flexible conflict manéugs delegates to the programmer
how conflicts are resolved, uses obstruction freedom as dlooking progress condition and
permits early object release, which reduces the size ofahé set before committing. Word-
granularity STM (WSTM [78]) performs similar to DSTM, buttéets conflicts with a highly
accurate precision. Scherer and Scott [108] studied thaviomhof different conflict resolution
policies for the DSTM system and concluded that no policyquers best in all the measured
scenarios. To optimize the base DSTM contention manageaptveé STM (ASTM [109])

changes the conflict resolution policy at run-time.

Rochester STM (RSTM [77]) enhances the performance of adefarpdate STM systems
by reducing the levels of indirections to an object. It alsovjides its own memory allocator
and uses reader invalidation on commits, which substantisihimizes the size of those data
structures devoted to maintain the read set. InvalSTM [4¢Dhmements RSTM’s approach
by providing full invalidation, which accelerates transaes with big read and/or write sets in

many-threaded applications.

In contrast to the above proposals, Transactional Locking, (TL2 [34]) STM systems
combine deferred state updates with blocking synchranizgb hold non-committed values.
When a transaction finishes its speculative execution, gtriuck the modified objectste.,
acquire a conventional lock for each element of the write-seting a global clock, what allows
the transaction to validate its read set. The benefit of tackibjects consists on simplifying

software data structures and minimizing the transactionathead.

In the manner of TL2, MCRT-STM [104] and Bartok STM (BSTM [4Tse transactional
locking for keeping the consistency of their read and writs sUnlike TL2, MCRT-STM and
BSTM perform direct update, maintaining transactionalealin-place in memory and using
early blocking synchronization+e., acquiring locks at the first time an object is accessed—
to prevent other transactions to read or write the modifiatestFurthermore, they combine
pessimistic concurrency control for updates with optimisbntrol for reads, and use version
numbers on a per-object basis instead of a global clock. & moplementations can take ad-
vantage of Intel's C++ STM [4] and Microsoft's Bartok [3] cquiters to aggressively reduce

the size of software data structures.

16

TinySTM [37] is a lightweight STM system written in C that bows several key aspects
of TL2. It implements word granularity and uses a timestafgpriéhm based on LSA [100] to
resolve conflicts. SwissTM [35] mixes TL2-like global claag with a hybrid conflict detec-
tion mechanism. RingSTM [114] and STMilite [83] implementta@re Bloom filters to avoid

storing recurrent metadata in the heap space.

Each of the above optimized STM implementations intend verkge the overhead asso-
ciated with software transactional mechanisms [110]. Kbeess, the question of how to
build an efficient STM remains open. Recent studies show3id systems underperform
lock-based executions—especially when few threads aid[a26]—leading some academics
to postulate that STM is just a mere research toy [18]). Fsrrason, it seems inevitable to
conclude that some kind of hardware support is necessangér to speed up transactional ex-
ecution. Next subsection overviews and classifies those yR¥&s1s that incorporate hardware

assistance in some (or all) of their layers.

2.1.2 Hardware Transactional Memory Systems

Herlihy and Moss included hardware support in the micraéecture of their original TM
design, building a hardware-assisted TM (HTM) system [4®ieir approach uses typical cache
management and coherence protocols on non-transactipaedtmns, and provides a new In-
struction Set Architecture (ISA) for transactional acessgommit actions and state validation.
A separate processor cache contains old and transactialgsy which can only be accessed

by the owner processor.

Hardware-assisted TM systems are less invasive than STigsgsgiven that they treat all
memory accesses within a transaction as implicitly tratisaal. Thus, they only demand two
additional instructions in the architecture to encapsuldbcks of atomic instructions inside
transactions:Tx_Begi n and Tx_End. This way, memory operations performed inside those
bounds can transparently use built-in transactional harewith little (in some cases almost

negligible) performance and power penalty.

Proposals for HTM implementations have been around for riiaae a decade, feeding a
wide range of design possibilities. Fully-hardware TM eomments (commonly generalized as

HTM) fill the system with specialized mechanisms in orderd¢oederate whatever transaction,

17

reducing the overheads produced by special operationsetbate minimum. Actually, some
HTM designs introduce no overhead for standard transaadtiexecution. However, they still
require some kind of software support for virtualizatiorrgmses. LogTM [84], TCC [45] or
VTM [97] are few examples of fully-hardware HTM implemeritats.

Hybrid TM systems (HyTM for short) provide finite hardwarepport, devoting best-effort
transistors for conventional transactions and relying oM Systems for those transactions
that do not fit in the hardware or require unusual actions.lygdyTM approaches [31, 63],
PhTM [65], FlexTM [112] or UFO [8] are instances of partially-hardware HyTM designs.
Hardware-accelerated (HaTM) systems share some sing@tanitith hybrid TM systems, as
their execution depends upon a STM. However, rather thdingdback to software in corner
situations, HaTM systems always run on a faster STM modeuses small pieces of acute hard-
ware to speed up the slow software infrastructure. HASTMG[IBRSTM [113] or SigTM [17]

are well-known representations of HaTM systems.

The next section explains in detail the main mechanisms tesédild high-performance
fully-hardware HTM, HyTM and HaTM systems. Given that theelito distinguish the cate-
gory of each approach is extremely tight, we decided to raftenf those systems as HT

describing their implementation components in SectioBsafd 2.4.

2.2 Hardware Transactional Mechanisms

Hardware transactional mechanisms are necessary in artleick memory locations read
or written inside the transactiomagcess summayybuffer both the previous (old) and the spec-
ulative (new) memory state and restore the old values in ghabort {fersion management

and detect and resolve conflicts among transacticosflict managemeht

Hill etal. [51] proposed a decoupled implementation of transactiorhanisms. Decom-
posing hardware into interchangeable components aids Ha$Wd and permits the system to
use those mechanisms for other purposes, such as rejiagdturity, deterministic replay and
high-performance sequential (even parallel) executioo.thls end, a TM system must pro-

vide an efficient implementation of these mechanisms, ioffefiast execution in case of infre-

LAfter all, any HTM system introduces specific hardware meiras and requires software solutions to handle
memory paging or context switches.

18

Private Cache Bits Tagged Systems Decoupled Architectures
Core MEMORY Core Signatures
Transactional Cache Write Sig
line granularity Tag | Metabits | Data / Read Sig
- Standard
@|[Rr|w|] Gacheline Cache Store Buffer
word granularity Wi, We
@ IRIIWIMI IRkIWk Wi Wi Wy Wy

Figure 2.2: Hardware implementations of the acccess summary mechanism

guent conflicts and minimizing the impact of collisions amaransactions when contention is
present. In this section, we explain which is the purposeaofilvare transactional mechanisms

and overview their most-known design options.

2.2.1 Access Summary

Access summary is the mechanism that tracks the set of meloations accessed by
a transaction, commonly known as read (for transactioredidp and write (for transactional
stores) sets. A memory address is inserted in either theaette write set—depending on
its access type—when it finalizes successfully. It is nesngs® maintain those memory ac-
cesses in silicon to rapidly match the addresses that incluti#icts among transactions. Sev-
eral implementations of the access summary mechanism lesregroposed in the literature.

Figure 2.2 provides a schematic view of some of them.

Early HTM proposals introduce read and write (R/W) bits iivgte caches (typically in
the L1 cache [45, 84, 97]) that have to be asserted when a mgepperation completes and
tested each time a remote memory request is forwarded tocagsimg core. In some cases,
these bits are coupled with an additional bit that informestifansactional line has been evicted
from a cache set [5, 25]. While most of the HTM proposals tithekconflict at the granularity
of a line, optimized systems may introduce R/W bits per worth s noticeable increment
on cache area [81, 85]. In order to simplify hardware logid)VReache bits can be replaced
with supplementary cache states, requiring fewer bits atefjiating transactional actions in

the cache coherence protocol [113].

19

Previous mechanisms are limited by the size of private cadbsing precision when the
system replaces a cache line. In those occasions, systegnbehave as HyTMs, requiring
software [31] or OS support [24] for tracking evicted linésother design alternative consists
on implementing a tagged (also known as supervised) menvbgre some metabits are kept in
physical memory for a variety of purposes including dat& i@d&tection, determinism control or
typestate trackers. Transactional Memory can also takerdage of this system configuration
when metadata is used to hold transactional read and wtdg&el2]. Although supervised
programs may experiment ordering issues when they are &keonder a weak consistency

model, recent research precludes that this problem doesfect TM systems [13].

Even though R/W bits offers a low-complexity solution focoeding memory accesses, its
implementation is not-so-attractive from commercial paifview. As industry always tries to
keep cache design simple and unmaodified, they would pretdoiiclude transactional support
in caches and rely instead on decoupled solutions. To tlissemne researchers investigate the
use of signatures as an interesting alternative to elimitransactional state from caches [20,

106, 130].

A signature consists on a Bloom filter [9], where a set of mgnagidresses are collected in
an array of bits. Each time that a memory operation is retifegsystem must insert its address
in the signature by encoding the given address with a hasttiumand then marking certain
bits of the array. Testing operations are performed sigjlapplying the hash function over
remote addresses and checking if all the selected bits segted. These basic operations can
be extended with join and intersection functionalitiesjakibare required in Bulk implementa-
tions [21, 93].

Cezeet al.introduced signatures in order to improve the capacityretfdoy R/W bits [20].
However, signatures may saturate when they contain lotsldfeases, losing precision and
thus creatindalse positives-i.e., systems detect that an address is present in a read or write
set, while it is not. Lots of works studied the effect of tracions in signatures, and they
showed that true Bloom filters—those that can mark any bihefarray—coupled with simple

bit-selection hash algorithms generate lots of false atsflivhat may hurt overall performance.

Thus, several signature implementations have been prdposeduce the rate of false posi-

tives. Sancheet al. presented parallel and Cuckoo Bloom filters as more efficeganizations

20

(a) True Bloom filters

Insert Address @
bit
Bit Selection Hash — Test Address @
Signature |, &] - | @] |i;'|4@k|
[_[fofoJt] - foltfs] |
Signature gyt
[_fofolt] - Tfoluf+] |
(b) Parallel Bloom filters
Hardwired H3 Has! Insert Aeress @ Test Address @
N=Dbiggon = -+ by abits
UUUUUU e —— |@1|"'|@k|
t{gﬂ o — e
tj n=ak
tﬂ tj [_fofols] I [Tofefs] |
ibit= bogm .. Do |
O<=i<m i
N 3 2 I | I 3 1 K1
[———

m =Sk

Figure 2.3: Design options when implementing signatures

for signatures [106]. Parallel filters use a finite numberasthfunctions that point to smaller
array blocks to reduce the area occupied by signatures. dotBloom filters increase even
more the accuracy of signatures by providing an exact reptagon of their content when
the number of items is low and by behaving like a parallelfilifter bypassing a saturating

threshold.

Yen et al. studied the costs of implementing bit-selection, H3 XOR pade-block XOR
hash functions [131], concluding that XOR-based hash fonsthelp to maximize the preci-
sion on signatures. Quislaet al. demonstrated the importance of using space locality when
inserting addresses in signatures [94]. Figure 2.3 corspheeinsert and test operations in true

(bit-selection hash function) and parallel (H3 hash fungtiBloom filters.

Despite signatures, there are simpler decoupled accesaaymmechanisms. For instance,
small fully-associative structures.f, Store Buffers) can be used to track modest write sets [33,

49]. However, this mechanism restricts the number of wetedosed inside a transaction.

21

2.2.2 Data Version Management

Data version management (VM) is one of the key design dimessef a TM system, as its
implementation impacts directly on the performance andtdmplexity of the system. Version
management defines how and where transactional modifisasign stored, and what actions
must be performed at commit and abort time. The majority of Sylgtems fall into one of two
distinct strategies for version managemesdrly (also known agageror in-placé or late (also

known adazy or deferred update

On the one hand, late version management [5, 24, 45, 49, @pskeld (pre-transactional)
state in-place in memory and buffers new state (values ge&eeinside the running transac-
tion) elsewhere. This makes aborts fast, but commits havavarhead because the new state
must become globally visible. Thus, data movement is nacgsa order to update shared

components such as upper levels of the memory hierarchyeditéctory.

Most late VM systems use the L1 caches to buffer new state spadialized coherency
protocols to hide transactional updates from the rest ofrtmory hierarchy. LV* [86] is just
the Nth HTM system that implements late version management. Othplementations, like
the one proposed for the Rock [79] processor, store transatimodifications in a gated store

buffer, the content of which is drained at commit time.

In case the new state overflows its buffering space, som&dtsystems behave similar to
HyTM systems, and fall-back to a STM implementation [11Gjnt& other HTM systems [5,97]
store overflowed state in a data structure kept in memoryghwhiust be accessed on cache
misses and on commits. Falling-back to STM incurs into $igant performance loss while
fully-hardware HTM systems require complex, expensive emtitbersome hardware mecha-

nisms. This fact makes transactional state overflows tha draiwback of late VM systems.

On the other hand, early version management [10,12] putstege/in-place in memory and
buffers pre-transactional state elsewhere, usually awacétmanaged log structure in cacheable
memory [84]. This makes commits fast, since data is alretmhed in memory, but aborts have

an overhead because the old state must be recovered.

Also, since the pre-transactional state is stored in thafabcan be recovered, transactional

modifications can be put anywhere in the memory hierarchgasly VM systems do not suffer

22

(a) Late Version Management (b) Early Version Management
Core i Core j /-\/ Core i /_\/ Core j
W Sig: A Overflow W Sig: B Overflow Software log W Sig: A Software log W Sig: B
Tabl
T cache able T cache Table addr | values L1 cache addr | values L1 cache
addr] values addr| values v(A) |old data =aarl s varoes V(B) |old data 5a
addr|st] values p(A) |tx datal addr]st| values p(B) |tx data 2l (89| clbes
pa] - pB) 1] - /—\/ A - log |M]sw data
AN log |M|sw data p(8)|M]old data
7 / . A
Replacement of transactional . Replacement of Software abort recover
written line A Commit transactional N - y
transactional written line A of transactional line B
written line B
Directory L2 cache Directory L2 cache
addr Jowners | Jaddr| values addr Jowners | Jaddr| values
A i A Jold data' A i A | tx data
B j B | tx data B j B_|n-tx data
)

Figure 2.4: Data version management alternatives in HTM systems

from cache (or store buffer) overflows like those systems \ate VM, with the additional

benefit of reduced hardware cost. LogTM-SE [130] is an exarapan early VM system.

Figure 2.4 schemes how late and early version management s{/Biéms operate. In
Figure 2.4a, core€i and(introduce a specialized on-core hardware structure to gena
transactionally written evicted data, keeping pre-tratisaal data in the L2 cache. Whé
commits, it must traverse this structure and atomicallyatpdhe shared L2 cache data with the
new, not-anymore-speculative data. Instead, Figure Zivs how early VM coresq and
G) gracefully handle cache overflows by moving evicted datéolL2 cache. However, core
g requires a slow software routine to recover the pre-trdisal state, which is stored in a

private, cacheable and software-accessed log.
2.2.3 Conflict Management

Conflict management (CM) is possibly the most critical aspédtdTM systems. It is the
hardware mechanism in charge of preserving the transatiswiation property and the correct
ordering of the committed transactions. Furthermore, dl$® necessary to guarantee forward
progress in case of a memory race. First, it has to determomeamd when conflicts are de-
tected. This feature is commonly known as conflict detectiSecond, it must decide when
and through which technique conflicts are resolved. Thedastribution of the mechanisms

is defining which actions are performed (and by whom) in otdezliminate the collision that

23

originated the conflict. The last two exposed facets are Soms referred as the conflict reso-

lution policy.

Conflict management policies are classifieccagerandlazy. Eager CM schemes detect
conflicts at the moment that a load (store) instruction framiraflight transaction accesses
a memory location being written (read or written) by anothmeflight transaction [98, 130].
The majority of eager implementations slightly modify tr@herence protocol to introduce an
implicit test operation against the read (for writes) ortev(for writes and reads) sets from the
owners of the requested line [5,49,97]. For instance, Log8M uses sticky states to hold the
last owner (or sharers) of an evicted line and enforce ctargig checks even if that processor

does not maintain the line anymore.

Eager CM strategies normally cohabit with conservativelatmesolution policies—those
that resolve memory violations at the time that they areyeced. These policies disallow incon-
sistencies among transactions and permit the system tossiggle version of a written line,
making the data versioning mechanism straightforward.eltbeless, eager conflict resolution
policies are less flexible in the way they manage contentimwh raay generate performance

pathologies such as unfair scheduling of transactionsdi#jultiple crossed aborts [111].

Primitive HTM systems implemented a requester-wins pdiiat served pre-transactional
values to those processors that request a transactioealblinh abort the owners of the line to
avoid discrepancies. As this strategy creates repeatatsahat may produce livelocks, some
HTM systems introduce a software backoff to spread comentAdvanced HTM implemen-
tations stall requesting petitions-e., retry the memory operation until it succeeds—once they
detect a conflict, using a timestamp-based protocol to eltei dependence cycles between
stalled transactions [96]. This approach enables the camtsan of non-conflicting, consistent

transactional work.

In contrast, lazy CM schemes resolve conflicts at the time dh@ansaction attempts to
commit [22, 45, 92]. Before making the transactional stas#hble, processors must abort all
the transactions that have accessed the committing wititénggosing a consistent order be-
tween transactional instances. Notice that transactionsray aborted when another transac-

tion wants to commit, so progress is not an issue when agplgizy policies.

24

(a) Eager Conflict Management (b) Lazy Conflict Management
1. TStore 4. Report Conflict 1. Commit Tx 4. Ablrt Tx
Core i Core j Core i Core j
L1 cache L1 cache L1 cache L1 cache

addr|st| values addr|st| values addr| st| values addr|st| values
p(A)]! - p(A) |M | tx data p(A) [M | tx data |:| p(A) |[M] tx data

~

o
2. TGeN % Fwd TGetX 2. Update M /3 Broadcast A

Directory || L2 cache Directory |] L2 cache
addr Jowners| faddr] values addr Jowners| [addr| values
Al A Told data AL A Jold data

Figure 2.5: Conflict management alternatives in HTM systems

In lazy schemes, conflict detection can take place early, [l24] or it can be delayed until
commit [82, 93]—atfter all, the conflict will not be resolvedtii commit time. Early conflict
detection proposals integrate sanity checks in the coberprotocol and track individually
conflicts in hidden registers. Deferred conflict detectiequires the broadcast of the write
set [20, 45], a power-hungry technique that do not scale mimy-core CMPs, albeit it may

reduce the latency of memory operations by eliminating caiee messages [21].

Lazy CM strategies enable more concurrency between canfjitiansactions, which keep
executing even in the case of collision. This policy perrtiis system to (i) omit read-write
conflicts (committing readers always load pre-transaefiaiata), (ii) increment its flexibility,
(iii) pre-fetch useful data if the transaction requires @xecution and (iv) eradicate software
management of conflict®(g, software backoff). However, lazy CM schemes require laé V
with buffering support for multiple data versions of the saocache line, arbitration and extra
communication with shared resources at commit time ahéhochardware implementations.

What is more, optimistic treatment of conflicts may delivéarge amount of discarded work.

Figure 2.5 shows how HTM systems operate under eager andClsizgtrategies. In Fig-
ure 2.5a, cor€i attempts to eagerly write line A, which belongs to the wréedaf core(j . The

directory forwards the request to the owner of the liGg),(which checks its write signature

25

Situation 1 Situation 2 Situation 3
Eager Lazy Eager Lazy Eager Lazy

SERRAE
SRRRiL)

Wr @A
Wr @B
Rd @A
Rd @B

--O0m O e

Waiting
— Begin/End Tx

X Conflict

3k Abort

Figure 2.6: Eager versus lazy transactional execution

and replieCi with a conflict message. Instead, in Figure 2.5b cd@liesnd(have written
line A within a transaction, whicli attempts to commit. Before updating the directory and the
L2 cache, the system broadcast the write sddi ef-in this case, line A—to abort inconsistent

transactions. When cof@ receives the message, it automatically aborts its traiosact

2.2.4 Building High-Performance HTM Systems

Bobbaet al.[14] pointed out that HTM systems reflect different choicdsl&implementing
the above mechanisms, dividing HTM implementations in tuwieent groups:eager (single
version per memory blockmmediateresolution of conflicts) anthzy (multiple versions per
memory block,deferredresolution of conflicts) HTM systems. Although hybrid appches

can be found in the literature, they can easily be placed énadthese two groups.

Figure 2.6 shows how eager and lazy HTM systems deal withictinf] transactional exe-
cutions. In Situation 1, the eager HTM can preserve usefet@ion on write-write conflicts,
while at least one transaction has to abort due to a direonsistency when it is executed in
the lazy HTM environment. In Situation 2, the lazy HTM su&fally speculates with the read-
write conflict, while the eager HTM has to stall the confligtirequest. In Situation 3, the eager
HTM must abort a transaction when a potential cycle betwéalted transactions is detected,
while the lazy HTM may starve older transactions. In thedwihg sections, we borrow the

eager/lazy taxonomy to describe state-of-the-art HTM @m@ntations.

26

2.3 Eager HTM Systems

We designate eager HTM systems those implementationsabalve conflicts as soon as
they are produced, independently of the data version mamagestrategy that they follow.
Identifying conflicts once they are detected enables esiagciconservative conflict resolution
policies, which prevents the abort (and re-execution) mjddransactions with one-direction
conflicts. Moreover, eager HTM can empleither early or late version management, given
that the system maintains jussenglespeculative value for any transactionally written data. In
this section, we review related work in eager HTM systemsl€l2.1 summarizes the main

characteristics of different-style eager HTM systems.

2.3.1 Bounded HTM Systems

Precursors of modern HTM systems observed that processold gse the coherence pro-
tocol to optimistically monitor atomic accesses on memougations. Jenseet al. [59] were
the first to propose synchronization primitives to trackrafiens for a single memory address.
Later, Herlihy and Moss [49] presented their pioneer HTM lenpentation, which supported
finite-sized transactions. They added a specific transadtiache in the infrastructure to buffer
written data explicitly classified as transactional. Thispamplemented an ownership-based
coherence protocol to match incoming requests againsttiaestbred in the transactional cache.
Transactions kept running even in the case of conflict, ey thquired validation before com-
mitting. If someone had interfered with them during theieextion, the register state had to be

restored and transactional cache lines invalidated.

Speculative Lock Elision (SLE [95]) is an implicitly trargt@nal implementation—it keeps
using a lock-based nomenclature—that alters modern eater processors by introducing a
transactionally read bit in the L1 cache and by holding slatiee writes in the store buffer.
The system issues exclusive requests when the processes rttentative store, discarding
and restarting the computation of those processors tha¢aire line. In case of failure, the
critical section retries its execution using locking setitan Once all the exclusive permis-
sions are granted, processors atomically drain the stdferlto the data cache while keeping

denying incoming requests. Thread Lock Release (TLR [9GBrels SLR to construct a fair

27

Eager HTM Access VM Bounded | Finite | Overflow
HTM System
Group Summary | Strategy| Support Tx? | Support
. Bounded) Separate
Original HTM [49] R/W L1 bits | Late Yes None
HTM Tx L1 cache
Bounded) Store
RockHTM [33] Read L1 bits| Late No STM
HTM Buffer
Hardware) Tx L1
HASTM [105] Read L1 bits| STM No ST™M
Accelerated cache
Damron’s . .
Hybrid TM R/W L1 bits| Late | TxL1lcache| No STM
HyTM [31]
Unbounded | R/W L1 bits Tx L1 cache, SW
VTM [97] Late No
HTM SW filters Tx registers buffers
Unbounded)
LogTM-SE [130] Signatures | Eager None No SW log
Log-based HTM

Table 2.1: Classification of eager HTM systems

timestamp-based algorithm that enforces younger trainosadb restart or wait. This starvation-

free algorithm guarantees that at least one of the confli¢temsactions keeps doing progress.

Since SLE, some store-buffered HTM systems have been mdp&aich late version man-
agement scheme is promising given it requires minor modibics in the hardware, especially
in memory structures. In fact, the Rock processor [33] iypted by Sun Microsystems exploits
a flash copy mechanism to checkpoint the architecturaltexgtate and limits the version man-
agement support to the size of the store buffer. It also egtse hardware resources to the
software layer, which is notified each time a transactiols fdiThis includes buffer overflows,
data races between transactions or processor exceptidnstarruptions.) In those situations,

the system can behave like a HyTM, as it implements a friemdgrface for STM [79].

2.3.2 Hardware-accelerated TM Systems

Sahaet al. proposed the acceleration séftwaretransactions through specific hardware
mechanisms [105]. In their HASTM implementation, they esgub four L1 cache bits to the

architecture, allowing the software to monitor, test amécthose bits. Thus, the STM layer was

28

able to track transactional evictions and invalidatiomslucing the software cost of managing

extra metadata such as the whole read set.

RTM [113] implements an object-oriented RSTM that modifies ¢ache coherence proto-
col with 5 additional states to hide transactional actionthe L1 cache. Although this novel
approach increments the complexity of the system, it alsomizes the overheads associated
with the access summary and data versioning mechanisms.'sRStffiware controlled coher-
ence permits the system to monitor any communication amoogepsors. Hence, when the
software discovers an inconsistent access, it has to notiflicts to individual processors.
This is made through the Alert-On-Update mechanism, whitbrels the ISA with additional

instructions to expose convenient informati@ng, when to abort) to independent processors.

SigTM [17] augments a TL2 STM system by substituting slow adata structures with
hardware (read and write) signatures. Note that this keaglses clean—read and write sets are
not maintained in metadata software structures or in thealche. In SigTM, each transactional
write has to execute an additional instruction to introdite@ddress in the signature. Similarly,
a transactional read has to test remote write signatures Wwiasks for the exclusiveness of a
line. As write-write concurrency is allowed, transactionsgst validate their write set at commit
time. This is done by issuing special exclusive requestgwinay not be granted if an address
belongs to another in-flight transaction. If these speciatriictions fail, the software takes

command and resolves the conflict.

Dalessandret al. showed how a NOrec STM system can coexist—and, of coursel-acc
erate their execution—with Rock-like HTM support [30]. Ferample, hardware and software
transactions use a nested hardware transaction (two heréweelerated writes) to acquire a
secondary lock needed to validate the committing value faht prevents transactions that fit

in the hardware to interfere with software transactions.

2.3.3 Hybrid TM Systems

Hybrid Transactional Memories (HyTM) handle large trarisans using software mecha-
nisms such as STM [48] systems, whereas common-case, sinatisactions use best-effort
hardware. Kumaet al. extended core resources with a transactional state tallla aighly-

associative transactional buffer in order to simultangogembine hardware and software

29

transactions [63]. The first records the execution mode cf @acore hardware context and its
associated transaction, while the latter stores, for eachecline, both the old and new values
and a vector of R/W bit—one per each hardware context execntine core. If virtualization

is needed the system aborts the current transaction amdtseisin software (DSTM) mode.

Damronet al. cut apart the software strategy from the hardware suppogddib the HyTM
system to embrace a wider range of applications, but softwansactions may slow down
hardware transactions due to additional lookups [31]. PH®S] increments the flexibility
of hybrid environments by enlarging the modes of executiwh lay preventing hardware-only

transactions to overlap their execution with softwareydrdnsactions.

Hybrid UFO [8] expands the system with fine-grained hardwaemory protection to
achieve strongly-atomicity between STM/HTM transactiand outsider code. Moreover, trans-
actions that fit in special-purpose hardware can run safélyawncurrent software transactions,
although multiple readers of a memory block are not allowéposing potential conflicts
among transactions to the software permits the system tly &up contention management
policies, such as age-based approaches—these polimeisipe; in the common case, the STM
transaction. The study of distinct software conflict mamaget policies also pointed out that it

is important not to fail over the STM when contention is high.

MetaTM [98] modifies x86 architecture to provide HTM assist®, allowing the system to
execute a “transactified” release of Linux, called TxLinMetaTM upholds multiple methods
for resolving conflicts between transactional accesselkaPa policy that aborts the transac-
tion that has done less workize., has executed less instructions—and performs an expahenti
backoff before restarting it, is the one that achieves thstragerage performance, although itis
not the best in all the cases. In [54], MetaTM simplifies tlaasactional hardware, at the cost of
limiting concurrency. It proposesansactional orderinga mechanism that relies on a runtime
system that assigns kernel-level locks to those transectimat overflow physical resources and

commits them in serial order.

Riegelet al. [101] expanded the design space of HyTM systems by implengetime-
based algorithms using AMD’s Advanced SynchronizationilfadASF [27]), an x86 ISA

extension that aims to provide rich semantics for easingyhehronization of threads.

30

2.3.4 Unbounded HTM Systems

Bounded HTM systems do not ensure by themselves the progfréssse transactions that
exceed buffering resources, such as local caches. Howagérperformance HTM systems
must support in hardware transactions of arbitrary sizenew the case of overflow. While
HaTM and HyTM systems offer clean solutions when dealindhliose situations, software
dependency induces substantial performance overheadisTerid, Ananiaret al. proposed
Unbounded TM (UTM [5]), a hardware-assisted system wh#rnaformation regarding a trans-

action is held in a unique memory-resident data structure.

Since UTM introduces several changes in processor’s diidt®] authors presented a sim-
plified (almost unbounded) HTM implementation, called leafigM (LTM [66]), that allows a
safe execution of transactions as large as physical merabl.reserves part of its non-cached
DRAM memory space—organized as a hash table—to buffer edd#dta spilled from the L1
cache. Note that LTM employste data versioning, keeping the pre-transactional stateen th

shared levels of the memory hierarchy.

Virtualized Transactional Memory (VTM [97]) maintains @itinformation of data that ex-
ceeds hardware resources-g; speculative values or read and write sets—in a table placed
in application’svirtual memory. Similarly, Page-based Transactional Memory (PZ¥])[ex-
pands a conventional bounded HTM system with shadow pagésdld transactionally modi-
fied values. Those deferred update VM schemes, howeverigqre large delays when over-
flowing data is made visible at the end of a transaction. Taamrae this issue, lots of HTM
implementations offeearly data versioning to manage efficiently the speculative (reav)s-
actional state. In those approaches, hardware structwsiebald new values are replaced with
low-cost mechanisms (commonly software-resident logkgép the transactional state in-place

and the pre-transactional (old) state in private (perétiyenemory.

Moore et al. were the first to simplify the UTM’s version management medisa by us-
ing software-resident logs to maintain the old values afigeationally written lines. In their
LogTM implementation [84], the software log is logicallyganized as a stack, placing the old
values of recent modified data above the values of previamtgssed data. In case of abort, a

software routine traversed the log to undo the modificatintteduced by the offending trans-

31

action. While LogTM only supports flat nesting [43], optimireinterpretations of the original
system [85] enable composing transactions by encapsyldtenesting depth and a pointer to

its parent in the header of the software-resident log.

As a result of its simplicity, the majority of contemporaryTM proposals [70, 122, 130]
establishearly software logging as their data versioning strategy. Theg#ementations are
ordinarily known as log-based HTM systems. This methodcagtes transactionally modified
data across whatever level of the memory hierarchy, whicans¢hat just a single speculative
version of a memory block can be spilled in the shared memuages Thus, log-based HTM
systems impose eager conflict management, building up whadrnmonly known asruly
eager(early VM, eagerCM policies,EE for short) HTM systems. In Section 3.2.2 we describe
LogTM-SE [130], an evolution of LogTM that replaces R/W hitih signatures to summarize
thosephysicaladdresses accessed within a transaction. We also expldietail the logging
and abort process on conventional log-based HTM systentsioS8d.8 describes in more detalil

related work on unbounded and log-based HTM systems.

There are severahetadataHTM implementations that combine software-resident logs
with per-bock memory extensions for access summary puspoSmeTM [10] introduces a
permission-only cache to maintain consistency of evicethe lines. The system just allows
one overflowing transaction at a time, which can be executguhrallel with multiple small
transactions. Overflowed lines must keep a transactiontifalen which determines which

thread owns—and thus can access—the evicted data.

Similarly, TokenTM [12] eliminates the false positives @satures by adapting the concept
of token coherence to detect conflicts among any kind of &etiens. In TokenTM, each mem-
ory block carries T tokens, which are propagated throughmthory hierarchy using metabits.
Threads must acquire one (all) token(s) of each memory biea#t (written) within a transac-
tion. This fact does not generate any ordering issue in Tis®irhplementations given that TM
applications areafe supervisefiL3]. If a token cannot be acquired, a conflict is detected and
the transaction must abort. Tokens are restored at comraliant time, using metadafasion
andfissiontechniques to accelerate the process. LiteTM [58] reddeesumber of out-of-band
bits required to represent the token state by exploitingligcproperties and using software to

infer the lost information.

32

2.4 Lazy HTM Systems

Some HTM implementations defer the resolution of conflictilicommit time. As these
approaches permit inconsistencies among transactiorigpl@wersions of the same line have
to be maintained in hardware. Hentage version management is a must when designing those
HTM systems. That is the reason why these systems are comiaonivn astruly lazy (late
VM, lazy CM policies, LL for short) HTM systems. Resolving conflicts after they are-pr
duced enables speculation between contended transactibith favors overall concurrency
and eliminates some read-write conflicts. However, aroiinaand atomic data movement is
required when a transaction finalizes. In Section 5.5 weestirvmore detail how lazy commit

protocols operate.

Stoneet al. proposed Oklahoma Update [116] to replace short criticetices with multi-
word atomic updates, the values of which were stored in plal{up to 8) reserved registers.
These registers buffered updates until commit time, whieeeptocessor requested exclusive
write permissions of the accessed addresses. Once all thésp®mns were acquired, the pro-
cessor sent write requests to memory, blocking incomingesito prevent interruptions. This
process is commonly known &so-phasecommit—acquire permissionéirét phase), then up-
date memory gecondphase). To avoid deadlocks, permissions were acquiredciendant

address order.

Transactional Coherence and Consistency (TCC [45]) ptedea new shared-memory
model based on transactions. In TG&eryoperation is performed inside an atomic block
declared statically by the programmer or the compiler; mgkransactions the basic unit of
work from the system point of view [44]. Thus, memory accegserformed inside a trans-
action can be freely re-ordered, given that they will ap@gamic from outsider threads. This
concept is generally known &&nsactionalconsistency. Table 2.2 summarizes some lazy HTM

implementations with TCC background.

In contrast to conventional eager HTM systems, lazy HTM engéntations require several
changes in the memory hierarchy and in the coherence pto#®daCC-like system must have
at least two levels in the memory hierarchy, one private kkaps thespeculativestate—in the

original TCC, R/W bits are added to track transactionaldir@nd one shared that holds the

33

Lazy HTM Access VM Bounded Finite | Overflow
HTM System
Group Summary | Strategy Support TX? Support
TCC-based) Tx L1 cache, Grab
TCC [45] R/W L1 bits | Late
HTM Central Arbiter| Yes Token
TCC-based| R/W L1 bits, Tx L1 cache, Trap
XTM [25] Late No
HTM Snapshots Central Agent Exception
Bulk) Tx L1 cache, DRAM
Bulk [20] Signatures | Late No
Consistency Central Arbiter Space
Hybrid .
FlexTM [112] Signatures | Late Tx L1l cache | No ST™M
™

Table 2.2: Classification of lazy HTM systems

committed(non-speculative) state. In-flight transactions read &tata the shared (or global)

state, and hold new values locally until the transactiorsend

The global state istomically updated at commit time following Oklahoma’s two-phase
protocol, and only one transaction can commit at a time. Tlius necessary to arbitrate
between in-flight transactions, allowing a single committehe system. TCC opts to integrate
in the hardware a centralized agent that fairly distribiaeglobal token among transactions
willing to commit. If a transaction fails to acquire the toket must wait until the token is
released [82]. Once atransaction acquires a token, it basaslits write set to all the processors,
which inspect their access summary to find inconsistendfeso, non-committers abort their
running transaction. After that, the committer updatesshared memory. As the commit
is an atomic process, the system must block accesses to ftiiieddines until the commit

ends—.e., after the committer releases the token.

If a transaction does not fit in the L1 cache, the overflowingcpssor must acquire the
commit token and hold it until commit time, so the transactian safely update shared mem-
ory with the speculative state. This mechanism may starvager committers, which cannot
acquire the token and thus commit, serializing parallecetien. To avoid this problem, Ex-
tended Transactional Memory (XTM [25]) complements TCChvatpage-based virtualization
strategy that buffers updates in private pages and usestsstagor conflict detection. TCC can

also be enlarged with nesting, I/O and OS support [81], abaselord-granularity conflict de-

34

tection. Enhanced TCC-based systems can rely on prograshafulity to leverage the commit

packet [107].

Cezeet al. compact memory accesses executed within atomic blocks ite Bignatures
for different purposes, ranging from TM or TLS [20] to higkfformance sequential consis-
tency [21]. Specific hardware is necessary in order to effiieoperate with signatures. Like
in TCC, collisions between transactions (chunks of insions) are resolved at commit time
by broadcasting the write signature and performing locdkBiisambiguation. In the case of

violation, the transaction (chunk) is aborted (squashad)immediately re-executed.

Several improvements have been proposed to enhance tlabiktalof lazy HTM sys-
tems [92, 93, 112, 124]. These techniques are broadly disduim Chapter 5. An interesting
alternative to rethink a lazy system is FlexTM, which usesfensare layer to define the resolu-
tion of conflicts while the hardware is in charge of maintagithe speculative state. We review

FlexTM in Section 6.6 together with related work on contemtaware HTM systems.

2.5 Reutilizing Transactional Mechanisms

Few proposals extended HTM support for non-transactionglgses, such as enforcing se-
guential consistency in weaker memory models, checkingraghism, detecting races between

atomic sections or maximizing the performance of sequiezaitid parallel execution.

Invisifence [11] pins down non-ordered data in private escind supervises memory mes-
sages to support sequential consistency among parallekshaf instructions. A chunk ends
when it receives cache permission for all the memory inftbns contained in it. Similar to
eager HTM systems, Invisifence clears speculative bitsmfoaches and flushes processor’s

pipeline in case of collision between in-flight chunks, aog weak-ordered executions.

Porteret al. adapted hardware-assisted (either eager or lazy) TM sufipaccelerate se-
guential execution in a Speculative Multithreaded (SpMijinment [91]. This approach
achieves higher concurrency between speculatively sphitmeads, given that they can opti-
mistically execute in parallel in the (common) case that mgntdependences do not appear.

Like this, SpMT implementations can be more aggressive tbamentional designs.

35

TM support can also be used for testing parallel code. $iEedt [15] exposes software
transactions as the principal operation to undo the intienaxdifications introduced by on-line
testing of parallel code. RaceTM [42] detects data racesd®st ongoing threads using TM-
like coherency to repottugs—i.e., conflicts between implicit transactions—on non-protdcte
parallel code. LifeTx [60] enforces deterministic threatkerleaving by encapsulating parallel

code inside bounded and ordered hardware transactions.

36

37

Chapter 3

Experimental Methodology

This chapter overviews the simulation infrastructureizéil in the next chapters to evaluate
the contributions of the thesis. After that, it details tlaséd system configuration used through
the study and presents the state-of-the-art, reference siEdms against which the proposed
techniques are compared. The chapter ends describing amdctérizing the transactional

benchmarks used for the evaluation and presenting therpeafiwe metrics employed to ana-

lyze the behavior of the proposed HTM designs.

3.1 Simulation Infrastructure

A complete system has been simulated using the Simics [fi&stinucture from Virtutech
and the GEMS [80] toolset from Wisconsin’s Multifacet gro@mics is a commercial product
that provides full-system functional simulation of a mpifticessor system executing a SPARC
Instruction Set Architecture (ISA) [55]. This environmemables the evaluation of TM work-
loads running on top of a Solaris 9 Operating System (OS). GEXérsion 2.1) is a timing
module that has been used to model the memory hierarchy, T lhdse systems, the coher-
ence protocol and the network traffic. GEMS is essentialijter in C++, but it uses SLICC—a
specific domain language—to define coherence transitiodsré@rmediate (non-solid) cache

states.

38

Core o
REGs r r
| REGs Checkpoint | Core Core
TLB L1 Cache /| L2 Cache
I’I
Il
HTM / i
ALUs Support /, Directory Router
4

Figure 3.1: Base system configuration

3.1.1 Modeling Hardware Support

Simics processing cores retire an instruction per cyclentar-memory operations. How-
ever, in our infrastructure, those cores communicate wEMS to model the latency of mem-
ory operations. Each time a core retires a memory operattidiipcks its execution and it
delegates the management of memory to GEMS, which simutflageBming of the operation

(coherency included) and updates the memory state befommirgg the government to Simics.

GEMS treats non-included ISA instructions as “magic” instions—.e., a SPARC no-
operation (NOP) when they are executed in a real machine.nValgocessing core issues a
magic instruction €.g, Tx_Begi n or Tx_End in a TM habitat), it gives control to the GEMS
timing model, which prepares the processor state for tdiosel purposes. Transactional
operations are handled as regular memory operations—tlyeogarheads introduced in the

timing model are those produced by special coherency events

Notice that GEMS is possibly the most used infrastructuréhénliterature to model HTM
systems due to its flexible capabilities. Several HTM syst¢d4, 112, 122, 130] have been
built on top of this simulation environment. Its adaptabpiillows the system to efficiently pass
information to the software using hidden processor regiséed trapping precise exceptions

appropriately.

3.2 System Configuration

For our evaluation, we assume a Chip Multiprocessor (CMR&) @2 cores and two levels

of caches, where the first level (L1) is private and the sedevel (L2) is shared among all the

39

32 UltraSPARC Il cores, 1.2 GHz in-order, IPC =1,

Core
single issue, single-threaded
32 KB, 4-way, 64 bytes per line, inclusive,
L1 cache
write-back, 2-cycle latency
16 MB, 8-way, banked NUCA,
L2 cache
write-back, 15-cycle latency
Memory 4 GB, DRAM, banked, 150-cycle latency

Memory controllers| 4 Memory controllers, distributed in the CMP, 25-cycle fatg

Bit vector of sharers/owners, distributed,
L2 directory
L2 inclusive, 6-cycle latency

16-node mesh, 64-byte links, 2-cycle wire latency,
Interconnect
1 cycle route latency

2 Kb parallel Chuckoo-Bloom filters
Base HTM Support| Register checkpoints per core
Software logging support

Table 3.1: Base system parameters

cores, as shown in Figure 3.1. Coherency is implemented aditocking, distributed directory
placed in the L2 cache. The system has a 16-node mesh intectotnat uses 64-byte links
with adaptive routing. Each node has two cores, a piece oagedh.2 cache and part of the

directory. Further information about simulation paramete described in the next subsection.

3.2.1 Base CMP Parameters

The CMP models 32 simple, single-threaded, in-ofdemr aSPARC ||| cores with fixed

IPC 1 for non-memory operations. Memory operations, irtstegke variable latency.

Each core has two private 32KB cache, one for instructiomsame for data. The L1 data
cache is write-back and coherent. Besides the standaid mgies are extended with additional
hardware support for TM. For example, cores use local shamipies of physical registers,
which are updated each time a transaction starts and aretegedover the processor state

when an abort occurs. We defer the description of specifaone- hardware support for each

40

HTM to the following section (for reference HTM systems) attpters (for proposed HTM

systems).

Our base system implements a shared L2 cache distributedggiime CMP nodes [50, 67],
where each node has 1 MB of the L2 cache. This is a Non-Unifoath€ Access (NUCA)
system that contains a total of 16 MB. The system has four mgoantrollers to access 4 GB
of main memory. Coherency among L1 caches is implementedpoofta split directory placed
at the L2 cache, which keeps, for each line, a list of shamedscavners (if more than one).

Table 3.1 contains additional parameters of the base CMErays

3.2.2 Reference HTM systems

We take two state-of-the-art HTM systems as baseline aathites to evaluate the effec-
tiveness otruly eager (LogTM-SE) anttuly lazy (TCC) schemes. Following is a description

of the reference HTM systems.

LogTM-SE [130]: Our eager start point is LogTM-SE, a log-based (EE-like) H3ydtem
developed at the University of Wisconsin-Madison and itigted with GEMS 2.1. This im-
plementation stores directly transactional values in &memory and delegates the detection
of conflicts to afiltered MESI coherence protocol, which forwards coherence messagge
owner (or sharers) of a cache line. Memory locations acdeadhin transactions are kept in
per-core read and write signatures, which are consulted &ae the core receives a remote

memory request.

For our evaluation, we choose to use 2Kbit parallel Cucktmm filters [130], given
that previous studies advocate that this configuration contyrobtains the best performance-
per-area results [106]. Like all log-based HTM systems, TMgSE initializes the software-
managed log when a transaction begingwhen a processor retiresla_Begi n instruction.

In such situations, the processor jumps to a firmware rotitiatinitializes the log.

In LogTM-SE, each time that a memory operation misses thedche the system must
perform conflict detection by issuing a memory request tarkeenory subsystem. If the mem-
ory request does not report a conflict, the reader (writerg ealds the memory address in its
Read (Write) Signature. In addition to this, when a trarieaet store is retiredif., no conflict

appears) the core must maintain the old value of the line nivate software log before writing

41

the new value to memory. The software log contains, for eemfisactional written line, the

logical address of the line and its pre-transactional value [88].

Our LogTM-SE implementations follows three steps to enshaéthe new value is in place
and the old value in the software log: (1) the system bringsctithe line to the processor if it
is not already there, checking for conflicts through forveskrdoherency requests, (2) if there is
no conflict, the old data is stored in the first available epfrthe stack together with its logical
address and (3) the new data is stored in the L1 cache andglpeilater is incremented. Note
that the logging process can be treated as a conventionalramosactional store, so conflict

checking is not required—the software log is private and thot accessed by other processors.

When a core receives a conflict notification, it re-issuesrieeory operation again, hoping
the conflict to disappear soon. However, LogTM-SE may abdramasaction when a cycle
among conflicting requests is detected. When a core has tg #@lims to undo all the changes
performed by its transaction. This is done by triggering xregtion that jumps to a recovery
handler. This handler invokes a software routine that wtikslog in reverse order and, for
each undo entry, stores the old data at the address assdowiititethat entry. When the first
entry of the log is restored—the routine arrives at the hdadeolog—the handler informs the
hardware that it can clear the access summary, recoveredfsar checkpoint and sets the PC

to the value stored in the header log, which correspondsetsttrt point of the transaction.

As transactions are durable, once they commit their chaagegreserved foreverie.,
the stacked data is discarded by updating the log pointarif@plementation extends the base

conflict resolution policy of LogTM-SE with other policiegscribed in the literature [14, 98].

TCC [45] with distributed commits [92] (TCC-Dist): Modeling TCC-based (LL-like)
systems may turn into a complex task because the majorityagfosals usead hoc HTM
implementations. Nonetheless, we integiaidy lazy execution in a conventional CMP envi-
ronment by adjusting the coherence protocol to allow migtygrsions of the same cache line.

The complete design of this system is described in Chapter 5.

Lazy HTM systems do not update memory until a transactionraitsn so our lazy imple-
mentation modifies the simulation interface to hide tratisaal stores from Simics, keeping

old values untouched in global memory and new values onBllipeisible. Hence, the simula-

42

tor buffers transactional writes and bypasses (updatesgthalues each time a younger reader
(writer) accesses the memory block within that transactidespite TCC does not support un-
bounded transactions, we idealized late VM hardware to peh@ execution of transactions
of any size. This implementation allows us to emulate thénmgdtbehavior experimented in
FlexTM [112] or EazyHTM [124], which mitigate the impact ofsource overflow by using

specially designed hardware.

Like FlexTM, our lazy approach relies on signatures to triekread and write sets. To
provide a fair comparison, we used the same signature p&esriban in LogTM-SE. Contrary
to FlexTM, our base lazy HTM system does not require softvaabération to guarantee trans-
actional consistency. Instead, we borrow the distribugsthtique presented in [92] to enable
parallel (and reliable) commits. To implement this teclieigeach core keeps a bit vector con-
taining all the directory banks accessed during the traimsacBefore making the state visible
(i.e., moving the speculative state to non-transactional), tmenaitting core must acquire all
the directories that are present in the read and write selgenVd core fails in its attempt (this
happens when another transaction is committing a tramsatiiat has accessed the same di-
rectory), it must re-issue th&cquiremessage. Directory steals are allowed in order to prevent
directory deadlocks. After acquiring all the directoridsg core sends abort messages to con-
flicting cores, updates Simics global memory and releaseslitiectories. More details about

the base commit process (and its optimizations) are destitbChapter 5.

3.3 Transactional Workloads

Evaluating HTM systems may become a labyrinthine task gitienack of TM software
developed until the date. The majority of HTM systems apgean the literature do not con-
template complex TM workloads (in part because they did Rrist &y the time those systems
were published), and most TM behavioral studies are bassiiigie programs that read/update
shared variablese(g, global counters) or small data structures. Instead, weackexize both
reference and proposed HTM systems with a vast range of Thicagipns, which allows us to

better prove the (dis)advantages of each approach.

All the TM benchmarks are multithreaded applications ritin C. These applications

first prepare the input data for computation and then dividevtork in independent threads,

43

Suite Benchmark | Input parameters Execution
Btree-fix 10/90% inserts/lookups, fixed Tx size 16K iterations
Btree-var 50/50% inserts/lookups, variable Tx size 2K iterations
List-long 5K dummy work, 2K useful work, 16 lists 4K iterations

pbench
List-short 2K dummy work, 1 useful work, 1 list 16K iterations
Hash-read 10/80/10 inserts/lookups/deletes, 4K buckets 4K iterations
Hash-write 25/50/25 inserts/lookups/deletes, 1K buckets 4K iterations
Barnes 512 bodies Whole parallel phase
SPLASH-2
Raytrace Teapot Whole parallel phase
Bayes 32 vars, 1024 records Whole parallel phase
Genome 32K segments, 512 genes, 32 lengths Whole parallel phase
Kmeans-low | 40/40 clusters, 16K points Whole parallel phase
Kmeans-high| 15/15 clusters, 16K points Whole parallel phase
Intruder 4K traffic, 10 attack, 4 packs Whole parallel phase
Labyrinth 32*3*3 maze, 2048 routes Whole parallel phase
STAMP

Ssca2 213 nodes, 3 edges, 3 length Whole parallel phase
Vacation-low | 1M clients, 90% queries, 4 items 16K tasks
Vacation-high| 64K clients, 60% queries, 16 items 4K tasks
Yada 20 angle, 633.2 mesh Whole parallel phase

Table 3.2: Input parameters of TM applications

which are bound to a unique processing core uping eads. Threads are executed in parallel,
accessing shared data within transactions. Before gidtimparallel phase, a Simics “magic”
instruction is introduced in order to warm up transactistalctures. A non-blocking memory
pool library is used to remove implicit locking from OS opwas (ral | oc orfree) performed

inside transactions. Global barriers are placed at the &€mldeocomputation to synchronize

threads. After that, the master thread performs sanitykshec

3.3.1 Transactional Benchmark Suites

TM is an emerging programming paradigm, and thus there ia gabrum regarding which

is the best-suited methodology to quantify HTM systemssPlairtly happens because it lacks a

44

standard TM benchmarks suite, so most proposals are exdluéth self-developed programs.
We believe that this is a not-fair strategy, given that it rbayapplied at convenience, leading
to incorrect conclusions. In order to run away from thosekyrimethods, this dissertation
evaluates its contributions with a wide spectrum of TM aggiions, which vary in terms of

transaction’s length and contention. The TM benchmarlesuitilized are described below.

Microbenchmarks [80] are slightly modified benchmarks which plain version is jued
by GEMS. These benchmarks interact with distinct data &tras and present variable con-
tention, depending on how data is distributed on those tsires. We rewrote those bench-
marks Btreg List and Hash to regulate (by input parameters) overall transactioimd and
contention. We utilize these benchmarks to stress the HTStgys, which permits us to dis-

tinguish clearly (and rapidly) the strengths and weakree$each implementation.

Splash-2 [128]presents a set of benchmarks for multiprocessors, whekepimtected re-
gions are replaced with transactional blocks. As Splaskslbmarks have been tuned over
the years to minimize synchronization, they spend mostefithe in small, fine-grained trans-
actions. Although this behavior is not TM representative, included in our evaluation two
Splash-2 benchmarkBérnesandRaytracé because (i) they enable a fair comparison with past
HTM work [130], which used this benchmark suite for theirlexgion, and (ii) they concentrate
shared data in few code lines, what makes critical the comflamagement policy implemented

in the system.

STAMP [16] is the first (and, until the date, the unique) pure transaatibenchmark suite.
STAMP workloads try to recreate how an average programmeildrvonplement an applica-
tion using a TM programming model. In these workloaBayes Genomelntruder, Kmeans
Labyrinth Ssca2 Vacationand Yadg, programmers conservatively protect accesses to shared
data structures in large (even huge) transactions, whisbseprogrammability but increases
the conflicting rate—and thus scalability. Hence, thesekiwads spend most of the time run-
ning transactions, what raises interesting performanoneearas when they are executed in non-
optimized HTM systems. For the evaluation, most STAMP waaklls use the input parameters
suggested in the 0.9.10 distribution. However, some inprampeters are modified (using val-
ues suggested for non-simulated executidms, STM systems) to preserve the scalability of

TM applications.

45

Category | Benchmark | Avg. Read Set Avg. Write Set| Max. Read Set Max. Write Set
Barnes 6.27 4.63 41 35
Kmeans-low 8.00 3.50 10 4
. _ Kmeans-high 7.25 2.75 9 3
Fine grain
List-short 1.25 1.50 2 2
Raytrace 5.32 1.98 458 3
Ssca2 3.00 2.00 3 2
Bayes 79.29 37.73 806 455
Btree-var 155.25 85.24 291 262
Genome 31.74 10.47 155 45
Variable grain| Hash-read 128.73 121.19 282 270
Intruder 8.71 2.97 43 21
List-long 30.81 30.67 261 259
Yada 32.77 14.85 326 158
Btree-fix 36.44 13.52 51 23
Hash-write 158.19 150.25 401 389
Coarse grain| Labyrinth 112.02 102.16 316 222
Vacation-low 97.47 20.77 184 31
Vacation-high 101.72 20.20 234 37

Table 3.3: TM applications grouped by the size of their transactions

All transactional benchmark suites are compiled withh 3. 6 using the -O2 optimization
flag. They are also executed until their completion takingragput the parameters described
in Table 3.2.

3.3.2 Transactional Workload Characterization

Prior studies assumed that transactions are commonly amétio not conflict [26]. How-
ever, novel TM workloads include large transactions thatas shared data structures, what
may often produce collisions. The performance achieved Byliystems is highly applica-
tion dependant; therefore it is interesting to categoriwbwiorkloads according to their charac-

teristics. Grouping applications permits a compreheasibiderstanding of how transactional

46

Category | Benchmark | Transactional Time Committed Transactions Tagged Transaction
Barnes 2.11% 2187 3
Kmeans-low 3.65% 21846 3
Kmeans-high 8.77% 21846 3

Barely Tx | Intruder 29.30% 22501 3
List-short 2.38% 32768 2
Raytrace 0.14% 47751 5
Ssca2 14.45% 47257 3
Bayes 81.79% 490 15
Btree-var 98.86% 2048 2
Btree-fix 91.79% 16384 2
Genome 97.57% 19483 5
Hash-read 98.47% 4096 4

Mostly Tx | Hash-write 98.78% 4096 4
Labyrinth 99.48% 4098 3
List-long 62.74% 8192 2
Vacation-low 91.15% 16384 3
Vacation-high 86.34% 4096 3
Yada 99.92% 2788 6

Table 3.4: TM applications grouped by the size of their transactiomaét

mechanisms operate under certain scenarios and allowsdesaionine the major performance

bottlenecks associated with these situations.

Table 3.3 provides important information about the sizehef transactions that belong to
the applications utilized in this dissertation. For eachdbenark, Table 3.3 shows a column
with its average transactional read set size (Avg. Read thethverage transactional write set
size (Avg. Write Set), the maximum read set size (Max. Redjlé®e the maximum write set
size (Max. Write Set) of a single-threaded LogTM-SE exexufcache line granularity). The

last column classifies applications in three different gaties according to the data gathered in

the previous columns.

a7

We refer adine-grainedapplications those that contain transactions that reatantbdify
few lines. Variable-grainedapplications are those that combine small and huge traoeact
to build software using rational-size atomic blocks. Thagplications are easy to identify be-
cause average and maximum read and write sets consideitibly ld contrastcoarse-grained
applications are dominated by large transactions that ouyst of application’s execution time.
Variable- and coarse-grained applications recreate tkge(ted) behavior of future parallel

software, where non-expert programmers enclose sharaditié¢ing conservative principles.

Table 3.4 complements the previous table with additiondrination of single threaded
LogTM-SE executions. It shows the percentage of time spesitié a transaction (column
Tx Time), the number of committed transactional instancasnd the application (column
Committed Tx) and the number afifferent tagged transactions executed in the application
(column Tagged Tx). The last column of Table 3.4 classifiestbnchmarks in function of its

transactional weight.

We define abarely transactionathose applications that spent most of the time in parallel,
independent computation or in barriers waiting other ttisea finish their computation. These
applications may experiment high contention given that thad to concentrate shared memory
accesses in tiny transactions. Insteadstly transactionadpplications cover almost all parallel

computation using transactions.

Prior tables provision a summary of static transactionfdrination. Unfortunately, this
data is not sufficient to extract conclusive assumptiongppfieation’s scalability capabilities.
For example, someone could claim that fine-grained, higlmed applications should perform
better than coarse-grained applications. This is commioadyin STM systems, where transac-
tional overheads downgrade considerably overall perfon@d18]. However, in HTM systems,
fine-grained applications usually concentrate data eofigsin specific points of the program,

which may generate high contention and thus worse perfarenan

All the above has lead us to measure the contention leveleoffiplications. Table 3.5
summarizes contention information regarding 8-threadegTIM-SE executions. The second
column of the table (Conflict Rate) shows the number of doltis per committed transaction,
while the third column (Abort Rate) shows the number of abpdr committed transaction. The

forth column (Contention Overhead) shows the percentagmefspent managing contention—

48

i.e,, time spent executing discarded work, re-issuing a memeaqueast, recovering the pre-

Category Benchmark | Conflict Rate| Abort Rate| Contention Overhea

Hash-read 0.48 0.07 28.32%

Kmeans-low 0.01 0.001 0.02%

Kmeans-high 0.03 0.002 0.15%

Low Contention

Raytrace 0.08 0.05 0.75%

Ssca2 0.005 0.001 0.78%

Vacation-low 0.07 0.001 2.70%

Barnes 0.32 0.24 6.99%

Btree-fix 0.04 0.03 12.17%

Medium Contention Genome 0.13 0.08 32.07%
List-short 0.25 0.18 5.84%

Vacation-high 0.12 0.02 10.47%

Bayes 2.93 2.26 78.60%

Btree-var 0.23 0.19 36.77%

Hash-write 1.50 0.39 56.81%

High Contention | Intruder 4.37 2.95 71.06%
Labyrinth 0.85 0.76 63.50%

List-long 0.62 0.40 37.35%

Yada 2.55 1.79 77.74%

Table 3.5: TM applications grouped by the size of their transactiomaitention

transactional state and spreading transactional coniprutat

using our baseline HTM systerhow-contentiorapplications experiment few conflicts, so they
are expected to scale well even with more threddsdium-contentiompplications show vari-
able contention through different phases of the executitiat should limit global performance
as reported by Amdahl's Law [36, 52]. Finalligigh-contentionapplications present a great

challenge for HTM systems, given that they are expected tfoe poorly due to the huge

overhead produced by conflicting memory accesses.

The last column of the table classifies the applications raaog to the contention obtained

49

— .‘) Bogfraes
""""""" : Kmeans-low Vacation-l
R L+ acation-low
...... = 0 H ® Kmeans-high © Btree-fix
...... L . Ssca? Bayes
PHassmmsmnnnsasnan S e (5) . :
= @ P O Barnes ® List-large
5 Q@ : List-short Yada
Fine | Barely : Mostly Hash-write
@ @ > @ Intruder O Labyrinth
Cont(_ention R @ Btree-var () Hash-read
N Genome Vacation-high
High E ---

Figure 3.2: Clustering TM workloads according their characteristics

3.3.3 Discussion about Transactional Workload Behavior

Figure 3.2 clusters TM applications using the categorigediuced in Tables 3.3- 3.5. As
it can be seen in the figure, most transactions rather difféhé way they use transactions,
implementing transactions of distinct size, time and cotib@. Performance analysis carried
out in this dissertation are grouped in accordance with onenpre) of the above categories.
This classification allows the reader to better understaedimitation factors of each HTM

system when it executes a specific type of application.

Thus, we want to note that a heterogeneous set of applicatiasn been used to evaluate the
proposals presented in this dissertation. Our classificatidicates that most of them exhibit
different properties, and it seems reasonable to thinktttegt will show a divergent behavior
when they execute over the same underlying hardware. Fonmgalabyrinth andVacation-
low are both coarse-grained applications, but possibly ¥abation-lowwill scale in LogTM-

SE due to its low contention.

Similarly, these applications may alter their performawten they are executed on distinct
HTM systems. As discussed in the previous chapter, lazy Hy#8tesns commonly present
poor scalability when they execute fine-grained applicetifil6], like Ssca? because of the
overhead introduced on commits [45]. However, they alsorfaencurrency in high-contention
applications [111]. Hence, some high-contention appboat with small transactions, such as

List-shortor Genomemay obtain better performance when they are run on a lazy lsyd#em.

50

3.4 Performance Metrics and Methods

Evaluating HTM systems is an extremely sensitive labor,casmon performance metrics
can not be applied. For example, an HTM system with high IP€ pnasent ridiculous perfor-
mance if retired transactional instructions are lateratided when transactions abort. Similarly,
specific contention metrics, suchAbort Rate may produce tricky behavioral pathologies. For
instance, a high-contention TM application may show a Advert Ratebut poor performance

if processors are disabled after abort recovery.

For our quantitative performance evaluation, we focus erptirallel phase of the program,
skipping the initialization and the end phase. Hence, weharmM applications until their end,
taking the overall execution time as the basic metric forgadormance analysis. Notice that
threads are synchronized with barriers at the end of thergnogergo the execution completes
when the last operative thread finishes its computationufrperformance analysis, execution
time is normalized according to the reference HTM systeneage the comparison with other

HTM proposals.

Although normalized execution time is necessary to stow muchperformance each
HTM system obtains, it is even more important to understahgeach HTM system achieves
that performance. Thus, is crucial to distribute the exeouime to see which computation is
useful and which is discarded. Our analysis does suchllissn in a way that permits a fast

localization of HTM main limitations.

Besides execution time, this dissertation uses secondatsias to provide further infor-
mation regarding transactional behavior. These metricsptement the analysis by pointing
out specific factors that may impact overall performancee @hort rate, commit contention
or number of network messages are few examples of secondatrycsn Other metrics are

described at convenience in the following chapters.

Transactional applications are executed using from 1 td@&#tls. We run several simula-
tions for each benchmark and then compute the average meapradde scalability graphic
plots to show how applications behave under different nunolbehreads. We also include
bar graphs to analyze the performance of many-threadedigxes, which are the ones that

present more performance pathologies. Bar graphs shovpéselgp with respect to the refer-

51

ence HTM systems using 32-threaded (16-threaded) exesutiben studying low-contention
(high-contention) applications—we use fewer threads fgihttontention applications because

they normally do not scale beyond 16 threads.

Modeling power and energy consumption in transactionsesystis extremely hard, given
that aggressive designs may accelerate execution anddbhss hardware resources more of-
ten. While this behavior may introduce high energy consiongbeaks, it may reduce overall
execution time. Moreover, the number of instructions may wepending on the policies im-

plemented in the HTM system, making the energy analysiessel

Due to the difficulty of providing accurate power/energy riost we have decided to present
a behavioral analysis instead. Network traffic, point-teap coherence messages and memory
accesses have been characterized. This approach allowspoit out some hints that may
help the reader to understand the power and energy implicatf the proposed transactional

mechanisms.

We evaluate the complexity and area of our proposals gtiaditg comparing the transis-

tors required in our implementations with the hardware obstate-of-the-art HTM systems.

52

53

Chapter 4

A Log-Based Hardware Transactional

Memory with Fast Abort Recovery

Data version management (VM) is one of the key aspects ofreatjEM systems, and its
implementation has a direct impact both in the performarfitieeosystem and in the complexity

of the hardware design [14].

Late VM systems [5, 33, 97] keep old (pre-transactional) state énuibper levels of the
memory hierarchy, buffering the new (speculative) statprivate caches [97,112] or in store
buffers [33]. While in late data versioning aborts are fastduse it is enough to invalidate
those hardware structures that hide the new state, comajtsre additional data movements.
Moreover, late VM systems incur in significant overhead im tlase of resource overflow, as
they must jump to STM execution [63] or traverse complex harg structures on cache misses

and commits [97].

Early VM [84] systems keep new state in-place in memory, holding teenansactional
state on a side, commonly a software-resident log [10, 12,33]. In case of abort, the sys-
tem must trigger an exception and recover pre-transadti@aes using a user-level software
routine. Nonetheless, commits are immediate—data isdlrpkaced in memory. As a result,
early VM systems do not suffer from cache/buffer overflows late VM systems—speculative

data can safely be moved across the memory hierarchy.

Lin this thesis, we refer as eager HTMs those systems thdveesonflicts as soon as they are produced, inde-
pendently of the VM strategy that they employ.

54

The obstacles of early and late VM systems have led us to aesTM, a log-based
HTM system with fast abort recovery. This is an eager HTMaysthat takes the best of both
VM worlds: FASTM keeps both the new state and the pre-transactional statemory to pro-
vide fast commits and aborts FASTM achieves this by pinning down new values in the L1
caches, similar to late VM systems, but with two key diffarest (i) transactions update mem-
ory in-place, so commit requires no special actions, andyerflows are handled gracefully

by using a software-managed log, like in early VM systems.

In FASTM, we change the coherence protocol and the L1 cache clamttolguarantee that,
if there are no overflows, the old state is in-place in the @éidavels of the memory hierarchy.
Aborts in FASTM are fast, because they only require the invalidation efttansactional lines
that remain in the L1 cache. Nonetheless, since the predctional values are kept in a log on
the side, if a transactionally modified line is evicted frdme L1 cache the system can recover
the old state from the log, using the software abort recomsgghanism—not unlike early VM

systems.

This chapter starts presenting a quantitative analysisedlimitations of state-of-the-art ea-
ger HTM systems and follows showing a potential study thataxs the benefits of having fast
abort recovery. Then, it overviews the$TM system, its underlying hardware and the modifi-
cations in the coherence protocol. Afterwards, it sumneartzow RSTM executes basic mem-
ory operations. Later, it proposes two optimizations fa BASTM system: RSTM-WN and
FASTM-SL. The chapter finalizes evaluatingh&TM, reviewing related work on unbounded

HTM systems and exposing the main conclusions of the study.

4.1 Motivation

Previous studies [26] have claimed that common-case ttdora were short and did not
usually conflict. However, newer, more complex workloags dre believed to better represent
future transactional applications [16] exhibit a signifitaumber of large and/or conflicting
transactions. The execution of large transactions has/ened performance issues with current

implementations of both early and late VM systems.

55

= P2
m oW

Time Aborting (%)
=}

zi:__m=__:.DD:.DD:.UD W |

Gy i Moy Loy Ry, See. By G Go Mg, m, liy Vg By s, lan, Yoo, Yae. M
g e"ﬂsh;e"?”w;& h’abe Cap Veas 0.y, gy Shgy g, G e, oy, g 6"’%:6?’@?:!}

Figure 4.1: Percentage of time spent in abort recovery under 16-thceadgTM-SE

L Aborts on Abort O Aborts on Tx

Abort Rate

o = = _ _i_.D___D_i___:_g.

Ko, L 8, by, s, b lay Yo
%”i‘sf’""é‘ae? %ﬂf:z“ﬁ‘ & "aef?%e%y@s '@ﬂw%%fn:%”‘f? g, L % &%ﬂ%‘ifvy%"’?bx.a%”ﬂj:%ﬁ:q

Figure 4.2: Abort rate distribution of 16-threaded LogTM-SE execusion

Early VM systems suffer considerable delays when they dretransaction-dominated
workloads. Figure 4.1 shows the percentage of time spenbant aecovery after executing
16-threaded TM applications using LogTM-SE, a well-knovamnly VM system. Applications
are gathered according to the size of the transactionshateixecute; from fine-grained (left)
to coarse-grained (right). As it can be seen, TM applicatidavote substantial part of their
time to abort recovery, especially those with huge(Hash-writeor Labyrinth) or conflicting

(e.g, Btree-fixor Intruder) transactions, due to the overheads of software recovery.

Moreover, slow aborts may exacerbate contention, as marfliate involve transactions in
their abort recovery phase, which in turn provokes moretabdihis happens because an abort-
ing transaction cannot clean (remove the ownership of) itkevget until the pre-transactional
values are restored. Figure 4.2 classifies the abort raté-tifrtaded LogTM-SE executions in
two different groups: those aborts produced by in-flightngaborting) transactions (light bar)

and those aborts that involve, at least, one transactidnstiracovering its old state (dark bar).

56

20

=/ R II lll

%‘hﬁl\? ‘hé'.i‘ "E);'an '(Z'S%J?% c-aé&?_ye@ 6}% GSG%;&@}P\ hf}-‘u "{5";'{ &U‘_‘? &@5‘ “é&‘x}‘w }’?’?’

Overflow Rate (%)
=]

t?.f,q? 6‘.:‘, %}.7,

Figure 4.3: Percentage of overflowing transactions in single-thredaeyI M-SE executions

100
80
B0
4

=

2

Overflow Time (%)
(=]

— = = — IZIIZID

&?fq "]}b "Db fiﬁ‘ %}? 069&?‘?&5" &% %%Sﬁ\ hffw c'l\:;é &% “é&"‘l}\ p{/ 'H?fi‘f

p [.
af.r aff
q’? Oy, ‘(/

Figure 4.4: Percentage of time spent in overflowing transactions insitigeaded LogTM-SE

As shown in the graph, in high-contention applicatioagy(List-short Intruder or Labyrinth)

an important number of aborts come from aborting transastio

On the other hand, the overflow mechanism becomes criti¢alen/M systems. Figure 4.3
shows the percentage of committed transactions that owettfie L1 cache in single-threaded
executions of LogTM-SE. The left-sided bars show fine-grdifiM executions, while the right-
sided bars show coarse-grained TM executions. In contwasbriventional belief, the graph
indicates that TM applications (especially those with éatrgnsactions, likBtree-varor Hash-

read) commonly evict transactionally written lines from the LAche.

Even more important, overflowing transactions cover mosthef transactional time in
variable- and coarse-grained TM applications. From Figudewhich shows the percentage of
execution time (transactional and non-transactionat)tbgTM-SE runs an overflowing trans-
action (single-threaded), we can devise how critical isttiosfow down on overflows. However,
late VM systems delay those transactions, either exectti@g in software or walking com-

plex hardware structures on L1 cache misses or on commitss, Tose systems perform worse

57

(a) TStore (b) TLoad (c) Abort (d) Commit
TStore value @ TLoad tha
L1 Cache L1 Cache L1 Cache Commit
> old
new new OI@ data
@ @ old
data data @ data Store
\ Buffer
—
1 old Abort I
Q- el
@ TStore Siea
Store
Buffer Buffer

Figure 4.5: Store buffer implementation of an HTM system with early VM

than early VM systems when they execute TM applications [aded with large transactions
because they (i) retard memory operations, (ii) requirgtiél movements at commit time

and (iii) increase the time that conflicting data is exposecoinflicts.

To quantify the overheads associated with data versiomieganalyze the behavior of TM
applications on a store-bufferezhrly VM system that recovers instantaneously the old state
when the aborting transaction fits in the in-core store b{iff@]. Figure 4.5 describes the store-
buffer HTM system, which shares some similarities with tleelRHTM implementation [33].
Following is a general picture of how the system interacth wie memory hierarchy when it

executes transactional operations.

Transactional Store: A transactional store (TStore) sends the old data from thedche
to the store buffer and simultaneously updates the L1 cadtiethe new data value (Fig-
ure 4.5a). At the same time, a CAM search is performed in tfilebusing the store address.
A match means that this address has been written beforesitréimsaction and the correct (pre-
transactional) data is already present in the buffer. If mbcofmis found, the old L1 data is stored

in the first free entry of the buffer.

TLoad: A transactional load works identically to the original LAgISE proposal [130],

getting the (non-)speculative data from the closest lefHl@memory hierarchy (Figure 4.5b).

Abort: When an abort occurs, the processor is stopped and thestatsared by moving
the old values from the buffer to the L1 cache using regulamorg write requests (Figure

4.5c¢). If a line has been evicted from the L1 cache, it is bhbdigpm the lower levels of the

58

15 a

-§' 104 -§' 6 —&—Eager Ideal
% $ 2 & 58-32

a 5 o —0—5B-8

0 T

—8—L0gTM-SE

]I-II:l”lélllllllllsllllIIIIIIIIIII3I2I illil-lllélllllllllsllllIIIIIIIIIII32
(a) Fine-grained applications (b) Coarse-grained applications

Figure 4.6: Speedup of LogTM-SE, Ideal early VM, Store Buffer (8 enfriasd Store Buffer
(32 entries) implementations

hierarchy. This is not a problem, because the conflict detechechanism guarantees that no
other processor accesses the line—the abort process masirbi. In our system, the cache
has a single write port, so only one request can be sent atea tikhen the abort recovery

process finishes, the buffer is cleared.

Commit: On commits, all buffer entries are invalidated by flash+tteathe valid bits

(Figure 4.5d). No other action is required.

Overflow: When the buffer overflows, transactions have to be recov@methe software
log. In order to avoid unnecessary aborts, this implememaireates the software log always.
Hence, transactional stores place the old values in botlsttre buffer and the software log.
On overflow, a special flag is asserted and the store buffdeaad—from that point, it is not
necessary to keep old values in the store buffer. When aaitdos aborts, the overflow flag

decides if the transaction is recovered via hardware owsof.

Figure 4.6 presents the average speedup of LogTM-SE anddateeksiffered (SB) HTM
implementations normalized to single-threaded LogTM-SEcation. TM applications are
grouped according to their granularity. We also presentsffeedups obtained by an upper-
bounded HTM system that spends zero cycles on commits anmtsathich allows us to show
the potential of putting into effect an ideal VM mechanismwoTrealistic store buffer sizes
have been used in this study: store buffers either have 8 wroB@ entries. These sizes corre-

spond to the ones found in commercial processors from thgaxbaseries [62] and Rock [23],

respectively.

59

As we can see in Figure 4.6, the ideal (zero-cost commit and)a¥¥M implementation
outperforms LogTM-SE by an average 18% on fine-grained egbins (32-threads) and ap-
proximately by a 70% on variable- and coarse-grained agjidics (16-threads). Thus, data

versioning becomes critical in applications that execaitgd transactions.

Store-buffered HTM implementations obtain similar pemfiance to the ideal VM mech-
anism on fine-grained applications, where transactionsnfithe store buffer. However, in
variable- or coarse-grained applications they behave @3 MeSE: the ideal performance is
downgraded around a 45% (8-entry) and a 44% (32-entry) wiae buffers are used for
version management. Thus, we can conclude that biggerrbudfe needed to achieve close

performance to the ideal VM system.

We can draw three main conclusions from the previous stuidst, & VM mechanism with
fast abort recovery should help to reduce overall execuiioe and contract the window of
conflicts, improving then the scalability of TM applicats&an Second, such VM mechanism
must be able to handle gracefully resource overflows, elitmg large transactions from the
critical performance path. Third, this VM mechanism shdwsie enough capacity to accelerate
any kind of transaction, given that conventional storedmsfiare too small to be effective when

they are used to maintain transactional values.

4.2 The FasTM System

In FASTM we propose such VM mechanism, which allows us to overcdmanrtajor limi-
tations of early and late VM systems. To achieve that gos$,TiM impulses a simple but truly
elegant abort strategy: it provides fast abort recovensfart- and medium-sized transactions
(common case) and slow software recovery for those trainsacthat exceed the L1 cache

(uncommon case).

421 FSTM Overview

The novelty in RSTM lies on the way it manages the transactional state and ebiort re-
covery mechanism. Following the example of many late VMeayst [97,112], BRSTM utilizes
a new coherence protocol for the L1 cache—we call it Tranma&t Cache Coherence Protocol

(TMESI for short).

60

~———

Core
HTM Support AN
N\ REGs Checkpoint REGs Core Core

| Handler PC | AN
Log \ TMESI 7
Begin PC Pointer \ L1 Cache TLB /| L2 Cache

| Read Sig | /
HTM /! Director Router
| Write Sig | ov Support ALUs ," Y

Figure 4.7: Hardware support for ASTM

TMESI is a write-back protocol that provides fast commitsdaese it does not hide trans-
actional updates from the memory hierarchy—this is the meason why EBSTM is taking
for an early VM system—-but it does enforce the following condition: antionally modi-
fied lines are “pinned” in the L1 cache (they cannot write hdokguarantee that a valid copy
of the pre-transactional version of the line exists in themmaey hierarchy until commit/abort
time (or until an overflow occurs). This operation is similarsome Thread-Level Speculation

protocols [115]. Section 4.3 presents a throughout detsmnipf the TMESI protocol.

With the TMESI protocol, the system guarantees that if naftowe occurs, the old values
are still in-place in the higher levels of the memory hiehgrcHence, if a transaction that has
not overflowed the L1 cache abortsasdTM provides a very fast abort mechanism: it simply

invalidates the lines modified by the transaction (this isessinvalidation, more on this later).

However, if an overflowed transaction aborts\sfFM falls back to a software recovery
mechanism similar to that employed in LogTM-SE [130]. Thévsare abort recovery process
requires just a few registers to hold the last entry of the tbg address of the abort recovery

routine and the Program Counter (PC) of the current traizsact

Like most of the early VM implementationspABTM performs eager conflict detection and
eager conflict resolution.ASTM borrows the conflict detection engine from LogTM-SE, wéder
the directory forwards transactional requests to the m@igaches. Moreover, as it is described

in Section 4.7.4, ESTM supports multiple conflict resolution policies.

4.2.2 Hardware Support

FASTM is an eager HTM system based on LogTM-SE [130], so our mabcequires

mostly the same hardware support. (A schemeasfTiM’s hardware support is shown in Fig-

61

ure 4.7.) ARSTM uses two hardware signatures to track transactionakaese a Read Signhature

to identify read conflicts and a Write Signature to detectewcbnflicts in case of overflow.

Also, it keeps a software log in the same way as log-based HEWms do: each transac-
tional store copies the old value to the log before updatiegmiemory with the new value. We
assume that logging is a dual-phase process where, (1)dHmelis brought to the processor
and is written in the first free entry of the log and (2) the nelue is stored in the cache. The
combination of the signatures and the software log alloasTi to gracefully handle cache

overflows.

To support eager conflict managememsiM keeps evicted L1 data in a special directory
state, which maintains the last owner (sharers) of the libence, future requests to that line
are forwarded to the last owner (sharers), who validatesdnsistency of the transaction by
clashing the requested address into the Read or the Writatbige. Each core also incorporates

an QV bit that is set when a transaction replaces a transadlfowritten line.

4.3 The Transactional L1 Cache Coherence Protocol

In order to allow a special handling of transactional stofddESI modifies the classical
MESI protocol to put said lines to a new state, nariggthere they persist until the transaction
commits, aborts or overflows. Therefore\d'M requires, as it is shown in Figure 4.8, an extra

bit to encode thd state and some logic to identify transactional stores.

TheseT lines are also used to detect conflicts among transactionkesWrite Signature
only contains the addresses of lines that overflow (get ediftom) the L1 cache. This fact

reduces the aliasing in the Write Signature, increasinfidédity.

Figure 4.8 shows the principal state transitions of the TMé&erence protocol. In the
diagram, the triggering message is written before the shashits associated action after the
slash (*— means none)l Storeand TLoadare memory accesses produced inside a transaction.
GetSis a directory forwarding load request from a remote pramessetXis a forwarding
transactional write request. Transactional requestsdaified by adding a ‘T’ prefix before

the requested message3etSfor TLoads TGetXfor TStores.

62

TStore, TLoad/-

TGetSorX(C)/Nack . .
Toetson(Ciack State | Trans (T)| Dirty (D) [valid (v)
T 1 1 0
TStore/ Abort/-
TGetX Replacement/ M 0 1 0
— WB+0V
> (Mioad/- ... — E 0 1 1
| TGetSorX(C)/Nack) commit/-
l : Store/- S 0 0 !
| 0 0 0
GetX/Data
TGetX/
DLa-i:'V\i Response Message Description
s Ack Acknowledgement
(T)GetS/ Nack Negative Acknowledgement
Data+WB
+Ack
'(I'-;)tLoorae((jé)/Retry Response Actions Description
Inv(C)/Nack ov Notify Overflow
WB L2 Cache Write-Back
Retry Re-Issue the Conflicting Request

........ Local/Request Message Description

TLoad, TStore Transactional (Tx) Load, Tx Store

TGetS, TGetX Forwarded Tx Read (Write) Request

(T)GetS, (T)GetX Either Tx or Non-Tx Request

TGetS(C), TGetX(C) Conflicting Read (Write) Request

TGetSorX Either Read or Write Tx Request
—_— Commit, Abort Local Commit (Abort) Signal
TLoad(E), TStore(C)/Retry

TGetSorX(C)/Nack

Figure 4.8: TMESI coherence protocol transitions

If a forwarded message generates a conflic€tS(Clor TGetX(C)in the diagram), the
requested line remains in the same state, sendiNgck message to the requester. Then, re-
guester can retry the memory access or abort the transaclioe\\B action pushes the line
to the higher levels of the memory hierarchiyeplacemenindicates an L1 cache eviction. In
the case of replacing a transactional line, a set of overficaations are required actions).
Commi t andAbort actions also trigger transitions to the Modified or Invalidtes. A detailed

explanation of the TMESI transitions is presented in Secfid.

We want to note that the TMESI protocol only works for CMP sys$ with single-threaded
cores. In a simultaneous multi-threaded (SMT) environiieig necessary to prevent accesses
to T-state lines to those threads that share the core with theroefrthe line. There are two
different solutions to implementdSTM on SMT systems: (a) keep always written locations in
the Write Signature and enforce signature matching evdreigase of hitting & line or (b) add
athread idon each entry of the cache that informs who is the current oainetransactionally

written line.

63

4.4 FasTM Transactional Operations

This section describes howaBTM operates, explaining in detail how transactional lines
interact with the system. We present the basic operatiotiseadystem and describe L1 cache
replacements and the mechanism for abort recovery. Foriscugsion we will assume a CMP
system with single-threaded cores and two levels of caakleste the L1 cache is private per

core and the L2 cache is shared. Coherency is implementad aslirectory at the L2 cache.

4.4.1 Transactional Stores

To understand how transactional stores operate, assume &xcthat performs a Store
instruction. If G has the line in its L1 cache in an exclusive ¢r E) state, it changes the
cache state td and theTStorecompletes immediately. If the line was previously writtegn b
G inside a transaction that has already committed, or by reamséctional code, the line may
be inGy’s L1 cache in theMstate. If so, therty must write back the line data to the L2 cache
before transitioning the line to thestate and completing thEStore This write-back does not
generate any coherence requests to the other L1 cachesishutcessary for guaranteeing that

the L2 cache always has the correct pre-transactional state

In Figure 4.9a we can see an example of the case wiemasses in the L1 cache (having
the line in theS state is identical). The left (right) of the figure shows titetes of the system
before (after) thelT Store WhenCy misses in its L1 cache (step 1), it requests the line from
the directory (step 2), and the directory forwards the reg(iegsetX) to the line current owner,
in this caseC, (step 3). IfC; has the line in thd state, itnacksthe request directly without
checking the signatures. Otherwise, it checks its Read ariid /ignatures to detect conflicts
with the requesting transaction (step 4). If a positive mnagdound,C; nacksthe request from
Co and the conflict resolution mechanism kicks in. If the linen being accessed by any
transactioni(e., C; has it inM or E state), the directory gives the ownershipC invalidating

all other copies of the line (in this caSg).

With MESI, if C; has the line inM state it must forward the line data @ beforeCy can
become the new owner of the line. In TMESI, the L2 cache musayd have a copy of the
old value in order to guarantee correct abort recovery faronerflowing transactions. For this

reasongC; also sends a copy of the forwarded line to the L2 cache (stepfb)e relinquishing

64

(a) Transactional Store

1. TStore @ 4. Wsig check 8. Wiite
; l No conflict ltx ata m

Core 0 Core 1 Core 0 Core 1
WSigI:IOVIE WSigI:lOVE WSigDovm WSigI:lOVIE
L1-Cache L1-Cache L1-Cache L1-Cache
@[I [n-tx data @[M]n-tx data @[T | tx data @[1 [n-tx data

log| M | @+n-tx

17- Log n-tx 5. WB, 6. Change
2. TGetX 3. TGetX data / 1 owner

L2-Cache Directory L2-Cache Directory

@] old data @|E1 @ [n-tx data @] Eo

(b) Transactional Loads

1. TLoad @ /—\
‘ 4. Nack

Core 0 Core 1 Core 0 Core 1
wsig[___ov |E| wsig[_Jov E wsig[__]ov |z| wsig[__]ov E
L1-Cache L1-Cache L1-Cache L1-Cache
@[T [tx data @] | |n-tx data @[T [tx data @[1 [n-tx data

s m 2. TGetS
L2-Cache Directory L2-Cache Directory
@ | n-tx data @] E:0 @ | n-tx data @] E:0

Figure 4.9: Non-conflicting TStore (a) and conflicting TLoad (b) insTM

ownership of the line t& (step 6) and allowingy to safely write the transactional value (step

7 and 8).

4.4.2 Transactional Loads

Now, assume a corg, that performs a transactional reatl.pad operation. In BRSTM,
TLoadsare performed as regular loads. However, in order to mainitansactional coherency,
the TLoadaddress must be added to the Read Signatu@g, athich is used to detect conflicts
with remote transactional store§; only has to check for conflicts when loading a line that is
not present in its L1 cache. In this ca§g,must request the line from the directory in the L2
cache, which serves the line if there are no writers. If thew writer, the directory forwards

the request to the core that owns the line.

65

In Figure 4.9b we can see how the previous example followisércase where cof@ tries
to read a transactional written line by cdtg The left (right) of the figure shows the state
of the system before (after) thie_oad In this context,C; introduces arLoad operation that
misses the L1 cache (the line islirstate, step 1). Whe@y receives the forwarding read request
(TGetS step 2 and 3)¢o must acknowledge it. A& has the line in its L1 cache ihstate {.e.,
it is a transactional, non-oveflowed line), it sendsackreply toC; and the conflict is resolved

according to the conflict resolution policy (step 4).

If the requested line is not if state or it is not inC;’s L1 cache, ther€; must check its
Write Signature. This is necessary to guarantee coherent¢eahsactions that overflow the L1
cache. If there is a match in the signatuereplies toCGy with aNackmessage. Otherwise, the
line moves to thé& state and, if the line was previously in thkstate,C; forwards the data t6q

and also writes it back to the L2 cache (this is the same asyipieai MESI).

4.4.3 Transactional Cache Replacements

Figure 4.10a assumes a cdig that replaces a line with transactional modifications. In
FASTM evictions of lines inT state write back the speculative values to the higher |efalse
memory hierarchy, similar to evictions of linesMstate. This is analogous to other log-based
HTM systems (those that implement early VM), and it is saféddecause the pre-transactional
values are kept in a software log. Nonetheless, the systesh peuform some actions before

pushing the speculative data to the L2 cache.

First, the evicted line address must be addeg ®Write Signature. Note that inASTM non-
overflowed written cache lines do not insert their addresst®e Write Signature, which allows
the system to track the write set in a more accurate precisitve directory maintains as the
owner of the line the current cor&) and will forward all future remote requests to it. As dis-
cussed earlier, upon receiving a remote reqGgstill check its Read and/or Write signatures
to discover conflicts. If th&, evicted line is also replaced from the L2 cache, the reqsest i
forwarded to all the processors, which must check theiradignes. This fact permits the conflict

detection engine to identify collisions that involve eedttransactionally written lines.

66

(a) Transactional Evictions

2.Add@ 3. Set OV bit
WSig
Core 0 Core 0
wsis[_Jov[e] wsis[@]ov[1]
L1-Cache L1-Cache
@[T [tx data @[1 Told data
@[M[@+ntx
1. Tx Eviction
of line @ 4. WB tx data
L2-Cache Directory L2-Cache Directory

@[n-tx data @[Eo @] tx data @] Eo

(b) Commits
1. Commit Tx l
Core 0 Core 0
wsis[Jov[o] wsio[] ov[0]
L1-Cache 3. Make the L1-Cache
state visible
@|T|txdata | @lMln»txdata
@[M[@+n-tx
IZ. Clean log and WSig
L2-Cache Directory L2-Cache Directory

@ | n-tx data @] Eo

@ | old data @] E0

(c) Hardware Aborts

1. Abort Tx l
Core 0 Core 0
wsig[_]ov[o] wsig[_Jov[o]
L1-Cache 3. Invalidate L1-Cache
@[T [txdata txstate 1[G [oid data
@[M[@+ntx
Iz. Clean log and WSig
L2-Cache Directory L2-Cache Directory

@[n-tx data @] E:0 @[n-tx data @] Eo

(d) So

1. Abort Tx |

Core 0

2. Recover WSigI:I ov

the log
by software L1-Cache

< @[1 T old data
@[M] @+n-tx

ftware Aborts

Core 0
wsig__]ov |I|
L1-Cache
@l M In-tx data

IS. Clean log and WSig

L2-Cache Directory

L2-Cache Directory

@ tx data @] Eo

@ | old data @] Eo

Figure 4.10: Transactional replacements (a), commits (b) and abortsddain FASTM

Second, a transaction overflow flagGg is asserted to inform the processor that the trans-

action has to be aborted by software. lsFM, we have chosen to write all the updated lines

in the software log—this fact allows software abort recg\arany time.

An alternative is to only insert overflowed lines in the safter log (instead of all updated

lines). This approach is more efficient, because it redubest @ecovery time of overflowed

transactions, given that fewer lines must be restored bydfftevare routine. Moreover, this

results to less cache pollution (the software log is in cablememory) which may result in

fewer transactional evictions. We propose such optinopat Section 4.6.

4.4.4 Committing Transactions

FASTM provides, like other early VM systems, a fast commit evendverflowed transac-

tions. FASTM only commits consistent transactions, therefore notautdil actions are needed

to validate the speculative state. Iag9M, a committing transaction first flush-clears théit

67

of all cache lines, moving all lines toM and then releases the signatures. Figure 4.10b shows

how FASTM makes visible the transactional state at commit time.

Notice that non-cached lines do not require any commit achecause transactional mod-
ifications are already in the memory hierarchy. In contradate VM schemes [97,124], our
system does not require sending state updates to the diredistead, the directory already
has the committer as the owner of the line (it acquired owmerduring the execution of the

transaction).

4.4.5 Aborting Transactions

FASTM uses a hardware-accelerated abort recovery mechanistorieoverflowed transac-
tions (Figure 4.10c) and a software abort recovery mechafiostransactions that have evicted
lines in theT state (Figure 4.10d). The processor decides which of thedamvery mechanisms

applies by checking its overflow (OV) flag.

Non-overflowed transactions use the coherence protocastaud transactional modifica-
tions. This process is performed by silently invalidatitigltee T state lines in the L1 cache (the
directory is updated lazily by future requests). Hence, wtie transaction restarts again, it
must re-acquire the ownership of each line. This can beysdfele because the L2 cache keeps

the pre-transactional state.

Assume that cor€&, aborts and now cor€; requests a line th&y wrote inside the aborted
transaction. First, the directory will forward the requesiCy since it is still the owner.Cy
acknowledges the request, informi@gthat it (G) is no longer the owner. They will take
the line from the L2 instead, which still keeps the pre-teentional value, and the directory
will be updated. This lazy directory update removes unrsargscommunication with shared

resources at abort time, allowing a fast abort recovery.

The invalidation ofT state lines increases the number of L1 misses on restagrsatr-
tions. However, this situation is not critical mainly fordweasons. First, most transactions
have considerably smaller write sets than read sets, satdefL1 store misses is not a bottle-
neck (read lines are not invalidated in$TM). Second, these L1 misses are served faster than

conventional L1 misses because these lines are still owypéaebaborted transaction.

68

Let's assume now that coi® aborts and tries to re-acquire a line invalidated by the fast
abort mechanismCy requests the line from the directory, which still @sas its owner. Thus,
the line can be directly served from the L2 cache, withoutiiiag coherency operations or

signature checking.

Transactions that overflow the L1 cache are recovered bwaddtby taking a trap to the
recovery handler. The recovery handler is a software reutiat walks the log in reverse order
and, for each entry, writes the logged data to its correspgnplace in memory. Notice that
some of thel state lines may be overwritten by the recovery handler. Swiths are performed
by non-transactional stores, moving the lines frérto M When the software abort-recovery

mechanism finishes, it returns control to the hardware.

Both the hardware and the software mechanisms releasegtheigies when the recovery

process finishes.

4.5 FasTM with Wake-up Notification

FASTM follows the same conflict resolution policy than othertirigerformance eager HTM
systems like LogTM-SE [130], MetaTM [98] or the eager mod&lexTM [111]: it stalls on a
conflict and then retries the non-completed memory requdtlue inconsistency disappears—
i.e, the conflicting transaction commits or aborts. While thigtegy permits the conserva-
tion of useful transactional work, it also introduces uressary traffic on the on-chip network,
which increments the energy consumed by the applicatiorsatndtates shared resourcegy(

the network and the directory modules), slowing down cofftiee transactions.

In this section, we propose a novel technique to managedtathnsactions (we called it
wake-up notification Instead of continuously retrying those memory accedsasdonflict,
we stop polling on those cores that cannot complete a menp@saton. These cores remain
disabled (they do not schedule any operation to the memdrgystem) until the conflicting
transactions either commit or abort. At that moment, théesgenables the core and the trans-

action restarts its execution from the conflicting point.

69

4.5.1 Conflict Tracking

Wake-up notification extendsABTM cores with one bit vector, called Wake-up List (WL
for short) and an integer counter, called Nacks. The WL sdbkse cores that are executing
a transaction which has requested a location being readitternvby the in-flight transaction.
Thus, this vector has a bit per on-chip core, which is set &awha conflict is notified. In other

words, the WL maintains a list of the cores stopped by thesotiiransaction.

The Nacks counter, on the other hand, maintains the numbernadte, non-committed
transactions that conflict with the transaction executetthhénnon-operative core. Thus, when
the counter is positive, it means that the conflict is stidggant in the system, while when the

counter is zero, the core should be enabled.

4.5.2 The Wake-up Mechanism

The wake-up mechanism notifies stalled transactions tleatahflict who caused the dis-
ablement of the core has disappeared. This action, whictrienoned by a committing transac-
tion before it makes the state visible or by an aborting @atisn before releasing the read and
write sets, consists on sending\MakeUpmessage to all the cores present in\thdist—those

cores stalled by the committer/aborter.

When a core receives\WakeUpmessage, it is because a remote conflicting transaction has
finished its execution. However, it may be the case that dthesactions still own the requested
data, making useless the activation of the core. Insteathdirgy polling again, the receiver
decrements the Nacks counter and acknowledges the reduesicore only re-schedules the
offending memory request when the Nacks counter is zémall the transactions that partic-
ipated in the original conflict have committed or aborted cQirse, the conflict may remain, as

younger transaction may have acquired the permissionsdiit while the core was disabled.

We want to note that the use of wake-up notification is inddpanof the conflict resolution
policy used on the HTM system. Our mechanism does noibaghtransaction has to be stalled
nor detects cycles among stalled transactions—there argypbf examples in the literature
that explain how to deal with that. Instead, we focushowto handle contending transactions
efficiently, minimizing the impact of retrying redundant mery instructions. Moreover, this

technique can be applied to any eager HTM system, withouteniag its VM mechanism.

70

Situation 1 Situation 2 Situation 3
Ti Tj Ti Tj Tk Ti Tj
TGetX L 4 l l TGetX
D i T [wiaddg
» Nacksi 1 -— 1. WL.add(i) TGetX TGetX 5 Nacks:z 1 ‘mk . WL.add(i)
’ R Nack 1. WL.add(j) T | 1. WL.add(j)
———
Nack X Nack T TGetX
.+ 2.Nacks:=2 .
3. Commit: WakeUp(j) - 8. WL.add() - Naok—>
) Notify Tj=~ T ° 4. Nacks:=1 . 4. Abort:
WakeUp(i) 3. Commit: - - © WakeUn(i s
43 : .) 5. Nacks:=0 . lakeUp(i) Notify Ti
4. Nacks::@O . -« Notify Ti Ack . WakeUp() [5.Commit: Retry Wr @A -
Retry Wr @A . " Notify Ti
$ Ao > 6. Nacks:= 0 < o AR
Retry Wr @A Ack
® Wr@A W Rd @A O Wr@B O Enable Core ® Disable Core — Begin/End Tx 3 Abort

Figure 4.11: Examples of the wake-up natification mechanism

4.5.3 msTM-WN: Examples of Wake-up Notification

Figure 4.11 shows howASTM integrates wake-up notification in different situatipbsild-
ing the ASTM-WN system. In Situation 1, transactidin asks for a line that belongs to trans-
actionTj . WhenT]j receives the petition, it updates its WL list, adding cGreas a conflicting
core, and replieSi with a Nackmessage. When cof@ catches the message, it updates the
Nacks counter setting it to one and stops polling the coiftictine. Eventually, transaction
Tj commits, sending &VakeUpmessage to those cores marked in its WL (in the CEse,As
a result, the system awakes cdliie (Nacks value is decremented to zero) and it resumes the

execution ofTi .

Situation 2 shows a similar scenario, but in this case tcitges Ti and Tk own the line.
Thus, whenTj tries to acquire the data, it fails in its attempt, setting Macks counter at 2.
Thus,Tj must wait untilTi (first) andTk (later) commit to retry the execution of the stalled
transaction. In Situation 3, there is a crossed conflict betwtransactionsi andTj . In order
to guarantee forward progress, the aborting ¢@rénas to send &/akeUpmessage to revive

coreCi , who retries the original conflicting request.

It can be the case that, due to external effects (a gamma paydilbit in aWakeupmes-
sage while it is crossing the network), a wake-up notificatioes not arrive to the consumer.
To avoid deadlocks—transactions that are never revivednbycommitting core—FRASTM-

WN couples the system with a mechanism that is triggered ifhadut threshold is reached.

71

This mechanism aborts the stopped transaction and reteseit@afterwards to guarantee for-

ward progress in the application.

4.6 FasTM with Selective Logging

Log-based HTM systems ASTM included) must face three main challenges that may slow
down transactional execution. First, writing pre-tratigenal values to the log always before a
transactional store enlarges the latency of those memaegsaes—speculative values cannot
be written in memory until the old data is logged. Second, sbftware log is maintained
in cacheable memory, which reduces the buffering capaditthe transactional caches—in
other words, the logging mechanism increases the pos&bilbf evicting transactional data.
Third, in log-based HTM systenall transactionally written lines are placed in the log, even if
the speculative data fits in the L1 cache. Thus, if an overfigwiiansaction aborts, it has to
restore the whole log usingsdow software routine, ignoring the built-in hardware suppdrt o

transactional caches [5, 12,71, 97].

In order to address the above issues, we progegective logginga novel VM technique
that only logs the pre-transactional values of those merbtogks that the hardware cannot
recover—e.g, a hon-committed speculative write that overflows the tmatisnal L1 cache.
Hence, he idea behind selective logging is rather simplesfiattive. By adding a few addi-
tional hardware steps on resource overflows (uncommon ewsatare able to (i) accelerate
most of the memory updates within a transaction, (ii) redheesize of the software log, which
diminishes the L1 cache pollution and (iii) accelerate therarecovery process because fewer

lines must be restored by software.

Selective logging can easily be included in thaesFM framework to build a powerful eager
HTM system that we calledASTM-SL. The following sections describe the selective loggi

mechanism, the hardware/software support that it reqaimdthe RSTM-SL system.

4.6.1 The Selective Logging Mechanism

When an HTM system incorporates support for selective logdgransactional stores do not
carry additional actions+e., it is not necessary to write in the log the old state befordatipg

the memory. However, when a transactional line is evictethfthe L1 cache, the processor

72

stops conventional execution (the memory instruction featerates the cache miss remains
incomplete) and starts executing a microcode routine. fiimsvare loads the old value of the
line from the L2 cache into a special register, and storesltiedata and the corresponding
memory address in the first free entry of the software logerttiat, the processor re-schedules
the memory instruction that produced the cache replaceamehtontinues executing the trans-

action.

Like other log-based HTM systems, commits do not requirdtimaél actions, given that
the transactional state can harmlessly flow though the mehierarchy. Nonetheless, when an
overflowing transaction aborts it has to perform a two-pl@seedure. First, the hardware in-
validates all the transactional lines in the L1 cache, atgahe transactional state from caches.
Then, the processor throws an exception and traps to théarsgrstem) software layer, which

undoes the modifications introduced by the transaction.

4.6.2 Pushing Physical Addresses in the Log

By deferring log updates to L1 eviction time, selective lioggrequires a subtle modifi-
cation in the way the log is stored in memory. More specificdhiaditional log-based HTM
systems ustogical addresses to track the location of pre-transactional datgical addresses
are readily available at the transactional store issue tiragthe time the log info is collected).
The benefit of using logical addresses in the log is that tlfievace recovery routine can be
done in user-space. In selective logging, on the other hedsystem collects the log info at
the time an L1 cache line is evicted. At this point, logicatleses are not available (most
memory systems use physical addresses), but using phgsidedsses in the log poses a secu-

rity risk though.

In order to address the above issues, we propose to moveatigabtion abort recovery
handler in the Operating System (OS). In this case, when arflowing transaction aborts, the
hardware raises an exception that calls the OS abort recovetine. The OS recovers the log
using physical addresses and returns control to the afiplicaNote that logical-to-physical
translation is not needed when the OS is undoing the log—tH&i$ automatically bypassed.
Moreover, the actual log memory must be only visible to the @Berwise user applications

can reverse-engineer the logical-to-physical memory mmgp@ his requires that transactional

73

applications execute a log creation system call at init tifitee memory of the log is thus kept

in OS memory, and is hidden from the application.

Some HTM systems may not want to expose the abort recovehet®8. An alternative
consists on obtaining the evicted virttalddress of the memory block from somewhere, so the
system can recover the pre-transactional state in thespsee. A simple way to do it resides
on modifying the TLB to provideeversetranslation from physical to virtual page memory
addresses. Another design option consists on using aNyragged L1 data cache [2, 39, 56].
ARM v5 [56] is just an example of a commercial processor ttsswirtually-tagged caches.
Discussing the viability of virtually-tagged caches oraese TLB translation is out of the scope

of this thesis (we refer the reader to [19]).

4.6.3 FsTM-SL: Adding Selective Logging to FASTM

This sections describes how thedT M infrastructure can be extended to support selective
logging—we call this systemASTM-SL. FASTM-SL differs from FASTM in the way it updates
the software log and how it recovers the pre-transactio@d svhen aborting an overflowing
transaction. While ESTM logs the values oéll transactional stores (at least the first time they
write a line inside a transaction) ABTM-SL only logs the values of transactional evicted data.
Thus, if an overflowing transaction abortsadTM has to restore the entire pre-transactional
state by software. InsteadA§TM-SL can take advantage from the innate in-cache support fo

clearing non-evicted cache lines.

For FASTM-SL, we assume that the log contains physical addressesthas it has to be
recovered in privileged mode. When a transactionally emitine is evicted from the L1 cache,
FASTM-SL has to construct a new log entry. We use the example guirei4.12 to describe
how the selective logging machinery handles the eviction tfstate line (step 1). First, the
eviction process is put on hold, and the core sends a requéist¢ L2 cache for the previous

version of the line (step 2).

The requested data, together with the physical addres® difh are temporarily stored in

a special register. At this point, the data in the speciaktegis written to the first free entry

2we assume that logical addresses are analogous to virtlasse®s, as most 64-bit architecturg(Intel x86)
turn off segmentation. In fact, the majority of OS Kernelsitbeegmentation when possible. Systems that require
segmentation can trivially add a step in the translatiorbtaio the logical address from the virtual address.

74

1. Replace A 4. Add A in the WSig 5. Set OV bit
Core Core *
v \i
[ov-9] [wsig-4]
L1 cache L1 cache
phy [st] values 3. Log A + old data phy |st] values
A |T] txdata A |1] txdata
/\/ log [M| sw data
~ Software log ———=
2.Get | o TN~C | e - -)
olddata | N\ |lee=—- 6. Evict A
\4 addr | values y
previous entries
L2 cache A | old data L2 cache

phy] values phy| values
A Jold data L A | tx data

Figure 4.12: L1 Cache replacement actions ind4M-SL

of the log using regulaii.€., non-transactional) memory operations (step 3). Thempliysical
address of the line is added to the Write Signature (stepadianQV bit is set (step 5). Finally,
the transactional line is evicted to the L2 cache (step 6)s piocess maintains the atomicity
of the store operation, a requirement for an in-order comyéver, non-blocking out-of-order

processors can be overlap the logging process with othepuatation.

When an overflowed transaction abortasFM-SL has to restore the values modified dur-
ing its execution. For non-evicted data it is enough to iddé T-state lines (by flash-clearing
the state bits), as pre-transactional values are stillivalthe L2 cache. However, transactional
replaced data has to be restored by software because theeh@ daes not hold the old state
anymore. Hence, the system triggers an exception, whichguman Operating System routine

that walks the log in reverse order to undo the changes intext by the aborted transaction.

Note that, in contrast toASTM, FASTM-SL only has to restore those lines that have been
evicted from the L1 cache during the in-flight transactiohese lines that fit in the L1 cache are
invalidated by the underlying hardware and, eventually,dbre will obtain the valid data from
the L2 cache using conventional coherence requests whedratigaction restarts. As a result,

the size of the log (and thus the time spent in software akodvery) is reduced considerably.

75

4.6.4 Discussion

Selective logging introduces some complexity in thesHV system. In fine-grained appli-
cations overflows are not common, sasHM does not experiment long delays. Moreover,
accesses to the software log experiment high locality, &dod tvriting the log takes small
overhead—most of the memory accesses hit the L1 cache. Iticadtb this, few transac-
tions overflow the L1 cache (and almost none of them abortfheaize of the software log is

not so hazardous.

Having said that, someone could say that the amount of codityta the technique—it may
require changes in the hardware or in the OS—is too high afaks not worth the effort. How-
ever, we see reasons to not believe such thing. First, teeaesét of TM applications—those
that execute large transactions, evaluated in SectioB-4-that can take advantage of selective
logging. It is not clear if those applications will be the moin the near future, but some people
claim that they will [16]. Hence, it is important to have thi®ught in mind when designing

HTM systems, and selective logging certainly helps thosgsmsgrained applications.

Second, the efficient log mechanism considered in log-bBged systems may be too ex-
pensive for next generation of commercial processors, wimay decide to implement cheaper
but slower logging strategies. In this situations, sekedibgging avoids the overhead of access-
ing the log on each transactional store; in fact it removesctyst of logging if the transaction
fits in the L1 cache. Third, selective logging opens new agsrfar HTM systems that do not

support unbounded transactions (more on this in Section 5.3

However, the hybrid recovery solution complicates the ap@chanism, which must main-
tain the atomicity of a dual phase hardware/software ab®fie upside of maintaining the
software abort for all updated lines is that it allows the efls@echanisms like those of LogTM-
VSE [119] to survive context switches or page faults. Thusemvthis happens inASTM-SL,

we opt to abort the in-flight transaction and restart it inahginal FASTM mode.

4.7 Evaluation

For our analysis we have chosen to compassTiM with two eager HTM systems that

implement early VM, although with different underlying namisms. The first one, which

76

serves as our baseline, is LogTM-SE, particularly the imgletation that is distributed with
GEMS 2.0 [80]. The second one, is an idealized early VM systéimzero-cost abort recovery

that servers as our upper-bound.

We have used th8tall conflict resolution policy for the comparisons betweersFM and
the other HTM systems. Stall is the policy implemented by TMGSE [130]. After detect-
ing a conflict between two transactions, this policy stdisriequester, who waits until the other
transaction commits. However, to avoid cyclical dependsranong stalled transactions, trans-
actions must inform a centralized cycle-detector when treystalled. If a dependence cycle
occurs, a timestamp determines the younger transactiopdhizcipates in the cycle and aborts

it. After recovery, an exponential backoff is performed t@mantee progress.

We decided to use the Stall conflict resolution policy for tAk comparisons between
LogTM-SE and RSTM for two main reasons. First, this policy minimizes the rhanof aborts,
which become critical in an HTM with software abort recovéaiso, by minimizing aborts we
are conservative in how mucmBTM improves over LogTM-SE). Second, by using the Stall
policy for our evaluation it is easier to comparasH M results with previous LogTM-SE char-
acterizations [70, 106, 121]. In Section 4.7.4 we describeraconflict resolution policies and

we discuss about how they behave in LogTM-SESFM.

Moreover, we have also evaluatedsTM-SIG, a variation of RSTM where all TStore
addresses are added to the Write signature (rememberag@M-only updates the Write sig-
nature withT state lines that get evicted from the L1 cache). Studyingdhernative allows us

to determine the performance benefits of reducing aliasirigd signatures.

In addition to the above proposals, we have also evaluatevtheptimizations for BSTM pre-
sented in this thesigFASTM-WN and FASTM-SL . FASTM-WN implements wake-up notifi-
cation to save energy and bandwidth on conflicting memorgssas. ESTM-SL incorporates

the selective logging mechanism in hardware exposing palyaddresses to the log.

4.7.1 FAsTM Performance Analysis

Figure 4.13 presents the time distribution of LogTM-SE ¢lald L), FASTM (labeled F)

and Ideal (labeled I) HTM systems in their 32-threaded ettes (for low-contention applica-

s

N
k]

Backoff

U stalled
Aborting
® Aborted Tx
U Good Tx

i i % e Barrier

L F I L B i L F il EE T L B .Non-Tx

Kmeans-H Raytrace Ssca2 Vacation-L A. Mean

Normalized time (low-contention)

TR

Normalized time (high-contention)

el PR WP WEel ED mEh WEL LEL WEL ILWFE D ILE]
Barnes Biree-F Genome List-S Vacation-H Bayes Btree-V Hash-W Infruder Labyrinth List-L

Figure 4.13: Distributed execution time of low-contention (top, 32 #ue) and medium- and
high-contention (bottom, 16 threads) TM applications urdegTM-SE (L), FASTM (F) and
Ideal (I) HTM systems

tions, top of Figure 4.13) and in their 16-threaded exeastidor high-contentiohapplications,
bottom of Figure 4.13) using the Stall conflict resolutiorigo

The execution time has been normalized to the 32-threadedobntention) and 16-threaded
(high-contention) LogTM-SE execution and is broken downron-transactional and barrier
cycles (labeled Non-Tx and Barrier), the time spent in cotteditransactions (labeled Good
Tx), the time that is wasted in non-useful work discardednfraborted transactions (labeled
Aborted Tx), the time spent in abort recovery (labeled Aingt, the time that transactions re-
main stalled waiting for a conflict to be resolved (labeledll8tl), and the time that processors

execute the exponential backoff after aborting (labeleckBH).

As it can be seen in Figure 4.13A%TM has an average speedup of 16% (low-contention)
and 44% (high-contention) over LogTM-SE, achieving, in traf¢he workloads, similar per-

formance to the ideal VM approach, which uses a zero-cyatetabcovery mechanism and

Swe refer as high-contention applications those that ptesemedium and high abort rates in Section 3.3.2

78

= 16
el
£ 15
c | |
g 18 ® FASTM-SIG (S)
z 137 |
i) HFASTM (F)
g ' 7] EpEAL VM (1)
S 7
g /
7, I ’ :
SsFEI Fl SFIL S8FI SFI S8&i 8EI
Hash-R Kmeans-L Kmeans-H Raytrace Ssca?2 Vacation-L H. Mean
- 3.2 33
& 3] W
= =
526
&
S22 ‘
o - ; 5
£187 o
o % -] i
g g v ﬂ - "
o] | !) y . 7
£ (HENE e RARD ‘EVEER VR L

&F1 SFIL 8FI ®F1 BFIL SFI SF]1 SFIL SFI SF1 8FIL 8FI1 SFI1
Barnes Bfiree-F Genome List-S' Vacation-H Bayes Biree-V Hash-W Intruder Labyrinth ListL ~ Yada H.Mean

Figure 4.14: Performance improvement oABTM-SIG (S), FASTM (F) and Ideal VM (1) HTM
systems over LogTM-SE in low-contention (top, 32 threads) medium- and high-contention
(bottom, 16 threads) TM applications

perfect signatures. The benefit is especially notable inesooarse-grained applications like
Bayesor Btree-fix where FASTM obtains more than 2X speedup with respect to LogTM-SE.
The reasons why A4STM outperforms LogTM-SE in all the benchmarks are explaiirethe

following paragraphs.

Fast abort recovery. FASTM decreases the time spent in abort recovery, which reduces
overall execution time. As we can see in Figure 4.13, the IM{IE recovery mechanism
accounts for 6.6% of the total execution time on high-cama@napplications and for 1.4% on
low-contention applications. Note that, in coarse-grdiapplications likeBtree-var List-long
or Labyrinth, up to 10% of the time is spent in the software abort routintis Tindesirable
overhead can be reduced if we apply a fast abort recovery anesh. In fact, BSTM only
spends, on average, 1.9% of the execution time to restorpréhransactional state of high-
contention applications, which corresponds to a 4.5X imgneent over LogTM-SE. For low-

contention applications, the time spent in abort recovenegligible in ASTM.

79

Low conflict rate. By reducing the abort recovery timeASTM decreases the number
of conflicts that involve transactions that are abortingLagTM-SE, the transaction is alive
until the very end of the abort recovery procedure. Thus, ashave shown in Figure 4.2,
remote transactions that want to access to data owned bypdnerg transaction will generate
conflicts. As FASTM aborts transactions faster, most of the conflicts produndhe LogTM-
SE abort period disappear. This benefit can be seen from thardd@able 4.1, which shows,
for both HTM systems, the rate of aborts per transactiore{(&bAbort Rate) in variable- and

coarse-grained applications.

Figure 4.14 shows the speedup achieved by th&M-SIG (labeled S), the &ASTM (la-
beled F) and the Ideal VM (labeled I) implementations ovett82aded (low-contention ap-
plications, top of Figure 4.14) and to 16-threaded (highteotion applications, bottom of Fig-
ure 4.14) LogTM-SE executions. The average time in bothlgeapis calculated using the

harmonic mean.

Small Write Signature. The figure shows thatASTM can also take advantage of tfie
state to reduce the pressure on signatures, which may ldeskstalse conflicts. However, this
fact is not critical in the majority of the benchmarks. As tenseen in Figure 4.14, benchmarks
with small or medium size transactions do not suffer froradglositives when 2 Kbit signatures
are used, and thussBTM-SIG and FASTM obtain similar performance results. Oridgree-var
andLabyrinth, which execute huge transactions, gain from this enhancgrsieowing a up to

a 10% speedup in the comparison betwegsTM-SIG and FASTM.

On the other hand, ASTM-SIG facilitates the use of mechanisms like those of LogTM
VSE [119] to survive context switches or page faults (beedhe write set of the transaction is
already in the Write Signature). WitlraBTM, the Write Signature has to be reconstructed from
the log (the hardware Write Signature does not includd thimte lines in the L1 cache). Given
that our evaluation shows that the fidelity of the Write Signanis not critical, BSTM-SIG may

be a good alternative to simplify transaction virtualieati

Good fine- and coarse-grain performance. As it can be seen in the previous figures,
fine-grained applications—those that execute small tiss—exhibit good scalability in
the majority of TM systems given that most of their time isrdgp@ non-transactional code.

Ssca2does not show this behavior because most threads wait iretsaon certain phases of

80

LogTM-SE FASTM FASTM-SL
Bench Commits| Abort Ratel SW Ab| OV Tx | Abort Rate) SW Ab| OV Tx | Aborts| SW Ab
Bayes 520 3.9 100% | 71 3.4 16% 37 2.3 10%
Btree-var 2048 1.03 100% | 627 0.22 6.5% | 34 | 018 | 2.2%
Genome 19330 0.13 100% | 318 0.11 0.6% 18 0.11 0%
Hash-read |4096 0.09 100% | 1433 0.07 31% | 334 | 0.07 | 0%
Intruder 22516 4.84 100% | 450 3.36 0% 0 3.34 0%
Lists-long 8192 0.92 100% | 802 0.53 7.7% 9 042 | 0%
Yada 2966 2.3 100% | 511 2.01 2% 24 2.01 | 0.6%
Btree-fix 16384 0.3 100% | 245 0.05 0% 1 0.03 0%
Hash-write | 4096 0.77 100% | 2123 0.56 44% | 1970 | 0.53 | 10.6%
Labyrinth 4128 2.95 100% | 2318 0.22 39% 379 | 0.22 1%
Vacation-low | 16384 0.01 100% | 820 0.01 0% 0 0.01 | 0%
Vacation-high 4096 0.38 100% | 492 0.27 20% 272 | 0.21 | 4.5%

Table 4.1: Overflow, abort and software abort rates for variable- armdtsmgrained 16-threaded
executions under LogTM-SEASTM and FASTM-SL

the execution. In fact, LogTM-SE does not lose much perforcean fine-grained applications
due to their parallel nature. However, benchmarks with scomention, likeList-short or
Raytrace are far from the upper-bound because more than 40% of tloeitoee time is devoted
to conflict management. In those applicationssFM achieves similar performance to the Ideal
VM implementation. This is because fine-grained applicegialmost never evict transactional

cache lines, so no software aborts are performed.

Some coarse-grained applications, IBenomeHash-reador Vacation-lowscale well be-
cause they present few aborts. However, other applicatudhslarge transactions do not scale
because most of the transactions conflict or overflow. Faaimt®, applications that have lots
of aborts, likeHash-write Intruder or Yada require a large number of backoff or stall cycles
(up to 70%) in LogTM-SE.

In these benchmarks, the fast abort recovery A6TiV reduces the time wasted in non-
useful transactional work, the time spent in stalled tratisas and the time that processors
execute the backoff (see Figure 4.13). Although most cegiramed benchmarks, likBayes

Vacation-highor Yada have an important number of overflowss M recovers the majority

81

0.25
02
0.15

0.1 I
0.05

-0.05

&y - Q;«e@
s T

Speedup (%)

8 A) /4 &
6., %h o 2%, iy St

. o, b,
Q) Y,

e A
2. g
e,

G‘@ dfﬁ‘ |Z &
7, ¢ g, Y
0,77@ Sh Orf aﬁof?\/)}.gﬁ Qg

Figure 4.15: Speedup of ESTM-WN over FASTM in 16-threaded medium- and high-
contention TM applications

of the aborted transactions almost immediately by hardwHné can be seen from the data in
Table 4.1, where we can see the number of committed transadtiabeled Commits) and the
number of transactions that evict transactional lines filoen_1 cache (labeled OV Tx). We can

also see in that table the percentage of aborts that areeddiy software (labeled SW Ab).

As a result, BSTM performs comparable to the Ideal VM implementation forstnaf the
applications (only 3% worse for low-contention benchmad®% worse for high-contention
benchmarks). However, some applications with large ti@itgas and contention still execute
slow aborts. For exampléjash-writeand Labyrinth suffer a significant amount of software
aborts—up to a 10% of the time is spent in abort recovery. Aswilesee in Section 4.7.3,

selective logging is an attractive solution to improve asFM performance.

4.7.2 FAsSTM-WN Performance Analysis

For the performance analysis oASTM-WN, we have focused on medium- and high-
contention benchmarks because they typically report asgansount of memory violations,
so they are more sensitive to the impact of continuouslyiregrconflicting memory accesses
or having extra network messages. We do not show the redudigptications with a low con-
flict rate because most of their memory requests are notcebjeo long delays produced by

collisions among transactions.

Figure 4.15 presents the speedup a6FM-WN over conventional ESTM . Both HTM
systems have been evaluated with 16-threaded executionsgdium- and high-contention

benchmarks. As it can be seen in Figure 4.1 FM-WN outperforms all ASTM executions

82

7098 430

200
B EASTM
150 -
FASTM-WN
100
50 I I
l.: s l=. u_ O ID l.:]

o, rrg,
"a 7 lLf/}; f €r

Conflict Msg/Tx

e& £/\S‘ { & e
() 3 b b, 'S¢, L7
‘5' 2 K3) sﬁOrf af’o J/rf"]fb 'b/?g 9

”@b

Figure 4.16: Network conflicting messages per transaction of 16-threéaaedium- and high-
contention TM applications inA4STM and FASTM-WN

except inBarnes obtaining an average speedup of 5.5%. The benefit of wak®stification
is more notable in applications with large transactione Hlash-writeor List-long where the

FASTM-WN system can devote all the on-chip resources to ndiedt&ransactions.

Remember that regulamSTM keeps retrying the conflicting access until the memoryrope
ation succeeds. Until then, the conflicting requests magkbdhared resources.g, routers or
directory entries) and thus increase the latency of coffiie memory operations. InASTM-
WN, however, stalled transactions must wait until they nextheWakeUpmessage to retry the
memory access. This procedure is counter-productive irgiiamed applications likBarnes
because conflicting accesses must wait until they are ribtifigesume their execution. The

reasons for such improvements are described below.

Reduction of network traffic. Performing wake-up notification on commits and aborts
removes unnecessary network messages introduced by tisiredamemory requests. Fig-
ure 4.16 shows the average number of messagask(\WakeUpandAckin FASTM-WN, only
Nackin FASTM) generated by conflicting accesses. Wake-up notificati@stically reduces
the amount of messages by a factor of 50X Bigyesmore than 500X). This fact accelerates

still working transactions, which can commit (and elima#te conflict) earlier.

Saving energy on conflicts.Disabling conflicting cores permits the system to reduce the
number of “active” threads that keep interacting with sdaesources. Figure 4.17 breaks down
the system activity during the parallel execution showhgtumber of cores that are operative

at atime. At it can be seen, in applications Ilash-writeor List-long half or more processors

83

B 14 Cores
U'5.8 Cores
9-12 Cores
[13-16 Cores

Time and Active Cores

p
e‘?ﬁes 3’}0@_1/ A"‘?sg_ ",
. Q@ e,

()

Figure 4.17: Number of active cores during 16-threaded medium- and bagtiention execu-
tions in ASTM-WN

are stoppetiduring, at least, a 25% of the execution time. This strateyes global power
because disabling memory traffic on conflicts lowers theggneonsumption. A power-hungry
possible optimization is to spend this power budget foraasmg the frequency of active cores

in order to accelerate the execution of conflict-free trafisas.

4.7.3 FsSTM-SL Performance Analysis

For the performance analysis oh§TM-SL, we have selected variable- and coarse-grained
benchmarks because they typically execute large transacthat overflow the L1 cache, and
thus they are more sensitive to the VM strategy implememtéd base HTM system. We have
omitted the results of applications with small (non-overiltg) transactions because they only
report speedups between 1% to 3%, although they never peviorse in RSTM-SL. Table 4.1
provides detailed information about the applications wikzatand how they perform under
LogTM-SE, FASTM and FASTM-SL. These numbers were collected running the applinatio
with 16 threads.

Figure 4.18 presents the time distribution @i M (labeled F), RSTM-SL (labeled S) and
Ideal (labeled 1) HTM systems in their 16-threaded exetstioThe execution time has been
normalized to the 16-threadedh&TM execution and is broken down using the same parame-
ters than Figure 4.13. As it can be seen in Figure 4.A8TIM-SL obtains a 18% speedup over

FASTM (15% reduction of execution time), obtaining close perfance to the Ideal VM ap-

4those cores are not completely disabled because regisaetses and other HTM support must preserve data.

84

Backoff

R

o
0

g i ®

£ i Stalled

= aa .

3 i i i Aborting

N U

2 g B Aborted Tx

£ O

S Good Tx

=z

FS1 F§1 FSL ES1 FS8I| F&i ES1 F8l ESil F&| F81 FSI

e

G S, Gs, %, "y G 3 &, s, L, by by 4
Vo O, »:o% Shyy g, O (A Sop hy, 6,0% Ca"’b/;‘é C‘?"’b/;‘ %a,,

Figure 4.18: Normalized execution time of variable- and coarse-graifdapplications under
16-threaded ESTM (F), FASTM-SL (S), and Ideal (I) HTM systems

proach for all the benchmarks. The benefit is especiallycaable irBayesor Labyrinth, which

achieve almost 2X speedup ovexdd M. The reasons for this behavior are the following.

Small log size.Selective logging drastically reduces the number of caicles ithat have to
be maintained in software. Figure 4.19 shows the averag€g(isiXB) of the software log per
transaction in BSTM and in FASTM-SL. Selective logging drastically lowers the size of tbg
by a factor of 15X (inHash-writealmost a 100X). This fact has two implications. First, there
are less transactions that overflow the L1 cache (Table dbkléd OV Tx). Second, as there
is more space in the L1 for caching transactional data, theateé of the L1 cache increases

higher.

Efficient transactional stores. In FASTM-SL, transactional stores do not need to access
the software log each time they are retired—only when thaydehe L1 cache, which is an un-
common event. As a result, the time spent in transactioristmamit (Good Tx in Figure 4.18)

is reduced by 3% on average.

Negligible software abort recovery. In case of abort, the software has to restore just a
few lines. Moreover, the number of software aborts is alstuced in RSTM-SL because
less transactions overflow the L1 cache (Table 4.1, labelgd\8). Accordingly, Figure 4.18
shows that BSTM-SL virtually eliminates the abort recovery overhead. pganted out in
the FASTM performance analysis, speeding up aborts cuts downrie thhat transactions are
exposed to conflicts, which turns out to lower the abort résdble 4.1, labeled Abort Rate) and

the time spent in Stall and Backoff cycles.

85

12

10 W EAsTM

U FASTM-SL

ID _. m_ — I_ l: l_ | I I=

&, Ve,

Log size (KB)
F]

8§ A by & A Z
'}@@‘l/ G@/;-% Vs, % -’rbof Sy 24, W ’36_}//705‘) a,x,oqé af,o[?/y 44&-%

Figure 4.19: Software log size in KSTM and FASTM-SL

4.7.4 FAsTM Conflict Resolution Analysis

The Stall conflict resolution policy sometimes exhibitsh@ddgical behavior that can affect
the performance of the application [14]. For this reasonhaee evaluated both LogTM-SE

and FASTM with three other conflict resolution policies:

Abort: Aggressive policy that tries to eliminate the conflicts gated by stalled transactions.
When a conflict is detected, the system aborts the requasstead of stalling the transac-
tion [98]. It also requires a backoff to avoid multiple alsoof transactions.

Timestamp: Policy that eliminates the backoff cycles by guaranteeimgprogress of the old-
est transaction, based on [98]. If a processor receivesfhatimy request, it checks the remote
timestamp and, if it is older than the local timestamp, thecpssor aborts the local transaction
after sending &ackto the requester together with its timestamp. When a processeives a
Nackmessage, it checks the remote timestamp and, if it is ol@erttne local, it aborts the local
transaction. Otherwise, it keeps issuing the request tetitonflicting transaction finishes its
abort recovery process.

Hybrid: Enhanced policy described as fgEin [14]. It works like the Stall policy, but write
requests abort younger readers in order to directly getwmeship of the requested data. This

policy eliminates thestarvation of the writeipathology.

We have evaluated LogTM-SE with all the conflict resolutialigges and we have found
that the Stall policy outperforms the Abort and the Timesigmalicy in LogTM-SE because it
reduces the number of software aborts. However, LogTM-SE thie Hybrid policy achieves

better results than LogTM-SE with the Stall policy in benetiks with small transactions and

86

1.4
1.2

1
0.8
0.6
04
0.2

0

SATH SATH SATH SATH SATH SATH
Hash-R Kmeans-L Kmeans-H Raytrace Ssca2 Vacation-L

SATH SATH SATH SATH SATH SATH SATH SATH SATH SATH SATH SATH SATH
Barnes Biree-F Genome List-S Vacation-H Bayes Bfree-V Hash-W Intruder Labyrinth List-L Yada A.Mean

Backoff

U stalled
Aborting

B Aborted Tx
1 Good Tx
@ Barrier

u Non-Tx

Normalized time (low-contention)

e

Normalized time (high-contention)

Figure 4.20: Distributed executed time of low-contention (top, 32 tli®aand medium- and
high-contention (bottom, 16 threads) TM applications urdegTM-SE (L), FASTM (F) and
Ideal (I) HTM systems

high-contention, likeBarnesor List-short or in applications with read-only transactions, like
Hash-reador Btree-var In these situations, LogTM-SE with Hybrid obtains simifserfor-
mance to BSTM given that most aborted transactions do not need to estar many lines.
However, LogTM-SE with the Stall policy presents betterfpenance in applications with

large transactions, likéacation-highor Yada

FASTM can take advantage of aggressive conflict resolutiorcigslibecause it minimizes
the impact of aborts. Figure 4.20 shows the time distribuobFASTM with Stall (labeled S),
Abort (labeled A), Timestamp (labeled T) and Hybrid (lalokle) conflict resolution policies
normalized to the 32-threaded (low-contention) and 16&tied (high-contention) execution of

FASTM with the Stall conflict resolution policy.

The Abort policy removes stalling transactions in case offlott given that transactions
automatically abortList-longcan benefit from this policy, because conflicts that invotedied

transactions disappear. However, in benchmarks with bagtiention and small transactions,

87

like Raytraceor Genome the number of aborts augments significantly, increasimgtitne
spent in backoff. Moreover, it also increases the numbebofta that have to be recovered by

software, what is critical in applications likeabyrinth

The Timestamp policy improves some high-contention berackewith variable-size trans-
actions, likeBtree-fixor Vacation-high because it does not require backoff cycles. Nonetheless,
the Timestamp policy has some weaknesses. First, it calysabyorts transactions, which in-
creases considerably the discarded work in coarse-graipplications likeBayes Second,

a transaction remains stalled until the younger conflictnagsaction finishes its abort phase.
Although FASTM provides fast abort recovery, those transactions thatflmw the L1 cache
do not abort instantaneously. This is a problem in benchsntirét continuously execute large
transactionsd.g., Yada, given that overflowing transactions must abort each tiney find a

conflict using the slow software routine.

The Hybrid policy improves our baseline because it reducestarvation of older writers
without increasing contention. Like in LogTM-SE, the Hybpolicy accelerates applications
with high-contention and small/read-only transactionarébver, the fast abort recovery mech-
anism allows BSTM to improve the performance of some coarse-grained beadtsras well,

like Intruder or Yadg which discard a lot of work when large transactions abort.

4.8 Related Work on Eager HTM Systems

Unbounded TM (UTM [5]) was the first HTM that allowed a fast (rsoftware) execution
for transactions of any size or duration. UTM extends eachang block with R/W bits and
an address pointing to an entry of the a hardware-access@dDESstructure. Because UTM
implementsearly version management, speculative updated values are cowjtle a pointer
that indicates where the original data is—this data has toebimred in case of abort. Thus,
XSTATE contains a linked list of transactional accessethéeiread or written) addresses and
a status register of the current transaction. Those linlstdl iInust be traversed each time a
memory operation finds the R/W bit set (to identify which saction owns a block) and at
commit or abort time (to update the global state). AlthougiMdoes not require transactional

caching support for correctness, it can be used for speeghirspeculative execution.

88

Large TM (LTM [5]) presents a simplification of the UTM engina LTM, a per-sebver-
flow bit in the L1 cache informs ongoing memory operations thainaifight transaction has
evicted a line. Thus, overflow storage has to be accessed mkerory operations find the
overflow bit marked. In these occasions, the processorrimtr the execution and triggers a
walk in a hash table kept in DRAM memory. This happens wheddaaiss their local cache
(as they need to read the value generagadier in the transaction) or when remote requests
have a potential conflict with the line (as they must be debiechuse LTM resolves conflicts
eagerly. On commits, LTM writes back overflowed data from the ovevfkiorage space to the

main memory.

Virtualized Transactional Memory (VTM [97]) tracks traisianal information—e.g, spec-
ulative values or read and write sets—in a table placed iliGgtjpn’s virtual and private mem-
ory, called XADT. VTM uses conventional (bounded) HTM caahsupport for small transac-
tions, invoking virtual machinery only when it is necessarike in LTM, the XADT is accessed
on L1 misses (either local or remote) and at commit time, instead of relying on per-block
metadata pointers, VTM extends processors with microcodér(nware) aptitudes to operate
in software structures. Performing lookups on each L1 nmesrs in a significant slow down.
To overcome this issue, VTM introduces a software-manadedr filter, which conserva-
tively dictates if a given address is present in the XADT. #ddally, VTM can incorporate
a transactional victim cache to keep constantly-accesatal alose to the processor. Hence,
hardware requirements of VTM are not as expensive as UTMgwhey provide transparent
execution of unbounded transactions and capability fodlag transactions in the presence of

context switches and page faults.

Page-based Transactional Memory (PTM [24]) expands an LK&HTM system with
shadow pages that hold transactionally modified values. dditianal table maps physical
pages to shadow pages, while processors maintain in theabped vectors which page entries
have been accessed within a transaction, a requirementfrmeconflict detection. Shad-
ows pages must be copied in their associated physical pagesnait time to make the state

globally visible.

LogTM [84] simplified the UTM mechanism by storing old valuasd their associated

address in a private log. Like other HTM systems, it uses LW Rits to track those memory

89

VM Hardware Abort Overflow | Commit CM
HTM System)
Strategy| Support Recovery Policy Process | Strategy
i Update
LogTM-SE [130]| Early Logging Software - Eager
Memory
Store Notify Drain
Rock HTM [33] Late Hardware Eager
Buffer Software | Buffer
L1TX Update
HyTMs [31,63] Late Hardware | Run STM Eager
Cache Memory
L1TX Software | Update
VTM [97] Late Hardware Eager
Cache Structure| Memory
Logging, L1 | Hardware and Update | Clean L1
FASTM Early® gging . Eager
TX Cache Software Memory State

Table 4.2: Data VM characteristics of eager HTM systems

accesses performed inside a transaction, albeit it modffeesoherence protocol with sticky
directory states to perpetuate the partnership betweeamsdctionally evicted line and its last
owner. Sticky directory states forward memory request &l#ést owner(s) of the line, which
tests its R/W bits to perform conflict detection—even in thsecthey have evicted the cache
line—and reply with @&Nackmessage in case of conflict, instead of acknowledging orisend
the data to the requester. The W bit is also used to preveatitiep logging when a memory
block is updated multiple times. Notice that, in contrastJoM, LogTM does not require

per-block metadata for data versioning purposes.

LogTM-SE [130] decouples transactional state from cactegdacing the L1 R/W bits of
LogTM with signatures that summarize thgseysicaladdresses accessed within a transaction.
This implementation also uses sticky states for those datted in the L1 cache but present in
the L2 cache. However, L2 evicted data is forwarded to allpteeessors of the CMP, which
test their signatures and reply withNeck message if a conflict occurs. LogTM-SE cannot
use the W bit to determine if a given address has been inteadurcthe log. Instead, it uses

an effective small table containing recent logged addees$®gTM-VSE [119] shows how

Swe consider FASTM an early VM system, although it shares ssiméarities with late VM system

90

signatures can be wirtually summarized using OS support to keep executing transactiters

they are de-scheduled or interrupted by a page fault.

In [69], we revealed how log-based HTM systems can be aatekktby using an in-core
gated store buffer, not unlike how the implementation psggbfor Rock [33] keeps the trans-
actional state. This approach is extremely encouragingusecit allows flexiblearly andlate
version management. Moreover, the industry has voted fardocing exposed write buffers in

the microarchitecture of future CMPs, which makes this apgh even more feasible.

Table 4.2 summarizes the main VM characteristics of sthteeart eager HTM systems
and compares them toABTM. As it can be seen, A&STM presents fast commit and abort pro-
cedures with reasonable hardware support and minimum exiypla feature that is missing

in other unbounded eager HTM systems.

4.9 Conclusions

In this chapter, we have presentedsifM, the first log-based HTM system that, like late
VM approaches, takes advantage of the processor’s caalaedhig to provide fast abort recov-
ery. FASTM uses a novel coherence protocol to buffer the transaatimodifications in the first
level cache and to keep the non-speculative values in thehigvels of the memory hierarchy.
This mechanism accelerates the abort recovery of largsactions, which is critical in other

log-based implementations like LogTM-SE.

To handle cache overflowsABTM follows a log-based approach. Transactional cache lines
are evicted in-place in the memory hierarchy and old valuesraintained in a cacheable log,
which must be restored by a software routine. This approamfli§ies overflow mechanisms
of late VM systems, that either need complex specializedvisare to handle cache misses and

to commit overflowed lines or fall-back to software-onlyrisactions.

We have evaluatedASTM with a heterogeneous set of applications and conflictlueso
tion policies. Our proposal obtains, on average, a speetldg% over LogTM-SE in high-
contention applications. We have seen that the performamgevement is more pronounced
in applications with coarse-grain transactions, becausI M reduces considerably the time

spent in abort recovery as well as the number of conflictsh@igh our analysis shows that

91

transactional cache replacements are common in coarsedapplications, BSTM does not

suffer performance penalties, because transactionsuietaw the caches do not usually abort.

We have also proposed two additional optimizations fasHM: wake-up notification and
selective logging. While the former proposes an efficiedtittan to handle stalls in eager
HTM systems, the latter reduces the pressure on logging anéxh in ASTM. Our evaluation
shows that selective logging accelerates transactioredugion, reduces the number of slow
aborts and decrements the size of the software log, achieviraverage speedup of 18% over
FASTM. On the other hand, the wake-up mechanism delivers goddrpgance (5.5% speedup

over FASTM) and saves energy in the system when threads are stalllddgytransactions.

Our evaluation of BSTM with different conflict resolution policies shows thatirag a fast
abort recovery mechanism favors aggressive policies tiat aritical transactions in situations

with high-contention.

92

93

Chapter 5

Speculative Hardware Transactional Memory

Systems with Local Commits

Conflict management (CM) is possibly the most critical feanf HTM systems [38]. The liter-
ature is full of proposals that try to improve on this meckamieither by moving the resolution
of conflicts to software [103, 112], applying high-performea hardware policies [14, 98, 111]
or modifying the coherence protocol drastically [7,99,]124

Lazy HTM ! systems [22,45,92,107, 112, 124] commonly obtain bettdopraance than
eager HTM systems [14,111, 122] because they (i) offer monewrrency (transactions spec-
ulate with conflicts), (ii) guarantee forward progress (razhoff or time-based policies are
required) and (iii) permit transactional readers to oyetleir execution with non-committed
writes, which removes direct conflicts if a transaction tfegtds a memory location finishes

before a transaction that writes the same location.

Unfortunately, prior lazy HTM systems suffer numerous tations that may affect both
the scalability and the complexity of the system. In lazy HS¥tems, transactions require
arbitration and data movements at commit time, which insigsificant overheads. They also
introduce sophisticated commit protocols that are quitellware invasive—they demand sev-
eral changes in the communication between private anddiheseurces. Moreover, lazy HTM
systems imposkate VM, and thus they are subjected to long delays when they éa¢@nsac-

tions that commonly exceed on-chip buffers, as explaingchapter 4.

Lin this thesis, we refer as lazy HTMs those systems that gieowith conflicts and resolve conflicts at commit
time, independently of how conflicts are detected or the Vildtegy that they employ.

94

In order to address the above issues, this chapter stadsmieg RISETM, a fused dual-
mode HTM system with local commits. This is a speculative H3ydtem that integratdazy
resolution of conflicts in a conventionalger HTM framework. By adding minor changes
in the coherence engineUBETM keeps executing after a conflict occurs and perfoloesl
commits—a technique thahoves arbitration, data transfers and directory updates ot of
the critical path. Moreover, ISETM is the first speculative approach that offsisultane-
ous execution of eager and lazy transactions the same latent microarchitecture. Hence,
FUSETM breaks with thdate VM invariant for lazy HTM systems: the system switches to the
eager (log-based) execution mode when a transaction extieet 1 cache in order to maintain
in-place in memory the overflowing state. This strategy $iirep the hardware design that is

required to support unbounded transactions.

FUSETM forbids lazy execution for those transactions that espculative data from the

L1 cache—large transactions are aborted and restart im saagke. This can be an issue if over-
flows are frequent, because the system must discard lot il wgerk and enforce eager CM
from the very beggining, which results into less concuryearmong conflicting transactions. To
overcome the above problems, we implemePEE M, a speculative HTM system with early
overflowing updates. F=CTM shares most of the underlying infrastructure ofSETM—and
thus most of its features—but it has one major differencerdagjusting the selective logging
mechanism, BECTM is able tokeep running in lazy-mode until commit time. This tech-
nique removes aborts provoked by overflowing transactioispgrforming enables resolution

of conflicts for most of the transactionally accessed lines.

This chapter starts presenting the motivation fosETM and SPECTM, showing the weak-
nesses of contemporary lazy HTM systems. Then, it overvie&ySUSETM system, describing
the hardware extensions and the unified coherence proto@bRISETM (and SPECTM) uti-
lizes. The chapter follows up summarizing howdeTM operates in the lazy mode, and then
presents how the system is able to combine eager and lazsattions without requiring cum-
bersome hardware. Then, the chapter goes on overviewaBGI™, explaining the additional
mechanisms that it requires and how they operate. The atfaptzes evaluating BSETM and
SPECTM, and comparing both systems with other modern commitgoals for lazy HTM sys-

tems.

95

ziD.:.DD.:. I ™ T T

L
%ra%ﬁbg%zr%%iﬂ %}7%‘5906 c"&ﬂ'ﬁ? &@e %’é.% ""?f% Ly, » -90* &’Fe "*é.;-,;‘ &;%},,?W&na&% a"’ﬂt@;

Time Committing (%)
i

Figure 5.1: Percentage of time spent in arbitration under 32-threade@-Dist

5.1 Motivation

Several studies [14, 111] showed the benefit of using lazyagement of conflicts when
dealing with high-contention transactions. However, catting transactions is an expensive
operation when the resolution of conflicts is moved at the @hal transaction because it re-
quires arbitration. Software arbitration [112] producesportant delays at commit time. On
the other hand, hardware arbitration [21, 22,45, 92] sedsltransactional computation, which

compromises the scalability of the system.

In order to quantify the performance loss of a standard cdrproitocol, we use a TCC-
based implementation with distributed commits as a lazy H¥ddeline (TCC-Dist for short).
This is a lazy HTM system that assumes an idealized late VIVhar@em (zero-cost commits
and aborts) and an instantaneous abort notification (instems$ transactions undo their modi-
fications at the same time that a transaction commits). T@&Tt3es the distributed algorithm
presented in [92] to arbitrate between committing trarisast More documentation regarding

the lazy HTM baseline can be found in Section 3.2.2.

Fine-grained transactional workloads suffer importanérbeads when arbitration is re-
quired. Figure 5.1 shows the percentage of time spent itratibin after executing 32-threaded
TM applications using our reference HTM system. Applicasi@re gathered according to the
size of their transactions; from fine-grained (left) to @@agrained (right). As it can be seen,
TM applications waste substantial part of their time in cdtrarbitration, especially those that

continuously execute tiny transactioresd, GenomelList-shortor Ssca2.

96

100 365 282

Hoalalniinlanlilal

Ko, K, L &
'erq% -’"?gaqué’aq&'i:ﬁ. ’%17 oac-.&sy,@ Srge, G@fb %3¢ frr%, o Yaq, g, ;"3’% b J"?a ’ a;,q_’ a:,;"‘;

A
2

=

Commit Msg / Tx
3 3

Figure 5.2: Average network messages in the commit phase under 324#d&eCC-Dist

The reason of such commit delay resides on the communicatitnshared resources—
in TCC-Dist, transactions acquire/release directory nexlu Figure 5.2 shows the average
number of messages per transaction introduced in the ne@mtarommit time. As it can be
seen, variable- and coarse-grained applications intechare messages because they read and
write more directory banks. Nonetheless, the commit phass dot become critical because
most of the time is devoted to compute large transactionswveder, applications with small
read/write sets may require numerous messages to acquingla directory module, given
that in most of the occasions the module is already acquitezElAcquire message must be

re-issued).

Commit arbitration is a not the only problem that lazy HTMtgyss have to face. For in-
stance, TCC implementations [22, 45] require write backhi¢éoshared L2 cache, while Eazy-
HTM [124] needs atomic directory updates. As a matter of, falttthe proposed approaches
introduce substantial changes in the CMP configurations Truludes a firmware that walks
the entries of the L1 cache to identify those that have bemrsactionally written, a mecha-
nism that sends bulk messages containing the write set toteeoores, the L2 cache and/or
the directory, a deadlock-free protocol that groups andKslalirectory modules and a device
to support atomic memory updates. Hence, lazy HTM systeesepiad hocimplementations

that highly depend on the underlying hardware machinery.

Finally, lazy HTM systems assume late data versioning faritewed data—they keep
overflowed data hidden from in-flight transactions using&dized structures, such as firmware-
accessed memory structures (LTM [5] or VTM [97]), shadow rognmpages (PTM [24] or
XTM [25]) or additional hardware tables (FlexTM [112] or B&¥TM [124]). When the trans-

97

actional buffers are overflowed, the system inserts new idathese specialized structures,
where it is kept until the transaction commits (new data amdferred to global memory) or
aborts (new data is invalidated). Also, if the transactioesinot find the data in the transac-
tional buffers, lazy HTM systems must traverse specialigtedctures to check if the accessed
data has been modified during the in-flight transaction. Imrest to early VM systems, late
VM systems are subjected to long delays when they executsaciions that commonly exceed

on-chip data versioning support.

The previous paragraphs reflect three major concerns tfeadt die performance and the
design of lazy HTM systems. First, arbitration is an expengiperation for fine-grained trans-
actional applications; therefore it would be extremelyplfidlto eliminate it from the commit
phase. Second, the design of a lazy HTM should not rely onifspbdardware components,
nor include atomic operations at commit time. Third, usiig ldata versioning for holding the
overflowing state adds even more obstacles in an alreadylerrdpsign; a simpler approach

is worthy to be preferred.

5.2 AFused HTM System with Local Commits

FUSETM presents a novel HTM implementation to overcome the alissiges. This pro-
posal slightly modifies the L1 cache controller to simultaumy combine eager and lazy trans-
actions and providéocal commits, which avoids expensive commit arbitration [92(direc-

tory updates [124], while it keeps standard activity forulag memory operations.

5.2.1 RJseTM Overview

FUSETM offers two different execution modes: eager and lazy. @agerFUSETM execu-
tion mode uses both eager version and conflict managemeataZyFUSETM execution mode,
on the other hand, uses both lazy version and conflict managenMoreover, BSETM per-
mits eager- and lazy-mode transactions to exesim@ltaneouslyn the system. This is possible
through UTCP, a novel unified transactional cache coherprmecol that is able to correctly
track conflicts among transactions—independent of thedceatton mode—and it ensures the

correct propagation of transactional modifications.

98

——— . | Memory Controller |
Core S
REGs|| ALUs Core Core A
PC >

.
4 \‘
4
HTM < L2-Cache d =
L1-Cache s
S t
uppor | ,’,' "/c Eb — d—|
/‘ RRED Router Dir ‘,/ -
/ ..'~._. %
) S e /' 3 : Q &I I I
Hardware TM Support Rat '
| Begin PC | [Rsig] [Tx Model Directory

______________ , Sharer list

1 -
II Log pomterl | ov I::I RCV and WCV I' i
1

]
: Eager Support jLLazy Support J 1 Lazy Support

Figure 5.3: Base system configuration and transactional hardware sufgo®@YNTM

The FUSETM eager execution follows a log-based approach. Trarmadtimodifications
are kept in-place in memory, where they are allowed to prafatp all levels of the hierarchy.
The pre-transactional state is logged in a software strei¢84]. In the eager mode, conflicts are
resolved as soon as they are produced. In contrast,URETIM lazy execution mode resolves
conflicts at the very end of a transaction. In the lazy mode sgfeculative state is buffered in
the L1 cache and is not made visible to the rest of the systditrthmtransaction is committed.
FUSETM takes advantage of the built-in hardware support for pagesion management in
order to handle L1 cache overflows and context switches fyr tiensactions. In such cases,

the system will simply abort the lazy transaction and recai@it in eager mode.

5.2.2 Hardware Support

In this work, we assume for outdsSETM implementation a CMP system similar to that uti-
lized in the previous chapter (see Figure 5.3). Besides fifeRJcoherence protocolJSETM re-
quires additional extensions to existing hardware compienéor executing eager and lazy

transactions:

Logging Support. Like previous log-based HTM proposals [84, 130ySETM extends the
core with register checkpointing amdnventionakoftware logging support to implement early
version management.

Signatures. FUSETM requires Read and Write signatures [21, 130] (Bloom §ltdo track

99

transactional accesses. While the Read Signhature sunananigy transactional read, the Write
Signature only contains addresses from eager transaksitmnes.

Conflict Vectors. Like FlexTM [112] or EazyHTM [124], I'NTM introduces Read Conflict

Vector (RCV) and Write Conflict Vector (WCV) to maintain intsistencies between in-flight

transactions.

5.2.3 FRJseTM Modes of Execution

Like other lazy HTM protocols, BSETM restricts transactional updates to the L1 cache
only, maintaining pre-transactional values in the L2 cacltowever, rather than requiring
specialized hardware to handle L1 cache overflows [97, 1H2$ETM aborts the offending
transaction and re-executes it in eager mode. In this sgatie overview both eager and lazy
execution modes.

Eager execution mode.In FUSETM, eager transactions follow the same hybrid data version
management mechanism as the one presentedh$ii M. This mechanism guarantees that,
if a transaction has not overflowed the L1 cache, the L2 cadlecontain the correct pre-
transactional state. This is done by writing back edtty non-transactional L1 cache line
before overwriting it with transactional data. By keepingttbthe old and the new (trans-
actional) state in-place in memoryuSETM offers a very fast abort recovery mechanism for
transactions that do not overflow the L1 cache—it simply lidzties transactionally accessed
lines. Eager transactions also maintain the old state invatpr cacheable software log [84],
which permits the safe eviction of consistent transactipnaritten lines. In case of over-
flow, the pre-transactional state can be recovered by a adtwoutine (slow abort recovery
mechanism). Moreover, transactional store operationayavadd their addresses in the Write
Signature. Thus, theUSETM eager mode allows transactions to survive context swgamd
page faults by virtualizing the signatures and by using dfvare log for abort recovery [130].
FUSETM detects conflictgarly with the help of the UTCP protocol.

Lazy execution mode. Lazy transactions also detect conflietarly via the UTCP protocol.
Contrary to the eager execution mode, lazy transactionntenexecuting after detecting a
conflict—conflicts are resolveldzily at commit time or until someone aborts the transaction.

In order to track conflicts from their detection until theésolution time, BSETM transitions

100

conflicting cache lines to special UTCP states, and markfictsnamong cores in the Read
and Write Conflict Vectors (RCV and WCV). INUSETM, conflicts are notified at commit time
using point-to-pointAbortTxmessages. This can be done because information about isicons
tent transactions are recorded in the WCV. After acknowitegithat all conflicting transaction
have been aborted, the cdoeally commits the transactional data in order to makglabally
visible. Unlike prior proposals, ’ISETM does not require directory updates [20, 22, 124] nor

data movement [45,92, 112] at commit time.

5.2.4 The Unified Transactional L1 Cache Coherence Protocol

In the heart of BSETM lies a novel coherency protocol, the Unified Transacticaher-
ence Protocol (UTCP), that guarantees the correct projpagat transactional modifications,

as well as the prompt detection of conflicts among transagtio

The UTCP protocol distinguishes between coherent and iseustates. The coherent
states include the four states of a typical MESI protocalspheT state. Cache lines in these
states are either non-transactional or they are read iadidmsaction and have no conflick (
E, Sandl states), or they are written inside a transaction and theg ha conflicts T state).

Notice that this is analogous to the Transactional Coher@motocol implemented byASTM.

The two speculativ® andWstates keep transactionally red&) ¢r written (j cache lines
that have a conflict with one or more other transactions. €diolks are transitioned to the
or Wstates only when they have a conflict with a lazy transactieager transactions are not

allowed to speculate with their execution when they conflith other eager transactions.

The coherent stateg M E have a single owner or version in the system directory (multi
ple sharers are allowed 8 of course). On the other hand, speculative lines can haVipheu
active versions, therefore the directory must maintaincdoreof owners. Conflicts among trans-
actions are detected through the drahdWstates (for lazy transactional writers) and the Read

and Write signatures (for transactional readers and eeggsédctional writers, respectively).

The UTCP protocol differentiates between eager and lazy engmequests by adding an
extra bit in the coherence messages. Eager transactioifis cmiflicts usingNack messages.
This mechanism allows eager transactions to maintain tbagtion by preventing remote re-

guesters to access their read/write sets. Requesting manesetry the memory access or abort

101

Local/Request Message Description Response Message Description
TLoad, TStore Transactional (Tx) Load, Tx Store Ack Acknowledgement
TGetS, TGetX Forwarded Tx Read (Write) Request Nack Negative Acknowledgement (Eager Transaction)
(T)GetS, (T)GetX Either Tx or Non-Tx Read (Write) Request Lack Lazy Acknowledgement (Lazy Transaction)
TGetS(E), TGetX(E) Conflicting Request (Eager Transaction)
TGetS(L), TGetS(L) Conflicting Request (Lazy Transaction)
TGetSorX Either Read or Write Tx Request Response Actions Description
Commit, Abort Local Commit (Abort) Signal
Conflict Lazy Conflict (Update Conflict Vectors)
AbortTx Abort In-flight Transaction
ov Notify Overflow (Abort Transaction if it is Lazy)
TStore, TLoad/- COHERENT WB L2 Cache Write Back
TGetSorX(E)/Nack STATES Retry Issue the Conflicting Request Again

TStore/ Abort/-
TGetX Sf;fé\e/me"t/ Commit (from W)/- SPECULATIVE

(T)Load/- e,
[TGetSorX(E)/Nack

STATES

Store/- TStore, TLoad/-
TGetSorX(L)/Conflict+Lack

TGetX(E)/AbortTx

GetX/Data GetX/AbortTx
i TStore(L) (from | or S)/Conflict
, TGetSorX(L) (from T)/Conflict+Lack >
(T)C;etS/

Data+WB
+Ack

(T)Load/-
TStore(E)/Retry
Inv(E)/Nack TStore(L)/

Conflict
TLoad(E, L) (from 1)/Conflict A
TGetX(E, L) (from M, E, Sor 1)/

Conflict+Lack

.... (T)Load(s)]
(T)Gets

0' Replacement (from W)/OV T—Lo'a—d/_
' \ Abort (from R or W)/- TGetS/Ack
S c it (from R)/ TGetX(L)/Conflict+Lack
TLoad(E), TStore(E)/Retry ommi TGGe;);)((%/bADbr(tJ%(Tx
TGetSorX(E)/Nack

Figure 5.4: State-transition diagram of the unified transactional Ldheacoherence protocol

the transaction. Nevertheless, when a core that executassattion receives a conflicting lazy
request, it must transit the conflicting line to a specuéattate and reply with Aack mes-

sage. In order to implement strong isolation, the UTCP pataborts transactions that receive

non-transactional conflicting messages.

Figure 5.4 shows the UTCP states and transitions. The |dl@dah transition shows the
UTCP triggering message (before the slash) and the assd@ations (after the slashjStore
and TLoad are memory accesses produced within a transaction. Ndte tiiansactional L1
miss generates a memory request to the directory, whiclsfded to the owner(s) of the line
(TGetSor reads,TGetXfor writes). If the line has accessed the line within a laapsaction—
represented with the suffix (L) in Figure 5.4—the line trés$0 a speculative state and the

receiver replies sendinglaack message to the requester. If the line has been accessed insid

102

an eager transaction—represented with the suffix (E) inrei§ud—the receiver replies with a

Nackmessage and the line remains in the same cache state.

The Conflict action updates the RCV (fd¥-state lines) or the WCV (foWstate lines)
by marking the requesting/replying core in one of the confists. TheWB action pushes the
line to the L2 cache.Replacemenindicates an L1 cache eviction, which activates the abort
machinery in lazy transaction§\ actions).Commi t andAbort actions also trigger transitions
to the Modified or Invalid state. A detailed explanation afylanemory operations and how

they affect the UTCP transitions is presented in the nexisec

5.2.5 FRUseTM Lazy Transactional Operations

This section explains how the lazy mode af9ETM works. We describe how lazy-mode
transactions interact with the elements of the system (Up©Bcol included). We omit here
how eager-mode transactions operate, as they follow the séps that in &TM. We defer
the explanation of how BSETM mingle different-mode transactions on top of the sameasif

tructure to Section 5.2.7.

5.2.5.1 Lazy Transactional Stores

In FUSETM, non-conflicting transactional storeEtore$ follow the TMESI protocol proposed
in FASTM—they write back the value ditstate lines to the L2 cache before transitioning to the
T state. This guarantees that the L2 cache always has thetprestransactional value of the

line.

The novelty of the UTCP protocol lies on how the system hantiEnsactional conflicting
lines. Let's assume that cotg, which is executing a lazy transaction, attempts to writee |
that has been accessed by other cores during their in-figiitttansaction. In this scenario,
Lo requests the line to the directory, which (1) forwards thkeetence request to the current

owner(s) of the line and (2) sends a message containing théemof owners td.

Now we assume that cotg is one of thelazy owners of that line. Wheh; receives the
conflicting requestT{GetX), it replies toLy with a Lack message and moves the line to one of

the speculative states. i has transactionally written the line beforee(, the line is in theT or

103

1. TStore @ 7. Lack 5. Update WCV 8. Update WCV
Core 0 Core 1 Core 0 Core 1 Core 0 Core 1
wev |)| [wev| l wer[| [wevZ_] wev L] E—
L1-Cache L1-Cache L1-Cache L1-Cache L1-Cache L1-Cache
@[I |n-tx data @[T] txdata @] I [n-tx data @|w] tx data @| w] tx data @|w] txdata

4. own: 1 1 11. Writ
6. Move to W - Write @ 12. Add owner
2. TG& 3. TGetx 10. Data 9. Get @

L2-Cache Directory L2-Cache Directory L2-Cache Directory

@[ntxdata | [@] E:1 @] n-tx data @] Eo0 @] n-tx data @JE 01

Figure 5.5: Conflicting transactional stores ivBETM

Wstate), the line transitions WandL; addsLg to its WCV. Similarly, if L1 has transactionally
read the linei(e., the line is in theM E, S or R), the line transitions t& andL; addsLg to its
RCV. WhenLg receives thd.ack reply fromLg, it detects that there is a conflict. Hentg's
request is serviced by the L2 cache, which is guaranteedv® tha& correct pre-transactional
values, and, is added as a new line owner in the directdryputs the line inVand addd ; to

its WCV. This mechanism permits the system to identify irgstent transactions that should

be aborted before committing.

In Figure 5.5 we can see an example where dgrenisses in the cache after retiring a
TStore(step 1). Cordg requests the line to the directory, which forwards the retj the
only owner of the line (in this case, coke (step 2 and 3)). At that time, the directory notifies
Lo that a unique copy of the line is present in the system (stepi4)as the line in th@ state,
so a conflict is detected. Hendg,updates its WCV by marking the inconsistency with(step
5), transits the line to the speculatiistate (step 6) and sendéackmessage tbg (step 7).

Oncel receives thé.ack message, it adds, in its WCV (step 8) and loads the line from
the L2 cache, which has a consistent copy of the pre-transattvalues of the line (step 9 and
10). After that, it performs the transactional write, motes line to theWstate (step 11) and

unblocks the directory, setting itself as a new owner of ithe (step 12).

104

Core 1 Core 1 Core 1
Wy] 6. Updote —| Wy (22— wev[oz]
L1-Cache wev L1-Cache [1-Cache
tx dat, tx dat. tx dat;
x data 5. Update x data 8. Lack x data
E——— 1.Tlcad@® WCV |— [——1| 9. Update RCV
3. TGetX l l
Core 0 Core 2 Core 0 Core 2 Core 0 Core 2
wev] rv | [wevz] wev[zz_]
12. Move
L1-Cache L1-Cache L1-Cache L1-Cache L1-Cache L1-Cache [l to R
tx data [@] | Jold data| @[w][tx data @] 1 Jold datal tx data | @] R |n-tx dat]
|—— 1
2. TGetX \/ 13. Add
3. TGetX 4. own: 2 7. Lack 11. Data 10. Get data sharer
L2-Cache Directory L2-Cache Directory L2-Cache Directory
@] ntxdata | | @] E: 0,1 @] ntxdata | [@] E: 0.1 @[n-txdata | | @|E: 0,12

Figure 5.6: Conflicting transactional loads inUSETM

5.2.5.2 Lazy Transactional Loads

Non-conflicting transactional load$l(oad$ are performed as regular loads (adding the address
in the Read signature if they end successfully). Howevenflioting transactional loads are

executed following a similar strategy 1&Gtores

Let's assume that corky attempts to read a line that has been written by another lazy
transaction. If the line is in th& state, the pre-transactional value is already load in the L1
cache and the conflict has been detected as well, sdltbadis completed. If the line is not
valid in the L1 cachelg requests the line to the directory, who forwards the regutsthe
owner(s) of the line. Then, all the writers of the line respavith aLack message, add, as a

conflict in their WCV and transit to th&/state—readers do not have to perform any action.

WhenLg receives the_ackreplies, it marks the conflicts in its RCV and gets the old galu
of the line from the L2 cache, holding the line in tRetate. Afterwardsl,o communicates the

directory that it owns another alive copy of the line.

Figure 5.6 shows an example of how$ETM handles a transactional load that misses the
L1 cache in coré, (step 1).L, requests the line to the directory, which transmits the esgjto
Lo andL1, who have written the line before. The directory also sermiessage tb, informing
that the line has two owners (step 4).andL;, own the line in theNstate; therefore both cores

markL, in their WCV (step 5 and 6), and reply withL@ckmessage tb, (step 7 and 8). When

105

L, receives the twhack messages, it marks) andL; as potential conflicts in its RCV (step 9)
and gets the old values of the line from the L2 cache, whiclefs kn theR state (step 10-12).
Finally, it updates the directory, which contains nbyyL; andL, as the current owners of the

line (step 13).

5.2.5.3 Local Commits

In FUSETM, when a lazy transaction attempts to commit it probesaitsll WCV for conflicts
with remote transactions. If the WCV is empty (i.e., nonftioting or read-only conflicting
transactions), the core enters the commit phase. Howewveaise of conflict, the core enters the

notification phase.

In this phase, the core sends abort messagyesr{Ty to all the cores marked in its WCV
and waits for their response. A core that receives an abquest must check both its RCV
and WCV to verify that there is a conflict with the committersd, the conflicting transaction
is aborted and aAbortAckresponse is sent to the committer. Otherwise, the aborestdsl
because of a conflict with a transaction that no longer erscoi this core (either committed

or aborted) and the request is ignored.

When all abort requests have been acknowledged, the nbtificehase ends. The core
then enters the commit phase, where the core validatestds sla it becomes visible to the
rest of the world. This is done by transitioning all cache$irmccessed transactionally to a non-
speculative statel (or Ware moved to th#lstate andR lines are invalidated) and by clearing local
signatures and Conflict Vectors. Unlike prior proposalssE& M does not brings additional

communication with shared resourcesy, the L2 cache or the directory).

5.2.5.4 Local Aborts

In FUSETM, aborts are notified using core-to-core notification. Wiecore receives an abort
notification {.e., a conflicting transaction is committing), it invalidatdsthe T, WandR lines
from its L1 cache. Notice thatUSETM'’s aborts (like commits) do not require communication

with the L2 cache or the directory.

106

2. AbortTx 1. Commit 3. Abort 5. AbortAck
P | | 3. Abort |
Core 0 Core 1 Core 2 Core 0 Core 1 Core 2
wev[z] wev[oz2 | wevfo1l] wev| | wev|] wev|]
L1-Cache L1-Cache L1-Cache L1-Cache L1-Cache L1-Cache
. W[tx data @[w[tx data @|w]tx data [@[1 [tx data [e[TTtx data . M[n-tx dat| |«— 6. Move to M
\ i i _/5. AbortAck
2. AbortTx 4. Move to | 4. Move to |
L2-Cache Directory L2-Cache Directory
@] n-tx data @[Eo012 @] n-tx data @[E012

7. TStore
‘ /_\10. Ack 11. Data+Ack

Core 0 Core 1 Core 2 Core 0 Core 1 Core 2
wev[] wev|] wev] wev[] wev|] wev]]
L1-Cache L1-Cache L1-Cache L1-Cache L1-Cache L1-Cache
[e[[xdata [1Ttx data 12. Move to T —|[G[T[x data Gl 1 [txdata BT [n-txdat

9. TGetX .
13. Exclusive
8. TGetX 9. TGetX Update 11. WB
L2-Cache Directory L2-Cache Directory
@] old data @[E: 01,2 @[n-txdata | [@]E: 0

Figure 5.7: Retarded directory updates iw§eETM

FUSETM eliminates arbitration among lazy transactions, theeeftwo transactions may
enter the notification phase at the same time. In order teptarossed conflicts, abort requests
include a timestamp with the time a transaction startedwitar. When two transactions in the
middle of their notification phase receive crossed abortests, the younger transaction is

aborted (it receives afibortNackresponse).

In the uncommon case that two transactions report the sanestamp, the transaction
executed on the core with a higher CPUid is aborted. Abotorgmitting transactions in their
notification phase is safe to do because the memory state igpdated until a core enters its

commit phase.

5.2.5.5 Retarded Directory Updates

In FUSETM, the directory is updateldzily by future remote requests, therefore committed lines
may have multiple owners in the directory even though they ordy exist in one L1 cache.
Figure 5.7 shows an example of how$ETM performs local commits and retarded directory

updates. In the example, coras L, andL, are cores that have written lideinside a transac-

107

Situation 1 Situation 2 Situation 3
Li Lj Li Lj Li Lj
L
TGetS JI TGetX (j) WCV.add(j) b4 i RCV.add(i)
x* 1. WCV.add(i) x\5 1. WCV.add(i) RCV.add()) & WOV.addi
.a .a I
2. RCV.add() | 4T 2. WCV.add() | <ok : x 0
3. Commit:) 2. Commit: ; t(':;)mArEit:t .
WCV.empty() 3 Commlti AbortTx Notif.y Abort T: otify Abort Ti
RCV.clear() AportT Notify Abort Tj | -....... Py e
ortiX1 4. commit: “a | 4. Abort 3. RCV.exist(j) A, A o
........... Notify /ik WCV.exist(j) . -existy) 4. RCV.exist(i)
5. IRCV.exist(j) 4 Abort Ti 5. Commit o b Ttll-\>k-|(—!). Tj < Ti:
. - OrtAc H
AbortAck J AbortNack(i)
AbortAck - ><
5. Abort ¥ -~ 6. Commit
o RD @A m RD @B RCV: Read Conflict Vector X Conflict wm Start < AbortTx Msg
o WR @A ® WR @B WCV: Write Conflict Vector 3k Abort — Commit <« Abort(N)Ack Msg

Figure 5.8: Local Commits and Abort Notification inUSETM

tion. Eventually,L, commits (step 1), abortingy andL; (step 2-4). After acknowledging the
abort (step 5)L», becomes the only owner of lind because it holds the line in the Modified

state (step 6), although the directory still has cdigandL, as possible sharers.

WhenL, re-executes, it performs BStoreover line A and requests it from the directory
(step 7).L» has not updated the directory at commit time, so the dirgcttlt maintainsLg, L,
andL, as the owners of the line. Thus, the directory forwards tljeiest toL; andL, (step 8
and 9). WhileL; acknowledges the request (it has invalidated Aduring its abort, so it does
not own the line anymore),, sends the committed dataltg (step 10 and 11). After collecting
all the responseg writes the line (step 12) and updates the directory by seitself as as the

exclusive owner of the line (step 13).

Similarly, if core Ly performs arLoad the directory add&g as a sharer in the directory

(line Ais kept in theS state in both.g andL; L1 caches).

5.2.6 Lazy Conflict Management in ISETM

The prior section showed how lazy instructions deal withrtteenory subsystem individu-
ally. In this section, we describe how the entire lazy tratisas are executed. Figure 5.8 shows
how FUSETM executes lazy-mode transactions. In the following peaplys, we describe how

distinct situations are handled in our proposal.

108

Read Conflict (Situation 1): Ti is a read-only, lazy transaction that wants to load e
which has been written by lazy-mode transactipn After receiving theT GetSrequest, core
Lj marks biti in its WCV and replies with d.ack message (step 1). When cdtie catches
the message, it updates its RCV adding transackjors a conflict (step 2). Eventuallyi
commits without conflict notification, cleaning the Conflidctors of coreli (step 3). Ti
eliminates the transactional state from caches, movirggAifrom Rto | .) As it has its WCV
empty, notification is not required. When transacfiprcommits, it checks its WCV and sends
an AbortTxmessage tdi (step 4). However]j does not appear in the RCV &f, soTi
acknowledges the request and continues its execution§step

Write Conflict (Situation 2): Both transactiongi andT] write line A (step 1 and 2). Thus,
they track the conflict in their WCV, requiring abort naotifiima in their commit phase. At some
point in time, Ti commits. Then, coréi checks its WCV and sends &bortTxmessage to
transactionTj . Corelj picks up the message, findls in their WCV and aborts transactidi,
replying the notification with aldbortAckreply (step 4). After thafli commits, transiting line
A from theWto theMstate.

Crossed Write Conflict (Situation 3): Ti andTj are lazy-mode transactions with crossed
conflicts (they have read and write lindsandB) that attempt to commit at the same time. Both
transactions notify conflicts by sending abort messagep (stnd 2), but onlyj successfully
commits, becausg 's timestamp is older thahi 's (step 3 and 4). Bothi andTj] wait until
they collect all the replies from conflicting coré§. only receiveAbortAckmessages, therefore
Tj moves to the commit phase, atmtally commits the transaction (step 5). In contrdst,

aborts as soon as it receives thigortNackmessage fronij (step 6).

5.2.7 Simultaneous Execution of Eager and Lazy Transactian

FUSETM executes eager-mode transactions when they do not fitehXhcache, but the
system keeps running the rest of the transactions in thedgegution mode. Eager and lazy
transactions resolve memory inconsistencies using cdioveth strategies when they collide

with same-mode transactions.

On the one hand, conflicts between eager transactions ateaésising thedybrid (EEqp

in [14]) conflict management policy, which, as suggesteti@résults presented in Section 4.7.4,

109

Eager Requester (Conﬂicb Lazy Requester (Conflict)

Eager Receivef Hybrid conflict Abort lazy requester
(Conflict) resolution policy (immediately)

Lazy Receiver Abort lazy receiver Defer the resolution until commit timg
Conflict (immediately) (comitter wins)

Table 5.1: Resolving eager-lazy conflicts iruUBETM

normally outperforms other conflict resolution policiesothl that this is a a high-performance
policy that tries to avoid wasting computation by stallingnisactions that issue conflicting re-
guests. However, younger readers are aborted in order ionm@starvation for writing trans-

actions. After aborting, an exponential backoff (basedr@enrtumber of retries) is performed
to guarantee the forward progress of eager transactionghéather hand, lazy conflicts are
resolved in a deferred fashion, aborting all the transastibat are inconsistent with the com-

mitter.

Nonetheless, in order to simultaneously execute tramsactvith different VM and CM
schemes, BSETM uses a conflict resolution policy that preserves the bascy of eager
transactions and, at the same time, shields lazy transadtiom eager modifications that have
overflowed the cache. We have decided to implement a condiécilution policy that priori-
tizes eager transactions over lazy transactions. Thusptiicy favors large transactions that

overflow the L1 cache.

FUSETM implements areager-winspolicy when an eager transaction clashes with a lazy
transaction. If the data is owned by the lazy transactiom siistem aborts the lazy transaction
and forwards to the eager requester the non-speculative wdlthe line from the L2 cache.
Similarly, when a lazy transaction attempts to access tomaonglocation that belongs to an
eager transaction, it automatically aborts its executiter aeceiving theNackmessage. This
strategy guarantees that tlaege eager transaction commits beforehand and, at the same time,
prevents lazy transactions to read or write speculativefloveed data. Table 5.1 summarizes

how FUSETM deals with conflicts while executing different-mode tsantions.

110

5.3 A Speculative HTM System with Early Overflowing Updates

To the best of our knowledge, all HTM systems that postpoaedholution of conflicts for
any kind of transaction implement late VM to store the overitm speculative state [25, 45,
124] at the cost of adding expensive hardwargsE M eliminates this requirement by aborting
the offending transaction that exceeds the L1 cache analtiegtit in eager mode afterwards,

using from that point ahead early VM.

Changing to eager mode on overflow introduces non-desjpteciaverhead that becomes
critical when the system executes large transactions fomtain reasons. First, lazy overflow-
ing transactions discard useful work because they areebexten in the absence of conflicts.
Second, overflowing transactions must be re-executed fnenwvery beginning in eager mode,

which may restrict the overall concurrency of transactidheeads.

In this section, we presenP&CTM, a speculative HTM system that implemeegly up-
dateson overflowinglazydata. This strategy allowsP&CTM to keep speculating with most of

transactional data in the presence of L1 cache overflows.

5.3.1 $EecCTM Overview

SPECTM assumes similar infrastructure t@$ETM, being a fixed-policy, TCC-based HTM
system built on top of a UTCP coherence protocol. It perfoloesl commits together with
core-to-core abort notification. However, it changes theoldrflow engine to avoid inoppor-
tune aborts. Moreover,F&CTM keeps executing in lazy mode even when a transactionaepla

speculative data—here the reason behind the name of tresyst

On L1 cache replacementspiSTM moves pre-transactional data to a software log and
places new data on the shared levels of the memory hierar8hgefM borrows theselective
logging procedure implemented imBTM-SL to accomplish this task. Evicting actions do not
affect the behavior of overflowing transactions, which dbo alwort nor transit to eager mode.
Thus, this technique allows lazy-mode transactions to nmwvard the commit point, deferring

the resolution of most conflicts.

Using early updateson overflowing data presents non-trivial challenges foy ldZ M im-

plementations. First, systems with lazy conflict managerabow multiple versions of a line

111

in distinct L1 caches. However, before replacing a cachs line system must guarantee that
the evicting core is the unique owner of that line, becauaedbre is responsable of restoring
its old state if the transaction aborts. Thus, an overfloviimg must only have a single copy in

the system.

Second, our approach moves overflowing data to the share®rjemace, overwriting the
old state kept in the L2 cache. As the old value of the line @alonger be obtained, the system
must prevent remote transactions to access transactianadited lines, preserving those lines
isolated from the world until the transaction commits orréde.e., eager resolution is needed

for overflowed data.

SPECTM adds two novel mechanisms to achieve the above g@algial Consistencyand
Overflow Isolation The next sections describe how these mechanisms operatelas how

they are implemented.

5.3.2 Partial Consistency

Like FUSETM, SPECTM holds non-conflicting transactional updates in Thetate and con-
flicting written lines in a separat&/state. Pre-transactional values of non-evicted cachs line

are always kept in the L2 cache.

Before writing back the value of the transactionally modifaache line, the 8=CTM must
ensure that there are no live copies of the line in other fivd caches. This is a straight-
forward step for consistertstate lines, as they are exclusively owned by a single ddosv-
ever, conflicting written lines—those lines that have be@vexd to theWstate and thus poten-
tially have multiple readers/writers in non-committedngactions—require additional actions

to eliminate non-compatible values.

In order to invalidate all the transactional sharers of thehe line, the evicting core sends
an Abort notification to all the cores that are present in its WCV,dwiing exactly the same
procedure as at commit time. When the remote cores receatenbssage, they abort, even if
they have not touched the evicted cache line within theirsiaations. If an aborting transaction
has already overflowed the L1 cachees the software log is not empty—then the core must

recover the old state using the procedure described indpeti6.

112

Partial Consistency Ti T Tk

® Wr@B
Commit O Wr@A
Commit
Abort * Abort
4~ | Aport
o — Tx Begin/End

Consistency

® Partial
I Consistency

Figure 5.9: Partial consistency: Coherence transitions and earlyt alotification

Commit, Abort

After the abort process ends successfully, the evicting osafe to write back the specu-
lative value in the L2 cache. However, before that, the cbydrénsits all théstate lines td,
(2) clears the WCV list, (3) inserts the memory address ofethieted cache line in the Write
Signature and (4) logs the pre-transactional data togettikrits physical addresses using the

selective logging mechanism.

Partial Consistency guarantees that the replaced ca&ledsa unique owner in the system,
as potential conflicters have aborted. What is more, it alsvantees that, at that poietyery
line being written inside the transaction only belongs ® dkerflowing transaction. Nonethe-
less, that transaction is not entirely isolated from thé s conflicting read lines—those kept
in theR state—may still be found in the write set of other in-fliglarisactions. If those conflicts
still remain at the end of the transaction, the committirnsaction will abort the readers to

maintain the consistency of the system.

The leftmost diagram of Figure 5.9 shows how Partial Coesist modifies the transitions
of the UTCP Coherence Protocol. The rightmost picture ofifid.9 shows how transaction
Tj performsPartial Consistencyefore evicting blockB. Tj must aborfli because both trans-
actions have written liné before in the transaction—P&CTM can only evict consistent data,

so the system must enforce tifatdoes not have a conflict with any in-flight transaction.

5.3.3 Overflow Isolation

In SPECTM, overflowing data must be preserved in isolation—no igHiitransaction can
access that data until the transaction commits or abortsgutmantee that invariant, when

a core receives a coherence request from a remote tramgattanecks its Write Signature.

113

If the address is present in the filter, then the core replids an Abort message, and the
remote transaction aborts immediately. The right pictdrEigure 5.9 shows how transaction

Tj prevents the access of L1 evicted bldgkvhen transactioik attempts to write it.

Note that overflowing transactions may produce cascadebarsfsa(either when there are
continuous evictions of transactional data or when overfigiransactions access speculative
data that has been moved out of the L1 cache). As these ttemsabave to be recovered
by software, we decided to perform a randomized exponehéakoff before restarting the

transaction. This strategy reduces contention to ensmefd progress in the application.

For exemplifying how overflowing data is kept in isolatiorteaf Partial Consistency, we
assume that transactiofis, Tj and Tk have written lineA. As can be seen in Figure 5.10,
the transaction executed in cae wants to replace liné (step 1). This causes the abort of
transactionslj and Tk (step 2). Then{ cleans its WCV vector, adds lin& in the Write
signature (step 3), brings the old value of liAdrom the L2 cache (and takes the physical
address of the line from the L1 tag) and inserts a new entrppmt the software log (step 4).
After that, the system can safely write back the speculatalae in the L2 cache and set core
G as the exclusive owner of the line (step 5). Assume now thas#ctionlj attempts to write
the evicted lineA (step 6). The directory forwards the reques@itqsteps 7 and 8), who denies
the access to preserve the isolation of the overflowed cdobk because it finds a match in its

Write Signature (step 9). Consequently,replies aborting transactiol) (step 10).

5.3.4 Coherence States: Codification and Implementation

Figure 5.11 presents a possible codification for the UTCRI@atte states. We augment a
classical MESI layout with two additional bits: the transacal (T) bit—used for conflicting
read dataR state) and transactionally written dat¥dnd T states)—and the speculative (S)

bit—used only for conflicting written data\state).

Figure 5.11 also shows a six-transistor SRAM cell impleragoin of the above codifica-
tion. Each cell keeps a bit, and the system is extended withuity for flash-clearing the
transactional state. Each bit uses a different signalstfanging the cache line state in parallel.

These signals use three in-core flags to control the logit@fcircuitry, which are set when

114

(a) W-line Replacement

2. Abort
(b) Partial Consistency k

Core i
L1 cache Core i L1 cache E 2. Abort B
WSig: - phy [st] values :
[—g] A |W[txdata || § | WSig: - I phyJst] vaives || ¢ ﬁj
WCV: j k EpNEE gy A [Wtxdata]| § | i m
: I WCV: j k .
L2 cache Directory L2 cache Directory
1. Replace A phy [values phy Jowners phy[values phy Jowners
A _[old data A | ik A_|old data A | ik
6. TStore A
(c) Selective Logging
3. Addf in the WSig O (d) Overflow consistency
10. Abort
K 9. Check the WSig
Core i L1 cache *
4. Log A's l WSig: A I phy |st] values ey
phygsical A_| I old data ma Corei L1 cache 4
address WCV: Tog | 1 |sw data 5. WB tx data - ST
Q \ﬁ ﬁ l WSIg: A I Ay SI values _-"8. TGetX A
" - | Iy | - SO .
e WCV: log [M[swdata] | & e e
/__/ L2 cache Directory L2 cache Directory
Software o
9 phy [values | [phy Jowners phy [values | ["phy Towners
addr | values A [txdata | [A | 7 A |txdata | [A | i
head | A Jold data
log pointer ~
4. Log pre-transactional values

Figure 5.10: Unbounded hardware support for partial consistency (addgctive logging (c)
and overflow isolation (d) in SECTM

(i) aWline is evicted from the L1 cache (Partial Consisterign for short), (ii) a transaction

receives am\bortTxmessageApor t) or (iii) a transaction reaches its ertb(mi t).

After triggering Partial Consistencyand collecting all theAbortAckmessages, all¢state
lines must transit td. Our implementation accomplishes that by activating\Wig,r signal

when thePCon flag is set, which flash-clears the S bit of e&ébtate line simultaneously.

Similarly, Wstate andr-state lines must be moved to Modified in the commit phases—thi
happens when théonmi t flag is set to one. Thus, after the notification phase, the STaits
are pulled down to zero by asserting sign@gear and Teiear- This is also straight foR lines,
which must transit to Invalid. Note that tiestate does not have the Dirty (D) or Valid (V) bit

activated, so the transition is immediate.

If the Abort flag is asserted, the core turns on Wig.ar, the Tejear and theDgjeqar Signal to
invalidate all transactional lines. Before clearing then8 @ bits, transactionally modified lines

must pull down to zero the D bit. (The D bit is already zeroRestate lines.) This only happens

115

Coherence Protocol States W_clear

T_clear D_clear

Speculative Bit (S) Transactional Bit (T) Dirty Bit (D)

State| S | T|D |V J— J— J—
w 1111110 " write state o e write state o o write state o
T [o[1]1]o N -
R [o]1]0]fo
M loflof1]o
E [o]of[1]1
s |oflofo]1 M N—

! 0]o 0]0 _[_| M N |
1
W_clear := PCon || Commit || Abort T_clear := Commit || Abort D_clear := Abort

Figure 5.11: Codification and implementation of cache coherence states

for those L1 cache entries where the T bit is one—this enghsgshon-transactional lines are

not flushed from the L1 cache. After that, S and T bits are ftashred.

5.4 Evaluation

For our analysis we have chosen to compauvseEM and SPECTM with different lazy
(TCC-like) HTM systems that utilize an idealized late VM foverflowing data. These im-
plementations, which serve as upper-bounds, never logvafusoftware; instead they keep
transactionally evicted lines in an infinite victim cachdisTcache has the same latency as the
L1 cache for reads and writes. The transactional victim eacbves committed values to the L1

instantaneously, and it has a zero-cost abort recoveryasdctional entries are just discarded.

The idealized lazy HTM systems employ distinct commit peots. Thus, we compare our
local approach with two other techniques proposed for modern b&€2d HTM systems. Al
the proposals use the UTCP protocol for keeping the spéailstate, 32-bit RCV and WCV
and core-to-core abort notification. The rest of the pararsetsed in the evaluation are the ones
described in Chapter 3. Following is a description of theafb@rcommit protocols analyzed in

the evaluation for idealized lazy HTM systems.

Distributed Commit [92] (TCC-Dist): This is protocol used in the lazy reference system
described in Section 3.2.2. The system acquires the diseat@dules accessed during the
transaction before making transactional writes globakyble. Hence, transactions that modify
different directories can commit in parallel. Acquiredetitories are blocked only for commit

purposes—the directory modules can still forward memoguests. Directory steals are al-

116

lowed to eliminate deadlocks.

Selective Commits [124] (TCC-Sel):This commit protocol only acquires/releases directory
modules that possess a conflicting line. Like in EazyHTM [12Z4C-Sel assumes that non-
conflicting lines are exclusively owned by the committingnsaction (the directory is up-to-
date for those lines, so it is not necessary to update the lmoddowever, entries that record
conflicting lines must be atomically acquired (and aftet,tbpdated) to keep the system consis-
tent. Thus, selective commits permits a truly parallel conon non-conflicting (or read-only
conflicting) transactions, but arbitration and directopdates remain for those with inconsis-
tencies.

Local Commits (TCC-Loc): This is the mechanism proposed fay$ETM and SPECTM. Like

in SPECTM , all transactions are executed in lazy mode—the systegs dot abort overflowing
transactions to restart them in eager mode, @sEFM does. However, it does not implement
partial consistency nor overflow isolation, given that sp&iive L1 evicted data is held in an
unbounded victim cache. Note that TCC-Loc performs locahmits. As a result, the system

eliminates directory communication from the commit phase.

5.4.1 FRuseTM Performance Analysis

Figure 5.12 presents the time distribution of TCC-Distélalol D), RUSETM (labeled F) and
TCC-Loc (labeled L) HTM systems in their 32-threaded exieti (for low-contention appli-
cations, top of Figure 5.12) and in their 16-threaded exeost(for high-contentiofy bottom

of Figure 5.12) applications.

The execution time has been normalized to the 32-threadedgbdntention) and 16-threaded
(high-contention) TCC-Dist execution and is broken dowmimn-transactional and barrier cy-
cles (labeled Non-Tx and Barrier), the time spent in conedittansactions (labeled Good Tx),
the time that is wasted in non-useful work discarded fronrtgloidransactions (labeled Aborted
Tx), the time spent in abort recovery and in the commit phisgeeled Aborting and Commit),
the time that transactions remain stalled waiting for a ocirtib be resolved (labeled Stalled),

and the time that processors execute the exponential Headkef aborting (labeled Backoff).

2we refer as high-contention applications those that pteslnigh abort rates in Section 3.3.2. whereas low-
contention are those that present low and medium abort rates

117

1.47

Normalized time (low-contention)

1
0.8 &
0.6
0.4
0.2

0 J

BEEE BDEL DEFEL PEL BEL PIFL BEL BEL DEL DEL DEL BEL
Hash-R Kmeans-L Kmeans-H Rayfrace Ssca2 Vacaflion-L Barnes Biree-F Genome List-S Vacafion-H A.Mean

Jl.

D'F L DFL DFL BEL DFL D'FL
Bayes Biree-V Hash-W Infruder Labyrinth List-L.

Commit

Backoff

H stalled
Aborting

B Aborted Tx
U Good Tx

Normalized time (high-contention)

L Barrier

u Non-Tx
A. Mean

Figure 5.12: Distributed executed time of low- and medium-contentioop(t32 threads)
and high-contention (bottom, 16 threads) TM applicationdes TCC-Dist (D), BSETM (F)
and TCC-Loc (L) HTM systems

Note that Stall and Backoff cycles only appear in thesETM bar, given that this is the only

system that executes eager transactions.

As it can be seen in Figure 5.12U§ETM performs close to both idealized VM sys-
tems, although it does not require additional hardware nodpiwn overflowing data. In fact,
FUSETM outperforms TCC-Dist by a 3% in low-contention applicats, behaving like TCC-
Loc in most of the workloads. Nonethelessl9ETM is a step far from TCC-Loc in applications

with large benchmarks, likBtree-fixor Hash-read

In high-contention applications,USETM also presents pretty good performance. In aver-
age, it only slows down around a 0.5% with respect to the ige@dllazy HTM systems. This
is because the elegant overflow policy thaisETM incorporates: by re-executing overflowing
transactions in eager mode, the system reduces to the bairaum the buffering support with-
out scarifying performance. OnBayesand Hash-writedowngrade their performance under

FUSETM due to the overheads produced by eager transactions.ninast, other applications

118

100% 7 1 =z 77 7 B T | T

;\? 80% 7
s 7 [JEager TX
S 60%
.}% / Lazy TX
-“’5’ 40%
) B N-Tx+Bar
E 20% ﬁ ﬁ
- L

0% T

O, 1, B o, Y, e, B ¢
s, (?"nr "?C‘ /éo. % e, Y

Figure 5.13: Normalized RISETM execution time of applications distributed by the tramsa
tional mode

like Intruder or Yadaexperiment the opposite behavior. The reasons for sucbrpesthce are

summarized in the following paragraphs.

High-performance dual-mode execution. FUSETM successfully integrates lazy execution
with eager-like hardware support. Consequently, both madexecution exhibit good (and
comparable) performance (more on this in Section 5.4.4).atihimore, BSETM success-
fully combines eager and lazy transactions when cache owerfbccur. Figure 5.13 breaks
down FUSETM HTM execution time to the time spent in non-transactiooatle or barriers
(labeled N-Tx+Bar), the time spent in eager (overflowed)deztions (labeled Eager TX) and
the time spent in lazy transactions (labeled Lazy TX). Asaih be seen, in applications that
execute small and large transactioesy(Genome Intruder, List-long), FUSETM prioritizes
eager-mode transactions while keeping lazy-mode trainsactinder fast execution.

Fast lazy commits.FUSETM performslocal commits, a technique that eliminates the commu-
nication with shared resources at commit time. This is aafigdelpful in applications with
read-only transactions, likdash-reador Vacation-high or in applications with tiny-size trans-
actions, likeList-shortor Ssca2 As can be seen in Figure 5.12, the time spent in local commits
(either in FUSETM or in TCC-Loc) is inconsequential, which reports up to &88peedup over
state-of-the-art committing techniques in applicatiorighwmall read/write sets.

Efficient unbounded transactions. Our evaluation shows that overflows are common. Albeit

the important overheads of discarding more transactiommak faround 2X over TCC-Loc in

119

(o]

(o2}

i=S

N

Normalized time (low-contention)

1
0. i
0.
0.
0.

0 : n

DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL
Hash-R Kmeans-L Kmeans-H Raytrace Ssca2 Vacation-L Barnes Bfree-F Genome List-S Vacation-H A.Mean

512
E . Commit
5 1 Backoff
£ 08§ U stalled
$h anf -
o 08 . ¥ Aborting
S 04 ® Aporied Tx
N O
§ 0.2 Good Tx
5 & Barrier
=z B
DSL DSL DSL DSL DSL DSL DSL DSL .Non-Tx
Bayes Biree-V Hash-W Intruder Labyrinth List-L Yada A. Mean

Figure 5.14: Speedup achieved in low-contention (top, 32 threads) agia-tontention (bot-
tom, 16 threads) applications in TCC-Dist (DREETM (S) and TCC-Loc (L)

high-contention applications) and introducing a rand@dibackoff, switching to eager mode
on overflows in applications likkist-long or Yadareduces the impact of th&arvation of the
elder pathology [14]. Thus, in some occasionsJSETM is better than idealized, fixed-policy

HTM systems, with the added benefit of lower hardware cost.

5.4.2 $EecTM Performance Analysis

Figure 5.14 shows the execution time #EE€TM (labeled S) compared with the normalized
execution of TCC-Dist (baseline, labeled D) and the TCC{laloeled L) systems. Figure 5.14

groups execution cycles using the same classification asd-tg12.

As it is shown in Figure 5.14,CTM experiments a similar behavior to TCC-Loc using
bounded hardware support, and much better performanc&t®@rDist because it implements
local commits. In average, it only performs a 0.4% worse th&tC-Loc in low-contention
applications. Moreover, BECTM vyields better performance than TCC-based implementatio

in applications with large transactions and conflicts, sashlash-writeor List-long because

120

of the reasons listed below. In averag®eSTM reports a 10% speedup over TCC-Loc in

high-contention applications.

Efficient late data versioning. SPECTM offers an elegant data versioning mechanism that
combines the benefits of selective logging for overfloweé dearly data versioning) with the
smartness of handling few multiple versions of conflictimges in the L1 cache (late data ver-
sioning). This mechanism extends lazy resolution of casfiewen for those applications that
overflow finite data versioning buffers, which permits moomaurrency than eager solutions
when transactions collide, eliminate some read-writeatiohs and remove backoff in all the
cases butada where multiple overflowing transactions access L1 evicid,

Anticipated resolution of conflicts. SPECTM implements partial consistency when a conflict-
ing transaction evicts transactional data, solving thensistencies among transactions before
commit time. Moreover, keeping the isolation of overflowg@culative values also guards
long-standing modifications against younger writes. Thismpts $ECTM to outperform TCC-
Loc by a 10% in benchmarks likBayes Labyrinth or List-long—and up to a 30% iHash-
write. Nonetheless, the impossibility of adaptation at runtimedpces a negative effect in

environments likéntruder or Yada which are far from the performance exhibited hysETM.

5.4.3 Local Commit Analysis

Both FUSETM and SPECTM performlocal commits, a technigue that eliminates the commu-
nication with shared resources at commit time. This is hlpf low-contention applications,
especially if they execute small transcations. In fact,da&& on Figure 5.13 report that 5%
of the execution time in low-contention workloads is spent@mmits when a non-optimized
protocol is used. Instead, our mechanism requires lestiéh of the execution time on com-
mits. In high-contention, coarse-grained applicatiores dlierhead is not so critical because

most applications hide the commit latency by computingddrgnsactional chunks.

Nonetheless, in environments that execute small tramsectike List-short or Ssca2the
usage of local commits report significant performance beniefiproving up to an 80% the
performance of the distributed commit implementation. ladmm-contention applications

like Vacation-highthe usage of local commits also reduces the conflict windewef aborts

121

0.8 V]
£
E o6 U tec-Dist
£ L u b | B Tcc-Sel
E 04 - = - -
8 2 B 1cC-Loc

0-2 _2_ LA w8 8 _Z | P | VL _a _a _4 7 NEzn _Z Pl [

DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL

4 ” by G, k b, L
g s g Vs Voo ey o S Sy Voo Lo Ry g o,

Figure 5.15: Normalized commit time under 32-threaded TCC-Dist (D), T&€l (S) and
TCC-Loc (L)

are notified), which permits a more balanced execution ofstietional threads (fewer Barrier

cycles).

Figure 5.15 presents the time spent on commits in threeimeaVM systems that im-
plement distinct commit protocols: TCC-Dist (labeled D, T-Sel (labeled S) and TCC-Loc
(labeled L). Commit time is normalized to TCC-Dist and apalions are executed under 32
threads. Figure 5.15 shows tHatal commits accelerate the commit phase of the distributed
(selective) approach by an average factor of 20X (4X). Therawement is even more notable
in applications with non-conflicting transactiorsd, Kmeans-lowor Sscag, where selective
and local commit protocols almost reduce to zero the commmitaict. Nonetheless, in high-
contention applications only our technique is able to redhe commit overhead (Macation-

high up to 100X over distributed, up to 60X over selective).

Figure 5.16 shows the average number of network messagéapsactions introduced in
the commit phase by the three idealized VM systems. Althdirghigrained applications have
small read and write sets, they introduce lots of messagine inetwork at commit time under
TC-Dist. The main reason is that most of the transactiorisirfatheir attempt of acquiring
directory modules, so they require several retries (an euectory steals) before acquiring a
single module. This behavior can be observeBannes Raytraceor Ssca2 Similarly, TCC-Sel
suffers long delays in high-contention applications eee-varor Yadabecause transactions

must acquire conflicting directories before committing. cbmtrast, TCC-Loc only needs to

122

365 261
100 M]

0 =
B0 | | TCGC-Dist

e *

Commit Time

|:€ & | Bycciee
Lom | [l 1B | O

DSL DSL DSL DsSL DSL DsSL DSL DsSL DSL DSL DSL DSL DSL DSL DSL DSL DSL DSL

4 ” by G, k b, L
W g s g Vs Voo ey o S g Voo LSon 2y g o,

Figure 5.16: Average network messages in the commit phase under 328d&2CC-Dist (D),
TCC-Sel (S) and TCC-Loc (L)

notify aborts (a point-to-point message) for conflictingnisaction, minimizing the number of

network messages delivered on commits.

Note that the commit protocols recreated in this dissemabinly take into account the time
spent in commit arbitration, given that data transfers ainelctbry updates are not required
in our framework. Nonetheless, other lazy HTM systems impdata broadcast and extra
communication at commit time [20, 45, 124], which increatbesdelay produced at the end of

the transaction.

5.4.4 Eager and Lazy Execution Analysis

Figure 5.17 presents the time distribution of two high-parfance fixed-policy HTM sys-
tems —an eager HTM system A§TM with the Hybrid resolution policy, labeled E), and
a lazy HTM system (the idealized TCC-Loc, labeled L) in tHé2-threaded executions (for
low-contention applications, top of Figure 5.17) and initi&-threaded executions (for high-
contention bottom of Figure 5.17) applications. The disition time has been normalized to

FASTM execution and has broken down using the same categorieiga® 5.12.

As it can be seen in Figure 5.17, lazy-mode transactionsediatpn by a 14% eager-mode
transactions in low-contention applications, while inthigpntention applications eager-mode
transactions obtains better performancaegFM gets a 19% speedup over TCC-Loc). We ex-
plain the reasons why the three HTM systems achieve suchmgdisiments in the following

paragraphs.

123

Normalized time (low-contention)

17 4
0.8
=
0.6 i
0.4
0.2.
. N
E E L E L E L E L E L E L E L E L E 5L E L E L

Hash-R Kmeans-L Kmeans-H Rayfrace Ssca? Vacation-L Barnes Biree-F Genome List-S Vacation-H A.Mean

27 1.3 2

Commit

Backoff

U stalled
Aborting
B Aborted Tx
U Good Tx

= Barrier

Normalized time (high-contention)

[

E L E L E L E/LE EL E L ElE .Non-Tx
Bayes Biree-V Hash-W Intruder Labyrinth List-L Yada A. Mean

Figure 5.17: Distributed executed time of low- and medium-contenti@p (132 threads) high-
contention (bottom, 16 threads) TM applications under E&gsTM (E) and Lazy TCC-Loc
(L) HTM systems

Eager HTM weaknesses.Eager HTM systems systems—even thesFM that implements
high-performance conflict and version management polica® not effective when collisions
among threads are frequent. IagTM execution, transactions are stalled in the case of conflic
which may lead to futile stalls (transactions that aboerdfieing stalled for a long time) or cas-
cades of stalls (transactions that are stalled by tramsecthat have been already stalled, which
are waiting for other conflicts to be resolved). This behatgpically occurs in many-threaded
applications with read-write conflicts, likdash-writeor Vacation-high or in applications with
long transactions likd.abyrinth On average, 27% (6%) of the eager high-contention (low-
contention) execution time is spent in stalled transastidfioreover, eager transactions utilize
an exponential backoff that is based on the number of retoiespread the computation and
avoid livelocks. Backoff is critical in high-contention glrations with large transactions, like
Btree-fixor Yada or in applications with lots of aborts and small transaidike Intruder or

GenomeOn average, 8% (2%) of the high-contention (low-conteTteager execution time is

124

spent in the randomized backoff.

Lazy HTM weaknesses.Lazy HTM systems may abort older writers several times, ting
sults to an important amount of discarded transactionak Wb€C-Loc wastes 4X more than
FASTM execution in high-contention benchmarks). This is caltiin applications with large
transactions, likdntruder or Yada However, applications with small transactions and read-
after-write conflicts, such atree-fixor Hash-write improve their performance over the eager
baseline. This performance improvement is due to (i) thewpéve resolution policy that
TCC-Loc employs—which do not stall conflicting memory asassnor require backoff—and

(ii) the efficiency oflocal commits—which drop off the time spent in the commit operatio

5.4.5 FRuseTM and SpecTM Execution Analysis

Figure 5.18 shows the execution time of both proposals&rM , labeled F, and 8ECTM ,
labeled S) using the normalized execution of TCC-Loc (lethél) as a pure, high-performing
lazy baseline. Figure 5.18 classifies the execution cyaesrding to the previous standards,

using 32 threads (low-contention) and 16 threads (highectiion).

In average, BECTM obtains less than a 1% performance degradation in lovtection
benchmarks compared with the ideal TCC-Loc, while in hightention applications it beats
the baseline by a 10%. On the other handsETM achieves an 8% (low-contention) and
a 0.5% (high-performance) of performance degradation wfipect to TCC-Loc, albeit it re-
quires less hardware extensions thee& M. The following paragraphs summarize the upsides

and downsides of both speculative HTM systems with localrogs)

FUSETM strengths. By re-executing overflowing transactions in eager modssgf M obtains
similar performance toASTM in coarse-grained applications, as it can take advargagager
conflict management for large transactions. This fact reslilse number of aborts Intruder

or Yada given that, after receiving a conflict notification, thetsys is able to preserve useful
computation from large transactions. On these benchmidssTM beats $ECTM by a factor
of 2X. Moreover, ISETM can rely on conventional logging mechanisms, being lesdware-
invasive than SECTM.

FUSETM weaknesses.FUSETM must abort the whole overflowing transaction, which irscur

in an increment of Aborted Tx cycles in low-contention apations with long transactions

125

1.2

0.8
0.6+
0.4
0.2 !

LSF ILEF LB8F LSF LSF LSF L&8F LSF LSF LSF LSF LE&SF
Hash-R Kmeans-L Kmeans-H Raytrace Ssca2 Vacation-L Barnes Biree-F Genome List-S Vacation-H A.Mean
1.33 1.32

=

Normalized time (low-contention)

o

12

E - Commit

PO [

§ Backoff

£ 08 U stalled

= ’

< 06 / Aborting

E H |

= 04 Aborted Tx

e [l

L o2 Good Tx

‘26 0 == Barrier
LSF LSF LSF [= L:8:F LSF LS F L8 F .Non-Tx

Bayes Biree-V Hash-W Infruder Labyrinth List-L Yada A. Mean

Figure 5.18: Distributed executed time of low- and medium-contentioop(t32 threads)
high-contention (bottom, 16 threads) TM applications unb€C-Loc (L), FUSETM (F) and
SPECTM (S) HTM systems

like Hash-reador Btree-fix Moreover, it forces eager execution for overflowing tratisas in
medium- or high-contention applications, which is not tksttalternative ilBayesor Vacation-
high. On some applications, these disadvantages report up tégpdtformance degradation
with respect 8ECTM.

SPECTM strengths. SPECTM does not suffer from BSETM’s limitations described above. It
resolves most of the conflicts lazily, independently of ttams$actional size. This is preferable
in applications likeBtree-varor Labyrinth, where read-write conflicts are common. Moreover,
it avoids aborts of transactions that overflow at the costasfy abort notification. Resolv-
ing some conflicts beforehand provides additional benefir G3CC-Loc in benchmarks like
Bayes Hash-writeor List-long Overall, $ECTM obtains a 9% speedup oveu$ETM in high-
contention applications, and around an 8% in low-contergipplications.

SPECTM weaknessesAs pointed out in the last section, lazy conflict managementetimes

performs worse than eager conflict management. In thossiooas $ECTM will perform sim-

126

ilar to TCC-Loc, which is far from the performance of an eag@iM system such asASTM.
Nonetheless, BSETM re-executes large transactions in eager mode, incaipgrhy default a
better resolution of conflicts imtruder or Yada In fact, ECTM spends almost half ofadds
execution cycles in backoff. This is because lots of cosflictolve transactional evicted lines.

Nonetheless, BSETM eliminates this problem by stalling the transaction onftiot.

5.5 Related Work on Lazy HTM System

Transactional Coherence and Consistency (TCC [45]) pexpasdecompose parallel exe-
cutions on chunks of computation to reorder at free will mgmaxcesses. In later refinements
of the system, those chunks were defined by the programmieg trisinsactional semantics.
Bulk [21] used a similar approach to implement efficient sadial consistency. Both TCC-
like and Bulk-like HTM implementations require some kindgdbbal arbitration—involving
either token acquisition or bus blocking. This process makenmitting data one of the prin-
cipal bottlenecks of lazy HTM systems. Hence, distinct psals have emerged to reduce the
commit overhead, allowing distributed arbitration and meyrupdates to increase the scalabil-

ity of TM applications.

Chafi et al. employed a directory-based coherence protocol to incretenscalability
of a TCC environment (ScalableTCC [22]). Processors mustiee a globalticket from a
centralized agent, and then acquire (block) each diredtank being read or written in the
committing transaction. Probe messages are sent to chéen#actions with smaller tickets
have acquired their writing directories, stalling youngemmitters if they do not. After all
directories are acquired, each directory entry of the wsdehas to be updated, setting the
committer as the new owner of the line. Of course, invalidaéssages are sent to the concurrent

sharers/owners, which force the abort of conflicting tratisas.

Pugleyet al. proposed different protocols to eliminate the use of a edimed agent that
delivers tickets [92]. In their SEQ-TS strategy, distrémitdirectory banks are acquired in par-
allel, recording in that moment a timestamp that informs hitchly moment the transaction has
started its commit phase. To avoid deadlocks, older coraraitihust steal younger directory
acquisitions by sending a specific message. If so, youngemitiers release stolen directories

and restart the commit process again. Once a processorduaseakcall the directories, it asserts

127

VM Hardware| Conflict | Overflow Commit Arbitration
HTM System)] .
Strategy Support | Detection| Policy Process Mechanism
L1 TX Serialize | Broadcast | Centralized
TCC [45] Late Lazy .
cache long Tx | Rd & Wr set arbiter
L1 TX Serialize dir.| Centralized
ScalTCC [22] Late Lazy XTM [25]
cache acquisition | TID delivery
L1 TX . Parallel dir. Block dir.
SEQ-TS [92] Late Lazy No info
cache acquisition modules
L1TX Broadcast Acquire
Bulk HTM [20] Late Lazy LTM [5]
cache signatures bus
L1TX Victim Update Block dir.
Eazy HTM [124] Late Eager
cache cache directories entries
Coherencse Overflow Software
FlexTM [112] Late Eager - Software
protocol Table notification
Late or | Coherencd Switch to Local
FUSETM Eager) -
Early (OV) | protocol Eager Tx | commits
Mostly | Coherence Overflow Local
SPECTM Eager .) -
Late protocol Isolation commits

Table 5.2: Characteristics of lazy HTM implementations

a local flag to prevent future steals, and then starts ugglatirthe directory entries in the write

set, not unlike ScalableTCC.

EazyHTM [124] uses eager conflict detection to track violasi among transactions, but
defer the resolution of conflicts until commit time, justdiklexTM [112] does. In EazyHTM,
transactions without conflicts can commit in parallel, &riwriting the transactional values in
the shared memory. If a conflict exists, the committing couvstmnotify aborts and then proceed
with directory updates, acquiring exclusive permissiarsebch line contained in the write set,

which in turn invalidates copies kept in other processors.

Recent Bulk CMP implementations also optimize the chunckrod phase. BulkSC [21]
adds a centralized arbiter that takes each of the write sigesm of the already committing
chunks and intersects them with the read/write signaturthe@fincoming committer. If the

intersection is empty, parallel commits are allowed. Aribstted arbiter can also be used to

128

improve the scalability of the system. In BulkSC, signataxpansion is performed in the
directories to avoid massive broadcast of signatures.aBledBulk [93] increases the overlap
between committing chunks by grouping directory bankschiloy accesses to a set of shared

cache lines and performing signature disambiguation iecttiry modules.

Table 5.2 summarizes the main characteristics of existimg HTM systems. As it can be
observed, both BSETM and S’ECTM use a novel version management scheme for keeping the
speculative state, with results in improved commits andrbdgration. Both schemes also sim-
plify the overflow hardware compared with other lazy HTM gyss: FUSETM relies on eager
transactions to accomplish that task wherersCEM takes advantage of a co-designed conflict
and buffering engine. Most importantly, both solutions fiitai conventional CMP framework,

being less intrusive that previous lazy HTM systems.

5.6 Conclusions

In this chapter, we have presentedSETM and SPECTM, the first lazy HTM systems that
entirely remove global arbitration and communication vgitfared resources at the end of trans-
actions to provide fast commits. Both of them extend a typicherence protocol with two
additional solid L1 states to separate conflicting and best memory blocks inside the first
level cache, which permits an easy identification of nofaied data. These system also track
in per-core bit vectors conflicting transactions, use doreere abort notification and postpone

directory updates to perform local commits.

FUSETM is the first HTM system that permits simultaneous executbeager- and lazy-
mode transactions.USETM offers high-performance lazy execution for those tratisas that
fit in the L1 cache. In the case of cache overflow, the systemsabize offending transaction
and re-executes it in eager mode, which uses early datamergiwith logging support. This
approach is much simpler and efficient than previous appescwhich assumed late data

versioning for the overflowed state.

FUSETM substantially reduces the hardware cost compared tolpdg HTM designs with-
out loosing performance. Evaluation results show th&efM obtains close performance to

an idealized HTM system that does not suffer from transaatioache evictions. In some appli-

129

cations FUSETM even outperforms the idealized approach because eag#ictomanagement
can be more effective when dealing with large transactidiee evaluation also demonstrates
the effectiveness of using local commits in fine-grainediapfions. Our mechanism achieves
up to 80% speedup over other commit protocols that receppgared in the literature. In fact,
our technigue removes the commit phase from the criticép#tss than 0.1% of the execution

time is spent on commits.

FUSETM forces overflowing transactions to be re-executed in eagele. We have seen that
this procedure generates extra aborts, and limits the cary obtained by pure lazy HTM
systems in some applicationsPETM proposes a realistic VM scheme to maintain isolated
speculative overflowing data in the upper levels of the mgrh@rarchy, while in-cache values
allow inconsistencies. Thereforer CTM recreates a truly lazy HTM system where most of the
conflicts are resolved at commit time. This approach obtaitg% speedup overUsSETM in

high-contention applications.

Finally, we offer the most complete evaluation of both eaged lazy HTM designs using
the same simulation infrastructure, comparable HTM supgoaa hardware configuration. This
methodology permits a more meaningful comparison of theuarHTM systems. We show
that lazy schemes are more efficient when dealing with smeeisactions with high-contention,
because they guarantee forward progress without requdngoff schemes and they can spec-
ulate on read-write conflicts. In contrast, eager schenebetter suited for large transactions,
because they implement simpler overflow policies and casepve transactional computation

in the case of conflict by stalling the uncompleted request.

130

131

Chapter 6

High-Performance Adaptive Hardware

Transactional Memory Systems

Most Hardware Transactional Memory implementations cadiaed version management (VM)
and conflict management (CM) policies at design time. Algiothere are few exceptions (see
related work in Section 6.6), most HTM implementations fibire of two categories: they are

either eager or lazyHTM systems.

On the one hand, eager HTM systems present poor performamee they execute appli-
cations with a high number of conflicts. In these scenariagee HTM designs may abort a
transaction multiple times before it commits [14]. Moregv@ost implementations require a
backoff policy to avoid repetitive conflicts between alugtitransactions [98]. Nonetheless,
eager approaches can preserve the computation generadsrd@iransactions by stalling con-

flicting requesters, and they do not require additional cd@rastions [112].

On the other hand, lazy HTM systems suffer considerableydeldnen hardware resources
are overflowed—e.g, in FUSETM, large transactions discard transactional computatioover-
flows because the system must re-execute them in eager madeoWwdr, lazy solutions must
abort all the transactions that conflict with the committérich may result to starvation of older
transactions [109] and may increase the amount of trasettivasted work [112]. Neverthe-

less, lazy HTM systems can avoid some read-write conflictsqararantee forward progress

Lin this chapter, we refer as eager HTM systems those thaeimgit eager CM, whereas lazy HTM systems
implement lazy CM, independently of the VM strategy thatthse.

132

without applying a backoff policy. Therefore, lazy approas are more effective when they

deal with small, high-contention transactions [14].

Experiments presented in the previous two chapters shdve#ta scheme has its strengths
and weaknesses. Nonetheless, both approaches lack ftgxitdilen they resolve non-trivial
conflicts on different-length transactions. In this chaptee present two fully-flexible HTM
systems that can adapt the hidden transactional mecharistosding to the size and con-
tention of any instance of a transaction executed in thesysthe former proposal isXNTM,
the first truly adaptive HTM system that implements a novelflict resolution policy between
distinct-mode transactions and utilizes a simple preditdodecide the best execution mode
for each transaction at runtime. The latter proposalwa\rS' M, an effective alternative to
DYNTM. SWAPTM records in hardware important statistics of the actiafyhe in-flight trans-
action to interchange the conflict management strategyowithdditional actions. Because of
SWAPTM decouples the VM strategy from the CM policy, transactiomode of execution is

not subjected to their length.

This chapter is organized as follows. First, it motivateswork for DY'NTM and SNAPTM,
showing the main limitations of fixed HTM systems. Then, iepxiews the 'NTM system,
describing the programming model, the hardware requiredetermine the best-suited exe-
cution mode for each instance of a transaction and the pedposnflict management policy.
After that, the chapter reveals howv&TM can take advantage oP&CTM’s VM strategy to
get rid of DyNTM's predictor and use instead profiling information of therent instance of a
transaction to determine the most profitable mode of exacufihe chapter follows evaluating
DYNTM and SVAPTM , and presenting a global vision of how this thesis contels to improve
the quality of HTM state-of-the-art. The chapters ends canimg our contribution with other

high-performing HTM systems and adding few concluding nks.a

6.1 Motivation

Nowadays, most HTM systems implement fixed (either eagemay) lversion and conflict
management mechanisms. Unfortunately, fixed-policy HTMteayps are faced with several

challenges that limit the concurrency of transactionalkiazds [16].

133

35

3 (] Eager HTM
25
n Lazy HTM

1.5

/-
.=.====_

e, Kom. Fon. Ry Sso. o G B Goy Useo Yoo B e, P, b, lap, Use, %
s, 1;%506.193082‘7&% Co0 é‘cé%,??;ss o f;onfe.s‘r\? ac\e%;j‘.:;@s Ca, Tn J’Vé?/%r éj,% d:‘r.{ Wy

B == B e EA o

Speedup (eager vs lazy)

Figure 6.1: Speedup over opposite fixed-policy (eager or lazy) HTM syste

Inflexible conflict management has to prioritize betweenflaxiing transactions. On the
one hand, lazy HTM systems must abort all the transactioat dbnflict with the commit-
ting one, which (i) may result to starvation of the older gactions [14] and (ii) it increases
the amount of discarded transactional computation [114], 1@n the other hand, eager HTM
systems may abort a transaction multiple times, which mag te different pathological situ-
ations [98]. Nevertheless, lazy transactions can avoides@ad-write conflicts whereas eager
transactions minimize discarded work in the case of writiéewiolations by stalling conflicting

requesters [14].

As we have mentioned in Section 5.4.4, there is no fixed-pdticM system that outper-
forms the rest. Figure 6.1 shows, for transactional bencksnavhich high-performing eager
(FASTM) or lazy (TCC-Loc) HTM system obtains better performandbe height of each bar
shows the performance improvement over the other HTM sysiesnt can be seen, applica-
tions with some contention and small transactiong(Raytraceor Vacation-high or those
with read-write conflicts€.g, Btree-fixor Hash-writg yield better performance when they are
executed in lazy HTM systems, while applications with higimtention and large transactions
(e.q, List-long or Yadg obtain better results when they are executed in eager HE#B)s. In
some applications, the performance gap between eager antiTav systems is huge—close

to 3X speedup iLabyrinth (lazy better) oidntruder (eager better).

Figure 6.2 shows the benefits of using flexible conflict mareagd. In Situation 1, eager
transactions stall their execution when they find a readewsonflict, while lazy transactions

speculate with the conflict and commit without aborting & tleader finishes before the writer.

134

Situation 1: RAW Conflicts Situation 2: WAW Conflicts Situation 3: Multiple WAW Conflicts
E E L L E E L L E E E L L L E L L
[x <=Lx XOXM | X Ju
i x* i
1
T = %
I I + o]
O RD@EA H RD@B 3k ABORT ! STALL E: EAGER TX
O WR@A ® WR @B ¥ EAGER CONFLICT — COMMIT L: LAZY TX

Figure 6.2: Conflict management in eager, lazy and dynamically adaptdbM systems

In Situation 2, however, eager transactions do not abornvitney discover a write-write con-
flict, and thus they conserve transactional computationvirigga flexible VM and CM scheme

should allow the system to select the most profitable politgach situation.

In addition to this, complex applications that combine draall large transactions with
variable contention present a great challenge for HTM systinat fix the version and conflict
management strategies for the whole program executionlevehiger HTM systems can pre-
serve the computation generated by long transactions & afasollision, lazy HTM systems
are more effective dealing with small, high-contendingnsactions. A truly flexible HTM that
could select the ideal (eager or lazy) execution mode fdn #ansaction at runtime would not
be challenged by such complex design choice. In SituatiohFRgure 6.2, we present how
three different transactions interact in an HTM system tzat choose at free will the trans-
actional mode of execution. When transactions are exeautddr thesamemode (analogous
behavior to a fixed-policy HTM system), they perform pooiowever, when transactions are

executed usinglistinctmodes, overall throughput is improved.

On top of that, some applications present a level of cordarthat fluctuates through time.
This dynamic behavior can be found in workloads with tratisas that operate on data struc-
tures that continuously modify their size.§, binary trees). At the beginning, the tree is empty,

so each insertion provokes a conflict—threads simultarigatiempt to add a leaf that is linked

135

with the root. However, the number of collisions diminislassthe tree increases its size, given
that insertions are spread over distinct branches of tlee tiflexible strategies are not effi-

cient on those situations, because all the instances ofahsdction use the same policies. An
HTM that adapts its version and conflict management mecimsnghould be able to catch the

dynamic behavior of these kind of applications.

6.2 A Dynamically Adaptable HTM System

DYNTM (dynamically adaptable HTM system) is the first HTM systtrat cleverlycom-
bines eager and lazy transactions to untie the conflict neanegt policy from the bottom-
line HTM machinery. Using BSETM’s infrastructure, YNTM describes a runtime prediction
scheme that decides, for eadiinamicinstance of a transaction, at what mode it should be
executed according to its characteristics. When tightlypbed with a new conflict resolution

policy, this system enables safe and efficient executiormgéeand lazy transactions.

6.2.1 DvNTM Overview

DYNTM offers two different execution modes (eager and lazyj tis® opposite VM and
CM strategies. DNTM incorporates the UTCP protocol to isolate eager modificat from
other in-flight transactions and to track violations betwdgzy conflicting accesses. Like
FUSETM, DYNTM takes advantage from the deep-seated early VM supportdardo han-

dle cache overflows and context switches for large trarmaxti

Contrary to USETM, in DYNTM the systemdynamicallydecides the most profitable (or
the necessary) execution mode at the beggining of a traosadthat choice is preserved until
commit or abort time. ®NTM selects the eager or lazy mode of execution by consulting a
per-core Transactional Mode Selector (TMS). This hardwaraponent uses past information
of the currentinstance of the transaction (if the transaction abortsetmell be several retries
of the same instance) and the historypadviousinstances of the same transaction to determine

the most effective execution mode.

Predicting the behavior at runtime permits the system tecsehe best-suited policy for
eachindividual instance of a transaction. This scheme allowaNDM to break the chains

imposed by fixed-policy HTM systems, which lack adaptaypilit

136

6.2.2 Programming Model

Like most HTM systems, ENTM only needs two new instructions to define the boundaries
of the transactionstM BEG N() andTM END() . All the memory accesses performed inside the
atomic block are treated as transactional, requiring spegerations. Although NTM does
not require additional instructions, we have added two niegctives that permit the program-

mer to take control over the VM and CM mechanisms.

We have introduced thEM CONFLI CT(mode) directive, where mode can BAGER or LAZY,
that forces all transactions of the application from thignpon to run at the execution mode
selected by the user. This execution modes are analogohe tones presented IrUBETM.
Hence, if a transaction executed after settind\&Y environment overflows, it has to abort and
restart in eager mode, just as iInSETM. In contrast, if the transaction is executed after sgttin

aEAGER environment, it will run in USETM’s eager mode from the very begginnig.

We also add thdM BEG N(node) directive, which statically indicates the execution mode
for all the instances of the defined transaction. This sedinedtive has higher precedence over
TM CONFLI CT. These two directives allow expert programmers to overtheedefault execution

mode selected by the system and combine eager and lazydtiansaon the same application.

6.2.3 Transactional Mode Selector

In DYNTM, each core includes a simple Transactional Mode Sel€TtdiS) to decide the
most profitable execution mode for egatoper transaction. The appropriate execution mode
for a transaction is highly application-dependent. Laays$actions usually manage contention
more efficiently than eager transactions, especially wheretare many small transactions with
high contention. Nonetheless, eager transactions rethecanhount of discarded work due to
aborts of large transactions. For this reason, the TMS dsdaexecute most of the transactions

lazily, except in the case of multiple lazy-mode aborts eqgtrent overflows.

The TMS configuration shares similarities with typical tvevel branch predictors [129].
As it can be seen in Figure 6.3, the TMS requires two hardwanetsres that store important
information about past transactional executions. The dirsicture is the Transactional State

Register (TSR), which collects information about the coirrdynamicinstance of docally

137

Transaction History Table
[— i
PC] Past Tx Info
>| H I Retc J[toc |[em]I
I 1!
I | ‘
___________ Transactional Exslc:tlon
/ Mode > Mode
Update THT
TM_BEGIN() or, Commits Selector (Eager or Lazy)

Transaction State Register \

M Y [Current Tx Info

I_[Ret] [[ov | [Mode]]

Update TSR on Commits and Aborts T

Figure 6.3: Hardware support for the Transactional Mode Selector

executing transaction. The second structure is the Trdosat History Table (THT), which

records statistics from previously committed transadtion this core.

The TSR contains (i) the overflow bit (OV), which is asserteuew the system aborts a
lazy transaction due to an L1 cache overflow, (ii) a 3-bit sitng counter (Ret) that counts
how many abortsi ., retries) the currently executing transaction has peréotnand (iii) the
Mode bit, which determines the execution mode of the cuiirefiight transaction. Each entry
of the THT has two 2-bit saturating counters and a bit thataios the execution mode of the
last committed instance of the transaction (LEM bit). Thetfoounter (LOC) tracks if the
transaction is prone to overflow while the latter (RetC)ksaif the transaction is prone to abort

multiple times before committing.

At the beginning of a given transaction, the TMS decides ttergtion mode (eager or
lazy) of the transaction and stores the decision in the Madeflihe TSR. This decision is
preserved until the transaction commits or aborts. Figuéa 6hows how the execution mode
is selected using the TMS. The TMS uses the TSR when the syst@xecutes an aborted
transaction (Ret0). In this case, ®BNTM changes the execution mode from lazy to eager
when (a) the OV bit is asserted or (b) the number of transaaticetries is above a threshold
In our evaluation, the thresholdis a static parameter (the number of active threads diviged b
four). This technique permits our system to eliminatedtagvation of the oldepathology [14]

and minimize the amount of discarded transactional contiputfl11].

138

(a) Execution Mode Predictor

i f (Ret >0)
if(OV ==true || Ret > T || Mde == Eager)
Mbde = Eager
el se
Mbde = Lazy
el se
if(LOC == 3 || RetC == 3)
Mode = Eager
else if (LOC< 2 && RetC < 2)
Mbde = Lazy
el se
Mode = LEM

(b) Transactional History Table Update

if(Ret > 2*T && RetC < 3){

Ret C++

else if(Ret < T/2 & RetC > 0)
Ret C- -

if(OV == true && LCOC < 3){
LOC+H+

else if(OV == false & LOC > 0)
LOC- -

LEM = Mbde

Figure 6.4: TMS selection (top) and THT update (bottom) algorithms

When a new instance of a transaction stairts, (hot a re-execution), the TMS indexes the
THT with the Program Counter (PC) of the transaction to dedite execution mode. Like in
conventional Branch Predictors, the PC goes through a hasitidn to avoid aliasing [129]. If
it hits in the THT, the TMS inspects the corresponding sa#uraounters. If previous instances
of the same transaction have presented a recognizableibefmnfident LOC or RetC coun-
ters), the TMS chooses between the eager (high countersyabugazy (low counter values)

execution modes.

If the predictor is not confident on its decision, the TMS ctemthe execution mode used in
the last committed instance of the transaction (LEM bit}hére is a miss in the THT, the TMS

executes the transaction lazily because lazy transaatisunelly obtain better performance than

139

‘ ‘ Lazy Reader Lazy Writer
Eager) Speculate with the eager reader
No conflict o _ |
Reader Abort eager transactions if the lazy transaction commiss fir
Eager | Abort lazy transactior] Abort lazy transaction
Writer (immediately) (immediately)

Table 6.1: Resolving eager-lazy conflicts inM¥TM

eager transactions. The THT is updated each time the cormiteran instance of a transaction

following the algorithm described in Figure 6.4b.

Notice that all the operations that involve the TMS—TSR/Tlddkups and updates—are
performedlocally using information from transactions executed in the same. cHence, the

TMS does not suffer scalability issues.

6.2.4 A Highly-Efficient Policy for Eager and Lazy Transactions

DYNTM introduces a novel conflict resolution policy that enfesche right outcome for
solving conflicts between eager and lazy transactions. inkeJSETM, this policy schedules
eager transactions over lazy transactions, although ssréssdrictive than the prior policy, as it

permits to speculate with some read-against-write cosflict

In DYNTM, lazy transactions cannot safely access the pre-tréiosat data of an eager
transaction because, in the case of a transactional L1 @dtiBon, eager transactions write
back the line in the L2 cache, polluting the pre-transaetioralues. For this reason, lazy
transactions must abort when they access a memory locatittierwby an eager transaction,

since they cannot know if the L2 cache contains a pre-trdiosedt or an evicted eager value.

Nonetheless, eager readers speculate when they conflitiaziy writers. When an ea-
ger transaction wants to read data that is written in a laaystiction, the system will respond
with the line from the L2 cache (lazy modifications are newdcted from the L1 cache, so the
L2 cache always keeps the pre-transactional state) andaramkflict in the eager transaction’s
RCV vector. This policy avoids read-write and write-readftiots if the eager transaction com-
mits before the lazy transaction. If the lazy transactiomeots first, then the eager transaction

must abort. Notice that eager transactions only speculéteread data (the WCV remains

140

Example 1 Example 2 Example 3 Example 4 Eo: EAGER TX
Eo L Eo L Eo L Eo L Li: LAZY TX
B EAGER RD @A
TGetX(E) TGetX(L) TGetS(L) @
< > ~—~ ':Get})o ® EAGER WR @A
Nack > 3K Ack '|— “Tok < O LAZYRD @A
Lack O LAZY WR @A
AbortTx
? — ! 3k ABORT
1
1 T~ L — coMMmIT
AbortAck

Figure 6.5: Resolving eager/lazy conflicts indTM

empty), so abort notification at commit time is not requirédble 6.1 summarizes the conflict

resolution policy between eager and lazy transactions.

Now, assume thag is a core executing an eager transaction bBnds a different core
executing a lazy transaction. In order to explain how coisflibat involve eager and lazy

transaction are resolved, we will describe the varioustiuas in Figure 6.5.

Eager Early Write (Example 1): DYNTM must prevent lazy transactions from reading or
writing the modifications introduced by eager transactidrsus, wheri; attempts to access a
line being modified by, Eg responds with &lackmessage. After receiving tidackresponse,

L, aborts immediately.

Eager Late Write (Example 2): Similarly, upon a write request frorgy, L1 acknowledges

the request and aborts itself, permitting the eager traéiogato obtain the pre-transactional
data from the L2 cache. This is safe to do because lazy wréesrieave the L1 cache. This
approach reduces the amount of wasted computation on avatfacilitates fast restarts, since

lazy transactions do not require backoff cycles.

Eager Late Read (Example 3):WhenEy reads data that is written iy, L1 responds with

a Lack message Eg marks the conflict in its RCV, antd; marks the conflict in its WCVEgy
receives the line data from the L2 cache and stores it iRtate. Since lazy modifications are
never evicted from the L1 cachiy gets the correct pre-transactional data. This policy avoid
aborts from read-write conflicts wheédy commits before.;. Of course, ifL; commits first,Eg

has to abort.

Eager Early Read (Example 4): Similarly, L, can continue its execution when it writes a

memory location that has been readHy tracking the conflict in its WCV. Hence, if; com-

141

Long Tx/Partial Consistency

Lazy
Transaction

Eager
Transaction

Cycle of stalls, Cascade of stalls/
Notify eager-to-lazy transition

Figure 6.6: Transiting from eager to lazy and vice versa

mits beforeky, an AbortTxmessage is sent t, which immediately aborts. Otherwise,H§

commits befored 1, no conflict is reported.

6.3 A High-Performing HTM with Swapping Execution Modes

DYNTM offers a thorough solution to break with the inflexibiliof HTM systems. How-
ever, it still imposes two major concerns that may affectghgformance of TM applications
with irregular transactions. First, it forces early VM for those transawtithat exceed the limits
of the L1 cache. This becomes a problem if the TMS fails iniiggljction and decides to execute
the transaction in lazy mode because then overflowing tctiosa have to be aborted. Second,
DYNTM assigns a mode of execution when transactions start, letddecision is preserved
until commit or abort time. This may lead to pathologicaliations that should be avoided if

the transaction couldwitchits mode of execution on demand.

6.3.1 SvapTM Overview

SWAPTM (high-performing HTM with swapping execution modes)he first HTM system
that can adapt on the fly the most profitable mode of executidimout causing unnecessary
aborts. The system relies on simple hardware to collectrimdtion of the current instance of
a transaction and then uses this knowledge to dynamicalingdn the transactional execution
mode. Of course, switching from a mode to another may triggditional actions to satisfy the

constraints of each mode of execution.

For SNAPTM we assume a similar hardware foundation teND'M, which allows the sys-

tem to execute eager and lazy transactions simultaneodshyever, there is a key difference

142

between both systems: like ilPECTM, this system incorporates selective logging (and the res
of mechanisms) to implement early VM for overflowing datasirch way, ®/IAPTM is able to

decouple the conflict management technique from the sizé¢rahaaction.

SWAPTM decides to move to the eager mode those transactionsdtatideen running for
a long time. Experiments carried out in this thesis show ihat critical to prioritize large
transactions because otherwise they may starve by yourgesactions (this happens when all
transactions are executed in lazy mode [14]). We considemnaaction large when the number

of transactional reads or writes that it performs is corrsidie higher than the average.

SWAPTM may also switch from eager to lazy at runtime. There aregitv@mtions to perform
such transition. First, when an eager transaction contisiycclashes with other transactions
may produce @ascade of stallga transaction that is waiting for a conflict to be resolvedsw
data requested by a third transaction) @oatention poin{a single transaction is continuously
denying access to a group of transactions that also havephigtity). Moving transactions that
generate contention to a more relaxed conflict managemat¢gy increases the transactional
activity in the system (higher commit rates) and enablesidpton on read-write conflicts

(lower abort/stall rates).

Second, if there is a cycle between stalled transactionsjetmional eager HTM systems
must abort at least one transaction. Someone may claimhése taborts are needed anyway,
because transactions involved in a cycle are not serildizibhis is not entirely true, because
moving conflicting transactions to lazy mode favors ovecalhcurrency (some of the read-
write conflicts may disappear) and guarantees forward pesglin eager mode, the system must
resolve cyclic dependences takiblind decisions, which may introduce repeated executions of

transactions if the winner of the conflict is aborted by adhiansaction).

To prevent contention points and repeated aborts, thersysteords the number of conflicts
generated by eager transactions. Figure 6.6 shomsPBM mode transitions and some of
their associated actions. Conflicts between transactianseaolved using the same resolution

policies to DrNTM, which are briefly described in Table 6.1

143

Transactional Length Detector

iTxMemOps I | AvgTxMem I
1
+

TLoad/TStore
completed

lazy
transaction

Switch to Eager
(Partial Consistency)

Figure 6.7: Detecting long transactions inn8PTM

6.3.2 Hardware Support

Besides IINTM’s conventional hardware (UTCP protocol, conflict vestatc) and se-
lective logging support, 8APTM incorporates specialized structures to keep accourraobt

action’s properties.

Long Transaction Detector (LTD). In SWAPTM, each core tracks in a local register (called
TxMenOps) the number of transactional loads and stores that are ebatpsuccessfully. Thus,
when a transaction starts the register is cleaned, and tloeeniented each time that a store
is retired inside this transaction. Cores also keep in amotbgister (calledvgTxMen) an
approximation of the average number of stores performetdgiteady committed transactions
in the core. This is a pondered average, which is calculaseth éme an instance of any

transaction ends using the following formula:
AvgTxMem:=(AvgTxMem_1+TxMenOps)/2

Basically, the new average becomes the mean between thessitha and the number of mem-
ory operations of the committing transaction. Hence, recemmitted transactions have more
weight than the older ones. Cores detect large transactibes the number of memory oper-
ations completed in the actual transactional instancegisanithan the average (multiplied by a
factorF to prevent cyclic transitions from lazy to eager, more on tater). Figure 6.7 shows a

scheme of the LTD mechanism.

144

Eager Starvation Tracker (EST). In SWAPTM, each core records in its EST how many trans-
actions it has stalled. When this counter bypasses a tHte3hthe system assumes that the

in-flight transaction is starving other eager transactions

SWAPTM uses the underlying hardware to determine if the curnemtsiaction must switch
its mode of execution. In some occasions, these transitiamyg additional actions. In the next
section, we explain when transactions change their modgeafudéion and which mechanisms

they trigger.

6.3.3 SvapTM Execution Mode Transitions

SWAPTM uses the underlying hardware to determine if the curnemtsiaction must switch
its mode of execution. We will use the examples from Figu8 which recreate distinct situa-
tions where transactions dynamically shift their policiesdescribe how system transits from/to
distinct execution modes. Eager transactions are regesb&iith a continuous line, while lazy

transactions are represented with a dotted line.

Moving from lazy to eager (long transaction): In Example 1 of Figure 6.8, transactioiiis
andTj are being executed in lazy mode. At some point in tim&ASTM determines thaf]
transaction must be executed in eager mode, increasingiatsty level overTi . This hap-
pens when the LTD mechanism detects that the number of meacogsses performed within

a transaction is over a threshold (step 1). This threshatdlulated using the pseudo-average
AvgTxMemmultiplied by a factor=, which original value is one.

Eager transaction do not accept inconsistencies, as thgyermit a unique owner per trans-
actionally written line. Thus, whefj reaches the maximum number of memory operations, it
stops normal execution and activatesBagtial Consistencynachinery, which notifies the abort
of conflicting transactions (in this casi,), who clear inconsistent data from their caches (step
2). Like in SPECTM, this mechanism inspects the WCV and sends point-totport mes-
sages to all conflicting transactions. Note that this is #tmaesmechanism thatv®PTM uses
each time a core evicts/dstate cache line—a transactionally written line that heentaccessed

in other non-committed transactions.

Once thePartial Consistencyction finishesTj switches to eager mode. To eliminate repetitive

lazy-to-eager transitions, each time that a transactiovesirom lazy to eager the factéris

Example 1: Large Transaction

Example 2: Cycle of Stalls

145

Example 3: Contention Point

i Tj Ti Tk
o
, . EST:1 N
. 1 Large 1. CEoSrIIfI!clt EST 1 Nack
i Transaction m Nack 1. ErS;I'
i Abort 2. Conflict E‘S’$ 5
4~ T 2. partial EST:1 :
A 3. Cycle .
T Consistency Detected Vs 4. Notify 2. Move 4— | EST:1
Nack Swap to Lazy . Swap
@ TGetX EST: 0 BST:0 |
PTSA 3. Deny 6. Move o V' swap O 3. Move
i 4 | Access tolazy T Swap . 5. Move i 4. Move T tolazy
,‘* Abort EST:0 i ! tolazy to Lazy H
0 Wr@A . B st | EagerTx
3k Abort ® Eartla.lt X
® Wr@s onsistency — Commit ioLazy TX

Figure 6.8: Switching execution modes im8PTM

incremented. Hence, T transits to lazy again in a near future, it would not changeraati-
cally to eager—¥ will only do that when it doubles the current size.

Eager transactions must prevent remote transactions éssticeir write set. In\8APTM, ea-
ger transactions have higher priority than lazy transastiso wherfi asks for data owned by
Tj, T} replies with an abort message (step 3). This guaranteeththkinger transaction that is

being executed in eager mode (in this ca$¢,will commit in a near point in time.

Moving from eager to lazy (cycle between stalled transactiws): In Example 2 of Figure 6.8,
Ti has written dat® andTj has written dat#\. As both transactions are eager transactions, they
must prevent requesting transactions to access theinwataset (by sendindlacknotifications
and updating their EST counters). After receivin@lack message, they must retry the non-
completed memory access. This scenario happens Whattempts to obtain the ownership of
B (step 1) and whefii attempts to get accessAqstep 2). Hence, transactioiis andTj have
crossed conflicts.

SWAPTM is able to identify these cycles by adding timestamps andactional accesses [96].
When this occurs, the youngest transaction that partiespat the cycle (in this exampl@j)
transits to lazy mode to eschew an abort (step 3). The tramsd lazy mode is not immediate,
asT| has to be sure that all conflicting transactions transitzg laode as well. Otherwisg
would see a conflict with an eager transaction once it rethiegonflicting access, and it would

automatically abort.

146

Hence, before jumping to lazy modg, must inform to all its stalled transactions (in this case,
Ti) that they must also switch to lazy execution. This is donedplying each conflicting
request with é&wapmessage, and decrementing the EST counter (step 4). Only tved=ST
counter is zerdj can resume its execution in lazy mode—this means that, indh@al case,
all conflicting eager transaction have already been infdriirat they should transit to lazy
mode (step 5). After receiving@wapreply, Ti moves to lazy mode and resends the offending
request (step 6).

Moving from eager to lazy (contention point): In Example 3 of Figure 6.8, three transactions
Ti, Tj andTk are executed in eager mode. At a particular point, trar@agfi starvesli and
Tk, placing the EST counter above a threshdldstep 1). (In SYaPTM, T is the number of
active threads divided by four, although to ease the congm&bn of this example we have set
it to two).

When the threshold is reachedy8TM decides to move transactidp and all itsnackersto
lazy mode, which increases the concurrency of parallebttse Hence, whehi andTk retry
their conflicting memory accessj replies withSwapnotifications, so they also can transit to
lazy mode (step 2 and 3). Only when all stalled transactisasevived in lazy mode (EST
becomes zera)j performs the switch to lazy mode (step 4).

Note that there can be the case when a new requester conflittghe transaction that is
carrying the eager-to-lazy transition. This is not prokagimin terms of correctness, given that
the new requester would transit to lazy (if it is eager) oryréhe access (if it is already lazy).
However, it may introduce a performance pathology, giveat #n eager transaction (the one
that does not receive ti&wvapnotification) will not transit to lazy, becoming the only gaipant

of the conflicting group with high privileges. In the worsesario, this will generate an abort
of the transaction that produced the contention point (mol&dy mode) when it clashes against

the non-transiting one (still in eager mode).

6.4 Evaluation

For our evaluation of BNTM, we have equiped each core with 2Kbit signatures, 32-bit
Conflict Vectors (one bit per core) and a TMS with a 16-entryTTHA 16-entry predictor

is enough to avoid aliasing between different transactioige also evaluate three distinct

147

DYNTM alternatives. DYNTM-Ov uses a simpler predictor that only reports if the transac-
tion is prone to overflow, whered3YNTM-Ab predictor only indicates when the transaction
is prone to abort a lazy transaction multiple times. TheinagDYNTM uses the policy intro-
duced in this chapter to resolve eager-lazy conflicts, wbits TM-EP implements theeager

priority policy by FUSETM.

For our implementation of\BAPTM, we assume analogous hardware supportte T™M ex-
cept for the TMS. To quantify the importance of switching rasdat any point of time, we
evaluate two additional systemSwAPTM-TLD only performs a single transition from lazy to
eager mode when the number of transactional writes is beyymnaverage, where&vapTM-
EST adds eager-to-lazy transitions when a cascade of staltésteéd (all 8/APTM features

but eager-to-lazy transition after detecting a cycle diesigransactions).

We compare DNTM (labeled D in all the figures) andv@PTM (labeled W in all the

figures) against the following fixed and dynamic HTM systems:

FASTM-IVM (labeled E): This configuration is our eager HTM baseline, which corresiso
to a FASTM implementation that uses the idealized VM system progase€hapter 4 to spend
zero cycles in aborts and commits. Conflicts alwaysresolved eagerly using theaybrid

conflict resolution policy. Thus, this HTM system can be sag@an upperbound ofdSTM.

TCC-Loc (labeled L): This is our lazy HTM baseline, which corresponds to the HTgtamn
introduced in Chapter 5. It uses an idealized data versyofon overflowing data and local
commits with core-to-core abort notification. Conflicts ateaysresolved lazily at commit

time, borrowing the strategy from TCC [45] or EazyHTM [124].

FUSETM (labeled F): This HTM system executes all transactions in lazy-mode @xttese
that exceed the L1 cache. We evaluatissETM with its original policy (eager priority) and with

the high-performance policy introduced in this chapter—amed that systefRUSETM-HP .

SPECTM (labeled S): This HTM system executes all transactions in lazy-mode résolves
conflicts when a transaction evicts speculative data. M@&gdhe system prevents the access

of those replaced blocks by aborting requesters on the fly.

Statically Programmed HTM (labeled P): Static alternative to BNTM where an expert pro-

grammer decides the execution mode of transactions useivtBEG N(node) directive. For

148

our evaluation, we decided to execute all transactiony/laxcept those transactions that over-
flow the L1 cache or those transactions with many lazy abds.use this system to evaluate

the performance benefit of the TMS predictor compared to alsinadaptive method.

6.4.1 DvNTM Performance Analysis

Figure 6.9 presents the time distribution of eagegs FM (ideal VM, labeled E), lazy TCC-
Loc (ideal VM, labeled L) and BNTM (non-ideal VM, labeled D) in their 32-threaded execu-
tions (for low-contention applications, top of Figure 628 in their 16-threaded executions (for
high-contention, bottom of Figure 6.9) applications. TReaation time has been normalized
to the 32-threaded (low-contention) and 16-threaded ¢bagtiention) ASTM execution and
is broken down to: non-transactional and barrier cyclase(ed Non-Tx and Barrier), the time
spent in committed transactions (labeled Good Tx), the timéis wasted in non-useful work
discarded from aborted transactions (labeled Aborted the)time spent in abort recovery and
in the commit phase (labeled Aborting and Commit), the tilvag transactions remain stalled
waiting for a conflict to be resolved (labeled Stalled), amel time that processors execute the

exponential backoff after aborting (labeled Backoff).

DYNTM outperforms both fixed policy systems by (i) combining @agnd lazy transactions
in applications that execute heterogeneous transactmh§iare-adapting the execution mode
of the transactions at runtime. As it can be seen in Figure®y8ITM achieves, on average,
a speedup of 19% overrBTM-IVM and a speedup of 57% over TCC-Loc in high-contention
applications. In low-contention applications, the spgesunot so impressive, but significant

over FASTM-IVM (13% improvement).

Similarly, Figure 6.10 shows the time distribution oY ®TM (labeled D) together with two
realistic HTM systems that use either fixed or static confliahagement strategiesu$ETM (la-
beled F) and the Statically Programmed version olDM (labeled P). As it shown, ENTM ob-
tains an average speedup of 24% (6%) on high-contentiond@wention) applications over
FUSETM and a 12% (7%) with respect to the Statically Programmett$ystem. The reasons
why DYNTM outperforms state-of-the-art fixed and static HTM exams are described in the

following paragraphs.

149

Normalized time (low-contention)

114
0.8
0.6+
04 |
0.2
o

ELD ELD ELD ELD ELD ELD ELD ELD ELD ELD ELD ELD
Hash-R Kmeans-L Kmeans-H Rayfrace Ssca? Vacation-L Barnes Biree-F Genome List-S Vacation-H A.Mean

ik 3.2 14 2.1
1.2

1 e ;
0.8 i

dpye

0.6+ |)
04] i
0.2

0

ELD ElL B E LB ELD EiL D ELD
Bayes Biree-V Hash-W Intruder Labyrinth List-L

Commit

Backoff

U stalied
Aborting
® Aborted Tx
U Good Tx
& Barrier

ELD u Non-Tx
A. Mean

Normalized time (high-contention)

Figure 6.9: Distributed executed time of low- and medium-contentiap (32 threads) high-
contention (bottom, 16 threads) TM applications undesPFM-IVM (E), TCC-Loc (L) and
DYNTM (D) HTM systems

Truly flexible system. DYNTM uses the eager execution mode for transactions that ifi} co
monly overflow the L1 cache and (ii) for transactions thatrabeveral times before committing.
In the former case, ENTM can stall large transactions—those that modify a lot nés—to
preserve useful work in case of conflict without requiringaplized late VM support.g., the
transactional victim cache used in TCC-Loc, which speedhexecution o¥acation-high.

In the latter case, older transactions can commit fasteredsing the number of aborts—eager
transactions have maore priority than lazy transactionsYNTM. Figure 6.9 shows that com-
bining eager and lazy execution has a positive effect iniegbns with heterogeneous transac-
tions like GenomeBayes Intruder or Yadg which reduce the Stalled and Backoff cycles (with
respect to BSTM) and the Aborted Tx cycles (with respect to TCC-Loc).

Catch dynamic behavior. Figure 6.10 shows the importance of having a dynamic exatuti
mode selector. BSETM cannot combine execution modes on applications liikeuder, which

starve older non-overflowed transactions. Moreover, aw@gtl transactions must abort before

150

1.2

1 |
0.8
0.6 !
0.4
0.2
0 :

FPD FPD FPD FPD FPD FPD FPD FPD FPD FPD FPD FPD
Hash-R Kmeans-L Kmeans-H Rayfrace Ssca? Vacation-L Barnes Biree-F Genome List-S Vacation-H A.Mean

Normalized time (low-contention)

T 12 _
= P = Commit
£ 1 P

§ i Backoff
5 %8| U stalled
e F

o 06 Aborting
E

S 04 B Aborted Tx
o [

2 02 Good Tx
E

3 0 =

FPD FR'B FPRD FPD FPD FiP B FPRD
Bayes Biree-V Hash-W Intruder Labyrinth List-L Yada A. Mean

Figure 6.10: Distributed executed time of low- and medium-contenti@p (132 threads) high-
contention (bottom, 16 threads) TM applications undes®EH M (F), Statically Programmed
(P) and DY'NTM (D) HTM systems

being re-executed, which increases the amount of discardesiactional work irvada In con-
trast to UISETM, DYNTM does not need to abort lazy overflowed transactions anurémstart
them in eager mode. It recognizes very quickly which tramsas will probably overflow, and
decides to executes most of them eagerly right away.

The Statically Programmed HTM delegates the election oékeeution mode to the program-
mer. The assignment that the programmer has performeddriamimize the impact of aborts
caused by overflowse(g, in Baye$ and accelerate applications with multiple lazy aboetg (

in Intruder). However, applications that present a dynamic behavischsas phase changes)
may suffer considerable delays when we fix the execution nobdetransaction for the entire
application. This happens in applications l&&nomeBtree-varor Yada which present sev-
eral overflows at the beginning of the execution and lessfloves at their end.

As opposed to the Statically Programmed HTMWNI M executes eager transactions only when

it is necessary (when lazy aborts are frequent), avoidiaghiortcomings of using conservative

151

\

] Eager TX

Lazy TX

B N-Tx+Bar

Time Distribution (%)

100% 7T 7T &= 7 & T B
7

80% 77

60% 7

40%

20% ﬁ ﬁ

0%

Figure 6.11: Normalized DYNTM execution time of applications distributed by the tramsa

tional mode

1.81.9
= 16 i B
I3 1.5 é - 7
w
D 1.4 ; !
= 13 ' B FySETM
G} *
3 12] O pYNTM-Ov
g 44 : ; B pyNTM-Ab
il e i 2
RS V] U T 0l o g o 0 A

FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD FOAD

% 4;,5 /U)) %, S ‘5’0 ‘% &f?@ G@,) o %o ‘%J, %@ %@ ’70?_, <$é "’&, 'Lc'?o
@ J”‘a %o Vg, Pay O ® oy ey ey <%
43 /{9& G o,)(> 0)@ 0, l«z, %

Figure 6.12: Speedup achieved in low-contention (32-threads, left) ldgd-contention (16-
threads, right) applications byuSETM, DYNTM-Ov, DYNTM-Ab and DYNTM

conflict management mechanisms for the entire applicafitve. only scenario where the Stat-
ically Programmed HTM system performs better than DynTNBayesandHash-write This
happens becaugayesonly executes few transactions, which does not give endoghtb our

dynamic selector to learn the best execution mode for eaclsdction.

Best-suited execution mode selectiolBy re-adapting the system at runtimeyidIrM can use
the most profitable strategy through the whole executioguifei 6.11 breaks down applications
run on top of IyNTM according to the mode of execution. As it can be seen in thardi
DYNTM executes most of the applications with small transastiezily. This strategy is really

useful because it (i) eliminates read-write conflicts if tkader commits before the writer, (ii)

152

= 16 - -
= i
o 1.5 § .
w
S 141 _
[I = ;
= 13 __ -- W FUSETM
3 12 ' 7 U FUSETM-HP
7 (1
S 1.1] | ¢ || DovnTmer
b 7
L ojll sl A =
@ bz 7 T [Dl L
7 7 Il 7
% -..%@.4 i AL E L

FHED RHED FHED RHED FHED FHED FHED FHED RHED FHED RHED FHED FHED FHED FHED RHED FHED FHED

Ross s, g,

e r c;? 6’0 % Qﬁ-@ o@,) ’G‘,\ 6%@%@@% /742, <$¢ <’d‘f(}5‘»’0
% ‘9‘7&-4,0@9 {"/;G‘? ’01’" %, S Tt &p

<3

Figure 6.13: Speedup achieved in low-contention (32-threads, left) ldgd-contention (16-
threads, right) applications byuUSETM, FUSETM-HP, DYNTM-EP and DYNTM

does not require exponential backoff and (iii) removes glatifical behavior caused by stalled
transactions. In contrast, coarse-grain applicationstsp®re time in the eager mode, given
that large transactions that overflow the L1 cache do not@tipipe lazy execution mode and
conservative conflict management reduce drastically tihebeun of aborts and re-executions.
High-accurate predictor. Selecting the best-suited execution mode for each indiithsk
may become a delicate task. NonethelessyDM’s TMS does a great job handling this assign-
ment. Figure 6.12 shows the speedup achievedYayTM-Ov, DYNTM-Ab and DYNTM with
respect to the BSETM execution. As it can be seen, moving overflowing transastifrom
eager at the beginning enhances the performanBéreé-fixor Yada However, in applications
with read-only conflicts likeGenomehaving only an overflow predictor can have a negative
effect. In other applications likintruder its necessary to count the number of lazy aborts to
increase the priority of critical transactions. When betthiniques are combined, the predictor
finds the most profitable mode of execution in most of the dooasVacation-lowis the only
benchmark that performs worse ivy®TM over FUSETM. The reason of such behavior lies on
the erratic style of its transactions, which makes diffiéoitthe predictor to guess which will
be the adequate mode.

High-performing conflict policy. Part of the performance improvement thatNOT'M yields
comes from the policy employed to resolve eager-lazy cdsfliEigure 6.13 shows how both

FUSETM and DyNTM perform under theager winpolicy (original FUSETM and DYNTM-EP)

153

Normalized time (low-contention)

oot
0.8
0.6
0.4
0.2
|

ELW ELW ELW ELW ELW ELW ELW ELW ELW ELW ELW ELW
Hash-R Kmeans-L Kmeans-H Rayfrace Ssca? Vacation-L Barnes Biree-F Genome List-S Vacation-H A.Mean
21

Commit

Backoff

U stalied
Aborting
® Aborted Tx
U Good Tx

i 3.2 1.4
1.2

1 e ’
0.8 i

v

0.6- i
0.4-] _
0.2

0 Barrier

ELW ELW ELW ELW ELW ELW ELW ELW .Non-Tx
Bayes Biree-V Hash-W Intruder Labyrinth List-L Yada A. Mean

Normalized time (high-contention)

Figure 6.14: Distributed executed time of low- and medium-contentiap(t32 threads) and
high-contention (bottom, 16 threads) TM applications urfdesTM-IVM (E), TCC-Loc (L)
and SVAPTM (W) HTM systems

and thehigh-performancepolicy (FUSETM-HP and the original INTM). As it can be seen,
FUSETM can take advantage of the new policy in applications Bkese-fix Labyrinth or Yada
to increase overall concurrency. However, some applicatwith crossed conflicte(g, Hash-

read or List-long perform better (both for BSETM and DyNTM) with the eager wingolicy.

6.4.2 SvapTM Performance Analysis

Figure 6.14 exhibits the performance improvementwASTM (labeled W) compared with
FASTM-IVM (labeled E) and TCC-Loc (labeled L). As it can be obgt, SVAPTM achieves,
in low-contention benchmarks, a 15% speedup over the idegl'™ implementation and a
4% speedup over TCC-Loc. The benefits ®iA8TM are especially notable in workloads
that require dynamic conflict management for variable-siaasactions€.g, Hash-readand
Vacation-high. In high-contention applications, the performance gajpvben FASTM-IVM
(32%), TCC-Loc (76%) and\8APTM is bigger due to the complex nature inherent of those

154

& 10 N
‘u(:; ,
*g 5
=2 I S s B . S _‘j§= RS |
e 5
p=- 4
8
o 10
w 15 -19 -30 -18
SFDW SFDW SFDW SFDW SFDW SFDW SFDW SFDW SFDW SFDW SFDW SFDW
Hash-R Kmeans-L Kmeans-H Rayirace Ssca2 Vacalion-L Barnes Bfree-F Genome List-S Vacation-H H.Mean
100
=3 29X 31X
Qo
[=y
g 50 u SpecTM
: | 1N O
5 o - sl FuseTM
£=
g =
z DynTM
§ -50 E
& SwapTM

-100
SFDW SFDWwW SFDW SFDW SFDW SFDW SFDW SFDW

Bayes Biree-V Hash-W Intruder Labyrinth List-L Yada H. Mean

Figure 6.15: Speedup over best-performing fixed-policy HTM of low- anddmen-contention
(top, 32 threads) and high-contention (bottom, 16 thre@dsapplications under S=CTM (S),
FUSETM (F), DYNTM (D) and SNAPTM (W)

benchmarks. That is the casekdsh-writeor Yadg where fixed-policy HTM systems suffer

notable performance pathologies.

Figure 6.15 shows the speedup obtained on dynamic HTM sgs(8PECTM, FUSETM,
DYNTM and SNAPTM) over the best-performing fixed-policy HTM system (TC@©d.for low-
contention, RSTM-IVM for high-contention applications). In the low-catition scenario,
SWAPTM beats IYNTM and SPECTM by a 3% performance improvement, andSETM by
around a 5%. This is becaus&/&TM can take advantage of selective logging to run ahead

speculatively without additional aborts—a condition tRasETM and DyNTM do not satisfy.

On the other hand, in high-contention applicationgASTM obtains an average speedup
of 13% (DyNTM), 51% (FUSETM) and 72% ($ECTM). This happens because some of the
benchmarks execute transactions with variable length antkntion—this difference on trans-
actional behavior is noticeable even among instances cfahee transaction. That is the case

for Bayes Hash-writeor List-long In those complex situations WBPTM picks on the run

155

20

(=3
2 15
3
5 10 |
=
s ng |
3 N
° ———] i
g}- 0 i—m
? 5
STEW STEW STEW STEW STEW STEW STEW STEW STEW STEW STEW
Hash-R Kmeans-L Kmeans-H Raytrace Ssca2 Vacation-L Barnes Biree-F Genome List-S Vacation-H
3.4X 35X 3.6X 28X 28X 29X
__ 80
[=}
Qo
€ 60
g u SpecTM
8 40]
5 §’ SwapTM-TLD
= = g
g %’ SwapTM-EST
-o:? q:m &d .§! [A

=20
STEW ST EW. STEW STEW STEW STEW STEW

Bayes Biree-V Hash-W Infruder Labyrinth List-L Yada

Figure 6.16: Speedup achieved over TCC-Loc in low-contention (top, 32atls) and high-
contention (bottom, 16 threads) applications PESTM (S), SNAPTM-TLD (T), SWAPTM-
EST (E) and 8APTM (W)

the best conflict management strategy based on analysrenafion of each dynamic instance
of a transaction. This technique allows/8TM to obtain up to 2X speedup overy@TM in

Hash-write Following we present a deeper analysis avn8TM strengths.

Fine-grain flexibility. Unlike DYNTM, SWAPTM does not enforce early VM for those trans-
actions that do not fit in the L1 cache. Instead, it relies eAECEM’s logging and engine for
keeping safe those speculative data that leave in-core nyespace. However,EE=CTM lacks
flexibility—it executes all the transactions with lazy regmn of conflicts. Figure 6.16 shows
the speedup of three differenW8PTM alternatives compared toP&CTM. As it can be seen,
having a fixed policy hurts drastically the performance of applications that combine different-
style transactionsBayes List-long and Yadg or manifest dynamic behavioe.q, Btree-fix
GenomendIntruder). In average, %APTM obtains a 72% (3.4%) performance improvement
against 8ECTM in high-performance (low-performance) benchmarks.

Useful profiling information. Figure 6.16 provides additional information about the dislap

156

T , _
e =~ B4 F I |
= |
So8 7 z [Eager TX
= | I 7 v
g g gg Lazy TX

0 0 |
QE} & 4 g% B N-Tx+Bar
= i %

p
%

Figure 6.17: DYNTM and SNVAPTM execution time of low-contention (left, 32 threads) and
high-contention (right, 16 threads) applications distidal by the transactional mode

engine implemented byVPTM. The LTD mechanism permits a rapid switch toward eager
CM when a transaction is considered large. As a resulyP/FM-TLD improves on $ECTM in
applications with variable-length transactions suchiash-read Intruder or Yada However,
moving to eager CM too often or too early may incur a significawverhead in applications
with long transactions and read-write conflicts, as it fetstrconcurrency among threads and
imposes backoff. This limitation also affectsy ®TM, which must run selected transactions in
eager mode from the very beginning. To prevent cascade lisf sta evaluate ®APTM-EST,

an instrument that change to lazy CM when a transaction pesvstarvation. On top of that
system we build ¥APTM, which moves to lazy CM when a cycle of stalled transacioocurs.
As it can be seen, going back to lazy mode has some benefitplicamns with read-write
conflicts likeGenomeor List-long

Great adaptability. The sum of the previously described mechanisms offers afdishe reac-
tion to transactional events. This profit is significant ipléegations where instances of the same
transaction produce an uncertain behaveog(BayesandLabyrinth), where SYAPTM obtains
better performance thanviMTM at less hardware cost—8PTM does not require the TMS
predictor.

Effective combination of CM policies. As it is shown in Figure 6.17,\8APTM distributes
wisely eager and lazy execution: eager transactions amaadatory for large transactions nor

require conservative re-execution, while lazy transastido not abort due to overflows and can

157

prevent read-write conflicts that end up as aborts. In facsoime benchmarks likesca2the
on-fly swapping mechanism balances the speculative eraciltiv, which reduces the barrier

cycles and overall execution time.

6.5 Results Roadmap: A General View

This section reviews the performance of the HTM systemsosed on this thesis+e.,
FASTM under thecycle policy, FUSETM, SPECTM, DYNTM and SvAPTM—and compares
their performance against our reference HTM systems—LogBand TCC-Dist. The next
paragraphs expose how the intrinsic properties of eachhibesdk affects its performance and
scalability. We grouped the benchmarks according to itelle¥ contention (Figure 6.18 for
low contention, Figure 6.19 for medium contention, Figur206for high contention), and we
present speedup numbers over sequential execution afteinguTM applications with up to

32 threads.

6.5.1 Low-contention Applications

Hash-read. In this application, parallel threads execute most of theetsearches in a large
shared hash table, although they can also insert or remdéaeata@omly. This kind of applica-
tions normally perform better in lazy environments, likeeSTM or TCC-Dist. RUSETM cannot
take advantage of lazy capabilities because some transaaiverflow the L1 cache, and thus
they need to be aborted and re-executed in eager mode. Dyi#hM systems—especially
SWAPTM, which lazy mode is not bounded by transactions’ size—egdly adapt a more
conservative conflict policy when two threads update shdegd, a strategy that reports better
performance. Nonetheless, eager HTM systems keep scallingnany-threads, ddash-Read

is a low-contention benchmark.

Kmeans-low. This workload is the only one of eighteen where all HTM systerhtain similar
(extremely good) scalability. This is becausmeans-lowmostly executes non-transactional
embarrassingly parallel code, and thus concurrent thréaa®t need to synchronize.
Kmeans-high. Like Kmeans-lowthis STAMP benchmark runs in its majority outside trans-
actional blocks. However, the few (commonly small) tratieas that it executes may collide,

producing aborts. LogTM-SE recovers the state by softwadeling overheads that expose

158

Hash-read Kmeans-low Kmeans-high
20 30 25
25 i
15 2 20
3 s Si1s -
B 10 1 T 15 1 3
2 8 10 0 10 A
g .| g 10 2
5 - 51
0 0 e o -
14 8 16 32 14 8 16 32 14 8 16 3z
Threads Threads Threads
Raytrace Ssca2 Vacation-low
7 35
15 4 & 30 1
5 - 25 A
o a o
3 10 - 2 47 32 201
7] 7] i @]
] $ 3 2 1z
& s & 2 A 10 -
1 A 5
o — 1 — 0
14 8 16 32 14 8 16 32 14 8 16 32
Threads Threads Threads
—4—LogTM-5E —B—FASTM —a&— TCC-Dist @—FUSETM
—O—SPECTM —0—DYNTM —0—SWAPTM

Figure 6.18: Scalability analysis of HTM systems on low-contention &gations

more time transactions to conflicts. In contrasisFM and the rest of the proposals are not
challenged byKmeans-higtbecause they perform an (almost) immediate restoratidmeofal-
idated state.

Raytrace. This application suffers considerably delays when it iscexed under 32 threads
with eager conflict management. The reason behind thisdiioit lies on the high volume of
read-write conflicts risen at runtime, and the poor job tlaee schemes do when they must
spread contention. As most of the transactions are sm#&gERM is able to run them in fast lazy
mode, behaving like ECTM. Dynamic approaches execute almost all transactiorshintes
in lazy mode, here the explanation why they perform like tteal TCC-Dist inRaytrace
Ssca2.This benchmark consists on multiple kernels accessinggestiata structure represent-
ing a weighted, directed multigraph. It executes tiny teations that do not usually conflict.
This behavior affects negatively TCC-Dist, which commibgoicol collapses the network and

the directory. Although this benchmark presents a reallydonflict rate, it does not scale with

159

Barnes Btree-fix Genome
12
15 A 15 A
10
S .
2 10 1 2 10 1 o
- - - 5
@ @ 7]
Q Q L)
& s & s &
3
0 AT 0 A 0 A
14 8 16 32 14 8 16 32 14 8 16 32
Threads Threads Threads
List-short Vacation-high
10 15 ——LogTM-SE
5 —m—FASTM
10 4
S 61 £ —a—TCC-Dist
3 i
9 4 g e—FUSETM
[F3] [F3]
z —0—5PECTM
0 T T O RARRAARARAARRRRRREEESRELNSEEE ——DYNTM
14 8 16 32 14 8 16 3z
Threads Threads ——5WAPTM

Figure 6.19: Scalability analysis of HTM systems on medium-contentipplizations

32 threads, as great part of the execution time is sequerdiblexcept one threads wait most
of the times in barriers.

Vacation-low. In this low-contention configurationyacation searches on large regions of
shared data structures, and at the end writes few data ihamniatt. Hence, few transactions
collide, allowing almost linear scalability. Only with 3Breads the dynamic HTM versions
outperform the rest, as the can operate smartly on theseocassions where performance

pathologies appear.

6.5.2 Medium-contention Applications

Barnes. This application is another example of the importance ofifta¥ast commits and
deferred resolution of conflicts in applications with smadinsactions. Eager HTM systems
(Logtm-SE and BSTM) do not scale wherBarnesis executed with many threads, whereas
lazy HTM systems keep extracting parallelism. LikeSsca2 TCC-Dist suffers delays when it
has to commit many short transactions, given that it sasrsiared resources.

Btree-fix. In this configuration, the workload computed data in a sharedry tree after doing

160

a homogeneousomputation—-e., the time computing the data does not vary. While all but
LogTM-SE approaches perform similarly with 16 threads es)ewith 32 threads the perfor-
mance drops down, especially on eager approaches. Thenrbaknd this behavior is that
accessing a data structure when it is empty causes lots @ifaterand data transfers in the
CMP, lowering the efficiency of the application. An executiof the benchmark with more
transactions (and thus populating the tree faster) shoglgase the scalability of the workload
for all HTM systems.

Genome. This workload is a good reference point to study the perfoceaof HTM systems
in applications with phase-changes. As it can be seen, bgT® and SVAPTM do a good
pursuit dealing with conflicts when the contention leveliearthrough time. Although both
approaches eliminate the impact of conflicts at runtime strguential parts of the application
bound the scalability of the program in many-threaded eti@as.

List-short. This benchmark is similar t&kmeans large parallel (non-transactional) sections of
code combined with short transactions, with two key diffees. First, simultaneous threads
share most of the data, making the CMP configuration (memieratthy, distributed directory,
network topologyetc) the main bottleneck to achieve good scalability. Secobdttaecovery

is critical, here the reason for the inefficiency of LogTM-ote that, in contrast t&sca2
small transactions are executed in the middle of parallakph. This fact allows TCC-Dist to
hide its slow commits, as it is rare that two transactionsodrat the same time.
Vacation-high. This configuration o¥/acationis a clear example of the importance of enabling
speculation even in the case of overflow. On cache evictle?aCTM and SVAPTM are able to
keep deferring the resolution of conflicts until commit tifee until the system suggests a wiser
conflict management decision), avoiding some read-writglicts that arise on many-threaded
executions. TCC-Dist must execute those transactionky lamtil the end, which sometimes
provokes the re-execution of the older (and thus criticahgaction. This may cause thread

unbalance in the application.

6.5.3 High-contention Applications

Bayes. This workload, which consists on building a belief netwoidery challenging for

modern HTM systems. It executes different-type transastisome of them huge. Moreover,

161

Bayes Btree-var Hash-write
5 14
12 4
4
10 4
o o o
3 37 3 8 3
3 3 %
2?1 20 g
J} [v
1 4 2
0 - o -
14 8 16 32 14 B8 1e 32
Threads Threads Threads
Intruder Labyrinth List-lang
7
6
5 -
o o o
3 4 3 3
2 - T 2
o 3 o @ a
g] o> 3 5
1
o T T T T T T T T T T T T T
1 4 8 16
Threads
Yada

——LogTM-SE —a—FASTM —a—TCC-Dist —e—FUSETM
——5PECTM —-DYNTM ——SWAPTM

Speedup
[IR R TV R ST B

Threads

Figure 6.20: Scalability analysis of HTM systems on high-contentionlaagions

as it can be seen from the data in Figure 6.R8yessuffers performance degradation at 16
threads, but it recovers most of it at 32 threadsASTM is the best of all HTM systems, and it
outperforms IXNTM because it does not rely on an erratic predictor to selectransactional
execution mode. AsASTM or SPECTM do not have to abort in case of transactional eviction,
they provide better conduct thaw&eTM.

Btree-var. Like the fixed version oBtreg this microbenchmark do not scale beyond 16 threads.
Eager HTM systems likeASTM or LogTM-SE must be inflexible in the way of resolving con-

flicts, which may prevent the forward progress of criticalnsactions when they collide with

162

ones with lower priority. Speculative systems, instead,anle to run-ahead in case of conflict.
Such freedom helps lazy HTMs like TCC-Dist to be more effextivith respect to eager-based
HTMs. In contrast t@tree-fix here most transactions fit on the L1 cache, therefos=FM is
not affected by aborts caused by overflows. The main linoitattf dynamic approaches is
thatBtree-varexecutes transactions with different characteristich witandom pattern, which
makes difficult for DrNTM history-based predictor to identify the most profitable@ution
mode.

Hash-write. This microbenchmark executes large transactions with sggbaontention char-
acteristics: some transactions are parallel, while therstlare mostly serial. The main lim-
itation of fixed policy systems (TCC-Dist oraBTM) is their lack of flexibility, while some
dynamic HTM systems (BSETM and DvNTM) bound their performance because their execu-
tion modes are tied to L1 buffering space. As a result, pd8ReCTM) or fully (SWAPTM)
adaptive and non-restrictive HTM systems improve on previapproaches, obtaining more
than 10X speedup overSTM with 32 threads.

Intruder. This is possible the poorest scaling workload from the STAMRchmark suite, es-
pecially when it is executed witsimulationsmall-size inputs—other inputs suggested for STM
systems achieve more scalability [16]. The maximum peréoroe is reached with 8 threads
(around 6X speedup over sequential execution when run iardi;approaches). Note that
Intruder is strongly affected by thstarvation of the oldepathology [14] in lazy environments
like TCC-Dist or $ECTM, working worse than ESTM or even LogTM-SE.

Labyrinth. This workload exemplifies the importance of having fast abecovery and flex-
ible conflict management. Apparentlyabyrinthis a high-contention workload, especially at
the beginning of its execution. Inefficient eager policiesyrdelay that phase during too much
time, putting obstacles on the path of pressing transaxti®oftware abort increases the con-
flict window, adding more risk of serialization. As a mattérfact, SNAPTM obtains 20X over
sequential execution when it is run with 32 threads, whilgT-SE barely improves single-
threaded execution.

List-long. Updating shared lists with data computed during severdésyzan be an important
issue for transactions that resolve conflicts at commit-##€C-Dist performs worse than

low-cost LogTM-SE. Dynamic (BNTM and SVaAPTM) and eager high-performing f8TM)

163

systems can preserve useful workLdagt-long by stopping conflicting transactions when they
are close to their end, minimizing the impact of re-exea@utifter introducing inconsistencies.
Yada. This is another high-contention workload that do not scalgobd 16 threads. It com-
bines small and large transactions with variable contantsach properties impose hard con-
straints on fixed-policy HTM systems. In this applicationySETM takes advantage of the
eager mode of execution for long transactions, and thustgesiorms unique-mode HTMs
like SPECTM. Dynamic HTM systems are better-suited than non-adeystems (either lazy-
based TCC-Dist or eager-basedst M), as they can adopt the most beneficial execution mode

according the characteristics 6&dds transactions.

6.6 Related Work on Contention-Aware HTM Systems

Most HTM proposals fit in the eager/lazy HTM categories—#tm& two chapters review in
detail both HTM designs. Nonetheless, there are some heaedagsisted TM designs that es-
tablish novel conflict management techniques to favor coroay and attest high performance.
In this section, we revise those designs that reduce ceoreby applying software-managed
conflict management policies, tracking dependences betivapsactions, predicting specula-

tive values or performing partial re-executions.

Conventional HTM systems implementwo-phase-locking2PL [32]) algorithm that seri-
alizes the execution of conflicting transactions. Thusaseoof collisions, one of the conflicting
transactions has to abort or delay its execution until thelicd disappears. This may become
a bottleneck in applications with a high volume of sharingadaut a small conflicting set.
Conflict-serializability (CS [6]) is a more relaxed algorithm that allows concurrebeyween

conflicting threads by tracking (and ordering) data depeocég.

Ramadaret al. implemented such algorithm in hardware through a Depersddénare
HTM (DATM [99]) system. DATM accepts more interleaving thalL by forwarding non-
committed values using a non-standard coherence protdhd.approach permits overcoming
direct (non-cyclical) WAW (write-after-write) and RAW (read-aftwrite) conflicts, but cores
must keep a single, updated order between transactionsgdiné whole execution. If a con-
flicting cycle appears, at least one transaction is abomeldtize global order is re-calculated.

Moreover, short transactions may have to wait for longerdaations to commit. To reduce the

164

VM Hardware CM Fixed Versatility
HTM System) .
Strategy Support Strategy Policy?| Granularity
Forwarding Speculate with L
DATM [99] Late Yes Application
L1 protocol WAW and RAW
Tx Store Buffer, | Speculate with L
WarTx [122] Early Yes Application
SW logging WAR conflicts
Tx L1 cache, Lazy or L
FlexTM [112] Late No? Application
SW support Eager
TMESI -
FASTM Early Eager Yes Application
L1 protocol
Late Lazy or Overflowing
FUSETM UTCP L1 protocol Yes® _
Early (QOV Tx) Eager Transactions
Late or UTCP L1 protocol, L
SPECTM . Lazy Yes Application
Early (OV data) Selective log
Late or UTCP L1 protocol, Lazy or Individual Tx
DYNTM _ No
Early TMS predictor Eager Instances
Late or SPECTM-like & Lazy or Individual Tx
SWAPTM N No
Early (OV data) profiling HW Eager Instances

Table 6.2: Data VM and CM characteristics of high-performance HTM syst

hardware complexity of DATM, Utket al. assigned aerializability ordering numbe(SON)

to each committing transaction [7]. Their system impleradate version management and
tracks the read history and conflicts in hardware tables. ofdroit time, negative acknowl-
edgements are broadcast to enforce global seralizable bet@een conflicting transactions.

Pantet al. also showed how to reduce the hardware overheads by usiag@est/ concurrency

monitoring techniques [90].

Titos et al. followed a distinct approach to survive WAR (write-aftelad) conflicts in a
log-based HTM system [122]. While non-conflicting writesrst transactional modification
in-place, conflicting writers maintain the speculativetesia a specific gated store buffer until

older readers commit or abort. Note that this mechanism imposédsbalgorder between in-

2in FlexTM, the programmer decides in which mode of executidransaction is going to run
Salthough it offers two modes of execution, the eager-mody isroperative for overflowing transactions

165

flight transactions. Again, a cycle between conflicting $etions requires, at least, an abort
to break the cyclic dependence. Unfortunately, all prolsosapose a strict order between
conflicting transactions and can only eliminateyclicdependences. Thus, these HTM systems
experiment the same issues as conventional HTM systems thbgrexecute transactions with

crossed conflicts, which are common in typical transactiomakloads [16].

In order to introduce some flexibility to TM systems, Shrieamet al. proposed FlexTM
[112], a hybrid implementation [31, 63] that decouples dohfletection from conflict resolu-
tion by tracking transactional violations eagerly and datiang their resolution to the software.
In such way, the system can operate either eagerly (regptlim conflict at the moment that it
is produced) or lazily (resolving the conflict at commit tinélonetheless, the choice has to
be applied for the entire application. For data versionihgeadjusts the underlyintate VM
support from RTM [113] by adding two states to a typical ME8&tpcol, which hold trans-
actionally written and read lines. This buffering capapiis complemented with signatures
to summarize accesses within transactions and a hashusguctlled Overflow Table, which
must be accessed by software to perform lookups on cachesmissl to ensure permanent

commits.

FlexTM’s dual-mode system permits the programmer to dettideconflict management
scheme for the entire application (eager or lazy), but itires (i) software decisions to resolve
conflicts, (i) complex hardware to buffer transactionabdiowed data (because it uses late
VM) and (iii) software commit arbitration for lazy transamts. What is more, FlexTM applies
the same conflict management policy for the whole executieing more restrictive than an
HTM system that dynamically adopts the policy at the grariylaf a transaction—something
that D'NTM and SVAPTM can do.

Two other HTM systems appeared recently that also mix cdadepm eager and lazy ap-
proaches. LagerTM [132] retains few lines privately in aegastore buffer to emulate lazy
execution for conflicting lines, while other memory accessee executed under eager seman-
tics. A local-accessed structure informs each core whiwslimust be kept hidden in the store
buffer (in the common case, those that conflict frequent)e 3tore buffer must be drained at
commit time. Similarly, ZEBRA [123] modifies the coherengetpcol engine to redirect those

speculative updates that are marked as contended in thech& ¢ta a special buffer (like late

166

VM systems). Non-contending data can be safely moved tawirel memory hierarchy be-
cause old values are maintained on the side (like early VNesys). Note that both proposals
introduce small data structures to keep the pre-transedtand/or the speculative state. Those
private buffers can easily be overflowed, reducing the piatigmerformance gain in applications
with large memory footprints. Instead,yRTM and SNVAPTM moadify bigger, already existing

buffers to permit flexible policies for any kind of transacti

Table 6.2 shows the differences between enhanced HTM sgstachour proposals. As we
can see, our main contribution lays on the possibility ofpdidg the system at runtime at the
granularity of a transaction, something that other HTMeyst cannot do. The non-dependency

on software, the version management flexibility or the faiisi of the design are also a plus.

Another way to deal with high-contention situations is teggithe value generated by trans-
actions that conflict. Tabbet al. speculated in their Transactional Value Prediction (TVEO[L
implementation with false sharing conflicts—those causeddehe-line granularity—by using
stale data cache lines on transactional loads and validétose loads (and also those stores

from whom the processor does not have exclusive permigsam®mmit time.

Value Prediction Transactional Memory (VP-TM [89]) implenis a memory-level predic-
tor over a log-based HTM system that attempts to anticigagefuture value of a conflicting
line. The predictor assumes a well-known pattern in comgnoptated shared variablee-g,

a counter that is always incremented—and supplies the giakvalue of the line to the proces-
sor, which has to validate the correctness of the line whermcdnflict disappears—this happens
when the clashing transaction commits or aborts. Noticevélae prediction does not impose
an order between conflicting transactions, being more fiexitan CS-based HTM systems. Of

course predicting the correct value for a line is not stréayivard.

Nesting transactions (either close or open) can be usedtcedhe wasted work on aborts.
Many HTM proposals can be extended for supporting diffefenins of nesting [43]. An
alternative way to minimize discarded work consists on gisintomaticintermediatecheck-
points [126] to restart transactions from a convenient shajprather than from the very begin-
ning of the transaction. These techniques are orthogordlriamic conflict management, and
we do not see any restriction for using them to improve furthe performance of BNTM or

SWAPTM.

167

6.7 Conclusions

In this chapter we have presentedNDI'M and SNVAPTM, two fully flexible HTM systems
that adapt their version and conflict management strateagiesrding to the characteristics
of each individual instance of a transaction executed insygem. This versatility allows
DYNTM and SNVAPTM to take smart decisions to resolve complex conflicts, shmg that

modern HTM systems that fix the conflict management stratedgsign time cannot do.

DYNTM extends the BSETM system with the Transactional Mode Selector (TMS), adnyst
based predictor that takes advantage of the flexibilityretfeby the underlying hardware to
decide the best execution mode for each transaction atmantiThe predictor executes those
transactions that tend to overflow the L1 cache or those drtiois that are prone to abort
multiple times in eager mode, which saves computationakwoid minimizes the abort rate.
The rest of transactions are executed lazily to favor carogy in the system. INTM also
gets benefit from a novel, high-performance policy to effilieresolve eager-lazy conflicts. In
high-contention applications, YN TM obtains an average speedup of 19% over the best (ide-
alized) HTM system that employ fixed version and conflict nggmaent mechanisms, a 24%
speedup over BSETM and a 12% speedup over an HTM system that applies statiticton

management policies.

While DYNTM re-executes in eager mode those transactions that exbeedl cache,
SWAPTM handles on the fly the eviction, removing inconsistendiasecessary. This mech-
anism hybrid data versioning technique offers more fleitjothan DyNTM conflict manage-
ment approach. For instancen&TM takes out the predictor from the system and uses instead
profiling techniques to modify at any point in time the beloawf each individual instance of a

transaction. As a result V8\PTM obtains an average speedup of 11% ovENDM.

168

169

Chapter 7

Conclusions

The consolidation in the multicore era offers numerous dpipdties to develop powerful appli-
cations in the near future. Transactional Memory proposssple and efficient programming
model to enhance the performance of parallel software witlsacrifying ease of use. This
thesis examines different alternatives to implement a-pigtiormance hardware-assisted TM
system using architectural on-chip support. In this chapte first expose a summary of the

contributions enclosed in this dissertation and then wieviotliscussing future work.

7.1 Summary

In this thesis, we address the latent problems associatddmddern HTM systems by

presenting five advanced HTM designs that require distracisactional mechanisms.

FASTM. We propose a low-costagerHTM system that modifies the L1 cache controller and
the coherence protocol to eliminate most of the softwaretapwhich in turn minimizes the
number of conflicts and favors overall concurrency. On the band, RSTM forces write-
backs to the L2 cache on coherence transitions, which temesfly guarantees that the non-
speculative state is pinned down in the upper levels of thenong hierarchy. On the other
hand, a software log is kept on the side with a copy of theseegalwhich permits in-place
transactional replacements without additional actiongnd¢, RSTM takes advantage of a

hybrid version management mechanism that collects the best cibpeefearly or late) data

170

versioning proposals. This HTM system can be further imedavy coupling the original pro-
posal with selective logging or wake-up notification.

FUSETM and SPECTM. We rethink the concept of speculative transactions by ptesge
FUSETM, a non-invasivelazy HTM system that offers a unified framework where different-
mode transactions can be simultaneously executedu$ERM, transactions that fit in the L1
cache defer the resolution of conflicts at commit time, altioit detects (and tracks) collisions
as soon as they are produced. This infrastructure pernatsrtplementation ofocal commits
that avoid long delays when the system executes short témss. What is more, by restart-
ing in eager mode those transaction that overflow the L1 ¢atleeFUSETM system saves a
considerable amount of on-chip area—previous lazy HTMesystrequire additional hardware
to maintain the overflowing state PSCTM extends EISETM to support deferred resolution of
conflicts for most of the lines of a transaction, indepenigenitits size.

DYNTM and SWAPTM. We break with the assumption that HTM system must fix transac-
tional mechanisms at design time by introducing two trulyibile HTM systems: INTM and
SWAPTM. The former determines the best-suited execution modedoh individual instance
of a transaction by recording past information of previgustmmitted or aborted instances.
The latter decouples conflict management from version nmemagt in order to switch the ex-
ecution mode on the fly. Cutting off the dependency on the wbrghd version management
strategy during the whole execution enables high concoyren applications with heteroge-
neous transactions—those that present variable sizesiff@eckit levels of contention—and

good performance on applications that carry a dynamic hehav

7.2 Future Work

The wide versatility of the HTM systems presented in thiselisation opens new venues

for future TM research.

7.2.1 Eager HTM Systems

FASTM is only the first step to bridge the gap between early arel\Vl implementations.
Nonetheless, we believe that there is plenty of work thathedmto improve further eager HTM

systems. In this thesis, we have seen thedTiV reduces the pressure on signatures, increas-

171

ing their fidelity and reducing the overhead of false posgivHowever, the implementation of
this mechanism is still critical when large transactiors executed. Thus, it would be interest-
ing to study new methods to track big read and write sets, aadfierarchical or asymmetric

configurations.

This thesis also demonstrates that many-threaded exesusigffer considerable delays
when running high-contention applications, even afteryapg advanced conflict resolution
policies. Wake-up natification is a good strategy to savéajllpower on those situations. This
power budget could be used to accelerate critical trarsecte.g, by applying DVFS tech-
niques [61]) and reduce the conflict window. Similarly, it wld be attractive to study the
impact of coupling an Asymmetric CMP [117] with TM supporthieh would permit critical

transactions to speed up their execution as soon as theyoaerto the faster core.

7.2.2 Lazy HTM Systems

This thesis shows how a lazy HTM system can be built using rddge hardware. To
achieve our goal, we have assumed simple, in-order coresitidte the comprehension of the
design. Nonetheless, the industry is manufacturing owtrdér (OoQ) processors to increase
ILP. This core configuration introduces several microdeztiural structurese(g, store buffers)
or events €.g, branch misspeculation) that the transactional mechanisunst be aware of.
Although few OoO architectures with TM support have beenlaep (see the Rock proto-
type [23] for more info), all of them assumed an eager HTM soheThus, it would be nice to

see how a lazy HTM system can be integrated in a CMP formed Iy @ocessors.

One of the advantages of using store buffers is that theraysam implement relaxed con-
sistency models. Inside transactions, it is enough tofgdtensactional consistency (of course,
register dependences must be preserved). In such weaksnateiory accesses can be re-
ordered at free will. It would be interesting to research kbiiM systems can take advantage of
this flexibility—delaying offending memory accesses atéine of a transaction may improve

the overlap of conflicting atomic blocks.

172

7.2.3 Dynamic HTM Systems

The dynamically adaptive HTM systems presented througththi@sis provide an important
framework for future HTM studies. A lot of interesting work @onflict management on the
face of adaptability is possible. A reasonable startingfpoould be extending the two available
execution modes with others that employ more aggressivermervative features. The conflict

resolution policy between different-mode transactions &igo be revised to establish distinct

priority levels to promote critical transactions.

More sophisticated mechanisms for deciding the right etx@cumode could be devised as
well. For instance, the EINTM predictor can be expanded with additional parametersdardo
figure out with high accuracy how future instances of a tretisa will behave. Improvements
on the coherence protocol, reductions on complexity, icapibns to the TM runtime, and others

are also topics that could be revisited on the type of systambled by PNTM or SWAPTM.

173

Bibliography

[1]
2]

[3]

http://www.cs.wisc.edu/trans-memaory/biblio/.

TLB and snoop energy-reduction using virtual caches in power chip-
multiprocessorsAug 2002.

Martin Abadi, Tim Harris, and Mojtaba Mehrara. Transacal Memory with Strong
Atomicity Using Off-the-Shelf Memory Protection Hardwata Procs of the 14th Symp
on Principles and Practice of Parallel Programminigeb 2009.

[4] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Bn R. Murphy, Bratin Saha,

[5]

[6]

[7]

[8]

[9]

[10]

[11]

and Tatiana Shpeisman. Compiler and Runtime Support fariéfii Software Transac-
tional Memory. InProc of the Intl Conf on Programming Language Design and &npl
mentation Jun 2006.

C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmauha@es E. Leiserson, and
Sean Lie. Unbounded Transactional Memory.Phocs of the 11th Intl Symp on High-
Performance Computer Architectyrieéeb 2005.

Utku Aydonat and Tarek Abdelrahman. SerializabilityTonsactions in Software Trans-
actional Memory. IrProcs of the 3rd Workshop on Transactional Computigb 2008.

Utku Aydonat and Tarek Abdelrahman. Hardware SupportRelaxed Concurrency
Control in Transactional Memory Systems. Rrocs of the 43rd Intl Symp on Microar-
chitecture Dec 2010.

Lee Baugh, Naveen Neelakantam, and Craig Zilles. Usiagiiware Memory Protection
to Build a High-Performance, Strongly Atomic Hybrid Traosanal Memory . InProcs
of the 35th Intl Symp on Computer Architectutan 2008.

Burton H. Bloom. Space/time Trade-offs in Hash CodingrwAllowable Errors.Com-
munications of the ACML3:7, 1970.

Colin Blundell, Joe Devietti, E. Christopher Lewis,caMilo M. K. Martin. Making
The Fast Case Common And The Uncommon Case Simple In Unbddmdasactional
Memory. InProcs of the 34th Intl Symp on Computer Architecturen 2007.

Colin Blundell, Milo M.K. Martin, and Thomas F. WenisclnvisiFence: Performance-
Transparent Memory Ordering in Conventional MultiproogssInProcs of the 36th Intl
Symp on Computer Architectyr2009.

174

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. i@wand David A. Wood.
TokenTM: Efficient Execution of Large Transactions with Ehaare Transactional Mem-
ory. InProcs of the 35th Intl Symp on Computer Architecturn 2008.

Jayaram Bobba, Marc Lupon, Mark D. Hill, and David A. Vdod&safe and Efficient Su-
pervised Memory Systems. Frocs of the 17th Intl Symp on High-Performance Com-
puter ArchitectureFeb 2011.

Jayaram Bobba, Kevin E. Moore, Luke Yen, Haris Volos,rkB. Hill, Michael M.
Swift, and David A. Wood. Performance Pathologies in Hamdgweransactional Mem-
ory. InProcs of the 34th Intl Symp on Computer ArchitectuJrn 2007.

Jayaram Bobba, Weiwei Xiong, Luke Yen, Mark D. Hill, aBavid A. Wood. StealthT-
est: Low Overhead Online Software Testing using TransaatiMemory. InProcs of
the 18th Intl Conf on Parallel Architectures and CompilatidechniquesSep 2009.

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, anchlg Olukotun. STAMP:
Stanford Transactional Applications for Multi-Procesgginin Procs of The IEEE Intl
Symp on Workload CharacterizatioBep 2008.

Chi Cao Minh, Martin Trautmann, JaeWoong Chung, AudterDonald, Nathan Bron-
son, Jared Casper, Christos Kozyrakis, and Kunle OlukoamEffective Hybrid Trans-
actional Memory System with Strong Isolation GuaranteasPrbcs of the 34th Intl
Symp on Computer Architectyrdun 2007.

Calin Cascaval, Colin Blundell, Maged Micheal, Har@din, Peng Wu, Stefanie Chiras,
and Siddhartha Chatterjee. Software Transactional Memflyy is it only a research
toy? Communications of the ACN§1(11):40-46, Nov 2008.

Michel Cekleov and Michel Dubois. Virtual-address loas, part 2: Multiprocessor is-
sues.|IEEE Micro, 17, Nov 1997.

Luis Ceze, James Tuck, Calin Cascaval, and Josep TmreBulk Disambiguation of
Speculative Threads in Multiprocessors. Rrocs of the 33th Intl Symp on Computer
Architecture Jun 2006.

Luis Ceze, James Tuck, Pablo Montesinos, and JoseplEsr BulkSC: bulk enforce-
ment of sequential consistency. Pnocs of the 34th Intl Symp on Computer Architecture
June 2007.

Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austebdviald, Chi Cao Minh,
Woongki Baek, Christos Kozyrakis, and Kunle Olukotun. Al&bé&, Non-blocking Ap-
proach to Transactional Memory. Rrocs of the 13th Intl Symp on High-Performance
Computer ArchitectureFeb 2007.

S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landh Yip, H. Zeffer, and
M. Tremblay. Rock: A high-performance sparc cmt procesHOEE Micro, 29(2), Apr
2009.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

175

Weihaw Chuang, Satish Narayanasamy, Ganesh Venkai@skh Sampson, Michael Van
Biesbrouck, Gilles Pokam, Brad Calder, and Osvaldo Colaidnbounded Page-Based
Transactional Memory. IRrocs of the 12th Intl Conf on Architectural Support for Pro-
gramming Languages and Operating Systeliar 2006.

JaeWoong Chung, Chi Cao Minh, Austen McDonald, Trai@rg, Hassan Chafi,
Brian D. Carlstrom, Christos Kozyrakis, and Kunle Olukatufiradeoffs in Transac-
tional Memory Virtualization. IrProcs of the 12th Intl Conf on Architectural Support for
Programming Languages and Operating Systedtt 2006.

JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen Malbirian D. Carlstrom,
Christos Kozyrakis, and Kunle Olukotun. The Common Casedaetional Behavior of
Multithreaded Programs. IRrocs of the 12th Intl Symp on High-Performance Computer
Architecture Feb 2006.

Jaewoong Chung, Luke Yen, Stephan Diestelhorst, M&thlack, Michael Hohmuth,
Dan Grossman, and David Christie. ASF: AMD64 Extension fock-free Data Struc-
tures and Transactional Memory. Rrocs of the 43rd Intl Symp on Microarchitecture
Dec 2010.

Pat Conway and Bill Hughes. The AMD Opteron Northbridgehitecture.IEEE Micro,
27:10-21, Mar 2007.

David E. Culler, Anoop Gupta, and Jaswinder Pal Sirkgrallel Computer Architecture:
A Hardware/Software ApproaciMorgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1997.

Luke Dalessandro, Michael F. Spear, and Michael L. SddOrec: Streamlining STM
by Abolishing Ownership Records. Rrocs of the 15th Symp on Principles and Practice
of Parallel ProgrammingJan 2010.

Peter Damron, Alexandra Fedorova, Yossi Lev, Victochangco, Mark Moir, and Dan
Nussbaum. Hybrid Transactional Memory.Rrocs of the 12th Intl Conf on Architectural
Support for Programming Languages and Operating Syst@us2006.

Dave Dice, Yossi Lev, Mark Moir, and Dan Nussbaum. Teat®nal Locking Il. In
Procs of the 14th Intl Conf on Distributed Computjr&ept 2006.

Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. rligd&xperience with a
Commercial Hardware Transactional Memory ImplementatiarProcs of the 14th Intl
Conf on Architectural Support for Programming Languaged @perating SystemMar
2009.

Dave Dice, Ori Shalev, and Nir Shavit. Transactionakkiag II. In Shlomi Doley,
editor, Distributed ComputingLecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2006.

Aleksandar Dragojevic, Rachid Guerraoui, and Midh&apalka. Stretching Transac-
tional Memory. InProcs of the 2009 Intl Conf on Programming Language Desigih an
ImplementationJun 2009.

176

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Stijn Eyerman and Lieven Eeckhout. Modeling Criticac8ons in Amdahl's Law and
its Implications for Multicore Design. IProcs of the 37th Intl Symp on Computer Ar-
chitecture 2010.

Pascal Felber, Christof Fetzer, and Torvald Riegel.n&wic Performance Tuning of
Word-Based Software Transactional Memory.Pirocs of the 13th Intl Symp on Princi-
ples and Practice of Parallel Programmingeb 2008.

Tim Harris Osman Unsal Adrian Cristal Ibrahim Hur Mat®alero Ferad Zyulkyarov,
Srdjan Stipic. Discovering and understanding performéa#enecks in transactional
applications. InProcs of the 19th Intl Conf on Parallel Architectures and Qulation
TechniquesSep 2010.

James R. Goodman. Coherency for multiprocessor Vigtdress caches. Procs of the
Intl Conf on Architectual Support for Programming Languagad Operating Systems
1987.

Justin E. Gottschlich, Manish Vachharajani, and Jgr&nSiek. An Efficient Software
Transactional Memory Using Commit-time Invalidation. Pmnocs of the Intl Symp on
Code Generation and OptimizatipApr 2010.

Jim Gray and Andreas Reut@ransaction Processing: Concepts and Techniqhésr-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

Shantanu Gupta, Florin Sultan, Srihari Cadambi, Frdwaincic, and Martin Rotteler.
Using Hardware Transactional Memory for Data Race Detectio Procs of the 23rd
Intl Symp on Parallel and Distributed Processing SymposiMiay 2009.

Nicholas Haines, Darrell Kindred, J. Gregory Morrisebcott M. Nettles, and Jean-
nette M. Wing. Composing First-Class TransactioA&CM Transactions on Program-
ming Languages and Syster§, 1994.

Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben ttbgrg, Mike Chen, Christos
Kozyrakis, and Kunle Olukotun. Programming with Transawdl Coherence and Con-
sistency (TCC). IfProcs of the 11th Intl Conf on Architectural Support for Pragnming
Languages and Operating Syster@st 2004.

Lance Hammond, Vicky Wong, Mike Chen, Brian D. CarlstroJohn D. Davis, Ben
Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kakig, and Kunle Oluko-
tun. Transactional Memory Coherence and Consistenci?raans of the 31st Intl Symp
on Computer Architectureun 2004.

Tim Harris, James R. Larus, and Ravi Rajwdarransactional Memory Morgan and
Claypool, Jun 2010.

Tim Harris, Mark Plesko, Avraham Shinnar, and Daviddisar Optimizing Memory
Transactions. IfProcs of the Intl Conf on Programming Language Design andlémp
mentation Jun 2006.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

177

Maurice Herlihy, Victor Luchangco, Mark Moir, and W#lm N. Scherer Ill. Software
Transactional Memory for Dynamic-Sized Data StructuresPriocs of the 22nd Symp
on Principles of Distributed Computingul 2003.

Maurice Herlihy and J. Eliot B. Moss. Transactional Mamyt Architectural Support for
Lock-Free Data Structures. Rrocs of the 20th Intl Symp on Computer Architecture
May 1993.

Enric Herrero, José Gonzalez, and Ramon Canal. iEl@stoperative Caching: an Au-
tonomous Dynamically Adaptive Memory Hierarchy for Chip Kiforocessors. IiProcs
of the 37th Intl Symp on Computer Architectutan 2010.

Mark D. Hill, Derek Hower, Kevin E. Moore, Michael M. Sttj Haris Volos, and
David A. Wood. A Case for Deconstructing Hardware Transaeti Memory Systems.
In Programming Models for Ubiquitous Parallelisr2007.

Mark D. Hill and Michael R. Marty. Amdahl’'s Law in the Mtitore Era. volume 41, Jul
2008.

Lorin Hochstein, Victor R. Basili, Uzi Vishkin, and JolGilbert. A Pilot Study to Com-
pare Programming Effort for Two Parallel Programming Madelournal of System
Software 81, Nov 2008.

Owen S. Hofmann, Christopher J. Rossbach, and Emmethdli Maximum Benefit
from a Minimal HTM. In Procs. of the 14th Intl Conf on Architectural Support for
Programming Languages and Operating Systever 2009.

T. Horel and G. Lauterbach. UltraSPARC-III: Designimpird-Generation 64-bit Per-
formance. volume 19, May/Jun 1999.

Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, ChaRdik, Jae-Min Ryu,
Seong-Yeol Park, and Chul-Ryun Kim. Xen on arm: System alitation using xen
hypervisor for arm-based secure mobile phone€dnsumer Communications and Net-
working Conference, 2008. CCNC 2008. 5th IEH&n 2008.

Intel. First the Tick, Now the Tock: Next Generation diis Microar-
chitecture (Nehalem). Irhttp://www.intel.com/technology/architecture-sili¢next-
gen/whitepaper.pdf

S.A.R. Jafri, M. Thottethodi, and T.N. Vijaykumar. EBIIM: Reducing Transactional
State Overhead. IRrocs of the 16th International Symposium on High Perforoean
Computer ArchitectureJan 2010.

Eric H. Jensen, Gary W. Hagensen, and Jeffrey M. BraughtA New Approach to
Exclusive Data Access in Shared Memory Multiprocessorghiiieal Report Technical
Report UCRL-97663, Nov 1987.

Satish Narayanasamy Jie Yu. Tolerating ConcurrenaysBusing Transactions as Life-
guards. InProcs of the 43rd Intl Symp on Microarchitectui2ec 2010.

178

[61] Wonyoung Kim, Meeta Sharma Gupta, Gu-Yeon Wei, and @®&rooks. System level
analysis of fast, per-core dvfs using on-chip switchingutagprs. InProcs. of the 14th
Intl Symp on High-Performance Computer Architectufeb 2008.

[62] Poonacha Kongetira, Kathirgamar Aingaran, and Kunligk@un. Niagara: A 32-Way
Multithreaded Sparc Process®EEE Micro, 25(2):21-29, 2005.

[63] Sanjeev Kumar, Michael Chu, Christopher J. Hughesth@aKundu, and Anthony
Nguyen. Hybrid Transactional Memory. Rrocs of the 11th ACM SIGPLAN Symp
on Principles and Practice of Parallel Programminiglar 2006.

[64] James R. Larus and Ravi Rajwdransactional MemoryMorgan and Claypool, 2006.

[65] Yossi Lev, Mark Moir, and Dan Nussbaum. PhTM: Phasec3aational Memory. In
Procs of the 2nd Workshop on Transactional Compuytaagg 2007.

[66] Sean Lie. Hardware Support for Unbounded Transadtidemory. Master’s thesis,
May 2004. Massachusetts Institute of Technology.

[67] Javier Lira, Carlos Molina, and Antonio Gonzalez. TAection: Optimizing Banks
Usage in Non-Uniform Cache Architectures. Rnocs of the 24th Intl Conf on Super-
computing Jun 2010.

[68] David B. Lomet. Process Structuing, Synchronizatiod Recovery Using Atomic Ac-
tions. InProcs of the Intl Conf on Language Design for Reliable Safywslar 1977.

[69] Marc Lupon. Hardware Approaches for Transactional MgmMaster's thesis, Univer-
sitat Politecnica de Catalunya, 2008.

[70] Marc Lupon, Grigorios Magklis, and Antonio Gonzalezersion Management Alterna-
tives for Hardware Transactional Memory. Rrocs. of the 9th MEDEA Workshop on
MEmory performance: DEaling with Applications, systemd architecture Oct 2008.

[71] Marc Lupon, Grigorios Magklis, and Antonio GonzaleEASTM: A Log-based Hard-
ware Transactional Memory with Fast Abort RecoveryPhcs of the 18th Intl Conf on
Parallel Architectures and Compilation Techniqu&gp 2009.

[72] Marc Lupon, Grigorios Magklis, and Antonio Gonzalez. Dynamically Adaptable
Hardware Transactional Memory. Rrocs of the 43rd Intl Symp on Microarchitecture
Dec 2010.

[73] Marc Lupon, Grigorios Magklis, and Antonio Gonzalex.High-performing Hardware
Transactional Memory with Swapping Execution Modes. TezdrReport UPC-DAC-
RR-ARCO-2011-6, Universitat Politecnica de Cataluny@l 2

[74] Marc Lupon, Grigorios Magklis, and Antonio GonzaleA Selective Logging Mech-
anism for Hardware Transactional Memory. Technical Rep?C-DAC-RR-ARCO-
2011-7, Universitat Politecnica de Catalunya, 2011.

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

179

Marc Lupon, Grigorios Magklis, and Antonio Gonzaleiightweight Optimizations
for Eager Hardware Transactional Memory Systems. TechRieport UPC-DAC-RR-
ARCO-2011-5, Universitat Politecnica de Catalunya, 2011

Peter S. Magnusson, Magnus Christensson, Jespers@skiDaniel Forsgren, Gustav
Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Mogséed Bengt Werner. Sim-
ics: A Full System Simulation PlatformEEE Computer35, 2002.

Virendra Marathe, Michael F. Spear, Christopher Herikihul Acharya, David Eisen-
stat, William N. Scherer Ill, and Michael L. Scott. Loweritlge Overhead of Software
Transactional Memory. IfProcs of the 1st Intl Workshop on Transactional Compuyting
Mar 2006.

Virendra J. Marathe and Michael L. Scott. Using LL/SCSionplify Word-based Soft-
ware Transactional Memory (poster). Rrocs of the 24th Intl Symp on Principles of
Distributed ComputingJul 2005.

Kevin Moore Mark Moir and Dan Nussbaum. The Adaptivengactional Memory Test
Platform: A Tool for Experimenting with Transactional Coide Rock. InProcs of the
3rd ACM SIGPLAN Workshop on Transactional Computiagb 2008.

Milo M. K. Martin, Daniel J. Sorin, Bradford M. BeckmanMichael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David YAood. Multifacet’s
General Execution-Driven Multiprocessor Simulator (GEMBolset. ACM SIGARCH
Computer Architecture New33, 2005.

Austen McDonald, JaeWoong Chung, D. Carlstrom Briam,Cao Minh, Hassan Chafi,
Christos Kozyrakis, and Kunle Olukotun. Architectural Sentics for Practical Transac-
tional Memory. InProcs of the 33th Intl Symp on Computer Architecturen 2006.

Austen McDonald, JaeWoong Chung, Hassan Chafi, Chi Cab,NBrian D. Carlstrom,
Lance Hammond, Christos Kozyrakis, and Kunle Olukotun. r&tterization of TCC
on Chip-Multiprocessors. IRrocs of the 14th Intl Conf on Parallel Architectures and
Compilation Technigquessep 2005.

Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott MahRarallelizing Sequential
Applications on Commodity Hardware Using a Low-Cost Sofev@ransactional Mem-
ory. InProcs of the 2009 Intl Conf on Programming Language Desighlamplementa-
tion, Jun 2009.

Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Kar. Hill, and David A.
Wood. LogTM: Log-based Transactional Memory. Rnocs of the 12th Intl Symp on
High-Performance Computer Architectuiéeb 2006.

Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, &en, Mark D. Hill, Ben
Liblit, Michael M. Swift, and David A. Wood. Supporting Nest Transactional Memory
in LogTM. In Procs of the 12th Intl Conf on Architectural Support for Pragming
Languages and Operating Syster@st 2006.

180

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Negi, A. and Waliullah, M.M. and Stenstrom, P. LV*: A Lo@omplexity Lazy Version-
ing HTM Infrastructure. InProcs of the Intl Conf on Embedded Computer Systduis
2010.

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Kernséfil, and Kunyung Chang.
The Case for a Single-Chip Multiprocessor.Hrocs of the 7th Intl Conf on Architectural
Support for Programming Languages and Operating Syst@uis1996.

Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An Oilmain Filter Replacement.
In Procs of the 16th Intl Symp on Discrete Algorithr2805.

Salil Pant and Greg Byrd. A Case for using Value Predicto Improve Performance of
Transactional Memory. IRrocs of the 4th Workshop on Transactional Compuytiegp
2009.

Salil Pant and Gregory Byrd. Limited Early Value Comnuation to Improve Perfor-
mance of Transactional Memory. Rrocs of the 23rd Intl Conf on Supercomputidgn
2009.

Leo Porter, Bumyong Choi, and Dean Tullsen. Mapping @uWRath from Hardware
Transactional Memory to Speculative MultithreadingPhocs 18th Intl Conf on Parallel
Architectures and Compilation Techniqué&ep 2009.

Seth H. Pugsley, Manu Awasthi, Niti Madan, Naveen Mimahohar, and Rajeev Bala-
subramonian. Scalable and Reliable Communication for \Wairel Transactional Mem-
ory. InProcs of the 17th Intl Conf on Parallel Architectures and (uilation Techniques
Oct 2008.

Xuehai Qian, Wonsun Ahn, and Josep Torrellas. Scdible Scalable Cache Co-
herence for Atomic Blocks in a Lazy Environment. Pmocs of the 43rd Intl Symp on
Microarchitecture Dec 2010.

Ricardo Quislant, Eladio Gutierrez, and Oscar. Pldtaproving Signatures by Local-
ity Exploitation for Transactional Memory. IRrocs of the 18th Intl Conf on Parallel
Architectures and Compilation Techniqu&ep 2009.

Ravi Rajwar. Speculation-Based Techniques for Transactional LocleErecution of
Lock-Based ProgramdPhD thesis, University of Wisconsin, Oct 2002.

Ravi Rajwar and James R. Goodman. Transactional Loek-Execution of Lock-Based
Programs. IrProcs of the 10th Intl Symp on Architectural Support for Resgming
Languages and Operating Syster@st 2002.

Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtuzaing Transactional Memory. In
Procs of the 32nd Intl Symp on Computer Architectdren 2005.

Hany E. Ramadan, Christopher J. Rossbach, Donald Eei?Gwen S. Hofmann, Aditya
Bhandari, and Emmett Witchel. MetaTM/TxLinux: TransanabMemory for an Oper-
ating System. IrProcs of the 34th Intl Symp on Computer Architecturen 2007.

181

[99] Hany E. Ramadan, Christopher J. Rossbach, and Emmath&li Dependence-Aware
Transactional Memory for Increased ConcurrencyPiiocs of the 41st Annual Intl Symp
on Microarchitecture Nov 2008.

[100] Torvald Riegel, Pascal Felber, and Christof FetzerLa&ky Snapshot Algorithm with
Eager Validation. IrProcs of the 20th Intl Symp Distributed Computisgp 2006.

[101] Torvald Riegel, Christof Fetzer, and Pascal FelbemeFbased Transactional Memory
with Scalable Time Bases. rocs of the 19th Symp on Parallelism in Algorithms and
Architectures Jun 2007.

[102] Christopher J. Rossbach, Owen S. Hofmann, and Emmigth®¥. Is Transactional
Programming Actually Easier? IRrocs of the 15th Intl Symposium on Principles and
Practice of Parallel Programming2010.

[103] José M. Garcia Tim Harris Adrian Cristal Osman Utiseahim Hur Mateo Valero Rubén
Titos-Gil, Manuel E. Acacio. Hardware transactional meynaith software-defined
conflicts. InProcs of the 5th Workshop on Transactional Compytiugr 2010.

[104] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. HowlsChi Cao Minh, and Benjamin
Hertzberg. McRT-STM: a High Performance Software Trarisaat Memory System
for a Multi-core Runtime. IrProcs of the 11th Intl Symp on Principles and Practice of
Parallel Programming Mar 2006.

[105] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jaoob Architectural Support for
Software Transactional Memory. FProcs of the 39th Annual Intl Symp on Microarchi-
tecture Dec 2006.

[106] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikey@ankaralingam. Implementing
Signatures for Transactional Memory. Pmocs of the 40th Annual IEEE/ACM Intl Symp
on Microarchitecture pages 123-133, Dec 2007.

[107] Sutirtha Sanyal, Adrian Cristal, Osman S. Unsal,&da¥alero, and Sourav Roy. Dynam-
ically Filtering Thread-Local Variables in Lazy-Lazy Havdre Transactional Memory.
In HPCC '09: Procs of the 11th Conf on High Performance Commudnd Communi-
cations Jun 20089.

[108] William N. Scherer Il and Michael L. Scott. Contentiddanagement in Dynamic Soft-
ware Transactional Memory. IRrocs of the Workshop on Concurrency and Synchro-
nization in Java Programsjul 2004.

[109] William N. Scherer 1l and Michael L. Scott. Advanced@ention Management for
Dynamic Software Transactional Memory. Riocs of the 24th Symp on Principles of
Distributed ComputingJul 2005.

[110] Nir Shavit and Dan Touitou. Software Transactionalnhbey. InProcs of the 14th Symp
on Principles of Distributed Computinéug 1995.

[111] Arrvindh Shriraman and Sandhya Dwarkadas. Refege€ionflicts in Hardware Trans-
actional Memory. IrProcs of the 23rd Intl Conf on Supercomputidgin 2009.

182

[112] Arrvindh Shriraman, Sandhya Dwarkadas, and MichaeBtott. Flexible Decoupled
Transactional Memory Support. Rrocs of the 35th Intl Symp on Computer Architecture
Jun 2008.

[113] Arrvindh Shriraman, Michael F. Spear, Hemayet Hass¥irendra Marathe, Sandhya
Dwarkadas, and Michael L. Scott. An Integrated Hardwarkw&oe Approach To Flex-
ible Transactional Memory. |Rrocs of the 34th Intl Symp on Computer Architecture
Jun 2007.

[114] Michael F. Spear, Maged M. Michael, and Christoph veauR. RingSTM: Scalable
Transactions with a Single Atomic Instruction. Pmocs. of the 20th Intl Symp on Paral-
lelism in Algorithms and Architecturegun 2008.

[115] J. Greggory Steffan, Christopher B. Colohan, Antoffei, and Todd C. Mowry. A
scalable approach to thread-level speculationPiocs of the 27th Intl Symposium on
Computer ArchitectureJun 2000.

[116] Janice M. Stone, Harold S. Stone, Phil Heidelberged, John Turek. Multiple Reserva-
tions and the Oklahoma Updaté£EE Parallel and Distributed Technology(4), Nov
1993.

[117] M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshidaviale N. Patt. Accelerating
critical section execution with asymmetric multi-corelatectures. IrProcs. of the 14th
Intl Conf on Architectural Support for Programming Langeagand Operating Systems
2009.

[118] Herb Sutter. The Trouble With Lock&/C++ Users Journal 23(3), Mar 2005.

[119] Michael M. Swift, Haris Volos, Neelam Goyal, Luke Yedark D. Hill, and David A.
Wood. OS Support for Virtualizing Hardware Transactionarivbry. InProcs of the 3rd
ACM SIGPLAN Workshop on Transactional Computirgb 2008.

[120] Fuad Tabba, Andrew W. Hay, and James R. Goodman. Tetosal Value Prediction.
In Procs of the 4th Workshop on Transactional Compuytkep 2009.

[121] J. Ruben Titos, Manuel E. Acacio, and Jose M. Garciaar@tterization of Conflicts
in Log-Based Transactional Memory. Rrocs of the 16th Euromicro Conference on
Parallel, Distributed and Network-Based Processikgb 2008.

[122] Rubén Titos, Manuel E. Acacio, and Jose M. Garcia. c8Blagion-Based Conflict Res-
olution in Hardware Transactional Memory. Rrocs of the 23rd Intl Parallel and Dis-
tributed Processing Symposiuiiay 2009.

[123] Rubén Titos-Gil, Anurag Negi, Manuel E. Acacio, JddeGarcia, and Per Stenstrom.
Zebra : A data-centric, hybrid-policy hardware transawiomemory design. lrocs
od the 25th Intl Conf on Supercomputjrigin 2011.

[124] Sasa Tomic, Cristian Perfumo, Chinmay Kulkarni, Adfrmejach, Adrian Cristal, Os-
man Unsal, Tim Harris, and Mateo Valero. EazyHTM, EagenfBardware Transac-
tional Memory. InProcs of the 42nd Intl Symp on Microarchitectui@ec 2009.

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

183

Takayuki Usui, Yannis Smaragdakis, and Reimer BatiseAdaptive Locks: Combining
Transactions and Locks for Efficient Concurrency. FArocs of the 18th Intl Conf on
Parallel Architectures and Compilation Techniqu&gp 2009.

M. M. Waliullah and Per Stenstrom. Intermediate Chemiting with Conflicting Access
Prediction in Transactional Memory Systems Pliocs of the 22nd Intl Conf on Parallel
and Distributed Processing Symposiupr 2008.

David W. Wall. Limits of Instruction-Level Parallsim. InProcs of the 4th Intl Conf
on Architectural Support for Programming Languages and 1@fieg Systemspages
176-188, Apr 1991.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torriewlieder Pal Singh, and Anoop
Gupta. The SPLASH-2 Programs: Characterization and Melbgital Considerations.
In Procs of the 22nd Intl Symp on Computer Architectdren 1995.

Tse-Yu Yeh and Yale N. Patt. Alternative Implemergati of Two-Level Adaptive
Branch Prediction. IiProcs of the 25th Intl Symp on Computer Architectuien 1998.

Luke Yen, Jayaram Bobba, Michael M. Marty, Kevin E. MeoHaris Volos, Mark D.
Hill, Michael M. Swift, and David A. Wood. LogTM-SE: Decoupp Hardware Trans-
actional Memory from Caches. I[RArocs of the 13th Intl Symp on High-Performance
Computer ArchitectureFeb 2007.

Luke Yen, Stark C. Draper, and Mark D. Hill. Notary: Harare Techniques to Enhance
Signatures. IiProcs of the 41st Intl Symp on Microarchitectuiec 2008.

Lihang Zhao, Woojin Choi, and Jeff Draper. LagerTM:dperative Lazy-Eager Man-
agement for Improved Concurrency in Transactional MemaryProcs of the 20th Intl
Conf on Parallel Architectures and Compiler Techniguesp 2011.

