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Ok
Here’s what we’re going to do
We all know the numbers right?
From zero to infinity
Whatever
Some other number with a mess of zeros behind it
Here’s what we’re going to do
We’re gonna change the order
of these numbers
to make things interesting
Ok here we go:
1 Million and 1
Sixty-six
1 Billion, twenty-five, seventy-five thousand
1 Billion and eight, six, something
Zero
1 Million 1
Twenty-two
Seventy-five
Eleven
Eleven
Ok this is the new order
The New Number Order

New number order, from the album “1000 hurts” by Shellac
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Chapter 1

Introduction

Modern processors use out-of-order processing logic to achieve high performance in Instructions Per
Cycle (IPC) but this logic has a serious impact on the achievable frequency. In order to get better
performance out of smaller transistors there is a trend to increase the number of cores per die instead of
making the cores themselves bigger. Moreover, for throughput-oriented and server workloads, simpler
in-order processors that allow more cores per die and higher design frequencies are becoming the
preferred choice (IBM’s Power6 1 [1], Sun’s Niagara 3 with 16 cores [5, 6]). Unfortunately, for other
workloads this type of cores result in a lower single thread performance.

There are many workloads where it is still important to achieve good single thread performance.
In this thesis we present the ReLaSch processor; its aim is to enable high IPC cores capable of running
at high clock frequencies by processing the instructions using simple superscalar in-order issue logic
and caching instruction groups that are dynamically scheduled in hardware after commit, that is, out
of the critical path and only when really needed.

1.1 Objective

This thesis has several research goals:

• To show that the dynamic scheduler of a conventional out-of-order processor does a lot of
redundant work because it ignores code repetitiveness.

• To propose a complete superscalar out-of-order architecture that reduces the amount of redun-
dant work done by creating the schedules once in dedicated hardware, storing them in a cache
of schedules and reusing the schedules as much as possible.

• To place the scheduler out of the critical path of execution, which should be enabled by the
reduction of work that the scheduler must do. Thus, the execution path of our proposed processor
can be simpler than that of a conventional out-of-order processor.

1.2 Out-of-order processors: an overview

This section presents a short introduction to out-of-order processors. It describes the concepts in-
volved in the rationale behind our proposal. This overview is not intended to be a survey of all the

1Using a technology independent model, the Power6 processor doubles the frequency of the out-of-order Power5 [1].
The Power7 processor is out-of-order [2]. However, in its initial release its maximum available frequency (4.25GHz as
of October 2010 [3]) is lower than that of the Power6 (5GHz as of April 2010 [4]).

11
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possible ways to implement an out-of-order processor. It is a well-known topic in the computer ar-
chitecture area, so we just give a short overview of the motivation to use them, an insight on the key
implementation issues and a description of their main problems.

1.2.1 Concept

Out-of-order processors are able to execute the instructions of a program in a different order than
that specified by the programmer. As long as the out-of-order processor respects the dependences
between instructions, the outcome of the program will be indistinguishable from the result produced
by a sequential (in-order) execution, that is, in the original order of the instructions.

1.2.2 Classification

In-order processors (IO). Also known as statically-scheduled processors. For this group of proces-
sors, all the instruction scheduling is done by the compiler. The microarchitecture issues groups
of independent instructions that are consecutive in program order. At execution time, there are
no changes on the order chosen by the compiler at compilation time and hence this mechanism
is called statically-scheduled.

Out-of-order processors (OoO). Also known as dynamically-scheduled processors. On top of the
static instruction scheduling performed by the compiler, the processor performs a second level
of dynamic scheduling. Instructions are fetched following the predicted sequential order and put
into an instruction queue. The microarchitecture groups the best independent instructions from
the window dynamically and issues them for execution in a better order than the one chosen by
the compiler based on the resources available.

On one hand, out-of-order processors can extract more instruction level parallelism (ILP) from the
instruction stream. Furthermore, existing binaries can benefit from changes in the microarchitecture
without recompiling. On the other hand, in-order processors are simpler and, therefore, smaller; addi-
tionally, they consume less power and either have a lower number of pipeline stages (lower penalties)
or can be designed to run at higher frequencies.

1.2.3 Motivation

Out-of-order processors are attractive because they can achieve high speed-ups in IPC and execution
time with respect to in-order cores. Whenever there is a data dependence with a long latency instruc-
tion, out-of-order processors are able to continue executing younger independent instructions, whereas
in-order processors stall.

The compiler can schedule the instructions statically for a well-known in-order processor and
remove these stalls, but still there are two important scenarios in which it is impossible:

a. The presence of instructions with variable latency, such as the accesses to the memory hierarchy,
that have very different latencies on a miss and on a hit. Although the introduction of pre-fetch
mechanisms can mitigate the problem, there is still much uncertainty in the latency of such
instructions. Moreover, these instructions have a significant share of the instruction mix and
their impact cannot be neglected. The flexibility of out-of-order processors enables them to find
independent instructions that can be executed while waiting for cache misses.

b. Speculative execution through branch prediction. When instructions are executed speculatively
the chances of finding additional independent instructions in the speculated path increase, which
out-of-order processors can exploit. On the other hand, compilers must be conservative to
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preserve the semantics of the program. They don’t move instructions across basic blocks unless
it is safe to do the optimization. Therefore, in most cases the independent instruction will not
be statically rescheduled. With the use of techniques like predication the compiler can work
around this problem, but it comes with an overhead in the code size and the total number of
instructions executed.

To summarize, the flexibility of dynamic scheduling allows to adapt to changing situations such
as variable instruction latency and changing execution paths that static scheduling cannot manage
efficiently.

1.2.4 Implementation

This section presents the main structures needed to implement a generic out-of-order processor.

Dependences

The first thing to consider is what is a dependence and when instructions can be considered indepen-
dent. Figure 1.1 illustrates the possible cases. The examples show cases in which only registers are
involved. Memory and control dependences are left aside here for simplicity.

Both output and anti-dependences are considered “false” or “name dependences” since we can
eliminate the dependence by changing the registers used by the instruction. On the other hand, a
data dependence cannot be removed using this technique: the dependent instruction must wait until
the needed value is produced.

Register Renaming

The register renaming logic eliminates the false dependences while preserving the semantics of the
program. It maps the logical registers (the ones specified in the Instruction Set Architecture or ISA) to
a larger set of physical registers. There can be several instances of the same logical register, although
just one stores the architectural value. A new physical register is assigned to each destination logical
register, while all reads to a given logical register are renamed to its most recently mapped physical
register. Thus, the data dependences are preserved whereas false dependences are removed.

Physical registers are recycled after they are no longer needed. Depending on the implementation,
that happens after the retirement of the instruction that writes the register or after the last read to
the register.

The structures commonly used to implement register renaming are: a) the rename table with
the most recent mapping of each logical register; b) the architectural rename table with the physi-
cal register that currently stores the architectural value of each logical register; and c) the free list
that contains the free physical registers, that is, the registers available to be mapped to incoming
instructions.

An important problem of register renaming is that two consecutive instructions may be dependent,
so the renaming state after the first instruction is processed must be known to rename the second
correctly. The consequence is that the renaming logic grows in complexity in superscalar processors,
since the renaming logic must check any dependence between all instructions being mapped at the
same time and rename them accordingly. Furthermore, the outcome of the renaming logic at a given
cycle is used the next cycle. Such tight loop makes it challenging to pipeline the renaming logic
without having an impact in performance.
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a) Data dependence

A: MUL R1, R2, R3

B: ADD R3, R4, R5

b) Output dependence

A: MUL R1, R2, R3

B: ADD R4, R5, R3

c) Anti-dependence

A: MUL R1, R2, R3

B: ADD R4, R5, R1

d) Independent code

A: MUL R1, R2, R3

B: ADD R1, R4, R5

Figure 1.1: The examples of code show, from left to right: a) Data or real dependence. If the
instructions have the chance to execute out-of-order there is a Read-After-Write (RAW) hazard. b)
Output dependence. The hazard it can create is called Read-After-Write (RAW). c) Anti-dependence.
It is related with Write-After-Read (WAR) hazards. d) Independent code. The instructions can be
freely reordered. The instructions in the examples indicate the destination register in the right-most
position.

In-order retirement

All modern out-of-order processors retire the instructions in the original program order. The use of
branch prediction already forces them to wait until the branch is resolved to retire the speculated in-
structions, even if they have finished execution many cycles before. Moreover, retiring the instructions
in order forces exceptions to be precise. An exception is imprecise if the architectural state seen by the
exception handler has been modified by instructions younger than the one that raised the exception,
or if the state has not been modified by an older instruction. Both cases can occur in an out-of-order
processor if instructions are allowed to retire out-of-order.

After instructions are renamed, they are inserted in the Re-Order Buffer (ROB), a First-In First-
Out (FIFO) structure. An instruction stays in the ROB until it reaches the head of the buffer and it
has completed execution with no exception or mis-speculation. The instruction retires (what is known
as the Commit stage), updating the architectural state: that is, the destination register and the PC.
It also updates the memory if the instruction is a store.

The architectural rename table tracks which physical registers hold the architectural state. The
architectural rename table is updated in the Commit stage. Alternatively, dedicated architectural reg-
isters can be used. Additionally, the store queue keeps the information of all in-flight (non-committed)
stores, including the address that is going to be accessed and the value that will be written. This is
needed in order to update memory in the Commit stage.

A load instruction accesses the store queue before accessing the cache and checks if there is any older
store that accesses the same address, a situation known as memory aliasing. If such an aliasing exists,
the data is bypassed directly from the store queue instead of accessing the cache. In an out-of-order
processor, memory instructions may calculate the addresses out-of-order too. To avoid stalling until
the addresses of all older accesses are known, load instructions usually access the cache speculatively.
When a store resolves its address, it checks if there is any younger load that has speculatively accessed
the same address. The load is re-executed in case of an aliasing, typically forcing a pipeline flush.
Thus, there is also a load queue that tracks all in-flight loads. The load and the store queues are
sometimes merged into just one queue. Usually there is also a prediction mechanism to prevent
speculative execution of loads that have been re-executed previously and thus reduce the number of
pipeline flushes.

1.2.5 Issue logic

The issue logic is responsible for sending the instructions to the functional units (FU) when they are
ready. The instructions are inserted in the issue queue after that have been renamed. The issue logic
has to implement two main functionalities:

a. Wake-up: It tracks which instructions are ready to be executed (i.e. all its operands are avail-
able). This means that whenever there is a new result available, the logic has to check if it is
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the operand of any instruction that is present in the issue queue. A common implementation
uses comparators in each entry of the issue queue. It compares the physical register of each new
result produced by the FUs with the physical source registers of the instructions in the queue.
The tags that identify the instructions that produce each result are broadcasted to all the entries
of the issue queue.

b. Select: From all the ready instructions in the queue in a given cycle, it has to select a group of
them to execute in the FUs. The selection must respect the FU allocation rules to prevent any
structural hazard. i.e., the number and type of FUs, the issue latency of operations previously
sent to them, clustering of FUs, etc. The maximum number of instructions than can be selected
per cycle defines the issue width of the processor. If more than one instruction can be selected,
the processor is considered a superscalar core.

1.2.6 Main problems

It becomes apparent that out-of-order processors require several complex structures. Even worse,
a technique like register renaming introduces a tight loop in the critical path of execution, since
the physical register used by the instructions renamed in a given cycle are needed when renaming the
instructions in the next cycle. This makes difficult to pipeline the renaming logic. Also, its complexity
make these structures power-hungry.

An even more important problem is scalability. It has been shown that these structures don’t
scale well with quadratic increments in latency when the issue width or the length of the queues is
increased [7].

1.3 Repeated issue in the out-of-order processors

Functions and loops are basic structures used to code algorithms. Most of the time, out-of-order issue
logic processes a reduced amount of different instructions and many cycles it ends up issuing together
the same groups of independent instructions. Eventually, the schedule adapts to new situations such
as a cache miss or a change in the executed path.

The issue logic of an out-of-order processor is a mechanism designed to find each cycle the maxi-
mum available parallelism. All current implementations do not remember any information about the
parallelism found before, the latencies of the memory instructions or the dependences found in the
past. They do not benefit from the repetitive behavior of code, unlike other processor elements, e.g.
caches or branch predictors, that indeed rely on this characteristic of the programs to perform as
expected. The issue logic is the only part of the processor designed to efficiently execute valid random
code.

To show that the issue logic repeats most of its work, we have captured the issue-groups (instruc-
tions issued in the same cycle) created by an out-of-order processor on simulations of the SPECcpu2000
benchmarks for 100 millions of instructions. The experimental environment is presented in detail in
section 9.1. Figure 1.2 shows the percentage of unique issue-groups that add up 90% of the cycles.
From this data, a 90/10-like rule of thumb can be postulated: 6% of the issue-groups appear 90%
of the cycles. Regrettably, the issue logic is constantly creating the same issue-groups in the critical
path of execution. These experiments are examined in more detail in chapter 2.

1.4 Proposal and thesis outline

We present the ReLaSch processor, named after Reused Late Schedules, in which the creation of
issue-groups is removed from the critical path of execution. It uses a simple and small in-order
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issue logic. It just wakes-up and selects the instructions of a single issue-group each cycle, instead
of processing the instructions of a whole issue queue. The size of the issue-group is limited by the
issue-width (four integer and two floating point instructions in the default ReLaSch and our reference
processors), much smaller than the issue queue (20 integer and 15 floating point instructions in our
reference out-of-order processor). Chapter 3 provides a general description of the ReLaSch processor.

A new logic at the end of the conventional pipeline schedules the committed instructions into
rgroups (which are sequences of issue-groups). The default configuration of ReLaSch uses 256-
instruction rgroups, with issue-groups that include up to four integer and two floating point instruc-
tions each. The new scheduler can be complex since it is not in the critical path of execution: our
experiments show that even using a 20-stage scheduler does not affect the IPC achieved. Chapter 4
describes the scheduler.

The rgroups are stored in a cache. Whenever it is possible, an rgroup is read and its instructions
executed; the schedules are reused, thus lowering the pressure on the scheduling logic. The cache is
presented in chapter 5, while the new front-end that reads the rgroups is described in chapter 6. The
in-order issue logic is detailed in chapter 7, while a description of the rest of elements of the processor
is included in chapter 8.

In some cases, the ReLaSch processor is able to outperform a conventional out-of-order processor,
because the post-commit scheduler has a broader vision of the code. For instance, while ReLaSch can
schedule together two independent instructions that are distant in the code, a conventional out-of-
order processor only issues them in the same cycle if both are present at the same time in the issue
queue.

Conventional out-of-order processors use branch prediction and memory aliasing speculation to
find more available instructions. Besides that, their issue logic adapts to variable latency instructions.
The ReLaSch processor predicts the branch targets, memory aliases and latencies at scheduling time,
out of the critical path. The prediction is based on the most recent executions seen at scheduling time.
Conventional branch predictors make their prediction at execution time and can adapt it faster than
ReLaSch. ReLaSch average branch misprediction rate is slightly higher than that of a conventional
branch predictor.

Out-of-order issue logic reacts immediately to changes in code behavior. ReLaSch relies on the
repetitive nature of the code. Therefore, on a change the schedule mispredicts or stalls due to an
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unexpected latency. To reduce the ammount of wasted cycles, it detects and replaces the rgroups that
continuously fail.

The ReLaSch processor retains many techniques and elements from conventional out-of-order pro-
cessors. It has a Reorder Buffer and a Commit stage to retire instructions in-order and provide
precise interrupts. Additionally, it performs registers renaming to eliminate false dependences. Since
the instructions of an issue-group are independent by construction, the renaming logic can process all
the instructions of the issue-group in parallel and is simpler than the renaming logic of conventional
out-of-order processors. ReLaSch doesn’t detect the dependences between the instructions renamed
in the same cycle.

Furthermore, most of the renaming process is performed by the scheduler and is removed from
the execution pipeline. In particular, there is no loop in the renaming logic of the front-end; the
instructions of an issue-group are renamed independently of the instructions of the previous issue-
group. The absence of a tight loop reduces the complexity of this logic and eases pipelining it if
required. An alternative design for the register file is shown in appendix A.

There is previous work that proposes moving the scheduling logic out of the critical path and/or
trying to reuse instruction schedules [8], [9], [10], [11]. Other approaches simplify the issue logic of
an out-of-order processor or reduce the size of its issue queue. In chapter 10 the main differences and
similarities of ReLaSch with these proposals are highlighted.

The work presented here has been already partially published. [12] presents a study on the issue-
groups generated by conventional out-of-order and in-order processors. [13] describes the whole Re-
LaSch processor and presents some experimental results. [14] provides an overview of ReLaSch and a
preliminary study on the use of statically configurable maximum length of the rgroups.

1.5 Scope and results summary

Our experiments show that the ReLaSch processor achieves the same average IPC as our reference
out-of-order processor and is clearly better than the reference in-order processor (1.55 speed-up). In
all cases it outperforms the in-order processor and in 23 SPEC benchmarks out of 40 it has a higher
IPC than the reference out-of-order processor. Chapter 9 presents the experiments that we have
conducted in order to explore the design space of the many parameters of the ReLaSch processor.
It also presents the experimental results of ReLaSch when compared with the reference in-order and
out-of-order processor. Chapter 11 presents the conclusions.

The performance results presented in this work assume that all the processors use the same fre-
quency. However, it would be reasonable to assume that the in-order processor and our proposed
ReLaSch processor can achieve a higher frequency. This would translate into a higher performance
speed-up over the reference out-of-order processor than the IPC speed-up shown here. We do not
evaluate cycle time but describe the microarchitecture and compare the IPC. It is a proof of concept
in order to validate the potential of our proposal.

After our experiments show good IPC results and back up our proposal, power consumption should
also be taken into consideration. Power is not evaluated in this thesis, but it is part of the future work
presented in chapter 11. We must take into account both the positive and negative impact in the
power requirements of ReLaSch. On one hand, the in-order issue logic of ReLaSch is much simpler
and it is very likely to be much less power-hungry than the issue logic of a conventional out-of-order
processor. Moreover, the scheduler is not required to work each cycle, which can result in less energy
consumed. On the other hand, the cache of schedules is a new source of energy consumption and is not
present in a conventional out-of-order processor. Additionally, the structures needed by the scheduler
increase our energy consumption. We expect that the reduction due to the in-order issue logic and
the reduced criticality of the scheduler will outweigh the new sources of energy consumption.

To support this expectation, there is the fact that we have reduced the complexity in the critical
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path of execution while adding new structures in a scheduler out of this critical path. Thus, aggressive
power- and energy- saving techniques can be applied to the scheduler since they are unlikely to have
a significant impact in performance. The exception is the cache of schedules that is a new source
of energy consumption in the execution path. However, in this case we can also easily apply power-
and energy- saving techniques when power consumption and battery lifetime have higher priority
than performance. It is very simple to switch off portions of the cache and trade-off energy for
performance. Also the scheduler can be switched off even when it would be possible to create new
schedules. These power-saving techniques have some granularity and would be simple to implement.
Finally, the scheduler can be designed to place the instructions following power-saving techniques.
Taken all these ideas into account, we consider that ReLaSch has potential to be power-efficient.



Chapter 2

Motivation

In this chapter we study the repetitiveness of the groups of instructions that are selected by the issue
logic. This repetitiveness enables designing a processor that reuses schedules that are created just
once.

2.1 Reference processors

This section presents the reference processors used in this study.

The OoO processor

Figure 2.1 shows the pipeline of an improved out-of-order processor (OoO) based on the 21264 Alpha
[15] (see appendix B), enhanced with better memory alias detection and branch target prediction.
The pipeline is much like in the 21264 Alpha processor.

The Fetch stage reads the instructions from the instruction cache (Icache) and accesses the branch
predictor. The result of the prediction is not known until one cycle later. The next stage completes
the branch prediction and decodes the instructions. The Map stage renames the instructions and
inserts them in the Reorder Buffer (ROB), in the issue queue and in the Load and Store queues (LQ
and SQ) if needed. The integer and floating point instructions use separated issue queues. These
three first stages process the instructions in-order.

The Issue stage wakes-up and selects out-of-order instructions that are present in the issue queue.
It selects up to four integer and two floating point instructions per cycle. An instruction can be
selected if its source registers are ready and a suitable Functional Unit is available. Older instructions
in the queue have higher priority. Registers are read in the next stage and execution happens in
the corresponding functional unit afterwards. Once the execution in the functional unit finishes, the
registers are written during the Writeback (WB) stage, where the loads also start the access to the
data cache (Dcache). The Writeback stage also checks for memory ordering violations with the help
of the LQ and SQ.

Finally, instructions are retired in-order in the Commit stage. Once a completed instruction reaches
the head of the ROB, the Commit stage sets its destination physical register as the architectural
register for the corresponding logical register, checks for mispredictions and frees the entry used by
the instruction in the ROB and in the LQ or the SQ if needed. It also performs the access to memory
of store instructions.

Our OoO reference processor improves the original microarchitecture of the Alpha 21264 in two
ways: First, the BTB is enhanced with a path-indexed table, used to predict the multi-target indirect
branches. Second, the StWait bits, that are used in the 21264 Alpha to reduce the number of loads
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that must be re-executed due to memory order violations, are substituted in the OoO processor by a
better mechanism: the Store Sets [16]. With Store Sets, a load waits only until the aliased stores have
committed, instead of waiting for all the in-flight stores, with a corresponding performance gain.

The ROB has 80 entries, the instruction queue has 20 entries for integer instructions and 15 for
floating point instructions. The integer register file has 72 physical registers and the floating point
register file has another 72. The LQ and the SQ have 32 entries each. The issue logic can process up to
four integer and two floating point instructions per cycle. A complete description of the architectural
parameters is shown in table 9.1 of chapter 9.

Fetch Decode OoO-Issue Regs Exec WB CommitMap

Figure 2.1: The pipeline of the OoO processor.

The IO processor

Figure 2.1 shows the pipeline of the in-order processor (IO) that we use as reference. It is also based
on the 21264 Alpha but it has an in-order Issue stage. Besides, it does not rename the instructions, so
the Map stage is removed from the pipeline. In the Decode stage, the instructions are inserted in the
ROB (to support speculation) and in the issue buffer, that substitutes the issue queue of the Alpha
21264 processor. The issue logic selects up to four integer and two floating point instructions per cycle.
The Commit stage is still needed to check the correctness of the branch prediction and the ROB is also
used to allow the multi-cycle instructions to write the results out-of-order while maintaining precise
exceptions. It uses the same Store Sets and the enhanced BTB of our reference OoO processor.

Fetch Decode IO-Issue Regs WB CommitExec

Figure 2.2: The pipeline of the IO processor.

2.2 Contribution of dynamic scheduling to performance

Figure 2.3 shows the IPC achieved by the two processors. In average, the IPC of the OoO processor
is 56% higher than the IPC of the IO processor.

In the static scheduling approach, if an instruction stalls waiting for an operand that is not available
yet, the processor does not allow any younger instruction to start its execution. In order to improve
performance, the compiler takes into account the latencies when scheduling the dependent instructions,
placing independent instructions between the producer and the dependent instructions. However,
many times it does not find enough independent instructions to eliminate all the stalls in the IO
processor. Furthermore, there are instructions with variable latency, such as memory instructions,
which the compiler has to schedule assuming a fixed latency. While the OoO processor can adapt
the schedule to the actual latency of these instructions, the IO processor stalls each time the actual
latency is larger than the one expected by the compiler (for example, when a load misses in the Dcache
but was scheduled assuming hit).

An additional problem is that a processor can issue together instructions from different basic blocs
using a branch predictor. Both in-order and out-of-order processor can benefit from branch prediction.
However, when the processor uses a branch predictor and executes instructions speculatively, new
dependences appear across the basic blocks. Which dependences appear at execution time depend on
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Figure 2.4: Distribution of the issue-group size depending on the instruction scheduling policy, in a
four-integer and two-floating point issue processor.

which path follow the branches. The compiler cannot create an efficient schedule for all the possible
combinations of basic blocs, so the in-order processor stalls often whereas the out-of-order processor
is able to adapt its schedule to the actual dependences of the predicted path.

The register renaming logic assigns a new physical register each time a logical register is used as
destination. Dependent instructions that use the logical register as source operand actually read the
renamed physical register. Thus false dependences are eliminated. Dynamically-scheduled processors
hugely benefit from this technique, since it is able to find much more independent instructions per
cycle.

To regularly find enough ready instructions each cycle, the issue logic of out-of-order processors
needs a large issue queue, from which it selects the instructions to issue. The issue queue stores
the instructions after they are decoded and renamed and until they are issued. Instructions wait
there for their source operands to become ready. The wake-up logic notifies to the instructions in the
issue queue that a register is available. With a large issue queue, the issue logic finds more ready
instructions per cycle, but it also grows the complexity of the wake-up and select logic [7].

2.2.1 Quantitative analysis of the behavior of the dynamic-scheduling logic

In a superscalar processor, a high IPC is achieved by issuing together as many instructions as possible.
To measure how much of that work is redundant, we keep track of the issue-groups that are created
during execution. We define an issue-group as the instructions that are issued in the same cycle. The
issue-groups may include instructions from a mispredicted path.

Figure 2.4 shows the normalized histogram of the size of the issue-groups, for the IO and the OoO
processors. Both processors can issue up to four integer and two floating point instructions per cycle.
The ability of the dynamic scheduler to find independent instructions allows the OoO processor to
have larger issue-groups in average. Besides, the in-order issue logic stalls frequently and most of the
cycles is not able to issue any instruction at all.

We consider two issue-groups to be equal if they have the same number of instructions and the
PCs of the instructions of both issue-groups match. Figure 2.5 shows how many unique issue-groups
are created during the execution of each benchmark (100M instructions per benchmark). The figure is
ordered by decreasing number of issue-groups created by the OoO processor. The rest of figures in this
chapter follow this same order. From the figure, we can see that the number of issue-groups is much
smaller than the total number of cycles. Having less restrictions to issue the instructions, the OoO
processor creates a higher number of unique issue-groups during the execution of each benchmark.

Not all the issue-groups are executed the same number of times and we expect that a small
percentage of issue-groups are executed frequently than the rest. Figure 2.6 shows how many unique
issue-groups are needed to accumulate the 90% of the cycles (excluding the cycles where no instruction
is issued). Figure 2.7 shows the same information as a percentage of the total number of unique issue-
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Figure 2.5: Number of unique issue-groups created by the OoO and IO processors (up to four integer
and two floating point instructions per cycle).

groups created for each benchmark. As expected due the repetitive nature of code, the experiments
show that the dynamic scheduler is constantly creating a reduced set of issue-groups, which appear
again and again. Only from time to time it creates different issue-groups. In average, the 90% of the
execution is covered with only a 6% of the total unique issue-groups.

2.3 Reusing the dynamic schedules

Given that most of the time the issue logic repeats the selection of instructions that it schedules, it
seems reasonable that a new processor could use a dynamic scheduler only when new instructions
are executed or there is change in the behavior of the code (for example, when a branch changes its
behavior or a load misses in data cache). The issue-groups created then would be cached and the
processor would read the issue-groups from the cache the rest of the time. When the issue-groups are
not available in the cache, the processor would issue the instructions in-order, using a simple issue
logic.

Such a processor is expected to achieve the IPC of an out-of-order processor when the issue-groups
are read from the cache and the IPC of an in-order processor when the required issue-group is not
available in the cache. There would be some additional penalties for changing the execution mode.
So such a processor needs a high hit-rate in the issue-group cache to achieve a high IPC.

We have evaluated the miss-rate of a cache that stores the issue-groups as they are created by the
issue-logic of the OoO processor (with a four-integer and two-floating point wide issue logic). The
cache is not used in the experiment to feed the processor but it is just used to study the locality of
the issue-groups. The PCs of the instructions in the issue-group are hashed. The result of the hash is
used to index the cache. The cache is four-way set-associative and the number of issue-groups it can
store varies from 1K to 8K.

Figure 2.8 shows the miss-rate of the cache. The results for the different sizes of the cache are shown
overlapped in the figure. The results show that there is some degree of locality in the issue-groups
created: in average, the 4K-issue-group cache has a 6% miss rate.

For each instruction in an issue-group the cache should store the PC and the encoded instruction.
The encoded instruction is needed to execute it. We are assuming that the processor would use some
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Figure 2.8: Miss rate of an issue-group cache for the OoO processor.

kind of prediction to decide which is the next issue-group to fetch and execute. Thus, the PC would
be needed to check on the Commit stage whether the instruction is in the correct path and it should
be actually executed. Therefore, the cache has to store 32 bits for the instruction and 46 bits for the
PC, according to the Alpha 21264 parameters. With four integer and two floating point instructions
per issue-group, that adds up to 468 bits per issue-group. The 4K-issue-group cache needs 234KB.
The rest of configurations used in the experiments need between 58KB and 468KB.

Sequences or stand-alone issue-groups

The cache of issue-groups studied above stores the issue-groups individually. It is possible to design a
processor that executes the issue-groups from such a cache. However, it yields much better results to
store together sequences of issue-groups, that are always executed in the order that they are stored.

Using sequences of issue-groups simplifies two problems that are more difficult to solve in the
stand-alone issue-group cache. First, the instructions can be renamed before they are stored in the
cache, since dependences are well known within the scope of the sequence. Second, it is known which
is the next issue-group to execute. The same issue-group can appear in several paths, so its successor
can be different in each execution. With separated issue-groups, a predictor is needed to choose each
cycle which is the next issue-group that will be executed. If sequences of issue-groups are used, this
prediction is made when the issue-groups are created and not at execution time.

Another benefit is a reduction of overhead information. It is not required to store the PC of all
instructions in the sequence but only the PC of the first instruction in the schedule and the predicted
path of the branches included in it. As a drawback, there will be some redundant information when
a given issue-group is stored several times in different sequences.

Taking all this into consideration, we have designed ReLaSch to work with sequences of issue-groups
instead of stand-alone issue-groups.
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Chapter 3

General description

This chapter presents the different elements of the ReLaSch processor. It is based on the 21264 Alpha
processor. A high-level introduction to the ReLaSch processor and a brief description of some elements
are followed by an explanation of the two operation modes of the ReLaSch processor. Finally, the
new elements of the pipeline are introduced, highlighting how they cope with different issues such as
dependences, memory aliasing or branch prediction.

3.1 The pipeline

The pipeline of the ReLaSch processor is shown in figure 3.1.c, along with the OoO (3.1.a) and IO
(3.1.b) processors, already introduced in chapter 2. In ReLaSch, the Fetch, Decode and Map stages of
the OoO processor (the Ifront-end) are coupled with additional logic to process the rgroups: Rfetch,
Rdecode and Rmap (the Rfront-end). The Issue stage processes the instruction in-order just like the
IO processor. Also, there is a new sequence of stages, the Rcreate logic. Besides, the Rcache is added
to the processor.

This processor is based on schedule Reuse, so R identifies the schedules (rgroups) and the new
elements of the pipeline. The instructions scheduled to be issued together in the same cycle are an
issue-group. An rgroup is a sequence of issue-groups.

The Rcreate logic schedules committed instructions into rgroups. It applies a simple scheduling,
makes predictions based on the last execution and partially renames the registers. The Rfetch logic
accesses the Rcache and the Rdecode logic performs instruction decoding. The Rfront-end stages
don’t access the branch predictor since branch prediction is performed at scheduling time. The Rmap
logic completes the renaming and inserts the instructions in the Reorder Buffer (ROB) and the issue
buffer.

Out of the critical path

We have introduced new logic that performs the same tasks as the front-end of a conventional out-
of-order processor: in this logic, the instructions are fetched, decoded, inserted in the ROB, their
dependences analyzed, their registers renamed and selected for execution.

The aim is to perform as much as possible of those tasks out of the critical path. The Rcreate
logic schedules the instructions and it is placed after the Commit stage, outside the critical path
of execution of the instructions so its latency has little impact on performance, as will be shown in
section 9.2.5. Also, scheduling is performed only when new rgroups are needed in order to reduce
energy consumption. Therefore, the Rcreate logic can be more elaborated and complex than it would
be if it had to schedule the instructions at execution time as conventional out-of-order processors do.

27
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a) Fetch Decode OoO-Issue Regs Exec WB CommitMap

b) Fetch Decode IO-Issue Regs WB CommitExec

c) IFetch IDecode IO-Issue Regs Exec WB CommitIMap

RFetch RDecode RMap

RcreateRcache

Figure 3.1: The pipeline of the (a) OoO, (b) IO and (c) ReLaSch processors.

On the contrary, the Rfront-end is part of the execution pipeline so its complexity can affect the
cycle time of the processor. We must keep it as simple as possible. Besides, the Rfront-end processes
the instructions just before they are issued, so any delay there implies further delays in execution and
commit of the instructions that translates into performance degradation.

Therefore, the Rcreate logic makes all the decisions: it schedules instructions, renames registers,
assigns identifiers in the queues, predicts the behavior of branches and memory instructions, etc. On
its turn, the Rfront-end blindly processes in-order the instructions of the schedule: it simply reads
and decodes the issue-groups and checks the availability of the resources and data needed by each
instruction.

The Rfetch logic reads the rgroups from the Rcache and the rest of the Rfront-end processes them.
The instructions in one issue-group are independent by construction, so the Rmap logic doesn’t need
to check if there is any dependence between them. It just has to check if the resources needed for
each instruction are available. The resources have been already assigned by the Rcreate logic. These
resources are the destination physical register, the entry in the ROB and the entry in the Load Queue
(LQ) or the Store Queue (SQ), if it is processing a memory instruction.

Each Rcache line contains one rgroup. It stores information of hundreds of instructions, so an
Rcache line is larger than usual cache-line sizes. However, it is not required to read an Rcache line
in just one cycle. The rgroup is processed in-order, one issue-group per cycle at most, so the Rcache
line can be read progressively, using a low bandwidth design.

Ensuring correctness

The Rmap logic processes the instructions in the order of the schedule. The instructions have been
previously reordered by the Rcreate logic. The ROB is used to commit the instructions in-order. It
provides support for precise interrupts and allows recovering from mispredictions. The Commit stage
processes the instructions once they have completed their execution. Thus, an rgroup is not required
to commit atomically. It may commit partially up to a mispredicted instruction. The identifier in
the ROB of each instruction is assigned by the Rcreate logic and stored with the information of the
schedule in the Rcache. Similarly, the LQ and the SQ allow to detect invalid reordering of memory
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instructions and enable bypassing data from a store to a load whenever it is possible. The identifier
in these queues is also assigned by the Rcreate logic.

In addition to the tasks that the Commit stage performs in the OoO processor, in the ReLaSch
processor it also accesses the Rcache in order to look for an appropriate schedule after a misprediction;
besides, it notifies any misprediction in the rgroups to the Rcache and updates the branch predictor
for the scheduled branches too. The committed instructions are sent to the Rcreate logic.

The register file

Unlike the reference OoO processor, that uses a shared pool of physical registers, ReLaSch uses a
register file that has a separated set of physical registers for each logical register. It is based on
the EC’s register file [10]. We use such a register file because a ReLaSch processor modified to use
a conventional register file has shown to yield a slightly lower IPC than the default configuration of
ReLaSch. Besides that, register renaming is more complex with that register file, both at schedule and
execution time. Furthermore, the Rcache requires storing more bits per instruction. Such alternative
design is presented in detail in appendix A.

In the ReLaSch processor, the physical registers of a logical register are assigned sequentially and
always in the same order by the Map stage or the Rcreate logic. Nevertheless, when the schedule
is processed by the Rmap logic they are used out-of-order: in the order in which they appear as
destination register in the schedule. The same physical register can be assigned multiple times within
the same rgroup. Each physical register has two bits to indicate: a) whether it contains valid data;
and b) whether the physical register is available as destination or it is busy.

Each logical register has a pointer that identifies which physical register currently stores its archi-
tectural value. The pointer is incremented when an instruction that writes that register commits.

3.2 Execution modes

The ReLaSch processor has two execution modes: a) the Icache mode, when the Ifront-end is used
and the Rfront-end is inactive; and b) the Rcache mode, when the logic in the Rfront-end processes
the instructions of an rgroup, stored in the Rcache, while the Ifront-end remains unused.

The more the processor is in the Rcache mode, the higher the IPC it achieves. So the processor is
in the Rcache mode whenever it is possible, i.e. when a suitable rgroup is available. The initial mode
of the processor is the Icache mode, since there is no available rgroup in the Rcache then.

The behavior of the Issue, Execute and Writeback stages is mode-independent. The Commit stage
is mostly mode-independent but it updates the branch predictor for all branches executed in the
Rcache mode.

Every cycle that the processor is in the Icache mode, the Fetch stage accesses the Icache and the
Rcache in parallel with the current PC. The processor changes to the Rcache mode if the access hits
in the Rcache, i.e. an rgroup begins in that PC.

In the Rcache mode, the Rfetch logic reads the content of the current rgroup. Once an rgroup has
been completely fetched, another one is read from the Rcache if possible. Otherwise, the processor
changes to the Icache mode.

Regardless of the mode, when the pipeline is flushed (on a branch misprediction or a memory
order violation), the Rcache is accessed with the PC of the first instruction to be executed after the
flush, either the outcome of the branch or the PC of the offending load. The processor executes the
instructions in the Rcache mode on a hit and in the Icache mode otherwise.
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3.2.1 Scheduler

The Rcreate logic can be either in the Schedule mode or in the Idle mode. It creates new rgroups
only in the Schedule mode. The instructions executed in the Icache mode are always processed in the
Schedule mode. When the processor changes to the Rcache mode, Rcreate changes to the Idle mode,
but first it completes the current schedule. It changes back to the Schedule mode with an instruction
executed in the Icache mode or to re-schedule the instructions of an rgroup that frequently aborts its
execution (due to branch or memory-aliasing mispredictions). There is a saturating counter for each
Rcache line to detect this kind of rgroups.

3.3 How does the ReLaSch processor work

3.3.1 Dependences and register renaming

The Rcreate logic places each instruction in the issue-group in which its source registers will be
available at execution. Based on the information obtained from real execution, Rcreate knows the
earliest that any instruction could have been scheduled. All the information needed to schedule an
instruction is when are its sources and resources available. Knowing the latency of the operation,
Rcreate can compute the earliest time the output of the current instruction will be available. The
Rcreate logic schedules the committed instructions, taking into account their dependences, latencies,
the FU usage and when the resources needed by the instruction are known to be free.

It also assigns the identifiers of the source and destination physical registers. These identifiers are
stored with the instruction in the Rcache. A register that has not been used yet as destination within
the rgroup (a live-in register) is assumed to be in the physical register 0 of its set. At execution time,
the Rmap logic needs to adjust this renaming to the actual registers used by the previous rgroup,
since the live-in registers may be not in physical register 0. So Rmap completes the renaming process
at execution time, by simply adding an offset to the identifiers of the physical registers. Each logical
register has its own offset. It is determined by the renaming of that logical register at the time
the current rgroup began its execution. These offsets remain constant during all the execution of
the rgroup so register renaming of an issue-group is completely independent of the renaming of the
previous issue-groups in the rgroup. Therefore, the tight loop of the renaming logic that can be found
in conventional out-of-order processors is not present in the ReLaSch processor.

The Rmap logic checks if the destination physical register is free, while the Issue stage is responsible
for checking whether the source physical registers are ready. To know if the destination physical register
is available, the Rmap logic checks its busy bit. The Issue logic checks the valid bit of the source
physical registers.

3.3.2 Resource assignment

The Rcreate logic assigns the identifier in the ROB for each instruction in the rgroup, starting with
identifier 0 for the first instruction. Similarly, each memory instruction gets an identifier in the LQ or
the SQ. These identifiers are stored with the instruction in the Rcache.

The Rmap logic adapts the identifiers to the actual state of the ROB and queues using an offset.
It also checks whether the desired identifiers are available. The Rmap logic checks the busy bit of
the desired entry in the ROB and the LQ or the SQ. It stalls if any of the needed resources is not
available. The Rmap logic also inserts the instructions in the issue buffer.

At scheduling time, Rcreate tracks the usage of the functional units in each issue-groups of the
schedule. The Issue stage checks at execution time if the functional unit needed for each instruction
is actually available.
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To adjust the identifiers, the Rmap logic just needs to add an offset. Three different offsets are
used, one for the ROB, one for the LQ and the last one for the SQ. The offset added to the identifiers is
needed because they were assigned by Rcreate beginning with identifier 0, whereas the first identifier
used at execution time should be that of the first available resource at the moment when the rgroup
enters the Rmap logic. The identifier of that resource will be the offset during all the execution of the
rgroup.

The Rcreate logic tracks in which issue-group it is safe to reuse each identifier in the ROB in order
to avoid the possible deadlocks. Before assigning an identifier, the scheduler must take into account in
which issue-group is scheduled the instruction that used it for the last time and in which issue-group
the identifier is released. A deadlock could appear because the Rmap logic processes the instructions
in the order of the schedule whereas the instructions commit in program order. The Rmap logic
stalls when an instruction C needs a resource still assigned to an uncommitted instruction B. Any
instruction A older than B in the program order must commit before B. If A is scheduled after C, the
processor would enter a deadlock since Rmap stalls at C. The Rcreate logic tracks when are scheduled
all the preceding instructions to avoid this situation. Section 4.2.3 explains this situation with more
detail and our solution to avoid it.

3.3.3 Memory latency and aliasing prediction

In order to predict the latency of the memory instructions the Rcreate logic uses saturating counters.
It schedules each load assuming either the L1 hit latency or the latency seen during the last execution.
The counters capture the biased loads and the dependent instructions are scheduled accordingly.

The Rcreate logic uses the addresses accessed the last time to predict whether two memory in-
structions will alias at execution time. Unaliased instructions can be freely reordered, but two aliased
instructions are scheduled to be issued maintaining their relative program order. As the SQ can
usually bypass the data to an aliased load, maintaining the order at the Issue stage is usually enough.

However, bypassing is not possible in two cases: a) when the accesses have different sizes; and
b) when there is a mismatch in the data type (i.e. floating point instead of integer). When any of
these cases is detected, the Rcreate logic schedules the load instruction to be executed after the store
commits. Besides, the identifier of the store in the SQ is copied with the information of the load in
the Rcache. The Rmap logic adds the offset of the SQ to the identifier and the loads stalls at Issue
until the aliased store has committed and it is safe to execute the load.

The Writeback stage checks if there has been any memory order violation. Whenever there is any
mis-speculated load access, the Commit stage flushes the pipeline and execution restarts with the
offending instruction.

3.3.4 Branch prediction

The Rcreate logic predicts at scheduling time that branches will follow at execution time the same
path that they followed the last time. Each dynamic instance of a branch is predicted to repeat its
most recent outcome. An rgroup can contain several copies of the same branch, each one predicted
independently. It is not a one-bit history predictor and it can capture complex patterns since implicitly
uses the whole rgroup as path.

Each conditional branch stored in the Rcache has a flag to indicate whether it is predicted as taken
or not-taken. Besides, in each Rcache line there is a separated structure to store the target PC of the
indirect branches of the rgroup. The number of this type of branches per rgroup is limited but less
bits per rgroup are used in the Rcache.

The Rmap logic simply copies the taken flag of the conditional branches and the target PC of the
indirect branches in the corresponding entry of the ROB. With this information and the result of the
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execution, the Commit stage checks whether the prediction is correct just like it does for any branch
executed in the Icache mode.

3.3.5 Bad rgroups

It may happen that the outcome of the branches and memory aliases captured by the Rcreate logic
is actually not representative of the most common behavior of the instructions of a given rgroup and
that the predictions made by Rcreate are not accurate. It is also possible that the program changes
to another execution phase, with a change in the behavior of the control and memory instructions. In
this situation, many rgroups repeatedly fail to be completely executed, either due to branch mispre-
dictions or unexpected memory aliases. The high number of pipeline flushes will result in performance
degradation.

These rgroups are detected and scheduled again in the Rcreate logic. The new schedule is expected
to capture better the code behavior. To detect these cases, each rgroup stored in the Rcache has an
associated saturating counter. The counter is increased when the rgroup is executed completely and all
its instructions commit and decreased otherwise (when a branch or a memory alias was mispredicted
and the uncommitted part of the rgroup must be flushed). It is also decreased if the rgroup completely
committed but a load in the rgroup missed in the access to the L2 cache.

If a given counter becomes zero, its rgroup is marked to be rescheduled. The next time it is
executed, its instructions carry a flag to notify the situation to the Rcreate logic, that will schedule a
new rgroup from these instructions.

The Rmap logic marks the first instruction of each rgroup when inserts it in the ROB. The Commit
stage uses this information to detect the beginning and the end of each rgroup and to access the Rcache
to update the corresponding counter.

3.3.6 Rgroup identification

The PC of the first instruction of an rgroup is used to identify that rgroup in the Rcache. The PC is
used to index the Rcache and also as the tag of the rgroup. The PC is required to match to consider
the access as a hit in the Rcache. Besides this, the history bits of the branches on the path to the
rgroup are used as a hint to decide between several rgroups with the same initial PC.

When the Rcreate logic closes an rgroup and stores it in the Rcache, it also includes the identifier
of the next rgroup. It is used by the Rfetch logic to access the Rcache again once it has processed
the rgroup. If an rgroup is executed completely, there is only one possible successor unless the last
instruction is a branch. When the rgroup ends with a branch, the Rcreate logic predicts that the
branch will behave just as at it did at execution time, as it does for all the other branches in the
rgroup. The identifier of the next rgroup is formed by the next PC of the last instruction in the
current rgroup and the history bits of the branches scheduled in it.

Once an rgroup has been processed, the Rfetch logic accesses the Rcache with this identifier to
start fetching the next rgroup. Since the identifier is known in advance, the Rcache can be accessed
before the current rgroup has been completely processed. Therefore, the latency to read the first
chunk of data of the next rgroup can be overlapped with the last fetching cycles of the current rgroup.

3.3.7 Rules to close an rgroup

The Rcreate logic closes an rgroup under several conditions:

a. the maximum number of instructions per rgroup is reached;

b. due to its dependences or resource requirements, an instruction should be scheduled beyond the
limit of the scheduling structure;
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c. the maximum number of indirect branches is reached;

d. a trap instruction is scheduled; and

e. the buffer of committed instructions had an overflow and the next instruction to be scheduled
was not committed immediately after the current one.

Once an rgroup has been closed, the Rcreate logic can either continue the scheduling process
on a new rgroup or stop scheduling. If the next instruction to schedule was executed in the Icache
mode, scheduling continues. If it was executed in the Rcache mode, scheduling continues just for one
additional rgroup. After the new rgroup is closed, if the next instruction was executed also in the
Rcache mode, Rcreate stops scheduling. The Rcreate logic starts scheduling again when a committed
instruction was executed in the Icache mode or when the instructions of a “bad rgroup” are executed.



Chapter 4

The Rcreate logic

The Rcreate logic schedules the committed instructions into rgroups, trying to maximize performance
while preserving the dependences and warranting a deadlock-free execution of the schedule. For each
instruction, Rcreate also renames its registers and assigns the identifiers of the resources it uses at
execution time: the identifier in the ROB and in the LQ or the SQ.

This chapter first introduces which structures the Rcreate logic uses to store the instructions and
the schedule. Then it is explained how it creates a valid schedule of arithmetic instructions. This is
followed by a description of the techniques used to improve the performance of the schedules. Then,
the special treatment required by other types of instructions such as the memory or control instructions
is examined. The policy for deciding when Rcreate must schedule and when the current rgroup must
be closed is detailed afterwards. Finally, a block diagram of the Rcreate logic that summarizes this
chapter is presented.

The Rcreate logic is pipelined in several stages. Since it is out of the critical path, the number
of stages required has a low impact in the IPC achieved, as shown in section 9.2.5. Therefore, this
chapter does not describe in detail how the Rcreate logic could be pipelined.

4.1 Storage structures

4.1.1 Rcreate input buffer

Committed instructions are sent to the Rcreate logic, where they are copied into the rcreate input
buffer. This buffer is shown in figure 4.1. The instructions stored in this buffer are processed sequen-
tially by the scheduler. The information stored in the buffer for each instruction is: the PC of the
instruction, the PC of the next instruction, the encoded instruction, a flag to indicate whether the
instruction was executed in the Rcache mode and another flag to know whether it is part of an rgroup
that must be rescheduled. The conditional branches have a taken/not taken flag. The scheduler also
needs the target PC of the indirect branches, but that it is already stored in the next PC field of the
buffer. For memory instructions, it is also stored the address that was accessed, whether the access
hit the cache and the latency of the access. Additional information such as the logical registers or the
instruction type (load, store, conditional move, conditional and indirect branch) can be either stored
in the buffer or decoded by the Rcreate logic.

The commit stage retires up to 11 instructions in a cycle in certain conditions, though this
rate cannot be sustained. The scheduler assumes that two instructions that are consecutive in the
rcreate input buffer have committed sequentially and that there isn’t any missing committed in-
struction. This is the normal case but buffer overflows must be taken into consideration. If the buffer
is full when an instruction commits, the instructions already present in the buffer are not overwritten.

35
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Figure 4.1: The committed instructions are stored in the rcreate input buffer until they are sched-
uled. If the buffer is full when trying to insert a new instruction, the ovf flag is set.

Instead, the ovf is set to indicate that there has been an overflow. If this flag is set, all incoming
committed instructions are dismissed and not inserted in the buffer, even if there is room for them.
Otherwise, the assumption of the scheduler would be incorrect. Once Rcreate has scheduled all the
instructions in the buffer it closes the current rgroup and clears the ovf flag. The instructions that
commit from then on are allowed to be inserted in the buffer and will be later scheduled in a new
rgroup.

Section 9.2.6 shows the impact in performance of the rcreate input buffer. A buffer of 128
instructions is needed to eliminate all performance drops due to buffer overflows, even though most
benchmarks perform well with a smaller buffer.

4.1.2 Sched table

The sched table stores the rgroup that is currently being created. It is shown in figure 4.2.a. It has
one entry for each possible issue-group in the rgroup, 512 entries in our baseline configuration. As one
issue-group corresponds to one cycle, an rgroup covers exactly as many cycles as issue-groups it can
contain. The issue width of the processor determines the size of the issue-groups. In our baseline, it
is four integer and two floating point instructions.

There are several fields for each instruction, as shown in figure 4.2.b. Besides the valid bit and the
encoded instruction, for each instruction is stored its identifier in the ROB, the source and destination
physical registers, the identifiers in the LQ and the SQ, whether a load is predicted to be aliased and
whether a branch is predicted to be taken. Besides, each issue-group has some additional fields related
with the usage of the functional units. These fields are explained in detail in the rest of this chapter.

The issue-groups in the sched table have identifiers 0, 1, etc. For each instruction, the Rcreate
logic determines the identifier of the earliest issue-group in which an instruction can be scheduled,
according to the dependences and latencies, the availability of the resources and the memory aliases.
The sched table is accessed to store the instruction in its issue-group. When the current rgroup is
closed, the whole content of the table is copied into one line of the Rcache.

4.2 Valid schedule of an arithmetic instruction

In order to schedule an arithmetic instruction correctly, we have to preserve dependences and assign
resources properly. The case of the arithmetic instructions shows the common process applied to each
instruction by the Rcreate logic. Other kinds of instructions require some additional processing by
the scheduler, which is explained in sections 4.4, 4.5 and 4.6.

To simplify the explanation, the structures needed by the scheduler are introduced gradually. First,
a basic approach is shown. Then, its weaknesses and problems are highlighted. Finally, a solution is
presented.
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Figure 4.2: a) The sched table. b) The fields included in the slot for each instruction. c) Additional
fields that are not included for each instruction but for each issue-group.

4.2.1 Dependences

The dependences of the instructions must be taken into account to create a correct schedule; that
is, which physical registers are used and when are the operands ready. The Rcreate logic uses the
reg info table to record this information. The table is shown in figure 4.3. It has one entry for each
logical register except for R31. In the Alpha ISA, this register always stores the value 0. Therefore,
it is always available and it is never renamed. The table is indexed with the identifier of the source
logical registers of the instruction. Each entry has two fields, phy and read. The phy field stores
the identifier of the current physical register to which is renamed the logical register. This is the
register that dependent instructions will read at execution time. The read field stores in which cycle
at execution time the register is available as a source register. This cycle is indicated relative to the
first cycle of execution of the rgroup. Both the phy field and the read field are initialized with value
0.

There is a 1:1 equivalence between the cycle in which an issue-group is executed and its identifier
in the rgroup. Therefore, the maximum value of the read field of its source registers indicates in which
issue-group should be scheduled the instruction, in order to not stall waiting for the source operand
to be available.

Figure 4.3.a shows an example of how is the reg info table used for the source registers. In the
example, the table is accessed with the logical register 3 and the instruction is renamed to read the
physical register 3 (R3.3), which is available in the issue-group 10. The second source operand is the
logical register R2 and it is renamed to the physical register 1 (R2.1). Its read field is 7. Taking into
account the information of both source registers, the instruction is scheduled in the issue-group 10.

Destination register

After a given instruction has been scheduled, the entry of its destination logical register in the reg info
table is updated. The identifier of the destination physical register is obtained from the value of the
phy field plus one, modulo the size of the set of physical registers per logical register. The read
field is updated with the cycle that corresponds to the issue-group in which the instruction has been
scheduled plus its latency.

The example in figure 4.3.b shows that the destination logical register R1 is renamed to the physical
register 0, assuming that the register file has sets of four physical registers (our baseline uses sets of
eight physical registers). Since the instruction is scheduled in the issue-group 10 and assuming a
latency of three cycles, the read field of the register R1 is updated to 13.
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Figure 4.3: The reg info table is used to rename the registers of the scheduled instruction and to know
in which issue-group its source registers are available. The identifier of the source and destination
logical registers is used to access the table. a) shows a read access to the table to the entries of
the source registers. b) shows a read and write access to the entry of the destination register. The
rightmost operand is the destination register.

The scheduler has to take into account in which cycle a physical register will be read for the last
time. Otherwise, it could be used again as destination and be overwritten too early, leading to an
invalid processor’s state when the rgroup is executed.

Figure 4.4 illustrates the problem scheduling the example code of figure 4.5. It shows the contents
of the reg info table and the sched table after scheduling each instruction. To simplify the example,
each logical register has a set of two physical registers. Also, all registers not explicitly written in the
code are available at cycle 0. The ADD and MUL instructions have latencies of one and three cycles
respectively.

The instruction A is scheduled in the issue-group 0 since its two operands are available then. Both
operands are stored in the physical register 0 (R4.0 and R3.0). The phy field of its destination (R2) is
incremented and its read field becomes 1 (issue-group 0 plus one cycle of latency). The instruction B
has one operand (R2) that is ready at cycle 1 and the other (R1) at cycle 0. Therefore, it is scheduled
in the issue-group 1. The phy field of register R0 is incremented and the value 4 (1 + 3 from the
issue-group 1 and the 3 cycles of latency) is stored in the read field. When the instruction C accesses
the reg info table it finds that R2 is available at cycle 1 and R0 at cycle 4. So C is scheduled in the
issue-group 4. The read field of the register R0 is updated to 7 (4+3) and the phy field is incremented,
modulo 2. The instruction D can be scheduled in the issue-group 0 since all its source registers are
available then. Finally, the instruction E is scheduled in the issue-group 1, when R2.0 is available.

Note that this is not a correct schedule, because E uses R2.1 as destination, just like the instruction
A. Thus, at execution time the instruction C reads the value written by the instruction E in R2.1,
instead of the result of the instruction A. Although not shown in the example, it would be possible
to schedule an instruction even before the previous instruction that writes the same physical register
(that is, to schedule E before A in the example).

The scheduler has to remember when each resource was used for the last time. By now, this
problem can be solved with an additional last use field for each physical register in the reg info
table. Each time a physical register is used as source or as destination, its last use value is updated
with the issue-group’s identifier plus one, if this value is greater than the current value of last use.
Thus, the last use field indicates in which issue-group is used that physical register file for the
last time. The increment ensures that the register is read first and written afterwards. When an
instruction is scheduled, the last use field of its destination physical register is read; the instruction
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Figure 4.4: Evolution of the content of the reg info and the sched tables throughout the scheduling
process. ADD instructions have a latency of one cycle and MUL a latency of three cycles.
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Example code:

A: ADD R4, R3, R2

B: MUL R2, R1, R0

C: MUL R2, R0, R0

D: ADD R5, R6, R2

E: ADD R2, R7, R2

Renamed code:

A: ADD R4.0, R3.0, R2.1

B: MUL R2.1, R1.0, R0.1

C: MUL R2.1, R0.1, R0.0

D: ADD R5.0, R6.0, R2.0

E: ADD R2.0, R7.0, R2.1

Figure 4.5: Example code, before and after renaming.

will be scheduled at least in the issue-group indicated by that field.
Figure 4.6 shows the same example of figure 4.4 with the additional field last use. Note that the

resulting schedule is exactly the same as before except for the instruction E, the offending instruction
in figure 4.4. When the instruction E is scheduled, the last use field of its destination register (R2.1)
is equal to 5. So the instruction is scheduled in issue-group 5, even though its source registers are
already available earlier. Thus the instruction C reads the proper content of register R2.1, preserving
the dependence between instructions A and C.

Nevertheless, there are other problems related with the reuse of the physical registers that imposes
additional restrictions to the scheduler. These problems are exposed and definitively solved in section
4.2.3 with the safe field that replaces the last use field.

4.2.2 Reorder Buffer

Each instruction has an identifier in the ROB. This allows that the instructions commit in-order even
though they are scheduled out-of-order in the rgroup. The number of instructions that the ROB
can store is indicated by ROB size. The Rcreate logic has the ROB id register, that indicates which
identifier in the ROB will be assigned to the next scheduled instruction. It is initialized with value 0.
For each scheduled instruction, the register is incremented, modulo ROB size. The identifier is stored
with the rest of information of the instruction in the sched table.

The scheduler has to enforce that two instruction that have the same identifier in the ROB are
not reordered in the sched table. It could be done with a table that stores the last use of each ROB
identifier (ROB last use). An instruction would not be scheduled before the ROB last use issue-group
of its ROB identifier. The ROB last use table would be updated with the issue-group’s identifier of the
scheduled instruction plus one (in order to avoid a race for the resource). However, the ROB last use
table is not enough to create a correct schedule in all cases as it is shown in the section below.

4.2.3 Deadlocks

Reorder Buffer

The scheduler is not able to create correct schedules in all cases just using the information of the
ROB last use table. In particular, the processor can enter into a deadlock when a wrongly-formed
rgroup is executed. In this section, the code is first scheduled according to the dependences and the
ROB last use table, then it is shown how the execution of the resulting schedule results in a deadlock.
Finally, a solution is presented.

Scheduling The possibility of having deadlocks is illustrated with the example of figure 4.7. In the
example we assume a four-entry ROB for simplicity. The identifiers are assigned in order, starting
from 0. The identifier in the ROB for each instruction is indicated on the right of the renamed code.
The ADD and MUL instructions have one and three cycles of latency respectively. The instruction B
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Figure 4.6: Evolution of the content of the reg info table (with last use fields for each physical
register) and the sched table when the instructions in the example of figure 4.4 are scheduled. ADD
instructions have a latency of one cycle and MUL a latency of three cycles.
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Example code:

A: MUL R4, R3, R2

B: ADD R2, R1, R0

C: ADD R3, R1, R5

D: ADD R5, R6, R6

E: ADD R0, R7, R7

F: ADD R6, R1, R1

G: ADD R3, R4, R4

Renamed code and identifier in the
ROB:

A: MUL R4.0, R3.0, R2.1; ROB[0]

B: ADD R2.1, R1.0, R0.1; ROB[1]

C: ADD R3.0, R1.0, R5.1; ROB[2]

D: ADD R5.1, R6.0, R6.1; ROB[3]

E: ADD R0.1, R7.0, R7.1; ROB[0]

F: ADD R6.1, R1.0, R1.1; ROB[1]

G: ADD R3.0, R4.0, R4.1; ROB[2]

Figure 4.7: Example of code that creates a deadlock, before and after register renaming.
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Figure 4.8: The state of the reg info, ROB last use and sched tables after the instructions A to D
are scheduled.

depends on the instruction A, the instruction D depends on C, the instruction E depends on B and
the instruction F depends on D. The rest of instructions are independent.

Figure 4.8 shows the state of the reg info table, the ROB last use table and the sched table
after the first four instructions have been scheduled. The last use fields of the reg info table are
not shown to simplify the figure since they don’t have any effect in the resulting schedule in this case.
Initially all fields have the value 0.

The instructions A and C are scheduled in issue-group 0, since their sources are available at cycle
0 and it is the first use of their ROB id. The entries 0 and 2 of the ROB last use table are updated
to 1. The instruction B is scheduled in the issue-group 3, in which the source register R2.1 will be
available. The instruction D is placed in the issue-group 1, because it depends on R6.1. Their entries
(1 and 3) in the ROB last use table are also updated, to store the values 4 and 2 respectively.

Figure 4.9 shows the state of the reg info table and the ROB last use table after scheduling the
rest of instructions. The instruction E uses the identifier 0 in the ROB, which was assigned previously
to the instruction A, but must also wait for R0.1, that is available in the issue-group 4. Therefore, E
is scheduled in the issue-group 4. Similarly, although the register R6.1 is available in the issue-group
2, the instruction F is scheduled in the issue-group 4, after the previous use of the ROB identifier 1
by the instruction B. Finally, the instruction G, that has all its sources available in the issue-group
0, would be scheduled in issue-group 1, since it reuses the ROB identifier of the instruction C and is
independent with respect to the rest of instruction in the schedule.
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Figure 4.9: The state of the reg info, ROB last use and sched tables after the instructions E to G
are scheduled.

Execution The resulting schedule is not correct because G is placed before B. Let’s see what
happens at execution time. At cycle 0, both instructions A and C are processed by the Rmap logic
and occupy the identifiers 0 and 2 in the ROB. At cycle 1, the instruction D is executed. However, the
instruction G cannot be sent to issue: its identifier in the ROB (2) is already in use by the instruction
C. Therefore, G stalls until its identifier in the ROB is freed. The instruction A can commit when it
completes its execution. On the contrary, the instruction C must wait until B first enters the ROB and
then commits, because instructions must commit in order. Unfortunately, the stall of the instruction
G will prevent the instruction B to be executed. Since B will never commit, C will not be able to
commit either.

Solution

In order to remove the deadlock in the example above, the instruction G must be scheduled after the
instruction B. In general, an instruction I that reuses a given resource R must be scheduled not only
after the previous instruction P that used R for the last time, but also after all instructions older than
P. Since instructions are scheduled in-order, this can be accomplished by scheduling I after all the
instructions already present in the sched table when P was scheduled. We will track this information
for all the resources that can create a deadlock: the identifiers in the ROB, LQ, SQ and the physical
registers. In the example, the instruction G must be placed after any instruction present in the rgroup
when the instruction C is scheduled, including C itself.

To implement this new restriction, we introduce a new element in the Rcreate logic, the safe
register. We also replace the ROB last use table with the ROB safe table. Both new elements are
shown in figure 4.10. Each identifier in the ROB has an entry in this table. Both the safe register
and the entries of the ROB safe table are initialized with 0. The safe register indicates which is the
issue-group with a higher identifier that is not empty (there is at least one instruction scheduled in
it). When an instruction is scheduled in a given issue-group ig, the safe register is updated if ig+1 is
greater than the current value of the safe register. The safe register is not used directly to schedule
the instructions but only to update the ROB safe table.

The scheduler uses the ROB safe table just like it used the ROB last use table. The identifier in
the ROB of the instruction is used to index the table and the value stored there is used to schedule
the instruction. Figure 4.11 shows an example. There, the instruction currently being scheduled has
the identifier 3 in the ROB and must be scheduled in the issue-group 10 or later. The table is updated
for each scheduled instruction. The updated value of the safe register is copied into the ROB safe
entry that corresponds to the instruction’s identifier in the ROB.

We show now how the same example code of the figure 4.7 is scheduled with the safe register and
the ROB safe table. Figure 4.12 shows the state of the reg info table, the ROB safe table and the
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sched table when the instructions A, B, C and D are scheduled. The content of the reg info table is
the same as in figure 4.8. After the instruction A is scheduled, the safe register takes the value 1 and
so does ROB safe entry 0. After the instruction B is scheduled, the safe register takes the value 4, as
well as the ROB safe entry 1. The instruction C does not modify the safe register but the ROB safe
entry 2 is updated to 4, which is the value already stored in the safe register. Similarly, with the
instruction D, the ROB safe entry 3 takes the value 4. All these instructions have found a 0 in their
ROB safe entries, so the new table has no influence in the scheduling of these instructions.

Figure 4.13 shows the state of the same tables when the instructions E to G are scheduled. The
instruction E finds the value 1 in the ROB safe entry 0. However, the dependences are more restrictive
and it is scheduled in the issue-group 4. It updates the safe register and the ROB safe entry 0 with the
value 5. On the contrary, although the instruction F has its sources available at cycle 2, the ROB safe
entry 1 has the value 4, so it is scheduled in the issue-group 4. The ROB safe entry 1 is updated
with the value 5. Finally, the instruction G reads the value 4 in the ROB safe entry 2, so it should be
scheduled in issue-group 4. However, this issue-group is already full with the instructions E and F.
Therefore, G is scheduled in the issue-group 5 and both the safe register and the ROB safe entry 2
are updated to 6. Section 4.2.4 explains in detail how the scheduler deals with full issue-groups.

The only difference of the new schedule is the issue-group in which the instruction G is scheduled
but that change is enough to remove the deadlock. When the rgroup is executed it does not stall
at the issue-group 1, so some cycles later the instruction B can be executed and commit too, which
finally allows the instruction C to commit on its turn. Eventually, the instruction G finds its ROB
entry available and can be processed by the Rmap logic.

Register file

There is the same problem with the reuse of physical registers as with the identifiers in the ROB
because registers are also freed in-order by the Commit stage. The problem has been solved using
the reg safe fields. There is one reg safe field for each physical register. However, there is a slight
difference with the reuse of identifiers in the ROB. While a ROB entry can be assigned again just
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Figure 4.12: The state of the reg info and ROB safe tables after instructions A to D are scheduled.
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Figure 4.13: The state of the reg info and ROB safe tables after instructions E to G are scheduled.

after the last instruction that used it has committed, a given physical register can only be assigned
again as destination when it does not hold the architectural value; i.e., when the next instruction that
writes the same logical register commits. For example, the physical register 2 can be assigned again
only after the instruction that writes the physical register 3 commits. If the physical register 2 had
already been used as destination, it could happen that the physical register 2 was written but that the
instruction that had written the physical register 3 didn’t commit due to a miss-speculation. Then
the architectural value would be lost and the processor’s state after recovering from the miss would
be invalid.

Figure 4.14 shows the new reg info table, augmented with one field per physical register to
indicate its safe value. These fields are called reg safe though we use just “safe” in the figure
for simplicity. In the figure, we assume that each logical register has a set of eight physical registers.
Thus, the fields safe 0 to safe 7 correspond to the physical registers 0 to 7. The safe fields substitute
the last use fields in the reg info table that were mentioned in section 4.2.1. All the safe fields are
initialized with 0s. For each instruction, Rcreate assigns the physical phy+1 register of its destination
logical register, obtained from the value of the phy field of its logical register entry in the reg info
table. Therefore, it reads the reg safe entry of the physical register phy+1 to schedule the instruction.
Once it has scheduled the instruction, it updates the reg safe entry of the physical register phy with
the value of the safe register, to correctly schedule the next instruction that reuses the physical
register. Note that we only to consider the destination register here. For the source registers, the
read field of the reg info table is enough to ensure the correctness of the schedule.

Figure 4.16 shows how the code of figure 4.15 is scheduled according to the reg safe fields. Each
logical register has a set of two physical registers to simplify the example. The only dependent
instruction is C, that reads the value written by B. Three instructions write the register R0. Initially,
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Figure 4.14: The reg safe table is used to avoid deadlocks when assigning a physical register.

Example code

A: ADD R0, R2, R0

B: MUL R2, R3, R1

C: ADD R1, R3, R3

D: ADD R7, R4, R0

E: ADD R3, R5, R0

Renamed code

A: ADD R0.0, R2.0, R0.1

B: MUL R2.0, R3.0, R1.1

C: ADD R1.1, R3.0, R3.1

D: ADD R7.0, R4.0, R0.0

E: ADD R3.0, R5.0, R0.1

Figure 4.15: Example code for the use of the reg safe table. ADD instructions have a latency of one
cycle and MUL a latency of three cycles.

all reg safe fields contains zeros.

The instruction A is scheduled in the issue-group 0 so the safe register is updated with the value
1. The reg safe field of the register R0.0 is updated with the new value of the safe register (1). The
instruction B can be scheduled in the issue-group 0 too. The safe register does not change, so the
reg safe field of the register R1.0 takes the value 1.

The instruction C is scheduled in the issue-group 3, in which its source register R1.1 is available.
Thus, the value of the safe register is then 4 and the reg safe field of the register R3.0 is also updated
to 4. The source operands of the instruction D are available in the issue-group 0 but the reg safe
field of its destination physical register (R0.0) is 1. Therefore, it is scheduled in the issue-group 1. It
updates the reg safe field of the register R0.1 with the value of the safe register (4). The instruction
E has its operands available in cycle 0 but the reg safe field of R0.1 forces the scheduler to place it
in the issue-group 4. The new value of both the safe register and the reg safe entry for the register
R0.0 is 5.

If the safe values had not been taken into account, the instruction E would have been scheduled
before C, since the last use of its destination physical register is in the issue-group 0. So at execution
time, the instruction D would not commit before the instruction C and the architectural value of the
register R0 would still be in R0.1, which could not be assigned to E. Since the instruction E would
stall, the instruction C would never be processed and the processor would enter into a deadlock. The
actual schedule avoids this problem and is deadlock-free.
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Figure 4.17: An example of how the Rcreate logic tracks whether there is room in the issue-groups.

4.2.4 Issue-groups

The maximum size of the issue-groups is fixed and is equal to the width of the issue logic. In our
default configuration it can contain up to four integer and two floating point instructions. Therefore,
it can happen that there is no room for an instruction in an issue-group ig, the earliest in which the
instruction can be scheduled according to the read and safe fields. In that case, the scheduler tries
to insert the instruction in the issue-group ig+1. If it is full too, the scheduler tries to insert the
instruction in the issue-groups ig+2, ig+3, etc. consecutively. If all the issue-groups between ig and
the end of the sched table are full, the instruction cannot be scheduled in the rgroup and the Rcreate
logic closes the rgroup, as explained below in section 4.7.

Figure 4.17 shows an example, in which each issue-group can accommodate up to two integer and
one floating point instructions. We assume that the current instruction must be scheduled in the
issue-group 7, due to the values found in its read and safe fields and that it is an integer instruction.
The instruction is actually scheduled in the issue-group 8 instead, since the issue-group 7 cannot hold
more integer instructions. A floating point instruction cannot be scheduled in the issue-group 8, but
it would be placed in the issue-group 9.

Most instructions are inserted in just one of the buffers (integer or floating point). However, some
instructions are inserted in both buffers, for example the floating point memory instructions. In that
case, the instruction is inserted just once in the rgroup but it occupies both entries of the issue-group.
Therefore, it requires that its issue-group has room for one integer and one floating-point instruction.
For instance, if we schedule a floating point store instruction over the schedule of the figure 4.17, it
cannot be scheduled in the issue-group 7 because there is no place for an integer instruction there. It
also cannot be scheduled in the issue-group 8 because there is already one floating point instruction.
Thus, it would be scheduled in 9. No other instruction could be scheduled in the issue-group 9
thereafter.

4.3 Improving the performance of the schedule

The sections above have introduced the structures and methods used to create a valid and safe
schedule. The dependences are taken into account and the reordered use of the resources never leads
to a deadlock. However, there are several micro-architectural details that have been ignored so far
that can make the rgroup stall often at execution time. This section explains how to minimize the
stalls by improving the schedule.

4.3.1 Functional Units

One basic resource that we have deliberately ignored so far are the Functional Units (FU), where
the instructions are executed. A given instruction type can be sent to one or more FUs and one
FU can accept one or more instruction types. Each instruction type has an execution latency (the
number of cycles needed to produce a result) and an issue latency (the number of cycles between
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two initializations, that is, between two instructions enter the same FU). The execution latency has
already been used to update the reg info table and schedule the dependent instructions.

If an instruction is scheduled in an issue-group in which it doesn’t find an available FU at execution
time, then it stalls until the required FU is free. To eliminate this stall, the Rcreate logic uses the
busy bits, that are associated with each FU and with each issue-group of the sched table. Figure
4.18 shows an example. All the busy bits are initialized with 0s. The instruction type determines
which bits must be checked. When the scheduler determines that an instruction should be scheduled
at least in the issue-group ig, the busy bit of its FU in the entry ig of the sched table is accessed. If
the bit is set, the scheduler tries to place the instruction in the issue-group ig+1 instead and checks
the corresponding busy bit. If that bit is set too, Rcreate tries to schedule the instruction in the
issue-groups ig+2, ig+3, etc. If the instruction cannot be scheduled in any issue-group, the rgroup is
closed, as explained in section 4.7. When the definitive issue-group dig is selected for the instruction,
the corresponding busy bit of its FU is set in the entry dig of the sched table.

If the issue latency of the instruction is greater than one, the bits for the issue-groups from ig
to ig+issue latency-1 must be checked. Additionally, the corresponding busy bits are set when the
instruction is scheduled. In the default configuration used in our experiments, most of the instructions
have an issue latency of one cycle. Just the DIV and SQRT instruction types have a different value,
9 and 15 cycles respectively when using single precision and 12 and 30 with double precision. These
latencies are chosen based on the documentation of the Alpha 21264 processor [15]. The scheduler
accesses the busy bits of more than one issue-group only when it processes any of these instructions.
A sequential approach that reads one bit per cycle can be used.

If an instruction can be scheduled in more than a single FU, the busy bits of all the possible FUs
are checked. If the number of FUs where an an instruction can be executed is equal to the width
of the issue-group, it is not necessary to have bits for them (assuming their issue latency is just one
cycle). Our default configuration has four integer arithmetic and logic units with just one cycle of
issue latency. Since the processor can issue up to four integer instructions per cycle, there is no need
to have bits for these FUs in the sched table.

4.3.2 Safe pos values

The safe register and its related tables have been introduced to keep track of the earliest issue-group
in which it is safe to reuse a resource. In section 4.2.3, when the safe register has the value ig+1, it
indicates that the issue-group ig is the highest issue-group where any instruction has been scheduled
so far.

At execution time, an instruction scheduled in the issue-group ig will need several cycles to execute
and commit. Therefore, an instruction that reuses a given resource (an identifier in the ROB, for
example) that is scheduled in ig+1 will be executed correctly and will be able to commit, but only
after stalling for several cycles. These cycles of stall can be removed if the safe register and tables
are updated taking into account the cycles that the instruction needs to go through the pipeline and
commit.
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Pipeline depth

When the processor is in the Rcache mode, an instruction goes through the following sequence of
stages: the three Rfront-end stages (corresponding to the Rfetch, Rdecode and Rmap logic), and the
Issue, Read, Execution (in the FU, where the instruction stays the cycles indicated by the execution
latency), Writeback and Commit stages. The identifiers in the ROB, load queue and store queue, as
well as the physical registers are freed in the Commit stage. All these identifiers are assigned by the
Rmap logic. Assuming that a ROB entry that is freed by the Commit stage can be assigned again
to a new instruction in the same cycle, a safe and stall-free schedule is created if the safe register is
updated with ig+execution latency+3. The execution latency is that of the instruction scheduled at
the issue-group ig.

Note that with this change, the safe register may be determined by an instruction i other than
the instruction j scheduled in the highest occupied issue-group. This happens if the execution latency
of i is greater than the latency of j.

Commit width

With the modification proposed in the section above, the safe register points to the highest issue-
group in which an instruction in the rgroup finishes execution and commits. Such instruction may
be a different instruction that the one that frees the resource, which may commit in a different cycle.
In the example of section 4.7, the instruction G waited for the resource used by instruction C, but it
must be scheduled after B and the safe value indicates the issue-group where it is scheduled. If the
Commit stage could process just one instruction per cycle, C would not commit until one cycle later
than B, so G would stall one cycle.

To take these extra cycles into account, the safe register is updated whenever the commit width
is reached and it is known for sure that it will take an extra cycle to commit the younger instructions.
In our default configuration up to 11 instructions can commit per cycle. Also, it can process only up
to one control instruction per cycle. Therefore, the safe register is incremented in one unit after 11
scheduled instructions that haven’t updated the safe register. Additionally, when a control instruction
is scheduled in an issue-group that does not update the safe register, the content of the register is
incremented and the counter is cleared. Figure 4.19 shows the logic involved.

4.4 Memory instructions

Memory instructions require some processing by the scheduler beyond what is done to the arithmetic
instructions. The reason is that these instructions are inserted in dedicated queues at execution time
(the loads in the LQ and the stores in the SQ) and need an identifier in these queues. Furthermore,
they can have data dependences through memory, when two instructions access the same address
(memory alias). In most cases, these dependences can’t be resolved until execution time. The Rcreate
logic must be able to accurately predict these dependences and schedule the instructions accordingly.
Finally, their latency is variable and can change in each execution of the instructions.

4.4.1 Identifiers

Memory instructions are not only inserted in the ROB when they are executed but also in the LQ or
the SQ. The processor uses these queues to detect when two memory accesses are aliased and bypass
the data if possible. The number of instructions that can be stored in these queues is indicated in this
text by LQ size and SQ size.

The Rcreate logic assigns the identifier in the corresponding queue of the memory instructions in
the same fashion it assigns identifiers in the ROB. Thus, it has the LQ id and the SQ id registers to
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Figure 4.19: The value of the safe register is incremented to take into account the commit width. The
safe register is incremented every 11 scheduled instructions that have not modified the register. It is
also incremented after a control instruction is scheduled. The signal is ctrl? indicates whether the
instruction currently being scheduled is a control instruction. ig indicates the issue-group in which
the current instruction has been scheduled.

know which is the next identifier that must be assigned for each queue. These registers are updated
whenever a load or store instruction is scheduled. Like the identifiers in the ROB, the identifiers in the
LQ and the SQ are assigned in program order by Rcreate, occupied at execution in the schedule order
and freed when the instruction commits in program order. Therefore, two tables with the safe values
are needed in order to have deadlock-free schedules: one table for the LQ (LQ safe) and another for
the SQ (SQ safe). There is a safe field for each identifier in the LQ and the SQ. They are updated
exactly in the same way as the ROB safe fields are.

4.4.2 Addresses

Memory access ordering policy

Our architecture determines that the program order of all the accesses to the same memory address
is preserved and the instructions are re-executed if needed to preserve the order. On the other hand,
two memory instructions that access to different addresses can be freely reordered.

To consider two instructions as aliased, the size of the access (byte, word, double-word or quad-
word) is taken into account, so a partial alias can be detected while accesses to disjoint parts of the
same quad-word can be reordered. The memory addresses accessed are always naturally aligned to
the size of the access, so the lower bits of the two addresses are ignored when they are compared to
detect if two accesses are aliased. The number of ignored bits is determined by the size of the largest
of the two accesses.

The load instructions perform the access to memory in the Writeback stage while the store in-
structions do it in the Commit stage. Since instructions commit in order, the relative order of the
accesses of two store instructions is always preserved, regardless of the order in which they are issued.
Both load and store instructions calculate the address in the Execution stage. The address is written
in the corresponding entry in the LQ or the SQ in the Writeback stage. The store instructions also
copy there the data to be written in memory.

When a load (l1 ) enters the Writeback stage, its address is compared with those of the other
instructions in both the LQ and the SQ. Thus, it can be detected if there is any alias. When an alias
is found, the processor proceeds as follows:

a. If there is a younger aliased load (l2 ) that has already read the data, l2 is re-executed.

b. If there is an older aliased store, it bypasses the data from the SQ, instead of accessing the
memory, which the store has still not updated.

c. Aliased older loads and younger stores are ignored.
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When a store (s1 ) enters the Writeback stage, its address is compared with those of the instructions
in the LQ. Thus, it can be detected if there is any alias. When an alias is found, the processor proceeds
as follows:

a. If there is a younger aliased load that has already accessed the memory, the load is re-executed.

b. If there is a younger aliased load that has read the data through a bypass from the SQ, the
action depends on the relative order of s1 and the bypassing store (s2 ). If s1 is older than s2
nothing happens, since the load has read the data from the store on which it actually depends.
Otherwise, the load is re-executed.

c. Aliased older loads are ignored.

Two memory accesses are required to have equal size and data type (integer or floating point)
to bypass the data. Moreover, an aliased store-load pair cannot bypass the data if both reach the
Writeback stage at the same cycle. If that happens the load is re-executed.

Scheduling aliased memory instructions

When a memory instruction commits and is inserted into the buffer to be processed by Rcreate,
the address that was accessed is also copied in the rcreate input buffer. The scheduler uses the
addresses to predict whether two memory instructions will alias or not at execution time. Those
instructions that have accessed the same address are supposed to alias again in following executions
of the same instructions and the schedule is consequently restricted. Otherwise, they are considered
as independent instructions.

The Rcreate has the address info tables with an entry for each of the most recent memory
instructions that have been scheduled in the current rgroup. It is not necessary to store the information
about all the memory instructions in the rgroup but just for the last ROB size instructions or for the
last LQ size loads and last SQ size stores. Since an instruction already cannot be scheduled before
the previous use of its identifier in the ROB, in the LQ or the SQ, older memory instructions can be
ignored.

The address info structure can be organized as a single table with ROB size entries. Alterna-
tively, it can be separated into two tables, the load address info table with LQ size entries and the
store address info table with SQ size entries. The store instructions require more information that
load instructions and (LQ size+SQ size) < ROB size in our default configuration. Thus, separated
tables is our choice for the address info structure since it requires using less area. Furthermore, the
consequences of aliasing with a load and with a store are different and each case requires a different
logic. Keeping separated tables makes the logic simpler.

The section below present first a simpler version of the address info structure that ignores the
size of each access when aliased instructions are detected. All the instructions are considered to access
quad-words and the three least significant bits of each address are ignored. Therefore, some accesses
are considered as aliased when they actually access different bytes, words or double-words of the same
quad-word. In the next section, the tables are modified to take into account the actual size of the
accesses.

Size-ignoring address info structure

The load address info and store address info tables are shown in figures 4.20 and 4.21 respec-
tively. Each load address info entry stores the address that the corresponding memory instruction
accessed at execution time. Each entry also has a valid bit and the sched pos field, that indicates
in which issue-group the load has been scheduled. Each store address info entry stores the address
that was accessed, the size of the access and whether it writes an integer or a floating value. The entry
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has a valid bit, the next pos field that indicates the issue-group after the one in which the store has
been scheduled and the safe field with the value of the safe register once the store was scheduled.

The LQ id and the SQ id registers, that are already used to assign the identifier in these queues,
also indicate in which entry of the load address info or the store address info table the next
memory instruction must be inserted. The corresponding register is incremented after a load or store
is scheduled and inserted in the table. Thus, the insertion automatically invalidates the information of
the previous instruction that used the same identifier in the LQ or SQ, since its entry is overwritten.

The information of a memory instruction after ROB size scheduled instructions is not needed, since
it cannot be in-flight and be aliased with younger instructions. If there have been less than LQ size
loads or SQ size stores in the last ROB size instructions, the information of the old instruction is still
in the load address info or the store address info table. To invalidate it, the table should store
the ROB id of each instruction and compare it with the content of the ROB id register, invalidating
the entry on a hit. However, it is not strictly necessary to invalidate the entry because after ROB size
scheduled instructions, the values in the sched pos, next pos and safe fields of the old instructions
cannot be greater than the value of the ROB safe table accessed by the current instruction. As the
old values do not have any effect in the scheduling process, it is simpler just to not invalidate them.

When a load instruction is being scheduled, its address is used to perform a CAM-access to both
address info tables. The address field of the entries are compared with the current address ignoring
the three least significant bits. An entry hits if its address is equal and its valid bit is set. Up to
one load and one store can hit in this version of the address info structure. If no entry hits, the
instruction is scheduled considering that it is data-independent to all previous memory instructions.
Using the examples of figures 4.20 and 4.21, if the load instruction currently being scheduled has the
address FA0.0101, the entry 0 of the load address info table hits. Besides, the load is aliased with
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the entry 3 of the store address info table. The addresses have 16 bits to simplify the examples,
with the upper 12 bits shown in hexadecimal and the lower four in binary.

If an entry in the load address info table hits, the current load is scheduled in the issue-group
that is indicated by the sched pos field of the entry. Therefore, both loads are scheduled in the same
issue-group. In the example of figure 4.20, the instruction is scheduled in the issue-group 15.

If an entry in the store address info table hits, there are two possibilities:

a. The data can be bypassed at execution time (equal size and data type). The load is scheduled
in the next pos issue-group, which is one issue-group later than the store. At execution time,
the load will arrive to the Writeback stage one cycle after the store and will bypass the data
from the SQ.

b. The data cannot be bypassed, so the load will be re-executed if it reaches the Writeback stage
before the store commits. Thus, the load is scheduled in the issue-group indicated by the safe
field of the entry of the aliased store. That is, when the load reaches the Writeback stage the
store has already committed, so the load can read the data from memory.

In this case, the identifier in the SQ of the aliased store is copied with the load in the rgroup.
This allows detecting at execution time whether that particular store has actually committed.
If it hasn’t committed yet, the load stalls in the Issue stage until the store commits.

Additionally, the entry in the SQ safe table of the aliased store is updated if its current content
is less than the issue-group in which the load is scheduled. The reason is that if a store that is
younger than the load reuses the identifier in the SQ and it is scheduled before the load, it may
prevent the load to issue at execution time and lead to a deadlock.

In the example of figure 4.21, the store in the entry 3 of the table accesses a byte and writes an
integer value, so if the aliased load performs the same kind of access, it is scheduled in the issue-group
3 (next pos). Otherwise, it is scheduled in the issue-group 11 (safe).

After a load has been scheduled, it is inserted in the load address info table. If the access to
the load address info table when scheduling the current load returned any aliased load in the table,
the valid bit of its entry is cleared. Similarly, when a store is inserted in the store address info
table, a CAM access to the address field of the table is performed with the address of the instruction.
If there is a previous aliased store, it is invalidated. This enforces that there is at most one aliased
instruction in each address info table when they are accessed, thus simplifying the logic. The older
information is not needed anymore; when the aliased instructions are two loads, the newer one cannot
be scheduled before the older one and its sched pos field is equally or more restrictive. When they
are two stores, the newer one can be scheduled before the older one, and have a smaller next pos field.
However, it is the newer store that must bypass the data to a dependent load. If the data cannot be
bypassed, the load must be scheduled after the newer store commits, which is specified by its safe
field, so the information of the older store is not relevant anymore in any case.

Size-aware address info structure

The address info structure presented above effectively detects the memory aliases but some in-
structions are considered as aliased when actually they are not. That happens when two memory
instructions access different parts of the same quad-word. The performance of the rgroup can be
improved if the size of the accesses is taken into account. The drawback is that there can be up to 15
aliased loads and 15 aliased stores in the tables instead of just one. The logic required to handle that
is more complex.

In our architecture, all addresses are naturally aligned to the size of their access. Therefore, the
least significant bits of the addresses can be ignored when trying to detect if two instructions are
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aliased. The actual number of bits ignored depends on the size of the largest of the two accesses. If
one of the instructions accesses a quad-word, the lower three bits of the two addresses are ignored.
Otherwise, two bits for a double-word access or one bit for a word access are ignored. If the two
instructions access a byte, the whole addresses must match to consider them aliased.

The load address info and the store address info entries have a size field. The version of the
store address info table presented in the section above already had a size field, used to know if data
is bypassable. To detect an alias, the address info tables are accessed with the address and the size
of the current instruction. This size and that of the entry must be compared to know how many bits
must be ignored. The largest access determines the number of bits that are ignored. A simple way to
implement it is to encode the size of the accesses as a three-bit mask, where each zero correspond to a
bit of the address that must be ignored, i.e. using the mask 000 for quad-words, 100 for double-words,
110 for words and 111 for bytes. A bitwise AND of the two size masks and the lower three bits of the
addresses directly clears the desired number of bits.

For example, if one of the memory instruction accesses bytes and the other double-words, the AND
of the two masks yields the resulting mask (100) that will be applied to the addresses. That is, the
two least significant of the addresses will be ignored.

In the size-ignoring address info tables, the aliased entries are invalidated when inserting a new
instruction, so just one entry can hit per table in the next access. In the size-aware tables, the older
aliased instructions can still be relevant later, if the size of their access is larger than that of the new
instruction. For instance, let’s consider the following code:

A: LDW 0(R1), R2

B: LDB 0(R1), R3

C: LDB 1(R1), R4

D: LDB 0(R1), R5

E: LDW 0(R1), R6

The instructions A and E access words, while B, C and D access bytes. Both B and C are aliased
with A, but B and C are independent with respect to each other. D is aliased with A and B. E
is aliased with all the previous instructions. When B is scheduled and the information of its access
is inserted in the load address info table, the information of A is still needed, so its entry is not
invalidated. When C is processed by the Rcreate logic, the entry of A in the load address info table
hits and is used to schedule C. When D is scheduled, both the entries of B and A hit. The highest
sched pos value is used. The information of the instruction B is not needed afterwards, since any
instruction that is aliased with B must also be aliased with D, so the entry of B in load address info
table can be invalidated. When the instruction E is scheduled and the load address info table is
accessed with its address, the entries of the instructions A, C and D hit. The highest sched pos value
is used and all these entries can be invalidated then.

Note that after the instruction C is scheduled, all the bytes accessed by the instruction A are
aliased with posterior instructions. This makes A irrelevant, but we don’t take into account this case,
that requires tracking all bytes of each access independently.

Thus, an aliased entry can invalidated if its size is less or equal to that of the inserted instruction.
Up to 15 entries in each table can hit: one quad-word load, two double-word loads, four word loads
and eight byte loads. The quad-word load must be the older instruction, the double-word loads must
be older than the word and byte loads, and the word loads must be older than the byte loads. A
quad-word load can be aliased with all these instructions (which all would be thereafter invalidated).
The logic must detect the higher value of the sched pos of all the aliased loads. For each aliased
store, the next pos or the safe must be chosen, depending on whether the data can be bypassed.
The most restrictive of all the matching entries is used to scheduled the current load.

Managing invalidations is more complex in this case than when the size of the access is ignored.
The cost of not invalidating the older entries is that, in the worst case, all the entries in both tables
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can be aliased with the current instruction. In our baseline, it means that up to 32 entries in each
table can hit. Since it is a very unlikely case and we already have to deal with up to 15 hits per table,
it seems reasonable to have a sequential logic to processes all the entries that hit. Thus, no entry is
invalidated and up to 32 entries can match. In any case, whether the old entries are invalidated will
not have any impact in the scheduling of incoming instructions.

4.4.3 Latency

Memory instructions have variable execution latencies and the Rcreate logic must predict the latency
of each memory instruction in order to be able to schedule the instructions that depend on them.
The latency of an access depends on the configuration and the state of the memory hierarchy. In our
default configuration, the only fixed latency corresponds to the accesses that hit on the first cache
level (L1), which have a three-cycle latency for the integer loads and four cycles for the floating point
loads. In any other case, the exact number of cycles of the latency depends on the occupancy of the
buses, the number of outstanding cache misses and which cache lines they involve, etc.

However, assuming that the access finds a completely clean state of the memory hierarchy and
buses specified, a basic latency can be established for the cases when the access hits on the second
cache level (L2) and when the data must be read from memory: 13 and 84 cycles respectively, with
an extra cycle for floating point accesses.

Consequences of scheduling with a wrong latency

Although many programs have a very high L1 hit rate, it wouldn’t be a wise decision to use the L1
hit latency for all loads since the penalty when a load misses is very high. The latency is used to
know in which issue-group the result will be available and schedule there the dependent instructions.
When a correct latency is chosen, the instructions are scheduled in the earliest issue-group where they
don’t stall. But when a load is scheduled with the hit latency and it actually misses at execution
time, the first dependent instruction stalls until it can read its source register. And not only that
instruction delays its execution; the issue logic processes the instructions in order, so many independent
instructions that are scheduled in the next issue-groups have to wait until the memory access finishes.
Furthermore, even when the first dependent instruction is scheduled later than just after the L1 hit
latency cycles (for instance, because it has another source operand which is known to be available
later), an independent instruction may stall waiting for the load to finish its access; that is, when an
instruction reuses a ROB or queue entry or a physical register that has not been freed because the load
has still not committed. It may be even a resource that is not used directly by the load instruction,
but one used by an instruction that must commit after the load.

On the other hand, if a load is scheduled assuming the latency of a miss and it actually hits
in the L1, the scheduler inserts its dependent instructions later than they could have been placed,
with a potential performance loss. Again, not only the dependent instructions are affected, but also
independent instructions that reuse a ROB entry, physical registers, etc. are scheduled later than
needed, since the safe register is updated using the latency of the scheduled instruction.

Predicting the latency is more complex than just deciding whether the instruction hits or misses
in the different levels of the memory hierarchy. For instance, when a memory instruction misses on
the L1 and L2 caches but it is found that its cache line is already being retrieved from memory due to
a previously missed instruction, the access can be considered as an L2 hit. But if the two instructions
are executed within a few cycles, the second load will have near the same latency as the first one.
Therefore, although it is correctly predicted as an L2 hit, the actual latency can be very different from
the prediction. On the other hand, if the access is considered as an L2 miss, it can happen anyway
that the second instruction is executed many cycles after the first one, so the actual latency is much
closer to that of an L2 hit.
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Latency predictor

Taking all this into account, we use a predictor to decide the latency of the load instructions, although
[17] shows that this kind of prediction is a difficult problem. Besides, since our rgroups are reused
many times, it can happen that a load hits on some executions of the rgroup but misses on others.

Rcreate tries to detect biased loads with the lat pred table. It is a PC-indexed table of saturating
counters. The table is accessed with the least significant bits of the PC of the instruction. When a
load instruction commits and is inserted in the rcreate input buffer, its entry also stores whether it
hit on the L1 cache and its execution latency. When the load is scheduled, its counter is updated. The
counter is increased on an L1 hit and right-shifted on an L1 miss in order to weight the misses more.
The left-most bit determines the prediction: if set, the scheduler uses the L1-hit latency. Otherwise, it
uses the latency seen in the last execution of the load, that is, the latency stored in the rcreate input
buffer.

Load instructions that frequently miss in the L2 cache are more likely to benefit from re-scheduling
and updating the predicted latencies, so when a load executed in Rcache mode misses in the L2, its
rgroup’s counter in the Rcache is decremented.

4.5 Control instructions

4.5.1 Branch prediction

The stream of instructions that are executed after a control instruction can follow several paths.
Conditional branches can be taken or not taken. Furthermore, the target PC of an indirect branch
can be different in each execution. Once the Rcreate logic has scheduled a control instruction, we can
consider three ways to continue the schedule:

a. Stop scheduling, with the control instruction as the ending instruction of the rgroup and use a
branch predictor in the Rfront-end. In this case, the rgroup often contains less instructions than
the maximum possible size. Since control instructions are very frequent in most codes, creating
a new rgroup after each control branch leads to having many rgroups with very few instructions.
The ILP that the scheduler can extract with such small rgroups is very small. If the Rcreate
logic closes the rgroup only after the scheduling of a given number of branches, it reduces the
problem of the size of the schedule, although the ILP extracted is still limited.

Additionally, in this case a branch predictor in the Rfront-end is needed, in order to decide
which path the Rfetch logic follows after processing the rgroup. This goes against our design
principle to keep the critical path of execution as simple as possible and make most of the
decisions in the Rcreate logic, out of the critical path of execution. Furthermore, the branches
in the rgroup are reordered, so either: 1) the branch predictor is not accessed in program order,
which can affect the accuracy of its predictions; 2) there is a list of the branches of the rgroup in
the program order, stored along with the rgroup, which increases the ammount of information
stored with each rgroup in the Rcache; or 3) the branches are scheduled in order, which imposes
an unnecessary restriction on the scheduler, that can extract less ILP from the code.

b. Continue scheduling, using a branch predictor in the Rcreate logic to decide the path followed
by the scheduler. The branch predictor is removed from the Rfront-end. The benefit from
using a conventional branch predictor is that the schedule created contains usually the most
probable path. The main disadvantage is that the scheduler is fed by the stream of committed
instructions, so if the last execution of the branch didn’t take this time the predicted path, the
desired instructions are not available to the scheduler. In this case, the scheduler can either
1) stop scheduling (so it is actually case a) or 2) wait until the wanted path is executed and
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its committed instructions enter the Rcreate logic, discarding the instructions committed until
then. The second possibility can lead to lower IPC, because the skipped instructions will not be
found in the Rcache and will be executed in Icache mode.

c. Continue scheduling from the path followed after the last execution of the branch. In this case,
the size of the rgroup is not limited by the prediction, the ILP extracted from the scheduled
path is high and the Rfront-end just needs to follow the path predicted by Rcreate.

Note that, although the scheduler predicts that the branch will behave just like the last time, it
is not a one-bit branch predictor since it implicitly incorporates history in the prediction: the
path of the previous control instructions that have been scheduled in the rgroup. A branch can
be scheduled with different behavior within the same rgroup. For instance, a conditional branch
that is taken every other iteration of a certain loop, arrives to the Rcreate logic alternating the
taken and not-taken case. The scheduler captures the pattern and the branch prediction will hit
until the program exits the loop. More complex patterns would be captured as well. In average,
the prediction is less accurate than that of a branch predictor accessed at execution time but the
hit rate is usually close to that of a conventional branch predictor. The average misprediction
rate is 5.21 for the default configuration of ReLaSch, while in the reference OoO processor it is
4.00. See table C.8 in appendix C for more details.

Our processor uses option c) because this scheme requires less complex logic in the execution
pipeline, enables the scheduler to work with the current execution path and achieves acceptable branch
misprediction rates. Thus, the Rcreate logic just continues scheduling from the path of committed
instructions that follows a control instruction. The prediction is validated in the Commit stage against
the actual behavior of the control instruction, just like it is checked for the prediction of the branches
executed in the Icache mode. To do so, the conditional branches in the rgroup have a taken/not-taken
bit, used to record which prediction was made. The indirect branches in the rgroup also store the
predicted target PC.

Indirect branches

The PC of an instruction occupies many bits and most instructions do not need to store a target PC,
so having a dedicated target PC field for each instruction would result in many unused bits in the
Rcache. Therefore, the target PC of all the indirect branches are stored separately in the Rcache,
though this puts a limit on the number of indirect branches that can be scheduled in the same rgroup.
To make the Rfront-end simpler, these target PCs are stored in the Rcache in the order of the indirect
branches in the schedule, that is, out-of-order. Since at the time when a given branch is scheduled
its relative order in the final schedule is not known (a younger branch can be scheduled before it),
the actual order of the target PCs is not known until the rgroup is closed. The compacting logic (see
section 4.7) stores the target PCs in the required order. Until that moment, the target PCs can be
stored either: a) with the instruction, using a dedicated field for each instruction in each issue-group
of the sched table; or b) in a separated queue structure in commit order, which requires having an
additional field in the instruction to point to the corresponding entry in the queue. This field is smaller
than the whole PC, so option b) is our choice.

There are two interesting cases which are not very frequent but have appeared in a number of
experiments. One case is related with multi-target branches and the other with return addresses.

A conventional Branch Target Buffer (BTB), combined with a Return Address Stack, is a very
effective way to predict the target PC. However, while a conventional BTB has a high misprediction
rate for the indirect branches that continuously change their destination, the Rcreate logic detects
the patterns in the target PCs when they exist and predicts that kind of branches correctly. The
ReLaSch processor would have a significant advantage in applications with such kind of branches
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if it was compared against a reference machine with a conventional BTB. Therefore, the reference
OoO processor used in our experiments uses an enhanced BTB to correctly predict the multi-target
indirect branches in order to compensate this advantage of the ReLaSch processor and make a fairer
comparison.

In the second case, a return instruction is sometimes mispredicted by the Rcreate logic. although
it is not a very frequent case, is always worse than the prediction made by a Return Address Stack,
which has almost a 100% of accuracy. The misprediction can happen if there is a long function that is
called from different points in the code. Short functions are typically in-lined in the rgroup but a long
function can span through several rgroups, which are shared by the several call points. The return
address predicted by the scheduler is wrong when the call point at scheduling time and the call point
at the execution time are different.

4.6 Conditional move instructions

Conditional move instructions of the Alpha ISA move a source register to the destination if another
source register is not zero and leave the destination register unchanged otherwise. As explained in
section 4.2.1, the destination physical register is assigned by the Rcreate logic incrementing the phy
field of the reg info table, so the architectural value of the destination register is stored in different
physical registers before and after the conditional move commits. This means that, in order to leave
the destination register unchanged when the condition is false, it must be explicitly copied from the
older architectural physical register to the new one.

The OoO, IO and ReLaSch processors execute the conditional moves with just one instruction (cf.
appendix B). The execution pipeline reads the current value of the destination physical register after
the conditional move instruction is issued, so the instruction actually has three source registers.

Therefore, the destination register of a conditional move involves using two different physical
registers: a) the one that stores the previous value, identified by the value of the phy field of the
logical register in the reg info table. It is read by the instruction and it is considered as an additional
source operand by the Rcreate and the Issue logic. b) The actual destination physical register phy+1
in which the result is written.

When Rcreate schedules a conditional move, it copies in a dedicated field the value of the phy field
of its destination register, before it is updated. It is used at execution time to access the register as
an additional source register. The implementation of the issue logic or the register file could limit the
number of conditional moves per issue-group since they require accessing more source registers per
cycle and aren’t a very frequent instruction. If just one conditional move is accepted per issue-group,
a cmov bit would be added to each issue-group of the sched table, similar to the busy bits of the
FUs. If the desired issue-group ig has its cmov bit set, the scheduler tries to insert the instruction in
the issue-groups ig+1, ig+2, etc. Section 9.5.3 shows that limiting the number of conditional move
instructions per cycle doesn’t have any impact in performance.

4.7 Closing the rgroup

The following situations make the Rcreate logic close the current rgroup and stop scheduling instruc-
tions in it:

a. It has already scheduled the maximum number of instructions in the rgroup.

b. After taking into account the available field of the source registers, the safe field of its ROB
entry, etc., it should schedule an instruction in an issue-group beyond the end of the sched table.

c. It has already scheduled the maximum number of indirect branches in the rgroup.
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d. It has scheduled a system call instruction. In our implementation, the pipeline is flushed after
a system call instruction commits, so it makes no sense to schedule instructions after it.

e. The rcreate input buffer had an overflow and all the instructions there have been scheduled.

4.7.1 Compacting logic

After an rgroup is closed by Rcreate, it is sent to the Rcache to be stored there. The format in which
an rgroup is stored in the Rcache differs from that of the sched table, so the Rcache line is not a
direct copy of sched table. A compacting logic is needed, that sequentially reads the issue-groups of
the sched table and inserts the instructions in the Rcache line or in an intermediate buffer with the
same format. There, all the instructions are inserted in consecutive entries and the first instruction
of each issue-group uses a flag to indicate the beginning of a new issue-group. The rgroup is stored
in a compact format by removing the empty issue-groups and the empty slots in partially empty
issue-groups. The compacting logic also creates the list of targets of the indirect branches following
the actual relative order of the branches in the schedule. The targets are stored in the Rcache in that
order.

Once the compacting logic has completely processed the sched table, the sched table is emptied
(clearing all the valid and busy bits) to schedule there the instructions of the next rgroup. A given
issue-group can be cleared just after it has been processed by the compacting logic. The phy field of
the logical registers in the reg info table as well as the ROB id, LQ id and SQ id registers are cleared.

Furthermore, all the safe, sched pos and read fields are cleared and the Rcreate logic invalidates
the content of the address info tables. Although it can make sense to keep this information from one
rgroup to the next one in order to improve the performance of the schedules when they are executed
back to back, the logic needed to do it is not simple and our experiments have shown little benefit
from it.

4.8 Rgroup identification

To identify an rgroup, it is used the next PC of the instruction immediately preceding the beginning
of the rgroup. Typically it is equal to the PC of the first instruction in the rgroup (see section 5.1
for details). When scheduling the first committed instruction after the processor is switched on or
the first instruction inserted after an overflow of the buffer of committed instructions, the PC of this
same instruction is used, since there is no information about the older instructions.

The Rcreate logic also has a history register, updated with the taken/not-taken bit of each sched-
uled conditional branch. The content of this register when the first instruction of an rgroup is scheduled
is used along with the PC to identify that rgroup in the Rcache.

4.9 The Scheduling mode and the Idle mode

It is not necessary that the Rcreate logic is constantly scheduling instructions into new rgroups,
because rgroups are meant to be reused. Thus, Rcreate can be either in the Scheduling or the Idle
mode. The Scheduling mode corresponds to the behavior detailed in the rest of this chapter. In the
Idle mode, the committed instructions are inserted in the rcreate input buffer but are not scheduled.

The Rcreate logic performs the following tasks to all the instructions in the rcreate input buffer,
regardless of the mode:

a. If the current instruction is a load, it updates the predictor of the memory latency in order to
predict in the Scheduling mode the latency of the loads using the most recent information.
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b. If the instruction is a conditional branch, it updates the history register, which will be used to
identify the next scheduled rgroup.

c. It stores the next PC, which indicates the instruction that must be executed just after it; it is
used to identify the next scheduled rgroup.

Besides, in the Idle mode, the Rcreate logic checks if the current instruction should switch back
to the Schedulitheng mode and start scheduling a new rgroup.

Rcreate is initially in the Scheduling mode. It can switch from the Scheduling to the Idle mode
only after an rgroup has been closed. Just after closing an rgroup, the Rcreate logic checks if the next
instruction that must be scheduled was executed in the Rcache mode. If this condition is evaluated
as true after two closed rgroups in a row, the Rcreate logic changes to the Idle mode.

Once it is in the Idle mode, there are two cases that put Rcreate back in the Scheduling mode:
a) when the instruction currently at the head of the buffer was executed in the Icache mode; and
b) when the instruction was executed in the Rcache mode but it forms part of a “bad rgroup”. As
explained in detail below in section 5.3, the processor can detect when a given rgroup repeatedly
fails to be completely executed, due to frequent mispredictions; it is marked as a “bad rgroup” and
its instructions too at execution time; the entries in the rcreate input buffer have a bit to mark
such instructions. The instructions of the “bad rgroup” are re-scheduled taking into account the new
behavior of branches and memory instructions, which are expected to have a lower misprediction rate.

4.10 Block diagram

Figures 4.22 and 4.23 show a block diagram of the Rcreate logic, as a summary of all the elements and
logic used there. Figure 4.22 shows the blocks used to schedule an instruction. The rcreate input
buffer stores the committed instructions until they are scheduled. The Rcreate logic uses the reg info,
ROB safe, LQ safe, SQ safe, load address info (ld addr in the figure) and store address info
(st addr in the figure) tables to know in which issue-group should be scheduled the current instruction.
The maximum value provided by these tables is used. SQ safe is only accessed when the instruction is
a store. LQ safe, load address info and store address info are only accessed when the instruction
is a load. The insert logic tries to place the instruction in the selected issue-group. If it is not possible
because it is full or the corresponding FU is busy, it attempts to place it in the next issue-groups.

The reg info table is used also to perform register renaming. It provides the identifiers of the
physical registers used by the instruction. The ROB id register provides the identifier used by the
instruction in the ROB. The LQ id register provides the identifier of the load instructions in the LQ
and SQ id provides the identifier of the store instructions in the SQ. All this information about the
instruction is stored alongside with the encoded instruction itself in the chosen issue-group. The
safe register is updated with the identifier of the issue-group and the latency of the instruction. The
lat pred table is used to select the latency of the load instructions. Also, the target PC of the indirect
branches is stored in a dedicated buffer.

Figure 4.23 shows the blocks and logic required to update the state of the Rcreate logic after
scheduling an instruction. The updated content of the safe register is used to update the safe field
of the destination physical register in the reg info table and also the corresponding entries in the
ROB safe, LQ safe and SQ safe tables. It is also used to update the store address info table when
the instruction is a store, in order to indicate in which issue-group the instruction is expected to
commit. The selected issue-group (igroup in the figure) plus the latency (lat) is used to update the
issue-group in which the destination register is available. Besides, igroup is also used to update the
address info tables.

The Rcreate logic keeps a counter of the number of scheduled instructions and the number of
indirect branches in the rgroup. The schedule is closed when the limit of instructions or indirect
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branches per rgroup is reached or the selected issue-group is beyond the size of the sched table.
When the rgroup is closed, the compacting logic reads the whole content of the sched table. It

filters out the unused issue-groups and unused slots in each issue-group. The compacted rgroup is
sent to the Rcache. All the tables and registers of the Rcreate logic are reset afterwards, with the
exception of the lat pred table and the rcreate input buffer.

When an rgroup is closed, the Rcreate logic checks the instruction in the head of the rcreate input
buffer in order to decide whether it should continue scheduling or it should switch to the Idle mode.
There is a mode change if the instruction was executed in the Rcache mode. In the Idle mode, the
instructions in the rcreate input buffer are processed just in order to update the lat pred table
and to know whether the Rcreate logic should switch back to the Scheduling mode. The mode change
happens when the current instruction either was executed in the Icache mode or forms part of a “bad
rgroup”.
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Figure 4.22: Block diagram of the Rcreate logic: blocks used to schedule an instruction.
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Chapter 5

The Rcache

The Rcache is the structure that stores the rgroups. The following sections explain how the rgroups
are identified, how their information is stored, how frequently aborted rgroups are detected, and finally
an estimation of the area that the Rcache requires.

5.1 Rgroup identifier

Each rgroup needs an identifier, which is used in the accesses to the Rcache to know if there is
any rgroup that can be executed starting from the current PC. Each rgroup in the Rcache must
use a unique identifier. For each control instruction, the Commit stage checks the correctness of its
prediction. But it assumes that the instruction stored in the next ROB entry corresponds to the next
PC in the predicted path or simply the next PC if the current instruction is not a branch. So we must
enforce that the first instruction of an Rgroup corresponds to the next PC of the previous instruction.
Therefore, the PC of the first instruction of an rgroup must be used to identify the rgroup, although
it can be combined with other information such as history bits.

The following example illustrates how the rgroups are created and later found in the Rcache:

A: BNZ R0, D

B: MUL R1, R2, R3

C: ADD R4, R5, R4

D: AND R6, R7, R8

Let’s assume that the first time this code is executed, the branch A is taken so the control flow goes
to D. The processor is by now in the Icache mode. Since it is the first execution of these instructions a
new rgroup (r1 ) is created out of them. This rgroup contains the instructions A and D among many
other instructions. We assume it begins with an instruction older than A.

When the rgroup r1 is executed and the branch A is taken, the instruction D and those that follow
it in the schedule can commit. But if A is not taken, the prediction misses and execution restarts
from the instruction B. The processor tries to execute then an rgroup that begins with the instruction
B, but since this instruction has never been executed before, the instructions B, C, etc. are executed
in the Icache mode this time. The Rcreate logic is likely to be in the Idle mode when B commits,
because the processor was in the Rcache mode until then. In this case, the Rcreate logic schedules
the committed instructions in a new rgroup (r2 ), that begins with the instruction B. The PC of B
identifies the rgroup r2. The next time that A is not taken (or is predicted to do so in the Icache
mode) the Rcache is accessed with the PC of the instruction B and the rgroup r2 is executed.

65
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5.1.1 Early retirement

It is better to not use directly the PC of the first instruction of the rgroup to identify it. The reason
can be illustrated if we change the destination register of the instruction B of the previous example to
R31. The register R31 always stores the value 0, so the instruction is actually a NOP and it is “early
retired” before the Commit stage (see appendix B for details). Arithmetic and logical instructions as
well as some kinds of load are early retired when they have R31 or F31 as destination.

A: BNZ R0, D

B’: MUL R1, R2, R31

C: ADD R4, R5, R4

D: AND R6, R7, R8

The instruction B’ doesn’t commit and it is never seen by the scheduler. Therefore, the rgroup
(r2’ ) created after the misprediction of the branch A begins with the instruction C and its PC identifies
that rgroup.

Each time that the instruction A is not-taken, the branch prediction of the rgroup r1 misses and
the Rcache is accessed with the next PC after the instruction A. Since it is the PC of the instruction B’,
the rgroup cannot be found. The processor goes then to the Icache mode, just to fetch the instruction
B’, which is later “early retired” and since the access to the Rcache returns that there is an rgroup
that begins with the instruction C, the processor goes back to the Rcache mode to execute it. The
problem is solved using the next PC of the instruction A to identify the rgroup the begins with the
instruction C.

More generally, an rgroup is identified with the PC of the instruction (B) that follows the one
(A) committed just before the first of the rgroup (C). When there is no early retired instruction just
before the beginning of an rgroup, B is equal to C and the PC of the first instruction (C) identifies
the rgroup. This is the most common case.

5.1.2 Index and tag

The least significant bits of the PC are used to index the Rcache, excluding the two least. The two
least significant bits are always 0 because the instructions are encoded in 32 bits and are always
aligned. The rest of bits of the PC are used as a tag for the rgroup. They must match to have a hit.

However, with this approach there can be in the Rcache only one rgroup that begins with a
given instruction and it may be not enough in some cases. For instance, when the behavior of the
branches in the rgroup depends on the path to the rgroup. So the history bits of the path to the
rgroup are also part of the identifier of the rgroup, with a bit for each of the most recent conditional
branches indicating whether they were taken or not taken. Siz bits of history are used in our default
configuration.

The history bits are used to access the Rcache along with the PC. They form part of the tag
although they don’t actually must match to have a hit. The history bits are used only as a hint
to choose between different rgroups that begin with the same PC. If there is an exact match, the
matching rgroup is chosen. Otherwise, an rgroup with the matching PC is chosen even if the history
bits are not equal. Since only the PC is used to index the Rcache, all the rgroups that begin with the
same PC are stored in the same set.

Figure 5.1 shows an example of how the Rcache is accessed to look up an rgroup. 32-bit addresses
are used in the example. The two least significant bits of the PC are ignored. The rest are used as
index (the lowest six bits in the example, assuming 64 sets) and tag (the most significant 24 bits).
The tag is compared with the ones stored in the indexed set. In the example, the Rcache is two-way
set associative, so it must be compared with two tags. To have a hit, the tag must be equal and the
corresponding valid bit must be set. In the example, an access with index 0 and tag 40FA73 would
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Figure 5.1: Example of an access to the Rcache.

hit, while an access with the same index and tag 407343 would miss because the valid bit for way 1
is cleared. Any access with index 0 and another tag would miss. Several tags can hit simultaneously,
as would do an access with index 1 and tag 40F343 or with index 3 and tag 40F345. To select which
line is actually fetched, the history bits are compared too. If just one tag matches the history bits are
ignored. If there are more than one matching tags the rgroup with matching history bits is selected.
If there are several rgroups with matching tag and none with a matching history, a pre-defined rule is
used to select one of them. For example, the tag in a lower way. It is not possible that both the tag
and the history bits of more than one rgroup match at the same time.

In the example a three-bit history register is used. An access with index 1 and tag 40F343 selects
the rgroup in way 0 since it history bits are equal to the current history. An access with index 0 and
tag 40FA73 selects the rgroup in way 0 even if its history bits don’t match.

When the behavior of the branches is not correlated with the path to the rgroup and the Rcreate
logic can capture it, the rgroup is usually completely executed, so it is not re-scheduled several times
and inserted in the Rcache with different history bits. In this case, ignoring the history bits is the right
choice. When the code includes history-correlated branches that are hard to predict, the instructions
of the rgroup are re-scheduled and the new rgroup is inserted in the Rcache with different history
bits. If the history bits matches the chosen rgroup is probably completely executed. Otherwise, it is
likely that the chosen rgroup aborts its execution after a number of control instructions. However,
our experiments (see section 9.3.5) show that the useful instructions that are executed anyway yield
better IPC than if they are executed in the Icache mode, even a misprediction penalty is paid.

5.1.3 Replacement policy

When the Rcache must store a new rgroup, it first checks if there is already any rgroup with an
identical identifier, that is, with exactly the same PC and history bits. If there is a match, the new
rgroup replaces the older one. Otherwise, if there is any empty line in the selected set, it is occupied.
Finally, if the set is full, the least recently used line is replaced.

5.2 Rcache line format

Each rgroup is stored in one Rcache line. Figure 5.2 shows the information stored for each rgroup in
three parts: a) the control information, b) the target PC of the indirect branches, in their relative
scheduled order, and c) the instructions. The sizes in the figure correspond to the default configuration
of ReLasch presented in table 9.1.
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Figure 5.2: The information of an rgroup stored in an Rcache line.

The control information is the identifier of the next rgroup (formed by the PC of the instruction
that follows the last one of the rgroup and the history bits of the last six branches), the size of the
rgroup (the number of scheduled instructions) and the number of indirect branches. Although not
shown here, the Rcache needs some additional information to manage the rgroups, such as the tag
that identifies the rgroup, a valid bit and an LRU counter, as well as the saturating counter explained
in section 5.3.

The predicted target PC of the indirect branches are stored separately. This imposes a limit to
the number of indirect branches that can be scheduled per rgroup. A code with a very high number
of these instructions is scheduled into many smaller rgroups, thus decreasing the IPC. Ten indirect
branches per rgroup is more than enough for most benchmarks. Tables C.4 to C.7 in appendix C
show the number of targets of static and dynamic indirect branches per each benchmark.

The instructions are stored as a sequence of issue-groups in the scheduled order. The empty slots
in the issue-groups and the empty issue-groups are not stored in the Rcache. Instead, a bit is used to
indicate that an instruction is the first one of an issue-group. Thus, for each instruction it is stored:
the encoded instruction itself, its source and destination physical registers and its ROB identifier. For
memory instructions, it is also stored the identifier in the LQ or the SQ. Besides, for some loads it is
also used the identifier of an aliased store. To know when this field is required, an additional bit is used
to validate it. A taken/not-taken flag indicates the predicted direction for each conditional branch.
Conditional move instructions have also a field with the physical register that stores the previous
value of the destination register. The fields that are only used by a specific type of instructions are
overlapped to reduce the number of bits used. The instruction type that requires more extra bits is
the load.

It could be useful to have also pre-decoded information: the logical registers of the source and
destination registers, flags to indicate whether the instruction is a load, a store, a branch, etc. But
it would require additional area and it is better to decode this information from the instruction each
time it is executed. However, part of this information could be overlapped with the extra fields when
the instruction is not a load.

5.3 Counters

Each rgroup in the Rcache has a saturating counter of five bits, used to detect the rgroups that usually
do not commit all their instructions. The next time such an rgroup is read, its instructions have the
“bad rgroup” flag set in their ROB entries. The Rcreate logic checks the flag and schedules a new
rgroup when it detects these instructions. When an rgroup is read from the Rcache, its saturating
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counter is accessed too. If it is equal to zero, the instructions fetched are marked as part of a “bad
rgroup”.

If an instruction commits and it is the last instruction of an rgroup, the Commit stage notifies
to the Rcache that the rgroup has been completely executed. The identifier of the rgroup, that the
Commit stage knows from the first instruction in the rgroup, is used to access the associated saturating
counter and increment it. When a branch has been mispredicted or a load must be re-executed due to
a memory alias and they were executed in the Rcache mode, the Rcache is accessed to decrement the
saturating counter of its rgroup. Also when a branch is mispredicted and it was the last instruction of
an rgroup the counter is decremented. Besides that, when an rgroup has been completely executed but
one of its loads has missed in the L2 cache, the counter is decremented instead of being incremented.

5.4 Area and latency

The area needed to store the whole Rcache data depends on many parameters. The main ones are
the number of rgroups that it can store and the number of instructions per rgroup. Also the exact
size that occupies each instruction, which is determined by parameters such as the number of physical
registers per logical register or the size of the ROB. Also the maximum number of indirect branches
per rgroup affects the total area occupied.

In the default configuration of the ReLaSch processor, each instruction needs 32 bits for the encoded
instruction, 7 bits for the ROB identifier (with 80 ROB entries), 9 bits for the physical registers (two
sources and one destination register, with sets of 8 physical registers each one) and 1 bit for the new
issue-group flag. There are also 11 extra bits, required by the load instruction to hold the LQ identifier
(5 bits, 32 entries), the SQ identifier (5 bits, 32 entries) of an aliased store and a valid bit of the alias
identifier. Actually, since loads only use one source register, 3 of these bits can be stored in the field
used for one source register, reducing the size of the other field to 8 bits. When the instruction is not
a load, part of the other field is used for the identifier in the SQ (stores), the taken/not-taken flag (for
conditional branches) or the previous physical destination register (for conditional move instructions).
All these fields add up a total of 57 bits per instruction.

Each rgroup has a list of the target PCs of its indirect branches. The addresses in the Alpha ISA
have 64 bits, but actual implementations use fewer bits. The Alpha 21264 uses either 43-bit or 48-bit
virtual addresses, which is configured with an internal control register. We assume that our addresses
have 48 bits. Since instructions have 32 bits and are always naturally aligned, the lower 2 bits of a
PC are always 0 and don’t have to be stored in the Rcache. With 10 indirect branches per rgroup,
and using 48-bit addresses, 460 bits are needed to store the target PCs.

Additionally, each rgroup has to store its size (8 bits for 256-instruction rgroups), the number of
indirect branches (4 bits with 10 indirect branches at most) and the identifier of the next rgroup (52
bits, 46 for the PC and 6 for the history). It is a total of 64 control bits.

Each rgroup has an identifier, formed by a PC (46 bits) and a branch history (6 bits). The exact
number of bits that must be stored as a tag depends on the number of bits of the PC used to index the
Rcache. In the worst case, if the PC is hashed to index the Rcache or in a fully-associative Rcache,
all the 46 bits of the PC must be used as tag. In our default configuration, where the bits are not
hashed and the Rcache has 32 sets, the Rcache is indexed using 5 bits of the PC and the PC tag is
reduced to 41 bits, plus the 6 history bits. Finally, each rgroup requires some control bits which are
not visible outside the Rcache: a valid bit, the LRU bits and the 5-bit saturating counter. With the
baseline 4-way associative Rcache, two bits indicate the LRU line, adding up a total of 8 invisible
control bits.

In summary, a 256-instruction rgroup needs 14,592 bits to store the instructions, 460 bits for the
target PC of the indirect branches and 64 control bits. Besides this, 55 internal bits are used. It is
a total of 15,171 bits per rgroup, circa 1,897 bytes. A 4-way associative cache with 32 sets stores up
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to 128 rgroups and it requires approximately 237KB. Section 9.3 explores many parameters that have
an impact in the Rcache size as well as in the IPC of the processor.

The Rcache lines are longer than usual cache lines. However, a line is processed sequentially, one
issue-group per cycle and there can be no random access in the middle of the line. The experiments
explained in section 9.3.4 show that the Rcache is accessed once every 169 cycles in average, so any
low bandwidth implementation of the Rcache would work. On the other side, the access to the tag
information must be fast in order to detect when there is an rgroup available and change to the Rcache
mode as fast as possible. Since the number of sets is small it should be easy to achieve it. In our
default configuration, it takes 3 cycles until the hit is detected and the first issue-group is read by the
Rfetch logic.



Chapter 6

The Rfront-end

In this chapter, the Rfront-end is described in detail. The Rfetch logic reads the Rcache, the Rdecode
logic decodes the instructions and the Rmap logic checks, for each instruction, that its operands are
ready and the required resources are available and then sends it to the Issue stage. The Rmap logic
stalls when an operand or a resource is not available yet.

First, the Rfetch and Rdecode logic are described. Then, a simple, initial version of the Rmap
logic is introduced. This version is able to process the rgroups and send the instructions to Issue, but
it requires that the ROB is completely empty before sending the first instruction of an rgroup. It is
followed by an explanation of how it deals with some instruction types that have specific requirements.
Finally, Rmap is modified to allow it to start processing the instructions of an rgroup even if the ROB
is not empty.

6.1 Rfetch and Rdecode

The Rfetch logic reads the Rcache. It takes many cycles to completely fetch an rgroup, which is done
in parallel to the processing of its instructions by the rest of the pipeline.

After processing an rgroup, the Rfetch logic searches the next rgroup in the Rcache. The matching
rgroup is fetched if the access hits; on a miss, the processor switches to the Icache mode. The identifier
of the next rgroup is read from the Rcache with the information of the current rgroup. It is not
necessary to choose between different rgroups, corresponding to different execution paths, after the
end of a given rgroup: most of the times, the last instruction of the rgroup is not a control instruction;
and when it is a branch, the target predicted at scheduling is likely to be correct, as the whole rgroup
is implicitly used as history in the prediction.

The Rdecode logic decodes the instructions. In particular, the next stage (Rmap) requires at
least the following decoded information for each instruction: the identifiers of the logical source and
destination registers and whether an instruction is a load, a store, a conditional move, a conditional
branch or an indirect branch. Further decoding can be performed also by the Rdecode logic, or later
in the pipeline. For instance, which Functional Unit executes the instruction is not needed until the
instruction is in the Issue stage.

The instructions are inserted in the rgroup buffer, placed between the Rdecode and the Rmap
logic, needed in case Rmap stalls (neither Rfetch or Rdecode have any hazard that must be solved by
stalling).
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Figure 6.1: The busy bits of the ROB indicate if the desired identifier is available.

6.2 The Rmap logic with an empty ROB

The Rmap logic processes up to one issue-group per cycle. One issue-group is formed by up to six
instructions, four integer and two floating point, which is equal to the issue width. The instructions in
an issue-group are independent but are processed sequentially, in the order in which they are stored
in the rgroup buffer; if an instruction A cannot be sent to issue, the remainder of the issue-group
must wait too, until A unblocks. This behavior allows an easy management of the rgroup buffer, as
it is only needed a pointer to the next instruction to process.

Each instruction in the rgroup has a flag that indicates if it is the first instruction of an issue-group.
Each cycle, the Rmap logic processes the instructions on the head of the rgroup buffer until it finds
one with the flag set. Ideally, one issue-group should be processed per cycle, but the instructions with
variable latency (mainly loads) may not follow the prediction of the scheduler. Therefore, sometimes
the Issue stage stalls at an instruction dependent on the load or the Rmap logic stalls at an instruction
that needs resources which are not freed until the load commits.

For each instruction, the Rmap logic needs to know the identifiers of the logical source and desti-
nation registers and whether an instruction is a load, a store, a conditional move or an indirect branch.
This information was already extracted by the Rdecode logic and stored in the rgroup buffer. Be-
sides, the identifier in the ROB (ROB id) and the identifiers of the physical source and destination
registers are also needed. This information is stored with the instruction in the Rcache. Additionally,
depending on the instruction type, the Rmap logic needs the identifier in the LQ or the SQ (for
memory instructions), the previous destination physical register (for conditional moves), whether the
instruction was predicted as taken (for conditional branches only) and the target PC (for the indirect
branches).

Resources

There is a busy bit for each identifier in the ROB. It indicates if the identifier is already in use by any
in-flight instruction or if it is available to be assigned. For each instruction, the Rmap logic checks
that the busy bit is cleared for its identifier in the ROB. Figure 6.1 shows an example. The instruction
uses the identifier 2 in the ROB, which is available. An instruction that uses the identifier 1 would
stall at Rmap.

There are also busy bits for the identifiers in the LQ and the SQ, that are checked when a memory
instruction is processed. Figure 6.2 shows an example. The entry 2 of the LQ has its busy bit cleared
and the instruction can be processed and the instruction does not stall. An instruction that uses the
identifier 3 in the LQ would stall until its entry is freed.

It is also necessary to check the availability of the destination register of each instruction. The
register file is accessed using the identifier of the logical register (decoded in the previous stage) and,
within its set of physical registers, the identifier of the physical register (assigned by Rcreate and stored
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Figure 6.2: The busy bits of the LQ are used to know if the identifier used by a load instruction is
available.

Figure 6.3: The Rmap logic checks the availability of the destination physical register. The identifier
of the logical register (log) as well as that of the physical register (phy) are used to index the busy
bit.

in the Rcache). There is a busy bit for each physical register that indicates whether the register is
free. The busy bit is set when it is assigned as destination register, either by the Map stage or by the
Rmap logic. It is not cleared until the physical register does not hold the architectural value of the
logical register. When the instruction that writes the physical register phy commits, phy becomes the
architectural register of the corresponding logical register log. When the next instruction that writes
log (mapped to the physical register phy+1 ) commits, phy+1 becomes the architectural register and
the busy bit of phy is cleared.

Figure 6.3 shows an example of how the Rmap logic checks the availability of the destination
physical registers. The logical register R6 is renamed to its physical register 2. The busy bit of the
R6.2 is checked. Since it is cleared, the physical register can be assigned as destination. An instruction
that uses the physical register R6.3 as destination would stall.

An instruction is sent to the Issue stage when satisfies all these requirements. The information of
the instruction is copied on its entry in the ROB. The corresponding busy bit is set. The entry in the
LQ or the SQ is also initialized. The valid bit of the physical destination register is cleared while its
busy bit is set. Finally, the instruction is inserted in the integer or floating point issue buffer.

6.2.1 Indirect branches

The target of the indirect branches is predicted by the Rcreate logic and the prediction is stored in
the rgroup. Using a field to store the target for each instruction would require a lot of area, that
in most cases would not be used. Instead, these targets are not stored with the indirect branch but
separately from the instructions in the Rcache line. Therefore, the number of indirect branches in an
rgroup is limited.
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The Rfetch logic copies all these targets in a buffer when it reads the rgroup. When the Rmap logic
processes an indirect branch, the value on the head of the target buffer is copied with the instruction
in the ROB and the head is advanced. Therefore, the order of the targets in the buffer is equal to
that of the indirect branches in the rgroup. The target PCs are already stored in that order in the
Rcache.

6.2.2 Identification of the rgroup

The Commit stage must know when begins and ends each rgroup in order to detect if all the instruc-
tions of an rgroup have committed. Some information is stored in the ROB entries to identify when
an rgroup begins and ends. Each instruction processed by the Rmap logic has a flag to indicate that
it is executed in Rcache mode. The first instruction in the rgroup also carries a copy of the identifier
of its rgroup (actually, only the history bits, since the Commit stage already knows the PC). The
new-rgroup flag of the first instruction of an rgroup is set. The Commit stage checks this flag of the
committed instructions to know when a new rgroup starts.

6.3 The Rmap logic without restrictions on the ROB state

The version of the Rmap logic presented in the section above uses the identifiers in the ROB, LQ, SQ
and the physical register just as Rcreate specified them. Since the Rcreate logic assigns the identifier
0 in the ROB to the first instruction scheduled in an rgroup, Rmap must wait until this ROB entry
is freed to begin processing an rgroup. Furthermore, the live-in registers are renamed to the physical
register 0 (of the corresponding logical register). However, the source data may be actually in any
physical register of the logical register’s set. Therefore, this simpler version of the Rmap logic must
wait until all the instructions present in the ROB commit, when the architectural register contains
the source data for sure. Then the architectural register can be copied to the physical register 0 and
the processing of the rgroup can begin. Such behavior implies many wasted cycles when changing
from the Icache to the Rcache mode and also between two consecutive rgroups executed in the Rcache
mode.

A related problem appears when the Rfetch logic does not find the next rgroup in the Rcache and
the processor changes to the Icache mode. The instructions executed in the Icache mode must read
the live-out registers of the rgroup from the physical registers where the architectural registers will be
stored once all the instructions in the rgroup commit. In this version of the Rmap logic, which is this
register is not know until the last instruction of the rgroup commits. So the Map stage in the Icache
mode must also stall until no instruction of the previous rgroup is in-flight.

In summary, two problems must be solved to eliminate these stalls: a) how to use the identifiers
assigned by the Rcreate logic while part of the ROB and some physical registers are still in use by
instructions that do not belong to the rgroup, and b) how to update the internal state of the processor
to be able to insert new instructions after the whole rgroup has been sent to issue but part of it hasn’t
committed yet.

6.3.1 Adapting the identifiers

The instructions in the rgroup have several identifiers assigned by the Rcreate logic: the identifier in
the ROB, in the LQ or the SQ (if it is a memory instruction) and the identifiers of the source and
destination physical registers. All these identifiers must be adapted by the Rmap logic to the actual
state of the ROB, the queues and the register file.

The ROB tail register is a pointer to the first free ROB entry. It is used in the Icache mode to
assign the identifiers in the ROB. In the Rcache mode we will use it also to find the actual entry used
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Figure 6.4: The Rmap logic must add an offset to the identifiers specified in the rgroup, before
accessing the ROB, the LQ, the SQ and the physical registers. A modulo is applied to the add of the
offset of the ROB, since the size of this structure is not a power of two.

by the instructions of the rgroups. The value of ROB tail found when an rgroup starts execution will
be used as an offset for the identifiers of that rgroup. The offset is added to the identifiers assigned by
Rcreate, modulo ROB size. The offset remains the same for all the instructions in the rgroup. The
LQ and the SQ have similar pointers and the same mechanism is used.

An offset is also needed for each logical register in the register file. The Rcreate logic starts each
rgroup assuming that the architectural values are in the physical register 0 of each logical register.
But at execution time, the actual live-in values of the rgroup are in the currently mapped physical
register of each logical register when the rgroup enters the Rmap logic. That mapping is indicated by
the content of the idx fields at that moment (see section 8.1 for a detailed description of the register
file). In the Icache mode, the idx fields are used to rename the registers. Therefore, the value of the
idx field of each logical register found when the first instruction of an rgroup enters the Rmap logic
is the offset that must be added to the identifiers assigned by Rcreate. Thus, all the idx fields are
copied into the reg offset table when a new rgroup enters the Rmap logic.

If the size of any of these structures is not a power of two (for example, the ROB has 80 entries
in the default configuration of the ReLaSch processor), the modulo is calculated by additional logic
after the addition. Figure 6.4 shows how the offsets are added to the identifiers in the Rmap logic.

6.3.2 Updating the structures

Although in the Rcache mode the idx fields are not used to rename the register, we want to update
them at once after all the instructions of an rgroup have been processed by the Rmap logic. Thus, the
next rgroup can use them as its own new offsets. Also, they will be used directly by the Map stage in
case there is a change to the Icache mode. It happens the same with the ROB tail, the LQ tail and
the SQ tail registers.

In the Rcache mode, the entries in the ROB are occupied out-of-order, but after all the instructions
have been processed by the Rmap logic, all the occupied entries are consecutive, with no holes between
them. Just as if they had been assigned sequentially, the first free entry in the ROB after the rgroup
has been processed is the entry just after the one used by the last instruction of the rgroup in program
order. Rmap can calculate the identifier of this entry. Although the entries are assigned out of order,
since all the instructions in the rgroup occupy an entry in the ROB, the size of the rgroup modulo
ROB size can be used to calculate the new value of ROB tail.

For the LQ and the SQ, the Rmap logic can count how many of these instructions contains the
rgroup. It would also do the same for each logical register, counting how many instructions in the
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rgroup have it as destination register.
Alternatively, the rgroup could store how many loads and stores it has and the number of assign-

ments of each logical register. These values would be added just once. Actually, it is not necessary to
store the total number, but modulo LQ size, SQ size and the size of the sets of physical registers. For
each rgroup in the Rcache, and using the values of the default configuration of the ReLaSch processor,
the LQ would require 5 bits and the SQ another 5 bits (32 entries each). With 8 physical register per
each logical register, 186 bits would be needed (3 bits per each one of the 62 logical registers).



Chapter 7

The Issue stage

The issue logic sends the available instructions to the functional units. First, the issue logic of the
OoO processor is described. Second, the in-order issue-logic of the IO and the ReLaSch processors is
introduced.

7.1 The out-of-order issue logic

The issue logic of the OoO processor uses two separated integer and floating point queues. Float-
stores and float-to-integer instructions use both queues, whereas float-loads and integer-to-float use
the integer queue only. The integer queue can hold up to 20 instructions and the floating point queue
has room for 15 instructions.

One arbiter chooses up to four integer instructions. Older instructions are given more priority. An
instruction in the queue is available if:

a. Its source registers are ready.

b. Its FU is available.

c. The aliased store has committed (only for loads that have a pending store of its store set).

Each queue entry independently checks the conditions for the instruction it stores. The selectable
instructions send a request to the arbiter, that issues the oldest instructions that have an available
FU.

Similarly, another arbiter chooses up to two floating point instructions. The instructions that use
both queues must be selected by the two arbiters to be actually issued. With the separated queues,
the integer arbiter doesn’t need to access the floating point register file and its status bits.

Load hit speculation

The load instructions have a variable latency. The minimum latency of an access is three cycles when
it hits the L1 cache. However, it is unknown whether the load hits the L1 or not until the end of the
second cycle of the access. Therefore, in order to execute a dependent instructions as early as possible,
the reference OoO processor speculates with the latency of the loads. It assumes that the loads will
hit in the L1 and it issues the dependent instructions before the load latency is resolved. If the load
hits, the data can be bypassed to the dependent instruction. If after two cycles it is discovered that
the load actually misses in the L1, the instructions issued in the last two cycles are flushed from the
functional units and re-issued in the next cycles.
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To allow the re-issue of these instructions, the issue queues hold the instructions for two additional
cycles after they are issued. The queue entries are freed and can be reused three cycles after the
instruction is issued. In the rest of the text, the head of the buffer refers to the oldest instructions
not issued yet, ignoring the issued instructions that may still be in the buffer waiting for load-hit
resolution.

7.2 The in-order issue logic

In the in-order issue logic, the queues are replaced by buffers, maintaining the separation between
integer and floating point instructions. Only the instructions in the head of the buffer can be issued.
So instead of checking the readiness of all the 20 instructions in the queue and having an arbiter to
choose four of them, there is a checking logic for just the four first entries of the integer buffer and
the two first instructions of the floating point buffer.

Although each cycle only four and two instructions use the checking logic and can be issued,
the issue buffer should be larger than just the size of one issue-group. The buffers are needed to
decouple the Issue stage and the previous stage. They also enable load hit speculation by storing the
instructions during two cycles after they are issued. In this chapter, the age of an instruction refers
to when it was inserted. An instruction is older than another if it was inserted before. In the Icache
mode, this order is equivalent to the program order but in the Rcache mode, the instructions are
inserted in the schedule order. The head of issue buffer refers to the oldest instructions in the buffer
that can be selected for execution. That is, the oldest four integer instructions and the oldest two
floating point instructions.

The in-order Issue stage processes each buffer in-order but independently, unless an instruction is
present in both buffers. Only the first instructions of each buffer are processed (four and two). For
each of these instructions, the issue logic checks that :

a. The source registers are ready.

b. The FU is available.

c. All older instructions in the buffer have been issued or are issued in the same cycle.

d. The aliased store has committed (only for aliased loads).

e. The new-issue-group flag is cleared (except for the oldest instruction in the buffer).

When an instruction is present in both buffers, the two involved entries must be ready to allow issuing
the instruction.

Figure 7.1 shows the access to the valid bits of the source register of one instruction. The register
R7.1 is ready but R6.1 is not. Therefore, the instruction cannot be issued.

The new-issue-group flag is checked to avoid issuing together instructions of different issue-
groups. When the instructions are independent, it would be correct to issue them in parallel when
it is possible. Doing so typically improves IPC. However, if this is allowed an aliased store-load pair
that the scheduler places into consecutive issue-groups on purpose can be issued simultaneously. Since
both instructions arrive then to the Writeback stage at the same cycle, the data cannot be forwarded
and the load is replayed. Our experiments (see details in section 9.4.1) show that the increase in load
replays overweights the IPC gain, so the issue-group boundaries are respected. The new-issue-group
flag is always 0 for the instructions executed in the Icache mode. The issue-logic of the IO processor
does not use this flag at all.
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Figure 7.1: The valid bits of the register file indicate whether a given physical register is available.

7.2.1 Waking up the dependent instructions

The Alpha 21264 uses a scoreboard to know if the physical registers are available [18]. Each instruction
in the issue queue access the scoreboard. Alternatively, the out-of-order issue logic [7] can use tag
lines from the functional units to all the entries in the issue queue, to notify when the data can be
bypassed.

In the ReLaSch processor, the check logic accesses the valid bit of the source physical registers
for the instructions in the head of the issue buffer. To be able to bypass the data, the valid bit of
the destination physical register is written two cycles (cycle i − 2) before the end of the execution
(at cycle i) of each instruction. Thus, the next cycle (i− 1) a dependent instruction can see that the
valid bit of the register is set and it is issued, one cycle later (i) the dependent instruction receives
the bypassed data and the next cycle (i + 1) can begin its execution. The register file is updated
the same cycle (i + 1), and instructions issued from then on will read the register file. A dependent
instruction that was issued in cycle i can one cycle later (i+ 1) either read the bypassed value or the
register file (if it is updated early in the cycle). To know where the source data is available, a bypass
bit is set at the same time (i− 2) that the valid bit of the destination physical register. It is set until
the last cycle when the bypass still can provide the data (that is, during 1 or 2 cycles). When an
instruction is issued, the valid bit of its destination physical register is cleared.

There is a valid bit for each physical register of a logical register. In order to access it, the logical
and physical register identifiers are used. The valid bits can be arranged either as a 1-bit table
accessed with the concatenation of the two identifiers or as a table with one word per each logical
register and then selecting the bit of the desired physical register.

7.2.2 Separated integer and floating point buffers

To ensure correct ordering of the instructions, some instructions are inserted in both the integer and
floating point buffers (namely, the float-store and the float-to-int instructions). We call twin entries
to the pair of entries used by that this kind of instructions. Such instructions are not allowed to be
issued unless the check logic of both buffers assert that they are ready.

If an instruction is present in both buffers, the checking logic of its entry in the integer buffer must
check that the twin entry of the instruction in the floating point buffer is in the head of the buffer and
that the floating point checking logic asserts it as ready. Similarly, the floating point checking logic
the readiness of the instruction in the integer buffer.

In general, it can be implemented assigning tags to the instructions in the issue buffers and
performing a CAM-access to the entries in the head, that return a hit if there is a match and the
instruction is ready.
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Nevertheless, the CAM access is not actually needed, benefiting from the fact that the instructions
are inserted in order in the buffers. If the oldest instruction in the floating point buffer has a twin
in the integer buffer, it must be the oldest twin in the integer buffer. So actually it must check only
whether there is a twin in the head of the integer buffer and if it is ready. If there are two twin
instructions in the head of the floating point buffer, the second one can be issued if there are two
ready twins in the integer buffer. The maximum number of twin instructions that are issued per cycle
can be limited in order to reduce the complexity of this logic.

7.2.3 Tag broadcasting

In an out-of-order processor it is usual to broadcast the tags of producing instructions to all the
instructions in the issue queue in order to wake up the dependent instructions. When an instruction
is inserted in the issue queue, it must known in advance which results are already written in the
register file and for which ones it has to wait the tag. The rename table can be extended to indicate
if the renamed register is already available in the register file.

The ReLaSch processor could use also tag broadcasting of the instructions that complete execution.
However, the renaming process cannot be used directly to obtain the pending results in a simple way.
No rename table is accessed but just an offset is added to an already assigned identifier. Thus, an
explicit access to the valid bits of the desired physical registers must be performed anyway after an
instruction has been renamed. Furthermore, since only the instructions in the head of the buffer can
be selected, it makes no sense to broadcast the tags to all the instructions in the buffer but just to
the first four instructions in the integer buffer and the first two in the floating point buffer. Thus, the
valid bits should be accessed once an instruction reaches the head of the buffer. Then, it becomes
clear that the ReLaSch processor doesn’t benefit from broadcasting the tags. Therefore, it simply
accesses the valid bits of the source physical registers in order to know if an instruction is ready and
it does it only when it is in the head of the issue buffer.

7.2.4 Conditional move instructions

The Alpha ISA includes conditional move instructions. With this kind of instructions, the destination
register is also used as an implicit source register; the previous value of the register must be maintained
if the condition is evaluated as false. However, the value is stored in a different physical register (the
destination register of the conditional move), so it must be read from the current physical register and
written in the new one.

The Issue logic checks the valid bit of the currently mapped physical register of the destination
register before issuing a conditional move. The identifier of this register can be either stored in the
rgroup with the information of the conditional move or it can be obtained subtracting a unit from the
destination physical register. Since this field does not require extra space in the Rcache, the register
is stored with the instruction in the rgroup.

Assuming that all the instructions in the issue buffers can be conditional move instructions, Three
accesses to the valid bits would be required for each instruction in the head of the issue buffer. To
avoid this situation, either the number of conditional moves can be limited or they can be implemented
with a couple of standard two-source-register instructions, like the Alpha 21264 processor does (see B
for details).

7.2.5 Issue buffer of issue-groups

The instructions of an issue-group are known to be independent, so it is not necessary to enforce
them to be issued in order and an out-of-order issue logic could be used within an issue-group. The
issue-group boundaries must be respected anyway to warrant the correctness of the execution. Thus,
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the issue logic would process only the issue-group in the head of the buffer and its complexity would
be much smaller than that of the issue logic of the OoO processor, that accesses the whole issue queue.

However, the issue logic must process also the instructions executed in the Icache mode, which
often are not independent.

One possibility to ensure a correct execution is to consider each instruction as an independent
issue-group, setting its new-issue-group bit. But this option unnecessarily penalizes the instructions
executed in the Icache mode, since there are consecutive instructions are independent and can be
issued together.

An alternative would be that the Map stage analyzes the dependences of the instructions it pro-
cesses in the Icache-mode and sets the new-issue-group bit of the instructions whenever it is needed.
That is, when an instruction depends on an older instruction that can be simultaneously in the head of
the issue buffer. That is, an instruction that depends on any of the previous issue-width instructions.

For example:

A: ADD R3, R2, R1

B: ADD R6, R5, R4

C: ADD R9, R8, R7

D: ADD R1, R11, R10

E: ADD R4, R13, R12

Assuming that the issue logic can process up to four instructions per cycle, the instruction D must
start a new Icache-mode issue-group, since it depends on A and both can be simultaneously in the head
of the issue-buffer. Similarly, the instruction E depends on B, although the new-issue-group flag
of D already prevents B and E to be processed simultaneously by the issue-group-based out-of-order
issue logic, so E actually does not start a new issue group.

This solution makes the logic of the Map stage more complex but the instructions executed in the
Icache mode are not penalized (beyond the fact that they have not been scheduled by the Rcreate
stage). However, in some cases the instructions executed in the Icache mode still unnecessarily issue
later than it would possible; when the first instruction in the Icache-mode issue-group stalls because it
is not the oldest instruction processed by the issue logic this cycle, but its source registers are available
and the instruction on which it depends was already issued. Using the same example as above, in a
given cycle both instructions A and B are issued. The next cycle C, D and E could be issued, but
only C is, because a new issue-group starts with D.

It is also possible to use an Icache-mode flag, to identify the instructions that must be issued in-
order. However, then a more complex issue logic is needed, since both in-order and issue-group-based
out-of-order issue logic are used, plus a choice logic to decide which issue logic must be used.

Similarly, two separated issue buffers and logic (for the Icache and the Rcache modes) can be
used, but it makes the Issue stage more complex. Furthermore, to keep simple the choosing logic
that decides which issue logic (Icache or Rcache) must process the instructions in a given cycle, it is
possible that in some transition cycles no instructions can be inserted in the buffers, creating a bubble
in the pipeline that hurts the IPC.

Due to all these problems, in our experiments we have only used an in-order issue logic for the
ReLaSch processor. This is coherent with our principle of keeping the execution pipeline as simple as
possible.
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Chapter 8

Other elements

This chapter describes some other elements that have not been described in detail in the chapters
above. The register file that is used in ReLaSch is completely different from the one used in the
OoO and the IO processors. The Fetch, Map and Commit stages have some additional functionalities
compared with those other processors in order to detect when the ReLaSch processor can switch to
the Rcache mode and deal with the instructions executed in the Rcache mode when they commit.

8.1 The register file

The register file of the ReLaSch processor is based on the register file proposed in [10], where each
logical register has its own set of physical registers. In our default configuration, all the sets of the
physical registers have the same size (8 physical registers). This kind of register file simplifies both
assigning the physical registers in the Rcreate logic and completing the rename in the Rmap logic.

Each logical register in the register file has two associated fields: arch identifies which physical
register stores its architectural value and idx identifies the currently mapped physical register. The
idx fields are equivalent to a conventional rename table. idx is used in the Icache mode to rename
the source registers and in the Rcache mode to know the offset of each logical register.

In the Icache mode, the Map stage renames the source registers with the corresponding idx fields.
The idx field of the destination logical register is incremented. The arch field of the destination
register is incremented when the instruction commits.

In the Rcache mode, the rgroups already store the renaming information with the instructions.
The idx fields are not needed then. The Rmap logic reads the idx fields of all the logical registers at
once when a new rgroup starts execution, as explained in section 6.3.1.

Each physical register has two additional bits, valid and busy. The first one indicates whether
the instruction that uses it as destination has already written the register, allowing the dependent
instructions to read the value. The second one indicates whether the physical register is available to
be assigned as destination or it is busy. The busy bit is set when a physical register phy is assigned as
destination. When the instruction that writes phy commits, phy becomes the architectural register,
so it still cannot be overwritten. When the next instruction that writes the same logical register
commits, the value stored in the phy register is not needed anymore and its busy bit is finally cleared.

The issue logic uses the valid bit to know if a given source register is available and can be read.
The Map stage and the Rmap logic check the busy bit to know if a given physical register can be used
as destination.

When the pipeline is flushed, the busy bits of all the physical registers are cleared, except for those
that store the architectural value. The arch field of each logical register indicates which are these
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registers. The arch field is also used to update the idx field after a pipeline flush.

8.1.1 Common register file

The ReLaSch processor uses a register file that has a set of physical registers for each logical register.
Such a register file can limit the performance achieved by the processor because there can be unused
physical registers while the processor stalls waiting for a free physical register of a given logical
register. Appendix A explains in detail the changes in the ReLaSch processor that are needed to use
a conventional register file, that has a common pool of physical registers shared by all the logical
registers. It also presents experimental results that show that the average performance achieved is
very similar to that achieved by the default ReLaSch. Since the common register file requires more
complex logic, we have decided to keep the set-based register file as the default for ReLaSch.

8.2 The Fetch stage

In the Icache mode, the Fetch stage accesses the Rcache and the Icache in parallel, with the PC of each
fetched instruction. On a hit, the instructions that have been fetched and decoded but not mapped
yet are removed from the pipeline and the processor switches to the Rcache mode. The Rfetch logic
will then read the rgroup from the Rcache. The result of an access to the Rcache is not known until
two cycles later, when the instruction that was fetched in parallel from the Icache enters the Map
stage.

The Fetch stage updates a register with the history of the most recent branches. It is similar to
the history register used by the Commit stage, but Fetch speculatively uses the outcome of the branch
predictor to update the history register. The register is used to access the Rcache along with the
current PC.

8.3 The Map stage

In the Icache mode, the Map stage is in charge of renaming the registers and inserting the instructions
in the ROB. Memory instructions are also inserted in the LQ or the SQ. Besides, the Map stage inserts
the instructions in the required issue buffer: integer, floating point or both. The identifiers in all these
structures are assigned in order. It also checks that the desired destination physical register is free.
All instructions are processed in order. If an instruction is not ready, e.g. because there isn’t a free
destination physical register, the ROB or the issue buffer is full, the Map stage stalls. No additional
instructions are inserted in the ROB until the current instruction is ready and is sent to the Issue
stage.

The idx field of the logical register is used to rename the instructions. The value of the idx
field indicates the currently mapped physical register. The idx field of the destination register is
incremented modulo the size of the set of physical registers. If the busy bit of that physical register
is set, the stage stalls.

The instructions are inserted in the ROB, the LQ and the SQ in order. The stage increments the
ROB head, the LQ head and the SQ head registers when assigning an identifier in these structures. If
the busy bit of the desired identifier is set, the stage stalls. It can only happen if the structure is full.

Assuming we are designing a superscalar processor, the stage processes more than one instruction
per cycle. The renaming logic must check if there is any dependence between the instructions processed
in the same cycle. However, it is not necessary to bypass that the same cycle the renamed register to
a dependent instruction, since the in-order issue logic would stall the dependent instruction anyway
in the next cycle.
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Since we are using an in-order pipeline, register renaming is not actually needed except for WAW
hazards, so it would be possible to substitute the Map stage for a simpler Insert stage. That stage
would just insert the instructions in the ROB, LQ, SQ and issue buffers but it would not rename the
registers. However, not renaming the registers introduces some problems regarding with the multi-
cycle instructions and the use of separated integer and floating point queues, since in some cases
the registers can be written out-of-order. To provide precise exceptions and be able to recover from
mispredictions, the instruction would frequently stall to ensure that the registers are written in order
and not speculatively. Alternatively, a structure like a future file [19] could be added to the register
file to solve these problems. Since using the Map logic to rename the registers makes other parts of
the processor simpler and uses already available resources instead of requiring additional ones (such as
a future file), the ReLaSch processor has a Map stage that renames the registers in the Icache mode.

8.4 The Commit stage

The Commit stage of the OoO processor updates the architectural values of the register file, frees the
resources used by the committed instruction and checks the correctness of the branch and memory
aliasing predictions. It flushes the pipeline on a misprediction, correcting the speculative update of
the branch predictor if necessary and performs the access to memory of the store instructions.

The Commit stage of the ReLaSch processor does all these tasks plus the following additional
tasks:

a. Update the predictor for all the branch instructions executed in the Rcache mode (since the
Fetch stage, that updates the predictor speculatively, didn’t process the instructions in the
Rcache mode).

b. Notify to the Rcache how do rgroups end (abruptly due a branch misprediction, a memory alias
or to completion when the whole rgroup has committed).

c. Access the Rcache searching for a suitable rgroup after a pipeline flush.

d. Send the committed instructions to the Rcreate logic.

The branch predictor of the Fetch stage is only used in ReLaSch when the processor is in the
Icache mode. In the Rcache mode, the branch prediction is performed in the Rcreate stage and stored
with the rgroup. But to be accurate, a branch predictor needs to be updated with the last available
information. Otherwise, it cannot adapt to changes in the behavior of the control instructions. So
the control instructions that have been executed in the Rcache mode are also used to update the
branch predictor. This is performed when the instructions commit because: a) the information is not
speculative; b) the order of the branches in the schedule can be different from the program order, so
the history information stored in the branch predictor can be updated with wrong information if it is
updated in the Rfront-end. The branch predictor will not be used until the processor changes to the
Icache mode, so there is no need for a fast update. It can take many cycles if required.

The Commit stage detects when an rgroup begins and finishes execution and notifies the end of
each rgroup to the Rcache. To do so, the ROB entries have a flag to indicate whether an instruction
is the first one of an rgroup, and another to indicate that they are executed in the Rcache mode. The
ROB entry of the first instruction of an rgroup also stores the identifier of the rgroup The identifier
of an rgroup is formed by a PC and history bits. The Commit stage already knows the PC and the
next-PC of the instructions it processes. However, it cannot deduce the history bits that identify
an rgroup because they are used only as a hint in the Rcache and they can differ from the actual
history. When the Commit stage detects that the instruction in the head of the ROB (which is ready
to commit) is the first one of an rgroup, it stores the identifier of the rgroup in a dedicated register.
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When the Commit stage detects that an instruction is the last one of an rgroup, the rgroup has
been completely executed. That happens when the next instruction is executed in the Icache mode or
is the first one of a new rgroup. In that case, the Commit stage accesses the Rcache with the identifier
of the rgroup. The Rcache updates the saturating counter associated with the rgroup. If the rgroup
hasn’t finished but a mispredicted branch commits or an aliased load that must be re-executed is
processed by the Commit stage, the Rcache is accessed with the identifier of the rgroup to notify that
the rgroup wasn’t completely executed. The Commit stage also tracks whether a load instruction in
the rgroup has missed in the L2 cache. In this case, the counter of the rgroup is decremented even if
the rgroup is completely executed.

The Commit stage has a history register updated with the outcome (taken/not-taken) of the last
conditional branches. It also updates a register with the architectural value of the PC after each
committed instruction. Whenever there is a pipeline flush, the Commit stage uses the history and
PC registers to access the Rcache and check if there is any available rgroup that begins with the
next instruction that must be executed. On a hit, the Rfetch logic reads the rgroup; otherwise, the
processor executes these instructions in the Icache mode.

The committed instructions are sent to the Rcreate logic, where they are scheduled. The instruc-
tions are inserted in the rcreate input buffer; along with an instruction, it is also stored its PC and
whether it was executed in the Rcache or the Icache mode. For some types of instructions, extra
information from the execution is stored. Namely, for a memory instruction it is stored which address
it accessed, the latency of the access and whether the access hit or missed in the L1 cache. Besides,
the control instructions store if they were taken and their target PC.



Chapter 9

Design space and final results

This chapter presents an exploration of the design space of the ReLaSch processor. The ReLaSch
Processor has a lot of parameters and most of them are not independent. Besides, a parameter can
become predominant and hide the effect of other parameters. We have realized that a given parameter
that has an important impact in performance with a given processor configuration, becomes nearly
irrelevant with a different configuration.

We have followed an iterative approach: we choose first a default configuration and then try
to refine it, by varying each parameter while fixing the rest, and choose the best design-point for
that parameter. The resulting configuration becomes the new default configuration and the process
begins again. This approach is a consequence of the evolution of the design, where new elements
and techniques have been added progressively. The new parameters have been explored in the next
iterations, possibly affecting the impact of the already explored parameters.

In this chapter we show the final iteration of this process. It begins with an already refined
default configuration and all the parameters are explored individually while fixing the others. When a
parameter can be highly dependent on another one (i.e. the size and the associativity of the Rcache),
we vary both parameters simultaneously. We have grouped the explored parameters into sections
according to the logic, block or stage that is more closely related to the parameter.

Section 9.6 shows the experimental results of the new default configuration.

9.1 Experimental set-up

We have modified the sim-alpha simulator [20] to model the ReLaSch and the reference OoO and IO
processors. Sim-alpha is based on Simplescalar and was configured and validated against a real Alpha
machine, the Compaq DS-10L Alphaserver [21]. The reference processors are much like an Alpha 21264
[15], enhanced with Store Sets [16] and an improved BTB, similar to the Intel Pentium M processor’s
target predictor [22], using path instead of history since it works better with our benchmarks [23].
The ReLaSch processor doesn’t need to use the Store Sets and the improved BTB, since the rgroups
already solve the same problems. So ReLaSch uses the simpler original Alpha BTB and StWait bits.

Table 9.1 shows the main simulation parameters. Any other parameter maintains the default
sim-alpha/21264 value [20].

We use most of the SPECcpu2000 benchmarks [24], the eight missing ones (apsi, perl-perf, sixtrack,
vpr-place, wupwise and the three vortex benchmarks) had compilation problems. The benchmarks
were compiled with optimization flags. We used the default SPEC configuration for the peak perfor-
mance evaluation, in which the optimization flag used varies depending on the benchmark. Most C
benchmarks use -O4 while Fortran benchmarks use -O4 or -O5. The eon benchmark uses -O2 and
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Parameter OoO IO ReLaSch
Issue width: 4 Integer, 2 FP * * *
Issue queue: 20 Integer, 15 FP *
Issue buffer: 20 Integer, 15 FP * *
ROB: 80 entries * *
Load Queue: 32 entries, Store Queue: 32 entries * *
Integer FUs: 4 alu, 4 multiply * * *
Floating point FUs: 1 alu, 1 multiply * * *
Data L1 cache: 2-way 64KB 3-cycle hit latency * * *
Instruction L1 cache: 2-way 64KB 3-cycle hit latency * * *
L2 cache: 2MB direct mapped * * *

13-cycle hit latency, minimum 84-cycle miss latency
(extra cycles if bus contention)

DTLB: 128 entries, ITLB 128 entries * * *
Branch predictor: 4Kx2 choice predictor

4Kx2 global predictor
2-level local predictor (1K 10-bit history, 1K 3-bit counters) * * *

BTB: 1024-entry 4-way PC-indexed * * *
32-entry RAS * * *
multi-target BTB: 1024-entry 4-way path-indexed * *
Store Sets: 4K-entry SSIT, 128-entry LFST, 7-bit identifiers * *
StWait: 1024 1-bit table *
Register file: 72 Integer, 72 FP shared physical registers *
Register file: 8 physical registers per logical register *
Rgroup: 256 instruction, 10 indirect branches *
Rcreate: 4 instructions per cycle, 256 5-bit load latency predictors

schedule table of 512 issue-groups
rcreate input buffer with 512 instructions *

Rcache: 4 ways, 32 sets, 1897B per rgroup
one 5-bit “bad rgroup” counter per line *

Rcache latency: 3 cycles to read the fist issue-group
one issue-group per cycle afterwards *

Table 9.1: Main simulation parameters for the OoO, IO and ReLaSch processors.
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perl has -O3 in the default SPEC peak performance configuration.
For each benchmark, a 100M-instruction segment is simulated. SimPoint [25] was used to find the

most representative segment of each benchmark. Unless otherwise stated, the figures in this section
show the speed-up in IPC obtained by the ReLaSch processor over the OoO processor, in order of
increasing speed-up. The results of the FP and the INT benchmarks are shown in separated figures.
Each bar starts at 1.0 speed-up. Speed-up lower then 1.0 indicates a performance loss with respect
to the reference OoO processor. The default configuration is indicated in each figure with a bold
label in the legend. Each figure is followed by a table that summarizes the average speed-up achieved
in the INT and FP benchmarks and the average of all the benchmarks (ALL). In some cases, the
table includes the results of some additional configurations that have been tested but that have been
removed from the figures to simplify them. Some sections reference additional tables that present
more details on the results. all these tables can be found in appendix C.

The simulator fetches the instructions from the binary even from the wrong path on a mispredicted
branch. Although the simulator is not trace-driven, we use the EIO (External Input-Output) traces
of the sim-alpha/simplescalar simulator to skip the execution of the instructions before the interval
chosen by SimPoint. To create the EIO trace, first a complete functional simulation is performed and
the architectural state of the processor at the beginning of the interval is stored in the trace. The
trace includes the content of the registers and the memory addresses that have been written up to
that moment. This state is read at the beginning of the simulation and the registers and memory are
updated with the content of the file.

This is enough to execute the instructions of the interval, as long as there is no system call. The
behavior of system calls depends on some status of the OS, such as the opened files, that is not part of
the processor’s state, so the system calls cannot be reproduced just from the state of the processor at
the beginning of the interval. Therefore, when the trace is created, the whole interval is also simulated
and the state of the processor is written not only at the beginning of the interval but also after each
trap instruction in it.

Once the trace is created, the simulator read the EIO trace and updates the state with the content
of the trace on a system call. The pipeline is flushed afterwards and instruction resumes with the
instruction that follows the system call.

9.2 The Rcreate logic

This section presents the exploration of many parameters related with the Rcreate logic: the size
of the rgroups, the sched table and the rcreate input buffer, the memory latency predictor, the
number of indirect branches per rgroup and the latency and the width of the Rcreate logic.

9.2.1 Rgroup size

Figure 9.1 shows the IPC speed-up achieved using several rgroup sizes (that is, the maximum number
of instructions per rgroup). The size of the Rcache is approximately the same in all cases: when we
double the number of instructions per rgroup, the total number of rgroups is halved as a consequence.
So the Rcache stores up to 32K-instructions in each case. All these configurations of the Rcache are
4-way associative. The exact size in bytes differs due to overheads that depend on the total number of
rgroups in the Rcache. For instance, the tags or the information about the branches of each rgroup,
since the number of branches per rgroup is the same for all the configurations. The minimum size
explored is 64 instructions per rgroup. In this case, the cache has 128 sets, so it stores up to 512
rgroups. The maximum size in the figures is 1024 instructions per rgroup, with an 8-set Rcache.

For the INT benchmarks, the scheduler extracts more ILP from larger rgroups. At the same time,
th INT benchmarks also require having a high number of rgroups available in the Rcache. Thus, the
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highest average performance is reached with the 256-instruction rgroups, where both parameters are
balanced.

However, we find some benchmarks that have higher performance with 128-instruction rgroups:
eon-kajiya, twolf, crafty, all the gcc benchmarks and most gzip and bzip benchmarks. These bench-
marks have in common a high branch misprediction rate (see table C.9). The high number of taken
paths leads to create many rgroups corresponding to those paths. Furthermore, in some benchmarks
often only a prefix of the complete rgroup commits since a branch included in the rgroup is mis-
predicted. This leads to have a lower percentage of instructions executed in the Rcache mode (see
table C.10). Nevertheless, in all cases the difference with the speed-up achieved with 256-instruction
rgroups is small.

We find also the opposite case, when benchmarks perform better with 512-instruction rgroups:
mcf, vpr-route and perl-make. The two latter benchmarks are more regular and benefit above all of
having large rgroups. mcf has very high L1 and L2 cache miss-rates (59.6% L1 miss-rate and a total
of 25M misses and 51.1% L2 miss-rate), so it spends most of the time simply waiting for the data in
memory. In this situation, having a larger scope is beneficial. However, the impact in the absolute
IPC is small. It just varies from 0.1432 to 0.1635. The speed-up achieved with this configuration is
close to the speed-up achieved with 256-instruction rgroups in these cases too.

Almost all the FP benchmarks perform better with larger rgroups, so the highest average speed-up
is achieved with 1024-instruction rgroups. Nevertheless, there is small difference with the speed-up
achieved with 512-instruction rgroups. The exceptions are ammp, lucas and mesa, that achieve higher
speed-ups with smaller rgroups.

From these results, it is clear that 256 instructions per rgroup yields the highest average speed-up
(1.00). However, it seems worth considering a system with an adaptive rgroup size, where we can join
two cache lines to hold a single, double-size rgroup when it is beneficial. A preliminary study for this
has been presented in [14]. The results of the best configuration for each benchmark are combined,
assuming that the compiler can detect this situation and set the rgroup size statically for each binary.
The average results do not vary much (2% higher speed-up) but many benchmarks (29 out of 40)
improve their results.

Small Rcache

In order to study the impact of the size of the Rcache in the results above, we have performed the same
experiments with a smaller Rcache. In these experiments the Rcache stores up to 4K instructions, so
it is eight times smaller than in the section above.

Figure 9.2 shows the results. The same patterns seen in the section above appear here even
clearer. The FP benchmarks benefit from larger rgroups even with a small Rcache. The best average
FP speed-up (0.99) is achieved with a 4-way 2-set Rcache with rgroups of 512 instructions. For the
INT benchmarks it is better to use the Rcache with 128-instruction rgroups since it allows storing
more different rgroups. It yields 0.87 average speed-up. The percentage of instructions executed in
the Rcache mode drops drastically with the larger rgroups for the INT benchmarks, from 83% with
64-instruction rgroups to 56% with 1024-instruction rgroups (see table C.12 for more details).

The INT figure shows that up to 5 applications achieve the highest performance with 64-instruction
rgroups (eon-rush, twolf, eon-kajiya, gcc-200 and gcc-expr). On the contrary, only 2 applications have
their highest speed-up with more than 256-instruction rgroups (eon-cook and mcf ). Nevertheless, the
difference above the 256-instruction speed-up is small.

In the FP figure, one application finds its highest performance with 128-instruction rgroups (ammp)
and two with 256-instruction rgroups (mesa and applu). All other applications yield their highest
speed-up with larger rgroups.
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Figure 9.1: Speed-up with different rgroup sizes.
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Figure 9.2: Speed-up with different rgroup sizes in a small Rcache.
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9.2.2 sched table

Figure 9.3 shows the IPC speed-up achieved using several sizes of the sched table (which defines the
maximum number of issue-groups per rgroup), from 64 to 2048 issue-groups. The maximum number
of instructions per rgroup is 256 in all examined configurations.

Using rgroups with at most 64 issue-groups limits a lot the IPC achieved by the ReLaSch processor.
The scheduler closes an rgroup if the current instruction must be scheduled beyond the size of the
sched table. With only 64 issue-groups in the sched table, the rgroups are scheduled with less than
256 instructions in many cases and the scheduler extracts less ILP. Note that, in order to schedule
256 instructions in 64 issue-groups, the scheduler must find four independent instructions per cycle
in average, which is usually not possible. Table C.13 shows the average size of the rgroups created
by the scheduler with several sizes of the sched table. With an sched table larger than 64 entries,
the scheduler is usually able to find enough independent instructions to fill the rgroup. With a sched
table of 256 issue-groups this parameter does not limit the performance of most benchmarks, which
do not benefit from larger sched tables. The most notable exception is the mcf benchmark. It has a
very high L2 miss rate which lowers its IPC to 0.14 in the OoO processor. Benchmarks with a high
number of L2 misses and high latencies benefit from larger sched tables, since the resulting schedule
is sparse.

This parameter has limited impact on some applications (i.e. crafty, parser, bzip-program, gcc-
integ, gzip-random, gcc-200, gzip-graphic and bzip-graphic). All these applications have high branch
misprediction rates, so executing short rgroups don’t penalize them to a great extent.

9.2.3 Number of indirect branches

Figure 9.4 shows the speed-up using different maximum number of indirect branches per rgroup,
including function calls and return instructions.

Using a maximum of more than 8 branches doesn’t have much impact (the average speed-up does
not grow beyond the 7-branch maximum). A maximum of less than 6 branches severely hurts the IPC
of some benchmarks: all the eon and perl benchmarks along with gap, mesa and several gcc variants
(gcc-sci, gcc-166, gcc-expr and gcc-200 ). The perl applications use indirect branches intensively. eon
is an object-oriented application. Table C.14 shows the number of indirect branches executed during
simulation of each benchmark.

9.2.4 Data cache latency prediction

This section presents a study on how to predict the latency of the load instructions at scheduling time.
Figure 9.5 shows the speed-up achieved with different prediction schemes. On most configurations

a table of saturating counters is used. The figure shows the results achieved with different table sizes.
There are two configurations in which the latency is predicted using a fixed rule instead of a predictor
structure: 1) the loads are always predicted to hit in the L1, so each one is scheduled assuming a
latency of three cycles (“always hit” in the figure); 2) all loads are always scheduled using the latency
seen at execution time (“exec lat” in the figure).

The table shows the average speed-up of some additional table sizes too.
The benchmarks show different behaviors: some of them (i.e. the INT applications parser, vpr-

route, gzip-random, gzip-graphic and perl-535 and the FP applications galgel and applu) work better
with a small number of counters or the “always hit” configuration while others (i.e. the INT application
perl-make and the FP applications facerec, lucas, equake, mgrid) benefit from having a higher number
of counters or from using the execution latency always.

Table C.15 shows the miss rate in the data L1 cache and the L2 of all the benchmarks in the
default configuration of ReLaSch.
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Figure 9.3: Speed-up with different sched table sizes.
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With respect to the predictor-less approaches, predicting always a hit usually hurts the performance
of the benchmarks with a significant number of misses (i.e. mcf, art-470, art-110, lucas, fma3d and
equake). On the contrary, some benchmarks (gzip-log, gzip-source, gzip-program, perl-850 ) have lower
IPC when using always the execution latency. As mentioned above, in some cases the predictor-less
approaches yield the highest speed-up. Nevertheless, for most examples the difference with the closest
competitor is negligible. The exception is the FP application applu, that exhibits significant better
performance with the “always hit” policy than with any other approach.

In general, the FP benchmarks benefit from using a higher number of counters or using always the
execution latency. The opposed responses of the different INT benchmarks counteract each other, so
the average speed-up does not change significantly with the number of counters. The “always hit”
policy yields less speed-up in average as well as using always the execution latency, though in this
case the difference is smaller. In order to maximize the overall, we choose to have a reduced number
of predictors and discard the predictor-less approaches.

Data cache latency predictor parameters: number of bits per counter

Figure 9.6 shows the speed-up with different number of bits in each counter of the memory latency
predictor. The threshold used in each case implies testing the left-most bit: 16 for the 5-bit counter,
8 for the 4-bit counter, etc. This parameter has almost no impact in performance, just the INT
benchmarks perl-535 and perl-850 show a slightly better speed-up with 1, 2 or 3 bits than with larger
counters.

Therefore, it seems better to use 1-bit counters instead of the larger counters of the current default
configuration.

Data cache latency predictor parameters: threshold value

Figure 9.7 shows the speed-up using five-bit counters, with different prediction thresholds; that is,
the lowest value that predicts a hit latency. The threshold indicates how many bits must be checked
to perform the prediction. A threshold of 16 implies testing whether the left-most bit is zero. With
a threshold of 8, the two left-most bits are tested. The speed-up of most benchmarks is almost
independent of this parameter. FP benchmarks fma3d and mgrid benefit from higher thresholds,
while several INT benchmarks (gzip-log, gzip-source, gzip-program, parser and perl-850 ) benefit from
lower thresholds. The INT benchmark perl-535 shows mixed behavior. If one-bit counters are used,
this parameter is not relevant anymore.

Data cache latency predictor parameters: updating policy

Figure 9.8 shows the speed-up achieved with different methods for updating the counters of the
memory latency predictor. The default configuration increases the 5-bit saturating counter on an L1
hit and shifts it to the right on a miss. This approach gives more weight to the misses. Decreasing on
a miss and shifting to the left on a hit in order to weight more the hits is also considered here. Just
increasing and decreasing is also evaluated, where hits and misses have the same weight. Finally, the
results of the predictor-less approach “exec lat” are also shown as a reference.

Some benchmarks show significant variation. The INT applications bzip-source, gzip-log, gzip-
source, gzip-program, gcc-sci, gzip-random, gzip-graphic, perl-850 and perl-make yield better perfor-
mance if misses have more or equal weight. FP applications facerec, lucas, fma3d, equake and mgrid
have better results when misses have more weight. ammp is the exception since it has a slightly better
result if hits have more weight.

This parameter does not have a significant impact on the average performance. Furthermore, it
does not have sense if one-bit counters are used.
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Figure 9.5: Speed-up with different sizes of the memory latency predictor.
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Figure 9.8: Speed-up with different methods for updating the memory latency predictor.
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9.2.5 Pipelining Rcreate

Figure 9.9 shows the speed-up with different latencies of a fully-pipelined Rcreate logic. The Rcreate
logic is placed out of the critical path of execution and only schedules instructions when it is necessary,
so its latency doesn’t affect the IPC of the ReLaSch processor, even with 100 cycles of latency there
is little average degradation. Note that this latency includes the compacting logic and the writing
latency of the Rcache.

9.2.6 Size of the rcreate input buffer

Figure 9.10 shows the impact of the size of the rcreate input buffer in the IPC speed-up. A 128-
entry buffer is needed in order to allow the scheduler to process all the committed instructions. Many
benchmarks don’t have a performance degradation when smaller buffers are used, but the IPC drops
drastically in some cases (eon-rush, eon-cook, galgel, lucas, mesa, equake and all the perl benchmarks).
In general, the performance of most benchmarks degrades when a buffer of 16 entries is used.

In the current default configuration, the Rcreate logic accepts up to four instructions per cycle
while up to 11 instructions can commit per cycle. Since the Ifront-end processes up to four instructions
per cycle this completion rate cannot be sustained, but it still can overflow a 64-entry rcreate input
buffer, since the ROB holds up to 80 instruction that can commit in a burst.

These overflows reduce the IPC achieved in two ways: a) the rgroup being scheduled when the
buffer overflows has less instructions than the maximum size, so the scheduler finds less ILP in it; b)
there are committed instructions that are not processed by the Rcreate logic, so they are executed
more often in the Icache mode.

The FP benchmark facerec shows an incoherent behavior, improving its IPC with a 32-instruction
buffer over the IPC achieved with larger buffers. The IPC is worse with a 16-instruction buffer.
Though the overflows of the rcreate input buffer produced with a small buffer usually result in
worse IPC, the rgroups created by the ReLaSch logic are different, and it is possible that they yield
better IPC by better capturing the behavior of the branches or the memory instructions.

9.2.7 Width of the Rcreate logic

In the default configuration used in the experiments of this chapter, we have assumed a 4-instruction
wide superscalar Rcreate logic. The reason to choose it was to enable the Rcreate logic to keep up
the pace of the execution pipeline, which is limited by the 4-instruction wide front-end.

However, it would be challenging to implement the complex Rcreate logic in a superscalar fashion.
We should add more ports to all the structures used and take into account the dependencies between
instructions being scheduled at the same time. The complexity would lead to a very power-hungry
logic.

Nevertheless, the main hypothesis used to design this processor is that we don’t need to use the
scheduling logic all the time and that it can be out of the critical path. Therefore, provided that the
rcreate input buffer has enough size in order to avoid overflows, a simple 1-instruction wide Rcreate
logic should be able to yield almost the same performance as the superscalar scheduling logic, as long
as the rcreate input buffer is large enough to avoid the overflows.

Figure 9.11 shows the speed-up with different widths of the Rcreate logic using a 256-entry
rcreate input buffer. It shows no significant variation. However, figure 9.12 shows the speed-up
with different widths of the Rcreate logic but using a 32-entry rcreate input buffer. In this case, the
rcreate input buffer suffers from frequent overflows with the smaller widths, which greatly reduces
the IPC of some benchmarks.

In the new default configuration, we will assume that the Rcreate logic accepts one instruction per
cycle and that it has a rcreate input buffer that is large enough (512 entries).
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9.2.8 Rcreate-mode change policy

Figure 9.13 shows the speed-up when the Rcreate logic uses several different policies to change from
the scheduling mode to the Idle mode. (that is, when instructions are executed from the Rcache
instead of the Icache).

If we just close the current rgroup after scheduling the last instruction executed in the Icache mode
(“close rgroup immediately” in the figure) the performance degrades severely. The reason is that, in
this case, the Rcreate logic schedules many small rgroups and the processor sees small benefit from
executing the rgroups.

In average, the best results are achieved when the Rcreate logic changes to the Idle mode once the
current rgroup is closed and the instruction in the head of the rcreate input buffer was executed
in the Rcache mode (0 rgroups case in the figure). Scheduling one or two additional rgroups perfor-
mance usually degrades, though there are a few exceptions (i.e. perl-make, perl-850, galgel, the art
benchmarks, facerec, fma3d and swim), although the difference is small. If we go one step further
and the Rcreate logic never changes to the Idle mode (it continues scheduling rgroups regardless of
the execution mode), the results are worse in almost all cases, since it puts more pressure on the
Rcache and it is more likely that we replace useful rgroups. Furthermore, it is more power hungry
than changing to the Idle mode.

In the new default, the Rcreate logic switches to the Idle mode when an rgroup is closed and the
next instruction was executed in the Rcache mode.

9.3 The Rcache

9.3.1 Rcache size

Figure 9.14 shows the impact of the size of the Rcache in the IPC speed-up. The number of cache
lines is changed, thus changing the total number of rgroups that the Rcache can store. The caches in
all the experiments are 4-way associative. As it could be expected, generally a larger Rcache improves
performance, though in many cases only until a given point, when all the most used rgroups fit in the
Rcache. The FP benchmarks art110, art470 and galgel have enough with an Rcache that can store
only four different rgroups. Most INT benchmarks always benefit from having larger Rcaches in the
explored range. In particular, all the gcc and perl benchmarks (except perl-make) as well as twolf,
eon-kajiya and crafty improve their performance with the largest Rcache explored (2,048 rgroups).
The reason is that these benchmarks have a more complex branch behavior and execute through many
different paths. The consequence is that they require a higher number of rgroups to cover all these
paths. The rest of benchmarks stabilize their performance with an Rcache of at least 128 rgroups.

An exceptional case is the FP benchmark swim, that slightly reduces its IPC with larger Rcaches.
This unexpected behavior is caused by worse memory latency prediction in the larger Rcaches, that
results in more cycles lost waiting for the source registers or a busy resource. The swim benchmark has
a high branch-prediction hit-rate (see table C.9), which keeps the Rcache counters high. Therefore,
the rgroups are not usually marked as “bad rgroups” and re-scheduled. Thus, the prediction of
the memory latency is not improved. With a smaller Rcache, the rgroups are re-scheduled as they
are replaced and their instructions are executed in the Icache mode. A change in the re-scheduling
policy could solve this problem if we are able to detect that the latency predictions are not very
accurate. However, it would require additional detection logic. Furthermore, this problem affects the
performance of just one benchmark, the performance degradation is small and in the worse case the
benchmark still has good speed-up over the OoO processor.
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Figure 9.13: Speed-up with different policies to change the Rcreate mode upon a change to the Rcache
mode.
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9.3.2 Rcache associativity

Figure 9.15 shows the impact of the associativity of the Rcache in the performance achieved. Given
a fixed size of the Rcache in number of rgroups (128), the set-associativity varies from 1-way (direct
mapped) to 8-way. More associativity yields more average speed-up. Many benchmarks improve a
lot when changing from direct mapped to 2-way. Some of them still improve significantly with more
associativity though the average speed-up does not improve beyond 4-way set-associativity.

The FP benchmarks art110, art470, galgel and lucas are exceptional cases that show little or no
improvement from associativity. The bzip-graphic benchmark performs better with a direct mapped
Rcache. The reason is that it has some branches that are hard to predict and the rgroups that contain
them are usually aborted at execution and re-scheduled. There can be several rgroups in a set with the
same PC and different history bits. Thus, an rgroup r with a different PC may be replaced whereas
in the Direct Mapped cache it would stay in the cache. The rgroup r may be placed in a different set
in the Direct Mapped cache, increasing the number of instructions executed in the Rcache mode.

9.3.3 “Bad rgroup” counters

Figure 9.16 shows the speed-up with different sizes of the bad-rgroup counters in the Rcache, used
to detect the rgroups that usually abort their execution. In general, INT benchmarks perform better
with larger counters whereas some FP benchmarks (art470, galgel, art110, and facerec) benefit from
smaller counters.

Almost all the benchmarks degrade their IPC when no counter is used (in this case, the rgroups
are never marked as “bad rgroups”). The most relevant case is gzip-program, that nearly triplicates
the number of branch mispredictions when the counters are removed (from 1.06M to 2.8M). On the
other hand, the benchmarks art470, art100, twolf, crafty, eon-kajiya and perl-diff achieve the highest
speed-up without counters in the Rcache, though the difference is small. The benchmarks gzip-source,
eon-rush, gcc-integ, eon-cook, gcc-200, fma3d and mesa perform slightly better without counters than
with some sizes of counters. Generally speaking, seems that it is beneficial to have between two and
four bits per counter.

Figure 9.17 shows the speed-up when different policies to update the counters in the Rcache are
used. Though the main reason to abort the execution of an rgroup is a mispredicted branch, the
ReLaSch default configuration also decrements the counter on an aborted rgroup due to a load replay
or on an rgroup that contains a load that has missed in the L2.

If the L2 miss is ignored, benchmarks perl-704, facerec, lucas, equake and mgrid decrease their IPC,
while perl-make, art470 and art110 improve theirs. If the replay is ignored, perl-850 has a decrease
in IPC while perl-535 improves its performance.

The overall effect of using the default updating policy is positive but small. Since it is easy to
implement, the L2 misses and the replays are not ignored.

9.3.4 Rcache read latency

Figure 9.18 shows the speed-up with different latencies to read the first issue-group in the Rcache. It is
only considered on a change to the Rcache mode, because when two rgroups are executed consecutively,
the access latency of the second one can be overlapped with the last cycles of fetching of the first rgroup.
This latency is also added after a pipeline flush when the processor is in the Rcache mode because
in this case the latency cannot be hidden. The latency can be also seen as the impact of having
additional stages in the Rfront-end logic.

This parameter has a small impact in most FP benchmarks (except facerec, ammp and mesa), but
in all the INT benchmarks larger latencies significantly reduce the IPC achieved, so it is important
to keep this latency as small as possible. The reason why INT benchmarks are more affected by this
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Figure 9.17: Speed-up with different policies to update the counters in the Rcache.
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latency is that, in general, they have worse branch misprediction rates. The pipeline is flushed more
often and the latency is paid more often.

9.3.5 Rgroup-identifier: history bits

Figure 9.19 shows the speed-up achieved with different sizes of the history bits used to identify the
rgroups in the Rcache.

This parameter has a small impact in the average speed-up, regardless of the number of history
bits or whether history is used at all. The reason for this small impact is that history bits are used
only as a hint instead of requiring them to match. In most cases just one variant of the history bits
is enough to capture the behavior of the code. On the other hand, all rgroups that start with the
same instruction are stored in the same set, since the PC of this instruction is used to index the
Rcache. This is convenient to be able to fetch an rgroup with the same PC when history doesn’t
match. However, for benchmarks that create several rgroups starting from a given PC, it puts more
pressure on the corresponding set. Actually, just four rgroups starting from that instruction with
alternative execution paths can be present at the same time in the Rcache (assuming the default
four-way set-associativity).

The FP benchmarks facerec and fma3d slightly benefit from using history (regardless of the number
of bits), galgel benefits from not using history or using less bits, while equake improves its IPC when
more bits are used (up to 8). Some INT benchmarks benefit from having between 2 and 6 history bits
(mcf, gap, perl-535, the bzip and gzip benchmarks) but the impact is small. perl-make benefits from
using more bits. Benchmarks twolf and eon-kajiya improve with a smaller history (or no history at
all).

As a last attempt to improve the impact of the history bits, two alternative ways to use them are
explored in the rest of this section: a) requiring an exact match to hit in the Rcache and b) hashing
the history bits and the PC.

Figure 9.20 shows the speed-up with different sizes of the history bits if they are required to match
to identify the rgroups in the Rcache, along with the default ReLaSch, that allows reading an rgroup
with non-matching history bits, if the desired rgroup is not available. The results show very clearly
that it is beneficial to execute the non-matching rgroups, as the default configuration does. It gets
worse with more history bits, since there are more possible paths for each rgroup and it is less likely
that the history bits match and the number of instructions executed in the Icache mode is increased.

Figure 9.21 shows the speed-up with different size of the history bits used to identify the rgroups
in the Rcache, when the history bits are hashed with PC to index the Rcache. The difference is small,
though this yields in general lower IPCs than the default configuration, where only the lower bits of
the PC are used to index the Rcache.

The benefit of using history is very small and since it makes more complex the access the Rcache
and increases the number of bits that must be stored, it is not worthy to use them. Therefore, we will
remove them in the new default configuration used in the final results.

9.4 The Issue logic

9.4.1 Issue-group boundaries

The beginning of a new issue-group is indicated with the information of each instruction in an rgroup.
In the default configuration, the issue-logic prevents issuing instructions from different issue-groups
in the same cycle. However, it is possible to ignore these bits and use the logic required to detect
dependences in the Icache mode to find out register dependences also in the Rcache mode. Thus, if



114
C
H
A
P
T
E
R

9
.

D
E
S
IG

N
S
P
A
C
E

A
N
D

F
IN

A
L
R
E
S
U
L
T
S

44

bzip-source

twolf

gzip-program

gzip-log

gzip-source

mcf

crafty

eon-kajiya

bzip-program

parser

vpr-route

gcc-sci

eon-rush

bzip-graphic

gcc-166

gcc-integ

perl-diff

gcc-expr

gzip-graphic

gzip-random

gcc-200

eon-cook

perl-535

perl-957

perl-704

gap

perl-850

perl-make

HMEAN

1.3

0.7

0.8

0.9

1.0

1.1

1.2

1 cycle
3 cycles
5 cycles
7 cycles
9 cycles

IN
T

 speed-upart470

art110

galgel

facerec

ammp

fma3d

lucas

mesa

applu

equake

mgrid

swim

HMEAN

1.2

0.9

1.0

1.1

1.2
1 cycle
3 cycles
5 cycles
7 cycles
9 cycles

FP speed-up

cy
cles

of
laten

cy
10

9
8

7
6

5
4

3
2

1
H
M
E
A
N

IN
T

0.93
0.94

0.95
0.96

0.96
0.97

0.98
0.99

1.00
1.00

H
M
E
A
N

F
P

1.01
1.01

1.01
1.01

1.01
1.01

1.02
1.02

1.02
1.02

H
M
E
A
N

A
L
L

0.96
0.96

0.97
0.98

0.98
0.99

0.99
1.00

1.00
1.01

F
igu

re
9.18:

S
p
eed

-u
p
w
ith

d
iff
eren

t
read

laten
cies

to
th
e
fi
rst

issu
e-grou

p
in

th
e
R
cach

e.



9
.4
.

T
H
E

IS
S
U
E

L
O
G
IC

115

mcf

bzip-source

gzip-log

twolf

gzip-program

gzip-source

crafty

eon-kajiya

parser

vpr-route

bzip-program

gcc-sci

eon-rush

gcc-166

gcc-integ

perl-diff

gcc-expr

gzip-random

eon-cook

gzip-graphic

gcc-200

bzip-graphic

perl-535

perl-957

perl-704

perl-850

gap

perl-make

HMEAN

1.3

0.8

0.9

1.0

1.1

1.2

no history
2 bits
4 bits
6 bits
8 bits
10 bits

IN
T

 speed-upgalgel

art470

art110

facerec

fma3d

ammp

lucas

applu

mesa

equake

mgrid

swim

HMEAN

1.2

0.9

1.0

1.1

1.2
no history
2 bits
4 bits
6 bits
8 bits
10 bits

FP speed-up

h
istory

b
its

0
1

2
3

4
5

6
7

8
9

10
H
M
E
A
N

IN
T

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
H
M
E
A
N

F
P

1.01
1.02

1.02
1.02

1.02
1.02

1.02
1.02

1.02
1.02

1.02
H
M
E
A
N

A
L
L

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00

F
igu

re
9.19:

S
p
eed

-u
p
w
ith

d
iff
eren

t
sizes

of
th
e
h
istory

b
its

u
sed

to
id
en
tify

th
e
rgrou

p
s
in

th
e
R
cach

e.



116 CHAPTER 9. DESIGN SPACE AND FINAL RESULTS

m
cf

bz
ip

-s
ou

rc
e

tw
ol

f

gz
ip

-l
og

gz
ip

-s
ou

rc
e

gz
ip

-p
ro

gr
am

cr
af

ty

eo
n-

ka
jiy

a

vp
r-

ro
ut

e

pa
rs

er

gc
c-

sc
i

gc
c-

16
6

eo
n-

ru
sh

bz
ip

-p
ro

gr
am

gc
c-

in
te

g

pe
rl

-d
if

f

gc
c-

ex
pr

gz
ip

-r
an

do
m

eo
n-

co
ok

gc
c-

20
0

gz
ip

-g
ra

ph
ic

pe
rl

-5
35

bz
ip

-g
ra

ph
ic

pe
rl

-9
57

pe
rl

-7
04

pe
rl

-8
50 ga
p

pe
rl

-m
ak

e

H
M

E
A

N

1.3

0.7

0.8

0.9

1.0

1.1

1.2

2 bits
4 bits
6 bits
8 bits
10 bits
6 bits (hint only)

INT speed-up
ar

t4
70

ga
lg

el

ar
t1

10

fa
ce

re
c

am
m

p

fm
a3

d

lu
ca

s

ap
pl

u

m
es

a

eq
ua

ke

m
gr

id

sw
im

H
M

E
A

N

1.2

0.9

1.0

1.1

1.2 2 bits
4 bits
6 bits
8 bits
10 bits
6 bits (hint only)

FP speed-up

history bits 1 2 3 4 5 6 7 8 9 10 6 (hint)
HMEAN INT 0.99 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.99
HMEAN FP 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.01 1.01 1.02
HMEAN ALL 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.97 1.00

Figure 9.20: Speed-up with different sizes of the history bits if they are required to match to identify
the rgroups in the Rcache. Default is 6 history bits used just as a hint (no matching requirement).
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the instructions of an issue-group are ready before the scheduler expected, they would be executed
sooner.

Figure 9.22 shows the speed-up with and without respecting the issue-group boundaries in the
Issue stage, as defined by the new-issue-group bits. For most benchmarks it does not make any
difference, but some INT benchmarks (gap, perl-make, perl-diff and the eon benchmarks are the most
remarkable ones) have much more store-load replays when the issue-groups boundaries are ignored by
the Issue stage, which decreases the IPC achieved. The scheduler places an aliased store-load pair in
consecutive cycles, because a load is replayed if it is issued in the same cycle as the aliased store.

For instance, the perl-make benchmark increases the number of load replays from 2K to 325K (see
table C.18 for details). Each replay has a penalty of 30 cycles, so the number of execution cycles is
increased in more than 9 millions. The OoO processor has 3K replays in this benchmark.

9.4.2 Issue width

Figure 9.23 shows the speed-up with different issue widths of the ReLaSch and the OoO processors
over the baseline OoO processor, that issues up to four integer and two floating point instructions per
cycle. In general, both the OoO and ReLaSch processors have similar improvements when scaling from
4+2 to 8+4. When scaling to 16+8, the OoO still improves, with the exception of some benchmarks
that do not have more instruction-level-parallelism that can be exploited. On the other hand, while
all FP benchmarks improve their performance, many INT benchmarks perform significantly worse
with the 16+8 issue logic in the ReLaSch processor. For instance, gzip-program, gcc-sci, bzip-source,
bzip-graphic, eon-kajiya and perl-diff.

The reason for such unexpected results is the huge increase in load instructions that must be
replayed in the wider issue configuration. The scheduler of the ReLaSch processor captures pairs of
aliased loads and stores but not larger sets of aliased instructions, in which the specific pairs of aliased
store-loads change in each iteration or function call. Capturing pairs is enough for most benchmarks
in a narrow (four and two) issue-logic like in the default configuration, because it is less likely that a
pair of these load and store instructions is reordered. But with a wider issue logic, it becomes more
probable, causing the observed performance degradation. Compare tables C.16 and C.17 for more
details.

In case a wider issue is the desired design point, the scheduler could be enhanced to cope with this
problem. The OoO does not show such performance degradation because it implements Store Sets
to deal with the aliased memory instructions, a technique that specifically addresses this problem.
However, the complexity of its issue logic makes more challenging to implement a wider issue logic in
a conventional out-of-order processor than in the ReLaSch processor, that has an in-order execution
pipeline.

9.5 Other elements

9.5.1 The register file

Size of the register file

Figure 9.24 shows the speed-up achieved with sets of 4, 8 and 16 physical registers for each logical
register in the register file. The default configuration for ReLaSch is 8 physical registers per logical
register. At first sight, using 4 physical registers severely hurts the IPC achieved. The benchmarks
that use just a small set of destination registers for most instructions are specially penalized, for
instance the gzip benchmarks.

Some benchmarks (most noticeable gzip-log, gzip-source, gzip-program, art470, art110 and facerec)
benefit from increasing the number of registers to 16. However, using 16 physical registers does not
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yield a significant overall benefit over the 8-physical registers default for the INT benchmarks, while
the FP benchmarks do show an improvement in the average speed-up. The higher parallelism generally
available in the FP applications puts more pressure to the register file, so these applications benefit
from having more available registers.

ReLaSch vs. conventional register file

The use of such different register files in the OoO and the ReLaSch processors may have an impact in
performance. To quantify it, we have simulated a version of the OoO processor that uses the register
file of the ReLaSch processor. We show its speed-up over the baseline OoO processor. Figure 9.25
shows the speed-up of the default configuration of the ReLaSch processor and the OoO processor
using the ReLaSch register file over the baseline OoO processor with a conventional register file.

The average IPC of the OoO processor with the ReLaSch register file is the same achieved with the
conventional register file. Therefore, the ReLaSch register file has no relevant overall effect. However,
the average hides that there are many benchmarks that show significant differences in speed-up. A
closer look reveals several interesting results.

On one hand, there are some benchmarks that yield in this configuration between 90% and 95% of
the IPC achieved by the baseline OoO. With the exception of lucas, all these benchmarks have a similar
speed-up in ReLaSch. They are characterized by using a small set of logical destination registers, so
they often find no free destination physical register and stall. For instance, in benchmarks art470 and
art110, four logical registers account for the destination register of nearly 90% of the integer dynamic
instructions. Even though they are FP benchmarks, in both cases 54% of the committed writes are
made to the integer register file. Similarly, in the galgel benchmark, eight logical registers accumulate
90% of the committed writes to the FP register file. The top three add up 44%. FP destination
registers are a 63% of the total. Table C.19 shows the distribution of the writes among the whole
logical register file. It shows how many logical registers are needed to accumulate 25%, 50%, 75% and
90% of all the writes. Results for the integer and floating point registers are shown separately.

On the other hand, some benchmarks (gzip-random, gzip-graphic, applu, mgrid and swim) have a
significant speed-up, up to 1.18 (swim). Since these benchmarks distribute their destination register
among many logical registers, it is infrequent that they don’t find an available destination physical
register. In fact they benefit from the higher total number of physical registers of the ReLaSch register
file. For instance, in benchmark swim, 23 logical registers are needed to accumulate the 90% of the
FP destination registers and 11 register to add up to 50%. FP committed writes are a 73% of the
total.

A processor that uses the ReLaSch register file benefits from distributing the use of registers
across as many logical registers as possible. However, we have used directly the binaries generated
by the compiler both for the ReLaSch and the OoO processor, oblivious to this property of the
ReLaSch processor. The use of these binaries is advantageous for the OoO processor, since it uses a
more flexible conventional register file. A possible future research direction is changing the register
allocation policy of the compiler to improve the performance of the ReLaSch processor, distributing
the allocated registers across as many logical registers as possible.

9.5.2 Store Sets and enhanced BTB

The OoO processor is based on the Alpha 21264 with two significant improvements: an enhanced BTB
to predict multi-target indirect branches and the use of Store Sets instead of StWait bits. Neither
of these two improvements is present in the ReLaSch processor but it uses the original Alpha 21264
BTB and StWait bits.

Figure 9.26 shows the speed-up over the baseline OoO processor of the default configuration of
the ReLaSch processor and ReLaSch improved with Store Sets and the enhanced BTB of the OoO
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processor. Since both improvements are only used in the Icache mode, their impact in performance is
negligible. Therefore, the ReLaSch processor doesn’t need such complex structures.

To show the importance of these techniques in the OoO processor, figure 9.27 shows the speed-up
over the baseline OoO of different configurations of the OoO processor: when the enhanced BTB is
removed, when the Store Sets are removed and when both structures are removed. The conventional
BTB of the Alpha 21264 or the StWait bits are used instead. Both techniques have more impact
in the INT benchmarks. Particularly, the enhanced BTB has no effect at all in the performance of
the FP benchmarks. The OoO processor drops to 0.93 of the IPC without the Store Sets in the
INT benchmarks. The impact of the BTB is not so high in the average speed-up (0.97) since many
benchmarks do not have a relevant number of multi-target indirect branches. However, those that are
affected (mainly the perl benchmarks) show an important decrease in IPC when the original BTB of
the Alpha 21264 is used. 12 benchmarks out of 28 achieve less than 90& of the IPC achieved with the
baseline OoO that has both Store Sets and the enhanced BTB.

Table C.16 presents the number of replays of each benchmark in the OoO and the ReLaSch
processor. Even though in general ReLaSch is able to capture the aliased load and store pairs and
reduce the total number of replays, there are some notable exceptions. In particular, bzip-source has
a huge increase in the number of replays. The reason is that there are sets of stores and loads that
are aliased instead of just pairs of aliased instructions. Which particular load and store instructions
are aliased changes every iteration. Our approach does not currently manage this case, unlike the
Store Sets used by the OoO processor that explicitly targets this situation. Therefore, our schedules
assume a single aliased pair and when any other alias is found at execution time, the execution of the
schedule is aborted. We could extend our proposal to manage this case if it is frequent enough. The
OoO processor does not have a very significant performance degradation without the Store Sets in
bzip-source because the StWait bits allow much less aggressive speculation. Instead of being replayed,
loads stall at the Issue stage until all older stores have committed.

9.5.3 Number of CMOV and INT+FP instructions

The CMOV instructions and the instructions that access both the INT and FP register files and
are inserted in both issue queues require special handling, which is likely to lead to have a more
complex issue logic. These two kinds of instructions are not very frequent, as can be seen in table
C.3. Therefore, it may not be cost-effective to be able to process more than one of such instructions
per cycle.

Figure 9.28 shows the speed-up with different maximum number of these instructions issued per
cycle. As expected, the impact in performance of limiting the number of them that can process the
issue logic each cycle is negligible.

9.5.4 Icache size

The ReLaSch processor executes most of the instructions in the Rcache mode. Therefore, it makes
sense to reduce the size of the Icache in order to compensate the area required by the Rcache. Figure
9.29 shows the speed-up with different sizes of the L1 Icache in ReLaSch over the baseline OoO
processor, which has a 64-KB Icache.

The FP benchmarks show almost no degradation even with an Icache that is 8 times smaller. On
the other hand, many INT benchmarks have a higher amount of instructions executed in the Icache
mode due to the presence of branches that the Rcreate logic is not able to predict correctly. These
benchmarks benefit from larger Icaches, so reducing the size of the Icache degrades the IPC in most
cases. However, it still seems acceptable to lower the average INT speed-up from 0.99 to 0.98 and
reduce the Icache to 32KB. Halving it again reduces the speed-up to 0.96.
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9.5.5 Branch predictor

The default configuration of ReLaSch uses the original Alpha 21264 branch predictor in the Icache
mode. Since most instructions are executed in the Rcache mode, it is not necessary to use such a
complex predictor, formed by a bimodal predictor, a history-based predictor and a choice predictor
[26].

Figure 9.30 shows the speed-up achieved with a much simpler bimodal branch predictor. There
is no performance degradation when the bimodal predictor is used. The size of the predictor (the
number of counters) can be reduced without a significant impact in the average speed-up, though
some INT benchmarks (i.e. crafty, perl-diff or the gcc benchmarks) yields less IPC.

9.5.6 ROB size

Figure 9.31 shows the speed-up achieved with different ROB sizes. The number of physical registers
and the size of the LQ and SQ have been scaled in the experiments with a 128- or 256-entry ROB.
The scaling is not strictly linear since, due a restriction of the simulator, the size of these structures
must be a power of 2, while the default ROB has 80 entries. Thus, the ReLaSch configuration with a
128-entry ROB uses a 64-entry LQ and SQ and 16 physical registers per logical register. These values
are doubled in the experiment with a 256-entry ROB. FP benchmarks clearly benefit from a larger
ROB, while most INT benchmarks do not show much improvement after certain point.

For comparison, figure 9.32 shows the speed-up with different sizes of the ROB of the OoO processor
for the INT and the FP benchmarks as a reference. The register file and the LQ and SQ queues have
been scaled in the same way as in ReLaSch. Note that the order of the benchmarks and the range of
the Y axis are different than in figure 9.31. The OoO processor achieves less average IPC from larger
ROBs than ReLaSch does. Having a larger ROB allows exploiting the broader vision of the code of
the Rcreate logic to a greater extent.

9.6 Final results

In this section we present the results of the ReLaSch processor with all the changes in the configura-
tion that have been discussed in this chapter and that are summarized below. Most changes in the
configuration aim to simplify the logic of the ReLaSch processor without compromising performance.
Therefore, we don’t expect to improve performance with the new default configuration. The changes
are summarized in table 9.2.

One of the most significant changes is the absence of history to identify the rgroups. Therefore,
the history bits are not present in the Rcache and the logic used to detect if an access hits only uses
the PC as index and tag. Besides, there is no need to remember the history in the Fetch and Commit
stages, as well as in the Rfetch and the Rcreate logic.

When the Rcreate logic closes an rgroup it checks if the next instruction to schedule was executed
in the Rcache mode. If it was, the Rcreate logic stops scheduling and goes to the Idle mode. The
former version scheduled an additional rgroup before changing to the Idle mode.

The predictor used in the Rcreate logic to choose the latency of the load instructions has now 256
counters of one bit each instead of four-bit counters. Also, the counter in the Rcache used to detect
the “bad rgroups” has four bits per cache line instead of five bits.

Some of the changes simplify the logic or reduce the area required by several structures, thanks
to the fact that most of the time the processor executes instructions in the Rcache mode. Thus, a
bimodal predictor of 2,048 entries is used instead of the much more complex McFarling predictor of
the Alpha 21264. Besides, the Icache is reduced from 64KB to 32KB.

Up to one conditional move is allowed to issue per cycle, as well as up to one instruction that is
present in both the integer and the floating point buffers. Both changes simplify the issue logic and
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Parameter New Default Old Default
Instruction L1 cache: 32KB 64KB
Branch predictor: 2K-entry bimodal McFarling
Rgroup: indirect branches 8 10
Rcreate: instructions per cycle 1 4
Rcreate: load latency predictors 256 1-bit 256 5-bit
Rcreate: switch to Idle mode after current rgroup wait one rgroup
Rcache: “bad rgroup” counters 4-bit 5-bit
Rcache: History bits No 6-bit history
Issue: Conditional move per cycle Up to one Unrestricted
Issue: FP+INT instructions per cycle Up to one Unrestricted

Table 9.2: Main changes in the default configuration of ReLaSch.

reduce the number of ports to the register file with respect to the old unrestricted version. Also, there
can be up to 8 indirect branches per rgroup instead of 10.

The Rcreate logic processes up to one instruction per cycle instead of four. An rcreate input
buffer of 512 entries is still used to store the instructions until they are scheduled. Such a size is
enough to compensate the lower width of the Rcreate logic when compared with the Commit stage
(up to 11 instructions per cycle).

Figure 9.33 shows the results of the old and new default ReLaSch processors. The changes intro-
duced in the configuration to simplify the processor have a negative impact in some of the benchmarks.
The benchmark perl-make and facerec show the most noticeable performance degradation. The main
reason is a significant increase in the number of mispredicted branches. Nevertheless, although many
structures have been simplified or use less area, the processor has still has the same average IPC than
the baseline OoO.

Figure 9.34 shows the speed-up of the two same configurations of ReLaSch when they are compared
with the reference IO processor. The speed-up is very significant in the majority of benchmarks.
ReLaSch performs better than IO in all cases and in average it has 1.55 speed-up over the IO processor.
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Chapter 10

Related work

There are other proposed processors that schedule instructions outside the critical path of execution,
and cache the schedules to feed the pipeline later. There are also other attempts to simplify the
issue-logic that don’t imply caching the schedules. In this chapter, we first present the approach and
objectives of those more similar to our work, followed by the related work that doesn’t cache the
schedules.

10.1 Caching proposals

10.1.1 DIF

DIF [8] stands for Dynamic Instruction Formatting. The proposal includes two cores: the primary
engine (simple, in-order and super-pipelined) and the parallel engine (a VLIW-like core). It also places
a translator between the two cores that has as input stream the instructions executed in the primary
engine and schedules these instructions in a way that suits the parallel engine. The schedules, known
as groups, are stored in the DIF-cache. The parallel engine is used whenever it is possible.

Since the primary engine offers a “safety net”, the ISA of the parallel engine may not match
the ISA offered to the programmer. For example, complex and infrequent instructions may be not
implemented in the parallel engine but only in the primary engine. The presence of such an instruction
forces to finish the current schedule. Also the encoding of the instructions can be chosen to maximize
efficiency at execution time. It also can be changed in each generation of the design without modifying
the ISA exposed to the programmer.

The groups are sequence of long instruction words (LIW). The results show experiments with
up to eight LIWs per group and up to eight instructions (plus two branches) per LIW. The group is
assumed to commit atomically, though it allows having several exits according to the outcome of several
conditional branches. The registers in the groups are renamed using a two-level renaming scheme; an
identifier is assigned at scheduling time and the identifier is updated later, at execution time. The
register file has a fixed set of physical registers for each logical register. However, physical registers
cannot be reused within a single group. They can only be written once per group. Instructions are
speculated across branches. To be able to recover from speculation, an exit map of the live registers
is stored for each conditional branch. Alternatively, it can be constructed at execution time.

The parallel engine can be designed to have homogeneous FUs (each FU can execute any instruc-
tion) or typed (each FU can execute only a subset of the instructions). The typed configuration can
use a split schedule cache and register file and it is likely to have a more compact design, that allows
having a larger number of FUs.

137
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The scheduler uses a greedy algorithm to place the instructions. It tracks dependences and always
uses a latency of either one or two cycles. Any instruction that has more than one cycle of latency is
scheduled assuming to have two cycles of latency. The motivation is to generate compact schedules
instead of sparse ones. At execution time, the instruction will stall until the operands are available.

To close a schedule, the scheduler inserts an unconditional branch in the last slot. It removes all
unconditional branches in the stream of committed instructions of the primary engine. If the exit
maps associated with each conditional branch are stored with the group, the number of conditional
branches per group is limited. Indirect branches would be included in the schedule for object-oriented
workloads. Since the benchmarks used in the experiments aren’t object-oriented code, the proposal
assumes an indirect branch finishes a group. The path predicted by the scheduler is the one learned
at scheduling time. If the prediction turns out to be incorrect, it must be unlearned, using counters
associated with each conditional branch in the group.

Memory instructions are scheduled using the addresses seen at scheduling time to predict if two
instructions will alias. The instructions include the original order, which is used by a store and load
queue to detect any unexpected alias at execution time.

The DIF processor is presented as an improvement over in-order processors. It is not compared
with a conventional out-of-order processor but only with an in-order version of DIF, in which the
scheduler schedules consecutive independent instructions into groups without reordering the original
instructions.

The paper that presents DIF [8] evaluates eight SPECint95 programs, executing between 30 and
120 millions of instructions. Experiments are made with a trace-based simulator. As it could be
expected, DIF has better results than the in-order DIF, up to 50%. Also, using larger groups is
beneficial, as well as wider LIWs (up to four instructions plus two control instructions). The I-cache
in the primary core can be very small without degrading the overall performance. A small DIF cache of
256x2 groups yields good performance for many of the benchmarks. Some other benchmarks benefit
from having larger caches (1024x2). It is beneficial to allow basic block duplication (have several
instances of the same basic block in different groups). In some cases it is equivalent to perform loop
unrolling. The data cache used in the experiments has a one-cycle hit latency and only one-cycle miss
penalty.

The methodology used in the experiments is weak. The authors compare DIF only to a in-order
version of DIF. The groups used in the experiments include a relatively small number of instructions
(up to 48). Also, the latencies for the data cache are completely unrealistic. In the worst case the
processor stalls only for two cycles waiting for a cache miss. With such a small penalty, they are
able to use a simplified scheduling algorithm that assumes either one or two cycles of latency for all
instructions. They don’t have to deal with complex prediction of load latencies, since the penalty for
choosing a wrong latency is very small. A more realistic model of the memory system would result in
very significant performance degradation.

DIF uses two different cores instead of sharing the execution pipeline like ReLaSch does. This
implies a duplication of resources such as the functional units. Though the impact in area is not
examined in the paper, it is clear that it cannot be an area-effective design. The organization of the
register file is very similar to the one used in ReLaSch though a physical register cannot be reused
within a group unlike ReLaSch. This is likely to lead to less populated schedules due to a lack of
available physical registers. The reason why the physical registers cannot be reused is the exit maps
of the conditional branches, that indicate which physical registers hold the architectural value on a
group exit. If multiple uses of a given physical register are allowed, it may be ambiguous which one
holds the architectural value. Our gradual commit using the ROB solves this problem and enables
reusing a physical register within a schedule as much as it is required. Moreover, our design with a
ROB and a single engine enables having in-flight instructions both from the Icache and the Rcache
simultaneously, while DIF requires that a group commits and its exit map indicates the architectural
values before it starts executing the instructions in the primary engine.
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Though our very different initial approaches, DIF and ReLaSch share several design decisions such
as predicting branches and memory aliases from their last execution seen at scheduling time. The
coincidences strengthen our confidence on these decisions. All alternatives that we have explored yield
worse results.

DTSLVIW

The DTSLVIW proposal [27, 28] is an independent proposal that resembles DIF. It also has two
different cores; the primary one is a simple in-order scalar processor and the second one a VLIW core.
A scheduler creates blocks of VLIW code from the stream of committed instructions of the primary
core. These blocks are stored in a VLIW cache and feed the VLIW engine whenever it is possible.
A main difference with DIF is that VLIW instructions are renamed to remove hazards and explicit
copy instructions are placed in the program order to update the architectural registers. Thus, no
renaming logic is needed at execution time in the VLIW core. Control speculation is handled in a
similar way and copy instructions update the registers of the instructions scheduled before a branch.
The scheduler uses an algorithm based on First Come First Served instead of the greedy approach of
DIF.

10.1.2 rePLay

The rePLay hardware framework [9] aims to improve performance by dynamically optimizing the code.
It relies on a conventional out-of-order pipeline to execute the instructions. The optimizer works on
frames, which are sequences of instructions with a single entry point and a single exit point. Frames
commit atomically; that is, either all the instructions in the frame or none of them commit. In order to
construct large frames that span across many basic blocks, highly biased branches are promoted into
assertions. At execution time, assertions fire a recovery mechanism in case the condition evaluates as
false. The recovery mechanism undoes all the work done by the frame and sets the fetch mechanism
to read the instructions of the frame from the instruction cache.

Traces commit atomically to allow more aggressive optimizations, requiring that useful instructions
are re-executed after a mispredicted branch. The out-of-order pipeline schedules and renames the
instructions.

The frame construction mechanism and the branch bias detection table are explained in great
detail [9, 29]. Path history and branch PC are used to index the table. It stores a counter of the
number of consecutive executions of a given branch with the same outcome. Whenever a counter
reaches a fixed threshold its branch is promoted into an assertion and a frame is constructed from
the stream of committed instructions. A frame ends when a non-promoted branch is inserted or a
maximum number of instructions (256) is reached. Frames including less than 32 instructions or 5
blocks are dismissed.

The frame cache stores the frames once they have been constructed. Each frame occupies several
cache lines in order to efficiently store frames of different sizes, though the experiments in [9] store
one frame per entry.

At execution time, a conventional branch predictor is combined with a frame predictor and a
selection mechanism.

Using a frame cache that can store up to 256 frames, a 64KB branch bias detection table (and
10KB for indirect branches), 16K-entry frame predictor and 6 bits of history, the rePLay framework
is able to create frames of 88 instructions in average that cover 68% of the dynamic instruction count
with a completion rate of 97.91%. The frame predictor hit rate is 81.26%.

The framework allows the frames to be optimized in hardware after they are constructed but before
being stored in the frame cache [30]. Unoptimized frames still increase performance because the frame
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cache works like a trace cache, executing 13% less execution cycles. When the frames are optimized,
the performance gain is 21% less cycles than the baseline.

The optimized frames can use renamed registers [31]. The position of an instruction in the frame
directly identifies its physical register. A Register Alias Table is used to communicate where are
located the Live-In and Live-Out values.

Continuous optimization proposal [32] moved some optimizations present in the rePLay processor
to the execution pipeline. The optimizations are not cached. They are dynamically applied to the
stream of fetched instructions instead.

In-order rePLay

An in-order version of rePLay is presented in [33]. The frames are executed on a conventional in-order
processor. After a frame is optimized a scheduler reorders the instructions to improve the performance
of the in-order pipeline. Then the frame is stored in the frame cache.

The in-order processor and the scheduler is not described with much detail. Since frames commit
atomically, the scheduler has a lot of freedom to reorder the instructions. It uses assertions to be able
to speculate on memory aliasing and reorder load and store instructions.

With the Region Slip technique presented in the same paper, the in-order pipeline is enhanced
with the Live-Out Map table, that indicates which instructions produce the values that are alive after
exiting the last frame. It allows overlapping the execution of the last instructions of one frame with
the first instructions of the next one.

The scheduler reduces the execution latency by 28% over the unscheduled code executed in the
same in-order pipeline. Region slip improves these results and improves performance 26% over the
plain scheduled in-order rePLay.

Comparison

The rePLay framework uses a conventional out-of-order issue logic that relies on a large issue queue,
while the in-order rePLay uses an in-order issue logic. It has to store the live-out registers of each
trace. Though the experimental methodology is different and direct comparison of the results is not
very reliable, rePLay yields worse results than ReLaSch versus conventional out-of-order and in-order
processors. Only highly biased branches can form part of a frame. Thus, the completion rate is very
high, which is very energy-efficient since little energy is wasted in miss-speculated instructions. A
similar filtering mechanism can be added to the ReLaSch processor too, in order to reduce energy
consumption and lower the pressure on the Rcache.

The main goal of rePLay is to borrow compiler optimization techniques in order to dynamically
reduce the number of instructions that are executed. ReLaSch does not use any of these techniques,
because their use forces to have atomic commit: since not all the original instructions are executed,
the semantics of the program inside the schedule are changed, even though the semantics are preserved
on the schedule boundaries. However, it seems possible to apply some of this techniques in ReLaSch
and force atomic commit to a selected number of rgroups that are know to be executed frequently
and that always commit all their instructions.

10.1.3 Parrot

Parrot [34, 35] is similar to rePLay. It also optimizes the most frequently executed traces and caches
them. The schedules are executed in an out-of-order pipeline afterwards. It aims to perform gradual
optimizations of the code as a power-efficient way to improve the performance of the code.

It has two separated pipelines, hot and cold. Both are out-of-order but the hot pipeline executes
the traces atomically and the cold pipeline is a conventional out-of-order pipeline that is used when
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there isn’t any available trace. Depending on the configuration, the hot and the cold pipelines can
share some resources or can be completely separated, like the double core of the DIF processor. An
additional similarity between these two proposals is that complex and infrequent instructions may be
implemented only in the cold pipeline.

Indirect jumps and taken backward branches terminate a trace. A trace can have up to 64 uops.
The optimizer is placed after the commit stage of both pipelines. Parrot filters the traces, using

two different thresholds, in order to schedule only the most frequently executed instructions. It has
counters associated with the different execution paths, updated after commit. When the counter of a
path reaches the first threshold, a trace of the decoded uops of that path is stored in the cache and
is executed thereafter in the hot pipeline. The benefit is a reduction in the energy required to decode
the instructions. When a trace executed in the hot pipeline reaches the second threshold, the trace
is optimized and stored again in the cache. Thus, the optimizer processes only the parts of the code
that are frequently executed, saving power.

The optimizations that Parrot performs are presented in [35] and include logic and arithmetic
simplification, dead code elimination, SIMdification and pre-scheduling of the instructions among
others.

The results of Parrot are compared with those of a conventional out-of-order processor without
a trace cache and an optimizer. The 4-wide Parrot processor with a 128-entry trace cache achieves
17% speed-up over a conventional 4-wide out-of-order processor. The 8-wide Parrot processor with a
512-entry trace cache achieves 25% speed-up over a conventional 8-wide out-of-order processor.

10.1.4 Execution Cache / Flywheel

The Execution Cache (EC) [10] proposal fills a cache of traces generated by a conventional out-of-order
issue-logic. Whenever it is possible, instructions are fetched from the EC and the front-end of the
pipeline is switched off. The goal of the proposal is to reduce the energy consumed per instruction.
The drawback is usually some performance degradation when the EC is used.

The Execution Cache is placed after the issue stage. A fill buffer captures the instructions issued
and creates traces out of them. Since we schedule the instructions after commit, we have a broader
vision of the code, that enables creating better schedules.

A trace contains up to 512 instructions but the actual maximum length can be changed dynamically
according to the branch misprediction rate. A trace is closed on a function return or an indirect
branch. Also when an existing trace starts in the current point of execution. Besides, a branch
misprediction that occurs during the creation of a trace forces to discard it completely, since it would
have instructions from both the correct and the wrong path. Instructions commit gradually. The
instructions from just a single trace can be at the same time in the ROB.

The trace cache has a tag array and a data array. Each block in the data array stores up to 8
instructions. A trace typically occupies many blocks of consecutive sets. Each block contains a pointer
to the way that stores the next block of the same trace in the next set. Since the sequence of sets
to be accessed is known beforehand, a banked implementation of the data array allows accessing just
the bank that contains the desired set. The rest of banks are gated, thus saving energy. Only the
first access to a trace requires accessing all banks. The trace is formed by a sequence of Issue Units
(similar to our issue-groups). A block of the Data Array can store an arbitrary number of Issue Units.

If a trace is aborted at execution (because it contains a mispredicted branch) M times in a row, it
is invalidated and created again. The values used for M are 2 and 3.

The register file has a pool of physical registers for each logical register. The pool is implemented
as a circular buffer. The renamed instructions in a trace assume that the physical register 0 stores the
live-in values. To avoid having an offset per logical register and use adders (like we do in ReLaSch) or
copying registers when a trace starts execution, all the identifier fields are xor-ed with the identifier of
the current architectural physical register. This register becomes the register with identifier 0 and the
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rest gets a unique identifier. The identifier of the physical registers are stored in a special field and an
associative access is performed to determine where in the pool is a given physical register. The two
drawbacks of this approach are the need for an associative access and that a trace must stall until all
older instructions commit before starting execution, creating a pipeline bubble.

Each block in the trace cache stores eight instructions using 76 bytes. The instructions are stored
already decoded using 48 bits. The experiments use an EC of 50KB and 100KB. The register file has
four physical registers per logical register. A mix of benchmarks from SPEC95 and SPEC2000 is used
to evaluate the proposal, simulating 50M instructions

The processor with a 100K EC is 8.5% slower than the baseline (a conventional out-of-order
processor). When it uses a 50K EC, it is 9.8% slower. The processor with a 50K EC reduces a
35% the energy per committed instruction The processor with a 100K EC reduces a 31% the energy
per committed instruction. The increase in power consumption for the larger EC is offset by the
performance improvement. In the Energy x Delay product, the proposed architecture is 20% better
than the baseline.

Flywheel

Flywheel [36, 37] introduces the EC in a processor that has different clocks in the front-end and the
back-end of the pipeline. The processor has several execution modes that enable to both increase
performance and save energy. The slowest clock is the one used by the select logic when it accesses
the issue window. It determines the clock used by the back-end when the EC doesn’t contain any
suitable trace. The front-end can have a faster clock even though it accesses the issue window. Also,
when the EC provides the instructions, the back-end can be clocked faster and the front-end can be
switched off.

The other main difference with the original EC proposal is how register renaming is performed
and the structure of the register file. Though it still uses a limited pool of physical registers to rename
each architected register, it adds a new level of renaming. The register file is organized as a single
continuous structure with all the physical registers. For each architected register, a table stores an
offset to its first physical register and how many of them are available. This approach has two benefits:
it removes the associative access to the register file and it enables to dynamically adapt to the usage
of each architected register: if some registers are written much more often than others, the amount of
physical registers in their pool can be incremented. The drawback is that all traces stored in the EC
must be invalidated and created again whenever the configuration of the register file is changed.

The experiments use a 512-entry register file and a 128K EC. In average, 88% of the time the
EC provides the instructions and in the worst case it happens 60% of the time. Using the same
clock as the conventional out-of-order baseline that is determined by the select logic, Flywheel has an
average 5% increase in performance due to its reduced misprediction penalty. When the clock is more
aggressive (50% faster clock in the back-end with the EC than the select logic and also 50% faster
in the front-end), Flywheel achieves an average 54% increase in performance. On the other hand, it
increases the power in only 8%. In average, it requires 30% less energy than the baseline thanks to
the reuse of traces.

10.1.5 CTS

The Converged Trace Schedules (CTS) proposal [11] uses a scheduler out of the critical path to speed-
up an in-order pipeline. It applies software pipelining and loop unrolling to the most frequently
executed loops. It breaks up the schedule into trace blocks, which are defined by the taken backward
branches. Then it tries to find the largest repeating pattern in the sequence of blocks. This sequence
is called a Converged Trace Schedule. The schedules are stored in a set of dedicated pages in virtual
memory and a copy of the currently used blocks is stored in a small dedicated cache (8KB). The paper
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proposes three different implementations of the scheduler: in a software thread running in the same
processor as the optimized program (with the associated overhead when running the scheduler); in a
software thread running in a different core (without the overhead); and in a hardware in a dedicated
co-processor.

The CT-Schedule driver keeps track of all committed backward branches, counting the number
of times they are executed and how many times they are taken in a row. When they reach a given
threshold in both counters (50 and 5 respectively) the processor enters the scheduling mode, in which
committed instructions are captured in the schedule window and then used by the scheduler. The
driver stops trace generation when a converged trace has been created, when the backward branch
is not taken or after a maximum number of iterations. Once a backward branch has triggered the
scheduler, it is flagged in order to not trigger it again.

The schedule window contains up to 500 instructions. The instructions are annotated with register
and memory dependences as well as the execution latency. The scheduler uses a greedy algorithm and
assumes perfect renaming at execution time. In order to converge the traces, the scheduler follows
additional rules: a) the branches are scheduled in order with respect to each other, b) the instructions
cannot be speculated above a maximum number of branches (six in their baseline) and c) each static
load is scheduled with a fixed latency inside the schedule. To choose the latency of each load, they
use a heuristic to measure its criticality: how many of the following 100 instructions in the schedule
depend directly or indirectly on the load. If at least 20% of them depend on the load, it is consider
to be in the critical path and it is scheduled assuming a hit; otherwise, the miss latency is used.

Once a schedule has been created, the taken backward branches divide it into several trace blocks.
The instructions of each trace block are hashed to produce a block ID. The sequence of IDs is processed
by an algorithm that detects repeating sequences of IDs. It uses trees associated with each ID and
counters to detect which is the most frequent pattern.

The register file is divided into several register windows. Each window has as many physical
registers as logical registers are defined in the ISA. Each window is directly linked to an iteration of
the loop. An instruction can be speculatively scheduled above several branches. The register window
that the instruction uses is encoded as an offset and is determined by the number of those branches. At
execution time, a mapping stage uses the offsets encoded in the instruction and the current iteration
number to rename it (i.e. which window stores its source operands). It is not clear from the paper
how WAR and WAW hazards are handled when they happen to be within a single loop iteration,
since there is one copy of each logical register per window and each iteration is linked to a window.

The paper presents the results of CTS against a plain in-order processor. Also against an in-order
processor plus a simple scheduler (similar to DIF) that does not converge traces and that has small
number of instructions (up to 64). It also presents CTS enhanced with Pattern Trace Schedules (PTS),
that stores the most frequent pattern when no trace converges after the scheduling process finishes.

The size of the CTS traces is extremely variable because it depends on the patterns that the
scheduler is able to find. The scheduler is able to create scheduled of more than 900 static instructions
that turn into 19,400 dynamic instructions at execution time though most traces are smaller. The
percentage of instructions executed from the cache is as high as 98.3% and as low as 2%. It is 52% in
average. CTS+PTS has in average 16% IPC speedup over the in-order baseline when the scheduler
is implemented in hardware. The simple scheduler achieves 8% of speedup in average.

CTS filters the traces in order to schedule only the hottest parts of the code in order to lower the
pressure on the cache and the scheduler. So the schedules don’t attempt to cover all the instructions
that are executed, with a potential performance loss that is supposed to be small since it is the less
frequently executed instructions that are not scheduled.

On an exception, a misprediction or the end of a trace, CTS rolls back the register mapping to the
last committed branch. Unlike other proposals with full atomic commit, CTS only has to re-execute all
the instructions in the iteration after a load alias misprediction but not after a branch misprediction.
On a load alias misprediction, ReLaSch has to start re-executing only from the load and doesn’t
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re-execute any instruction after a branch misprediction, just starts fetching from the target PC.

10.1.6 Comparing performance

Regarding the results of these proposals, only the in-order rePLay has an in-order issue-logic and
compare their performance with a conventional out-of-order processor. Although it doesn’t outperform
the out-of-order IPC in any benchmark, it is close in some case. CTS also has an in-order issue logic
and it yields 1.16 speed-up over an in-order conventional processor. This is less than what is achieved
by ReLaSch and it is not compared with an out-of-order processor. DIF compares only to a simplified
version of itself. The rest of proposals don’t have an in-order issue logic.

10.1.7 Other caching proposals

There are other caching proposals that are presented here in less detail because we find them less
closely related to our work.

The Turboscalar proposal [38] uses two pipelines: the Cold one is a conventional out-of-order
superscalar pipeline; the Hot one is much wider (24 instructions per cycle) and shallow. The Hot
pipeline read the instructions from a block-based trace cache with the instructions already decoded
and renamed. Thus, it only has to access the register file and use a sparse crossbar to dispatch the
instructions to the reservation stations, where instructions are executed out-of-order. The register file
is organized as stacks of physical registers for each logical register. The position of the instructions
in the blocks is arranged according to their type in order to match the corresponding dispatch unit,
which allows to simplify the crossbar. The trace cache is filled with the instructions executed in the
Cold pipeline.

MPS [39] places a scheduler between the main memory and the instruction cache. The instructions
are then processed in order. Since the scheduler cannot use information gathered at execution time,
the performance results are not close to those of a conventional out-of-order processor. MPS can
speculatively schedule instructions across branches. It stores the original program order with the
instructions, which is used to insert the instructions in a ROB. However, its lack of information from
execution time forces MPS to not predict the outcome of indirect branches. The presence of such a
branch ends a schedule. Schedules are also closed with backward branches to prevent loop unrolling.

The Hot Spots mechanism [40, 41] detects the regions of code that are most frequently executed.
Then it creates sets of traces that are optimized to improve the performance of the Fetch mechanism:
it relayouts the basic blocks to increase the frequency of the fall-through case, performs automatic
in-lining and loop unrolling. The optimized traces are stored in a dedicated set of virtual memory
pages called the code cache. The BTB is modified to access the code cache whenever a hot spot is
reached.

Transmeta [42] performs binary translation from x86 instructions to a VLIW machine. The trans-
lated traces of code are cached and the traces are executed atomically. The Incremental Commit
Groups proposal [43] improves a similar processor by allowing partial commit of the traces. Each
trace is divided into several commit groups after instruction scheduling. Each commit group com-
mits atomically. At execution time, a trace commits each group sequentially. A commit buffer and
a speculative architectural register file is used to keep the architectural state of the trace. A trace
predictor and a commit depth predictor are used to choose the next trace to execute and the num-
ber of commit groups that will be executed. If the prediction is correct two traces can be executed
consecutively without paying any rollback penalty even if the first one is not completely executed.
One significant difference with ReLaSch is that in Transmeta and the Incremental Commit Groups,
translation is mandatory to execute any instruction, while in ReLaSch the scheduler is used only to
improve performance and any instruction can always be executed in the Icache mode.
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The Trace Line processor [44] adds renaming information to a trace cache in order to reduce the
complexity of the renaming logic. The issue logic, the FUs, the register file and the renaming logic
are partitioned into blocks. Bypassing is restricted to instructions executed in the same block. Thus,
it can have a large issue window and a large register file with a reduced complexity. Each trace is
assigned to an idle block after the map stage. A trace can have up to 16 instructions. The trace cache
has register renaming information to bypass the map stage. Also, the instructions are stored already
decoded. The proposal includes a dynamic loop detector that enables reusing a trace if it is already
present in one of the blocks.

The instruction co-processor [45] is not strictly a caching proposal. It presents a co-processor that
can be used to manipulate the instructions of the main processor. The co-processor takes as input
the stream of committed instructions. It has its own very simple instruction set and can be used to
perform many code transformation tasks. As an example, the implements the fill unit for a trace
cache with the co-processor, as well as simple code optimization and data prefetching.

10.2 Non-caching proposals

10.2.1 Loop-based instruction reuse

The following related work present proposals that save energy by reusing the instructions already
present in the pipeline whenever it is detected that they form a loop.

The Loop Processor Architecture [46] detects the presence of simple loops, buffers them and feeds
the execution pipeline from the buffer instead of the front-end. A loop must have a single control path,
but it can include branches that do not change their direction during execution. The main benefit
of buffering a loop is the energy savings of switching off the front-end. Furthermore, since the loop
buffer does not have to deal with alignments and taken branches, it can provide the instructions at a
faster rate than the front-end, which accesses an instruction cache. The instructions are stored already
decoded and renamed. The front-end can be switched off, including the register renaming logic. A
flag in the rename table indicates whether the logical register is updated by an instruction in the loop
or it is loop-independent. Instructions are renamed using virtual tags. Each tag has two parts: the
root tag and the iteration tag. The root tag is assigned in a conventional way. The iteration tag
is incremented in each iteration if the register is modified inside the loop. The buffering mechanism
needs three iterations until it is able to provide the instructions to the back-end stages. The backward
branch of the first iteration activates the buffering mechanism, the instructions of the second iteration
are buffered and the third iteration is used to complete the detection of data dependences. A buffer
of 128 instructions is used in the experiments. The activity of the front-end is reduced in average a
14% in the integer benchmarks and a 45% in the floating point benchmarks.

The following three proposals reuse the instructions already present in the issue queue or the ROB
in order to reduce energy consumption in the front-end.

The issue queue reuse proposal [47] detects the loops that fit completely in the issue-queue. When
that happens, it starts delivering the instructions from the issue-queue instead of using the front-
end. Thus, the front-end can be gated off for power reduction. When the processor is in the reusing
mode, the instructions are read from the issue queue, renamed and then inserted in the ROB. The
instructions stay in the issue queue after being issued. The issue queue exits the reusing mode when
a branch misprediction is detected. Several iterations of the loop can be present at the same time in
the queue, thus dynamically unrolling the loop. It can also perform automatic function in-lining if
the loop with the in-lined code fits in the issue queue. The branch predictor is gated with the rest of
the front-end and the prediction used to fill the issue queue is reused. A small table remembers the
loops that do not fit in the issue-queue in order to minimize unnecessary attempts to reuse a loop.

The trace reuse proposal [48] also reuses loop instructions to gate the front-end stages and deliver
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instructions in a more power efficient way. In this case, the instructions are delivered from the ROB.
Instructions from newer iterations are copied in new entries in the ROB and instructions are removed
from the ROB as they commit. The reused instructions are sent to the conventional register renaming
logic. The loop detection mechanism works on the basic block level. A FIFO buffer tracks which basic
blocks are present at a given moment in the ROB. A CAM access is performed to the buffer for each
branch target and reuse mode is activated on a hit. When the processor is reusing the instructions,
the branch predictor is accessed once per basic block. This allows capturing complex loop patterns
that include control instructions within the loop body.

The CLU proposal [49] also reuses loop instructions from the ROB buffer to reduce power. It
is more restrictive than the trace reuse proposal discussed above since it can reuse only loops that
are both tight (without control instruction in the loop body) and small (up to 16 instructions). Its
distinctive feature is that each instruction in the loop is inserted just once in the ROB, so power
savings come not only from front-end gating but by reducing the number of insertion in the ROB.
A separated structure tracks the renaming information of all in-flight instances of the instructions,
allowing several iterations to share the same ROB entries. Since it only captures tight loops, the
branch predictor is not accessed while instructions are being reused.

10.2.2 Simplified issue

The following proposals show alternative ways to simplify the issue logic. They don’t attempt to reuse
the instructions already present in the pipeline.

Runahead [50] proposes to increase the performance of an in-order processor by pre-executing
instructions on a cache miss. We consider that this technique is orthogonal to our proposal and could
be implemented in it.

The Flea-flicker two-pass pipelining [51, 52] extends the idea of runahead execution and proposes
an VLIW machine with two in-order pipelines. The first pipeline executes instructions greedily and
speculatively. It does not stall whenever an instruction has not all its operands ready, typically due
to a cache miss. The execution of that instruction is deferred to the second pipeline instead. Its
destination register is marked as invalid to defer the execution of the dependent instructions too. The
second pipeline executes instruction conservatively and maintains the architectural register file. It
merges the results of the first pipeline to avoid executing the same instruction twice. A decoupling
queue is used to communicate the two pipelines. The use of the two pipelines allows overlapping
several outstanding misses and hide the long latency. This proposal was later implemented in a single
in-order pipeline that performs multiple passes to the code [53, 54].

Wakeup prediction [55] simplifies the issue logic by removing the conventional wake-up logic, that
tracks when the operands of each instruction are ready, and using a prediction mechanism instead.
The Wakeup predictor returns a wakeup time for each decoded instruction. The instructions are then
inserted in the self-schedule array, where they stay the predicted wakeup time. Instructions are then
selected and sent to read the register file. If the operands are not ready yet, the instruction is replayed
and inserted again in the self-schedule array, although the predicted wakeup time is doubled to reduce
the number of unnecessary replays. In order to reduce the number of replays an additional allowance
time is added to each prediction. The actual latency of the instruction is used to update the predictor,
which is expected to stabilize after some time. The wakeup prediction mechanism removes the critical
feedback look in the issue logic.

Cyclone [56] also predicts the latency of each instruction and selectively replays the instructions
that are scheduled too early. Unlike Wakeup prediction, that uses previous observed latencies of an
instruction to predict its latency, Cyclone tracks when are the registers available and schedules each
instruction according to the availability of its operands. Another difference between the two proposals
is the structure where the instructions wait during the predicted latency. In Cyclone instructions are
inserted in the tail of a countdown queue. This queue shifts the instructions to the head one entry per



10.3. SUMMARY 147

Name Issue I/C S/O RN RF C Size Aim Reference
DIF VLIW C S Y S Aa 6x8 IPC IO-DIF

& scalar
rePLay OoO C O N C A 256 #inst OoO
rePLay-io IO C S&O Y C A 256 #inst & OoO

#cycles
Flywheel OoO I Sb Y S I 512c Power OoO
CTS IO C S&O Y W L 400/20kd IPC IO & CTS

wo. optimizer
Parrot OoO C O N C A 64 performance OoO
ReLaSch IO C S Y S I 256 IPC IO & OoO
a A schedule in DIF can have several exits.
b Flywheel schedules using a conventional issue logic.
c Maximum schedule size in Flywheel is adaptive.
d Schedule size in CTS is measured in static and dynamic number of instructions of the schedule.

Table 10.1: Summary of the main characteristics of the most relevant related work. The legend
for the fields is: Issue: which kind of issue logic is used. I/C: Instructions are captured at Issue
or Commit. S/O: Schedule or optimize. RN: Whether instructions are renamed by the scheduler
(Yes/No). RF: Register file. Can be Common (C), organized in Sets (S) or organized in Windows
(W). C: Commit type. Can be Atomic for the whole schedule (A), atomic for each Loop iteration (L)
and per-Instruction (I).

cycle. When the instructions have been in the queue for half of the predicted time, they are moved to
the main queue, where they spent the rest of the predicted time. The instructions in the main queue
are shifted one position per cycle towards the register read and execute stages. In the register read
stage, the ready bits of the desired physical registers are checked and the instruction is replayed if the
operands are not ready yet. The destination physical register of a replayed instruction is marked as
not ready in order to replay any dependent instruction too. Aliased loads and store instructions are
tracked in a similar way. An important weakness of this proposal is that the prediction mechanism
does not take cache misses into consideration.

Prescheduling [57] uses a Preschedule window formed by lines. These lines are read in order and
feed an out-of-order issue logic. It allows reducing the size of the issue queue without degrading
IPC. The preschedule logic processes the decoded instructions in execution time. It just takes into
account the data dependences and does not deal with renaming or resource assignment because the
out-of-order issue logic performs all these tasks. The preschedule logic assumes an L1-hit latency for
all the load instructions.

10.3 Summary

Table 10.1 summarizes the main characteristics of ReLaSch and the more relevant proposals discussed
above in order to help comparing all them.
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Chapter 11

Conclusions and future work

11.1 Conclusions

In this work we have achieved the following main goals:

• To prove that the issue-logic of a conventional out-of-order processor does a lot of redundant
work.

• To propose a microarchitecture that reduces the work to be done by the issue-logic by reusing
dynamic schedules.

• To propose a simpler execution pipeline than a conventional out-of-order processor. The sched-
uler has been placed after the Commit stage, which allows using a fully in-order execution
pipeline.

Regarding the lessons learned while doing this research, a very important decision has been to
place the scheduler after the Commit stage. The scheduler has there a broader vision of the code
that allows having better performance in some cases. It takes into account all the instructions in the
schedule while a conventional out-of-order issue logic only sees the instructions that are available in
the issue queue at a given cycle. Our experiments show that, using a cache of 128 schedules (of 256
instructions each), we achieve almost the same IPC than a conventional out-of-order processor with
the INT benchmarks (99% of the average IPC) and 1.01 average speed-up in the FP benchmarks,
outperforming the out-of-order processor in 23 out of 40 benchmarks.

Another key element that has allowed to achieve good results is the use of long rgroups, since the
scheduler is able to extract more ILP and create better schedules. In the early stages of this work,
we tried to develop a processor that reused individual issue-groups. Knowing which physical register
to use was an important problem. Using a predictor in the renaming stage made the processor work
but the performance results were unacceptable.

It is also important to perform a fine tuning of the schedules. There are many small things done
by the scheduler to fine tune the processor that improve performance, even if some of them are not
very effective when used alone. For instance, taking into account the issue latency of the different
functional units. Another example is considering the commit rate of the scheduled instructions to
update in which issue-group is released a given resource that is reused by a younger instruction.

Another significant step in the design of the processor was to remove the restriction that the
instructions of a rgroup had to be alone in the execution pipeline, without any in-flight instruction
from an older rgroup or from the Icache. This restriction implied paying a very heavy penalty because
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it created bubbles in the pipeline between two consecutive schedules as well as before and after
changing to the Rcache mode.

The ability to adapt to the variable latency of memory accesses is one of the most important
strengths of a conventional out-of-order processor. We cannot have such ability but our latency
predictor is generally able to capture the behavior of the memory accesses. Our initial attempts with
simpler prediction strategies failed to generate proper schedules.

Detection of aliased memory instructions at scheduling time and how are they managed at execu-
tion time is also an important part of ReLaSch. Our excellent results in most of the benchmarks lead
us to implement the Store Sets in the reference out-of-order processor in order to make a fair compar-
ison. We also enhanced the reference out-of-order processor with better multi-target indirect branch
prediction, because of our much better results when compared with the original reference processor.

The experiments have shown that using history bits to identify the schedules is not effective.
Besides, the experiments have also shown that we can further simplify the processor without having a
significant performance degradation. For instance, we can use a smaller instruction cache or a much
simpler branch predictor. After simplifying the processor in this way, we have presented the results
of the new default configuration, that achieves very similar results in performance.

Although the results presented here are in general compared with an out-of-order processor, we can
also see ReLaSch as an enhancement over conventional in-order processors. In this case, it is a very
effective way to improve the performance of an in-order core. Compared with a conventional in-order
processor, we have 1.51 INT and 1.64 FP speed-up. Even with a smaller cache the improvement is
significant.

As a summary of the performance achieved by the processor proposed here, figures 11.1 and 11.2
show the speed-up in IPC achieved with the new default ReLaSch when compared to the reference OoO
and IO processors. All evaluated benchmarks are included, ordered from lower to higher speed-up.

11.2 Future research directions

The work presented here can be used as a starting point for new research. The following is not an
exhaustive list but just some ideas for research directions based on this work, grouped into three
categories:

• Cycle time: To create a detailed model to study to cycle time that ReLaSch can achieve. In
this work we have assumed that ReLaSch and OoO work at the same frequency. But due to its
in-order issue logic and execution pipeline, it seems reasonable to assume that it can be clocked
at higher frequencies with the corresponding performance benefits.

• Energy/power aware ReLaSch.

– To create a detailed model to study the power and energy consumption required by the
ReLaSch processor; the study should evaluate the impact of the most relevant parameters
such as the Rcache size and the rgroup size.

– To study the performance and power trade-offs. Several ways or sets of the Rcache as well
as the scheduler can be switched off to trade off some performance for energy savings. The
gains and costs must be measured to define a policy for switching off these elements.

– To study the impact of novel power and energy saving techniques. For example, the broad
vision of the scheduler enables it to manage power saving techniques such as clock and
voltage gating in a more efficient way. The scheduler knows at scheduling time whether
a given functional unit is not going to be used for many cycles. Thus, it can insert such
information in the rgroup to switch on and off these resources at the most appropriate



11.2. FUTURE RESEARCH DIRECTIONS 151

time. Furthermore, the scheduler can place the instructions later than the time when the
operands are ready in order to maximize power savings.

– Minimize voltage droops. When a sudden change in the activity of the processor creates
a current peak it can produce a voltage droop and eventually require re-execution if the
voltage margin is small. Such sudden change can be related with a long latency cache miss.
When it is served after cycles of stall, the issue logic finds many ready instructions and the
issue rate is very high. It has been shown that dynamic code transformation is useful to
solve this problem [58]. The broader vision of the code that the scheduler has in ReLaSch
can be used to schedule the instructions in the rgroups in a way that prevents the voltage
droops.

• IPC improvements.

– To improve the branch misprediction rate. When compared to an aggressive conventional
out-of-order processor, branch prediction is one of the weaknesses of ReLaSch. Though
for many benchmarks our mechanism works well, some other benchmarks need to create a
very high number of schedules, corresponding to the many paths that are executed. That
puts a lot of pressure to the scheduler and the Rcache. It seems possible to improve the
misprediction rate. For instance, using some kind of filtering technique in these cases to
create only the schedules that cover very frequently executed paths.

– To study the impact of dynamic optimizations. If frequently executed paths are known,
dynamic code optimizations can be applied to rgroups that are known to execute always
to completion if this is combined with atomic commit for these rgroups. There is previous
related work [11, 9, 34] that can be helpful to choose which optimizations should be applied.

– To improve the distribution of the accesses to the logical registers. In our experiments, we
have used Alpha binaries just as they were generated by the compiler. Since our register file
has a fixed set of physical registers for each logical register, it could be beneficial to change
the binaries or force the compiler to distribute the writes across all the logical registers.

– To improve the schedules whenever it is possible. For instance, the scheduler can detect
the backward branch that ends a loop and finish an rgroup earlier. In that way, it would
be easier to chain the execution of the rgroups that correspond to that loop. Similarly, the
scheduler can be extended to include a mechanism similar to the store sets, to detect the
cases when there isn’t a single pair of aliased load-store, but a more complex set of aliased
instructions.
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Appendix A

Common register file

The default ReLaSch processor presented in this work uses a register file that has a set of physical
registers for each logical register. Such type of register file can limit the performance that can be
achieved, because there can be unused physical registers while the processor stalls waiting for a free
physical register of a given logical register. This appendix presents the changes to the ReLaSch
processor that are needed to use a common register file. Such a register file offers a pool of physical
registers shared by all the logical registers. It also presents experimental results that show that the
average performance achieved is very similar to that achieved by the default ReLaSch. Since the
common register file requires more complex logic, we have decided to keep the partitioned register file
as the default for ReLaSch.

A.1 Description of the register file

The ReLaSch processor uses two separated register files, one for the integer registers and another for
the floating point register. The rename structures that are presented here must be duplicated, one
for each register file. Besides, the ReLaSch processor implicitly assumes the in-order processing of
the instructions in the issue logic for the proper use of the registers. The use of separated integer
and floating point issue buffers can change the relative order of a pair of integer and floating point
instructions. To ensure the proper order in the accesses to the registers, the instructions that access
both register files are inserted in both issue buffers. Float-store and float-to-int instructions already
are inserted in both buffers in the baseline ReLaSch. In the ReLaSch version with a common register
file, float-load and int-to-float are inserted in both buffers too. The motivation is explained in section
A.2.2.

The logical registers R31 (integer) and F31 (floating point) always return the value 0, and a write
to one of these registers has no effect. When the destination logical register of an instruction is either
R31 or F31, it is not renamed to any physical register.

The register file is formed by a single pool of physical registers shared by all the logical registers.
Each physical register has an associated valid bit that indicates whether a value has been written
and is available for the instructions that want to read it. Each physical register has an identifier, that
goes from 0 to regfile size-1, where regfile size is the number of physical registers in the register file.

The identifiers are always assigned in the same order. In section 6.3 we have seen that the Rmap
logic needs to add an offset to the identifiers assigned by the scheduler. The identifiers of the common
register file are assigned sequentially, always in the same order, because it enables using a single offset
to update the identifiers at execution time. The free head register is used in the Icache mode to do
it. It points to the first free physical register, which is assigned as destination register when the next

155



156 APPENDIX A. COMMON REGISTER FILE

instruction is mapped. The free head register is incremented after each mapped instruction that has
a destination physical register. The Rcreate logic assigns the identifiers also in the same sequential
order, always beginning each rgroup with the identifier 0.

Each physical register has a busy bit to indicate whether a given physical register is available to
be used as destination. Section A.2 shows how it is not needed for some sizes of the register file.

The architectural value of a given logical register must be safely stored until the next instruction
that writes the same logical register commits. In the normal version of ReLaSch, where each logical
register has it own private set of physical registers, the architectural value can be stored in one of
the physical registers of the set indefinitely: this is possible because the physical register that stores
the architectural value is not required to be assigned again until the logical register is not used again
as destination. And when this happens, the architectural value will be stored in a different physical
register after a number of cycles and the current architectural physical register is freed afterwards for
sure.

On the contrary, with a common register file, where the physical registers are shared by all the
logical registers and the physical registers are assigned always in the same order, a physical register
phy that is used to rename the destination register of an instruction cannot hold indefinitely the
architectural value of the destination logical register after the instruction commits. If none of the next
instructions uses the same logical register as destination, the free head register ends up pointing
again to the physical register phy. In this case, the processor would either enter a deadlock or lose the
architectural value by reusing the physical register phy.

Therefore, the architectural values are stored separately in a dedicated part of the register file.
When an instruction commits, the value of the destination physical register is copied in the architec-
tural register of its logical register. The architectural registers do not have an identifier that can be
assigned as destination by the free head register.

Register renaming in the Icache mode

The rename table is used in the Icache mode to know to which physical register must be mapped the
source registers of a given instruction. The Icache mode uses a conventional renaming logic. It has
an entry for each logical register, the phy field is used to store the identifier of the physical register,
and the arch bit to indicate if the value is stored in the architectural register. When an instruction
is mapped, the renaming logic reads the value in the rename table for each one of its source logical
registers. It also updates the entry in the rename table of its destination logical register clearing the
arch bit and copying the value of the free head register into the phy field. The free head register
is incremented afterwards.

Figure A.1 shows an example of renaming in the Icache mode. The source logical register 2 is in
the physical register 15, while the source logical register 3 is in the architectural register, since its
arch bit is set. The destination logical register 1 is renamed to the physical register 17 and its arch
bit is cleared. The free head register is incremented afterwards.

The Issue stage knows that a source register is available when it is in the architectural register (the
arch bit is set) or if the valid bit of the physical register is set. Regardless of the mode, when the
instruction is finally issued, it reads the desired source register, either the physical register indicated
in the phy field or the corresponding architectural register.

The rename table is also updated by the Commit stage. For each instruction, it accesses the
rename table with the identifier of the destination logical register and the content of the phy field
is compared with the identifier of the destination physical register used by the instruction. If they
match, the arch bit is set. Otherwise, the rename table is left unchanged since there is a younger
instruction that writes the same destination logical register. Figure A.2 shows an example of how the
Commit logic accesses the rename table, where the destination physical register (17) of the committed
instruction doesn’t match with the current renamed physical register (22). It means that an in-flight
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Figure A.1: In the Icache mode, the rename table is used to rename the registers. The free head
register indicates which is the next free physical register.
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Figure A.2: An example of how the rename table is accessed with the destination logical register of
each committed instruction.

younger instruction writes the same logical register. Therefore, the table is not updated in this case
and the arch bit remains unchanged.

A.2 WAR and WAW hazards

Once a given instruction i has committed, all the instructions that depend on i that are renamed in
the Map stage afterwards will read the architectural register, because they will find the arch bit set.
The physical register phy that stored the speculative value will not be accessed by these instructions.
However, an instruction j that depends on i that has been mapped before i commits is renamed to
access phy because it accessed the rename table when the arch bit was still zero. In ReLaSch the
source registers are read after the instruction has been issued, so the instruction will read phy even
if the data is already available in the architectural register. If the instruction j stalls in the Issue
stage (e.g. because it also depends on a long latency memory instruction), it may read the physical
register phy many cycles after i commits and the content of phy has been copied to the corresponding
architectural register.

This implies that a physical register cannot be reused immediately after commit when there is
any pending read by a dependent instruction. The Icache mode ensures that just by issuing the
instructions in-order. For the instructions executed in the Rcache mode, the Rcreate logic must track
all the reads to each physical register before assigning the register again. The instruction that reuses
a given physical register must be scheduled after the last read in schedule order of the previous use of
the register.

Different approaches can be used depending on the relative size of the register file when compared
to the size of the ROB. The sections below describe the differences between three cases: a) if there
are at least twice as many physical registers as identifiers in the ROB; b) if there is at least as many
physical registers as identifiers in the ROB and c; if there are less physical registers than identifiers
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in the ROB. In the text below, ROB size indicates the number of identifiers in the ROB and RF size
indicates the number of physical registers.

A.2.1 Twice as many physical registers as identifiers in the ROB

If RF size ≥ 2 ∗ROB size− 1 then actually no special logic is needed to ensure correctness. In this
case, a physical register can be assigned without any restriction because it is guaranteed that any
older dependent instruction has read the old value in the physical register when it is overwritten.

The example in figure A.3 shows the worst case. To simplify the explanation, we assume that
the code is executed in a version of the OoO processor that assigns the physical registers sequentially
and has a conventional out of order issue logic. The instruction A uses the physical register r0 as
destination. The Map stage updates the entry for R3 in the rename table to r0. The instruction A
has a very high latency, so the Map stage completely fills the ROB, up to the instruction C, before
A commits. All the dependent instructions mapped before then have read (or will read) the physical
register r0. The instruction D uses the same identifier in the ROB as A, so D will stall until A commits
and frees its entry in the ROB. When A commits, the arch bit of the logical register R3 is set, since
no younger instruction has updated the entry for R3 in the rename table. Thus, when the instruction
D enters the processor, its source registers are renamed to the architectural register of R3.

The instruction B has a very high latency too, so the instruction C cannot be issued until many
cycles later than it has mapped, since one of its source operands is not available. The instructions that
follow it can be mapped and issued safely, since none of them is renamed to write r0. The instruction
E cannot be mapped until B has committed and its ROB entry is freed. After the instruction B has
committed, the instruction C finally has all its source operands available. However, the instruction
C can actually stall for some additional cycles, if its functional unit is already in use by another
instruction. In this case, the instruction E can advance it and write the result before the instruction
C reads its source registers, so the instruction E shouldn’t use r0 as destination. The instruction F
cannot be mapped before the instruction C commits so it is the first instruction that is guaranteed
that cannot write r0 before C has read the register. Therefore, it is safe to rename its destination
register to r0.

With a register file that has at least 2 ∗ ROB size − 1 physical registers, each time a physical
register is assigned as destination, all younger instructions that may read it have already committed.
When such a register file is used, the Rcreate logic of the ReLaSch processor doesn’t need to track
when a physical register is read for the last time at scheduling time. There is still the limitation that
the instruction that overwrites the physical register (F in the example) must be scheduled after the
last read to it (C). However, this is already achieved through the ROB safe pos table, that is used to
properly schedule instructions that reuse an identifier in the ROB.

A.2.2 As many physical registers as identifiers in the ROB

The ILP extracted by the dynamic scheduler in the OoO processor or by the Rcreate logic in the
ReLaSch processor is limited by the size of the ROB. An instruction cannot be scheduled beyond
ROB size positions. When there are twice as many physical registers as identifiers in the ROB, many
times most of the physical registers would remain unused. The example of A.3, in which the ROB
is filled up and it takes many cycles since a physical register is assigned until it is read for the last
time, is a corner case which is unlikely to happen often. The processor must be able to manage this
situation correctly but we shouldn’t optimize for this case. Having such a large register file is a waste
of resources.

If a smaller register file is used, the processor must check that there isn’t any pending read to a
physical register before assigning it as destination. In general, the Rcreate logic cannot schedule an
instruction that uses a given resource before it is safe to reuse it. In the ReLaSch processor with at



A.2. WAR AND WAW HAZARDS 159

A: LD 0(R1), R3 ; renames R3 to r0, L2 cache miss -> very high latency, ROB_id=0

...

B: LD 0(R2), R4 ; L2 cache miss -> very high latency, ROB_id=78

C: DIV R3, R4, R5 ; reads R3 from r0, ROB_id=79

D: ADD R3, R3, R6 ; reads R3 from architectural register, ROB_id=0, writes r80

...

E: ADD R7, R8, R9 ; ROB_id=78

F: ADD R10, R11, R12 ; R12 in r0, ROB_id=79,

Figure A.3: Example of code that produces the worst case at execution time for a register file that is
twice larger than the ROB. The right-most operand indicates the destination register. Only instruction
A writes R3.

least ROB size physical registers, the safe pos of a physical register is at least the issue-group where
it is read for the last time. This condition is already granted by the use of the ROB safe pos table.

No special logic is needed in the execution pipeline of the ReLaSch processor, neither in the Icache
mode or the Rcache mode, thanks to the in-order processing of the instructions. If an instruction
that reads a given physical register stalls at the Issue stage waiting for another source register or a
functional unit, the instruction that reuses the same register as destination will also stall at the Issue
stage, the Map stage or the Rmap logic. So the register cannot be overwritten before the previous
value is read.

Since the issue logic uses independent integer and floating point buffers, the relative order of the
instructions between the two buffers can be changed, even if the issue logic of both queues is in-order.
In general the semantics of the program are preserved, but there are several instructions that access
both the floating point and the integer register files. To ensure that they are ordered correctly with
respect both the integer and floating point instructions, all the instructions that use both the integer
and the floating point register files are inserted in both issue buffers in order to enforce a correct
ordering of the accesses to the register files. These instructions are the floating point load and store
and the conversion instructions that transfer a value from one register file to the other.

Another problem to solve is that it is possible that an instruction i that reads a physical register
phy and an instruction j that will overwrite phy afterwards are simultaneously present in the issue
buffer. They are processed in-order, so the accesses to the register are correctly ordered. However,
the instruction j clears the valid bit of phy in order to prevent the dependent instructions to issue
and access phy before it stores the new content. This bit is typically cleared in the Map stage but
doing so now would also prevent the instruction i to issue, actually causing a deadlock. Thus, the
valid bit of the physical register phy is cleared when the instruction j is issued.

Now there is another problem, since also a younger instruction that depends on instruction j can
be present in the issue buffer at the same time as j. In the example of figure A.4, the three instructions
can be present at the same time in the issue buffer and processed simultaneously by the check logic of
the Issue stage. As explained above, B does not clear the valid bit of r1 until it is issued to ensure
that A can be issued and it reads the old value of r1. But then C sees that the valid bit of r1 is set,
so it could be issued that same cycle, though it actually must read the new value of r1, which is not
available yet.

To solve this problem, the Issue stage could check if there is any instruction being issued that
same cycle that overwrites a source register of a younger instruction. Whenever that happens, the
younger instruction is not issued. If the issue logic can process up to four integer instructions, the
check logic of the fourth instruction needs six comparators (three previous destination registers vs.
two source registers). The check logic of the first instruction does not have any comparator. The
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A: ADD R1, R2, R3 ; reads R1 from r1

B: ADD R4, R5, R6 ; renames R6 to r1

C: ADD R6, R7, R8 ; reads R6 from r1

Figure A.4: Example of code where both instructions that depend on the old value of a physical
register and instructions that depend on the new value can be at the same time in the issue buffer.

second instruction needs two comparators (one for each source register) and the third instruction uses
four comparators.

Actually, this is only a problem in the Icache mode, since instructions A, B and C would be
scheduled in different issue-groups by the Rcreate logic. Since the Issue stage of the ReLaSch processor
respects the boundaries of the issue-groups, the instruction C would not be issued at the same cycle
as B even if the valid bit of r1 is set. If the comparators are in the critical path, it is probably not
cost-effective to use them, since they are needed only for the instructions executed in the Icache mode.
In this case, an alternative is to create issue-groups from the instructions executed in the Icache mode,
similarly to section 7.2.5. The Map stage would set the new-issue-group bit of the entry in the issue
buffer of the instruction C. Thus the instruction would stall the cycle when B is issued, just like in
the Rcache mode. Another alternative is to reduce the issue width when instructions are executed in
the Icache mode. Since low ILP is extracted in this mode anyway and it is expected to be used less
frequently than the Rcache mode, the impact in the IPC should be small.

A.2.3 Less physical registers than identifiers in the ROB

The identifiers in the ROB entries are freed in-order in the Commit stage and the Map stage and the
Rmap logic stall the instruction that reuses them. Thus, no special logic is needed to detect if an
instruction wants to overwrite the destination physical register of an uncommitted instruction if the
number of physical registers is ROB size or more like in the sections above.

This is not the case when there are less physical registers than identifiers in the ROB. If only the
identifiers in the ROB are taken into account when mapping the instruction, two in-flight instructions
may want to use the same physical register as destination. Therefore, each physical register has an
associated busy bit that indicates whether the value has been committed or it is still speculative. It
is set when it is assigned as destination register by the Map stage or the Rmap logic and it is cleared
in the Commit stage. A given physical register cannot be assigned as destination as long as its busy
is set, The instruction stalls until the value is committed and the busy bit is cleared.

A.3 The Rfront-end and the Rcreate logic with an empty

ROB

To simplify the description of how are instructions scheduled and the rgroups executed, this section
presents a simplified version of the logic that requires that the ROB is empty before processing the
first instruction of the rgroup. The next section covers the general case.

A.3.1 The Rcreate logic

The Rcreate logic renames the source and destination registers of each instruction. In general, a
source register can be in a physical register or in the architectural register. At execution time, the
ROB will be empty when the first instruction of the rgroup is processed. Thus, its source operands
will be stored in the architectural register. This will happen for all live-in values of the rgroup. When
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Figure A.5: An example of instruction renamed by the Rcreate logic using the reg info table.

a source register is not a live-in value, its value will be stored either on the architectural register of
in a renamed physical register, depending on whether the instruction that produces the value has
committed or not. The Rcreate logic must detect which registers are written inside each rgroup,
remember in which issue-group they commit and rename dependent instructions accordingly.

The reg info table is used to rename the instructions in the scheduler. It is indexed with the
identifier of the logical register. The phy field indicates which is the last physical register mapped to the
corresponding logical register, the arch bit indicates whether the data is stored in the architectural
or the physical register and the read field indicates the earliest issue-group in which a dependent
instruction should be scheduled. As usual, the Rcreate logic accesses the read field of the source
registers of each instruction and schedules it in the corresponding issue-group. The renamed source
registers are stored with the instruction, copied from the arch bit and the phy field of the reg info
table.

Figure A.5 shows an example. The source logical register R3 is renamed to the physical register 11,
which is available in the issue-group 12. The source logical register R2 is renamed to the architectural
register, since its arch bit is set. This register is available in the issue-group 8. The instruction is
scheduled in the issue-group 12, the maximum of 8 and 12.

To rename the destination registers, the Rcreate logic uses the rcreate free head register to track
which physical register should be assigned next. The destination register of the current instruction is
used to index the reg info table. The content of rcreate free head is copied into the phy field of
the indexed entry and the arch bit is cleared. As usual, the read field is updated with the proper
issue-group. Since physical registers are assigned sequentially rcreate free head is incremented,
modulo regfile size.

In the example of figure A.5, the destination logical register R1 is renamed to the physical register
17. Thus, the phy field of the register R1 is updated to 17, the arch bit is cleared and the read field
is updated to 13, assuming one cycle of latency for the ADD instruction.

The arch bit in the reg info table of a logical register should be set as soon as possible in order
to free the physical register and be able to reuse it. However, if it is set too early, it could happen
at execution time that a dependent instruction reads the architectural register before it contains the
committed value. Therefore, the arch bit must be set only when it is sure that at execution time
the producer instruction will have committed when the instructions currently being scheduled are
read their registers. That the producer has committed is guaranteed in two cases: a) after ROB size
scheduled instructions; and b) when the same physical register is assigned again. Which situation
happens first depends on the relative size of the ROB and the register file, as well as the actual
number of instructions that write a register.

In order to detect the first case, each entry in the reg info table has an additional field (ROB id).
When an entry in the table is updated because a destination register has been mapped, the content
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of the ROB id register is copied to that field. In the example of figure A.5, the ROB id field of the
logical register R1 is updated to 15. Before scheduling an instruction, the Rcreate logic performs
a CAM-access to the reg info table with the content of the ROB id register. The arch bit of any
matching ROB id field is set. Thus, the source registers of younger dependent instructions are renamed
to the architectural register.

The second case doesn’t require using any additional field because the reg info table already
tracks the usage of all physical registers. Thus, when a destination register is renamed, the Rcreate
logic performs a CAM-access to the table with the content of the rcreate free head register. If there
is any entry with a matching phy field, its arch bit is set.

An alternative to the CAM-access to the reg info table is to use a separated table with one
entry per physical register. Each entry stores the logical register, if any, to which is renamed the
corresponding physical register. In this case, the table will be accessed with the content of the
rcreate free head register. The value read there is used to index the reg info table and set the
corresponding arch bit. The table must be updated when the logical register is renamed. A similar
table stores the destination logical register that corresponds to each identifier in the ROB, indexed
with the ROB id register. The ROB id fields in the reg info table are not needed in this case.

Reusing a physical register

The Rcreate logic must create a safe and deadlock-free schedule when reusing a given physical register
phy as destination. Let us consider the previous (i) and the current (j ) instructions that write phy.
Three aspects must be taken into account to have a correct schedule:

a. The instruction i must update the register before j and i must be able to commit. In the
example of figure A.6, the instruction C must be scheduled after the instruction B, but also
after A. If the instructions are scheduled in the order B, C, A, the processor would enter into a
deadlock at execution time, since the instruction C cannot be sent to issue until the instruction
B commits and clears the busy bit of r1 and C cannot commit until the instruction A commits,
which is blocked waiting that the instruction C is issued.

Therefore, the instruction C must be scheduled in the issue-group indicated by the value of
the safe pos register at the time the instruction B was scheduled. If the number of physical
registers is at least ROB size, the ROB safe pos table already grants a correct ordering of the
instructions. Otherwise, the phy safe pos table is used to store the safe issue-group for each
physical register. For each scheduled instruction, the table is indexed with the identifier of
its destination physical register, that is as indicated by the rcreate free head register. The
value read from the phy safe pos table is used to schedule the instruction. Once it has been
scheduled, the accessed entry in the table is updated with the content of the safe pos register.

Figure A.9 shows an example. The physical register 2 is assigned as destination so the instruction
must be scheduled at least in the issue-group 5. According to the contents of the safe pos
register, the entry for physical register 2 is updated to 10. Thus, the next instruction that uses
the physical register 2 as destination will be scheduled at least in the issue-group 10.

b. An instruction that depend on i and is younger than j reads the value produced by i through
the physical register. In the example of figure A.7, the instruction C must be scheduled af-
ter the instruction B. If there are at least twice as many physical registers as ROB size, the
ROB safe pos table already enforces that the instruction that the instruction j is scheduled
after the last instruction that depends on i. Otherwise, the phy last read table stores the
issue-group with a higher identifier that contains an instruction that reads each physical regis-
ter. The phy last read table is indexed with the source physical registers of every scheduled
instruction. If the current value is less or equal than the identifier of the issue-group ig in which
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A: ADD R0, R1, R2 ; R2 is renamed to physical register r0

B: ADD R3, R4, R5 ; R5 is renamed to physical register r1

...

C: ADD R6, R7, R8 ; R8 is renamed to physical register r1

Figure A.6: Example of code where a physical register is reused. C must be scheduled after A and B.

A: ADD R0, R1, R2 ; R2 is renamed to physical register r0

...

B: ADD R2, R3, R4 ; Reads R2 from physical register r0

...

C: ADD R5, R6, R7 ; R7 is renamed to physical register r0

Figure A.7: Example of code where a physical register is reused. Instruction B must read the value
of r0 produced by instruction A.

the instruction has been scheduled, the entry is updated to ig+1. In the example of figure
A.10, the instruction uses the physical register 2 as source and is scheduled in the issue-group
12. The entry in the phy last read table for the physical register 2 is updated to 13 since the
current content is less than 12. Whenever a source register is renamed to use the architectural
register, the phy last read table is not updated. The phy last read table is indexed with the
destination physical register and the content is used to schedule the current instruction.

c. A instruction dependent on the instruction i and younger than j reads the value produced by i
through the corresponding architectural register. In the example of figure A.8, the instruction
C reads the architectural register. Therefore, it must be scheduled where it is sure that the
instruction A has committed, which happens to be at least in the same issue-group of the
instruction B. Otherwise, the instruction C could read the architectural value of the register R2
before the instruction A updates it.

To enforce that, the reg info table is extended with a rewritten field. The Rcreate logic
already performs a CAM-access to the table with the content of the rcreate free head register
to set the arch bit if there is any matching entry in order to properly rename the dependent
instructions. Additionally, now the rewritten field is updated to indicate in which issue-group
the current instruction has been scheduled. Now, both the read and rewritten fields of the
source registers are used to schedule an instruction.

Figure A.11 shows an example of how this field is updated. The entry of the logical register 1
matches the physical register 17, so its arch bit is set. Besides, the rewritten field of logical
register 1 is updated to 12.

A: ADD R0, R1, R2 ; R2 assigned in physical register r0

...

B: ADD R3, R4, R5 ; R5 assigned in physical register r0

...

C: ADD R2, R6, R7 ; Reads R2 from architectural register for R2

Figure A.8: Example of code where a physical register is reused. Instruction C must read the value
of R2 from the architectural register.
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The text above assumed separated phy safe pos and phy last read tables as well as sepa-
rated read and rewritten fields in the reg info table to simplify the explanation. However, both
phy safe pos and phy last read tables can be implemented as just one table with two fields, that
is accessed with the physical register identifiers. Also, both the read and rewritten fields can be
unified in a single field that indicates in which issue-group should be issued any instruction that wants
to read the register. The field is updated whenever the new value is greater than the current one.

A.3.2 The Rmap logic

The Rmap logic is quite simple, since it is guaranteed that the ROB is empty before inserting the first
instruction from the rgroup. Thus, the identifiers assigned by the Rcreate logic can be directly used.

A destination register is available if its busy bit is cleared. If the number of physical registers is at
least equal to the ROB size, it is not necessary to have busy bits, since the desired physical register
is always available.

The next rgroup processed by the Rmap logic or the instructions executed in the Icache mode
must wait until the current rgroup has been completely committed before entering the ROB. All the
values will be stored in the architectural registers then. Therefore, there is no need to update the
rename table in the Rcreate mode.

A.4 The Rfront-end and the Rcreate logic with a non-empty
ROB

In the section above, the Rmap logic wastes many cycles waiting until the ROB is empty to start
processing a new rgroup. This restriction degrades severely the performance that the processor can
achieve. This section presents the changes needed to start an rgroup when the ROB is not empty.

A.4.1 The Rcreate logic

In the restricted version of the Rcreate logic presented in the section above, the scheduler assumes
that all live-in values are stored in the architectural register when an rgroup starts execution. In the
general version of the Rcreate logic presented in this section, that assumption is not true anymore.
There can be older in-flight instructions that produce those live-in values. Usually it is not known
until execution time whether a live-in value must be read from the architectural register or a physical
register. To indicate which are the live-in values, the scheduler sets a flag when renaming a source
logical register that has not been used yet as destination in the rgroup. The Rmap logic is responsible
for renaming these registers properly.

Therefore, the reg info table has an additional bit (prev) that indicates whether a logical register
has been used as destination by any instruction in the rgroup or if at execution time it will contain a
live-in value. Initially, the prev bit of all the entries in the reg info table is set. The prev bit of the
source registers is copied along with the arch bit and the phy field when the Rcreate logic renames an
instruction. The Rcreate logic clears the prev bit of the destination logical register of each scheduled
instruction.

After ROB size scheduled instructions, it is sure that all the values written by the instructions
older than the rgroup are committed and can be read from the architectural register. However, since
there is no benefit from doing it and requires having some additional logic, the prev bits are not
cleared after ROB size instructions.
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A.4.2 The Rmap logic

The Rmap logic has two additional tasks now: a) complete the renaming performed by the Rcreate
logic in a way that allows to start processing an rgroup when the ROB is not empty; and b) update
the state of the renaming structures so that Rmap can process the next rgroup (or the Map stage can
process the instructions in the Icache mode) without waiting for the whole current rgroup to commit.

Completing the renaming

The schedule contains the instructions as they were renamed by the scheduler. A renamed source
register has the prev and arch bits and the phy field. When the prev bit is zero, the arch bit
determines whether the value to read is in the architectural register or the physical register indicated
by phy. When prev is set, the value is produced by an instruction older than the rgroup. Depending
on the status of that instruction, the architectural register or a physical register will be read. The
prev rename table is used to know which registers currently store the live-in values. The whole content
of the rename table is copied into the prev rename table when a new rgroup enters the Rmap logic.
The Commit stage updates the prev rename table in the same fashion as it updates the rename table;
when an instruction commits, it compares the destination physical register with the content of the
table for the destination logical register and sets the arch bit if they match.

When the prev bit of a source register is set, the Rmap logic accesses the prev rename table with
the identifier of the logical register and reads the arch bit and phy field stored there. If the arch bit is
set, the instruction reads the architectural register. Otherwise, it reads the physical register indicated
by the phy field.

When the prev bit of a source register is zero, the Rmap logic checks the arch bit of the instruction
in the rgroup. If it is set, the instruction reads the architectural register. Otherwise, the phy field
is used, but it has to be updated to the current state of the processor. The Rcreate logic starts
assigning physical registers starting with the physical register 0, but that register may be the first
free physical register when the rgroup starts execution. Since it is assumed that registers are assigned
always consecutively, the identifiers assigned by the scheduler must be adapted to the current state.
Therefore, an offset is added to the identifier stored in the phy field. There is a single offset for the
whole register file. The offset does not change during the execution of an rgroup. Its value is the
content of the free head register when the rgroup enters the Rmap logic. It indicates which is the first
free physical register at that moment. Thus, the source register is renamed to the physical register
indicated by (phy + offset)moduloregfile size.

Figure A.12 shows an example. The physical register indicated by the rgroup is 3 and the offset is
20, so the actual register accessed is the physical register 23. The prev rename table is accessed with
the logical register 2. There, the arch bit is 0 and the phy field is 10. Since the prev bit stored in the
rgroup is zero, the content of the prev rename table is ignored for this instruction and the information
stored in the rgroup prevails. The arch bit of the rgroup is zero so the physical register 23 is used.

The offset is also added to the identifier of the destination physical register. The register is available
if its busy bit is zero. If it is set, the instruction stalls in the Rmap logic. As explained above, the
busy bits are not needed if the number of physical registers is greater than or equal to ROB size.

Figure A.13 shows an example. The destination physical register indicated in the rgroup is 46,
which is renamed to the physical register 2, after the addition of the offset (assuming 64 physical
register). Since the busy bit is zero, the physical register is available and the instruction is sent to the
Issue stage.

Updating the structures

The Rmap logic must update the rename table and the free head register to let the next instructions
find a correct state to be correctly renamed without waiting for the whole current rgroup to commit.
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If the next instructions are executed in the Icache mode, the Map stage uses the rename table and
the free head register to rename the registers. If it continues in the Rcache mode, these structures
are needed anyway in order to update the prev rename table and the offset for the next rgroup.

The Rmap logic can update the free head register by incrementing it for each instruction that
uses a destination physical register.

The rename table must contain the most recent renaming information of each logical register.
However, the Rmap logic processes the instructions in the scheduled order and two writes to the same
logical register can be reordered. Therefore, updating the rename table directly for each processed
instruction is incorrect. The rename table must point to the physical register of the last in-flight
instruction in program order.

The next rename table is used to keep the renaming information that must be copied to the
rename table when the last instruction of the rgroup has been processed by the Rmap logic. We
want to keep the Rmap logic as simple as possible and the simplest way to detect at execution time
which instructions must update the next rename table is that they are already marked by the Rcreate
logic. Rcreate knows which instructions in the rgroup produce the live-out values, the results that
can be read by the next rgroup. Only the last write to each logical register in the rgroup can be
read by instructions executed later. Furthermore, when a new rgroup starts execution, just the last
ROB size − 1 instructions can still be in-flight and have not committed yet. The logical registers
updated by older instructions must be read from the architectural registers. The Rcreate logic can
detect which instructions from the last ROB size − 1 instructions generate a live-out value and set
an additional update rename bit for them. All other instructions will have this bit cleared. When
the Rmap logic processes an instruction that has this bit set, it updates the rename table with the
identifier of the destination physical register of the instruction.

The Commit stage updates the next rename table as it does with the normal rename table. It
is accessed with the destination logical register. If the phy field of the entry matches the destination
physical register of the committed instruction, the arch bit of the entry is set.

Using a tag

The solution presented above uses a very simple Rmap logic to know which instructions must update
the next rename table. However, it requires an additional bit per instruction to be stored in the
Rcache. It may be more cost-effective to detect these instructions at execution time in order to reduce
the Rcache size. That could be implemented using tags to know the relative order of each instruction
in the rgroup. Thus, each entry of the rename table has an additional tag field. This field is ignored
when the table is used in the Icache mode. It is zeroed when a new rgroup enters the Rmap logic.

Each instruction in the rgroup has a tag. The tags are assigned sequentially in program order. For
a given instruction with tag t, the Rmap logic indexes the next rename table with the identifier of its
destination logical register. If the current value of the tag field is less than the t, the instruction with
tag t is younger. Thus, the phy and tag fields are updated and the arch bit is cleared. Otherwise,
the next rename table is left unmodified.

Figure A.14 shows an example. The entry of the logical register 2 is accessed. The current
instruction has the tag 1.7, where the dot means that the two numbers are concatenated. Since it is
greater than the current content of the tag field (1.0), the table is updated.

In order to generate the tags, the original order of the instructions must be known. The tag could
be assigned by the Rcreate stage, but doing so makes no sense, since it would require more storage in
the Rcache than the update rename bit. If an rgroup has up to 256 instructions, each tag occupies
one byte.

It is actually not necessary to store the tag in the rgroup. The original program order can be
recovered from the identifier in the ROB that the scheduler already assigns to each instruction in the
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Figure A.14: The Rmap logic updates the next rename table. It is indexed with the destination
logical register. The logic updates the tag and phy fields and clears the arch bit if the new tag is
greater than the current content of the field. The tag is formed by a counter (1 in the example)
concatenated with an identifier (7 in the example).

rgroup. If an rgroup fits completely in the ROB, the identifiers in the ROB can be used directly as a
tag.

However, if the ROB is smaller than the maximum number of instructions per rgroup, each iden-
tifier is used several times within the same rgroup and it cannot be used directly as a tag. The Rmap
logic should count how many times has been reused an identifier and build the tag based on that. To
do so, the Rmap logic can use a table with a counter for each identifier in the ROB, the ROB count
table. Thus, the tag of an instruction with the identifier in the ROB id is the content of the entry id
of the ROB count table concatenated with id. The ROB count table is indexed with the ROB id field
of each instruction. All counters are reseted when a new rgroup enters the Rmap logic. For each
Rmapped instruction, the counter of its identifier in the ROB is incremented.

Figure A.15 shows an example. The value read from the ROB count table is concatenated with the
ROB id field of the instruction as read from the Rcache. In the example, the tag of the instruction is
1.7 and the counter of identifier 7 is incremented. Thus, the next instruction that has the identifier 7
in the ROB will have the tag 2.7.

Yet another way to obtain the tags is to count how many instructions of the current rgroup
have committed in the rgroup committed register and use this number to deduce the number of
times that the ROB id of the current instruction have been used within the rgroup. This solution
reduces the number of counters from ROB size to just 1, though it requires a more complex logic.
The rgroup committed register is incremented for every committed instruction of the rgroup. This
register is initialized to zero when the rgroup enters the Rmap logic. The value of the register, modulo
ROB size, indicates which is the id next, that is, the identifier in the ROB of the next instruction
of the rgroup that will commit. The offset of the identifiers in the ROB is ignored here, so the first
instruction uses the identifier 0. When a given instruction i with identifier id is processed by the Rmap
logic, id is compared with id next. If id ≥ next id, it means that the identifier id has been assigned
the same number of times as the id next (including the instruction i). Otherwise, id is being assigned
once more than id next. To generate the tag, the Rmap logic uses the num ROB reuse register, that
counts how many times the identifier 0 has been reused. It is initialized to zero and incremented each
time that the rgroup committed register is updated and the new value modulo ROB size is 0. The
tag is the content of the num ROB reuse register concatenated with id when id ≥ next id. Otherwise,
the tag is num ROB reuse+ 1 concatenated with id.1

1 Actually, only the last ROB size−1 instructions in the rgroup can be in the ROB (not committed), when the first
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Figure A.15: The ROB count table is used to create the tags of the Rmapped instructions.

Renaming loop

The Rmap logic reads the prev rename table and updates the next rename table. Thus, register
renaming of the instructions of the rgroup do not depend on the changes made in these tables by the
other instructions in the rgroup. Therefore, the tight logic loop that appears in the renaming logic of
the out-of-order processors is not present in the Rmap logic. The next rename table can be updated
in a pipelined fashion without compromising the next instructions in the rgroup. However, it would
have an impact when a new rgroup enters the Rmap logic.

A.5 The Rcache

The Rcache stores the renaming information of each instruction. When the common register file is
used, the total number of physical registers determines how many bits are needed for the identifier of
the physical register. With 72 physical registers, the identifier has seven bits.

For a destination register, only the identifier of the physical register is stored. A source register
can be in a physical register, in the architectural register, or in a place unknown until execution time.
Thus, besides the seven bits of the identifier two extra bits (arch and prev) must be stored for each
source register. However, if there are some unused identifiers (when the number of physical registers
is not a power of two, as in our default configuration), a couple of unused identifiers can be used to
encode the architectural and previous cases and use just seven bits per source register. The Rdecode
logic would set the arch and prev bits accordingly. Besides, an additional update rename bit is
needed for each instruction, assuming that the Rmap logic does not use tags in order to update the
next rename table. This adds a total of 22 bits per instruction for the renaming information.

A.6 Experimental results

Figure A.16 shows the speed-up of the ReLaSch processor using the common register file as well as
the default ReLaSch as defined in table 9.1.

instruction of the next rgroup is processed. So all the values not overwritten by the last ROB size instructions are for
sure in the architectural registers when the next rgroup begins its execution. Therefore, only the last instructions need
to update the rename table and require a tag. Since the number of instructions that require a tag is less than the size of
the ROB, there is no need to count the number of times an identifier has been used. However, to do so it is needed to
detect which are the last ROB size instructions in the program order. Though it is possible to detect is at execution
time, it requires using a more complex logic than just counting the number of times the identifiers have been reused.
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The ReLaSch processor with a common register file achieves a similar average speed-up as the
default ReLaSch, though slightly lower. In some benchmarks (e.g. gcc-166, art-470 and art-110 ) the
ReLaSch processor with a common register file has better IPC than the default ReLaSch, since these
benchmarks make an intensive use of a small number of logical registers. So in these benchmarks,
the processor often stalls waiting for a free destination physical register when there is a fixed set of
physical registers. In some other benchmarks (e.g. ammp, applu, mesa, mgrid, gzip-random, eon-
cook, gzip-graphic, perl-make) the default ReLaSch achieves higher speed-up. That happens when
the applications use a wide set of logical registers and benefit from having a larger total number of
physical registers available. See table C.19 for details on the distribution of the writes to the logical
registers.

We have chosen the register file with fixed sets of physical registers because the average IPC
achieved is very similar in both cases and the renaming process with the common register file is more
complex. In particular, the complexity of the Rmap logic when an rgroup can be processed even if
there are older in-flight instructions. It is crucial to achieve good performance results. Since the Rmap
logic is in the execution critical path, choosing the register file with fixed sets is coherent with our
approach to keep the execution path as simple as possible.



Appendix B

The 21264 Alpha processor

In this chapter, the main characteristics of the 21264 Alpha processor are described. The ReLaSch
processor, as well as the IO and OoO reference processors are based on the 21264 processor. Several
papers and manuals related with the Alpha ISA and the 21264 processor have been used as reference
during the research of this thesis [59, 15, 18, 60, 61, 62, 63].

The first section of this chapter introduces the Alpha Instruction Set Architecture, which is followed
of a description of the more relevant aspects of the 21264 implementation of that ISA. Finally, the
main differences between the processor and the simulator used in our experiments are presented.

B.1 The Alpha ISA

The Alpha AXP architecture is a 64-bit RISC architecture, with a limited instruction set and register-
only operands. It has specific load and store instructions to read and write the memory space.

It has separated registers and instructions for the integer and the floating point data. There are
32 integer registers, R0 to R31. The register R31 always return the value 0 on a read. There are 32
floating point registers, F0 to F31. The register F31 always return the value 0 on a read. All the
registers are 64 bits wide.

The Program Counter (PC) is a special register that indicates the next instruction to be executed.
All instructions are encoded in 32 bits and are stored in memory in 32-bit aligned addresses.

The control instructions are divided into the conditional and the unconditional branches. The
conditional branches test a condition on an explicitly coded integer or floating point register. All the
conditional branches are relative to the PC, adding an immediate displacement. The unconditional
branches can be relative or indirect. Indirect branches read the next PC from a register. The current
PC+4 is stored in the destination register of the unconditional branch.

Each instruction has up to two source registers and one destination register of the general purpose
registers. The PC register is implicitly used. Some instructions use an immediate operand.

B.1.1 Memory accesses

The Alpha ISA defines 64-bit virtual addresses to byte for the memory accesses. It supports 8- to
64-bit integer data types, as well as the S and T IEEE formats and several VAX floating-point formats
(32- and 64-bit). The data is stored using the little-endian scheme.

All the addresses must be naturally aligned to the data size. An exception is generated otherwise.
The LDQ U load instruction ignores the lower bits of the address and can be combined with byte
manipulation instructions to implement a fast access to unaligned data.
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B.2 The 21264 Alpha processor

The 21264 Alpha processor implements the Alpha ISA. It is a 4-wide superscalar, with out-of-order
execution pipeline and precise exceptions. It renames the registers to eliminate WAW and WAR
hazards, and predicts the branches to execute the instructions after the branch speculatively. There
are two levels of memory hierarchy between the processor and main memory. In the first level there
are two separated caches, the Instruction Cache or Icache and the Data Cache or Dcache. Both have
a size of 64KB and are 2-way set-associative. The second level is formed by a unified off-chip cache.

B.2.1 The pipeline

The pipeline of the processor is shown in figure B.2.1. The Fetch stage reads the instructions from the
Icache and accesses the branch predictor. The result of the prediction is not known until one cycle
later. The next stage completes the branch prediction, decodes the instructions and performs slotting
(explained in detail in section B.2.2). The Map stage renames the instructions and inserts them in
the Reorder Buffer (ROB), the Load and Store queues if needed and the issue queue. These three
stages process the instructions in-order.

Fetch Slot Issue Regs Exec WB CommitMap

Figure B.1: The pipeline of the 21264 Alpha processor.

The Issue stage wakes-up and selects out-of-order instructions that are present in the issue queue.
An instruction can be selected if its source registers are ready and a suitable Functional Unit is
available. The registers are read in the next stage, and execution happens in the corresponding
functional unit afterwards. Once the execution in the functional unit finishes, the registers are written
in the Writeback stage, where the load instructions also access the Dcache. The Writeback stage also
checks for memory ordering violations with the help of the Load and Store queues.

Finally, instructions are retired in-order by the Commit stage. Once an instruction that has finished
execution reaches the head of the ROB, the Commit stage sets its destination physical register as the
architectural register for the corresponding logical register, checks for mispredictions and frees the
entry used by the instruction in the ROB and, when needed, in the Load or Store queues. The
Commit stage also performs the access to memory of the store instructions.

The Fetch, Slot and Map stages can process up to four instructions per cycle. The Issue stage
can process up to four integer and two floating point instructions per cycle. Up to four integer and
two floating point instructions can write the destination physical register per cycle. Besides, up to
two integer and two floating point loads can write their destination physical register per cycle. The
Commit stage can sustain a maximum rate of eight instructions per cycle, although it is able to
commit up to 11 instructions in a single cycle.

The processor uses an scoreboard to know when it can issue the instructions. They are inserted in
the issue queues. There is an integer and a floating point queue. Each one has 32 entries, and in which
queue is inserted an instruction depends on its destination register. Floating point store instructions
and floating point to integer conversion instructions are inserted in both queues. When an instruction
has all its source registers available, it notifies that it is ready to an arbiter. There are two arbiters
for the integer queue. Each one selects up to two instructions per cycle to enter a functional unit and
be executed. The arbiter of the floating point queue selects up to two instructions per cycle. Older
instructions have higher priority in the arbitration logic.

The instructions are executed out-of-order, but commit in-order. Up to 80 instructions can be
in-flight, mapped and inserted in the ROB but not committed yet. Many instructions that have R31
or F31 as destination register are early retired at the Map stage, before being inserted in the issue
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queues, and do not commit. However, some load instructions that write these registers are not early
retired, since they are used to perform software pre-fetching.

B.2.2 Slots and Functional Units

The integer functional units in the Alpha 21264 are grouped into two clusters: 0 and 1. It requires
an extra cycle to bypass a result between clusters. Each cluster is further divided into two subcluster
types: Upper and Lower. Therefore, there are four subclusters in total: Upper0, Upper1, Lower0
and Lower1. Some functional units are replicated in all the four subclusters, while others are present
in only one or two subclusters. That imposes a restriction on which subclusters can be executed an
instruction. Slotting is the assignment of a subcluster type (Upper or Lower) to an instruction. An
instruction is slotted according to several rules that depend on the instruction’s type and which are
the types of the instructions fetched in the same cycle. This task is performed in the Slot stage. The
actual cluster in which the instruction will be executed (0 or 1) is chosen at issuing time. There is an
issue-arbiter for each cluster, so up to two instructions can be issued per cluster each cycle.

The OoO, IO and ReLaSch processors do not cluster the functional units and do not perform
slotting. If these techniques were implemented in the ReLaSch processor, the Rcreate logic should
take it into account when scheduling the instructions in the issue-groups. In particular, it should avoid
placing in the same issue-group several instructions that can only go to the same subcluster (Lower0,
Lower1, Upper0 and Upper1), more than two instructions to the same cluster (0 and 1) and more than
two instructions to the same subcluster type (Lower and Upper). To do so, the Rcreate logic could use
busy bits, similar to the ones assigned to the functional units, to follow the slotting rules. Furthermore,
it should take into account, when scheduling a dependent instruction, that two instructions that are
executed in different clusters need an extra cycle to bypass the data. The reg info table could be
expanded to remember in which cluster is executed the instruction that generates each logical register.

B.2.3 Branch prediction

The 21264 Alpha processor uses two structures to predict the branches. The line predictor is very
simple and its accuracy is not very high, but it is fast and provides a prediction in the same cycle it is
accessed. The branch predictor performs more accurate predictions, but it needs two cycles to return
a result. So the Fetch stage accesses both predictors in parallel, and uses the line predictor to decide
which instructions are fetched in the next cycle. The outcome of the access to the branch predictor
is available in the Slot stage, and it is then compared with the prediction of the line predictor that
was used the previous cycle. If the predictions differ, the instructions in the Slot and Fetch stage are
dismissed and the Fetch stage reads the instructions from the path predicted by the branch predictor.

The branch predictor is a McFarling predictor [26], which contains three major elements: the local
predictor makes a prediction based on the local history of the current branch; the global predictor
uses the global history of the most recent 12 conditional branches; and the choice predictor selects
the winning predictor when local and global predictions differ. It uses the global history and two-bit
saturating counters, updated when one predictor misses and the other hits. To predict the target of
the indirect branches, it uses a Branch Target Buffer and a Return Address Stack.

B.2.4 Memory accesses

The memory instructions are inserted in the Mbox structure at the same time they enter the Issue
queues. The Mbox ensures the correct ordering of the load and store instructions. The Mbox stores
the load instructions in the Load Queue and the store instructions in the Store Queue. Both queues
have 32 entries, and the instructions are not removed from the entry until they commit.
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Aliased memory instructions perform the accesses in order. Unaliased instructions can be re-
ordered. Two memory instructions are aliased if there is at least one common byte in the accesses.
Since accesses are naturally aligned, if the two instructions perform accesses of the same size, they
must have exactly the same address to be aliased. If the two aliased instructions have different ac-
cess sizes, the smaller one is one of the bytes, words or longwords of the bigger one, and have equal
addresses if the lower bits are ignored.

The entries in the Store Queue contain the data that must be written into memory. The data can
be bypassed to an aliased load, even if the load is smaller and it matches only partially the address of
the store.

When the Mbox detects any violation of the memory ordering rules, the pipeline is flushed and the
instruction is replayed (that is, re-executed). There are other situations that make the Mbox replay an
instruction, related with the outstanding cache misses. When the Mbox detects an unaligned accesses,
trap code is executed to solve the problem.

The Mbox uses the stWait table to detect the loads that frequently must be replayed due to an
store-load order violation. If the stWait entry of a load instruction is set, the load is not issued until
all older store instructions have committed. The bit is set after a store-load order trap, and the whole
table is cleared every 16,384 cycles.

The Mbox also includes the Data TLB and controls the access to the L1 Data Cache. The Alpha
ISA defines 64-bit virtual addresses but the 21264 processor uses either 43- or 48-bit virtual addresses.
The size is configured with an internal register. They are translated into 44-bit physical addresses.

B.2.5 Register renaming

The Alpha 21264 has separated register files for the integer and floating point registers. Each register
file has place for the architectural value of 31 registers (R31 and F31 occupy no physical registers)
and 41 extra registers to store the result of the in-flight, uncommitted instructions, as well as eight
additional registers for privileged code.

The source registers of each instruction are renamed to the physical register corresponding to the
most recent write to the logical register. Destination registers are renamed to the registers present in
the free-list. When an instruction commits, the physical register that had the previous architectural
value of the destination logical register is inserted in the free-list.

B.2.6 Conditional moves

The conditional move instructions move register b to the destination register c if register a meets a
condition. Register c is left unmodified otherwise. Since registers are renamed, the physical register
where c is stored changes with the execution of the conditional move. Therefore, if the condition
is false, the old content of c must be copied from one physical register to the other. That means
that conditional moves have actually three physical registers. The Alpha 21264 processor assumes
that each instruction has only up to two source registers per instruction. In order to implement the
conditional move instructions, they are internally divided into two different instructions. Therefore,
three different physical registers will be used to store the logical register c: phy (the original value),
phy1 (the destination of the first internal instruction) and phy2 (the destination of the second internal
instruction and the one that will store the architectural value of c once the conditional move commits).
Besides, it is also added the cmov bit to each physical register.

The first instruction reads b and tests the condition. The result of the writes the result in the cmov
bit of the physical register phy1. It also copies the current value of the c, stored in phy, into phy1.
The second instruction reads the physical register that stores a and the physical register phy1. The
cmov bit of phy1 is used to select the value that will be stored in phy2. The Commit stage takes into
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account that the two instructions implement a single conditional move instruction and both commit
at the same time.

B.3 The sim-alpha simulator

The sim-alpha is a simulator of the 21264 Alpha processor, that is intended to implement a realistic
model of the processor. It has been verified against a real Alpha machine. However, there are some
differences that are detailed in this section. Besides, the changes that we have made to the original
code of the sim-alpha simulator are also described.

In the original sim-alpha code, the physical registers are not read after the Issue stage, but in the
Writeback stage. The difference has no effect in the sim-alpha simulator, but it is a problem if it is
required that the register are read in the issue order, as we do in the appendix A. So our simulator
reads the registers one cycle after the instruction has been issued, just as the 21264 processor does.

The instruction LDS, that reads an IEEE floating point value from memory, had a bug in the
original code, that didn’t detect correctly the NaN case. It has been corrected in our simulations.

Some instructions of the Alpha ISA are not implemented in sim-alpha. The unimplemented in-
structions are: a) those that use the VAX floating point formats (LDF, LDG, STF, STG, ADDF, etc.);
b) barrier instructions (EXCB, MB, WMB and TRAPB); and c) instructions that help to manage
the cache and perform pre-fetching (ECB, FETCH, WH64). However, software pre-fetching can also
be done using load instructions to the R31 register. Overflow and underflow checking is also unimple-
mented. Therefore, the Floating Point Control Register is ignored by the floating point instructions.
The floating point instructions just check that it is not dividing by 0 or performing a square-root
on a negative number, and abort the execution of the program whenever that happens. The mem-
ory instructions used to access shared data in a multiprocessor environment (LDx L and STx C) are
implemented just like normal load and store instructions.

The documentation of the 21264 Alpha states that it can sustain a rate of 8 committed instructions
per cycle, although up to 11 instructions can commit in a single cycle. The Commit stage in the
sim-alpha retires up to 11 per cycle. Besides, a control instruction can commit only if it is the first
instruction retired in a given cycle. This implicitly limits the number of committed control instructions
to one per cycle. As far as we know, this limitation is not documented, but it makes sense since when
control instructions commit, they must update the branch predictor, which in the access in the Fetch
stage is already limited to one instruction per cycle.

Sim-alpha is not a full system simulator and system code is not simulated cycle by cycle. The
pipeline is flushed on a system call; then the architectural state is used to perform a call to the OS of
the machine where the simulator is being run, and the architectural state of the simulated processor
is updated as the OS would have done. In some cases the simulator itself updates the architectural
state directly, without a call to the OS.

The Store Queue in the Mbox allows bypassing the data of an store to an aliased load that access
only a part of the store data. Sim-alpha requires that the size of the two accesses are equal, and that
the data type (integer or floating point) also matches. Otherwise, the load is re-executed. The original
code was not able to forward the data to an LDS instruction either; this limitation has been removed
in our experiments. Furthermore, the original code considered as aliased some memory instructions
that accessed different parts of the same quadword, because it ignored the actual size of the access.
Although it has no effect on the architectural state of the processor, some instructions are re-executed
unnecessarily. The code has been modified in our simulations to detect only the actual aliases.
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Appendix C

Benchmarks

This chapter presents characterization information about the benchmarks used in this Thesis. It
also presents some additional information of some experiments presented in chapter 9. When the
data presented depends on the configuration of the processor where the benchmark runs (i.e. branch
misprediction rate), the default ReLaSch configuration as defined in table 9.1 is used.
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memory control fpalu intalu
ammp 35.18 8.01 36.01 20.81
applu 40.28 0.55 51.53 7.64
art110 32.26 13.98 19.75 34.02
art470 32.33 13.95 19.64 34.08
equake 44.38 4.07 33.51 18.04
facerec 25.70 7.14 18.07 49.09
fma3d 44.39 4.05 30.58 20.98
galgel 42.68 5.13 25.42 26.76
lucas 22.28 2.88 43.75 31.09
mesa 37.27 8.95 12.70 41.08
mgrid 36.68 0.29 57.65 5.38
swim 28.45 0.48 45.62 25.44
FP 35.16 5.79 32.85 26.20

bzip-graphic 42.33 10.49 0.00 47.17
bzip-program 42.93 9.92 0.00 47.15
bzip-source 34.20 14.62 0.00 51.18

crafty 33.65 11.88 0.00 54.48
eon-cook 46.74 12.02 12.22 29.02
eon-kajiya 47.96 11.62 13.19 27.23
eon-rush 47.23 12.24 11.91 28.62

gap 35.04 16.48 0.00 48.48
gcc-166 38.58 14.84 0.00 46.58
gcc-200 38.97 16.77 0.00 44.26
gcc-expr 38.36 17.11 0.00 44.53
gcc-integ 42.66 15.70 0.00 41.64
gcc-sci 41.76 17.85 0.00 40.39

gzip-graphic 29.42 10.33 0.00 60.25
gzip-log 26.33 13.54 0.00 60.13

gzip-program 19.53 15.29 0.00 65.17
gzip-random 29.93 9.80 0.00 60.28
gzip-source 23.14 13.27 0.00 63.59

mcf 36.46 20.93 0.00 42.61
parser 31.01 16.46 0.00 52.54
perl-diff 43.57 14.50 0.06 41.87
perl-make 36.94 14.17 1.62 47.26
perl-535 44.45 14.37 0.03 41.15
perl-704 45.31 14.19 0.03 40.48
perl-850 44.37 14.46 0.04 41.14
perl-957 44.58 14.36 0.04 41.02
twolf 29.31 12.63 4.62 53.44

vpr-route 42.53 10.95 5.87 40.65
INT 37.76 13.96 1.77 46.51
ALL 36.98 11.51 11.10 40.42

Table C.1: Instruction mix
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FP load INT load FP store INT store
ammp 15.94 8.65 9.41 1.18
applu 27.72 1.97 10.58 0.00
art110 14.97 9.09 8.20 0.00
art470 14.99 9.27 8.06 0.00

bzip-graphic 0.00 27.73 0.00 14.61
bzip-program 0.00 27.90 0.00 15.03
bzip-source 0.10 26.19 0.00 7.91

crafty 0.03 28.28 0.00 5.33
eon-cook 13.61 12.92 11.97 8.24
eon-kajiya 14.50 12.39 12.79 8.28
eon-rush 13.59 12.38 13.11 8.15
equake 26.36 13.30 3.66 1.06
facerec 12.29 11.69 0.00 1.72
fma3d 20.69 8.12 12.32 3.26
galgel 21.89 15.23 5.56 0.00
gap 0.01 24.87 0.00 10.16

gcc-166 0.02 20.30 0.01 18.25
gcc-200 0.71 25.05 0.01 13.19
gcc-expr 0.60 25.34 0.01 12.41
gcc-integ 0.75 26.13 0.01 15.78
gcc-sci 0.04 25.93 0.01 15.79

gzip-graphic 0.00 21.20 0.00 8.22
gzip-log 0.00 21.59 0.00 4.74

gzip-program 0.00 16.35 0.00 3.18
gzip-random 0.00 19.40 0.00 10.53
gzip-source 0.00 16.84 0.00 6.30

lucas 11.92 8.60 1.76 0.00
mcf 1.50 30.53 0.00 4.44
mesa 5.44 19.64 2.10 10.09
mgrid 29.36 2.47 4.67 0.19
parser 0.08 21.53 0.00 9.39
perl-diff 0.06 27.15 0.05 16.31
perl-make 1.06 25.12 0.42 10.34
perl-535 0.03 26.91 0.02 17.48
perl-704 0.02 27.14 0.02 18.12
perl-850 0.03 26.63 0.03 17.68
perl-957 0.03 27.07 0.03 17.45
swim 17.87 4.11 6.48 0.00
twolf 0.43 21.89 0.04 6.95

vpr-route 9.59 21.31 1.06 10.57
FP 18.29 9.34 6.07 1.46
INT 2.03 23.07 1.41 11.24
ALL 6.91 18.96 2.81 8.31

Table C.2: Number of each memory instruction type (in millions).
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fcmov icmov conv
ammp 0 0 864
applu 0 539,404 9
art110 1,080,000 534,910 554,691
art470 1,060,000 533,794 553,598

bzip-graphic 0 28,635 0
bzip-program 0 141,047 0
bzip-source 0 157,450 24

crafty 0 2,333,381 31,329
eon-cook 288,992 294,678 709,921
eon-kajiya 340,536 171,316 662,806
eon-rush 310,277 223,028 625,554
equake 0 8 0
facerec 0 314,592 1,947
fma3d 147,848 505,236 73,926
galgel 0 543,043 0
gap 0 89,813 213

gcc-166 0 214,238 5,132
gcc-200 0 378,243 18,417
gcc-expr 1 515,720 16,517
gcc-integ 4 600,948 29,039
gcc-sci 0 435,278 35,666

gzip-graphic 0 1,593,085 0
gzip-log 0 170,482 0

gzip-program 0 355,696 0
gzip-random 0 1,868,542 0
gzip-source 1 488,814 0

lucas 4,639,409 0 0
mcf 0 117,171 0
mesa 188,798 1,024,696 1,455,050
mgrid 0 167,519 0
parser 0 3,965,244 79,182
perl-diff 624 1,646,727 5,894
perl-make 211,804 2,931,234 353,008
perl-535 207 1,865,642 2,946
perl-704 154 2,042,901 2,214
perl-850 113 1,903,788 1,620
perl-957 192 1,882,806 2,732
swim 0 1,613,849 0
twolf 2 4,038,293 2,089,248

vpr-route 0 0 1,681,454
FP 593,005 481,421 220,007
INT 41,175 1,087,650 226,890
ALL 206,724 905,781 224,825

Table C.3: Total number of conditional moves and conversion instructions between integer and floating
point benchmarks.
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targets 1 2 3 4 5 6 7 8 9 >=10
ammp 1 0 0 0 0 0 0 0 0 0
applu 24 7 1 2 0 0 0 1 0 0
art110 6 0 0 0 0 0 0 0 0 0
art470 6 0 0 0 0 0 0 0 0 0

bzip-graphic 6 0 1 0 0 0 0 0 0 1
bzip-program 5 1 0 1 0 0 0 0 0 1
bzip-source 10 1 1 0 0 0 0 0 0 1

crafty 42 27 12 3 3 5 1 2 1 9
eon-cook 65 8 6 3 1 0 1 0 1 2
eon-kajiya 76 23 2 7 1 3 0 1 0 3
eon-rush 67 20 4 6 1 0 1 0 1 3
equake 4 0 0 0 0 0 0 0 0 0
facerec 3 2 0 0 0 0 0 0 0 0
fma3d 15 0 0 0 0 1 0 0 0 0
galgel 1 0 0 0 0 0 0 0 0 0
gap 172 70 31 29 21 14 6 5 5 16

gcc-166 197 65 38 24 12 12 9 8 5 32
gcc-200 161 80 49 43 19 18 13 12 4 32
gcc-expr 220 111 61 44 24 22 22 11 7 53
gcc-integ 159 83 33 28 22 8 11 8 3 19
gcc-sci 132 57 29 25 20 7 8 5 6 19

gzip-graphic 13 3 3 0 0 0 0 0 0 1
gzip-log 43 10 6 2 1 0 0 0 0 1

gzip-program 12 5 3 0 0 0 0 0 0 1
gzip-random 33 6 3 1 0 0 0 0 0 0
gzip-source 55 15 8 4 0 0 0 0 0 1

lucas 0 0 0 0 0 0 0 0 0 0
mcf 21 7 1 0 0 0 0 0 0 0
mesa 47 3 0 0 0 0 0 0 0 0
mgrid 25 3 1 2 0 0 0 0 0 0
parser 119 75 29 15 1 3 4 2 1 12
perl-diff 222 39 18 12 7 5 5 5 3 16
perl-make 51 3 3 0 0 0 0 0 0 1
perl-535 231 49 25 14 8 7 3 2 4 18
perl-704 218 49 18 13 6 5 2 4 2 18
perl-850 226 42 18 13 6 5 2 3 2 18
perl-957 219 49 17 14 6 4 2 5 2 18
swim 1 0 0 0 0 0 0 0 0 0
twolf 67 18 13 8 0 0 0 0 0 0

vpr-route 9 3 1 0 0 0 0 0 0 0

Table C.4: Number of static indirect branches with k different targets.
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number of targets (up to) 10 20 30 40 50 60 70 80 90 >=100
ammp 1 0 0 0 0 0 0 0 0 0
applu 35 0 0 0 0 0 0 0 0 0
art110 6 0 0 0 0 0 0 0 0 0
art470 6 0 0 0 0 0 0 0 0 0

bzip-graphic 7 0 1 0 0 0 0 0 0 0
bzip-program 7 0 1 0 0 0 0 0 0 0
bzip-source 12 1 0 0 0 0 0 0 0 0

crafty 96 1 2 3 0 2 1 0 0 0
eon-cook 86 1 0 0 0 0 0 0 0 0
eon-kajiya 114 2 0 0 0 0 0 0 0 0
eon-rush 100 3 0 0 0 0 0 0 0 0
equake 4 0 0 0 0 0 0 0 0 0
facerec 5 0 0 0 0 0 0 0 0 0
fma3d 16 0 0 0 0 0 0 0 0 0
galgel 1 0 0 0 0 0 0 0 0 0
gap 355 8 1 3 1 0 1 0 0 0

gcc-166 372 23 2 2 2 1 0 0 0 0
gcc-200 407 15 3 0 3 3 0 0 0 0
gcc-expr 527 36 4 3 1 1 2 0 0 1
gcc-integ 356 13 2 3 0 0 0 0 0 0
gcc-sci 292 11 2 2 1 0 0 0 0 0

gzip-graphic 19 1 0 0 0 0 0 0 0 0
gzip-log 62 1 0 0 0 0 0 0 0 0

gzip-program 20 1 0 0 0 0 0 0 0 0
gzip-random 43 0 0 0 0 0 0 0 0 0
gzip-source 82 1 0 0 0 0 0 0 0 0

lucas 0 0 0 0 0 0 0 0 0 0
mcf 29 0 0 0 0 0 0 0 0 0
mesa 50 0 0 0 0 0 0 0 0 0
mgrid 31 0 0 0 0 0 0 0 0 0
parser 251 6 1 0 0 2 0 1 0 0
perl-diff 317 11 3 0 0 0 0 0 1 0
perl-make 57 1 0 0 0 0 0 0 0 0
perl-535 344 13 2 1 0 0 0 0 1 0
perl-704 320 11 2 1 0 0 0 0 1 0
perl-850 320 11 2 1 0 0 0 0 1 0
perl-957 321 11 2 1 0 0 0 0 1 0
swim 1 0 0 0 0 0 0 0 0 0
twolf 106 0 0 0 0 0 0 0 0 0

vpr-route 13 0 0 0 0 0 0 0 0 0

Table C.5: Number of static indirect branches with k different targets.
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targets 1 2 3 4 5 6 7 8 9 >=10
ammp 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
applu 44.22 14.34 2.39 22.71 0.00 0.00 0.00 16.33 0.00 0.00
art110 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
art470 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

bzip-graphic 36.69 0.00 24.98 0.00 0.00 0.00 0.00 0.00 0.00 38.33
bzip-program 0.00 48.91 0.00 18.81 0.00 0.00 0.00 0.00 0.00 32.28
bzip-source 5.85 3.58 90.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00

crafty 7.97 13.96 10.30 3.50 2.75 10.00 2.67 7.17 0.08 41.60
eon-cook 37.41 21.42 7.97 5.50 4.47 0.00 1.67 0.00 3.19 18.37
eon-kajiya 28.27 29.84 0.49 12.71 1.83 2.42 0.00 1.52 0.00 22.93
eon-rush 26.13 29.32 3.58 9.20 3.29 0.00 1.30 0.00 2.57 24.61
equake 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
facerec 88.66 11.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
fma3d 50.20 0.00 0.00 0.00 0.00 49.80 0.00 0.00 0.00 0.00
galgel 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gap 5.91 10.59 12.01 16.14 5.48 4.42 1.93 2.86 2.22 38.45

gcc-166 8.88 9.84 7.86 10.46 9.47 8.47 2.76 2.53 4.79 34.94
gcc-200 5.51 8.37 12.86 11.39 10.29 6.50 6.42 8.39 3.08 27.19
gcc-expr 4.08 6.10 13.73 9.13 7.17 9.38 7.49 5.10 4.63 33.18
gcc-integ 4.30 4.42 13.01 9.25 17.87 3.08 11.33 5.69 5.99 25.06
gcc-sci 6.50 5.40 13.82 11.53 8.65 6.14 3.17 6.26 4.89 33.63

gzip-graphic 24.00 37.58 0.78 0.00 0.00 0.00 0.00 0.00 0.00 37.65
gzip-log 29.18 17.10 6.55 0.69 25.25 0.00 0.00 0.00 0.00 21.23

gzip-program 22.80 22.48 1.56 0.00 0.00 0.00 0.00 0.00 0.00 53.17
gzip-random 38.10 0.01 61.88 0.01 0.00 0.00 0.00 0.00 0.00 0.00
gzip-source 32.95 23.43 1.13 8.53 0.00 0.00 0.00 0.00 0.00 33.96

lucas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mcf 0.56 91.52 7.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mesa 81.06 18.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mgrid 50.88 21.05 6.58 21.49 0.00 0.00 0.00 0.00 0.00 0.00
parser 14.06 26.28 15.21 6.86 2.23 5.95 1.75 0.02 0.55 27.10
perl-diff 16.51 10.15 1.81 3.50 1.40 0.99 7.56 16.15 0.95 40.99
perl-make 61.55 3.85 0.01 0.00 0.00 0.00 0.00 0.00 0.00 34.59
perl-535 15.17 1.47 27.82 1.20 1.53 1.01 2.20 0.09 1.66 47.85
perl-704 12.68 1.60 30.51 1.02 1.32 0.74 2.32 0.21 1.16 48.45
perl-850 12.88 1.67 30.07 1.28 1.47 0.83 2.33 0.20 1.01 48.27
perl-957 15.90 2.07 25.82 1.99 1.73 0.77 2.15 0.48 1.44 47.63
swim 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
twolf 25.48 25.42 24.37 24.74 0.00 0.00 0.00 0.00 0.00 0.00

vpr-route 21.71 20.64 57.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table C.6: Percentage of dynamic indirect branches with k different targets.
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(up to) 10 20 30 40 50 60 70 80 90 >=100
ammp 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
applu 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
art110 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
art470 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

bzip-graphic 61.67 0.00 38.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bzip-program 67.72 0.00 32.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bzip-source 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

crafty 58.40 0.24 2.01 10.55 0.00 22.44 6.36 0.00 0.00 0.00
eon-cook 84.43 15.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eon-kajiya 80.02 19.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eon-rush 75.39 24.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
equake 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
facerec 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
fma3d 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
galgel 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gap 62.86 10.37 0.70 8.35 0.98 0.00 16.73 0.00 0.00 0.00

gcc-166 67.41 22.43 2.26 5.05 1.01 1.84 0.00 0.00 0.00 0.00
gcc-200 78.06 12.36 1.54 0.00 6.20 1.84 0.00 0.00 0.00 0.00
gcc-expr 69.18 20.05 2.01 1.69 3.24 1.93 1.09 0.00 0.00 0.80
gcc-integ 75.17 18.13 2.83 3.87 0.00 0.00 0.00 0.00 0.00 0.00
gcc-sci 68.90 20.86 0.75 7.76 1.74 0.00 0.00 0.00 0.00 0.00

gzip-graphic 62.35 37.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gzip-log 78.77 21.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

gzip-program 46.83 53.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gzip-random 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gzip-source 66.04 33.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

lucas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mcf 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mesa 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mgrid 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
parser 76.74 4.89 0.05 0.00 0.00 18.31 0.00 0.01 0.00 0.00
perl-diff 59.48 6.93 21.63 0.00 0.00 0.00 0.00 0.00 11.96 0.00
perl-make 65.41 34.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
perl-535 52.54 34.55 0.89 0.85 0.00 0.00 0.00 0.00 11.17 0.00
perl-704 52.38 37.08 0.80 0.73 0.00 0.00 0.00 0.00 9.01 0.00
perl-850 52.70 36.92 1.09 0.89 0.00 0.00 0.00 0.00 8.41 0.00
perl-957 53.47 33.24 1.12 0.99 0.00 0.00 0.00 0.00 11.19 0.00
swim 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
twolf 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

vpr-route 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table C.7: Percentage of dynamic indirect branches with k different targets.
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ReLaSch OoO
ammp 2.29 2.06
applu 5.31 0.81
art110 0.41 3.33
art470 0.43 3.33
equake 3.45 2.13
facerec 1.79 1.18
fma3d 0.73 0.34
galgel 0.61 0.47
lucas 0.00 0.00
mesa 3.07 2.74
mgrid 5.40 1.89
swim 0.61 0.30
FP 2.01 1.55

bzip-graphic 13.35 10.41
bzip-program 13.52 10.06
bzip-source 16.79 10.48

crafty 9.36 7.10
eon-cook 1.22 1.39
eon-kajiya 8.71 5.93
eon-rush 4.21 3.21

gap 4.86 5.23
gcc-166 6.20 5.80
gcc-200 5.82 5.64
gcc-expr 6.20 5.97
gcc-integ 6.93 6.34
gcc-sci 8.32 7.73

gzip-graphic 6.76 5.23
gzip-log 5.63 3.65

gzip-program 6.96 4.40
gzip-random 6.53 5.35
gzip-source 7.84 5.04

mcf 3.73 2.43
parser 5.46 3.57
perl-diff 4.51 2.94
perl-make 0.41 0.16
perl-535 3.63 2.47
perl-704 2.63 2.04
perl-850 2.00 1.68
perl-957 3.32 2.45
twolf 12.73 8.84

vpr-route 6.95 5.88
INT 6.59 5.05
ALL 5.22 4.00

Table C.8: Branch misprediction rate (in number of misprediction per 100 branches) of the OoO and
ReLaSch processors
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64 - 128 128 - 64 256 - 32 512 - 16 1024 - 8
ammp 2.33 2.32 2.29 2.75 3.19
applu 7.29 6.87 5.31 4.31 3.67
art110 1.09 0.86 0.40 0.21 0.13
art470 1.03 0.86 0.42 0.20 0.13
equake 3.75 3.49 3.45 3.65 3.74
facerec 2.76 2.33 1.78 1.21 0.69
fma3d 1.59 0.85 0.73 0.63 0.46
galgel 1.45 1.09 0.61 0.47 0.55
lucas 0.00 0.00 0.00 0.00 0.00
mesa 3.60 3.26 3.07 3.04 3.25
mgrid 6.98 6.64 5.39 5.84 5.74
swim 0.50 0.56 0.60 1.02 0.94
FP 2.70 2.43 2.00 1.94 1.87

bzip-graphic 12.34 12.60 13.34 13.57 13.96
bzip-program 12.39 12.73 13.52 13.99 17.70
bzip-source 15.72 16.24 16.79 17.65 17.49

crafty 9.59 9.32 9.35 9.34 9.13
eon-cook 3.03 2.05 1.21 2.07 2.73
eon-kajiya 9.42 8.62 8.71 9.02 7.83
eon-rush 5.72 4.53 4.20 4.69 5.12

gap 5.61 5.02 4.86 5.20 5.52
gcc-166 6.21 6.06 6.19 6.28 6.14
gcc-200 5.92 5.83 5.81 5.91 6.01
gcc-expr 6.21 6.15 6.19 6.24 6.35
gcc-integ 7.00 6.91 6.93 6.83 6.91
gcc-sci 8.41 8.27 8.31 8.31 8.25

gzip-graphic 5.74 6.01 6.76 7.11 7.17
gzip-log 5.01 5.22 5.63 6.59 7.41

gzip-program 6.04 6.32 6.96 7.99 8.93
gzip-random 5.20 5.68 6.53 6.83 6.59
gzip-source 6.40 6.98 7.84 8.74 8.99

mcf 3.52 3.49 3.73 4.12 5.25
parser 6.44 5.73 5.46 5.55 6.10
perl-diff 5.05 4.66 4.51 4.38 4.51
perl-make 0.97 0.64 0.40 0.91 1.14
perl-535 3.06 3.09 3.63 3.22 3.14
perl-704 2.50 2.45 2.63 2.70 2.59
perl-850 2.03 2.48 2.00 2.82 2.19
perl-957 3.04 3.57 3.32 3.53 3.29
twolf 12.47 12.55 12.73 12.94 12.35

vpr-route 6.77 7.00 6.95 6.98 7.50
INT 6.49 6.44 6.59 6.91 7.15
ALL 5.35 5.23 5.21 5.42 5.57

Table C.9: Branch missprediction rate with different rgroup sizes.
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64 - 128 128 - 64 256 - 32 512 - 16 1024 - 8
ammp 99.90 99.68 99.44 98.58 96.46
applu 97.91 95.75 98.02 98.41 98.09
art110 99.97 99.89 99.79 99.51 99.09
art470 99.97 99.87 99.80 99.53 99.12
equake 99.97 99.97 99.97 99.95 99.93
facerec 99.99 99.97 99.92 99.73 99.27
fma3d 95.93 93.68 97.49 98.01 97.61
galgel 100.00 99.99 99.98 99.93 99.76
lucas 100.00 100.00 99.97 99.94 99.94
mesa 99.59 99.21 98.39 97.27 91.39
mgrid 98.91 97.93 99.73 99.53 99.65
swim 99.88 99.63 99.69 99.48 99.41
FP 99.33 98.80 99.35 99.16 98.31

bzip-graphic 99.98 99.88 99.37 98.60 96.85
bzip-program 99.97 99.86 99.23 97.76 79.28
bzip-source 99.84 99.27 97.77 94.79 88.58

crafty 93.02 88.83 82.74 74.03 62.02
eon-cook 99.22 98.36 98.54 93.73 76.89
eon-kajiya 97.38 94.25 90.13 78.27 56.49
eon-rush 98.41 96.78 94.86 87.89 65.01

gap 98.00 96.42 94.93 90.53 81.82
gcc-166 93.58 90.04 84.72 77.26 65.79
gcc-200 95.08 91.93 87.23 79.87 68.90
gcc-expr 94.56 91.57 87.02 79.76 69.28
gcc-integ 94.18 90.64 85.57 77.88 67.11
gcc-sci 92.90 88.60 82.25 72.01 58.50

gzip-graphic 99.96 99.90 99.75 99.10 98.42
gzip-log 99.93 99.81 99.43 98.41 96.00

gzip-program 99.96 99.92 99.76 98.95 96.72
gzip-random 99.98 99.92 99.80 99.55 98.92
gzip-source 99.95 99.88 99.55 98.40 95.75

mcf 99.98 99.94 99.77 99.13 97.74
parser 99.82 99.58 98.68 96.59 90.68
perl-diff 95.68 92.81 89.21 83.87 75.41
perl-make 99.91 99.72 99.66 99.44 96.59
perl-535 97.38 95.69 93.57 90.17 85.36
perl-704 98.01 96.72 95.30 92.41 88.65
perl-850 98.47 97.33 96.36 94.07 90.41
perl-957 97.41 95.77 93.96 90.30 85.10
twolf 98.37 95.76 91.16 82.56 69.13

vpr-route 99.99 99.96 99.85 99.56 98.43
INT 97.89 96.40 94.29 90.17 82.14
ALL 98.32 97.12 95.81 92.87 86.99

Table C.10: Percentage of instructions executed in Rcache mode with different rgroup sizes..
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64 - 16 128 - 8 256 - 4 512 - 2 1024 - 1
ammp 2.90 2.78 3.06 3.14 2.54
applu 10.14 8.44 8.82 7.34 6.18
art110 0.97 0.84 0.44 0.32 0.40
art470 0.97 0.83 0.46 0.35 0.42
equake 4.04 4.29 4.86 4.15 4.36
facerec 4.65 2.86 1.83 1.67 1.65
fma3d 3.43 1.93 1.30 1.06 1.31
galgel 2.39 1.16 1.09 1.14 1.70
lucas 0.00 0.00 0.00 0.03 0.00
mesa 5.68 5.15 4.37 3.76 3.57
mgrid 7.16 10.64 24.11 17.47 6.80
swim 1.35 0.58 0.58 0.89 0.72
FP 3.64 3.29 4.24 3.44 2.47

bzip-graphic 13.03 13.23 13.44 13.20 12.60
bzip-program 13.79 13.93 14.12 13.73 13.62
bzip-source 15.67 15.89 16.08 16.08 14.86

crafty 11.35 10.31 9.56 8.87 8.17
eon-cook 9.99 7.99 7.08 3.65 3.14
eon-kajiya 12.20 10.86 10.42 7.75 6.65
eon-rush 11.54 9.97 9.13 5.90 4.64

gap 7.17 6.64 6.29 5.96 6.07
gcc-166 7.80 7.24 6.95 6.62 6.40
gcc-200 7.66 7.16 6.83 6.50 6.42
gcc-expr 8.14 7.68 7.39 7.09 7.00
gcc-integ 8.97 8.39 8.07 7.73 7.45
gcc-sci 10.28 9.69 9.43 8.93 8.80

gzip-graphic 6.92 7.01 7.11 7.31 7.30
gzip-log 5.53 5.55 6.01 6.42 6.42

gzip-program 6.77 6.95 7.67 8.58 8.65
gzip-random 6.12 6.11 6.62 6.62 6.42
gzip-source 7.66 8.02 8.56 8.82 8.48

mcf 3.82 3.77 4.39 5.13 5.29
parser 7.24 6.73 6.31 6.50 5.69
perl-diff 6.32 5.63 5.36 4.90 4.90
perl-make 2.34 1.66 1.89 2.37 6.65
perl-535 3.92 3.66 3.67 3.41 3.40
perl-704 3.43 3.18 3.04 2.94 2.96
perl-850 3.04 2.75 3.50 2.37 2.62
perl-957 4.02 3.75 3.61 3.32 3.52
twolf 13.81 12.89 12.16 10.86 9.66

vpr-route 6.91 7.17 7.15 7.29 7.65
INT 8.05 7.64 7.57 7.10 6.98
ALL 6.73 6.33 6.57 6.00 5.63

Table C.11: Branch missprediction rate with different rgroup sizes in a small Rcache.
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64 - 16 128 - 8 256 - 4 512 - 2 1024 - 1
ammp 84.11 91.09 87.47 78.57 68.84
applu 68.87 72.14 79.79 72.51 59.79
art110 99.73 99.40 99.16 98.93 98.47
art470 99.73 99.41 99.18 98.96 98.45
equake 99.64 99.62 99.65 99.59 98.09
facerec 98.01 98.23 96.96 95.21 92.39
fma3d 65.63 70.17 60.35 52.79 52.24
galgel 99.95 99.57 99.31 98.77 98.65
lucas 99.81 99.73 98.80 98.83 99.02
mesa 81.26 75.35 68.22 58.52 45.44
mgrid 84.92 86.46 81.10 85.62 80.29
swim 95.84 97.71 97.60 94.17 94.99
FP 89.79 90.74 88.97 86.04 82.22

bzip-graphic 98.49 95.97 90.39 80.18 65.90
bzip-program 97.35 93.18 84.99 73.54 59.11
bzip-source 95.89 91.30 83.87 74.95 63.26

crafty 61.27 54.26 45.55 36.73 27.94
eon-cook 55.81 45.60 39.41 28.89 19.67
eon-kajiya 54.83 45.23 35.01 21.97 16.01
eon-rush 56.09 46.35 35.56 24.31 17.88

gap 81.82 76.28 70.91 57.77 42.70
gcc-166 71.09 65.61 60.19 54.69 49.86
gcc-200 72.80 66.47 59.29 49.53 38.10
gcc-expr 73.49 67.11 59.34 49.39 39.23
gcc-integ 70.77 64.39 57.19 47.95 38.66
gcc-sci 64.54 58.03 50.93 41.37 31.66

gzip-graphic 99.24 98.74 97.15 94.13 86.41
gzip-log 98.41 96.33 92.28 86.09 77.29

gzip-program 99.13 97.67 93.71 88.55 81.11
gzip-random 99.55 99.38 98.14 95.61 88.26
gzip-source 98.55 96.16 90.34 82.65 74.04

mcf 99.20 98.22 97.23 94.91 90.87
parser 95.06 90.92 85.20 75.45 60.72
perl-diff 77.44 73.04 68.57 65.13 61.55
perl-make 94.06 92.85 91.34 82.56 32.23
perl-535 87.36 84.80 81.80 79.55 75.22
perl-704 89.65 87.52 85.00 83.20 78.73
perl-850 90.12 88.28 85.69 83.78 78.98
perl-957 86.32 83.56 80.26 77.64 72.64
twolf 68.93 56.20 38.76 24.23 14.18

vpr-route 99.59 98.18 95.95 88.64 75.15
INT 83.46 78.99 73.36 65.84 55.62
ALL 85.36 82.51 78.04 71.90 63.60

Table C.12: Percentage of instructions executed in Rcache mode with different rgroup sizes in a small
Rcache.
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Schedule window size 1024 512 256 128 64
ammp 256 254 239 191 81
applu 256 254 237 175 78
art110 254 232 132 39 17
art470 254 233 138 40 19
equake 256 253 181 79 22
facerec 256 256 256 203 93
fma3d 256 250 227 165 27
galgel 256 254 241 158 75
lucas 256 256 256 159 76
mesa 256 256 256 248 151
mgrid 256 255 254 201 108
swim 256 256 248 166 120
FP 256 251 222 152 72

bzip-graphic 256 256 256 252 202
bzip-program 256 256 256 255 207
bzip-source 256 256 254 239 173

crafty 256 256 256 254 188
eon-cook 252 252 252 245 164
eon-kajiya 251 251 251 242 162
eon-rush 251 251 251 244 167

gap 238 238 238 235 155
gcc-166 254 254 251 245 186
gcc-200 254 254 254 252 190
gcc-expr 255 255 254 251 188
gcc-integ 255 255 255 253 187
gcc-sci 254 254 253 251 182

gzip-graphic 256 256 256 255 183
gzip-log 256 255 253 238 149

gzip-program 256 256 256 248 153
gzip-random 256 256 256 254 178
gzip-source 256 255 254 241 148

mcf 187 120 65 35 16
parser 247 246 244 220 135
perl-diff 250 250 250 248 162
perl-make 246 246 245 229 123
perl-535 246 246 245 232 149
perl-704 246 246 244 231 147
perl-850 246 247 243 231 149
perl-957 246 246 244 229 147
twolf 256 256 255 215 111

vpr-route 256 255 250 183 106
INT 250 247 244 232 157
ALL 251 248 238 208 132

Table C.13: Average number of instructions per created rgroup with different sizes of the sched
window.
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executed indirect branches
ammp 0
applu 120
art110 0
art470 0
equake 0
facerec 0
fma3d 0
galgel 0
lucas 0
mesa 523,380
mgrid 105
swim 0
FP 43,634

bzip-graphic 0
bzip-program 0
bzip-source 0

crafty 211,124
eon-cook 561,897
eon-kajiya 631,394
eon-rush 574,323

gap 1,342,228
gcc-166 202,461
gcc-200 318,877
gcc-expr 356,727
gcc-integ 383,016
gcc-sci 489,928

gzip-graphic 11
gzip-log 197

gzip-program 6
gzip-random 19
gzip-source 73

mcf 12
parser 10
perl-diff 1,214,101
perl-make 1,554,373
perl-535 964,047
perl-704 980,575
perl-850 912,529
perl-957 982,500
twolf 7,583

vpr-route 0
INT 417,429
ALL 305,290

Table C.14: Number of executed indirect branches in 100M instructions



194 APPENDIX C. BENCHMARKS

L2 misses Data L1 misses L2 miss rate Data L1 miss rate
ammp 478,792 3,922,800 0.19 0.10
applu 1,905,695 6,105,058 0.62 0.15
art110 2,804,513 13,041,451 0.19 0.40
art470 2,870,890 13,165,247 0.20 0.41
equake 2,691,729 12,193,075 0.52 0.26
facerec 365,822 3,114,141 0.73 0.11
fma3d 1,825,569 4,401,353 0.70 0.10
galgel 325,860 3,063,139 0.18 0.07
lucas 1,528,037 2,652,152 0.70 0.12
mesa 100,771 426,252 0.30 0.01
mgrid 963052 1,449,571 0.67 0.04
swim 2,040,543 4,532,540 0.55 0.16
FP 1,491,773 5,672,232 0.46 0.16

bzip-graphic 237,185 657,784 0.37 0.01
bzip-program 108,926 505,748 0.23 0.01
bzip-source 283,041 2,160,881 0.14 0.04

crafty 17,105 507,852 0.04 0.01
eon-cook 1,489 165,923 0.02 0.00
eon-kajiya 1,479 287,585 0.01 0.01
eon-rush 1,487 386,484 0.01 0.01

gap 167,410 703,303 0.29 0.02
gcc-166 276,814 12,187,762 0.08 0.29
gcc-200 67,660 2,441,603 0.06 0.06
gcc-expr 88,165 2,194,467 0.08 0.05
gcc-integ 79,346 3,268,064 0.05 0.07
gcc-sci 109,856 5,551,730 0.05 0.12

gzip-graphic 16,469 1,126,487 0.01 0.03
gzip-log 192,401 2,412,670 0.12 0.08

gzip-program 10,905 1,058,301 0.01 0.05
gzip-random 498,891 5,082,308 0.21 0.15
gzip-source 342,530 3,661,222 0.17 0.13

mcf 8,915,967 24,856,530 0.51 0.60
parser 139,079 1,839,503 0.11 0.05
perl-diff 17,617 560,488 0.03 0.01
perl-make 66,027 92,043 0.73 0.00
perl-535 85,877 917,505 0.12 0.02
perl-704 67,423 744,142 0.11 0.02
perl-850 75,235 765,027 0.15 0.02
perl-957 85,960 868,920 0.11 0.02
twolf 84,619 4,584,773 0.03 0.12

vpr-route 687,430 3,064,092 0.20 0.06
INT 454,514 2,951,900 0.14 0.07
ALL 765,692 3,768,000 0.24 0.10

Table C.15: Number of misses and miss rate in the data L1 cache and the L2 cache.
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OoO ReLaSch
diffsize store load diffsize store load

ammp 1,042 1,842 24 11,672 3,871 62
applu 2 91 16,213 0 1,622 0
art110 403 609 21 113 2,847 0
art470 351 609 24 99 3,078 0
equake 0 72 201,238 1 96 2
facerec 0 961 1,356 0 6,155 0
fma3d 0 1,028 7,200 0 9,064 0
galgel 0 16 0 0 0 0
lucas 0 0 0 0 0 0
mesa 16 577 5,010 6,262 1,930 0
mgrid 3 552 11 0 353 0
swim 0 0 0 0 0 0
FP 151 530 19,258 1,512 2,418 5

bzip-graphic 190 2,177 146,056 0 4,623 2,228
bzip-program 44 2,935 4,198 0 19,765 14,067
bzip-source 27 1,094 57,232 15 362,889 91,021

crafty 2065 10,214 1,910 2,955 7,838 650
eon-cook 971 5,711 1,040 3,299 6,577 67
eon-kajiya 3,696 20,291 263 16,461 65,019 1,268
eon-rush 1,668 24,357 2,660 10,456 35,156 146

gap 90 9,325 102,268 83 1,428 1,168
gcc-166 572 7,377 46,963 973 6,972 8,521
gcc-200 721 5,428 42,987 1,154 7,589 5,864
gcc-expr 850 5,479 39,691 2,615 7,777 5,973
gcc-integ 916 5,954 35,436 1,246 9,901 4,467
gcc-sci 1,388 8,781 48,725 3,680 15,397 9,928

gzip-graphic 1 542 60,685 0 4,116 112
gzip-log 39 1,042 5,488 20 719 131

gzip-program 9 528 13,218 0 322 2,227
gzip-random 1 459 59,681 0 6,133 159
gzip-source 19 944 14,527 22 401 4,200

mcf 40 2,156 98,642 42 19,570 40,285
parser 220 1,779 2,386 29 4,554 3,447
perl-diff 992 9,724 21,408 72 13,904 1,293
perl-make 203 3,311 447 25 1,786 29
perl-535 647 7,855 14,845 691 7,557 354
perl-704 469 6,429 13,074 503 5,642 234
perl-850 389 5,673 12,815 353 4,816 361
perl-957 602 7,930 16,277 710 7,772 397
twolf 1,580 10,650 87,701 6,407 23,867 63,474

vpr-route 0 1,732 2,024 0 1,841 1,457
INT 657 6,067 34,023 1,850 23,355 9,412
ALL 506 4,406 29,594 1,749 17,074 6,590

Table C.16: Number of load replays in the ReLaSch and OoO processors. The diffsize column indicates
replays of a load in an aliased store-load pair in which bypassing is impossible due to a mismatch is
the size of the accesses. The load column indicates replays of a load in an aliased store-load pair that
has been executed out-of-order. The store column indicates replays of a load in an aliased store-load
pair that has been executed out-of-order.
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OoO ReLaSch
diffsize store load diffsize store load

ammp 620 2,327 49 19,451 30,299 84
applu 15 171 32,578 3 3,433 1
art110 224 1,327 49 48 10,442 0
art470 201 58,737 248 46 9,310 0
equake 0 172 126 29 16,758 210,817
facerec 1 1,256 234 46,013 8,945 3,242
fma3d 0 29,218 64,104 2,437 28,821 1,627
galgel 0 84 0 19 203 1,268
lucas 0 0 1 0 0 0
mesa 157 1,979 76,411 18,048 14,457 0
mgrid 8 654 66,437 0 4,022 0
swim 0 0 0 0 0 0
FP 102 7,994 20,020 7,174 10,558 18,087

bzip-graphic 11,075 5,871 13,373 33,675 321,212 104,669
bzip-program 4,329 6,705 6,168 25,906 341,614 190,594
bzip-source 457 3,530 108,870 977 1,194,216 409,697

crafty 5,156 28,594 14,091 8,122 27,727 25,074
eon-cook 5,903 19,798 102,319 271,401 66,038 2,215
eon-kajiya 19,065 31,088 56,959 199,964 309,144 52,645
eon-rush 6,608 21,356 59,230 147,124 209,994 16,410

gap 521 35,424 135,007 9,468 13,083 12,689
gcc-166 1,854 25,977 130,035 8,170 39,208 46,996
gcc-200 1,729 22,792 101,589 10,363 49,744 43,104
gcc-expr 2,030 24,672 82,476 10,933 47,039 40,108
gcc-integ 2,670 32,345 82,526 12,709 65,811 37,230
gcc-sci 3,373 41,743 108,882 17,103 82,361 61,181

gzip-graphic 6 1,477 39,577 6 29,169 4,964
gzip-log 268 3,599 10,097 103 8,214 3,582

gzip-program 26 1,777 31,777 0 33,717 1,2951
gzip-random 2 991 44,867 6 30,246 4,894
gzip-source 131 3,199 45,236 88 42,452 15,710

mcf 261 6,588 202,056 351 139,075 134,048
parser 1,759 3,758 7,020 2,220 34,475 31,475
perl-diff 1,446 30,658 62,537 12,694 217,240 17,529
perl-make 234 6,227 33,545 438 3,303 292
perl-535 1,972 23,411 37,943 3,043 35,709 5,269
perl-704 1,558 18,555 30,396 1,754 29,241 3,025
perl-850 1,181 17,529 35,751 1,528 22,714 2,859
perl-957 1,796 23,438 38,826 2,467 33,734 4,258
twolf 2,328 28,594 180,291 9,888 118,854 10,9701

vpr-route 209 4,648 28,458 112 23,485 28,414
INT 2,784 1,6941 65,354 28,236 127,458 50,771
ALL 1,979 14,257 51,753 21,918 92,388 40,966

Table C.17: Number of load replays in the ReLaSch and OoO processors with an issue-width of 16
integer and 8 floating point instructions. The diffsize column indicates replays of a load in an aliased
store-load pair in which bypassing is impossible due to a mismatch is the size of the accesses. The load
column indicates replays of a load in an aliased store-load pair that has been executed out-of-order.
The store column indicates replays of a load in an aliased store-load pair that has been executed
out-of-order.
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default ignore
diffsize store load diffsize store load

ammp 11,672 3,871 62 11,257 5,448 49
applu 0 1,622 0 1 2,568 0
art110 113 2,847 0 113 132,714 0
art470 99 3,078 0 99 134,408 0
equake 1 96 2 0 9,874 2
facerec 0 6,155 0 0 17,113 0
fma3d 0 9,064 0 0 123,573 0
galgel 0 0 0 0 1,164 0
lucas 0 0 0 0 0 0
mesa 6,262 1,930 0 6,291 12,926 0
mgrid 0 353 0 0 9,159 0
swim 0 0 0 0 0 0
FP 1,512 2,418 5 1,480 37,412 4

bzip-graphic 0 4,623 2,228 1 6,933 2,907
bzip-program 0 19,765 14,067 0 19,682 11,976
bzip-source 15 362,889 91,021 14 439,470 93,556

crafty 2,955 7,838 650 3,200 16,112 681
eon-cook 3,299 6,577 67 6,330 185,230 25
eon-kajiya 16,461 65,019 1,268 17,288 233,681 1,273
eon-rush 10,456 35,156 146 4,875 191,344 124

gap 83 1,428 1,168 85 320,242 1,905
gcc-166 973 6,972 8,521 966 13,282 8,312
gcc-200 1,154 7,589 5,864 991 25,528 5,671
gcc-expr 2,615 7,777 5,973 2,720 27,454 5,831
gcc-integ 1,246 9,901 4,467 1,096 30,602 4,895
gcc-sci 3,680 15,397 9,928 3,700 32,742 9,471

gzip-graphic 0 4,116 112 1 9,778 126
gzip-log 20 719 131 19 10,355 189

gzip-program 0 322 2,227 0 6,852 1,731
gzip-random 0 6,133 159 0 13,388 174
gzip-source 22 401 4,200 30 14,086 4,212

mcf 42 19,570 40,285 39 462,005 36,193
parser 29 4,554 3,447 18 92,424 3,728
perl-diff 72 13,904 1,293 82 119,888 1,845
perl-make 25 1,786 29 32 325,247 16
perl-535 691 7,557 354 661 86,255 720
perl-704 503 5,642 234 461 71,497 283
perl-850 353 4,816 361 435 58,053 342
perl-957 710 7,772 397 659 87,434 699
twolf 6407 23,867 63,474 6,798 204,817 59,406

vpr-route 0 1,841 1,457 0 315,290 1,613
INT 1,850 23,355 9,412 1,804 122,131 9,211
ALL 1,749 17,074 6,590 1,707 96,715 6,449

Table C.18: Number of load replays in ReLaSch when the boundaries of the issue-group are ignored
and in the default configuration. The diffsize column indicates replays of a load in an aliased store-load
pair in which bypassing is impossible due to a mismatch is the size of the accesses. The load column
indicates replays of a load in an aliased store-load pair that has been executed out-of-order. The store
column indicates replays of a load in an aliased store-load pair that has been executed out-of-order.
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INT FP
25.00% 50.00% 75.00% 90.00% 25.00% 50.00% 75.00% 90.00%

ammp 3 6 12 18 5 10 16 20
applu 3 6 10 15 7 14 22 27
art110 1 2 3 5 4 9 17 22
art470 1 2 3 5 5 9 16 22
equake 2 5 10 16 3 7 12 18
facerec 4 6 13 19 3 5 8 11
fma3d 4 8 16 22 5 12 20 26
galgel 4 8 13 18 2 4 7 9
lucas 2 4 7 12 4 8 14 20
mesa 5 11 19 25 3 8 15 22
mgrid 4 9 17 22 6 14 22 27
swim 2 4 6 8 5 12 18 24

bzip-graphic 4 9 15 20
bzip-program 4 9 16 21
bzip-source 4 9 16 21

crafty 3 9 17 23
eon-cook 3 7 13 19 2 5 9 14
eon-kajiya 3 7 13 20 2 5 10 15
eon-rush 2 7 13 19 2 5 10 15

gap 4 9 15 21
gcc-166 3 8 14 20
gcc-200 5 10 17 23
gcc-expr 5 10 17 23
gcc-integ 4 10 17 23
gcc-sci 4 10 16 22

gzip-graphic 4 7 16 20
gzip-log 2 4 7 14

gzip-program 2 4 6 13
gzip-random 3 7 12 18
gzip-source 2 5 9 16

mcf 2 5 9 13
parser 2 5 12 18
perl-diff 4 8 15 21
perl-make 3 7 13 19 2 3 5 8
perl-535 3 7 13 19
perl-704 3 7 13 19
perl-850 3 7 13 19
perl-957 3 7 13 20
twolf 3 8 14 17 1 2 3 4

vpr-route 2 6 12 19 1 1 2 3

Table C.19: Number of logical registers that accumulate the indicated percentage of writes. Lower
numbers indicate that writes are concentrated in a small number of logical registers. Results are
separated for the integer and floating point register files. Whenever an INT benchmark has less than
1M writes in the floating point register file, only its values for the integer register file are shown.
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