

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

Adaptive Memory Hierarchies for Next
Generation Tiled Microarchitectures

Enric Herrero Abellanas

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Advisors:

José González González (Intel Barcelona)

Ramon Canal Corretger (Universitat Politècnica de Catalunya)

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy / Doctor per la UPC

2011 July

mailto:eherrero@ac.upc.edu
http://www.ac.upc.edu/
http://www.upc.edu

Acknowledgements

En primer lloc vull agraïr l’ajut que m’han donat durant aquests anys els meus

directors de tesi, el Pepe i en Ramon. Durant aquests anys m’han iniciat en el

món de la recerca. Gràcies a ells he pogut conèixer el que és investigar, que al

cap i a la fi és aprendre contínuament i saber qüestionar el que s’aprèn. Són

uns coneixements que de ben segur em serviran de molt en el futur.

També vull agraïr al Dean el suport que em va donar durant la meva estada

a San Diego i que em va facilitar molt l’adaptació a un país que no coneixia.

Thank you Dean. Els meus agraïments també per als membres del tribunal, els

seus comentaris han ajudat molt a millorar la qualitat de la tesi. Gràcies també

a l’Antonio per donar-me la oportunitat de treballar al grup ARCO i al Mats per

introduïr-me en el món de l’arquitectura de computadors.

Vull agraïr als meus pares el suport que m’han donat sempre i sense el qual

hagués estat impossible realitzar aquesta tesi. Des de petit m’han ensenyat el

valor de la educació i m’han ajudat sempre que ha fet falta. Gràcies.

Un agraïment també al meu germà Guillem, a la famiglia, a la gent de Cardedeu

i al sector euetibià que han aconseguit que pogués desconnectar de la feina

quan feia falta.

I finalment també agraïr a tots els becaris de la sala C6-E208 (i altres sales...)

per els bons moments que hem passat durant aquests anys tot fent un cafè o a

fora de la universitat.

Contents

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Memory Hierarchy Challenges . 2

1.1.1 Increasing number of processors . 2

1.1.2 Increased off-chip miss cost . 3

1.1.3 Limited power budget . 3

1.1.4 Multiprogrammed Environments . 4

1.2 Contributions . 4

1.2.1 Distributed Coherence Mechanism 4

1.2.2 Dynamic and Distributed Cache Allocation 4

1.2.3 DRAM organization for multiprogrammed environments 5

2 Background and Motivation 7

2.1 Introduction . 7

2.2 Modern multiprocessors, from NUMA to NUCA 9

2.3 Cache organizations in the multicore era . 12

2.3.1 Static partitioning . 14

2.3.2 Dynamic partitioning . 15

2.4 Memory Controllers . 18

2.4.1 Memory Organization . 19

2.4.2 Memory Controller structure . 21

2.5 DRAM Bank Schedulers for multicore processors 22

2.5.1 Memory Throughput Oriented Schedulers 23

2.5.2 Fairness Oriented Schedulers . 25

2.5.3 System Throughput Oriented Schedulers 26

iii

CONTENTS

2.5.4 Prefetch-Aware Schedulers . 27

2.5.5 Power/Area-Aware Schedulers . 28

2.5.6 Throughput-Fairness Trade-off . 29

2.6 Progress beyond the state-of-the-art . 32

2.6.1 Cache organization . 32

2.6.2 DRAM management . 33

3 Methodology 35

3.1 Simulation Infrastructure . 35

3.1.1 Metrics . 38

3.2 Power Model . 38

3.2.1 Power Calculation Methods . 39

3.2.2 Dynamic Power . 39

3.2.3 Static Power . 40

3.2.4 Cache . 41

3.2.5 Network . 41

3.3 Benchmarks and Characterization . 46

3.3.1 SPEC OMP2001 and SPEC CPU2006 46

3.3.2 Benchmark set 1 . 47

3.3.3 Prefetch Influence in memory access patterns 51

3.3.4 Benchmark set 2 . 57

4 Distributed Cooperative Caching 59

4.1 Background and Motivation . 59

4.2 Distributed Cooperative Caching . 61

4.2.1 Cooperative Caching . 61

4.2.2 The Distributed Cooperative Caching scheme 62

4.2.3 Differences between CC and DCC 67

4.3 Power-Efficient Spilling Techniques . 68

4.3.1 Distance-Aware Spilling . 68

4.3.2 Selective Spilling . 70

4.4 Evaluation . 72

4.4.1 Simulated Configurations . 72

4.4.2 Single Multi-threaded Benchmarks Evaluation 74

4.4.3 Benchmark Set 1 Evaluation . 83

4.4.4 Benchmark Set 2 Evaluation . 87

iv

CONTENTS

4.5 Conclusions . 90

5 Elastic Cooperative Caching 91

5.1 Background and Motivation . 91

5.2 Elastic Cooperative Caching . 94

5.2.1 ElasticCC Structure . 95

5.2.2 Cache Repartitioning Unit . 96

5.2.3 Spilled Block Allocator . 97

5.2.4 Adaptive Spilling mechanism . 98

5.3 Evaluation . 100

5.3.1 Simulated Configurations . 100

5.3.2 Benchmark Set 1 Evaluation . 102

5.3.3 Benchmark Set 2 Evaluation . 106

5.3.4 Temporal behavior of ElasticCC . 108

5.4 Conclusions . 109

6 Thread Row Buffers 111

6.1 Background and Motivation . 111

6.2 Thread Row Buffers . 112

6.3 Service Partitioning Scheduler . 113

6.4 Evaluation . 116

6.4.1 Simulated Configurations . 116

6.4.2 Performance and Energy Efficiency 117

6.4.3 Addition of extra banks . 121

6.5 Conclusions . 123

7 Conclusions 125

7.1 Thesis Contributions . 125

7.2 Future Work . 126

Glossary 129

References 130

v

CONTENTS

vi

List of Figures

1.1 Gap between memory and CPU performance. 2

2.1 Article in the Datamation magazine presenting the first multiprocessor on

March 1961 . 8

2.2 CMP-NuRapid Memory Structure. 14

2.3 Adaptive Selective Replication Memory Structure. 14

2.4 CC Memory Structure. 15

2.5 NUCA Memory Structure. 15

2.6 R-NUCA Memory Structure. 16

2.7 Adaptive Set Pinning Memory Structure. 16

2.8 Utility-Based Cache Partitioning Memory Structure. 17

2.9 Adaptive Shared-Private NUCA Memory Structure. 17

2.10 Memory Organization and Mapping. 20

2.11 Memory Controller Structure. 21

2.12 Priority calculation for FR-FCFS, PAR-BS and TRB-SP. 30

2.13 Scheduling example. 31

3.1 Simulation infrastructure. 35

3.2 Typical structure of a 6T Memory Cell. 41

3.3 Buffer structure. 42

3.4 Crossbar structure. 43

3.5 Arbiter structure. 44

3.6 Routing Table structure. 45

3.7 SPEC OMP Characterization. 49

3.8 Spec OMP 2001 benchmark characteristics for different L2 sizes/associativity. 50

3.9 Request Behavior in Bank 0 in a multiprogrammed environment 52

3.10 Row hit rate with and without prefetch. 53

vii

LIST OF FIGURES

3.11 Prefetch influence on performance (Speedup and accuracy). 54

3.12 Prefetch influence on performance (Row hit rate, MLP and off-chip bandwidth). 55

3.13 Spec OMP2001 and CPU2006 characterization without prefetch. 56

3.14 Spec OMP2001 and CPU2006 classification with prefetch. 57

4.1 CC Memory Structure. 61

4.2 Spilling Example. 62

4.3 DCC Memory Structure. 63

4.4 Directory structures. 64

4.5 Working Example. 65

4.6 Spilled blocks being reused by the evicting node. 69

4.7 Distance-Aware Spilling node assignment in a mesh network. 70

4.8 Average distance to destination nodes in a mesh network. 71

4.9 Distance-Aware Spilling node assignment in a ring network. 71

4.10 Average distance to destination nodes in a ring network. 72

4.11 Spilling characterization of SpecOMP2001 benchmarks. 72

4.12 Spilling characterization of SpecCPU2006 benchmarks. 73

4.13 Normalized performance, energy efficiency and Network Usage over DCC

Random Mesh. 75

4.14 Normalized performance, energy efficiency and Network Usage over DCC

Random Ring. 77

4.15 Off-Chip Misses per thousand instructions. 78

4.16 Average L1 Miss latency. 78

4.17 DCC16CE and DCC4CE organization. 79

4.18 DCC Optimal Configuration Study. 80

4.19 DCE replacements per request. 81

4.20 DCC scalability. Performance for 32p normalized over 8p. 82

4.21 DCC scalability. Performance normalized over CC2T. 82

4.22 Normalized performance, energy efficiency and Network Usage over DCC

Random Mesh. 84

4.23 Normalized performance, energy efficiency and network usage over DCC

Random Ring. 85

4.24 Average distance of reused blocks . 86

4.25 Percentage of spilled blocks being reused 86

4.26 Normalized performance, energy efficiency and Network Usage over DCC

Random Mesh. 88

viii

LIST OF FIGURES

4.27 Normalized performance, energy efficiency and network usage over DCC

Random Ring. 89

5.1 Adaptive Shared/Private NUCA Repartitioning Unit. 93

5.2 ElasticCC Node Structure. 95

5.3 ElasticCC Repartitioning Unit. 96

5.4 Cache Repartitioning Algorithm. 97

5.5 Spilled Block Allocator. 98

5.6 ElasticCC Memory Structure. 100

5.7 Normalized performance, Normalized energy efficiency and Off-Chip misses

per Instr. 102

5.8 Average number of private ways per benchmark in ElasticCC and ElasticCC

+ AS and percentage of spilled blocks per benchmark in ElasticCC + AS

compared to ElasticCC. 104

5.9 Percentage of spilled blocks that are reused in Benchmark Set 1. 105

5.10 Normalized performance, Normalized energy efficiency and Off-Chip misses

per Instr. 106

5.11 Average number of private ways per benchmark in ElasticCC and ElasticCC

+ AS and percentage of spilled blocks per benchmark in ElasticCC + AS

compared to ElasticCC. 107

5.12 Percentage of spilled blocks that are reused in Benchmark Set 2. 108

5.13 Cache behavior for thread 1 of Equake. 109

6.1 DRAM with TRBs structure. 113

6.2 Priority calculation for FR-FCS, PAR-BS and TRB-SP. 114

6.3 Thread priority calculation hardware. 114

6.4 Scheduling example. 115

6.5 Simulated CMP Structure. 116

6.6 Weighted Speedup, normalized throughput and row hit rate. 118

6.7 Average BM latency and standard deviation. 119

6.8 TRB-SP memory power decomposition. 120

6.9 Power, Avg latency and Energy-efficiency. 121

6.10 Weighted Speedup, normalized throughput and Row Hit rate with extra banks. 122

ix

LIST OF FIGURES

x

List of Tables

2.1 MP-CMP memory organization similarities 11

2.2 Taxonomy of CMP Cache Organizations . 13

2.3 Schedulers Taxonomy . 23

3.1 Configuration Parameters . 36

3.2 Memory Configuration Parameters . 36

3.3 Configuration Parameters . 37

3.4 Memory Timing Parameters [91] . 37

3.5 Power related configuration parameters . 40

3.6 Buffer transistor sizes . 42

3.7 Router transistor sizes . 44

3.8 SPEC OMP2001 evaluated starting point 47

3.9 SPEC OMP2001 evaluated starting point 48

3.10 Benchmark Classification . 51

5.1 Application Types Behavior . 99

xi

LIST OF TABLES

xii

Chapter 1

Introduction

Computer microarchitecture has evolved from its beginning with an improvement rate never

seen before in other domains. Moore’s law [95], which states that the number of transistors

that can be placed inexpensively on an integrated circuit doubles every two years, has

been kept true thanks to fabrication process improvements and this has allowed computer

architects to introduce many optimizations in the computer architecture.

All these improvements have allowed an exponential increase in processor performance.

Memory access, however, has not experienced the same improvement rate. Figure 1.1

shows a comparison between the improvements in the processor and the memory system.

It can be seen that the gap between both parts has been increasing, forcing new optimiza-

tions in the memory hierarchy to alleviate this problem.

One of the solutions to this problem appeared in the early 60’s with the introduction of

caches [13]. The addition of extra on-chip storage allowed to take advantage of the data

locality and showed to be very effective in reducing the number of off-chip accesses. A

good measure of this effectiveness is that all current commercial processors make use of

this technique. However, the amount of chip transistors is limited and, therefore, the amount

of on-chip storage that can be added. This implies that usually not all the application data

fits in this storage space and that, as a consequence, cache organizations and policies

have a great impact on the system performance.

Another solution to this problem is the usage of Out-of-Order scheduling of instruc-

tions [126] which was implemented in the IBM 360/91 in 1966. These type of processors

allow to execute instructions as soon as the required data is available and to advance stalled

requests. This organization hides some of the memory latency and reduces the impact of

the memory gap.

1

1. INTRODUCTION

Figure 1.1: Gap between memory and CPU performance [39].

The improvements brought by these solutions along with many others have reduced the

impact of increasingly high memory latencies but the problem has remained. Furthermore,

the extended usage of chip multiprocessors in the recent years has brought new challenges

by adding multiple applications competing for the memory resources. In such environments,

cache organization has increased its importance in the overall performance [49].

Therefore, in this thesis we have focused on the design of efficient memory hierarchies

for next generation processors, which are a critical part in order to improve processor per-

formance and try to keep sustained performance improvements in the forthcoming years.

1.1 Memory Hierarchy Challenges

There are several challenges brought by the fabrication technologies and the introduction

of chip multiprocessors that have driven the research of this thesis. These challenges are

the increasing number of processors, the limited off-chip bandwidth and power budget of

processors and the arbitration between competing applications in the memory hierarchy.

1.1.1 Increasing number of processors

The increased available on-chip real state and the limited power budget of current pro-

cessors has forced the apparition of chip multiprocessors, which, rather than providing the

2

1.1 Memory Hierarchy Challenges

maximum performance from a single core, try to improve the overall performance through

parallel execution. Chip multiprocessors started packing a small number of cores but in

the recent years several processors have appeared packing up to 80 cores on a single

chip [52, 127]. This trend implies that shared structures should be distributed in order to

avoid bottlenecks in centralized structures and allow a good scalability in next generation

chip multiprocessors.

1.1.2 Increased off-chip miss cost

The cost of off-chip misses has increased in importance due to several reasons that are

expected to be maintained in the future [7]. First, memory clock speeds have increased

at a slower pace than processor speeds, increasing the miss latency significantly. And

second, the usage of chip multiprocessors has introduced the simultaneous execution of

more applications in the chip while the pin count has increased very slightly. This implies

that the same memory channels must be shared among all threads, increasing the pressure

on the memory system.

All these limitations have increased the importance of an efficient use of the off-chip

bandwidth. Therefore, new solutions must minimize the number of off-chip misses due to

its high cost and in addition optimize the usage of the memory bus to extract the maximum

throughput.

1.1.3 Limited power budget

Another important factor in new microarchitectural designs is energy efficiency. Power con-

sumption minimization is a very important issue in current computer architectures. Low en-

ergy consumption reduces the energy budget of companies, increases the battery lifetime

of portable devices and allows lower operating temperatures that yield a higher reliability

and simpler cooling mechanisms.

In the memory hierarchy improvements can come in several ways, by reducing the

activity of the system (number of misses, messages, accesses to data structures), intro-

ducing simpler mechanisms that consume less energy or avoiding structures that do not

increase the performance enough to justify the corresponding increase in energy consump-

tion. In any case, novel improvements in computer architecture must focus not only on

performance; energy density and energy consumption must be also taken into account.

3

1. INTRODUCTION

1.1.4 Multiprogrammed Environments

Finally, the latest aspect that must be taken into account is the heterogeneous environment

of multicore and multithreaded architectures. The simultaneous execution of different ap-

plications with different requirements makes necessary to provide an arbitration between

them. Not all applications have the same data and instruction locality and, therefore, they

require different amount of resources. In addition, some critical applications may require a

minimal performance to operate which implies that the arbiter must deal with inter-thread

interference and avoid it if possible. All these factors are a challenge in the design of a

responsive memory hierarchy, able to provide the best response to all applications. The

implementation of an application aware system, however, also has a great potential of im-

proving the overall system performance.

1.2 Contributions

In this thesis we have focused in optimizing the memory hierarchy for next generation mul-

tiprocessors taking into account the challenges presented previously. Proposed optimiza-

tions range from the cache level to the memory level.

1.2.1 Distributed Coherence Mechanism

Coherence enforcement, as we are going to show, is especially important in multipro-

grammed or multithreaded environments. Most of the existing solutions, however, rely in

traditional private and shared cache configurations and in most cases make use of cen-

tralized structures which limit the scalability of the memory hierarchy. In this thesis we

propose a distributed structure, the Distributed Cooperative Caching (DCC) [42], which has

the advantages of both private and shared caches and has a better scalability and energy

efficiency than existing state of the art configurations. Furthermore, we propose additional

improvements to DCC in order to improve the energy-efficiency and network usage. We

propose the Distance-Aware and Selective Spilling [44], which increase the spilling effi-

ciency and reduce network usage.

1.2.2 Dynamic and Distributed Cache Allocation

In addition of providing a distributed management of cache resources, an efficient allocation

of these resources is mandatory if we want to optimize cache allocation and minimize the

4

1.2 Contributions

number of off-chip misses. Therefore, in this thesis we propose the Elastic Cooperative

Caching (ECC) [43], a distributed cache repartitioning mechanism. ECC is able to detect

the memory requirements of each application and reallocate cache resources accordingly

during program execution. Most of dynamic repartitioning mechanisms rely on centralized

structures. ECC, on the other hand, is able to adapt dynamically using only local information

and distributed repartitioning units which make it more suitable for chip multiprocessors with

a high number of cores.

All the cache organizations above, in addition to their publication in top conferences like

ISCA, PACT or EuroPar, also have led to the publication of a book chapter [16] and an

article in the IEEE Transactions of Parallel and Distributed Systems [45].

1.2.3 DRAM organization for multiprogrammed environments

Finally, in this thesis we have focused on optimizing DRAM memories and memory con-

trollers for multiprogrammed environments. Traditional memory bank schedulers have been

designed for uniprocessor systems. The advent of chip multiprocessors, however, has led

to the apparition of new access patterns and forced a trade-off between memory through-

put and fairness. In this thesis we present Thread Row Buffers (TRBs), a modification of

the DRAM memory structure which allows to increase the row hit rate significantly under

a multiprogrammed environment and avoids the throughput-fairness trade-off. TRBs make

possible to design a new generation of bank schedulers focused on an efficient arbitration

between threads without hurting memory throughput.

5

1. INTRODUCTION

6

Chapter 2

Background and Motivation

2.1 Introduction

The design of new processors always has been driven by the need of more computing per-

formance. Performance improvements have arrived through the evolution of the fabrication

technology, microarchitectural improvements and increase in the parallelism. Parallelism

has been exploited at the instruction level, thread level and application level; being the last

one the first to be used.

Multiprocessors have existed for many years, the first of them appearing in the early

60’s. Burroughs Corporation was the first company to introduce a multiprocessor system1

with the B5000 introduced in 1961 [24] that operated a second processor in a master-slave

configuration. First multiprocessors were asymmetric since the operating system ran in the

main processor and the second one executed specific processes, having access to main

memory but not to peripherals.

Other vendors also released their multiprocessor like IBM with the model 65MP of Sys-

tem/360 [101] in 1968 or the PDP-10 [11] which added multiprocessing capabilities to its

TOPS-10 monitor software in 1972. The PDP-10 was already a Symmetric Multiprocessor

(SMP) were all processors had the same importance and capabilities and the operating

system managed the shared resources.

Most of these systems, however, used a centralized memory, which posed a limitation

in the scalability of the systems. Therefore, in 1973 Bell et al. [12] proposed the usage

of independent computer modules with their own memory storage. The implementation of

1Some people argues that the BINAC developed by the Eckert-Mauchly Computer Corporation in 1949
was the first one although it was designed to improve the reliability and not to perform different tasks in
parallel. [26]

7

2. BACKGROUND AND MOTIVATION

Figure 2.1: Article in the Datamation magazine presenting the first multiprocessor on March

1961

multiprocessors with independent memories brought the apparition of new challenges due

to the interaction of the different processes in the memory space. This generated two ways

of managing the memory space; through message passing or through a shared memory

space.

Message passing multiprocessors have independent memory spaces and all commu-

nications between processor nodes are explicitly defined by the programming language.

Therefore, applications must know in all cases where is the data and ask for it, if necessary,

to other nodes. This type of organization is intended for applications with low interaction

and optimizes the network usage.

On the other hand, shared memory multiprocessors share the address space among

all the nodes, therefore, allowing the programmer to access to all the memory space in a

transparent way. This type of organization simplifies significantly the programming and is

specially suited for applications with high interaction. The shared memory space, however,

generates new requirements to manage the data in a safe way.

In shared memory multiprocessors there are two main types of data, private and shared.

8

2.2 Modern multiprocessors, from NUMA to NUCA

Private data is used by only one processor and, therefore, should be allocated as close as

possible to this processor. On the other hand, shared data is used by several processors

and should be either stored in a common storage space or replicated in several locations.

The existence of shared data requires the implementation of one of the main characteristics

of shared memory hierarchies, memory coherence.

A coherent memory system can be defined in a simplistic way as a memory system

that enforces that any read of a data item is done to the more updated version of this

item. Hennessy and Patterson [39] give a more detailed definition and state that a memory

system is coherent if:

• A read by a processor P to a location X that follows a write by P to X, with no writes of

X by another processor occurring between the write and the read by P, always returns

the value written by P.

• A read by a processor to location X that follows a write by another processor to X

returns the written value if the read and the write are sufficiently separated in time

and no other writes to X occur between the two accesses.

• Writes to the same location are serialized; that is, two writes to the same location by

any two processors are seen in the same order by all processors.

In the first multiprocessors, the memory storage was shared and centralized and, there-

fore, the implementation of coherence was trivial. The usage of a centralized structure does

not require to migrate or replicate data and all writes are already serialized in the request

queue. Newer shared memory multiprocessors, however, implement independent memory

storage which makes coherence enforcement more complex.

2.2 Modern multiprocessors, from NUMA to NUCA

Shared memory multiprocessors with multiple memories are known as Non-Uniform Mem-

ory Access (NUMA). Many of these organizations implement migration and replication of

data in order to keep the data as close as possible to the user and reduce the access la-

tency and network traffic. These types of systems require the implementation of coherence

protocols that store the information of the sharers and the valid copies of the data.

There are three main ways of implementing the coherence protocols, with directories,

with a snoop based system and explicitly by software. In implementations with directory [3]

9

2. BACKGROUND AND MOTIVATION

the state of the data is stored in a directory that centralizes all requests and enforces co-

herence.

Snoop based systems [4, 35], on the other hand, store the information with all the data

copies. We have divided this configuration in three types, bus based, fixed mapping and to-

ken based. Snoop based systems were traditionally bus based because a bus can be easily

monitored by all sharers to update the state when the data is modified. Some implemen-

tations, however, allow the implementation of snoop protocols in any kind of network [119].

A variation for NUCA caches is to have a fixed mapping of cache blocks and try to find

the block doing a search among the nodes were the data can be. A fixed order is usually

defined, accessing first to the local node and having a home node for every block. Some

solutions also rely on software hints to use different mappings [38]. Another variation are

Token based systems [87, 89] which try to separate performance from correctness and get

the benefits of both techniques. This idea tries to optimize the protocol for common cases

and allow an unordered interconnect but rely on a correctness substrate to resolve races.

Finally, software coherence is the easiest one to implement by hardware because it

basically consists in not providing coherence. Some processors [52] implement this tech-

nique because coherence protocols are very expensive in terms of hardware and explicitly

managing cache operations can improve performance. The bad part of this type of sys-

tems is that programming complexity is much higher and, therefore, not suited for all kind

of applications, especially if performance is not critical.

The selection of one memory organization and protocol or another highly depends on

the physical constraints, desired performance and energy-efficiency and the type of applica-

tions that are going to be executed in the multiprocessor. In general a memory organization

can be classified by the following parameters:

• Resource Placement: Memories/caches are centralized or distributed and highly

banked or not.

• Coherence Enforcement: Directory-based, snoop-based or software-based.

• Migration & Replication: Ability to migrate or replicate data close to the requesting

nodes in order to reduce the access latency and network traffic.

• Performance Isolation: Ability of the system to execute independent applications

without interfering one with each other.

• Adaptivity: Ability of the system to adapt the available memory resources to optimize

a certain performance metric depending on the different application requirements.

10

2.2 Modern multiprocessors, from NUMA to NUCA

Common Multiprocessors Chip Multiprocessors
Features Memory (MP) Cache (CMP)
Shared Centralized. UMA [19] Shared cache (UCA)
High capacity,
uniformly long latency

Shared Distributed. CC-NUMA Shared banked
High capacity, [2, 68, 73, 74] cache (S-NUCA) [60]
non-uniform latencies

Private Distributed. COMA [36, 110] Private caches
Lowered capacity,
low latency

Partition between RC-NUMA [140] Adaptive private/shared
private/shared space NUCA [30, 55]

Victim caching VC-NUMA [93] Victim replication [138]

Hints for R-NUMA [32] R-NUCA [38]
relocation CMP-NuRapid [22]

Adaptivity through AS-COMA [67] CC [17]
biased replacement MLP-Repl [103]

Adaptivity through OS support [129] ASR [9]
selective replication MigRep [113]

Performance isolation Performance Fair Caching [62]
enforcement Isolation [130] CQoS [54]

Table 2.1: MP-CMP memory organization similarities

The steady increase in the die real state has made possible the creation of multipro-

cessors on-chip, also known as chip multiprocessors (CMPs). CMPs started to appear as

research projects like the TRIPS [109] or the Piranha [33] in 2000 and in 2001 IBM pre-

sented the first non-embedded commercial CMP with two cores, the Power4 [125]. From

then the number of cores has been increasing, especially for high-end server market pro-

cessors with the apparition of chips like the Niagara [65] with 8 cores and 32 threads in

2005 or the Niagara 3 with 16 cores and 128 threads in 2010.

Extensive work has been done to design a suitable memory hierarchy for these mi-

croarchitectures and many ideas from traditional multiprocessors have been adapted and

reused. Table 2.1 shows the similarities of proposed memory organizations for traditional

multiprocessors and chip multiprocessors.

11

2. BACKGROUND AND MOTIVATION

Most of the existing processors use cache coherence protocols that enforce a relaxed

consistency. This is that protocols allow reads and writes to complete out of order and any

synchronization operation in a multithreaded application is left to the programmer. On the

other hand, extensive work has appeared to create a transactional memory [41, 83, 84,

136] to facilitate parallel programming and provide atomicity, consistency and isolation to

some code regions called transactions. In this thesis we use cache coherence protocols

that enforce a relaxed consistency because of its simplicity and wide adoption in commercial

processors. However, more strict consistency models could be added to the presented

techniques.

2.3 Cache organizations in the multicore era

In chip multiprocessors, latencies between the different levels of the memory hierarchy

have changed significantly compared to traditional multiprocessors, forcing a redistribution

and reassignment of resources. In these architectures off-chip bandwidth is much more

limited because it must be shared among all the on-chip cores, forcing an optimization

of the on-chip cache allocation to minimize off-chip misses. In addition, access latencies

between caches inside the chip are much lower than in traditional multiprocessors, allowing

cheap communication between them and cache-to-cache transfers. These differences have

motivated the apparition of multiple new organizations in the last decade.

Table 2.2 shows a classification of the most relevant cache configurations that have

appeared. The different techniques are classified according to the type of cache being used

and the coherence protocol. This classification has been done based on the last-level cache

(LLC) configuration, in most cases centralized cache structures also have private L1 caches

per core. Also, centralized and distributed snoop/token structures usually implement a bit

vector of L1 sharers in the cache entries which can be considered a directory. However

the search mechanism in the LLC is very different from the directory configuration and,

therefore, are classified in different categories.

Another important characteristic of cache organizations is the ability to reassign cache

resources in order to optimize cache allocation and reduce off-chip misses. Several studies

have evaluated the optimal Partitioning of Cache Memory [48, 76, 118] and, if done cor-

rectly, it can have a great impact in the overall performance. We have divided the most

recent work in two categories, static and dynamic. In static resource partition mechanisms

all threads have the same priority and the amount of cache assigned to each thread is

changed through the coherence protocol and replacement mechanisms. Dynamic resource

12

2.3 Cache organizations in the multicore era

S
tr

uc
tu

re

C
oh

er
en

ce
Memory Organization Type M

ig
ra

tio
n

R
ep

lic
at

io
n

Is
ol

at
io

n

R
ep

ar
tit

io
n

S
W

S
up

po
rt

C
en

tra
liz

ed
C

ac
he

U
ni

fie
d

R
eq

Q
ue

ue
or

C
ac

he
Ta

gs

Adaptive Caches [121]
MLP-Aware Cache Replacement [103]
Dual data Cache [34]
V-way Cache [105] X
Heterogeneous Way-Size Cache [1] X
Indirect Index Cache [37] X X
OS-Managed Cache [106] X X X
Fair Caching [62] X X
CQoS [54] X X
Utility-Based Cache Partitioning [104] X X
Adaptive Set Pinning [115] X X
Dynamic Partitioning [122] X X
Adaptive Shared/Private NUCA [30] X X

D
is

tr
ib

ut
ed

C
ac

he S
no

op

B
us

Adaptive L2 snarfing [114] X X X
NuRapid [22] X
CMP-NuRapid [22] X X

Fi
xe

d
m

ap
pi

ng S-NUCA [50, 60]
D-NUCA [50, 60] X
M-NUCA [59] X
CMP-Hybrid [10] X
R-NUCA [38] X X

To
ke

n The Auction [80] X
Adaptive Selective Replication [9] X
ESP-NUCA [55] X X X X

D
ire

ct
or

y

Adaptive Migratory Sharing [117] X X
Adaptive Protocol [25] X X
Molecular Caches [128] X X X
PageNUCA [20] X
Victim Replication [138] X
Cooperative Caching [17] X X
Cooperative Cache Partitioning [18] X X X X

Table 2.2: Taxonomy of CMP Cache Organizations

13

2. BACKGROUND AND MOTIVATION

Main Memory

Bus

Interconnection

L1A

PA

Tags

A

Data

group

1

Data

group

2

L1B

PB

Tags

B

Data

group

3

Data

group

4

Figure 2.2: CMP-NuRapid Memory

Structure.

Main Memory

Bus

Interconnection

L2

L1B PBL1A PA

VTB

NHLB

Counters

L2VTB

NHLB

Counters

Figure 2.3: Adaptive Selective Replica-

tion Memory Structure.

partitioning mechanisms, on the other hand, take an active role and enforce the creation of

cache partitions which are adapted to the different application requirements.

2.3.1 Static partitioning

Most of the traditional cache organizations are classified in this category since the allocation

of caches to threads is fixed. This does not mean that these organizations are not able to

use dynamic policies to optimize the memory performance. Most techniques use dynamic

migration or replication to reduce access latencies or the number of off-chip misses.

CMP-NuRapid [22] from Chisti et al. is one of the static partitioning schemes. This work

proposes a duplication of tags in each node like in Figure 2.2. In this scheme, tags are

copied to the local node tag set the first time the block is accessed, and the data replicated

in a closer cache if the block is accessed again. This way, all subsequent accesses will

have a smaller latency. It has the advantage that several blocks of the same set can be in

the closer cache if they are used often with no risk of being replaced since tags and data

are separated. This proposal has the power and performance limitation of requiring most

of the times a transfer of the least used block to a slower group when we want to add a new

one to the fast and is not scalable because blocks are found via snoop requests.

Beckmann et al. proposed the Adaptive Selective Replication mechanism [9] which

adapts the level of replication dynamically. This system uses a distributed shared memory

with every address mapped to only one L2. As it can be seen in Figure 2.3 the system also

has extra hardware to measure if the level of replication is adequate. This hardware is a

group of Next Level Hit Buffers (NHLB), a group of Victim Tag Buffers (VTB) and some coun-

ters. With this hardware a percentage of the blocks evicted from the L1 is replicated in the

local L2. This percentage is known as the level of replication and is adjusted dynamically.

14

2.3 Cache organizations in the multicore era

Central Coherence Engine

Main Memory

Bus

Interconnection

L2B
L1B

PB

L2A
L1A

PA

L2A Tags L2B Tags

L1A Tags L1B Tags

Figure 2.4: CC Memory Structure.

Main Memory

Bus

Interconnection

L2

L1B PBL1A PA

Figure 2.5: NUCA Memory

Structure.

Cooperative Caching [17], on the other hand, uses a directory based protocol and pri-

vate caches. This technique proposes to replicate all cache tags in a centralized directory,

as shown in Figure 2.4, to allow sharing between distributed private caches. In addition, it

proposes a mechanism to forward blocks with only one on-chip copy to other caches when

evicted to reduce the number of off-chip misses and share the available cache space.

Finally Kim et al. [50, 60] propose a shared pool of small cache banks that can have dif-

ferent degrees of sharing. Dynamic mapping (D-NUCA) allows data to be stored in multiple

banks but requires a tag check of all the possible destinations. Results show that statically

mapping (S-NUCA) banks has similar performance and much less complexity. Different

additional techniques [78, 79, 80] have been proposed to optimize replacement policies in

this type of organization.

Organizations with static partitioning either have inter-thread interferences (e.g. Cache-

intensive threads may degrade performance of other applications by replacing their blocks)

or are not able to give all the cache space to a single thread if the others are not using the

cache. This is logical if we consider that the cache space is either completely shared or stat-

ically mapped to threads, and can lead to a non-optimal usage of resources in unbalanced

workloads.

2.3.2 Dynamic partitioning

Dynamic resource partition mechanisms, on the other hand, dynamically modify the amount

of memory that is assigned to every node. In addition to the benefits of previous proposals,

they eliminate inter-thread cache conflicts and allow the implementation of fair systems or

even to provide a Quality-of-Service. Thread interference is mitigated by allocating inde-

15

2. BACKGROUND AND MOTIVATION

Main Memory

Bus

Interconnection

L2

L1B PBL1A PA

00 01

10 11 00

10 11

01

00 01

10 11

Shared data

Node A

Private data

Instructions

Figure 2.6: R-NUCA Memory Structure.

Main Memory

Bus

Interconnection

L2

L1B PBL1A PA

POP1

POP2
Set

Owner Set cache entries

Figure 2.7: Adaptive Set Pinning Mem-

ory Structure.

pendent partitions of resources. These resources can be divided in banks, sets or ways

and require an arbitration mechanism that can be software or hardware based.

Software-based dynamic configurations delegate resource allocation to the OS. Most

of these organizations divide resources in independent sections to be able to provide

QoS [18, 38, 54, 100]. Virtual Private Caches [100] divide resources in ways and implement

a hardware arbiter to dynamically distribute the unallocated space in accordance to a fair-

ness policy. In the Cooperative Cache Partitioning [18] resources are not only partitioned

spatially, but also in time. They apply Multiple Time-sharing Partitions to expand the cache

capacity of some threads at a given time and increase throughput. Iyer [54] studies different

mechanisms to provide QoS in the memory hierarchy. However, it is focused on the distri-

bution of a unified shared last-level cache. Liu et al. present the Shared Processor-Based

Split L2 [81], a cache configuration that also allows software-based distribution of cache

resources. The purpose of this configuration is not to provide QoS but to be able to select

private or shared caches depending on the application. This organization is limited by a

snoop based protocol to access cache data that requires broadcast messages to all cache

banks.

Finally, R-NUCA proposes a variable block mapping depending on the kind of data;

allocating private data close to the requesting node and replicating shared read-only blocks.

Figure 2.6 shows the structure and the data locations for Node A. Classification is done at

a page-level granularity at the time of the TLB miss by the OS.

Hardware-based dynamic organizations [30, 50, 104, 115], on the other hand, are able

to implement the repartitioning policy in hardware, reducing the programming complexity.

They are based on performance counters to measure the benefit of increasing the cache

size for each thread.

16

2.3 Cache organizations in the multicore era

Main Memory

Bus

Interconnection

L2

L1B PBL1A PA

UMON_A UMON_B
Partitioning

Algorithm

Core A

Partition

Core B

Partition

Figure 2.8: Utility-Based Cache Parti-

tioning Memory Structure.

Main Memory

Bus

Interconnection

L2

L1B PBL1A PA

Sharing

Engine

Core A

Partition

Core B

Partition

Shared

Partition

Figure 2.9: Adaptive Shared-Private

NUCA Memory Structure.

Srikantaiah et al. [115] presented the Adaptive Set Pinning, a technique to reduce inter-

processor misses by assigning a replacement ownership to every set. This ownership is

varied dynamically to optimize the cache usage. In addition, it uses extra small private

caches (POPs) to allocate blocks of threads that do not have the ownership of the corre-

sponding set. Figure 2.7 shows the proposed structure.

The Dynamic Spill-Receive (DSR) [102], on the other hand, uses private L2 caches

to allocate evicted blocks from other caches if a performance improvement is expected.

The ability to reallocate or accept evicted blocks is decided through set dueling using miss

information of all caches. Therefore, for a given cache, miss information of all caches

must be provided for the tested sets to decide its behavior. This makes this technique

interesting for a small number of nodes but unfeasible for a large number of them due to the

communication overhead that this would entail.

The Utility-Based Cache Partitioning [104] uses a big unified 16-way cache. In this

cache, ways are assigned to nodes according to the benefits that can produce to each

thread. Figure 2.8 shows the structure of this technique, which uses a centralized cache

partitioned with the column caching technique [21]. In addition, the system uses Utility

Monitors (UMON) which track the utility of each way for each core and decide the optimal

partition of the cache. Dybdahl et al. [30] proposed a similar technique, depicted in Figure

2.9, but with a different selection criteria for the sharing mechanism. Both proposals do not

try to reduce latency by allocating blocks in the closer nodes and are not scalable due to

the centralized nature of the last level cache.

Another hybrid proposal is the Victim Replication [138] protocol. This configuration has

a traditional distributed shared memory but adds a new replacement mechanism to reduce

the miss latency. By default, blocks have a fixed L2 cache for being stored but in L1 replace-

ments the block is replicated in the local cache if there is a spare place. The main limitation

17

2. BACKGROUND AND MOTIVATION

of this configuration is that under heavy load conditions behaves as a normal shared cache

configuration. Finally, Qureshi [102] proposed a dynamic technique that spills blocks to

nodes in order to reduce the overall cache misses. This technique, however is based on a

snoop protocol and is only useful for a small number of processors.

2.4 Memory Controllers

During the last decade memories have greatly evolved in terms of capacity and integration

but still remain one of the main limiting factors of current processor performance. The

steady increase in processor performance in the last decades has not been followed at the

same pace by memory systems and, therefore, has created what is known as the memory

gap.

This problem has been exacerbated with the introduction of chip multiprocessors, which

require much larger amounts of data and have different access patterns. The simultaneous

execution of multiple applications in a single core also introduces inter-thread interference

and a competition to use shared resources like the memory bus. Such changes suggest

that the memory hierarchy must be adapted to deal with the new requirements.

In the overall memory performance, memory schedulers have a great influence due

to its capacity to prioritize different type of requests according to a given goal. Traditionally

for uniprocessors throughput has been the main concern when designing these schedulers.

Due to the large size of memory arrays, memories use row buffers which store a whole page

to allow faster reads and writes. This buffer needs to be updated every time a different row

is read or written, consuming time and energy. Therefore, it is critical that memory systems

make as much use as possible of row locality to both increase performance and reduce

energy consumption. The First-Ready First-Come-First-Serve (FR-FCFS) policy [108, 133,

142] is the most used organization for uniprocessors due to its simplicity and high row hit

rate.

In addition, the usage of a shared resource like DRAM memory by different threads

makes it necessary for the system to provide some kind of fairness or performance isolation

control. Several solutions [97, 98, 99] have appeared that enforce that all threads receive a

similar amount of service.

Other solutions have seen that prioritizing certain threads or regions of data can be

beneficial to the overall system throughput [63, 64, 141]. Therefore, they have presented

techniques not centered in memory throughput but in providing critical data in a reduced

latency and in some cases combined with a fairness control.

18

2.4 Memory Controllers

In these microarchitectures, prefetchers continue to play an important role by increasing

the memory level parallelism. The usage of prefetchers, however, can also degrade mem-

ory performance and penalize demand requests. Therefore, several organizations have

been proposed [31, 70, 71, 77] in order to take into account the different request priorities

and optimize the interaction of prefetchers and memory controllers.

And finally, energy efficiency has also risen as an important concern in the memory

system which already can account for 30% of total system power [8]. Therefore, several

new organizations have appeared [69, 137] to tackle this problem through a better usage of

the DRAM power modes or through a simplification of the memory structures.

In this thesis, we present a survey of the most recent schedulers proposed for chip mul-

tiprocessors and its taxonomy. We show that many different approaches exist in the design

of the memory controller and that depending on the optimization goal different solutions

may be desirable.

2.4.1 Memory Organization

Memory performance is highly tied to its structure and any optimization must always con-

sider the trade-offs brought by it. Therefore, it is important to know how a DRAM memory

is implemented. In this section we present a brief explanation of the main characteristics of

DRAM memories, for a more detailed explanation we refer to the work of Wang et al. [131].

Figure 2.10 shows the organization of a typical DRAM memory. These memories have

several chips (typically 8 + 1 to provide ECC), each responsible for providing a part of the

block simultaneously. Inside the chip, memory is organized in banks, each holding a part of

the address space. Since memory parts are very big, and to reduce access latency, data

is accessed inside the memory in rows (also called pages). In order to access data every

bank has a row buffer and every time that an address is accessed the corresponding row

is loaded to the row buffer. Subsequent accesses to addresses in the same row require

a much smaller access time since the row is already in the row buffer. This organization

generates different situations that can arise when accessing memory:

Row Hit: In this case the row is already in the row buffer so we can read it directly.

Access latency will be the Column Access Strobe latency (TCL), the time between column

access and data return by the DRAM.

Row Closed: There is no data in the row buffer. Access latency is the one required to

load (activate command) the row and then read. Access latency will be the Row to Column

19

2. BACKGROUND AND MOTIVATION

DIMM 1GB

Bank

Row Buffer

0

7
6

5
4

3
2

1

8192 bits

Read FIFO64 bits

Chip 0

Write data

interface

14

3

7

3

64

8

Bank

Row Buffer

0

7
6

5
4

3
2

1

8192 bits

Read FIFO64 bits

Chip 7

Write data

interface

14

3

7

3

64

8

64

Data Bus (64 bits wide@ 1333 MHz)

MCRow ID Bank Column ID Col [0:2] Chip

2
14 3

7
3

3

031
Line offset (64 kB)

Figure 2.10: Memory Organization and Mapping.

command Delay (TRCD), the delay between the row access command and the data ready

at the row buffer, plus the read latency; TRCD + TCL.

Row Conflict: In this case, we have a different row in the row buffer and, therefore,

we need to writeback this row (precharge command) and load the one we want to access

before reading. Access latency will be the Row Precharge time (TRP) plus the activate and

read latency; TRP + TRCD + TCL.

Since no data from one bank can be transfered during its row activation or row precharge,

multiple banks are used. Therefore, when a row is activated in one bank a block can be

read in another one and there is always data available to be transferred.

Address mapping to physical memory also has great influence in the overall perfor-

mance. In a general configuration suited for all kind of applications it would be desirable

to distribute memory accesses among all memory banks and also maximize the hit rate.

Figure 2.10 shows the address mapping used in this thesis. In this mapping Column ID

is mapped to the least significant bits to keep consecutive addresses in the same row and

20

2.4 Memory Controllers

Memory

Controller

Mem

Req.

Bank

Bits

Reordering logic FR-FCFS

Bank 0

Active Row Addr

Comparator
Next

Req

Write Req

Data Buffer

Read

Data

Buffer

Bank Arbiter Data Bus Arbiter

Data Ready Channel Req

Refresh

Control
T_RFC

Data

Channel

Busy

Act,Pchg,

Rd,Wr,

Req

Round

Robin

Arbiter

Tx Req

Timing Constraints

Enforcement
T_RAS,T_RC,

T_RRD. T_FAW

Bank 0 State Info

Busy Cycles
Req Pending

Bank N State Info

Busy Cycles
Req Pending

Reordering logic FR-FCFS

Bank N

Active Row Addr

Comparator
Next

Req

Data Bus

Ctrl/Addr Bus

Look-Ahead Queue

t+1t+i

FIFO

Allocation

O
n
-C

h
ip

 N
e
tw

o
rk

Request

Issue Logic

Figure 2.11: Memory Controller Structure.

maximize the hit rate. The next bits after the row are mapped to DIMMs and banks in order

to spread requests among memory controllers. Finally, more significant bits are devoted

to Row ID to reduce the row miss rate. This mapping is intended for open-page configu-

rations (row is not precharged after being accessed). For closed-page configurations (row

is always precharged after being accessed) adjacent lines are usually mapped to different

banks to take advantage of the available bandwidth and because spatial locality is expected

to be small between consecutive accesses.

2.4.2 Memory Controller structure

Tightly connected to the memories are the memory controllers. Memory controllers arbitrate

between requests to different banks, arbitrate the data bus usage and enforce the memory

timing constraints.

Figure 2.11 shows the structure of a memory controller. Requests are separated in

different queues depending on the bank where the address is mapped. In these queues

accesses are reordered following the desired scheduler policy. Several types of schedulers

exist depending on the desired behavior of the memory system and which are going to be

analyzed and classified in the following section of the chapter.

21

2. BACKGROUND AND MOTIVATION

The second part of the memory controller is the bank arbiter. This part usually imple-

ments a simple round-robin arbitration policy. However, only idle banks can issue requests;

therefore, it is necessary to keep track of bank states to know if they are performing a row

activation or precharge or if a previous request is waiting to use the data bus.

Once the desired row is activated, requests are enqueued in the data bus queue. The

data bus arbiter is a critical part of the memory controller since the limited bandwidth usually

is the bottleneck in current processors. Due to the delay after read requests and data

availability a look-ahead queue is required to reserve the bus at the time the data is in

the Read FIFO. This arbiter also must take into account the 1 cycle delay incurred when

requests change from read to write or vice-versa.

Another important function of the memory controller is the enforcement of timing con-

straints. Due to energy and thermal limitations memories are constrained by some param-

eters like TRAS, TRC , TRRD and TFAW . It is also necessary to refresh the data to ensure

no information is lost and this must be done every TRFC cycles for a given region of mem-

ory. Therefore, one important part of the memory controller must include cycle and event

counters that enforce these constraints regardless of the number of requests.

Finally, the request issue logic must prioritize the request that is going to use the ctrl/addr

bus, priority is given first to memory constraints, then the data bus arbiter, and finally the

bank arbiter.

2.5 DRAM Bank Schedulers for multicore processors

In the previous section we have seen the main parts composing a typical memory controller.

Most of the scheduling done in the memory controller is fixed and based on physical con-

straints (like the power related timing parameters) or must be First-Come-First-Serve like

the bus scheduling due to complexity and starvation issues. Bank scheduling however is

much more flexible since it allows to implement different reordering policies depending on

the desired behavior of the memory controller and this has allowed the apparition of multiple

schedulers oriented to different goals.

We have classified existing memory bank schedulers in two categories; memory ori-

ented and system oriented. Memory oriented schedulers only consider memory metrics

while system oriented take into consideration the whole system. Then we have divided

these categories depending on the optimization goal. Table 2.3 shows this classification.

It is important to note that the schedulers can be optimized for two different types of

throughput: memory throughput and system throughput. Memory throughput is the number

22

2.5 DRAM Bank Schedulers for multicore processors

Optimization Configurations
Memory First-Ready First-Come-First-Serve (FR-FCFS) [108, 142]
Throughput Adaptive History-Based memory scheduler [51]

Intel’s 870 system controller [14]
Memory Self-Optimizing memory controller [53]
Oriented Virtual Write Queue [120]

Fairness Fair Queuing [99]
Stall-Time Fair scheduling (STFM) [97]
Parallelism-Aware Batch Scheduling (PAR-BS) [98]

System Fine-grain Priority scheduling [141]
Throughput ATLAS [63]

Thread Cluster Memory (TCM) [64]
System Prefetch Hierarchical Prefetcher Aggressiveness Control (HPAC) [31]
Oriented -Aware Low priority prefetch [77]

Prefetch-Aware DRAM Controller (PADC) [70]
BLP-Preserving Multicore Request Issue [71]

Power/ Power aware page allocation [69]
Area-Aware Complexity Effective scheduling [137]

Table 2.3: Schedulers Taxonomy

of memory requests that can be serviced in a given amount of time while system throughput

is the number of instructions executed in that time. While it may seem that the higher

memory throughput can provide the highest system throughput, it is not always the case

as we are going to see. Several schedulers [63, 64] try to improve system throughput by

prioritizing the least-attained service, assuming that thread service requirements follow a

Pareto distribution.

2.5.1 Memory Throughput Oriented Schedulers

There has been extensive work in optimizing memory controllers for chip multiprocessors.

This work has been greatly centered in the optimization of bank and channel arbitration.

Request arbitration in banks first was mainly focused on memory throughput.

The First-Ready First-Come-First-Serve (FR-FCFS) policy [108, 142] is an optimal so-

lution from the memory throughput point of view and it is widely used. This technique prior-

itizes accesses to active rows, minimizing the amount of row activations. Some mechanism

23

2. BACKGROUND AND MOTIVATION

to avoid starvation must be included in order to ensure that under heavy load conditions

all requests are serviced. Since only memory throughput is considered this technique can

present fairness and isolation problems.

Many techniques have appeared lately that take into consideration the interaction be-

tween threads. One of them is the Adaptive History-Based memory scheduler [51] which

reorders requests making use of the command history and the set of available commands

to minimize the request delay. This technique extends the FR-FCFS policy to also consider

change of rank and port delays. In addition, it proposes a mechanism to enforce that the

number of reads and writes matches the application behavior in order to avoid filling the

reorder queues. This technique, however, does not consider the delay of switching from a

read to a write operation in the memory channel which can add a significant overhead if not

taken into account.

Several techniques have considered the R/W switch delay and the fact that write re-

quests are typically not latency critical which allows grouping and stalling requests. This

write request stalling is known as write caching and is implemented in commercial con-

trollers like Intel’s 870 [14]. Write grouping allows to reduce the number of bus turnaround

delays and use it more efficiently. Other techniques like Eager writeback [72], although not

being memory schedulers, also consider these trade-offs and perform writebacks before the

block is evicted. This technique does not necessarily group requests but allows to perform

writebacks when the bus is less congested.

The Self-Optimizing memory controller [53] uses reinforcement learning techniques to

estimate the long term performance impact of each action and reorder requests to maximize

long-term performance. The goal of this system is also to maximize the memory throughput

and this is done through the calculation of a value (Q-value) for each request which is used

to select the next request to issue. The Q-value is calculated based on the number of read

and write requests in the queue, the number of reads in the queue due to load misses

and their arrival order, and if the reads and writes produce a row hit. The hardware solution

proposed is able to compare only 12 requests from the queue which they consider is enough

to achieve a good performance.

Other work increases performance by a memory-aware management of the last-level

on-chip cache to simplify the memory scheduler. The Virtual Write Queue [120] packs

the cache writeback operations to enable longer write bursts and amortize bus turnaround

times with read operations.

24

2.5 DRAM Bank Schedulers for multicore processors

2.5.2 Fairness Oriented Schedulers

With the advent of chip multiprocessors, however, new problems have arisen. Performance

isolation and fairness have become as important as throughput and several publications

have appeared centered on solving these problems.

Some techniques are based on Network Fair Queuing algorithms to grant fairness. In

such environments each user has a service share (proportion of the resource time that is

assigned) and the scheduler enforces it. In the case of not having pending requests of

the user that has to be serviced other users are served. The usage of this idle time is

not considered in the following service partitions, therefore, not penalizing the users taking

advantage of it. Fair Queuing [99] is one of these schedulers and enforces the service share

of each thread through a Virtual Time Memory System. This system calculates the virtual

finish time and prioritizes requests with smaller values. An interesting part of this technique

is that, to avoid hurting memory throughput with the fair scheduler, every time that a row

is activated it is kept active for x cycles if there are more requests to that row. This time

is set to TRAS in order to enforce a more fair scheduling. Rafique et al. [107] proposed an

improvement to Fair Queuing by treating each memory request as a unit of scheduling. This

assumption allows the usage of start time fair queuing which improves worst case latencies.

Stall-Time Fair scheduling (STFM) [97], on the other hand, provides Quality of Service

by reordering requests to equalize the memory-related slowdown (S) between threads. This

technique computes every DRAM cycle the slowdown of every thread in stall time. If the

ratio between the maximum and the minimum slowdown exceeds a certain threshold, re-

quests of the thread with highest slowdown are going to be prioritized. Otherwise, a tradi-

tional FR-FCFS scheduler to optimize the memory throughput. A set of registers is required

for each thread to calculate the memory-related slowdown. Since it is difficult to estimate

the slowdown of the alone execution, it is computed as the shared slowdown minus the

interference.

St =
Tshared
Talone

=
Tshared

Tshared − Tinterference

To estimate the interference every thread has a Tinterference register initialized to zero

and increased every time that a thread request has to be stalled due to other threads.

And finally, Parallelism-Aware Batch Scheduling (PAR-BS) [98] is a technique that en-

forces fairness and performance by processing requests from a thread in parallel in the

DRAM banks to reduce the memory-related stall-time experienced by the thread. One of

the main problems when enforcing fairness in the memory scheduler is starvation avoid-

ance. PAR-BS creates request batches to ensure that all requests within a batch are

25

2. BACKGROUND AND MOTIVATION

serviced before creating a new one. This allows more aggressive reordering techniques

without starvation issues and provide some performance isolation. However, batching re-

quests can also hurt performance since it is prioritized over achieving a higher row hit rate.

The reordering policy implemented in PAR-BS is based on the creation of a thread rank.

The thread ranking is computed giving higher priority to the thread with lower number of

requests in the batch and in case of tie with lower number of marked requests in all the

banks. This policy tries to increase the intra-thread bank parallelism within a batch

The main problem in all the existing reordering techniques is that the important influ-

ence of row buffer locality in the memory system throughput generates a trade-off between

throughput and fairness or performance isolation.

2.5.3 System Throughput Oriented Schedulers

Some techniques, on the other hand, are more focused in system throughput (executed

instructions) rather than memory throughput (serviced requests). Several techniques have

appeared in this field, either prioritizing critical data or shortest-queue tasks.

Fine-grain Priority scheduling [141] splits memory references into sub-blocks with min-

imal granularity and maps them to different channels. This technique is based under the

assumption that only a portion of cache lines contain the required data but the other por-

tions are likely to be needed in the near future. Therefore, sub-blocks that contain the

desired data are marked as critical and the rest are treated normally. This technique allows

to effectively use the bandwidth of all channels when retrieving a block and to prioritize only

the critical sections. The distribution of blocks across the different channels, however, has

the limitation that all memories are going to increase the number of requests to different

blocks. Therefore, the row hit rate is going to decrease and as a result memory throughput

is going to be reduced.

ATLAS [63], on the other hand, reorders thread priorities based on the service they

have attained previously, prioritizing the ones that have requested the least service. This

technique is based on queuing theory [135] which shows that when the job size distribution

is exponential and the arrival process is Poisson, then the shortest-queue task assignment

policy is optimal.

This technique calculates the attained service every time quanta (a fixed number of

cycles) in order to rank the different threads (LAS-rank). The following formula shows how it

is calculated, taking into account both the long and short term usage with the α parameter

26

2.5 DRAM Bank Schedulers for multicore processors

that they set to 0.875. To avoid starvation any request that waits more than T cycles is

prioritized (TH). T is set to 100k cycles.

TotalASt = αTotalASt−1 + (1− α)ASt

Thread Cluster Memory (TCM) [64] scheduling also is focused on system throughput

and divides threads into two separate clusters; latency-sensitive and bandwidth-sensitive.

This scheduler is also based on the assumption that the system throughput benefits of pri-

oritizing memory-non-intensive threads over memory-intensive ones. Therefore, this tech-

nique prioritizes always latency-sensitive threads. Within the latency-sensitive cluster lower

MPKI threads are prioritized following the same principle. Within the bandwidth-sensitive

cluster, threads should fairly share memory bandwidth to ensure no single thread is dis-

proportionately slowed down. In this type of configuration it is important that the threads

placed in the latency-sensitive cluster always consume a small fraction of the total mem-

ory bandwidth to avoid starvation. To classify threads, TCM monitors its memory intensity

and memory bandwidth usage and then adds the threads with lower usage to the latency-

sensitive cluster until this cluster represents a bandwidth between 1/12 and 1/4.

2.5.4 Prefetch-Aware Schedulers

Also, some work has appeared that studies the interaction of different parts of the chip

like caches or prefetchers and the memory controllers and proposes a coordinated control

between them. Prefetchers are a very important part in many existing processors and

contribute significantly to reduce miss latencies. Moreover, the usage of prefetchers has a

great impact in the memory system usage and access patterns. McKee et al. [90] show that

prefetching blocks in streams can reduce the row alternation and increase the row hit rate.

Prefetching, however, if not done correctly, also can increase unnecessarily the pressure

in the memory system degrading the overall performance. Therefore, several works have

studied the interaction between prefetchers and memory controllers and have proposed

techniques to optimize their interaction.

Ebrahimi et al. [31] show that prefetchers can cause a significant interference to other

cores and, therefore, need to be dynamically adjusted in a coordinated way. They propose

the Hierarchical Prefetcher Aggressiveness Control (HPAC) composed of local and global

prefetch control structures. Local control adjusts the aggressiveness at each node to maxi-

mize the performance of that core as many prefetchers. Global control, on the other hand,

monitors the inter-core interference and overrides local decisions if necessary to maximize

the overall system performance and bandwidth efficiency.

27

2. BACKGROUND AND MOTIVATION

Lin et al. [77] also study the influence of prefetchers and propose a memory controller

with two priorities, high for demand requests and low for prefetch requests. This technique

allows to schedule prefetches only during idle cycles and do not harm the overall latency of

demand requests.

Always prioritizing demand requests over prefetch requests, however, can degrade per-

formance in some cases since if these prefetches are useful they can reduce the number

of demand misses. Srinath et al. [116] realized of this fact and proposed a prefetcher

to dynamically adapt the aggressiveness of prefetchers but without considering the mem-

ory controller. Later, this idea was exported to the memory controller with the Prefetch-

Aware DRAM Controller (PADC) [70]. This technique proposes the usage of three com-

ponents, an Adaptive Prefetch Scheduling (APS), an Adaptive Prefetch Dropping (APD)

unit and a prefetch accuracy monitoring system. Every core measures over a certain

time interval the accuracy of its prefetches and then this information is used by the APS

and APD in the memory controller. The APS is responsible of setting the priority of de-

mand/prefetch requests based on the prefetch accuracy estimated for each core. This

prioritization gives higher priority to useful prefetches and demand requests and issues the

rest of the prefetches only during idle cycles.

Lee et al. [71], on the other hand, propose a Bank-Level Parallelism aware prefetcher

(BAPI) and scheduler (BPMRI). Since banks can operate concurrently, the best way of

granting a continuous amount of data to the bus is to maximize the bank parallelism of

requests. The proposed prefetcher prioritizes requests to different banks over requests to

the same bank While prioritizing requests to different banks it is possible to increase the

memory-level parallelism, this prioritization also to reduces the row locality that determines

the overall row hit rate. In uniprogrammed configurations it may not affect significantly

because no other requests arrive to the banks and the used rows remain active. In mul-

tiprogrammed environments, however, this configuration encourages row alternation and,

therefore, a reduction of the row hit rate which greatly impacts in the overall performance

and energy consumption of DRAMs.

2.5.5 Power/Area-Aware Schedulers

In addition to performance and fairness, memory controllers and DRAM memories also

are limited by energy and area constraints. DRAM power in modern server systems can

account for 30% of total system power [8]. Reordering mechanisms in the memory con-

troller add a significant complexity to the design which increases the required area and

28

2.5 DRAM Bank Schedulers for multicore processors

energy of the system. Therefore, several techniques have appeared to improve these lim-

itations. Extensive work has been done in reducing the energy consumption in memories

but mostly focused in modifying the DRAM or the data allocation and not specifically in the

bank scheduler.

Lebeck et al. [69] propose a hardware/software approach to reduce the memory power

consumption. They propose a system with independent chip management, allowing the

memory controller to select different power modes for each chip. DRAM power modes are

active, standby, nap and powerdown and each of them has different latencies and energy

consumptions. In detail, they propose a power aware page allocation which clusters appli-

cation’s pages to the minimum number of DRAM chips, therefore, allowing the other chips

to be switched to low power modes. The proposed dynamic mechanism measures the time

between accesses to a chip for transitioning to lower power states. If a chip is not accessed

for a threshold amount of time it transitions to the next lower power state. This mechanism

can achieve significant savings in power consumption but is tied to an independent chip

management. Conventional DRAMs, however, generally require multiple chips to achieve

high bandwidth. Therefore, the application of this technique would sacrifice this bandwidth

in order to reduce energy consumption.

And finally, Yuan et al. [137] have focused on reducing the complexity of DRAM sched-

ulers. This study is focused in GPGPUs and the fact that out-of-order memory schedulers

incur in a significant area overhead. This technique advocates for a simplification of the

memory scheduler by using a simple in-order scheduler and use a memory-aware inter-

connect. GPUs have memory access patterns with high locality but requests are inter-

leaved in the interconnect, leading to a reduction in the row hit rate. This technique uses

memory-aware routers and banked controllers to keep the row locality and avoid complex

schedulers.

2.5.6 Throughput-Fairness Trade-off

Memory schedulers are limited by the trade-off of providing the maximum throughput or any

kind of fairness or performance isolation. Reordering in the bank queues is done selecting

the request with highest priority. Priorities are calculated concatenating different parameters

depending on the type of scheduler. Figure 2.12 shows an example of how the request

priority is calculated for the FR-FCFS scheduler, the PAR-BS [98], the ATLAS [63] and the

TCM [64] schedulers.

29

2. BACKGROUND AND MOTIVATION

Request ID
(log2NumBankQueueEntries bits)

Thread-rank
(log2NumThreads bits)

Row Hit
(1 bit)

Marked
(1 bit)

Request ID
(log2NumBankQueueEntries bits)

Row Hit
(1 bit)

Request ID
(log2NumBankQueueEntries bits)

Thread-rank
(log2NumThreads bits)

Row Hit
(1 bit)

FR-FCFS

PAR-BS

TCM

LSBMSB

LowHigh Priority

Request ID
(log2NumBankQueueEntries bits)

LAS-rank
(log2NumThreads bits)

Row Hit
(1 bit)

TH
(1 bit) ATLAS

Figure 2.12: Priority calculation for FR-FCFS, PAR-BS and TRB-SP.

Scheduling Example

Figure 2.13 shows an example of how the different scheduling priorities work. This example

does not capture all the details considered in the presented techniques but allows to see

the tradeoffs between throughput and fairness prioritization. We assume two threads (A

and B), each of them always accessing the same row and that threads are stalled until the

first two requests are serviced. For each configuration we can see on the top the requests

stored in the bank queue and on the bottom the requests issued to the DRAM. We also

assume for the TCM configuration that thread B is classified in the latency-sensitive cluster.

In the ATLAS case we would have the same behavior since it would be a thread with low

attained service and, therefore, with high rank.

In the first example we can see the memory scheduling of a First-come-first-serve

(FCFS) scheduler where no reordering is produced. This technique is very simple and

easy to implement but is inefficient since it does not take advantage of the active rows.

Therefore, it is possible to see that it is the technique with worse memory throughput since

it requires the maximum amount of time to complete the requests. In addition, the unstalling

time of both processors is very high.

On the other hand, FR-FCFS is the technique that achieves the highest memory through-

put. This is because it prioritizes requests if there is a row hit, saving time in precharges

and activations. This technique however is not fair and in some cases can stall a request

from a different thread for a long time if multiple requests to the active row arrive. This is

the case of processor B that has to wait until cycle number 10 to unstall.

This problem is solved in PAR-BS which prioritizes fairness. The example shows how

requests are grouped in a batch at the beginning and how requests from threads with fewer

30

2.5 DRAM Bank Schedulers for multicore processors

PAR-BS

A1

B1

B2

A2

B1

B2

A2

B1

B2

A2

A3
A4

Trp Trcd A1

B1
B2

A2

A3

A4

A2

B1

B2

A3

A4

B2

A3

A3

A4

A4

B2

Trp Trcd B2B1

Marked

Requests

Time

B3 Trp Trcd

B1

B2

B3A3

A4

B1

A3

A4

A3

A4

A3

A4

A4

Issued Req

A4 A4

Proc A Stall Execute

Proc B Stall Execute

B3

FR-FCFS

A1

B1

B2

A2

B1
B2

A2

B1
B2

A2

A3
A4

Trp Trcd A1

B1
B2

A2

A3

A4

A2

B1

B2

A3

A4

B1

B2

A3

A4

B1

B2

A4

B2

B3

B2

Trp Trcd

B2 B3

B3B1 B2

B3B3

Time

Issued Req

Bank

queue

Proc A Stall Execute

Proc B Stall Execute

B3

FCFS

A1

B1

B2

A2

B1
B2

B3A2

B1
B2

A2

A3
A4

Trp Trcd A1

B1
B2

A2

A3

A4

A2

B1

B2

A3

A4

B1

B2

A3

B3

A4

B2

A4

B3

B3

Trp Trcd B3B1 B2

B3B3

Time

Issued Req

A4A4A4

A3

A3

A3 A4

A4

A2

A3

A2 A2

Proc A Stall Execute

Proc B Stall Execute

TCM

A1

B1

B2

B3

A2

A1
B2

B3

A2

A1
B2

A2

A3
A4

Trp Trcd B1

A1
B2

A2

A3

A4

A2

A1

A3

A4

A3

A4

A4

A2

Trp Trcd B3A1B2

A3

A2

Time

Issued Req

A4

A4A4

A3A3A3

A4A4

A2

A3A2

A2

Proc A Stall Ex.

Proc B Stall Execute

Trp Trcd Trp Trp

A4

A3

A3

A4A4

A3 A3 A4A2 A2

ATLAS

B3

Trp Trcd Trp Trcd

A4A3 A3A2

t=4 t=13t=4 t=8

t=4 t=10t=7 t=10

Figure 2.13: Scheduling example.

requests are given priority. Therefore, this technique allows to unstall both processors with

the minimum amount of time. Batching, however, does not allow new requests to advance

those within a batch even if they are to the active row. This example benefits this technique

because when the second batch is created B3 is advanced thanks to be the thread with

less requests and it finds the row already active. This may not be the case and it would

imply extra row precharges and activations. Therefore, this technique has a smaller row hit

rate and memory throughput than FR-FCFS in exchange of a more fair system.

Finally, TCM shows a memory throughput like the FCFS policy. This behavior, however,

is not representative of the long term usage of this technique but allows to see the prior-

itization in an interesting time of the execution. Therefore, although in this example TCM

seems worse than FCFS, in the long term it is going to behave better. In TCM, any request

from the latency-sensitive cluster forces the activation of the corresponding row without pri-

oritizing requests to the active row. This can lead in some cases to a reduced row hit rate

and lower memory throughput as in this section of the execution. Requests from processor

B, however, are in the latency-sensitive cluster and represent a small part of the overall

requests. Therefore, for the most part of the execution requests are going to be prioritized

31

2. BACKGROUND AND MOTIVATION

in a FR-FCFS fashion. On the other hand, this technique is able to be the first to retrieve the

data for what is considered a latency sensitive cluster. This lower latency for threads with a

small number of requests allows to have a higher system throughput in the long term.

2.6 Progress beyond the state-of-the-art

The advent of chip multiprocessors in the processor market over the last few years and

research projects like Intel’s Tera-scale [127] processor or Intel’s Single Chip Cloud Com-

puter [52] show that the number of cores per chip is going to increase in the future. These

configurations must make an efficient use of the growing silicon real estate and try to take

advantage of the existing parallelism of applications. Server and high-end applications are

the most benefited from these platforms and it is also expected that future desktop applica-

tions for recognition, mining and synthesis [29] are going to require a high number of cores.

These architectures are going to exacerbate existing challenges such as power dissipation,

wire delays and off-chip memory bandwidth. In this environment, a power and performance

optimized memory hierarchy is crucial. Such configuration must minimize off-chip misses

by optimizing on-chip memory usage and also reduce miss latency by placing data close to

the requester.

As we have seen in this chapter, there is a wide range of organizations for the memory

hierarchy of chip multiprocessors. The selection of one solution is always determined by

the physical limitations of the fabrication process used and the requirements of the system

in terms of performance, energy-efficiency and performance isolation. We have focused

on the optimization of two different parts of the memory hierarchy; cache organization and

DRAM management.

2.6.1 Cache organization

Existing solutions for organizing on-chip caches have a main limitation to be used in chip

multiprocessors with a high number of cores; the scalability. Most of the systems use

centralized structures to manage the storage resources creating possible bottlenecks or

are managed by software increasing the programming complexity. In addition, most of the

proposed solutions do not take advantage of the heterogeneous nature of applications and

are not able to redistribute resources depending on the application requirements. Therefore,

one of the objectives of this thesis has been to design and evaluate new organizations of

the memory hierarchy which optimize the cache usage while avoiding centralized structures

32

2.6 Progress beyond the state-of-the-art

that may hinder the scalability of future CMPs. Such organizations must be energy-efficient

and able to dynamically adapt to the execution environment.

2.6.2 DRAM management

In the DRAM management part of the memory hierarchy there are also many optimization

opportunities.

As we have seen bank arbitration in the memory controller is an open topic that tries to

fairly distribute memory bandwidth among threads. The trade-off between memory through-

put and fairness shows a need of new organizations able to deal with the memory access

patterns generated by multicore architectures. Therefore, in the second part of this thesis

we have studied in detail the behavior of the memory controller under multiprogrammed

environments and proposed solutions for the existing bottlenecks.

33

2. BACKGROUND AND MOTIVATION

34

Chapter 3

Methodology

3.1 Simulation Infrastructure

All the techniques presented in this thesis have been evaluated with Simics [85], a full-

system execution-driven simulator extended with the GEMS [88] toolset that provides a

detailed memory hierarchy model. In addition, we have added a power model to the simu-

lator in order to evaluate the energy consumption of Cpus, caches, interconnection network

and DRAM memories.

Workloads

(SPEC OMP2001 CPU2006)

OS (Sun Solaris 9)

Simics

(Functional simulation)

GEMS Ruby

Memory system

timing

GEMS Opal

OoO Processor

timing

Figure 3.1: Simulation infrastructure.

Figure 3.1 shows the simulation infrastructure. Since it is a full-system simulator, all the

evaluated applications have been executed on top of Sun Solaris 9. The GEMS simulator is

divided in two main parts; Ruby and Opal. Ruby provides a timing for all memory requests

35

3. METHODOLOGY

Parameter Value
Number Processors 16
Instr Window/ROB 16/48 entries
Branch Predictor YAGS

Block size 64 bytes
L1 I/D Cache 16 KB, 4-way
L2 Cache 256 KB, 8-way
DCE Size 8192 entries

Network Type Mesh with 2 VNC
Hop Latency 3 cycles
Link BW 16 bytes/cycle
Memory Bus Latency 250 cycles

Table 3.1: Configuration Parameters

Parameter Value
Number Memory Controllers 4
Number of channels 4
Data bus width 64 bits
Data bus frequency 1333 MHz
Off-chip BW 42.6 GB/s

Memory Capacity 4 x 1 Gb
Memory Clock Speed 667 MHz
Memory Speed Grade -15
Number of memory banks 8 per DIMM

Table 3.2: Memory Configuration Parameters

and simulates the whole memory hierarchy including caches and the interconnection net-

work. On the other hand, Opal provides the timing for all the processors and simulates an

Out-of-Order processor.

Table 3.1 shows the values for the most important configuration parameters for all the

evaluations unless a different configuration is stated. Our configuration uses simple cores

with small primary caches to improve the aggregate thread throughput by a high number of

processors [28].

For the evaluation of the memory controller techniques a detailed memory controller and

DRAM memory model has been added including a power model based on the Micron DDR3

36

3.1 Simulation Infrastructure

Parameter Value
Num Processors 16
Instr Window/ROB 16/48 entries
Branch Predictor YAGS
Technology 70 nm
Frequency 4 GHz
Voltage 1.1 V

Block size 64 bytes
L1 I/D Cache 16 KB, 4-way
L2 Cache 256 KB, 8-way
DCE Size 8192 entries
Prefetcher Streams 32 per MC
Stream entries 8

Parameter Value
Network Type Mesh with 2 VNC
Hop Latency 3 cycles
Link BW 16 bytes/cycle

Num Memory Controllers 4
Num of channels 4
Data bus width 64 bits
Data bus frequency 5333 MHz
Off-chip BW 170.4 GB/s

Memory Capacity 4 x 1 Gb
Memory Clock Speed 667 MHz
Memory Speed Grade -15
Num of memory banks 8 per DIMM

Table 3.3: Configuration Parameters

energy requirements [92]. Static power and area of the Row Cache has been evaluated with

Cacti [123]. Table 3.2 shows the configuration values of the memory controller and off-chip

bus.

Symbol Parameter Value
TRCD Row to Column command Delay 10 cycles (15ns)
TRP Row Precharge time 10 cycles (15ns)
TCL Column access strobe Latency 10 cycles (15ns)
TWR Write Recovery time 10 cycles (15ns)
TRAS Row Access Strobe 24 cycles (36ns)
TRC Row Cycle time 34 cycles (51ns)
TRRD Row activation to Row activation Delay 4 cycles (6ns)
TFAW Four bank Activation Window 20 cycles (30ns)
TRFC Refresh Cycle time 74 cycles (111ns)

Table 3.4: Memory Timing Parameters [91]

In the detailed memory model DRAM parameters have been extracted from a com-

mercial memory [91]. Table 3.4 shows the values of the delays for the different memory

operations.

37

3. METHODOLOGY

3.1.1 Metrics

To evaluate the proposed techniques we have used as a performance metric the number of

Instructions per Cycle (IPC). This metric is widely used in the microarchitecture community

and allows to measure the speed of the execution by dividing work by time. It also allows

to compare the performance of executions that have lasted a different number of cycles or

instructions. Similarly, most of the metrics used to evaluate the proposed techniques have

been divided by the number of instructions executed in order to compare the usage of a

certain resource with different number of executed instructions.

Energy efficiency has been measured in MIPS3/W or the ED2 product which are equiv-

alent. The energy x delay2 metric is the most appropriate metric for high performance

computers according to Brooks et al. [15] and allows a voltage-and-frequency invariant

power-performance characterization. Therefore, improvements seen with this metric are

not achievable through voltage or frequency scaling.

In the second part of the thesis we present some performance isolation oriented tech-

niques which require some different metrics to estimate the system fairness. System

throughput in this case has been measured using Weighted speedup [112] and normal-

ized performance with respect to the baseline configuration, a FR-FCFS scheduler.

W.Speedup =
N∑
i=0

(
IPCi

IPCFR−FCFS
i

)
In order to measure the performance isolation in the memory system we have used

two different metrics, the average memory latency of each application and its standard

deviation. These metrics have been computed individually for each benchmark from all the

executions with other applications. The standard deviation allows to see if the execution in

conjunction with very demanding applications degrades the memory latency for each of the

evaluated benchmarks.

3.2 Power Model

Power consumption reduction is a very important issue in current computer architectures.

From high-end servers to laptops it is desirable to reduce the power density and the overall

energy consumed. High-end servers require a small power consumption to reduce the

energy budget of companies and portable devices like laptops need to use as less energy

as possible to increase the battery lifetime. In all cases, a reduction in the energy density

38

3.2 Power Model

allows lower operating temperatures that yield a higher reliability and also simpler cooling

mechanisms. Therefore, we see that novel improvements in computer architecture must

focus not only on performance; energy consumption must be also taken into account.

Therefore, in this thesis an architectural-level power model has been added to the exist-

ing simulator to allow the characterization of the power consumption in the network and the

memory hierarchy. The model is derived from Orion [132] for modeling the buffers, cross-

bars, arbiters and links with some improvements in the router models. We have estimated

the capacitances of all this components taking the technology parameters from Cacti [123].

Also, we have used Cacti to calculate the dynamic and static energy consumption of all

the caches. And finally, the DRAM power model has been extracted from Micron power

data [92].

The implemented power model has been validated against data of real multiprocessors.

We have compared our implementation against power numbers of the MIT Raw chip multi-

processor [61] and the ASIC design of Mullins [96]. Validation results show a relative error

of about 10%. We also include a power estimation for the cores based on power values

found for similar configurations in the literature [94].

In the following sections we explain how the dynamic and static energy consumption is

calculated in the implemented power model.

3.2.1 Power Calculation Methods

3.2.2 Dynamic Power

In all digital circuits the dynamic power dissipation is calculated based on the supply voltage,

the load capacitance and the activity of the measured component.

P = aCLV
2
ddf

Therefore, the energy consumption for a given logic is:

E = CLV
2
ddP0−>1

Where C is the load capacitance , V the supply voltage and P the probability that the

device consumes energy. The implemented power model calculates the capacity for every

logic element and the interconnects with Cacti functions using the transistor sizes. Dynamic

consumption is only produced when the load capacitance is charged; this is when the stud-

ied node changes from state 0 to 1. In our power model multiple activity counters keep track

39

3. METHODOLOGY

Parameter Value
Technology (λ) 70 nm
Frequency 4 GHz
Voltage 1.1 V

L1 Avg Temperature 75 ◦C

L2 Avg Temperature 60 ◦C

Buffers Avg Temperature 60 ◦C

Inter-node distance 4 mm
Intra-node distance 1 mm

Table 3.5: Power related configuration parameters

of the activity and calculate the overall power. Whenever it has been necessary to compute

the hamming distance between two consecutive blocks of data we have considered a value

of 0.5.

3.2.3 Static Power

Leakage power has been increasing exponentially with technology and is one of the ma-

jor contributors to the total power dissipation in current microprocessors. Cacti 4 imple-

ments the transistor level model proposed by Zhang et al. [139] and also implemented in

eCacti [86]. This model is shown to be accurate and allows to evaluate the effect of vari-

ations in temperature and supply voltage. Leakage current is calculated with the following

equation:

ILkg = µ0COx
W

L
eb(Vdd−Vdd0)v2t

(
1− e

−Vdd
vt

)
e

−Vth−Voff
nvt

Most of the equation, however only depends on the technology and supply voltage which

is constant. Therefore, for a given temperature and transistor length (L) we can calculate the

leakage of a transistor with aspect ratio 1 and then the leakage can be directly calculated

for each transistor by simply multiplying by the assigned width value.

ILkg = WIlkg1(T)

We have evaluated the leakage power for all the data structures with Cacti using the

voltage and operation temperature provided in Table 3.5 and added the resulting energy

consumption to the power model.

40

3.2 Power Model

Cell

TPass

WL

BL BL

Figure 3.2: Typical structure of a 6T Memory Cell.

3.2.4 Cache

For calculating cache power consumption an interface has been implemented to allow com-

munication between the timing simulator and Cacti [123]. Our implementation allows the

simulator automatically calculate the power of the different L1 and L2 caches with the pa-

rameters given in the simulator configuration file and then calculate the access energy and

the leakage power. Cacti is a well known program that allows to calculate the area, delay

and power consumption of a given cache configuration. Cacti 4 allows simulating caches

with technologies up to 70 nm and uses 6T memory cells like the one depicted in Figure

3.2. Technology parameters are derived from scaling the values of the 0.8 um process and

adapted through ITRS projections [7].

The cache is divided into seven main components for which the delay, area and power

consumption is estimated and then the global values are calculated combining them. These

main cache parts are the decoder, wordlines, bitlines, sense amplifiers, comparators, mul-

tiplexer drivers and output drivers. Cacti gives an estimation of the dynamic and static

energy for each of these components and also the overall energy for a read or write oper-

ation. Then we combine this information with the activity counters introduced in the timing

simulator and we obtain the total power consumption.

3.2.5 Network

This architectural-level model calculates power consumption in the same way that Cacti

does. Load capacitances are calculated for each component and then dynamic power is

derived from them and the activity counters. We have calculated the energy consumption

of buffers, routers and interconnect and added activity counters to the simulator in order to

calculate the overall network power.

41

3. METHODOLOGY

Read

Write

6T Mem Cell
Bitlines

Wordlinesd dw b Buffer

entries

1
2

3

B

1 2 3 F
Bits/EntryPre-charging

transistor

Figure 3.3: Buffer structure.

Buffers

For the input buffers of the network, a common 6T memory cell has been modeled, however

it has 8 transistors because it has one write and one read port. Figure 3.3 shows the struc-

ture of a buffer bit. Energy is calculated in the same way as in the Orion power model [132]

and transistor sizes are shown in Table 3.6.

Symbol Parameter Value
Tinv Inverter Transistor 12λ (P) 6λ (N)
Tpr Pass Transistor connecting 10λ (N)

read ports and memory cells
Tpw Pass Transistor connecting 5λ (N)

write ports and memory cells
dw Wordline spacing 15λ
db Bitline spacing 15λ
hcell Memory cell width 40λ
wcell Memory cell height 20λ

Table 3.6: Buffer transistor sizes

42

3.2 Power Model

Input 1

Input 2

Input N

Bit 1

Bit N

Bit 2

Output 1 Output 2 Output N

Figure 3.4: Crossbar structure.

Routers

Calculations of the router energy are divided into its main components, the crossbar inter-

connect (EXbar), the arbiter (EArb) and the routing table (Ert).

Erouter = EXbar + EArb + Ert

The crossbar is the element that allows connecting an input to an output. A matrix

crossbar with transmission gate connectors was implemented in the simulator like the one

depicted in Figure 3.4.

The arbiter is the part of the router that checks the priority of all the messages in the

queues and decides which one is going to cross the crossbar the next cycle according to a

given policy. In the implemented model each virtual network (VNC) has a different priority

which is fixed and higher for the response message VNC to avoid deadlocks. On the other

hand, inputs follow a round-robin policy. Both structures can be seen in Figure 3.5.

The energy consumption of these parts has been modeled as in Orion. In addition,

we have added a model for the Routing Table. The routing table is the part of the router

that has the information of the possible outputs for a given message. Message address is

compared with a destination vector for each output of the router and one or more matches

are produced. Figure 3.6 shows the structure of the modeled routing table.

The Routing Table energy is then derived from:

• 3 Input OR gate (Puts together signals of addresses to a same node): Always only

one is activated and the previous one deactivated.

43

3. METHODOLOGY

Ck

Req X-

Req X+

Req Y-

Req Y+

Req In

Gr X-

Gr X+

Gr Y-

Gr Y+

Gr In

Round-Robin Next Msg Arbiter

Req VNC0 Gr VNC0

Gr VNC1

Gr VNC2

Req X-

Req VNC1

Req VNC2

Fixed priority VNC arbiter

Figure 3.5: Arbiter structure.

Symbol Parameter Value
Tconn Crossbar Connector Transistor 20λ (P) 10λ (N)
wt Crossbar wire pitch 15λ (N)
Tarb Arbiter and RT Transistor 76λ (P) 13.5λ (N)

Table 3.7: Router transistor sizes

• Hardware Routing Table (Implemented with 2 Input OR gates): The number of gates

increases significantly with the number of nodes. However only the ones associated

to the activated outputs are used.

Modeling assumption: The number of activated OR gates is approximated to NumNodes/4.

However it is bigger in routers with less number of outputs than the considered for each con-

figuration. It is assumed also that only two bits change of state every cycle (Old and new

destination) despite the destination may be the same. Therefore, the total capacitance of

the routing table is then:

Crt = 2

(
Ca(TOR3) +

N

4
Ca(TOR2)

)
Where Ca represents the sum of the gate and the drain capacitances of the transistors.

Transistor sizes for router components can be found Table 3.7

Interconnect

Finally, we have also added the power consumption due to the interconnects. The inter-

connection network capacitance has two main components; the wire capacitance and the

44

3.2 Power Model

L1 CachesL2 CachesMemories

Destination (L1 Num 2)

Routing Table Entries

Output mach

Output mach

Output 1

Output 2

Output 3

0

3 2

1

Destination

Origin
1

2

3

0 0 0 1 0 0 0 1 0 0 0 1

0 01 1 0 01 1 0 01 1

1 1 0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 01

Figure 3.6: Routing Table structure.

drivers capacitance. Since interconnects between nodes are very long, the load capaci-

tance is very high. A common technique to reduce the delay of this lines is to use several

drivers.

To calculate the number of drivers first we need to know the relative Fanout, this is the

load capacitance (CL) respect the input capacitance of a unit inverter.

f =
CL

Cg(Tinv)

If we put several drivers in cascade with an optimal relative fanout between them we can

reduce the delay. This optimal relative fanout is proved to be e if we do not have parasitic

delays and we can calculate it for different number of drivers (n) with the following formula:

f = n

√
CL

C1

The delay of all the wire is going to be:

td = n (ftel)

Checking the delay for different number of drivers we can get the optimal configuration.

Transistor sizes are going to be:

W1 = f 0,W2 = f 1,W3 = f 2...Wn = fn−1

45

3. METHODOLOGY

So the interconnection capacitance for each wire is:

Cw = Cwire(L) +
n∑

i=0

(Cg(TWi) + Cd(TWi))

We have found minimal delay using 4 drivers for local interconnects and 6 drivers for

node-to-node interconnects.

3.3 Benchmarks and Characterization

An important part in any evaluation of new microarchitecture improvements are the appli-

cations that are used to prove the usefulness of these improvements. These applications

must be real and be representative of the behavior of most common applications.

In this section, we present the benchmarks that have been used in this thesis with an

evaluation of their main characteristics. All the applications used in this thesis are from

the Standard Performance Evaluation Corporation, a non-profit organization that aims to

"produce, establish, maintain and endorse a standardized set" of performance benchmarks

for computers. We have used two main sets; the SPEC OMP 2001 and the SPEC CPU

2006.

3.3.1 SPEC OMP2001 and SPEC CPU2006

The SPEC OMP2001 benchmark set is a suite of multithreaded programs in Fortran and C

which have been made parallel using the OpenMP API. These applications are representa-

tive of High Performance Computing (HPC) applications and threads share data in various

degrees. We selected these applications because of the different cache requirements which

allows to test cache organizations with different usage conditions.

A more detailed description can be found in the evaluation of Aslot et al. [5]. Based on

this study the simulation points for each application were found and all simulations have

been done using them as starting point. Table 3.8 shows the details for each benchmark.

To have also a set of uniprogrammed applications from a wider range of fields the

SPEC CPU2006 [40] benchmark set also has been used. Applications from this set are

single threaded and represent a more broader set of computing applications. Sharing in

this benchmark set is almost nonexistent since every thread has an independent memory

space. However, they are useful in order to stress the memory system and to allow the

evaluation of applications not related to HPC. The high memory requirements of some of

46

3.3 Benchmarks and Characterization

Name File Function Line #
ammp rectmm.c mmfvupdate 341

applu ssor.f ssor 122

apsi apsi.f run 1038

art scanner.c scanreco 1545

equake quake.c smvp 1270

fma3d platq.f90 platq_internal_forces 259

gafort gafort.f90 shuffle 1089

galgel sysnsN.f90 sysnsn 23

mgrid mgrid.f resid 360

swim swim.f calc1 276

wupwise muldoe.f muldoe 63

Table 3.8: SPEC OMP2001 evaluated starting point

these applications are specially useful to stress the memory controller in the second part of

this thesis.

Table 3.9 shows the starting simulation points derived from a detailed profiling of appli-

cations [134].

3.3.2 Benchmark set 1

Since one of the main motivations of this thesis is to optimize the cache usage, it is im-

portant to know the influence of last-level cache sizes for the different benchmarks. The

design of dynamic memory hierarchies requires the implementation of policies to distribute

cache resources. Applications can benefit from cache memory up to a certain point and the

allocation mechanism must know the individual needs of each of them.

In this section we study the behavior of applications in order to analyze the potential

performance benefit of reallocating cache resources. Therefore, all the SPEC OMP2001

applications were evaluated with different private L2 cache sizes ranging from 64KB to

1MB. Figure 3.7 shows the IPC, the speedups compared to the 256KB configuration and

the number of L2 cache misses per instruction. All the characterization was done with a 8

processor configuration running every application with 8 threads. It can be seen that most

of the applications do not scale very good for this region of the execution except for the

art benchmark which is able to have an IPC of more than 16. Regarding the sensitivity of

applications, we can divide them between sensitive and non-sensitive applications. Ammp,

47

3. METHODOLOGY

Name File Function Line #
400.perlbench regexec.c s_regmatch 2324

401.bzip2 decompress.c BZZ_decompress 235

403.gcc regmove.c reg_is_remote_constant_p 869

429.mcf pbeammp.c primal_bea_mpp 133

445.gobmk matchpat.c do_matchpat 229

456.hmmer fast_algorithms.c P7Viterbi 106

458.sjeng neval.c std_eval 405

462.libquantum gates.c quantum_toffoli 83

464.h264ref mv-search.c SetupFastFullPelSearch 327

471.omnetpp cmsgheap.cc c MessageHeap::shiftup 196

473.astar Way_.cpp wayobj::makebound2 53

483.xalancbmk ValueStore.cpp ValueStore::contains 267

410.bwaves block_solver.f mat_times_vec_ 166

433.milc m_mat_na.c mult_su3_na 17

434.zeusmp hsmoc.f hsmoc_ 594

435.gromacs innerf.f inl1130_ 3920

436.cactusADM StaggeredLeapFrog2.F bench_staggeredleapfrog2_ 301

437.leslie3d tml.f fluxk_ 1268

444.namd ComputeNonbondedUtil.C select 144

447.dealII dof_constraints.cc ConstraintMatrix::add_line 89

450.soplex ssvector.cc assign2productFull 978

453.povray spheres.cpp pov::Intersect_Sphere 281

454.calculix e_c3d.f e_c3d_ 129

459.GemsFDTD update.F90 updateE_homo_ 191

470.Lbm lbm.c LBM_performStreamCollide 180

481.wrf module_advect_em.F90 advect_scalar 2790

482.sphinx3 cont_mgau.c mgau_eval 591

Table 3.9: SPEC OMP2001 evaluated starting point

48

3.3 Benchmarks and Characterization

Figure 3.7: SPEC OMP Characterization.

mgrid, swim and wupwise are highly affected by the cache sizes while the others do not

change their performance significantly. Only in the case of applu and equake when the

cache size is 64KB have a big degradation in performance, probably because the working

set does not fit anymore in the cache. Finally, if we look at the number of L2 cache misses

we can see that is highly correlated with the sensitivity of applications to cache sizes. Ammp

is the application with a bigger impact in the reduction of cache misses when it reaches a

cache size of 1MB.

A common technique that is used to repartition cache resources is the column caching

technique [21]. Therefore, it is interesting to study the SpecOMP benchmarks for varying

number of ways and sizes. Figure 3.8 shows the evaluation of the SpecOMP benchmark set

49

3. METHODOLOGY

Figure 3.8: Spec OMP 2001 benchmark characteristics for different L2 sizes/associativity.

with 8 nodes, private 16kb-4way L1s and private L2s of varying size and associativity. Size

is incremented with the addition of extra ways to evaluate the benefits in way-partitioned

caches. Execution is started in each benchmark’s most important parallel regions once all

data structures are initialized. Three different parameters are shown in Figure 3.8; nor-

malized performance compared to the 8way 256kb configuration, number of misses per

instruction, and the sharing relation. Each row uses different graph scales to allow a bet-

ter clarity in application behavior variations. The sharing relation is the average number of

nodes that share a block before its eviction and indicates if threads have independent data

sets. Therefore, this parameter shows the potential savings in cache space a shared cache

would provide by reducing replication.

Previous studies of dynamic cache repartitioning [104] have divided applications in three

categories; low utility, high utility and saturating utility. However, after evaluating all applica-

tions we have detected that these categories do not consider the amount of sharing, which

is important for an efficient cache partitioning.

Therefore, we have divided the benchmarks into four categories:

Saturating Utility: These type of applications are characterized by having a small work-

ing set that fits in the cache. Therefore, granting more cache space to them has no impact

50

3.3 Benchmarks and Characterization

Type Benchmark

Saturating Utility Applu, Apsi, Art,
Equake, Fma3d

Low Utility Gafort, Galgel

Shared High Utility Ammp

Private High Utility Mgrid, Swim, Wupwise

Table 3.10: Benchmark Classification

on their performance. These applications are characterized by improving performance with

each increase of cache size until the working set fits in it. If extra cache space is provided,

performance is not affected (e.g. Equake).

Low Utility: This category is for benchmarks with low temporal locality that make an

intensive use of the memory hierarchy but do not have reuse. These applications are es-

pecially harmful for competing benchmarks that would benefit from more cache space.

They are characterized by not improving performance when we increase cache sizes (e.g.

Gafort).

Shared High Utility: In these applications, there are several threads that share a large

number of blocks. Therefore, to optimize cache usage replication should be reduced for

shared blocks reducing private regions. Replication in highly reused blocks, however, is still

granted by L1 caches. These applications are characterized by a high sharing (e.g. Ammp).

Private High Utility: Finally, Private High Utility applications are those that benefit from

larger levels of memory hierarchy but do not share data between threads. They are char-

acterized by always improving performance when cache size is increased and by low data

sharing among nodes (e.g. Swim).

During the evaluation of cache organizations we have used a set of multiprogrammed

configurations with benchmarks from each category to study the behavior of our dynamic

cache organizations under all possible combinations. Table 3.10 shows the classification

of the SpecOMP benchmarks in the previously defined categories with tested benchmarks

in bold. The usage of a multiprogrammed benchmark set allows to see the influence of

memory intensive benchmarks over applications with lower cache requirements.

3.3.3 Prefetch Influence in memory access patterns

In the last section of this thesis, several techniques have been evaluated to improve the

behavior of the memory controller in multiprogrammed environments. As we have seen

51

3. METHODOLOGY

Figure 3.9: Request Behavior in Bank 0 in a multiprogrammed environment

from the memory organization in chapter 2, it is very important to achieve the maximum hit

rate to minimize the number of row activations and, therefore, reduce access latency and

energy consumption. In configurations running a single application the usage of a FR-FCFS

policy achieves a reasonably good row hit rate [108]. The chip multiprocessor consolidation,

however, has brought new execution environments where this solution is insufficient.

Figure 3.9 shows the requests received in Bank 0 of a multiprogrammed execution (over

a short sample). The first plot shows the row numbers of requests in arrival order and

the second one the order in which these requests are finally issued. It can be seen that,

although FR-FCFS reorders some of the requests (for ex. Req 7 is issued before Req 6),

we can see an alternation in the rows being accessed; leaving room for optimization. The

request reordering mechanism is not able to reorder more requests because, as can be

52

3.3 Benchmarks and Characterization

Figure 3.10: Row hit rate with and without prefetch.

seen in the last plot, the number of requests waiting in the buffer queue is small. This small

amount of requests is explained by the limited memory level parallelism of applications.

One way of improving row hits and reduce the row alternation is to use on-chip stream

prefetchers [57] to group requests. Stream prefetchers increase the MLP and do not inter-

fere with caches. Therefore, we have evaluated the influence of stream prefetchers in the

memory controller.

Figure 3.101 shows how a the addition of 8-entry stream prefetchers in the memory

controller can significantly improve the row hit rate, by generating extra memory parallelism

and grouping requests. On average, row hit rate increases from 29.2% to 54.3%.

Figure 3.11 shows the performance improvement brought by a stream prefetcher [57]

integrated in the memory controller. Every prefetcher has 32 stream buffers of 16 entries

each. Two other configurations were also simulated to see the influence of the bus latency

in the overall performance. The first configuration (100Lat) adds 100 extra cycles to all

memory requests to see the sensitivity of applications to the extra latency brought by a more

saturated off-chip bus. In the opposite side, another configuration (Ideal16e) evaluates the

performance improvement brought by the prefetchers when prefetch requests do not use

the bus and have no extra latency due to bus contention.

In general it can be seen that those applications that benefit more from prefetching are

the ones that are more affected by an increased memory access latency. The second plot

of Figure 3.11 shows the prefetch accuracy of the stream prefetcher. This is the percentage

of prefetched blocks which are used.

Figure 3.12 shows the memory row hit rate, which depends on the amount of pending

requests that need to access to the same row. Prefetching greatly helps in all cases to

1Combination of two SPECCPU (4 copies of each) and one SPECOMP (with 8 threads) benchmarks.
Further details of the simulation environment can be found in Section 3.1.

53

3. METHODOLOGY

Figure 3.11: Prefetch influence on performance (Speedup and accuracy).

increase the hit rate by grouping requests together and shows that prefetching not only can

reduce the data access latency but also reduce the memory usage if the accuracy is high.

One important limitation of the evaluated applications is the limited memory level par-

allelism that they have. It can be seen in the second plot that stream prefetchers greatly

help to improve this parallelism, also allowing new request reordering mechanisms to be

proposed to improve memory performance.

Finally, the third plot of Figure 3.12 shows the amount of off-chip bandwidth which is

used. It must be noted that SPEC CPU applications only run one thread while SPEC OMP

run 16 threads. This explains the much higher bandwidth used. Prefetching in some cases

54

3.3 Benchmarks and Characterization

Figure 3.12: Prefetch influence on performance (Row hit rate, MLP and off-chip bandwidth).

55

3. METHODOLOGY

Figure 3.13: Spec OMP2001 and CPU2006 characterization without prefetch.

doubles the amount of data transfered and, therefore, must be used carefully to avoid higher

access latencies if the accuracy is low.

Figure 3.13 shows the SPECOMP2001 and SPECCPU2006 application characteriza-

tion without prefetch. The aforementioned reduced memory level parallelism of applications

can be seen since the maximum from all applications is less than 1.6 on average.

Due to these limitations it is important to add on-chip prefetchers to evaluate DRAM

memory management techniques since they already solve some of the problems of mul-

tiprogrammed environments. Therefore, we have used as baseline a configuration with

stream prefetchers in the memory controller.

56

3.3 Benchmarks and Characterization

3.3.4 Benchmark set 2

To emulate the multiprogrammed execution environment of current chip multiprocessors we

have used a mix of single and multi-threaded applications. Two multi-threaded applications

from the SPECOMP2001 workload set have been combined with single-threaded applica-

tions from the SPECCPU2006 workload set. All applications are simulated with reference

input sets. In each combination one SPECOMP2001 application is executed with 8 threads

in combination with two SPECCPU2006 applications, each of them running 4 copies with

independent input data.

Figure 3.14: Spec OMP2001 and CPU2006 classification with prefetch.

Figure 3.14 shows with a shaded area the region with more representative applications

executed with stream prefetchers. The addition of prefetchers significantly increases the

memory level parallelism to an average of 8 simultaneous requests, avoiding unsuitable

access patterns. From the shaded area, applications have been divided in 4 categories de-

pending on the number of off-chip misses (MPKI) and the memory level parallelism (MLP).

Figure 3.14 shows the division, which considers applications with more than 1 miss per

57

3. METHODOLOGY

1000 instructions to have a high number misses and to have a high MLP when the average

number of simultaneous requests is higher than 8. Then we have selected representative

applications from each category to combine them and have all types of applications repre-

sented. The evaluated applications are 459.GemsFDTD, Gafort, 450.Soplex, 456.hmmer,

444.namd and Ammp, which have been used in the evaluation of the proposed techniques.

These applications have been synchronized to the most significant execution regions

and after warming up the caches they have been executed for 50 million cycles (which

represents 400 million instructions on average).

58

Chapter 4

Distributed Cooperative Caching

4.1 Background and Motivation

As it has been shown in Chapter 2, traditional multiprocessors have mainly used two dif-

ferent ways of granting cache coherence, with snoop or with directory based schemes.

Directory based schemes need an extra level of indirection but have a better scalability and

can provide the best configuration for multiprocessors with a high number of cores. Since in

this thesis we have focused in the optimization of the cache hierarchy of large organizations,

we have considered directory-based systems more suitable.

Another important aspect when defining a memory hierarchy is the physical placement

of the storage resources. When designing the on-die L2 cache, two different alternatives

come up, private and shared caches. Logically-unified shared L2 cache provides a good

response for processors with a reduced number of cores because the global number of L2

misses is usually smaller and they make an efficient use of the available L2 cache space.

This is the most common organization for the last-level cache due to its simplicity and good

performance. However, for a higher number of cores this type of configuration generates a

bottleneck in centralized aggregate caches or produces a high demand on the interconnec-

tion network for distributed Non Uniform Cache Access (NUCA) architectures. The network

usage increase has three negative effects: it increases the overall power consumption, it

requires a network with higher bandwidth and it increases the miss latency. Private L2

caches, on the other hand, provide a uniform and usually lower latency since data is stored

in the local nodes. These configurations have the additional advantage of avoiding inter-

core cache conflicts. However, since not all threads running in the cores have the same

cache requirements, there is an inefficient use of L2 cache space, and these caches often

59

4. DISTRIBUTED COOPERATIVE CACHING

require a higher number of off-chip accesses with the inherent latency and power penaliza-

tions.

To find a compromise between these two solutions several proposals have appeared

that try to achieve the latency of private configurations and the low number of off-chip ac-

cesses of shared configurations [17, 23, 50, 104, 138]. One of the most interesting is

the Cooperative Caching framework [17]. This organization duplicates all cache tags in

a centralized coherence engine to allow block sharing between nodes and reduce off-chip

misses. Furthermore, it uses private L2 caches to allocate blocks closer to the requester

and reduce the L1 miss latency. This technique, however, does not have an efficient use of

all the cache space so it also implements a forwarding mechanism for the evicted blocks.

This mechanism spills replaced blocks to other L2 caches to avoid future off-chip accesses.

This organization has two main limitations. First, the centralized structure of the repli-

cated tags becomes a bottleneck for a high number of nodes; and second, the coherence

engine -even if banked- may have a particular address in any of them. This means that all

banks must be accessed on each request and a high number of tags must be compared,

increasing the power consumption significantly for a system with many processors.

We propose the Distributed Cooperative Caching scheme in order to overcome the

power and scalability issues of the Cooperative Caching framework. We have redesigned

the coherence engine structure and its allocation mechanism to allow a distribution of the

replicated tags across the chip. Our allocation mechanism reduces the number of tags

checked on every request thus reducing the energy consumption. Another benefit of our

organization is the possibility of having a smaller number of replicated tags while the cen-

tralized Cooperative Caching requires a replica for every cache tag. In Cooperative Caching

the tag entry of a block that is shared by several caches is going to be allocated in all the

tag replicas of the cache entries. On the other hand, in our proposal only one entry is going

to be used for each block, making a more efficient use of space. We will show that our

organization gets an average performance improvement over the Cooperative Caching of

57% and a MIPS3/W relation improvement of 4.30x for a 32-core CMP thanks to a request

distribution and bottleneck avoidance

Furthermore, we study different power-efficient spilling policies to improve the efficiency

of the N-chance forwarding mechanism [44]. Compared to traditional random Spilling,

Distance-Aware Spilling technique provides an energy efficiency improvement (MIPS3/W)

of 16% on average, and a reduction of the network usage of 14% in a ring configuration

while increasing performance 6% for the multiprogrammed SpecOMP benchmark set. On

the other hand, the Selective Spilling technique is able to avoid most of the unnecessary

60

4.2 Distributed Cooperative Caching

reallocations and double the reuse of spilled blocks, reducing network traffic by an average

of 22%. A combination of both techniques allows to reduce the network usage by 30% on

average without degrading performance, which leads to an increase of the energy efficiency

of 9%.

4.2 Distributed Cooperative Caching

4.2.1 Cooperative Caching

Distributed Cooperative Caching is based on the Cooperative Caching (CC) framework [17]

proposed by Chang and Sohi. CMP Cooperative Caching tries to create a globally-managed,

"shared", aggregate on-chip cache with private caches. The main objectives of this config-

uration are to reduce the average miss latency by approaching the blocks to the local node,

to improve the cache utilization and to achieve as much performance isolation between

nodes as possible. The hardware requirements for this approach are a central directory

with a duplicate of all the L1 and L2 cache tags. This directory (Central Coherence Engine)

is the responsible for maintaining blocks coherent and to share the blocks between caches.

Figure 4.1 shows the memory configuration of this organization.

Central Coherence Engine

Main Memory

Bus

Interconnection

L2B
L1B

PB

L2A
L1A

PA

L2A Tags L2B Tags

L1A Tags L1B Tags

Figure 4.1: CC Memory Structure.

The working principle of this approach is that all the L2 misses are handled by the CCE

-which keeps a copy of all the tags. If a particular cache access misses in the local L2 and

the block is stored in another cache, the CCE is going to have a hit and the request will be

forwarded to the owner. Then the data is sent through a cache-to-cache transfer and the

CCE is acknowledged of the end of the transaction.

To be able to use efficiently the cache space, the cooperative caching also implements

the N-Chance Forwarding algorithm for replacements. Figure 4.2 shows the working prin-

61

4. DISTRIBUTED COOPERATIVE CACHING

L2A

CCE

L2B

1

2

CCE

3

4

Memory Memory

CCE

Memory

L2BL2A L2BL2A

L2 Repl

Replacement

request

N = 1

Last on-chip

copy

Spill request

Unblock

CCE entry
5

N = 0

Fwd data

Figure 4.2: Spilling Example.

ciple of this mechanism. When a block is evicted from an L2, the CCE requests the L2

to forward it to another cache if it is the last copy in the chip. To avoid infinite forwardings

a counter is set for each block. By default each block is forwarded N times before being

evicted from the chip and if the block is reused the counter is reset. To avoid a chain re-

action of replacements a spilled block is not allowed to trigger a subsequent spill. When

applied to CMP Cooperative Caching, N is set to 1 since a replication control is already em-

ployed and further spilling would degrade performance by evicting newer blocks. Therefore,

if the block of the example was evicted again from the L2, the CCE would send it back to

memory.

This approach, however, has some limitations that the Distributed Cooperative Caching

tries to solve. The first one is that a centralized directory presents important restrictions to

the scalability of the multiprocessor. The centralized nature of the coherence engine limits

the number of processors that can handle without creating a bottleneck and degrading the

performance. The second limitation of this configuration is the power consumption of the

centralized directory. The number of tags that must be checked on each request increases

with the number of nodes, raising also the overall power consumption. Making the CCE

scalable is somewhat challenging since the centralized version is already banked and does

not behave well for a high number of processors. In the next section, we will further discuss

these limitations and our suggested solutions.

4.2.2 The Distributed Cooperative Caching scheme

The Distributed Cooperative Caching (DCC) scheme is designed to solve the scaling issues

of the previous configuration by using distributed coherence engines that can be spread

62

4.2 Distributed Cooperative Caching

Main Memory

Bus

Interconnection

L2B
L1B

PB

L2A
L1A

PA

Distributed

Coherence

Engine

Tags
Distributed

Coherence

Engine

Figure 4.3: DCC Memory Structure.

across the nodes. This avoids bottlenecks and limits the number of tag checks that must be

done on each request.

In our approach, the Coherence Engine is partitioned into several Distributed Coherence

Engines (DCE) that are responsible for a portion of the address space. The number of

DCEs and the number of entries each one has does not depend on the cache sizes. Figure

5.6 shows the memory structure used in our proposal. Addresses in the Coherence Engines

are interleaved and every DCE entry stores which nodes are storing that block. On a local

L2 cache miss, the corresponding DCE for that address is accessed and if the cache entry

is found the request is redirected to the owner.

The organization of the directory in the Distributed Coherence Engine is completely

different to the one in the Cooperative Caching scheme. In the DCC framework, tags are

interleaved across the DCEs in order to distribute DCC requests across the network and

thus avoid bottlenecks. This distribution implies that, unlike the centralized configuration

that has a tag for each cache entry, tag entries are allocated just in one DCE depending

on its address. As a result, if the entries are not perfectly distributed in the address space,

we can have more entries in the caches than in a given DCE set. Because of that, it is

necessary to extend the coherence protocol to be able to handle the invalidation of cache

blocks due to DCE replacements.

Figure 4.4 shows the organization of the Coherence Engine for both Centralized and

Distributed versions of Cooperative Caching. We can see that the organization of the cen-

tralized version is formed by a unique structure that has the replicated tags distributed in

banks, each one representing a cache. In the DCC, we have an arbitrary number of Co-

herence Engines that store tags from all caches. We can also see in the figure that the

number of tags compared for every request is significantly smaller in the DCC scheme,

and this results in a reduced energy consumption. In the Distributed version the number of

63

4. DISTRIBUTED COOPERATIVE CACHING

L1 Tag

Array

L2 Tag

Array

P1 P2 P3 P4 P5 P6 P7 P8

DCE Tag

Arrays

CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8

AddressBlock BitsSet Bits

LSBMSB

AddressBlock BitsSet Bits

LSBMSB

CE Bits

Distributed Cooperative Caching

Tags compared per request

L1 + L2

Size

Independent

Size

Cooperative Caching

Independent # of CE

Figure 4.4: Directory structures.

checked tags depends on the associativity of the DCEs. On the other hand, for the Cen-

tralized version, the number of tags compared depends on the number of processors and

the associativity of their caches. This number increases with the number of nodes; making

this configuration suitable only for a CMP with a reduced number of processors. The exam-

ple of Figure 4.4 shows the Coherence Engines of an 8-core CMP with 4-way associative

caches. We can observe that for the centralized version 64 tags are compared while for the

distributed version only 4 are compared.

In addition to all these benefits, the Distributed Cooperative Caching also allows hard-

ware design reuse since its modular and scalable structure can be replicated as we add

more processors on a chip.

The hardware overhead of DCC compared to CC is the storage area used to keep track

of the sharers in each tag. DCEs use Full map directories (Dir-N), which require one bit

per sharer. The coherence state machine, in addition, requires 4 bits to maintain the DCE

state. This means that if we assume 32 processors and a total L2 of 8 MB (i.e. 256KB per

processor), the overhead per DCE would be 18KB. We believe the hardware overhead is

64

4.2 Distributed Cooperative Caching

L2A

CCE

L2B

DCE DCE

A4 A3 A2 A1 B4 B3 B2 B1

A4 A3 A2 A1 B4 B3 B2 B1

A4 A3 A2 A1 B4 B3 B2 B1

A4A3 A2A1 B4B3 B2B1

A5?

A1
1

2

A5

A1A5

CCE

A4 A3 A2 B4 B3 B2

A4 A3 A2 B4 B3 B2

A1

3

4

A5

A1A5

B5?

B5

B5

B2

Memory Memory

B2

CCE

B4 A6 B6 A3

B4 A6 B6 A3 B5

A1A5

A1A5

B5B2

Memory

B2

L2BL2A L2BL2A

Memory

After A6,B6

L2A L2B

A5?

1

A5

A1A5

3 2

DCE DCE

A4 A3 A2 B4 B3 B2

A4A3 A2A1 B4B3 B2

Memory

L2A L2B

4

A5

A1A5

6

5

DCE DCE

A4 A3 A6 B4 B3 B6 B5

A4A3 B6B4B3 A6B5

Memory

L2A L2B

A5

A5

After A6,B6

B5?

B5

B5

Cooperative Caching

Distributed Cooperative Caching

Figure 4.5: Working Example.

reasonable and we do not need to invalidate any sharer, reducing the protocol complexity.

This organization, however, may limit the scalability for CMPs with more processors. Partial

map directories may be an interesting solution for these configurations but are left for future

work.

The DCE replacement policy: an example

To show the benefits of the DCE tag replacement policy, Figure 4.5 demonstrates the work-

ing principle of the Centralized and the Distributed versions of Cooperative Caching.

The situation depicted shows the L2 caches and Coherence Engines of a system with

two nodes (A and B) for simplicity. It considers the situation of two threads, one per node,

that make an extensive use of their caches. It is also considered that node A always makes

requests slightly before than node B. Blocks in the cache are represented by the letter of

the requesting node and a number that indicates the time when that block was requested.

65

4. DISTRIBUTED COOPERATIVE CACHING

We start in a warmed-up situation where both caches are full to see how replacements are

handled.

In the upper part of the figure the behavior of the Centralized Cooperative Caching is

shown. Let’s suppose that node A makes a request for a new block (Action 1). In this case,

since the block is not in the local L2, the CCE is checked. Since the block is neither in any

other cache, memory is accessed. Block A5 is then sent to the requester (Action 2). Since

there is not enough space, block A1 is spilled to node B. Block B1 is evicted from the chip

since subsequent spillings are not allowed.

In the second request, node B asks also for a block to the CCE (Action 3). Request is

forwarded to memory that sends the block to the requester (Action 4). Since there is not

enough place, a replacement is done. The locally oldest block, B2, is spilled to node A;

evicting from the chip A2.

In the bottom part of Figure 4.5 the behavior of the Distributed Cooperative Caching

is depicted. As in the previous case block A5 is requested (Action 1), but now to the cor-

responding DCE. Since the block is not in any other cache, memory is accessed. In this

configuration, when the block is sent to the DCE it generates an eviction. In order to make

the example more interesting, although the result is the same, block B1 is replaced, invali-

dating the entry in the L2 (Action 2). Then the block is allocated in the corresponding DCE

and sent to the requesting node (Action 3). Since the cache is full, block A1 is spilled to

node B and is placed in the invalidated entry.

In the second request node B accesses also the DCE and memory asking for the block

(Action 4). When block B5 is allocated in the DCE, it triggers also another replacement. In

this case the oldest block of the set in the DCE is evicted (Action 5), this is A1. Finally B5 is

sent to cache B and allocated where the invalidated block was.

The right part of the figure shows the final state of caches after requesting blocks A6

and B6 for both configurations. It is clear from the result that in the distributed version

cache blocks are closer to the requesting node, improving access latency. We can also

see that the distributed version also keeps all the newer blocks in the cache, reducing the

number of off-chip accesses. The Distributed Cooperative Caching, however, does not

enforce actively a local allocation. In the DCC example cache blocks are closer to the

requesting node thanks to the replacement mechanism of the coherence engines, which

may have inherently data from all cores. Replacements in the coherence engine entries

evict oldest blocks avoiding them to be spilled when evicted, which would force an eviction

in the destination cache of a newer block. This effect, however, has a limited impact if

66

4.2 Distributed Cooperative Caching

coherence engines have a reasonable number of entries. Distance-Aware Spilling, on the

other hand, takes into account distances and enforces closer reallocations.

4.2.3 Differences between CC and DCC

The main differences between these proposals are:

• In the centralized version, tags are just a copy of their corresponding caches while in

the distributed version tags are ordered like a big shared cache in the DCEs and store

information about the owners. Since tag entries are not restricted to represent only

one cache entry, this organization makes a more efficient use of them. Furthermore,

the distributed organization does not require to reallocate a tag when a block is spilled

or allocated in another cache. It is only necessary to update the tag information.

• The number of tags checked per request in the DCE is equivalent to its associativity

-independent of the associativity of the L1s and L2s. In the CCE the number of tags

checked is #L1*L1 Associativity + #L2*L2 Associativity, which leads to a reduction of

the energy consumption.

• The DCEs implement a LRU replacement policy that favors a broad view of evicted

blocks instead of the individual replacement of private caches in the centralized ver-

sion. This provides a more efficient use of cache entries.

• The size of the DCE is independent of the sizes of the L1s and L2s while in the

CCE the number of tags has to be equal to the number of L1 and L2 cache entries.

Therefore, the Set Bits selecting the Coherence Engine entry in CC are the same

ones that are used in the L1 and L2 caches. Therefore, for 16KB 4-way L1 and

256KB 8-way caches, a different number of bits is going to be used in the CCE for

the L1 (6 bits) and the L2 (9 bits) entries. On the other hand, the number of bits used

in the DCEs depends on the number of DCE entries, the number of DCEs and their

associativity. Therefore, if we use as many DCE entries as L2 cache entries and as

many DCEs as nodes (16), we are going to use 4 bits to map the DCEs (CE Bits) and

9 bits to map the different sets (Set Bits). The coherence protocol of the Distributed

Cooperative Caching framework also needs to be able to handle DCE replacements.

67

4. DISTRIBUTED COOPERATIVE CACHING

• The Distributed Cooperative Caching makes use of several coherence engines that

can be distributed across the chip. This organization avoids bottlenecks in the on-

chip network and can handle requests in parallel. This becomes more important as

we increase the number of processors on a chip.

4.3 Power-Efficient Spilling Techniques

As it has been shown, the N-Chance Forwarding mechanism is able to take advantage of

the unused cache space with private caches. However, random spilling of all the evicted

blocks can introduce unnecessary network traffic by forwarding to far nodes or by forward-

ing blocks that are not going to be reused. This extra traffic is going to increase the overall

power consumption of the memory hierarchy and it will degrade its performance. In the

following sections, we describe two techniques to reduce power consumption without de-

grading performance, the Distance-Aware Spilling and the Selective Spilling.

4.3.1 Distance-Aware Spilling

Although a random selection of the destination node for spilling techniques is a good

method to distribute the blocks across the chip, the reuse information of spilled blocks shows

interesting optimization opportunities.

Figure 4.6 shows the percentage of spilled blocks reused by the evicting node for the

SPEC OMP and SPEC CPU benchmarks. As we can see, for the SPEC OMP benchmark

set most of the applications reuse evicted blocks in the same nodes that previously spilled

them. In the case of the SPEC CPU, since all applications are single threaded, reuse is

completely local. In these type of applications if random spilling is used, data from one

CPU in a corner of the chip may end up in the opposite corner and then it is probably

going to be reused by the original node. In a 4x4 mesh, this means traversing 6 hops

per message. In recent architectures like the Intel Larrabee chip multiprocessor [111] this

effect is even exacerbated since a ring topology is implemented. In this case, the maximum

number of hops would be 8 for a 16 core configuration. This data transfers are going to

increase the network traffic unnecessarily, and thus, the energy consumption and access

latency.

Distance-aware spilling techniques aim to reduce the distance between the nodes in-

volved in the spilling. In this case, a set of fixed destinations is assigned to each node.

Figure 4.7 shows the simulated mesh structure. The spilling destinations of each node are

68

4.3 Power-Efficient Spilling Techniques

Figure 4.6: Spilled blocks being reused by the evicting node.

represented by arrows. For example, the evicting node (5, in dark grey) has 4 arrows de-

parting from it that indicate the possible destination nodes (1,4,7,13 in light grey) in the 4

nodes configuration. These destinations are selected using a round-robin policy. As we

can see, node assignments distribute the spilled blocks uniformly across the chip so every

cache receives blocks from the same number of nodes.

Figure 4.8 shows the average number of nodes at each distance for the random and the

two Distance-Aware spilling policies. The figure also shows the average distance for these

configurations. Due to the topology of the mesh network, spilling to the four closer nodes

in the DAS4n configuration would imply that nodes in the center of the mesh would receive

spilling messages from more nodes and this would produce a bottleneck. Therefore, we

propose the depicted mapping which allows to distribute spilled blocks uniformly. We can

see that the average distance is 1 hop when using 2 destinations (DAS2n) and 1.5 hops

when using 4 (DAS4n), while for a random destination selection the average distance is

2.7 hops. In addition, Distance-aware distribution policies ensure that all evicting nodes

will have the same distance to their destination nodes, while in the random distribution it

depends on the position of the evicting node (middle, side or corner).

Figure 4.9 shows the destination assignment for a ring network. In this case, the benefit

69

4. DISTRIBUTED COOPERATIVE CACHING

2 Nodes, Avg dist. 1 hop 4 Nodes, Avg dist. 1.5 hops

0 1 2 3

4 5 6 7

8 9

1312

10

14 15

11

0 1 2 3

4 5 6 7

8 9

1312

10

14 15

11

Evicting node Possible destinations

Figure 4.7: Distance-Aware Spilling node assignment in a mesh network.

of Distance-aware spilling is much higher since the average node distance is 4.27 for the

random distribution (as shown in Figure 4.10). Distance-aware policies have the same av-

erage destination distance as the mesh; 1 hop for the 2 destinations configuration (DAS2n)

and 1.5 hops for the 4 destinations configuration (DAS4n).

Hardware requirements of the Distance-Aware spilling are very low, since only a round-

robin arbiter per node is required for the 2 or 4 available nodes. This technique, however,

while limiting the number of destination nodes also reduces the available cache space.

Therefore, it may hurt performance in case of having highly unbalanced memory require-

ments between threads since those requiring more cache space are not going to be able to

spill to all nodes. However, if the memory requirements are more balanced, our technique

will be able to reduce the access latency and the network usage.

4.3.2 Selective Spilling

Another interesting optimization opportunity for the spilling mechanism comes from the fact

that not all applications are going to benefit of the extra cache space provided by the N-

chance forwarding technique. Therefore, it is interesting to have an adaptive mechanism

that allows spilling only when blocks are expected to be reused.

Figures 4.11 and 4.12 show the percentage of blocks that are reused after being spilled.

While it is interesting to keep the spilling ability for applications like Art, other applications

like Gafort do not make reuse of spilled blocks and they have a high number of evic-

70

4.3 Power-Efficient Spilling Techniques

Figure 4.8: Average distance to destination nodes in a mesh network.

2 Nodes, Avg dist. 1 hop 4 Nodes, Avg dist. 1.5 hops

0
1

2

3

4

5

6

789

13

12

10

14

15

11

0
1

2

3

4

5

6

789

13

12

10

14

15

11

Figure 4.9: Distance-Aware Spilling node assignment in a ring network.

tions/forwardings. These type of applications are going to insert a high amount of unneces-

sary network traffic and to reallocate blocks that are not going to be reused.

Our Selective Spilling mechanism decides whether to spill or not depending on the reuse

of the previously spilled blocks. Our technique spills all the evicted blocks during a period

of time Ct where a counter in each node keeps track of all the blocks that are being reused

by that node. After this period of time every node decides if it is useful to spill or not. Then,

this decision is maintained during 9*Ct cycles. The common spill period is followed by all

nodes to be able to detect program phase changes. In our simulations we have used a Ct

of 100k cycles and spilling is allowed if 5 blocks have been reused in this period of time.

The period of time Ct and the threshold number of blocks have been determined empirically

to provide a good performance with a reasonable overhead. The extra hardware required

to implement this technique is only one counter of the reused blocks per node. It is possible

71

4. DISTRIBUTED COOPERATIVE CACHING

Figure 4.10: Average distance to destination nodes in a ring network.

Figure 4.11: Spilling characterization of SpecOMP2001 benchmarks.

to know if a block was spilled or not by the extra bit indicator that all configurations with the

N-chance forwarding mechanism already have.

4.4 Evaluation

4.4.1 Simulated Configurations

We have used all the Spec OMP 2001 workload set with the reference input sets for unipro-

grammed configurations and ten pairs of these benchmarks for the multiprogrammed con-

figurations. In multiprogrammed configurations each benchmark runs in half of the proces-

sors. Threads are allocated together so one half of the die runs the first benchmark and

72

4.4 Evaluation

Figure 4.12: Spilling characterization of SpecCPU2006 benchmarks.

the other half the second. Finally we have also studied another set of multiprogrammed

benchmarks combining multithreaded Spec OMP 2001 applications with single threaded

Spec CPU 2006 applications.

All the Distributed Cooperative Caching configurations have been compared against

traditional organizations such as shared or private last level cache and also against the

centralized Cooperative Caching. In all the tested configurations, two levels of cache are

used; as well as a MOESI protocol to grant coherence between nodes. All simulations use

a local and private L1 cache and a shared/private L2 cache for every processor. Evaluated

configurations are:

Shared Memory. This configuration assumes a Non-Uniform Cache Access (NUCA)

architecture. L2 cache is physically distributed across the nodes and logically unified. Ad-

dresses are mapped to cache banks in an interleaved way to try to distribute requests in

the network. L1 and L2 caches are inclusive and the L2 also includes the directory infor-

mation for the allocated entries. On a L1 miss, the L2 bank corresponding to the address

is accessed. If the block is located in another L1 in read-only mode, then it is replicated

in the requesting node L1. Otherwise, the owner is invalidated without having to access

the off-chip directory. This configuration tries to optimize cache usage and reduce off-chip

accesses.

73

4. DISTRIBUTED COOPERATIVE CACHING

Private Memory. In this design, a L2 cache bank is assigned to every processor. On

a L2 cache miss, memory must be accessed to check if the block is shared and to retrieve

the data. This configuration makes a very small usage of the on-chip network and tries to

optimize the access latency by placing all cache blocks in the local L2.

Cooperative Caching. (CC) This configuration evaluates the Cooperative Caching

framework. The default Cooperative Caching version uses a Coherence Engine capable

of doing 2 transactions per cycle.

Distributed Cooperative Caching. (DCC) The Distributed Cooperative Caching pro-

posal also has been evaluated with two configurations. Both of them use 1 DCE for each

node/ processor with 2 R/W ports and 8-way associativity. The default configuration uses

as many tags as the L2, requiring 64k entries for a total L2 of 4 MB. The extra cost in bits

for each tag in the case of a 16 core CMP with 16 DCEs is one bit per sharer and 4 bits for

the DCE state. Therefore, each DCE will have a size of 10 KB. The second configuration

uses twice as many entries and is labeled with 2x. This configuration is used to reduce the

effect of invalidations and check the degradation in performance they induce.

Distance-Aware Spilling A configuration of the DCC mechanism with distance aware

spilling to two neighboring nodes (DCC_DAS2n) and to four neighboring nodes (DCC_DAS4n),

Selective Spilling (DCC_SS5) with Ct of 100k cycles and a spilling threshold of 5

reused blocks.

Power-Efficient Spilling (DAS4n_SS5) A configuration with the Distance-Aware spilling

(4n) and the Selective spilling together.

We have fully implemented the cache coherence protocol with the DCE invalidation

mechanisms. Invalidation implies two extra states in the DCE state machine and one extra

state in the cache state machines. Results shown in the next section already include the

extra overhead.

4.4.2 Single Multi-threaded Benchmarks Evaluation

Mesh Network

In this section, we are going to present the evaluation of DCC with different types of spilling

compared to traditional memory configurations and the centralized cooperative caching.

Figure 4.13 shows the performance, energy efficiency and network usage of the studied

configurations normalized over the DCC2x organization and using a mesh interconnection

network.

74

4.4 Evaluation

Figure 4.13: Normalized performance, energy efficiency and Network Usage over DCC Ran-

dom Mesh.

Distributed Cooperative Caching outperforms the other configurations for all bench-

marks except for art where private caches provide the best performance. It can be seen

that while some benchmarks get the best performance of a big shared cache, others ben-

efit from private caches. DCC is able to get the benefits of both configurations and get an

overall improvement of 71% over the shared cache, 36% over private caches and 17% over

Cooperative Caching.

The second graph in Figure 4.13 shows the power/performance relation of the evalu-

ated techniques. The performance improvement mixed with a reduced energy consump-

tion increases the benefits of the Distributed Cooperative Caching compared to the other

techniques. When compared with Cooperative Caching, the reduction in the number of

75

4. DISTRIBUTED COOPERATIVE CACHING

compared tags reduces the energy required for each request significantly, giving a 46%

improvement in energy efficiency.

Finally, the third graph shows the on-chip network traffic. It can be seen, as expected,

that private caches make a very small usage of the interconnection network. This be-

havior is good both for performance and power consumption but may not be desirable if

it also implies an increase in off-chip misses due to a less optimized usage of the cache

space. The shared cache on the other hand makes a very intensive usage of the network

due to the distribution of data in all the on-chip cache space. In the middle, we can see

all the cooperative caching configurations that try to get the benefits of both techniques.

Distributed Cooperative Caching with random spilling makes a slightly higher use of the

network than Cooperative Caching due to the distribution of Coherence Engines. However,

power-efficient spilling mechanisms show to be able to reduce this traffic by 28% while

keeping the performance benefits.

Ring Network

In this section we present the results obtained for a network with the same configuration

parameters stated in Chapter 3 but changing the network topology to a bidirectional ring

(as in the Larrabee chip multiprocessor [111]).

Figure 4.14 shows the performance, energy efficiency and network usage in this network

topology. Ring networks have a smaller bandwidth, which penalizes configurations with

high network traffic such as the shared cache configuration. It can be seen that in this case

private caches outperform the shared cache in all cases except for the ammp benchmark

which is known to have a high amount of sharing between threads. DCC configurations

also provide the best performance, especially the ones with distance aware spilling.

The second plot of the figure also shows that the Private configuration increases its effi-

ciency for this type of network due to the bandwidth limitations of the ring. Local allocation

of data in this network topology becomes critical to reduce access latency. Therefore, this

technique is able to outperform in some cases the DCC. Applications with shared data like

ammp, however, do not benefit from this organization. DCC, on the other hand, is able

to optimize cache usage in these cases and get a good performance for all benchmarks.

Therefore, on average it remains as the most efficient solution with a 24% performance

improvement and a 38% higher efficiency when compared to the private configuration.

Finally, for this network topology Cooperative Caching is penalized by its centralized tag

structure. Network usage (on the third plot) decreases significantly for this configuration

76

4.4 Evaluation

Figure 4.14: Normalized performance, energy efficiency and Network Usage over DCC Ran-

dom Ring.

due to the bottleneck produced in the Coherence Engine. This translates to a significant

performance and energy-efficiency reduction that can be seen in the other two plots.

Two interesting parameters for evaluating the memory hierarchy of chip multiprocessors

are shown in Figures 4.15 and 4.16. These are the number of off-chip misses and the

average L1 miss latency. Traditional configurations such as shared or private caches only

achieve good results in one of them. The best results regarding off-chip misses are obtained

by the shared cache configuration while the private configuration shows a better average

latency.

On the other hand, hybrid proposals like the Centralized and the Distributed Cooperative

Caching improve both parameters by locating cache blocks in the local nodes but also

making use of all the on-chip cache space.

77

4. DISTRIBUTED COOPERATIVE CACHING

Figure 4.15: Off-Chip Misses per thousand instructions.

Figure 4.16: Average L1 Miss latency.

78

4.4 Evaluation

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2

DCE

L1

P

L2
L1

P

L2
L1

P

L2
L1

P

L2
L1

P

L2

DCE

L1

P

L2
L1

P

L2

DCE

L1

P

L2
L1

P

L2

DCE

L1

P

L2
L1

P

L2

DCE

L1

P

L2
L1

P

L2
L1

P

L2
L1

P

L2
L1

P

L2
L1

P

Figure 4.17: DCC16CE and DCC4CE organization.

The Distributed Cooperative Caching has a number of off-chip misses close to the

shared cache configuration due to its replacement policy. The shared tag structure of the

DCEs invalidates blocks on a replacement through a Least Recently Used (LRU) policy.

On the other hand, in the centralized organization, replacement in caches is done indepen-

dently with the least recently used block of each cache. With the latter, since spilled blocks

are usually newer in the local node, they generate evictions of local data, as seen in the

example of section 2. The number of off-chip misses, however, remains very similar to the

Distributed Cooperative Caching.

The average L1 miss latency, depicted in figure 4.16, shows that CC and DCC achieve

the best results. This is because both configurations behave similarly to a private cache

configuration and improve it further by adding a sharing mechanism that reduces off-chip

accesses. We can also see that the network congestion produced in some benchmarks for

the shared configuration leads to a very high miss latency, which explains the degradation

in performance.

Sensitivity Studies

We have also conducted a study to exploit the configuration flexibility of the DCE. The

behavior of a system with a DCE for each node and 16 processors (DCC16CE) has been

compared with a system with 4 DCEs and 16 processors (DCC4CE). Figure 4.17 shows the

DCE distribution of both configurations. In the 4 DCE version, the number of tags has been

increased so both configurations have the same number of entries. In addition, three differ-

ent associativities for the DCEs have been evaluated with our framework, 4-way (4A), 8-way

(8A) and 16-way (16A) DCEs. Figure 4.18 shows the speedups and power/performance re-

lation of all these configurations over the base DCC configuration.

79

4. DISTRIBUTED COOPERATIVE CACHING

Figure 4.18: DCC Optimal Configuration Study.

80

4.4 Evaluation

Figure 4.19: DCE replacements per request.

Results show that configurations with higher associativity achieve a slightly better perfor-

mance. This is because the number of replacements per request is reduced. However, the

number of tags compared in the DCEs depends on its associativity. The power/performance

relation shows that the speedup obtained for a higher associativity is not enough to compen-

sate the additional power requirements. On the other hand, the usage of less DCEs than

nodes increases the power/performance relation by 5%. This improvement is explained by

the reduction in the average distance to the DCE. A balanced solution between distance

and request distribution across the network needs to be chosen for every case. The DCC

scheme, however, provides a flexible framework to find the optimal configuration.

Figure 4.19 shows the percentage of requests that end up in an invalidation of a cache

block due to the lack of tags. For the base configuration almost half of the requests to the

DCEs end up with an invalidation, except for the ammp benchmark that is very cpu intensive

and does not stress the memory system. These invalidations may cause a degradation of

the overall performance, so we have evaluated our Distributed Cooperative Caching frame-

work with twice the initial number of entries (labeled 2x in the figure). This configuration

may be to expensive in hardware for a real implementation but it allows us to see how much

performance is lost. We can see that the number of replacements per request is highly re-

duced and this is translated in a performance improvement. This improvement, however, is

not very high since evicted blocks of the original configuration are always the least recently

used from that set.

Finally, in order to evaluate the scalability of Distributed Cooperative Caching against

Cooperative Caching we have evaluated both techniques with a varying number of pro-

cessors. In addition, we have added an additional configuration of CC able to process 4

81

4. DISTRIBUTED COOPERATIVE CACHING

Figure 4.20: DCC scalability. Performance for 32p normalized over 8p.

Figure 4.21: DCC scalability. Performance normalized over CC2T.

transactions per cycle (CC4T) for the sake of a fair comparison. We have also evaluated two

DCC configurations, the default one (DCC) uses as many tags as the L2, requiring 128k en-

tries for a total L2 of 4 MB. The second configuration (DCC2x) uses twice as many entries.

This configuration is used to reduce the effect of invalidations and check the degradation in

performance they induce.

Figure 4.20 shows the performance improvement of each configuration with 32 proces-

sors and with its results normalized over the 8 processor configuration results. It can be

seen that DCC is able to improve performance more significantly for all applications except

for apsi and art. The performance improvements shown in this figure, however, can be influ-

enced by the addition of more cache capacity since the overall L2 cache space is increased

from 2MB to 8MB (256KB per core). Therefore, improvements are not necessarily due to a

better scalability.

On the other hand, Figure 4.21 shows the performance of each configuration for 8, 16

82

4.4 Evaluation

and 32 processors and normalized over the CC2T configuration with the same number of

processors. Since results are normalized over a configuration with the same number of pro-

cessors/cache, we consider this figure more accurate in order to evaluate the scalability of

DCC. It can be seen that the behavior of both configurations is similar for a reduced number

of cores but when increased, the Distributed Cooperative Caching shows a better response

improving performance by 59% over CC. In terms of energy efficiency the difference is even

bigger due to the tag structure implemented in the CC that forces to check the tags of all

caches. In this case the energy efficiency of DCC is 3.37x better than CC.

4.4.3 Benchmark Set 1 Evaluation

To see the interaction between applications and the possible inter-thread interferences in

this section we have evaluated benchmark set 1.

Mesh Network

Figure 4.22 shows the performance, energy efficiency and network activity for the studied

multiprogrammed set of benchmarks. The presented energy-aware techniques effectively

cut down network usage without degrading performance. Distance Aware Spilling achieves

a reduction of 14.2% for the DAS2n and 10.8% for the DAS4n. In the case of Selective

Spilling, network usage is further reduced up to 20.8% since the amount of spilling is limited

to reused data. The combined solution shows a reduction of 26.6% of the network traffic.

All these improvements are achieved while keeping the same performance of the DCC with

random spilling (the best performing configuration).

The second plot of Figure 4.22 shows both the benefits of the performance increase and

the reduction in network usage (power). Distributed Cooperative Caching also outperforms

other configurations by a 22-31% in energy efficiency. The addition of Distance-aware

spilling, pushes up the savings an extra 4% (DAS2n). This improvement is achieved al-

though network power consumption is only a small part of the total power. Networks of next

generation tiled microarchitectures, however, are expected to have a greater importance in

the overall performance and power, leading to greater impact of these techniques.

Ring Network

In ring networks, as it was shown before, the penalty of accessing far nodes is higher. As

it will be shown, this limitation is reduced in the Distance-Aware Spilling techniques which

83

4. DISTRIBUTED COOPERATIVE CACHING

Figure 4.22: Normalized performance, energy efficiency and Network Usage over DCC Ran-

dom Mesh.

directly translates to better performance. Results are normalized to the same DCC orga-

nization running on top of the ring network. Therefore, Distance-Aware spilling is more

suitable for this kind of configurations. This can be seen in the first graph of Figure 4.23

where DAS2n achieves a performance improvement of 4.24% and DAS4n of 6.26%. Con-

figurations with the Selective Spilling technique keep the same performance as the random

configuration but, as it can be seen in the third graph, reduce the network usage by 21.7%.

On the other hand, Distance-Aware (DAS) configurations achieve a reduction of 16.7% for

the DAS2n and 14.1% for the DAS4n while increasing the overall performance. If the bene-

fits of both configurations are combined, the reduction of the network traffic is even higher,

reaching a 30%.

Finally, the energy efficiency of the evaluated configurations can be seen in the sec-

ond graph of Figure 4.23. The performance increase and network activity reduction of the

Distance-Aware techniques is translated in an improvement of the energy efficiency of a

84

4.4 Evaluation

Figure 4.23: Normalized performance, energy efficiency and network usage over DCC Random

Ring.

11.5% for the DAS2n and a 16.4% for the DAS4n. Once more, the Selective Spilling con-

figurations, do not show a big variation with respect to the random spilling since the power

contribution of the on-chip network in the overall power is not very high. The energy effi-

ciency of the shared cache configuration is very low due to the intensive use of the on-chip

network, that in this case is aggravated by the lower capacity of the network (when com-

pared to a mesh). Private caches, on the other hand, show a good energy efficiency due

to the low network usage but have a much higher number of off-chip misses that reduce

its performance. This would probably increase the overall power had we considered the

memory controller energy consumption.

85

4. DISTRIBUTED COOPERATIVE CACHING

Figure 4.24: Average distance of reused blocks

Spilling Reuse

Figure 4.24 shows the average distance of reused blocks. As expected, the average reuse

distance is significantly reduced for distance aware spilling techniques which explains the

network usage reduction. This distance, however, is slightly higher than the spilling distance

since nodes can reuse data spilled by other processors.

Figure 4.25: Percentage of spilled blocks being reused

86

4.4 Evaluation

Finally, Figure 4.25 shows the percentage of spilled blocks that are reused later. It can

be seen that random spilling makes very small reuse since all evicted blocks are spilled.

On the other hand, Selective Spilling is able to double the average reuse in both networks

by spilling only data from nodes with reuse and achieves up to 29.5% reuse in the mesh

for the art_ammp benchmarks. The combined configuration (DAS+SS) also improves the

random configuration in both cases while reducing the distance to the destination nodes.

DAS techniques reduce the distance to destination nodes in exchange of available cache

space. Therefore, spilled blocks are evicted earlier when the cache usage is unbalanced

and reuse is reduced.

4.4.4 Benchmark Set 2 Evaluation

In this last section, we can see the behavior of the evaluated techniques with benchmark set

2. To complement the evaluation of DCC in this section we have also modeled the Adaptive

Selective Replication (ASR) and compared the performance of both configurations. The

evaluated version of ASR also makes use of DCEs to provide coherence in order to have a

decentralized structure.

Mesh Network

Figure 4.26 shows the behavior of Distributed Cooperative Caching compared to other tech-

niques. It can be seen that Cooperative Caching behaves like traditional shared and private

configurations. This is due to the high usage of the memory hierarchy which saturates the

centralized directory (CCE). ASR, on the other hand, has a good performance which in

some cases outperforms DCC but in the most memory intensive configurations (those us-

ing ammp and 456_Hmmer) does not perform well. This is explained because most of the

applications do not share data and, therefore, in such cases private caches are desirable.

ASR is implemented as a distributed shared cache which under low utilization all cores can

replicate data in the neighboring caches. Under high utilization, however, data cannot be

replicated to reduce off-chip misses and, therefore, must be accessed in far caches. This

also explains the high network usage of the ASR configuration in the third plot of Figure

4.26. DCC in such cases behaves as a system with private caches with lower latency and

lower network usage. This allows to get an average performance improvement of 43%

over shared caches, 47% over private caches, 58% over Cooperative Caching and 12%

over ASR. The non-sharing behavior of single-threaded applications benefits the local data

allocation of DCC. The power-efficient techniques, however, do not improve performance

87

4. DISTRIBUTED COOPERATIVE CACHING

Figure 4.26: Normalized performance, energy efficiency and Network Usage over DCC Ran-

dom Mesh.

over random spilling, although they are able to reduce network usage by 27%. In this case,

the benefits of a reduced distance o spilled blocks are compensated by the reduction in

available cache space.

Ring Network

With the ring topology, as with the previous benchmarks evaluations, the more limited net-

work bandwidth increases the impact of using centralized structures or improper allocations.

This can be clearly seen in Figure 4.27 in the case of Cooperative Caching which behaves

worse than traditional configurations due to the high cost of accessing the CCE. In the case

of ASR, its behavior as a distributed shared cache in high usage configurations combined

with a limited bandwidth reduces its performance significantly. DCC, thanks to its distributed

88

4.4 Evaluation

Figure 4.27: Normalized performance, energy efficiency and network usage over DCC Random

Ring.

organization, also outperforms existing configurations. In this case, since on-chip network

traffic is more limited, Distance-aware spilling techniques outperform random spilling. As in

previous configurations, private caches, show a good performance for this network topology

but DCC with Distance-aware spilling to 2 nodes outperforms them by 33% and improves

energy-efficiency 55%. Selective Spilling, in this case, significantly reduces the amount of

network traffic but in exchange of penalizing the overall performance. This behavior shows

that in some cases a too aggressive limitation of the spilling ability can harm the overall

performance and, therefore, threshold selection must be done carefully. We have kept the

same thresholds for all the evaluations in order be able to compare results. For these type

of applications, however, it is clear that the threshold value should be reduced in order to

benefit from the Selective Spilling.

89

4. DISTRIBUTED COOPERATIVE CACHING

4.5 Conclusions

In next generation many core architectures on-chip and off-chip communications are going

to have a greater influence in the overall performance and energy efficiency. While for a re-

duced number of nodes traditional configurations like shared or private caches provide the

best power/performance relation, in the advent of the many core era it is essential to devise

a more efficient solution. We have seen how the Distributed Cooperative Caching frame-

work provides a scalable and energy efficient organization for large multicore architectures

using less hardware resources than the centralized version. For a 16-core CMP, DCC with

random spilling improves execution time by 71% over the shared cache, 36% over private

caches and 17% over Cooperative Caching. These results are even higher when a ring

network is used since configurations with centralized structures are limited by the reduced

on-chip bandwidth.

We have also shown that the N-chance forwarding mechanism can be improved in terms

of power and network usage while retaining its performance advantages for chip multipro-

cessors. Compared to Random Spilling, Distance-Aware Spilling provides an energy effi-

ciency increase in mesh and, specially, in ring networks (with even a small performance

speed-up). In the latter, ED2P (MIPS3 /W) is increased by 16% on average, network us-

age is reduced by 14% while performance increases 6%. At the same time, the Selective

Spilling technique is able to avoid most of the unnecessary spilling in applications with low

reuse reducing network traffic by an average of 22%. A combination of both techniques

reduces network usage by 30% on average without degrading performance, allowing a 9%

increase in energy efficiency. The benefits of these improvements, however, are highly de-

pendent on the interconnection network and application characteristics. Therefore, it must

be evaluated if the benefits compensate the additional complexity in each case.

In conclusion, we have seen that Distributed Cooperative Caching is a promising mem-

ory organization for chip multiprocessors able to provide cache coherence in a distributed

way. Its distributed nature, efficient cache allocation and energy-efficiency make it very

suitable for next generation chip multiprocessors with a high number of cores.

90

Chapter 5

Elastic Cooperative Caching

5.1 Background and Motivation

In the previous Chapter, we have presented a distributed technique to provide coherence

in an energy efficient way to caches in a chip multiprocessor. In chip multiprocessor en-

vironments, however, due to the limited parallelism of most commercial applications, are

expected to run multiple heterogeneous workloads simultaneously. The behavior of each of

these applications can be very different and therefore lead to different cache requirements.

Recent studies [76] show that cache partitioning has a significant performance impact in

runtime execution and that dynamic configurations can adapt to the program’s time-varying

phase behavior and improve performance.

One example of the optimization opportunities that adaptive configurations can exploit

is the simultaneous execution of streaming and cache bound applications. For instance,

audio and video streaming are commonly executed simultaneously with text editors, web

browsers or antivirus in desktop computers. In general, streaming applications do not take

advantage of the upper levels of the memory hierarchy and introduce a high amount of

data in the caches that is not going to be reused. This inefficiency is aggravated in shared

caches by the eviction of blocks from other applications that could be eventually reused.

Therefore, it is interesting to have a memory hierarchy that provides some kind of intelligent

control to distribute resources fairly and take advantage of the differences among appli-

cations. Ideally, the reallocation of resources should be managed autonomously through

hardware arbiters to avoid adding extra complexity to the software layer. In addition, next

generation memory hierarchies should provide the elasticity to offer the low latency ad-

vantages of private caches and the low off-chip miss rate of shared caches. Future tiled

microarchitectures also need scalable structures to allow increased levels of parallelism.

91

5. ELASTIC COOPERATIVE CACHING

As we have seen in Chapter 2 there is extensive prior research on the memory hierarchy

of chip multiprocessors. This work can be divided between static and dynamic resource

partition mechanisms.

In static resource partition mechanisms [9, 17, 23, 56, 87, 119, 138] all threads have

the same priority and the amount of cache assigned to each thread is changed through

the coherence protocol and replacement mechanisms. These organizations either have

inter-thread interferences (e.g. Cache-intensive threads may degrade performance of other

applications by replacing their blocks) or are not able to give all the cache space to a single

thread if the others are not using the cache. This is logical if we consider that the cache

space is statically mapped to threads, and can lead to a non-optimal usage of resources in

unbalanced workloads.

If we want to optimize cache allocation to reduce off-chip misses, a repartitioning mech-

anism is desirable to be able to change the cache size assigned to every thread. Dynamic

resource partition mechanisms dynamically modify the amount of memory that is assigned

to every node and eliminate inter-thread cache conflicts by allocating independent parti-

tions of resources. These resources can be divided in banks, sets or ways and require an

arbitration mechanism that can be software or hardware based.

Software-based dynamic configurations delegate resource allocation to the OS. Most

of these organizations divide resources in independent sections to be able to provide QoS

[18, 38, 54, 81, 100]. These configurations are limited by centralized structures in some

cases and by a software-based arbitration that increases programming complexity.

Hardware-based dynamic organizations [30, 50, 104, 115], on the other hand, are able

to implement the repartitioning policy in hardware, reducing the programming complexity.

They are based on performance counters to measure the benefit of increasing the cache

size for each thread. Several recent works [30, 104] adapt the cache size through the

column caching technique [21]. Column caching is a cache partitioning mechanism that

restricts the available number of sets when allocating a block, therefore enabling the cache

to be partitioned. In the case of Utility-Based Cache Partitioning (Utility) [104] a single last-

level cache is partitioned and assigned among threads. On the other hand, in the Adaptive

Shared/Private NUCA (ASP-NUCA) [30] a cache for each node is divided into shared and

private cache space according to thread requirements.

Cache partitioning is controlled by the repartitioning unit, depicted in Figure 5.1 for ASP-

NUCA. Repartitioning in ASP-NUCA is based on the expected reduction in misses for each

thread. This technique, also used in the Utility-Based Cache Partitioning [104], stores the

tags of the evicted blocks on a replacement in the private region. These tags are known as

92

5.1 Background and Motivation

Centralized Sharing Engine

Hits in LRU Counters

Hits Shadow Tags Ctrs

Core 1 Core 2

L2

Private Shared

LRU

Node 1

Shadow

Tags

All cache entries

extended with Core ID

L2

PrivateShared

LRU

Node 2

Shadow

Tags

Unified Shared Cache Space

Figure 5.1: Adaptive Shared/Private NUCA Repartitioning Unit.

shadow tags. On a cache miss, the shadow tag is checked to detect the potential benefit of

increasing the cache size. On the other hand, on a hit in the LRU block the second counter

is updated to detect the potential degradation of reducing the cache size.

ASP-NUCA uses all the shared cache space as a centralized shared cache where all

nodes can store as many blocks as indicated by a variable set for each of them. To be

able to track the number of blocks from each core, ASP-NUCA also requires a CoreID field

for each cache entry. When a block needs to be allocated in the shared region all shared

partitions are checked to count the number of allocated blocks for that core. If there are

less than allowed, the LRU block from all shared partitions is evicted. If not, the LRU block

from that core is evicted.

The usage of shadow tags in all sets implies a significant hardware overhead and, there-

fore, only a few sets are monitored (6%). Even after doing this reduction the hardware over-

head of ASP-NUCA is: a CoreID field in all cache entries, a shadow tag for the 6% of all

cache sets, and two counters per node.

In addition to that, ASP-NUCA never changes the amount of private and shared cache

space since every time that a private region in one node is increased, it is also decreased

in another node. Therefore, this method is not optimal when all nodes execute independent

tasks and big private caches would be desirable for each of them or when all threads share

the data and a big shared cache would be better.

As we have seen, none of these techniques is suitable for large tiled microarchitectures

because they require either a centralized cache or a centralized repartitioning unit that limits

the scalability.

93

5. ELASTIC COOPERATIVE CACHING

5.2 Elastic Cooperative Caching

In this section, we describe the Elastic Cooperative Caching (ElasticCC), a distributed and

dynamic memory hierarchy that adapts autonomously to application behavior. We have

focused on designing a scalable solution suited for next generation tiled microarchitectures.

To be able to have a scalable memory hierarchy organization it is important that all parts

can be distributed to avoid bottlenecks. Therefore, ElasticCC and the evaluated version

of Adaptive Selective Replication use Distributed Coherence Engines (DCEs) presented in

the previous Chapter to grant coherence. Other coherence enforcement mechanisms could

be used if the usage of a distributed structure is not necessary. ElasticCC also uses the

spilling technique [27] to reduce off-chip misses. This mechanism, as seen in the previous

Chapter, reallocates evicted cache blocks in neighboring caches when the block is the last

on-chip copy. Spilling is handled by the DCE since it stores sharers information and also is

able to avoid coherence races during the transmission.

To achieve the separation between private and shared cache space we have used the

column caching technique proposed by Chiou [21] that allows separation and dynamic

repartitioning without having to invalidate any block. Column caching allows software to

map specific data to specific regions of the cache. Careful mapping can reduce or elimi-

nate some replacement errors or, as we are going to see, assign cache resources more effi-

ciently in a multiprogrammed environment, resulting in improved performance. The simplest

implementation of column caching is derived from a set-associative cache where lower-

order bits are used to select a set of cache-lines which are then associatively searched

for the desired data. During lookup, a column cache behaves exactly as a standard set-

associative cache and thus incurs no performance penalty on a cache hit.

The main difference of column caching with respect to a common set-associative cache

is that the replacement algorithm instead of selecting from any cache-line in the set, is re-

stricted to certain columns. Each column is one way of the n-way set-associative cache.

A bit vector specifying the permissible set of columns for each type of data is used by the

replacement unit. By aggregating columns into partitions, we can provide set-associativity

within partitions as well as modify these partitions dynamically. If the cache is repartitioned,

data stays in the same cache entry regardless of not being the same partition anymore.

However, data still can be found since all cache lines in the set are searched during every

access, providing a graceful repartitioning. These entries are only going to be replaced

when other blocks are allocated in the new partition through the regular replacement mech-

anism.

94

5.2 Elastic Cooperative Caching

Interconnection

Bus

Main Memory

Distributed

Coherence

Engine 1

L1

P

L2

Private Shared

Cache

Repartitioning

Unit

Spilled Blocks

Allocator

Node N

Node 1

Distributed

Coherence

Engine N

Figure 5.2: ElasticCC Node Structure.

5.2.1 ElasticCC Structure

The ElasticCC framework consists of several independent L2 cache memories that are log-

ically divided into a shared and a private region that compete for the cache space. Private

regions store all the evicted blocks from the local L1 and shared regions store spilled blocks

from neighboring caches. This allows the creation of big local private caches if all appli-

cations have similar cache requirements and a big shared cache if only a few take advan-

tage of extra cache space. ElasticCC also adjusts the level of replication by repartitioning

caches. Shared data is replicated when requested in the corresponding private regions but

is never replicated in the shared region since it stores only unique blocks. Therefore, bigger

private regions allow a higher replication and bigger shared regions limit it.

The extra hardware required for each node is a Repartitioning Unit and a Spilled Block

Allocator, described in detail in the next subsections. The Cache Repartitioning Unit is

responsible for dynamically adjusting the amount of cache that is going to be private or

devoted to spilled blocks. Since not all nodes have the same shared cache space, the

Spilled Block Allocator is responsible for deciding to which node a locally evicted block is

spilled. This part is also important because more blocks should be spilled to the nodes with

more shared space and less to the ones highly used by the local node. Figure 5.2 shows

the structure of the proposed configuration.

95

5. ELASTIC COOPERATIVE CACHING

L2

Private Shared

Cache Repartitioning Unit

Counter

Hit Hit

Incr ++ Decr - -

LRU LRUNode 1

L2

Private Shared

Cache Repartitioning Unit

Counter

Hit Hit

Incr ++ Decr - -

LRU LRUNode 2

Independent nodes, distributed structure

Elastic Cooperative Caching

Figure 5.3: ElasticCC Repartitioning Unit.

5.2.2 Cache Repartitioning Unit

Our Cache Repartitioning Unit, depicted in Figure 5.3, adjusts the proportion of private

and shared space locally for every L2 cache, avoiding centralized structures that limit the

scalability. As can be seen, the hardware overhead of the repartitioning unit is minimal. The

Repartitioning Unit only needs one counter per node that is incremented with Private LRU

block hits and decremented with Shared LRU block hits.

Our cache repartitioning is done every fixed number of cycles and the decision is based

on the number of hits on the Least Recently Used (LRU) blocks of the shared and the

private parts of the cache. If the resulting value of the counter exceeds an Upper Threshold

(UT) then the size of the private region is increased. If the value does not reach a Lower

Threshold (LT) then the size of the shared region is increased. For all the middle values the

size is not changed to avoid oscillatory states. Repartitioning is done at a given number of

cycles to match program phases behavior and thresholds are control registers set at boot

time.

Figure 5.4 shows the cache repartitioning algorithm, where hits in the LRU blocks of the

private region increase a counter and hits in the LRU blocks of the shared region decrease

it. Because we use LRU hits to decide to change the cache size, we can increase the

private size of the cache even when the working set already fits in it. However, this is only

going to happen when the shared region is not used since in the other cases the LRU hits

in the shared region will compensate the counter value.

As it was shown before cache repartitioning does not require the eviction of all cache

96

5.2 Elastic Cooperative Caching

If Private_LRU_Hit then

 Increase Counter

EndIf

If Shared_LRU_Hit then

 Decrease Counter

EndIf

If Repartition_Cycle then

 If Counter > Upper_Threshold then

 Add_Private_Way

 Send Repartition_Info_Msg

 ElseIf Counter < Lower_Threshold then

 Add_Shared_Way

 Send Repartition_Info_Msg

 EndIf

 Clear Counter

EndIf

Figure 5.4: Cache Repartitioning Algorithm.

blocks of the reassigned way since this would degrade performance unnecessarily. Once

a cache is repartitioned partition sizes are updated and this information is used by the re-

placement mechanism. Therefore, new blocks will gradually replace the ones belonging to

the other partition. Private and Shared portions must always have at least 1 way to simplify

the coherence protocol and avoid race conditions. Therefore, partitioning only affects the

replacement and allocation mechanisms. For accesses, the L2 cache can be seen as a nor-

mal shared cache, directly accessed by the local processor or indirectly accessed by other

nodes through the DCEs. This organization also means that in-flight coherence messages

of blocks being shifted among regions are not going to be affected.

5.2.3 Spilled Block Allocator

The second important part of the Elastic Cooperative Caching is the distribution of spilled

blocks across the chip. Due to the dynamic behavior of caches some nodes can be mostly

private and without cache space for spilled blocks and other nodes can be completely

shared. Therefore it is important to have a Spilled Block Allocator in each node to distribute

spilled blocks efficiently.

Every time that a cache is repartitioned, a message is broadcast to all nodes with the

partitioning information. This information is later used by the Spilled Block Allocator to dis-

tribute data among caches in a more efficient way: sending more evicted blocks to caches

with more shared space. Since this mechanism is only used to balance the amount of

spilled blocks among nodes, and the maximum size variation on each repartitioning is go-

ing to be a single way, we allow the use of stale information when caches are repartitioned.

97

5. ELASTIC COOPERATIVE CACHING

1: Shared way

0: Private way

Spilled Blocks Allocator

Dest. Node Evicted Unique Block

Node 0

Node N

Round-Robin

Cache Selector

L2

Private Shared

1

1

1

1

1

0

0

0

Repartition_Info_Msg
Network

Fwd_Block_Msg

Figure 5.5: Spilled Block Allocator.

Thus, it is possible to separate the repartitioning information from the critical paths and

broadcast it in a low priority network channel.

The proposed Spilled Block Allocator depicted in Figure 5.5 uses a Round-Robin arbiter

with a bit vector containing the cache partitioning information of each way of each cache.

For a 16-core processor with 8-way L2 caches this represents an overhead of 15 bytes

which is negligible. However, processors with higher number of cores could just include

the neighboring nodes if necessary, as in distance-aware spilling. The bit vector is updated

every time that a message with partitioning information is received, with a bit representing

the shared or private state of each way. When a block is evicted from the local private

partition the arbiter selects the next shared way and spills the block to the corresponding

node. Therefore, all shared ways are used equally and in circular order and nodes with

more shared space receive more spilled blocks.

5.2.4 Adaptive Spilling mechanism

Elastic Cooperative Caching, as shown in previous sections, distributes available cache

space to reduce the number of off-chip misses. Spilling, however, is done regardless of

application properties. This may cause interferences between applications in the shared

cache space. We propose an extension to the Elastic Cooperative Caching that takes ad-

vantage of its fully distributed organization and decides locally (i.e. autonomously) whether

spilling is needed or not depending on the type of application.

Table 5.1 shows the most important characteristics of each of the application categories

defined in Chapter 3 and the last two columns show the desired behavior of our system. Low

98

5.2 Elastic Cooperative Caching

Type Working Sharing Local Private Cache Spilling
set size Reuse size

Saturating Utility Small H/L H/L Small No

Low Utility Big Low Low Small No

Shared High Utility Big High H/L Small Yes

Private High Utility Big Low High Big Yes

Table 5.1: Application Types Behavior

Utility applications, for example, minimize private regions due to their low reuse but still are

able to use the shared region. Since this type of applications may have a very high number

of misses, the shared cache is going to be filled by blocks that are not going to be reused.

The desired behavior in this case would be to forbid spilling. It can be seen that only High

Utility applications benefit from the shared cache space. Therefore, our Adaptive Spilling

mechanism detects high utility applications and allows them to use the shared cache space

while making it unavailable to others.

We will allow spilling, then, for both Private and Shared High Utility applications, but

our mechanisms detect each of these applications differently. Private High Utility applica-

tions are detected through block reuse. Since applications with high reuse will have a high

number of private ways, spilling is allowed when 75% of the cache (6 ways) is private. For

Shared High Utility applications, sharing is detected by monitoring cache-to-cache trans-

fers. The spilling decision is done on a per-block basis, allowing us to spill only the truly

shared blocks. To track the sharing history of data, one bit is added to each entry of the

DCE and is set when there is a cache-to-cache transfer (1= Block was shared, 0= Block

was never shared). This bit is later used to detect the corresponding utility type together

with the size of the private and shared regions. Our studies have shown that if a block was

shared only once it is worth while to spill that block. This information is stored in the DCEs

because it provides a global view of the sharing history of the block and avoids the influence

of variations in the L2 cache size. The hardware overhead of this improvement is 64 Bytes

of extra memory per DCE, which is negligible.

99

5. ELASTIC COOPERATIVE CACHING

L1

L2

Private Shared L1

L2

Private Shared L1

L2

Private Shared L1

L2

Private Shared

L1

P
L2

Private Shared L1

L2

Private Shared L1

L2

Private Shared L1

L2

Private Shared

L1

L2

Private Shared L1

L2

Private Shared L1

L2

Private Shared L1

L2

Private Shared

L1

L2

Private Shared L1

L2

Private Shared L1

L2

Private Shared

DCE

L1

L2

Private Shared

DCEDCEDCE

DCE

DCE

DCE DCE DCE DCE

DCEDCEDCE

DCE DCE DCE

P P P

PPPP

P

P P P P

PPP

Figure 5.6: ElasticCC Memory Structure.

5.3 Evaluation

5.3.1 Simulated Configurations

The Elastic Cooperative Caching framework has been compared against traditional orga-

nizations such as shared or private last level cache. As we have seen, existing cache

partitioning techniques rely on a centralized cache or a centralized repartitioning unit with

information from all caches that works very well for a small number of nodes. However, for a

high number of cores, the scalability of these techniques is very limited. For instance, ASP-

NUCA has a max number of blocks in a set for the private and the shared partition. This

means that for replacements in the shared region, all shared partitions are considered as a

unique cache. Therefore a distributed version of this technique would require snooping all

nodes on every cache replacement, potentially saturating the network. Therefore we con-

sider it more fair to compare ElasticCC to scalable state-of-the-art cache organizations like

the Adaptive Selective Replication [9] and the previously presented Distributed Cooperative

Caching.

All these configurations have been compared through the execution of the first bench-

mark set presented in Chapter 3. Previously selected benchmarks of the SPECOMP2001

workload set have been simulated with the reference input sets and in pairs, each of them

executing 8 threads.

Since our work is intended for large tiled microarchitectures we have used Distributed

Coherence Engines (DCEs) presented in the previous Chapter to grant coherence in the

ASR technique and in the ElasticCC to avoid centralized directories or snoop based proto-

cols. To the best of the authors knowledge, this is the first time a realistic distributed version

100

5.3 Evaluation

of the ASR technique is implemented and evaluated. Network interconnect also plays an

important role in the overall performance [66]. Therefore, we have used a mesh intercon-

nect to have a scalable solution. Figure 5.6 shows the memory structure of ElasticCC with

one DCE per node. In all the tested configurations two levels of cache are used, as well as a

MOESI protocol to grant coherence between nodes. All simulations use a local and private

L1 cache and a shared/private L2 cache for every processor. Evaluated configurations are:

Shared Memory. This configuration assumes a Non-Uniform Cache Access (NUCA)

architecture. L2 cache is physically distributed across the nodes and logically unified. Ad-

dresses are mapped to cache banks in an interleaved way to try to distribute requests in

the network. L1 and L2 caches are inclusive and the L2 also includes the directory infor-

mation for the allocated entries. On an L1 miss, the L2 bank corresponding to the address

is accessed. If the block is located in another L1 in read-only mode, then it is replicated

in the requesting node L1. Otherwise, the owner is invalidated without having to access

the off-chip directory. This configuration tries to optimize cache usage and reduce off-chip

accesses.

Private Memory. In this design, an L2 cache bank is assigned to every processor. On

an L2 cache miss, memory must be accessed to check if the block is shared and to retrieve

the data. This configuration makes little usage of the on-chip network and tries to optimize

the access latency by placing all cache blocks in the local L2.

Distributed Cooperative Caching. (DCC) This configuration, presented in Chapter 4,

has been used as a baseline, therefore, results are normalized over it. With this configura-

tion it is possible to see the influence of interferences produced by the usage of a common

cache space for private and spilled blocks. It uses 1 DCE for each node/processor with 2

R/W ports and 8-way associativity.

Adaptive Selective Replication. (ASR) [9] We have evaluated a distributed version of

the ASR technique where coherence is granted through DCEs. This configuration uses 8 K

entry 8 way NLHBs and 512 entry 8 way VTBs for each node.

Elastic Cooperative Caching. (ElasticCC) We have evaluated our dynamic proposal

with a Cache Repartitioning Unit updated every 100k cycles and with a high threshold of 5

and a low threshold of 0. Thresholds are determined empirically. Since there is no previous

information available on the behavior of applications, caches are initialized with 4 private

and 4 shared ways.

ElasticCC + Adaptive Spilling. (ElasticCC+AS) This configuration evaluates the Elas-

tic Cooperative Caching extended with the Adaptive Spilling mechanism, which only allows

spilling when the private region occupies 75% of the cache (6 ways) or when the evicted

101

5. ELASTIC COOPERATIVE CACHING

Figure 5.7: Normalized performance, Normalized energy efficiency and Off-Chip misses per

Instr.

block was shared. Thresholds for the Repartitioning Unit are the same as the previous

configuration.

Ideal. Finally, a configuration that shows how much performance is possible to extract

by increasing the cache size is evaluated. This configuration doubles the cache space in

each node by using half private half shared 16 way 512kb L2 caches. In this case the

shared/private division is static and grants 8 ways to each region. This situation emulates

a configuration where there is -at the same moment- the maximum private and maximum

shared space (i.e. twice the capacity of the evaluated cache).

5.3.2 Benchmark Set 1 Evaluation

In this section, the Elastic Cooperative Caching is evaluated and compared to existing mem-

ory hierarchy configurations. Figure 5.7(a) shows the performance of the studied config-

urations normalized to Distributed Cooperative Caching, the power/performance relation

102

5.3 Evaluation

that measures the energy efficiency of the proposed solutions, and the number of off-chip

misses per instruction.

The performance graph shows that the Elastic Cooperative Caching outperforms the

Distributed Cooperative Caching by an average of 27%, by 12% over the distributed ver-

sion of Adaptive Selective Replication, by 52% over private caches, and by 53% over a

distributed shared cache. Performance improvement in dynamic configurations is highly

dependent on the characteristics of all the applications being executed simultaneously. Per-

formance improvements can only come from High Utility benchmarks and in the other cases

the adaptive mechanism must find the lowest amount of dedicated resources that does not

degrade performance.

It can be seen that the Elastic Cooperative Caching is able to improve the performance

of High Utility benchmarks when they are able to benefit from the extra cache space of

neighboring applications. In some cases, it achieves almost the same performance as the

Ideal configuration that has twice the cache space. The only configuration where perfor-

mance is not similar to the ideal configuration is the one executing two High Utility bench-

marks (Swim-Ammp), where ASR gets better performance. In this case both benchmarks

benefit from the larger cache space and none of them leaves unused cache space. Elas-

ticCC, however, outperforms ASR in all other cases thanks to its ability to repartition caches.

From the High Utility applications, Ammp is the one that improves its performance in

a more significant way. This application is known for sharing a lock variable that leads

to increased invalidations and cache misses[5]. Elastic Cooperative Caching is able to

keep this data in the caches by avoiding replication of shared blocks and this leads to a

high reduction in the number of off-chip cache misses. On the other hand, Swim requires

much more cache space to improve its performance. Therefore, in this case, performance

improvements depend much more on the other application that is executing simultaneously.

However, when executing with a Low Utility benchmark (Gafort-Swim), it is able to increase

performance by 10%.

The energy efficiency of Elastic Cooperative Caching is showed in Figure 5.7(b). Re-

sults in MIPS3/W are normalized over the DCC configuration. ElasticCC+AS shows a 71%

improvement over DCC and 24% over ASR. The more effective usage of shared regions

with Adaptive Spilling can be seen in this graph. ElasticCC+AS improves the energy effi-

ciency by 12% over ElasticCC without Adaptive Spilling. This improvement is produced by

more effective spilling that reduces the network traffic and the avoids unnecessary reallo-

cations of blocks without reuse.

103

5. ELASTIC COOPERATIVE CACHING

Figure 5.8: Average number of private ways per benchmark in ElasticCC and ElasticCC + AS

and percentage of spilled blocks per benchmark in ElasticCC + AS compared to ElasticCC.

Finally, Figure 5.7(c) shows the number of off-chip misses per instruction for each con-

figuration. As expected the more efficient use of caches of ElasticCC brings an average

reduction of 18.6% over DCC and 16.4% over ASR.

Dynamic behavior of ElasticCC

To see how the Elastic Cooperative Caching adapts to application behavior, Figure 5.8

shows the average partitioning of the caches through the execution of the applications. Re-

sults show that the Repartitioning Unit is able to detect the application behavior and adapt

cache sizes accordingly. The Low Utility application (Gafort) is granted in all cases less

than 4 ways. The number of private ways assigned depends on the neighbor application.

Therefore, when the second application is a Private High Utility one (Gafort-Swim), private

ways are even reduced to less than 2. On the other hand, the Private High Utility application

(Swim) always uses all the available cache space and ends with 7 private ways. Finally, in

the case of the Shared High Utility application (Ammp), it is possible to see that the amount

104

5.3 Evaluation

Figure 5.9: Percentage of spilled blocks that are reused in Benchmark Set 1.

of private cache is reduced in order to decrease the amount of replication and keep a bigger

number of different cache blocks on-chip.

Although cache repartitioning is done correctly, the usage of the shared space is not

optimized since Low Utility applications are going to corrupt it. Therefore a configuration

with Adaptive Spilling also has been tested. Figure 5.8(b) shows the average final state

for this configuration and also the percentage of evicted blocks that have been spilled to

the shared cache. Caches are adapted to application behavior as well as without Adaptive

Spilling but in this case private regions are slightly larger. This increase is compensated

by the much more restrictive usage of shared regions. It is interesting to observe how

the Adaptive Spilling is able to filter data that is not going to be reused. Figure 5.8(c)

shows the percentage of spilled blocks. Spilling for the Low Utility application (Gafort) is

significantly cut down in all cases compared with the ElasticCC alone where all evicted

blocks are spilled. This reduction increases the available cache space for other applications.

The effectiveness of Adaptive Spilling can bee seen in Figure 5.9 where the percentage

of spilled blocks that are reused is shown. Elastic Cooperative Caching clearly increases the

efficiency of spilling compared to Distributed Cooperative Caching. Reuse is increased on

average from 7.1% to 12.5%, avoiding unnecessary reallocations of blocks without reuse.

Adaptive Spilling is able to further increase this reuse up to 18.4%. This translates to

fewer unnecessary messages across the network and improves the energy efficiency of

the proposed configuration.

105

5. ELASTIC COOPERATIVE CACHING

Figure 5.10: Normalized performance, Normalized energy efficiency and Off-Chip misses per

Instr.

5.3.3 Benchmark Set 2 Evaluation

The main goal of Elastic Cooperative Caching is to redistribute unused cache resources to

minimize off-chip misses. However, it may be the case that all nodes use their resources

intensively. In this case we would like our system to behave at least as well as with private

caches and minimize the inter-core interference. Therefore, we have also evaluated our

technique with the second benchmark set which executes several copies of the SPEC CPU

benchmarks. These applications do not share any data and make an intensive use of the

memory hierarchy.

Figure 5.10(a) shows the performance of the evaluated combinations. It can be seen

that ElasticCC outperforms a private cache configuration in all cases. The ideal configu-

ration shows that performance could be improved by only 7% with a cache of twice the

capacity. In such environment, ElasticCC does not have idle resources to redistribute and,

therefore, behaves as the Distributed Cooperative Caching.

In terms of energy-efficiency, however, ElasticCC with Adaptive Spilling outperforms the

106

5.3 Evaluation

Figure 5.11: Average number of private ways per benchmark in ElasticCC and ElasticCC + AS

and percentage of spilled blocks per benchmark in ElasticCC + AS compared to ElasticCC.

Distributed Cooperative Caching due to a more efficient spilling that reduces the number

of unnecessary messages and reallocations. Finally, Figure 5.10(c) shows the number of

off-chip misses, which is similar for all configurations but for the shared cache. The shared

cache configuration does not perform well with this benchmark set. This is especially true in

the 456_459_ammp configuration where the interference between applications significantly

increases the miss rate.

Dynamic behavior of ElasticCC

Figure 5.11 shows the dynamic behavior with the second benchmark set. In this case the

applications 444_namd, 456_hmmer and 459_GemsFDTD are the ones with more local

reuse and therefore more cache is granted to them. 450_soplex, on the other hand, has a

big working set that does not fit in the local cache and therefore does not take advantage

of it.

107

5. ELASTIC COOPERATIVE CACHING

Figure 5.12: Percentage of spilled blocks that are reused in Benchmark Set 2.

Finally, Figure 5.12 shows the percentage of spilled blocks being reused for the config-

urations with spilling. It can be seen that also in this case ElasticCC+AS is able to increase

significantly the utility of reallocated blocks, more than doubling the reuse of spilled blocks

compared to DCC. This efficient usage of spilling reduces the number of unnecessary real-

locations and explains the better energy efficiency of ElasticCC when compared with DCC.

5.3.4 Temporal behavior of ElasticCC

In order to evaluate the temporal behavior of ElasticCC and its adaptivity to execution

phases, detailed statistics have been collected during 80 million cycles. Figure 5.13 shows

the temporal behavior of the elastic Shared/private cache of the node executing thread 1

of Equake for the Gafort-Equake combination. The plot shows the miss rate of the private

region for a fixed version with half private-half shared cache and for ElasticCC. When the

local thread makes no reuse at all, the shared cache space is increased so other nodes can

take advantage. On the other hand, when reuse is high, the cache behaves as private to

reduce cache misses. An finally, when reuse is small or medium, the behavior depends on

other threads requirements. Since Gafort is an application with low reuse, very few blocks

are going to be reallocated in the shared space and the cache is kept mostly private. In

addition, Figure 5.13 shows that when reuse is small the cache is more likely to repartition

than when we have a medium reuse. It can be seen that ElasticCC is not only capable of

detecting differences among applications but also variations within the same application,

adjusting cache size accordingly.

108

5.4 Conclusions

Figure 5.13: Cache behavior for thread 1 of Equake.

5.4 Conclusions

A dynamic and scalable memory hierarchy is necessary for next generation tiled microar-

chitectures. Elastic Cooperative Caching is shown to be a good candidate due to its au-

tonomy, distributed organization and adaptivity to applications. Its repartitioning unit is the

first to allow independent resource allocation based on local information, making it suitable

for tiles with a high number of cores. The proposed scheme is able to detect the different

cache requirements among applications and distribute cache resources accordingly with-

out software support. Furthermore, the sensitivity of the repartitioning unit is able to detect

changes in the execution phase of an application and adapt the system to the new situ-

ation. ElasticCC achieves a speedup of 27% over Distributed Cooperative Caching, 12%

over Adaptive Selective Replication, 52% over private caches, and 53% over a distributed

shared cache. More effective cache allocation is responsible for this improvement since it

leads to a 19% reduction of off-chip misses compared to DCC and 16% compared to ASR.

Furthermore, the dynamic management of cache resources avoids the energy overhead of

reallocating not-reused cache blocks and consequently increases energy efficiency by 71%

over the DCC configuration and 24% over the ASR configuration.

109

5. ELASTIC COOPERATIVE CACHING

110

Chapter 6

Thread Row Buffers

6.1 Background and Motivation

In the previous chapters, new organizations for the on-chip cache memories have been

proposed to optimize its performance and energy-efficiency in chip multiprocessors. Cache

memories, however, have a limited size due to chip area constraints and applications even-

tually need to access DRAM memories or disks to retrieve data. Therefore, memory access

is also an important topic that we have studied in this thesis.

During the last decade memories have greatly evolved in terms of capacity and integra-

tion but still remain one of the main limiting factors of current processor performance due to

its long access latency and bandwidth limitations. This problem has been exacerbated with

the introduction of chip multiprocessors, which require much larger amounts of data and

have different access patterns. Such changes suggest that the memory hierarchy must be

adapted to deal with the new requirements.

With the expected increase in multiprogrammed environments comes a loss in memory

locality, resulting in a reduction in the row hit rate of memories. Due to the large size of

memory arrays, memories use row buffers (typically of 8kB) which store a whole page to

allow faster reads and writes. This buffer needs to be updated every time a different row is

read or written, consuming time and energy. Therefore, it is critical that memory systems

make as much use as possible of row locality to both increase performance and reduce

energy consumption.

As it has been shown in chapter 2, a First-Ready First-Come-First-Serve (FR-FCFS)

policy [108, 142] is usually implemented in the memory controller of uniprocessors since it

reaches reasonable hit rates with a simple reordering mechanism. The execution of several

simultaneous applications, however, has led to different memory access patterns which

111

6. THREAD ROW BUFFERS

often alternate between a limited number of rows. This behavior significantly reduces the

row hit rate for traditional configurations, and therefore, reduces overall performance.

On the other hand, the usage of a shared resource like DRAM memory by different

threads makes it necessary for the system to provide some kind of fairness or performance

isolation control. Existing solutions [63, 97, 98, 99] however rely on traditional DRAM memo-

ries which penalize heavily row misses and limit the adoption of more aggressive scheduling

policies to avoid hurting throughput.

6.2 Thread Row Buffers

The main problem in all the existing reordering techniques is that the important influence of

row buffer locality in the memory system throughput generates a trade-off between through-

put and fairness or performance isolation.

In order to solve the limitations of existing configurations, we propose Thread Row

Buffers (TRBs). TRBs are extra storage added into the DRAM memory to keep active

several rows at the same time. Every row buffer is assigned to a thread, so that every time

that a row is activated in the DRAM, the data is copied to the entry of the requesting thread.

This overcomes the problem with alternating accesses in multiprogrammed environments

and, as we will see, improves the efficiency of fairness or performance isolation oriented

memory schedulers.

The addition of an extra storage area to keep active rows was previously proposed in the

DRAM Cache [46]. The DRAM Cache, however, proposed a unique cache for all the DRAM

memory to store all the rows being activated in the different banks. More recently Loh [82]

proposed to divide this cache and distribute it among the different banks. This technique,

however, was proposed considering that the memory controller was kept out of the chip

and the cache tags could be checked before issuing a request to the DRAM banks. Most

current processors, however, have integrated memory controllers on-chip which makes it

more difficult to implement this technique. A possible implementation would be to insert

all the cache tags and the replacement mechanism with the memory controller. Then the

reordering logic of each bank would need to compare the corresponding cache tags for

each entry of the bank queue. Depending on the associativity of the cache this would incur

a significant delay and energy consumption.

Our proposed mechanism is much simpler and only requires the reordering logic to store

the row addresses of the TRBs. Since row buffers are assigned to threads, the replacement

mechanism is trivial. Figure 6.1 shows the structure of the DRAM memory with TRBs.

112

6.3 Service Partitioning Scheduler

Read FIFO

DRAM

Row Buffer

Bank
0

3
2

1

Row Select Bits

Bank Select Bits

Thread Bits

Column Bits

0

3
2

1

TRB1

TRB2

TRBN

Figure 6.1: DRAM with TRBs structure.

The implementation of Thread Row Buffers requires extra storage in each bank and the

corresponding multiplexers to access them. The area overhead of the Thread Row Buffers

for the evaluated configuration would be 2.04% of the total memory die (assuming a 56.7

mm2 die size [124]). Memory arrays would not need to be modified, thus maintaining the

same high level of integration that characterizes current DRAM memories.

The implementation of Thread Row Buffers in DRAM chips can be done in several ways,

using sense amplifiers like existing row buffers [?], using 3t1d memory cells [75] or using

SRAM, like on-chip caches, mixed with the DRAM cells [6, 47]. Our implementation as-

sumes the same number of threads as TRB entries in order to allow performance isolation

between threads. Nevertheless, TRBs can be used in other contexts with a different number

of threads and TRB entries. The implementation of TRBs enables the memory controller

to actively decide the replacement policy and management of the TRBs unlike previous

proposals (i.e. DRAM Cache) and to manage memory accesses in ways that have not tra-

ditionally been possible due to the limit of a single active row. These alternatives are left for

future study. For instance, TRBs which could be switched off when not used to reduce the

static power consumption or TRBs could be assigned on an application basis.

6.3 Service Partitioning Scheduler

Traditional memory schedulers have been limited by the trade-off of providing the maximum

throughput and some kind of fairness or performance isolation. Reordering in the bank

queues has been done selecting the request with highest priority. Priorities are calculated

concatenating different parameters depending on the type of scheduler. Figure 6.2 shows

an example of how the request priority is calculated for a traditional FR-FCFS scheduler

113

6. THREAD ROW BUFFERS

Request ID
(log2NumBankQueueEntries bits)

Thread-rank
(log2NumThreads bits)

Row Hit
(1 bit)

Marked
(1 bit)

Request ID
(log2NumBankQueueEntries bits)

Row Hit
(1 bit)

Request ID
(log2NumBankQueueEntries bits)

Thread-priority
(log2NumThreads bits)

Row Hit
(1 bit)

FR-FCFS

PAR-BS

TRB-SP

LSBMSB

LowHigh Priority

Figure 6.2: Priority calculation for FR-FCS, PAR-BS and TRB-SP.

Thread 0

Priority
Thread 0

Req Issued

Thread 1

Req Issued

Thread 15

Req Issued

Comparator

A < B

A

B 4 bit counter

Incr

Reset

4

4

4
4

Thread 1

Priority

Thread 15

Priority

Comparator

A < B

A

B 4 bit counter

Incr

Reset

4

4

4
4

Comparator

A < B

A

B 4 bit counter

Incr

Reset

4

4

4
4

If Thread N issued

Priority of thread M (Pm):

If M=N

 Pm=0

If M=N && Pm < Pn

 Pm++

If M=N && Pm < Pn

 Pm not modified

Figure 6.3: Thread priority calculation hardware.

and for the PAR-BS [98] scheduler. Since the memory row hit rate has a very high influence

in the overall memory throughput these techniques give more importance to it, potentially

reducing the final fairness or isolation. The usage of TRBs, on the other hand, has the ad-

vantage that the last row accessed by each thread is always going to be loaded in the TRBs,

allowing the memory controller to apply any scheduling policy without hurting throughput.

As an example to show how easy is to provide fairness and performance isolation with

TRBs we have prioritized requests with the method depicted in Figure 6.2 as TRB-SP. In

order to isolate the performance of the different threads we have used a system which

maintains a thread prioritization and uses these priorities to reorder requests, giving more

importance to this ordering than the row hit information.

In order to calculate the thread priority for service partitioning we have used a very

simple mechanism that uses the most recent history and requires very little hardware. The

working principle of our priority calculator is that every time that a request is issued, the

owner thread changes its priority to the minimum (zero). The remaining threads that used

to have lower priority than that thread increase their priority by one. Therefore, the thread

that has been longer without issuing a request is going to have the maximum priority. The

114

6.3 Service Partitioning Scheduler

FR-FCFS

Throughput

Oriented

A1

B1

B2

B3

A2

B1
B2

B3

A2

B1
B2

B3

A2

A3
A4

Trp Trcd A1

B1
B2

B3

A2

A3

A4

A2

B1

B2

B3

A3

A4

B1

B2

A3

B3

A4

B1

B2

A4

B3

B2

B3

B2

Trp Trcd

B2 B3

B3B1

PAR-BS

Fairness

Oriented

A1

B1

B2

B3

A2

B1

B2

B3

A2

B1

B2

B3

A2

A3
A4

Trp Trcd A1

B1
B2

B3

A2

A3

A4

A2

B1

B2

B3

A3

A4

B2

B3

A3

A3

A4

A4

B2

B3

B3

Trp Trcd B2B1

Marked

Requests

B2

B3B3

Time

Time

B3 Trp Trcd

B1

B2

B3

A3

A4

B1

A3

A4

A3

A4

A3

A4

A4

Issued Req

Issued Req

Bank

queue

A4 A4

TRB-SP

A1

B1

B2

B3

A2

B1
B2

B3

A2

B1
B2

B3

A2

A3
A4

Trp Trcd A1

B1
B2

B3

A2

A3

A4

A2

B1

B2

B3

A3

A4

B1

B2

A3

B3

A4

B2

A4

B3

B2

B3

Trp Trcd B3B1 B2

B3B3

Time

Issued Req

A4

A4

A4

A3

A3

A3 A4

A4

A2

A3

A2 A2

Throughput & Fairness

Oriented

Figure 6.4: Scheduling example.

extra hardware required for priority calculation is very low and can be seen in Figure 6.3. If

needed, more complex scheduling mechanisms could be implemented in conjunction with

TRBs without having to deal with a performance degradation due to a reduction of the row

hit rate. As we will see, the proposed service partitioning mechanism is able to enforce a

strong performance isolation without requiring a large hardware overhead.

Figure 6.4 shows an example of how the different scheduling priorities work. We assume

two threads (A and B), each of them always accessing the same row. For each configuration

we can see on the top the requests stored in the bank queue and on the bottom the requests

issued to the DRAM. It is possible to see how FR-FCFS is able to finish very fast. This is

because it prioritizes requests if there is a row hit, saving time in precharges and activations.

This technique however is not fair and in some cases can stall a request from a different

thread for a long time if multiple requests to the active row arrive. On the other, hand PAR-

BS prioritizes fairness. The example shows how requests are grouped in a batch at the

115

6. THREAD ROW BUFFERS

Memory Controler

Memory Controler

DDR SDRAM Module

B
a
n
k
 0

B
a
n
k
 1

B
a
n
k
 2

B
a
n
k
 3

B
a
n
k
 4

B
a
n
k
 5

B
a
n
k
 6

B
a
n
k
 7

64 FSB

64

FSB

DDR SDRAM Module

B
a
n
k
 0

B
a
n
k
 1

B
a
n
k
 2

B
a
n
k
 3

B
a
n
k
 4

B
a
n
k
 5

B
a
n
k
 6

B
a
n
k
 7

M
e
m

o
ry

 C
o
n
tro

le
r

M
e
m

o
ry

 C
o
n
tro

le
r

D
D

R
 S

D
R

A
M

 M
o
d
u
le

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

D
D

R
 S

D
R

A
M

 M
o
d
u
le

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

64 FSB

64

FSB

Core

1

Core

2

Core

3

Core

4

Core

5

Core

6

Core

7

Core

8

Core

9

Core

10

Core

11

Core

12

Core

13

Core

14

Core

15

Core

16

Figure 6.5: Simulated CMP Structure.

beginning and how requests from threads with fewer requests are given priority. Batching,

however, does not allow new requests to advance those within a batch even if they are to

the active row. Therefore, this reduces the row hit rate and the overall throughput. TRB-SP

is able to combine the benefits of both techniques by providing the lowest completion time

and, in addition, servicing requests in a fair way. We can see in Figure 6.4 how requests

are alternated and this does not penalize the hit rate due to the ability to store several active

rows.

6.4 Evaluation

6.4.1 Simulated Configurations

Figure 6.5 shows the evaluated CMP, using 16 processors and 4 memory controllers with

a dedicated bus. The overall chip bandwidth is similar to recent processors like IBM

Power7 [58] which has a sustained memory bandwidth of more than 100GB/s with 8 chan-

nels operating at 6.4 GHz. In all the tested configurations two levels of cache are used;

as well as a MOESI protocol to grant coherence between nodes. On-chip coherence is

granted through the Distributed Coherence Engines presented in chapter 4. DCEs are dis-

tributed across the chip and connected through a mesh network. Local and private L1 and

116

6.4 Evaluation

L2 caches are used in every processor allowing sharing through the DCEs. We have also

assumed that the access time of TRBs or the Cache DRAM is the same as for the DRAM,

although these parts could have lower access time if implemented with SRAM technology.

To emulate the multiprogrammed execution environment of current chip multiprocessors we

have used the second benchmark set.

We have evaluated the following configurations to compare the proposed techniques:

FR-FCFS: Our baseline configuration uses 8 bank memories, a FR-FCFS scheduler

and an on-chip prefetcher with 32 stream buffers of 8 entries each.

PAR-BS: We have compared to a state of the art scheduling technique, the Parallelism-

Aware Batch Scheduling [98]. We have used a Marking-Cap of 5, which is said to be the

best compromise between system throughput and fairness. We also evaluated a version

with a Marking-Cap of 16 to ensure that prefetch streams were kept within a batch and

results were very similar.

Cache DRAM: This configuration evaluates a Cache DRAM [82] with 16 row entries per

bank, a LRU replacement policy and a FR-FCFS bank scheduler.

TRB: This organization shows the results obtained for the Thread Row Buffers, using a

row buffer per thread in each bank. This configuration also uses a FR-FCFS bank scheduler

that only reorders if the first request produces a row miss.

TRB-SP: In this configuration TRBs are evaluated with the Service Partitioning mecha-

nism in the memory controller to grant performance isolation.

6.4.2 Performance and Energy Efficiency

In this section we present the evaluation of the TRB compared to existing configurations

described previously. Figure 6.6 shows the weighted Speedup, normalized throughput and

row hit rate of the evaluated organizations. It can be seen in the third plot that Thread Row

Buffers are able to increase the row hit rate significantly, raising from the 54.4% of FR-FCFS

to 75%. This increase is explained by the ability of TRBs to keep several active rows at the

same time. Cache DRAM also has this ability and is able to increase the hit rate to 67.6%.

The row hit rate improvement results in a lower latency and, therefore, an increase of the

overall throughput. Weighted speedup is increased on average by 19.7% over FR-FCFS,

23.9% over PAR-BS and 9.1% over Cache DRAM. In terms of aggregated throughput TRBs

also show the best results, improving it on average by 17.1% over FR-FCFS, 21.9% over

PAR-BS and 6.9% over Cache DRAM.

117

6. THREAD ROW BUFFERS

Figure 6.6: Weighted Speedup, normalized throughput and row hit rate.

The performance of PAR-BS is similar to FR-FCFS. This is explained by the low hit

rate that this configuration achieves. Previous studies evaluated this technique without

prefetching, and therefore lower memory level parallelism (MLP). In that environment a FR-

FCFS scheduler is not able to get a reasonable hit rate and, therefore, the penalization

of grouping requests into batches is small. The addition of stream prefetchers, however,

increases the MLP and shows that under the presence of prefetching batch grouping may

reduce the overall throughput.

On the other hand, the TRB configuration has a slightly higher row hit rate than TRB-

SP and its performance is lower. This is explained by the performance isolation capability

of TRB-SP which is able to reduce the memory latency of threads with lower number of

requests. This results in most of the cases in a performance improvement of most of the

118

6.4 Evaluation

Figure 6.7: Average BM latency and standard deviation.

threads. In the case of 456_459_ammp, however, configurations that enforce performance

isolation show a worse performance. This application combination has the highest average

number of simultaneous requests and the impact of the scheduling policy is more clear. In

this case the Service Partitioning scheduler stalls some requests from ammp to grant a fair

access to the other threads, specially those from 456_hmmer. Since ammp represents half

of the threads the overall performance is reduced. This reduction, however, is in exchange

of a more fair resource allocation and does not imply a reduction in memory throughput.

To measure the performance isolation we have used two different metrics, the average

memory latency of each application and its standard deviation, shown in Figure 6.7. The

second plot, shows how TRB-SP enforces performance isolation. The performance reduc-

tion of ammp in favor of 456_hmmer seen in the 456_459_ammp combination reduces the

latency deviation of this application by 68% over FR-FCFS.

PAR-BS also shows a good standard deviation due to the usage of a fair scheduler and

is able to reduce it on average by 13.2% over FR-FCFS. The average latency, however, is

high due to the low hit rate. The configuration with Service Partitioning, however, shows

the best average results. It is able to reduce the average latency by 21.3% over FR-FCFS,

26.3% over PAR-BS and 12.8% over Cache DRAM. Standard deviation is also reduced

by 40.4% over FR-FCFS, 31.4% over PAR-BS and 42.1% over Cache DRAM. TRBs, on

the other hand, grant that the row hit rate is not affected by thread alternation but appli-

cations with a higher number of requests are going to penalize those with less memory

119

6. THREAD ROW BUFFERS

Figure 6.8: TRB-SP memory power decomposition.

accesses. Therefore, the addition of TRBs is not enough to enforce performance isolation

Cache DRAM and TRB show the worst variability since they do not have any kind of fair

scheduler and are throughput oriented. They increase the standard deviation by 13.2% and

14.4% respectively compared to FR-FCFS.

Furthermore, DRAM power in modern server systems can account for 30% of total

system power [8]. And from this power around one third is spent in the precharge and

activation of rows. Hence, the aforementioned reduction in row hits also is useful from

an energy consumption point of view. In order to evaluate TRB power we have assumed

the usage of SRAM TRBs and, therefore, their static power and area has been evaluated

with Cacti [123]. Figure 6.8 shows that the power consumption per request of the TRB is

similar to the power consumed in the other configurations except for the 444_456_ammp

configuration. The extra power in this case is caused by a very small number of requests

that do not take advantage of the hit rate improvement. The second plot of Figure 6.8 shows

a decomposition of the memory power consumed in the TRB-SP configuration. It can be

seen that in all cases the DRAM power consumption is reduced due to a higher hit rate that

120

6.4 Evaluation

Figure 6.9: Power, Avg latency and Energy-efficiency.

avoids row activations which consume a high amount of energy. However, the extra storage

adds a significant amount of static power. On average, TRBs increase the required power

per request by 1.8% compared to FR-FCFS but reduce it by 8.3% compared to Cache

DRAM.

If we look at the energy-efficiency, however, results are much better for TRBs due to the

reduction of the average memory latency (first plot of Figure 6.9). Results show that TRB-

SP reduces latency by 18.1% compared to FR-FCFS and by 3.5% compared to Cache

DRAM. The second plot shows the energy-delay squared product (ET2) which is a good

measure of energy-efficiency (the lower the better). As expected, a reduced latency with

similar power requirements leads to a much higher energy-efficiency for TRB configurations.

TRB-SP is able to increase the energy-efficiency reducing the ET2 by 29.1% over FR-FCFS,

41.2% over PAR-BS and 14.7% over Cache DRAM.

6.4.3 Addition of extra banks

A different alternative to increase the memory access parallelism and increase the overall

hit rate would be to use a higher number of banks, each of them with its corresponding row

121

6. THREAD ROW BUFFERS

Figure 6.10: Weighted Speedup, normalized throughput and Row Hit rate with extra banks.

buffer. This solution is orthogonal to the proposed technique and could be combined with

it.

It is important to note that the addition of extra banks has a high cost in terms of hard-

ware, especially in the memory controller. It requires adding buffer queues and arbiters for

each new bank, therefore doubling the required area when doubling the number of banks.

In addition, since the extra banks are not allocated to threads, this solution still has to deal

with the throughput-isolation trade-off. This configuration, however, also has the benefit

of being able to activate or precharge more rows simultaneously. Since it is interesting to

see the trade-offs between these alternatives, we have evaluated a configuration with extra

banks (16Bks) and a configuration that combines both techniques (TRB-SP_16Bks).

Figure 6.10 shows the performance improvements and row hit rate of both configura-

122

6.5 Conclusions

tions. It can be seen that Thread Row Buffers are able to improve the overall throughput as

much as the configuration that doubles the number of banks with a smaller complexity. If we

look at the third plot we can see that in terms of row hit rate TRBs are much more efficient

than adding extra banks and reaches and average of 75% compared to the 58% of the

16Bks configuration. Finally, we can see that a combination of both techniques, although

having a high cost in terms of hardware, can double the overall throughput in some cases

and increase it by 39% on average over FR-FCFS.

6.5 Conclusions

In this Chapter we have seen that current chip multiprocessors require that we deal with an

increasingly heterogeneous set of applications which change the memory access patterns

and encourage the adoption of new organizations. Thread Row Buffers are able to deal

with alternate row access with the usage of multiple active rows. It has been shown that

they are able to increase the row hit-rate by 38% with respect to FR-FCFS and by 11% with

respect to Cache DRAM. This, in turn, increases the overall performance by 17% and 7%

respectively.

Furthermore, the increasing number of virtualized environments show a demand for

performance isolation between threads. Isolation in existing memory schedulers has been

granted by sacrificing throughput due to the usage of traditional DRAM memories. The

addition of TRBs eliminates this trade-off allowing the implementation of more aggressive

schedulers. The configuration with TRBs and Service Partitioning is able to reduce the

standard deviation of an application latency by 40% over FR-FCFS, 31% over PAR-BS and

42% over Cache DRAM.

Overall, we have shown that Thread Row Buffers are an energy-efficient mechanism

which allows to avoid the trade-off throughput-isolation and the implementation of sim-

ple fairness or Quality-of-Service oriented schedulers without hurting memory throughput.

Therefore, TRBs show to be a good alternative to be incorporated in future memory de-

signs.

123

6. THREAD ROW BUFFERS

124

Chapter 7

Conclusions

Several memory hierarchy organizations have been proposed and analyzed in this thesis

for next generation tiled CMPs. We have presented the state of the art in organizations

for the memory hierarchy and the challenges that are going to arise in next generation

chip multiprocessors. From there, we have evaluated current solutions and found their

limitations in order to propose new approaches. In particular, we have presented several

techniques for the memory hierarchy of chip multiprocessors that we summarize in the

following paragraphs.

7.1 Thesis Contributions

In Chapter 4, we showed that traditional cache organizations such as shared or private

caches behave well only for some applications and that an adaptive system would be de-

sirable. Cooperative Caching is a framework that takes advantage of the benefits of both

worlds. This technique, however, requires the usage of a centralized coherence structure

and has a high energy consumption. We presented the Distributed Cooperative Caching, a

mechanism to provide coherence to chip multiprocessors and apply the concept of cooper-

ative caching in a distributed way. Furthermore, we showed that our tag allocation method

is much more flexible and energy-efficient.

In addition, we presented a study of the effectiveness and reuse patterns of the spilling

technique, showing that not always is necessary and that most of the reuse is done by

the evicting node. We proposed a Distance-Aware and a Selective Spilling mechanisms

to solve these issues. Distance-Aware Spilling allows to reduce the spilling distance and,

therefore, the network traffic and energy consumption. Selective Spilling on the other hand,

125

7. CONCLUSIONS

evaluates dynamically the effectiveness of spilling and deactivates it when not effective,

also reducing the overall energy consumption.

In Chapter 5, we showed that applications make different uses of cache and that an

efficient allocation can take advantage of unused resources. We have proposed Elastic Co-

operative Caching, an adaptive cache organization able to redistribute cache resources dy-

namically depending on application requirements. One of the most important contributions

of this technique is that adaptivity is fully managed by hardware and that all repartitioning

mechanisms are based on distributed structures, allowing a better scalability. ElasticCC not

only is able to repartition cache sizes to application requirements, but also is able to dynam-

ically adapt to the different execution phases of each thread. Our experimental evaluation

also has shown that the cache partitioning provided by ElasticCC is efficient and is almost

able to match the off-chip miss rate of a configuration that doubles the cache space.

Finally, in Chapter 6 we have studied the behavior of current memory controllers. A

detailed model has been implemented and it has been evaluated in a multiprogrammed en-

vironment. Although traditional memory schedulers work well for uniprocessors, we showed

that new access patterns advocate for a redesign of some parts of DRAM memories. Sev-

eral new organizations exist for the DRAM schedulers, however, all of them must tradeoff

between memory throughput and fairness. We proposed Thread Row Buffers, an extended

storage area in DRAM memories able to store a data row for each thread. This mecha-

nism enables a fair memory access scheduling without hurting memory throughput. This is

specially important in multiprogrammed systems where performance isolation and Quality-

of-Service is desired. We showed that Thread Row Buffers enable the implementation of

very simple bank schedulers that outperform existing state of the art techniques.

7.2 Future Work

In this thesis, we have shown that the implementation of application-aware caches can

improve significantly their performance in chip multiprocessors. Therefore, in the future,

it is going to be important to study the characteristics of common applications to detect

their characteristics and design adaptive cache systems able to maximize performance and

power efficiency. ElasticCC provides a good starting point due to its simplicity and adap-

tivity to current applications. An interesting research direction would be to study hardware-

software co-design approaches which could do a finner grain classification. This approach

can increase the programming complexity but, on the other hand, it can improve the cache

behavior and the processor performance if correctly managed by the compiler.

126

7.2 Future Work

In the memory controller part, it has been shown that arbitration between threads is

going to be critical in the overall system performance. The proposed Thread Row Buffers,

open a new research path in the design of memory schedulers. The disappearance of

the throughput-fairness trade-off in the DRAM scheduling allows to design new memory

schedulers with more aggressive prioritization mechanisms. Depending on the system re-

quirements in terms of isolation or QoS, specifically suited schedulers can be proposed.

127

GLOSSARY

128

Glossary

Activate Action of loading a row of data in the row
buffer of a DRAM memory.

Bank Region of a DRAM memory. All banks
can be accessed in parallel

Cache Storage component that keeps a portion
of the data close to the consumer. It al-
lows to take advantage of program lo-
cality and reduce the number of mem-
ory requests. Typically implemented with
SRAM memory.

CMP Chip multiprocessor. Chip containing
more than one computing element.

Coherence Engine Directory responsible of grant-
ing on-chip coherence.

DRAM Dynamic Random Access Memory.
Storage component slower than SRAM
but with a much higher integration den-
sity. It only requires one transistor and
one capacitor per bit. Typically is used
as an intermediate storage component
between caches and disk.

Low Utility Application Application with low tem-
poral locality that makes an intensive use
of the memory hierarchy without reusing
the data.

Memory Controller Scheduling mechanism re-
sponsible of managing DRAM memories
and arbitrate among memory requests.

N-Chance forwarding Technique for sharing
cache space with private caches. On an
eviction a block is forwarded N times to
other caches before being evicted from
the chip.

Precharge Action of writing back the row buffer
data to the DRAM storage.

Private High Utility Application Application that
benefits from larger levels of memory hi-
erarchy but does not share data between
threads

Row Also known as page. Portion of data in
a DRAM memory, typically consisting of
around 128 blocks.

Row Buffer Storage area in DRAM memories
where data rows are allocated. All data
in DRAM memories must be read from
the row buffers.

Saturating Utility Application Application charac-
terized by having a small working set that
fits in the cache.

Shared High Utility Application Application that
benefits from larger levels of memory hi-
erarchy and his data is shared between
threads

Spilling See N-Chance forwarding.

SRAM Static Random Access Memory. Stor-
age component usually composed of six
transistors per bit. Four transistors con-
form the storage cell through two cross-
coupled inverters and the other two are
used to control the access to data. It
is faster and less power hungry than
DRAM but also less dense.

129

REFERENCES

References

[1] J. ABELLA AND A. GONZÁLEZ. Heteroge-
neous way-size cache. In Proceedings of
the 20th annual international conference on
Supercomputing, ICS ’06, pages 239–248,
New York, NY, USA, 2006. ACM. 13

[2] M.E. ACACIO, J. GONZALEZ, J.M. GARCIA,
AND J. DUATO. A new scalable directory
architecture for large-scale multiproces-
sors. HPCA ’01: 7th International Sympo-
sium on High-Performance Computer Archi-
tecture, pages 97–106, 2001. 11

[3] A. AGARWAL, R. SIMONI, J. HENNESSY, AND

M. HOROWITZ. An evaluation of direc-
tory schemes for cache coherence. In
Proceedings of the 15th Annual International
Symposium on Computer architecture, ISCA
’88, pages 280–298, Los Alamitos, CA, USA,
1988. IEEE Computer Society Press. 9

[4] J.K. ARCHIBALD. A cache coherence ap-
proach for large multiprocessor systems.
In Proceedings of the 2nd international con-
ference on Supercomputing, ICS ’88, pages
337–345, New York, NY, USA, 1988. ACM. 10

[5] V. ASLOT AND R. EIGENMANN. Quanti-
tative performance analysis of the SPEC
OMPM2001 benchmarks. Scientific Pro-
gramming, 11(2):105–124, 2003. 46, 103

[6] F. ASSADERAGHI, L.L-C. HSU, AND J.A.
MANDELMAN. Mixed memory integration
with NVRAM, DRAM and SRAM cell struc-

tures on same substrate. US Patent
6,424,011, 23 Jul. 2002. 113

[7] SEMICONDUCTOR INDUSTRIES ASSOCIA-
TION. International Technology Roadmap
for Semiconductors. Technical report,
http://www.itrs.net/reports.html, 2005. 3, 41

[8] L. BARROSO AND H. HOLZLE. The Datacen-
ter as a Computer: An introduction to the De-
sign of Warehouse-Scale Machines. Morgan
& Claypool, 2009. 19, 28, 120

[9] B.M. BECKMANN, M.R. MARTY, AND D.A.
WOOD. ASR: Adaptive Selective Replica-
tion for CMP Caches. MICRO-39: 39th An-
nual IEEE/ACM International Symposium on
Microarchitecture, Dec. 2006. 11, 13, 14, 92,
100, 101

[10] B.M. BECKMANN AND D.A. WOOD.
Managing Wire Delay in Large Chip-
Multiprocessor Caches. In Proceedings
of the 37th annual IEEE/ACM International
Symposium on Microarchitecture, MICRO
37, pages 319–330, Washington, DC, USA,
2004. IEEE Computer Society. 13

[11] C. GORDON BELL, JOHN E. MCNAMARA,
AND J. CRAIG. MUDGE. Computer Engineer-
ing; A DEC View of Hardware Systems De-
sign. Butterworth-Heinemann, Newton, MA,
USA, 1978. 7

[12] C.G. BELL, R.C. CHEN, S.H. FULLER,
J. GRASON, S. REGE, AND D.P. SIEWIOREK.
The Architecture and Applications of Com-
puter Modules: A Set of Components for
Digital Design. IEEE Compcon., 73:177–
180, March 1973. 7

[13] L. BLOOM, M. COHEN, AND S. PORTER.
"Considerations" in the Design of a Com-
puter with High Logic-to-Memory Speed
Ratio. In Proceedings of Gigacycle Comput-
ing Systems, 5–136 of AIEE Special Publ.,
pages 53–63, 1962. 1

130

http://doi.acm.org/10.1145/1183401.1183436
http://doi.acm.org/10.1145/1183401.1183436
http://portal.acm.org/citation.cfm?id=52400.52432
http://portal.acm.org/citation.cfm?id=52400.52432
http://doi.acm.org/10.1145/55364.55397
http://doi.acm.org/10.1145/55364.55397
http://dx.doi.org/10.1109/MICRO.2004.21
http://dx.doi.org/10.1109/MICRO.2004.21

REFERENCES

[14] F. BRIGGS, M. CEKLEOV, K. CRETA,
M. KHARE, S. KULICK, A. KUMAR, L.P. LOOI,
C. NATARAJAN, S. RADHAKRISHNAN, AND

L. RANKIN. Intel 870: A Building Block for
Cost-Effective, Scalable Servers. IEEE Mi-
cro, 22:36–47, March 2002. 23, 24

[15] D.M. BROOKS, P. BOSE, S.E. SCHUSTER,
H. JACOBSON, P.N. KUDVA, A. BUYUK-
TOSUNOGLU, J-D. WELLMAN, V. ZYUBAN,
M. GUPTA, AND P.W. COOK. Power-Aware
Microarchitecture: Design and Modeling
Challenges for Next-Generation Micropro-
cessors. IEEE Micro, 20(6):26–44, 2000. 38

[16] J. CHANG, E. HERRERO, R. CANAL, AND

G. SOHI. Cooperative Caching for Chip
Multiprocessors. In Cooperative Networking.
ISBN: 978-0-470-74915-9. Wiley, 2011. 5

[17] J. CHANG AND G.S. SOHI. Cooperative
Caching for Chip Multiprocessors. In ISCA
’06: 33rd Annual International Symposium
on Computer Architecture, pages 264–276,
2006. 11, 13, 15, 60, 61, 92

[18] J. CHANG AND G.S. SOHI. Cooperative
cache partitioning for chip multiproces-
sors. In ICS ’07: 21st Annual International
Conference on Supercomputing, pages 242–
252, 2007. 13, 16, 92

[19] A. CHARLESWORTH, N. ANESHANS-
LEY, M. HAAKMEESTER, D. DROGICHEN,
G. GILBERT, R. WILLIAMS, AND A. PHELPS.
The Starfire SMP interconnect. In Proceed-
ings of the 1997 ACM/IEEE conference on
Supercomputing, Supercomputing ’97, pages
1–20, New York, NY, USA, 1997. ACM. 11

[20] M. CHAUDHURI. PageNUCA: Selected poli-
cies for page-grain locality management in
large shared chip-multiprocessor caches.
In High Performance Computer Architecture,
2009. HPCA 2009. IEEE 15th International
Symposium on, pages 227 –238, 2009. 13

[21] D. CHIOU. Extending the Reach of
Microprocessors: Column and Curious
Caching. PhD Thesis, Massachusets Insti-
tute of Technology, 1999. 17, 49, 92, 94

[22] Z. CHISHTI, M.D. POWELL, AND T.N. VI-
JAYKUMAR. Optimizing Replication, Com-
munication, and Capacity Allocation in
CMPs. International Symposium on Com-
puter Architecture, 0:357–368, 2005. 11, 13,
14

[23] Z. CHISHTI, M.D. POWELL, AND T.N. VI-
JAYKUMAR. Distance associativity for high-
performance energy-efficient non-uniform
cache architectures. MICRO-36: 36th An-
nual IEEE/ACM International Symposium on
Microarchitecture, pages 55–66, 3-5 Dec.
2003. 60, 92

[24] BURROUGHS CORPORATION. The opera-
tional characteristics of the processors for
the Burroughs B5000. Technical report, Bur-
roughs Corporation, 1962. 7

[25] A.L. COX AND R.J. FOWLER. Adaptive
cache coherency for detecting migratory
shared data. In Proceedings of the 20th an-
nual international symposium on Computer
architecture, ISCA ’93, pages 98–108, New
York, NY, USA, 1993. ACM. 13

[26] D.E. CULLER, A. GUPTA, AND J.P. SINGH.
Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st
edition, 1997. 7

[27] M.D. DAHLIN, R.Y. WANG, T.E. ANDER-
SON, AND D.A. PATTERSON. Cooperative
Caching: Using remote client memory to
improve file system performance. OSDI
’94: 1st Conference on Operating Systems
Design and Implementation, pages 267–280,
Nov. 1994. 94

131

http://portal.acm.org/citation.cfm?id=623304.624516
http://portal.acm.org/citation.cfm?id=623304.624516
http://doi.acm.org/10.1145/509593.509630
http://doi.acm.org/10.1145/165123.165146
http://doi.acm.org/10.1145/165123.165146
http://doi.acm.org/10.1145/165123.165146

REFERENCES

[28] J.D. DAVIS, J. LAUDON, AND K. OLUKO-
TUN. Maximizing CMP throughput with
mediocre cores. PACT ’05: 14th Interna-
tional Conference on Parallel Architectures
and Compilation Techniques, pages 51–62,
17-21 Sept. 2005. 36

[29] PRADEEP DUBEY. A Platform 2015
Workload Model: Recognition, Min-
ing and Synthesis Moves Computers
to the Era of Tera. Intel White Paper
ftp://download.intel.com/technology/compu-
ting/archinnov/platform2015/download/
RMS.pdf Intel Corporation, 2005. 32

[30] H. DYBDAHL AND P. STENSTROM. An Adap-
tive Shared/Private NUCA Cache Parti-
tioning Scheme for Chip Multiprocessors.
HPCA ’07: 13th International Symposium
on High Performance Computer Architecture,
pages 2–12, 10-14 Feb. 2007. 11, 13, 16, 17,
92

[31] E. EBRAHIMI, O. MUTLU, C.J. LEE, AND

Y.N. PATT. Coordinated control of multi-
ple prefetchers in multi-core systems. In
MICRO 42: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Mi-
croarchitecture, pages 316–326, New York,
NY, USA, 2009. ACM. 19, 23, 27

[32] B. FALSAFI AND D.A. WOOD. Reactive
NUMA: a design for unifying S-COMA and
CC-NUMA. In Proceedings of the 24th annual
international symposium on Computer archi-
tecture, ISCA ’97, pages 229–240, New York,
NY, USA, 1997. ACM. 11

[33] K. GHARACHORLOO, A. NOWATZYK, R. MC-
NAMARA, R. STETS, S. SMITH, S. QADEER,
B. SANO, B. VERGHESE, AND L.A. BAR-
ROSO. Piranha: A Scalable Architec-
ture Based on Single-Chip Multiprocess-
ing. Computer Architecture, International
Symposium on, 0:282, 2000. 11

[34] A. GONZÁLEZ, C. ALIAGAS, AND M. VALERO.
A data cache with multiple caching strate-
gies tuned to different types of locality.
In Proceedings of the 9th international con-
ference on Supercomputing, ICS ’95, pages
338–347, New York, NY, USA, 1995. ACM. 13

[35] J.R. GOODMAN. Using cache memory
to reduce processor-memory traffic. In
Proceedings of the 10th annual international
symposium on Computer architecture, ISCA
’83, pages 124–131, New York, NY, USA,
1983. ACM. 10

[36] E. HAGERSTEN, A. LANDIN, AND S. HARIDI.
DDM: A Cache-Only Memory Architecture.
Computer, 25:44–54, September 1992. 11

[37] E.G. HALLNOR AND S.K. REINHARDT. A fully
associative software-managed cache de-
sign. In Proceedings of the 27th annual in-
ternational symposium on Computer architec-
ture, ISCA ’00, pages 107–116, New York,
NY, USA, 2000. ACM. 13

[38] N. HARDAVELLAS, M. FERDMAN, B. FALSAFI,
AND A. AILAMAKI. Reactive NUCA: near-
optimal block placement and replication in
distributed caches. In ISCA ’09: 36th annual
international symposium on Computer archi-
tecture, pages 184–195, New York, NY, USA,
2009. ACM. 10, 11, 13, 16, 92

[39] J.L. HENNESSY AND D.A. PATTERSON. Com-
puter Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 3 edition, 2003. 2, 9

[40] J.L. HENNING. SPEC CPU2006 benchmark
descriptions. SIGARCH Comput. Archit.
News, 34(4):1–17, 2006. 46

[41] M. HERLIHY AND J.E.B. MOSS. Transac-
tional memory: architectural support for
lock-free data structures. In Proceedings of
the 20th annual international symposium on

132

http://doi.acm.org/10.1145/264107.264205
http://doi.acm.org/10.1145/264107.264205
http://doi.acm.org/10.1145/264107.264205
http://doi.acm.org/10.1145/224538.224622
http://doi.acm.org/10.1145/224538.224622
http://doi.acm.org/10.1145/800046.801647
http://doi.acm.org/10.1145/800046.801647
http://portal.acm.org/citation.cfm?id=141711.141718
http://doi.acm.org/10.1145/339647.339660
http://doi.acm.org/10.1145/339647.339660
http://doi.acm.org/10.1145/339647.339660
http://doi.acm.org/10.1145/165123.165164
http://doi.acm.org/10.1145/165123.165164
http://doi.acm.org/10.1145/165123.165164

REFERENCES

Computer architecture, ISCA ’93, pages 289–
300, New York, NY, USA, 1993. ACM. 12

[42] E. HERRERO, J. GONZÁLEZ, AND R. CANAL.
Distributed cooperative caching. In PACT
’08: Proceedings of the 17th international
conference on Parallel architectures and com-
pilation techniques, pages 134–143, New
York, NY, USA, 2008. ACM. 4

[43] E. HERRERO, J. GONZÁLEZ, AND R. CANAL.
Elastic cooperative caching: an au-
tonomous dynamically adaptive memory
hierarchy for chip multiprocessors. In
ISCA ’10: Proceedings of the 37th annual
international symposium on Computer archi-
tecture, pages 419–428, New York, NY, USA,
2010. ACM. 5

[44] E. HERRERO, J. GONZÁLEZ, AND R. CANAL.
Power-Efficient Spilling Techniques
for Chip Multiprocessors. In PASQUA

D’AMBRA, MARIO GUARRACINO, AND

DOMENICO TALIA, editors, Euro-Par 2010 -
Parallel Processing, 6271 of Lecture Notes in
Computer Science, pages 256–267. Springer
Berlin / Heidelberg, 2010. 4, 60

[45] E. HERRERO, J. GONZÁLEZ, AND R. CANAL.
Distributed Cooperative Caching: An En-
ergy Efficient Memory Scheme for Chip
Multiprocessors. IEEE Transactions on Par-
allel and Distributed Systems (To Appear),
2011. 5

[46] H. HIDAKA, Y. MATSUDA, M. ASAKURA, AND

K. FUJISHIMA. The Cache DRAM Archi-
tecture: A DRAM with an On-Chip Cache
Memory. IEEE Micro, 10(2):14–25, 1990.
112

[47] L.L. HSU, C. RADENS, AND L-K. WANG. In-
tegrated chip having SRAM, DRAM and
Flash memory and method for fabricating
the same. US Patent 6,556,477, 29 Apr.
2003. 113

[48] L.R. HSU, S.K. REINHARDT, R. IYER, AND

S. MAKINENI. Communist, utilitarian, and
capitalist cache policies on CMPs: caches
as a shared resource. In Proceedings of the
15th international conference on Parallel ar-
chitectures and compilation techniques, PACT
’06, pages 13–22, New York, NY, USA, 2006.
ACM. 12

[49] J. HUH, D. BURGER, AND S.W. KECK-
LER. Exploring the Design Space of Fu-
ture CMPs. In Proceedings of the 2001 In-
ternational Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’01,
pages 199–210, Washington, DC, USA, 2001.
IEEE Computer Society. 2

[50] J. HUH, C. KIM, H. SHAFI, L. ZHANG,
D. BURGER, AND S.W. KECKLER. A NUCA
substrate for flexible CMP cache sharing.
In ICS ’05: 19th Annual International Con-
ference on Supercomputing, pages 31–40,
2005. 13, 15, 16, 60, 92

[51] I. HUR AND C. LIN. Adaptive History-Based
Memory Schedulers. In MICRO 37: Pro-
ceedings of the 37th annual IEEE/ACM In-
ternational Symposium on Microarchitecture,
pages 343–354, Washington, DC, USA, 2004.
IEEE Computer Society. 23, 24

[52] INTEL. The SCC Platform Overview. Tech-
nical report, Intel Labs, May 2010. 3, 10, 32

[53] E. IPEK, O. MUTLU, J.F. MARTÍNEZ, AND

R. CARUANA. Self-Optimizing Memory Con-
trollers: A Reinforcement Learning Ap-
proach. In ISCA ’08: Proceedings of the 35th
Annual International Symposium on Com-
puter Architecture, pages 39–50, Washing-
ton, DC, USA, 2008. IEEE Computer Society.
23, 24

[54] R. IYER. CQoS: a framework for enabling
QoS in shared caches of CMP platforms.
In ICS ’04: Proceedings of the 18th annual

133

http://doi.acm.org/10.1145/1152154.1152161
http://doi.acm.org/10.1145/1152154.1152161
http://doi.acm.org/10.1145/1152154.1152161
http://portal.acm.org/citation.cfm?id=645988.674164
http://portal.acm.org/citation.cfm?id=645988.674164

REFERENCES

international conference on Supercomputing,
pages 257–266, New York, NY, USA, 2004.
ACM. 11, 13, 16, 92

[55] J.A. GREGORIO J. MERINO, V. PUENTE.
ESP-NUCA: A Low-cost Adaptive Non-
Uniform Cache Architecture. HPCA ’10:
16th International Symposium on High Per-
formance Computer Architecture, 9-14 Jan.
2010. 11, 13

[56] N.D.E. JERGER, L-S. PEH, AND M.H. LI-
PASTI. Virtual Tree Coherence: Leveraging
Regions and In-Network Multicast Trees
for Scalable Cache Coherence. MICRO-41:
41st Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 8-12 Nov. 2008.
92

[57] N.P. JOUPPI. Improving direct-mapped
cache performance by the addition of a
small fully-associative cache and prefetch
buffers. In ISCA ’90: Proceedings of the 17th
annual international symposium on Computer
Architecture, pages 364–373, New York, NY,
USA, 1990. ACM. 53

[58] R. KALLA AND B. SINHAROY. POWER7:
IBM’s Next Generation Server Processor.
In Hot Chips’09: 21st Symposium on High
Performance Chips, Standford University, CA,
USA, 23-25 Aug. 2009. 116

[59] M. KANDEMIR, F. LI, M.J. IRWIN, AND S.W.
SON. A novel migration-based NUCA de-
sign for chip multiprocessors. In Proceed-
ings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 28:1–28:12,
Piscataway, NJ, USA, 2008. IEEE Press. 13

[60] C. KIM, D. BURGER, AND S.W. KECKLER.
An adaptive, non-uniform cache structure
for wire-delay dominated on-chip caches.
In Proceedings of the 10th international con-
ference on Architectural support for pro-
gramming languages and operating systems,

ASPLOS-X, pages 211–222, New York, NY,
USA, 2002. ACM. 11, 13, 15

[61] J.S. KIM, M.B. TAYLOR, J. MILLER, AND

D. WENTZLAFF. Energy characterization of
a tiled architecture processor with on-chip
networks. In ISLPED ’03: International sym-
posium on Low power electronics and design,
pages 424–427, 2003. 39

[62] S. KIM, D. CHANDRA, AND Y. SOLIHIN. Fair
Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture. In Proceed-
ings of the 13th International Conference on
Parallel Architectures and Compilation Tech-
niques, PACT ’04, pages 111–122, Washing-
ton, DC, USA, 2004. IEEE Computer Society.
11, 13

[63] Y. KIM, D. HAN, O. MUTLU, AND

M. HARCHOL-BALTER. ATLAS: A Scal-
able and High-Performance Scheduling
Algorithm for Multiple Memory Con-
trollers. In HPCA ’10: Proceedings of the
2010 IEEE 16th International Symposium on
High Performance Computer Architecture,
Washington, DC, USA, 2010. IEEE Computer
Society. 18, 23, 26, 29, 112

[64] Y. KIM, M. PAPAMICHAEL, O. MUTLU, AND

M. HARCHOL-BALTER. Prefetch-Aware
DRAM Controllers. In MICRO 43: Pro-
ceedings of the 43th annual IEEE/ACM In-
ternational Symposium on Microarchitecture,
Washington, DC, USA, 2010. IEEE Computer
Society. 18, 23, 27, 29

[65] P. KONGETIRA, K. AINGARAN, AND

K. OLUKOTUN. Niagara: a 32-way mul-
tithreaded Sparc processor. Micro, IEEE,
25(2):21 – 29, 2005. 11

[66] R. KUMAR, V. ZYUBAN, AND D.M. TULLSEN.
Interconnections in Multi-Core Architec-
tures: Understanding Mechanisms, Over-
heads and Scaling. In ISCA ’05: 32nd An-

134

http://portal.acm.org/citation.cfm?id=1413370.1413399
http://portal.acm.org/citation.cfm?id=1413370.1413399
http://doi.acm.org/10.1145/605397.605420
http://doi.acm.org/10.1145/605397.605420
http://dx.doi.org/10.1109/PACT.2004.15
http://dx.doi.org/10.1109/PACT.2004.15
http://dx.doi.org/10.1109/PACT.2004.15

REFERENCES

nual International Symposium on Computer
Architecture, pages 408–419, Washington,
DC, USA, 2005. IEEE Computer Society. 101

[67] C-C. KUO, J.B. CARTER, R. KURAMKOTE,
AND M.R. SWANSON. ASCOMA: An Adap-
tive Hybrid Shared Memory Architecture.
In Proceedings of the 1998 International Con-
ference on Parallel Processing, ICPP ’98,
pages 207–216, Washington, DC, USA, 1998.
IEEE Computer Society. 11

[68] J. LAUDON AND D. LENOSKI. The SGI Ori-
gin: a ccNUMA highly scalable server. In
Proceedings of the 24th annual international
symposium on Computer architecture, ISCA
’97, pages 241–251, New York, NY, USA,
1997. ACM. 11

[69] A.R. LEBECK, X. FAN, H. ZENG, AND C. EL-
LIS. Power aware page allocation. In
ASPLOS-IX: Proceedings of the ninth interna-
tional conference on Architectural support for
programming languages and operating sys-
tems, pages 105–116, New York, NY, USA,
2000. ACM. 19, 23, 29

[70] C.J. LEE, O. MUTLU, V. NARASIMAN, AND

Y.N. PATT. Prefetch-Aware DRAM Con-
trollers. In MICRO 41: Proceedings of the
41st annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 200–209,
Washington, DC, USA, 2008. IEEE Computer
Society. 19, 23, 28

[71] C.J. LEE, V. NARASIMAN, O. MUTLU, AND

Y.N. PATT. Improving memory bank-level
parallelism in the presence of prefetching.
In MICRO 42: Proceedings of the 42nd An-
nual IEEE/ACM International Symposium on
Microarchitecture, pages 327–336, New York,
NY, USA, 2009. ACM. 19, 23, 28

[72] H-H.S. LEE, G.S. TYSON, AND M.K. FAR-
RENS. Eager writeback - a technique for

improving bandwidth utilization. In Pro-
ceedings of the 33rd annual ACM/IEEE inter-
national symposium on Microarchitecture, MI-
CRO 33, pages 11–21, New York, NY, USA,
2000. ACM. 24

[73] D. LENOSKI, J. LAUDON, K. GHARACHOR-
LOO, A. GUPTA, AND J. HENNESSY. The
directory-based cache coherence proto-
col for the DASH multiprocessor. ISCA
’90: 17th Annual International Symposium on
Computer Architecture, pages 148–159, 28-
31 May 1990. 11

[74] D. LENOSKI, J. LAUDON, K. GHARACHOR-
LOO, W-D. WEBER, A. GUPTA, J. HENNESSY,
M. HOROWITZ, AND M.S. LAM. The Stanford
Dash Multiprocessor. Computer, 25:63–79,
March 1992. 11

[75] XIAOYAO LIANG, RAMON CANAL, GU-YEON

WEI, AND DAVID BROOKS. Process Vari-
ation Tolerant 3T1D-Based Cache Archi-
tectures. In Proceedings of the 40th An-
nual IEEE/ACM International Symposium on
Microarchitecture, MICRO 40, pages 15–26,
Washington, DC, USA, 2007. IEEE Computer
Society. 113

[76] J. LIN, Q. LU, X. DING, Z. ZHANG,
X. ZHANG, AND P. SADAYAPPAN. Gaining
insights into multicore cache partitioning:
Bridging the gap between simulation and
real systems. In HPCA ’08: Proceedings
of the 14th International Symposium on High
Performance Computer Architecture, pages
367–378, Feb. 2008. 12, 91

[77] W-F. LIN, S.K. REINHARDT, AND D. BURGER.
Reducing DRAM Latencies with an Inte-
grated Memory Hierarchy Design. In HPCA
’01: Proceedings of the 7th International Sym-
posium on High-Performance Computer Ar-
chitecture, page 301, Washington, DC, USA,
2001. IEEE Computer Society. 19, 23, 28

135

http://portal.acm.org/citation.cfm?id=645534.656837
http://portal.acm.org/citation.cfm?id=645534.656837
http://doi.acm.org/10.1145/264107.264206
http://doi.acm.org/10.1145/264107.264206
http://doi.acm.org/10.1145/360128.360132
http://doi.acm.org/10.1145/360128.360132
http://dx.doi.org/10.1109/2.121510
http://dx.doi.org/10.1109/2.121510
http://dx.doi.org/10.1109/MICRO.2007.33
http://dx.doi.org/10.1109/MICRO.2007.33
http://dx.doi.org/10.1109/MICRO.2007.33

REFERENCES

[78] J. LIRA, C. MOLINA, AND A. GONZÁLEZ. Last
Bank: Dealing with Address Reuse in Non-
Uniform Cache Architecture for CMPs. In
Proceedings of the 15th International Euro-
Par Conference on Parallel Processing, Euro-
Par ’09, pages 297–308, Berlin, Heidelberg,
2009. Springer-Verlag. 15

[79] J. LIRA, C. MOLINA, AND A. GONZÁLEZ.
LRU-PEA: a smart replacement policy for
non-uniform cache architectures on chip
multiprocessors. In Proceedings of the 2009
IEEE international conference on Computer
design, ICCD’09, pages 275–281, Piscat-
away, NJ, USA, 2009. IEEE Press. 15

[80] J. LIRA, C. MOLINA, AND A. GONZÁLEZ. The
auction: optimizing banks usage in Non-
Uniform Cache Architectures. In Proceed-
ings of the 24th ACM International Confer-
ence on Supercomputing, ICS ’10, pages 37–
47, New York, NY, USA, 2010. ACM. 13, 15

[81] C. LIU, A. SIVASUBRAMANIAM, AND M. KAN-
DEMIR. Organizing the Last Line of Defense
before Hitting the Memory Wall for CMPs.
In HPCA ’04: Proceedings of the 10th In-
ternational Symposium on High Performance
Computer Architecture, page 176, Washing-
ton, DC, USA, 2004. IEEE Computer Society.
16, 92

[82] G.H. LOH. 3D-Stacked Memory Architec-
tures for Multi-core Processors. In ISCA
’08: Proceedings of the 35th Annual Interna-
tional Symposium on Computer Architecture,
pages 453–464, Washington, DC, USA, 2008.
IEEE Computer Society. 112, 117

[83] M. LUPON, G. MAGKLIS, AND A. GONZA-
LEZ. FASTM: A Log-based Hardware Trans-
actional Memory with Fast Abort Recov-
ery. In Proceedings of the 2009 18th Inter-
national Conference on Parallel Architectures
and Compilation Techniques, pages 293–302,

Washington, DC, USA, 2009. IEEE Computer
Society. 12

[84] M. LUPON, G. MAGKLIS, AND A. GONZALEZ.
A Dynamically Adaptable Hardware Trans-
actional Memory. In Proceedings of the 43th
Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 43, Washing-
ton, DC, USA, 2010. IEEE Computer Society.
12

[85] P.S. MAGNUSSON, M. CHRISTENSSON,
J. ESKILSON, D. FORSGREN, G. HALLBERG,
J. HOGBERG, F. LARSSON, A. MOEST-
EDT, AND B. WERNER. Simics: A Full
System Simulation Platform. Computer,
35(2):50–58, 2002. 35

[86] M. MAMIDIPAKA AND N. DUTT. eCacti: An
Enhanced Power Estimation Model for On-
chip Caches. Technical report, University of
California Irvine Center for Embedded Com-
puter Systems, September 2004. 40

[87] M.M.K. MARTIN, M.D. HILL, AND D.A.
WOOD. Token Coherence: decoupling per-
formance and correctness. ISCA ’03: 30th
Annual International Symposium on Com-
puter Architecture, pages 182–193, 9-11 June
2003. 10, 92

[88] M.M.K. MARTIN, D.J. SORIN, B.M.
BECKMANN, M.R. MARTY, M. XU, A.R.
ALAMELDEEN, K.E. MOORE, M.D. HILL,
AND D.A. WOOD. Multifacet’s general
execution-driven multiprocessor simula-
tor (GEMS) toolset. SIGARCH Comput.
Archit. News, 33(4):92–99, 2005. 35

[89] M.R. MARTY, J.D. BINGHAM, M.D. HILL, A.J.
HU, M.M.K. MARTIN, AND D.A. WOOD. Im-
proving multiple-CMP systems using to-
ken coherence. In High-Performance Com-
puter Architecture, 2005. HPCA-11. 11th In-
ternational Symposium on, pages 328 – 339,
2005. 10

136

http://dx.doi.org/10.1007/978-3-642-03869-3_30
http://dx.doi.org/10.1007/978-3-642-03869-3_30
http://dx.doi.org/10.1007/978-3-642-03869-3_30
http://portal.acm.org/citation.cfm?id=1792354.1792408
http://portal.acm.org/citation.cfm?id=1792354.1792408
http://portal.acm.org/citation.cfm?id=1792354.1792408
http://doi.acm.org/10.1145/1810085.1810095
http://doi.acm.org/10.1145/1810085.1810095
http://doi.acm.org/10.1145/1810085.1810095
http://portal.acm.org/citation.cfm?id=1636712.1637768
http://portal.acm.org/citation.cfm?id=1636712.1637768
http://portal.acm.org/citation.cfm?id=1636712.1637768

REFERENCES

[90] S.A. MCKEE AND W.A. WULF. Access order-
ing and memory-conscious cache utiliza-
tion. In Proceedings of the 1st IEEE Sympo-
sium on High-Performance Computer Archi-
tecture, HPCA ’95, pages 253–, Washington,
DC, USA, 1995. IEEE Computer Society. 27

[91] MICRON. DDR3 SDRAM MT41J128M8
Datassheet. Technical report, Micron Tech-
nology Inc., 2006. xi, 37

[92] MICRON. TN-41-01, Calculating Memory
System Power for DDR3. Technical report,
Micron Technology Inc., 2007. 37, 39

[93] A. MOGA AND M. DUBOIS. The Effective-
ness of SRAM Network Caches in Clus-
tered DSMs. In Proceedings of the 4th In-
ternational Symposium on High-Performance
Computer Architecture, pages 103–, Wash-
ington, DC, USA, 1998. IEEE Computer So-
ciety. 11

[94] M. MONCHIERO, R. CANAL, AND A. GONZA-
LEZ. Power/Performance/Thermal Design
Space Exploration for Multicore Architec-
tures. IEEE Transactions on Parallel and Dis-
tributed Systems, 19(5):666–681, May. 2008.
39

[95] G.E. MOORE. Cramming more compo-
nents onto integrated circuits. Electronics,
pages 114–117, 1965. 1

[96] R. MULLINS. Minimising Dynamic Power
Consumption in On-Chip Networks. In-
ternational Symposium on System-on-Chip,
pages 1–4, Nov. 2006. 39

[97] O. MUTLU AND T. MOSCIBRODA. Stall-
Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Pro-
ceedings of the 40th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture,
pages 146–160, Washington, DC, USA, 2007.
IEEE Computer Society. 18, 23, 25, 112

[98] O. MUTLU AND T. MOSCIBRODA. Parallelism-
Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared
DRAM Systems. In ISCA ’08: Proceedings of
the 35th Annual International Symposium on
Computer Architecture, pages 63–74, Wash-
ington, DC, USA, 2008. IEEE Computer Soci-
ety. 18, 23, 25, 29, 112, 114, 117

[99] K.J. NESBIT, N. AGGARWAL, J. LAUDON, AND

J.E. SMITH. Fair Queuing Memory Sys-
tems. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 39, pages 208–222,
Washington, DC, USA, 2006. IEEE Computer
Society. 18, 23, 25, 112

[100] K.J. NESBIT, J. LAUDON, AND J.E. SMITH.
Virtual private caches. In ISCA ’07: Pro-
ceedings of the 34th annual international
symposium on Computer architecture, pages
57–68, New York, NY, USA, 2007. ACM. 16,
92

[101] A. PADEGS. System/360 and beyond. IBM
J. Res. Dev., 25:377–390, September 1981. 7

[102] M.K. QURESHI. Adaptive Spill-Receive
for robust high-performance caching in
CMPs. In High Performance Computer Archi-
tecture, 2009. HPCA 2009. IEEE 15th Inter-
national Symposium on, pages 45 –54, 2009.
17, 18

[103] M.K. QURESHI, D.N. LYNCH, O. MUTLU,
AND Y.N. PATT. A Case for MLP-Aware
Cache Replacement. In Proceedings of
the 33rd annual international symposium on
Computer Architecture, ISCA ’06, pages 167–
178, Washington, DC, USA, 2006. IEEE Com-
puter Society. 11, 13

[104] M.K. QURESHI AND Y.N. PATT. Utility-Based
Cache Partitioning: A Low-Overhead,
High-Performance, Runtime Mechanism to
Partition Shared Caches. MICRO-39: 39th

137

http://portal.acm.org/citation.cfm?id=527072.822603
http://portal.acm.org/citation.cfm?id=527072.822603
http://portal.acm.org/citation.cfm?id=527072.822603
http://portal.acm.org/citation.cfm?id=822079.822742
http://portal.acm.org/citation.cfm?id=822079.822742
http://portal.acm.org/citation.cfm?id=822079.822742
http://dx.doi.org/10.1147/rd.255.0377
http://dx.doi.org/10.1109/ISCA.2006.5
http://dx.doi.org/10.1109/ISCA.2006.5

REFERENCES

Annual IEEE/ACM International Symposium
on Microarchitecture, pages 423–432, Dec.
2006. 13, 16, 17, 50, 60, 92

[105] M.K. QURESHI, D. THOMPSON, AND Y.N.
PATT. The V-Way Cache: Demand Based
Associativity via Global Replacement. In
Proceedings of the 32nd annual international
symposium on Computer Architecture, ISCA
’05, pages 544–555, Washington, DC, USA,
2005. IEEE Computer Society. 13

[106] N. RAFIQUE, W-T. LIM, AND M. THOT-
TETHODI. Architectural support for oper-
ating system-driven CMP cache manage-
ment. In Proceedings of the 15th international
conference on Parallel architectures and com-
pilation techniques, PACT ’06, pages 2–12,
New York, NY, USA, 2006. ACM. 13

[107] N. RAFIQUE, W-T. LIM, AND M. THOT-
TETHODI. Effective Management of DRAM
Bandwidth in Multicore Processors. In
Proceedings of the 16th International Confer-
ence on Parallel Architecture and Compila-
tion Techniques, PACT ’07, pages 245–258,
Washington, DC, USA, 2007. IEEE Computer
Society. 25

[108] S. RIXNER, W.J. DALLY, U.J. KAPASI,
P. MATTSON, AND J.D. OWENS. Memory Ac-
cess Scheduling. In ISCA ’00: Proceed-
ings of the 27th Annual International Sympo-
sium on Computer Architecture. IEEE Com-
puter Society, 2000. 18, 23, 52, 111

[109] K. SANKARALINGAM, R. NAGARAJAN, H. LIU,
C. KIM, J. HUH, D. BURGER, S.W. KECKLER,
AND C.R. MOORE. Exploiting ILP, TLP, and
DLP with the polymorphous TRIPS archi-
tecture. In Proceedings of the 30th annual
international symposium on Computer archi-
tecture, ISCA ’03, pages 422–433, New York,
NY, USA, 2003. ACM. 11

[110] A. SAULSBURY, T. WILKINSON, J. CARTER,
AND A. LANDIN. An argument for simple
COMA. In Proceedings of the 1st IEEE Sym-
posium on High-Performance Computer Ar-
chitecture, HPCA ’95, pages 276–, Washing-
ton, DC, USA, 1995. IEEE Computer Society.
11

[111] L. SEILER, D. CARMEAN, E. SPRAN-
GLE, T. FORSYTH, M. ABRASH, P. DUBEY,
S. JUNKINS, A. LAKE, J. SUGERMAN,
R. CAVIN, R. ESPASA, E. GROCHOWSKI,
T. JUAN, AND P. HANRAHAN. Larrabee: a
many-core x86 architecture for visual com-
puting. In SIGGRAPH ’08: ACM SIGGRAPH
2008 papers, pages 1–15, 2008. 68, 76

[112] A. SNAVELY AND D.M. TULLSEN. Sym-
biotic jobscheduling for a simultaneous
mutlithreading processor. SIGPLAN Not.,
35(11):234–244, 2000. 38

[113] V. SOUNDARARAJAN, M. HEINRICH,
B. VERGHESE, K. GHARACHORLOO,
A. GUPTA, AND J. HENNESSY. Flexible
use of memory for replication/migration in
cache-coherent DSM multiprocessors. In
Proceedings of the 25th annual international
symposium on Computer architecture, ISCA
’98, pages 342–355, Washington, DC, USA,
1998. IEEE Computer Society. 11

[114] E. SPEIGHT, H. SHAFI, L. ZHANG, AND

R. RAJAMONY. Adaptive Mechanisms and
Policies for Managing Cache Hierarchies
in Chip Multiprocessors. In Proceedings of
the 32nd annual international symposium on
Computer Architecture, ISCA ’05, pages 346–
356, Washington, DC, USA, 2005. IEEE Com-
puter Society. 13

[115] S. SRIKANTAIAH, M. KANDEMIR, AND M.J.
IRWIN. Adaptive set pinning: managing
shared caches in chip multiprocessors. In
ASPLOS XIII: Proceedings of the 13th in-
ternational conference on Architectural sup-

138

http://dx.doi.org/10.1109/ISCA.2005.52
http://dx.doi.org/10.1109/ISCA.2005.52
http://doi.acm.org/10.1145/1152154.1152160
http://doi.acm.org/10.1145/1152154.1152160
http://doi.acm.org/10.1145/1152154.1152160
http://doi.acm.org/10.1145/859618.859667
http://doi.acm.org/10.1145/859618.859667
http://doi.acm.org/10.1145/859618.859667
http://portal.acm.org/citation.cfm?id=527072.822623
http://portal.acm.org/citation.cfm?id=527072.822623
http://dx.doi.org/10.1145/279358.279403
http://dx.doi.org/10.1145/279358.279403
http://dx.doi.org/10.1145/279358.279403
http://dx.doi.org/10.1109/ISCA.2005.8
http://dx.doi.org/10.1109/ISCA.2005.8
http://dx.doi.org/10.1109/ISCA.2005.8

REFERENCES

port for programming languages and operat-
ing systems, pages 135–144, New York, NY,
USA, 2008. ACM. 13, 16, 17, 92

[116] S. SRINATH, O. MUTLU, H. KIM, AND Y.N.
PATT. Feedback Directed Prefetching: Im-
proving the Performance and Bandwidth-
Efficiency of Hardware Prefetchers. In
HPCA ’07: Proceedings of the 2007 IEEE
13th International Symposium on High Perfor-
mance Computer Architecture, pages 63–74,
Washington, DC, USA, 2007. IEEE Computer
Society. 28

[117] P. STENSTRÖM, M. BRORSSON, AND

L. SANDBERG. An adaptive cache coher-
ence protocol optimized for migratory
sharing. In Proceedings of the 20th annual
international symposium on Computer archi-
tecture, ISCA ’93, pages 109–118, New York,
NY, USA, 1993. ACM. 13

[118] H.S. STONE, J. TUREK, AND J.L. WOLF. Op-
timal Partitioning of Cache Memory. IEEE
Trans. Comput., 41:1054–1068, September
1992. 12

[119] K. STRAUSS, X. SHEN, AND J. TORRELLAS.
Uncorq: Unconstrained Snoop Request
Delivery in Embedded-Ring Multiproces-
sors. MICRO-40: 40th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture,
Dec. 2007. 10, 92

[120] J. STUECHELI, D. KASERIDIS, D. DALY, H.C.
HUNTER, AND L.K. JOHN. The virtual write
queue: coordinating DRAM and last-level
cache policies. In ISCA ’10: Proceedings
of the 37th annual international symposium
on Computer architecture, pages 72–82, New
York, NY, USA, 2010. ACM. 23, 24

[121] R. SUBRAMANIAN, Y. SMARAGDAKIS, AND

G.H. LOH. Adaptive Caches: Effective
Shaping of Cache Behavior to Workloads.
In Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitec-
ture, MICRO 39, pages 385–396, Washing-
ton, DC, USA, 2006. IEEE Computer Society.
13

[122] G.E. SUH, L. RUDOLPH, AND S. DEVADAS.
Dynamic Partitioning of Shared Cache
Memory. J. Supercomputing., 28(1):7–26,
2004. 13

[123] D. TARJAN, S. THOZIYOOR, AND N.P. JOUPPI.
Cacti 4.0. Technical report, HP Labs Palo
Alto, June 2006. 37, 39, 41, 120

[124] TECHINSIGHTS. Micron Technology
MT41J128M8JP-187E:F. Technical report,
http://www.ubmtechinsights.com/, 2009. 113

[125] J.M. TENDLER, J.S. DODSON, J.S. FIELDS,
H. LE, AND B. SINHAROY. POWER4 system
microarchitecture. IBM J. Res. Dev., 46:5–
25, January 2002. 11

[126] R.M. TOMASULO. An efficient algorithm for
exploiting multiple arithmetic units. IBM J.
Res. Dev., 11:25–33, January 1967. 1

[127] S. VANGAL, J. HOWARD, G. RUHL, S. DIGHE,
H. WILSON, J. TSCHANZ, D. FINAN, P. IYER,
A. SINGH, T. JACOB, S. JAIN, S. VENKATARA-
MAN, Y. HOSKOTE, AND N. BORKAR. An 80-
Tile 1.28TFLOPS Network-on-Chip in 65nm
CMOS. In ISSCC ’07: IEEE International
Solid-State Circuits Conference, 2007. 3, 32

[128] K. VARADARAJAN, S.K. NANDY, V. SHARDA,
A. BHARADWAJ, R. IYER, S. MAKINENI,
AND D. NEWELL. Molecular Caches: A
caching structure for dynamic creation of
application-specific Heterogeneous cache
regions. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 39, pages 433–442,
Washington, DC, USA, 2006. IEEE Computer
Society. 13

139

http://doi.acm.org/10.1145/165123.165147
http://doi.acm.org/10.1145/165123.165147
http://doi.acm.org/10.1145/165123.165147
http://dx.doi.org/10.1109/12.165388
http://dx.doi.org/10.1109/12.165388
http://dx.doi.org/10.1109/MICRO.2006.7
http://dx.doi.org/10.1109/MICRO.2006.7
http://dx.doi.org/10.1147/rd.461.0005
http://dx.doi.org/10.1147/rd.461.0005
http://dx.doi.org/10.1147/rd.111.0025
http://dx.doi.org/10.1147/rd.111.0025
http://dx.doi.org/10.1109/MICRO.2006.38
http://dx.doi.org/10.1109/MICRO.2006.38
http://dx.doi.org/10.1109/MICRO.2006.38
http://dx.doi.org/10.1109/MICRO.2006.38

REFERENCES

[129] B. VERGHESE, S. DEVINE, A. GUPTA, AND

M. ROSENBLUM. Operating system support
for improving data locality on CC-NUMA
compute servers. In Proceedings of the sev-
enth international conference on Architectural
support for programming languages and oper-
ating systems, ASPLOS-VII, pages 279–289,
New York, NY, USA, 1996. ACM. 11

[130] B. VERGHESE, A. GUPTA, AND M. ROSEN-
BLUM. Performance isolation: sharing and
isolation in shared-memory multiproces-
sors. In Proceedings of the eighth interna-
tional conference on Architectural support for
programming languages and operating sys-
tems, ASPLOS-VIII, pages 181–192, New
York, NY, USA, 1998. ACM. 11

[131] D.T. WANG. Modern dram memory systems:
performance analysis and scheduling algo-
rithm. PhD thesis, College Park, MD, USA,
2005. Chair-Jacob, Bruce L. 19

[132] H-S. WANG, X. ZHU, L-S. PEH, AND S. MA-
LIK. Orion: a power-performance simulator
for interconnection networks. MICRO-35:
35th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 294–305,
2002. 39, 42

[133] T. WATANABE, K. AYUKAWA, S. MIURA,
M. TODA, T. IWAMURA, K. HOSHI, J. SATO,
AND K. YANAGISAWA. Access optimizer to
overcome the ldquo;future walls of em-
bedded DRAMs rdquo; in the era of sys-
tems on silicon. In Solid-State Circuits Con-
ference, 1999. Digest of Technical Papers.
ISSCC. 1999 IEEE International, pages 370
–371, 1999. 18

[134] R.P. WEICKER AND J.L. HENNING. Sub-
routine profiling results for the CPU2006
benchmarks. SIGARCH Comput. Archit.
News, 35(1):102–111, 2007. 47

[135] W. WINSTON. Optimality of the Shortest
Line Discipline. Journal of Applied Proba-
bility, 14(1):181–189, 1977. 26

[136] L. YEN, J. BOBBA, M.R. MARTY, K.E.
MOORE, H. VOLOS, M.D. HILL, M.M.
SWIFT, AND D.A. WOOD. LogTM-SE: De-
coupling Hardware Transactional Memory
from Caches. In Proceedings of the 2007
IEEE 13th International Symposium on High
Performance Computer Architecture, pages
261–272, Washington, DC, USA, 2007. IEEE
Computer Society. 12

[137] G.L. YUAN, A. BAKHODA, AND T.M. AAMODT.
Complexity effective memory access
scheduling for many-core accelerator
architectures. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 42, pages
34–44, New York, NY, USA, 2009. ACM. 19,
23, 29

[138] M. ZHANG AND K. ASANOVIC. Victim repli-
cation: maximizing capacity while hiding
wire delay in tiled chip multiprocessors.
ISCA ’05: 32nd Annual International Sympo-
sium on Computer Architecture, pages 336–
345, June 2005. 11, 13, 17, 60, 92

[139] Y. ZHANG, D. PARIKH, K. SANKARA-
NARAYANAN, K. SKADRON, AND M. STAN.
Hotleakage: A temperature-aware model
of subthreshold and gate leakage for archi-
tects. Technical report, University of Virginia
Dept. of Computer Science, March 2003. 40

[140] Z. ZHANG AND J. TORRELLAS. Reducing
Remote Conflict Misses: NUMA with Re-
mote Cache versus COMA. In Proceed-
ings of the 3rd IEEE Symposium on High-
Performance Computer Architecture, HPCA
’97, pages 272–, Washington, DC, USA,
1997. IEEE Computer Society. 11

140

http://doi.acm.org/10.1145/237090.237205
http://doi.acm.org/10.1145/237090.237205
http://doi.acm.org/10.1145/237090.237205
http://doi.acm.org/10.1145/291069.291044
http://doi.acm.org/10.1145/291069.291044
http://doi.acm.org/10.1145/291069.291044
http://portal.acm.org/citation.cfm?id=1317533.1318082
http://portal.acm.org/citation.cfm?id=1317533.1318082
http://portal.acm.org/citation.cfm?id=1317533.1318082
http://portal.acm.org/citation.cfm?id=548716.822670
http://portal.acm.org/citation.cfm?id=548716.822670
http://portal.acm.org/citation.cfm?id=548716.822670

REFERENCES

[141] Z. ZHU, Z. ZHANG, AND X. ZHANG. Fine-
grain Priority Scheduling on Multi-channel
Memory Systems. In Proceedings of
the 8th International Symposium on High-
Performance Computer Architecture, HPCA
’02, pages 107–, Washington, DC, USA,
2002. IEEE Computer Society. 18, 23, 26

[142] W.K. ZURAVLEFF AND T. ROBINSON. Con-
troller for a synchronous DRAM that maxi-
mizes throughput by allowing memory re-
quests and commands to be issued out of
order. In U.S. Patent Number 5,630,096, May
1997. 18, 23, 111

141

http://portal.acm.org/citation.cfm?id=874076.876485
http://portal.acm.org/citation.cfm?id=874076.876485
http://portal.acm.org/citation.cfm?id=874076.876485

	Tesi_Enric_Herrero.pdf
	List of Figures
	List of Tables
	1 Introduction
	1.1 Memory Hierarchy Challenges
	1.1.1 Increasing number of processors
	1.1.2 Increased off-chip miss cost
	1.1.3 Limited power budget
	1.1.4 Multiprogrammed Environments

	1.2 Contributions
	1.2.1 Distributed Coherence Mechanism
	1.2.2 Dynamic and Distributed Cache Allocation
	1.2.3 DRAM organization for multiprogrammed environments

	2 Background and Motivation
	2.1 Introduction
	2.2 Modern multiprocessors, from NUMA to NUCA
	2.3 Cache organizations in the multicore era
	2.3.1 Static partitioning
	2.3.2 Dynamic partitioning

	2.4 Memory Controllers
	2.4.1 Memory Organization
	2.4.2 Memory Controller structure

	2.5 DRAM Bank Schedulers for multicore processors
	2.5.1 Memory Throughput Oriented Schedulers
	2.5.2 Fairness Oriented Schedulers
	2.5.3 System Throughput Oriented Schedulers
	2.5.4 Prefetch-Aware Schedulers
	2.5.5 Power/Area-Aware Schedulers
	2.5.6 Throughput-Fairness Trade-off

	2.6 Progress beyond the state-of-the-art
	2.6.1 Cache organization
	2.6.2 DRAM management

	3 Methodology
	3.1 Simulation Infrastructure
	3.1.1 Metrics

	3.2 Power Model
	3.2.1 Power Calculation Methods
	3.2.2 Dynamic Power
	3.2.3 Static Power
	3.2.4 Cache
	3.2.5 Network

	3.3 Benchmarks and Characterization
	3.3.1 SPEC OMP2001 and SPEC CPU2006
	3.3.2 Benchmark set 1
	3.3.3 Prefetch Influence in memory access patterns
	3.3.4 Benchmark set 2

	4 Distributed Cooperative Caching
	4.1 Background and Motivation
	4.2 Distributed Cooperative Caching
	4.2.1 Cooperative Caching
	4.2.2 The Distributed Cooperative Caching scheme
	4.2.3 Differences between CC and DCC

	4.3 Power-Efficient Spilling Techniques
	4.3.1 Distance-Aware Spilling
	4.3.2 Selective Spilling

	4.4 Evaluation
	4.4.1 Simulated Configurations
	4.4.2 Single Multi-threaded Benchmarks Evaluation
	4.4.3 Benchmark Set 1 Evaluation
	4.4.4 Benchmark Set 2 Evaluation

	4.5 Conclusions

	5 Elastic Cooperative Caching
	5.1 Background and Motivation
	5.2 Elastic Cooperative Caching
	5.2.1 ElasticCC Structure
	5.2.2 Cache Repartitioning Unit
	5.2.3 Spilled Block Allocator
	5.2.4 Adaptive Spilling mechanism

	5.3 Evaluation
	5.3.1 Simulated Configurations
	5.3.2 Benchmark Set 1 Evaluation
	5.3.3 Benchmark Set 2 Evaluation
	5.3.4 Temporal behavior of ElasticCC

	5.4 Conclusions

	6 Thread Row Buffers
	6.1 Background and Motivation
	6.2 Thread Row Buffers
	6.3 Service Partitioning Scheduler
	6.4 Evaluation
	6.4.1 Simulated Configurations
	6.4.2 Performance and Energy Efficiency
	6.4.3 Addition of extra banks

	6.5 Conclusions

	7 Conclusions
	7.1 Thesis Contributions
	7.2 Future Work

	Glossary
	References

