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General Introduction and Objectives 

 
 

Synthetic and/or natural polymeric materials bring many advantages to society 

in daily life, but most of them in the presence of a heat source and oxygen are 

burned quickly and easily. This thesis presents a study of new polymeric 

systems that could act as flame retardant additives. This chapter shows their 

interest and outlines work objectives.  
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1. Introduction 

1.1. Polymeric materials 

The world production of polymers is about 260x106 Tons/year. Figure 1.1 shows 

the main polymers produced. As can be seen, thermoplastic polymers account 

the major part of the polymer market. Polyolefins, such as, low density 

polyethylene (LDPE) and linear low density polyethylene (LLDPE) are mostly 

used for film and sheet production, with smaller fractions devoted to pipe and 

conduits, wire and cable, and injection moulding. The main used applications of 

high density polyethylene (HDPE) are blow moulding, injection moulding, film 

and sheet, and pipe and conduit. Polypropylenes, such as, isotactic 

polypropylene (i-PP), high impact polypropylene (HIPP) and ethylene-

propylene rubbers and elastomer (EPDM) are used for fibbers (commercial 

carpets, raffia, nonwoven fabrics, cordage), films (biaxial oriented and 

unoriented), injection moulding (appliances, general consumer products, rigid 

packaging, automotive parts) and wire and cable. Styrene polymers include 

general high impact polystyrene (HIPS), expandable polystyrene, and styrene-

acrylonitrile (SAN) and acrylo(butadiene styrene) copolymers (ABS). Low 

viscosity (low Mw) HIPS are used for injection moulding whereas high Mw 

grades are used for melt mixing of films and sheets. The main markets are 

packaging, insulation, flotation and Geofoam. Most of SAN is used in 

manufacturing ABS resins that have a wide application in electrical and 

electronic equipments, houses and offices appliance and in the automotive 

industry. Poly(vinyl chloride) (PVC) is used in construction, domestic goods, 

packaging and clothing. Polyesters and polyamides, such as, poly(ethylene 

terephtalate) (PET), poly(buthylene terephtalate) (PBT), nylon 6 and nylon 6,6 

have a large application in transportation, electrical and electronic industries as 

well as domestic appliances. 

The most important thermosets are polyurethanes, phenol-formaldehyde resins 

and epoxy resins. Their main application is in coatings, adhesives and glass fibre 
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insulation.1 Because of their versatility and the fact that they are produced from 

cheap monomers, polyolefins compete with the rest of polymers in most of the 

markets. 
 

Figure 1.1 World polymer market 
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Most of polymeric materials are easily fired in presence of a heat source and 

oxygen. This involves a series of problems such as loss of material properties, 

but also smoke and toxic gases that are formed during combustion could affect 

both human life and equipments. Because of that, fire hazards associated with 

the use of polymeric materials are of particular concern among government 

regulatory bodies, consumers and manufacturers alike.2-4 This has led to the 

introduction of stricter legislation and safety standards concerning flammability, 

and extensive research into the area of flame retardants (FR) for polymeric 

materials has been the result.4,5 Overall, world demand for FR is growing at 

                                                 
1 Asua, J.M. Polymer Reaction Engineering, Blackwell Publishing Ltd., 2007, 1-28. 
2 Edbon, J.R.; Jones, M.S. In Concise Polymeric Materials Encyclopedia; Salamone, J.C., Ed.;  
  CRC Press 1996, 2397-2411. 
3 Hamerton, I.; Lu, S-Y. Prog Polym Sci 2002, 27, 1661-1712 
4 Bourbigot, S.; Duquesne, S. J Mat Chem 2007, 17, 2283-2300 
5 Anna, P.; Marosi, Gy.; Bertalan, Gy.; Márton, A; Szép, A. J Macromol Sci Part B 2002, 41,  
  1321-1330. 
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nearly 5% per year and is expected soon to exceed annually 2 million metric 

tons, valued at $ 5 billon. Amongst the markets that require FR polymer 

compounds, industries related to construction, electrical and electronic 

components, transportation and textiles are the most important.6-8 In terms of 

volume, FR used in ¨commodity¨ polymers, in special polypropylene (PP) and 

polyethylene (PE), surpasses the volumes used in all ¨non-commodity¨ 

polymers, according to year 2007 and 2008 market surveys.8 

In order to understand the principle of flame retardants behaviour, it is first 

necessary to understand the thermal decomposition process of polymers.  

 

1.2. Combustion of polymers 

Polymeric materials combustion process is a highly complex process involving a 

series of related and/or independent steps that occur in condensed or gas phase, 

and also in the interphase between these two phases. 

The most important step during the polymer combustion is fuel production, 

which takes place when a fire or external heat source produces an increment of 

temperature, resulting in the dissociation of chemical bonds and the evolution of 

volatile fragments. These compounds diffuse into surrounding atmosphere 

leading to a flammable mixture whose combustion is initiated when temperature 

exceeds the ignition. This combustion could be maintained or increased if 

exothermic reactions in gas phase involve enough heat flow that could arrive in 

condensing phase, decompounding polymeric material and producing more fuel, 

maintaining in this way the combustion cycle. (Figure 1.2) 
 

 

 

                                                 
6 Innes, J.D. Flame Retardants and Their Market Applications. Flame Retardants-101: Basic  
  Dynamics, Past Efforts Create Future Opportunities, Fire Retardant Chemicals Associations:  
  Baltimore 1996, 61-69.  
7 Chen, L.; Wang, Y.-Z. Polym Adv Technol 2010, 21, 1-26. 
8 Tolinski, M. Additives for Polyolefins, Elsevier Inc., 1st edition, 2009, 61-62. 
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Figure 1.2 Combustion cycle of polymers 
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1.3. Flame retardants 

A flame retardant may be defined as a substance built-in, or treatment applied to 

a material that suppresses or delays combustion thereof under specific 

conditions.  

They interfere in the combustion process by physical or chemical action in the 

release of heat, decomposition, or spread of polymer flame. They may submit 

more than one mode of action depending on the chemical nature of the material, 

so it is difficult to ensure their operating way.9 

Combustion process can be retarded by physical action in several ways, such as: 

• cooling, when the endothermic reactions cool the polymeric material; 

• isolation, when a protective char layer can be formed, isolating in this 

way polymeric material from heating source, oxygen and flames and 

preventing the volatile compounds to be transported to the flame; 

• dilution, release of inert gases may dilute the volatile flammable 

compounds in the flame. 

                                                 
9 Lewin, M.; Weil, E.D. In Fire Retardant Materials; Horrocks, A.R. and Price, D., Eds.;   
  CRC Press, 2001, 31-68. 
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The chemical action of FR occur either in the vapour phase or the condensed 

phase, based in its interference in the reactions that maintain the combustion 

and/or in the reactions involved in the thermal degradation of the polymer. 

In the gas phase FR activity is based on its interference in the combustion 

reaction. Burning polymeric materials produces species capable to react with 

atmospheric oxygen. As a result, the propagation of combustion occurs mainly 

through the following branching reactions (equations [1], [2] and [3]). 

 
[1] H  + O2 = HO + O  
[2] O  + H2 = HO + H  
[3] HO  + CO = CO2 + H  
 

Reaction related in the equation [3] is the main exothermic reaction and 

provides most energy to maintain the flame.  

In the condensed phase, flame retardants or their thermal decomposition 

products catalyzes dehydration and condensation reactions that lead to cross-

linking, forming a char layer over the polymer surface. This solid residue 

protects the polymer by isolating the non- burned material from the heat, oxygen 

and flames and prevents the volatile products to reach the flame and feed it.  

Another major category of flame retarding mechanism is that known as 

¨intumescent¨, in which materials swell when exposed to fire or heat to form a 

porous foamed mass, usually carbonaceous, which in turn act as a very effective 

barrier to heat, air and pyrolysis product. 

Flame retardants are usually classified into two main categories, namely 

additives and reactives.2,3 Additives are mixed with polymeric substrate and can 

be added at any stage of production and processing. Their use has some 

disadvantages, such as: they can be removed easily with water, detergents or 

solvents and can migrate altering the physical and chemical properties of 

material. In spite of this, they are widely used due to its low cost and easy 
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applicability.3,10 Reactive FRs have the advantage to additive flame retardants 

on to be permanently bonded to the substrate. In fact, a relatively low amount of 

reactive flame retardants can have a comparable effect to that achieved with 

relatively high loads of additive flame retardants. In contrary, obtaining reactive 

systems are more expensive and time consuming, because they requires the 

development of a new polymer with chemical and physical specific properties.3,6 

In order to combine additive and reactive flame retardant advantages, some 

researchers paid attention in polymeric and oligomeric structures to be used as 

additive flame retardants.11-14 The case for the use of such flame retardant 

additives, rather than conventional non-polymeric species, is that they show 

better resistance to extraction, migration and volatile-loss, due to their high 

molecular weight. Thus, polymers with flame retardant properties can be used as 

blends to enhance the flame retardancy of other polymeric materials; the major 

criteria being compatibility.3,7 

Additionally, flame retardant compounds can also be classified into halogenated 

and halogen-free flame retardants. For several decades, the polymer industry 

uses halogenated compounds (Cl and Br) combined to the polymer substrate as 

flame retardants.15 Halogenated compounds may act in the condensed phase, but 

detailed research indicates that they are primarily vapour-phase flame retardants, 

interfering with the free radical reactions involved in flame propagation. Free 

HO  and H  radicals are responsible for propagation of combustion through 

chain branching (equations [1] and [2]). Halogenated FRs release hydrogen 

                                                 
10 Cullis, C.F.; Hirschler, M.M. The Combustion of Organic Polymers, Clarendon Press:  
    Oxford, 1981, p 300. 
11 Perez, R. M.; Sandler, J.K.W.; Altstädt, V.; Hoffmann, T.; Pospiech, D.; Artner, 
    J.;Ciesielski, M.; Döring, M.; Balabanovich, A.I.; Schartel, B. J Mat Sci 2006, 41,  
    8347-8351. 
12 Chung, Y.-J.; Kim, Y.; Kim, S.J. Ind Eng Chem 2009, 15, 888-893. 
13 Wang, J.; Xin, Z. J Appl Polym Sci 2010, 115, 330-337. 
14 Sundarrajan, S.; Kishore, K.; Ganesh, K. Indian J Chem Sect A 2001, 40, 41-45. 
15 Morgan, A.B.; Tour, J.M. Macromolec 1998, 31, 2857-2865. 
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halides during combustion, which effectively interfere with these branching 

reactions acting as flame inhibitors (equations [4] and [5]). 

 

 

 
 

Bromine compounds are generally more effective than chlorinated due to their 

labile C-Br bond, but they are more expensive and less thermally stable. 

The use of halogenated compounds has the disadvantage of increasing quantities 

of smoke and toxic decomposition products that release during the combustion 

of the polymer. Moreover, they lead also the additional risk of formation of 

strong acid gases, such as HCl and HBr, which are released during combustion. 

Therefore, halogenated compounds represent a hazard environment pollution 

problem, which has been considered especially in recent years. The concept of 

sustainable development requires the use of flame retardant technologies with 

minimal impact on the environment. Thus, incorporation of different inorganic 

chemicals (metal hydroxides, antimony oxides or stannates) and flame 

retardants based on other heteroelements like phosphorus, nitrogen, boron or 

silicon in the polymer structure is described as one of the most efficient ways to 

obtain a set of environmentally friendly halogen free flame retardant 

polymers.3,16 Recently, special interest has attracted the synergism obtained 

applying mixtures of flame retardant additives, which often have different 

mechanisms of action. The classic case is the antimony oxide interaction with 

halogenated compounds, although there are other examples such as halogens 

and peroxides, halogens and phosphorus, phosphorus and silicon and 

phosphorus and nitrogen compounds (intumescent systems). 

                                                 
16 Levchik, S.V.; Weil, E.D. J Fire Sci 2006, 24, 345-364 
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Among environmentally friendly flame retardant systems, phosphorous-based 

flame retardants have been extensively studied and proven to act efficiently in 

the condensed phase. Moreover, some studies report their action also in the 

vapour phase. The use of phosphorous compounds as flame retardants in 

polymeric materials is well established.17 Phosphorous can take many oxidation 

states, making the mechanisms of action of various phosphorous-based FR 

compounds difficult to summarize.2,3 Generally, these FRs can be inorganic, 

organic or elemental (red phosphorous), they can act in the vapour phase or in 

the condensed phase, and some times may operate simultaneously in both 

phases.2,18 Phosphines, phosphine oxides, phosphonium compounds, 

phosphonates, elemental red phosphorous, phosphites and phosphates are all 

used as flame retardants. Phosphine oxides19 and phosphate esters2,20,21 have 

been reported to act in the vapour phase through the formation of PO , PO2 , 

HOPO  and HOPO2  radicals, which end the highly active flame propagation 

radicals (HO  and H ). These radicals are formed after the parent compound 

decomposition and therefore, the flame inhibition does not depend on the form 

of the parent compound, provided that the parent breaks down in the flame.20  

In the condensed phase action, the phosphorous FR decompose thermally 

producing phosphoric acid, which is further dehydrated to polyphosphoric acid, 

that reacts with polymeric material hydroxyl groups allowing condensation and 

dehydration reactions to take place in the polymeric surface; thus, giving rice to 

unsaturated carbonaceous species, that generate relative incombustible residues, 

                                                 
17 Edbon, J.R.; Price, D.; Hunt, B.J.; Joseph, P.; Gao, F.; Milnes, G.J.; Cunliffe, L.K.  
    Polym Degrad Stab 2000, 69, 267-277. 
18 Aseeva, R.M.; Laikov, G.E. Adv Polym Sci 1985, 70, pp. 171. 
19 Shmakov, A.G.; Shvartsberg, V.M.; Korobeinichev, O.P.; Beach, M.W.; Hub, T.I.;  
    Morgan, T.A. Mendeleev Commun 2007, 17, 186-187. 
20 Macdonald, M.A.; Gouldin, F.C.; Fisher, E.M. Comb Flame 2001, 125, 668-683. 
21 Jayaweera, T.M.; Melius, C.F.; Pitz, W.J.; Westbrooka, C.K.; Korobeinchev, O.P.;  
    Shvartsberg, V.M.; Shmakov, A.G.; Rybitskaya, I.V.; Curran, H. J. Comb Flame 2005,  
    140, 103-115. 
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which act as a protective barrier that inhibits the degradation and protects the 

material of pyrolysis (see scheme 1.1) 

 
Scheme 1.1  
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Increasing research is now being directed to the synthesis of phosphorous-based 

flame retardant polymers. Some recently published examples include 

polyphosphonates,22 phosphonate-based polyurethanes,23 epoxy resins,24-27 

poly(ether-ester)s,24,28-34 polyacrylates35-37 phosphate containing nylon and 

                                                 
22 Ranganathan, T.; Zilberman, J.; Farris, R.J.; Coughlin, E.B.; Emrick, T.  
    Macromolec 2006, 39, 5974-5975. 
23 Chen, H.; Luo, Y.; Chai, C.; Wang, J.; Li, J.; Xia, M. J Appl Polym Sci 2008, 110,   
    3107-3115. 
24 Seibold, S.; Schafer, A.; Lohstroh, W.; Walter, O.; Döring, M.; J Appl Polym Sci 2008,   
    108, 264-271. 
25 Spontón, M.; Ronda, J.C.; Gália, M.; Cádiz, V. J Polym Sci Part A: Polym Chem  
    2007, 45, 2142-2151.     
26 Ren, H.; Sun, J.; Zhao, Q.; Zhiqi, C.; Ling, Q.; Zhou, Q.; J Appl Polym Sci, 2009,  
    112, 761-768. 
27 Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. J Polym Sci Part A: Polym Chem, 2006, 44,   
    6717-6727.  
28 Canadell, J.; Mantecón, A.; Cádiz, V. J Polym Sci Part A: Polym Chem, 2007, 45,  
   1980-1992. 
29 Canadell, J; Hunt, B.J.; Cook, A.G.; Mantecón, A.; Cádiz, V. J Polym Sci Part A:   
    Polym Chem, 2006, 44, 6728-6737. 
30 Ge, X.G.; Wang, C.; Hu, Z.; Xiang, X.; Wang, J.S.; Wang, D.Y.; Liu, C.P.; Wang, Y.Z.  
    J Polym Sci Part A: Polym Chem, 2008, 46, 2994-3006. 
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silk,38,39 modification of cotton fabric with phosphoric acid,40 

polybenzoxazines,41,42 poly(ether-ketone)s,43 polyphosphorinanes,44 and styrene 

polymers and copolymers.45 

On the other hand, many researchers have shown that the addition of relatively 

small amounts of silicon compounds to different polymeric materials can 

significantly improve their flame retardancy, which could be due to both, char 

forming in the condensed phase and the trapping of free radicals in the vapour 

phase. 

Some recently published examples include the synthesis of silicon-containing 

epoxy resins46,47 and polybenzoxazines48 and the synthesis of one alkoxysilane 

functionalized polycaprolactone / polysiloxane modified epoxy resin through 

sol-gel process.49 Furthermore, silicon-based nanocomposites have been 

                                                                                                                                
31 Hoffman, T.; Pospiech, D.; Häuβler, L.; Komber, H.; Voigt, D.; Harnisch, C.; Kollann,  
    C.; Ciesielski, M.; Döring, M.; Graterol, R.P.; Sandler, J.; Altsädt, V. Macromol Chem  
    Phys 2005, 206, 423-431. 
32 Yang, S.C.; Kim, J.P. J Appl Polym Sci 2007, 106, 2870-2874. 
33 Yang, S.C.; Kim, J.P.; J Appl polym Sci 2008, 108, 2297-2300, 
34 Zhao, C.S.; Chen, L.; Wang, Y.Z. J Polym Sci Part A: Polym Chem 2008, 46, 5752-   
    5759. 
35 Xing, W.Y.; Hua, Y.; Song, L.; Chen, X.L.; Zhang, P.; Ni, J.X. Polym Degrad Stab 2009,   
    94, 1176-1182. 
36 Youssef, B.; Lecamp, L.; El Khatib, W.; Bunel, C.; Mortaigne, B.; Macromol Chem  
    Phys  2003, 204, 1842-1850. 
37 Edizer, S.; Sahin, G.; Avci, D. J Polym Sci Part A: Polym Chem 2009, 47, 5737-5746. 
38 Yang, H.; Yang, C.Q.; He, Q. Polym Degrad Stab 2009, 94, 1023-1031. 
39 Guan, J.; Yang, C.Q.; Chen, G. Polym Degrad Stab 2009, 94, 450-455. 
40 Cireli, A.; Onar, N.; Ebeoglugil, M.F.; Kayatekin, I.; Kutlu, B.; Culha, O.; Celik, E. J  
    Appl Polym Sci 2007, 105, 3747-3756 
41 Spontón, M.; Ronda, J.C.; Gália, M; Cádiz, V. Polym Degrad Stab 2009, 94, 145-150 
42 Hwang, H.J.; Lin, C.Y.; Wang, C.S..; J Appl Polym Sci 2008, 110, 2413-2423; 
43 Chen, X.T.; Sun, H.; Tang, X.D.; Wang, C.Y. J Appl Polym Sci 2008, 110, 1304-1309. 
44 Negrell-Guirao, C.; Boutevin, B. Macromolec 2009, 42, 2446-2454.  
45 Levchik, S.V.; Weil, E.D. Polym Int 2008, 57,431-448. 
46 Spontón, M.; Mercado, L.A.; Ronda, J.C.; Galià, M.; Cádiz, V. J Polym Sci Part A:  
    Polym Chem 2005, 43, 6419-6430. 
47 Wu, K.; Song, L.; Hu, Y.; Lu, H.; Kandola, B.K.; Kandare, E. Prog Org Coating 2009,  
    65, 490-497. 
48 Spontón, M.; Ronda, J.C.; Galià, M.; Cádiz, V. Polym Degrad Stab 2009, 94, 145-150. 
49 Liu, P.; Song, J.; He, L.; Liang, X.; Ding, H.; Li, Q. Eur Polym J 2008, 44, 940-951. 
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prepared via sol-gel method,50 using polyhedral oligomeric silsesquioxane 

(POSS),51 polymer-layered silicates52 and other silicon-containing materials.53  

Also boron compounds are widely used as flame retardants in textile area and 

some plastic formulations.54 Borates and boric acid have been well established 

as flame retardants for a long time.55,56 Boron compounds act in the condensed 

phase favouring carbon formation rather than CO and CO2, leading in this way 

to the formation of a charred protective layer, which acts as a barrier.3 above 

Some examples of boron-based flame retardants in recent literature include the 

synthesis of boron-containing epoxy-novolac resins,57 boron-modified phenol-

formaldehyde resins,58 boron-containing phenolic resins,59,60 boron-based 

styrenic systems,3,61  boron-containing nanocomposites62 and polyurethane-zinc 

borate composites.63 

Nitrogen-based flame retardants are environmentally friendly because they are 

less toxic and do not have additional elements to those already presented in 

polymers. There are no dioxin and halogen acids by-product, but there are low 

evolution of smoke during combustion. Materials based on nitrogen containing 

                                                 
50 Chiang, C-L.; Chang, R-C. Composites Sci Technol 2008, 68, 2849-2857. 
51 Glodek, T.E.; Boyd, S.E.; McAninch, I.M.; LaScala, J.J. Composites Sci Technol 2008,  
    68, 2994-3001. 
52 Pavlidou, S.; Papaspyrides, C.D. Prog Polym Sci 2008, 33, 1119-1198. 
53 Hamdani, S.; Longuet, C.; Perrin, D.; López-Cuesta, J.M.; Ganachaud, F. Polym Degrad 
    Stab 2009, 94, 465-495. 
54 Touval, I. in Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition; Kroschwitz,  
    J.L. Ed. Wiley: New York 1993, 10, 941-943. 
55 Cullis, C.F.& Hirschler, M.M. The combustion of Organic Polymers, Clarendon Press,  
    Oxford 1981. 
56 Lyons, J. W. Chemistry and Uses of Fire Retardants. Wiley Interscience, New York 1970. 
57 Martín, C.; Ligadas, G.; Ronda, J.C.; Cádiz, V. J Polym Sci Part A: Polym Chem 2006,  
   44, 6332-6344. 
58 Martín, C.; Ronda, J.C.; Cádiz, V. J Polym Sci Part A: Polym Chem 2006, 44, 3503- 
    3512. 
59 Martín, C.; Ronda, J.C.; Cádiz, V. J Polym Sci Part A: Polym Chem 2006, 44, 1701- 
    1710. 
60 Liu, L.; Ye, Z. Polym Degrad Stab 2009, 94, 1972-1978. 
61 Martín, C.; Hunt, B.J.; Edbon, J.R.; Ronda, J.C.; Galià, M.; Cádiz, V. J Polym Sci Part  
    A: Polym Chem 2005, 43, 6419-6430. 
62 Gao, J.; Jiang, C.; Ma, W. Polym Composite 2008, 29, 274-279. 
63 Yildiz, B.; Seydibeyoglu, M.O.; Güner, F.S. Polym Degrad Stab 2009, 94, 1072-1075. 
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flame retardant are also suitable for recycling.64 More interestingly, novel 

nitrogen containing polymers with inherent flame retardant properties are being 

developed.65 Various phosphorus-nitrogen (P–N) containing compounds have 

shown to impart flame retardancy to polymers.66 Moreover, showing a 

synergistic behaviour the P–N compounds have greater thermal stabilities and 

lower toxic smoke evolution when compared to phosphorus based FR.  

Many P-N systems can be classified as intumescent systems. In recent years, 

intumescent flame retardant (IFR) additives have been widely used in the flame 

retardation of many flammable polymers, especially in polyolefins.4 The 

following three critical components are typically required in each IFR: 

• an acid source which usually forms, during the pyrolysis (often poly 

(phosphoric acid)) 

• a char promoter which is dehydrated by the acid released from acid 

source and forms an insulating cellular carbonaceous layer between the 

polymer and flame 

• a blowing agent which expands the cellular char foam, often nitrogen 

compounds will release ammonia on decompounding. 

 

1.4. Flame retardancy tests 

The fire behaviour of polymeric materials cannot be fully evaluated by the 

simple determination of some parameters in the laboratory. Fire and combustion 

process are very complex and it should at least take into consideration four 

aspects, which are interrelated in the overall process of combustion. These 

aspects are ignition, the flame propagation speed, the rate of heat release and 

formation of fumes and gases, which all contribute in the burning process and 

hazards associated with fire. 

                                                 
64 Lomakin, S. M.; Zaikov, G. E. Ecological aspects of polymer flame retardancy. Utrecht: VSP;  
    1999. 
65 Schreiber, H.; Saur, W. Makromol Chem Macromol Symp 1993, 74, 165-171. 
66 Hsiue, G.-H.; Liu, Y.-L.; Tsiao, J. J Appl. Polym. Sci. 2000, 78, 1-7. 
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As a result of complex nature and poor reproducibility of a fire, there are many 

techniques to estimate the flammability of polymeric materials, each one 

focusing in certain characteristic of the combustion process. There are three 

main categories of tests procedure: small-scale, in which a small amount of 

sample is burnt and the combustion behaviour observed; medium-scale 

techniques, including tunnel tests and radiant panel tests; and the large-scale, 

with experiments carried out in rooms and corridors that provides the best 

reproduction of a real fire situation. Although the large-scale tests are very 

comprehensive and give the closest representation to a real fire, they are 

expensive and difficult to control, and thus the small and medium-scale tests are 

often more practical.67 

Among the techniques most widely used in laboratory could be reported: 

- Limiting oxygen index (LOI), defined as the minimum concentration of 

oxygen in a flowing oxygen/nitrogen mixture, required to just support 

candle-like downward burning of a vertically mounted test specimen. 

Hence, higher LOI values represent better flame retardancy. This test 

method is generally reproducible to an accuracy of ±0.5%, and although 

originally designed for testing plastics, the method has been used 

extensively for evaluating the relative flammability of the rubbers, 

textiles, paper, coatings and other materials. LOI tests can be performed 

in accordance with international standards, including ASTM D2863 and 

ISO 4589-2. 

- UL-94 test (ASTM D3801), is a standard applied for testing the 

flammability and fire safety of materials used specially for manufacture 

of electric and electronic components. Its action is based on firing time, 

the flame propagation speed and the dripping during the burning. 

Usually a vertical burn test is carried out and the flammability is rated 

                                                 
67 Grassie, N.; Scott, G. Polymer Degradation and Stabilisation Cambridge University,   
    1985 
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from V0 to V2. To achieve the best flame retardancy rating of V0, the 

burning must stop within 10 s after two applications of 10 s each of a 

flame to a test bar and no flaming drips are allowed. 

- Thermogravimetric analysis (TGA) is one of the most popular 

methods for characterizing the thermal stability of polymers. It 

determines the thermal behaviour and the amount of char formed during 

the thermally decomposition of polymeric material in nitrogen or air 

atmosphere. The char yield can serve as an indirect indication of flame 

retardancy. Thick char becomes a better thermal insulating layer, which 

undergoes slow oxidative degradation and prevents heat reaching the 

remaining polymer. Lewin68, pointed that the chars obtained in the 

intumescent systems are different. They are prepared at lower 

temperatures and are not fully pyrolysed or oxidised, their rate of 

formation is high and involves thermo-oxidation; though, they serve the 

same purpose, namely acting as barriers to the passage of molten 

polymer and decomposition gases. The starting temperature of the 

weight loss process can be an indication of how the flame retardant acts. 

Low onset temperature of weight loss process is associated to flame 

retardants which act by formation of protective barriers, such as already 

explained for intumescent systems, delaying the mainly weight loss 

process and leading to significant char yield at high temperature. High 

onset temperature of weight loss process is usually characteristic for 

systems that are more thermal stable. 

- Cone calorimeter represents an important advance at laboratory scale as 

flame retardancy test of polymeric materials and composites, based in 

principle of oxygen consumption calorimetry. This test not only provides 

                                                 
68 Lewin, M. Physical and chemical mechanisms of flame retarding of polymers. In: Le Bras   
    M.; Camino G.; Bourbigot S; Delobel R. Fire retardancy of polymers-the use of       
    intumescence. Cambridge: The Royal Society of Chemistry; 1998, 1-32. 
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an idea of the risk of fire, it gives also the possibility to evaluate the rate 

of heat release (HRR), total heat released (THR), the ignition time (TTI), 

mass loss rate (MLR), and the smoke and toxic gases production. 

Generally, the heat of combustion of any organic material is directly 

related to the amount of oxygen required for combustion in which 13.1 

MJ of heat is released per kg of oxygen consumed. The cone calorimeter 

brings quantitative analysis to materials flammability research. The HRR 

measurements can be interpreted by looking at average HRR, peak HRR 

and time to peak HRR. Heat release rate is the key measurement required 

to assess the fire hazard of materials and products as it quantifies fire 

size, rate of fire growth and consequently the release of associated 

smoke and toxic gases. The cone calorimeter can also measure and 

quantify smoke output as well as CO/CO2 release rates.69 Cone 

calorimeter tests can be conducted in accordance with national and 

international standards including BS 476, ASTM E1354 and ASTM 

E1474, and ISO 5660-1.  

 

Since cone calorimeter measures flammability in different manner than LOI and 

UL-94 fire tests, one should not be surprised by the poor correlation between the 

methods. Morgan and Bundy69 tried to explain differences among LOI, cone 

calorimeter and UL-94 test. LOI is a small-scale test that uses a variable 

percentage oxygen atmosphere to maintain a candle-like burn, and UL-94 V 

applies a small calibrated flame twice under the sample (configured vertically) 

for 10 s followed by measuring time to extinguishment after each flame 

application. Cone calorimetry, on the other hand, uses a forced combustion in 

which radiant heat is projected onto a sample before ignition and during burning 

of the sample. The sample is usually in a horizontal configuration, thus 

                                                 
69 Morgan, A.B.; Bundy, M. Cone calorimeter analysis of UL-94 V-rated plastics. Fire Mater 
    2007, 31, 257–283. 
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eliminating any physical effects of polymer burning (dripping away from the 

flame, for example) that are sometimes used to pass the UL-94 V test, especially 

under the V2 rating. Further, the sample in the cone calorimeter exposed to 

continuous heat during the test is well ventilated, whereas UL-94 is not. In 

effect, cone calorimeter measures the material response to constant fire threat by 

time, whereas UL-94 measures the material response to remove a fire threat and 

its time to self-extinction. Therefore, some studies have been conducted to show 

correlations between UL-94, LOI and cone calorimeter tests. 

 

2. Objectives 

The general objective of this doctoral thesis is to develop new halogen-free 

polymeric flame retardant additives and to study their action in ¨commodity¨ 

polymers.  

To achieve this goal, the experimental work was divided into two parts.  

• Synthesis and characterization of polymeric flame retardant additives; 

this part, focused on the chemical modification of polymers with 

phosphorous-based compounds known to be good flame retardant 

promoters. In some cases, nitrogen-containing moieties were also 

introduced to see the synergistic effect between phosphorous and 

nitrogen actions on the flame retardancy. 

• Blending of some of the synthesised polymeric flame retardant additives 

with ¨commodity¨ polymers, to study their effect on the flame retardancy 

behaviour and on the mechanical properties of the final polymeric 

materials in order to envisage their applicability. 
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Flame retardant phosphorous-containing polymers obtained by 

chemically modifying poly(vinyl alcohol) 
 

 
A new family of polymeric flame retardant additives that could be blended by 

thermoplastic polymers for improve their thermal stability and flame resistance 

was synthesized. Polymeric flame retardant additives were performed through 

the chemical modification of poly(vinyl alcohol) by phosphorous-containing 

compounds reported as good flame retardant moieties, where the phosphorous 

compound act as a catalyst and poly(vinyl alcohol) as a carbon char formation 

source.  
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1. Introduction 

As already discussed in chapter 1, polymeric materials that become widely used 

for many different applications are inherently combustible. Their combustion 

process and problems that this involves have been developed in the general 

introduction. Thus, the use of flame retardants, which help to reduce the inherent 

combustibility of polymers and the production of smoke and toxic gases, has 

become a key part of new polymeric materials development.4,5 

On the basis of all mentioned above, we intended to synthesise a new set of 

flame retardant phosphorous-containing polymers suitable to be applied as 

environmentally friendly flame retardant additives by blending with 

thermoplastic ¨commodity¨ polymers. These flame retardant polymeric additives 

have been obtained by chemically modifying poly(vinyl alcohol) (PVA) through 

reaction with phosphorous-containing reagents. 

As phosphorous source we used a phosphate, a phosphite and a  phosphine 

oxide derivative compound which have been reported to be good flame 

retardancy promoter structures.3,4,7,16,70-72 The choice of different phosphorous 

derivative classes was in order to get widely compatibility with many 

¨¨commodity¨ polymers¨ and different char forming, respectively. 

The choice of PVA as starting pre-formed polymer is due to its high availability, 

low cost, and high reactivity, but mostly to its high char forming character, 

which in turn is due to the presence of free hydroxyl groups (unmodified). On 

heating, they can easily lead to dehydration reactions which give rice to 

unsaturated materials, especially in the presence of phosphorous-containing 

moieties which can act as a dehydration catalyst source. Moreover, dehydration 

reactions obviously involve water vapour release, which contribute to dilute the 

                                                 
70 Zhang, S.S; Xu, K.; Jow, T.R. J Power Sources 2003, 113, 166-172. 
71 Xie, F.; Wang, Y-Z.; Yang, B.; Liu, Y. Macromol Mater Eng 2006, 291, 247-253.  
72 Peng, H.-Q.; Zhou, Q.; Wang, D.-Y.; Chen, L.; Wang, Y.-Z. J Ind Eng Chem 2008, 14,  
    589-595. 
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flammable gases on the flammable mixture and to cool the pyrolysis zone due to 

the high evaporation latent heat of water.3,73  

In this chapter, we focus on the synthesis and characterization of the above 

mentioned flame retardant PVA derivatives. Furthermore, a detailed study on 

the thermal degradation of some of them is also reported, since it can be useful 

to envisage whether (and how) they can act as a flame retardant polymeric 

additive on blending with thermoplastic ¨commodity¨ polymers. 

 

2. Experimental Part  

2.1-Materials 

Commercial materials 

Poly(vinyl alcohol) (degree of polymerization = 300) was supplied by Fluka and 

dried, prior to use,  at 60 ºC for 24 h under vacuum. Its degree of hydrolysation 

(percentage of free hydroxyl groups) is 88 mol% as determined by 1H NMR 

spectroscopy.  

Benzoyl chloride (Sigma-Aldrich, 99%), valeroyl chloride (Sigma-Aldrich, 

98%), 4-(dimethylamino)-pyridine (DMAP, Fluka, 99%), thionyl chloride 

(Sigma-Aldrich, 97%), oxalyl chloride (Fluka, 96%) and hexane (Scharlau, 

synthesis grade) were used as received.  

1-Methyl-2-pyrrolidinone (NMP, Sigma-Aldrich, 99.5%), chloroform (CHCl3, 

Panreac, 99%) and pyridine (Py, Sigma-Aldrich, 99%) were purified prior to 

use. NMP was first dried by removing water as benzene azeotrope (Dean-Stark 

apparatus) and then fractionally distilled, collecting the desired fraction (78-79 

ºC/12 mmHg) over Linde type 4Å molecular sieves. Pyridine was first pre-dried 

over KOH pellets and then fractionally distilled from sodium hydride over Linde 

type 5Å molecular sieves. Chloroform was extract from water several times in 

order to eliminate ethanol traces, dried over anhydrous calcium chloride and 

                                                 
73 Wang, D.-L.; Liu, Y.; Wang, D.-Y.; Zhao, C.-X.; Mou, Y.-R., Wang, Y.-Z. Polym Degrad      
    Stab 2007, 92, 1555-1564. 
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then refluxed with calcium chloride, fractionally distilled over Linde type 4Å 

molecular sieves and stored under argon atmosphere with 4Å molecular sieves 

in a dark flask.74  

Linde type 4Å and 5Å molecular sieves were previously activated by heating 

them in an oven at 200 ºC for 24 h, and then leaved to cool and kept under argon 

atmosphere in a well-dried flask.  

Synthesized materials 

4-Chloroformyl-1-oxo-2,6,7-trioxa-1-phosphabyciclo[2.2.2]octane (BIC) was 

synthesized from pentaerythritol according to a published three steps procedure 

(scheme 2.1).71 The overall yield was 44 %. The characterization data are as 

follows: melting point (°C): 243-245; IR (cm-1): 1780 (C=O); 1312 (P=O); 1170 

(C-O); 987 (P-O); 860 (skeleton vibration of caged bicyclic phosphate) ; 1H 

NMR (acetone-d6, 400 MHz, δ(ppm)): 5.1 (d, 6H, 3JH-P=6.9 Hz); 13C NMR 

(acetone-d6, 100.6 MHz, δ(ppm)): 43.6 (s), 75.5 (t), 165.8 (s); 31P NMR 

(acetone-d6, 161.9 MHz, δ(ppm)): -7.9 (s). 
 

Scheme 2.1 

HO OH

HO OH

POCl3 P

O

O

O
O

OH
HNO3

NH4VO3

P

O

O

O
O

OH

O

SOCl2
DMF

P

O

O

O
O

Cl

O

BICPER PEPA OCTPO  
 

2-chloro-5,5-dimethyl-1,3,2-dioxaphosphorinane (CDDP) (scheme 2.2) was 

obtained from ice-cooled ether solution of phosphorous trichloride with 2,2-

dimethyl-1,3-propandiol according to a published procedure.75,76 Yield was 78 

%. Characterization data are as follows: melting point (ºC): 42-45; IR (cm-1): 

                                                 
74 Armarego, W.L.F.; Perrin, D.D. Purification of Laboratory Chemicals, 4th edition, 1996,   
    pp. 275, 317, 143. 
75 White, D.W.; Bertrand, R.D.; McEwen, G.K.; Verkade, J.G. JACS 1970, 92, 24, 7125-   
    7135. 
76 Muthiah, C.; Praveen Kumar, K.; Aruna Mani, C.; Kumara Swamy, K.C. J Org Chem   
    2000, 65, 3733-3737. 
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1288 (C-O); 1003 (P-O); 835 (skeleton vibration of cycle); 1H NMR (CDCl3, 

400 MHz, δ(ppm)): 3.4-4.2 (m, 4H), 0.8-1.2 (d, 6H); 13C NMR (CDCl3, 100.6 

MHz, δ (ppm)): 22.7-22.8 (d), 33.2-33.3 (d), 71.2-71.3 (d); 31P NMR (CDCl3, 

161.9 MHz, δ (ppm)): 146. 

 
Scheme 2.2 

HOH2C

CH3

CH3

CH2OH + PCl3
0ºC

Py/Et2O

O

P

O

Cl

CDDP  
4-carboxyphenyl-diphenyl-phosphine-oxide (CDPO) was synthesized from 4-

bromotoluene through a three steps procedure, according to literature (scheme 

2.3a)77. The overall yield was: 68%. Melting point (ºC) was 256-260. IR (cm-1): 

3060; 1120 (OH); 1700 (C=O); 1249 (P=O); 1436 (P-Ar); 860 (C-C); 709 (C-

H); 1H NMR (DMSO-d6, 400 MHz, δ(ppm): 13.2 (s, 1H); 8.1 (d, 2H); 7.7 (t, 

2H); 7.6-7.7 (m, 10H); 13C NMR (DMSO-d6, 100.6 MHz, δ(ppm)): 166.6 (s); 

133.8-128.8 (m); 31P NMR (DMSO-d6, 161.9 MHz, δ(ppm): 25.7.  

4-(diphenyl-phosphinoyl)-benzoyl chloride (DPBC) was obtained from the 

corresponding acid (CDPO) using two different methods (scheme 2.3b): 

a) by treatment with thionyl chloride (SOCl2) following the same method 

used for BIC preparation71 (see scheme 1). Yield was 38%; 

b) by treatment with oxalyl chloride ((COCl)2)78  

In a well dried two necked round bottom flask of 250 ml equipped with 

additional funnel under argon atmosphere  were introduced 32.2 g (0.1 mol) 

CDPO with 100 ml CHCl3. In the mixture was dropped, under stirring at 

room temperature, oxalyl chloride 17.5 g (11.43 ml; 0.135 mol). After the 

addition was completed the mixture was heated at reflux. The reaction was 

                                                 
77 Lin, Q.; Unal, S.; Fornof, A.R.; Armentrout, R.S.; Long, T.E. Polymer 2006, 47, 4085-  
   4093. 
78 Ward, D.E.; Rhee, C.K. Tetrahedron Lett 1991, 32, 49, 7165-7166. 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



                                                                                                     Chapter 2                    
                                                                              

 25

fallowed by TLC and stopped after 48 h. Reaction mixture was concentrated 

by solvent rota evaporation and 100 ml of hexane were added. Light brown 

oil was obtained through solvent decantation and dried under vacuum for 24 

h. Overall yield was 76%.  

The characterization data are as follows: melting point range (ºC) was: 254-258; 

IR (cm-1): 1701 (C=O); 1249 (P=O); 860 (C-C); 708 (C-H); 1H NMR (TCE-d2, 

400 MHz, δ(ppm)):8.2 (d, 2H); 7.8 (t, 2H); 7.6-7.5 (m, 10H); 13C NMR (TCE-

d2, 100.6 MHz, δ(ppm)):132.8-128.9 (m); 168.1 (s); 31P NMR (TCE-d2, 161.9 

MHz, δ(ppm)): 29.0 
 

Scheme 2.3a 

 
Scheme 2.3b 
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2.2- Chemical modification reactions 

2.2.1-Poly(vinyl alcohol) chemically modified with 4-chloroformyl-1-oxo  2,6,7- 

         trioxa-1-phosphabicyclo-[2,2,2]-octane (polymers A1-A5, scheme 2.4) 
 

Scheme 2.4 

 
 

In a well-dried 50-ml two-necked round-bottom flask equipped with magnetic 

stirrer, reflux condenser, and dry argon inlet, 20 ml of 1-methyl-2-pyrrolidinone 

and 1.00 g of PVA (0.018 mol of hydroxyl group) were introduced. The mixture 

was stirred and heated at 80 ºC under argon flow until PVA was completely 

dissolved. Thereafter, it was left to cool down to room temperature. Then, 0.22 g 

(0.0018 mol) of DMAP, 1.45 ml (0.018 mol) of pyridine, and 3.67 g (0.018 mol, 

for polymers A1-A4) or 1.84 g (0.009 mol, for polymer A5) of BIC was added. 

The mixture was kept magnetically stirred in an argon atmosphere at the 

selected temperature for the selected time (Table 2.1). The white powdered 

modified PVA was obtained after the precipitation of the reaction mixture in 1 l 

of cold water, vacuum filtration, washing with water and drying under vacuum 

at 70 ºC. The yield was 70-98%. Modification degree=36-57%. The 1H (DMSO-

d6, 400 MHz, δ(ppm)), 13C (DMSO-d6, 100.6 MHz, δ (ppm)), and 31P (DMSO-

d6, 161.9 MHz, δ(ppm)) NMR data are collected in Table 2.2. The IR data (cm
-1

) are as follows: 3453; 1121 (OH); 1726 (C=O); 1313 (P=O); 1168 (C-O); 998 

(P-O); 852 (skeleton vibration of caged bicyclic phosphate).  
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Table 2.1 Conditions of PVA modifying with BIC 

Polymer Time 
(days) 

T 
(ºC) 

Molar Ratio 
(PVA/BIC/AL/AR)** 

A1 
A2 
A3 
A4 
A5 
B 
C 

2 
5 

10 
2 
2 
2 
2 

* 
* 
* 

40 
* 
* 
* 

1/1/0/0 
1/1/0/0 
1/1/0/0 
1/1/0/0 

1/0.5/0/0 
1/0.5/0.5/0 
1/0.5/0/0.5 

• *= 25±2ºC; 
• ** PVA/BIC/AL/AR= poly(vinyl alcohol) / 

                                        4-chloroformyl-1-Oxo-2,6,7-trioxa-1-phosphabicyclo-[2,2,2]-octane/ 
                                        valeroyl chloride/ benzoyl chloride.  

 

Table 2.2 NMR data of polymer A1-A5 

 

 
 

1H NMR data 13C NMR data 31P NMR data 
Resonances Assignment Resonances Assignment Resonances Assignment 

1.2-2.0 
3.5-4.1 
4.3-4.7 
4.8-5.2 

1, 3, 3’ 3’’ 
4’ 
5 

4, 4’’, 8 

20.8 
37.0-42.0 

43.1 
44.0-46.0 
62.0-74.0 

74.7 
164.0-164.9 
169.0-169.8 

1 
3, 3’’ 

7 
3’ 

4, 4’, 4’’ 
8 
6 
2 

(-6.8)-(-6.6) 9 

  
 

2.2.2- Poly(vinyl alcohol) chemically modified with 4-chloroformyl-1-oxo-2,6,7-  

          trioxa-1-phosphabicyclo-[2,2,2]-octane and valeroyl  chloride  (polymer   

         B, scheme 2.5)  
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Scheme 2.5 

 
Table 2.3 NMR data of polymer B. 

 

 
 

1H NMR data 13C NMR data 31P NMR data 
Resonances Assignment Resonances Assignment Resonances Assignment 

0.9 
1.2-2.0 

2.2 
3.5-4.1 
4.3-5.2 

14 
1, 3, 3’, 3’’, 3’’’, 12, 13 

11 
4’ 

4, 4’’, 4’’’, 5, 8 

13.6 
20.8 
21.7 
26.5 
33.4 

37.0-42.0 
43.1 

44.0-46.0 
62.0-74.0 

74.9 
164.0-164.9 

169.9 
172.8 

14 
1 
13 
12 
11 

3, 3’’, 3’’’ 
7 
3’ 

4,4’, 4’’,4’’’ 
8 
6 
2 
10 

-6.7 9 

  
The polymer B was synthesized following the same procedure as for polymers 

A1-A5 using 1.84 g (0.009 mol) of BIC and 1.09 g (0.009 mol) of valeroyl 

chloride (Table 2.1). The yield was 87 %. The 1H (DMSO-d6, 400 MHz, 

δ(ppm)), 13C (DMSO-d6, 100.6 MHz, δ(ppm)) and 31P (DMSO-d6, 161.9 MHz, 

δ(ppm)) NMR data are collected in Table 2.3. The IR data (cm
-1

) are as follows: 
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3489; 1122 (OH); 1726 (C=O); 1326 (P=O); 1170 (C-O); 1001 (P-O); 852 

(skeleton vibration of caged bicyclic phosphate). 

 

2.2.3- Poly(vinyl alcohol) chemically modified with 4-chloroformyl-1-oxo-2,6,7-  

         trioxa-1-phosphabicyclo-[2,2,2]-octane and benzoyl chloride (polymer C,     

        scheme 2.6) 

 
Scheme 2.6 

 
 

Table 2.4 NMR data of polymer C. 

 

 
 

1H NMR data 13C NMR data 31P NMR data 
Resonances Assignment Resonances Assignment Resonances Assignment 

1.2-2.1 
3.4-4.0 
4.4-5.3 
7.4-8.1 

1, 3, 3’, 3’’, 3’’’ 
4’ 

4, 4’’, 4’’’, 5, 8 
12, 13, 14 

20.9 
37.0-42.0 

43.1 
44.0-46.5 
62.0-74.0 

74.9 
128.2-130.0 
133.0-134.0 

164.8 
167.6 
169.8 

1 
3, 3’’, 3’’’ 

7 
3’ 

4, 4’, 4’’, 4’’’ 
8 

11, 12, 13 
14 
6 
10 
2 

-6.7 9 
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Polymer C was prepared by the same procedure reported above for polymer B, 

but using 1.26 g (0.009 mol) of benzoyl chloride instead of valeroyl chloride 

(Table 2.1). The yield was 60 %. The 1H (DMSO-d6, 400 MHz, δ (ppm)), 13C 

(DMSO-d6, 100.6 MHz, δ (ppm)), and 31P (DMSO-d6, 161.9 MHz, δ (ppm)) 

NMR data are collected in Table 2.4. The IR data (cm
-1

) are as follows: 3454; 

1119 (OH); 1724 (C=O); 1257 (P=O); 999 (P-O); 854 (skeleton vibration of 

caged bicyclic phosphate); 712 (aromatic C-C-H out of plane deformation). 

 

2.2.4- Poly(vinyl alcohol) chemically modified with 2-chloro-5,5-dimethyl-1,3,2- 

         dioxaphosphorinane ( polymers D1-D2, scheme 2.7) 
 

Scheme 2.7 

 
 

The preparation of polymers D1 and D2 was tested following the same 

procedure as for polymers A1-A5, using CDDP in equivalent molar ratio at 

different conditions. In all cases a crosslinked material was obtained, in site of 

expected polymers. 
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2.2.5- Poly(vinyl alcohol) chemically modified with 4-(diphenyl-phosphinoyl)- 

          benzoyl chloride (polymers E1-E5, scheme 2.8) 

 

Polymers E1-E5 were prepared using the same procedure as for previously 

families (scheme 2.8). Instead of BIC (or CDDP) was used DPBC in excess of 

20%. The polymers were recovered via precipitation in cold water. The light 

yellow to dark brown powdered polymers were obtained and dried at 60ºC under 

vacuum until constant weight. Overall yield was 48-93%. Reaction conditions 

are summarized in Table 2.5. The 1H (DMSO-d6, 400 MHz, δ (ppm)), 13C 

(DMSO-d6, 100.6 MHz, δ (ppm)), and 31P (DMSO-d6, 161.9 MHz, δ (ppm)) 

NMR data are collected in Table 2.6. The IR data are as follows (cm-1): 3363 

(OH); 1716 (C=O); 1188 (P=O); 694 (aromatic C-C-H out of plane 

deformation). 
 

Scheme 2.8 

 
 

Table 2.5 Conditions of PVA modifying with DPBC 

 

Molar Ratio Polymer Time 
(days) T (ºC)

PVA/DPBC’ 
E1 2 rt.’’ 
E2 2 60 
E3 2 80 
E4 7 80 
E5 2 100 

1/1.2 

                                                  ’ PVA/DPBC=poly(vinyl alcohol) / 4-(diphenyl-  
                                                                          phosphinoyl)- benzoyl chloride 
                                                  ’’ rt.= 25±2ºC  
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Table 2.6 NMR data of polymer E2-E5 

 

 

 

 

 
 

1H NMR 13C NMR 31P NMR 
Resonances Assignment Resonances Assignment Resonances Assignment 

1.0-2.2 
1.7 

3.5-4.0 
4.1-4.8 
4.8-5.5 
7.3-7.5 
7.5-7.7 
7.7-7.8 
7.9-8.2 

3,3’,3’’ 
1 
4’ 
5 

4,4’’ 
13 

12,14 
9 
8 

21.2 
40.7-47.6 
62.4-72.3 

128.8-130.5 
131.4-134.2 
137.0-139.0 

164.9 
170.1 

1 
3,3’,3’’ 
4,4’,4’’ 

8,13 
7,9,12,14 

10 
6 
2 

25.3 11 

  

 

2.3- Characterization techniques 
1H, 13C and 31P NMR spectra were recorded at room temperature with a Varian 

Gemini 400 MHz spectrometer using acetone-d6, CDCl3, TCE-d2 or DMSO-d6 

as solvents. For 1H and 13C NMR spectra tetramethylsilane was used as a 

reference, while for 31P NMR spectra phosphoric acid was used as an internal 

standard: a closed capillary tube containing this acid was introduced in the NMR 

tube together with the solution to be analysed. In the case of the spectra of 

polymers, a pulse delay time was used: 5 s for 1H NMR spectra and 10 s for 13C 

NMR spectra. 
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Fourier transform infrared spectra were recorded on a FT-IR 680 PLUS 

spectrophotometer from JASCO with a resolution of 4 cm-1 in the absorbance 

mode. This device is equipped with an attenuated total reflection accessory 

(ATR) with thermal control and a diamond crystal (Golden Gate heated single 

reflection diamond ATR from Specac-Teknokroma). The spectra were recorded 

at room temperature from the solid / liquid state pure compounds. 

Phosphorous contents were determined by inductively coupled plasma atomic 

emission spectroscopy (ICP-AES) on a Perkin Elmer Plasma 400 device. 

Solutions to be analyzed were prepared by submitting ca. 40 mg of polymer to 

acidic attack (2-2.5 ml HNO3 65%) on an Anton Paar Q M627 PMD 750W 

microwave system and, then, diluting with water to several concentrations. In 

the case of polymer C and polymers E2-E5 the acidic attack was performed by 

using 2 ml HNO3 65% + 2 ml HCl 37%. The samples were compared by check 

solutions of 0, 25, 50, 75 and 100 ppm of phosphorous obtained by diluting an 

ICP multielement standard solution XII (Merck). 

Inherent viscosities (ηinh.) were measured in dimethyl sulfoxide (DMSO) 

solutions (ca. 2 g/l) at 30±0.05 ºC in an Ubbelohde capillary viscosimeter on a 

Schott Geräte AVS 310 automatic appliance provided with a Schott Geräte CT 

050/1 thermostatic bath and a Selecta 6000382 external cryoscopic unit. 

Differential scanning calorimetry (DSC) studies were performed on a Mettler 

DSC822e thermal analyzer with samples of about 5 mg in covered 40 µl 

aluminium standard crucibles. The heating/cooling rate was 10 ºC/min, nitrogen 

was used as a purge gas (100 ml/min) and liquid nitrogen was used in the 

cooling system. The device was previously calibrated with indium (156.6 ºC) 

and zinc (419.6 ºC) pearls. 

Thermogravimetric analyses (TGAs) were carried out in 70 µl aluminium oxide 

crucibles on a Mettler TGA/SDTA851e/LF/1100 device at a heating rate of 10 

ºC/min up to 800 ºC. Each experiment was performed under a nitrogen or air 
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flux (100 ml/min) using ca. 10 mg of sample. The equipment was previously 

calibrated with indium (156.6 ºC) and aluminium (660.3 ºC) pearls.  

TGA combined with mass spectrometry (TGA-MS) studies were performed on a 

Mettler TGA/SDTA851e/LF/1600 device coupled with Pfeiffer Vacuum 

Thermostar quadrupolar mass spectrometer covering a mass range from 0 to 300 

a.m.u. The equipment was previously calibrated with In (156.6ºC), Al (660ºC) 

and Pd (1554ºC) pearls. Platinum cresols of 150 µl were used. Samples were 

heated from 30 ºC to 240 ºC at a heating rate of 10 ºC/min and then this latter 

temperature was kept for 30 minutes. Studies were performed in nitrogen or air 

atmosphere (50 ml/min).  

Pyrolisis studies were performed in a Carbolite TZF 12/38/400 pyrolytic oven 

connected to a condenser cooled by liquid nitrogen. Samples were heated from 

room temperature to 240ºC and then this temperature was kept for 3 hours. The 

studies were performed in an air atmosphere (100 ml/min). All volatiles evolved 

during the above process were analyzed. 

Gas Chromatography- Mass Spectrometry (GC-MS) analyses were carried out 

in an HP 6890 gas chromatograph provided with a 5973 mass selective detector 

from Hewlett Packard and with an Ultra 2 capillary column HP5MS using He as 

carrier gas. Samples of 1µl were analyzed in split mode with a split ratio of 

50:1, inlet temperature of 180 ºC and inlet pressure of 6.47 psi. The program of 

temperatures used in the oven includes tree isotherms and two dynamics scans: 

35 ºC (10 min), 35 ºC→100 ºC (5 ºC/min), 100 ºC (20 min), 100 ºC→250 ºC 

(30 ºC/min), 250 ºC (40 min); The overall time of analysis was 88 min. 

Acquisition occurred by SCAN mode in a range of m/e from 43 to 600 a.m.u.  

 

3. Results and discussion 

3.1- Polymers preparation and chemical characterization 

In this chapter we report the synthesis of new halogen free polymeric flame 

retardant additives obtained by chemical modification of commercially 
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poly(vinyl alcohol) (PVA) (88 mol% free hydroxyl groups) with different 

phosphorous containing moieties, such as phosphates, phosphites and  

phosphine oxides. All this classes were mentioned by Hamerton et al.,  Zhang et 

al. and others as good flame retardants. 3,4,7,16,70-72 Particularly, phosphine oxide 

structures have been described by Levchik et al. as proposed structure to impart 

flame retardancy to curing agents, due their thermally and hydrolytically high 

stability.16
 Phosphites are mentioned by many authors as good flame 

retardants3,16,70, some of them relate them as good thermal stabiliser, also.79 

Phosphates are widely reported as good flame retardants although they present 

the problem of hydrolysis.3,7 

First, we tackle the chemical modification of PVA with 4-chloroformyl-1-oxo- 

2,6,7- trioxa-1-phosphabicyclo-[2,2,2]-octane (BIC). The cyclic caged 

phosphate structure of BIC has been used by several authors due to its good 

flame retardant action.71,72,80 Moreover, this structure seems to suffer hydrolysis 

slower than common phosphate groups, probably due to the high stability of the 

six-membered cyclic structure.7,72,80 BIC was synthesized according to a three 

steps published procedure.71  

 

 
 

First of all phosphorous oxychloride (POCl3) was condensed with 

pentaerythritol (PER) to give 1-oxo-4-hydroxymethyl-1-phospha-2,6,7-

trioxabicyclo(2.2.2)octane (PEPA), and subsequent oxidation with concentrated 

nitric acid catalysed by ammonium vanadate, provided the corresponding acid 

(OCTPO). Further reaction with thionyl chloride using N,N-dimethylformamide 

                                                 
79 Stevenson, D.R; Harr, M.E.; Jakupca, M.R. J Vinyl Addit Techn 2002, 8, 1, 61-69. 
80 Li, X.; Ou, Y.; Shi, Y. Polym Degrad Stab 2002, 77, 383-390. 
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(DMF) as a catalyst yielded the acyl chloride (BIC). The reactions were 

followed by TLC and stopped when limiting reactant has been completely 

consumed. The overall yield was 90%. 

The synthesized acid chloride was then used as an acylating agent for PVA 

chemical modification. One of the most commonly used method for alcohols 

esterification with acylating agents is Schotten- Baumann reaction81, related in 

scheme 2.9. The Schotten –Baumann reaction is a method to synthesize amides 

from amines and acid chlorides. Sometimes the name of this reaction is also 

used to indicate the reaction between an acid chloride and an alcohol to form an 

ester. In the first step an acid chloride reacts with an amine (alcohol) so that an 

amide (ester) is formed, together with a proton and a chloride ion. Addition of a 

base is required to catch this acidic proton. Often, an aqueous solution of a base 

is slowly added to the reaction mixture. The name ¨Schotten-Baumann reaction ¨ 

is often used to indicate the use of a two-phase solvent system, consisting of 

water and an organic solvent. A base within the water phase neutralizes the acid, 

generated in the reaction, while the starting materials and product remain in the 

organic phase, thus avoiding acyl chloride hydrolysis. 
 

Scheme 2.9   

 

                                                 
81 Tsuda, M. Makromol. Chem 1964, 72(1), 174-182. 
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This method was not applicable in this case because of particularly easy 

hydrolization of the phosphorous acylating agent in aqueous medium. For this 

reason chemical modifications of PVA were carried out in homogenous phase 

using dry NMP as solvent and stoichiometric quantities of pyridine.82,83 The 

pyridine acted as base in order to capture evolved hydrochloric acid (HCl), 

forming pyridinium salt, easily removed by washing. 4-(Dimethylamino)-

pyridine, pyridine derivative, acted as catalyst.84 The reactions were carried out 

using different molar ratios of acylating agent under different reaction 

conditions (Table 2.1) following a procedure previously used in our laboratory85 

(see scheme bellow).  

 

 
 

First, the synthesis was performed at room temperature for two days using BIC 

in stoichiometric ratio respect to PVA hydroxyl groups (polymer A1) obtaining 

the expected structure with a degree of modification of ca. 0.55 (see Table 2.7). 

The structure has been characterized and confirmed by FT-IR and NMR 

techniques. From FT-IR spectrum (figure 2.1) a diminution of OH vibration 

band around 3500 cm-1 coming from PVA82,86 have been seen and also 

appearance of phosphorous characteristic bands about 1300 cm-1 (P=O) and 

                                                 
82 Arranz, F.; Sanchez-Chaves, M.; Gill, F. Angew Makromol Chem 1980, 92, 121-131. 
83 Fernandez, M.D.; Fernandez, M.J. J Appl Polym Sci 2008, 107, 2509-2519. 
84 Mormann, W; Wagner, T. Macromol Chem Phys 1996, 197, 3463-3471. 
85 Gimenez, V.; Reina, J.A., Mantecon, A.; Cadiz, V. Polymer 1999, 40, 2759-2767. 
86 Xiao, S.; Huang Y.M., R.; Feng, X. J Membr Sci 2006, 286, 245-254. 
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1000 cm-1 (P-O), respectively, coming from bicycle caged phosphate group71,72 

which confirm that PVA chemical modifications occurred. 
 

Figure 2.1. FT-IR spectrum of polymer A1 

 

 

 

 

 

 

 

 

 

Figure 2.2 illustrates 1H and 31P NMR spectrum for PVA modified with BIC. In 
1H NMR signal around 4.8-5.0 ppm is characteristic for methylene protons of 

the bicycle caged phosphate.71 The signals between 3.5-4.1 ppm and around 5.0-

5.2 ppm were attributed to methine protons of unmodified PVA chain and 

esterified units, respectively. OH groups gave the signal around 4.5 ppm.87 The 

signals coming from methylene protons of main chain and methyl protons from 

acetyl units were observed at 1.2-2.0 ppm. As can be seen only one sharp signal 

around -7 ppm appears in the 31P NMR spectrum.72  

13C NMR spectrum for PVA modified with BIC is presented in figure 2.3. 

Signals at 164.0-165.0 ppm and 169.0-170.0 ppm can be attributed to the 

carbonylic carbons from BIC and acetyl groups, respectively. The singlet that 

appears at 20.8 ppm corresponds to methyl carbons from acetylated unit. The 

strong sharp signal 74.7 ppm was attributed to methylene carbons from caged 

bicycle phosphate. Signal at 43.1 ppm corresponds to quaternary carbon coming 

from caged bicycle phosphate (3JP-C=48.62 Hz) Signals corresponding to the 
                                                 
87 Gimenez, V.; Reina, J.A., Mantecon, A.; Cadiz, V. J Polym Sci Part A: Polym Chem 1996,     
    34, 925-934. 
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methine and methylene carbons of PVA chain appear between 62.0-74.0 ppm 

and 37.0-46.0 ppm respectively.87 All these are broad and/or split due to stereo 

and comonomer sequences. 
 

Figure 2.2. 1H and 31P NMR of polymer A1 recorded in DMSO-d6 

  
Figure 2.3. 13C NMR of polymer A1 recorded in DMSO-d6 
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The degree of modification was estimated from the 13C NMR spectrum recorded 

under quantitative conditions using the intensity of carbonyl signals which 

appears resolved, and considering that acetylated units does not suffer any 

transformation. The quantification was performed over a night (30000 scans) 

using a delay time of 10 seconds which was previously established by 

determination of relaxation time for carbonyl carbons. 

In order to get higher degree of modification the synthesis has been carried out 

at room temperature for 5 and 10 days (polymers A2 and A3) and 40ºC 

(polymer A4), 60ºC and 80ºC for two days, using also a stoichiometric molar 

ratio of acylating agent and base. At temperature higher than 40ºC crosslinked 

polymers were obtained, that was associated with PVA dehydration tendency on 

heating, which lead to ether bridges.88 

At longer reaction time and/or 40ºC the degree of modification rises slightly and 

a ¨ plateau ¨ seems to be reached (± 60%), probably due to group size and the 

steric hindrance. In no case total modification was reached. PVA was also 

modified by using PVA: BIC in 1:0.5 molar ratios at room temperature for two 

days (polymer A5), leading to a degree of modification of 23%. 

 
Table 2.7   Results of PVA modified with BIC 

 
%P 

Obtained from Degree of modification Polymer 
ICP-AES 13C NMR xa xb yb 

Yield 
(%) 

µinh. 
(dl/g) 

PVA       0.52 
A1 
A2 
A3 
A4 
A5 

11.5 
11.8 
12.1 
12.2 
8.0 

11.8 
- 

11.0 
11.9 
10.0 

0.52 
0.57 
0.61 
0.63 
0.23 

0.57 
- 

0.47 
0.58 
0.36 

 
 
 
 
 

90 
70 
98 
98 
91 

0.19 
0.16 
0.24 
0.23 
0.42 

B 
C 

5.7 
7.6 

6.3 
10.0 

 
 

0.27 
0.48 

0.44 
0.16 

87 
60 

0.24 
0.27 

  a)Obtained from %P determined by ICP-AES 
  b)Obtained from 13C NMR considering 12% of acetylated part   

 

                                                 
88 Pritchard, J.G. Polyvinyl Alcohol. Basic proprieties and uses, McDonald Technical &   
    Scientific, London, 1970, p. 83. 
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Once determined the degree of modification, the phosphorous content was 

calculated and compared with the value obtained from ICP-AES. In most of the 

cases a good agreement between these values was obtained (see table 2.7). 

Since the obtained polymers are highly polar and we propose to use them as 

additives for apolar ¨commodity¨ polymers, we introduced more non-polar 

groups such as, an aliphatic and an aromatic moiety, in order to increase the 

compatibility. The synthesis was therefore carried out using valeroyl chloride as 

aliphatic moiety (polymer B) and benzoyl chloride (polymer C) as an aromatic 

moiety, at room temperature for two days. The selected molar ratios were PVA: 

BIC: valeroyl chloride/benzoyl chloride in 1:0.5:0.5 (see scheme below). 

 

 
 

The structures of the modified polymers were confirmed by FT-IR and NMR 

characterization. Also in these cases, in FT-IR we observed   diminution of OH 

band at 3489-3454 cm-1 and appearance of phosphorous characteristic bands at 

1326-1257 cm-1 (P=O) and at 1001-999 cm-1 (P-O). In case of polymer C, we 

also observed C-C-H out-of-plane deformation band at 712 cm-1. From NMR 

spectra apart from the already explained signals for polymers A1-A5, coming 

from the PVA main chain and cyclic caged phosphate, we also observed new 

signals characteristic for the aliphatic chain coming from valeroyl chloride units 
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and aromatic ring from benzoyl units introduced. Thus, we observed for 

polymer B in 1H NMR spectrum, a signal at 2.2 ppm which was assigned to 

methylene protons next to carbonyl group and a signal at 0.9 ppm, attributed to 

methyl protons, both coming from valeroyl units. The other methylene protons 

from valeroyl units overlapped with methylene protons from the main chain and 

methyl protons from the acetylated units. In 13C NMR spectrum (Figure 2.4 ) we 

observed carbonyl carbon coming from valeroyl units at 172.8 ppm. Also, all 

methylenes and methyl carbons coming from valeroyl units appeared resolved. 

Signals at 33.4 ppm, 26.5 ppm and 21.7 ppm were attributed to methylene 

carbons, whereas signal at 13.6 ppm was associated to methyl carbons.  

 
Figure 2.4 13C NMR of polymer B recorded in DMSO-d6 

 
 

In case of polymer C, 1H NMR spectrum shows signals at 7.4-8.1 which are due 

to the aromatic protons coming from the benzene ring. In 13C NMR spectrum 

(Figure 2.5), we observed carbonyl carbon next to aromatic ring at 167.6 ppm. 

The region of 128.2-134.0 ppm was assigned to methine and quaternary carbons 

from the benzene ring. In both, polymer B and polymer C, 31P NMR spectrum 
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shows a singlet in the same region as polymers A1-A5 (ca. -7 ppm). All these 

signals confirmed that the desired structures were obtained.  
 

Figure 2.5 13C NMR of polymer C recorded in DMSO-d6 

 
Also in these cases carbonyl signals appeared resolved, which permit us to 

calculate the degree of modification by 13C NMR quantification, as already 

described for previous polymers. The phosphorous content estimated from 13C 

NMR spectra was in agreement with the phosphorous content calculated by ICP-

AES (Table 2.7). 

The overall yields of all synthesized polymers were calculated from the weight 

of the pure product by taking into account the degree of modification. The 

obtained yields ranged from 60% to 98% (see Table 2.7).  

The inherent viscosity measurements were performed for all prepared polymers 

using DMSO as solvent for samples of 0.2 g/dl at 30 ºC. Obtained results show 

that viscosity of all polymers exhibit the same order of magnitude, with values 

slightly smaller than the virgin PVA. This is probably due to changes in the 

  

10 20 30 405060708090100110 120 130140150160170180 
(ppm)

DMSO 

1 
7

8

 
14

11,12,13

6

10

2 
4,4',4'',4'''

3,3'',3'' 

3' {

 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



Chapter 2 

 44

hydrodynamic volume of the modified polymers due to the bulky side groups 

introduced, since it seems that cleavage and branching side reactions did not 

occur, at least in high extension. 

Then we try the chemical modification of PVA with 2-chloro-5,5-dimethyl-

1,3,2-dioxaphosphorinane (CDDP), a six-membered ring which should  confer a 

certain stability to obtained phosphite. CDDP has been synthesised following a 

published procedure.75 The synthesis occurs very fast through a direct 

condensation of phosphorous trichloride with 2,2-dimethyl-1,3-propanediol in 

ice-cooled ethylic ether in pyridine presence.  

 
The PVA chemical modification with CDDP was based in method reported by 

Said et. al. in which they react i-propanol, a secondary alcohol, with CDDP in 

presence of triethylamine as a base.89 

 

 
First we tested the preparation of PVA modified with CDDP under the same 

conditions used in case of BIC derivatives. Thus, the chemical modification has 

been tried  at room temperature in dried NMP using CDDP and pyridine in 

stoichiometric ratio with respect to PVA free hydroxyl groups and DMAP in 

                                                 
89 Said, M.A.; Kumara Swamy, K.C.; Veith, M.; Huch, V. J Chem Soc Perkin Trans 1 1995,  
    2945-2951. 
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catalytic amount. A reaction took place very fast and a crosslinked material was 

obtained instead of desired polymer. The obtained material was not possible to 

be characterised.  

Then, the synthesis of desired polymer has been tested at low temperature (0ºC) 

using the same system, but also in this case a crosslinked material was obtained. 

This can be perhaps due to the nucleophilic attack of the free OH groups to 

phosphite group, leading to the opening of the six-membered ring and the 

formation of phosphite group bridge chains, which give rise to the formation of 

a crosslinkable material.89 It seemed difficult to eliminate the problem of these 

side reactions and therefore a further study of this polymer was not performed 

and our attention has been redirected to other families.  

Another synthesis that we approach in this chapter is PVA chemical 

modification with 4-(diphenyl- phosphinoyl)- benzoyl chloride (DPBC). The 

phosphine oxide derivative has an interest, because it is not a hydrolyzable 

group and is aromatic, which implies more carbon residue, lower polarity and 

higher compatibility with ¨commodity¨ polymers of low polarity. In order to get 

DPBC first of all was synthesised its corresponding carboxylic acid (CDPO) 

following a three steps published procedure (scheme 2.3a).77 First the Grignard 

reagent was obtained from 1-bromo-4-toluene and react with biphenyl 

phosphinic chloride in order to get 4-methylphenyl biphenyl phosphine oxide 

which was later oxidized with excess of KMnO4 to corresponding carboxylic 

acid.  

The corresponding acyl chloride, which is not reported in the literature, was first 

synthesised from CDPO by treatment with SOCl2 in presence of DMF, but the 

resulting yield was low (38%). In order to improve the yield we applied a 

treatment with oxalyl chloride to CDPO in CHCl3.78 The obtained product was 

isolated from hexane in satisfactory yield (76%).  
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Once that DPBC has been synthesised PVA chemical modification was carried 

out. The synthesis was tested using as model PVA chemical modification with 

BIC derivatives. 

 
First it was performed at room temperature for two days in NMP system using 

an excess of 20 % -mol of DPBC as acylating agent with report to PVA 

hydroxyl groups, pyridine as a base in soichiometric ratio with DPBC and a 

catalytic amount of DMAP in order to get completely esterification of PVA 

hydroxyl groups. After polymer isolation and characterization was concluded 

that reaction did not occurred in that conditions; i.e. unreacted PVA was 

recovered combined with the corresponding carboxylic acid.  

Then this synthesis has been repeated increasing reaction temperature at 60 ºC 

and keeping the other conditions unchanged (polymer E2). In order to reach 

higher modification degree, the synthesis has been performed also at 80 ºC and 

100 ºC for two days (polymers E3 and E5) and 80 ºC for a week (polymer E4). 

In all this cases the expected modification reactions occurred. Summarized 
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reaction conditions and results are related in table 2.5 and table 2.8. It was 

observed that increasing temperature and/or increasing reaction time, higher 

modification degree was obtained.  

The degree of modifications were estimated comparing the intensities of 

characteristic aromatic signals of triphenilphosphine oxide and intensities 

coming from the methyl and methylene signals from the polymeric main chain 

using quantified 1H NMR spectra with a delay time (d1) of 5 seconds.  

The phosphorous content estimated from the modification degrees shows 

concordance with the phosphorous content calculated from the ICP-AES 

analysis (Table 2.8). 

Obtained polymers were characterised and confirmed by FT-IR and NMR 

techniques. Figure 2.6 shows FT-IR spectra of neat PVA and polymer E2.  

As can be observed, a strong diminution of OH characteristic band occurred in 

case of polymer E2 which shows that PVA chemical modification with DPBC 

tacked place. In the same figure could be seen presence of phosphorous 

characteristic bands P=O (ca. 1188 cm-1)77 and aromatic carbons out of plane 

deformation bands (ca. 697 cm -1), respectively. 

 
Figure 2.6 FT-IR spectra of PVA and E2 
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Figure 2.7 shows 1H and 31P NMR spectra of polymer E2. A single sharp peak 

in the 31P NMR spectrum confirmed that pure polymer was obtained. The 

absence of multiplicity of this signal may be due to the distance of the 

phosphorus to the backbone, so there is no stereo or regiosecvences and 

tacticity. By 1H NMR were observed signals between 7.5-8.0 ppm that 

corresponds to aromatic region coming from triphenyl phosphine oxide groups. 

Methyne protons coming from acetylated units and PVA modified with 

phosphine oxide groups appeared together between 4.7-5.5 ppm. Methyne 

protons of unmodified PVA appear between 3.5-4.0 ppm. 

PVA hydroxyl proton appears just between unmodified PVA methyne protons 

and modified PVA methyne protons at 4.5 ppm.  Methylene and methyl protons 

appear all together between 1.4-2.1 ppm.77,87  

 
Figure 2.7 1H and 31P NMR of polymer E2 recorded in DMSO-d6 

 
 

13 
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13C NMR spectrum related in figure 2.8 shows signals at 164.6 ppm and 169.7 

ppm that were attributed to carbonylic carbons coming from modified PVA with 

phosphine oxide groups and PVA acetylated units, respectively. 

Signals between 128.8-138.1 ppm which are in characteristic area of aromatic 

carbons were associated to triphenyl phosphine oxide units. Methyne and 

methylene carbons from PVA chain were found between 63.6-71.0 ppm and 

45.8 ppm, respectively. A weak signal has been found at 20.8 ppm which was 

due to methyl carbons from PVA acetylated units. 

All the evidences mentioned above and absence of unexpected signals shows 

that the target products were synthesized successfully. 
 

Figure 2.8 13C NMR of polymer E2 recorded in DMSO-d6 

 
 

The inherent viscosity measurements were performed in DMSO for samples of 

0.2 g/dl at 30 ºC. Obtained values presented in table 2.8 are lower than in case of 

virgin PVA and they decrease with modification degree increment. The decrease 
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in viscosity is probably due to a more globular conformation adopted by the 

polymer since bulky groups are introduced. 

All viscosity values present the same order of magnitude, which indicates there 

are not ruptures or branching of polymeric structure at least in an important 

extent. The overall yields were calculated from the weight of well dried pure 

product taking into account the modification degree values obtained in each case 

and that acetylated units remained unchanged. 

 
                     Table 2.8 Results of PVA modifying with DPBC 

a Obtained from 1H NMR considering 12% of acetylated part 
 

%P 
Determined from 

Degree of 
modification Polymer

ICP-AES 1H NMR xa 

Yield
(%) 

µinh. 

(dl/g) 

PVA     0.72 
E2 5 6 0.23 93 0.49 
E3 6 6.8 0.33 93 0.35 
E4 7 8.1 0.66 48 0.32 
E5 8 8.3 0.87 89 0.26 

 
3.2- Polymers thermal characterization  

Thermal characterization of resulted polymers was carried out by DSC and TGA 

analysis. The results are summarized in table 2.9 and table 2.10. 

In some cases, an annealing of the samples was necessary in order to get clearly 

visible their glass transitions. Thus, samples were isothermally heated at the 

convenient temperature for two hours in order to cancel their thermal history, 

previously to the dynamic scans.  

In case of neat PVA a glass transition temperature (Tg) at about 60 ºC and an 

endotherm peak at about 190 ºC due to the polymer melting were found. Such a 

high Tg is due to hydroxyl groups that contribute, by hydrogen bonding, to the 

stiffness of the linear polymers.90 When the number of hydroxyl groups is 

reduced by esterification, hydrogen bonding interactions decrease which 
                                                 
90 Champetier, G.; Monnerie, L. Introduction à la Chimie Macromoléculaire, Ed. Masson  
    & cie, Paris, 1969, p.426. 
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produces a diminution in the stiffness. The new moieties introduced can affect 

Tg in a different way depending on their structure and the degree of 

modification. As can be seen in table 2.9 and table 2.10, most of modified 

polymers showed higher Tg values than starting PVA, in spite of their low trend 

to establish hydrogen bonds; this is probably due to chain mobility restrictions 

produced by the bulky groups that were introduced. In case of the BIC 

derivatives Tg slightly increased, whereas in case of phosphine oxide derivatives 

Tg strongly increased, that could be explained on the bases of high rigidity and 

size of aromatic moiety introduced. An exception was observed for polymer B, 

where a lower glass transition temperature was detected, due to flexible aliphatic 

chain introduced. None of the polymers prepared showed melting endotherms, 

as expected for such irregular structures. Therefore, the new synthesized 

polymers are all amorphous.  

 
Table 2.9 Thermal data of BIC derivatives 

DSC TGA 
Nitrogen Nitrogen Air Char yield, 790ºC (%) Polymer 
Tg (ºC) Tonseta 

(ºC) 
Tmax.b 

(ºC) 
Tonseta 

(ºC) 
Tmax.b 

(ºC) Nitrogen Air 

PVA 
A1 
A2 
A3 
A4 
A5 

60 
85 
75 
70 
72 
70 

289 
242 
239 
238 
236 
222 

322 
247 
249 
241 
244 
239 

281 
235 
237 
232 
235 
218 

321 
242 
246 
244 
240 
230 

4 
29 
32 
30 
28 
35 

0 
3 
3 
2 
4 
4 

B 
C 

44 
Not detected 

240 
226 

247 
242 

234 
221 

248 
232 

24 
34 

10 
12 

  
     a Onset temperature of weight loss  
     b Temperature of maximum rate of weight loss 
 

Table 2.10 Thermal data of phosphine oxide derivatives 

DSC TGA 
Nitrogen Nitrogen Air Char yield, 790ºC (%) Polymer 
Tg (ºC) Tonseta 

(ºC) 
Tmax.b 

(ºC) 
Tonseta 

(ºC) 
Tmax.b 

(ºC) Nitrogen Air 

PVA 
E2 
E3 
E4 
E5 

60 
142 
137 
131 
143 

278 
280 
293 
292 
300 

322 
405 
397 
406 
419 

278 
278 
288 
286 
297 

320 
395 
436 
415 
420 

4 
17 
18 
22 
27 

0 
11 
17 
21 
20 

  
     a Onset temperature of weight loss  
     b Temperature of maximum rate of weight loss  
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All polymers were analyzed by TGA using air and nitrogen atmospheres. TGA 

can serve as a useful indicator of polymer flammability.91 Particularly, char 

yields are an indication of trend to form protective barriers, which act as 

bumpers between polymeric material and flame. Table 2.9 and 2.10 lists the data 

from the curves including the onset weight loss temperature (Tonset), 

temperature of maximum rate of weight loss (Tmax) and the char yields at 

790ºC in nitrogen and synthetic air atmosphere.  

The thermal degradation of PVA starts with the loss of water and acetic acid. 

(Scheme 2.10)92 It is evident that this degradation involves in a first stage a 

considerable weight loss. As PVA always contains a small quantity of free 

water, the first part of TGA curve (up to about 150 ºC) represents evaporation of 

this kind of water. Growing weight loss from approximately 280 to 320 ºC is 

related to the first stage of degradation and elimination of volatile products. 

Thus, virgin PVA is relatively thermally stable below 280 ºC with a weight loss 

of approximately 5%, mostly due to the free water. When the temperature 

further increases, weight loss increases rapidly and a lot of volatiles are 

produced, leading to a very low char yield (4%) at about 600 ºC in nitrogen and 

no char yield in air.  
 

Scheme 2.10.  

 

 

                                                 
91 Wang, D.-Y.; Liu, Y.; Wang, Y.-Z.; Perdomo Artiles, C.; Richard Hull, T.; Price, D.   
    Polym Degrad Stab 2007, 92, 1592-1598. 
92 Alexy, P.; Káchová, D.; Kršiak, M.; Bakoš, D.; Šimková, B. Polym Degrad Stab 2002,   
    78, 413-421. 
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As can be seen from TGA curves (Figure 2.9) and data presented in table 2.9, all 

BIC derivatives present a similar thermal behaviour. The modified polymers 

start to lose weight at lower temperatures than precursor PVA, probably due to 

the presence of phosphate group, which can be partially hydrolyzed at the 

beginning of weight loss process, and leads to phosphoric acid groups, able to 

promote dehydration, further cross-linking and carbonization on the surface of 

polymer. This leads to a charcoal protective barrier. The formation of this char is 

associated with the strong weight loss between 220-250 ºC, when approximately 

50% of polymer weight is lost. This charred barrier remains more or less 

unchanged in nitrogen atmosphere and a high amount of char yield is obtained at 

790ºC, while the presence of a very oxidant medium facilitates its oxidation at 

high temperatures in air, leading in most cases to a very small char yield. 

In case of PVA modified with phosphine oxide derivative, data from table 2.10 

and TGA curves (Figure 2.10) show that weight loss process starts at higher 

temperatures than in case of starting PVA. In fact, the weight loss process delays 

as the degree of modification increase, while the char yield at 790 ºC also 

increase. This behaviour, which is observed both in nitrogen and air, can be 

explained by taking into consideration that aromatic moieties are introduced, 

which are thermally stable and trend to lead to charcoal residues. 

All TGA curves showed more than one weight loss step. The first one, 

corresponding to at least 40% of polymer weight loss, starts around 280-300 ºC 

and reaches a maximum rate of weight loss about 400 ºC, and is the most 

significant. A second process, taking place at about 480 ºC, was also observed 

and is associated with the thermal oxidative decomposition of already formed 

char residue. It can be observed that the weight loss process occurs similarly, in 

both, nitrogen and air atmosphere.  
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Figure 2.9. TGA curves in nitrogen and air atmosphere of PVA modified with BIC                                        
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Figure 2.10 TGA curves of PVA modified with DPBC in nitrogen and air 
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A comparison between BIC and DPBC modified PVA derivatives can be taken 

from TGA curves (Figure 2.11) and tables 2.9 and 2.10.  

It can be observed that in case of PVA modified with BIC derivatives the weight 

loss process starts at lower temperatures than of neat PVA, whereas in case of 

modification with DPBC it starts at higher temperatures than of neat polymer. In 
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the case of BIC derivatives, as already mentioned, a phosphate group is present, 

which can be partially hydrolyzed at the beginning of weight loss process, 

leading to phosphoric acid groups, able to further catalysed dehydration, and 

subsequently all weight loss process. This can explained that the weight loss 

starts earlier than in PVA. In the case of DPBC derivatives, the phosphine oxide 

group leads to phosphoric acid derivatives with more difficulty, and thus the 

process is delayed.  

It must be noted, that both, BIC and DPBC derivatives, lead to a significant char 

yields at 790ºC in nitrogen atmosphere. Therefore, in the rich on nitrogen 

atmosphere of a fire, they would presumably lead to the formation of protective 

barriers, when they mixed with ¨commodity¨ polymers, thus acting as flame 

retardant additives. 

 
Figure 2.11 TGA curves of PVA modified with BIC and PVA modified with DPBC in 

nitrogen and synthetic air 
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At that point we intended to perform a deeper investigation on polymers 

degradation process of one of these polymers. If we are able to understand how 

polymers degrade, we will probably also envisage how this degradation can 

affect the degradation and flammability of the blends obtained by mixing these 

polymers with ¨commodity¨ polymers. We decided to perform these studies on 

one of the BIC derivatives (A1). This polymer was submitted to 
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thermogravimetry coupled with mass spectrometry studies (TGA-MS) and also 

to pyrolisis studies; in the latter volatile degradation products and non-volatile 

residues were afterwards analysed. 

TGA-MS is a simultaneous technique that combines measurements of weight 

loss on heating with a spectrometric detector. This analysis is giving more than 

weight loss information, since it allows analyses in real time of volatile 

compounds evolved during the thermal decomposition of polymeric materials. 

In this study we were able to identify some volatiles and gases evolved during 

the thermal degradation process of polymer A1. In the experiments the sample 

was heated from 30 ºC up to 240 ºC at heating rate of 10 ºC/min and then it was 

kept at this temperature for 30 minutes in nitrogen or air atmosphere. The mass 

spectrometer, coupled with thermobalance through a quartz capillary tube, takes 

volatiles from the emission point and analyzes them. The results are reported in 

table 2.11. 

In both, nitrogen and air atmospheres, we observed peaks in the mass spectra 

products attributable to water (m/e=18), unsaturated products such as ethylene 

(m/e=28), propine (m/e=40) and acetaldehyde (m/e=44), acetic acid (m/e=60). 

There were also observed m/e peaks corresponding to aromatic compounds 

(m/e=78, benzene and m/e=94, phenol). The m/e= 28 and m/e= 44 can be 

associated, also to CO and CO2 formation.  

In Figure 2.12 we can see the TGA curve versus time overlapped with the curve 

showing the intensity of the peaks at m/e=18 (corresponding to water) versus 

time. As can be seen the highest amount of water detected by MS, coincides 

with the most important weight loss, indicating that the loss of water is probably 

crucial to start the decomposition process. The figure refers to the process 

performed under nitrogen. A similar behaviour was observed under air 

atmosphere. 
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Table 2.11. Mainly detected degradation products. 

 

Volatiles Residue 
TG-MS a 

GC-MS b FT-IR c NMR d FT-IR e NMR f 

 

R P O

OR

OR

C C

aryl or unsaturated
ketones

 

 

  
a) structures attributed to m/e peaks detected by TG-MS  
b) evolved volatile products formed by pyrolisis and identified by GC-MS 
c) functional groups recognized by FT-IR to be present on the evolved volatile products formed by 

pyrolisis 
d) moieties recognized by NMR to be present on the evolved volatile products formed by pyrolisis 
e) functional groups recognized by FT-IR to be present on carbonaceous residue obtained by pyrolisis  
f) moieties recognized by solid state 31P NMR on carbonaceous residue obtained by pyrolisis    

 
Figure 2.12 TGA curve versus time and intensity of the peaks at m/e=18 versus time in nitrogen 
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As already mentioned, another technique used for investigation of polymers 

thermal degradation process was pyrolisis. Thus, polymer A1 was heated in a 

pyrolytic oven at 240 ºC for 3 hours in a synthetic air atmosphere. The volatile 
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compounds evolved in this process were condensed, collected and analyzed by 

FT-IR, NMR and GC-MS. The remained solid residue was characterized by FT-

IR and solid state 31P NMR. The results of these characterizations are listed in 

table 2.11. 

In the 1H NMR spectrum of the collected mixture of volatiles we observed 

signals between 1.2-2.2 ppm which can be due to methyl groups of 

acetaldehyde, acetic acid, acetate esters and other alkyl groups (i.e. ethyl). 

We also observed protons coming from aromatic ring in region of 6.8-7.3 ppm. 

Moreover a small broad signal between 5.2-5.3 ppm is associated to protons 

coming from phenolic OH groups and another small signal at about 9.5 ppm was 

attributed to aldehyde protons. The 13C NMR confirmed the presence of 

aromatic moieties, methyl groups and carbonyl ester groups. A signal at 158.3-

158.4 ppm was observed, which can be attributed to the quaternary carbon 

linked to OH phenol. A phosphorous signal was detected by 31 P NMR at about  

-0.5 ppm and was associated to phosphate derivatives.  

The FT-IR spectrum of the collected mixture of volatiles showed a broad signal 

between 3600-3100 cm-1 that was attributed to OH groups. The region of 1734-

1700 cm-1 show peaks attributed to carbonyl groups (acid, ester, ketone, 

aldehyde). We also observed signals characteristic for C-O group (ester, phenol) 

at about 1230-1150 cm-1 and signals characteristic for alkenes at 1650 cm-1 

(C=C vibration band).  Aromatic groups were observed in region of 1603 cm-1 

and 1583 cm-1 characteristic for C=C vibration and at 756-690 cm-1 

characteristic for deformation out-of-plane. Some characteristic signals of 

phosphorous were also detected at about 1291 cm-1 (P=O) and 1000 cm-1 (P-O). 

The mixture of volatile compounds was finally analyzed by GC-MS: in this 

way, this mixture was separated and some of the peaks identified by comparing 

with reported mass spectra. Most of these compounds are aromatic derivatives 

and some also contains phenol or aldehyde groups. There was also observed a 

structure corresponding to aldol condensation product of acetone. 
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The charcoal residue obtained after pyrolisis was analyzed by solid state 31P 

NMR and FT-IR. The results are reported in table 2.11 as well. In the NMR 

spectrum we observed a signal at about 9 ppm which was attributed to aromatic 

phosphonate derivatives. 

FT-IR analyses of the charcoal residue shows signals between 2000-2300 cm-1 

characteristic for C-C triple bonds and signals at 1577 cm-1; 1448 cm-1 and 870 

cm-1 which are attributable to aromatic C-C absorptions and out-of-plane 

deformation bands. A signal attributable to carbonyl group from aromatic 

ketones was found at 1675 cm-1; signals at 1100 and 960 were attributed to P=O 

and P-O bonds.  

It must be noted that PVA thermal degradation process was studied by Gillman 

et al. and by other researchers93-96 and they propose that this process starts by 

dehydration reactions. The initially formed unsaturated products further react in 

a variety of ways; the most important are shown in scheme 2.10. 

Thus, dehydration reactions can lead to the formation of conjugated polyenes or, 

by chain-scission of the partially degraded products, they can lead to the methyl-

terminated polyene structures. Moreover, conjugated polyenes can cyclise 

through Diels-Alder reaction or electrocyclic rearrangement to cyclohexenes or 

cyclohexadienes, respectively, which further aromatize by dehydrogenation. 

Polyenes can also add free radicals formed by chain-scission leading to aliphatic 

products or substituted olefins. 

As expected, water is one of the important products evolved during the 

degradation process. This suggests us that the degradation process starts by 

                                                 
93 Gillman et al. Thermal Decomposition Chemistry of Poly(vinyl alcohol). Char  
    Characterization and Reactions with Bismaleimides. BFRL, NIST. Proceedings of ACS  
    Symp. Ser. 599 (Fire and Polymers II), Gaithersburg 1995, 161-185.  
94 Shaulov, A. Yu.; Lomakin, S. M.; Zarkhina, T. S.; Rakhimkulov, A. D.; Shilkina, N. G.;  
    Muravlev, Yu. B.; Berlin, Al. Al. Dokl Phys Chem 2005, 403, 2, 154-158. 
95 Zhao, C.-X.; Liu, Y.; Wang, D.-Y.; Wang, D.-L.; Wang, Y.-Z. Polym Degrad Stab 2008, 93,  
    1323–1331. 
96 Zaikov, G. E.; Lornakin, S. M. Polym Degrad Stab 1996, 54, 223-233. 
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dehydration reactions, as it was already related for PVA; all the reactions 

depicted in scheme 2.10 are expected to take place also in polymer A1. 

 
Scheme 2.10 
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To sum up, from the analyses of compounds formed during thermal 

decomposition of A1, the following can be point out: 

• Water and acetic acid formed, probably through dehydration and acetic 

acid pyrolitic elimination. 

 
• Some phosphate volatile compounds evolved, probably formed from the 

pyrolitic elimination reaction of the corresponding bicyclic acid (4-

carboxy-1-oxo-2,6,7-trioxa-1-phosphabicyclo-[2,2,2]-octane), which 

      could further decarboxylate. 

 
• Formation of aromatic compounds occurs as already described for neat 

PVA, through the aromatization of polyene structures by an electrocyclic 

cyclization and/or a Diels-Alder condensation. A part of them is lost as 

volatile molecules (in some case partially oxidized). Another part is 

retained and gives rise to condensed aromatic systems and finally to 

charcoal (see scheme 2.10). 

• Alkenes and alkanes, like in PVA, can be formed through radical 

addition reaction on polyenes. 

• The alkynes formed, probably come directly from depolymerisation 

process of polyenes.  

• Esters (probably acetates) are formed through the vinyl acetate chains 

scission. 
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• Acetaldehyde is probably resulting from enol-ketone tautomerization of 

enol formed by depolymerisation.  

 
• The phosphorous present in carbonaceous residue corresponds, as 

mentioned, to aromatic phosphonate. Therefore, probably it was formed 

from the reaction of phosphoric acid derivatives, which act as 

electrophiles, on aromatic moieties, through a process similar to a 

Friedel-Crafts acylation. 

• The formation of CO and CO2 is also generally expected, particularly 

under air degradation conditions.  

By considering the results of the thermal degradation study of polymer A1 and 

the degradation mechanism reported for neat PVA in the literature, we conclude 

that polymer A1 and PVA degrade in a similar manner, but with some 

differences. As mentioned above, polymer A1 start to lose weight at 

temperatures lower than PVA, indicating that some catalytic effect is provided 

by phosphorous. Thus, the water evolved through the incipient dehydration 

process probably hydrolyzes the phosphate groups and leads to phosphoric acid 

derivatives. These later derivatives can, in turn, catalyze the dehydration 

process, leading to more water evolution and formation of polyene structures. 

Polyene, as in PVA, will lead to the formation of aromatic and unsaturated 

structures. However, if we consider that in polymer A1 a higher char yield is 

observed, this process, leading to aromatic structure, takes place in a higher 

extent in our case. This could be related to the presence of phosphoric acid 

derivatives, which, as indicated above, catalyze dehydration reactions and make 

easier the formation of aromatic compounds and then charcoal. It must be noted 

that phosphorous seems to show a dual action in polymer A1. First, it acts in the 
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condensed phase, catalyzing dehydration reaction, thus leading a charred layer 

formation on the polymer surface. This layer acts as a barrier to difficult volatile 

products from diffusing to the flame and to shield the polymer surface from heat 

and air. Second, the presence of phosphate derivatives on the evolved gas phase, 

suggests that phosphorous could also act in the gas phase, since it was reported 

that phosphorous compounds can trap the radicals in the flame, thus interrupting 

the exothermic reactions that take place and suppress the combustion of 

flammable mixture.3,80 

For these reasons, polymer A1 is in principle a good candidate to act as a flame 

retardant polymeric additive on ¨commodity¨ polymers, since it can be expected 

to act both on the gas and the condensed phase. The observed effect on blending 

it with polypropylene will be discussed in Chapter 5. 

 

4. Conclusions 

As a summary of this chapter, we can indicate that most of the polymeric 

structures, that we intend to prepare, were successfully synthesized and 

characterized. Thus different sets of polymers which were obtained shows 

different polarities associated to phosphorous functional groups. These polymers 

should show a different compatibility with ¨commodity¨ polymers.  

All synthesized polymers led to high char yields on TGA curves. Therefore, 

they are good candidates to act as flame retardant additives through the 

formation of charred barriers on the condensed phase. Moreover, the BIC set of 

polymers can be envisaged also to act in the gas phase, since phosphate volatile 

derivatives have been identified in the volatile mixture after the degradation 

process study.  
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Flame retardant phosphorous or phosphorous- nitrogen 

containing polymeric additives obtained by chemical 

modification of polyketones 
 

 

In this chapter we intend to prepare a set of polymeric flame retardant additives 

based on chemical modification of polyketones. These chemical modifications 

have been performed through a nucleophilic addition reaction of phosphorous 

and/or nitrogen containing compounds on polymeric carbonyl groups. As 

starting polyketones we used poly(methylene ketone) and alternating CO- 4-tert-

butylstyrene copolymer. 
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1. Introduction 

In this chapter we intend to prepare a set of polymeric flame retardant additives, 

based in polyketones modified with phosphorus and/or nitrogen containing 

derivatives. As already mentioned in detail, phosphorus containing derivatives 

are widely used as flame retardants. They exist in many phosphorous oxidation 

states and could act in both, condensed or vapour phase. Depending of 

phosphorous functional group they should confer to the polymers different 

compatibilities with ¨commodity¨ polymers.  

As mentioned in the general introduction, various phosphorus-nitrogen (P–N) 

containing compounds have shown to impart flame retardancy to polymers. 

Moreover, showing a synergistic behaviour the P–N compounds have greater 

thermal stabilities and lower toxic smoke evolution when compared to 

phosphorus based FR.97 

Many P-N systems can be classified as intumescent systems. Intumescent flame 

retardants are well known as a new generation of flame retardants for 

polyolefins,4 especially polypropylene and polyethylene.98 As already described 

in the chapter 1, intumescent system is mainly composed of inorganic acid 

sources (e.g. polyphosphate), charring sources (e.g. pentaerythritol, sorbitol etc.) 

and foaming agents (e.g. melamine)98,99 its behaviour resulting from a 

combination of charring and foaming of the surface of the burning polymer. The 

acid source first breaks down to yield a mineral acid (usually polyphosphoric 

acid), which then dehydrates the carbon compound to produce a char. The 

foaming agent then decomposes generating gaseous products that cause the char 

to swell to form the insulating layer.100 Often, the foaming agent is based on a 

nitrogen moiety, which developed on burning ammonia vapours. 

                                                 
97 Nguyen, C.; Kim, J. Polym Degrad Stab 2008, 93, 1037-1043. 
98 Li, B.;  Xu, M.  Polym Degrad Stab 2006, 91, 1380-1386. 
99 Fontaine,G.; Bourbigot, S.; Duquesne, S.  Polym Degrad Stab 2008, 93, 68-76. 
100 Estevão, L. R.M.; Nascimento, R. S. V. Polym Degrad Stab 2002, 75, 517–533. 
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Polyketones are partially crystalline engineering thermoplastics that can be used 

at high temperatures, provided from cheap and abundant raw materials and 

easily to synthesize. They also have excellent chemical resistance, high strength, 

and excellent resistance to burning.101-103 A wide variety of synthetic methods 

are available for polyketones modification in order to convert them to other 

functional polymers.102,104,105 Polyketones used in this study are poly (methylene 

ketone) obtained by the chemical oxidation of PVA106 and a polyketone 

obtained by the copolymerization of carbon monoxide and an olefin, tert-butyl 

styrene.107,108  

The first aim of this chapter is to modify the starting polyketones with 

phosphorus containing compounds, which acts as nucleophiles into carbonyl 

groups of the polyketones leading to corresponding polyalcohols.105,106  

The presence of free hydroxyl groups in the final polymer is interesting, since 

these groups can easily lead to a charred layer. 

The chosen nucleophilic reaction was phosphorilation. As nucleophiles, a cyclic 

phosphinic acid ester, 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide 

(DOPO) and a cyclic hydrogen phosphite derived from 2,2-dimethyl-1,3-

propandiol have been used. Thus, the polymers that we intend to synthesize will 

contain phosphoryl-oxygen bonds, which are easily hydrolysable groups. In this 

way, these groups lead to phosphoric acids, which catalyze dehydration 

reactions. This will lead to unsaturated systems, which further aromatize giving 

rise to high carbonaceous residue, which probably will act as a protective barrier 
                                                 
101 Lagarona, J.M.; Vickersb, M.E.; Powella, A.K.; Davidsona, N.S. Polymer 2000, 41,  
     3011-3017. 
102 Tae Lee, J.;  Alper, H. Chem Commun 2000, 2189-2190. 
103 Wei et al. Express Polym Lett 2008, 2, 6, 440–448. 
104 Tian, J.; Guo, J.-T.; Zhang, X.; Zhu, C.-C.; Xu, Y.-S. Iran Polym J 2007, 16, 7, 495-503. 
105 Zhang, Y.; Broekhuis, A.A.; Stuart, Marc C. A.;  Picchioni, F. J Appl Polym Sci 2008, 107,  
     262–271  
106 Liu, Y.-L.; Chiu, Y.-C. J Polym Sci Part A: Polym Chem 2003, 41, 1107-1113. 
107 Giménez-Pedrós, M.; Tortosa-Estorach,C.; Bastero,A.; Masdeu-Bulto, A.M.; Solinas, M;  
     Leitner, W. Green Chem 2006, 8, 875–877. 
108 Campos-Carrasco, A. Doctoral Thesis: Universitat Rovira i Virgili, Carbon dioxide as   
     solvent and C1 building block in catalysis 2011, ISBN:/DL:T. 1023-2011. 
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in burning, when blended with ¨commodity¨ polymers. Both structures were 

reported by many researchers as good flame retardant promoters. 3,7,16,109-111  

 

 
 

 

A second aim of this chapter was to introduce nitrogen on the phosphorous 

containing polyketones derivatives, in order to obtain intumescent systems. 

Nitrogen can be introduced before or after the modification with phosphorous 

moieties. As a first approach, we intend to prepare imines from the reaction of 

carbonyl groups with primary amine, and then add phosphorous nucleophiles to 

the C=N double bonds. The selected primary amine was 3-amino-1,2,4-triazine 

(Tz), since its structure is similar to melamine and its high nitrogen content can 

make it prompt to easily develop ammonia on decomposing.105,112 

 

 

 
 

                                                 
109 Schäfer, A.; Seibold, S.; Lohstroh, W.; Walter, O.; Döring, M. J Appl Polym Sci 2007, 105,  
     685-696. 
110 Joseph, P.; Tretsiakova-Mcnally, S. Polym Adv Technol 2011, 22, 395-406. 
111 Chen, L.; Wang, Y.-Z. Materials 2010, 3, 4746-4760. 
112 Gaan, S.; Sun, G.; Hutches K.;  Engelhard, M.H. Polym Degrad Stab 2008, 93, 99-108. 
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2. Experimental section 

2.1- Materials 

Commercial materials 

PVA used in this work, supplied by Fluka, was already described in previous 

chapter. Potassium permanganate (KMnO4) 99% Probus, aniline (An) 99% 

Sigma-Aldrich, triethylamine (Et3N) 99% Sigma-Aldrich, erbium(III) 

trifluoromethanesulphonate (Er(OTf)3) 98% Sigma-Aldrich, lanthanum(III) 

trifluoromethanesulphonate (La(OTf)3) 99.9% Sigma-Aldrich, phenyl acetone 

(PhAc) 99% Sigma-Aldrich, acetyl acetone (AcAc) 99%  Sigma-Aldrich, 3-

amino-1,2,4-triazine (Tz) 97% Sigma-Aldrich, manganese (II) chloride (MnCl2), 

99% Merck, ethanol (EtOH) 96.9% Scharlau, glacial acetic acid (AcOH) 99.5% 

Scharlau were used without previous purification. 9,10-dihydro-9-oxa-10-

phosphaphenantrene-10-oxide (DOPO) was kindly provided as a gift from Schill 

& Seilacher and used as received. Tetrahydrofyrane (THF) 99.5% Scharlau was 

used freshly distilled from sodium- benzophenone. Toluene (TOL) 99.5%, 

Panreac was fractionally distilled from sodium previous to use.113 

Synthesized materials 

Alternating CO- 4-tert-butyl styrene copolymer (COTBS) was prepared as 

reported below by the researchers of Inorganic Section of our Faculty. 5,5-

dimethyl-1,3,2-dioxaphosphinan-2-one (Pcyc) and poly(methyl ketone) 

(OPVA), were synthesized as follows. 

5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (Pcyc) has been synthesized from 

2,2-dimethyl-1,3-propanediol (DPD) following a published procedure (scheme 

3.1).114 The yield was 50%. Melting point was 53-55ºC.  

IR (cm-1): 2890-2975 (C-H); 2432 (P-H); 1258 (P=O); 1054 (C-O). 1H NMR 

(CDCl3, 400 MHz, δ (ppm)): 0.9 (s, 3H); 1.31 (s, 3H); 4.0-4.1 (m, 4H); 7.0 (s, 

                                                 
113 Armarego, W.L.F.; Perrin, D.D. Purification of Laboratory Chemicals, 4th edition,  
     1996, pp. 334, 342. 
114 McConnell, R.L.; Coover Jr, H.W. J Org Chem 1959, 24, 630-635. 
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1H). 13C NMR (CDCl3, 100.6 MHz, δ (ppm)): 20.7(q); 21.9 (q); 32.2-32.3 (s); 

76.1-76.2 (t). 31P NMR (CDCl3, 161.9 MHz, δ (ppm)): 5.8. 

 
Scheme 3.1  

 
 

Poly(methylene ketone) (OPVA) was obtained from the chemical oxidation of 

PVA with KMnO4. Synthesis process was launched based in a published method 

related in scheme 3.2.106 A general method is as follows.  
 

Scheme 3.2 

 
In a three necked round bottom flask was introduced a 10 wt% aqueous 

polymeric suspension of 2.0 g of PVA (0.036 mol of OH groups). The flask was 

provided with a reflux condenser, a magnetic stirrer and a thermometer. The 

well stirred suspension was taken to 80-90 ºC for completely solubilisation of 

PVA. Then the polymeric solution was left to cool to room temperature and the 

necessary amount of KMnO4 was added in small portions during 1-2 h. After the 

addition of oxidizing agent was completed, the mixture was heated and kept to 

different temperatures for different times. The reaction mixture was diluted with 

a large amount of H2O. Then, the formed MnO2 was filtered off and the resulted 
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polymer was isolated by rotary evaporation of water and drying under vacuum 

at 70 ºC. Reaction conditions and weight of isolated oxidized polymer are 

related in table 3.1. IR (cm-1): 3229 (OH); 1560 (enol C=C). The NMR data 

collected in D2O in solution and in solid state (using benzene- d6 as humectant 

to lock the signal) are related in table 3.2. 

 
  Table 3.1 Reaction conditions for synthesis of poly (methylene ketone)       

Molar ratio** 
Assay Time* 

(h) 
T 

(ºC) OH groups :KMnO4 

Weight of  
obtained polymer *** 

(g) 
R1 12 90 1:0.33 1.9 
R2 12 50 1:1 1.7 
R3 12 70 1:1 1.8 
R4 24 75 1:2  1.9 

*     Time after complete addition of KMnO4 
**   The stoichiometric ratio is OH: KMno4/ 1:0.67 
*** The amount of starting PVA was 2.0 g  

Table 3.2 NMR data of poly (methylene ketone) 

 

1H NMR data 13C NMR data Compound 
Resonances Assignment Resonances Assignment 

OPVA 
(D2O) 

1.5-2.0 
2.3 
3.7 

4.0-4.3 
4.7-5.1 

6.4 
8.4 

1,3,3’ 
3’’ 
4’ 
5 
4 
7 
9 

23.9-24.3 
43.3 

43.8-44.0 
44.7 

64.6-66.1 
67.6 
162.0 
173.2 
181.3 

1 
3 
3’ 
3’’ 
4’ 
4 
8 
2 
6 

OPVA 
(solid state) 

1.3-2.3 
2.8 
3.5 

4.2-4.8 
5.6 
9.0 

1, 3, 3’ 
3’’ 
4’ 

4, 5 
7 
9 

25.5 
35.0-37.0 
46.0-48.0 
67.0-69.0 

70.0 
112.0 
164.0 

171.0-172.0 
179.0-183.0 

1 
3, 3’ 
3’’ 
4’ 
4 
7 
8 
2 
6  
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Alternating CO-4-tert-butylstyrene copolymer (COTBS) was synthesized as 

follows. The copolymerization reaction was performed in an 11 ml stainless 

steel autoclave. 2.2*10-3 mmol (5.3 mg) of catalyst (palladium (II) complex, 

[Pd(N-N)2][BArF]2) (see structure below) was weight and introduced into the 

purged autoclave. Then a solution of 2.2 ml (12 mmol) of 4- tert-butyl styrene 

and 52 µl of 2,2,2-trifluoroethanol (TFE) was added under argon atmosphere. 

The autoclave was pressurized with CO (30 atm) and CO2 (up to 70 atm) and 

heated to 60 ºC for 24h. After reaction time, the autoclave was cooled down and 

depressurised. The product was dissolved in 5 ml of dichloromethane (CH2Cl2) 

and precipitated by dropping the solution into 70 ml of stirred methanol. The 

polymer was filtered, washed with methanol and dried under vacuum.  
1H NMR (CDCl3, 400 MHz, δ (ppm)): 1.1-1.5 (q, 9H); 2.4-3.2 (t, 2H); 3.8-4.2 

(d, 1H); 6.5-6.8 (d, 1H); 7.0-7.2 (d, 1H). 13C NMR (CDCl3, 100.6 MHz, δ 

(ppm)): 31.8 (q); 34.8 (s); 43.5-44.0 (t); 53.0 (d); 125.8-126.3 (d); 128.5 (d); 

134.5-134.8 (s); 150.0 (s); 207.1-208.0 (s).  

 

Pd(N-N)2][BArF]2 

 

N-N: 

 
 

BArF: 
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2.2- Chemical modification reactions  

Reactions on model compounds 

Reaction 1-AcAcPcyc.  The reaction takes place between acetyl acetone (AcAc) 

and 5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (Pcyc) as related in scheme 3.3. 

Reaction conditions are summarised in table 3.3. 

 
Table 3.3. Reaction conditions of AcAcPcyc 

Assay T (ºC) Solvent Er(OTf)3

R1 rt.* Toluene No 

R2 60 Toluene No 

R3 rt. THF Yes 
* rt.= 23±2 ºC  

 

In a round bottomed two necked flask of 50 ml well dried and previously purged 

with argon we introduced 0.01 mol (1.0 g) of AcAc, 0.02 mol (3.0 g) of Pcyc, 

20 ml of fresh distilled  toluene (R1; R2) or THF (R3) and eventually 0.001 mol 

(0.61 g) of Er(OTf)3 (R3). The flask was provided with a reflux condenser, 

magnetic stirrer and an addition funnel and kept under argon flow. Through the 

addition funnel 0.01 mol (1.0 g) of Et3N were added dropwise into the reaction 

mixture under stirring at room temperature. After all Et3N was added, the 

reaction mixture was held at 60 ºC (R2) or at room temperature (R1; R3) until 

the reaction was completed. The reaction was followed by TLC using as eluent 

acetone: methanol / 1:2. The product was recovered by successive washing with 

hexane and diethyl ether. The solvent was removed through decantation and 

vacuum drying. The overall yield was 43% (R3). R1 and R2 did not give to the 

desired product. 
1H NMR (DMSO- d6, 400 MHz, δ ppm): 1.1-1.2 (4s, 12H); 1.3 (s, 3H); 2.1 (s, 

3H); 3.0; 3.2 (2s, 2H), 3.3-3.4 (d, 8H); 5.4 (s, 1H); 13C NMR (DMSO- d6, 100.6 
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MHz, δ ppm): 21.7 (q); 24.5 (q); 36.9 (s); 48.8 (t); 66.5 (s);  67.7 (t); 31P NMR 

(DMSO- d6, 161.9 MHz, δ ppm): 20.9; 24.1(2s). 

 
Scheme 3.3 

 
 

Reaction 2- PhAcPcyc. The reaction of phenylacetone with 5,5-dimethyl-1,3,2-

dioxaphosphinan-2-one, presented in scheme 3.4, was carried out following the 

same procedure used for reaction 1 (assay R3). In a round bottomed two necked 

flask of 50 ml we introduced 0.01 mol (1.3 g) of PhAc, 0.0125 mol (1.88 g) of 

Pcyc and 0.001 mol (0.61 g) of Er(OTf)3. The flask was provided with a 

magnetic stirrer and an addition funnel and kept under argon. Then 0.01 mol 

(1.0 g) of Et3N were added dropwise into the reaction mixture and stirred at 

room temperature until the reaction was completed. The reaction was followed 

by TLC using as eluent ethyl acetate: hexane/ 10:1. The product was obtained 

after successive washing with hexane and diethyl ether, decantation and dried 

under vacuum. The yield was 20 %.  
1H NMR (CDCl3, 400 MHz, δ ppm): 1.0 (s, 3H); 1.1 (s, 3H); 1.3-1.4 (d, 3H); 2.5 

(s, 1H); 2.9-3.3 (m, 2H); 4.0-4.2 (m, 4H); 7.2-7.3 (m, 5H), 13C NMR (CDCl3, 

100.6 MHz, δ ppm): 21.1-21.8 (q); 22.0 (q); 32.5-32.6 (s); 42.1-42.2 (t) 72.5 (t); 

74.2 (t); 76.8 (s); 126.9 (d); 128.2 (d); 131.1 (d); 134.6-134.7 (s); 31P NMR 

(CDCl3, 161.9 MHz, δ ppm): 21.1 (s).  
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Scheme 3.4 

 
 

Reaction 3- PhAcDOPO. The reaction between phenyl acetone (PhAc) and 

9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) was performed 

in the same conditions as reaction 2 but using La(OTf)3 instead of Er(OTf)3 

(Scheme 3.5). The reaction was followed by TLC using as eluent 

dichloromethane: methanol / 20:1 and stopped when a single product was 

observed. The resulted product was well washed with hexane and diethyl ether 

and dried under vacuum. The yield was 80%. 1H NMR (DMSO- d6, 400 MHz, δ 

ppm): 1.0 (d, 3H); 3.0-3.1 (m, 2H); 5.6-5.7 (m, 1H); 7.1-8.3 (m, 13H); 13C NMR 

(DMSO- d6, 100.6 MHz, δ ppm): 20.1 (q); 40.5 (s); 73.2 -74.4 (t); 119.5-135.2 

(m); 150.2 (s); 31P NMR (DMSO- d6, 169.1 MHz, δ ppm): 36.7 (s). 
 Scheme 3.5 

 
Reaction 4- AcAcTz. The synthesis of this compound was tackled according to 

scheme 3.6 from acetyl acetone and 3-amino-1,2,4-triazine. 

In a 25 ml two necked round bottom flask we introduced 0.01 mol (1.0 g) of 

AcAc, 0.025 mol (2.4 g) of Tz, 10 ml of EtOH and a catalytic amount of acetic 
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acid (2-3 drops). The system was closed with CaCl2 guard tube and kept under 

stirring at room temperature (R1) or reflux (R2). The reaction was followed by 

TLC using as eluent dichloromethane: methanol/ 10:1. In assay R1, unreacted 

product was recovered. In assay R2, an untreatable mixture of product was 

obtained. 
 

Scheme 3.6 

 

 

Reaction 5- PhAcTz (Scheme 3.7).  
Scheme 3.7 

 
 

The synthesis of PhAcTz was tested following the procedure used for AcAcTz 

(Reaction 4) on the conditions of assay R1. An untreatable mixture of products 

was obtained as indicated by NMR spectra.  
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Reaction 6- AcAcAn.  This reaction was tackled according to scheme 3.8. In a 

bottomed round two necked flask of 50 ml we introduced 0.01 (1.0 g) of acetyl 

acetone, 0.025 mol (1.98 g) of aniline and 20 ml of ethanol. Then 2-3 drops of 

acetic acid were introduced into the reaction mixture. The reaction was kept 

under stirring at room temperature until it was completed. The reaction was 

followed by TLC using as eluent dichloromethane: methanol/ 10: 1. The product 

was isolated by washing with hexane and diethyl ether and dried under vacuum. 

The obtained yield was 29 %.  

IR (cm-1): 1594; 1502-1491 (C=C); 1567 (enol C=C); 742; 695 (C-C-H out of 

plane deformation); 1H NMR (CDCl3, 400 MHz, δ ppm): 2.0 (q, 3H); 2.2 (q, 

3H); 5.2 (s, 1H); 7.0-7.4 (m, 5H); 12.5 (s, 1H) 13C NMR (CDCl3, 100.6 MHz, δ 

ppm): 19.9 (q); 29.3 (q); 97.7 (d); 124.6-138.8 (m); 160.4 (s); 196.2 (s). 
 

Scheme 3.8 

 
 

Reaction 7- PhAcAn. The reaction was tested under the same conditions as for 

reaction 6 (scheme 3.9). An untreatable mixture of products was obtained as 

indicated by NMR spectra. 
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Scheme 3.9 

 

 

Reaction 8- AcAcAnDOPO. The synthesis was tested as shown in scheme 3.10.  

In a round bottomed two necked flask of 50 ml we introduced 0.30 g (0.0017 

mol) of AcAcAn, 0.0021 mol (0.46 g) of DOPO and 0.00017 mol (0.1 g) of 

La(OTf)3. The flask was provided with a magnetic stirrer and an addition funnel 

and kept under argon. Then 0.0017 mol (0.17 g) of Et3N were added dropwise 

into the reaction mixture and stirred at room temperature until the reaction was 

completed. The reaction was followed by TLC using as eluent dichloromethane: 

methanol / 20:1. The product was well washed with hexane and diethyl ether 

and dried under vacuum. Mixture of starting products was recovered as 

indicated by NMR spectra. 
 

Scheme 3.10 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



 Chapter 3 

 80

Chemical modification reactions of polyketones with phosphorous containing 

compounds. 

 

2.2.1- Poly(methylene ketone) chemically modified with 5,5-dimethyl-1,3,2- 

         dioxaphosphinan-2-one (polymer F, scheme 3.11) 
 

Scheme 3.11 

 
 

In a well dried round bottomed two necked flask of 20 ml previously purged 

with argon and provided with a reflux condenser we introduced 0.50 g of OPVA 

(0.010 mol of ketone groups considering a complete oxidation of OPVA, 

x=0.88), 0.0125 mol (1.88 g) of Pcyc, 0.0010 mol (0.59 g) of La(OTf)3 and 10 

ml of freshly distilled THF. Then 0.01 mol (1.0 g) of Et3N were added dropwise 

into the reaction mixture. The reaction mixture was kept under stirring at room 

temperature for 3 days (R1), at 65 ºC for 3 days (R2) and at 45 ºC for 5 days 

(R3). In none of the reactions the desired product was obtained. In reaction R3 

the eliminated polymer F was recovered by precipitation in cold water, filtration 

and drying under vacuum at 60ºC. The yield was 64% (R3).  

IR (cm-1): 3580-3030 (OH); 2956-2877 (C-H); 1560 (enol C=C); 1179 (P=O); 

1049-977 (C-O).  
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Table 3.4 NMR data of polymer F recorded in DMSO-d6 

 

 
 

1H NMR 13C NMR 31P NMR 
Resonances Assignment Resonances Assignment Resonances Assignment 

 
0.7 
2.1 

3.1-3.3 
3.4- 3.7 
5.8; 7.2 

 

12, 12’ 
1 

3, 3’, 3’’ 
4, 4’, 10 

7 

20.7 
21.5 
36.6 

38.0-44.0 
66.2 
67.6 

122.2 
141 
174 
188 

1 
12, 12’ 

11 
3, 3’, 3’’ 

10 
4, 4’ 

7 
8 
2 
6 

2.7; 9.8* 9 

    * Intensity ratio is 1: 0.1 respectively (This splitting is probably due to comonomer sequences)  
 

2.2.2- Poly(methylene ketone) chemically modified with 9,10-dihydro-9-oxa-10- 

         phosphaphenantrene-10-oxide (polymer G, scheme 3.12) 
 

Scheme 3.12 

 
In a well dried round bottomed two necked flask of 20 ml provided with a reflux 

condenser and previously purged with argon we introduced 1.0 g of OPVA 

(0.019 mol of ketone groups considering a complete oxidation of OPVA, 

x=0.88), 0.024 mol (5.2 g) of DOPO, 0.0019 mol (1.11 g) of La(OTf)3 and 10 

ml of freshly distilled THF. Then 0.019 mol (1.9 g) of Et3N were added 
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dropwise into the reaction mixture. The reaction mixture was heated to 45 ºC 

and kept under stirring at this temperature for a week. The resulting polymer 

was recovered after precipitation in cold water, filtering and drying under 

vacuum at 60 ºC. The yield was 24%.  

IR (cm-1): 3620-3090 (OH); 1580 and 1470-1430 (C-C, aromatic) 1560 (enol 

C=C), 1137-1097 (P=O); 1051-980 (C-O); 750-680 (C-C-H out of plan 

deformation) 
 

Table 3.5 NMR data of polymer G recorded in DMSO-d6 

 
 

1H NMR 13C NMR 31P NMR 
Resonances Assignment Resonances Assignment Resonances Assignment 

2.0-2.4 
2.6-3.2 
3.6-4.2 

6.6 
6.8 
6.9 
7.1 
7.4 
7.9 
8.2 

10.3 

1, 3, 3’ 
3’’, 3’’’ 
4, 4’, 5 
13’, 15’ 

14’ 
14 
13 
12’ 
15 
12 
8 

20.0 
44.0-45.0 

51.0 
60.0-62.2 

115.0-119.0 
120.3 
126.5 

128.4-131.4 
136.0-138.4 

140.5 
155.0 
175.0 
206.7 

1 
3, 3’, 3’’, 3’’’

7 
4, 4’ 

10, 12, 15’ 
11, 13’ 

12’ 
14, 14’ 

15 
11’, 13 

10’ 
2 
6 

8.9 9 

  
 

2.2.3- Alternating CO- 4-tert-butylstyrene copolymer chemically modified with  

         5,5-dimethyl-1,3,2-dioxaphosphinan-2- one  (polymer H, scheme 3.13) 
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Scheme 3.13 

 
 

In a well dried round bottomed two necked flask of 20 ml previously purged 

with argon, provided with a reflux condenser we introduced 0.10 g (5.3*10-4 

mol of ketone groups) of COTBS, 9.3*10-4 mol (0.14 g) of Pcyc (R1) or 6.6*10-

4 mol (0.08 g) of Pcyc (R2), 5.3*10-5 mol (0.033 g) of Er(OTf)3 (R1) or 5.3*10-5 

mol (0.031 g) of La(OTf)3 (R2) and 5 ml THF. Then we added 5.3*10-4 mol 

(0.05 g) of Et3N dropwise into the reaction mixture. The reaction mixture was 

stirred at room temperature for 3 days (R1) and at 45ºC for a week (R2). The 

resulted polymer was recovered by precipitation in cold water, filtration and 

drying under vacuum at 60ºC. The yield was 78% (R2). In the case of assay R1 

starting polymer was recovered. 

IR (cm-1): 3640-3130 (OH); 1710 (C=O); 1500-1460 (C-C aromatic) 1157 

(P=O); 1060 (C-O); 760-640 (C-C-H out of plane deformation). 
 

Table 3.6 NMR data of polymer H recorded in CDCl3 
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1H NMR 13C NMR 31P NMR 
Resonances Assignment Resonances Assignment Resonances Assignment 

0.8 
1.2 

2.3-3.1 
3.7-4.1 
6.3-6.8 
6.9-7.2 

13, 13’ 
1 

7, 7’ 
8, 8’, 11 

4 
5 

21.5 
31.8 
34.2 
38.7 

43.0-44.0 
46.0 
52.5 
75.4 
126.0 
128.1 
134.1 
150.0 
207.0 

13, 13’ 
1 
2 

12 
7, 7’ 

9’ 
8, 8’ 
11 
4 
5 
6 
3 
9 

-3.4; 6.7; 11.7* 14 

* Intensity ratio is 2:20.1. This splitting is probably due to comonomer sequences  
 

2.2.4- Alternating CO- 4-tert-butylstyrene copolymer chemically modified  with  

         9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (polymer I,  scheme  

        3.14) 
Scheme 3.14 

 
 

Table 3.7 Reaction conditions for the preparation of polymer I 

Assay T (ºC) Time (days) M(TfO)3

R1 rt.* 3 Er(OTf)3

R2 
R3 
R4 
R5 
R6 
R7 
R8 

rt.* 
rt.* 
60 
45 
60 
50 
45 

5 
10 
3 
7 
7 
7 
10 

 
La(OTf)3

                                      * rt.= 23±2  
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In a well dried round bottomed two necked flask of 20 ml previously purged 

with argon, provided with a reflux condenser we introduced 0.50 g of COTBS 

(2.7*10-3 mol ketone groups), 3.4*10-3 mol (0.73 g) of DOPO, 2.7*10-4 mol 

(0.17 g) of Er(OTf)3 (R1) or 2.7*10-4 mol (0.16 g) of La(OTf)3  and 10 ml of 

THF. Then we added 2.7*10-3 mol (0.27 g) of Et3N dropwise into the reaction 

mixture. The reaction mixture was stirred at the desired temperature for the 

desired time and resulting polymer was precipitated in cold water, filtered and 

dried under vacuum at 60ºC. The yield was 47% (R5). The other assays reported 

in table 3.7 did not give the desired product.  

IR (cm-1): 3600-3100 (OH); 1707 (C=O); 1510 and 1460-1410 (C-C, aromatic); 

1161 (P=O); 921 (C-O); 756 (C-C-H out of plane deformation). 
 

Table 3.8 NMR data of polymer I recorded in CDCl3 

 
1H NMR 13C NMR 31P NMR 

Resonances Assignment Resonances Assignment Resonances Assignment 

1.2-1.4 
2.4-3.2 
3.8-4.2 
6.5-6.8 
7.0-7.1 

7.2 
7.3 
7.4 
7.5 
7.6 

7.8-8.1 
10.6-10.7 

1 
7, 7’ 
8, 8’ 

4 
5 

13’ 
15’ 
14’ 
15 

14, 16 
13, 16’ 

10 

31.6 
34.6 
43.3 
44.6 
52.8 

124.0-127.5
125.6 
128.2 
130.6 
133.0 
134.3 
136.7 
143.2 
150.0 

206.4-207.5

1 
2 

7, 7’ 
9’ 

8, 8’ 
12, 13, 15, 15’,16’,17’

4 
5 
16 

14, 14’ 
6 
17 
12’ 
3 
9 

34.8; 38.6* 11 

   * Intensity ratio is 2:1. This split is probably due to comonomer sequences.  
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Chemical modification reactions of polyketones with nitrogen containing 

compounds.  
 

2.2.5- Poly(methyl ketone) chemically modified with aniline ( polymer J,  

         scheme 3.15). 
 

Scheme 3.15 

 
 
 

Table 3.9 NMR data of polymer J 

 

 

1H NMR (D2O) 13C NMR (solid) 
Resonances Assignment Resonances Assignment 

1.6-2.0 
2.3-2.6 

3.5 
4.0 
4.3 
6.1 
7.2 
7.4 

10.4 

1, 3, 3’ 
6, 9 
4’ 
4 
5 
6’ 

12, 14 
13 
8 

23.8 
47.0-51.0 
65.2-70.4 

112.0 
121.8 
136.0 
147.0 
160.2 
175.0 
180.0 
192.3 

1 
3, 3’, 6, 9 

4, 4’ 
6’ 

12, 14 
13 
11 
7’ 
2 

10 
7 

 
 

In a round bottomed flask of 50 ml, provided with a reflux condenser, we 

introduced 1.0 g of OPVA (0.019 mol of ketone groups considering a complete 
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oxidation of OPVA, x=0.88), 0.023 mol (2.14 g) (R1) or 0.029 mol (2.70 g) 

(R2) of aniline, 2-3 drops of acetic acid and 20 ml of ethanol. The reaction 

mixture was stirred at 60ºC for 5 days (R1) or at room temperature for 4 days 

(R2). Then the solvent was eliminated on the rotary evaporator, washed with 

hexane and diethyl ether and dried under vacuum at 60ºC. In case of assay R1 a 

mixture of untreatable products was obtained according to NMR spectra. In case 

of assay R2, 0.5 g of the desired polymer was obtained. 

IR (cm-1) 3550-2990 (OH); 1690 low intensity (C=O); 1610 (C-C aromatic and 

C=N); 1560 (enol C=C); 1400 (C-C aromatic); 700-650 (C-C-H aromatic out of 

plane deformation) 

 

2.2.6- Chemical modification of alternating CO- tert-butyl styrene copolymer  

          with aniline (polymer K, scheme 3.16). 
 

Scheme 3.16 

 
 

In a round bottomed flask of 20 ml we introduced 0.5 g of COTBS (2.7*10-3 

mol of C=O groups), 3.3*10-3 mol (0.31 g) of aniline, 2-3 drops acetic acid and 

10 ml of THF. The reaction mixture was stirred at room temperature for 6 days. 
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The resulting polymer was precipitated in water, filtered and dried under 

vacuum at 60ºC. The NMR spectra showed that starting polymer was recovered. 

 

2.2.7- Chemical modification of polymer F with aniline (polymer L, scheme   

         3.17). 

 
 

In a round bottomed flask of 10 ml we introduced 0.15 g (2.5*10-4 mol of P=O) 

of polymer F, 2.5*10-4 mol (0.023 g) of aniline, 2.5*10-5 mol (0.0032 g) of 

MnCl2, 2.5 ml of methanol and 2.5 ml of water. The reaction was kept at room 

temperature for two days. The resulted polymer was isolated by extraction with 

hexane and dried under vacuum at 60ºC. The NMR spectra indicated that virgin 

starting polymer was recovered. 

 

2.3- Characterization techniques 
1H, 13C and 31P NMR performed in solution were on a Varian Gemini 400 MHz. 

The samples were analysed at room temperature in CDCl3, DMSO-d6 or D2O. 

HR-MAS solid spectra were recorded on a Bruker Avance III 500 Spectrometer 

operating at a proton frequency of 500.13 MHz. The instrument was equipped 

with a 4-mm triple resonance (1H, 13C, 31P) gradient HR-MAS probe. Samples 

conveniently prepared with benzene-d6 were spun at 7 kHz in order to keep the 

rotation sidebands out of the spectral region of interest. One-dimensional (1D) 
1H spectra were acquired adding 16 scans in 0.5 min, with a 30000 Hz (60 ppm) 
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of spectral width, and a 1.0 s of relaxation delay. One-dimensional (1D) 13C 

spectra were acquired adding 200000 scans in 16h, with a 37500 Hz (300 ppm) 

of spectral width, and a 0.5 s of relaxation delay. 

Fourier Transform Infrared spectra were recorded on a FT-IR 680 plus 

spectrophotometer from JASCO connected to an ATR device as well described 

in previous chapter. The analyses were performed at room temperature in 

absorbance mode using samples in solid state.  

Phosphorous contents were determined by ICP-AES analysis following the same 

procedure previously detailed for samples of polymer C.   

Inherent viscosities were measured in 1-methyl-2-pirrolidinone (NMP) or 

dimethyl sulfoxide (DMSO) following the procedure described for previous set 

of polymers.  

TGAs and DSC studies were performed in Mettler equipments under the same 

conditions as already related in previous chapter.  

 

3. Results and discussion 

In this chapter we intend to develop a set of polymers, based on chemical 

modification of polyketones, by introducing different heteroatoms, such as 

phosphorous or nitrogen that could improve their thermal stabilities and make 

them useful as flame retardant additives for ¨commodity¨ polymers. 

In order to develop this study we used as starting polyketones a poly (methylene 

ketone), which was synthesized in our laboratory, and an alternating CO-4-tert-

butylstyrene copolymer, which was synthesized in Inorganic Chemistry of our 

Faculty. 

First we discuss the syntheses of these polyketones. Poly (methylene ketone) 

(OPVA) was synthesized following a published procedure106 by the PVA 

oxidation with KMnO4 (see the scheme below). Reaction was carried out under 

different conditions as specified in the experimental part, in order to get a high 

degree of oxidation (see table 3.10).  
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Table 3.10 Reaction conditions of poly (methylene ketone) syntheses 

Molar ratio* Assay Time 
(h) 

T 
(ºC) OH groups :KMnO4 

R1 12 90 1:0.33 
R2 12 50 1:1 
R3 12 70 1:1 
R4 24 75 1:2  

                                   *  The stoichiometric ratio is OH: KMno4/ 1:0.67  
 

First, the reaction was performed reproducing the published reaction conditions 

(R1), but the 1H NMR spectrum of the obtained polymer recorded in D2O shows 

signals attributable to C=C groups coming from elimination reactions (probably 

dehydration). Because of that, we performed the reaction at lower temperature in 

order to reduce the elimination reactions and we increased the molar ratio of 

oxidizing agent to make the reaction not to slow (R2, R3 and R4). 

Figure 3.1 shows FT-IR spectrum of OPVA (R4), from which could be observed 

that ketone groups appeared mainly in enol form. Broad signal between 3620- 

2990 cm-1 was attributed to OH groups coming from enol and unmodified OH 

groups and the signal at 1560 cm-1 was attributed to enol C=C bonds. A small 

carbonyl signal appears at 1650 cm-1, which can be due to acetate or ketone 

groups. 
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Figure 3.1 FT-IR spectrum of poly (methyl ketone) (R4) 

 

 
 

In the case of R2 and R3 the expected signals were observed by 1H and 13C 

NMR in D2O. These signals are summarized in table 3.2. In the case of R2, the 

signal at 4.0-4.3 ppm in the 1H NMR spectrum, which is due to PVA alcohol 

groups, was quite intense; while in R3, it was visible but smaller. Therefore, a 

high degree of oxidation can be assumed to be achieved in R3 with respect to 

R2.  

In the case of R4 only signal arising from vinyl acetate units could be detected. 

Moreover a strong broad signal due to HDO was also observed at 4.7-4.8 ppm. 

The appearance of this signal indicates that a fast proton interchange occur 

between α protons in ketone or enol groups with the solvent; this avoid the 

corresponding methylene or methine signals to be detected by NMR of D2O 

solution. It must be noted that in the cases of R2 and R3, this signal due to HDO 

also appears but it showed less intensity.    

Therefore, it seems that in the case of R4 a high degree of oxidation was 

achieved, which facilitate the proton interchange due to the formation of a 

conjugated polyenol system. In order to confirm this, we recorded the 1H and 
13C NMR spectra of this polymer on solid state. Figure 3.2 shows the solid state 
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1H NMR spectrum of this polymer. The signals at 1.3-2.3 ppm are due to methyl 

and methylene protons coming from acetylated and vinyl alcohol units. The 

signal at 2.8 ppm was attributed to methylene protons directly bonded to 

carbonyl ketone groups. Signal at about 3.5 ppm was assigned to methine 

protons from unmodified alcohol units. Methine protons from the acetylated 

units appeared together with OH protons from unmodified PVA alcohols at 4.2-

4.8 ppm. Signal at 5.6 ppm was attributed to enol methine protons. Enol OH 

appears at 9.0 ppm.  
 

Figure 3.2 1H NMR spectrum of poly (methylene ketone) (R4) in solid state swollen in C6D6 

 
 

Solid state 13C NMR spectrum showed methyl carbons at 25.5 ppm. Methylene 

carbons of acetyl and unmodified alcohol units appeared at 35.0-37.0 ppm and 

methylene carbons of ketone units appeared at 46.0-48.0 ppm. Methine carbons 

of acetylated and unmodified units appeared in the region of 67.0-70.0 ppm. 

Carbons from enol units appeared at 112.0 ppm and 164.0 ppm. The region of 

171.0-183.0 was attributed to carbonyl groups coming from acetate and ketone 

units. 
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Figure 3.3 13C NMR spectrum of poly (methylene ketone) (R4) in solid state swollen in C6D6 

 
 

A quantification of oxidation degree was not possible to be performed from 

NMR spectra. In the case of NMR spectra recorded in solution this was due to 

the fast proton interchange with solvent already discussed, while the solid state 

NMR spectra are not quantitative. If we consider that the oxidation does not lead 

to an important change of the molecular weight of the repeating unit, an 

estimation of the yield can be calculated from the obtained polymer weight and 

assuming a complete oxidation of the polymer. For these estimations we also 

assumed that no hydrolysis of the acetate groups take place. In all cases (R1-R4) 

the yield estimated was over 90%.  

As mentioned above, the degree of oxidation of R4 can be assumed to be high, 

since small signals attributable to unmodified vinyl alcohol units were observed 

by NMR (solution or solid state). In the modification reactions of OPVA to be 

reported later, R4 was always used as starting material. 
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Alternating CO-4-tert-butylstyrene (COTBS) was synthesised by our colleagues 

of the Inorganic Chemistry Section by a catalytic copolymerization of 4-tert-

butylstyrene with CO. The copolymerization was carried out in a reactor under 

30 atm pressure of CO using as a catalyst a bipyridine palladium complex 

derivative. 1H and 13C NMR spectra are shown in figure 3.4.  

 
Figure 3.4 1H (a) and 13C (b) NMR spectra of COTBS recorded in CDCl3 

 
1H NMR spectrum showed signals at 1.1-1.5 ppm due to methyl protons from 4-

tert-butylstyrene units. Methylene protons from the main chain appeared at 2.4-

3.2 ppm and methine protons at 3.8-4.2 ppm. The region between 6.5-7.2 ppm 

was assigned to aromatic protons. 13C NMR spectrum showed a signal at 31.8 

ppm which was attributed to methyl groups from 4-tert-butylstyrene. Signal at 

34.8 was attributed to quaternary carbon from tert-butyl group. Signals between 

43.5-44.0 ppm and 53.0 ppm were attributed to main chain methylene and 

methine groups, respectively. The region between 125.8-150.0 ppm was 
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assigned to aromatic carbons. Signals at 207.1-208.0 ppm were attributed to 

ketone carbonyl groups. This polymer was recognised to be syndiotactic. 

Once that we have got starting polyketones, as a first aim of this work we intend 

to react the carbonyl groups with phosphorous containing compounds in order to 

obtain phosphorus containing polymers with OH groups. As commented above 

the presence of free hydroxyl groups in the final polymer is interesting, since 

these groups can easily lead to a charred layer. Therefore the chemical 

modification reactions were first tackle by a nucleophilic addition reaction as 

showed in scheme 3.18. 
 

Scheme 3.18 

 
 

As already mentioned in the introduction of this chapter, phosphorous 

containing nucleophiles that we used in this work were 9,10-dihydro-9-oxa-10-

phosphaphenantrene-10-oxide (DOPO) and 5,5-dimethyl-1,3,2-dioxaphosphinan 

-2-one (Pcyc), reported by many researchers as good flame retardant promoters. 

DOPO was already used in the literature as nucleophile to react with polyketone 

carbonyl groups. This reaction was performed in bulk between DOPO and 

OPVA, and polymers with improved thermal stabilities and excellent flame 

retardant properties were obtained.106  

The cyclic hydrogen phosphite (Pcyc) was reported to be a good flame retardant 

by several authors and probably due to its six-membered ring it is not very easy 

to hydrolyse. Because Pcyc is not a commercial product, it was previously 

synthesized from 2,2-dimethyl-1,3-propandiol (DPD) through a condensation 
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reaction with phosphorous trichloride (PCl3) and ethanol in stoichiometric ratio, 

following a published procedure (see scheme below).114  

 

 
Thus, we proposed to perform the reaction of COTBS and OPVA with Pcyc and 

DOPO in solution. 

In order to find appropriate reaction conditions for polyketone modification 

reactions with phosphorous containing compounds, model compound reactions 

were performed, using acetyl acetone (AcAc) as pattern model for OPVA and 

phenyl acetone (PhAc) as pattern model for COTBS. 

First based in some procedures described for aldehydes,76,115 we tried to react 

acetyl acetone with Pcyc at room temperature using toluene as a solvent and 

Et3N in stoichiometric amount, but the reaction did not occurred (starting 

material was recovered). 

Then, we increased temperature at 60 ºC; again the starting material was 

recovered. Finally, we performed the reaction at room temperature but 

increasing the system polarity (using THF as a solvent) and using a catalytic 

amount of Er(OTf)3 to increase  the carbonyl electorfilicity. In this way the 

desired product was obtained in satisfactory yield, 48% (see scheme below).  

 

                                                 
115 Kumaraswamy, S.; Senthamizh Selvi, R.; Kumara Swamy, K.C. Synthesis 1997, 207-  
     212. 
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These conditions were then tested in case of reaction of phenyl acetone with 

Pcyc and DOPO, respectively (see schemes below). 

 

 
In the later case, La(OTf)3 was used instead of Er(OTf)3 in order to eliminate 

problems associated to the paramagnetic character of Er(III) whose traces 

difficult the recording of NMR spectra of the purified products. The obtained 

yields were 20% and 80% for Pcyc and DOPO reaction, respectively. 

Polyketone modifications were performed on the basis of these results. First, the 

reaction of OPVA with Pcyc (polymer F) was performed following the 

corresponding model compound reaction (AcAcPcyc, see scheme below).  
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First, it was tested at room temperature in THF using La(OTf)3 and Et3N, but the 

unmodified starting polymer was recovered. Then we increased temperature at 

65 ºC and an untreatable mixture of products was obtained. Finally, we 

decreased temperature at 45 ºC and addition reaction occurred together with 

subsequent elimination, giving rice to the corresponding unsaturated product. 

All reaction conditions of polyketones modification with phosphorous 

containing moieties are summarized in table 3.11. As can be seen a 25 % excess 

of Pcyc was used; but it must be considered that as mentioned at above we do 

not know the actual degree of oxidation of OPVA (x). This excess was 

calculated by considering a quantitative oxidation degree (x=0.88) and assuming 

that acetate groups present in PVA were not altered during oxidation. Table 3.12 

shows results of chemical modification reactions of polyketones with 

phosphorous containing compounds 
 

 

Table 3.11 Reaction conditions of polyketones modification with phosphorous compounds 

Molar ratio Polymer Assay Time  
(days) 

T  
(ºC) PKa/ PCb/ Et3N/ La(OTf)3 

R1 3 65 Fc R2 5 45 1/1.25/1/0.1 

Gd R1 7 45 1/1.25/1/0.1 
R1 3 rt.g 1/1.75/1/0.1 He R2 7 45 1/1.25/1/0.1 
R1 3 rt.g 
R2 5 rt.g 
R3 10 rt.g 
R4 3 45 
R5 3 60 
R6 7 60 

If 

R7 7 50 

1/1.25/1/0.1 

a) polyketone carbonyl groups 
b) phosphorous compound  
c) OPVA modified with Pcyc 
d) OPVA modified with DOPO 
e) COCTE modified with Pcyc 
f) COCTE modified with DOPO 
g)     rt.= 23±2 ºC  
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Table 3.12 Results of chemical modification reactions of polyketones with phosphorous compounds 

Polymer %P 
Determined from ICP-AES Degree of modification* Yield 

(%) 
µinh. 

 (dl/g) 
OPVA - - - 0.72 

F 11 0.30 
G 9 0.42 

44 
41 

0.65 
0.62 

COTBS - - - 0.37 
H 3 0.21 78 0.32 
I 2 0.14 47 0.23 

   * Obtained from %P determined by ICP-AES 
      For OPVA derivatives it is ¨y¨ and for COTBS derivatives it is ¨m¨  

 

The structure of polymer F was confirmed by FT-IR and NMR analyses. FT-IR 

spectrum shows signal between 3580-3030 cm-1 which was attributed to OH 

groups from unmodified alcohol units. The absorption band at 1560 cm-1 was 

attributed to C=C bonds. The band at 1180 cm-1 was attributed to P=O. The 

absorption bands observed at 1050 cm-1 and at 980 cm-1 were assigned to C-O 

groups. 

 

1H and 31P NMR spectra are related in figure 3.5.  In 1H NMR we observed a 

signal at 0.7 ppm which corresponds to methyl protons from Pcyc and a signal at 

2.1 ppm which corresponds to methyl groups from acetylated units. Signals at 

3.1-3.3 ppm were attributed to methylene protons from main chain. Signals at 

Figure 3.5 1H and 31P NMR spectrum of polymer F recorded in DMSO-d6  

 
 

 

2.02.5 3.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1 (ppm)

b)
 

a)   
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3.4 ppm and 3.7 ppm overlapped with water signal and were attributed to 

methylene protons from Pcyc and methine protons from main chain, 

respectively. Signals at 5.7 ppm and 7.2 ppm were attributed to methine proton 

of double bond which appeared spleated due to proton-phosphorous coupling. 

31P NMR showed an important signal at 2.5 ppm and a secondary signal at 9.8 

ppm in 1:0.1 intensity ratios. This split is probably due to comonomer 

regiosequences. 
 

Figure 3.6 13C NMR spectrum of polymer F recorded in DMSO-d6 

 
 

In the 13C NMR spectrum (figure 3.6) signals that appear at 20.7 ppm and 21.5 

ppm were attributed to methyl groups from OPVA acetylated units and Pcyc 

units, respectively. Signal at 36.6 ppm was attributed to quaternary carbon from 

cyclic units. Small signals at 38.0-41.0 ppm which overlapped with DMSO-d6 

signal were attributed to methylenes from main chain. Signals at 66.2-67.4 ppm 

were attributed to methylene carbons from Pcyc. This signals appeared split due 

to phosphorous coupling. Signals due to methine carbons from main chain 

which appear around 70.0 ppm are confused with the noise. The signal that 

appears at 122.2 ppm was attributed to carbon double bond. The poor quality of 
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this spectrum and the missing of some signals (2, 6, 8 and maybe 3, 3’, 3’’ and 

4, 4’) even after a long acquisition time (ca. 20000 scans) can be explained by 

the low solubility of this polymer. No other solvent than DMSO has been found 

better for polymer solubilisation.  

The degrees of modification were not possible to be calculated from NMR 

spectra due to their low quality and overlapping with solvent signals; they were 

estimated from phosphorous content obtained by ICP-AES analysis, assuming 

that the oxidation of OPVA was complete and acetylated units remained 

unchanged (12% of acetylated units). The obtained values are collected from 

table 3.12. 

The yields were calculated from the weight of well dried pure product taking 

into account the modification degree values obtained for each polymer.  

Then, OPVA modification with DOPO (polymer G) was tested, following 

previous polyketone modification (assay R3), in THF with La(OTf)3 and Et3N at 

45 ºC for a week. The modified polyketone was obtained through the 

precipitation in water and dried under vacuum to constant weight (see scheme 

below).  

 

 
 

The FT-IR and NMR spectra confirmed the desired structure. One of these 

spectra is showed in the figure 3.7. FT-IR spectrum shows a broad band between 

3620-3090 cm-1 which was attributed to OH groups and absorption bands at 

1580 cm-1 and 1470-1430 cm-1 which were assigned to aromatic C-C bonds. An 

absorption band that appeared at 1280 cm-1 was assigned to P=O. The 

absorption bands at 1137-1097 cm-1 and 1051-980 cm-1 were due to P-O and C-
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O groups. At 750-680 cm-1 aromatic out-of-plane deformation bands were 

observed. 
1H NMR spectrum related in figure 3.7 shows signals between 2.0-3.2 which 

overlapped with DMSO-d6 signal that were attributed to methylene protons of 

main chain and methyl protons from acetylated units. Signals which appear at 

about 3.6-4.2 ppm overlapped with water signal were attributed to methine 

protons from the main chain and to unmodified OH groups. Region from 6.6-8.2 

ppm was assigned to aromatic protons from DOPO. The signal at around 10.3 

ppm was due to OH group neighbour to phosphorous which appeared down-

fields, probably due to the formation of an intramolecular hydrogen bond with 

phosphoryl group.  

 
Figure 3.7 1H NMR spectrum of polymer G recorded in DMSO-d6 

 
 

From 13C NMR spectrum, we observed a signal at 20.0 ppm which was 

attributed to methyl group from acetylated units. Signals between 44.0-45.0 ppm 

were attributed to methylene groups from main chain and signal at 51.0 ppm 

was assigned to quaternary carbon directly bonded to phosphorous. Methine 
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carbons from the main chain were observed between 60.0-62.2 ppm. Aromatic 

signals appeared in region 120.0-155.0 ppm. At 175.0 ppm was observed 

carbonyl group from acetylated units and at 206.7 ppm carbonyl groups from 

ketone units. 31P NMR spectrum presents a single signal at 8.9 ppm. 

As for polymer F the degree of modification was estimated from % P (see table 

3.12) obtained by ICP-AES with the same assumption already mentioned for 

polymer F. Also in this case the degree of modification could not be obtained 

from NMR. This degree was 42 % and the yield was 41%. 

Now we will proceed to discuss the chemical modification of COTBS. First, 

COTBS modification with Pcyc (polymer H) was performed following the 

corresponding model compound reaction (PhAcPcyc) (see scheme below).  

 

 
 

The reaction was tested in THF using La(OTf)3 and Et3N at room temperature 

for 3 days and 45 ºC for a week. Again the reaction did not take place at room 

temperature. From the reaction at 45 ºC modified polyketone was isolated in 

high yield (78%) and with a moderate degree of modification (21%).  

FT-IR and NMR spectra show that the desired structure was obtained. By FT-IR 

an absorption band at 3640-3130 cm-1 corresponding to OH groups was 

observed, wile ketone carbonyl was observed at 1710 cm-1. The region of 1600-

1460 cm-1 was assigned to aromatic C-C bands. The absorption band from 1270 

cm-1 was attributed to P=O groups and the band from 1060 cm-1 to C-O groups. 

Region 760-640 cm-1 was assigned to aromatic out-of-plane deformation bands.  
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By 1H NMR (figure 3.8) a small signal at 0.8 ppm was observed and attributed 

to methyl protons from cyclic units. The signal at about 1.2 ppm was attributed 

to methyl protons from 4-tert-butylstyrene units. Signals from 2.3-3.1 ppm were 

attributed to methylene protons from main chain and signals from 3.7-4.1 ppm 

were attributed to methine protons from main chain and methylene protons from 

Pcyc. Signals from 6.3-7.2 ppm were due to aromatic protons from the 4-tert- 

butylstyrene units. 

 
Figure 3.8 1H NMR spectrum of polymer H recorded in CDCl3 

 
 

13C NMR spectrum (figure 3.9) shows a small signal at 21.5 ppm which was 

attributed to methyl group from Pcyc. The significant signal that appears at 31.8 

ppm was attributed to methyl groups from COTBS. Signals at 34.2 ppm and 

38.7 ppm were attributed to quaternary carbon from 4-tert- butyl groups and 

quaternary carbon from cyclic units, respectively. Signals at 43.0-44.0 ppm were 

attributed to methylene groups from main chain and signal around 46.0 ppm was 

attributed to quaternary carbon directly joined to phosphorous. Signal at 52.5 

ppm was attributed to methine groups from main chain. The signal due to 
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methylene groups from cyclic units overlapped with solvent signal at about 77.0 

ppm. The region from 126.0-150.0 ppm was attributed to aromatic carbons. The 

signal at about 207.0 ppm was attributed to carbonyl group from ketone units. 
31P NMR spectrum showed tree signals at -3.4 ppm; 6.7 ppm and 11.7 ppm in 

ratio of 2:20:1, probably due to comonomer regiosequences. 
 

Figure 3.9 13C NMR spectrum of polymer H recorded in CDCl3 

 
 

The degree of modification was not possible to be calculated from NMR spectra 

due to broadening of the signals and overlapping between them; but in this case 

was possible to make a calculation from the phosphorous content obtained by 

ICP-AES analyses. The obtained value is collected in table 3.12 (m=0.21) .This 

degree of modification can be considered as an acceptable value if we take into 

account the steric hindrance produced by tert-butyl-phenyl groups. The yield 

(78%) was calculated from weight of well dried polymer by taking into 

consideration the degree of modification archived. 

Then, COTBS was modified with DOPO (polymer I) in THF in the presence of 

La(OTf)3 and Et3N (see scheme below).  
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The reaction was tested under different temperature and time conditions, such as 

summarized in table 3.11. Starting polymer was recovered when the reaction 

was performed at room temperature, even after 10 days of reaction. When the 

reaction was performed at 45ºC (7 days) the expected polymer was obtained, but 

with a moderate degree of modification (m=0.14, calculated from phosphorous 

content). However, when the temperature was further increased, the unmodified 

COTBS was again recovered (assays R5-R7). Therefore it seems that this 

addition is reversible, and that the addition product is not thermodynamically 

stable, probably due to the high steric hindrance.  

The structure was confirmed by FT-IR and NMR analysis. IR absorption bands 

between 3600-3100 cm-1 were attributed to OH groups. A band at 1707 cm-1 

was observed and was assigned to carbonyl groups from ketone units. Region of 

1600-1410 cm-1 was assigned to aromatic C-C bands. At 1161 cm-1 appeared 

P=O groups. The absorption at 921 cm-1 was assigned to C-O groups. At 756 

cm-1 aromatic out-of-plane deformation bands were observed. 
1H NMR spectrum related in figure 3.10 shows, signals at 7.2-8.1 ppm which 

are due to aromatic protons from DOPO moiety and at 10.6-10.7 ppm that was 

assigned to OH group bonded to phosphorous; this later appeared down-fielded 

due to intramolecular hydrogen bonding. The other signals appeared as expected 

in the same region than in polymer H (4-tert-butyl-phenyl group and the main 

chain). 
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Figure 3.10 1H NMR spectrum of polymer I recorded in CDCl3 

 
 

 

Figure 3.11 13C NMR spectrum of polymer I recorded in CDCl3 

 
 

In the 13C NMR spectrum related in figure 3.11, main chain carbons and carbons 

of 4-tert-butyl groups appears at the same chemical shift than in polymer H. The 
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small signal at about 45.0 ppm was assigned to quaternary carbon directly 

bonded to phosphorous. Signals of DOPO moiety appeared with low intensity, 

overlapping with aromatic carbons of 4-tert-butyl-sturene units at 124.0-150.0 

ppm. Carbonyl signals of ketone groups appeared split at 206.4-207.5 ppm. 31P 

NMR spectrum shows two signals at 34.8 ppm and 38.6 ppm. The intensity ratio 

was 2:1, respectively. This split is probably due to comonomer regiosequences. 

As for polymer H, the degree of modification was calculated from the 

phosphorous content. It was low (m=0,14), but taking into account the high 

steric hindrance produced by 4-tert-butyl-phenyl groups and DOPO moiety it 

can be considered reasonable. The yield (calculated by taking into account this 

degree of modification) was 47%. 

Then, inherent viscosities were determined for all synthesized OPVA and 

COTBS derivatives. These viscosities were performed in DMSO for OPVA 

derivatives and in NMP for COTBS derivatives at 30 ºC. Obtained values 

presented in table 3.12 are slightly lower than in case of virgin polymer. The 

decrease in viscosity is probably due to a more globular conformation adopted 

by the polymer since bulky groups are introduced. All viscosity values present 

the same order of magnitude, which seems to indicate that no cleavage or 

branching side reactions occurred, at least in an important extent. 

As mentioned in the introduction section, a second aim of this chapter was to 

introduce nitrogen on the phosphorous containing polyketone derivatives, in 

order to obtain intumescent systems. First, we intend to prepare imines by 

reacting carbonyl groups with primary amine, and then add phosphorous 

nucleophiles to the C=N double bonds (scheme 3.19). As commented before the 

selected primary amine was 3-amino-1,2,4-triazine (Tz), due to its ability to 

easily develop ammonia on decomposing.105,116  
 

 

                                                 
116 Gaan, S.; Sun, G.; Hutches K.;  Engelhard, M. H. Polym Degrad Stab 2008, 93, 99-108. 
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Scheme 3.19 

 
As already done for polyketone modification reactions with phosphorous 

containing compounds, in order to find appropriate reaction conditions model 

compound reactions were performed, using acetyl acetone (AcAc) as pattern 

model for OPVA and phenyl acetone as pattern model for COTBS. 

First, acetyl acetone (AcAc) was reacted with 3-amino-1,2,4-triazine (Tz) in 

ethanol using acetic acid in catalytic amount at room temperature by following a 

reported procedure, already performed in our laboratory between an aldehyde 

and an aminophenol117, but the starting materials were recovered. Afterwards, 

the reaction was tested at reflux maintaining the other conditions unchanged and 

an untreatable mixture of products was obtained. Then, we used the same 

reaction conditions but using PhAc as a reagent; again in this case an untreatable 

mixture was obtained. On the view of these results, we decided to use aniline as 

primary amine, since its reaction will probably be easier to perform and, 

although it presents a low content of nitrogen, can also act as good ammonia 

promoter by heating.   

Thus, AcAc was reacted with aniline in ethanol at room temperature using acetic 

acid as catalyst. Even if an excess of aniline was used (25%-mol) the isolated 

product corresponds to the monoimine indicated in the scheme shown below, 

and none diimine was detected. This is probably due to the intramolecular 

hydrogen bond established between enol and imine nitrogen, which stabilizes 

enol tautomer and avoid it to act as electrophile. This product was isolated in a 

                                                 
117 Furniss, B.S.; Hannaford, A.J; Smith, P.W.G; Tatchell, A.R. Vogel’s Textbook of  
     Practical Organic Chemistry, 5th edition, Pearson Education, 1989, p.782. 
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satisfactory yield (59 %) after 2 days of reaction. The reaction was then tested 

with phenyl acetone and aniline under the same conditions, but an untreatable 

mixture of products was obtained (see scheme below).  

 
 

Then, we proceed with the modification reactions of polyketones with nitrogen 

containing compounds. First we performed the modification of OPVA with 

aniline (polymer J, see scheme below).  

 

 
 

The reaction was tested in ethanol, using an excess of aniline and acetic acid as 

catalyst at 60 ºC for 5 days, but a mixture of untreatable products was obtained. 

Then, the reaction was performed at room temperature for 4 days and the 

modified polymer was obtained. 

The structure was confirmed by FT-IR and NMR techniques. By FT-IR 

spectrum a wide band at 3550-2990 cm-1 was observed and attributed to OH 

groups coming from enol and unmodified alcohol units. A low intensity signal at 
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1690 cm-1 was assigned to C=O groups from ketones. The bands at 1640-1570 

cm-1 were associated to C-C aromatic, C=C from enol and C=N from imine 

units. Signals at 1400 cm-1 and 700-650 cm-1 were attributed to aromatic groups. 

The low intensity of C=O band indicates that unmodified ketones exist mainly 

in the enol form, probably due to the formation of the intramolecular hydrogen 

bond discussed on model compound AcAcAn. 
1H NMR spectrum (figure 3.12) shows signals at 1.6-2.0 ppm which were 

attributed to methyl and methylene protons from acetylated and unmodified 

alcohol units. Methylene protons from ketone and imine units appeared at 2.4-

2.7 ppm. Signals at 3.5 ppm and 4.1 ppm were attributed to methine protons and 

OH protons from unmodified alcohol units. Signal at 4.4 ppm was assigned to 

methine protons of acetylated units. Region of 7.2-7.5 ppm was attributed to 

aromatic protons from aniline. This spectrum was recorded in D2O but the low 

solubility of the polymer avoid recording of the 13C NMR spectrum in this 

medium. Thus it was recorded in solid state. It must be noted that no enol proton 

signals were observed in the 1H NMR spectrum recorded in D2O; this is 

probably due to interchange with deuterated solvent. 

Solid state 13C NMR spectrum (swollen in C6D6) presents a signal at 23.8 ppm 

which was attributed to methyl groups from the acetylated units. Signals at 47.0-

51.0 ppm were due to methylene groups from the main chain. Between 65.0-

70.0 ppm were observed methine signals from the main chain. Signal at 112 

ppm was assigned to enol methine. Signals at 121.8-147.0 ppm were attributed 

to aromatic carbons from aniline units. At 160.0 ppm appeared quaternary 

carbon from enol units. The signals at 172.0 ppm and 191.0 ppm were assigned 

to carbonyl groups from acetylated and ketone units, respectively. Signal at 

180.0 ppm was attributed to C=N groups from imine units. Signal at 112 ppm, 

due to enol group as indicated above, showed the highest intensity of all signals, 

indicating that probably a high content of enol units occurred in this polymer. 
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Figure 3.12 1H NMR spectrum of polymer J recorded in D2O 

 

 
 

For this polymer, we could not determine the degree of modification by NMR. 

As mentioned above, in the 1H NMR spectrum interchange with solvent (D2O) 

occurred, which avoid quantification. As known, solid state 13C NMR is also not 

quantitative. This polymer was very insoluble in all tested solvents; actually it 

was only slightly soluble in water: therefore, no other deuterated solvent could 

be used to record the NMR spectra. The inherent viscosity was not determined 

due to low solubility of synthesized polymer in all tested solvents. 

Then, we tested the modification of COTBS with aniline (polymer K, see 

scheme below).  
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The reaction was tested at room temperature in THF, using an excess of aniline 

and acetic acid as catalyst. The reaction did not occur, even after 6 days. NMR 

spectra showed that starting polymer was recovered. 

As mentioned above, one of the aims of this work was to obtain intumescent 

systems by introducing phosphorous and nitrogen in the same polymer. Thus, 

we intended to prepare imines and then react them with phosphoryl groups. 

Therefore, we first tested the addition reaction between AcAcAn and DOPO 

(see scheme below), in order to serve as model reaction for polymeric imine 

(polymer J) modification. This reaction was performed at room temperature in 

THF using La(OTf)3 and Et3N for 4 days, but a mixture of starting products was 

recovered. 

 

 

On the view of the negative results obtained in the formation of imines and its 

reaction with phosphorous compounds, we decided to give up this approach to 

obtain intumescent systems. Considering the successful preparation of 

phosphorous polymer F, we decided to use it as starting material and modified it 

with a nitrogen compound. This polymer contains C=C double bonds 

conjugated to a phosphoryl group. Therefore, we can introduce nitrogen by the 

conjugated addition of primary amines to these systems. Thus, we tested this 

reaction between polymer F and aniline (polymer L, see scheme below). 
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The reaction was tested at room temperature for two days, using methanol-water 

as a solvent, aniline in a stoichiometric amount and MnCl2 as Lewis-acid 

catalyst. This reaction was done on the basis of a study developed by Roy et. 

al.118 in which different electron deficient alkenes, such as α,β-unsaturated 

nitrile, carboxylic ester, ketone and amides, were reacted with amines. The 

NMR spectra indicated that the virgin starting polymer was recovered.  

As can be seen, all our attempts to obtained phosphorous-nitrogen containing 

polymers were unsuccessful. Therefore, we decided to approach the preparation 

of intumescent systems by a completely different strategy that will be disscused 

in the next chapter. 

To conclude this chapter, we will discuss the thermal characterization of all the 

polymers successfully prepared (polyketones and phosphorous containing 

derivatives). 

Thermal studies were performed with DSC and TGA techniques. Tg’s were 

obtained from second heating dynamic scans performed at a heating rate of 

10ºC/ min in a nitrogen atmosphere. The results are summarized in table 3.13. 

In case of starting OPVA was observed a glass transition temperature (Tg) at 

about 80 ºC. The new moieties introduced can affect Tg in a different way, 

depending on their structure and the degree of modification.119 As can be seen in 

                                                 
118 Roy, A.; Kundu, D.; Kumar Kundu, S.; Majee, A.; Hajra, A. Open Catalysis Journal, 2010, 3,  
     34-39. 
119 Gimenez, V.; Reina, J.A.; Mantecon, A.; Cadiz, V. Acta Polym 1999, 50, 187-195. 
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table 3.13, modified OPVA polymers showed slightly higher Tg values than 

starting OPVA. The Tg is higher in case of polymer G, probably due to the 

stiffness of aromatic moiety introduced. In the case of polymer F, the presence 

of C=C double bonds on the main chain can be responsible of the observed 

increase in Tg. 

In case of COTBS a high Tg was observed at 148ºC. Such a higher value is due 

to its aromatic structure. As showed in table 3.13, this Tg decreased slightly 

when the polymer is modified with phosphorous containing moieties. In this 

case, the introduction of bulky groups in a quite stiff chain which already 

contains bulky groups, will probably led to a less organized chain, and therefore 

to a reduction of Tg. In no case melting endotherms were observed. Hence, 

these polymers are all amorphous. 
 

Table 3.13 Thermal data of polyketones and phosphorous derivatives 

a) onset temperature of weight loss 

b) temperature of maximum rate of weight loss 

DSC TGA 
Nitrogen Nitrogen Air Char yield, 790ºC (%) Polymer 
Tg (ºC) Tonseta 

(ºC) 
Tmax.b 

(ºC) 
Tonseta 

(ºC) 
Tmax.b 

(ºC) Nitrogen Air 

OPVA 81 187 219 184 218 69 68 
F 86 274 303 257 294 43 48 
G 93 202 320 185 311 52 54 

COTBS 148 340 397 318 377 3 0 
H 141 307 340 261 347 18 8 
I 140 335 384 296 357 14 3 

 
 

Then, all these polymers were characterized by TGA under air and nitrogen 

atmospheres.  

As already mentioned, TGA, particularly char yields, are a useful indication of 

polymer flammability and their trend to form protective barriers.91 Table 3.13 

shows the data from the TGA curves including the onset temperature of weight 

loss (Tonset), temperature of maximum rate of weight loss (Tmax) and the char 

yields obtained at 790ºC in both, nitrogen and synthetic air atmosphere. Figure 
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3.13 and figure 3.14 shows TGA curves of starting and modified polyketones in 

nitrogen and synthetic air atmospheres. 

 
Figure 3.13 TGA curves in nitrogen and air atmospheres of OPVA derivatives 
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In case of starting OPVA (figure 3.13 a and b), first part of TGA curve (up to 

about 150ºC) can be attributed to loss of hydration water. This polymer, due to 

the presence of a high proportion of enol groups, contains a certain amount of 

this kind of water, since these groups tend to form hydrogen bonds with water 

(coming also from ambient). The weight loss starting at approximately 200ºC is 

related to the thermal degradation and elimination of volatile products. In this 

case, degradation process probably starts by enol groups dehydration lading to 

alkynes. Due to the high ratio of enol groups, conjugated alkynes will form, 

which easily can lead to aromatic rings through trimerization.120,121 In both, 

nitrogen and air atmosphere OPVA degradation process, leads to a very high 

char yield (approximately 70%) at 790ºC. This is in agreement with the 

trimerization reaction already mentioned and with the formation of a graphitic 

structure. As can be seen from the TGA curves and thermal data related in table 

3.13, polymer F and polymer G start to lose weight at higher temperature than 

precursor OPVA, in both, nitrogen and air atmospheres. This is probably due to 

the lower polarity of the polymer which reduces the content of water of 

                                                 
120 Saaby, S; Baxendale, I.R.;  Ley, S.V. Org Biomol Chem  2005, 3, 3365- 3368. 
121 Saito, S.; Yamamoto, Y.  Chem Rev 2000, 100, 2901-2915. 
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hydration. Both polymer F and polymer G show a delay of thermal degradation 

process and present a high char yield at 790ºC, although it must be noted that the 

char yield is lower than of starting OPVA. Since, a lower ratio of enol groups is 

present in the modified polymers, the dehydration process is more difficult (a 

less conjugated system is formed); in this way, the degradation is delayed. On 

the other hand, the formation of a graphitic structure is easier when a high 

conjugated polyine is formed; and this is not the case in modified polymers. 

In case of unmodified COTBS, it can be observed, from TGA curves (figure 

3.14 a and b) and thermal data from table 3.13, that weight loss process starts at 

about 400ºC and is almost finished at about 600ºC, when a constant low char 

yield was observed both in nitrogen and air atmospheres. It was also observed a 

small weight loss up to 200ºC, which was associated to evaporation of hydration 

water. 

 
Figure 3.14 TGA curves in nitrogen and air atmospheres of COTBS derivatives  
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Modified COTBS with Pcyc and DOPO show a similar behaviour in TGA as the 

already discussed for PVA modified with BIC derivatives in chapter 2 (table 

2.7). They start to lose weight at lower temperatures than starting COTBS, but 

they lead to higher char yields at high temperatures than COTBS. This 

behaviour can be explained as for PVA modified with BIC polymers from 

chapter 2: a phosphoryl-oxygen bond is present, which can easily be hydrolyzed 
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at the beginning of weight loss process (due to water formed), leading to 

formation of phosphoric acid groups, able to further catalysed dehydration, and 

subsequently to launch all other stages of degradation process. The dehydration 

reactions could be related to the presence of hydroxyl groups introduced in the 

polymer and can take place at the beginning of the degradation process. Water 

formed can react with phosphoryl-oxygen bonds lading to phosphoric acids 

which further facilitate the dehydration; This will lead to unsaturated systems, 

which further will cross-link and will led to a carbonaceous barriers on the 

surface of polymer, which can difficult volatile products from diffusing to the 

flame and will shield the polymer surface from heat and air. This explanation is 

in agreement with the high amount of char yield at 790º C. 

 

4. Conclusions 

In summary, in this chapter we report the preparation and characterization of a 

set of phosphorous containing polyketone derivatives with several structures. 

However, the preparation of all the proposed phosphorous-nitrogen containing 

polymers was unsuccessful, although different approaches were tested. All 

phosphorous containing polymers lead to high char yield on TGA curves, which 

allow us to think that they are good candidates to act as flame retardant additives 

through the formation of charred barriers on the condensed phase.  

As mentioned above, the preparation of intumescent systems will be tackled 

with a completely different approach in the next chapter. 
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Flame retardant phosphorous-nitrogen containing  

polymers obtained by chemical modification of 

poly[1-(2-hidroxyethyl)aziridine] 
 

 

In this chapter we propose to synthesize and characterize phosphorous-nitrogen 

containing polymers obtained by chemically modifying poly[1-(2-

hidroxyethyl)aziridine] with  phosphorous containing moieties (BIC and 

DPBC), which are expected to be useful as flame retardant intumescent systems 

by blending with ¨commodity¨ polymers.  

  
 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



                                                                                                           Chapter 4                   
                                                                              

 121

1. Introduction 

On the view of the negative results obtained in chapter 3 concerning the 

preparation of intumescent systems, in this chapter we intend to prepare 

polymeric flame retardant additives, which contain phosphorous-nitrogen 

moieties in their structure, through a completely different synthetic approach. As 

described in previously chapters, phosphorous compounds are widely used as 

flame retardants, due to their possible action in both, condensed or vapour 

phase. As mentioned before, various phosphorus-nitrogen (P-N) containing 

compounds have shown to act as flame retardants for polymeric systems. 

Furthermore, featuring a synergistic behaviour the P-N compounds present 

better thermal stabilities and less toxic smoke evolution when compared to 

phosphorus based FR.97 

Many P-N containing systems are classified as intumescent systems, well known 

as a new generation of flame retardants for polyolefins, especially 

polypropylene and polyethylene.98 As already described in the general 

introduction and previous chapter, intumescent system have to contain an 

inorganic acid source, a charring source and a foaming agent,98,99 its behaviour 

resulting from a combination of charring and foaming of the surface of the 

burning polymer. In previous chapter we intend to obtain intumescent systems, 

preparing imines from the reaction of polyketone’s carbonyl groups with 

primary amine, and then add phosphorous nucleophiles to the C=N double 

bonds. Unfortunately, these attempts have not achieved the goal. 

Therefore, in this chapter we intend to chemically modify a hydroxylated 

polyaziridine with phosphorous containing moieties. Actually, as starting 

material, we choose poly[1-(2-hidroxyethyl)aziridine] (PHEA). This polymer is 

interesting because it already contains nitrogen and hydroxyl groups, which 

facilitate its chemical modification through esterification reactions. This 

polymer is not commercially available, and its synthesis was described in the 
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literature by Rivas et. al.122 through cationic polymerization of the 

corresponding aziridine in the presence of BF3·Et2O. This polymerization 

reaction has been recently improved by other colleagues from our group.123 

 

 
 

As phosphorous containing reagents, we choose 4-chloroformyl-1-oxo-2,6,7-

trioxa-1-phosphabyciclo[2.2.2]octane (BIC) and 4-(diphenylphosphinoyl) 

benzoyl chloride (DPBC), already used in chapter 2, which can react easily with 

alcohol groups of  PHEA by forming esters.  
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122 Rivas, B. L.;  Geckeler, K. E.; Bayer, E. Eur Polym J 1991, 27, 1165-1169. 
123 Šakalytė, A.; Giamberini, M.; Lederer, A.; Reina, J. A. J Polym Sci Part A: Polym Chem  
     Submitted. 
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Thus, a polymer containing phosphorous, nitrogen and free hydroxyl groups will 

be obtained. Phosphorous moiety could act as an inorganic acid source; 

unmodified hydroxyl groups would act as charring source and nitrogen moieties 

as a foaming agent. In this way an intumescent system could be obtained. 

 

2. Experimental section 

2.1- Materials 

4-chloroformyl-1-oxo-2,6,7-trioxa-1-phosphabyciclo[2.2.2]octane (BIC) and 4-

(diphenylphosphinoyl)benzoyl chloride (DPBC) were synthesized as shown in 

the chapter 2. 4-(Dimethylamino)pyridine (DMAP, Fluka, 99%) was used as 

received. 1-Methyl-2-pyrrolidinone (NMP, Sigma-Aldrich, 99.5%) and pyridine 

(Py, Sigma-Aldrich, 99%) were purified prior to use according to literature56 as 

related in chapter 2. 

Poly[1-(2-hidroxyethyl)aziridine] (PHEA) (scheme 4.1) was synthesized as 

follows. The monomer (1-(2-hydroxyethyl)aziridine, HEA; 2.17 g, 0.02 mol) 

and initiator (BF3·EtNH2; 1 mol%) were placed in a round-bottom glass flask 

with an argon inlet tube. The mixture was heated at 45 ºC under stirring. After 

24 hours 2-3 ml of methanol were added to dissolve the polymer; this was then 

reprecipitated twice from methanol in diethyl ether and dried under vacuum to 

constant weight. Conversion was 75%. 1H NMR (CDCl3, 400 MHz, δ ppm): 2.6 

(m, 6H); 3.6 (t, 2H); 4.8 (broad, 1H); 13C NMR (CDCl3, 100.6 MHz, δ ppm): 

53.0 (t); 56.6 (t); 60.0 (t). Inherent viscosity (DMSO, dl/g) =0.75.  
 

Scheme 4.1 
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2.2- Chemical modification reactions 

2.2.1- Chemical modification reaction of poly[1-(2-hidroxyethyl)aziridine] with  

         4-chloroformyl-1-oxo-2,6,7-trioxa-1-phosphabycicl [2.2.2] octane 

        (polymer M, scheme 4.2) 

 
Scheme 4.2 

 
 

In a round bottomed flask, well dried and purged previously with argon, we 

introduced 0.80 g (0.009 mol) of PHEA and 10 ml of NMP. The mixture was 

stirred at room temperature until the polymer was completely dissolved. Then, 

we add into the reaction mixture 0.009 mol (0.71 g) of pyridine, 0.0009 mol 

(0.109 g) of DMAP and 0.011 mol (2.34 g) of BIC. The reaction was kept under 

stirring at room temperature for 2 days. The resulting material was recovered 

through the precipitation in THF, washed with THF and dried under vacuum at 

60ºC to constant weight. The NMR spectra showed that the desired polymer was 

not obtained. 

 

2.2.2- Chemical modification reaction of poly[1-(2-hidroxyethyl)aziridine] with  

         4-(diphenylphosphinoyl)benzoyl chloride (polymer N,  scheme 4.3) 

In a round bottomed flask, well dried and purged previously with argon, we 

introduced 0.44 g (0.005 mol) of PHEA and 10 ml of NMP. The mixture was 

stirred at room temperature until the polymer was completely dissolved. Then, 

we added into the reaction mixture 0.005 mol (0.40 g) of pyridine, 0.0005 mol 
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(0.061 g) of DMAP and 0.006 mol (2.04 g) of DPBC. The reaction was kept 

under stirring at room temperature for 3 days. The resulting material was 

recovered through the precipitation in water from the reaction mixture, washed 

with water and dried under vacuum at 60º C until constant weight. The yield 

was 78%. IR (cm-1): 3400 (OH); 1717 (C=O); 1630-1390 (C-C aromatic); 1270-

1000 (C-O and C-N); 1180 (P=O); 724-690 (aromatic C-C-H out of plane 

deformation); 1H NMR (CDCl3, 400 MHz, δ ppm): 2.5-3.5 (m); 3.6 (t); 4.4 (t); 

4.8 (broad); 7.3-7.8 (m); 7.9-8.1 (m); 13C NMR (CDCl3, 100.6 MHz, δ ppm): 

51.3-52.6 (t); 59.5 (t); 61.5(t); 128.8 (d); 129.7 (s); 131.2 (s); 132.0 (d); 132.6 

(d); 137.4-138.4 (s); 165.5 (s); 31P (CDCl3, 161.9 MHz, δ ppm) 28.2 (s). 

Inherent viscosity (DMSO, dl/g) =0.69. 

 
Scheme 4.3 

 
 

2.3- Characterization techniques 

Polymers were characterized by 1H, 13C and 31P NMR which were performed 

using chloroform (CDCl3)  as a deuterated solvent with a Varian Gemini 400 

MHz spectrometer (1H- 400 MHz, TMS; 13C- 100.6 MHz, TMS; 31P- 161.9 

MHz, H3PO4) at room temperature.  

Fourier Transform Infrared spectra were recorded on a FT-IR 680 plus 

spectrophotometer from JASCO, connected to an ATR device, at room 

temperature in absorbance mode using samples in solid state.  
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Phosphorous contents were determined by ICP-AES analysis under the same 

conditions as detailed for previously reported polymers.   

Inherent viscosities were measured in dimethyl sulfoxide (DMSO) solutions (ca. 

2 g/l) at 30ºC as described for first set of polymers (chapter 2).  

TGA curves were recorded, using samples of about 10 mg, in a Mettler TGA 

equipment at temperature range from 30-800ºC at 10ºC/min. DSC curves were 

recorded at the heating rate of 10°C/min using about 5 mg of sample with a 

Mettler DSC822e thermal analyzer. The Tg’s were determined from the second 

heating scans. 

 

3. Results and discussion 

As mentioned in the introduction part, in this chapter we intend to synthesize 

new flame retardant phosphorous-nitrogen containing polymers potentially 

useful to act as intumescent systems by blending with thermoplastic 

¨commodity¨ polymers. These polymers have been obtained by chemically 

modifying a hydroxylated polyaziridine with phosphorous containing 

compounds. The choice of this kind of polymer as starting material was due, as 

mentioned above, to the fact that it contains nitrogen and hydroxyl groups. The 

hydroxyl groups, which can easily be reacted to get different functional groups, 

are very interesting to be present in the final polymer, due to their char forming 

character. They can easily lead on heating to dehydration reactions giving to 

unsaturated materials; especially in the presence of phosphorous-containing 

moieties, which can act as a dehydration catalyst source. Nitrogen moiety will 

probably act as a foaming agent, due to free ammonia developed by heating. As 

phosphorous reagents we choose two acid chlorides (BIC and DPBC), since 

they can react with polymeric OH groups by forming esters. The chosen 

structures, shown below, present different polarity and therefore they will confer 

to the final modified polymer different compatibility behaviour with selected 

¨commodity¨ polymers. 
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BIC moieties would lead on burning to phosphoric acid derivatives quite easily, 

and these groups tend to catalyze hydroxyl dehydration reactions. On the other 

hand, DPBC moieties would in principle lead to a high char yield, due to its 

aromatic character. 

As mentioned above, PHEA is not commercially available. This polymer was 

reported on the 90’s by Rivas at. al.122 Its synthesis was performed by cationic 

polymerization of the corresponding monomer HEA on the presence of 

BF3·Et2O (1.5 mol %) in solution (acetonitrile, dimethylformamide, 

dichloromethane and toluene) at 25-45ºC. This procedure has been recently 

reviewed and improved by colleagues on our group, and they have seen that a 

good polymer with a degree of polymerization ca. 44 is obtained when the 

monomer is reacted in bulk using BF3·EtNH2 as initiator at 45º C for 24 hours, 

according to the scheme below.  
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The polymer structure was characterized by 1H and 13C NMR spectrometry. The 

figure 4.1 shows the 1H and 13C NMR spectra of synthesized polymer.  
 

Figure 4.11H (a) and 13C (b) NMR spectra of PHEA recorded in CDCl3 

 
In 1H NMR spectrum, figure 4.1 (a), a signal at 2.6 ppm was observed, which 

was assigned to protons from the main chain methylene and those methylene 

directly bonded to nitrogen. Signal at 3.6 ppm was attributed to methylene 

protons next to OH group and at 4.8 ppm was observed a broad signal which is 

due to hydroxyl protons. 13C NMR, figure 4.1 (b), spectrum shows signals 

coming from the main chain at 53.0 ppm. Signals at 56.6 ppm and 60.0 ppm 

were assigned to methylene carbons directly bonded to nitrogen and to OH 

groups, respectively. 

Then, we tried to chemically modify PHEA with phosphorous containing 

compounds (BIC and DPBC), which were already synthesized and characterized 

as described in chapter 2. The modification reactions were tested following the 

method used in chapter 2 for PVA chemical modification reactions. Thus, they 

were carried out in a homogenous system at room temperature in NMP, using 

pyridine as a base, in a stoichiometric amount with respect to acylating agent, 
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and DMAP as catalyst, for two-three days. First, we tested the reaction of PHEA 

with a cyclic caged phosphate (BIC), according to the scheme shown below. 

 

 
 

The NMR spectra showed that a mixture of unmodified alcohol groups and 

eliminated (unsaturated) groups were present in the recovered polymer. Thus, 

we observed in 1H NMR spectrum signals at 4.0-4.2 ppm and 6.0 ppm and in 
13C NMR spectrum at 108.0 ppm and 140.0 ppm which were attributed to 

double bonds directly linked to nitrogen (enamine groups). These groups 

probably formed due to the presence of traces of phosphoric acid which catalyze 

dehydration reactions. In this case, it seems that BIC cage is partially cleaved, 

probably as a result of some attack from the nucleophilic nitrogen atoms present 

in the polymer, leading to phosphoric acid derivatives. 

Then we tried to perform the reaction, using DPBC as acylating agent. This 

reaction was performed for 3 days in NMP, using pyridine in a stoichiometric 

amount with respect to acylating agent, and DMAP as catalyst (see scheme 

below). In this case the desired polymer was isolated in high yield (78%). 
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The polymer structure was confirmed by NMR characterization. 1H NMR 

spectrum (figure 4.2) shows signals at 2.5-3.5 ppm which were assigned to 

methylenes coming from main chain and methylenes directly bonded to nitrogen 

from both, modified and unmodified units. Methylenes which are directly linked 

to oxygen atoms appeared at 3.6 ppm for the unmodified units and at 4.4 ppm 

for the modified units. The small broad signal at 4.8 ppm was attributed to OH 

groups. The region of 7.3-8.1 ppm was assigned to aromatic protons coming 

from DPBC units introduced. 
 

Figure 4.2 1H NMR spectrum of polymer N recorded in CDCl3 
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13C and 31P NMR spectra are shown in figure 4.3. There were observed signals 

at 51.3-52.6 ppm which were attributed to methylenes from the main chain and 

to methylenes directly bonded to nitrogen from modified units; methylenes 

directly linked to nitrogen, coming from unmodified units, which should appear 

at about 56.0 ppm can not be observed and probably appear confused with the 

noise. Signals at 59.5 ppm and 61.5 ppm were assigned to methylenes directly 

bonded to oxygen from unmodified OH groups and formed ester groups, 

respectively. The region 128.8-138.4 ppm was associated to aromatic methines 

and quaternary carbons from DPBC units; the signal at 165.5 ppm was attributed 

to carbonyl group. It must be noted that signal at 138.0 ppm appeared split into 

two signals, due to coupling with phosphorous nuclei (1JC-P=92.0 Hz). 31P NMR 

spectrum shows a singlet at 28.2 ppm. 

 
Figure 4.3 13C and 31P NMR spectra of polymer N recorded in CDCl3 

 
 

The degree of modification achieved was determined from the 1H NMR 

spectrum, by integration of suitable signals. The phosphorous content (%P) 
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calculated from the degree of modification obtained from the NMR was in 

agreement with the value determined by ICP-AES analysis, performed as 

already described for the PVA modified polymers (chapter 2). All results are 

shown in the table 4.1. 

The yield (78%) was calculated from the weight of dried polymer, taking into 

account the obtained modification degree.  

The inherent viscosities were measured for both, starting and modified polymer. 

The measurements were carried out in DMSO at 30ºC. The obtained values are 

shown in table 4.1; modified polymer present a slightly lower viscosity, 

probably due to a more globular conformation, conferred to the polymer by the 

bulky groups that are introduced. They present the same order of magnitude, 

which suggests that no scission or ramification side reactions were observed, at 

least in an important extent.  

 
Table 4.1 Results of chemical modification of PHEA 

% P 
determined from Polymer Degree of modificationa 

(m) 
ICP-AES 1H NMR 

Inherent viscosity, ηinh. 
(dl/g) 

PHEA    0.75 
N 0.60 6.7 7.1 0.69 

           a obtained by 1H NMR  
 

Polymer N and the starting PHEA were then thermally characterized by DSC 

and TGA analysis. By DSC analysis glass transition temperatures (Tg) were 

determined from the dynamic second heating scan at a rate of 10ºC/min in 

nitrogen atmosphere (see table 4.2). As can be observed, the starting polymer 

(PHEA) presents a low Tg value (-35ºC), whereas the phosphorous modified 

polymer shows a higher Tg (85ºC). This increment is certainly due to bulky 

groups introduced, restricting the chain mobility and therefore increasing the 

stiffness of the polymer. Moreover both, virgin and modified PHEA are 

amorphous materials since no melting endotherm was observed.  
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Then, these polymers were analysed by TGA. Table 4.2 displays the data from 

the curves including the onset temperature of weight loss (Tonset), temperature 

of maximum rate of weight loss (Tmax) and the char yields at 790ºC in both, 

nitrogen and synthetic air atmospheres.  
 

Table 4.2 Thermal data of PHEA and polymer N in nitrogen and air atmospheres 

DSC TGA 
Nitrogen Nitrogen Air Polymer 
Tg (ºC) Tonseta

(ºC) 
Tmax.b 

(ºC) 
Char yield, 790ºC 

(%) 
Tonseta

(ºC) 
Tmax.b

(ºC) 
Char yield, 790ºC 

(%) 
PHEA -35 251 371 2 253 353 2 

N 85 274 388 18 272 418 26 
a) onset temperature of weight loss 
b) temperature of the maximum rate of weight loss  

 

Figure 4.4 TGA curves in nitrogen (a) and air (b) atmospheres of PHEA and polymer N 
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Starting PHEA starts to lose weight at about 250ºC and present a maximum rate 

of weight loss at about 370ºC, in nitrogen atmosphere (figure 4.4 a). The weight 

loss process show similar behaviour in air atmosphere (figure 4.4 b). In both 

cases, nitrogen and air atmospheres, the polymer shows a low char yield that is 

almost steady from 600 ºC. In case of modified PHEA the weight loss process 

starts at higher temperatures than in virgin polymer. Their TGA curves show 

more than one steps of weight loss in both, nitrogen and air atmospheres. The 

weight loss from approximately 270 ºC to 400 ºC is associated to the first step of 

thermal degradation process. In that range of temperature, it is generally 

accepted that the intumescent process develops.99 When the temperature further 
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increases, a second step is observed at about 450 ºC and is associated to 

oxidative degradation of already formed intumescent layer. It must be noted, 

that polymer N not only starts to lose weight later than starting polymer, but also 

it leads to a markedly higher char yield. This behaviour was already observed in 

chapter 2 for PVA modified with DPBC polymers (E2-E5). As for those 

polymers this behaviour can be explained by taking into account that aromatic 

moieties are introduced, which are thermally stable and trend to lead to charcoal 

residues. Moreover, the delay in the beginning of the weight loss process can be 

understand if we consider the lower content of hydroxyl groups presents in 

polymer N, which are responsible of dehydration reactions that initiate the 

degradation process. Also, in this case, it should be considered that a nitrogen 

moiety is present, which can release ammonia by heating, therefore acting as a 

foaming agent and giving rise in this way to a swollen material which acts as a 

protective layer. Thus, the TGA behaviour of modified PHEA seems to indicate 

that in the fire, this polymer will probably act as an intumescent system when 

mixed with ¨commodity¨ polymers. 
 

4. Conclusions 

To sum up, in this chapter we reported the preparation and characterization of a 

phosphorous-nitrogen containing polymers. This polymer leads to a significant 

char yield on TGA curves and a delay of the thermal degradation process is 

observed (with respect to starting material). Its thermal behaviour allows us to 

observe this polymer as a promising intumescent system on mixing with 

¨commodity¨ polymers.  
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Application of synthesized polymeric flame retardant additives 
 

 

In this chapter we report the behaviour as flame retardant additives of the 

polymers obtained through the PVA chemical modification with BIC 

derivatives. Thus, we prepared and characterized polypropylene blends with 

these flame retardant additives. Their fire resistances as well as their thermal and 

mechanical properties were studied.  
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1. Introduction 

Polymeric materials find growing applications in various fields of everyday life 

because they offer a wide range of relevant properties. As already mentioned in 

the general introduction, most of them are easily combustible involving a series 

of problems in their use.2,3,4 To reduce their flammability a solution is to 

incorporate flame retardants in the polymer structure. 2,3 As well described in the 

chapter 1, FRs can be introduced in the polymer matrix trough a chemical 

modification of polymer (reactive FRs) or by blending (additive FRs).4,5 Such as 

mentioned in the beginning of this thesis, our objective was to synthesize 

polymeric flame retardant additives, which, on blending with ¨commodity¨ 

polymers, can confer to them flame retardant properties. As already mentioned, 

the advantage of using polymeric additives, rather than conventional non-

polymeric species, is that they show better resistance to extraction, migration 

and volatile-loss due to their high molecular weight.3,7 

In this work various sets of polymers, which show promising action as flame 

retardant additives, were synthesized. In this chapter we propose to study the 

behaviour as polymeric flame retardant additives of one set of them; we choose 

for this study the set of polymers obtained by chemically modifying PVA with 

BIC derivatives (polymers A1, A5, B and C), synthesized and characterized in 

chapter 2. Below are shown the chemical structures of these polymers (scheme 

5.1). Their degrees of modification are listed in table 5.1.  

The choice of these structures is motivated by the different polarity expected to 

be shown by them, which should confer different compatibilities on blending 

with ¨commodity¨ polymers. PVA main chain is quite polar and also the BIC 

moieties. On the other hand, the aliphatic and aromatic ester groups will lead to 

a reduction of the polarity of the polymer. In this way, these polymers show a 

range of polarity.  
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Scheme 5.1 

 

 
Table 5.1 Degrees of modification and phosphorous content of additives 

% P Obtained from Degree of modification Additive 
ICP-AES 13C NMR xa xb yb 

A1 11.5 11.0 0.52 0.57  
A5 8.0 10.0 0.23 0.36  
B 5.7 6.3  0.27 0.44 
C 7.6 10.0  0.48 0.16 

A1’ 11.0 11.0 0.47 0.46  
A5’ 9.3 9.2 0.32 0.31  
B’ 8.6 9.1  0.44 0.27 
C’ 8.7 10.6  0.51 0.1 

              a) Obtained from %P determined by ICP-AES 
                          b) Obtained from 13C NMR considering 12% of acetylated part  

 

In this work we chose polypropylene (PP) as thermoplastic material to be 

ignifugated on blending with the above mentioned polymers. PP is one of the 

most used polymers in industrial area because of its low cost, ease of processing, 

as well as, high water and chemical resistance. It is used in several applications, 

for example housing, electronic pieces, wire and cables, automotive industry, 
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and so on. For most of these uses the flame retardation is needed, since the 

virgin PP is high combustible. 124-127 

Thus, we prepared blends with PP and studied their flame retardancy by TGA 

and LOI techniques. Also, their compatibility and mechanical properties were 

studied by using several techniques, such as DSC, X-Ray diffraction, SEM, 

impact tests and tensile tests. 

 

2. Experimental Section 

2.1- Materials 

Amorphous polypropylene (APP, Mw=14000, softening point= 155 ºC), low 

molecular weight isotactic polypropylene (LIPP, Mw=12000, mp= 157 ºC, 

softening point= 163 ºC), high molecular weight isotactic polypropylene (HIPP, 

Mw=580000, Tmonset= 160-165 ºC) and maleic anhydride grafted polypropylene 

(PP-g-MAH, containing ~0.6 wt. % of maleic anhydride) were purchased by 

Aldrich. Moplen type polypropylene EP1X30F (MPP, containing 2% wt. 

ethylene, Mw= 250000, melt flow at 230ºC= 7.00 - 10.0 g/10 min) was provided 

by Montell. All these polymers were used as received. Thermoplastic 

hydrocarbon resin (Necirès TR100, based on cycloaliphatic monomers with 

hydroxyl value 40 and acid value 7) was provided by Neville Chemical Europe 

BV, Netherlands. Polymeric flame retardant additives A1, A5, B and C, used for 

the preparation of the blends by dissolution, were synthesized as described in 

chapter 2. Polymeric flame retardant additives A1’, A5’, B’ and C’ were 

synthesized analogue to A1, A5, B and C, respectively but using a higher 

amount of reagent (5 g of PVA). Their degrees of modification and phosphorous 

contents are shown in table 5.1. Toluene (TOL, 99.5%, Scharlau) and 1,1,2,2- 

tetrachloroethane (TCE, 97 %, Aldrich) were used without further purification. 

                                                 
124 Divir, H.; Gottlieb, M.; Daren, S.; Tartakovsky, E. Compos Sci Technol 2003, 63, 1865-1875 
125 Lv, P.; Wang, Z.; Hu, K.; Fan, W. Polym Degrad Stab 2005, 90, 523-534. 
126 Li, Q.; Jiang, P.; Su, Z.; Wei, P.; Wang, G.; Tang, X. J Appl Polym Sci 2005, 96, 854-860. 
127 Chiu, S.-H.; Wang, W.-K. J Appl Polym Sci 1998, 67, 989-995. 
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2.2- Blends preparation 

2.2.1- Blends prepared by dissolution 

Preparation method: In a round bottomed flask provided with magnetic stirrer, 

we introduced selected polypropylene (PP) and appropriate solvent (100 ml). 

The mixture was heated under stirring up to 100 ºC for completely solubilise PP. 

Then, it was cooled down at 80ºC and corresponding amount of selected 

additive was added. The mixture was further driven to reflux and stirred for two 

hours. After that, the solvent was removed by rotary evaporation and the 

resulting material was dried under vacuum at 70ºC for 1h, and afterwards at 

room temperature for 24 h. In all cases, the amounts of PP and polymeric 

additive used were selected to prepare 5 g of blend. Ca. 1 g of blend was pressed 

in a preheated press at 165ºC and 2.5 atm for 1 hour in order to get bars (70 x 6 

x 3 mm). Table 5.2 shows the blends prepared in this way.  
 

Table 5.2 Blends prepared by dissolution 

 

 

Blend Polypropylene Additive Solvent Additive content 
(% wt.) 

 Phosphorous 
content 
(% wt.) 

B1 A1 8.6 1 
B2 A1 4.3 0.5 
B3 A5 6.2 0.5 
B4 B 8.8 0.5 
B5 

APP 

C 

TOL 

6.6 0.5 
B6 A1 8.6 1 
B7 A1 4.3 0.5 
B8 A5 6.2 0.5 
B9 

LIPP 
 

B 

TOL 

8.8 0.5 
B10 A1 8.6 1 
B11 A1 4.3 0.5 
B12 

HIPP 
A5 

TCE 
6.2 0.5 
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2.2.2- Blends prepared by melt mixing 

In order to establish the blend preparation conditions, a preliminary study was 

carried out by using a small scale extruder, namely Thermo Haake MiniLab (5 g 

capacity). Thus, the more convenient conditions were set out and applied to a 

conventional batch mixer of 50 g of capacity. 

Preparation method: Blends preparation was carried out in a twin screw 

Brabender Plastograph EC mixer (Brabender GmbH & Co. KG, Germany) at 

175 ºC with a screw rate of 40 rpm. The flame retardant additives and, in case, 

the compatibilizer (PP-g-MAH), were added after the polypropylene (MPP) 

melted, and the resulting blend was mixed additionally for 5 minutes. Then, the 

material was removed, left to cool and cut in pellets. The amounts of PP, 

compatibilizer and polymeric additive used were selected to prepare 50 g of 

blend. The pellets were hot-pressed under a pressure of 100 bar at 165 °C for 3 

minutes, to obtain thin films (average thickness 150 µm), or at 175 ºC for 5 

minutes, to obtain  plates of 3 mm thickness. Thin films samples were used to 

perform FT-IR, TGA, DSC, X-Ray and tensile tests, while the plates were cut in 

bars and used for Charpy impact tests and LOI measurements. Blends prepared 

in this way are related in table 5.3. 

 
Table 5.3 Blends prepared by melt mixing 

 

Blend Additive Additive content* 
(% wt.) 

Compatibilizer content ** 
(% wt.) 

B13 A1’ 9.0 
B14 A5’ 10.8 
B15 B’ 11.6 
B16 C’ 11.6 

- 

B13’ A1’ 9..0 9.1 
B14’ A5’ 10.8 8.9 
B15’ B’ 11.6 8.8 
B16’ C’ 11.6 8.8 

                      * In all cases the amount of polymeric additive used corresponds to a 1 % wt. of 
 phosphorous in the  final blend 

                      ** This amount corresponds to a relation of 10% wt.  compatibilizer/ PP  
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2.3- Characterization techniques 

Transmission FT-IR analysis was performed using a Nicolet Nexus FT-IR 

spectrophotometer. Spectra were collected using 32 scans at 4 cm-1 resolution, in 

the 400–4000 cm-1 range.  

The number-average (Mn) and weight-average (Mw) molecular weights and 

intrinsic viscosity were estimated by a Gel Permeation Chromatography (GPC) 

in a Waters Alliance GPC V2000 system, equipped with a Refractive Index and 

viscosimetric detectors, using two consecutive Polymer Laboratories mixed 

columns with 1,2-dichlorobenzene (DCB) at 145ºC as eluent (0.8 mLmin-1). The 

equipment was calibrated with polystyrene standards.  

Thermogravimetric analysis (TGA) were carried out for blends prepared by 

dissolution on a Mettler TGA/SDTA851e/LF/1100 device at a heating rate of 10 

ºC/min up to 800 ºC under nitrogen atmosphere (flow rate= 100ml/min). For the 

blends prepared by melt mixing, TGA analysis were performed on a Perkin 

Elmer Pyris Diamond TG-DTA thermogravimetic analyzer under the same 

conditions, but in this case prior to the heating ramp the samples were subjected 

to a 30 minutes isotherm at 80 ºC to remove the moisture that could be absorbed 

after the melt processing. The TGA analyses for compatibilized blends were 

performed under the same conditions as for the melt mixing blends but using a 

Mettler TGA/SDTA851e/LF/1100 device. 

Differential scanning calorimetric (DSC) analysis were performed on a Mettler 

Toledo DSC Star 822e calorimeter at a heating/ cooling rate of 10 ºC/ min in a 

nitrogen atmosphere. Tg’s and melting enthalpies were calculated from second 

heating scans.  

X-ray diffraction (XRD) experiments were performed using a Philips PW 1710 

diffractometer with a rotating anode generator and a wide-angle power 

goniometer. The used radiation was not filtered Cu Kα, with 40 kV voltage and 

20 mA intensity. The scan rate was 1°/min over a diffraction angle 2θ ranging 

between 2 and 40°. The estimation of degree of crystallinity for each sample 
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was obtained from the ratio between the area under the crystalline peaks and the 

total area under the diffraction curve, with the different contribution of the 

crystalline and amorphous regions considered. The crystalline peaks separation 

from the amorphous part was made by the fitting of the curve through a program 

using Gaussian funtions. 

Charpy impact tests were performed on a CEAST 6545 apparatus according to 

ASTM standard test method D256-06. A standard notch (3.5 mm long) was 

applied to the rectangular shaped rod sample with dimensions of 60 x 10 x 3 

mm. The notch is in the opposite direction to the striking hammer.  

Scanning electron microscope (SEM, Philips XL20) and environmental 

scanning electron microscope (ESEM-FEI Company, QUANTA 600) were used 

to examine the morphology of the cross-section of specimens subjected to 

impact tests. Samples were metallised before the observation with a gold–

platinum mixture by means of a BalTec MED020 coater. 

Tensile tests were performed on an Instron 5564 dynamometer equipped with a 

100N load cell on test specimens prepared according to ASTM D882-02 

standard test method. The samples of L0 length = 22 mm, width 4 mm, present a 

¨dog-bone¨ shape to make the necking of failure to occur in the centre of the 

specimen. The thickness (0.1-0.2 mm) of the samples was measured at different 

points for each sample and its average was introduced in the Instron Merlin 

calculation software. The tests were performed using 5-8 specimens for each 

sample. The measurements were carried out by a separation rate of 20 mm/min 

at room temperature after the samples were conditioned for 24 hours at 50% 

relative humidity (RH). 

Limiting Oxygen Index (LOI) measurements were performed in vertical tests on 

a Stanton Redcroft FTA flammability unit provided with an oxygen analyzer, 

previously calibrated with polystyrene standard bars. The dimensions of the 

polymer bars were 70 x 6 x 3 mm prepared by hot pressing.  
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3. Results and discussion 

As mentioned in the introduction part, in this chapter we intend to test the 

ignifugation of polypropylene with several phosphorous-containing PVA based 

flame retardant additives prepared in chapter 2. PP was chosen because of its 

wide range of application and high combustion character. The choice of BIC 

derivative polymeric additives (A1, A5, B and C), as flame retardants, was due 

to the different compatibility with PP expected to be shown by them.  

As a previous study, we prepare blends of PP with flame retardant additives by 

dissolution, using commercially available polypropylenes with different 

characteristics.  

First, we choose two low molecular weight polypropylenes, one amorphous 

(APP, Mw= 14000, softening point= 155 ºC) and one isotactic (LIPP, Mw= 

12000, mp= 157 ºC, softening point= 163 ºC). The blends were prepared by 

dissolution in hot toluene (see table 5.2). The additive/PP ratio was chosen 

avoiding incorporating more than 10 % of additive, since high proportion of the 

additive will certainly negatively affect the mechanical properties of PP. This 

ratio was then chosen to obtain blends which contain 1% or 0.5% of 

phosphorous, in order to compare them. The resulting blends were first studied 

by TGA analysis under nitrogen atmosphere. The obtained results are shown in 

table 5.4 and figure 5.1 (a and b), which displays TGA curves of blends 

prepared from APP and LIPP, respectively. It can be seen that, in all cases, the 

blends show a small loss of weight at ca. 250 ºC. This loss of weight can be 

associated to the decomposition of the polymeric additives (mainly 

dehydration), by comparing these curves with TGA curves of virgin A1, A5, B 

and C (chapter 2). Moreover, in most of the blends, the main loss of weight 

process is slightly delayed with respect to starting PP. Also, in general terms, the 

blends present a small residue at high temperatures (600 ºC), while starting PP 

does not show residue at all from 500 ºC. Therefore, it seems that initial 

degradation of polymeric additives confer some flame retardancy to the PP 
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blends, since the weight loss process delays and a certain char yield is formed at 

high temperature. It must be noted that blends based on polymer B (B4 and B9) 

those not completely follow these general trends. The blend B4 shows a Tonset 

close to virgin APP and a Tmax. close to the one shown by the other blends (B1, 

B2, B3 and B5), whereas blend B9 shows both, Tonset and Tmax, similar to 

those shown by the other blends. It must be also mentioned that, although TGA 

curves of B4 and B9 are quite reproducible in general (leading to the same 

Tonset and Tmax in different experiments), they are not reproducible when we 

consider char yield. In fact, they led to a range of char yield when we repeat the 

experiment. This results seems to indicate that a heterogeneous blend is formed, 

indicating that a low compatibility exists between polypropylene and additive B. 

Actually, in figure 5.1 only one of the TGA curves obtained for blends B4 and 

B9 is shown. 
 

Figure 5.1 TGA curves of neat APP (a) and LIPP (b) and their blends in nitrogen atmosphere 
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Table 5.4 Thermogravimetric data of virgin APP, LIPP and their blends 

Sample Additive
Phosphorous

content 
(% wt.) 

Tonset a 

( ºC) 
Tmax. b 

( ºC) 
Char yield at 600 ºC 

(%) 

APP   403 446 0 
B1 A1 1 421 462 2.4 
B2 A1 0.5 419 461 1.5 
B3 A5 0.5 422 463 2.7 
B4 B 0.5 403 462 0-0.7 
B5 C 0.5 420 463 1.5 

LIPP   364 446 0 
B6 A1 1 403 463 2.7 
B7 A1 0.5 402 461 2.2 
B8 A5 0.5 396 462 1.2 
B9 B 0.5 405 462 1.4-3.5 

           a Onset temperature of main weight loss process 
               b Temperature of the maximum rate of weight loss  

 

To test the flame retardancy of the obtained blends, it was necessary to carry out 

LOI measurements. As already mentioned in the introduction, LOI measures the 

ease of extinction of materials as the minimum percentage of oxygen in an 

oxygen/nitrogen atmosphere that will just sustain the combustion in a candle-
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like configuration of a top-ignited vertical test specimen. Therefore, bars of 70x 

6x 3 mm suitable for LOI measurements were prepared from virgin APP, LIPP 

and their blends by hot pressing. Unfortunately, in no case was possible to 

obtain a LOI value. This was due to the fact that all these bars melted easily in 

contact with the flame. Those, the specimens were not able to initiate the 

combustion, because they dripped heavily, not supporting the flame and leading 

to its quenching.   

Taking into account this inconvenience, we decided to prepare blends using a 

polypropylene with a higher molecular weight and melting point (HIPP, Mw= 

580000, melting range (onset)= 160-165ºC), which should show less dripping 

on burning. The HIPP blends were prepared by dissolution in hot 1,1,2,2-

tetrachloroethane (table 5.2). In this case, 1,1,2,2-tetrachloroethane was used 

instead of toluene due to HIPP insolubility in the latter solvent. As for previous 

set of blends, the additive/PP ratio was chosen avoiding incorporating more than 

10 % of additive, obtaining in this way blends which contain 1% or 0.5% of 

phosphorous. The obtained blends were studied by TGA and LOI techniques.  

The TGA curves, performed in nitrogen atmosphere, are shown in figure 5.2. 

and the TGA data are collected in table 5.5. Also in this case, it was observed 

the small loss of weight at ca. 250 ºC, that was associated to polymeric additives 

decomposition. Moreover, in the obtained blends the main weight loss process is 

also delayed (›100 ºC) with respect to virgin HIPP, and the blends also show 

char residue at high temperature, while the starting HIPP is almost exhausted 

from less than 500 ºC. However, in this case there exists some differences with 

respect to previously studied blends (table 5.4). First, loss of weight at ca. 250 

ºC is smaller than for previous set of blends. Also, as indicated above, the delay 

of weight loss process is higher and also the char yield at 600 ºC; for example, 

compare the blend B10 with blends B1 and B6. Therefore, in this case it seems 

that the flame retardancy conferred by the additive is greater, may be due to a 

better compatibility. 
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Table 5.5 Termogravimetric results of neat HIPP and its blends 

Sample Additive
Phosphorous 

content 
(% wt.) 

Tonseta

( ºC) 
Tmax.b 

( ºC) 
Char yield at 600 ºC 

(%) 

HIPP   297 415 0 
B10 A1 1 408 463 6.0 
B11 A1 0.5 416 463 2.5 
B12 A5 0.5 421 463 2.9 

                    a Onset temperature of main weight loss process 
                    b Temperature of the maximum rate of weight loss  

 

Figure 5.2 TGA curves of neat HIPP and its blends in nitrogen atmosphere 
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In case of these blends, LOI measurements were possible to be performed. As 

can be seen in figure 5.3, LOI values increased slightly in all these blends with 

respect to non-additivated HIPP. Therefore, also LOI values indicate that certain 

flame retardancy is conferred by additive A1 and A5 to HIPP.  

The highest LOI value was obtained for the blend containing the highest 

phosphorous content (B10). Also, it can be observed that, using the same 

content of phosphorous, but two different additives, the LOI value is higher 

when the blend contains more hydroxyl groups (B12). This result is in 

agreement with TGA data (see table 5.5): B12 shows a higher Tonset and also a 

higher char yield with respect to B11. All these observations can be understood 
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if we consider that the first step of weight of loss of the polymeric additives is 

dehydration. 
 

Figure 5.3 LOI values of neat HIPP and its blends obtained by dissolution 
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Based in all these results, we proceed with the PP ignifugation by melt mixing. 

The melt processing is a blending technique which, in principle, could lead to a 

better dispersion of the polymeric flame retardant additive into the PP matrix; 

therefore, homogeneous blends can easier be obtained. First, we choose as a 

polypropylene to ignifugate HIPP, which was already used in the preparation of 

blends by dissolution. In this case we used polymeric additives A1’, A5’, B’ and 

C’ which have an analogue structure as A1, A5 B and C respectively, but 

different comonomer composition (see scheme 5.1 and table 5.1). These 

additives have been prepared as reported for A1, A5, B and C in chapter 2 but 

using a higher amount of reagents. The additive/PP ratio was chosen to obtain 

blends which contain 1% of phosphorous in order to compare them. To establish 

the blending conditions, a preliminary study was carried out by using a small 

scale twin screw extruder (5 g capacity). Blends preparation was tested by using 

different temperature, screw rotation rate and time. Unfortunately, we could not 

obtain a suitable blending, due to the high viscosity of melted HIPP at the used 

temperature (170-180 ºC). When we increased the temperature, in order to get a 

more fluid sample, it seems that the polymer started to degrade. Therefore, we 
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tried to improve the processability by adding 5-10% by weight of a hydrocarbon 

resin (TR 100), which can act as both compatibilizer and softener; but the 

viscosity of the mixture was still very high.  

Taking into account this inconvenience, we decided to prepare blends by using a 

less viscous polypropylene. The polymer chosen was a Moplen type 

polypropylene (MPP, Mw= 250000), which has a lower molecular weight and 

contain 2 % wt ethylene, thus showing a higher flexibility than HIPP. Moreover, 

Moplen type PPs have been used in different application in automotive 

industry.128-131  

For the preparation of the blends with the small scale extruder, different 

temperature (165-200 ºC), screw rotation rate (10-50 rpm) and time (5-10 min) 

were tested. It was observed that at low temperature, low screw rotation rate and 

short time highly heterogeneous blends were obtained, which show the presence 

of portions of not well dispersed additive. On the other hand, at high 

temperature, high screw rotation rate and long time we got an apparently 

homogenous blend, but the polymer appeared starting to degrade. Thus, as the 

best conditions we choose a medium temperature (175 ºC), short time (5 min) 

and high screw rotation rate (40 rpm) and then a suitable blend seemed to be 

obtained.  

Once the best blending conditions were established with the small scale 

extruder, we applied them to a conventional batch mixer (50 g capacity). Thus, 

the MPP was blended with A1’, A5’, B’ and C’ at 175 ºC, 40 rpm for 5 min. The 

obtained blends were removed and cut in pellets after cooled down. The pellets 

were then hot pressed, in order to obtain thin films or plates, useful for further 

characterization. As mentioned above, for each blend, the amount of the 

                                                 
128 Trongtorsak, K.; Supaphol, P.; Tantayanon, S. Polym Test 2004, 23, 533–539. 
129 Malucelli, G.; Priola, A.; Ferrero, F.; Quaglia, A.; Frigione, M.; Carfagna, C.    
      Int J Adhes Adhes 2005, 25, 87–91. 
130 Tomasetti, E.; Legras, R., Henri-Mazeaud, B.; Nysten, B. Polymer 2000, 41, 6597- 
     6602 
131 Weidenfeller, B.; Höfer, M.;  Schilling, F. Composites Part A 2002, 33, 1041–1053. 
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polymeric additive was selected in order to get a phosphorous content of 1% wt. 

In the table 5.3 the blends formulations are listed.  

In order to explore the possibility that MPP and/or the polymeric additives 

partially degrade during the blending process, the obtained blends were 

characterized by FT-IR and GPC.  

The FT-IR spectra of all these blends show signals coming from MPP and the 

corresponding additive. The main MPP bands appear at 3000-2850 cm-1 (C-H 

stretching) and 1500-1350 cm-1 (C-C stretching). All the blends show signals 

due to additive at 3600-3400 cm-1 (OH), 1730 cm-1 (C=O) and 856 cm-1 

(skeleton vibration of caged bicyclic phosphate). It must be noted that no 

additional bands appear in the blend with respect to virgin MPP and additive. 

This suggests that no degradation occurred during the blending process, at least 

in an important extent. As an example, figure 5.4 shows the spectrum of virgin 

MPP, one of the blends (B15) and the corresponding polymeric additive (B’).  
 

Figure 5.4 FT-IR spectrum of virgin MPP, one of the blends (B15) and  

the corresponding additive (B’) 
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GPC analysis were performed in 1,2-dichlorobenzene (DCB) at 145 ºC. The 

obtained data are collected in table 5.6. For the sake of comparison, GPC 

analysis was also performed on an unprocessed (virgin) MPP and a sample of 

MPP that was processed analogously to the blends, but that contains no additive. 

The polydispersity (Mw/Mn, where Mw is weight-average molecular weight and 

Mn is number-average molecular weight) of the unprocessed MPP is rather high, 

typical of a PP synthesized in the presence of Ziegler-Natta catalysts.132 As can 

be seen the molecular weight, as well as the polydispersity of processed MPP 

are lower than that of unprocessed polymer pellets. Thus, melt-mixing 

processing of neat MPP brought about slight degradation of the polymer. This is 

consistent with ‘‘controlled PP degradation’’ principles, where the highest 

molecular weight chains are statistically more likely to undergo radical-

mediated scission.133  

Although the polymeric additives were rather insoluble in DCB, when they were 

incorporated into the blends, a small fraction seems to be dissolved in the 

solution subjected to GPC characterization. Nevertheless, as can be observed 

from figure 5.5 and table 5.6, the GPC curves of most of the blends are similar 

to that of neat processed MPP, leading to similar Mw and polydispersity. 

Moreover, in general, neither peaks related to the presence of the additive, nor 

bimodal patterns of the molecular-mass curves were observed. This finding 

suggests that the polymeric additives could interact with the polypropylene 

phase, forming physical or chemical associates having a hydrodynamic volume 

similar to that of plain MPP, which are not separated during the elution run. 

Blend B16 is an exception to this general behaviour, since its GPC 

chromatogram shows a minor portion of higher molecular weight chains.  

These findings suggest that the polymeric additives could interact with the 

polypropylene phase, forming physical or chemical associates having a slightly 
                                                 
132 Rodionov, A.G.; Domareva, N.M.; Baulin, A.A.; Ponomareva, Ye.L.; Ivanchev, S.S.  
     Polym Sci USSR 1981, 23, 1724-1732. 
133 Tzoganakis, C.; Vlachopoulos, J.; Hamielec, A.E. Polym Eng Sci 1989, 29, 390-396.  
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larger hydrodynamic volume than that of plain MPP, which are not separated 

during the elution run. This could also explain the increase in Mw observed for 

B16, in which the bulky pendant substituent can modify the size of the dissolved 

polymer adduct, thus yielding increased values of molecular weight.134 
 

Table 5.6 GPC data of the neat MPP and its blends 

Sample Additive Mw
a Mw/Mn

b Mpeak
c 

Unprocessed MPP - 254000 6.8 159000 

Processed neat MPP - 218000 4.5 136000 

B13* A1’ 218000 4.8 139000 

B14* A5’ 229000 5.2 144000 

B15* B’ 235000 4.8 145000 

B16* C’ 278000 4.6 159000 

              * All these blends contain 1% of phosphorous 
                          a weight- average molecular weight 
                          b polydispersity of polymer 
                          c peak of GPC curve  

A further confirmation of this hypothesis can be obtained by the Mark-

Houwink-Sakurada (MHS) plots, Fig. 5.5(b), in which the intrinsic viscosity 

versus Mw is reported. MHS plots are widely used for the analysis of polymer 

structure, as they reflect structural changes in the polymer, such as branching 

and chain rigidity135 The slope, described by the Mark-Houwink exponent, can 

vary between 0 for solid spheres and 2 for rod-shaped structures. 

From the figure, it is observed that while all samples showed comparable curve 

slope values of about 0.71 (typical of linear flexible chains in good solvents), 

processed neat PP sample displayed higher values of viscosity throughout the 

range of Mw values analyzed. This suggests that polypropylene molecules in the 

blends present chain branching136, due to the interaction of MPP with the 

modified PVAs. This can be due to some radical reactions that may occur 

between them. Usually, the radical formation occur in the presence of an 
                                                 
134 Parent, J.S.;  Bodsworth, A.; Sengupta, S.S.; Kontopoulou, M.; Chaudhary, B.I.; Poche, D.;    
     Cousteaux, S. Polymer 2009, 50, 85–94. 
135 Mendrek, B.; Trzebicka, B. Eur Polym J 2009, 45, 1979–1993. 
136 Zhang, C.; Zhou, Y.; Liu, Q.; Li, S.; Perrier, S.; Zhao, Y. Macromolec 2011, 44, 2034-2049. 
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initiator137,138, which in this case may be played by metallic parts of the 

equipments used for the processing. Also, we should take into account, that a 

small part of PVAs additives may undergo dehydration reactions, leading to 

double bond formation, which can add polypropylene free radicals that could be 

formed by heating.  

 
Figure 5.5 GPC chromatograms (a) and Mark-Houwink-Sakurada plots (b) of the neat MPP and its blends 
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137 Kaur, I.; Gautam, N.; Deepika Khanna, N. J Appl Polym Sci 2008, 107, 2238–2245. 
138 Jang, J.; Lee D.K. Polymer 2004, 45, 1599–1607. 
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In order to study the compatibility of the blends, DSC, X-Ray diffraction and 

SEM analysis were carried out. 

The DSC (see table 5.7) thermogram of starting processed MPP (melt mixed 

analogously to the blends) shows a melting endotherm at 143-161 ºC and a Tg at 

-10 ºC. The DSC curves of blends revealed that the Tg and melting process of 

virgin polypropylene is not apparently affected so much with the addition of 

flame retardant additives, indicating the absence of interactions such as co-

crystallization within the polypropylene phase.139 All this seems to indicate a 

poor compatibility of flame retardants with polypropylene. In principle, if the 

blend is rather incompatible, the Tg of polymeric additives is expected to be 

seen at the temperature collected in table 5.7; however, the small proportion of 

additive added into the blend, probably avoid the observation of these Tg’s. 
 

Table 5.7 Differential scanning calorimetry data* 

Sample Tonsetb (ºC) Tpeakc (ºC) d∆H1(J/g) e∆H2 (J/g) Tgf (ºC) Tgaditive
g (º C) 

MPPa 144 154 83 83 -10  
B13 142 153 73 80 -9 83 
B14 144 154 70 78 -13 71 
B15 143 154 81 89 -10 45 
B16 143 155 73 80 -9 Not observed 

     *  The calorimetric data were recorded from the second heating scan  
    a This sample was extruded analogously to the blends, but contains no additive        
     b  Onset temperature of melting endotherm 
      c  Peak temperature of melting endotherm 
      d  Melting enthalpy per gram of blend 
      e  Melting enthalpy per gram of MPP 
      f  glass transition temperature 
      g  glass transition temperature of neat polymeric additives  

 

The degree of crystallinity of MPP and its blends was calculated by using 

∆Hºmelting =209 J/g, reported as the melting enthalpy of 100 % crystalline PP (see 

table 5.8).140 As can be seen, the degree of crystallinity of MPP remained 

unaltered when blended with polymeric flame retardant additives, with the 

exception of blend B15 where a slight increase in crystallinity was observed.  
 
                                                 
139 Kontopoulou, M.; Wang, W.; Gopakumar, T.G.; Cheung, C. Polymer, 2003, 44, 7495-7504. 
140 Avella, M; Martuscelli, E.; Raimo, M.; Partch, R.; Gangolli, S. G., Pascucci, B. J Mater Sci  
     1997, 32, 2411-2416. 
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Table 5.8 Degree of cristallinity of MPP and its blends 

Degree of cristallinity determined by 
DSC 

Degree of cristallinity determined by 
X-Ray Sample 

Xc (%)* Xc (%) 
MPP** 40 37 

B13 38 43 
B14 37 37 
B15 43 46 
B16 39 41 

    * Degree of cristallinity obtained from ∆H2.  
    ** This sample was extruded analogously to the blends, but contains no additive.  

 

X-ray diffraction analysis was performed on standard samples of virgin 

polypropylene and samples blended with polymeric flame retardant additives 

under the conditions described in the experimental section. The results, as seen 

in figure 5.6, show that only the monoclinic α form was present in all cases, 

because there are no peaks at 2θ=16.1º associated with β form (hexagonal).141 

This is in agreement with the fact that the commercial samples of isotactic 

polypropylene, prepared with the traditional heterogeneous Ziegler-Natta 

catalysts, generally are in the stable α form.142 

The degree of crystallinity for each sample was obtained also by X-Ray 

diffraction as detailed in the experimental part. In this approach, the amorphous 

contribution to the scattering was taken into account through a broad diffraction 

band. From the table 5.8, where are related the degrees of crystallinity obtained 

from X-Ray diffraction and DSC analysis, respectively, it could be observed, 

that the results obtained by both techniques are comparable. Moreover, the 

blends do not present significant changes compared to virgin PP, with the 

exception of blend B15, already mentioned. It could be that the aliphatic 

additive, while  being not miscible, had little bit more compatibility with the 

matrix than the others, so that the additive particle could act as heterogeneous 

nucleating agents for the PP molecules.  
 

                                                 
141 Yamaguchi, M.; Miyata, H.; Nitta, K-H. J Appl Polym Sci 1996, 62, 87-97. 
142 De Rosa, C.; Auriemma, F.; Spera, C. Macromol Symp 2004, 218, 113-123. 
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Figure 5.6 X-Ray diagrams of virgin MPP and its blends 
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The morphology of the blends and virgin MPP (melt mixed analogously to the 

blends, but that contains no additive) was studied by SEM observation of the 

fracture surfaces of samples subjected to impact tests. The results are presented 

in figure 5.7. 

 
Figure 5.7 SEM micrograph of the fracture surface of virgin MPP and its blends 

 

a) MPP                                                                        b) B13 
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c) B14                                                                             d) B15 

 
e) B16 

 
 

As seen in figure 5.7 a), the virgin MPP presents a smooth and homogenous 

surface, evidencing a britle fracture of the sample. Figure 5.7 b) and d) are 

similar to virgin MPP, however small particles of additives well dispersed and 

covered by a layer of the polypropylene matrix could be observed. In figure 5.7 

c) and e) the additive particles are poorly dispersed into the MPP matrix, thus 

indicating a strong incompatibility between the polymers.  Therefore, it must be 

concluded that although all the blends are incompatible the dispersion of 

polymeric additives is acceptable in blends B13 and B15 and not in blend B14 

and B16. However, it should be noticed that the latter samples showed a more 

ductile fracture, as evidenced by the appearance of multiple fracture planes. 
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It must be noted that, regarding the flame retardancy of a blend in general the 

low compatibility is not a problem; however, this can negatively affect the 

mechanical properties of the final blend.  

Further, we will discuss the flame retardancy behaviour of the prepared blends. 

This study was performed by TGA and LOI measurements.  

Figure 5.8 shows the thermogravimetric curves of neat MPP (melt mixed 

analogously to the blends, but contains no additive) and its blends in nitrogen 

atmosphere. These curves were obtained by heating the samples at 10ºC/min. 

From the curves it can be observed that the neat MPP showed one step of weight 

from 400 to 500ºC, while all the blends displayed an additional degradation step 

in the range 200-300ºC. This additional weight loss process can be attributed to 

the decomposition of the additives, starting by dehydration reaction.  
 

Figure 5.8 Thermogravimetric thermograms of virgin MPP and its blends 

100 200 300 400 500 600
0

20

40

60

80

100

%
 w

ei
gh

t

T(ºC)

 MPP
 B13
 B14
 B15
 B16

 
This step appears at slightly lower temperature in B14 with respect to the other 

blends, probably due to its higher content in –OH groups. Table 5.9 shows the 

onset temperature of weight loss and the temperature of the maximum rate of 

weight loss for both steps. Also the char yield at 600 ºC is indicated. 
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As can be seen in figure 5.8 and table 5.9, the second weight loss step of the 

blend, which is related to MPP degradation, is slightly delayed with respect to 

virgin MPP. Therefore, it seems that the dehydration of additives leads to a 

charred layer which can protect polypropylene from the degradation. From this 

point of view, no differences can be observed between the different additives 

used.  

At the end of the second degradation step neat MPP was completely volatilized 

at 500 ºC, whereas all the blends lead to a certain residue at 600 ºC. The highest 

amount of residue was associated to B14, as higher content of -OH groups 

favoured charring. Due to lower amount of -OH groups, B13, B15 and B16 lead 

to a lower char yield. B15 shows a very low char yield, probably due to the 

aliphatic nature of some of the side groups introduced.  

Therefore, it seems that, as already discussed for the blends prepared by 

dissolution, also in this case the polymeric additives confer flame retardancy to 

the blends prepared by melt mixing. 
 

Table 5.9 Thermogravimetric results of neat MPP and its blends* 

Step 1 Step 2 Sample Additive
Tonseta  (ºC) Tmax.b (ºC) Tonseta (ºC) Tmaxb (ºC)

Char yield at 600 ºC 
(%) 

MPP    403 460 0 
B13 A1’ 237 246 432 480 4.2 
B14 A5’ 225 240 429 481 9.3 
B15 B’ 236 249 431 481 0.9 
B16 C’ 233 249 432 483 3.5 

* All these blends contain 1 % wt. of phosphorous 
a Onset temperature of weight loss process 
b Temperature of the maximum rate of  weight loss  

 

In figure 5.9 LOI value of neat MPP and its blends are shown. As can be seen, 

even with a small content of phosphorous (1% wt.), LOI values increased (to 

some extent) comparing with the virgin polypropylene. It was also observed a 

reduction of dripping during the burning for additivated polypropylene. Thus, 

also LOI value indicate that flame retardancy is conferred by additive A1’, A5’, 

B’ and C’ when they are melt mixed with MPP. 
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Figure 5.9 LOI values of neat MPP and its blends obtained by melt mixing 
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Finally, studies of the mechanical properties of the blends prepared by melt 

mixing were performed. This is interesting in order to see whether the 

mechanical properties can be negatively affected by the addition of flame 

retardant additives, especially if we consider that the blends seem to be poorly 

compatible. For this study, tensile tests and impact tests were carried out.  

Tensile test is a fundamental materials test in which a sample is subjected to 

uniaxial stress until failure. These tests were performed in a single tension mode 

at an elongation rate of 20 mm/min. The results, collected in table 5.10, display 

the tensile modulus, the yield point, the rupture stress and the rupture strain. The 

tensile modulus is a measure of the stiffness of an elastic material; it is defined 

as the ratio of the uniaxial stress over the uniaxial strain in the range of stress in 

which Hooke's law holds. The yield point is the stress at which a material begins 

to deform plastically. The rupture stress and the rupture strain correspond to 

these magnitudes, when a sudden complete failure of the specimen occurs.  
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Table 5.10 Tensile tests results 

Sample Additive content 
(% wt.) 

Modulus 
(MPa) 

Yield point 
(MPa) 

Rupture stress 
(MPa) 

Rupture strain 
(%) 

MPP  970±0.2 25±1.9 32±5.8 625±166.7 
B13 9.0 1063±0.3 26±1.0 21±1.1 12±2.5 
B14 10.8 1135±0.2 21±1.3 19±1.2 5±0.8 
B15 11.6 1027±0.2 22±0.9 19±0.5 16±3.9 
B16 11.6 1032±0.2 17±2.9 16±2.4 4±1.2 

  

Regarding the modulus and the yield point, the values obtained in case of blends 

do not vary significantly with respect to the one of the starting MPP. Thus, the 

blends show a similar behaviour as MPP and it seems that the addition of the 

flame retardant does not affect so much these mechanical properties. On the 

other hand, the rupture stress and mainly the rupture strain decrease respect to 

the starting polypropylene. Therefore, the elastic behaviour is not observed to be 

altered by the addition of flame retardant, whereas the plastic behaviour is 

markedly altered. It can be mentioned that the blends B13 and B15 show a 

slightly better rupture strain respect to the other blends, which is probably due to 

a better compatibility between the corresponding additive and the matrix, as 

observed by SEM micrographs.  

In figure 5.10 tensile stress–strain curves of the virgin MPP and two of its 

blends are shown. Virgin MPP was elongated up to 625 % of the tensile strain 

without fracturing (figure 5.10.a), and its behaviour showed the typical 

characteristics for ductile polymers: stress whitening followed by necking and 

drawing. Brittle behaviours were observed in the blends; here, the tensile 

specimens failed right after the linear elastic region of the stress–strain curves 

(figure 5.10.b). This behaviour can be due to the poor interfacial interaction 

between matrix and flame retardant additives, while GPC results showed that 

polypropylene molecular weight was not affected by the presence of the 

additives. In order to explain this result, it must be pointed out that the flame 

retardant additives are not well blended, but only simple dispersed on the 

matrix. It is known that strength and elongation at break for filled systems 

depend on the state of the polymer-particle interface, because when the adhesion 
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between filler and matrix is poor, a reduced stress transfer occurs at the 

interface, facilitating void opening and crack propagation.143,144  

 

Figure 5.10. Tensile stress–strain curves 
a) MPP 
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143 Ratanakamnuan, U.; Aht-Ong, D. J Appl Polym Sci 2006, 100, 2717-2724. 
144 Persico, P.; Ambrogi, V.; Carfagna, C.; Cerruti, P; Ferrocino, I.; Mauriello, G. 
      Polym Eng Sci 2009, 49, 1447–1455. 
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In summary it can be concluded that from the point of view of the elastic 

behaviour of the material, the properties are not affected on adding the flame 

retardant additives, while the plastic behaviour of the material is observed to be 

markedly altered. It must be noted that in most applications where PP must be 

ignifugated, like for example automotive industry, the elastic behaviour of the 

material is crucial, while the plastic behaviour is not. Therefore, used additives 

do not affect so negatively the applicability of PP, while they increase slightly 

its flame retardancy. However, the poor compatibility between matrix and 

additives is a problem from the point of view of plastic behaviour and would be 

desirable to improve it.  

As mentioned the PP- based blends are widely used. In many cases a good 

resistance to physical impulsive shocks is needed. For example, in automotive 

industry, where the PP forms part of many items, the impact resistance is very 

important (especially in the vehicle crashes). Thus, it is convenient to perform 

the study of the impact tests for the materials where the toughness is required. 

The Charpy impact test is an ASTM standard method of determining impact 

strength. Generally a notched sample is used to determine it. The sample is 

placed on a support that holds extremities and is struck by a hammer on the 

opposite side of the notch that makes his swing in the plane of the same notch. 

From the energy absorbed by the sample, its impact strength is determined. The 

results are reported as energy lost per cross-sectional area unit at the notch. The 

impact strength of starting MPP and its blends are related in figure 5.11. In all 

blends slightly higher values of the impact strength were obtained. This can be 

associated with the poor compatibility. For example, as can be seen from the 

figure 5.11, the blends B14 and B16 shows the highest impact strength which is 

in concordance with the SEM micrograph, which showed a more ductile 

fracture, even though the worst compatibility was observed in case of these 

blends. As already mentioned for the tensile tests, this can be explained by 

considering that the polymeric additives are only dispersed into the matrix on 
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lengthscales of tenths of microns, which make the additive particles acting as 

fillers, and conferring greater toughness to the matrix even with poor filler-to-

matrix interaction. In fact, the impact energy is partly dissipated in a 

mechanism, where the crack advancement is hindered by the presence of the 

stiffer additive particles. Crack deflection and twisting occur as a growing crack 

encounters the matrix-particle interfaces, which act primarily ahead of the crack 

tip to impede crack advance.145  

 
Figure 5.11 Impact results of MPP and its blends 
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Therefore, the obtained blends do not affect the properties of starting MPP from 

elastic point of view of the material; actually the elastic modulus is slightly 

improved. Also the flame retardancy is slightly improved. The main limitation is 

that the samples are not compatible.  

Thus, we intend to compatibilize these systems by adding into the blending 

some compatibilizing agents. Regarding them, maleic anhydride (MAH), diethyl 

maleate (DEM), acrylic acids (AA) grafted systems were reported by several 

researchers to act as compatibilizers for thermoplatics.146-148 E. Passaglia et. al. 

showed that by grafting diethyl maleate and maleic anhidryde onto styrene-b-

(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS) a good 

                                                 
145 Ritchie, R.O. Nat Mater 2011,10, 817–822.  
146 Passaglia, E.; Ghetti, S.; Picchioni, F.; Ruggeri, G. Polymer 2000, 41, 4389–4400. 
147 Ma, Z-L.; Zhao, M.; Hu, H-F.; Ding, H-T.; Zhang, J. J Appl Polym Sci 2002, 83, 3128–3132. 
148 Chiang, W-Y.; Hu, C-H. Eur Polym J 1996, 32, 3, 385-390.  
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compatibilizer was obtained for polyamide blends.  Z.-L. Ma et. al showed that 

α-methacrylic acid grafted polypropylene (PP-g-MAA) can act as compatibilizer 

for polypropylene systems. The polypropylene grafted by maleic anhidryde (PP-

g-MAH) was also reported, by K. Oksman et. al.149 and many others150-152 as a 

good compatibilizer between PP and polar fillers. Thus, we chose the PP-g-

MAH as compatibilizer for the blends, since our additives are very polar. As it is 

well known, a compatibilizer affects the compatibility between two phases by 

interacting with both the filler and the matrix, thus forming physical or chemical 

links between the components. It is shown that PP-g-MAA had an excellent 

compatibilizing effect on intumescent flame retarded PP (IFR/PP) composites; 

as for the essence of the compatibilization of this type, probably the PP 

segments of PP-g-MAA formed miscible blends with the bulk PP through 

cocrystallization. On the other hand, considering the abundant NH2 groups on 

the surfaces of IFR (melamine in excess) and the polar part of PP-g-MAA 

(MAA), probably the PP-g-MAA can react with IFR through an amino link.147 

A similar behaviour should occur when we treat the PP-based blends with the 

PP-g-MAH. The PP segments from the PP-g-MAH will interact with the bulk 

PP by cocrystalization, while the polar part of PP-g-MAH (MAH), will probably 

react with the OH groups coming from the additives. 

Therefore, the blends were melt mixed analogously to the blends without 

compatibilizing agent, as described in the experimental section (see table 5.3), 

but adding compatibilizer in a 10% wt. with respect to the amount of 

polypropylene. A sample which contains the compatibilizer, but contains no 

additive, was also mixed in order to compare (MPP’). Also in these cases, the 

blends contain all 1% wt. of phosphorous. The new blends were also hot 

                                                 
149 Oksman, K.; Clemons, C.J Appl Polym Sci 1998, 67, 1503-1513. 
150 Yuan, X; Zhang, Y.; Zhang, X. JAppl Polym Sci 1999, 71, 333-337. 
151 Henry, G.R.P.; Drooghaag, X.; Rousseaux, D.D.J.; Sclavons, M.;  Devaux, J.;   
     Marchand- Brynaert, J.; Carlier, V. J Polym. Sci Part A: Polym Chem 2008, 46,2936–2947. 
152 Kandola, B. K.; Smart, G.; Horrocks, A. R.; Joseph, P.; Zhang, S.Hull, T.R.; Ebdon, J.;  
     Hunt, B.; Cook, A J Appl Polym Sci 2008, 108, 816-824. 
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pressed, to obtain thin films and plates necessary for the characterization. Then, 

the mechanical properties (tensile tests and Charpy impact tests) were 

performed. The results are collected in table 5.11. 

 
Table 5.11 Mechanical properties of virgin MPP and its blends containing compatibilizer. 

 * This sample contains compatibilizer, but contains no additive.

Tensile tests Impact test 
Sample Modulus 

(MPa) 
Yield point 

(MPa) 
Rupture stress

(MPa) 
Rupture strain

(%) 
Impact strength 

(KJ/m2) 
MPP 970±0.2 25±1.9 32±5.8 625±166.7 1.81±0.2 

MPP’* 1051±0.2 28±0.7 28±4.8 513±4.8 1.84±0.2 
B13’ 1161±0.3 26±2.3 21±1.8 7±2.0 1.79±0.2 
B14’ 1211±0.3 23±1.5 21±1.0 6±1.3 2.18±0.3 
B15’ 1114±0.3 24±1.5 20±1.2 9±4.0 1.92±0.1 
B16’ 1142±0.1 21±0.8 17±3.0 4±0.9 1.57±0.4 

 
It can be observed from tensile tests, that also in these cases the elastic 

behaviour of the material is maintained more or less unaltered, but maybe it is 

even slightly improved respect to the samples without compatibilizer. The 

plastic behaviour is also strongly affected. On the other hand, the impact 

strength is lower in all cases respect to the samples without compatibilizer.  

ESEM observation of the fracture surfaces of samples subjected to impact tests 

showed that the blends present similar morphology to the starting MPP’. There 

was not observed significant separation of additives, such as in the case of 

blends without compatibilizing agent. As an example, figure 5.12 shows the 

ESEM micrographs of the starting MPP’ and the blend B14’, which was one of 

less compatible in the case of blends without compatibilizer. 
 

Figure 5.12 ESEM micrograph of MPP’ (a) and one of its blends, B14’ (b) 

 

                                                                        

(b) (a) 
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The calorimetric behaviour was also studied. As can be seen from the table 5.12, 

Tg and melting temperatures are not altered with respect to the blends without 

compatibilizer (see table 5.7). On the other hand, the melting enthalpy and the 

degree of crystallinity decreased significantly with respect to the non 

compatibilized samples (table 5.7 and 5.8). Also this suggests an improvement 

in compatibility when the PP-g-MAH is added to polypropylene. Thus, PP-g-

MAH disturbs polypropylene crystallization, but the addition of additives did 

not change this behaviour too much. 
 

Table 5.12 Calorimetric data of MPP’ and its blends* 

 

Sample Tonsetb 

( ºC) 
Tpeakc 

( ºC) 
d∆H1 
( J/g) 

e∆H2 
( J/g) 

Tgf 

( ºC) 
Degree of cristallinityg 

xc (%) 
MPP’a 144 151 58 58 -12 28 
B13’ 144 151 58 63 -10 30 
B14’ 142 150 55 61 -9 29 
B15’ 142 151 57 64 -9 31 
B16’ 140 151 55 61 -11 29 

                     * The calorimetric data were recorded from the second heating scan 
                     a This sample contains the compatibilizer, but contains no additive 
                     b Onset temperature of melting endotherm 
                     c Peak temperature of melting endotherm 
                     d Melting enthalpy per gram of blend 
              e Melting enthalpy per gram of PP (MPP and PP-g-MAH) 
                     f Glass transition temperature 
                     g This was calculated as the ratio of ∆H2 and ∆Hº

melting of 100% crystalline PP (209 J/g)  
 

From the point of view of the flame retardancy, the compatibilized blends 

present similar behaviour to the non compatibilized additivated PP blends. The 

TGA data (see table 5.13 and figure 5.13) show a certain char residue at 

elevated temperatures. The blends loss weight process begins earlier than that of 

starting polypropylene, probably due to dehydration reactions taking place on 

the additives during heating, but the main process of weight loss is delayed. 

They also show a small but detectable increase in LOI.  
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Table 5.13 Thermogravimetric data of MPP’ and its blends 

Step 1 Step 2 
Sample 

Additive 
content 
(% wt.) 

Tonseta

( ºC) 
Tmax.b 

( ºC) 
Tonseta 

( ºC) 
Tmax.b

( ºC) 

Char yield at 600 ºC 
(%) 

LOI 
(%) 

MPP’    402 462 0 17.4 
B13’ 9.0 236 256 431 476 3.0 19.2 
B14’ 10.8 223 242 429 476 3.3 19.0 
B15’ 11.6 238 258 429 476 3.0 19.3 
B16’ 11.6 231 259 431 475 2.7 18.8 

* All these blends contain 1 % wt. of phosphorous 
a Onset temperature of the weight loss process 
b Temperature of the maximum rate of the weight loss  

 

Figure 5.13 TGA curves of MPP’ and its blends 
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All the results above mentioned show that the used compatibilizer (PP-g-MAH) 

seems to confer a certain improvement of the compatibility between the 

polymeric additives and the polypropylene matrix, as expected; but it affect 

negatively the impact resistance of the material, probably due to the flame 

retardant additives behave less as filler. Compatibilization leads to a reduction 

of the additive particle dimensions, likely reducing the probability of crack 

deflection and twisting during crack propagation.  Regarding the elastic modulus 

and the flame retardancy, no remarkably differences were detected.  
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4. Conclusions 

To end this chapter, we can report that the prepared blends show as an essential 

limitation a poor compatibility. It seems that the polymeric additives are only 

dispersed into the polypropylene matrix, and no interaction between them 

occurs. Even so, the flame retardancy improvement was reached in certain 

extent, confirming that the used polymeric additives could act as flame 

retardants where the phosphate moiety introduced presumably act as a 

carbonization promoter. The mechanical properties of the starting MPP were not 

affected so much from the elastic point of view of the material, but they were 

significantly altered from the plastic point of view. We must pointed out, that in 

the automotive industry, were the PP-based blends consist the major used 

thermoplastic, a great importance represent the elastic behaviour of the material, 

which in our case is not affected negatively, even improved slightly, thus 

permitting a properly use of the obtained blends. 

The compatibilization attempt with the PP-g-MAH, showed a slightly 

improvement into the compatibility, but worsens some of the mechanical 

properties that are very important for the use of the material.  
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Conclusions 

• Novel polymeric flame retardant additives have been prepared by 

chemically modifying PVA with different moieties containing 

phosphorous, reported as good flame retardant promoter structures.  

• The synthesis of novel polymeric flame retardant additives based on 

polyketones, containing phosphorous and/or nitrogen in their structure, 

was studied in order to obtain intumescent systems.  

• A novel polymeric flame retardant additive has been obtained by 

chemical modification of a hydroxylated polyaziridine with phosphorous 

containing moiety.  

• All synthesized polymeric additives lead to high char yield on TGA 

curves and a delay of the thermal degradation process is observed (with 

respect to starting material). Therefore, they are good candidates to act as 

flame retardant additives through the formation of charred barriers on the 

condensed phase.  

• From the thermal degradation study performed for one of the BIC (1-

oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]-octane) derivatives, it can be 

concluded that the additive acts mainly as a flame retardant by formation 

of a carbonaceous layer, produced from dehydration reactions. 

• BIC derivatives can be envisaged also to act in the gas phase, since they 

evolved on burning volatile phosphate derivatives. 

• Polypropylene blends with BIC derivatives have been prepared. 

Although a poor compatibility has been observed, LOI measurements 

showed that a certain improvement in their flame retardancy was 

reached.  

• The mechanical properties of the starting PP were not affected so much 

from the elastic point of view of the material, but they were significantly 

altered from the plastic point of view. This does not limit so much the 
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most common application of PP where the toughness is required, such as 

automotive industry.  

• The compatibilization attempt with the PP-g-MAH, showed a slightly 

improvement into the compatibility, but not for the mechanical 

properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



 175

References 
 
1. Asua, J.M. Polymer Reaction Engineering, Blackwell Publishing Ltd., 2007, 1-28. 
2. Edbon, J.R.; Jones, M.S. In Concise Polymeric Materials Encyclopedia; Salamone, 

J.C., Ed.; CRC Press 1996, 2397-2411. 
3. Hamerton, I.; Lu, S-Y. Prog Polym Sci 2002, 27, 1661-1712 
4. Bourbigot, S.; Duquesne, S. J Mat Chem 2007, 17, 2283-2300 
5. Anna, P.; Marosi, Gy.; Bertalan, Gy.; Márton, A; Szép, A. J Macromol Sci Part B 2002, 

41,1321-1330. 
6. Innes, J.D. Flame Retardants and Their Market Applications. Flame Retardants-101: 

Basic Dynamics, Past Efforts Create Future Opportunities, Fire Retardant Chemicals 
Associations: Baltimore 1996, 61-69.  

7. Chen, L.; Wang, Y.-Z. Polym Adv Technol 2010, 21, 1-26. 
8. Tolinski, M. Additives for Polyolefins, Elsevier Inc., 1st edition, 2009, 61-62. 
9. Lewin, M.; Weil, E.D. In Fire Retardant Materials; Horrocks, A.R. and Price, D., Eds.;   
       CRC Press, 2001, 31-68. 
10. Cullis, C.F.; Hirschler, M.M. The Combustion of Organic Polymers, Clarendon Press:  
       Oxford, 1981, p 300. 
11. Perez, R. M.; Sandler, J.K.W.; Altstädt, V.; Hoffmann, T.; Pospiech, D.; Artner, 

J.;Ciesielski, M.; Döring, M.; Balabanovich, A.I.; Schartel, B. J Mat Sci 2006, 41,  
               8347-8351. 

12. Chung, Y.-J.; Kim, Y.; Kim, S.J. Ind Eng Chem 2009, 15, 888-893. 
13. Wang, J.; Xin, Z. J Appl Polym Sci 2010, 115, 330-337. 
14. Sundarrajan, S.; Kishore, K.; Ganesh, K. Indian J Chem Sect A 2001, 40, 41-45. 
15. Morgan, A.B.; Tour, J.M. Macromolec 1998, 31, 2857-2865. 
16. Levchik, S.V.; Weil, E.D. J Fire Sci 2006, 24, 345-364 
17. Edbon, J.R.; Price, D.; Hunt, B.J.; Joseph, P.; Gao, F.; Milnes, G.J.; Cunliffe, L.K.  

               Polym Degrad Stab 2000, 69, 267-277. 
18. Aseeva, R.M.; Laikov, G.E. Adv Polym Sci 1985, 70, pp. 171. 
19. Shmakov, A.G.; Shvartsberg, V.M.; Korobeinichev, O.P.; Beach, M.W.; Hub, T.I.; 

Morgan, T.A. Mendeleev Commun 2007, 17, 186-187. 
20. Macdonald, M.A.; Gouldin, F.C.; Fisher, E.M. Comb Flame 2001, 125, 668-683. 
21. Jayaweera, T.M.; Melius, C.F.; Pitz, W.J.; Westbrooka, C.K.; Korobeinchev, O.P.;  

Shvartsberg, V.M.; Shmakov, A.G.; Rybitskaya, I.V.; Curran, H. J. Comb Flame 2005, 
140, 103-115. 

22. Ranganathan, T.; Zilberman, J.; Farris, R.J.; Coughlin, E.B.; Emrick, T.  
               Macromolec 2006, 39, 5974-5975. 

23. Chen, H.; Luo, Y.; Chai, C.; Wang, J.; Li, J.; Xia, M. J Appl Polym Sci 2008, 110,   
       3107-3115. 
24. Seibold, S.; Schafer, A.; Lohstroh, W.; Walter, O.; Döring, M.; J Appl Polym Sci 2008,   
       108, 264-271. 
25. Spontón, M.; Ronda, J.C.; Gália, M.; Cádiz, V. J Polym Sci Part A: Polym Chem  
       2007, 45, 2142-2151.     
26. Ren, H.; Sun, J.; Zhao, Q.; Zhiqi, C.; Ling, Q.; Zhou, Q.; J Appl Polym Sci, 2009,  
       112, 761-768. 
27. Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. J Polym Sci Part A: Polym Chem, 2006, 

44, 6717-6727.  
28. Canadell, J.; Mantecón, A.; Cádiz, V. J Polym Sci Part A: Polym Chem, 2007, 45,  
       1980-1992. 
29. Canadell, J; Hunt, B.J.; Cook, A.G.; Mantecón, A.; Cádiz, V. J Polym Sci Part A:   
       Polym Chem, 2006, 44, 6728-6737. 
30. Ge, X.G.; Wang, C.; Hu, Z.; Xiang, X.; Wang, J.S.; Wang, D.Y.; Liu, C.P.; Wang, Y.Z.  

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



 176

        J Polym Sci Part A: Polym Chem, 2008, 46, 2994-3006. 
31. Hoffman, T.; Pospiech, D.; Häuβler, L.; Komber, H.; Voigt, D.; Harnisch, C.; Kollann,  
       C.; Ciesielski, M.; Döring, M.; Graterol, R.P.; Sandler, J.; Altsädt, V. Macromol Chem  
       Phys 2005, 206, 423-431. 
32. Yang, S.C.; Kim, J.P. J Appl Polym Sci 2007, 106, 2870-2874. 
33. Yang, S.C.; Kim, J.P.; J Appl polym Sci 2008, 108, 2297-2300, 
34. Zhao, C.S.; Chen, L.; Wang, Y.Z. J Polym Sci Part A: Polym Chem 2008, 46, 5752-   
       5759. 
35. Xing, W.Y.; Hua, Y.; Song, L.; Chen, X.L.; Zhang, P.; Ni, J.X. Polym Degrad Stab 

2009, 94, 1176-1182. 
36. Youssef, B.; Lecamp, L.; El Khatib, W.; Bunel, C.; Mortaigne, B.; Macromol Chem  
        Phys  2003, 204, 1842-1850. 
37. Edizer, S.; Sahin, G.; Avci, D. J Polym Sci Part A: Polym Chem 2009, 47, 5737-5746. 
38. Yang, H.; Yang, C.Q.; He, Q. Polym Degrad Stab 2009, 94, 1023-1031. 
39. Guan, J.; Yang, C.Q.; Chen, G. Polym Degrad Stab 2009, 94, 450-455. 
40. Cireli, A.; Onar, N.; Ebeoglugil, M.F.; Kayatekin, I.; Kutlu, B.; Culha, O.; Celik, E. J  
       Appl Polym Sci 2007, 105, 3747-3756 
41. Spontón, M.; Ronda, J.C.; Gália, M; Cádiz, V. Polym Degrad Stab 2009, 94, 145-150 
42. Hwang, H.J.; Lin, C.Y.; Wang, C.S..; J Appl Polym Sci 2008, 110, 2413-2423; 
43. Chen, X.T.; Sun, H.; Tang, X.D.; Wang, C.Y. J Appl Polym Sci 2008, 110, 1304-1309. 
44. Negrell-Guirao, C.; Boutevin, B. Macromolec 2009, 42, 2446-2454.  
45. Levchik, S.V.; Weil, E.D. Polym Int 2008, 57,431-448. 
46. Spontón, M.; Mercado, L.A.; Ronda, J.C.; Galià, M.; Cádiz, V. J Polym Sci Part A:  

               Polym Chem 2005, 43, 6419-6430. 
47. Wu, K.; Song, L.; Hu, Y.; Lu, H.; Kandola, B.K.; Kandare, E. Prog Org Coating 2009,  
        65, 490-497. 
48. Spontón, M.; Ronda, J.C.; Galià, M.; Cádiz, V. Polym Degrad Stab 2009, 94, 145-150. 
49. Liu, P.; Song, J.; He, L.; Liang, X.; Ding, H.; Li, Q. Eur Polym J 2008, 44, 940-951. 
50. Chiang, C-L.; Chang, R-C. Composites Sci Technol 2008, 68, 2849-2857. 
51. Glodek, T.E.; Boyd, S.E.; McAninch, I.M.; LaScala, J.J. Composites Sci Technol 2008,  
       68, 2994-3001. 
52. Pavlidou, S.; Papaspyrides, C.D. Prog Polym Sci 2008, 33, 1119-1198. 
53. Hamdani, S.; Longuet, C.; Perrin, D.; López-Cuesta, J.M.; Ganachaud, F. Polym 

Degrad Stab 2009, 94, 465-495. 
54. Touval, I. in Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition; 

Kroschwitz, J.L. Ed. Wiley: New York 1993, 10, 941-943. 
55. Cullis, C.F.& Hirschler, M.M. The combustion of Organic Polymers, Clarendon Press,  
       Oxford 1981. 
56. Lyons, J. W. Chemistry and Uses of Fire Retardants. Wiley Interscience, New York 

1970. 
57. Martín, C.; Ligadas, G.; Ronda, J.C.; Cádiz, V. J Polym Sci Part A: Polym Chem 2006,  
       44, 6332-6344. 
58. Martín, C.; Ronda, J.C.; Cádiz, V. J Polym Sci Part A: Polym Chem 2006, 44, 3503- 
       3512. 
59. Martín, C.; Ronda, J.C.; Cádiz, V. J Polym Sci Part A: Polym Chem 2006, 44, 1701- 
       1710. 
60. Liu, L.; Ye, Z. Polym Degrad Stab 2009, 94, 1972-1978. 
61. Martín, C.; Hunt, B.J.; Edbon, J.R.; Ronda, J.C.; Galià, M.; Cádiz, V. J Polym Sci Part  
       A: Polym Chem 2005, 43, 6419-6430. 
62. Gao, J.; Jiang, C.; Ma, W. Polym Composite 2008, 29, 274-279. 
63. Yildiz, B.; Seydibeyoglu, M.O.; Güner, F.S. Polym Degrad Stab 2009, 94, 1072-1075. 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



 177

64. Lomakin, S. M.; Zaikov, G. E. Ecological aspects of polymer flame retardancy. 
Utrecht: VSP; 1999. 

65. Schreiber, H.; Saur, W. Makromol Chem Macromol Symp 1993, 74, 165-171. 
66. Hsiue, G.-H.; Liu, Y.-L.; Tsiao, J. J Appl. Polym. Sci. 2000, 78, 1-7. 
67. Grassie, N.; Scott, G. Polymer Degradation and Stabilisation Cambridge University,  

1985 
68. Lewin, M. Physical and chemical mechanisms of flame retarding of polymers. In: Le 

Bras  M.; Camino G.; Bourbigot S; Delobel R. Fire retardancy of polymers-the use of      
intumescence. Cambridge: The Royal Society of Chemistry; 1998, 1-32. 

69. Morgan, A.B.; Bundy, M. Cone calorimeter analysis of UL-94 V-rated plastics. Fire 
Mater 2007, 31, 257–283. 

70. Zhang, S.S; Xu, K.; Jow, T.R. J Power Sources 2003, 113, 166-172. 
71. Xie, F.; Wang, Y-Z.; Yang, B.; Liu, Y. Macromol Mater Eng 2006, 291, 247-253.  
72. Peng, H.-Q.; Zhou, Q.; Wang, D.-Y.; Chen, L.; Wang, Y.-Z. J Ind Eng Chem 2008, 14, 

589-595. 
73. Wang, D.-L.; Liu, Y.; Wang, D.-Y.; Zhao, C.-X.; Mou, Y.-R., Wang, Y.-Z. Polym 

Degrad Stab 2007, 92, 1555-1564. 
74. Armarego, W.L.F.; Perrin, D.D. Purification of Laboratory Chemicals, 4th edition, 

1996, pp. 275, 317, 143. 
75. White, D.W.; Bertrand, R.D.; McEwen, G.K.; Verkade, J.G. JACS 1970, 92, 24, 7125-

7135. 
76. Muthiah, C.; Praveen Kumar, K.; Aruna Mani, C.; Kumara Swamy, K.C. J Org Chem 

2000, 65, 3733-3737. 
77. Lin, Q.; Unal, S.; Fornof, A.R.; Armentrout, R.S.; Long, T.E. Polymer 2006, 47, 4085-

4093. 
78. Ward, D.E.; Rhee, C.K. Tetrahedron Lett 1991, 32, 49, 7165-7166. 
79. Stevenson, D.R; Harr, M.E.; Jakupca, M.R. J Vinyl Addit Techn 2002, 8, 1, 61-69. 
80. Li, X.; Ou, Y.; Shi, Y. Polym Degrad Stab 2002, 77, 383-390. 
81. Tsuda, M. Makromol. Chem 1964, 72(1), 174-182. 
82. Arranz, F.; Sanchez-Chaves, M.; Gill, F. Angew Makromol Chem 1980, 92, 121-131. 
83. Fernandez, M.D.; Fernandez, M.J. J Appl Polym Sci 2008, 107, 2509-2519. 
84. Mormann, W; Wagner, T. Macromol Chem Phys 1996, 197, 3463-3471. 
85. Gimenez, V.; Reina, J.A., Mantecon, A.; Cadiz, V. Polymer 1999, 40, 2759-2767. 
86. Xiao, S.; Huang Y.M., R.; Feng, X. J Membr Sci 2006, 286, 245-254. 
87. Gimenez, V.; Reina, J.A., Mantecon, A.; Cadiz, V. J Polym Sci Part A: Polym Chem 

1996, 34, 925-934. 
88. Pritchard, J.G. Polyvinyl Alcohol. Basic proprieties and uses, McDonald Technical & 

Scientific, London, 1970, p. 83. 
89. Said, M.A.; Kumara Swamy, K.C.; Veith, M.; Huch, V. J Chem Soc Perkin Trans 1 

1995, 2945-2951. 
90. Champetier, G.; Monnerie, L. Introduction à la Chimie Macromoléculaire, Ed. Masson 

& cie, Paris, 1969, p.426. 
91. Wang, D.-Y.; Liu, Y.; Wang, Y.-Z.; Perdomo Artiles, C.; Richard Hull, T.; Price, D. 

Polym Degrad Stab 2007, 92, 1592-1598. 
92. Alexy, P.; Káchová, D.; Kršiak, M.; Bakoš, D.; Šimková, B. Polym Degrad Stab 2002, 

78, 413-421. 
93. Gillman et al. Thermal Decomposition Chemistry of Poly(vinyl alcohol). Char 

Characterization and Reactions with Bismaleimides. BFRL, NIST. Proceedings of ACS 
Symp. Ser. 599 (Fire and Polymers II), Gaithersburg 1995, 161-185.  

94. Shaulov, A. Yu.; Lomakin, S. M.; Zarkhina, T. S.; Rakhimkulov, A. D.; Shilkina, N. 
G.; Muravlev, Yu. B.; Berlin, Al. Al. Dokl Phys Chem 2005, 403, 2, 154-158. 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



 178

95. Zhao, C.-X.; Liu, Y.; Wang, D.-Y.; Wang, D.-L.; Wang, Y.-Z. Polym Degrad Stab 
2008, 93, 1323–1331. 

96. Zaikov, G. E.; Lornakin, S. M. Polym Degrad Stab 1996, 54, 223-233. 
97. Nguyen, C.; Kim, J. Polym Degrad Stab 2008, 93, 1037-1043. 
98. Li, B.;  Xu, M.  Polym Degrad Stab 2006, 91, 1380-1386. 
99. Fontaine,G.; Bourbigot, S.; Duquesne, S.  Polym Degrad Stab 2008, 93, 68-76. 
100. Estevão, L. R.M.; Nascimento, R. S. V. Polym Degrad Stab 2002, 75, 517–533. 
101. Lagarona, J.M.; Vickersb, M.E.; Powella, A.K.; Davidsona, N.S. Polymer 2000, 41, 

3011-3017. 
102. Tae Lee, J.;  Alper, H. Chem Commun 2000, 2189-2190. 
103. Wei et al. Express Polym Lett 2008, 2, 6, 440–448. 
104. Tian, J.; Guo, J.-T.; Zhang, X.; Zhu, C.-C.; Xu, Y.-S. Iran Polym J 2007, 16, 7, 495-

503. 
105. Zhang, Y.; Broekhuis, A.A.; Stuart, Marc C. A.;  Picchioni, F. J Appl Polym Sci 2008, 

107, 262–271  
106. Liu, Y.-L.; Chiu, Y.-C. J Polym Sci Part A: Polym Chem 2003, 41, 1107-1113. 
107. Giménez-Pedrós, M.; Tortosa-Estorach,C.; Bastero,A.; Masdeu-Bulto, A.M.; Solinas, 

M; Leitner, W. Green Chem 2006, 8, 875–877. 
108. Campos-Carrasco, A. Doctoral Thesis: Universitat Rovira i Virgili, Carbon dioxide as  

solvent and C1 building block in catalysis 2011, ISBN:/DL:T. 1023-2011. 
109. Schäfer, A.; Seibold, S.; Lohstroh, W.; Walter, O.; Döring, M. J Appl Polym Sci 2007, 

105, 685-696. 
110. Joseph, P.; Tretsiakova-Mcnally, S. Polym Adv Technol 2011, 22, 395-406. 
111. Chen, L.; Wang, Y.-Z. Materials 2010, 3, 4746-4760. 
112. Gaan, S.; Sun, G.; Hutches K.;  Engelhard, M.H. Polym Degrad Stab 2008, 93, 99-108. 
113. Armarego, W.L.F.; Perrin, D.D. Purification of Laboratory Chemicals, 4th edition, 

1996, pp. 334, 342. 
114. McConnell, R.L.; Coover Jr, H.W. J Org Chem 1959, 24, 630-635. 
115. Kumaraswamy, S.; Senthamizh Selvi, R.; Kumara Swamy, K.C. Synthesis 1997, 207-

212. 
116. Gaan, S.; Sun, G.; Hutches K.;  Engelhard, M. H. Polym Degrad Stab 2008, 93, 99-108. 
117. Furniss, B.S.; Hannaford, A.J; Smith, P.W.G; Tatchell, A.R. Vogel’s Textbook of 

Practical Organic Chemistry, 5th edition, Pearson Education, 1989, p.782. 
118. Roy, A.; Kundu, D.; Kumar Kundu, S.; Majee, A.; Hajra, A. Open Catalysis Journal, 

2010, 3, 34-39. 
119. Gimenez, V.; Reina, J.A.; Mantecon, A.; Cadiz, V. Acta Polym 1999, 50, 187-195. 
120. Saaby, S; Baxendale, I.R.;  Ley, S.V. Org Biomol Chem  2005, 3, 3365- 3368. 
121. Saito, S.; Yamamoto, Y.  Chem Rev 2000, 100, 2901-2915. 
122. Rivas, B. L.;  Geckeler, K. E.; Bayer, E. Eur Polym J 1991, 27, 1165-1169. 
123. Šakalytė, A.; Giamberini, M.; Lederer, A.; Reina, J. A. J Polym Sci Part A: Polym 

Chem Submitted. 
124. Divir, H.; Gottlieb, M.; Daren, S.; Tartakovsky, E. Compos Sci Technol 2003, 63, 

1865-1875. 
125. Lv, P.; Wang, Z.; Hu, K.; Fan, W. Polym Degrad Stab 2005, 90, 523-534. 
126. Li, Q.; Jiang, P.; Su, Z.; Wei, P.; Wang, G.; Tang, X. J Appl Polym Sci 2005, 96, 854-

860. 
127. Chiu, S.-H.; Wang, W.-K. J Appl Polym Sci 1998, 67, 989-995. 
128. Trongtorsak, K.; Supaphol, P.; Tantayanon, S. Polym Test 2004, 23, 533–539. 
129. Malucelli, G.; Priola, A.; Ferrero, F.; Quaglia, A.; Frigione, M.; Carfagna, C. Int J 

Adhes Adhes 2005, 25, 87–91. 
130. Tomasetti, E.; Legras, R., Henri-Mazeaud, B.; Nysten, B. Polymer 2000, 41, 6597- 

6602 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



 179

131. Weidenfeller, B.; Höfer, M.;  Schilling, F. Composites Part A 2002, 33, 1041–1053. 
132. Rodionov, A.G.; Domareva, N.M.; Baulin, A.A.; Ponomareva, Ye.L.; Ivanchev, S.S. 

Polym Sci USSR 1981, 23, 1724-1732. 
133. Tzoganakis, C.; Vlachopoulos, J.; Hamielec, A.E. Polym Eng Sci 1989, 29, 390-396.  
134. Parent, J.S.;  Bodsworth, A.; Sengupta, S.S.; Kontopoulou, M.; Chaudhary, B.I.; Poche, 

D.; Cousteaux, S. Polymer 2009, 50, 85–94. 
135. Mendrek, B.; Trzebicka, B. Eur Polym J 2009, 45, 1979–1993. 
136. Zhang, C.; Zhou, Y.; Liu, Q.; Li, S.; Perrier, S.; Zhao, Y. Macromolec 2011, 44, 2034-

2049. 
137. Kaur, I.; Gautam, N.; Deepika Khanna, N. J Appl Polym Sci 2008, 107, 2238–2245. 
138. Jang, J.; Lee D.K. Polymer 2004, 45, 1599–1607. 
139. Kontopoulou, M.; Wang, W.; Gopakumar, T.G.; Cheung, C. Polymer, 2003, 44, 7495-

7504. 
140. Avella, M; Martuscelli, E.; Raimo, M.; Partch, R.; Gangolli, S. G., Pascucci, B. J Mater 

Sci 1997, 32, 2411-2416. 
141. Yamaguchi, M.; Miyata, H.; Nitta, K-H. J Appl Polym Sci 1996, 62, 87-97. 
142. De Rosa, C.; Auriemma, F.; Spera, C. Macromol Symp 2004, 218, 113-123. 
143. Ratanakamnuan, U.; Aht-Ong, D. J Appl Polym Sci 2006, 100, 2717-2724. 
144. Persico, P.; Ambrogi, V.; Carfagna, C.; Cerruti, P; Ferrocino, I.; Mauriello, G. Polym 

Eng Sci 2009, 49, 1447–1455. 
145. Ritchie, R.O. Nat Mater 2011,10, 817–822.  
146. Passaglia, E.; Ghetti, S.; Picchioni, F.; Ruggeri, G. Polymer 2000, 41, 4389–4400. 
147. Ma, Z-L.; Zhao, M.; Hu, H-F.; Ding, H-T.; Zhang, J. J Appl Polym Sci 2002, 83, 3128–

3132. 
148. Chiang, W-Y.; Hu, C-H. Eur Polym J 1996, 32, 3, 385-390.  
149. Oksman, K.; Clemons, C.J Appl Polym Sci 1998, 67, 1503-1513. 
150. Yuan, X; Zhang, Y.; Zhang, X. JAppl Polym Sci 1999, 71, 333-337. 
151. Henry, G.R.P.; Drooghaag, X.; Rousseaux, D.D.J.; Sclavons, M.;  Devaux, J.;  

Marchand- Brynaert, J.; Carlier, V. J Polym. Sci Part A: Polym Chem 2008, 46,2936–
2947. 

152. Kandola, B. K.; Smart, G.; Horrocks, A. R.; Joseph, P.; Zhang, S.Hull, T.R.; Ebdon, J.; 
Hunt, B.; Cook, A J Appl Polym Sci 2008, 108, 816-824. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                        
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



 

UNIVERSITAT ROVIRA I VIRGILI 
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF POLYMERIC FLAME RETARDANT ADDITIVES 
OBTAINED BY CHEMICAL MODIFICATION 
Silvana Sauca 
DL:T.282-2012 



                                                                                                              Appendixes 

 183

Appendix A. List of abbreviations 
 
ABS- Acrylonitrile butadiene styrene 
AcAc- Acetyl acetone  
AcOH- Acetic acid  
An- Aniline 
APP- Amorphous polypropylene  
ATR- Attenuated total reflection accessory  
 
BF3·Et2O- Boron trifluoride diethyl ether 
BF3·EtNH2- Boron trifluoride ethyl amine 
BIC- 4-Chloroformyl-1-oxo-2,6,7-trioxa-1-phosphabyciclo[2.2.2]octane 
 
Ca.- Approximately 
CaCl2- Calcium chloride 
cat.- Catalyst 
CDCl3- Deuterated chloroform 
CDDP- 2-Chloro-5,5-dimethyl-1,3,2-dioxaphosphorinane  
CDPO- 4-Carboxyphenyl-diphenyl-phosphine-oxide 
CH2Cl2- Dichloromethane 
CHCl3- Chloroform  
CO- Carbon monoxide 
CO2- Carbon dioxide 
(COCl)2- Oxalyl chloride 
COTBS- Alternating CO- 4-tert-butyl styrene copolymer 
13C NMR- Carbon magnetic nuclear resonance 
 
d1- Delay time 
D2O- Deuterated water 
DMAP- 4-(Dimethylamino)-pyridine  
DMF- N,N-dimethylformamide  
DMSO- Dymethyl sulfoxide 
DMSO-d6- Deuterated dymethyl sulfoxide 
DOPO- 9,10-Dihydro-9-oxa-10-phosphaphenantrene-10-oxide 
DPBC- 4-(Diphenyl-phosphinoyl)-benzoyl chloride  
DPD- 2,2-Dimethyl-1,3-propanediol  
DSC- Dynamic scanning calorimetry 
 
EPDM- Ethylene-propylene rubbers and elastomer 
Er(OTf)3- Erbium(III) trifluoromethanesulphonate  
ESEM- Environmental scanning electron microscope  
Et2O- Diethyl ether 
Et3N- Triethylamine  
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EtOH- Ethanol  
EVA- Ethyl(vinyl alcohol) 
 
FR- Flame retardant 
FT-IR- Fourier transform infrared  
 
GC-MS- Gas chromatography-mass spectrometry  
GPC- Gel permeation chromatography  
 
HBr- Hydrobromic acid 
HCl- Hydrochloric acid 
HDPE- High density polyethylene  
HEA- 1-(2-Hydroxyethyl)aziridine 
HIPP- High molecular weight isotactic polypropylene  
HIPS- High impact polystyrene  
1H NMR- Proton magnetic nuclear resonance 
HNO3- Nitric acid 
H3PO4- Phosphoric acid 
HRR- Heat release  
HRR- Rate of heat release   
 
i.e.- That is to say 
ICP-AES- Inductively coupled plasma atomic emission spectroscopy  
IFR- Intumescent flame retardant 
i-PP- Isotactic polypropylene 
 
KMnO4- Potassium permanganate  
 
La(OTf)3- Lanthanum(III) trifluoromethanesulphonate  
LDPE- Low density polyethylene  
LIPP- Low molecular weight isotactic polypropylene  
LOI- Limiting oxygen index  
LLDPE- Linear low density polyethylene 
 
MeOH- Methanol 
MLR- Mass loss rate                                                                                           
MnCl2- Manganese (II) chloride  
MnO2- Manganese (IV) oxide 
MPP- Moplen type polypropylene EP1X30F  
 
NH4VO3- Ammonium metavanadate 
NMP- 1-Methyl-2-pyrrolidinone 
OPVA- Poly(methyl ketone)  
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PBT- Poly(buthylene terephtalate)  
PCl3- Phosphorous trichloride 
Pcyc- 5,5-Dimethyl-1,3,2-dioxaphosphinan-2-one  
PE- Polyethylene  
PEPA- 1-Oxo-4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo(2.2.2)octane  
PER- Pentaerythritol  
PET- Poly(ethylene terephtalate) 
PhAc- Phenyl acetone  
PHEA- Poly[1-(2-hidroxyethyl)aziridine] 
P-N- Phosphorus-nitrogen 
31P NMR- Phosphorous magnetic nuclear resonance          
POCl3- Phosphorous oxychloride  
PP- Polypropylene  
PP-g- MAH- Maleic anhydride grafted polypropylene  
PVA- Poly(vinyl alcohol) 
PVC- Poly(vinyl chloride)  
Py- Pyridine  
 
RH- Relative humidity  
 
SAN- Styrene-acrylonitrile  
SEM- Scanning electron microscope   
SOCl2-Thionyl chloride 
 
TCE- 1,1,2,2-Tetrachloroethane 
TCE-d2- Deuterated 1,1,2,2-tetrachloroethane 
TFE- 2,2,2-Trifluoroethanol  
Tg- Glass transition temperture 
TGA- Thermogravimetric analysis  
TGA-MS- Thermogravimetric analysis combined with mass spectrometry 
THF- Tetrahydrofyrane  
THR- Total heat released  
TLC- Thin layer chromatography 
Tmax- Temperature of maximum rate of weight loss  
TMS- Tetramethylsilane 
TOL- Toluene 
Tonset- Onset weight loss temperature  
TR- Thermoplastic hydrocarbon resin  
TTI- Ignition time  
Tz- 3-Amino-1,2,4-triazine  
 
XRD- X-Ray diffraction  
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Appendix C. Stages, meeting contributions and publications 
 
Stages 
 
Three months stay (1st February- 2nd May 2009) at the Institute of Polymer 
Chemistry and Technology of CNR, Pozzuoli (Italy) under the supervision of 
Dr. Mario Malinconico.  
 
Meeting contributions 
 
• PVA Modificado con 4-Cloroformil-1-Oxa-1-Fosfa-2,6,7-Trioxabiciclo 
      [2.2.2]-Octano: Un Nuevo Aditivo Polimérico Potencialmente Retardante a     
      la Llama. 
      S. Saucă, J.A. Reina. 
      Poster. 
      X Raunión del Grupo Especializado de Polímeros (RSEQ y RSEF). 
      Avances en Materiales Poliméricos, Sevilla, 16-20 September, 2007, Spain. 
 
• Polímeros Fosforados Retardntes a la Llama Obtenidos por Modificación 

Química del Alcohol Polivinílico. 
      S. Saucă, J.A. Reina. 
      Prezentación oral. 
      IV Congreso de Jóvenes Investigadores en Polímeros (JIP2008) 
      Nuevos Retos en Materiales Poliméricos, Peñíscola (Castellón), 15-19 June,   
      2008, Spain 
 
• Flame Retardant Phosphorous-Containing Polymers Obtained by Chemical 

Modification. 
      S. Saucă, J.A. Reina. 
      Poster. 
      International Symposium Celebrating the 50th Anniversary of the Journal   
      polymer. 
      Frontiers in polymer science, Mainz, 7-9 June, 2009, Germany. 
 
Publications 
 
Flame Retardant Phosphorous-Containing Polymers Obtained by Chemically 
Modifying Poly(Vinyl Alcohol). 
Saucă, S; Giamberini, M; Reina, J.A. Polym. Degrad. Stab., Submitted. 
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