
Universitat de Lleida
Departament d’Informàtica i Enginyeria Industrial

TESI DOCTORAL

CSP problems as algorithmic benchmarks:

measures, methods and models.

Memòria de treball presentada per en Carles Mateu Piñol a la Universitat
de Lleida per a l’obtenció del t́ıtol de Doctor en Informàtica. El treball con-
tingut en aquesta memòria ha estat realitzat sota la direcció dels Dr. Ramón
Béjar Torres i Dr. Cèsar Fernández Camón.

Lleida, desembre de 2008

ii

No només t’he de
dedicar aquesta tesi,
t’he de dedicar tot el
que sóc, tot el que puc
ser.

iii

Acknowledgements

The list of people that should appear here is too long to fit. Too much
people, too much gratitute, too scarse is space allocated to give thanks. I
must, however, at least list some of the first ones that come to my mind, I
will always be in debt with them.

First of all I’m supposed to thank my advisors, only that, for this work
I did not had advisors, I was lucky enough to work with friends, César and
Ramón, thanks to them for everything.

The rest of the research group goes now, all of them have been there
when I needed something, even where there before I even needed anything,
thanks to all: Carlos, Felip, Jordi, Josep, Tere.

To all the friends, those who suffer our stress, those who share our joy.
To my family, they made me be me.

v

Abstract

On Computer Science research, traditionally, most efforts have been de-
voted to research hardness for the worst case of problems (proving NP com-
pleteness and comparing and reducing problems between them are the two
most known). Artificial Intelligence research, recently, has focused also on
how some characteristics of concrete instances have dramatic effects on com-
plexity and hardness while worst-case complexity remains the same. This
has lead to focus research efforts on understanding which aspects and prop-
erties of problems or instances affect hardness, why very similar problems
can require very different times to be solved.

Research search based problems has been a substantial part of artificial
intelligence research since its beginning. Big part of this research has been
focused on developing faster and faster algorithms, better heuristics, new
pruning techniques to solve ever harder problems. One aspect of this ef-
fort to create better solvers consists on benchmarking solver performance
on selected problem sets, and, an, obviously, important part of that bench-
marking is creating and defining new sets of hard problems.

This two folded effort, on one hand to have at our disposal new problems,
harder than previous ones, to test our solvers, and on the other hand, to
obtain a deeper understanding on why such new problems are so hard, thus
making easier to understand why some solvers outperform others, knowl-
edge that can contribute towards designing and building better and faster
algorithms and solvers.

This work deals with designing better, that is harder and easy to gen-
erate, problems for CSP solvers, also usable for SAT solvers. In the first
half of the work general concepts on hardness and CSP are introduced, in-
cluding a complete description of the chosen problems for our study. This
chosen problems are, Random Binary CSP Problems (BCSP), Quasi-group
Completion Problems (QCP), Generalised Sudoku Problems (GSP), and a
newly defined problem, Edge-Matching Puzzles (GEMP). Although BCSP
and QCP are already well studied problems, that is not the case with GSP
and GEMP. For GSP we will define new creation methods that ensure higher
hardness than standard random methods. GEMP on the other hand is a
newly formalised problem, we will define it, will provide also algorithms
to build easily problems of tunable hardness and study its complexity and
hardness.

On the second part of the work we will propose and study new methods
to increase the hardness of such problems. Providing both, algorithms to
build harder problems and an in-depth study of the effect of such methods
on hardness, specially on resolution time.

vii

Contents

1 Introduction 1
1.1 Motivation and Objectives . 3
1.2 Publications . 3
1.3 Contributions . 4
1.4 Overview . 6

2 Preliminary Concepts and Definitions 9
2.1 Basic Constraint Satisfaction Problem Definitions 10
2.2 Basic Graph Theory Definitions 12
2.3 State of the art on CSP benchmarking. 13

2.3.1 Problem collections . 14
2.3.2 Solver Competitions 16

3 Chosen CSP problems used as benchmarking problems 19
3.1 Problems choseen for this work 21
3.2 Other interesting problems 22
3.3 Random models . 22

3.3.1 Standard models . 23
3.3.2 Flawless models . 23

3.4 Quasigroup Completion Problems (QCP) 27
3.5 Generalised Sudoku Problems (GSP) 28

3.5.1 Generating complete Generalized Sudokus 29
3.6 Edge Puzzles . 31

3.6.1 Problem description and definitions 32
3.6.2 Generating Puzzles . 34

ix

4 Hardness of CSP problems 37
4.1 Worst case hardness . 38

4.1.1 Complexity of binary CSPs 38
4.1.2 Hardness of k-SAT . 41

4.2 Typical case hardness . 41
4.2.1 Phase Transition . 41

5 Hardening CSP problems 57
5.1 Balancing GSP . 58

5.1.1 Balanced Hole Patterns 58
5.1.2 Complexity patterns of Balanced GSP 62

5.2 Balancing Random BCSP . 76
5.2.1 Balancing the constraint language 78
5.2.2 Balancing the constraint graph 79
5.2.3 Experimental investigation 83

5.3 Balancing k-SAT models . 88
5.3.1 Related Work . 88
5.3.2 Hard SAT and n-ary CSP instances 90
5.3.3 Experimental investigation 95

6 Conclusions and future work 101

Bibliography 107

i

List of Figures

3.1 Relative error between both Eq. 3.4 and Eq. 3.7 (as per-
centage) against p, for some values of n and d. Dashed lines
depict where E[X] = 1 according to Eq. 3.7 27

3.2 Typical 9× 9 Sudoku puzzle 28
3.3 GS generation example . 30
3.4 6x6 size GEMP example with 12 inner colors 33
3.5 6x6 size two-set GEMP-F example with 4 frame colors and 3

inner colors . 33

4.1 Easy-hard-easy characterization on a forest fire simulation
lattice of size N as a function of p 43

4.2 Phase transition behavior on a forest fire simulation lattice of
size N as a function of p . 43

4.3 Fractal shapes of the maximum cluster and the corresponding
propagation time on a forest fire simulation lattice of size
N = 1000 for p = 0.5 . 44

4.4 Three dimensional representation of the hardness characteri-
zation of model B problems as a function pf p1 and p2 for 30
variables, domain 20 problems. 46

4.5 An example of easy-hard-easy pattern for RBCSP model B
problems and two derived hardening schemes, with 115 vari-
ables, domain 9 and 393 constraints as a function of the tight-
ness. See Chapter 5 for details of the new models. 48

4.6 Easy-Hard-Easy computational complexity patterns for QWH
order 30 problems and different GSP with same size 49

4.7 Backbone and computational complexity representation of
different size GSP . 49

4.8 Regression model for some computed hard peak GSP sizes . . 50

iii

4.9 Hardness characteristic for a one-set GEMP-F as a function
of the number of colors . 52

4.10 Hardness characteristic for a two-set GEMP-F as a function
of the number of colors . 53

4.11 Phase transition of the percentage of backbone variables for
a two-set GEMP-F . 53

5.1 Fully balanced GS hole poking example. (a) LS of order
√
s,

every cell is associated with a region block on the resulting
GS instance. (b) Resulting hole pattern where grayed cells
will be holes in the GS instance. 61

5.2 Grayed cells represent the initial assignment. The cells marked
with × cannot be completed after the two first columns are
completed in the way shown 62

5.3 Detail of the structure of the region columns. By construction
we have Sk,00,j = Sk

′,l
l,j and Sk,l0,j = Sk

′,0
l,j 68

5.4 First step in the reduction. The PLS is mapped to the set
of positions B of the Sudoku build as explained in the text.
Every symbol (a, 0) in the positions B will be swapped with
the symbol that appears in bold face in the same row and
region of (a, 0). 71

5.5 Second step in the reduction. 72
5.6 Empirical complexity patterns for singly balanced GSWH in-

stances with different block regions form factor and same size 74
5.7 Empirical complexity patterns for singly balanced GSWH in-

stances with different block shapes. 104 seconds time out . . 74
5.8 Comparison of the hardness of instances generated using sin-

gle, doubly balanced and fully balanced methods of punching
holes. Plot shows the rate of solved instances (using Min-
isat over 200 generated instances) for a specified time out in
seconds as a function of the number of holes 77

5.9 Random constraints versus balanced and symmetric balanced
constraints. On top, V stands for number of variables, D for
domain size and C for number of constraints. 84

5.10 Random graphs versus bi-regular and high girth graphs. . . . 85
5.11 Random CSPs versus balanced CSPs 87
5.12 Example of bipartite graphs with different expansion 90
5.13 Comparison of SAT generators. 95
5.14 Comparison of CSP generators. 99

iv

List of Tables

2.1 SATLIB problem classification 16

2.2 CSPLIB problem classification 16

3.1 Model A flawness probability when p1 = 0.5 and d = 4 for
values of p2 such that Eq. 3.2 holds 25

3.2 Values of p that give E[X] = 1 (pcrit) 26

4.1 Number of holes for the GSP that determines the phase tran-
sition location for different block sizes 51

4.2 Round of log10(E[X]) according to Eq. 4.4 for two-set GEMP-
F. Shadowed cells shows where the hardest problems have
been experimentally found . 55

5.1 Comparison of percentage of solved GSWH instances gener-
ated with three methods (singly, doubly, and fully balanced)
for putting holes, for instances at the peak of hardness. 500
instances per row with a 5,000 seconds time out 75

5.2 Median time (in seconds) for GSWH problems from Table 5.1
where the percentage of solved instances is greater than 50% 75

5.3 Comparison of solved GSWH instances with Minion [GJM06a]
and MAC [BR96] solvers (dual encoding used) 76

5.4 Comparison of lower and upper bounds on the treewidth for
the different graphs, with |edges| = (V/2) log2 V 86

5.5 Girth of bipartite graphs created by our algorithm, corre-
sponding to 3-SAT, 4-SAT and 5-SAT literal incidence graphs
for instances at the peak of hardness 94

v

5.6 Ratio of median time to solve all/only sat instances on peak
hardness between High Girth Bipartite, Literal and Random
generation methods . 96

5.7 Local search. Median time (seconds). Cutoff 1000s (10000s)
for 4SAT (5SAT) . 97

5.8 Median time (in seconds) for 3-SAT, 4-SAT and 5-SAT for
High-Girth with kcnfs, and regular XORSAT and HG-XORSAT
with minisat. Results only for best solver among satz, minisat
and kcnfs. 98

vi

List of Algorithms

3.1 Algorithm for generating GEMP(n, c) puzzles 35
5.1 Algorithm to create Doubly Balanced hole patterns in a given GS . 59
5.2 Algorithm to create Fully Balanced hole patterns in a given GS . . . 60
5.3 Algorithm for generation of high girth (k,−)-regular bipartite graphs

(V1 ∪ V2, E) . 92

1

1
Introduction

Although traditional research on problem hardness has been focused on un-
derstanding the complexity problems on their worst case (NP-completeness,
etc.), ongoing efforts are directed towards understanding why some charac-
teristics of problems, while not varying their inherent worst-case complexity
have so dramatic effects on typical case hardness, why varying constraint
balancing on very similar problems can suppose increases on hardness of
several orders of magnitude. Interesting behaviours of problems are that
of the existence of a easy-hard-easy phase transition and of the presence of
heavy tails.

In engineering, benchmarking and measuring are, and always have been,
critical and crucial processes. Performing benchmarks and getting measures
helps engineers refine their designs, compare between competing approaches
and solutions, and ascertain that changes suppose, really, benefits and en-
hancements. In AI CSP solver design and building is, apart from an ongoing
research effort, also an engineering process. Because of this benchmarking
and measuring is an important aspect of CSP solver design. Benchmarking
will help designers and developers to spot issues and potential enhancement
to their solvers, showing when, by what and, under which conditions, their
algorithms underperform, on which kind of problems solvers do better, on
what aspects of problems, and in which amount, affect and influence problem
resolution.

This work deals also with that aspect of benchmarking that is crucial
for having well crafted and well designed problem sets, that of having at our
disposal some set of problem families, with well known properties, tunable
hardness, easy to generate, and, potentially being really hard to solve. To
this end we have studied some problem families, Sudoku Problems, Edge
Matching Puzzles and some kind of Random Problems with some interesting
characteristics, from a hardness point of view.

To achieve our goals we have designed some methods to increase hard-

1

CHAPTER 1. INTRODUCTION

ness of those problems, so researchers will have at their disposal a broad
set of possible benchmark hardnesses. We have conducted extensive exper-
imentation on that problems to provide with deep understanding of their
hardness characteristics. And, in one case, Edge Matching Puzzles, we have
totally defined the problem class, providing the first experimental and an-
alytical study of its hardness and complexity, as well as the first empirical
studies on its solvability.

2

1.1. MOTIVATION AND OBJECTIVES

Contents

1.1 Motivation and Objectives 3
1.2 Publications . 3
1.3 Contributions . 4
1.4 Overview . 6

1.1 Motivation and Objectives

Benchmarking against real-world problems, sometimes called in the research
community industrial-crafted, is, obviously interesting, but, from a research
point of view, not enough. To properly benchmark problems we have to be
able to reproduce once and again experiments. We also have to be able to
perform several, in the hundreds or thousands order, experiments to asymp-
totically measure our solver behaviour, having the faster solver in one con-
crete problem instance doesn’t guarantee that we have the faster solver for
that class of problems.

Concerning the concrete problems included in our test set, they must
be as diverse as possible relating to the characteristic we are interested in
measure.

Problem homogeneity poses some handicaps when measuring their hard-
ness characterization, leading in some cases, to misunderstand their partic-
ular behavior. Additionally, when performance measurements in algorithms
is pursued, as it is usually the case, homogeneity will impede us from ob-
taining useful measures as the effect of characteristics diversity will not be
reflected on the results. Even more, if we use problems not very hard for
measuring, then differences between solvers may go unnoticed.

From all the above statements it is clearly needed by the problem solving
community to have available as much sets as possible of hard problems, easy
to generate (it will not have much sense, otherwise, that problems are as
hard to generate as to solve them), of varying hardness, of, potentially, high
hardness and with very well defined and studied characteristics.

The aim of this work, then, is to facilitate to researchers willing to do
benchmarking some problem classes with a deep study on their hardness
characteristics, with fast and convenient generation methods, with several
hardness magnitudes, easily decided by the researcher on generation time.

1.2 Publications

Some of the results and findings of this thesis have already been published
in journals and conference proceedings. Those publications are listed here,
in chronological order:

3

CHAPTER 1. INTRODUCTION

• Béjar, R., Fernández, C., and Mateu, C. Statistical Modelling of CSP
Solving Algorithms Performance In Proceedings of the CP2005.

• Ansótegui, C., Béjar, R., Fernández, C., Gomes, C., and Mateu, C.
The impact of Balance in a highly structured problem domain. In
Proceedings of the AAAI06.

• Ansótegui, C., Béjar, R., Fernández, C., and Mateu, C. On Balanced
CSPs with High Treewidth. In Proceedings of AAAI’2007.

• Ansótegui, C., Béjar, R., Fernández, C., and Mateu, C. Hard SAT and
CSP instances with Expander Graphs In International Symposium on
Artificial Intelligence and Mathematics, 2008.

• Ansótegui, C., Béjar, R., Fernández, C., and Mateu, C. Generating
Hard SAT/CSP Instances Using Expander Graphs In Proceedings of
the AAAI08.

• Ansótegui, C., Béjar, R., Fernández, C., and Mateu, C. From High
Girth Graphs to Hard Instances. In Proceedings of the CP2008.

• Ansótegui, C., Béjar, R., Fernández, C., and Mateu, C. Edge Matching
Puzzles as Hard SAT/CSP Benchmarks. In Proceedings of the CP2008.

• Ansótegui, C., Béjar, R., Fernández, C., and Mateu, C. How Hard is a
Commercial Puzzle: the Eternity II Challenge. In volume 184 of Fron-
tiers in Artificial Intelligence and Applications - Artificial Intelligence
Research and Development. IOS Press.

• Béjar, R., Fernández, C., and Mateu, C. Bounding the Phase Transi-
tion on Edge Matching Puzzles. Submitted to ISMVL 2009.

1.3 Contributions

The main contributions of this work can be summarized as follows:

• We did extensive empirical tests and statistical analysis to identify
which problem characteristics have more incidence on problem hard-
ness (see [BFM05]). That study provided us with a handful of param-
eters that have significant relation with problem hardness (significant
from a statistical point of view). From that handful set of parameters
there was one, treewidth, with the highest impact on hardness as was
expected.

• The first structured problem we have studied is Sudoku (Generalised
Sudoku Problems, GSP). In GSP we studied how to balance con-
straints to increase hardness, and that we did through balancing holes

4

1.3. CONTRIBUTIONS

patterns in GSWH problems. As it arises, obviously, from the encod-
ing, constraints and constraintness depend directly, among some other
things, from where are holes located on the problem. We started from
a poking model called singly, that corresponds to the balancing model
already studied for Quasigroup With Holes (QWH) problems. From
there we defined two more levels of balancing (doubly and fully), both
newly defined. We performed then experimentation that concluded,
as we expected, that as balance increases, hardness grows sharply.
We provided also explanations on why this effect occurs and why is
so sharp (published also in [ABF+06]). For all these hole punching
methods we provided algorithms and implementations.

• In the random binary CSP research area we considered how we could
increase hardness of CSPs. We considered using the sparsest con-
straint graphs to increase such hardness. We followed two different
approaches for this. First we achieved high treewidth on constraint
graphs by using algorithms to create such graphs with high expan-
sion, that we did because previous results linked graph high expansion
with high treewidth. We used two different algorithms to get higher
expansions, one, using regular or quasi-regular generation methods,
the other using high girth graphs. Second we balanced domain values
occurrences on constraint tuples achieving highly symmetrical con-
straints that offer no hints to solving heuristics to choose which values
are more promising during early levels of solving tree exploration (see
[ABFM07]).

• We designed and implemented methods to generate such problems,
for any parameter setting available for traditional B CSP model, this
way we could compare our models with model B problems. The re-
sult shows that such hardened problems are no marginally harder but
orders of magnitude harder.

• We considered also a method to increase expansion of incidence graphs
for k-SAT and n-ary CSP formulae. This method works by generat-
ing bipartite high-girth graphs. For k-SAT it is known that a high
graph expansion implies a high resolution with, consequently implying
higher time to solve problems. We studied the impact of such method,
comparing it to other balancing methods ([BS96], [BDIS05]), with
significative gains.

• We also experimented with using our highly expansive bipartite graphs
to increase the hardness of some specially hard satisfiable problem
instances for resolution based methods, namely the regular k-XORSAT
problem ([Jär06]). Modifying the method to build the incidence matrix

5

CHAPTER 1. INTRODUCTION

of the equation system associated with that problem using our graphs
we achieved a dramatic hardness increase.

• We studied also Edge Matching Puzzles (GEMP), a NP-complete prob-
lem, and formalised its definition, designing 3 variants (GEMP, one-
set GEMP-F and two-set GEMP-F), each of different hardness and
characteristics. We have also designed generating algorithms for the
3 variants, and for each one we created both always-satisfiable and
regular generators.

• We performed an extensive experimental investigation on GEMP hard-
ness, resulting in an empirical location of the phase transition and char-
acterization of hardness (even for always-satisfiable problems, locating
a phase transition from easy to hard to easy). To carry that extensive
experimentation, and being GEMP a newly defined problem, we had
to devise both a SAT and a CSP encoding for those problem families.
After initial experimentation we were also able to defined some novel
heuristics, specially designed with GEMP in mind, that perform much
better than regular heuristics. At last, we also defined and located the
phase transition of Edge Matching Puzzles analytically as that kind of
problems is not yet profoundly studied. See ([ABFM08a] and specially
[ABFM08b]).

1.4 Overview

This work is structured as follows. First chapter is this one, an introduction,
an overview of goals and results of the thesis, a list of resulting publications,
and this section that gives an broad overview of the structure of the work.
First there is a chapter where some common definitions and concepts on
CSP, SAT and graph theory are introduced, these concepts will be used
through all the rest of the work. A common notation on CSP, constraint
graphs, etc. is also presented, this is the notation used on all the rest
of the thesis. There is also a section that gives a broad overview of the
state of research on CSP benchmarking, explaining which are the common
practices when it comes to benchmark or measure algorithms and solvers,
highlighting some shortcomings of such practices and introducing the need
for harder easily generable problems. The reader can skip this chapter and
go directly into some of the later ones, referring back to this introduction as
needed, or can read all the definitions if he is not familiar with some of the
concepts. The third chapter presents the chosen problems for our research,
introduces their most important characteristics, characterizing them and
showing how instances of such problems are generated. Following that, in
chapter 4, we will give an detailed analysis on where hardness of CSP, or
search problems in general, resides, on what defines problem hardness in the

6

1.4. OVERVIEW

worst case or in the typical case. Later on we will present some methods and
algorithms that can be used to generate problems harder than the typical
instances for each problem family presented, showing how the fine-tuning
of some parameters during problem generation translates directly into very
hard problem instances, why this happens and how those parameters affect
solvers and algorithms to show this behaviour. Then some global conclusions
are drawn and we present some potential enhancements as well as future
work and research deriving from our results.

7

2
Preliminary Concepts and

Definitions

A beginning is the time for taking the most
delicate care that the balances are correct. This
every sister of the Bene Gesserit knows.

Princess Irulan
Dune.

Frank Herbert

In this chapter we will introduce some of the concepts and notations that
will be used during the rest of this work. Some of this concepts will be used
thoroughly during all the work so it will be interesting to keep an eye on
them as future references, although readers already familiar with notations
and concepts related to CSP problems can easily skip the first sections and
refer to it later if needed. Along with CSP concepts some more general
concepts on graph theory are also presented with the same aim, to give
reader a context and reference to all the uses later in the work. We will also
introduce how and when are CSP problems used as benchmarks. We will also
present a brief survey on which problems are usually used in competitions
and problem libraries and why is it important to have generators for such
problems with tunable hardness, and, if possible, tunable characteristics.

9

CHAPTER 2. PRELIMINARY CONCEPTS AND DEFINITIONS

Contents

2.1 Basic Constraint Satisfaction Problem Definitions 10

2.2 Basic Graph Theory Definitions 12

2.3 State of the art on CSP benchmarking. 13

2.3.1 Problem collections 14

2.3.2 Solver Competitions 16

2.1 Basic Constraint Satisfaction Problem Defini-
tions

First we will define what a Constraint Satisfaction Problem is, modelling it
as a graph of constraints. But before entering into the formal definition, one
more informal and crude approach can be stated as: A Constraint Satisfac-
tion Problems is that problem of finding which values for some questions
(variables) fit without violating some restrictions (constraints)1.

Definition 2.1 (Constraint Satisfaction Network). A finite constraint sat-
isfaction network, N = (X,D,C) is defined as a triplet consisting, a set of n
variables, X = {x1, x2, . . . , xn}, a set of domains, D = {D(x1), D(x2), . . . ,
D(xn)}, where D(xi) is the finite set comprising all possible values that can
be assigned to variable xi, and the set of constraints, C = {C1, C2, . . . , Cm}.
Each constraint Ci = 〈Si, Ri〉 is defined as a relation Ri over a subset
of variables Si = {xi1 , . . . , xik}, called the constraint scope. The relation
Ri may be represented extensionally as a subset of the Cartesian product
d(xi1) × · · · × d(xik). Elements ∈ Ri are called good tuples, and elements
∈ ((d(xi1)× · · · × d(xik)) \Ri) are called nogood tuples.

When working with random CSP instances it is a common practice to
assume that all variable domains are of the same size, |Di| > 2 ∀i. This
assumption simplifies notation and working without having, usually, any
kind of significance regarding results and conclusions.

Definition 2.2 (Assignment). An assignment v for a CSP instance 〈X,D,C〉
is a mapping that assigns to every variable xi ∈ X an element v(xi) ∈
d(xi). An assignment v satisfies a constraint 〈{xi1 , . . . , xik}, Ri〉 ∈ C iff
〈v(xi1), . . . , v(xik)〉 ∈ Ri.

1We can state it also positively as: A Constraint Satisfaction Problems is that problem
of finding which values for some questions (variables) fit while always satisfying some rules
(constraints)

10

2.1. BASIC CONSTRAINT SATISFACTION PROBLEM DEFINITIONS

Definition 2.3 (Solution of a Constraint Satisfaction Network). A solution
of a Constraint Satisfaction Network, N = (X,D,C), is an assignment of
values to all the variables in N such that all the constraints in C are satisfied.

Definition 2.4 (Constraint Satisfaction Problem). A Constraint Satisfac-
tion Problem consists in finding a solution to a given Constraint Satisfaction
Network or proving that such assignment does not exist.

During the rest of the text we will refer to a Constraint Satisfaction Prob-
lem to the Constraint Satisfaction Network together with the algorithms and
methods used to solve it.

Definition 2.5 (Binary Constraint Satisfaction Network). A binary con-
straint satisfaction network, C = (X,D,C) is defined as a set of n variables,
X = {x1, x2, . . . , xn}, a set of domains, D = {D(x1), D(x2), . . . , D(xn)},
where D(xi) is the finite set comprising all possible values that can be as-
signed to variable xi, and the set of constraints, C = {C1, C2, . . . , Cm},
where each Ck = (xk, xj) is a subset of the Cartesian product D(xk)×D(xj)
that specifies allowed combinations of values for the variables xk and xj.

Definition 2.6 (Constraint Graph). Given a Constraint Network N with
n variables is a graph G = (V,C) with V as the set of n vertexes, one for
each variable xi of N , and C as the set of c edges, one between each pair of
variables xi and xj such that there exists a constraint between them.

In case of a CSP with non-binary constraints, an edge in the constraint
graph indicates that these two variables appear together in the scope of
some constraint. So, for any constraint between k variables it will have a
set of k(k−1)/2 edges. There is also the more general concept of constraint
hypergraph, but we will not use hypergraphs in this thesis.

For binary CSP, and also for CSPs with bounded arity, the most general
parameter that allows to classify their complexity is the treewidth of its
constraint graph, as it will be discussed in Chapter 4.

Definition 2.7 (Treewidth). A tree-decomposition of a graph G = (V,E) [RS86]
is a pair (T, β), where T is a tree (V T , ET) and β : V T → 2V such that:

1. For every v ∈ V the set {t ∈ V T |v ∈ β(t)} is non-empty and connected
in T .

2. For every e ∈ E there is a t ∈ V T s.t. e ⊆ β(t).

The width of the tree-decomposition is max{|β(t)| |t ∈ V T } − 1 and the
treewidth of G (tw(G)) is the minimum width among all tree-decompositions.

11

CHAPTER 2. PRELIMINARY CONCEPTS AND DEFINITIONS

Finally, we define the variable and literal incidence graphs for k-SAT
and the literal incidence graph for n-ary CSPs, that are the base for the
hardening methods for k-SAT and n-ary CSPs that we present in Chapter 5.
It is important to note that our definition of literal incidence graph for n-
ary CSPs is not equivalent to the existing one recently used to derive some
results of worst-case harndess of n-ary CSPs [SS06].

Definition 2.8 (k-SAT incidence graphs). Given a k-SAT instance F with
set of clauses C, set of variables V and set of literals L, G(F) = (C ∪ V,E)
is its bipartite variable incidence graph such that (c, v) ∈ E if and only if
variable v appears in clause c. LG(F) = (C ∪ L,E) is its bipartite literal
incidence graph such that (c, l) ∈ E if and only if literal l appears in clause
c.

Definition 2.9 (CSP literal incidence graph). Given a CSP instance P =
〈X,D,C〉, we define the literal incidence graph as the bipartite graph LG(P) =
(NG∪L,E), where for every variable xi and domain value j ∈ dom(xi) there
is a vertex (xi, j) in L and for every nogood tuple ngij = (vj1 = d1, vj2 =
d2, . . . , vjk = dk) associated with a constraint Ci of arity k there is a vertex
ngij in NG and k edges, one for every pair (ngij , (vjj′ , dj′)).

2.2 Basic Graph Theory Definitions

Some definitions and basic concepts from graph theory will be used during
this thesis, specially in chapter 5.

Definition 2.10 (Undirected Graph). An undirected graph G is a pair
(V,E) where V is the set of vertexes and E is the set of undirected edges
{u, v}. The degree d(u) of a vertex u is the number of edges with an endpoint
in u. A k-regular graph is a graph where the degree of any vertex is k.

Definition 2.11. A bipartite graph G is a pair (L ∪R,E), where L is the
left partition and R is the right partition of the set vertexes, such that any
edge is of the form (l, r) with l ∈ L and r ∈ R. A (k1, k2)-regular bipartite
graph is a bipartite graph (L ∪ R,E) such the degree of any l from L is k1

and the degree of any r from R is k2. Observe that |L|k1 = |R|k2. We have
a (k1,−)-regular bipartite graph if we only fix the degree of vertexes in L to
k1, but the degrees for R are unfixed.

Definition 2.12 (Girth of a Graph). The girth of a graph G (g(G)) is
the length of the shortest circuit in G. If G is acyclic then, by definition,
g(G) =∞.

There is a limit on how large the girth can be, for a graph with V vertexes
and minimum degree d. This limit is 2 logd−1(|V |) [DSV03].

12

2.3. STATE OF THE ART ON CSP BENCHMARKING.

Definition 2.13. We say that a family F of k-regular graphs has high girth
if, for some constant 0 < C < 2, ∀G ∈ F , g(G) ≥ (C + o(1)) logk−1 |V |.

Random k-regular graphs have an expected girth slightly greater than
3 [MWW04], but there exist constructions of graphs with higher girth. The
construction with the highest girth, (4/3) logk−1(|V |), is that of [AS88].

Definition 2.14. The expansion of a subset X ⊆ V in G = (V,E) is defined
to be the ratio |N(X)|/|X|, where N(X) = {w ∈ V \X | ∃v ∈ X, {v, w} ∈ E}
is the set of outside neighbors of X.

When all the neighbors of X are inside X, we have expansion 0. We
consider a set high expanding when its expansion is greater than 1, that
means that the set of different outside neighbors of X is larger than X, so
it is well connected with the rest of the graph. So, informally we can define
an expander graph as a graph where for any, not too big, subset of vertexes
S its set of neighbors outside S is bigger than S.

Definition 2.15 (Expander Graph). We define an expander graph as a
graph G=(V ,E) that, for any, not too big, subset of vertexes S, its set of
neighbors in V \ S is bigger than S.

The following view of a graph as a communication network is also help-
ful to understand the expansion property. Consider the graph G, where
information retained by some vertex propagates, say in 1 unit of time, to
neighboring vertexes. Then the expansion measures the quality of G as a
communication network. If the expansion is high, information propagates
well [DSV03].

We can also classify graphs depending on their particular level of expan-
sion, as in the two following definitions.

Definition 2.16. An (α, c)-expander is a graph (V,E) such that every sub-
set of size at most α|V | has expansion at least c.

Usually, smaller sets will have better expansion, the limit being for α ≥
0.5, where expansion cannot be greater than 1. For the bipartite graphs
considered in this thesis we are mainly interested on the expansion of subsets
of the left part. So, we have the next definition.

Definition 2.17. A left (α, c)-expander is a bipartite graph (L∪R,E) such
that every subset of L of size at most α|L| has expansion at least c.

2.3 State of the art on CSP benchmarking.

When dealing with problem solving, specially if used to compare different
solvers/algorithms, benchmarks usually resort to measure only one parame-
ter, time. Simple time benchmarking, provides a fair tool to compare solvers

13

CHAPTER 2. PRELIMINARY CONCEPTS AND DEFINITIONS

between them, time based benchmarks let us check whether new solvers
are better, i.e. faster, than existing ones, and measure the degree of such
speedup. But there’s more than simply time accounting in benchmarking.

Not all search problems are equal, some are more balanced, some have
inner structure than solvers can exploit, some others require huge amounts of
memory, while others are small. With properly designed benchmark suites,
where those characteristics (balance, structure, etc) are well know along
with time spent on solving the benchmark problems will allow solver de-
signers to use results to discover weaknesses in their solvers, showing on
which problems their solver fails to perform, and, giving a clue on potential
optimization areas. Consequently, for a benchmark to be useful to mea-
sure time in solving it must be well documented, thoroughly studied and
analysed, and must be representative.

So far benchmarking is continually being used by solver and algorithm
designers to compare their work with previously existing work, showing this
way the achieved progress. Usually two factors are being used as mea-
sures for performance, time and backtracks, although sometimes consistency
checks is also taken into account see [van05, vLR06] for recent solver bench-
marks and competitions.

The first such parameter, time to solve a given problem or set of prob-
lems on equal hardware, somewhat captures efficiency of both algorithm
and implementation. It gives a ”real world” measure of solver performance,
rewarding both, algorithmic enhancements, better algorithms, propagators,
heuristics, etc. and implementation details, faster data structures, and every
implementation trick.

On the other hand, measures like number of backtracks try to capture
solving methods efficiency on the basis that a solver that makes fewer back-
tracks is using a better solving strategy and, thus, following a straighter path
to the solution. Using such measures obviates the effect that implementa-
tion has on performance, equating non-algorithmic details from the mea-
surements such as implementation language and optimization tricks. This
kind of benchmarks are very useful when comparing very different solvers
with really different implementations and running on different hardware.

The last before mentioned measure, number of consistency checks, comes
from the general assumption that consistency checks are very expensive
operations and should be minimised. This way methods that do partial
consistency or that do not require to do consistency checks along their search
tree traversal will have better score on such a measure.

2.3.1 Problem collections

One highly used source of benchmark problems are problem collections or
libraries, as CSPLIB[GW99] and SATLIB[HS]. A problem library is a repos-
itory, usually a web site, that collects, sorts, and standardises a set of prob-

14

2.3. STATE OF THE ART ON CSP BENCHMARKING.

lems related to some research community (SAT in SATLIB case, CSPs in
CSPLIB), in order to provide wide circulation and access to such problem
collections.

These resources provide developers and designers of solvers with a unified
collection of problems to use as benchmarks so programs are tested against
a common set of problems, equally defined and specified, thus allowing the
comparison of results. Such benchmark libraries are, usually, the source of
problems used when designing solver competitions. The greater advantage
for a research community, as CSP or SAT communities, on having at their
disposal one such resource as a problem library, is that this way researchers
have a unified view of sample or reference problems, i.e., when one researcher
refers to Social Golfer problem (CSPLIB prob010), the rest of the CSP
community has access to the same exact problem definition, from a common
repository. This greatly simplifies discussion among the research community.

Although having a common repository is important, the value of such
repositories will increase if it fulfills some conditions. Summarily, first prob-
lems must be clearly and correctly classified. Second, the library must be
kept up to date with state of the art problems to solve. It also must provide
several problems in several formats, providing also pointers or references to
conversion programs and format specification is of great help for researches,
having a code repository for dealing with file formats is, definitively a plus.

Problem taxonomies and classification

All problems in a problem library must be correctly classified and a clear
taxonomy used. Problem collections should be as comprehensive as possible,
covering as much kinds or classes of problems as possible, of course, without
leaving the research field area, an unfocused library can become also non
functional. They must also give clear definitions, parameters, characteris-
tics, etc. of all problems contained in the library, providing researchers, if
possible, of sample problems in as much standardised formats as possible.
Libraries must also be updated regularly with new problems, diverse infor-
mation on contained problems and solving techniques, specially when linked
to solver competitions .

Problem collections can be big, so researchers must have at their disposal,
an easy and clear method to locate the problems they are interested in. If we
look at existing problem libraries for SAT and CSP problems, SATLIB and
CSPLIB, we can see their classification criteria detailed in tables 2.1 and
2.2 respectively. Both libraries, as can be seen, use a very different criteria
for providing researchers with problems. SATLIB lists a small amount of
problem classes, without much classification, giving several instances of each
problem. On the other hand, CSPLIB, gives several problems divided on few
classes. When dealing with solver competitions we will see that taxonomies
used there are different than those used on problem libraries.

15

CHAPTER 2. PRELIMINARY CONCEPTS AND DEFINITIONS

Table 2.1: SATLIB problem classification
Problem Class Instances available
Uniform Random-3-SAT 3700
Random-3-SAT Instances and Backbone-
minimal Sub-instances

1000

Random-3-SAT Instances with Controlled Back-
bone Size

40000

”Flat” Graph Colouring, 3 colourable 1700
”Morphed” Graph Colouring, 5 colourable 901
Planning 10
All Interval Series 4
SAT-encoded Quasigroup (or Latin square) in-
stances

22

SAT-encoded bounded model checking instances 13
DIMACS Benchmark Instances 206
SAT Competition Bejing 16

Table 2.2: CSPLIB problem classification
Problem Class Number of problems
Scheduling 14
Design, configuration and diagnosis 13
Bin packing and partitioning 9
Frequency assignment 3
Combinatorial mathematics 19
Games and puzzles 14
Bio-informatics 1

Problem characterization

One really important aspect of problem repositories is providing researchers
not only with a succinct problem description and problem data but also
with as much metadata as possible, metadata relevant to the research field,
obviously. If, for each problem stored on a problem repository, researchers
have at their disposal several characteristic parameters, parameters that
can help explaining different behaviour between solvers on a given prob-
lem, or different performance of a solver on different problems, benchmarks
can provide with an interesting insight on performance bottlenecks, possible
enhancement areas, etc.

2.3.2 Solver Competitions

Another asset researchers have at their disposal to benchmark and test their
solver designs is competitions. Competitions are events, usually held along

16

2.3. STATE OF THE ART ON CSP BENCHMARKING.

some of the main conferences, where a contest confronts proposed solvers
between them to check which one is faster solving some predefined problems.
This competitions serve a dual purpose, first they stimulate competitive
development, there is a challenge, trying to be best that other teams, and
second, they suppose a real measure to compare effectiveness of solvers with
respect to the rest of the work of the research communities.

Being a much more dynamic and periodical event (competitions are usu-
ally held annually or biannually2), competitions are a powerful tool for re-
searchers. The results of such competitions are published afterwards and
become useful surveys of which is the state of the art on solver design (see
for example [ALMP08]).

2MaxSAT competitions are held every year, together with SAT Conference. SAT com-
petition are held every other year, the year with no SAT competition a similar event, SAT
Race is held. CSP competitions have been held, as of today, in 2005, 2006, and 2008,
during CPAI a workshop of CP congress.

17

3
Chosen CSP problems
used as benchmarking

problems

The worthwhile problems are the ones you can
really solve or help solve, the ones you can really
contribute something to. ... No problem is too
small or too trivial if we can really do something
about it.

Richard Feynman
Letter to Koichi Mano

History teaches the continuity of the
development of science. We know that every age
has its own problems, which the following age
either solves or casts aside as profitless and
replaces by new ones.

David Hilbert
Mathematical Problems

As we have seen before, there are several problems commonly used for
benchmarking. During this work we have narrowed our study to a few ones
that we will study in greater detail. Our election is, first, on fully randomly
generated problems, that is, problems without any kind of predefined set
of rules on whether variables have or not a constraint among them, or on
which values are allowed or not, the only permitted rules are those derived
on density or size restraints (mean number of constraints between variables,
total number of constraints, etc.) or those that we will define later, relative

19

CHAPTER 3. CHOSEN CSP PROBLEMS USED AS BENCHMARKING PROBLEMS

to balance properties of the problem, in order to selectively harden the prob-
lem. Then we have chosen some structured problems, namely Quasigroup
Completion Problems (QCP), Sudoku Problems (GSP) and Edge Matching
Problems (GEMP). Those chosen problems present some aspects that we
consider of the utmost importance for our experimentation; first they are
easily generable, we can build as many instances as we need, in a very short
time and with few computational resources, second, we have a broad range
of possible hardnesses and behaviours, and last, instances of those problems
are built programmatically, so there exists the possibility of modifying the
building algorithm, on real world instances taken from real problems, trying
to modify their structure is impossible.

20

3.1. PROBLEMS CHOSEEN FOR THIS WORK

Contents

3.1 Problems choseen for this work 21

3.2 Other interesting problems 22

3.3 Random models 22

3.3.1 Standard models 23

3.3.2 Flawless models 23

3.4 Quasigroup Completion Problems (QCP) . . . 27

3.5 Generalised Sudoku Problems (GSP) 28

3.5.1 Generating complete Generalized Sudokus 29

3.6 Edge Puzzles . 31

3.6.1 Problem description and definitions 32

3.6.2 Generating Puzzles 34

3.1 Problems choseen for this work

Our first election, random problems, is rather obvious, random problems are
the easier to generate, and are the most generic ones, being a obvious can-
didate to compare against more structured1? problems. Random problems
are also good candidates to benchmarking problems because as they lack
any kind of structure solvers cannot use any knowledge provided by prob-
lem structure as a lever to shorten resolution time, forcing solver designers
to use more generic approaches to solving thus avoiding problem-specific
solvers.

Two other problem families chosen for our study are two closely related
problem families, Latin Square (LS) problems and Sudoku (GS) problems.
Those are easily definable and popular problems, Latin Square consists on
filling a number matrix with numbers such that there are no repeated num-
bers in any row or column of the matrix. Sudoku problems are even more
popular than Latin Squares, they are based on LS, but defining some con-
tiguous block regions on the matrix and requiring an additional rule to be
satisfied, that all numbers inside a block region should also be different.
Those two problem sets are very popular on the research community be-
cause, even they are so easily defined, they can be serious challenges to
solving techniques, and not so big problems cannot be solved by state of the
art solvers.

1We understand structure from the mathematical point of view, that is, a problem
has structure if we can define some kind of rules that describe, more or less accurately,
the problem behaviour and characteristics; in our case, number of constraints, or which
variables have constraints between them, etc.

21

CHAPTER 3. CHOSEN CSP PROBLEMS USED AS BENCHMARKING PROBLEMS

The last chosen problem for this work, Generic Edge Mapping Puzzles
(GEMP), is, somewhat, related to LS and GS, as it is based on a popular
board game, that puzzles where players should place pieces that only match
one or various other pieces by their edge. These kind of puzzles received a
boost on popularity recently with the release of such a game, named Eternity
II, that offered a monetary prize (of 2 Million USD)2 to the first person to
solve it. GEMP problems pose a really hard challenge on solvers.....

3.2 Other interesting problems

There are several other problems usually used for benchmarking. In fact, any
problem that can be modelled as a Constraint Network or a SAT problem
can be used as a benchmark. Create new challenging problems or modelling
new real world problems3 as SAT or CSP problems is an ever ongoing line
of research, as new harder challenges are required to test newer and more
powerful solvers.

Although not studied on this work, those problems are worth mentioning
as they are often used as benchmarks. An outstanding problem family,
XOR-SAT problems, will be briefly described here because, when combined
with problems generated using the techniques of section 5.3, that combined
problems result in some very hard problems.

3.3 Random models

Random problems are, roughly defined, those created by defining, randomly,
constraints between randomly chosen pairs of variables on randomly chosen
domain values for such variables. Those kind of random generation can
be fine tuned using several parameters, namely, number of constraints to
define, tightness of constraints between variables, and obviously number of
variables and size of variable domains. As we will see such choices can have
a noticeable effect on problem hardness as well as in problem behaviour, and
we have, also, a set of choices on the method used for choosing constraints,
variables and values. Such models can be equally defined for binary CSPs
as well as for n-ary CSPs, as usual with CSP research, as most efficient
algorithms and methods are developed for binary CSPs and, usually, all n-
ary encodings can be transformed to binary CSPs with good results[], we
will devote most of our work to binary models.

2Unawarded as of this writing
3So-called industrial problems

22

3.3. RANDOM MODELS

3.3.1 Standard models

First defined random problem generation models can be classified according
to which method is used to generate the constraint graph (§2.6) and to how
non valid value pairs are chosen. According to such classification we have
these four problem kinds, with corresponding parameters:

model A(p1,p2) In this model each of the n(n− 1)/2 possible edges is in-
dependently chosen with probability p1. Then for each of those edges
each of the d2 possible value pairs, is chosen, independently, with prob-
ability p2, as a non valid value.

model B(p1,p2) This time we choose exactly p1n(n−1)/2 edges randomly,
and for each one we randomly pick exactly p2d

2 value pairs as no good
pairs.

model C(p1,p2) We select independently each one of the n(n−1)/2 possible
edges with probability p1 and for each one we randomly pick exactly
p2d

2 pairs of values as no good pairs.

model D(p1,p2) We randomly select exactly p1n(n − 1)/2 edges, and for
each selected edge we pick each p2d

2 value pairs randomly with prob-
ability p2 as being a no good pair.

3.3.2 Flawless models

Above mentioned standard models have an excellent capability to adjust,
independently, constraintness and tightness of the problems, but suffer from
a deficiency when the problem size grows; all of them tend to flaw their
variables, with higher probability as the size increases. As a flawed variable
is a variable that can not satisfy any assignment, the problem becomes
unsatisfiable, being such a models useless if the probability of having flawed
variables is high enough. In order to avoid this deficiency, rather than create
new models, some authors propose to revise standard models determining
under which conditions such a models don’t degenerate [XL00, Smi01] as well
as ensuring satisfiability beyond those limits by adding supports [GMP+01].
In our opinion, below mentioned model E (a variant of standard models) is
not strictly speaking a non-degenerate model, as we will see that it requires
certain constraintness conditions, as in standard models, to avoid having
trivially unsolvable problems.

Fortunately, proving that standard models degenerate when size grows
is straightforward [AKK+97]. Achlioptas et al. employ Markov’s inequality
to upper bound the satisfaction probability of a problem. Let’s denote X
the random variable that determines the number of solutions, then,

Pr(|X| ≥ 1) ≤ E[X]

23

CHAPTER 3. CHOSEN CSP PROBLEMS USED AS BENCHMARKING PROBLEMS

being Pr(|X| ≥ 1) the probability of having solution. Compute the mean
of X is easy for standard models, resulting

E[X] = dn · (1− p2)p1(
n
2) =

(
d · (1− p2)

p1(n−1)
2

)n
(3.1)

Obviously, avoiding limn→∞E[X] = 0 requires

d ≥ (1− p2)−
p1(n−1)

2 (3.2)

So, condition 3.2 must hold for standard models in order to ensure a prob-
ability of having solution greater than zero as the number of variables tend
to infinity.

It’s worth to mention that for k-SAT, the expected number of solutions
is

E[X] =
(

2 · (1− 2−k)r
)n

where r is the ratio between the number of clauses and the number of vari-
ables. Then, k-SAT problems no degenerates as n → ∞ if the number of
clauses grow as O(n) or less.

Beyond this simple approach, [GMP+01] point out that insolubility of
standard models relies, partly, on the existence of flawed variable, giving
some theoretical insight on the probability of the existence of such vari-
ables. Gent at al. make 2 assumptions; variables have the same degree - are
connected to the same number of variables each other - and the probability
that a variable is flawed does not depend on other variables - that’s true
for model A but not for model B. Despite these assumptions, computations
show a good agreement for the predicted probability.

Let’s take model A. The probability that a problem has a flawed variable
(Prfw) can be obtained easy, making the above mentioned assumptions, as

Prfw = 1−
(

1−
(

1−
(

1− pd2
)p1(n−1)

)d)n

Clearly, if limn→∞ Prfw = 0 implies that limn→∞
(
1− (1− pd2)p1(n−1)

)d
= 0.

Considering that (1 +x)α ' 1 +αx, for small x, and taken log at both sides
of the limit, it can be derived

d ≥
log 1−1/d

p1(n−1))

log p2
' log (−p1(n− 1))

log p2
(3.3)

being valid the right side approach when d >> 1. Table 3.1 shows the value
of flawness probability, for model A, as a function of n, for p1 = 0.5 and
d = 4 for values of p2 such that Eq. 3.2 holds, i.e. the number of solutions
is close to 1. As can be observed, the effect of flawed variables is negligible
for large n.

24

3.3. RANDOM MODELS

Table 3.1: Model A flawness probability when p1 = 0.5 and d = 4 for values
of p2 such that Eq. 3.2 holds

n p2 Prfw
4 0.842 0.546

10 0.456 0.012
100 0.054 10−12

1,000 0.005 0

So far, we have shown why standard models degenerate, and some ap-
proaches about under which conditions such a degeneration may be avoided.
Now let’s inspect why some, self claimed, flawless models work, starting by
model E. In order to determine bounds for model E, Achlioptas et al. work
is based again on the expected number of solutions, but using 2 approaches;
one already seen before based on the first moment, and a second that uses
the method of local maxima. Achlioptas et al. give an approach to E[X] as
follows

E[X] = dn ·
(

1− 1
d2

)rn
=
(
d ·
(

1− 1
d2

)r)n
(3.4)

where rn is the total number contraint tuples out of the total t = dk · (nk)
for a k-ary CSP. As we will prove, this approach work reasonably well under
certain conditions. Nevertheless, it is no hard to find an exact expression
for E[X]. Model E chooses m nogoods independently random and with
repetition, as a fraction p out of the total number of nogoods t. So, for binary
CSPs, m = p·d2 ·(n2) and our first finding is the number of distinct generated
nogoods (m′). Considering the iterative process of picking the nogood pairs,
it is easy to show that after the i-th picked nogood, the number of distinct
chosen nogoods (λi) can be expressed as the following recursive equation

λi+1 = 1 + λi · (1− 1/t) (3.5)

with λ0 = 0. Defining the following generation function

L(x) =
∞∑
i=0

xiλi

and taking (1− 1/t) = a, we can derive from 3.5

L(x) =
1

(1− x)(1/x− a)
=

x

1− a
(

1
1− x −

a

1− ax
)

=
x

1− a
(
1 + x+ x2 + . . .− a− a2x− a3x2 − . . .)

so,

λi =
1− ai
1− a = t · (1− (1− 1/t)i

)
25

CHAPTER 3. CHOSEN CSP PROBLEMS USED AS BENCHMARKING PROBLEMS

Table 3.2: Values of p that give E[X] = 1 (pcrit)
n, d pcrit for Eq. 3.4 pcrit for Eq. 3.7
10,3 0.2303 0.2286
10,4 0.2983 0.2967
15,7 0.2751 0.2747

100,3 0.0209 0.0209
100,10 0.0463 0.0462
500,15 0.0108 0.0108

Then, after picking m nogoods, the number of distinct nogoods, m′, will be

m′ = λm = t · (1− (1− 1/t)m) (3.6)

Now, we are able to express exactly the mean number of solutions as

E[X] = dn ·
(n2)∏
i=1

(
1− m′

t− i− 1

)
(3.7)

As observed from Eq. 3.6, m′ ' m for t >> 1, being so whether d or n are
large, or both. Under such conditions, Eq. 3.4 and Eq. 3.7 are equivalent as
shown in Figure 3.1. In this Figure, we plot the relative error between both
expressions of the expected number of solutions (as percentage) against p,
where dashed lines depict where E[X] = 1 according to Eq. 3.7. It can be
noted that the relative error decreases as the domain grows or so it does
the number of variables. Then, for large n it turns out that the approach of
Achlioptas et al. seems accurate. Employing the first moment method as in
3.2, from Eq. 3.4, we obtain

r ≤ log(1/d)
log(1− 1/d2)

(3.8)

as the first bound of r that avoids having trivial unsatisfiable problems when
n → ∞. Table 3.2 shows the values of p (pcrit) that leads both expressions
of the expected number of solutions to 1, obtained directly from Eq. 3.8 for
the Achlioptas et al approach and form numerical computations from Eq.
3.7, being clear that the mentioned approach does very good at predicting
the bound of constrainedness for having trivial unsatisfiable problems.

Despite having a good asymptotic behavior with the number of variables,
model E reduces one step down the small structural properties of standard
models, giving an absolute flat relation graph among its constraints. This
absolute lack of structural properties make more desirable maintaining stan-
dard models inside a given scope of parametric ranges that ensure the same
asymptotic model E properties. This is accomplished in [XL00] for model B,

26

3.4. QUASIGROUP COMPLETION PROBLEMS (QCP)

 0

 5

 10

 15

 20

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

%
 o

f e
rr

or

p

n=10, d=3
n=10, d=4
n=15, d=7

n=100, d=10
n=500, d=15

Figure 3.1: Relative error between both Eq. 3.4 and Eq. 3.7 (as percentage)
against p, for some values of n and d. Dashed lines depict where E[X] = 1
according to Eq. 3.7

leading to revisited model B, or for short, model RB. The new model has no
differences with model B, but the limits its parameters can reach, so, it can
not be considered indeed a new model. The same expressions for the number
of expected solutions and bounds for d than in Eq. 3.1 and 3.2 applies. Ac-
tually, the two conditions for the number of constraints and the number of
nogoods from Theorem 1 and 2 of [XL00] are equivalent to Eq. 3.2. Xu and
Li, therefore proves, using the second moment method, that condition 3.2
determines a sharp transition between satisfiable and unsatisfiable problems
when n→∞.

3.4 Quasigroup Completion Problems (QCP)

In order to study the impact of structure on problem hardness, Gomes
and Selman introduced the Quasigroup Completion problem (QCP) as a
benchmark problem for evaluating combinatorial search methods: the struc-
ture underlying this domain can be found in a range of real-world ap-
plications, such as timetabling, routing, and design of statistical experi-
ments [GS97]. QCP (and its variants) has become a widely used benchmark
domain and it has led researchers to the discovery of interesting phenom-
ena that characterize combinatorial search and consequently to the design

27

CHAPTER 3. CHOSEN CSP PROBLEMS USED AS BENCHMARKING PROBLEMS

of new search and inference strategies for such domains. Examples include,
the so-called heavy-tailed phenomena, randomization and restarts strate-
gies, e.g., [GSC97, GFSB04, Ref04, HO06], the design of efficient global
constraints, e.g., [SSW98, RG04], and tradeoffs in different CSP and SAT
based representations (see e.g. [DdC03, AdD+04]).

3.5 Generalised Sudoku Problems (GSP)

Generalized Sudoku Problems model and generalize, i.e. extend, the popular
Sudoku4 puzzle. The original Sudoku puzzle consists in a 9 × 9 number
matrix, with some cells filled with numbers from 1 to 9, and the rest of the
cells empty, and to solve it, we must fill all the empty cells using numbers
from 1 to 9 but following these three restrictions:

• on every column all numbers from 1 to 9 must appear exactly one
time,

• on every row all numbers from 1 to 9 must appear exactly one time,

• on each 3×3 block region all numbers from 1 to 9 must appear exactly
one time.

7 6

8 9 3 1 6

6 4 9

5 8 1

9 2

1 6 3

4 6 1

3 2 1 9 6

8 5

Figure 3.2: Typical 9× 9 Sudoku puzzle

As it can be easily seen a Sudoku is derived from a 9× 9 Latin Square,
concretely is a QWH problem with the added restriction of having square
sub areas (block regions from now on 5) that must also contain completely
distinct elements. A more formal and general definition of a Sudoku is as
follows.

4The problem is referred to during this work as Sudoku, although other forms are
considered equally valid: Su Doku, Su Do Ku, etc.

5We will call them block regions throughout all this thesis but in the literature (on
SAT/CSP related literature or in not related one) they are indistinctly called blocks,
regions, areas, region blocks, block region.

28

3.5. GENERALISED SUDOKU PROBLEMS (GSP)

Definition 3.1 (Generalized Sudoku). A valid complete Generalized Sudoku
(GS) of order s on s symbols, is a LS of order s with the additional restriction
that each symbol occurs exactly once in each block region. A block region is
a contiguous set of s pre-defined cells; block regions don’t overlap, and there
are exactly s block regions in a GS of order s. In the case of square block
regions, each block region is an

√
s×√s matrix (s has to be a square number);

in the case of rectangular block regions, each block region is an m×n matrix
(m rows and n columns) with m ·n = s. Then, a GS with m ·n block regions
will have n region rows and m region columns (as an illustrating example,
Figure 3.2 shows a GS structure with m = 3 and n = 3, Figure 5.4 shows a
GS structure with m = 3 and n = 10).

As is easy to see from the previous definition, a GS is a broad class of
problems. It provides with a wide range of problems ranging as it subsumes
all Quasigroup With Holes (QWH) [AGKS00] (when the block regions cor-
respond to single rows) to Standard Generalized Sudoku Problems (GSP)
(when the regions are squares) or Rectangular Sudoku Problems.

We can trivially build a GS of arbitrary order, with arbitrary rectangular
or square block regions, using the following method: let S denote the GS,
and its coefficients

S = (Sk,li,j), 0 ≤ i, l ≤ n− 1, 0 ≤ j, k ≤ m− 1, (3.9)

where Sk,li,j corresponds to the coefficient of S located at i-th region row,
j-th region column, and inside such a region it is on the k-th row and l-th
column. Then, these coefficients are ordered pairs defined as

Sk,li,j = (k + j (mod m), i+ l (mod n)). (3.10)

The Generalized Sudoku Problem (GSP) is then defined as follows: given
a partially filled Generalized Sudoku instance of order s, can we fill the
remaining cells of the s × s matrix such that we obtain a valid complete
Generalized Sudoku instance?

Then, following the current line of research that focus on solvable prob-
lems, we define the Generalized Sudoku With Holes Problem (GSWHP). In
this case the instance to be solved comes from a GS where some cells have
been emptied, so we ensure that a solution exists.

3.5.1 Generating complete Generalized Sudokus

As it is obvious from the previous definition, in order to create a GSWHP in-
stance, first we need to obtain a (valid and complete) GS. Then, to generate
such GS, we follow the approach used in [JM96] of building a Markov chain
whose set of states includes, as a subset, the set of complete Generalized
Sudokus. If we use the Markov chain that considers only proper LS as states

29

CHAPTER 3. CHOSEN CSP PROBLEMS USED AS BENCHMARKING PROBLEMS

and using improper LS as pivots, and because any GS is also a LS of the
same order, this chain obviously includes a subchain with all the possible
GSs. So, for any pair of complete GSs, there exists a sequence of proper
moves, of the type mentioned in Theorem 6 of [JM96], that transforms one
into the other.

0 1 2

3 4 5

3 4 5

0 1 2

1 2 3

4 5 0

4 5 0

1 2 3

2 3 4

5 0 1

5 0 1

2 3 4

(a)

0 1 2

3 4 5

3 4 5

0 0 2

1 2 3

4 5 0

4 5 0

1 2 3

2 3 4

5 0 1

5 1 1

2 3 4

(b)

0 1 2

3 4 5

3 4 5

5 0 2

1 2 3

4 5 0

4 5 0

1 2 3

2 3 4

5 0 1

0 1 1

2 3 4

(c)

0 1 2

3 4 1

3 4 5

5 0 2

1 2 3

4 5 0

4 5 0

1 2 3

2 3 4

5 0 5

0 1 1

2 3 4

(d)

0 1 2

3 4 1

3 4 5

5 0 2

1 2 3

4 5 0

4 5 0

1 2 3

5 0 4

2 3 5

2 3 1

0 1 4

(e)

0 1 2

3 4 1

3 4 5

5 0 2

1 2 3

4 5 0

4 5 0

1 2 3

5 0 4

2 3 5

2 3 1

0 1 4

(f)

0 1 2

3 4 5

3 4 5

5 0 2

1 2 3

4 5 0

4 5 0

1 2 3

5 0 4

2 3 1

2 3 1

0 1 4

(g)

0 1 2

3 4 5

3 4 5

0 0 2

1 2 3

4 5 0

4 5 0

1 2 3

5 0 4

2 3 1

2 3 1

5 1 4

(h)

0 1 2

3 4 5

3 4 5

0 1 2

1 2 3

4 5 0

4 5 0

1 2 3

5 0 4

2 3 1

2 3 1

5 0 4

(i)

Figure 3.3: GS generation example

However, if we simply use the Markov chain by making proper moves
uniformly at random, starting from an initial complete GS, most of the time
we will reach LS that are not valid GSs. To cope with this problem, we
select the move that minimizes the number of violated cells, i.e. cells with
a symbol that appears at least twice in the same block region. To minimize
those violated cells we proceed using the method defined on [JM96], that
moves from one LS to another by choosing initially 4 random parameters
(r1, r2, t, i) (two rows, r1,r2, a symbol, t, and a number of iterations, i), but
if through our search for a GS we stop in a LS that is not a GS, instead
of starting a new search by choosing those above mentioned parameters at

30

3.6. EDGE PUZZLES

random, we choose the initial rows at random but only among those that
contain violated cells, the same is applied to the initial symbol, which is one
of the symbols that violated the GS condition in a block.

To escape local minima, if after a certain number of moves6 we don’t
get a GS, we restart the move from the previous GS, and we perform the
moves described above until we have generated a certain number of valid
GSs. Observe that this method does not necessarily generate a GS instance
uniformly at random, because we do not always select the next move uni-
formly at random. However, as we will see in the experimental results, the
method provides us with very hard computational instances of the GSWHP,
once we punch holes in the appropriate manner.

Figure 3.3 shows an example of an execution of the afore mentioned
procedure. From the canonical GS (a), we perform 2 moves ([a-e] and [f-i])
of the second method detailed in [JM96] until we obtain a valid GS (i). Each
move is started by randomly selecting 2 rows, a symbol and the number of
iterations. For the first move (a-e), the initial random values are (1, 4, 1, 3).
At the first iteration (a), symbol 1 points the corresponding symbol to be
switched by intersecting its column with the second row (symbol 0). Symbols
to be switched are yellow marked, becoming red once the change is produced.
Previous symbol 0 is taken in second iteration to designate its corresponding
counterpart to be switched (symbol 5 in this case)(b). Same procedure
applies up to the last iteration (c). At this point, the last selected symbol (5),
is switched with the initial random selected symbol (1) at its corresponding
row, giving (d). Once arrived at this point, if the resulting LS is improper
(as it is in our example), switches between symbols of the second initial
row and the row that contains the last selected symbol (5) are applied until
getting a proper LS (e). Dashed blocks show which blocks violate the GS
condition, so a second move will be needed. On the second move, the initial
random values are (1, 5, 1, 3). Note that in this case, rows 1 and 5 as well
as symbol 1 are chosen at random from those that violate the GS condition,
i.e. from dashed blocks on (e). The same procedure as before applies from
(e) to (i), getting at this last step (i) a proper GS, so no additional shuffles
are required unlike in (e).

3.6 Edge Puzzles

Edge matching puzzles are a problem class, that has been shown to be NP-
complete [DD07], that can be easily modelled as SAT/CSP problems. Edge
matching puzzles have been known for more than a century (E.L. Thurston
was granted US Patents 487797 and 487798 in 1892) and there is a number
of child toys based on edge matching puzzles. As of 2007, these puzzles

6In our experiments, this number has been fixed to 20, because it works reasonable
well with all the orders of GSs that we have tested.

31

CHAPTER 3. CHOSEN CSP PROBLEMS USED AS BENCHMARKING PROBLEMS

have received world wide attention after the publication of an edge matching
puzzle with a money prize if resolved (Eternity II). This kind of competitions
are, on one side a real challenge to SAT/CSP solvers, and on the other side
a real showcase to show recent advances in hard problem solving attained
by the SAT/CSP community.

3.6.1 Problem description and definitions

Roughly described, an edge matching puzzle is a puzzle where we must place
a set of tokens or pieces in a board following a simple rule. Tokens have four
sides, in our case for simplicity we assume square tokens, each of a different
color or pattern. The rule to follow when placing tokens is that two tokens
can be placed side by side iif adjacent sides are of the same color (or pattern).
A more formal definition is as follows,

Definition 3.2 (Generic Edge Matching Puzzle (GEMP)). A Generic Edge
Matching Puzzle (GEMP) , P (n ×m, k) of size n and k colors, is a tuplet
(V, S), where V is the set of variables representing cell positions on the plane,
of the form, V = {vi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Variables in V take values
from the domain S, with S = {(t, r)/t ∈ {T}, r ∈ {1, 2, 3, 4}}, representing r
the set of possible rotation of the same token, with T , representing the token
set, which is of the form T = {(x1, x2, x3, x4)/xi ∈ C} and C is the set of
colors, C = {ci, 1 ≤ i ≤ k}.

One possible variant on GEMPs is that where token rotations are not
allowed, that is, all tokens must be placed exactly in the same orientation
as they are in the puzzle specification.

Definition 3.3 (Generic Edge Matching Puzzle Solution). A valid solution
for a GEMP, P = (V, T) is an assignment of values from T to all the
variables in V such that for each pair of neighboring variables, the color
value assigned to the adjacent half-edges between those two variables is the
same.

For clarity we define a half-edge to be the part of an edge that belongs
to each token or piece in the puzzle, and an edge will be the union of two
half-edges of the same color.

Definition 3.4 (Framed GEMP (GEMP-F)). A Framed Generic Edge Match-
ing Puzzle (GEMP-F), P (n×m, k) is a Edge Matching Puzzle that includes
a special color, we represent it in figure 3.5 as ’gray’(0), that, in all valid
solutions can only appear in variables located on the frame of the puzzle, i.e.,
those variables in {v1,j , vn,j/1 ≤ j ≤ m}⋃{vi,1, vi,m/1 ≤ i ≤ n} and only
on the outside half-edges of those variables.

One could think on several variants of framed puzzles attending to the
sets of colors employed on distinct areas of the puzzle. In this paper we

32

3.6. EDGE PUZZLES

. .

. .

Figure 3.4: 6x6 size GEMP example with 12 inner colors

. .

. .

Figure 3.5: 6x6 size two-set GEMP-F example with 4 frame colors and 3
inner colors

33

CHAPTER 3. CHOSEN CSP PROBLEMS USED AS BENCHMARKING PROBLEMS

deal with two types, that have a profound impact on hardness, one-set
GEMP-F when colors can be used at any edge of the puzzle, and two-set
GEMP-F when two disjoint sets of colors are used; one set for edges joining
frame pieces and another set for any other edge. As an example take Figure
3.5. One can observe that colors joining frame pieces are different than the
rest. As real-world puzzles (as in Eternity II) are usually framed puzzles
and due to the interesting effect that the frame has on hardness this work
deals with GEMP-F leaving for a future work GEMP problems.

During this work we study square GEMP-F instead of rectangular ones,
that is, GEMP-F of the type P (n × n, k), to simplify experimentation and
implementations. Using rectangular puzzles probably will not increase prob-
lem hardness as experimental findings in other SAT/CSP approaches to sim-
ilar problems, such as Sudoku Problems [ABF+06], show that non-square
problems are easier than square ones.

3.6.2 Generating Puzzles

The general method for a solvable puzzle generator is detailed in Algorithm
3.1. Roughly explained, the method assigns colors to edges of puzzle pieces
(assigning a color to both half-edges). When all edges are colored, tokens
are built from the existing color assignment. In the algorithm, vsidei,j refers
to one of the four half-edges of the variable at position i, j, N(vi,j) is the set
of up to four neighbors of variable vi,j (at sides up, right, down and left),
and Ns(vi,j) gives position of neighbor at side s of vi,j , if exists, and 0, 0
otherwise. Finally, front(s) gives the opposite side to s, that is, given two
adjacent positions, s and front(s) represent the two adjacent sides that join
the two positions.

Special care must be taken on implementing this algorithm because this
method does not prevent having repeated tokens nor symmetric tokens (to-
kens with rotations that leave the token invariant), but for higher enough
values of c (as those around the Phase Transition values), repetitions or
symmetric tokens are low enough to do not suppose an impact on problem
hardness.

Extending this algorithm to generate framed puzzles is easy. First the
inner part of the puzzle is generated (tokens without gray color), without
taking into account the frame. Then colors are assigned to the half-edges
of the frame adjacent to inner tokens, that are already determined by the
inner tokens, and then half-edges that join tokens of the frame are filled with
random colors, choosing either from the same set of colors used for the inner
tokens (getting a one-set GEMP-F) or from a second set of colors with no
colors in common with the first set (getting a two-set GEMP-F).

Other extensions can be easily defined for generating problems where
the satisfiability is not guaranteed as in the previous example. How to get
those puzzles is rather easy. Once we generate one always-SAT puzzle we

34

3.6. EDGE PUZZLES

Algorithm 3.1: Algorithm for generating GEMP(n, c) puzzles
input : n, c
output: an Edge Puzzle of size n with c colors
for i = 1 to n do

for j = 1 to n do
for side = 1 to 4 do

if vside
i,j is empty then
vside

i,j = random(c)
i′, j′ = Nside(i, j)
if i′, j′ 6= 0, 0 then

v
front(side)
i′,j′ =vside

i,j

change the color to some half-edges randomly. If we change colors to half-
edges always in pairs (that is, maintaining the color count parity) resulting
puzzles can be also satisfiable, if we do not maintain that parity, puzzles
will always be UNSAT and a solver that checks for color parity will return
UNSAT pretty fast.

35

4
Hardness of CSP

problems

What is difficulty? Only a word indicating the
degree of effort required to accomplish
something! A mere notice of the necessity for
exertion; a scarecrow to children and fools and a
stimulus to real men.

Samuel Warren

There are two approaches to define the hardness of a CSP problem. One
is to study which is the hardness in the worst possible case, the other try
to define hardness on the typical case. The first area of research focuses
on which is the expected maximum effort we will have to do to solve the
problem. The study of worst-case hardness has given us clues on how to
use factors present on very hard problems, as high treewidth on constraint
graphs, to harden problems generated. The other area, typical case hard-
ness, studies hardness of all problems of a given problem family, not just the
worst cases but which is the average hardness. One of the most important
concepts on typical case hardness studies is determining the existence or
not of a hardness phase transition (from easy to hard to easy), and if that
existence is confirmed, to pinpoint both, analytically and experimentally,
its location. We have done that experiments, specially on GEMP, as it is a
problem defined formally for first time in this work, locating precisely the
PT point was of utmost importance.

37

CHAPTER 4. HARDNESS OF CSP PROBLEMS

Contents

4.1 Worst case hardness 38
4.1.1 Complexity of binary CSPs 38
4.1.2 Hardness of k-SAT 41

4.2 Typical case hardness 41
4.2.1 Phase Transition 41

4.1 Worst case hardness

4.1.1 Complexity of binary CSPs

In this section we present the theoretical worst-case complexity results upon
we have based our methods for hardening CSP problems, mainly for binary
CSPs. We do not try to present here a complete picture of worst-case
complexity results for CSPs, but only to present those results directly linked
with the ideas behind our methods. However, we have tried to focus on
results that provide fairly general classifications of the complexity of CSPs,
such that many other complexity results are just special cases of the results
we present here, or are subsumed by the results we present here.

We divide the different restrictions studied on CSPs in two classes: struc-
tural restrictions on their constraint graph (or constraint hypergraph for
non-binary CSPs) and constraint language restrictions.

Constraint graph restrictions

The most general results about the complexity of CSPs based on structural
restrictions, are based on structural properties of either its constraint graph
(in the case of binary or bounded arity CSPs) or its contraint hypergraph
(in the case of unbounded arity CSPs). As the work of this thesis focus
mainly on binary CSPs, we present mainly results about binary CSPs.

The main structural restriction that gives tractable (binary) CSPs is
their treewidth (see Definition 2.7). Observe that the treewidth of a tree is
1, because we can put any edge of the tree in exactly one bag, such that any
vertex appears in at most two (intersecting) bags. The first link between
structural graph restrictions and complexity of CSPs is the result presented
in [Fre82], where they show that when the constraint graph is a tree, we
can solve it in a backtrack free manner, using only arc-consistency. If a con-
straint graph contains at least one cycle, we cannot use directly the results
of Freuder to solve the CSP. However, if the CSP has a tree decomposition of
width w, we can still solve them with time O(||I||w), where ||I|| is the size of
the instance, thanks to a generalization of the algorithm of Freuder [Fre90].
That means, for example, that if the constraint graph is a simple cycle we

38

4.1. WORST CASE HARDNESS

can solve it in time O(||I||2), given that a cycle has treewidth 2. But as the
treewidth increases, this time bound increases. Results presented in [Gro03]
show that the treewidth of a graph is the most relevant structural param-
eter concerning the complexity of binary CSPs with arbitrary constraint
languages. These results basically show that, assuming that a conjecture
from parametrized computational complexity to be true (FPT 6= W [1]),
then CSPs with bounded arity and arbitrary constraint languages can only
be solved in polynomial time if and only if their treewidth is bounded by a
constant.

These results indicate that for CSPs of a given size and number of con-
straints, the ones with highest possible treewidth should be the hardest ones.
In general, the more edges a graph has, the higher its treewidth, because
the treewidth can only increase or stay the same as we insert more edges
to a graph, reaching the maximum treewidth of |V | − 1 when the graph is
complete. But then the interesting question is how to have a high treewidth
with a low number of edges. This observation has lead us to consider how
high can the treewidth be when we have sparse constraint graphs. In this
thesis, by sparse we mean with the minimum needed number of edges such
that the constraint graph is connected. We will see that this question is
directly connected with very nice areas of graph theory, in particular with
expander graphs. In chapter 5 we will present some consequences of well-
known results in expander graphs that give us the main tools we have used
towards locating, and generating, high treewidth graphs with a low number
of edges. Moreover, the methods for expander graph generation will be also
used to increase the hardness of k-SAT and n-ary CSPs instances through
the use of their incidence graph.

The following lemma gives us an indication of a necessary condition for
the treewidth of a graph to be low.

Lemma 4.1 ([Bod98]). Every graph of treewidth at most k contains a vertex
of degree at most k.

So, having low treewidth implies having at least one vertex of low degree.
That means that, for a set of graphs with the same number of edges, the
ones that do not allow the treewidth to be lower than their average degree
are the ones where the degrees are all equal. This observation indicates that
a desirable property of high treewidth graphs is the balance of the degrees
of its vertexes.

Constraint language restrictions

Many of the current known restrictions on the constraint language that
determine tractability are based on properties of so called polymorphisms
of the constraint language [BJK05]. Basically, a polymorphism is a function
defined over the set of tuples of a relation, such that each tuple of the relation

39

CHAPTER 4. HARDNESS OF CSP PROBLEMS

is mapped to another tuple of the relation. The set of polymorphisms of a
constraint language is the set of functions that are polymorphisms of all
the relations of the constraint language. For the purposes of our work, the
following results that link the concepts of m-looseness and m-tightness of a
constraint and the maximum arity of the constraints with the k−consistency
needed to solve a problem, are very relevant towards finding ways to increase
the hardness of the constraints.

Definition 4.1 (m-tight). A constraint relation R of arity k is called m-
tight if, for any variable xi constrained by R and any instantiation a of
the remaining k − 1 variables constrained by R, either there are at most m
extensions of a to xi that satisfy R, or there are exactly |Di| such extensions.

Definition 4.2 (m-loose). A constraint relation R of arity k is called m-
loose if, for any variable xi constrained by R and any instantiation a of the
remaining k − 1 variables constrained by R, there are at least m extensions
of a to xi that satisfy R.

Next, we consider two important results that link the m-tightness and
m-looseness with the complexity of solve a CSP, related the notions of local
and global consistency.

Theorem 4.2 ([vD97]). If a constraint network with relations that are m-
tight and of arity at most r is strongly ((m+ 1)(r− 1) + 1)-consistent, then
it is globally consistent.

So, the lower the value of m for the m-tightness of the constraints of a
CSP, the lower the level of consistency that is enough to ensure also global
consistency. That indicates that one should avoid constraints with a low
m-tightness in order to escape from problems trivially solvable with a low
consistency level.

Theorem 4.3 ([vD97, ZY03]). A constraint network with domains that are
of size at most d and relations that are m-loose and of arity at least r,
r ≥ 2, is strongly k−consistent, where k is the maximum value such that the
following inequality holds(

k − 1
r − 1

)
≤ d d

d−me − 1

So, the higher the m−looseness of the constraints, the higher the inher-
ent level of consistency already present on the problem, so higher levels of
consistency will need to be enforced in order to discover inconsistencies in
the problem.

As we will see in Chapter 5, we can use these results about m-tightness
and m−looseness to partially explain the increased hardness of balanced
constraint languages, with respect to random constraint languages.

40

4.2. TYPICAL CASE HARDNESS

4.1.2 Hardness of k-SAT

We do not provide here a complete picture of the complexity of SAT, but
we explain only the relevant results that are the main motivation behind
the methods we have developed for generating hard k-SAT and n-ary CSP
instances in Chapter 5.

Concerning the resolution complexity of a 3-SAT instance F , Ben-Sasson
and Wigderson [BSW01] proved that if every resolution refutation of F re-
quires width w, then every resolution refutation of F requires size 2Ω(w2/n).
The width of a resolution refutation is the length of the longest clause in
the refutation. Thus, lower bounds on width imply lower bounds on size.
Finally, there is a connection between graph expansion and 3-SAT resolu-
tion complexity based on this width-size relationship. Consider a 3-SAT
instance F with set of clauses C and set of variables V and its bipartite
variable incidence graph G(F) = (C ∪ V,E). Results presented in [Ats04]
imply that any resolution refutation will have width lower bounded by
b((c − 1)α|C|)/((2 + c)d)c, where d is the maximum right-degree of G(F),
if G(F) is a left (α, c)-expander. So, any resolution refutation of F will
have exponential size if d = o(|C|) and c > 1, α > 0, given the width-size
relationship. So, the higher the expansion of the graph and the smaller the
maximum right-degree d, the higher the refutation size lower bound. More-
over, the results also imply that more powerful proof algorithms based on
strong k-consistency will also require exponential time for solving the 3-SAT
instance under the same circumstances.

Concerning n-ary CSPs, there are results about their complexity related
to the treewidth of their incidence graph [SS06]. The incidence graph for
CSPs considered in these results is not the same generalization of incidence
graph that we will consider for hardening n-ary CSPs in Chapter 5. In the
work [SS06] the incidence graph simply links constraints with the variables
in their scope. However, looking at the results about k-SAT hardness related
to the expansion of their incidence graph, it seems more natural to consider
linking nogoods with their variables, or even nogoods with the many-valued
literals they contain. This is what we will do in Chapter 5.

4.2 Typical case hardness

4.2.1 Phase Transition

The phase transition concept has its origins on thermodynamics, denoting
when a thermodynamic systems changes from one phase to another, out of
the four possible phases of matter. This concept has been extended to several
areas of physics and science areas in general, such as dynamic systems,
science of materials and computational complexity as a few examples.

One the most amazing topics where phase transitions are detected are

41

CHAPTER 4. HARDNESS OF CSP PROBLEMS

percolation systems. It is amazing because percolation theory links phase
transition phenomena with fractal behavior of real systems, being this point
not achieved yet on computer complexity theory. Percolation is a physi-
cal process that describes for a system, a transition from one state to an-
other, such as the filtering of fluid (e.g. petroleum) between rock layers. In
[PJS04], a more natural paradigm is described for such a systems, the forest
fires. Considering a forest as a lattice of trees of size N , and modelling fire
propagation as a probability p between adjacent trees, three fundamental
observations can be done:

1. Easy-hard-easy patterns. The time elapsed until a fire extinguishes,
depends on p, showing a maximum duration at a given value pc

2. Phase transition of the maximum cluster. Measuring the burned area
M(N) in relation to the lattice size (N) an abrupt transition can be
observed at pc. This would be an indication of the probability that a
random picked tree was burned.

3. Fractal shapes. At pc, can be observed that the fractal dimension of
the maximum cluster is less than 2, acquiring the clusters this way
certain fractal shapes.

Figures 4.1 and 4.2 show the easy-hard-easy and phase transition behavior
respectively for some lattice sizes depending on probability p. The simula-
tions are done over 200 samples per point. Figure 4.3 show a burned forest
of size 1000 for p = 0.5, where the fractal shapes of its boundaries can be
guessed.

The relevance of these observations are extended, constantly, to com-
puter complexity analysis as we will see in the following sections, observing
that some of such behaviors systematically arise in several SAT/CSP prob-
lem classes.

Phase transition on K-SAT problems

Beyond physical systems, phase transition effects linked to AI problems
(graph coloring, k-satisfiability, Hamilton circuits, . . .) were already re-
ported on [Pur83, CKT91]. Subsequently, some authors [BHHW96, MZK+96,
Hay97] report phase transition characterization for K-SAT problems and ex-
plaining how such transition phenomena are intrinsic to SAT problems and
not related to any particular solving algorithm.

In [MZK+99], it is shown that there exists a threshold for complexity
transition on K-SAT problems for any K ≥ 3, although an accurate determi-
nation of such a threshold remains still unclear. Moreover, phase transition
effect in K-SAT problems are linked to both; percentage of SAT/UNSAT
instances and the backbone fraction (i.e. the number of variables assigned to

42

4.2. TYPICAL CASE HARDNESS

N=20
N=100
N=1000
N=5000

T
im

e
u

n
it

s

1

10

100

1000

104

p

0 0.25 0.5 0.75 1

Figure 4.1: Easy-hard-easy characterization on a forest fire simulation lattice
of size N as a function of p

N=20
N=100
N=1000
N=5000

M
(N

)/
N

2

0

0.25

0.5

0.75

1

p

0 0.25 0.5 0.75 1

Figure 4.2: Phase transition behavior on a forest fire simulation lattice of
size N as a function of p

43

CHAPTER 4. HARDNESS OF CSP PROBLEMS

0 - 630

631 - 1260

1261 - 1890

1891 - 2520

2521 - 3150

3150 - 3790

Ellapsed Time

Figure 4.3: Fractal shapes of the maximum cluster and the corresponding
propagation time on a forest fire simulation lattice of size N = 1000 for
p = 0.5

44

4.2. TYPICAL CASE HARDNESS

the same value for all the solutions), being this last concept of capital impor-
tance when determining phase transition effects on only satisfiable problems
as we will see later.

Since [CF86], a lot of work has been devoted to the location of the
phase transition threshold. With an easy analysis, an upper bound to the
threshold shows that for a ratio of clauses to variables (r) such that, r ≥
2k log 2, the problem is unsatisfiable with high probability. At this point the
Satisfiability Threshold Conjecture arises, stating that a lower bound exists
(r∗) being asymptotically equal to r. Meanwhile successive analysis of r
showed that it was no far from its original computation, an accurate analysis
of r∗ required more sophisticated tools, giving those approaches not small
enough boundaries able to prove the conjecture. This lower bound have
been improved by [AP04, NAP05, AM06] introducing the analysis based
on the second moment of the expected number of solutions while applying
the Cauchy Inequality, and proving an asymptotic form of the Satisfiability
Conjecture.

Phase transition on Random CSP problems

[Pro96, SD96] both are empirical studies of the PT on BCSP (model B), es-
timating the PT location for the combination of model B parameters where
the expected number of solutions is 1. This predictor seems to work reason-
ably well as experimental results show. Model B number of solutions can
easily be shown (see 3.3.1 for a detailed explanation of the parameters)

E[X] = dn(1− p2)
n(n−1)p1

2

obtaining for E[X] = 1

pcrit = 1− d −2
(n−1)p1 (4.1)

Figure 4.4 is a three dimensional plot of the hardness characterization of
model B problems depending on p1 and p2. We can obtain several conclu-
sions from the plot: hardest instances align effectively around the predicted
value of p2 upon Eq. 4.1; transition from under-constrained instances is
sharper than those at the other side of the peak; and hardness peak de-
creases with p1, showing that constrainedness is correlated with hardness.

Second moment analysis is also used on [SD96] to give upper and lower
bounds of pcrit as mentioned on 4.2.1. There, an expression for the second
moment of the number of solutions (E[X2]) is provided, giving numerical
computation of the second moment for small values of n.

But the asymptotic threshold reported on K-SAT problems no longer
exists for RBCSP. As discovered on [AKK+97], standard RBCSP models
are flawed (flaw probabilities are computed on [GMP+01]), and almost all
instances, generated when the number of variables tend to infinity, have no
solution, so proposing a new model, called model E (already detailed in

45

CHAPTER 4. HARDNESS OF CSP PROBLEMS

Figure 4.4: Three dimensional representation of the hardness characteriza-
tion of model B problems as a function pf p1 and p2 for 30 variables, domain
20 problems.

3.3.1). In model E, the two step procedure leading to models A-D is omit-
ted and constraints are chosen among all the possible set,

(
n
k

)
dk, at random,

uniformly with repetition, being n the number of variables, k the arity and d
the domain size. [AKK+97] also gives bounds for the underconstrainted and
the overconstrained region, allowing to theoretically determined the PT lo-
cation. [GMP+01] gives more experimental evidence about the flawlessness
of the standard RBCSP models.

A second try in order to define non-degenerated (as the number of vari-
ables tend to infinity) random BCSP problems is the work of [XL00]. There,
model RB is defined as a revision of the standard model B, showing that a
phase transition exists. Its construction is the same, but extended to k-arity
problems and defining 2 control parameters (r and p) linked to the con-
strainedness and tightness of the problem respectively. Those parameters,
when conveniently established, ensure the existence of a phase transition.
Parameter r defines the total number of k-ary constraints as r n log(n),
meanwhile p is the fraction of tuples per constraint, so each constraint has
p dk tuples, being d the domain size. Its interrelation is given as follows:

• Being α a constant that relates number of variables and domain, i.e.

46

4.2. TYPICAL CASE HARDNESS

d = nα, when α > 1
k , 0 < p < 1 and k ≥ 1

1−p , then there exists a rcrit
than defines a phase transition such that

rcrit =
−α

ln(1− p) (4.2)

• Otherwise, if α > 1
k , r > 0 and k e

−α
r ≥ 1 hold, then the phase

transition is defined by the parameter p as

pcrit = 1− e−αr (4.3)

Both critical points are obtained by an asymptotical analysis of the number
of solutions second moment.

The work of [XL00] is a good indicator about the findings of [Smi01] on
constructing non-degenerate RBCSPs. In this work, [Smi01] proves, at least
for standard model D, that the objections introduced by [AKK+97] about
the standard models for large values of n can be conveyed by adjusting con-
veniently the model parameters. And so is done for model D, proposing to
increase slowly parameters m and d as n grows. In this sense, a computable
revision of model D is reported on [XBHL05], called model RD, extended to
k-ary problems and finding that same relations Eq. 4.2 and Eq. 4.3 apply,
but in this case for p ≤ k

k−1 .
As we will see in Chapter 5, several techniques have been developed

for hardening random K-SAT, as well as random CSP problems. Indepen-
dently of such techniques, phase transition phenomena and easy-hard-easy
patterns have been observed on the new derived problem classes. Fig.4.5 is
an example. Note that according to Eq. 4.1, for Fig. 4.5 example it results,
pcrit = 0.4742, meaning 38.4 nogoods per constraint.

Phase transition on QCP and GSP problems

As seen in Section 3.4, the quest for new benchmarks that bridge the gap
between purely random generated problems and highly structured and real
ones, lead to definition of a new generation of problems built from math-
ematical structures (such as Latin Squares) that once randomly perturbed
were able to give interesting instance sets. An so it was the definition of
the Quasigroup Completion Problem [GS97]. Beyond practical applica-
tions, QCP present a handful of interesting properties such as their NP
hard completeness as well as a clear phase transition effect when the ratio of
preassigned cells varies. This transition is determined experimentally to be
located around a given fraction of the number of cells; 42% of preassigned
cells. It’s worth to note that as far as we know, no theoretical approaches
for the PT location exist on structured problems as QCP, QWH or GSP.

The requirement of only satisfiable instances make QCP not appropri-
ate on certain benchmarks. So, QWH problems are introduced [AGKS00,

47

CHAPTER 4. HARDNESS OF CSP PROBLEMS

V115, D9, C393, MAC dom/deg

High Girth
Bi-regular
Random

0.1

1

10

100

1000

104

Number of nogoods

34 36 38 40 42 44

Figure 4.5: An example of easy-hard-easy pattern for RBCSP model B
problems and two derived hardening schemes, with 115 variables, domain 9
and 393 constraints as a function of the tightness. See Chapter 5 for details
of the new models.

GS02], proving to be NP-hard and showing also a PT characterization. This
PT is shown to occur at some point around 1.6N1.55 preassigned cells, being
N2 the number of total QWH cells. But it’s relevant to mention that PT no
longer can be associated to the percentage of satisfiable instances because
we are dealing with only satisfiable problems. For QWH problems, a new
parameter is introduced by [AGKS00], linking the peak search in complexity
with phase transition phenomena. Such a parameter is the fraction of the
backbone, being the backbone the set of variables that keeps invariant for
all the assignments of a given instance. The existence of the backbone phase
transition was already linked to SAT problems by [MZK+99].

Keeping on structured problems, GSPs also present a PT characteriza-
tion when the backbone fraction of variables is considered. On [ABF+06], is
presented the computational behavior for different GSP sizes, showing that
a GSP is much heavier than its corresponding same order QWH as depicted
in Fig. 4.6. Furthermore, the more squared are the compounding Sudoku
blocks, the harder the problem is for the same size. Actually, for Fig. 4.6 can
be observed that hardness increases more than 3 orders of magnitude from a
order 30 QWH to its corresponding 6x5 GSP. The link of this easy-hard-easy
pattern with the backbone fraction is plot in Fig. 4.7.

In order to have a complete hardness characterization, we performed an
exhaustive experimentation to locate the phase transition point, at least for

48

4.2. TYPICAL CASE HARDNESS

 0.01

 0.1

 1

 10

 100

 1000

 10000

 300 350 400 450 500 550 600 650

M
e

d
ia

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Number of holes

QWH 30
Sudoku 15x2
Sudoku 10x3
Sudoku 6x5

Figure 4.6: Easy-Hard-Easy computational complexity patterns for QWH
order 30 problems and different GSP with same size

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 300 320 340 360 380 400 420 440 460 480

N
u

m
b

e
r

o
f

v
a

ri
a

b
le

s

Number of holes

Complexity pattern

Backbone

5x5
9x3

15x2
7x4

10x3

Figure 4.7: Backbone and computational complexity representation of dif-
ferent size GSP

49

CHAPTER 4. HARDNESS OF CSP PROBLEMS

7x7

8x6

12x4

16x3

9x5

11x4
15x3 24x2

7x6
23x2

14x3
8x5 22x210x4

21x213x3

20x2
6x69x4

12x3 7x5
19x2

18x211x3
8x4

17x2

6x516x2
10x3

7x4 15x2

9x3
14x2

5x5
13x2

N
u

m
b

er
 o

f h
o

le
s

400

600

800

1000

Fitted model

400 600 800 1000

Figure 4.8: Regression model for some computed hard peak GSP sizes

the GSP sizes we were able to deal with. Table 4.1 shows the number of
holes for GSP that lead those problems to the hardest instances. Taking
these data and preforming a doubly exponential regression, we were able to
find an exponential model for the number of holes as a function of the GSP
block size. The resulting model for all the possible block sizes ranging from
order 26 to 49 is the following:

holes = e0.537 · n1.57 · l1.72

with a coefficient of regression R2 = 0.989. Fig. 4.8 plots the model fit.

Phase transition on Edge Puzzle problems

Edge Matching Puzzles, seen on Section 3.6, also present a PT characteri-
zation linked to their backbone. We have reported experimental evidence of
the PT and the hardness characterisation of GEMP benchmark [ABFM08a,
ABFM08c], as well as, to our best knowledge, the first theoretical analysis
of such a kind of problems.

50

4.2. TYPICAL CASE HARDNESS

Block size (nxl)

n l
Number
of holes

13 2 318
14 2 356
15 2 402
16 2 443
17 2 487
18 2 528
19 2 578
20 2 623
21 2 673
22 2 726
23 2 774
24 2 825
9 3 366

10 3 432
11 3 504
12 3 582
13 3 659
14 3 743
15 3 821
16 3 908
7 4 404
8 4 502
9 4 604

10 4 708
11 4 828
12 4 950
5 5 340
6 5 450
7 5 586
8 5 728
9 5 877
6 6 612
7 6 790
8 6 989
7 7 1016

Table 4.1: Number of holes for the GSP that determines the phase transition
location for different block sizes

51

CHAPTER 4. HARDNESS OF CSP PROBLEMS

n=8, lex
n=8, dom
n=7, lex
n=7, dom

One-set GEMP-F

M
ed

ia
n

 t
im

e
(s

)

1

1000

106

Number of colors (c)

2 4 6 8 10 12

Figure 4.9: Hardness characteristic for a one-set GEMP-F as a function of
the number of colors

One-set and two-set GEMP-F present a hardness characterization de-
pending on their constituent number of colors. For one-set GEMP-F prob-
lems, once fixed the problem size, problem hardness only depends on one
parameter, i.e. the number of colors, c. Fig. 4.9 plots the median time
to solve 1-set GEMP-F problems of size 7x7 and 8x8 for different variable
selection heuristics, showing clearly a peak of hardness as a function of c. A
similar characterisation is found for two-set GEMP-F problems, but in this
case, problem hardness depends on both parameters; number of colors in
the mid and at the frame, cm and cf respectively. Fig. 4.10 is an example
for 7x7 size puzzles.

We conjecture this could be due the clustering effect produced by the
frame over the solutions space, similar to the one observed in other prob-
lems [MZ02, NAP05, LS05], i.e., the resulting solutions space of the inner
puzzle could be splitted into disjoint clusters of solutions surrounded by
many assignments that are very close to some solution. As detailed in pre-
vious analyzed only satisfiable problems, one can link this hardness charac-
terization to the backbone. Figure 4.11 shows this phase transition plotting
the fraction of the backbone as a function of the number of inner colors (cm)
for two-set GEMP-F with 3 frame colors (cf = 3).

From an analytical point of view, we can derive some expressions that
predict the phase transition location. For the sake of tractability, we consider
tokens generated randomly, unregarding adjacency constraints that give only
SAT puzzles. Of course, this is only an approach, but experimental results
and numerical evaluations agree for both models. As usual in SAT/UNSAT
models, the point where the expected number of solutions (E[X]) is small,

52

4.2. TYPICAL CASE HARDNESS

Two-set GEMP-F 7x7 Median Time (s)

 4
 5

 6
 7

 8
 9

 10
 11

Number colors mid
 1

 2
 3

 4
 5

Number colors frame

 0

 1000

 2000

 3000

 4000

 5000

Figure 4.10: Hardness characteristic for a two-set GEMP-F as a function of
the number of colors

Two-set GEMP-F, NxN, 3 colors in frame

N=6
N=7F

ra
ct

io
n

 o
f
th

e
b
ac

k
b
on

e
(%

)

0

20

40

60

Number of inner colors

4 6 8 10 12 14

Hardest instances

Figure 4.11: Phase transition of the percentage of backbone variables for a
two-set GEMP-F

53

CHAPTER 4. HARDNESS OF CSP PROBLEMS

but not negligible, marks the phase transition [SD96, Pro96] for random
CSP problems, being proved by [XL00] that such a transition occurs for
E[X] = 1 on Model RB. Then, our first step is to find analytical expressions
for the expected number of solutions on both models, one-set and two-set.

For a two-set GEMP-F, according to Definition 3.2, one can think on set
T as T = Tc ∪Tf ∪Tm, being Tc, Tf and Tm the set of tokens corresponding
to the corners, rest of the frame and mid of the board respectively.

Lets denote as S = Sc × Sf × Sm the set of possible locations on the
board for Tc, Tf and Tm jointly, and C the subset of S that satisfies 2-set
GEMP-F rules. Clearly, considering a n× n board, and that only elements
of the set Tm can be rotated:

|Tc| = 4, |Tf | = 4(n− 2), |Tm| = (n− 2)2

|Sc| = 4!, |Sf | = (4(n− 2))!, |Sm| = 4(n−2)2 · ((n− 2)2)!

We define X as the random variable that denotes the number of satisfying
locations according to the rules of 2-set GEMP-F puzzles, (i.e. the elements
of C). So, its expectation can be expressed as

E[X] = E

[∑
σ∈S

1C(σ)

]
=
∑
σ∈S

E [1C(σ)]

=
∑
σc∈Sc

∑
σf∈Sf

∑
σm∈Sm

E [1C(σc × σf × σm)]

= 4! · (4(n− 2))! · 4(n−2)2 · (n− 2)2! · E [1C(σc × σf × σm)] ,

being 1A(x) the indicator function, i.e., takes value 1 if x ∈ A and 0 if
x /∈ A. We claim that E [1C(σc × σf × σm)] is the probability that a given
arrangement of tokens satisfies a 2-set GEMP-F puzzle. If tokens are build
randomly, such a probability is

E [1C(σc × σf × σm)] =
(

1
cf

)4(n−1)

·
(

1
cm

)2(n−1)(n−2)

,

being cf and cm the number of colors in frame and mid, respectively, and
giving

E[X] = 4!·(4(n− 2))!·4(n−2)2 ·(n−2)2!·
(

1
cf

)4(n−1)

·
(

1
cm

)2(n−1)(n−2)

(4.4)

Analogously, one can derive an exact expression for one-set GEMP-F, re-
sulting

E[X] = 4! · (4(n− 2))! · 4(n−2)2 · (n− 2)2! ·
(

1
c

)2n(n−1)

(4.5)

54

4.2. TYPICAL CASE HARDNESS

Table 4.2: Round of log10(E[X]) according to Eq. 4.4 for two-set GEMP-F.
Shadowed cells shows where the hardest problems have been experimentally
found

n = 6 n = 7 n = 8
cf \ cm 4 5 6 7 4 5 6 7 8 6 7 8
3 4 0 -3 -6 12 7 2 -2 -6 10 4 -1
4 2 -2 -6 -8 9 4 -1 -5 -9 6 1 -4
5 7 1 -3 -7 -11 3 -2 -7
6 5 -1 -5 -9 -13 1 -4 -9

Of course, we have not the same level of granularity on GEMP problems
than in Random CSP models, and we are not able to tune our parameters
to lead E[X] to a desired point, but we can observe in Table 4.2 how the
point where E[X] changes from many to few solutions predicts where the
harder instances are. Furthermore, it is worth to note that for n = 16 and
cf = 5 the predicted phase transition occurs at cm = 17 that is exactly the
number of inner colors of the two-set GEMP-F puzzle used in E ternity II
contest.

As shown on Table 4.2, hard instances may be found for one or two
contiguous values of cm, meaning that their respective median times to solve
are equivalent. That is usual for small orders, tending to disappear for
larger n and therefore concentrating their hard problems for a given value
of cm. Actually, using Markov inequality that gives an upper bound to
the probability of having a satisfiable instance, P (Sat) ≤ E[X], it can be
shown that limn→∞ P (Sat) = 0 beyond a critical value of cm > cmcr . It is
straightforward to prove from Equations 4.5 and 4.4 that cmcr = 2n√

e
. Same

result stands for one-set GEMP-F model.

55

5
Hardening CSP problems

It is one of man’s curious idiosyncracies to create
difficulties for the pleasure of resolving them.

Joseph de Maistre

Hardening search problems is, from an abstract point of view, pretty
simple. If we use the time to solve as a measure on how hard problems are
we can easily deduce one simple method to harden them, make the solver
spend a lot of time exploring the search tree. A general knowledge on how
do solvers work give us a first insight on how to make those problems hard,
make hard for the solver, in every step of its exploration of the search tree
hard to choose which is the best move towards the solution, and make those
branching even harder by increasing, as much as possible, the branching
factor.

If we look at CSP problems we can easily see how to achieve, at least
partially, those goals. One method is to balance, i.e. equalize, the number
of constraints, of variables involved in each constraint, of domain sizes for
each variable, and so on. This will make hard for the solver to chose which
constraint try to satisfy, which domain value use to propagate a variable,
etc. thus increasing the uncertainity level on each branching decision.

57

CHAPTER 5. HARDENING CSP PROBLEMS

Contents

5.1 Balancing GSP . 58

5.1.1 Balanced Hole Patterns 58
5.1.2 Complexity patterns of Balanced GSP 62

5.2 Balancing Random BCSP 76

5.2.1 Balancing the constraint language 78
5.2.2 Balancing the constraint graph 79
5.2.3 Experimental investigation 83

5.3 Balancing k-SAT models 88

5.3.1 Related Work . 88
5.3.2 Hard SAT and n-ary CSP instances 90
5.3.3 Experimental investigation 95

5.1 Balancing GSP

5.1.1 Balanced Hole Patterns

Once a valid GS is generated, to create a GSWH we must punch holes to be
filled. The most simple method to remove values from the GS is to choose
which cells will be removed randomly. This creates problems that will be,
usually, easier to solve than if we choose these holes following a pattern,
specially if such pattern is balanced, that is, that the number of holes in
every row, column or block region is the same (or very similar). We will
present here three methods to punch those holes, each one progressively
providing a more refined pattern, and we will see later, in the experimental
results, that this every time more refined balance, has a heavy influence on
problem hardness.

Singly Balanced

First, we consider the balanced pattern used in [KRA+01] for QWH in-
stances, that we call here singly balanced. In a singly balanced pattern we
have, when possible, the same number of holes in every row and column of
the Sudoku. Given the total number of holes h, we can distribute q = h/s
holes in each row and column of the Sudoku using an algorithm for regular
bipartite graph generation, based on a Markov Chain algorithm [KTV97].
Observe that a hole pattern with q holes in every row and every column
is equivalent to a q−regular bipartite graph (R ∪ C,E), with R the set of
rows of the Sudoku and C its set of columns and (r, c) ∈ E indicates that
there is a hole in position (r, c) of the Sudoku. We move along the Markov
chain, where every state is a pattern that satisfies that the number of holes

58

5.1. BALANCING GSP

in each row and column is the same, using a “switch” [KTV97]. A switch
is defined by two entries (i, j), (i′, j′) of the GS instance, such that there is
a hole in (i, j) and (i′, j′) but not in (i, j′) and (i′, j). If we change both
holes to positions (i, j′) and (i′, j) the row and column hole number does
not change. When q = h/s is not an integer, we can still generate, with the
same algorithm, an almost balanced pattern with a bipartite graph where
the degree of the vertices either bqc or bqc + 1. In this case, we create the
initial hole pattern putting bqc holes in every row and column of the GS.
Then we distribute the remaining (h mod s) holes by randomly selecting
(h mod s) additional cells with no rows or columns in common.

Doubly Balanced

Because the distribution of holes between different blocks can make a differ-
ence in the difficulty of the problem, we propose a new method that ensures
that both; the number of holes in every row and column, and the number of
holes in every block will be the same. Our new doubly balanced method is
based on the Markov chain of §5.1.1, but now every state is a hole pattern
that also satisfies that the number of holes is the same in all blocks. So, we
use this Markov chain, but we restrict the moves to those moves that also
maintain the number of holes present in each block, i.e., moves such that the
blocks of (i, j) and (i′, j′) are either in the same block row or the same block
column, or both. Such moves always exist, even for a hole pattern with only
one hole in each block. With this, we have the code detailed in Algorithm
5.1 for generating a hole pattern H with q = h/s holes in each row, column
and block, using a GS S(i, j) (with symbols {1, . . . , s}) to create the initial
pattern considering each symbol as a hole, and then performing t moves
trough the Markov chain in order to sample from the set of possible doubly
balanced hole patterns.

Algorithm 5.1: Algorithm to create Doubly Balanced hole patterns in a
given GS

input : s, h, t
output: a doubly balanced hole pattern H of order s with h holes
H = { (i, j) | S(i, j) ∈ [1, bh/sc] }
for 1 . . . t do

T = { switch((i, j), (i′, j′)) of H | bi/lc = bi′/lc ∨ bj/nc = bj′/nc }
pick a uniformly random switch((i, j), (i′, j′)) from T
H = (H − {(i, j), (i′, j′)}) ∪ {(i, j′), (i′, j)}

Observe that the Sudoku S considered to create the initial hole pattern
can be any arbitrary Sudoku, and has no any relation with the Sudoku to
which we want to apply the hole pattern. Building such an arbitrary Sudoku
can be done using Equations 3.9 and 3.10.

59

CHAPTER 5. HARDENING CSP PROBLEMS

This code, obviously, only generates a perfect doubly balanced pattern
when h/s is an integer. If this is not the case, we generate a hole pattern that
is almost a doubly balanced one. That is, a hole pattern H that contains
h mod s rows, columns and blocks with bh/sc + 1 holes each one and the
remaining s−(h mod s) rows, columns and blocks with bh/sc holes each one.
To get this hole pattern, we generate the initial pattern as in the Algorithm
5.1, but also selecting a random subset M (with |M | = (h mod s)) of the
positions (i, j) of the Sudoku with S(i, j) = bh/sc+ 1 to select the positions
of the additional (h mod s) holes. So, the initial pattern will be:

H = { (i, j) | S(i, j) ∈ [1, bh/sc] } ∪
{ (i, j) | S(i, j) = bh/sc+ 1 ∧ (i, j) ∈M}

Fully Balanced

Our last balanced method, that we call fully balanced, is a generalization of
the previous one. Here, we force also that the number of holes in each row
and column inside each block to be the same. Of course, this is only possible
if blocks are squared, so in this subsubsection we assume that m = n and
therefore n =

√
s. This method produces a fully balanced hole pattern if

the total number of holes h satisfies that q1 = h/s is an integer (the number
of holes in each block, row and column of the Sudoku) and if q2 = q1/n is
also an integer (q2 is the number of holes in each row and column inside any
block). If these conditions are met, because what we indeed need in every
block is a hole pattern that is singly balanced inside the block, the following
simple code generates a fully balanced Sudoku:

Algorithm 5.2: Algorithm to create Fully Balanced hole patterns in a
given GS

input : s, h
output: a fully balanced hole pattern H of order s with h holes
for i ∈ 1 . . .

√
s do

for j ∈ 1 . . .
√
s do

H ′ := Singly balanced hole pattern of order
√
s with bh/sc holes

set the hole pattern of H in block (i, j) equal to H ′

In case that q1 = h/s is not an integer, that means that we have an
additional set of (h mod s) holes that we need to distribute as uniformly as
possible between the s blocks. To do it, consider a Latin Square R(i, j) of
order

√
s, with symbols {0, . . . ,√s−1}, such that entry R(i, j) is associated

with the block in block row i and block column j of our desired hole pattern.
We use R(i, j) to decide which blocks will contain one additional hole. Let

60

5.1. BALANCING GSP

0 1 2
1 2 0
2 0 1

(a)

0 1 2 0 1 2 0 1 2
1 2 0 1 2 0 1 2 0
2 0 1 2 0 1 2 0 1
0 1 2 0 1 2 0 1 2
1 2 0 1 2 0 1 2 0
2 0 1 2 0 1 2 0 1
0 1 2 0 1 2 0 1 2
1 2 0 1 2 0 1 2 0
2 0 1 2 0 1 2 0 1

(b)

Figure 5.1: Fully balanced GS hole poking example. (a) LS of order
√
s,

every cell is associated with a region block on the resulting GS instance. (b)
Resulting hole pattern where grayed cells will be holes in the GS instance.

q = b((h mod s) /
√
s)c and r = ((h mod s) mod

√
s). Then, the set of

blocks (i, j) that will contain one additional hole will be:

{(i, j) | R(i, j) < q} ∪ {(i, j) | R(i, j) = q ∧ i < r} (5.1)

So, observe that we try to distribute the remaining (h mod s) holes giving
almost the same number to every block row and block column (when r > 0
some blocks rows and blocks columns will be assigned with one more hole
than others).

Finally, given a block (i, j) and the number of holes hi,j we have decided
to distribute in the block, we basically use the Markov chain algorithm
of §5.1.1 in order to have the same number of holes in every subrow and
subcolumn of the block.

This hole punching method can be easily seen in Figure 5.1. In this
example we poke 23 holes in a 9 × 9 sudoku puzzle, i.e. a 81 cell sudoku.
As the number of holes is not a multiple of the number of block regions, we
must punch 2 holes in every block region, and the remainding 5 holes will
be punched using Equation 5.1. For this example, we have h = 23, s = 9,
q = 1 and r = 2, thus Equation 5.1 results in

{(i, j) | R(i, j) < 1} ∪ {(i, j) | R(i, j) = 1 ∧ i < 2}

this gives the following (i, j) values, refering to the following cells of LS
in Figure 5.1(a) that will have one additional hole: {(0, 0), (1, 2), (2, 1)} ∪
{(0, 1), (1, 0)}, shown in the figure as grayed cells.

Once the number of holes to poke in every block region is set forth, we
proceed as if the block region was a LS of

√
s order and punching holes. The

results can be seen on Figure 5.1(b), where holes have been grayed, and, as

61

CHAPTER 5. HARDENING CSP PROBLEMS

4

1

3

9

2

6

7

8

5

9

6

7

8

5

3

2

4

1

2

8

5

1

7

4

9

6

3

x

x

5

2

8

4

1

7

3

9

6

3

9

6

2

8

5

1

7

4

7

4

1

6

3

9

5

2

8

Figure 5.2: Grayed cells represent the initial assignment. The cells marked
with × cannot be completed after the two first columns are completed in
the way shown

it can be easily seen, block regions with one additional hole (that is, block
regions with 3 holes), correspond to grayed cells in 5.1(a).

Rectangular Hole Poking Method

We also considered a different method for punching holes: This method is
based on the rectangular model presented also in [KRA+01]. The rectan-
gular model selects a set of columns (or rows) and punches holes in all the
cells of these columns: in the case of QWH, this method produces tractable
instances [KRA+01]; they can be solved using an algorithm based on bipar-
tite graph matching. It is proved in this work that a similar hole pattern in
the case of GSP instances corresponds to an untractable class. Figure 5.2
shows an example of a solvable 3x3 GSP instance, with a rectangular hole
pattern. The initial assignment is indicated by the grayed cells. After two
rounds of the bipartite graph matching algorithm, a possible outcome corre-
sponds to the first two columns in the way shown; this configuration cannot
be completed into a valid Sudoku (even though there exists a valid comple-
tion of the initial partially filled instance). So, the rectangular hole pattern
could still provide hard instances for Sudoku. For that reason, we propose
a rectangular model for Generalized Sudoku, that distributes a set of c hole
columns between the different region columns of the Generalized Sudoku,
in a uniform way. The uniform distribution of the hole columns tries to
minimize the clustering of holes.

5.1.2 Complexity patterns of Balanced GSP

We will study the complexity of solving the balanced GSP generated with
the methods above mentioned. First we will study the worst case and then
we will present experimental results of hardness.

62

5.1. BALANCING GSP

Worst-case Complexity of GSP

It has been shown in [YS02], that GSP is NP-complete for the particular
case of square regions (n columns and n rows). Given that our empirical
complexity results show that, on average, GSP with rectangular regions is
easier than with square regions (the complexity decreasing the larger the
ratio n/m) the next natural question to answer was if NP-completeness still
applied to the rectangular case. We show here that this is the case.

Theorem 5.1. GSP with block regions with m rows, n columns and n 6= m
is NP-complete.

Proof. The proof for this case is a generalisation of the proof of [YS02], and
shows a reduction from QCP (Quasigroup Completion Problem) to GSP
(Generalized Sudoku Problem).

The following construction uses a GSP with n > m but can be trans-
formed to a isomorphic GSP with m > n, by simply rotating the GSP 90
degrees.

Given an instance of the QCP of order m, the reduction follows by
constructing an instance of GSP with region blocks with m rows and n
columns such that the GSP instance has solution iff the QCP instance has
solution. The coefficients of the QCP instance are embedded into the first
columns of the regions of the first region row.

Let L be the QCP instance and S the GSP instance, and let denote their
coefficients

L = (Li,j), 0 ≤ i, j ≤ m− 1;
S = (Sk,li,j), 0 ≤ i, l ≤ n− 1, 0 ≤ j, k ≤ m− 1,

where Sk,li,j corresponds to the coefficient of S located at k-th row and l-th
column inside i-th region row, j-th region column.

Then, these coefficients are ordered pairs defined as

Sk,li,j =
{

(Lk,j , 0), if i = l = 0
(k + j (mod m), i+ l (mod n)), otherwise.

Under this construction, the original (or empty) coefficients of the QCP
instance are placed at positions with i = l = 0.

It is straightforward to observe the GSP instances with rectangular block
regions have solution if and only if the QCP instance has solution.

Finally, there is still one last case that makes GSP even more interesting
than the problem it generalizes (QCP). In the work [KRA+01] it was shown
that QCP, when every column is either empty or full of symbols, can be
solved in polynomial time. By contrast, GSP with every column either
empty or full of symbols (referred as GSP with column hole pattern) is
NP-complete. An equivalent result is also true for row hole patterns.

63

CHAPTER 5. HARDENING CSP PROBLEMS

Theorem 5.2. GSP with block regions with n rows and n2 + 1 columns and
with column hole pattern, is NP-complete.

In this appendix we show NP-completeness of GSP with column hole
pattern (proof of Theorem 5.2). The same proof can be adapted to show a
similar result for row hole patterns.

The main idea of the proof is to define a reduction from QCP to GSP
with column hole patterns. Given a QCP instance of order n, the reduction
follows by constructing a GSP instance of order n(n2+1), which has n region
columns and n2+1 region rows, and column hole pattern. The overall idea of
this reduction is the same as the proof for Theorem 5.1. That is, columns in
the QCP instance are mapped to the first column of each rectangular region
in the first region row. The remaining cells are filled using a particular
class of Latin Squares (named Canonical Zero-Diagonal Latin Square, CZD-
LS), of order n2 + 1. Finally, the first column of each region column is
emptied, after conveniently swapping the cells mapped from the original
QCP instance to preserve their effect. It can be shown that a solution of
such a GSP instance exists if, and only if, a solution of the original QCP
instance also exists.

In the following paragraphs we define and construct Canonical Zero-
Diagonal Latin Squares. Afterwards we will present the reduction from
QCP to GSP with column hole pattern.

Canonical Zero-Diagonal Latin Square, CZD-LS
A Canonical Zero-Diagonal Latin Square (CZD-LS) of order n is a Latin

Square L = (Li,j) ∈ Mn×n(Zn), 0 ≤ i, j ≤ n − 1 such that the coefficients
of its main diagonal are 0, i.e. Li,i = 0, and that the coefficients in the first
row and first column are the elements of the sequence (0, 1, . . . , n− 1), that
is Li,0 = i and L0,j = j, for 0 ≤ i, j ≤ n− 1.

The following matrix corresponds to a CZD-LS of order n = 10,0 1 2 3 4 5 6 7 8 9
1 0 3 4 5 6 7 8 9 2
2 3 0 5 6 7

Proposition 5.3. For any positive integer n there exists a CZD-LS of order
n.

Proof. The existence of such a matrix will be proven by providing an explicit
construction. For such a construction, we will distinguish between two cases:

• Case n even.
In this case, the coefficients Li,j of a Canonical Zero-Diagonal Latin
Square L can be constructed as follows,

64

5.1. BALANCING GSP

Li,j =

0, if i = j,
i+ j (mod n), if j ≤ n− i− 1 and i 6= j,
i+ j + 1 (mod n), if n− i− 1 < j < n− 1 and i < n− 1,
2i (mod n), if 0 < i < n

2 and j = n− 1,
2j (mod n), if i = n− 1 and 0 < j < n

2 ,
2(i− n

2) + 1 (mod n), if n
2 ≤ i < n− 1 and j = n− 1,

2(j − n
2) + 1 (mod n), otherwise.

Notice that this matrix is symmetric. Hence, to show that it is a Latin
Square, it is enough to show that the values in each row are different.
We should distinguish between the following three situations:

– Case 0 ≤ i < n/2.
In row i, the consecutive values are

i, i+ 1, . . . , 2i− 1, 0, 2i+ 1, . . . , n− 1, 1, 2, . . . i− 1, 2i,

hence, they cover all possible values from 0 to n− 1.

– Case n/2 ≤ i < n− 1.
In this case, the values for row i are:

i, i+ 1, . . . , n− 1, 1, 2, . . . , 2i, 0, 2i+ 2, . . . i− 1, 2i+ 1.

Again, they cover all possible values.

– Case i = n− 1.
In the last row, the values are

n− 1, 2, 4, . . . , n− 2, 1, 3, 5, . . . , n− 3, 0,

so they also are pairwise different.

• Case n odd.
In the case that n is odd, consider a Latin Square L′ of even order n−1.
Then, a CZD-LS L with order n can be obtained from L′ proceeding
in the following way:

– To obtain L, add to L′ an extra column and an extra row.

– Then L0,n−1 = n− 1, Ln−1,0 = n− 1 and Ln−1,n−1 = 0.

65

CHAPTER 5. HARDENING CSP PROBLEMS

For example, in the case n = 11,

L =

0 1 2 3 4 5 6 7 8 9 10
1 0 3 4 5 6 7 8 9 2
2 3 0 5 6 7 8 9 1 4
3 4 5 0 7 8 9 1 2 6
4 5 6 7 0 9 1 2 3 8
5 6 7 8 9 0 2 3 4 1
6 7 8 9 1 2 0 4 5 3
7 8 9 1 2 3 4 0 6 5
8 9 1 2 3 4 5 6 0 7
9 2 4 6 8 1 3 5 7 0
10 0

– Consider the submatrix of L consisting of columns from 2 until
n− 2, and rows also from 2 until n− 2.
In the previous example,

L =

0 1 2 3 4 5 6 7 8 9 10
1 0 3 4 5 6 7 8 9 2
2 3 0 5 6 7 8 9 1 4
3 4 5 0 7 8 9 1 2 6
4 5 6 7 0 9 1 2 3 8
5 6 7 8 9 0 2 3 4 1
6 7 8 9 1 2 0 4 5 3
7 8 9 1 2 3 4 0 6 5
8 9 1 2 3 4 5 6 0 7
9 2 4 6 8 1 3 5 7 0
10 0

– In such submatrix, consider a latin transversal 1. Such a transver-
sal always exists in this submatrix. One possible choice would
be taking the following coefficients: L1,n−2, L2,n−4, Li,i−2 for i ∈
{3, . . . , n− 3}, and Ln−2,n−3.
Following with the example, such coefficients are the ones typed
in bold,

1A transversal array is a set of n cells in an n× n square such that no two come from
the same row and no two come from the same column. Then, a latin transversal is a
transversal such that no two cells contain the same element.

66

5.1. BALANCING GSP

L =

0 1 2 3 4 5 6 7 8 9 10
1 0 3 4 5 6 7 8 9 2
2 3 0 5 6 7 8 9 1 4
3 4 5 0 7 8 9 1 2 6
4 5 6 7 0 9 1 2 3 8
5 6 7 8 9 0 2 3 4 1
6 7 8 9 1 2 0 4 5 3
7 8 9 1 2 3 4 0 6 5
8 9 1 2 3 4 5 6 0 7
9 2 4 6 8 1 3 5 7 0
10 0

– Then, the value of each coefficient in the transversal is placed at

the last column and last row, and replaced by value n− 1.
In our example,

L =

0 1 2 3 4 5 6 7 8 9 10
1 0 3 4 5 6 7 8 9 10 2
2 3 0 5 6 7 8 10 1 4 9
3 10 5 0 7 8 9 1 2 6 4
4 5 10 7 0 9 1 2 3 8 6
5 6 7 10 9 0 2 3 4 1 8
6 7 8 9 10 2 0 4 5 3 1
7 8 9 1 2 10 4 0 6 5 3
8 9 1 2 3 4 10 6 0 7 5
9 2 4 6 8 1 3 5 10 0 7
10 4 6 8 1 3 5 9 7 2 0

Following this construction, it can be easily proven that coefficients in

the same row or in the same column are always different.

A reduction from PLS to GSP with rectangular hole pattern
Let L be the original PLS of size n and C the CZD-LS of size n2 + 1.

Their coefficients are denoted as:

L = (Li,j), 0 ≤ i, j ≤ n− 1;
C = (Ci,j), 0 ≤ i, j ≤ n2.

Empty cells in L are assigned the value ⊥. Notice that the first row and
column are numbered as zero.

Then the GS of size n(n2 + 1) is denoted as

S = (Sk,li,j), 0 ≤ i, l ≤ n2, 0 ≤ j, k ≤ n− 1,

67

CHAPTER 5. HARDENING CSP PROBLEMS

Sk,l
i, j

l

k

{
i

{j

Sk,0
0, j Sk,l

0, j

Sk′,0
l, j Sk′,l

l, j

.

Figure 5.3: Detail of the structure of the region columns. By construction
we have Sk,00,j = Sk

′,l
l,j and Sk,l0,j = Sk

′,0
l,j

where Sk,li,j corresponds to the coefficient located at i-th region row, j-th
region column, and inside such a region it is placed on the k-th row and l-th
column. These coefficients are ordered pairs, defined as follows

Sk,li,j =

(Lk,j , C0,0) = (Lk,j , 0), if i = l = 0,
(j + k (mod n), Ci,i) = (j + k (mod n), 0), if i = l 6= 0,
(i+ j + k (mod n), Ci,l), otherwise.

In fact, the first condition is the responsible for embedding the information
from the PLS to the GS. When in the PLS the cell is empty, it remains also
empty in the GS. Figure 5.4 shows an example of this construction for a
PLS of size n = 3.

It can be easily seen that this construction is a sudoku with holes. This
is due to the fact that the second component corresponds to the cells of
the CZD-LS, which is combined with a first component whose values are
0, 1, . . . , n − 1, which ensures that the contents are different in each row,
each column and each region.

At the end, the aim of the construction is obtaining a GS with rectan-
gular pattern, that is, where columns with parameter l = 0 are empty. For
such a purpose, since at the moment these columns contain the information
embedded from the original PLS, the construction goes on swapping this
cells, but preserving the properties of being a GS. We proceed as follows:

68

5.1. BALANCING GSP

• Consider every non–empty cell Sk,00,j (that is, the ones placed on the
first columns of each region in the first region row). Notice that these
cells are the ones that have inherited the information in the PLS,
Sk,00,j = (Lk,j , 0).

• For each Sk,00,j that is different to ⊥, we will take one of its mates, that

is, another cell in the same row, Sk,l0,j , l 6= 0, such that there exists k′ for

which it holds that Sk,00,j = Sk
′,l
l,j and Sk,l0,j = Sk

′,0
l,j (that is, the opposite

corners of the rectangle defined by these positions coincide). In fact,
Proposition 5.4 shows that there always exist exactly n mates.

• Then, for each Sk,00,j , we take one of its mates, and swap their contents,
and we also swap the contents of the cells in the other two corners
of the rectangle (that is Sk

′,0
l,j and Sk

′,l
l,j). In the case that there exists

two cells Sk,00,j and Sk
′,0

0,j′ with the same value, one should take care in
choosing different mates (next results show that it is always possible).

Proposition 5.4. For every values 0 ≤ j, k ≤ n − 1, every non-empty cell
Sk,00,j has exactly n mates.

Proof. Let us fix the values j and k. From the construction of S it follows
that Sk,00,j = (Lk,j , 0). Hence, the cells that can be located at its opposite
corner have to be assigned value 0 in its second component, which are, by
construction, Sk

′,l
l,j , for 0 ≤ k′ ≤ n− 1 and 1 ≤ l ≤ n2

Notice that the contents of the n cells Sk
′,l
l,j is (j + k′(mod n), 0), for

0 ≤ k′ ≤ n− 1. Hence, Sk,00,j will be equal to Sk
′,l
l,j for k′ ≡ Lk,j − j (mod n)

We are looking forward the existence of values for l such that verify that
the two other corners coincide, that is, Sk

′,0
l,j = Sk,l0,j . The values of these cells

are

Sk
′,0
l,j = (l + j + k′(mod n), Cl,0) = (l + j + k′(mod n), l)
Sk,l0,j = (j + k(mod n), C0,l) = (j + k(mod n), l)

Hence, equality will hold if, and only if,

l + j + k′ ≡ j + k(mod n)⇐⇒ l ≡ k − k′(mod n) ≡ j + k − Lk,j(mod n).

It straightforwardly follows that there exist n2/n = n values for l that satisfy
this condition, which determine the position of the mates.

Proposition 5.5. Given the set of values Sk1,00,j1
, Sk2,00,j2

, . . . , Skn,00,jn
embedded

from the PLS, their mates can be taken pairwise different.

69

CHAPTER 5. HARDENING CSP PROBLEMS

Proof. Firstly, notice that the sets of possible mates for two different values
Sk,00,j 6= Sk

′,0
0,j′ are disjoint. The first component of the mates will be j + k

(mod n) and j′ + k′ (mod n), respectively. If these values are different,
obviously the sets of possible mates also will be. In the case that j+k ≡ j′+k′
(mod n), the sets of mates will be in columns l ≡ j + k−Lj,k (mod n) and
l 6= j′ + k′ − Lj′,k′ (mod n), respectively, so they are also disjoint.

Hence, the problem could appear for cells with the same value, namely
Sk,00,j = Sk

′,0
0,j′ . Again, when j+k 6≡ j′+k′ (mod n), their set of possible mates

will be disjoint. In the case that j + k ≡ j′ + k′ (mod n), their set of mates
will be located at columns l ≡ j + k + Lk,j ≡ j′ + k′ + Lk′,j′ (mod n). In
this last case, the repeated value can appear at most n times, so n different
mates can be taken.

In the example in Figure 5.4, it can be seen that, for instance, the mates
of S1,0

0,2 = (2, 0) will be located at positions

l ≡ k − k′ ≡ 1− 0 ≡ 1(mod 3) =⇒ l = 1, 4, 7.

We take one of its three mates, for instance the one with l = 7. Indeed, we
have S1,7

0,2 = (0, 7), S0,0
7,2 = (0, 7) and S0,7

7,2 = (2, 0). Hence, contents of these
pairs of cells in each row can be swapped, while maintaining the property
of being a sudoku with holes.

Then, in the last step of the construction, the first column of each column
region is emptied, namely those positions with l = 0.

Finally, the following proposition shows that the Partial Latin Square
Problem can be reduced to the General Sudoku with Column Holes Problem.

Theorem 5.6. Let L be a PLS, and let T be the GS with holes obtained un-
der the previously detailed construction. The Latin Square L has a solution
if, and only if, T has a solution.

Proof. On the one hand, notice that if a solution of L exists, a solution of
T can be also obtained: originally non–empty cells located at l = 0 can
be assigned the values obtained in the construction, before emptying the
columns, and those originally empty cells (located at i = l = 0) can be
assigned the values of the solution of L, along with second component 0.

On the other way round, if a solution of T exists, each empty hole Lk,j
can be assigned the first component of T k,00,j . Firstly, notice that, in cells
with i = l = 0 in T which were originally non–empty, in the solution must
appear the chosen mate (since every mate was taken at most once). After
the swapping, an original value Lk,j of the PLS is embedded in some cell
T k,l0,j . So, every value in its same row and region must be different. Hence,
the solution values assigned to originally empty cells conform a solution of
the PLS.

Finally, from this result, Theorem 5.2 straightforwardly follows.

70

5.1. BALANCING GSP
0 2

1

→

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

0
,0

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

2
,0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1
,0

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

1
,1

0
,0

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

1
,2

2
,1

1
,0

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

2
,2

0
,1

2
,0

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

0
,2

2
,1

1
,0

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

2
,2

0
,1

2
,0

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

0
,2

1
,1

0
,0

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

1
,2

0
,1

2
,0

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

0
,2

1
,1

0
,0

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

1
,2

2
,1

1
,0

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

2
,2

2
,2

2
,3

0
,0

2
,5

2
,6

2
,7

2
,8

2
,9

2
,1

2
,4

0
,2

0
,3

1
,0

0
,5

0
,6

0
,7

0
,8

0
,9

0
,1

0
,4

1
,2

1
,3

2
,0

1
,5

1
,6

1
,7

1
,8

1
,9

1
,1

1
,4

0
,2

0
,3

1
,0

0
,5

0
,6

0
,7

0
,8

0
,9

0
,1

0
,4

1
,2

1
,3

2
,0

1
,5

1
,6

1
,7

1
,8

1
,9

1
,1

1
,4

2
,2

2
,3

0
,0

2
,5

2
,6

2
,7

2
,8

2
,9

2
,1

2
,4

1
,2

1
,3

2
,0

1
,5

1
,6

1
,7

1
,8

1
,9

1
,1

1
,4

2
,2

2
,3

0
,0

2
,5

2
,6

2
,7

2
,8

2
,9

2
,1

2
,4

0
,2

0
,3

1
,0

0
,5

0
,6

0
,7

0
,8

0
,9

0
,1

0
,4

0
,3

0
,4

0
,5

0
,0

0
,7

0
,8

0
,9

0
,1

0
,2

0
,6

1
,3

1
,4

1
,5

1
,0

1
,7

1
,8

1
,9

1
,1

1
,2

1
,6

2
,3

2
,4

2
,5

2
,0

2
,7

2
,8

2
,9

2
,1

2
,2

2
,6

1
,3

1
,4

1
,5

1
,0

1
,7

1
,8

1
,9

1
,1

1
,2

1
,6

2
,3

2
,4

2
,5

2
,0

2
,7

2
,8

2
,9

2
,1

2
,2

2
,6

0
,3

0
,4

0
,5

0
,0

0
,7

0
,8

0
,9

0
,1

0
,2

0
,6

2
,3

2
,4

2
,5

2
,0

2
,7

2
,8

2
,9

2
,1

2
,2

2
,6

0
,3

0
,4

0
,5

0
,0

0
,7

0
,8

0
,9

0
,1

0
,2

0
,6

1
,3

1
,4

1
,5

1
,0

1
,7

1
,8

1
,9

1
,1

1
,2

1
,6

1
,4

1
,5

1
,6

1
,7

0
,0

1
,9

1
,1

1
,2

1
,3

1
,8

2
,4

2
,5

2
,6

2
,7

1
,0

2
,9

2
,1

2
,2

2
,3

2
,8

0
,4

0
,5

0
,6

0
,7

2
,0

0
,9

0
,1

0
,2

0
,3

0
,8

2
,4

2
,5

2
,6

2
,7

1
,0

2
,9

2
,1

2
,2

2
,3

2
,8

0
,4

0
,5

0
,6

0
,7

2
,0

0
,9

0
,1

0
,2

0
,3

0
,8

1
,4

1
,5

1
,6

1
,7

0
,0

1
,9

1
,1

1
,2

1
,3

1
,8

0
,4

0
,5

0
,6

0
,7

2
,0

0
,9

0
,1

0
,2

0
,3

0
,8

1
,4

1
,5

1
,6

1
,7

0
,0

1
,9

1
,1

1
,2

1
,3

1
,8

2
,4

2
,5

2
,6

2
,7

1
,0

2
,9

2
,1

2
,2

2
,3

2
,8

2
,5

2
,6

2
,7

2
,8

2
,9

0
,0

2
,2

2
,3

2
,4

2
,1

0
,5

0
,6

0
,7

0
,8

0
,9

1
,0

0
,2

0
,3

0
,4

0
,1

1
,5

1
,6

1
,7

1
,8

1
,9

2
,0

1
,2

1
,3

1
,4

1
,1

0
,5

0
,6

0
,7

0
,8

0
,9

1
,0

0
,2

0
,3

0
,4

0
,1

1
,5

1
,6

1
,7

1
,8

1
,9

2
,0

1
,2

1
,3

1
,4

1
,1

2
,5

2
,6

2
,7

2
,8

2
,9

0
,0

2
,2

2
,3

2
,4

2
,1

1
,5

1
,6

1
,7

1
,8

1
,9

2
,0

1
,2

1
,3

1
,4

1
,1

2
,5

2
,6

2
,7

2
,8

2
,9

0
,0

2
,2

2
,3

2
,4

2
,1

0
,5

0
,6

0
,7

0
,8

0
,9

1
,0

0
,2

0
,3

0
,4

0
,1

0
,6

0
,7

0
,8

0
,9

0
,1

0
,2

0
,0

0
,4

0
,5

0
,3

1
,6

1
,7

1
,8

1
,9

1
,1

1
,2

1
,0

1
,4

1
,5

1
,3

2
,6

2
,7

2
,8

2
,9

2
,1

2
,2

2
,0

2
,4

2
,5

2
,3

1
,6

1
,7

1
,8

1
,9

1
,1

1
,2

1
,0

1
,4

1
,5

1
,3

2
,6

2
,7

2
,8

2
,9

2
,1

2
,2

2
,0

2
,4

2
,5

2
,3

0
,6

0
,7

0
,8

0
,9

0
,1

0
,2

0
,0

0
,4

0
,5

0
,3

2
,6

2
,7

2
,8

2
,9

2
,1

2
,2

2
,0

2
,4

2
,5

2
,3

0
,6

0
,7

0
,8

0
,9

0
,1

0
,2

0
,0

0
,4

0
,5

0
,3

1
,6

1
,7

1
,8

1
,9

1
,1

1
,2

1
,0

1
,4

1
,5

1
,3

1
,7

1
,8

1
,9

1
,1

1
,2

1
,3

1
,4

0
,0

1
,6

1
,5

2
,7

2
,8

2
,9

2
,1

2
,2

2
,3

2
,4

1
,0

2
,6

2
,5

0
,7

0
,8

0
,9

0
,1

0
,2

0
,3

0
,4

2
,0

0
,6

0
,5

2
,7

2
,8

2
,9

2
,1

2
,2

2
,3

2
,4

1
,0

2
,6

2
,5

0
,7

0
,8

0
,9

0
,1

0
,2

0
,3

0
,4

2
,0

0
,6

0
,5

1
,7

1
,8

1
,9

1
,1

1
,2

1
,3

1
,4

0
,0

1
,6

1
,5

0
,7

0
,8

0
,9

0
,1

0
,2

0
,3

0
,4

2
,0

0
,6

0
,5

1
,7

1
,8

1
,9

1
,1

1
,2

1
,3

1
,4

0
,0

1
,6

1
,5

2
,7

2
,8

2
,9

2
,1

2
,2

2
,3

2
,4

1
,0

2
,6

2
,5

2
,8

2
,9

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

0
,0

2
,7

0
,8

0
,9

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

1
,0

0
,7

1
,8

1
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

2
,0

1
,7

0
,8

0
,9

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

1
,0

0
,7

1
,8

1
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

2
,0

1
,7

2
,8

2
,9

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

0
,0

2
,7

1
,8

1
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

2
,0

1
,7

2
,8

2
,9

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

0
,0

2
,7

0
,8

0
,9

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

1
,0

0
,7

0
,9

0
,2

0
,4

0
,6

0
,8

0
,1

0
,3

0
,5

0
,7

0
,0

1
,9

1
,2

1
,4

1
,6

1
,8

1
,1

1
,3

1
,5

1
,7

1
,0

2
,9

2
,2

2
,4

2
,6

2
,8

2
,1

2
,3

2
,5

2
,7

2
,0

1
,9

1
,2

1
,4

1
,6

1
,8

1
,1

1
,3

1
,5

1
,7

1
,0

2
,9

2
,2

2
,4

2
,6

2
,8

2
,1

2
,3

2
,5

2
,7

2
,0

0
,9

0
,2

0
,4

0
,6

0
,8

0
,1

0
,3

0
,5

0
,7

0
,0

2
,9

2
,2

2
,4

2
,6

2
,8

2
,1

2
,3

2
,5

2
,7

2
,0

0
,9

0
,2

0
,4

0
,6

0
,8

0
,1

0
,3

0
,5

0
,7

0
,0

1
,9

1
,2

1
,4

1
,6

1
,8

1
,1

1
,3

1
,5

1
,7

1
,0

F
ig

ur
e

5.
4:

F
ir

st
st

ep
in

th
e

re
du

ct
io

n.
T

he
P

L
S

is
m

ap
pe

d
to

th
e

se
t

of
po

si
ti

on
s
B

of
th

e
Su

do
ku

bu
ild

as
ex

pl
ai

ne
d

in
th

e
te

xt
.

E
ve

ry
sy

m
bo

l(
a
,0

)
in

th
e

po
si

ti
on

s
B

w
ill

be
sw

ap
pe

d
w

it
h

th
e

sy
m

bo
lt

ha
t

ap
pe

ar
s

in
bo

ld
fa

ce
in

th
e

sa
m

e
ro

w
an

d
re

gi
on

of
(a
,0

).

71

CHAPTER 5. HARDENING CSP PROBLEMS

02
1

→

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

2
,7

0
,0

2
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

2
,0

0
,8

0
,9

1
,0

2
,2

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

0
,0

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

1
,2

1
,0

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

2
,2

2
,0

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

0
,2

2
,1

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

2
,2

2
,0

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

0
,2

0
,0

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

1
,2

2
,0

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9

0
,2

0
,0

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9

1
,2

1
,0

2
,3

2
,4

2
,5

2
,6

2
,7

2
,8

2
,9

2
,2

2
,3

0
,0

2
,5

2
,6

2
,7

2
,8

2
,9

2
,1

2
,4

0
,3

1
,0

0
,5

0
,6

0
,7

0
,8

0
,9

0
,1

0
,4

1
,3

2
,0

1
,5

1
,6

1
,7

1
,8

1
,9

1
,1

1
,4

0
,3

1
,0

0
,5

0
,6

0
,7

0
,8

0
,9

0
,1

0
,4

1
,3

2
,0

1
,5

1
,6

1
,7

1
,8

1
,9

1
,1

1
,4

2
,3

0
,0

2
,5

2
,6

2
,7

2
,8

2
,9

2
,1

2
,4

1
,3

2
,0

1
,5

1
,6

1
,7

1
,8

1
,9

1
,1

1
,4

2
,3

0
,0

2
,5

2
,6

2
,7

2
,8

2
,9

2
,1

2
,4

0
,3

1
,0

0
,5

0
,6

0
,7

0
,8

0
,9

0
,1

0
,4

0
,4

0
,5

0
,0

0
,7

0
,8

0
,9

0
,1

0
,2

0
,6

1
,4

1
,5

1
,0

1
,7

1
,8

1
,9

1
,1

1
,2

1
,6

2
,4

2
,5

2
,0

2
,7

2
,8

2
,9

2
,1

2
,2

2
,6

1
,4

1
,5

1
,0

1
,7

1
,8

1
,9

1
,1

1
,2

1
,6

2
,4

2
,5

2
,0

2
,7

2
,8

2
,9

2
,1

2
,2

2
,6

0
,4

0
,5

0
,0

0
,7

0
,8

0
,9

0
,1

0
,2

0
,6

2
,4

2
,5

2
,0

2
,7

2
,8

2
,9

2
,1

2
,2

2
,6

0
,4

0
,5

0
,0

0
,7

0
,8

0
,9

0
,1

0
,2

0
,6

1
,4

1
,5

1
,0

1
,7

1
,8

1
,9

1
,1

1
,2

1
,6

1
,5

1
,6

1
,7

0
,0

1
,9

1
,1

1
,2

1
,3

1
,8

2
,5

2
,6

2
,7

1
,0

2
,9

2
,1

2
,2

2
,3

2
,8

0
,5

0
,6

0
,7

2
,0

0
,9

0
,1

0
,2

0
,3

0
,8

2
,5

2
,6

2
,7

1
,0

2
,9

2
,1

2
,2

2
,3

2
,8

0
,5

0
,6

0
,7

2
,0

0
,9

0
,1

0
,2

0
,3

0
,8

1
,5

1
,6

1
,7

0
,0

1
,9

1
,1

1
,2

1
,3

1
,8

0
,5

0
,6

0
,7

2
,0

0
,9

0
,1

0
,2

0
,3

0
,8

1
,5

1
,6

1
,7

0
,0

1
,9

1
,1

1
,2

1
,3

1
,8

2
,5

2
,6

2
,7

1
,0

2
,9

2
,1

2
,2

2
,3

2
,8

2
,6

2
,7

2
,8

2
,9

0
,0

2
,2

2
,3

2
,4

2
,1

0
,6

0
,7

0
,8

0
,9

1
,0

0
,2

0
,3

0
,4

0
,1

1
,6

1
,7

1
,8

1
,9

2
,0

1
,2

1
,3

1
,4

1
,1

0
,6

0
,7

0
,8

0
,9

1
,0

0
,2

0
,3

0
,4

0
,1

1
,6

1
,7

1
,8

1
,9

2
,0

1
,2

1
,3

1
,4

1
,1

2
,6

2
,7

2
,8

2
,9

0
,0

2
,2

2
,3

2
,4

2
,1

1
,6

1
,7

1
,8

1
,9

2
,0

1
,2

1
,3

1
,4

1
,1

2
,6

2
,7

2
,8

2
,9

0
,0

2
,2

2
,3

2
,4

2
,1

0
,6

0
,7

0
,8

0
,9

1
,0

0
,2

0
,3

0
,4

0
,1

0
,7

0
,8

0
,9

0
,1

0
,2

0
,0

0
,4

0
,5

0
,3

1
,7

1
,8

1
,9

1
,1

1
,2

1
,0

1
,4

1
,5

1
,3

2
,7

2
,8

2
,9

2
,1

2
,2

2
,0

2
,4

2
,5

2
,3

1
,7

1
,8

1
,9

1
,1

1
,2

1
,0

1
,4

1
,5

1
,3

2
,7

2
,8

2
,9

2
,1

2
,2

2
,0

2
,4

2
,5

2
,3

0
,7

0
,8

0
,9

0
,1

0
,2

0
,0

0
,4

0
,5

0
,3

2
,7

2
,8

2
,9

2
,1

2
,2

2
,0

2
,4

2
,5

2
,3

0
,7

0
,8

0
,9

0
,1

0
,2

0
,0

0
,4

0
,5

0
,3

1
,7

1
,8

1
,9

1
,1

1
,2

1
,0

1
,4

1
,5

1
,3

1
,8

1
,9

1
,1

1
,2

1
,3

1
,4

0
,0

1
,6

1
,5

2
,8

2
,9

2
,1

2
,2

2
,3

2
,4

1
,0

2
,6

2
,5

0
,8

0
,9

0
,1

0
,2

0
,3

0
,4

0
,7

0
,6

0
,5

2
,8

2
,9

2
,1

2
,2

2
,3

2
,4

1
,0

2
,6

2
,5

0
,8

0
,9

0
,1

0
,2

0
,3

0
,4

2
,0

0
,6

0
,5

1
,8

1
,9

1
,1

1
,2

1
,3

1
,4

0
,0

1
,6

1
,5

0
,8

0
,9

0
,1

0
,2

0
,3

0
,4

2
,0

0
,6

0
,5

1
,8

1
,9

1
,1

1
,2

1
,3

1
,4

0
,0

1
,6

1
,5

2
,8

2
,9

2
,1

2
,2

2
,3

2
,4

1
,0

2
,6

2
,5

2
,9

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

0
,0

2
,7

0
,9

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

1
,0

0
,7

1
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

2
,0

1
,7

0
,9

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

1
,0

0
,7

1
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

2
,0

1
,7

2
,9

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

2
,8

2
,7

1
,9

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

2
,0

1
,7

2
,9

2
,1

2
,2

2
,3

2
,4

2
,5

2
,6

0
,0

2
,7

0
,9

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

1
,0

0
,7

0
,2

0
,4

0
,6

0
,8

0
,1

0
,3

0
,5

0
,7

0
,0

1
,2

1
,4

1
,6

1
,8

1
,1

1
,3

1
,5

1
,7

1
,0

2
,2

2
,4

2
,6

2
,8

2
,1

2
,3

2
,5

2
,7

2
,0

1
,2

1
,4

1
,6

1
,8

1
,1

1
,3

1
,5

1
,7

1
,0

2
,2

2
,4

2
,6

2
,8

2
,1

2
,3

2
,5

2
,7

2
,0

0
,2

0
,4

0
,6

0
,8

0
,1

0
,3

0
,5

0
,7

0
,0

2
,2

2
,4

2
,6

2
,8

2
,1

2
,3

2
,5

2
,7

2
,0

0
,2

0
,4

0
,6

0
,8

0
,1

0
,3

0
,5

0
,7

0
,0

1
,2

1
,4

1
,6

1
,8

1
,1

1
,3

1
,5

1
,7

1
,0

F
igure

5.5:
Second

step
in

the
reduction.

72

5.1. BALANCING GSP

Typical case complexity

In this section, we experimentally analyze the complexity behavior of GSWH
problems depending on the employed method for punching holes. We first
compare the complexity patterns among singly balanced GSWH problems
for distinct factor forms on their constituent blocks, looking as well to the
performance of different solving algorithms at the hardest zone of the com-
plexity pattern. Finally, we show how this complexity is raised when more
balanced puncturing methods for generating holes (doubly and fully) are
used.

Singly Balanced
We consider first the complexity of solving GSWH instances generated

with the Singly Balanced method. Our first set of results shows the complex-
ity of Solving GSWH instances with different block factor forms, comparing
it with the complexity of solving QWH instances. Figure 5.6 shows the re-
sults for GSWH with blocks 15×2, 10×3 and 6×5 (size 30) and QWH also
of size 30 (the encoding used for QWH is 3D). We employ 100 instances per
point and MiniSAT solver with 5,000 seconds cutoff. Complexity patterns
are quite similar, being worth to note that the closer to a square is the block
region shape, the greater is its peak complexity. So, for the same size, the
easiest instances are from QWH and the hardest ones those from GSWH
with almost square blocks2. Observe that the difference between QWH and
GSWH with square blocks is about three orders of magnitude for this size.
Our conjecture is the following; for a GSWH instance with blocks n× l and
l fixed, when a cell is assigned, the larger n, the more cells in the same block
become constrained in those blocks that intersect with the row of the fixed
cell. So, when fixing a cell, for a large n some blocks will become more
constrained than others, and this may be an advantage for simplifying the
problem where look-ahead heuristics can take advantage of. By contrast,
for square blocks, fixing a cell constrains the same number of cells (if the
current hole pattern is balanced) in all the blocks that intersect with the row
or the column of the fixed cell. So, again it seems that balance is making a
difference in the complexity of this problem.

We observe the same qualitative behavior when using different SAT algo-
rithms. The main difference is the magnitude of the peak of the complexity
curve. Figure 5.7 shows a plot with the performance of different algorithms
in the critically constrained area for different GSWH problems. The plot
shows, for different sizes and different algorithms, the percentage of solved
instances from a test-set of 200 instances, when using a cutoff of 104 seconds.
For small sizes, all algorithms solve almost all the instances. But as the size
increases, the solver MiniSAT clearly outperforms the other solvers.

2Since 30 is not a perfect square, we cannot have perfectly square blocks.

73

CHAPTER 5. HARDENING CSP PROBLEMS

QWH-30
Sudoku 15x2
Sudoku 10x3
Sudoku 6x5

M
ed

ia
n

 t
im

e
(s

ec
on

d
s)

0.01

0.1

1

10

100

1000

104

Number of holes

300 400 500 600

Figure 5.6: Empirical complexity patterns for singly balanced GSWH in-
stances with different block regions form factor and same size

Doubly and Fully Balanced Next, we consider the doubly and fully
balanced method for punching holes. When using doubly balanced, the
typical hardness of the GSWH instances seems to be very similar to the
singly balanced method for small sizes, however, as we increase the size of
the instances, we see a dramatically difference in computational hardness.
This is probably due to the fact that the singly balanced method tends

 0

 20

 40

 60

 80

 100

15x2
16x2

7x4
10x3

17x2
18x2

6x5
11x3

8x4
12x3

7x5
6x6

9x4

%
 s

ol
ve

d
in

st
an

ce
s

Sudoku block size

minisat
siege
satz

zchaff
MAC-LAH

Figure 5.7: Empirical complexity patterns for singly balanced GSWH in-
stances with different block shapes. 104 seconds time out

74

5.1. BALANCING GSP

Table 5.1: Comparison of percentage of solved GSWH instances generated
with three methods (singly, doubly, and fully balanced) for putting holes,
for instances at the peak of hardness. 500 instances per row with a 5,000
seconds time out

Satz Minisat
block holes singly doubly fully singly doubly fully
5×5 344 98.8 98.8 77.0 100.0 100.0 95.6
7×4 414 71.6 67.4 n/a 98.8 97.0 n/a
17×2 504 48.6 37.8 n/a 85.2 76.0 n/a
18×2 572 33.8 24.9 n/a 91.6 86.0 n/a
6×5 480 18.6 11.6 n/a 81.4 71.4 n/a
8×4 518 2.6 1.8 n/a 37.4 31.6 n/a
6×6 686 0.0 0.0 0.0 3.2 1.6 0.0

Table 5.2: Median time (in seconds) for GSWH problems from Table 5.1
where the percentage of solved instances is greater than 50%

Satz Minisat
block holes singly doubly fully singly doubly fully
5×5 344 13 12 733 3 3 129
7×4 414 1,236 1,480 n/a 55 65 n/a
17×2 504 – – n/a 220 497 n/a
18×2 572 – – n/a 103 213 n/a
6×5 480 – – n/a 663 1,481 n/a

to distribute the holes uniformly between blocks in such a way that the
difference with respect to the doubly balanced method is not significant for
small instances. This can be quantified by looking at the percentage of
solved instances from a test-set with 500 instances, for both methods, when
working with a cutoff of 5,000 seconds. Table 5.1 shows these values. Solved
ratios are almost the same for 5×5 Sudokus, but as the order is increases,
also does the relative difference between doubly and singly balance methods
in terms of ratio of solved instances as well as in terms of time to solve them
as reflected on Table 5.2. Our doubly balanced method, then, gives harder
instances than those produced by balanced QWH, guaranteeing satisfiability
as well, and therefore constituting a good benchmark for the evaluation of
local and systematic search methods.

Besides, when applicable (squared blocks), fully balanced method gener-
ates even harder instances. Due to the hardness of the problems generated
by this method, we are able to compute results only for small GSWH of size
5×5, but even in this sort of problems, fully balanced method is able to pro-

75

CHAPTER 5. HARDENING CSP PROBLEMS

Table 5.3: Comparison of solved GSWH instances with Minion [GJM06a]
and MAC [BR96] solvers (dual encoding used)

MAC Minion
block holes % solved median % solved median
4×4 148 100 0.19 100 7.98
5×4 222 100 1.7 11 > 10.000
5×5 346 42 > 10.000 0 > 10.000

duce instances several orders of magnitude harder (in time) than singly and
doubly balanced. In order to remark such differences, Figure 5.8 compares
the hardness of the three balanced methods for GSWH sizes of 5×5 and
6×6, along a broad range of holes, above and below the peak of hardness.

5.2 Balancing Random BCSP

In this section we propose some methods to increase the hardness of typical
instances of random binary CSPs, by modifying the methods for creating
the constraints and the constraint graph, by equalizing some of the values
that characterize a CSP problem. We will consider as our reference model
the random binary CSP model B 〈V, d, C, t〉, already introduced (see § 3.3.1
in page 23).

Although previous work has identified some reasons for the hardness of
the typical instances on the phase transition [HHW96, SD96, SK96, Pro96]
or for the occurrence of ehps (exceptionally hard problems) on the under-
constrained region [HW94, GW94, SG95, SG97, GFSB04], we will deal with
hardening only typical instances on the phase transition, so we do not study
ehps in our CSP models.

As for the the constraint language, we will consider the restriction of
balancing the constraints, that is, balancing the number of occurrences of
every domain value in the tuples in each side of the constraint.

We will, additionally, also consider the restriction of symmetry, that
can be imposed simultaneously to the balance condition. An example of
balanced symmetric constraint is the k−alldiff binary constraint associated
with a graph k−coloring problem, that is NP-complete only when k > 2. So,
not all balanced or symmetric balanced constraint languages will be hard,
but empirical results show that they seem to be harder than general random
constraint languages.

We will consider two models to harden constraint graphs. The first one,
in which vertices have at most two different degrees, tries to minimize the
probability that any vertex is more relevant than any other when finding a
solution. The goal is to makes harder for heuristics to choose graph vertices

76

5.2. BALANCING RANDOM BCSP

Sudoku 5x5 (T.O. 100")

Singly balanced
Doubly balanced
Fully balanced

R
at

io
 o

f s
ol

ve
d

 in
st

an
ce

s

0.4

0.6

0.8

1

Ratio of holes

0.5 0.55 0.6 0.65 0.7

Sudoku 6x6 (T.O. 10.000")

Singly balanced
Doubly balanced
Fully balanced

0

0.25

0.5

0.75

1

Ratio of holes

0.475 0.5 0.525 0.55 0.575

Figure 5.8: Comparison of the hardness of instances generated using single,
doubly balanced and fully balanced methods of punching holes. Plot shows
the rate of solved instances (using Minisat over 200 generated instances) for
a specified time out in seconds as a function of the number of holes

77

CHAPTER 5. HARDENING CSP PROBLEMS

as there are no much differences between them. The second model, where
vertices have at most three different degrees, generates graphs with a high
girth value, a structural property linked with the graph treewidth. The
treewidth has been found to be the most general structural parameter that
defines the boundary between polynomial-time and NP-hard restrictions for
binary CSPs with arbitrary constraint languages [Gro03].

We will focus on CSPs with sparse, but connected, constraint graphs.
With sparse graphs it is more difficult to obtain high treewidth graphs.

5.2.1 Balancing the constraint language

Balanced constraints

The first way to increase the hardness is to balance the number of occur-
rences of every domain value on each side of the constraint. A constraint
Ri,j with the same number of occurrences of every domain value on each
side of the constraint can be seen as a regular bipartite graph (Vi ∪ Vj , E),
where part Vi of the graph is associated with side i of the constraint, having
an edge {a, b} in E, with a ∈ Vi and b ∈ Vj , iff (a, b) ∈ Ri,j . That is, the set
of allowed tuples (a, b) of the constraint is determined by the set of edges of
the regular bipartite graph.

We can see a partial explanation of why balanced constraints should
provide harder problems looking at the concepts of m-looseness and m-
tightness. The more balanced a constraint is, the higher will be its m-
looseness and m-tightness. Observe that the m-looseness is always smaller
or equal than its m-tightness, and that for a binary constraint they can be
equal precisely when the constraint is perfectly balanced.

In order to sample from the set of regular bipartite graphs we use a
Markov chain algorithm that walks between regular bipartite graphs [KTV97].
Observe that a perfectly balanced constraint with t tuples must satisfy that
t/d is an integer, otherwise we can have an almost balanced constraint. That
is, a constraint where d−(t mod d) domain values appear bt/dc times in each
side of the constraint and (t mod d) domain values appear bt/dc + 1 times
in each side of the constraint. This more general constraint is associated
with a bi-regular bipartite graph (vertices can have either degree bt/dc or
bt/dc+ 1), that can be generated with the Markov chain algorithm as well.

Symmetric balanced constraints

Here we consider an additional restriction over the constraints. In addi-
tion to being balanced, we also impose the constraints to be symmetric
((a, b) ∈ Ri,j ⇔ (b, a) ∈ Ri,j) and not to include any tuple of the form
(a, a), for any value a of the domain. In this case, a constraint can be asso-
ciated with a regular (undirected) graph (V,E), where the vertices are the

78

5.2. BALANCING RANDOM BCSP

domain values, and {a, b} ∈ E ⇔ (a, b) ∈ Ri,j ∧ (b, a) ∈ Ri,j . It is interest-
ing to consider this additional restriction because it was shown in [HN90]
that a constraint language having only one symmetric constraint (but not
necessarily balanced) is NP-hard only when the associated graph is non-
bipartite and does not contain loops3. Because asymptotically a random
graph will not be bi-partite, it is interesting to check empirically whether
the additional restriction of symmetric language creates typical instances of
equivalent hardness to the previous model, or the frequency of hard instances
decreases.

Analogously to the previous model, we need to consider bi-regular graphs,
because depending on the number of tuples t not all values can appear the
same number of times 4. To generate the bi-regular graph associated with a
symmetric balanced constraint, we use a generalization of the algorithm pre-
sented in [SW99]. In principle, that algorithm is presented only for regular
graphs, but it can be easily generalized for the case of graphs with vertices
with two different degrees k and k+ 1. Since the two degrees are contiguous
the performance of the generalization of the algorithm seems to be almost
identical to the regular case, although in this case we cannot guarantee a
perfect uniform distribution of graphs.

An interesting question related to balanced, symmetric or not symmetric,
constraints is which additional conditions ensure the CSP is NP-complete.
For example, the symmetric balanced k−alldiff constraint associated with
the binary CSP encoding of a graph k−coloring problem, is an NP-hard
case, but only if k > 2.

5.2.2 Balancing the constraint graph

Pure random graphs

As far as we know, in typical random distributions of CSPs, the constraint
graph has been built following either the G(V, p) or the G(V,M) random
graph model. We consider here the model G(V,M), because we are inter-
ested in comparing the hardness of this model with others in which also the
number of edges is an exact input parameter, and not an expected value as
in the G(V, p) model5.

3Observe that using a bi-partite graph for building a symmetric constraint is not equiv-
alent to what we do in the previous model, because there the bipartite graph is used in a
different way.

4Also, if t is odd there will be a tuple (a, b) ∈ Ri,j s.t. (b, a) 6∈ Ri,j (Ri,j will be almost
symmetric).

5For G(V, p) the expected number of edges is pV (V − 1)/2 but in G(V, M) the number
of edges is always M .

79

CHAPTER 5. HARDENING CSP PROBLEMS

Random regular graphs

As the first model for a harder constraint graph we propose regular graphs,
i.e. graphs where all the vertices have the same degree. The most obvious
reason why these graphs can be harder is that since all the degrees are equal,
degree-based search heuristics will be less effective. A less trivial reason can
be the following. A graph G = (V,E) is perfectly balanced iff for any
subgraph (V ′, E′) of G:

|E|
|V | ≥

|E′|
|V ′|

That is, the average degree (or edge density), of any subgraph is never
greater than in the whole graph G. We consider a graph more balanced than
other if the number of its subgraphs that satisfy that relation is higher. For
graphs where some vertices have a higher degree than others, as in G(V, p)
or G(V,M), one may find subgraphs with bigger edge density than the
whole graph. However, any connected regular graph is perfectly balanced.
Balanced graphs will tend to be harder for heuristics, because it will be less
easy to isolate potentially overconstrained subproblems during the search,
as the edge density of any subproblem will be never higher. Of course, the
fact of finding potentially overconstrained subproblems will also depend on
the particular constraints between the variables of the subproblem. This is
why we have also considered balancing the constraints. Because we want to
consider graphs with any desired number of edges, we use the same more
general model of bi-regular graphs (and regular graphs when E ∗ 2/V is
an integer) that we use for building a symmetric balanced constraint. Not
every bi-regular graph will be perfectly balanced, but in general they will
be much more balanced than sparse pure random graphs.

As we have mentioned in chapter 4, the treewidth of a graph is the most
relevant structural parameter concerning the complexity of binary CSPs
with arbitrary constraint languages [Gro03]. Concerning the treewidth of
random regular graphs, we can use the following lower bound, that is also
valid for general graphs, based on the spectrum of the (combinatorial) Lapla-
cian of the graph [CS03]:

tw(G) ≥
⌊

3V
4

(
µ

∆ + 2µ

)⌋
− 1

Where ∆ is the maximum degree of G, the Laplacian of G is the matrix
D − A, where D is the diagonal matrix in which Di,i is the degree of vi, A
is the adjacency matrix of G and µ is the second smallest eigenvalue of the
Laplacian.

For the case of a k−regular graph, where µ = k − λ2(G), this lower
bound can be rewritten as:

tw(G) ≥
⌊

3V
4

(
k − λ2(G)

3k − 2λ2(G)

)⌋
− 1

80

5.2. BALANCING RANDOM BCSP

Where λ2(G) is the second largest eigenvalue of the adjacency matrix of G
(k is the largest eigenvalue for a k−regular graph). So, the higher the value
of µ = k − λ2(G), also called the spectral gap, the closer the lower bound
gets to V/4. This shows a connection between expander graphs and graphs
with a high value for this treewidth lower bound, because this spectral gap
also gives a lower bound on the expansion of a graph.

For random k−regular graphs, with k fixed, it is known that asymptot-
ically (as V →∞) for ε > 0:

Probability(λ2(G) ≤ 2
√
k − 1 + ε)→ 1

where 2
√
k − 1 is, asymptotically, the lowest possible value for λ2(G) [Fri04].

Regular graphs with λ2(G) ≤ 2
√
k − 1 are called Ramanujan graphs. For

Ramanujan graphs, we have:

tw(G) ≥
⌊

3V
4

(
k − 2

√
k − 1

3k − 4
√
k − 1

)⌋
− 1

So, for a fixed and sufficiently high k the lower bound will get very close to
V/4. If we consider regular (or bi-regular) graphs with the degrees growing
with V , we cannot infer directly that asymptotically our graphs will have
a spectral gap of order k − 2

√
k − 1. Actually, as the degree grows with

V , the expanding properties of the graphs can be better for higher degrees.
For example, some existing constructions of Ramanujan graphs based on
certain Cayley graphs are obtained with a degree Ω(

√
V), whereas similar

Cayley graphs with degree O(log V) are also expander graphs but not as
good as Ramanujan graphs [AR94]. As far as we know the best result for
non-constant degree random k−regular graphs is, if k >

√
V log V then

asymptotically λ2(G) = o(k) [KSVW01]. So those regular graphs have a
high spectral gap, and a high treewidth spectral lower bound.

One important corollary of the treewidth spectral lower bound of [CS03]
is that, given that it is derived trough a lower bound on graph expansion, we
have also the following lower bound based directly on any expansion lower
bound we have for the graph, and not necessarily trough spectral lower
bounds:

Corollary 5.7. If the size of the subset of outside neighbors, for any subset
X with 0.25|V | ≤ |X| ≤ 0.5|V |, is at least N(X), then we have that

tw(G) ≥ bN(X)c − 1

This is important, due to the existence of some graph constructions
that achieve high expansion but not using spectral bounds to show it.
See [SHW96] for a survey about expander graphs constructions. However,
for general graphs, checking whether a graph is an expander is co-NP com-
plete [BKV+81], and spectral methods are still the best we have to bound

81

CHAPTER 5. HARDENING CSP PROBLEMS

the expansion of graphs. For example, Kahale [Kah95] shows that the best
we can prove for Ramanujan k-regular graphs, using the second eigenvalue
technique, is to have an expansion as high as k/2. No better expansion lower
bounds are known for Ramanujan k-regular graphs.

For the random graph model G(V, p), recent results [FV04, CO05] indi-
cate that only when pV >> log2 V , the expected spectral gap tends to be
high (although the results do not clarify if as high as with regular graphs).
For pV = O(log V) (when we have the sparsest but still connected random
graphs) the results only indicate that the graph will contain a large subgraph
with large spectral gap. Moreover, most of the existing constructions of good
expander graphs (or even Ramanujan graphs) consist of regular graphs of
constant degree (See chapter 6 of [Chu97] for some examples). By contrast,
the results of [CO05] indicate that random graphs G(V, p) with expected
constant degree have a spectral gap of o(1), so they are neither expander
graphs nor have a high treewidth spectral lower bound. Therefore, theo-
retical results show a clear difference between random graphs and random
regular graphs when considering graphs with expected constant degree, but
such a difference is less obvious as we increase the expected degree.

High girth graphs

As we have mentioned, lower bounds on expansion imply lower bounds on
treewidth, so any method that assures high expansion will also assure high
treewidth. Previous results indicate that an indirect way of achieving high
expansion is trough achieving high girth [Kah93, Kah95]. In [CS05] it is
shown that if the girth of a graph G is at least g and the average degree at
least d, then we have:

tw(G) = Ω
(

1
g + 1

(d− 1)b(g−1)/2c
)

For random k−regular graphs it is known that the average girth is only
slightly greater than 3 [MWW04], so that means that forcing a high girth is
not necessarily equivalent to generating a regular graph. Actually, the high
girth graphs that we present here are not necessarily regular, but almost
regular.

In [Cha03], the authors present an algorithm that, for given V and k
(with k < V/3), it builds a graph with girth g that satisfies:

g ≥ logk(V) +O(1)

Where the vertices of the graph have one of these possible degrees: k− 1, k
or k + 1. So, the graph is almost regular but may be less balanced than bi-
regular graphs. With such a bound on the girth, we have that these graphs

82

5.2. BALANCING RANDOM BCSP

satisfy:

tw(G) ≥ Ω

(
(k − 1)b(logk(V)/2c

logk(V) + 1

)
= Ω

(√
V

logk(V) + 1

)

So, we can build graphs, for any value of V and k < V/3, and even with
k growing with V , such that every graph will satisfy that lower bound.
Actually, the graphs obtained with this algorithm could have an even higher
treewidth6, because there are graphs with low girth that, however, have a
high treewidth, i.e. the complete graph KV has girth 3 and treewidth V −1.

The algorithm for the generation of such graphs basically proceeds in
a greedy fashion, starting with an initially empty graph and adding edges
one by one, connecting vertices which are at large distances in the current
graph. Here, we use their algorithm with a slight modification. The original
algorithm works with k integer, giving a number of edges bV k/2c. So,
we cannot use it directly to get graphs with any desired number of edges.
However, one can generalize the algorithm to proceed by adding as many
edges as desired, instead of stopping when |E| = bV k/2c. Observe that
adding more edges will not reduce the treewidth although this can produce
a reduction of the girth of the graph.

5.2.3 Experimental investigation

All the plots contained in this subsection are obtained using Forward-Checking
with Conflict Back-Jumping (FCCBJ) and Maintaining Arc-Consistency
(MAC) search algorithms with variable selection heuristic dom/deg [Pro93,
BR96]. Note that other algorithms and heuristics have also been used, for
different sizes and constrainedness, showing similar qualitative behavior.
More specifically, the same set of problems have been solved with previous
mentioned algorithms with dom+deg and dom/deg heuristics, as well as with
Forward Checking [HE80] and a MAC solver using a Satz-like heuristic as
described in [AdD+04].

Balanced constraints

Figure 5.9 shows the hardness of solving CSPs with either random con-
straints, balanced constraints or symmetric balanced constraints for sparse
constraint graphs (|edges| = (V/2) log2 V) using MAC and FCCBJ. Differ-
ences between random and balanced constraints almost achieve an order
of magnitude, meanwhile differences between balanced and symmetric bal-
anced are irrelevant.

83

CHAPTER 5. HARDENING CSP PROBLEMS

V80, D20, C253, MAC dom/deg

Symmetric Bal.
Balanced
Random

M
ed

ia
n
 t
im

e
(s
ec

on
d
s)

0.1

1

10

100

1000

Number of nogoods

220 230 240 250 260

V80, D20, C253, FCCBJ dom/deg

Symmetric Bal.
Balanced
Random

0.1

1

10

100

1000

Number of nogoods

220 230 240 250 260

Figure 5.9: Random constraints versus balanced and symmetric balanced
constraints. On top, V stands for number of variables, D for domain size
and C for number of constraints.

Balanced graphs

Figure 5.10 shows the hardness of solving CSPs with either pure random, bi-
regular or high girth constraint graphs for random constraints. Clearly, our
graph models give typical instances of higher complexity than pure random
graphs. Between pure random and bi-regular graphs the difference is of
several orders of magnitude, and less than 1 order between bi-regular and
high girth graphs.

6Our empirical results seem to confirm a higher treewidth.

84

5.2. BALANCING RANDOM BCSP

V100, D8, C333, FCCBJ & MAC dom/deg

High Girth (FCCBJ)
Bi-regular (FCCBJ)
High Girth (MAC)
Bi-regular (MAC)
Random (FCCBJ)
Random (MAC)

M
ed

ia
n

 t
im

e
(s

ec
on

d
s)

0.1

1

10

100

1000

104

Number of nogoods

24 26 28 30 32 34 36

V115, D9, C393, MAC dom/deg

High Girth
Bi-regular
Random

0.1

1

10

100

1000

104

Number of nogoods

34 36 38 40 42 44

Figure 5.10: Random graphs versus bi-regular and high girth graphs.

Right plot on Figure 5.10 shows the hardness for a larger problem solved
with the best performing algorithm (MAC). As noted, differences between
pure random and our graph models increase with the problem size.

Bounds on the treewidth

Calculating the treewidth of a graph is NP-hard, and even to approximate
it to within a constant absolute additive error [BGHK95], so we cannot get
exact results within reasonable time limits. Table 5.4 shows two different
lower bounds and one upper bound on the treewidth of typical instances
from the three graph models considered in this paper. The values represent

85

CHAPTER 5. HARDENING CSP PROBLEMS

G(V,M) bi-regular high girth
V Heu LB Spec LB UB Heu LB Spec LB UB Heu LB Spec LB UB

100 15 3 36 15 13 44 15 14 46
200 22 6 80 22 28 96 23 30 98
300 28 14 127 28 43 153 29 45 154
400 33 12 175 33 61 206 34 63 209
500 38 22 224 38 79 263 39 81 265
600 42 28 274 42 92 323 43 94 324

Table 5.4: Comparison of lower and upper bounds on the treewidth for the
different graphs, with |edges| = (V/2) log2 V

the median of 51 graphs obtained from each model. The first lower bound
(Heu LB) is the heuristic lower bound minimum maximum degree (mmd+)
with least-c neighbor selection strategy, as in [KvK02]. The second lower
bound (Spec LB) is the spectral lower bound explained before. The upper
bound (UB) shows the best heuristic upper bound obtained with either Lex-
icographic Breadth First Search, variant Minimal (LEX M) used in [KBv01]
or with the min-fill heuristic [Bod05]7.

We observe that as the size increases the spectral lower bound becomes
much higher for our more balanced graph models than for pure random
graphs. For pure random graphs the heuristic lower bound is the best, but
never better than the spectral lower bound for our graph models. So, our
graph models seem to have a high spectral gap, and thus a high treewidth
lower bound. For the upper bound, we clearly observe that higher values are
obtained for our models and that the difference increases with the size. To
conclude, even if the gap between the lower and upper bounds is too big to
infer exact results about the treewidth, they seem to indicate higher values
of the treewidth for our graph models.

Combined effect

Figure 5.11 shows the hardness of solving pure random CSPs, CSPs with
bi-regular constraint graphs and balanced constraints and CSPs with high
girth constraint graphs and balanced constraints. This time, the differences
between the models are even higher than before: more than 3 orders of
magnitude for the best algorithm (MAC) and 4 orders for FCCBJ. The
right plot shows that the differences for the best algorithm increase with a

7We thank Arie Koster for providing us with the implementations of the treewidth
algorithms and the referees for suggesting to use the min-fill heuristic.

86

5.2. BALANCING RANDOM BCSP

V70, D10, C215, FCCBJ & MAC dom/deg

High Girth Bal. (FCCBJ)
Bi-regular Bal. (FCCBJ)
High Girth Bal. (MAC)
Bi-regular Bal. (MAC)
Random (FCCBJ)
Random (MAC)

M
ed

ia
n

 t
im

e
(s

ec
on

d
s)

0.1

1

10

100

1000

104

Number of nogoods

45 50 55 60 65 70

V80, D12, C253, MAC dom/deg

High Girth Bal.
Bi-regular Bal.
Random

0.1

1

10

100

1000

104

105

Number of nogoods

70 75 80 85 90

Figure 5.11: Random CSPs versus balanced CSPs

larger problem.
So, we observe that the increase in hardness is much more significant

when we balance both; the constraint graph and the constraints, and that
although the high girth graphs give the hardest instances, more dramatic
differences arise between random and bi-regular graphs than between bi-
regular and high girth graphs. Our high girth graphs seem to have the high-
est treewidth, although the bounds are very similar with bi-regular graphs.
Also, probably they are not as balanced as bi-regular graphs, although it is
not clear that having three contiguous degrees, instead of just two, makes
a significant difference on the balance of the graphs. This may partially
explain the lower difference between bi-regular and high girth graphs than

87

CHAPTER 5. HARDENING CSP PROBLEMS

between bi-regular and random graphs. Probably, high girth graphs as bal-
anced as bi-regular graphs could give an even higher hardness.

5.3 Balancing k-SAT models

In this section we will study a new method to generate hard problems, in this
case hard k-SAT and n-ary CSP instances. The proposed method, basically,
consists in building a bipartite incidence graph representing the k-SAT or n-
ary CSP instance. The left side of the graph represents clauses (or nogoods)
and the right side represents the literals of our Boolean formula or the many-
valued literals of the CSP. Finally, edges indicate which literals are present
in each clause or nogood. Our algorithm will try to keep the girth of the
incidence graph as high as possible by filling incrementally the edges of the
graph while keeping the distance between pairs of non-connected vertices as
high as possible. Generating a high girth graph we assure that the expansion
of the graph will be also high.

This section relies heavily on basic graph theory definitions introduced in
section 2.2 in page 12, specially those definitions concerning graph girth and
expansion. To achieve our goal, i.e. generate hard k-SAT instances, we will
resort to results from the field of propositional proof complexity. We rely on
the fact that graph expansion has been established as a key to hard k-SAT
formulas for resolution (e.g. [Ats04]), but also for other proof systems like
the polynomial calculus [AR01]. We will make intensive use of expander
graphs (definition 2.15, on §2.2). See section 4.1.2 for the relevant results
concerning complexity of k-SAT related to the expansion of their incidence
graph, and that are also the main motivation for our method for hardening
n-ary CSPs.

5.3.1 Related Work

In this section we survey some previous theoretical results about the expan-
sion of bipartite random graphs, and the related work in the SAT and CSP
communities.

Expansion of bipartite random graphs

We have seen before that general (not necessarily bipartite) graphs that are
either regular or high girth have high expansion. In this subsection we are
interested in the particular case of bipartite graphs. The particular case
of (k1, k2)-regular bipartite graphs have received special attention in the
communications community (e.g. [Chu78, SS96]), and such bipartite graphs
are good expanders almost always. So, it seems that regular bipartite graphs
are promising towards obtaining good expanders, although we will see that
almost regular graphs can also be excellent good expanders, even better

88

5.3. BALANCING K-SAT MODELS

than regular graphs. For the case of bipartite graphs we have, for example,
that a random (k,−)-regular bipartite graph (L ∪R,E) with |L| = |R| will
be a good expander with probability > 1/2. So, when only the vertexes of
one part have the same degree, the expansion properties seem to degrade.
Observe that this last graph can represent the incidence graph of a random
k-SAT instance.

Related models of hard SAT formulas

As we have discussed, regular graphs tend to be better expanders than
general graphs. So, it is not surprising that previous random models for k-
SAT based on balancing the literal and variable occurrences generate harder
instances, as their incidence graph will tend to have higher expansion. The
model described in [BS96] for 3-SAT (lit-bal-1), generates instances with
m clauses by putting b3·m

2n c occurrences of each literal plus an additional
random set of unique literals so that there are exactly 3 ·m literals in it. To
construct each clause, 3 literals on distinct variables are removed from the
bag. If there are less than 3 distinct variables mentioned in literals remaining
in the bag, additional distinct variables are randomly selected from the set
of all variables and negated with probability 1

2 . This model easily generalizes
for k > 3. The model described in [BDIS05] for k-SAT (lit-bal-2) is very
similar, being the main difference that every literal in the resulting formula
appears exactly bk·m2n c or bk·m2n c + 1 times. By contrast with lit-bal-1 the
occurrences of literals can be less balanced.

Recently, models of hard satisfiable k-SAT instances, based on variants
of the XORSAT model, have been introduced [RTWZ01, JMS05, Jär06,
HJKN06]. The basic ingredient in all these models is that a system of linear
equations (mod 2) with at least one solution is converted to an equivalent
set of clauses, such that the solutions of the SAT formula correspond to
the solutions of the linear system. All these models provide very challenging
instances, being the hardest one regular k-XORSAT [Jär06, HJKN06], where
the running time of DPLL algorithms seems to scale exponentially in the
number of variables. It seems that the key for the hardness of regular k-
XORSAT is the high expansion they get in the system of linear equations,
thanks to the use of a regular bipartite graph for building it, such that
the resulting system has n variables and n equations with k variables per
equation, and every variable appears in k equations. We will see that by
using our high-girth graph generation algorithm to generate the system of
linear equations we increase the hardness of regular k-XORSAT instances
even more.

89

CHAPTER 5. HARDENING CSP PROBLEMS

1

2

3

4

5

6

7

8

. .

..

1

2

3

4

5

6

7

8

. .

..
(a) (3, 3)-regular (b) (3,−)-regular

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8
(c) (3, 3)-regular (d) (3, 3)-regular

Figure 5.12: Example of bipartite graphs with different expansion

5.3.2 Hard SAT and n-ary CSP instances

In this section we introduce our generation method for hard k-SAT and n-
ary CSP instances, based on generating bipartite graphs with high girth,
and so with high expansion.

Expansion, balance and girth

To get an idea about what is the typical structure of a good bipartite ex-
pander graph, consider the expansion of subsets of the left partition of the
bipartite graphs (a) and (b) of Figure 5.12. As the vertexes in the left
partition of both graphs have degree 3, the expansion when |S| = 1 is 3.
Consider now sets with |S| = 2. In the graph (a), the set N(S) for any left
subset S with |S| = 2 is always the entire right partition, so the expansion is
4/2. But for graph (b) the set N({1, 4}) does not contain the vertex 7, and
so the expansion is only 3/2 due to the poor connectivity of vertex 7. For
|S| = 3 the situation is similar. For graph (a) any left subset with |S| = 3 is
connected to the whole right partition (its expansion is 4/3), but for graph
(b) N({2, 1, 4}) = {5, 6, 8}, so the expansion is 1. Thus, we observe that,
due to the unbalanced degrees of the right partition of graph (b), the vertex
expansion of the left subsets is not as good as in graph (a), where all the
degrees are equal.

However, the balance of the degrees does not provide a complete char-

90

5.3. BALANCING K-SAT MODELS

acterization of good expander graphs. Consider the graphs (c) and (d) of
Figure 5.12, that are both equally balanced. Graph (c) has several cycles of
length 4, and thus girth 4, and its expansion for some left subsets of size 4
is 5/4. By contrast, in graph (d) the minimum expansion for left subsets of
size 4 is 7/4. The main structural difference with the graph (c) is actually
its girth, that in this case is 6. Actually, Kahale [Kah93] shows that a high
girth (O(logk−1(|V |)) implies high expansion, at least for subsets of size at
most |V |δ, with δ < 1. So, one way to obtain graphs with good expansion is
to get high girth graphs. In [Cha03] it is presented an algorithm for building
graphs with degrees k − 1, k and k + 1 and high girth. The algorithm we
present in the next subsubsection follows the same approach to build bipar-
tite graphs with high girth. This graph will be used to build hard k-SAT
and n-ary CSPs instances .

High girth bipartite graphs

The algorithm presented by Chandran in [Cha03] works for general (non-
bipartite) graphs. It builds the graph by introducing edges one by one,
connecting vertexes which are at large distances in the current graph, in
such a way that the degrees are maintained almost balanced and the girth
obtained is O(logk−1(|V |)). The algorithm initiates the construction by
building a matching between the vertices, and then starts to insert edges
between edges with maximum distance between them.

For building the literal incidence graph of a k-SAT formula with C
clauses and L literals (and similarly for a k-ary CSP formula), we need
to build a (k,−)-regular bipartite graph (V1 ∪ V2, E), where V1 is C and V2

is L. Algorithm 5.3 does this, but trying to keep the girth as high as possi-
ble, using the same technique of linking vertexes which are at large distances
in the current graph. It starts the process by creating a random matching
from V1 to V2, such that every vertex from V1 will have degree 1 and every
vertex from V2 will have degree either b|V1|/|V2|c or b|V1|/|V2|c+1. Because
this matching does not create any cycles, it starts with girth equal to ∞.
Then, at every step it selects an edge from the subset of edges (u, v) with
u ∈ V1 and v ∈ V2, such that degree(u) < k and degree(v) is minimum
among all the current degrees in V2. From this subset of edges, it selects one
(u′, v′) with the maximum distance between u′ and v′, because this way the
new created cycle is of maximum length. This process ends when the graph
has |V1|k edges.

One of the keys of the algorithm of Chandran is that at any stage of the
process maintains the degrees of the vertices almost balanced. Similarly,
the algorithm in [GS06] creates a bipartite graph with balanced degrees and
guaranteed high girth, but it only works for |V1| = |V2|. By contrast, for the
purpose of using a high girth bipartite graph for generating SAT instances
with any possible ratio r = |C|/|V |, we need a more general algorithm. That

91

CHAPTER 5. HARDENING CSP PROBLEMS

is, that works with not necessarily equal partition sizes. Observe that this
implies that the degrees of the vertices of the right partition (literals) will
be higher than on the left, the bigger the ratio r, the bigger the difference
between the degrees on the left and right partitions.

Algorithm 5.3: Algorithm for generation of high girth (k,−)-regular bi-
partite graphs (V1 ∪ V2, E)

input : V1, V2, k
output: a bipartite (k,−)-regular graph (V1 ∪ V2, E)
Initialize E with a random matching from V1 to V2

(every vertex from V1 will have degree 1)
for i = |V1|+ 1 to k|V1| do

LT := {u ∈ V1 | degree(u) < k}
RT := {u ∈ V2 | degree(u) ≤ degree(v),∀v ∈ V2}
maxdist := 1
while (maxdist = 1) do

T :=
{(u, v) | (u, v) ∈ LT ×RT dist(u, v) ≥ dist(x, y)∀(x, y) ∈ LT ×RT }
dmin := degree(u), where u ∈ RT

maxdist := dist(u, v), where (u, v) ∈ T
if (maxdist = 1) then

RT := {u ∈ V2 | degree(u) = dmin + 1}
E := E ∪ (u, v), where (u, v) ∈ T

However, we can show that the degrees of the right vertexes (V2) of our
bipartite graph will be almost balanced.

Lemma 5.8. For any fixed k and r and |V1| = r|V2| this algorithm creates
a (k,−)-regular bipartite graph (V1∪V2, E), where the degrees of the vertices
in V2 will be asymptotically (as |V2| → ∞), from the set {d − 1, d, d + 1},
where d = brkc.

Proof. After inserting the initial matching from V1 to V2, the degree of any
vertex from V2 will be brc or brc + 1. If the algorithm always succeds in
selecting a minimum degree vertex from V2, then at the end of the process
any vertex will have degree brkc = d or d+ 1. We define a minimum degree
vertex from V2 that is linked with all the current available vertices from V1

(vertices with less than k edges) as a blocked vertex.
Consider a blocked vertex v from V2. The number of available vertices

from V1, but already linked to some vertex, when k|V1|−E edges are already
inserted, will be, at least, dE/(k − 1)e. This situation corresponds to the
extremal case when all the available vertices are linked with only one vertex,
and the rest of vertices from V1 have degree k.

So, the first time when a blocked minimum degree vertex v from V2

can appear is when this minimum number of available vertices can appear

92

5.3. BALANCING K-SAT MODELS

all linked with v. Thats is, when dE/(k − 1)e coincides with the current
minimum degree from V2:⌈

E

(k − 1)

⌉
=
⌊
k|V1| − E
|V2|

⌋
Then, this will never occur before E satisfies:

E =
k(k − 1)|V1|
|V2|+ (k − 1)

<
k(k − 1)|V1|
|V2| = rk(k − 1)

So, this is at the end of the process because rk(k− 1) = O(1). At this time,
we have two posibilities. By one hand, if R = kr|V2| mod |V2| > 0 because
r is fixed we have R = O(|V2|) >> O(1). Let i be the number of remaining
minimum degree vertices from V2 (number of minimum degree vertices from
V2 that should receive one more edge). Then, the degree of R−i vertices will
be d+ 1, and the degree of |V2| − (R− i) vertices will be d. Observe that a
third degree d+ 2 will only be introduced if all the minimum degree vertices
from V2 are blocked. But the maximum number of blocked vertices is always
k − 1, so only if |V2| −R < k − 1 will be possible to block, at most, the last
k − 1 vertices from V2. But R = O(|V2|), so |V2| − R = O(|V2|) >> k − 1
and asymptotically no vertex of degree d+ 2 will appear.

By the other hand, if R = 0 we will have |V2| − i vertices with degree
d and i vertices with degree d − 1. In this case, only if i < k we could
have all the minimum degree vertices blocked, and this would lead to the
introduction of at most k − 1 vertices of degree d+ 1.

So, the degrees of the vertices in V2 will be almost balanced. Actually,
the instances we have obtained with this method in our experiments almost
always have only two distinct degrees in V2, and only exceptionally three
distinct degrees.

Regarding the girth, although we cannot ensure the same conditions
that guarantee a logarithmic girth like in [Cha03] and [GS06], our empirical
results show that this is the case. Table 5.5 shows the girth for graphs
obtained with our algorithm, compared with the minimum girth we would
obtain for a general d−regular graph, with d equal to the floor of the average
degree of our bipartite graphs (d = b(2|V1|k)/(|V1| + |V2|)c), if we used the
algorithm of Chandran.

The table does not show the results for |V | = 1000 for 4-SAT and 5-SAT
because the size of the corresponding literal incidence graph is too big in
such cases for our generation algorithm to work in reasonable time, even if
we are using the best performing polynomial-time algorithm we have found
in [DI06], for the dynamic all-pairs shortest distance problem (DAPSD). For
our bipartite graph (V1 ∪ V2, E) with |V1| = |C|, |V2| = 2|V | and n = |V1|+
|V2|, the worst-case running time of our algorithm is O((k − 1)2n3), thanks
to using the variant of the algorithm of [RR96] described in [DFMSN00].

93

CHAPTER 5. HARDENING CSP PROBLEMS

Table 5.5: Girth of bipartite graphs created by our algorithm, corresponding
to 3-SAT, 4-SAT and 5-SAT literal incidence graphs for instances at the peak
of hardness

3-SAT
|V | |C| g logd(2|V |+ |C|)
62 221 8 5.6

125 447 8 6.2
250 895 10 6.9
500 1790 10 7.6

1000 3560 10 8.3

4-SAT
|V | |C| g logd(2|V |+ |C|)
62 539 6 3.8

125 1087 6 4.3
250 2175 6 4.6
500 4350 6 5.1

5-SAT
|V | |C| g logd(2|V |+ |C|)
62 1091 4 3.4

125 2467 4 3.8
250 4935 6 4.1
500 9870 6 4.5

Theoretically, there is a best worst-case algorithm for DAPSD [DI04], but
empirically for our particular graphs the chosen algorithm was the best
performing.

By contrast, we also computed the girth for the literal incidence graphs
obtained with the balanced SAT model Lit-bal-1, and the girth obtained in
all the instances was always 4, the minimum possible girth for a bipartite
graph. Remember that actually there are theoretical results that imply
that for random k−regular graphs the average girth is slightly greater than
3 [MWW04].

We can easily use this algorithm to generate the literal incidence graphs
of k-SAT and n-ary CSPs, with the goal of obtaining harder instances than
the ones we obtain with regular (balanced) graph models. Moreover, we
can also use it to generate the systems of linear equations for the XORSAT
instances, instead of using a random regular bipartite graph like it is done
in [Jär06], with the left partition representing the equations, and the right
partition the variables of the equations.

94

5.3. BALANCING K-SAT MODELS

5.3.3 Experimental investigation

We have divided our experimental investigation into three parts. The first
one presents a comparison of our method against the most recent k-SAT
generators and the classical random k-SAT generator. The second one shows
a comparison between model E and our method high-girth for n-ary CSPs.

Hard k-SAT instances

For generating the k-SAT instances we have used four methods: the clas-
sical random k-SAT (Random), the generalization of the method described
in [BS96] (Lit-bal-1) for k-SAT, the method described in [BDIS05] (Lit-bal-
2), and our method (High-Girth). We have solved the instances with four
SAT solvers: satz [LA97], minisat [ES03], kcnfs [DD01], walksat [SKC94]
and adaptg2wsat [LWZ07].

V130 4-SAT (sat/unsat)

Bipart. HG
Lit-bal-1
Lit-bal-2
Random

M
ed

ia
n

 T
im

e
(s

ec
on

d
s)

0

50

100

150

200

250

8 8.5 9 9.5 10 10.5 11

Bipart. HG
Lit-bal-1

V100 5-SAT (sat/unsat)

0

2000

4000

6000

17 18 19 20 21

V130 4-SAT (only sat)

Bipart. HG
Lit-bal-1

M
ed

ia
n

 T
im

e
(s

ec
on

d
s)

0

25

50

75

100

Ratio clauses/vars
8 8.5 9 9.5 10 10.5 11

V100 5-SAT (only sat)

Bipart. HG
Lit-bal-1

0

1000

2000

3000

Ratio clauses/vars
17 18 19 20 21

Figure 5.13: Comparison of SAT generators.

95

CHAPTER 5. HARDENING CSP PROBLEMS

Table 5.6: Ratio of median time to solve all/only sat instances on peak hard-
ness between High Girth Bipartite, Literal and Random generation methods

3-SAT
Num. vars. 300 330
HG/Lit 1.29/1.02 1.44/1.19
Lit/Ran 80.2/126 132/162

4-SAT
Num. vars. 130 150
HG/Lit 1.34/1.42 1.39/1.68
Lit/Ran 4.58/7.41 5.59/10.47

5-SAT
Num. vars. 70 100
HG/Lit 1.64/1.48 3.09/3.34
Lit/Ran 1.73/2.65 2.09/2.48

Figure 5.13 shows the results for the complete SAT solver kcnfs on 4-SAT
instances. As we can see High-Girth is the best generator, while Lit-bal-1
and Lit-bal-2 are almost identical. We only report the results for the SAT
solver kcnfs since it was the fastest and it reported the least difference be-
tween the two best generators. Table 5.6 shows the ratios for the median
time between High-Girth and Lit-bal-1 (HG/Lit) and between Lit-bal-1 and
Random (Lit/Ran) for different arities when all and only satisfiable instances
are considered. We observe that the higher arity (k), the higher the ratio
HG/Lit results, particularly for larger number of variables. This can be due
to the differences in the expansion of the bipartite graphs of the different
models, because as we increase k, it is possible to obtain more drastic differ-
ences in the expansion of the bipartite graphs of the different models. That
is, the higher k, the higher the maximum expansion of a subset of clauses
S. At the same time, the ratio Lit/Ran seems to decrease, but this could
be due to the fact that as we increase k, more variables may be needed in
order to observe a difference for such ratio.

We also wanted to check if we could observe the same behavior when
using a local search SAT solver. Table 5.7 reports results for 4-SAT and
5-SAT. On 4-SAT we run the solver walksat, on the most 50 difficult sat-
isfiable instances at the underconstrained and the phase transition zones.
We report the median time and the best noise parameter setting (median-
time/best-noise at table) for the heuristics best and novelty. On 5-SAT we
run one of the best performing local search solvers at the SAT07 solver
competition, Adaptg2wsat. We report the median time on the satisfiable

96

5.3. BALANCING K-SAT MODELS

Table 5.7: Local search. Median time (seconds). Cutoff 1000s (10000s) for
4SAT (5SAT)

4-SAT walksat
50 most High-Girth Lit-bal-1 Random

70 vars / best 1000/— 0.12/29 0.08/27
70 vars / novelty 84/21 0.05/45 0.03/41
90 vars / best 1000/— 0.17/29 0.07/27
90 vars / novelty 76/15 0.06/47 0.04/47

5-SAT adaptg2wsat
peak of hardness High-Girth Lit-bal-1 Random

130 vars 16 2.5 0.4
150 vars 53 8.7 0.6

instances at the peak of hardness. In order to filter out the unsatisfiable in-
stances from the sets of 100 instances we applied a cutoff of 10000 seconds,
and we assumed those instances lasting more to be unsatisfiable. For all the
generation methods we obtained around 50 satisfiable instances. As we can
see, High-Girth dominates Lit-bal-1, and Lit-bal-1 dominates Random in-
stances. As a possible explanation of why expansion of the incidence graph
also affects the performance of local search, we could find one looking at
the results in [WS02]. In that work, the existence of what they call chains
of short range connections between clauses is identified as a cause for bad
performance of local search, due to the long range not-explicit dependencies
they create. In turns out that big cycles in the incidence graph could create
these problematic chains on the formula.

Finally, we have also compared the hardness of the satisfiable instances
obtained with High-Girth, at the peak of hardness, with the ones obtained
with regular k-XORSAT and with our modification of k-XORSAT where
we generate the system of linear equations with our high girth algorithm
(HG-XORSAT). Table 5.8 shows the results when solving test-sets of 100
satisfiable instances with a cutoff of 2 ∗ 104 seconds per instance. The in-
stances from XORSAT are harder than the satisfiable ones from High-Girth,
but when we use our high girth algorithm for the k-XORSAT instances is
when we obtain the hardest instances, with orders of magnitude of differ-
ence, and even in some cases we have not been able to reach the median
with our cutoff time (median > 2 · 104).

Hard n-ary CSP instances

For generating the n-ary CSP instances we have used two methods: the
model E described in [AKK+97] and our method High-Girth. We have solved

97

CHAPTER 5. HARDENING CSP PROBLEMS

Table 5.8: Median time (in seconds) for 3-SAT, 4-SAT and 5-SAT for High-
Girth with kcnfs, and regular XORSAT and HG-XORSAT with minisat.
Results only for best solver among satz, minisat and kcnfs.

3-SAT

Num. vars 200 250 270 300 330 350

High-Girth 0 7 14 91 368 1125
XORSAT 14 386 2322 19778 >2 · 104 >2 · 104

HG-XORSAT 642 >2 · 104 >2 · 104 >2 · 104 >2 · 104 >2 · 104

4-SAT 5-SAT

Num. vars 100 130 150 80 90 100

High-Girth 3 59 1180 64 405 2839
XORSAT 4 201 2543 51 290 2528

HG-XORSAT 66 8018 >2 · 104 586 3186 >2 · 104

the n-ary CSP instances with the CSP solver minion [GJM06b] using the
dynamic heuristic sdf (smaller domain first). We also report results on the
direct SAT encoding 8 of the n-ary CSP instances for the SAT solvers minisat
and kcnfs (some competitive solvers submitted to the CSP competition are
built on top of minisat). We have generated two set of instances, one of 25
variables, domain 3, and arity 4, and the other set of 40 variables, domain 3
and arity 3. At Figure 5.14 plot the results for arity 4, seeing again that our
generation method high-girth produces the hardest instances. In this figure,
the results are shown in log-scale, in contrast with Figure 5.13 for k−SAT,
because here the differences are even more significant than in Figure 5.13.
However, observe that we do not have previous existing balanced models for
n-ary CSPs, like Lit-bal-1 and Lit-bal-2 for k−SAT, that are the ones that
are closer to our high girth model for k−SAT.

8For more details see [Wal00].

98

5.3. BALANCING K-SAT MODELS

V25 D3 4-arity

HG Minion-sdf
Rand Minion-sdf
HG Kcnfs
Rand Kcnfs
HG Minisat
Rand Minisat

0.1

1

10

100

Ratio nogoods/vars

50 60 70 80 90 100 110 120

Figure 5.14: Comparison of CSP generators.

99

6
Conclusions and future

work

The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say.

Bilbo Baggins
The Lord of The Rings. Book I.

J. R. R. Tolkien

Don’t adventures ever have an end? I suppose
not. Someone else always has to carry on the
story.

Bilbo Baggins
The Lord of The Rings. Book II.

J. R. R. Tolkien

This work follows two main goals, and we think that, although not com-
pletely, a surmounting task for just a PhD thesis, we have achieved great
progress towards fulfilling our goals. On one side there is the ever going re-
search for better and finer benchmark sets, more fine grained, better known
and characterised, and more readily available. On the other side, in our
pursuit of the hardest problems, our effort o to harden, more and more,
the problems, controlling the parameters that made them grow in complex-
ity and hardness, we attained a deeper knowledge of what describes and
characterised these hard problems.

101

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Being able to harden a problem implies having a profound knowledge on
some defining characteristic of problem hardness. That is, we can harden
a problem because we know what aspect of the problem definition we have
to fine tune in order to increase complexity, and consequently solving time.
This insight can now be put to use, first to better comprehend problems
and its nature, second to understand solver behaviour, to be able to spot
weaknesses on solvers, and offer hints on potential enhancements.

One important, yet often neglected, aspect of benchmarking is that
benchmarks should be easy and simple to run. The easier is to create a
benchmark set, to choose which aspects will change and how while we are
increasing hardness, the easier is that researchers will use that benchmarks.
If benchmarks are well defined, well studied, well formalised and normalised,
more conclusions and knowledge can be obtained from using them to mea-
sure. This is why we felt important to create as much simpler and fast as
possible algorithms to generate our hard problems, being generator simplic-
ity one of the keystones on our generator design work.

As it is obvious, there is no end in sight on the pursuit of every time
harder problems. As soon as implemented solvers and solving techniques
are beefed up, as new heuristics, learning techniques, optimizations, and
so are incorporated into more sophisticated, and better performing solvers,
problems today considered as unattainable will become easy problems. At
that time, newer and harder problems should be already available, and hard
problems collections should, as diverse as possible, to pinpoint where those
yet-to-be solvers are trailing behind, where they can be enhanced.

A fact that has surprised us, and a worrying one, is the state of mainte-
nance and update of the public libraries of problems that we have perceived
during the realization of this work. The big libraries and collections of prob-
lems of the both areas of research (SATLIB and CSPLIB) are not updated
with the advisable periodicity, and the available data is not enough exten-
sive. One possible line of work, along with the rest of the research commu-
nity is ensuring that instances and descriptions, as well as, descriptive and
characterization data, are added to those libraries, making available to the
rest of the research community all the assets derived from this work: for-
malizations, characterizations, instance generators, reference benchmarks,
etc.

Another achieved goal is the definition, for the first time, of a new family
of problems, Generic Edge Matching Puzzles. GEMPs are easily defined puz-
zles, like Sudoku problems, their formulation does not require much space,
they are human scale puzzles. Despite this, even small puzzles, of the kind
that are sold in stores within a box as a board game, can be of a surprising
hardness1.

1We should not be confused by the simplicity of solving typical “picture” kids puzzles,
picture printed on top makes all pieces unique and constraints so tough that only one
piece fits in every place. Try to paint a kid puzzle totally white or turn it upside down

102

One distinguishing trait of this kind of puzzles, along with Generalised
Sudoku Problems, Quasigroup Completion Problems, and Latin Square prob-
lems, is that they can be build with a wide range of sizes and hardness,
from the small and simple problems solvable by humans to medium sized
very hard problems challenging to state of the art solvers, to the big, almost
impossible to solve problems with today knowledge as is the case with Eter-
nity II challenge. It is rather simple to increase or decrease size. It is trivial
to augment hardness (or decrease it) just changing the number of different
edges present. One advantage of Edge Matching Puzzles over Sudoku2 is
that, without changing size of the problem, one can have a wide range of
hardnesses, just changing one parameter, colors i.e. domain size.

As initially stated, this work is not the end, just a milestone on the
road, ahead of us lie some interesting and important tasks, and further
ahead, some challenges await us.

First of all we have some jobs to do in the near future, to help results
from this work reach as much part of the community as possible, namely,
we must pack, clean and make available all the code and some instances to
the research community, including using some of our instances in the solver
competitions held.

Then, some of the extensions to this work that can be done are summa-
rized here as follows:

• The methods for high expanding graph generation we have used in
this thesis, allow to generate graphs of any size and number of edges.
In the literature of expander graphs, there exists some methods that
achieve a very high expansion, but they produce graphs with only
some specific sizes and number of edges, so one cannot use them as the
basis for hard instance generators. It would be interesting to study the
modification of some of these methods to generate graphs with a wider
range of parameters in order to use them to generate hard instances.
One promising family of graphs are the ones introduced in [CRVW02].

• We could tighten the boundaries of our analytical expression for the
Phase Transition of GEMP puzzles. While it is not straightforward,
having an even more accurate bounding of that expression could be
very interesting.

• A similar analysis of that of GEMP could be done towards bounding
the expression for the Phase Transition on GSP, as of now, none such
analysis exists. The results about lower bounds for k-SAT through the
use of the second moment method have discovered important proper-
ties of the space of solutions of a formula, with nice implications with

and solve it.
2We include Latin Squares and Quasigroups as they are similar in this aspect to Su-

dokus

103

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

respect to the complexity of finding solutions. We expect that a simi-
lar analysis for more structured problems will provide similar benefits
for these other problems.

• Obviously better heuristics, better consistency methods, better or even
novel approaches, could be, and should, be designed to solve GEMP
problems.

• Our method for hard n-ary CSPs is based on a generalization of the
model for hard k-SAT instances, based on the results that link k-SAT
complexity with the expansion of its incidende graph. However, the
incidende graph we have used for n-ary CSPs does not allow a straight-
forward explanation of why the expansion of this graph increases the
hardness of the generated n-ary CSP instances. This is an interesting
future question to answer, given that the previous existing definition
of incidence graph in the literature for n-ary CSPs is not equivalent to
ours.

• Studies similar to those done here for SAT and CSP solvers could
be done for High Girth based balanced instances and MaxSAT and
MaxCSP solvers. We suspect that the reasons that make hard the
high expanding SAT instances, the fact that they have many partial
satisfying assingments that cover a big subset of the variables, will
probably increase the difficulty of distinguising optimal solutions from
non-optimal ones.

• Deeper understanding of GEMP problems behaviour when using local
search methods, MaxSAT, and/or MaxCSP, and their hardness char-
acterization could deepen our understanding of GEMP and similar
problems.

• Although treewidth, and related parameters as expansion and high
girth, have proven that can easily influence hardness, it could be in-
teresting to check whether other parameters (clustering, for example),
can be used to harden problems, or, conversely, as a speed up by
solvers.

• It is important that all knowledge gained with works like this, using
laboratory built problems, now finds its way into real world problems.
One possible way to make this happen is studying which characteristics
are present in real world problems and search for similarities between
real world problems and studied problems, thus allowing solvers make
use of learned techniques.

• Given that expansion can be hard to measure, and parameters such
as girth only provide lower bounds, it could be interesting to search

104

for other parameters that can be used to approximate treewidth, or
others, not related to treewidth but that can be used to predict or
increase hardness.

105

Bibliography

[ABF+06] C. Ansótegui, R. Béjar, C. Fernández, C. Gomes, and C. Mateu. The impact
of Balance in a highly structured problem domain. In Proc. of AAAI06,
pages 438–443. AAAI Press, 2006.

[ABFM07] Carlos Ansótegui, Ramón Béjar, Cèsar Fernández, and Carles Mateu. On
Balanced CSPs with High Treewidth. In Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver,
British Columbia, Canada, pages 161–166, 2007.

[ABFM08a] Carlos Ansótegui, Ramón Béjar, César Fernàndez, and Carles Mateu. Edge
Matching Puzzles as Hard SAT/CSP Benchmarks. In CP ’08: Proceedings of
the 14th International Conference on Principles and Practice of Constraint
Programming, pages 560–565, Berlin, Heidelberg, 2008. Springer-Verlag.

[ABFM08b] Carlos Ansótegui, Ramón Béjar, César Fernàndez, and Carles Mateu. Edge
matching puzzles as hard SAT/CSP benchmarks (extended version). Techni-
cal Report TR-1-08, Dept. of Computer Science, Universitat de Lleida, 2008.
http://ccia.udl.cat/images/stories/Papers/techrep1 08.pdf.

[ABFM08c] Carlos Ansótegui, Ramón Béjar, Cèsar Fernández, and Carles Mateu. How
Hard is a Commercial Puzzle: the Eternity II Challenge. volume 184 of
Frontiers in Artificial Intelligence and Applications - Artificial Intelligence
Research and Development, pages 99–108. IOS Press, 2008.

[AdD+04] Carlos Ansótegui, Alvaro del Val, Iván Dotú, Cèsar Fernández, and Felip
Manyà. Modelling Choices in Quasigroup Completion: SAT vs CSP. In
Proc. of AAAI-04, 2004.

[AGKS00] Dimitris Achlioptas, Carla Gomes, Henry Kautz, and Bart Selman. Gener-
ating Satisfiable Problem Instances. In Proc. of AAAI-00, pages 193–200,
2000.

[AKK+97] D. Achlioptas, L. M. Kirousis, E. Kranakis, D. Krizanc, M. Molloy, and Y. C.
Stamatiou. Random Constraint Satisfaction: a More Accurate Picture. In
Proceedings CP’97, pages 107–120, Linz, Austria, 1997.

[ALMP08] J. Argelich, C.M. Li, F. Manya, and J. Planes. The first and second max-sat
evaluations. Journal on Satisfiability, Boolean Modeling and Computation,
4:251–278, 2008.

107

BIBLIOGRAPHY

[AM06] Dimitris Achlioptas and Cristopher Moore. Random k-sat: Two moments
suffice to cross a sharp threshold. SIAM J. Comput., 36(3):740–762, 2006.

[AP04] Dimitris Achlioptas and Yuval Peres. The Threshold for Random k-SAT is
2k log 2 − O(k). Journal of the American Mathematical Society, 17(4):947–
973, 2004.

[AR94] Noga Alon and Yuval Roichman. Random Cayley Graphs and Expanders.
Random Structures and Algorithms, 5:271–284, 1994.

[AR01] M. Alekhnovich and A. Razborov. Lower bounds for polynomial calculus:
non-binomial case. In Proceedings of 42nd Annual Symposium on Fonduta-
tions of Computer Science, pages 190–199, 2001.

[AS88] R. Phillips A. Lubotzky and P. Sarnak. Ramanujan Graphs. Combinatorica,
8:261–277, 1988.

[Ats04] Albert Atserias. On Sufficient Conditions for Unsatisfiability of Random
Formulas. Journal of the ACM, 51(2):281–311, 2004.

[BDIS05] Yacine Boufkhad, Olivier Dubois, Yannet Interian, and Bart Selman. Regular
Random -SAT: Properties of Balanced Formulas. J. Autom. Reasoning, 35(1-
3):181–200, 2005.

[BFM05] R. Béjar, C. Fernández, and C. Mateu. Statistical Modelling of CSP Solving
Algorithms Performance. In Proceedings CP’05, 2005.

[BGHK95] Hans L. Bodlaender, John R. Gilbert, HjÃ¡lmtÃœr Hafsteinsson, and Ton
Kloks. Approximating treewidth, pathwidth, frontsize, and shortest elimi-
nation tree. Journal of Algorithms, 18-2:238–255, 1995.

[BHHW96] Daniel G. Bobrow, Tad Hogg, Bernardo A. Huberman, and Colin P.
Williams, editors. Special volume on frontiers in problem solving: phase
transitions and complexity, volume 81. Elsevier Science Publishers Ltd., Es-
sex, UK, 1996.

[BJK05] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the
complexity of constraints using finite algebras. SIAM J. Comput., 34(3):720–
742, 2005.

[BKV+81] M. Blum, R. M. Karp, O. Vornberger, C. H. Papadimitriou, and M. Yan-
nakakis. The complexity of testing whether a graph is a superconcentrator.
Inf. Process. Letters, 13(4/5):164–167, 1981.

[Bod98] Hans L. Bodlaender. A partial -arboretum of graphs with bounded treewidth.
Theor. Comput. Sci., 209(1-2):1–45, 1998.

[Bod05] Hans L. Bodlaender. Discovering Treewidth. In Proc. of SOFSEM 2005
(LNCS 3381), pages 1–16, 2005.

[BR96] Christian Bessière and Jean-Charles Régin. MAC and Combined Heuristics:
Two Reasons to Forsake FC (and CBJ?) on Hard Problems. In CP, pages
61–75, 1996.

[BS96] R. J. Bayardo and Robert Schrag. Using CSP Look-Back Techniques to Solve
Exceptionally Hard SAT Instances. In CP’96, pages 46–60, 1996.

[BSW01] E. Ben-Sasson and A. Wigderson. Short proofs are narrow-resolution made
simple. Journal of the ACM, 48(2):149–169, 2001.

[CF86] Min-Te Chao and John Franco. Probabilistic analysis of a generalization
of the unit clause literal selection heuristic for the k-satisfiability problem.
SIAM J. Comput., 15:1108–1118, 1986.

[Cha03] L. Sunil Chandran. A High Girth Graph Construction. SIAM journal on
Discrete Mathematics, 16(3):366–370, 2003.

108

BIBLIOGRAPHY

[Chu78] F. R. K. Chung. On Concentrators, superconcentrators, generalizers and
nonblocking networks. Bell Systems Tech. Journal, 58:1765–1777, 1978.

[Chu97] Fan Chung. Spectral Graph Theory. Number 92 in Regional Conference
Series in Mathematics. AMS, 1997.

[CKT91] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the Really
Hard Problems Are. In Proceedings of the Twelfth International Joint Confer-
ence on Artificial Intelligence, IJCAI-91, Sidney, Australia, pages 331–337,
1991.

[CO05] Amin Coja-Oghlan. On The Laplacian Eigenvalues of Gn, p. prepint, 2005.

[CRVW02] Michael R. Capalbo, Omer Reingold, Salil P. Vadhan, and Avi Wigderson.
Randomness conductors and constant-degree lossless expanders. In IEEE
Conference on Computational Complexity, page 15, 2002.

[CS03] L. Sunil Chandran and C. R. Subramanian. A Spectral Lower Bound for the
Treewidth of a Graph and its Consequences. Information Processing Letters,
87(4):195–200, 2003.

[CS05] L. Sunil Chandran and C. R. Subramanian. Girth and treewidth. Journal
of Combinatorial Theory, Series B, 93:23–32, 2005.

[DD01] Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient
solving of hard 3-SAT formulae. In Proc. of IJCAI’01, pages 248–253, 2001.

[DD07] Erik D. Demaine and Martin L. Demaine. Jigsaw Puzzles, Edge Matching,
and Polyomino Packing: Connections and Complexity. Graphs and Combi-
natorics, 23(s1):195, 2007.

[DdC03] Iván Dotú, Alvaro del Val, and Manuel Cebrián. Redundant Modeling for
the QuasiGroup Completion Problem. In CP03, 2003.

[DFMSN00] Camil Demetrescu, D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni.
Maintaining shortest paths in digraphs with arbitrary arc weights: An ex-
perimental study. In Proceedings of the 4-th Workshop on Algorithm Engi-
neering (WAE’00), September 2000.

[DI04] Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all
pairs shortest paths. Journal of the Association for Computing Machinery
(JACM), 51(6):968–992, 2004.

[DI06] Camil Demetrescu and Giuseppe F. Italiano. Experimental analysis of dy-
namic all pairs shortest path algorithms. ACM Transactions on Algorithms,
2(4):578–601, 2006. Special issue devoted to selected papers from the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04).

[DSV03] Giuliana Davidoff, Peter Sarnark, and Alain Valette. Elementary Number
Theory, Group Theory, and Ramanujan Graphs. Number 55 in London
Mathematical Society Student Texts. Cambridge University Press, 2003.

[ES03] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Proc. of
SAT’03, pages 502–518, 2003.

[Fre82] Eugene C. Freuder. A sufficient condition for backtrack-free search. J. ACM,
29(1):24–32, 1982.

[Fre90] Eugene C. Freuder. Complexity of k-tree structured constraint satisfaction
problems. In AAAI’90, pages 4–9, 1990.

[Fri04] Joel Friedman. A proof of Alon’s second eigenvalue conjecture and related
problems. Memoirs of the A.M.S., 2004.

[FV04] Linyuan Lu Fan Chung and Van Vu. The Spectra of Random Graphs with
Given Expected Degrees. Internet Mathematics, 1(3):257–275, 2004.

109

BIBLIOGRAPHY

[GFSB04] Carla Gomes, Cèsar Fernández, Bart Selman, and Christian Bessière. Statis-
tical Regimes Across Constrainedness Regions. In Proceedings CP’04, 2004.

[GJM06a] Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable
constraint solver. In ECAI 2006, 17th European Conference on Artificial
Intelligence, pages 98–102, 2006.

[GJM06b] Ian P. Gent, Christopher Jefferson, and Ian Miguel. Watched Literals for
Constraint Propagation in Minion. In Proc. of CP’06, pages 182–197, 2006.

[GMP+01] I. Gent, E. MacIntyre, P. Prosser, B. Smith, and T. Walsh. Random con-
straint satisfaction: flaws and structure. Constraints, 6(4):345–372, 2001.

[Gro03] Martin Grohe. The complexity of homomorphism and constraint satisfaction
problems seen from the other side. In Proc. of FOCS’03, pages 552–561, 2003.

[GS97] Carla Gomes and Bart Selman. Problem Structure in the Presence of Pertur-
bations. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), pages 221–227, New Providence, RI, 1997. AAAI
Press.

[GS02] C. Gomes and D. Shmoys. Completing Quasigroups or Latin Squares: A
Structured Graph Coloring Problem. In Proceedings Computational Sympo-
sium on Graph Coloring and Extensions, 2002.

[GS06] Joachim Gudmundsson and Michiel Smid. On spanners of geometric graphs.
In Algorithm Theory – SWAT 2006, volume 4059 of LNCS, pages 388–399,
2006.

[GSC97] Carla P. Gomes, Bart Selman, and Nuno Crato. Heavy-tailed distributions in
combinatorial search. In Proceedings of the Third International Conference
of Constraint Programming (CP-97), Linz, Austria., 1997. Springer-Verlag.

[GW94] I. Gent and T. Walsh. Easy Problems are Sometimes Hard. AI Journal,
70:335–345, 1994.

[GW99] I.P. Gent and T. Walsh. Csplib: a benchmark library for constraints.
Technical report, Technical report APES-09-1999, 1999. Available from
http://csplib.cs.strath.ac.uk/. A shorter version appears in the Proceedings
of the 5th International Conference on Principles and Practices of Constraint
Programming (CP-99).

[Hay97] Brian Hayes. Can’t Get No Satisfaction. American Scientist, 85:108–112,
1997.

[HE80] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. AI Journal, 14:263–313, 1980.

[HHW96] T. Hogg, B. Huberman, and C. Williams. Phase Transitions and Search
Problems. Artificial Intelligence, 81 (1-2):1–15, 1996.

[HJKN06] Harri Haanpää, Matti Järvisalo, Petteri Kaski, and Ilkka Niemelä. Hard
satisfiable clause sets for benchmarking equivalence reasoning techniques.
Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):27–46,
2006.

[HN90] P. Hell and J. NešetRil. On the complexity of H-coloring. Journal of Com-
binatorial Theory, Series B, 48:92–110, 1990.

[HO06] Tudor Hulubei and Barry O’Sullivan. The Impact of Search Heuristics on
Heavy-Tailed Behaviour. Constraints, 11(2), 2006.

[HS] Holger H. Hoos and Thomas Stützle. SATLIB: An Online Resource for
Research on SAT. pages 283–292.

110

BIBLIOGRAPHY

[HW94] T. Hogg and C. P. Williams. The Hardest Constraint Problems: a Double
Phase Transition. AI Journal, 69:359–377, 1994.

[Jär06] Matti Järvisalo. Further investigations into regular xorsat. In Proceedings of
the AAAI 2006,. AAAI Press / The MIT Press, 2006.

[JM96] Mark T. Jacobson and Peter Matthews. Generating uniformly distributed
random Latin squares. Journal of Combinatorial Design, 4:405–437, 1996.

[JMS05] H. Jia, C. Moore, and Bart Selman. From spin glasses to hard satisfiable for-
mulas. In Proceedings of SAT’05, volume 3452 of Lecture Notes in Computer
Science., pages 199–210. Springer, 2005.

[Kah93] N. Kahale. Expander Graphs. PhD thesis, MIT, 1993.

[Kah95] N. Kahale. Eigenvalues and expansion of regular graphs. Journal of the
ACM, 42(5):1091–1106, 1995.

[KBv01] Arie M. C. A. Koster, Hans L. Bodlaender, and Stan P. M. van Hoesel.
Treewidth: Computational Experiments. ZIB-Report, 01-38, 2001.

[KRA+01] Henry Kautz, Yongshao Ruan, Dimitris Achlioptas, Carla Gomes, Bart,
Stickel, and Mark. Balance and Filtering in Structured Satisfiable Problems.
In Proc. of IJCAI-01, pages 193–200, 2001.

[KSVW01] M. Krivelevich, B. Sudakov, V. H. Vu, and N. Wormald. Random Regular
graphs of High Degree. Random Structures and Algorithms, 18:346–363,
2001.

[KTV97] Ravi Kannan, Prasad Tetali, and Santosh Vempala. Simple Markov-chain
algorithms for generating bipartite graphs and tournaments. In Proc. of the
eighth annual ACM-SIAM Symposium on Discrete Algorithms, pages 193–
200, 1997.

[KvK02] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving
partial constraint satisfaction problems with tree decomposition. Networks,
40:170–180, 2002.

[LA97] Chu Min Li and Anbulagan. Look-ahead versus look-back for satisfiability
problems. In Proc. of CP’97, pages 341–355, 1997.

[LS05] Ashish Sabharwal Lukas Kroc and Bart Selman. Survey Propagation Re-
visited . In 23rd Uncertainty in Artificial Intelligence 2007, pages 217–226,
2005.

[LWZ07] Chu Min Li, Wanxia Wei, and Harry Zhang. Combining adaptive noise and
look-ahead in local search for sat. In SAT, pages 121–133, 2007.

[MWW04] B. D. McKay, N. C. Wormald, and B. Wysocka. Short cycles in random
regular graphs. Elect. J. Combinatorics, 11:–66, 2004.

[MZ02] G. Parisi M. Mézard and R. Zecchina. Analytic and Algorithmic Solution of
Random Satisfiability Problems. SCIENCE, 297:812–815, 2002.

[MZK+96] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky.
Phase transitions and search cost in the 2 + p-sat problem, 1996.

[MZK+99] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and
Lidror Troyansky. Determining computational complexity from characteristic
phase transitions. Nature, 400:133–137, 1999.

[NAP05] Assaf Naor, Dimitris Achlioptas, and Yuval Peres. Rigorous location of phase
transitions in hard optimization problems. Nature, 435(7043):759, 2005.

[PJS04] Heinz-Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe. Chaos and Frac-
tals. New Frontiers of Science. Springer, second edition, 2004.

111

BIBLIOGRAPHY

[Pro93] P. Prosser. Domain filtering can degrade intelligent backtracking search. In
Proceedings IJCAI’93, pages 262–267, Chambéry, France, 1993.

[Pro96] P. Prosser. An empirical study of phase transitions in binary constraint
satisfaction problems. AI Journal, 81:81–109, 1996.

[Pur83] P. W. Purdom. Search rearrengement backtracking and polynomial average
time. Artificial Intelligence, 21:117–133, 1983.

[Ref04] Philippe Refalo. Impact-Based Search Strategies for Constraint Program-
ming. In Proceedings CP’04, 2004.

[RG04] Jean Charles Régin and Carla Gomes. The Cardinality Matrix Constraint.
In Proceedings CP’04, 2004.

[RR96] G. Ramalingam and Thomas Reps. An incremental algorithm for a gen-
eralization of the shortest-path problem. Journal of Algorithms, 21(2):267,
1996.

[RS86] N. Roberston and P. D. Seymour. Graph minors II: Algorithmic aspects of
treewidth. Journal of Algorithms, 7:309–322, 1986.

[RTWZ01] F. Ricci-Tersenghi, M. Weight, and R. Zecchina. Simplest random k-
satisfiability problem. Physical Review, E 63:026702, 2001.

[SD96] B. Smith and M. Dyer. Locating the Phase Transition in Binary Constraint
Satisfaction Problems. AI Journal, 81:155–181, 1996.

[SG95] B. Smith and S. A. Grant. Sparse Constraint Graphs and Exceptionally
Hard Problems. In Proc. IJCAI’95, pages 646–651, Montréal, Canada, 1995.

[SG97] B. Smith and S. A. Grant. Modelling Exceptionally Hard Constraint Satis-
faction Problems. In Proceedings CP’97, pages 182–195, Linz, Austria, 1997.

[SHW96] Nathan Linial Sholomo Hoory and Avi Wigderson. Expnder graphs and their
applications. Bulletin of the AMS, 43:439–561, 1996.

[SK96] B. Selman and S. Kirkpatrick. Critical behaviour in the computational cost
of satisfiability testing. AI Journal, 81:273–295, 1996.

[SKC94] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise Strategies for Im-
proving Local Search. In Proc. of AAAI’94, pages 337–343, 1994.

[Smi01] Barbara M. Smith. Constructing an asymptotic phase transition in ran-
dom binary constraint satisfaction problems. Theoretical Computer Science,
265(1–2):265–283, 2001.

[SS96] M. Sipser and D. A. Spielman. Expander codes. IEEE Trans. on Information
Theory, 43(6):1710–1722, 1996.

[SS06] Marko Samer and Stefan Szeider. Constraint satisfaction with bounded
treewidth revisited. In Principles and Practice of Constraint Programming -
(CP’2006), pages 499–513, 2006.

[SSW98] Paul Shaw, Kostas Stergiou, and Toby Walsh. Arc Consistency and Quasi-
group Completion. In Proceedings of the ECAI-98 workshop on non-binary
constraints, 1998.

[SW99] A. Steger and N. C. Wormald. Generating random regular graphs quickly.
Probability and Computing, 8:337–396, 1999.

[van05] M.R.C. van Dongen. Introduction to the solver competition. In Proceed-
ings of the Second International Workshop on Constraint Propagation and
Implementation, Volume II, Solver Competition, pages 1–5, 2005.

[vD97] Peter van Beek and Rina Dechter. Constraint tightness and looseness versus
local and global consistency. J. ACM, 44(4):549–566, 1997.

112

BIBLIOGRAPHY

[vLR06] M.R.C. van Dongen, Christophe Lecoutre, and Olivier Roussel. Results of
the second csp solver competition. In Proceedings of the Second International
CSP Solver Competition, 2006.

[Wal00] T. Walsh. SAT vs CSP. In Proceedings CP’00, pages 441–456, Singapore,
2000.

[WS02] Wei Wei and Bart Selman. Accelerating random walks. In CP’2002, pages
216–232, 2002.

[XBHL05] Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. A
Simple Model to Generate Hard Satisfiable Instances. In IJCAI’05, pages
337–342, 2005.

[XL00] K. Xu and W. Li. Exact Phase Transition in Random Constraint Satisfaction
Problems. JAIR, 12:93–103, 2000.

[YS02] Takayuki Yato and Takahiro Seta. Complexity and Completness of Find-
ing Another Solution and Its Application to Puzzles. In Proc. of National
Meeting of the Information Processing Society of Japan (IPSJ), 2002.

[ZY03] Yuanlin Zhang and Roland H. C. Yap. Erratum: P. van beek and r. dechter’s
theorem on constraint looseness and local consistency. J. ACM, 50(3):277–
279, 2003.

113

