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Preface

Dynamical systems is the branch of mathematics describing processes
in motion. Typically, a dynamical system is given as the flow of a vector
field, or the solution of a differential or a difference equation. Once the
system of differential equations can be solved, given an initial state, it is
possible to determine all the future states of the phenomena. Thus, once the
differential equations modelling certain observed phenomena are formulated,
the next problem is to solve these equations, that is, to find an explicit
expression for which the states of the dependent variables maybe predicted
by the independent variables.

To find a closed form solution of a differential equation is a difficult task.
Moreover, most nonlinear differential equation cannot be solved. It is for
that reason that H. Poincaré initiates the study of the qualitative proper-
ties of a differential equation in Sur les courbes definiés par les équations
différentielles (1880). The qualitative theory of differential equations gives
information about the behavior of the solutions of a differential equation
without the explicit knowledge of them.

Normal form theory is an old subject in the qualitative study of differ-
ential equations, having been created by H. Poincaré in his Thesis (1890),
but is still one of the most useful tools in the study of dynamical systems.
Among the numerous analytical and numerical techniques available in the
field of dynamical systems, a classical point of view advocates an initial nor-
mal forms analysis. Under transformation, a mathematician seeks to reduce
a nonlinear dynamical system to its simplest form, eliminating inessential
nonlinearities or degrees of freedom.

The so called linearization problem of a vector field consists in determin-
ing the necessary and sufficient conditions for the existence of a coordinate
change near a singularity bringing the vector field into its linear part. Other
case of normal form occurs when the vector field is orbitally equivalent to
its linear part after a change of coordinates. To determine the necessary
and sufficient conditions for the existence of such a change of coordinates is
known as the Orbital linearization problem. By definition, two vector fields
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are orbitally equivalent if one of them can be brought to the other by a local
diffeomorphism and multiplication by a non-vanishing function.

Symmetry methods for differential equations have become increasingly
popular in recent years and have been applied to a variety of problems.
Roughly speaking, a symmetry of a geometrical object is a transformation
whose action leaves the object apparently unchanged. It is useful in order
to understand the concept of symmetry to consider symmetries of simple
objects. For instance, consider an equilateral triangle and a circle rotating
both about their centers. After a rotation of 2π/3 the triangle looks the
same as it did before the rotation, so the rotation is a symmetry. However
not all the rotations are symmetries: a rigid triangle has a finite number of
symmetries. On the contrary, the circle has an infinite set of symmetries. The
infinite set of symmetries of the circle is a one–parametric continuous group of
transformations. This kind of symmetries is very useful in order to solve many
differential equations. More than a century ago S. Lie understood differential
equations as a geometric object and put forward many of the fundamental
ideas behind symmetry methods. He focused his attention in symmetries
belonging to one–parametric continuous groups of transformations. We refer
to such symmetries as Lie symmetries.

However, this approach was neglected over several decades because the
complexity of the computations needed to determine the complete list of sym-
metries of a given differential equation. Thanks to the applications in fluid
dynamics of Birkhoff the interest for the symmetry grew again and nowadays
symmetry theory plays a special role, in that it gives general properties of
the system.

A special kind of discrete symmetry that some dynamical systems can
exhibit is the so called reversibility. Briefly, a dynamical system is called
reversible if it is invariant under the action of an involutive spatial diffeo-
morphism and a reversion in time’s arrow. From a dynamical point of view,
one of the main consequences is that the involution maps trajectories to other
trajectories but the timedirection of the two trajectories is reversed. For in-
stance, consider the motion of an ideal pendulum and film its evolution with
a projector, we could not distinguish from the images if we are playing the
film forwards or backwards. This is because the motion on the reverse film
also corresponds to a possible motion of the same pendulum. Namely, the
reverse motion satisfies the same laws of motion as the forward motion. If
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for a motion picture of a mechanical system one cannot decide whether it
is shown in the forward or reverse direction, the system is said to have a
reversal symmetry. The reversal symmetry described in the former example
arises very frequently in classical mechanics as well as in quantum mechanics.

The present work deals with several topics within symmetry methods and
qualitative theory of planar vector fields. The first one is about the role of
Lie symmetries in finding the change of coordinates that transforms a given
vector field into its normal form. More precisely, in Chapters 2,3, and 4 we
focus our attention in finding the change of variables that linearizes (resp.
orbitally linearizes) a given planar vector field from the knowledge of a Lie
symmetry of the vector field. The obtained results will be applied in Chapter
5 where we study a one–parameter family of quadratic systems belonging to
the so called Lotka–volterra systems. Chapter 6 is devoted to the study
of some aspects of the dynamics in the phase plane of smooth Newtonian
systems given by a scalar autonomous second order differential equations
possessing a r–dimensional Lie point symmetry algebra Lr with r ≥ 2. Here,
we focus on the existence, nonexistence and localization of periodic orbits.
Finally, we emphasize on the particular case of polynomial Liénard systems
possessing a Lr with r ≥ 2. For such polynomial Liénard systems, we prove
the nonexistence of limit cycles. The last part of this report is about the
topic of reversibility. In Chapter 7 we consider analytic systems having a
degenerate center at the origin. From the knowledge of a local smooth first
integral we prove the existence of a smooth map that transforms the system
into a reversible linear system (after rescaling the time). Moreover, by using
such a smooth map, we give a procedure to detect, in some cases, reversing
symmetries in degenerate centers.
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Agräır a la professora M. Grau la seva companyonia, la seva amistat i
els coneixements que m’ha ofert en cada uns dels seminaris impartits en la
Universitat de Lleida.
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Chapter 1

Introduction

1.1 An overview of differential equations

Throughout this dissertation we will consider first order autonomous systems
in the plane

ẋ =
dx

dt
= P (x, y) , ẏ =

dy

dt
= Q(x, y) , (1.1)

where P and Q are smooth C∞ functions defined in an open set U ⊆ F2

called phase space. In what follows, we denote by F the fields either R or
C in according with the system (1.1) be real or complex, respectively. The
independent “time” variable t will be always real along this work. In some
chapters of this work we will take P and Q to be analytic Cω in U or even
coprime polynomials with coefficients in F. In this last case, we say that
m = max{deg P, deg Q} is the degree of polynomial system (1.1).

We associate to system (1.1) the vector field

X = P (x, y) ∂x + Q(x, y) ∂y. (1.2)

The existence of solutions for system (1.1) is given by the existence and
uniqueness theorem of solutions for an ordinary differential system. A solu-
tion of (1.1) is a smooth function ϕ : I → F2 where I ⊆ R is the maximal time
open interval in which the solution is defined such that dϕ(t)/dt = X (ϕ(t)),
for every t ∈ I. Let ϕ be a solution of system (1.1). Then, the set of points
Γ = {ϕ(t) ∈ F2 : t ∈ I} is called an orbit or trajectory or integral curve of
system (1.1) or of the vector field X .

A phase portrait of a real system (1.1) defined in U ⊆ R2 is a plot of
several special orbits corresponding to different initial conditions in the phase

1



2 Introduction

Figure 1.1: Hyperbolic, parabolic and elliptic sectors.

plane. Phase portrait is an invaluable tool in the study of the real dynamical
systems. It consists of a plot of key orbits and reveals topological information
about system (1.1). In general, a vector field admits a simple classification of
its topological type. We will say that two vector fields X and Y , defined on
open subsets U and W of F2 respectively, are topologically equivalent when
there exists a homeomorphism φ : U → W which sends orbits of X to orbits
of Y preserving the orientation. If X and Y are topologically equivalent, one
says that they have the same phase portrait. In fact one can identify the
phase portrait of a vector field X with its equivalence class. Now, we define
the orbits (if they exist) that perform the skeleton of a phase portrait.

• A singular point of system (1.1) is a point (x0, y0) ∈ U such that
P (x0, y0) = Q(x0, y0) = 0. Of course, singular points are special solu-
tions of system (1.1) called stationary solutions because ϕ(t) = (x0, y0)
for all t. Singular point are defined in the same way when U ⊆ C2. We
say that a singular point is isolated if there is no other singular point
in a punctured neighborhood of it.

• An isolated singular point (x0, y0) of an analytic system (1.1) possesses
a neighborhood that is divided (by orbits of (1.1) that approach (x0, y0)
along defined tangents) into a finite number of open regions called
sectors. Canonical sectors of elliptic, hyperbolic, or parabolic type are
shown in Figure 1.1. The orbits of (1.1) which lie on the boundary of
a hyperbolic sector are called separatrices.

• A periodic orbit is an orbit γ = {ϕ(t) ∈ R2 : t ∈ R} different from a
singular point such that ϕ(t) is a periodic solution of system (1.1), that
is, there exists a positive time T ∈ R+ called the period and satisfying
ϕ(t + T ) = ϕ(t) for all t. Hence, a periodic orbit Γ is, in particular,
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a closed invariant curve without singular points of system (1.1). An
isolated periodic orbit Γ is called a limit cycle. Therefore, there is
always a neighborhood of a limit cycle free of other periodic orbits.
Otherwise, non–isolated periodic orbits belong to a period annulus.

• A regular solution ϕ(t) of (1.1) defines a homoclinic orbit if ϕ(t) → p0

as t → ±∞ for some singular point p0 and defines a heteroclinic orbit
connecting two singular points p1 and p2 if ϕ(t) → p1 as t → ∞ and
ϕ(t) → p2 as t → −∞. A graphic Γ = ∪k

i=1Γi ∪ {p1, . . . , pk} is formed
by k singular points p1, . . . , pk, pk+1 = p1 and k oriented regular orbits
Γ1, . . . , Γk, connecting them such that Γi is an unstable characteristic
orbit of pi and a stable characteristic orbit of pi+1.

A point p ∈ U is an ω–limit point of a solution ϕ(t) of (1.1) if there
is time–sequence {tn}n∈N with tn → ∞ as n → ∞ such that ϕ(tn) → p
as n → ∞. Similarly, if tn → −∞ as n → ∞ and ϕ(tn) → q ∈ U as
n → ∞, then the point q is termed α–limit point of the solution ϕ(t). The
set of all ω–limit points (resp. α–limit points) of an orbit Γ is called the
ω–limit set (resp. α–limit set) of Γ and denoted by ω(Γ) (resp. α(Γ)). It is
easy to see that ω(Γ) and α(Γ) are closed sets and invariant by the flow of
(1.1). For real systems (1.1), the α or ω–limit sets of any orbit are relatively
simple: singular points, limit cycles or graphics. This is a consequence of the
celebrated Poincaré–Bendixson Theorem for real planar dynamical systems.

1.2 Invariant curves and inverse integrating

factors

Let Γi := {ϕi(t) ∈ F2 : t ∈ Ii} for i = 1, 2, . . ., be a collection of orbits
of system (1.1). The set

⋃
i Γi is an invariant curve of system (1.1) because

it is invariant by the flow of (1.1). Sometimes, this invariant curve can
be implicitly described by the equation f(x, y) = 0, for certain function
f : U → F. When f ∈ F[x, y] is a polynomial with coefficients in the field
F, then f = 0 is called an algebraic invariant curve of system (1.1). Assume
now that f ∈ C1(U). From the invariant condition, the vector field X is
tangent to the invariant curve f = 0 except at the possible singular points of
(1.1) on f = 0. Therefore, on the (nonsingular) points of the invariant curve
f = 0, the gradient vector ∇f = (∂f/∂x, ∂f/∂y) of the curve is orthogonal
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to the vector field X . Therefore,

X f |f=0 := P
∂f

∂x
+ Q

∂f

∂y

∣∣∣∣
f=0

= 0 .

We are leaded directly to the following definition.

Definition 1.1 A C1 invariant curve of system (1.1) is a set of points in
U ⊆ F2 satisfying an equation f(x, y) = 0 with f ∈ C1(U) and such that

X f = Kf , (1.3)

for some continuous function K(x, y), called cofactor.

We say that a C1 non–constant single–valued function H : U ⊂ F2 → F
is a first integral of system (1.1) if H is constant on each solution of this
system, i.e., H(ϕ(t)) is constant for all values of t ∈ I for which the solution
ϕ(t) ∈ U is defined. In other words, a first integral of system (1.1) in U will
be a C1(U) solution of the homogeneous linear partial differential equation
XH ≡ 0. Notice that, for systems defined on U ⊆ F2, the existence of a
first integral completely determines its phase portrait because the level sets
{H(x, y) = h} define a decomposition of U as union of orbits of (1.1).

We define the divergence of the vector field X = P (x, y)∂x +Q(x, y)∂y as
divX = ∂P/∂x + ∂Q/∂y.

Definition 1.2 An inverse integrating factor for system (1.1) in U is a non–
locally null C1 solution V : U ⊂ R2 → R of the linear partial differential
equation

XV = V divX . (1.4)

We observe that, if V is an inverse integrating factor of system (1.1) then
the zero–set of V , V −1(0) := {(x, y) ∈ U | V (x, y) = 0}, is composed of
orbits of (1.1). In particular, the cofactor of the invariant curve V (x, y) = 0
is just divX . Notice that, in U\{V −1(0)}, the vector field X/V is diver-
gence free, i.e., div(X /V ) ≡ 0. Therefore, in any simply connected subset
of U\{V −1(0)}, the vector field X /V is hamiltonian. More precisely, in
U\{V −1(0)}, we have ẋ = P (x, y)/V (x, y) = ∂H/∂y, ẏ = Q(x, y)/V (x, y) =
−∂H/∂x, where the first integral H associated to the inverse integrating
factor V can be computed from the well defined line integral

H(x, y) =

∫
Q(x, y)dx− P (x, y)dy

V (x, y)
. (1.5)
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The zero–set of V (x, y) contains most of the relevant orbits of the phase
portrait of X in U such as singular points, separatrices, limit cycles and
graphics provided they are α or ω–limit sets.

It is known that the existence of invariant algebraic curves can be used
to prove topological properties of polynomial systems (1.1). In short, invari-
ant algebraic curves and integrability have a narrow relationship for planar
polynomial systems like it is clearly shown in the Darboux theory. Darboux
showed in “Mémoire sur les équations différentielles algébriques du premier
ordre et du premier degré ” (1878) how first integrals of polynomial systems
possessing sufficient invariant algebraic curves are constructed. In particular,
he proved that if a polynomial system of degree m has at least [m(m+1)/2]+1
invariant algebraic curves, then it has a first integral. Darboux’s first idea
consists in searching a first integral for the polynomial system (1.1) as a
function of the form

q∏
i=1

fλi
i (x, y) , (1.6)

for suitable λi ∈ C not all zero and fi(x, y) = 0 being invariant algebraic
curves of system (1.1). The first integral (1.6) is called Darboux first integral.
More precisely, denoting by Ki de cofactor of fi, Darboux’s theory says:

• If q ≥ m(m + 1)/2 + 1 then (1.6) is a first integral of (1.1).

• If q = m(m+1)/2 then (1.6) is a first integral or an inverse integrating
factor of (1.1).

• If q < m(m + 1)/2 and either
∑q

i=1 λiKi = 0 or
∑q

i=1 λiKi = divX
then (1.6) is a first integral or an inverse integrating factor of (1.1)
respectively.

For instance, a proof of the first item is the following. Since X fi = Kifi

for i = 1, . . . , q and X is a polynomial vector field of degree m, it follows
that the cofactors Ki are polynomials of deg Ki ≤ m− 1. So Ki has at most
m(m + 1)/2 coefficients. But, since q > m(m + 1)/2, we have that the set
{K1, . . . , Kq} is linearly dependent and therefore there are complex numbers
λi not all zero for i = 1, . . . , q such that

∑q
i=1 λiKi ≡ 0. Finally, taking the

function H(x, y) defined like (1.6), one has

XH = H

q∑
i=1

λi
X fi

fi

= H

q∑
i=1

λiKi ≡ 0 .
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We see that this proof also works if the invariant curves fi = 0 are not
algebraic but their associated cofactors Ki are polynomials of deg Ki ≤ m−1.

1.3 Normal forms theory

First of all, we recall the notion of equivalence between two vector fields
which will allow us to compare their phase portraits. Let X and Y be two
vector fields defined on open subsets U and W of F2, respectively. We say
that X is topologically equivalent (resp. Cr–equivalent) to Y when there ex-
ists a homeomorphism (resp. a diffeomorphism of class Cr) φ : U → W
which sends orbits of X to orbits of Y preserving the orientation. Such a
φ is called a topological equivalence (resp. Cr–equivalence) between X and Y .

Let ΦX (t; (x, y)) and ΦY(t; (x, y)) be the flows generated by X and Y in
U and W , respectively. We say that X is topologically conjugate (resp. Cr–
conjugate) to Y when there exists a homeomorphism (resp. a diffeomorphism
of class Cr) φ : U → W such that φ(ΦX (t; (x, y))) = ΦY(t; φ(x, y)) for every
(x, y) ∈ U and all t where this make sense. Such a φ is called a topological
conjugacy (resp. Cr–conjugacy) between X and Y . Notice that, any con-
jugacy is clearly also an equivalence. Moreover, a topological equivalence
maps singular points into singular points and periodic orbits into periodic
orbits. Conjugacy, in addition, preserves the period of the periodic orbits.
In practice, a C1–conjugacy is characterized by Dφ(p)X (p) = Y(φ(p)) for all
p ∈ U , where Dφ denotes the differential of φ. Notice that a Cr–conjugacy
with r ≥ 1 is just a change of coordinates which operates on a vector field X
to change it into Y of the form

Y(p) = Dφ(φ−1(p))X (φ−1(p)) .

We will simply write the above expression as Y = φ∗X or X = φ∗Y where
φ∗ and φ∗ are the push–forward and pull–back defined by the diffeomor-
phism φ. Another form to express how a change of variables φ(x, y) =
(u(x, y), v(x, y)) acts on a vector field X = P (x, y)∂x + Q(x, y)∂y is given
by φ∗X = (Xu)∂u + (X v)∂v.

Let X be a C∞(U) planar vector field and p0 ∈ U a regular point of X ,
that is, X (p0) 6= 0. From the Flow Box Theorem, we know that there exists
a neighborhood V ⊂ U of p and a C∞(V) diffeomorphism φ such that it
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is a C∞–conjugacy in V between X and the constant vector field Y = ∂x.
Therefore, after a suitable change of coordinates φ, in a neighborhood of a
regular point, the flow of X is rectified.

The celebrated Hartman–Grobman Theorem shows us that, in a neigh-
borhood of a hyperbolic singular point p0 of X (that is, when the real part
of the eigenvalues of the Jacobian matrix DX (p0) are different from zero),
the qualitative behavior of the orbits of system (1.1) is determined by its
linear part DX (p0). More precisely, a vector field X in a neighborhood of a
hyperbolic singularity is C0–conjugated to its linear part.

From classical theory of differential equations, we know that, after a linear
change of coordinates, the linear part of system (1.1) can be put into Jordan
canonical form. Therefore, without lost of generality, we can assume that
system (1.1) has the form ẋ = Jx + F(x) with x = (x, y)T ∈ U ⊆ F2,
and where the function F : U → U represents the nonlinear terms of the
system. Here, J ∈ M2(F) is a 2 × 2 matrix with entries in F. The aim of
the formal normal form theory is to determine, given the eigenvalues of J ,
the class of nonlinearities N as small as possible such that the system (1.1)
can be brought to the form ẏ = Jy + F̃(y) with F̃(y) ∈ N by means of
a near–identity formal coordinate change of the form x = y + f(y) where
f(y) = O(‖y‖2).

The method of reducing system (1.1) to its normal form dates back to
the Ph.D thesis of Poincaré (1890). The coordinate transformation is usually
obtained by means of iterative techniques so that, in general, it is actually a
formal power series transformation. The nonlinear terms of the differential
system which cannot be eliminated are called resonant terms. In short, it
can be proved that the characterizing property of the Poincaré normal form
can be stated as follows: If v1 and v2 is an eigenbasis of J with associated
eigenvalues λ1 and λ2, then F̃(y) where y = (w, z) ∈ F2 is a formal series in
those monomials wm1zm2vj satisfying

m1λ1 + m2λ2 = λj . (1.7)

We say that the eigenvalues are in resonance if they satisfy the relation (1.7)
with nonnegative integers mi such that m1 + m2 ≥ 2. We recall here that,
in general, neither the normal form nor the normalizing transformation are
unique. Anyway, it is well known that normal forms have been proven to be
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among the most useful tools in the qualitative and quantitative local analysis
of ordinary differential equations.

In general, the normalizing transformation is just a formal power series
and only special conditions can ensure its local convergence. Therefore, the
normal form of an analytic system (1.1) is analytic only under some condi-
tions. The most simple case that gives a sufficient condition which ensures
the convergence of the normal form is given by the following criterium of
Poincaré.

Theorem 1.3 If the eigenvalues λ1 and λ2 of the matrix J of the linear part
of an analytic system (1.1) near the origin belong to the Poincaré domain
(that is, the convex hull of the points {λ1, λ2} in the complex plane C does
not contain zero), then there is an analytic normalizing transformation and
so an analytic normal form.

A particular case of a normal form transformation is the so called lin-
earization. System (1.1) given in the form ẋ = Jx + F(x) is said to be
smoothly linearizable if there exists a near–identity smooth coordinates change
around the origin of the form x = y + f(y), where f(y) = O(‖y‖2), bringing
system (1.1) into ẏ = Jy. On the other hand, when system (1.1) can be
brought under the former trnasformation to the form ẏ = Jyh(y), with h
a scalar function such that h(0) = 1, system (1.1) is said to be smoothly
orbitally linearizable.

The next theorem contains a significant part of the local theory of planar
analytic systems. Its proof or references to them can be found in [2].

Theorem 1.4 (Normal Forms) Let ẋ = λ1x + · · ·, ẏ = λ2x + · · ·, be an
analytic system near the isolated elementary (λ2 6= 0) singular point at the
origin (here the dots denote higher order terms). There exists a smooth near–
identity change of coordinates (X, Y ) = φ(x, y) = (x+ · · · , y + · · ·) such that:

(a) If λ1/λ2 6∈ Q (non–resonant point), then exactly two analytic invariant
curves (separatrices) pass through the origin. Moreover, the system is
smoothly equivalent to its linear part Ẋ = λ1X, Ẏ = λ2Y .

(b) If λ1/λ2 = n ∈ Z+ positive integer (n : 1 resonant node) then φ(x, y) is
analytic and the system is analytically equivalent to Ẋ = nX + δY n,
Ẏ = Y with δ a constant.
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(c) If λ1/λ2 = p/q ∈ Q+\Z+ with p/q > 1 and p and q relatively primes
positive integers (p : q resonant node) then φ(x, y) is analytic and the
system is analytically equivalent to its linear part Ẋ = pX, Ẏ = qY .

(d) If λ1/λ2 = −q/p ∈ Q− with p and q relatively primes (p : q resonant sad-
dle) then the system has two analytic invariant curves passing through
the origin. Moreover, it is smoothly orbitally equivalent to

Ẋ = qX
[
1 + δ(Uk + aU2k)

]
, Ẏ = −pY ,

with U = XpY q, a ∈ R, k ∈ Z+ and δ ∈ {0,±1}.

(e) If λ1 = 0 6= λ2 (semi–hyperbolic point) then there are two distinguished
trajectories: an analytic separatrix corresponding to the eigenvalue λ2

and a center manifold which may be not analytic and not unique. If the
center manifold is analytic then it is unique (others are not analytic).
Moreover, the system is smoothly orbitally equivalent to Ẋ = X`+1/`,
Ẏ = Y (1 + bX`) with b a constant and ` a positive integer.

1.4 Lie groups and differential equations

Roughly speaking, a symmetry for a given differential equation is a special
transformation that leaves the differential equation invariant. Most well-
known techniques for solving differential equations are based in symmetry
methods. The Norwegian mathematician Sophus Lie was the founder of the
theory of continuous groups and their applications to the theory of differential
equations. His investigations led to one of the major branches of 20th-century
mathematics, the theory of Lie groups and Lie algebras. Continuous groups,
now called after him Lie groups, have had a profound impact on many areas
of mathematics as well as physics.

The application of Lie’s continuous symmetry groups include such diverse
fields as differential geometry, invariant theory, bifurcation theory, classical
and quantum mechanics and so on.

When dealing with differential equations dy/dx = w(x, y), one very often
tries to obtain an appropriate change of variables x∗ = x∗(x, y), y∗ = y∗(x, y),
in such a way that the differential equation remains invariant. This means
that dy∗/dx∗ = w(x∗, y∗). In this case, the diffeomorphism x∗ = x∗(x, y),
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y∗ = y∗(x, y) is called a symmetry point transformation for the differential
equation. The symmetry maps points (x, y) into points (x∗, y∗).

In the context of Lie symmetries, we have to consider point transfor-
mations that depend on (at least) one arbitrary real parameter ε, that is,
x∗ = x∗(x, y; ε), y∗ = y∗(x, y; ε). Moreover, we will need to introduce the
group structure in those 1–parameter point transformations. In what follows
we give a proper definition of a continuous group of transformations.

Let x = (x, y) ∈ D ⊂ R2. The set of transformations x∗ = X(x; ε)
defined for each x in D, depending on a parameter ε ∈ I ⊂ R with a law of
composition φ : I × I → I, forms a continuous group of transformations on
D if

(i) For each parameter ε ∈ I the transformations are one-to-one onto D. In
particular x∗ ∈ D.

(ii) The interval I with the law of composition φ forms a group.

(iii) x∗ = x when ε is the identity element of the group (I, φ).

(iv) If x∗ = X(x; ε) and x∗∗ = X(x∗; δ), then x∗∗ = X(x; φ(ε, δ)).

A continuous group of transformations defines a one-parameter Lie group
of transformations if in addition to the above axioms (i)-(iv) it satisfies

(v) X ∈ C∞(D) with respect to x and moreover is analytic on I with respect
to ε.

(vi) φ(ε, δ) is an analytic function of ε and δ.

The symmetry is regarded as a mapping of the (x, y) plane to itself,
called the action of the symmetry on the (x, y) plane. The action of a one–
parameter Lie group can be seen as motion in the (x, y) plane. The orbit of
the Lie group through (x0, y0) is the set of points to which (x0, y0) can be
mapped by a suitable choice of ε. Figure 1.2 represents the action of a one–
parameter Lie group of transformations. The picture shows how the point
(x0, y0) is transformed along some planar curve when the parameter ε varies.
Repeating this with different initial points we can visualize the orbits of the
one–parameter Lie group of transformations. Hence, an one-parameter Lie
group of transformations in effect defines a stationary flow and the orbits of
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Figure 1.2: Action of a 1–parameter group of transformations.

the one–parameter Lie group can be characterized by the field of its tangent
vectors.

More precisely, the first fundamental theorem of Lie is the following one.

Theorem 1.5 There exists a parametrization τ(ε) such that the Lie group
of transformations x∗ = X(x; ε) is equivalent to the solution of the initial
value problem

dx∗

dτ
= Y(x∗) , x∗(0) = x .

In view of this theorem, from now on, without loss of generality, we assume
φ(ε, δ) = ε + δ. The vector field Y(x) = ξ(x, y)∂x + η(x, y)∂y is called in-
finitesimal generator of the one-parameter Lie group. The main advantage
in using the generators instead of the finite group transformations is that the
generators are linear operators.

For the differential equation dy/dx = w(x, y) = Q(x, y)/P (x, y) with
P and Q of class C1(U), we can always introduce a new time independent
variable t and rewrite the differential equation as the C1-differential system
ẋ = P (x, y), ẏ = Q(x, y). We call X = P (x, y)∂x + Q(x, y)∂y the vector
field associate to the former differential system. In this situation, it is well
known that the Lie group of point transformations x∗ = x∗(x, y; ε), y∗ =
y∗(x, y; ε) with infinitesimal generator Y = ξ(x, y)∂x +η(x, y)∂y is a Lie point
symmetry of the differential system ẋ = P (x, y), ẏ = Q(x, y) if and only if the



12 Introduction

commutation relation [X ,Y ] = ν(x, y)X holds in U for some scalar function
ν. Here [X ,Y ] = XY − YX denotes the Lie bracket of two C1–vector fields.
Taking coordinates, the definition of Lie bracket is the following.

[X ,Y] =
(

P
∂ξ

∂x
− ξ

∂P

∂x
+ Q

∂ξ

∂y
− η

∂P

∂y

)
∂x +

(
P

∂η

∂x
− ξ

∂Q

∂x
+ Q

∂η

∂y
− η

∂Q

∂y

)
∂y.

From a classical result, see the book of Olver [51], in the particular case
that [X ,Y ] ≡ 0 in U , the local flows generated by the vector fields X , Y com-
mute, that is, one has φ(t, ψ(τ, x0, y0)) = ψ(τ, φ(t, x0, y0)) in U for any couple
of real numbers t and τ whenever both φ(t, ψ(τ, x0, y0)) and ψ(τ, φ(t, x0, y0))
exist, where φ(t, x0, y0) and ψ(τ, x0, y0) are the flows generated by the vector
fields X , Y .

It is well known, see for instance [51], that if Y = ξ(x, y)∂x + η(x, y)∂y is
an infinitesimal generator of a Lie symmetry of X = P (x, y)∂x + Q(x, y)∂y,
then the wedge product X ∧ Y := Pη − Qξ is an inverse integrating factor
V of X defined in U provided V (x, y) 6≡ 0. So, in the particular case of
commutation (ν ≡ 0), we get that X ∧ Y is an inverse integrating factor of
both X and Y . Conversely, given an inverse integrating factor V of X , we
can get an infinitesimal generator Y of a Lie symmetry of X as

Y =
1

divX (−∂V

∂y
∂x +

∂V

∂x
∂y), (1.8)

which is defined in U\{(x, y) ∈ U : divX = 0}, see [63].

1.5 Symmetries in the center problem

Consider the analytic system (1.1) defined in an open set U ⊂ R2 of an
isolated singular point that we can choose, without loss of generality, to be
at the origin. Assume that the singular point is nondegenerate, that is, the
eigenvalues of the Jacobian matrix DX (0, 0) are different from zero.

A singular point of system (1.1) is called monodromic if there are no
orbits tending to or leaving it forming a certain angle. For analytic systems,
a monodromic singular point is always a center or a focus. This claim has
been proved at the beginning of the nineties, see [43]. We recall that the
origin is a focus if there exists a neighborhood of it such that each trajectory
spirals around it and we say that the origin is a center if there exists a
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neighborhood of it such that each trajectory is a periodic orbit surrounding
it.

It is well-known, see for instance [52], that if both eigenvalues of DX (0, 0)
are non zero complex conjugates α ± iβ then, the singular point is a center
or a focus. More specifically, if α 6= 0 the origin is a strong focus. Otherwise,
if α = 0, the origin is a center or a weak focus.

When the origin is a nondegenerate singular point and the eigenvalues of
DX (0, 0) are not pure imaginary, the Hartman –Grobman Theorem shows
us that, in a sufficiently small neighborhood of it, the system is topologically
equivalent to its linear part. That is, when the origin is a weak focus or a
center, the Hartman –Grobman Theorem does not work.

The center problem asks for the conditions under which system (1.1) hav-
ing eigenvalues of DX (0, 0) pure imaginary at the origin, really is a center.
There exists a second dynamical problem which consists in discerning when
the periodic orbits surrounding the center have the same period. In that case
the center is said to be isochronous.

If the origin of system (1.1) is monodromic and nondegenerate, we can
always make a linear transformation bringing system (1.1) to the form,

ẋ = −y + λx + p(x, y), ẏ = x + λy + q(x, y), (1.9)

where p(x, y) and q(x, y) are analytic in a neighborhood U ⊂ R2 of the
origin and starting at order equal or greater than two. Let X = (−y + λx +
p(x, y))∂x +(x+λy + q(x, y))∂y be its associated vector field. The case λ = 0
correspond to a weak focus or a center.

The study of the center problem has been the focus of attention of many
researchers along decades. Some important methods have been developed to
attack the problem in order to find necessary conditions to have a center, that
is, computing the Lyapunov constants, see [41] and [53]. The main purpose
of this section is to summarize and to show the role that have been played
the Lie symmetries in distinguishing between a center or a focus in system
(1.9).

The following result, proved in [4], is due to Algaba, Freire and Gamero
and characterizes centers in terms of Lie brackets.

Theorem 1.6 System (1.9) with λ = 0 has a center at the origin if, and
only if, there exists an analytic vector field in a neighborhood U ⊂ R2 of the
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origin of the form Y = (x + A(x, y))∂x + (y + B(x, y))∂y with A(x, y) and
B(x, y) of order equal or greater than two such that [X ,Y ] = νX with ν(x, y)
an analytic function in U such that ν(0, 0) = 0.

Villarini in [61] showed that if the analytic functions P (x, y) and Q(x, y) of
system (1.1) are conjugated harmonic functions, i.e., satisfying the Cauchy-
Riemann equations Px = Qy and Py = −Qx, then the local flows of the
vector field X = P∂x + Q∂y and its orthogonal vector field X⊥ = Q∂x−P∂y

commute, that is [X ,X⊥] ≡ 0. After that, Sabatini improved in [54] that
result replacing the orthogonal condition by the transversal one, i.e, X∧Y 6= 0
in U\{(0, 0)}. He gives the following version of Theorem 1.6 for isochronous
centers showing the equivalence between commutation and isochronicity.

Theorem 1.7 System (1.9) with λ = 0, has an isochronous center at the
origin if, and only if, there exists an analytic vector field Y in U transversal
to X in U such that [X ,Y ] ≡ 0.

The result of Sabatini, that establishes the equivalence between isochronic-
ity and the existence of transversal commutators, was extended recently for
Freire, Gasull and Guillamon in [28]. They show that not only commuta-
tors are connected to isochronicity, but also a subset of Lie symmetries of X
characterizes the isochronicity of a center. Given an infinitesimal generator
Y of a Lie Symmetry of X , i.e, [X , Y ] = νX , they provided the following
necessary and sufficient isochronicity condition based on ν.

Theorem 1.8 Assume that the vector field X associated to system (1.9) with
λ = 0 has a center at the origin with period annulus P ⊂ R2. Let Y be a
C1 vector field transversal to X in P\{(0, 0)} such that [X ,Y ] = νX with ν
some C1 scalar function. Let γ(t) ∈ P be any periodic orbit of X and denote
by Tγ its period. Hence, the center is isochronous if and only if there is a

neighborhood of the origin such for any γ contained in it,
∫ Tγ

0
ν(γ(t))dt = 0.

A survey about isochronicity is [19]. The following theorem goes back to
Poincaré and Liapunov.

Theorem 1.9 System (1.9) with λ = 0 has a center at the origin if and
only if there exists a near-identity analytic change of coordinates (u, v) =
(x + o(|(x, y)|), y + o(|(x, y)|)) transforming system (1.9) into the normal
form u̇ = −v[1 + Ψ(u2 + v2)] , v̇ = u[1 + Ψ(u2 + v2)], with Ψ an analytic
function near the origin such that Ψ(0) = 0.
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In the particular case that Ψ(u2 + v2) ≡ 0, the transformed system is
u̇ = −v, v̇ = u. Then, the origin of system (1.9) is an isochronous center
because all the orbits in the period annulus have the same period coinciding
with the period 2π of the harmonic oscillator. For a proof of this fact see
also [47].

As a consequence of the former theorems one has the two following corol-
laries.

Corollary 1.10 System (1.9) with λ = 0 is analytically orbitally linearizable
around the origin if there exists an analytic vector field near the origin of the
form Y = (x + A(x, y))∂x + (y + B(x, y))∂y, with A(x, y) and B(x, y) of
order equal or greater than two, and an analytic function ν(x, y) such that
[X ,Y ] = νX with ν(0, 0) = 0. Moreover, the origin becomes a center.

Corollary 1.11 A center of system (1.9) is analytically linearizable if there
exists an analytic vector field near the origin of the form Y = (x+A(x, y))∂x+
(y + B(x, y))∂y, with A(x, y) and B(x, y) of order equal or greater than two
such that [X ,Y ] = 0. Moreover, the center is isochronous.

The above corollary shows the equivalence between analytic linearization
for centers and commutation, but to obtain an explicit linearizing change
of coordinates is not an easy task. In Chapter 2 we study this problem
and present a procedure to obtain the linearization of analytic isochronous
centers from a given commutator. Moreover we show the linearization of
some examples extracted from the existent literature.

1.6 The role of symmetries in normal forms

In this section we will assume always that system (1.1) is written in the form
ẋ = Ax + F(x) with x = (x, y)T ∈ U ⊆ R2, where function F : U → U is
analytic near the origin and represents the nonlinear terms of the system.
Here, A ∈ M2(R) is a 2 × 2 semisimple non–zero matrix with entries in R.
Moreover, we write a normal form of system (1.1) as ẋ = Ax + F̃(x) with
F̃(x) having only resonant terms.

We shall use moreover the following notation. XA will be the linear vector
field with associated matrix A = (aij) ∈ M2(R), that is, XA = (a11x +
a12y)∂x + (a21x + a22y)∂y. Therefore, the analytic vector field X associated
to system (1.1) is expressed as X = XA + XF where XF is the vector field
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containing only the nonlinear terms of (1.1). Analogously, X̃ will denote
the formal vector field associated to the formal normal form of system (1.1),
that is, X̃ = XA +XF̃ where XF̃ is the formal vector field containing only the
nonlinear resonant terms.

There is another characterization of the resonant terms of a normal form
in terms of Lie symmetries, see [24].

Proposition 1.12 The vector field X̃ = XA + XF̃ is in normal form if and
only if [X̃ ,XA] = 0.

A particular consequence of Proposition 1.12 is that the vector fields
X̃ = XA + XF̃ with XF̃ 6≡ 0 which are in normal form always admit the
nontrivial linear commuting vector field XA. Otherwise, when X̃ = XA the
same property holds because [XA,XI ] = 0 with I the identity matrix 2 × 2.
In fact, we can say more since [XA,XAk ] = 0 for any integer k ≥ 0.

The following is a fundamental property of normal forms. Walcher stated
and proved it in [62].

Proposition 1.13 Let X̃ = XA + XF̃ be a vector field in normal such that
[X̃ ,Y ] = 0, where Y = XB + XG. Then [XA,Y ] = 0. Moreover, every first
integral of X̃ is also a first integral of XA.

The following result is an illustration of how normal forms may be influ-
enced by Lie symmetries, see [5].

Proposition 1.14 The analytic vector field X = XA + XF can be formally
linearized if and only if there is a formal vector field Y = XI +XG such that
[X ,Y ] ≡ 0. If in addition Y is analytic, then X is analytically linearizable.

In the two–dimensional setting the next theorem is a central result about
convergence of normal forms, see [24].

Theorem 1.15 Let X = XA +XF be a planar analytic vector field having an
elementary singularity at the origin, that is, the matrix A has, at least, an
eigenvalue different from zero. If there exists a nontrivial analytic commuting
vector field Y = XB + XG with [X ,Y ] ≡ 0, then X possesses a convergent
normalizing transformation.
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Finally, in the context of the orbital normal forms for planar analytic
vector fields, one has the next result.

Proposition 1.16 Let X = XA +XF be a planar analytic vector field where
the eigenvalues λ1 and λ2 of A satisfy either λ2/λ1 = −q/p with p and q
positive and relatively prime integers or λ1 6= 0 and λ2 = 0. Then, there is an
analytic scalar function h with h(0, 0) 6= 0 such that hX admits a convergent
transformation to normal form, if and only if, X admits an analytic inverse
integrating factor near the origin.

Recently, Giné and Grau have generalized the criteria to detect centers
stated in Corollary 1.10 in order to detect smooth (analytic) orbital lineariza-
tion for other types of singular points in smooth or analytic systems. The
result, stated and proved in [35], gives the equivalence between the orbital
linearizability of a smooth (analytic) vector field and the fact of having a
smooth (analytic) infinitesimal generator Y of a Lie symmetry of the form
Y = XI + XG.

Theorem 1.17 Consider the smooth (analytic) vector field X = XA + XF

on C2 defined in a neighborhood of an isolated nondegenerate singular point.
Then, X is smoothly (analytically) orbitally linearizable if, and only if, there
exists a smooth (analytic) vector field near the singular point of the form
Y = XI + XG such that [X ,Y ] ≡ νX with ν a smooth (analytic) scalar
function such that ν(0, 0) = 0.

In the same work, the authors generalize Propositon 1.14 for smooth (an-
alytic) systems. The proofs given in [35] of these facts are not constructive,
that is, the authors do not find a constructive way to build this change of
coordinates. In Chapter 3, we give a constructive procedure of the smooth
linearizing change of coordinates around an isolated nondegenerate singular
point of a smooth system from symmetries. Thus, in Chapter 3 we extend
the procedure obtained in Chapter 2 for isochronous centers to other types
of singular points. Chapter 4 is devoted to the smooth orbital linearization
problem; a method to get the normal form transformation is given.

1.7 The algebra of Lie point symmetries

Let us consider a second order differential equations

ẍ = w(t, x, ẋ) , (1.10)
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with w a smooth function in all of its arguments and (t, x) ∈ R × U with
U ⊂ R an open interval. The ideas explained here can be extended to
differential equations of higher order, but for simplicity we only state it in
the second order setting.

A symmetry of (1.10) is a diffeomorphism Φ : (t, x) 7→ (t̄, x̄) that maps
the set of solutions of (1.10) into itself. Therefore, the symmetry condition
of (1.10) reads for

x̄′′ = w(t̄, x̄, x̄′) (1.11)

where the prime denotes the derivative ′ = d/dt̄. In general, this symmetry
condition is too hard to be solved for Φ.

When the symmetry is a 1–parameter Lie group of point transformations
Φε, then

t̄ = t + εξ(t, x) + O(ε2) , x̄ = x + εη(t, x) + O(ε2) , (1.12)

for ε close to zero, and the vector field Y = ξ(t, x)∂t + η(t, x)∂x is called the
infinitesimal generator of the 1–parameter Lie group of point transformations
Φε. In this case, the Lie symmetries (and this is the main difference with
respect to discrete symmetries) are obtained by linearizing (1.11) near ε =
0 taking into account (1.10). To do this, we need the first terms in the
expressions of x̄′ and x̄′′ as Taylor power series of ε. In short, we have

x̄′ =
dx̄

dt̄
=

dx + ε
(

∂η
∂t

dt + ∂η
∂x

dx
)

+ O(ε2)

dt + ε
(

∂ξ
∂t

dt + ∂ξ
∂x

dx
)

+ O(ε2)
=

ẋ + ε
(

∂η
∂t

+ ∂η
∂x

ẋ
)

+ O(ε2)

1 + ε
(

∂ξ
∂t

1 + ∂ξ
∂x

ẋ
)

+ O(ε2)

= ẋ + η[1](t, x, ẋ)ε + O(ε2) ,

x̄′′ =
dx̄′

dt̄
=

dẋ + ε
(

∂η[1]

∂t
dt + ∂η[1]

∂x
dx + ∂η[1]

∂ẋ
dẋ

)
+ O(ε2)

dt + ε
(

∂ξ
∂t

dt + ∂ξ
∂x

dx
)

+ O(ε2)

=
ẍ + ε

(
∂η[1]

∂t
+ ∂η[1]

∂x
ẋ + ∂η[1]

∂ẋ
ẍ
)

+ O(ε2)

1 + ε
(

∂ξ
∂t

1 + ∂ξ
∂x

ẋ
)

+ O(ε2)

= ẍ + η[2](t, x, ẋ, ẍ)ε + O(ε2) ,

where we have defined the functions

η[1](t, x, ẋ) =
∂η

∂t
+

(
∂η

∂x
− ∂ξ

∂t

)
ẋ− ∂ξ

∂x
ẋ2 ,

η[2](t, x, ẋ, ẍ) =
∂2η

∂t2
+

(
2

∂2η

∂t∂x
− ∂2ξ

∂t2

)
ẋ +

(
∂2η

∂x2
− 2

∂2ξ

∂t∂x

)
ẋ2 − ∂2ξ

∂x2
ẋ3
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+

(
∂η

∂x
− 2

∂ξ

∂t
− 3

∂ξ

∂x
ẋ

)
ẍ .

Using the former expressions we obtain the next Taylor expansion near ε = 0.

w(t̄, x̄, x̄′) = w(t + εξ(t, x) + O(ε2), x + εη(t, x) + O(ε2), ẋ + η[1](t, x, ẋ)ε + O(ε2))

= w(t, x, ẋ) + ε

(
∂w

∂t
ξ +

∂w

∂x
η +

∂w

∂ẋ
η[1]

)
+ O(ε2) .

Finally, substituting these formulas into (1.11) and recalling (1.10), we ob-
tain equating the coefficients of ε that η[2] = ∂w

∂t
ξ+∂w

∂x
η+∂w

∂ẋ
η[1]. This condition

is called the determining equations for Lie point symmetries of (1.10) and
can be rewritten (see for instance the books [9, 38, 39, 51, 57]) in compact
form as

Y [2](ẍ− w(t, x, ẋ)) = 0 when ẍ = w(t, x, ẋ) , (1.13)

where Y [2] = Y + η[1](t, x, ẋ)∂ẋ + η[2](t, x, ẋ, ẍ)∂ẍ is the so–called second pro-
longation of the infinitesimal generator Y and η[1](t, x, ẋ) = Dtη − ẋDtξ,
η[2](t, x, ẋ, ẍ) = Dtη

[1]− ẍDtξ where Dt = ∂t + ẋ∂x + ẍ∂ẋ is the operator total
derivative with respect to t.

On the contrary, the expanded expression of the determining equations is
given by

∂2η

∂t2
+

(
2

∂2η

∂t∂x
− ∂2ξ

∂t2

)
ẋ +

(
∂2η

∂x2
− 2

∂2ξ

∂t∂x

)
ẋ2 − ∂2ξ

∂x2
ẋ3 = (1.14)

−
(

∂η

∂x
− 2

∂ξ

∂t
− 3

∂ξ

∂x
ẋ

)
w + ξ

∂w

∂t
+ η

∂w

∂x
+

[
∂η

∂t
+

(
∂η

∂x
− ∂ξ

∂t

)
ẋ− ∂ξ

∂x
ẋ2

]
∂w

∂ẋ
.

Although (1.14) looks complicated, in most cases it is easily solved be-
cause both ξ and η are independent of ẋ. For instance, when w(t, x, ẋ) is a
polynomial in ẋ, the determining equation is usually solved splitting into a
system of partial differential equations by equating powers of ẋ.

In the particular case that (1.10) is autonomous, that is, w(x, ẋ) does not
depend explicitly on the time t, it always admits the generator Y = ∂t of a
Lie point symmetry.

Let Lr be the set of all the infinitesimal generators of 1–parameter Lie
group of point symmetries of a given differential equation (1.10). Then,
Y = ξ(t, x)∂t + η(t, x)∂x ∈ Lr if and only if (ξ(t, x), η(t, x)) is a pair of
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functions satisfying the determining equations (1.14). Since the determin-
ing equations (1.14) are linear with respect to ξ and η, it follows that if
Yi ∈ Lr for i = 1, 2, then the linear combination α1Y1 + α2Y2 ∈ Lr for all
αi ∈ R. Therefore, Lr is a real vector space. In the following we denote the
dimension of Lr by r = dimLr. We observe that Lr is finite dimensional
because the dimension r is just the number of arbitrary constants that ap-
pear in the general solution of the determining equations (1.14). The order
of a differential equation places restrictions on the possible values of r. For
example (see [38, 57]), for second order differential equation like (1.10), one
has r ∈ {0, 1, 2, 3, 8}. Additionally, r = 8 if and only if (1.10) is linear or
linearizable by a point transformation (t, x) 7→ (t̄(t, x), x̄(t, x)) defined in cer-
tain domain.

Given Y1,Y2 ∈ Lr, we define its Lie bracket or commutator in the usual
way [Y1,Y2] = Y1Y2 − Y2Y1. It is easy to see that, the Lie bracket is in-
dependent of the coordinate system. Moreover, one can easily prove that if
[Y1,Y2] = Z, then [Y [2]

1 ,Y [2]
2 ] = Z [2].

There is a new characterization of the symmetry condition (1.14) that
leads to the following important result.

Theorem 1.18 Given Y1,Y2 ∈ Lr, then [Y1,Y2] ∈ Lr.

The proof of Theorem 1.18 is as follows. Given Y1,Y2 ∈ Lr, equation (1.14)

must be satisfied, that is, Y [2]
i (ẍ − w(t, x, ẋ)) = 0 when ẍ = w(t, x, ẋ). It

is easy to see that Y [2]
i (ẍ − w(t, x, ẋ)) = η

[2]
i (t, x, ẋ, ẍ) − Y [2]

i (w(t, x, ẋ)). In

addition, η
[2]
i is linear in ẍ, whereas w, and thus, Y [2]

i (w), is independent of

ẍ. This means that (1.14) is satisfied if and only if Y [2]
i (ẍ − w(t, x, ẋ)) =

λi(ẍ − w(t, x, ẋ)), with λi = λi(t, x, ẋ) = ∂η
[2]
i /∂ẍ. Therefore if we define Z

as the Lie bracket [Y1,Y2] = Z, we get

Z [2](ẍ− w) = [Y [2]
1 ,Y [2]

2 ](ẍ− w) = Y [2]
1 (λ2(ẍ− w))− Y [2]

2 (λ1(ẍ− w))

= (Y [2]
1 λ2 − Y [2]

2 λ1)(ẍ− w) .

Hence, Z [2](ẍ − w) = 0 when ẍ − w = 0, and therefore Z ∈ Lr proving
Theorem 1.18.

Since Theorem 1.18 means that Lr is closed under the commutator op-
eration, it follows that Lr is not only a vector space; it is a real Lie algebra.
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In short, denoting by {Y1, . . . ,Yr} a basis of Lr, we will have [Yi,Yj] =∑r
k=1 ck

ijYk where the constants ck
ij ∈ R are called the structure constants of

the Lie algebra Lr. In particular, if all the structure constants are zero then
Lr is called Abelian.

Using Lie brackets we can write a different characterization of the symme-
try condition (1.14) as follows. First, we associate to equation (1.10) the vec-
tor field X = ∂t+ẋ∂x+w(t, x, ẋ)∂ẋ. Then, for any Yi = ξi(t, x)∂t+ηi(t, x) ∂x ∈
Lr, easily one can check that [X ,Y [1]

i ] = µi(t, x, ẋ)X where µi(t, x, ẋ) = X ξi

and Y [1]
i = Yi + η

[1]
i (t, x, ẋ)∂ẋ is the first prolongation of Y .

Sometimes it is difficult to know the maximal Lie point symmetry algebra
Lr with maximal r for a given differential equation (1.10). Anyway, perhaps
we can find a special solution Y = ξ(t, x)∂t + η(t, x) ∂x of the determining
equations (1.14). Even in this case, one can perform different approaches to
simplify or integrate (1.10). For example one can make a reduction of the
order of (1.10) or even to do a stepwise integration of (1.10). This systematic
method is explained in all the text books on Lie symmetries.

1.8 Reversibility in dynamical systems

Reversibility is one of the fundamental symmetries discussed in natural sci-
ences. Consequently, it arises in many physically motivated dynamical sys-
tems. A very good survey on this subject is [44].

The conventional notion of reversibility relates to observations of phys-
ical phenomena. A simple example is given by the classical ideal pendu-
lum without friction. In the hamiltonian formulation of classical mechan-
ics, the system is described with variables (q, p) ∈ R2n, position and mo-
mentum, whose evolution satisfies the hamiltonian equations of the motion
dq/dt = ∂H/∂p, dp/dt = −∂H/∂q. Then, the reversibility of the system is
directly related to the fact that H(q, p) = H(q,−p). The diffeomorphism
R(q, p) = (q,−p) is called a reversing symmetry for the pendulum. In other
words, the hamiltonian equations of the motion are invariant under the trans-
formation (q, p, t) 7→ (q,−p,−t). This implies that if (q(t), p(t)) is a trajec-
tory in the phase space with initial condition (q(0), p(0)) = (q0, p0) then so
is (q(−t),−p(−t)) with initial condition (q0,−p0). This last solution is just
what we see when we play the above film on the pendulum in reverse time.
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We recall that a pendulum of length ` and mass m in a gravitational constant
field g possesses the hamiltonian H(θ, θ̇) = 1/2m`2θ̇2 + mg`(1 − cos θ) and
therefore H(θ, θ̇) = H(θ,−θ̇).

Devaney in [26] generalizes the concept of reversing symmetry allowing
that any involution can be a reversing transformation. A precise definition of
a planar reversible dynamical system is the following. We say that the smooth
differential system (1.1) defined in an open set U ⊂ R2 is Ck–reversible with
k ∈ {1, 2, . . . ,∞, w} if there is a Ck diffeomorphism R : U → U which is an
involution, that is R ◦ R = Id, and R∗X = −X ◦ R, where X is the vector
field associated to system (1.1). Notice that, if we denote by Φt : U → U the
associated flow of the differential system, then it follows R ◦Φt = Φ−t ◦R for
all t.

Along this dissertation, when system (1.1) be reversible by means of an
involution R, we will say that R is a reversing symmetry for system (1.1). If
X is Cw–reversible, we will also say that X is analytically reversible.

After Devaney’s result, Sevryuk remarked that reversible systems need
not to have an involutory reversing symmetry. If the reversing symmetry is
not required to be an involution, the dynamical system is called weakly re-
versible. Sevryuk and Arnold found that many results for reversible systems
also hold for weakly reversible systems, see [56] and [1]. In this report we only
deal with systems (1.1) having a reversing involutory symmetry whose ac-
tion is such that the fixed points manifold Fix(R) = { (x, y) ∈ R2 | R(x, y) =
(x, y)} is assumed to be of dimension 1.

The first examples of reversible systems were given by Poincaré, see
[53]. Systems which are analytically reversible for the involution R0(x, y) =
(−x, y) are called time–reversible systems. Notice that system (1.1) is time–
reversible if and only if P is even and Q odd in x. Not every involution
has such a simple form as in the example above. However, it is well known
by Montgomery–Bochner Theorem in [49] that any smooth involution R is
C∞–conjugated to R0 = (−x, y).

One of the most important topics when one deals with reversible systems
is looking for periodic orbits. A set which is invariant under the action of
an involution R is called symmetric with respect to R. Thus, we say that
a periodic orbit γ of a dynamical system is a symmetric periodic orbit with
respect to R when the orbit is setwise invariant under R. If X is a reversible
vector field and u(t) is a solution of X , then R(u(−t)) is also a solution of
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the system. This fact implies that if an orbit of a reversible system meets
Fix(R) a two distinct points then it is a periodic orbit and symmetric respect
to R.

Birkhoff in 1915 described the use of reversibility to find periodic orbits
in his study of the restricted three–body problem. In 1958 Devogelaere de-
scribed a method for searching symmetric periodic orbits of reversible systems
by computer, see [25].

A particular property of reversible systems, is that their symmetric pe-
riodic orbits are typically not isolated. Periodic orbits in reversible systems
generically arise in continuous families. Taking this into account and the
fact that the reversibility seems to imply certain geometric symmetries, sev-
eral authors have tried to establish the relation between reversibility and the
center problem.

The following condition due to Poincaré assures us that the origin of
system (1.9) is a center.

Theorem 1.19 If the vector field X associated to system (1.9) is symmetric
respect to the x–axis, then, the origin is a center.

The above condition means that system (1.9) is invariant respect to the
change (x, y, t) 7→ (x,−y,−t). In other words, if the vector field X of system
(1.9) with λ = 0 is an analytically reversible vector field satisfying p(x, y) =
−p(x,−y) and q(x, y) = q(x,−y), it has a center at the origin.

Recalling the local normal form of system (1.9) having a center at the
origin given in Theorem 1.9, that is u̇ = −v[1 + Ψ(u2 + v2)], v̇ = u[1 +
Ψ(u2 + v2)], with Ψ an analytic function near the origin and Ψ(0) = 0, it is
clear that any analytic system having a nondegenerate center at the origin
is time–reversible in suitable coordinates. Then, the original system (1.9) is
reversible with respect to the involution R = φ−1◦R0◦φ, where φ(x, y) is the
near–identity analytic change of variables transforming system (1.9) into the
normal form and R0(u, v) = (−u, v). This assertion is also stated by Teixeira
and Yang in [60]. Thus, we have the following result.

Theorem 1.20 System (1.9) has a center at the origin if and only if it is
analytically reversible.

Let us consider again the normal form of system (1.9) having a center
at the origin stated in Theorem 1.9. Performing the change z = u2, the
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normal form becomes, after removing a common factor, ż = −2v , v̇ = 1,
which is a non-singular system at the origin. The curve of non-invertibility
of the map Ψ0(u, v) = (z, v) is the v–axis, which is the set Fix(R0) of fixed
points of R0. Notice that Ψ0 ◦ R0 = Ψ0. This means that the pull–back
induced by Ψ0 creates a symmetric system with respect to the v–axis. More
precisely, the pull–back of Ψ0 discards the left side of the plane (z, v) and
creates a symmetric system by folding the right side into the left side of its
phase portrait. In short, by pulling back a non-singular differential equation
by means of the map Ψ0 we obtain a symmetric differential system which has
a center at the origin. We call Ψ0 the fold mapping realizing the reversibility
in the center.

Once settled the strong relationship between reversibility and the fact of
having a nondegenerate center, the natural problem that arises is to deter-
mine the relation between reversibility and the fact of having a nilpotent
center. We recall that a singular point is called nilpotent when zero is a
double eigenvalue of the Jacobian matrix DX (0, 0) but the system has non
vanishing linear part.

From the duality between vector fields and differential 1–forms, Moussu
proved in [42] the existence of a C∞ normal form possessing the reversing
symmetry R0 = (−x, y) that can be achieved for any analytic nilpotent cen-
ter after a rescaling of time. Generalizing that result, Berthier and Moussu
show in [8] that there exists an analytic change of variables such that sys-
tem (1.1) having a nilpotent center at the origin is transformed, after a
reparametrization of the time, into a system invariant by the change of vari-
ables (x, y, t) 7→ (−x, y,−t).

It is worth to point out that the definitions of reversibility stated in the
works of Moussu and Berthier imply that the foliations defined by the orbits
of X are symmetric respect to the symmetry axis defined by Fix(R0). In
other words, they show that system (1.1) having a nilpotent center at the
origin is orbitally equivalent to a time–reversible system, but observe that
orbital reversibility does not implies reversibility.

Other authors have been proved analogous results recently. Strózyna and
ŻoÃla̧dek have proved in [58] that there exists an analytic change of coordinates
near the origin transforming system (1.1) having a nilpotent singular point
at the origin into a generalized Liénard system ẋ = y, ẏ = a(x) + yb̄(x)
with a(x) = asx

s + · · ·, s ≥ 2, and b̄(0) = 0. In fact, if the nilpotent
singularity is monodromic, then s = 2n− 1 with n ≥ 2 and after the change
x 7→ u with u(x) = (2n

∫ x

0
a(z)dz)1/(2n) = x(a2n−1 + O(x))1/(2n) and the
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reparametrization of the time t 7→ τ with dt/dτ = u2n−1/a(x) = a
−1/(2n)
2n−1 +

O(x) the above normal form leads to ẋ = −y , ẏ = x2n−1 + yb(x), where
b(x) =

∑
j≥β bjx

j. Moreover, if we take into account the center conditions
for the Liénard systems, the center problem for nilpotent singularities reduce
to the study of the parity of the function b(x). The following theorem can
be established.

Theorem 1.21 Suppose that the analytic system (1.1) has a nilpotent center
at the origin. Then, there exists an analytic change of variables and an unity
time rescaling such that it can be written as

ẋ = y, ẏ = −x2n−1 + yb(x) , (1.15)

with n ≥ 2 an integer and b(x) an analytic odd function.

It is straightforward to check that system (1.15) is reversible by means of
the involution R0(x, y) = (−x, y).

To conclude the discussion about the relation between reversibility and
analytic systems having center type singularities, the case that remains to
study is the case of a system having a degenerate center at the origin. The
study of this case is far from to be complete. The main reason is the lack
of a normal form theory developed for degenerate singularities. Neverthe-
less, Cerveau, Berthier and Lins Neto proved in [7] the existence of analytic
systems with a degenerate center without nontrivial reversal symmetry, i.e.,
without an associated local analytic involution.

Chapter 7 is devoted to the topic of the reversal symmetries in dynamical
systems. First, we consider analytic systems having degenerated centers at
the origin and show the existence of a smooth map around the center bringing
the system into a linear reversible system (after rescaling the time). From
the knowledge of the reversing symmetries of the reversible linear system we
obtain reversing symmetries in the degenenerate center. We also deals with
the integrability problem around singularities for some reversible systems.

1.9 Publications

The following is a list of the papers already published in journals with im-
pact factor. All of them are part of this memory. More precisely, the articles
published correspond to the works developed in Chapters 2, 3 and 4 of this
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Chapter 2

Linearization of Isochronous
Centers From Symmetries

Summary. In this chapter we propose a procedure to
get the change of variables that linearizes an analytic
isochronous center from a given commutator. Moreover,
we use this method in order to obtain the linearization
of some isochronous centers of the existent literature.

2.1 Introduction

We consider two-dimensional analytic differential systems defined in a neigh-
borhood U ⊂ R2 of an isolated singular point of non–degenerate center type,
i.e. an isolated singular point with a punctured neighborhood filled of pe-
riodic orbits and with associated eigenvalues different from zero. We can
do a translation of coordinates such that the critical point is located at the
origin. Finally, making a linear change of coordinates (and a time rescaling
if necessary), it is well known that the system can be written in the form

ẋ = −y + f(x, y) , ẏ = x + g(x, y) , (2.1)

with f and g analytic functions in U starting in at least second order terms,
i.e. such that f(0, 0) = g(0, 0) = 0 and ∂xf(0, 0) = ∂yf(0, 0) = ∂xg(0, 0) =
∂yg(0, 0) = 0. The vector field associated to system (2.1) will be denoted by
X = (−y + f(x, y))∂x + (x + g(x, y))∂y.

27
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We are mainly concerned about the isochronicity problem, i.e., to de-
termine whether the periodic orbits around the center have the same pe-
riod (in this case the center is called isochronous center) or not. The main
methods used in order to study isochronous center are classified in two cat-
egories. The first one, due to Sabatini and Villarini in [54] and [61] re-
spectively, says that a center of an analytic system is isochronous if and
only if there exists a commuting analytic vector field of the form Y =
(x + o(x, y))∂x + (y + o(x, y))∂y. Here commuting means [X ,Y ] ≡ 0 where
the bracket used is the Lie bracket. The second one says that a center of an
analytic system is isochronous if and only if there exists an analytic near–
identity change of variables (u, v) = φ(x, y) = (x + o(x, y)), y + o(x, y)) that
linearizes X , i.e. such that φ∗X = −v∂u + u∂v where φ∗ and φ∗ is the push–
forward and pull–back defined by the analytic diffeomorphism φ. This last
approach has been mainly used in [46] and [47]. We emphasize that, even for
concrete isochronous systems, it is not always an easy task to obtain an ex-
plicit commutator or an explicit linearization change. Although, looking for
commutators, a exception is given in [13] for f and g polynomials and system
(2.1) having either a polynomial or a rational first integral. See [35] for the
equivalence between linearizability and commutation in the more general set-
ting of smooth or analytic vector fields in a neighborhood of non–degenerate
singular points in Cn.

Before stating the main result of this chapter we remark that, from a
linearizing change of coordinates φ, it is easy to get a commutator Y of X .
This commutator Y is just the vector field obtained by applying the inverse
change of variables φ−1 to the radial field Ȳ = u∂u + v∂v, that is,

Y = φ∗Ȳ = φ∗(u∂u + v∂v) .

This is because the Lie bracket is coordinates free, i.e., φ∗[X ,Y ] = [φ∗X , φ∗Y ].
As far as we know and as the authors in [27] comment, the inverse process
(that is, to obtain the linearizing change of coordinates φ from a given com-
mutator Y) is an open problem. In this work we study this inverse process
and we present a procedure to obtain the linearization of analytic isochronous
centers from a given commutator, see Theorem 2.3. We conclude the work
showing for the first time the linearization of some isochronous systems stud-
ied in the literature by other authors.
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2.2 Lie symmetries for non–degenerate ana-

lytic centers

The following result, proved in [4] using the machinery of truncated normal
forms, characterizes the centers of (2.1) in terms of Lie symmetries.

Theorem 2.1 System (2.1) has a center at the origin if and only if there
exists an infinitesimal generator of a Lie symmetry Y = (x + · · ·)∂x + (y +
· · ·)∂y analytic in a neighborhood U of the origin such that [X ,Y ] = µ(x, y)X ,
where X is the associated vector field to system (2.1) and µ is an analytic
scalar function in U such that µ(0, 0) = 0.

The set N(X ) of normalizers of X = P (x, y)∂x + Q(x, y)∂y is defined as
the set of all C1(U) infinitesimal generators Y = ξ(x, y)∂x + η(x, y)∂y of the
Lie group of symmetries of X . In other words, N(X ) = {Y : [X ,Y ] = µX}
for some scalar function µ(x, y). The structure of N(X ) is well known (see
for instance [29]): if Ȳ ∈ N(X ), it can be written as Ȳ = HY + gX where
H is a first integral of X or a non–zero constant and g is any C1 function.
Moreover [X , Ȳ ] = µ̄X , with µ̄ = Hµ + X g.

For the isochronous case, there is a restricted version of Theorem 2.1
proved for the first time in [54].

Theorem 2.2 System (2.1) has an isochronous center at the origin if and
only if there exists a vector field Y = (x + · · ·)∂x + (y + · · ·)∂y analytic in a
neighborhood U of the origin such that [X ,Y ] = 0, where X is the associated
vector field to system (2.1).

2.3 The main theorem

In this section we give the main result of this chapter.

Theorem 2.3 Let X = P (x, y)∂x + Q(x, y)∂y = (−y + · · ·)∂x + (x + · · ·)∂y

and Y = ξ(x, y)∂x + η(x, y)∂y = (x + · · ·)∂x + (y + · · ·)∂y be two analytic
vector fields in a neighborhood U of the origin such that [X ,Y ] = 0. Then, a
near–identity change of variables u = x + · · ·, v = y + · · ·, analytic in U that
linearizes X is obtained as follows:

u =

√
f(H)g(I)

1 + g2(I)
, v =

√
f(H)

1 + g2(I)
, (2.2)
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where H and I are first integrals of X and Y, respectively, associated with
the inverse integrating factor X ∧Y and f and g are two functions such that
f(H(x, y)) = x2 + y2 + · · · and g(I(x, y)) = (y + · · ·)/(x + · · ·).

Proof. The existence of the linearizing change of variables (x, y) → (u, v) is
known. The new result is how to obtain the linearizing change of variables
from the knowledge of the commutator Y .

From (2.2) we have that f(H) = u2 +v2 and g(I) = v/u are first integrals
of X and Y respectively, i.e. X f(H) = Yg(I) ≡ 0. It follows

uX (u) + vX (v) ≡ 0 , uY(v)− vY(u) ≡ 0 .

Therefore we have

X (u) = −vΛ , X (v) = uΛ ,Y(u) = uΩ , Y(v) = vΩ , (2.3)

with Λ(x, y) and Ω(x, y) analytic functions in a neighborhood of the origin.
From the above equations we observe that, if we prove that Λ is a non–
vanishing constant then the change (x, y) = (u(x, y), v(x, y)) linearizes the
vector field X .

On the other hand, since [X ,Y ] = 0, in particular we have

XY(u)− YX (u) ≡ 0 , XY(v)− YX (v) ≡ 0 .

Introducing (2.3) in the former relations we get

uX (Ω) + vY(Λ) = 0 , vX (Ω)− uY(Λ) = 0 .

This is a linear homogeneous algebraic system for the unknowns X (Ω) and
Y(Λ) with associated determinant −(u2 +v2) which is different from zero out
of the origin. So the unique solution is the trivial one X (Ω) = Y(Λ) ≡ 0.
From this last equality, Λ is either a constant or a first integral of Y in a
neighborhood of the origin. But, this point is a singular point of Y of type
node and so there are no continuous first integral of Y in that neighborhood
in contradiction with the fact that Λ is analytic. Hence the only possibility
is Λ equal to a constant different from zero because otherwise, from (2.3), u
and v would be analytic first integrals of X which is impossible.
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2.4 Examples

Example 1. Quadratic isochronous centers were classified by Loud [45].
Hence, it is known that the quadratic system

ẋ = −y − 4

3
x2 , ẏ = x

(
1− 16

3
y

)
, (2.4)

has an isochronous center at the origin. Moreover, it is shown (see page 34
of [19]) that the associated vector field X to system (2.4) commutes with
Y1 = 3x(9−24y+32x2)∂x +(3y+4x2)(9−24y+32x2)∂y. Taking Y = Y1/27
we have Y = (x + · · ·)∂x + (y + · · ·)∂y and [X ,Y ] = 0. Then V = X ∧ Y =
(9 + 32x2 − 24y)(9x2 + 16x4 − 24x2y + 9y2) up to multiplicative constants
and H(x, y) and I(x, y) can be computed (and simplified after deleting some
arctan and log functions) to

H(x, y) =
9x2 + 16x4 − 24x2y + 9y2

(9 + 32x2 − 24y)2
, I(x, y) =

−3y + 4x2

3x
.

Since H(x, y) = (x2 + y2)/9 + · · · we take f(H) = 9H. Moreover g(I) = −I
so that

g(I(x, y)) =
y − 4

3
x2

x
.

Finally, from (2.2), we get the linearizing change of coordinates

u =
9x

9 + 32x2 − 24y
, v =

3(3y − 4x2)

9 + 32x2 − 24y
,

according to [19]. We note that this change of variables linearizes both vector
fields X and Y .

The authors of the survey paper [19] have carried out a quite exhaustive
classification of several families of isochronous systems. Also, they give the
linearizing changes and commutators in many cases. In any way, some in-
complete examples exist in their tables. In the following two examples we
obtain the linearizing change that lacks in some of these systems by using
our Theorem 2.3.

Example 2. In Table 10 of [19] the authors present the cubic reversible
system

ẋ = −y(1− x)(1− 2x) , ẏ = x− 2x2 + y2 + 2x3 , (2.5)
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having an isochronous center at the origin. Moreover, they prove that the
associated vector field X to system (2.5) commutes with Y = (1 − x)(x −
2x2 +2y2 +2x3−2xy2)/(1−2x)∂x +y(1−x)(1−4x+6x2 +2y2)/(1−2x)∂y =
(x + · · ·)∂x + (y + · · ·)∂y. Then V = X ∧Y = (1−x)(x2 + y2)(1− 4x + 8x2−
8x3 +4x4 +4y2− 8xy2 +4x2y2)/(−1+2x) is an inverse integrating factor for
both vector fields X and Y . The first integrals H(x, y) and I(x, y) associated
with V of X and Y respectively are then calculated (and simplified after
deleting arctan and arctanh functions). We get

H(x, y) =
1− 4x + 12x2 − 16x3 + 8x4 + 8(−1 + x)2y2

(1− 2x)2
,

I(x, y) =
y

x− 2x2 + 2x3 − 2y2 + 2xy2
.

Since H(x, y) = 1+8(x2+y2)+ · · · we take f(H) = (H−1)/8 = x2+y2+ · · ·.
Moreover g(I) = I so that, taking into account (2.2), we get the linearizing
change of coordinates

u = (x + 2(−x2 + x3 − y2 + xy2))∆(x, y) , v = y∆(x, y) ,

where ∆(x, y) := (x−1)/[(1−2x)
√

(1 + 2x(x− 1))2 + 4(x− 1)2y2]. We note
that this change of variables only linearizes X .

Example 3. The system labeled as H44 in Table 13 of [19] is the following
linear center perturbed by a homogeneous polynomial of fourth degree

ẋ = −y − 4

9
x4 − 20

9
x2y2 , ẏ = x +

40

9
x3y +

16

9
xy3 . (2.6)

The origin is an isochronous center and in [19] is proved that its associated
vector field X commutes with Y1 = f1(x, y)[x(3 + 8x2y)∂x + (3y − 12x4 −
4x2y2)∂y] where f1(x, y) = 9 + 24y(x2 + y2) + 32x2(x2 + y2)2. We define
Y = Y1/27 so that Y = (x + · · ·)∂x + (y + · · ·)∂y and [X ,Y ] = 0. Then
V = X ∧ Y = (x2 + y2)f1(x, y)f2(x, y) up to multiplicative constants is an
inverse integrating factor for both vector fields X and Y . Here f2(x, y) =
9 + 16x6 + 24x2y + 16x4y2. The first integral of X associated with V is
H(x, y) = (x2 +y2)3f−2

1 f2. Hence a first integral good for our purpose is just
f(H) = 32/3H1/3 = x2 + y2 + · · ·. In addition, Y possesses, associated to
V , the first integral I(x, y) = (3y + 4x4 + 4x2y2)/(3x) = (y + · · ·)/(x + · · ·)
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(after simplifying an arctan function). In short, g(I) = I, and due to (2.2),
the change of coordinates

u = 34/3x(f1f2)
−1/3 , v = 31/3[3y + 4x2(x2 + y2)](f1f2)

−1/3 ,

linearizes both X and Y .

The last example comes form the work [28]. In that paper it is proved
that the potential vector field X = −y∂x +V ′(x)∂y has an isochronous center
at the origin for the rational potential function

V (x) =
x2(x− 2)2

(x− 1)2
, (2.7)

and they comment that it is difficult to obtain an explicit commutator and a
linearizing change of coordinates. We will obtain in the next example both
characterizations of isochronicity for such system.

Example 4. Let us consider the potential systems

X = −y∂x + V ′(x)∂y ,

with hamiltonian function of type kinetic plus potential H = y2/2 + V (x)
and V (x) = x2/2 + o(x2) analytic function having a minimum at the ori-
gin. Hence, the origin is a center of X . One can check by straightforward
calculations (this formula appears in [28]) that [X ,Y ] = µX , where

Y =
V (x)

V ′(x)
∂x +

y

2
∂y , µ(x) =

(V ′(x))2 − 2V (x)V ′′(x)

2(V ′(x))2
.

First of all we note that if g(x, y) is a C1 solution of the partial differential
equation X g = −µH, then Y∗ = HY + gX satisfies [X ,Y∗] = 0. Assuming
that V (x) is given by (2.7) one obtains

g(x, y) =
(1− x)yA(x, y)

2(2− 2x + x2)B(x, y)
,

where A(x, y) = 8x2 + y2− 8x3 + 2x4− 2xy2 + x2y2 and B(x, y) = 8− 16x +
16x2 + y2 − 8x3 + 2x4 − 2xy2 + x2y2. Therefore

Y∗ =
A(x, y)C(x, y)

4(x− 1)B(x, y)
∂x +

yA(x, y)(8 + C(x, y))

4(x− 1)2B(x, y)
∂y



34 Linearization of Isochronous Centers From Symmetries

where C(x, y) = −8x + 12x2 + y2 − 8x3 + 2x4 − 2xy2 + x2y2. Since Y∗ =
(xy2/4 + 2x3 + · · ·)∂x + (y3/4 + 2x2y + · · ·)∂y we take

Ȳ =
Y∗
H

=
(x− 1)C(x, y)

2B(x, y)
∂x +

y(8 + C(x, y))
2B(x, y)

∂y =
(x

2
+ · · ·

)
∂x +

(y

2
+ · · ·

)
∂y ,

which also satisfies [X , Ȳ ] = 0 and has a star node at the origin.
Now taking into account that X ∧ Ȳ is an inverse integrating factor of Ȳ

it is easy to obtain for Ȳ the next first integral

I(x, y) =
y(1− x)3

D(x, y)
=

y + · · ·
8x + · · · ,

where D(x, y) = 8x − 12x2 + y2 + 8x3 − 2x4 − 2xy2 + x2y2. Finally, taking
f(H) = 2H = 8x2 + y2 + · · ·, and solving the system 8u2 + v2 = f(H),
v/(8u) = I we obtain that the change of coordinates

u(x, y) =
−D(x, y)

2
√

2(x− 1)
√

B(x, y)
= x+ · · · , v(x, y) =

2
√

2y(x− 1)2

√
B(x, y)

= y+ · · ·

brings X to the linear vector field −v∂u + 8u∂v.



Chapter 3

Linearization of Planar Vector
Fields From Symmetries

Summary. This chapter represents a continuation of
the work begun in chapter 1. We propose a constructive
procedure to get the change of variables that linearizes
a smooth planar vector field on C2 around an elemen-
tary singular point (i.e., a singular point with associated
eigenvalues λ, µ ∈ C satisfying µ 6= 0) or a nilpotent
singular point from a given commutator. Moreover, it
is proved that the near–identity change of variables that
linearizes the vector field X = (x+ · · ·)∂x +(y+ · · ·)∂y is
unique and linearizes simultaneously all the centralizers
of X .

3.1 Introduction

We study the classical problem of linearizing a nonlinear smooth planar vec-
tor field X around a singular point by means of a local C∞ transformation.
This problem goes back to Poincaré in the more general context of Poincaré–
Dulac normal forms. Anyway, if the linearizing transformation is not polyno-
mial, then Poincaré procedure (a step by step construction) is not useful to
get the change of variables because involves infinite many steps. Moreover,
the presence of resonances in the linear part of the vector field is another
problem in the algorithm. In any case, this normal form procedure requires
extensive computations usually. Thus we will look for a different approach

35



36 Linearization of Planar Vector Fields From Symmetries

based on Lie symmetries of X .
We consider two-dimensional autonomous smooth differential systems de-

fined in an open set U ⊂ C2 having either an elementary singular point (i.e.,
a singular point with associated eigenvalues λ, µ ∈ C satisfying µ 6= 0) or
a nilpotent singular point (that is, a singular point with both eigenvalues
zero but with non–vanishing associated linear part). We can do a translation
of coordinates such that the singular point is located at the origin and the
system has the form

(
ẋ
ẏ

)
= A

(
x
y

)
+

(
f(x, y)
g(x, y)

)
, (3.1)

with f and g analytic functions in U starting in at least second order terms,
i.e. such that f(0, 0) = g(0, 0) = 0 and ∂xf(0, 0) = ∂yf(0, 0) = ∂xg(0, 0) =
∂yg(0, 0) = 0. Finally, making a linear change of coordinates, the system can
be written with its linear part in Jordan form, that is, we can suppose that
A is of the form:

(i) A =

(
λ 0
0 µ

)
, (ii) A =

(
λ 1
0 λ

)
. (3.2)

Thus, A is called semisimple if it adopts the above form (i) and is the sum
of a semisimple and a nilpotent matrix in case (ii).

We shall use the following notation in this work. XA will be the linear
vector field with associated matrix A = (aij) ∈M2(C), that is,

XA = (a11x + a12y)∂x + (a21x + a22y)∂y .

Therefore, a smooth vector field X in C2 with linear part XA is expressed as
X = XA + · · ·, where the dots denote a smooth vector field without linear
terms.

We are mainly concerned about the local linearization problem, i.e., to
determine whether there exists a neighborhood U ⊂ U of the origin and a
smooth near–identity change of variables φ : U → C2 of the form φ(x, y) =
(u(x, y), v(x, y)) = (x + o(x, y)), y + o(x, y)) that linearizes the associated
vector field X = XA + · · · of system (3.1) in U . This means that φ∗X = XA

where φ∗ and φ∗ is the push–forward and pull–back defined by the smooth
diffeomorphism φ. In the orbital linearization case one has φ∗X = hXA,
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where h(x, y) = 1+ · · · is a smooth scalar function defined on U . In [20], suf-
ficient conditions to construct linearizing changes of variables for polynomial
vector fields based on generalizations of the standard Darboux integrability
theory are given.

It is known (see [35]) that, the existence of such a φ is equivalent to the
existence of a smooth commuting vector field of the form Y = (x+o(x, y))∂x+
(y + o(x, y))∂y. Here commuting means [X ,Y ] ≡ 0 where the bracket used is
the Lie bracket.

Before stating the main results of this paper we want to comment that,
from a linearizing change of coordinates φ, it is easy to get a commutator
Y of X . In fact, it is just the vector field obtained by applying the inverse
change of variables φ−1 to the radial field Ȳ = u∂u + v∂v, that is, Y = φ∗Ȳ .
This is because the Lie bracket is a coordinates free geometrical object, i.e.,
φ∗[X ,Y ] = [φ∗X , φ∗Y ]. As far as we know, the inverse process (that is, to
obtain the linearizing change of coordinates φ from a given commutator Y)
is an open problem, see [27]. In this work we study this inverse process and
we present a method to obtain the linearization change from a given com-
mutator, see Theorem 3.6, 3.7, 3.11. Therefore we extend to any linearizable
singular point of smooth vector fields in C2 the ideas introduced in Chapter
2 for the isochronous center case of analytic vector fields in R2. We conclude
the work showing the linearization of some extracted examples of the existent
literature.

3.2 Structure of centralizers in planar vector

fields

Let U ⊂ C2 be an open set. The set C(X ) of (nontrivial) centralizers of
C1(U) planar vector fields X = P (x, y)∂x + Q(x, y)∂y is defined as the set
of all C1(U) infinitesimal generators Y = ξ(x, y)∂x + η(x, y)∂y of commuting
(nontrivial) Lie symmetries of X . Here nontrivial means that X and Y are
transversal vector fields, i.e., X ∧ Y := Pη − Qξ 6≡ 0. In short, C(X ) =
{Y ∈ C1(U) : [X ,Y ] = 0, X ∧ Y 6≡ 0}. In [13] it is described an algorithmic
method to get an infinitesimal generator Y provided that X has a rational
first integral or integrating factor. The set C(X ) has the structure of a
module over the ring of first integrals of X , see [23, 62]. We prove this fact
again for sake of completeness.
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Proposition 3.1 Y , Ȳ ∈ C(X ) if and only if there are two C1 scalar func-
tions f 6≡ 0 and g such that Ȳ = f(H)Y + g(H)X where H is a first integral
of X .

Proof. Let us see that [X , Ȳ ] = 0. In short,

[X , f(H)Y + g(H)X ] = X (f(H))Y + f(H)[X ,Y ] + X (g(H))X . (3.3)

Using the fact that f(H) and g(H) are first integrals of X and [X ,Y ] = 0,
we have that (3.3) vanishes, hence, Ȳ ∈ C(X ). To prove the converse, we
note that since X and Y are transversal, then there are two C1 functions α
and β such that Ȳ = αY + βX . Due to the fact that we want [X , Ȳ ] = 0,
we see that α must be either a first integral of X or a non-zero constant (to
preserve transversality) and β must be a first integral or a constant.

3.3 Linearizing changes of coordinates from

commutators

The following theorem is proved in [35] and it gives the equivalence between
the linearizability of a smooth vector field and the fact of having a smooth
commuting vector field of the form Y = YI + · · · where I ∈ M2(C) is the
identity matrix. The version presented here is a generalization for any type
of singular point, which has, in fact, the same proof of the theorem proved
in [35].

Theorem 3.2 Consider the smooth (resp. analytic) vector field X = XA +
· · · on C2 defined in a neighborhood of the origin with A 6= 0. Then, X is
linearizable if, and only if, there exists a smooth (resp. analytic) vector field
of the form Y = YI + · · ·, such that [X ,Y ] ≡ 0.

Remark 3.3 It is well known that, see for instance [51, 62], if Y = ξ(x, y)∂x+
η(x, y)∂y is a normalizer of X = P (x, y)∂x+Q(x, y)∂y, i.e., [X ,Y ] = νX , then
the wedge product X ∧ Y := Pη −Qξ is an inverse integrating factor of X .
So, in the particular case of commutation (ν ≡ 0), we get that X ∧ Y is an
inverse integrating factor of both X and Y . This will be a key point in the
proof of our main results.

The next two propositions are preliminary results that we will need in
order to prove the main results of this paper.
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Proposition 3.4 Let X = XA + · · · be a smooth vector field in C2 with non–
vanishing linear part XA. Then, X cannot have a smooth first integral H
in a neighborhood of the origin with non–vanishing linear part unless A is
either semisimple with eigenvalues λ 6= µ = 0 or nilpotent, in which cases,
H(x, y) = y + · · · up to multiplicative constants.

Proof. Let X = XA + · · · be a smooth planar vector field with linear part
XA associated to the non–vanishing matrix A ∈ M2(C). Let H(x, y) =∑

i≥1 Hi(x, y), with Hi homogeneous polynomial of degree i, be a smooth
first integral of X satisfying H1 6≡ 0.

First, assume that A is semisimple and then has been transformed to the
case (i) of equation (3.2), that is, X = (λx+ · · ·)∂x +(µy + · · ·)∂y with λ and
µ not both zero. Imposing XH ≡ 0 we have

λx
∂H1

∂x
+ µy

∂H1

∂y
= 0 . (3.4)

Applying Euler Theorem to the homogeneous polynomial H1(x, y) we have

x
∂H1

∂x
+ y

∂H1

∂y
= H1 . (3.5)

If λ 6= µ, from the above two relations we get

∂H1

∂x
=

µH1

(µ− λ)x
,

∂H1

∂y
=

−λH1

(µ− λ)y
,

which implies, if λµ 6= 0, that both x and y must divide H1 in contradiction
with the fact that H1 is a non–vanishing homogeneous polynomial of degree
1. Otherwise, when λ 6= µ = 0 we obtain H1(x, y) = cy with a constant
c ∈ C. Of course, if λ = µ 6= 0, then, from (3.4) and (3.5) we get H1 ≡ 0.

Finally, assume that A is not semisimple. Thus, in certain linear coordi-
nates, A has the form (ii) of equation (3.2), that is, X = (λx + y + · · ·)∂x +
(λy + · · ·)∂y with λ ∈ C. Imposing again XH ≡ 0, the first terms must
satisfy

(λx + y)
∂H1

∂x
+ λy

∂H1

∂y
= 0 . (3.6)

Solving (3.5) and (3.6) leads to

∂H1

∂x
=
−λH1

y
,

∂H1

∂y
=

(λx + y)H1

y2
.
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Hence, these restrictions cannot be satisfied by the homogeneous linear poly-
nomial H1 except when λ = 0 in which case H1(x, y) = cy with a constant
c ∈ C and A is nilpotent proving the proposition.

Proposition 3.5 Let X = XA + · · · be a smooth vector field in C2 with
A semisimple having eigenvalues satisfying either λ = µ 6= 0 or 0 6= λ 6=
µ 6= 0 with λ/µ 6∈ Q−. Then, X cannot have a smooth first integral in a
neighborhood of the origin.

Proof. Without loss of generality we have X = (λx + · · ·)∂x + (µy + · · ·)∂y.
Let H(x, y) =

∑
i≥1 Hi(x, y), with Hi homogeneous polynomial of degree i,

be a smooth first integral of X . We shall prove the proposition showing that
Hi ≡ 0 for all i ≥ 1 by induction over i.

Under the assumptions over the eigenvalues λ and µ, we can repeat verba-
tim the beginning of the proof of Proposition 3.4, that is, imposing XH ≡ 0
and using Euler Theorem for H1, to get H1 ≡ 0. Now, assume that Hi ≡ 0
for i = 1, . . . , m− 1. We are going to show that Hm ≡ 0 finishing the proof.
Since now H(x, y) =

∑
i≥m Hi(x, y), imposing XH ≡ 0 and using Euler

Theorem for Hm we obtain

λx
∂Hm

∂x
+ µy

∂Hm

∂y
= 0 , (3.7)

and

x
∂Hm

∂x
+ y

∂Hm

∂y
= mHm . (3.8)

If λ = µ 6= 0, these equations are compatible if and only if Hm ≡ 0. So we
continue solving them in the case 0 6= λ 6= µ 6= 0 with λ/µ 6∈ Q− getting

∂Hm

∂x
=

aHm

x
,

∂Hm

∂y
=

bHm

y
,

where

a =
−mµ

λ− µ
, b =

mλ

λ− µ
.

These partial differential equations have as general solutions

Hm(x, y) = xaf(y) , Hm(x, y) = ybg(x) ,
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respectively, with f and g arbitrary functions. Of course, since Hm must
be an homogeneous polynomial of degree m, the only possibility is either
f = g ≡ 0 and so Hm ≡ 0 or

Hm(x, y) = cxayb , with c ∈ R , a, b ∈ Z+ and a + b = m .

The conditions a, b ∈ Z+ give the contradiction

λ

µ
=

a−m

a
=

b

b−m
∈ Q− .

Therefore, the only possibility is the first one Hm ≡ 0 and, by induction,
H ≡ 0 finishing the proof.

The next two theorems are part of our main results. They give a method
to get linearizing changes of variables when the linear part of the vector field
is either semisimple with different associated eigenvalues or is the sum of a
semisimple and a nilpotent part.

Theorem 3.6 Let X = (λx + · · ·)∂x + (µy + · · ·)∂y with λ 6= µ and Y =
(x+ · · ·)∂x +(y+ · · ·)∂y be two smooth vector fields in a neighborhood U ⊂ C2

of the origin such that [X ,Y ] ≡ 0. Then, a smooth near–identity change of
variables u = x + · · ·, v = y + · · ·, that linearizes X and orbitally linearizes
the vector field Y is obtained as follows:

u = g(I)

(
f(H)

gµ(I)

) 1
µ−λ

, v =

(
f(H)

gµ(I)

) 1
µ−λ

, (3.9)

where H and I are first integrals of X and Y, respectively, associated with
the inverse integrating factor X ∧Y and f and g are two functions such that
f(H(x, y)) = (x + · · ·)µ/(y + · · ·)λ and g(I(x, y)) = (x + · · ·)/(y + · · ·).

Proof. The existence of the linearizing change of variables (x, y) 7→ (u, v) is
known from Theorem 3.2. The new result is how to obtain the linearizing
change of variables from the knowledge of the commutator Y . From (3.9)
we have that f(H) = uµ/vλ and g(I) = u/v are first integrals of X and Y
respectively, i.e. X f(H) = Yg(I) ≡ 0. It follows

µvX (u)− λuX (v) ≡ 0 , vY(u)− uY(v) ≡ 0 .
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Therefore we have

X (u) = λuΛ , X (v) = µvΛ ,Y(u) = uΩ , Y(v) = vΩ , (3.10)

with Λ(x, y) and Ω(x, y) smooth functions in a neighborhood of the origin.
From the above equations we observe that, if we prove that Λ is a non–
vanishing constant then the change (x, y) 7→ (u(x, y), v(x, y)) linearizes the
vector field X .

On the other hand, since [X ,Y ] ≡ 0, in particular we have

XY(u)− YX (u) ≡ 0 , XY(v)− YX (v) ≡ 0 .

Introducing (3.10) in the former relations we get

uX (Ω)− λuY(Λ) = 0 , vX (Ω)− µvY(Λ) = 0 .

This is a linear homogeneous algebraic system for the unknowns X (Ω) and
Y(Λ) with associated determinant (λ − µ)uv which, for λ 6= µ, is different
from zero out of the set Σ = {(u, v) ∈ C2 : uv = 0}. So the unique solution
in C2\Σ is the trivial one X (Ω) = Y(Λ) ≡ 0. From this last equality, Λ is
either a constant or a smooth first integral of Y in a neighborhood of the
origin. But, the second option is not possible due to Proposition 3.5. Hence
the only possibility is Λ equal to a constant. Moreover, that constant is
different from zero because otherwise, from (3.10), u and v would be smooth
first integrals of X . This is impossible from Proposition 3.4 because: (i) if
λµ 6= 0 then there is no smooth first integral of X around the origin; (ii) if
µ = 0 then there is a unique (up to constants) smooth first integral of X
around the origin which is just v(x, y) = y + · · ·; (iii) if λ = 0 then this case
reduce to the previous one interchanging the role of the variables x and y.
Hence, the change (x, y) 7→ (u(x, y), v(x, y)) linearizes the vector field X and
orbitally linearizes the vector field Y because Ω(0, 0) 6= 0. This is due to the
fact that, from Y(u) = uΩ, that is, (x+ · · ·)∂x(x+ · · ·)+(y+ · · ·)∂y(x+ · · ·) =
(x + · · ·)(Ω(0, 0) + · · ·), at first order we get Ω(0, 0) = 1.

Theorem 3.7 Let λ ∈ C and X = (λx + y + · · ·)∂x + (λy + · · ·)∂y and
Y = (x + · · ·)∂x + (y + · · ·)∂y be two smooth vector fields in a neighborhood
U ⊂ C2 of the origin such that [X ,Y ] ≡ 0. Then, a smooth near–identity
change of variables u = x + · · ·, v = y + · · ·, that linearizes X and orbitally
linearizes the vector field Y is obtained as follows:

u = g(I)f(H) exp[λg(I)] , v = f(H) exp[λg(I)] , (3.11)
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where H and I are first integrals of X and Y, respectively, associated with
the inverse integrating factor X ∧Y and f and g are two functions such that
f(H(x, y)) = (y+ · · ·) exp [−λ(x + · · ·)/(y + · · ·)], g(I(x, y)) = (x+ · · ·)/(y+
· · ·).

Proof. In order to proof the theorem, we will use similar arguments to the
followed in Theorem 3.6. So, the sketch of the proof is as follows. From (3.11)
we have that f(H) = v exp(−uλ/v) and g(I) = u/v are first integrals of X
and Y respectively. Using the fact that X f(H) = Yg(I) ≡ 0 and [X ,Y ] ≡ 0
we get

X (u) = Λ(v + λu) , X (v) = λvΛ ,Y(u) = uΩ , Y(v) = vΩ , (3.12)

On the other hand, taking into account [X ,Y ](u) = [X ,Y ](v) ≡ 0 and
(3.12) we obtain

vX (Ω)− λvY(Λ) = 0 , uX (Ω)− (v + λu)Y(Λ) = 0 .

for some smooth functions Ω(x, y) and Λ(x, y) defined in a neighborhood of
the origin. This is a linear homogeneous algebraic system for the unknowns
X (Ω) and Y(Λ) with associated determinant −v2. So the unique solution
in C2\{(u, v) ∈ C2 : v = 0} is the trivial one X (Ω) = Y(Λ) ≡ 0. From
this last equality, Λ is either a constant or a smooth first integral of Y in a
neighborhood of the origin. The second option cannot occur because Propo-
sition 3.5. Finally, we note that Λ 6= 0 because, otherwise, u and v would be
smooth first integrals of X which is impossible from Proposition 3.4. Hence,
repeating verbatim the last paragraph of the proof of Theorem 3.6 we have
that the change (x, y) 7→ (u(x, y), v(x, y)) linearizes the vector field X and
orbitally linearizes the vector field Y .

Remark 3.8 In the nilpotent case (λ = 0 in Theorem 3.7), it is clear that a
necessary condition for linearizability of the origin of X = (y+· · ·)∂x+(· · ·)∂y

is that the point be a non–isolated singularity of X .

3.4 Some properties of the generator of dila-

tions

Proposition 3.9 The following statements hold:
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(i) [XA,XB] = 0 if and only if [A,B] = AB − BA = 0 for any pair A,B ∈
M2(C).

(ii) The generator of dilations XI = x∂x + y∂y satisfies [XI ,X ] = 0 with X
a smooth vector field if and only if X = XA for some A ∈M2(C).

(iii) Let X = XI + · · · be a smooth vector field where the dots denote smooth
vector fields without linear terms. Then, there exists a smooth vector
field Y = YA + · · · for any A ∈M2(C) such that [X ,Y ] = 0. Moreover,
if in addition A = I then X = Y.

Proof. Statement (i) is an direct consequence of the Lie bracket property
[XA,XB] = X[B,A].

As corollary of statement (i) we get [XI ,XA] = 0 for any A ∈ M2(C).
Hence, in order to prove statement (ii) we only need to show that [XI ,X ] 6= 0
for any nonlinear vector field X = XA + · · ·. Let Vi the set of homogeneous
vector fields vector fields of degree i. Since X is smooth, it can be expressed
like X = XA +

∑
i≥2Xi where Xi ∈ Vi. Using now the bilinearity of the Lie

bracket we have
[XI ,X ] =

∑
i≥2

[XI ,Xi] ,

where Xi = Pi(x, y)∂x + Qi(x, y)∂y ∈ Vi. Notice that XI ∈ V1 and, since
[Vi, Vj] ⊂ Vi+j−1, it is clear that [XI ,X ] = 0 if and only if [XI ,Xi] = 0 for all
i ≥ 2. In short, we have

[XI ,Xi] =

(
x
∂Pi

∂x
+ y

∂Pi

∂y
− Pi

)
∂x +

(
x
∂Qi

∂x
+ y

∂Qi

∂y
−Qi

)
∂y

Since Pi and Qi are homogeneous polynomials of degree i, they must satisfy
the Euler Theorem for homogeneous functions

x
∂Pi

∂x
+ y

∂Pi

∂y
= iPi , x

∂Qi

∂x
+ y

∂Qi

∂y
= iQi .

Therefore
[XI ,Xi] = (i− 1)Pi(x, y)∂x + (i− 1)Qi(x, y)∂y .

We conclude that [XI ,Xi] = 0 only for the case i = 1 proving thus statement
(ii).
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The proof of statement (iii) is based on the well–known fact in normal
forms theory that smooth vector fields of the form X = XI + · · · are lo-
cally smoothly linearizable. This means that, in a neighborhood of the
origin, there exists a smooth near–identity change of variables φ(x, y) =
(u(x, y), v(x, y)) = (x+o(x, y)), y+o(x, y)) such that φ∗X = XI = u∂u+v∂v.
Therefore, from statement (ii), [XI ,YA] = 0 for any A ∈ M2(C). Since φ
is a near–identity map, it preserves the linear part of vector fields. Hence,
undoing the change of variables we prove the existence of a smooth vector
field Y = φ∗YA = YA + · · · such that [X ,Y ] = 0.

Of course, when A = I we get X = Y and the proposition is proved.

In Theorem 3.6 we have studied the local linearization of a smooth vector
field X = (λx + · · ·)∂x + (µy + · · ·)∂y in a neighborhood of the origin with
λ 6= µ. Let us see what is about the case λ = µ. So, we consider now smooth
vector fields of the form X = (λx+ · · ·)∂x +(λy+ · · ·)∂y with λ 6= 0. Without
loss of generality we consider the case λ = 1, that is, X = XI + · · ·. Taking
statement (iii) of Proposition 3.9 into account, from each matrix A, there is
a smooth vector field Y = YA + · · · satisfying the commutation [X ,Y ] = 0.
The following proposition shows how we can always obtain Y with a concrete
associated matrix A to its linear part.

Proposition 3.10 Let A = (aij) ∈ M2(C) with A 6= βI for any β ∈ C
and X = XI + · · · and Y = YA + · · · be two smooth vector fields satisfying
[X ,Y ] = 0. Then, we can construct a smooth vector field Ȳ = (λx+ · · ·)∂x +
(µy + · · ·)∂y such that [X , Ȳ ] = 0 as follows: Ȳ = f(H)Y + g(H)X where
H = (x + · · ·)/(y + · · ·) is a first integral of X and

f(H) =
H(µ− λ)

a21H2 + (a22 − a11)H − a12

,

g(H) =
a21λH2 + (a22λ− a11µ)H − a12µ

a21H2 + (a22 − a11)H − a12

.

Proof. First of all we observe that, since A 6= βI for any β ∈ C, it follows
that does not exist a smooth scalar function α(x, y) such that Y = αX .
Hence X ∧ Y 6≡ 0 and, since [X ,Y ] = 0 by hypothesis, Y ∈ C(X ). So, from
Proposition 3.1, any other Ȳ ∈ C(X ) can be written as

Ȳ = f(H)Y + g(H)X (3.13)
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where H is a first integral of X . Since X = XI + · · · is locally linearizable
around the origin by means of a change φ(x, y) = (u(x, y), v(x, y)) = (x +
· · · , y + · · ·) we have φ∗X = XI such that [XI , φ∗Y ] = 0 and [XI , φ∗Ȳ ] = 0.
Hence, from statement (ii) of Proposition 3.9, φ∗Y and φ∗Ȳ are also linear
vector fields. In short, φ∗Y = YA. Moreover, imposing Ȳ = (λx + · · ·)∂x +
(µy + · · ·)∂y, we get φ∗Ȳ = λu∂u +µv∂v. Applying the change of coordinates
φ in both members of the equality (3.13) leads

λu∂u + µv∂v = f(H̄)((a11u + a12v)∂u + (a21u + a22v)∂v) + g(H̄)(u∂u + v∂v)

where H̄(u, v) = H ◦ φ−1 is a first integral of u∂u + v∂v. From the former
equation we have

f(H̄) =
uv(µ− λ)

a21u2 + (a22 − a11)uv − a12v2
, g(H̄) =

a21λu2 + (a22λ− a11µ)uv − a12µv2

a21u2 + (a22 − a11)uv − a12v2
.

If we take H̄ = u/v, then

f(H̄) =
H̄(µ− λ)

a21H̄2 + (a22 − a11)H̄ − a12
, g(H̄) =

a21λH̄2 + (a22λ− a11µ)H̄ − a12µ

a21H̄2 + (a22 − a11)H̄ − a12
.

Undoing the change of variables, the proposition is proved.

In the following theorem to be useful to our purposes, the associated
matrix A to Y must be such that A 6= βI and Y cannot possess a smooth
first integral in a neighborhood of the origin. According with Proposition
3.5, we will take A semisimple with eigenvalues 0 6= λ 6= µ 6= 0 such that
λ/µ 6∈ Q−.

Theorem 3.11 Let X = (x+· · ·)∂x+(y+· · ·)∂y be a smooth vector field in a
neighborhood U ⊂ C2 of the origin. Then, there exists another smooth vector
field in U of the form Y = (λx+· · ·)∂x+(µy+· · ·)∂y satisfying 0 6= λ 6= µ 6= 0
and λ/µ 6∈ Q− and such that [X ,Y ] = 0. Moreover, a smooth near–identity
change of variables u = x + · · ·, v = y + · · ·, that linearizes X is obtained as
follows:

u = f(H)

(
g(I)

fµ(H)

) 1
µ−λ

, v =

(
g(I)

fµ(H)

) 1
µ−λ

, (3.14)

where H and I are first integrals of X and Y, respectively, associated with
the inverse integrating factor X ∧Y and g and f are two functions such that
g(I(x, y)) = (x + · · ·)µ/(y + · · ·)λ and f(H(x, y)) = (x + · · ·)/(y + · · ·).
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Proof. The steps followed are analogous to the proof of Theorem 3.6. From
(3.14) we have that g(I) = uµ/vλ and f(H) = u/v are first integrals of Y
and X respectively. Using the fact that X f(H) = Yg(I) ≡ 0, we get

Y(u) = λuΛ , Y(v) = µvΛ ,X (u) = uΩ , X (v) = vΩ , (3.15)

with Λ(x, y) and Ω(x, y) smooth functions in a neighborhood of the origin.
We note if we prove that Ω is a non–vanishing constant then the change
(x, y) 7→ (u(x, y), v(x, y)) linearizes the vector field X .

On the other hand, taking into account that [X ,Y ](u) = [X ,Y ](v) ≡ 0
and (3.15) we get

uY(Ω)− λuX (Λ) = 0 , vY(Ω)− µvX (Λ) = 0 .

This is a linear homogeneous algebraic system for the unknowns Y(Ω) and
X (Λ) with associated determinant (λ − µ)uv which, for λ 6= µ, is different
from zero out of the set Σ = {(u, v) ∈ C2 : uv = 0}. So the unique solution
in C2\Σ is the trivial one Y(Ω) = X (Λ) ≡ 0. From this last equality, Ω is
either a constant or a smooth first integral of Y in a neighborhood of the
origin. But, the second option is not possible due to Proposition 3.5. Hence
the only possibility is Ω equal to a constant. Moreover, that constant is dif-
ferent from zero because otherwise, from (3.15), u and v would be smooth
first integrals of X which is impossible from Proposition 3.4. Moreover, Λ
is either a constant or a smooth first integral of X in a neighborhood of the
origin. The second option cannot occur because Proposition 3.5. Finally,
we note that Λ 6= 0 because, otherwise, u and v would be smooth first in-
tegrals of Y which is impossible from Proposition 3.4. Hence, the change
(x, y) 7→ (u(x, y), v(x, y)) linearizes both vector fields X and Y .

Now we shall prove that, in fact, the change of variables obtained in
Theorem 3.11 is unique.

Proposition 3.12 Let φ1 : U → C2 be a change of variables of the form
φ1(x, y) = (u1(x, y), v1(x, y)) that linearizes both Y = (x+ · · ·)∂x +(y+ · · ·)∂y

and X = (−y + · · ·)∂x + (x + · · ·)∂y. Then, φ2 linearizes both, Y and X
if and only if φ2 = α1φ1 + α2φ

⊥
1 being αi ∈ C and φ⊥1 = (v1,−u1). In

particular, there is a unique near-identity change of variables that linearizes
simultaneously Y and X .
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Proof. If there exist φ1(x, y) = (u1(x, y), v1(x, y)) that linearizes both Y =
(x+ · · ·)∂x+(y+ · · ·) and X = XC + · · · = (−y+ · · ·)∂x+(x+ · · ·), then X is a
centralizer of Y with linear part of center type. Now, we suppose that there
exit two smooth near-identity changes of variables φi = (ui(x, y), vi(x, y)) i =
1, 2, that linearizes both, X and Y . Then

φ∗iX = XC , φ∗iY = YI i = 1, 2,

being

X (ui) = −vi, X (vi) = ui, Y(ui) = ui, Y(vi) = vi i = 1, 2.

It follows

X
(

u1u2 + v1v2

u1v2 − u2v1

)
= Y

(
u1u2 + v1v2

u1v2 − u2v1

)
≡ 0,

and

X
(

u2
1 + v2

1

u2
2 + v2

2

)
= Y

(
u2

1 + v2
1

u2
2 + v2

2

)
≡ 0 .

Then, the only possibility is

(
u1u2 + v1v2

u1v2 − u2v1

)
= c,

(
u2

1 + v2
1

u2
2 + v2

2

)
= k, (3.16)

where c and k are arbitrary constants. Solving the algebraic system (3.16)
respect to u2 and v2, we obtain u2 = α1u1 +α2v1 v2 = −α2u1 +α1v1, where

α1 = c/
√

k(1 + c2), α2 = −1/
√

k(1 + c2).

In fact,

φ2 = α1φ1 + α2φ
⊥
1 (3.17)

where α1 and α2 are arbitrary constants. We know, from Theorem 3.2, that
there is a smooth near-identity changes of variables φ1 that linearizes both,
X and Y . Hence, from equation (3.16), it follows that φ1 is unique.

Theorem 3.13 Let X = (x+ · · ·)∂x +(y + · · ·)∂y be a smooth vector field in
a neighborhood U ⊂ C2 of the origin. Then, there is a unique smooth near-
identity change of variables φ defined in U that linearizes X . In particular,
φ linearizes simultaneously the set C(X ) of all the centralizers of X .
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Proof. Let φ1 and φ2 be two smooth near-identity changes of variables that
linearize X . Then φ∗1X = XI , φ∗2X = XI . Let Y = YA + · · · be a
centralizer of X , that is, [X ,Y ] ≡ 0. It follows φ∗1Y = YA and φ∗2Y = YA.
We know from statement (iii) of Proposition 3.9 that we can always obtain

a centralizer of X with any linear part. Let Ỹ = YC + · · · = (−y + · · ·)∂x +
(x + · · ·)∂y be a centralizer of X with the linear part of center type. Then

φ∗1Ỹ = YC and φ∗2Ỹ = YC . This fact contradicts Proposition 3.12, therefore
φ1 = φ2 = φ and the uniqueness of φ is proved.

Remark 3.14 Let A = (aij) be a 2 × 2 complex matrix and I the identity
matrix. Consider two vector fields X = XA + · · · and Y = YI + · · · smooth
in a neighborhood U ⊂ C2 of the origin in such a way that [X ,Y ] ≡ 0. It
is clear, from Theorem 3.2, that there is a smooth near–identity change of
variables (x, y) 7→ φ(x, y) = (X(x, y), Y (x, y)) = (x + · · · , y + · · ·) near the
origin such that linearizes X , i.e., φ∗X = XA. In order to apply Theorems 3.6,
3.7 and 3.11 to get φ, we must first carry out a linear change of coordinates
φ1(x, y) = (z(x, y), w(x, y)) ∈ L(C2) bringing the linear part A of X to
Jordan canonical form J as in (3.2). Notice moreover that, since the radial
vector field YI is invariant under linear changes of coordinates, and the Lie
bracket is coordinates–free, we will have [φ1∗X , φ1∗Y ] ≡ 0, where φ1∗X =
XJ + · · ·, φ1∗Y = YI + · · ·. Now we can construct, using Theorems 3.6,
3.7 or 3.11, a smooth near–identity change of variables (z, w) 7→ φ2(z, w) =
(u(z, w), v(z, w)) = (z + · · · , w + · · ·) near the origin linearizing φ1∗X . Since,
in addition, such class of transformations preserves the linear part of vector
fields we get (φ2∗ ◦φ1∗)X = XJ and (φ2∗ ◦φ1∗)Y = YI + · · ·. Finally, we apply
the last linear change of coordinates φ−1

1 (u, v) = (X(u, v), Y (u, v)) ∈ L(C2)
in order to obtain (φ−1

1∗ ◦φ2∗◦φ1∗)X = XA. Then clearly, since the composition
of push–forward is just the push–forward of the composition, φ = φ−1

1 ◦φ2◦φ1.

3.5 Examples

3.5.1 Quadratic Lotka–Volterra systems

We consider the quadratic Lotka–Volterra systems

ẋ = x(1 + ax + by) , ẏ = y(−ν + cx + dy) . (3.18)

defined on C2. Necessary and sufficient conditions for linearizability are al-
ready known for the case ν ∈ N. More concretely, in [20] it is proved that
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system (3.18) with ν ∈ N\{1} is analitically linearizable if and only if one of
the following conditions is satisfied: (i) ma + c = 0 with m = 0, 1, . . . , ν − 2;
(ii) b = d = 0; (iii) a − c = b − d = 0; (iv) b = (ν − 1)a + c = 0. See also
[36, 40] for some generalizations of the values of ν.

By using our results we prove the following.

Proposition 3.15 Let X be the associated vector field to the quadratic Lotka–
Volterra system (3.18) with ν ∈ C\{0}. Then X possesses a quadratic poly-
nomial commutator Y = YI+· · · if one of the following conditions is satisfied:

(i) b = c = 0. In this case Y = x(1 + ax)∂x + y(1− d y/ν)∂y.

(ii) a = c and b = d. Hence Y = x(1+ cx−d y/ν)∂x +y(1+ cx−d y/ν)∂y.

Moreover, the changes of variables (x, y) 7→ (u(x, y), v(x, y)) that linearizes
X with ν ∈ C\{0} is

(i) If b = c = 0 then

u(x, y) =
x

1 + ax
, v(x, y) = − νy

dy − ν
. (3.19)

(ii) When a = c and b = d then

u(x, y) =
x

1 + cx− dy/ν
, v(x, y) =

y

1 + cx− dy/ν
. (3.20)

Proof. It is an easy computation to show that cases (i) and (ii) gives the
commutators of system (3.18) with ν ∈ C\{0}.

Now we shall compute, in each case, the linearizing changes of variables
(x, y) 7→ (u(x, y), v(x, y)) using our results.

(i) The vector field X = x(1 + ax)∂x + y(−ν + dy)∂y commutes with
Y = x(1+ax)∂x + y(1− d y/ν)∂y. Then V = X ∧Y is an inverse integrating
factor for both vector fields X and Y . Up to multiplicative constants we get
V (x, y) = xy(1 + ax)(dy − ν). So, we obtain associated to V the following
first integrals

H(x, y) = y−1/ν(1 + ax)(dy − ν)1/νx−1, I(x, y) = xy−1(dy − ν)(1 + ax)−1 ,
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of X and Y , respectively. We take the following new first integrals

f(H) = −Hν/ν =
u−ν(x, y)

v(x, y)
, g(I) = −I/ν

where the change of variables (x, y) 7→ (u(x, y), v(x, y)) that linearizes both
X and Y are given in (3.19).

(ii) The vector fields X = x(1 + cx + dy)∂x + y(−ν + cx + dy)∂y and
Y = x(1 + cx − d y/ν)∂x + y(1 + cx − d y/ν)∂y satisfy [X ,Y ] ≡ 0. Then,
from the inverse integrating factor V = X ∧Y of both vector fields X and Y
we obtain the following first integrals

H(x, y) = xy
1
ν [−dy + (1 + cx)ν]−

1+ν
ν , I(x, y) =

x

y
,

of X and Y , respectively. Notice that Y is orbitally linearizable (linearizable
after time rescaling) and therefore I(x, y) is a trivial first integral. We take
the following new first integral

f(H) = ν−1−νH−ν =
u−ν(x, y)

v(x, y)

where u(x, y) and v(x, y) are given in (3.20). Of course, u/v is just I. It is
straightforward to check that the change of variables (x, y) 7→ (u(x, y), v(x, y))
linearizes both X and Y .

Remark 3.16 In fact, one can shows that cases (i) and (ii) are the only
relationships between the parameters of system (3.18) with

ν ∈ C\{0, 1,−2,−3,−1/2,−1/3}
such that there is a polynomial commutator Y = YI + · · · of degree at most
3.

3.5.2 Isochronous center

This example comes from the work [12]. In that paper the authors present
an exhaustive classification of several families of isochronous centers and, in
many cases, their commutators and linearizing changes. In any way, there
are some incomplete examples. They present the following cubic reversible
system

X = −y(1− x)(1− 2x)∂x + (x− 2x2 + y2 + 2x3)∂y,
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and its commutator Y , where

Y =
(1− x)(x− 2x2 + 2y2 + 2x3 − 2xy2)

1− 2x
∂x+

y(1− x)(1− 4x + 6x2 + 2y2)

1− 2x
∂y,

but they do not give the linearizing change of variables. Moreover, in Chapter
2 the authors obtain the linearizing change of X and orbitally linearizes Y . In
this example we get the linearizing change of variables that linearizes both,
X and Y , by using ours results.

First of all, we will make a linear change of coordinates

φ1(x, y) = (z(x, y), w(x, y))

to write the linear part of the vector field X in diagonal form. It is matter
of linear algebra to see that the change of coordinates φ1 is the following

z(x, y) =
1

2
(i x + y), w(x, y) =

1

2
(−i x + y),

where i2 = −1. The transformed vectors fields X̃ = φ∗1X and Ỹ = φ∗1Y are

X̃ = (−iz + 3z2 − zw + 2iz3 − 4iz2w + 2izw2) ∂z

+(iw + 3w2 − zw − 2iw3 + 4izw2 − 2iz2w) ∂w

and

Ỹ =
( −i + z − w

−i + 2z − 2w

)
(−z((i−2z)2−8zw−4w2) ∂z+ w(−(i+2w)2+8zw+4z2) ∂w).

We note that, since the radial part of a vector field is preserved under linear
change of coordinates, Ỹ has radial linear part, too. Taking into account
[X̃ , Ỹ ] = 0, we get that V = X̃ ∧ Ỹ is an inverse integrating factor for both

vector fields, X̃ and Ỹ . This fact allows us to obtain (after some simplifica-

tions) first integrals H(z, w) and I(z, w) of X̃ and Ỹ , respectively, as follows

H(z, w) =
zw(i− z + w)2

(1 + 4z(i− z + w))(1− 4w(i− z + w))
= u(z, w)v(z, w),

and

I(z, w) =
z(1− 4w(i− z + w))

w(1 + 4z(i− z + w))
=

u(z, w)

v(z, w)
,
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where

u(z, w) =
−zi(i− z + w)

1 + 4z(i− z + w)
, v(z, w) =

−wi(i− z + w)

1− 4w(i− z + w)
.

Due to (3.14) the change of coordinates φ2(u, v) = (u(z, w), v(z, w)) linearizes

X̃ and Ỹ . Finally, from Remark 3.14 the change of coordinates φ(x, y) =
(X(x, y), Y (x, y)) that linearizes X and Y is φ = φ1

−1 ◦ φ2 ◦ φ1, that is,

X =
(1− x)((x(1 + 2(−1 + x)x)) + 2(−1 + x)y2)

(1 + 2(−1 + x)x)2 + 4(−1 + x)2y2
,

Y =
y(1− x)

(1 + 2(−1 + x)x)2 + 4(−1 + x)2y2
.

Hence, φ brings X and Y to the linear vector fields −Y ∂X +X∂Y and X∂X +
Y ∂Y respectively.

3.5.3 Linearizable hyperbolic saddle

In [35] the authors present the following 1–parameter family of vector fields
Xc and their commutator Yc, where

Xc = (2x−4y2+6cy4) ∂x−y(1−3cy2) ∂y, Yc = (x+y2−6cy4) ∂x+y(1−3cy2) ∂y ,

and c ∈ R is an arbitrary parameter. Moreover, they deduce that vector
fields Xc are linearizable in a neighborhood of the origin, which is an hy-
perbolic saddle. They give the linearizing transformation (x, y) 7→ (u, v) as
follows

x = u +
v2

1 + 3cv2
, y =

v√
1 + 3cv2

. (3.21)

We obtain the linearizing change of coordinates by applying our results. Tak-
ing into account [Xc,Yc] = 0, we get that V = Xc ∧ Yc = 3y(−x + y2)(−1 +
3cy2) is an inverse integrating factor for both vector fields, Xc and Yc. The
first integrals H(x, y) and I(x, y) associated with V of Xc and Yc respectively
(after some simplifications) are given by

H(x, y) =
1− 3cy2

y2(x− y2)
=

v2(x, y)

u(x, y)
, I(x, y) =

(x− y2)
√

1− 3cy2

y
=

u(x, y)

v(x, y)
,

where
u = x− y2, v =

y√
1− 3cy2

.
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Taking into account (3.9), the change of coordinates φ(u, v) = (u(x, y), v(x, y))
linearizes Xc. The change of coordinates obtained for us is the inverse change
of (3.21). We note that this change of variables also linearizes the commu-
tator Yc, hence by Theorem 4.5 this is the unique change of variables that
linearizes both Xc and Yc.



Chapter 4

Orbital Linearization From
Symmetries

Summary. This work is a generalization of the method
proposed in Chapter 3 of linearization of planar vec-
tor fields around singularities. Here we propose a con-
structive procedure to get the change of variables that
orbitally linearizes a smooth planar vector field on C2

around an elementary singular point (i.e., a singular
point with associated eigenvalues λ, µ ∈ C satisfying
λ 6= 0) or a nilpotent singular point from a given in-
finitesimal generator of a Lie symmetry.

4.1 Introduction

In this work we focus our attention on the orbital linearization problem, i.e.,
to determine the local Poincaré normal form transformation that maps the
foliation defined by the solutions of a smooth nonlinear planar system into
the foliation of a linear one. We consider two-dimensional smooth differential
systems

ẋ = P (x, y), ẏ = Q(x, y), (4.1)

defined in an open set U ⊂ C2 containing the origin. Let X = P (x, y)∂x +
Q(x, y)∂y be its associated vector field. We assume that the origin is either an
elementary singular point (i.e., a singular point with associated eigenvalues
λ, µ ∈ C satisfying λ 6= 0) or a nilpotent singular point (that is, a singular
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point with both eigenvalues zero but with non–vanishing associated linear
part). Following the notation of Chapter 3, the linear part A of system (4.1)
written in Jordan form is of the form

(i) A =

(
λ 0
0 µ

)
, (ii) A =

(
λ 1
0 λ

)
. (4.2)

where λ 6= 0 for the case (i). XA will be the linear vector field with associated
matrix A = (aij) ∈ M2(C) and a smooth vector field X in C2 with linear
part XA is expressed as X = XA + · · ·, where the dots denote a smooth vector
field without linear terms.

The origin of system (4.1) is said to be orbitally linearizable if there exists
a smooth near–identity change of coordinates φ(x, y) = (u(x, y), v(x, y)) =
(x + o(x, y)), y + o(x, y)) in the neighborhood U ⊂ C2 of the origin trans-
forming the system into

(
u̇
v̇

)
= A

(
u
v

)
h(u, v), (4.3)

where h(u, v) is a smooth scalar function defined on U such that h(0, 0) 6= 0.
This means that φ∗X = hXA, where h(x, y) = 1 + · · · is a smooth scalar
function defined on U and φ∗ is the push–forward defined by the smooth
diffeomorphism φ. In the linearization case one has φ∗X = XA, that is
h(x, y) ≡ 1. The linearization or orbital linearization problem is treated
classically by the normal form theory, see [10, 23]. Given a system (4.1),
the necessary and sufficient conditions to become linearizable or orbitally
linearizable in U as well as the regularity of the change of variables φ are given
by normal form theory. Nevertheless, to explicitly determine this change φ
in closed form is, in general, an open problem. Another approach to the
linearization or orbital linearization problem is given in [35], where it is shown
that the existence of such a φ is equivalent to the existence of a smooth
vector field of the form Y = (x + o(x, y))∂x + (y + o(x, y))∂y such that the
Lie bracket [X ,Y ] = νX with ν a smooth scalar function not identically zero
in the orbital linearization case and with ν ≡ 0 in the linearization case.
The smooth vector field Y is the infinitesimal generator of a Lie symmetry
of system (4.1). The existence of such Y ensures the existence of the change
of coordinates which orbitally linearizes or linearizes the vector field X in
U , but in a similar way that in the normal form theory, the proof given in
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[35] of this fact is not constructive, that is, a constructive way to build this
change of coordinates is not given. In Chapter 2 the change of variables
that linearizes the analytic isochronous centers from a given commutator is
obtained. Later, in Chapter 3 we propose a constructive procedure to get
the change of variables in closed form that linearizes a smooth planar vector
field X on C2 around an elementary singular point from a given infinitesimal
generator Y of a Lie symmetry of the smooth vector field X . Thus, the orbital
linearization problem is the natural next step to study. In this chapter we
present a constructive procedure to obtain the closed form of the orbital
linearizing change of coordinates of system (4.1) around the origin from a
given Lie symmetry of it. Hence, in this work we assume ν 6= 0, that is, Y does
not commute with X . The problem of how to obtain the orbital linearizing
change is reduced to know an infinitesimal generator Y of a Lie symmetry of
system (4.1). The problem of knowing an infinitesimal generator Y of a Lie
symmetry of a given system is discussed in [13] for special integrable cases.
Finally, we conclude the work with some instructive examples in which we
apply the constructive procedure to obtain the smooth change of variables
that orbitally linearizes some smooth systems.

4.2 Some preliminary results

In this section we give some preliminary results needed to establish the main
theorems of the chapter. The proof of the following proposition is straight-
forward from the definition of inverse integrating factor, see [15].

Proposition 4.1 Consider two vector fields X1 and X2 defined in an open
subset U ⊂ C2, which have the same inverse integrating factor V in U . Then
the vector field X = X1 + αX2 has also the function V as inverse integrating
factor for arbitrary values of the parameter α ∈ C .

The following propositions are proved in Chapter 3.

Proposition 4.2 Consider the vector field X associated to the system (4.1)
with A semisimple having eigenvalues λ and µ satisfying either λ = µ 6= 0 or
0 6= λ 6= µ 6= 0 with λ/µ 6∈ Q−. Then, X cannot have a smooth first integral
in a neighborhood of the origin.
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Proposition 4.3 Let Y = (x+o(x, y))∂x+(y+o(x, y))∂y be a smooth vector
field in a neighborhood U ⊂ C2 of the origin. Then, there is a unique smooth
near-identity change of variables φ : U → C2 that linearizes Y.

Proposition 4.4 The generator of dilations XI = x∂x+y∂y satisfies [XI ,X ] =
0 with X a smooth vector field if and only if X = XA for some A ∈M2(C).

4.3 Main results

Given a smooth vector field Y = (x + o(x, y))∂x + (y + o(x, y))∂y in U ,
Proposition 4.3 states that the smooth near–identity change φ : U → C2

that linearizes Y is unique. The following theorem gives another application
of this unique smooth near–identity change φ.

Theorem 4.5 Let X and Y = (x+o(x, y))∂x +(y+o(x, y))∂y be two smooth
vector fields in a neighborhood U ⊂ C2 of the origin such that [X ,Y ] =
ν(x, y) X with ν a smooth scalar function satisfying ν(0, 0) = 0. Then, the
unique smooth near-identity change of variables φ : U → C2 that linearizes
Y also orbitally linearizes X .

Proof. Using Proposition 4.3, let φ be the unique smooth near-identity change
of variables that linearizes Y . Then φ∗Y = YI where I ∈M2(C) is the iden-
tity matrix. Let X = XA + · · · be the smooth vector field such that [X ,Y ] =
ν(x, y) X with ν a smooth scalar function satisfying ν(0, 0) = 0. Since the
Lie bracket is coordinate–free, we will have [φ∗X , φ∗Y ] = [φ∗X ,YI ] = ν̄ φ∗X ,
where ν̄ is the transformed function of ν(x, y) by the change of variables φ.
Moreover, there exists a smooth scalar function λ(x, y) with λ(0, 0) = 1 such
that [λ(x, y)φ∗X ,YI ] ≡ 0, see the proof of Theorem 1.17 in [35]. On the other
hand, if a smooth vector field λ(x, y)φ∗X = XA + · · · commutes with the gen-
erator of dilations YI this implies that λ(x, y)φ∗X = XA which is the linear
part of the vector field, see Proposition 4.4. Therefore, φ∗X = h(x, y)XA,
where h(x, y) = 1/λ(x, y), which implies that the smooth vector field X is
orbitally linearizable by the change of variables φ.

In the following theorems we show a method to obtain the change of
coordinates that orbitally linearizes (4.1) when the linear part of the system
takes the form (i) of (4.2), that is, when A is semisimple. We consider first
the case in which the eigenvalues µ and λ satisfy µ 6= ∓λ 6= 0.
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Theorem 4.6 Let X = (λx + o(x, y))∂x + (µy + o(x, y))∂y with µ 6= ∓λ 6= 0
and Y = (x + o(x, y))∂x + (y + o(x, y))∂y be two smooth vector fields in a
neighborhood U ⊂ C2 of the origin such that [X ,Y ] ≡ νX with ν a smooth
scalar function satisfying ν(0, 0) = 0. Then, a smooth near–identity change
of variables u = x + o(x, y), v = y + o(x, y), that orbitally linearizes X is
obtained as follows:

u = g(I)

(
f(H)

gµ(I)

) 1
µ−λ

, v =

(
f(H)

gµ(I)

) 1
µ−λ

, (4.4)

where H and I are first integrals of X and Y, respectively, and f and g
are two functions such that f(H(x, y)) = (x + o(x, y))µ/(y + o(x, y))λ and
g(I(x, y)) = (x + o(x, y))/(y + o(x, y)).

Proof. The existence of the orbital linearizing change of variables (x, y) 7→
(u, v) is known from Theorem 1.17. The new result is how to obtain the
orbital linearizing change of variables from the knowledge of an infinitesimal
generator Ȳ of a Lie symmetry of X of the form Ȳ = (x + o(x, y))∂x + (y +
o(x, y))∂y.

Our first purpose is to know the first integrals of the two vector fields X
and Ȳ involved in the symmetry. Notice that X has the following inverse
integrating factor V (x, y) = X ∧ Ȳ defined in U . Let H(x, y) be the first
integral of X in U associated to V computed via quadrature (1.5). Never-
theless, we are not able to obtain a first integral of Ȳ in U . Therefore, we
are looking for another infinitesimal generator Y of a Lie symmetry of X of
the form Y = (x + o(x, y))∂x + (y + o(x, y))∂y such that its first integral in
U can be obtained. From the knowledge of V (x, y), and applying (1.8) we
obtain another infinitesimal generator Y1 of a Lie symmetry of X , that is,

Y1 =
1

(λ + µ) + o(x, y)
((µ− λ)x + o(x, y))∂x + ((λ− µ)y + o(x, y))∂y).

Notice that V (x, y)/divX is an inverse integrating factor of Y1. Since the
linear part of Y1 has not the desired radial form, we get a new infinitesimal
generator Y of a Lie symmetry of X for the case λ 6= −µ of the form Y =
(x + o(x, y))∂x + (y + o(x, y))∂y as follows, see [29].

Y = Y1 + 2X/divX , (4.5)

Taking into account Proposition 4.1, it follows that V (x, y)/divX is an inverse
integrating factor of Y defined on U . This fact allows us to construct a
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first integral I(x, y) of Y in U . Notice, that finally we have obtained an
infinitesimal generator Y of a Lie symmetry of X with the desired form
Y = (x + o(x, y))∂x + (y + o(x, y))∂y whose first integral I in U is known.

From (4.4) we have that f(H) = (x + o(x, y))µ/(y + o(x, y))λ = uµ/vλ

and g(I) = (x + o(x, y))/(y + o(x, y)) = u/v are first integrals of X and Y
respectively. Notice that such first integrals f(H) and g(I) always exist as
a consequence of Theorem 4.5. Taking into account X f(H) = Yg(I) ≡ 0, it
follows

µvX (u)− λuX (v) ≡ 0 , vY(u)− uY(v) ≡ 0 .

Therefore we have

X (u) = λuΛ , X (v) = µvΛ , Y(u) = uΩ , Y(v) = vΩ , (4.6)

with Λ(x, y) and Ω(x, y) smooth functions in a neighborhood of the origin.
On the other hand, since [X ,Y ] = νX , in particular we have

XY(u)− YX (u) = νλuΛ , XY(v)− YX (v) = νµvΛ .

Introducing (4.6) in the former relations we get

X (Ω)− λY(Λ) = νλΛ , X (Ω)− µY(Λ) = νµΛ.

This is a linear algebraic system for the unknowns X (Ω) and Y(Λ) with
associated determinant λ − µ which is different from zero because µ 6= λ.
So the unique solution is X (Ω) = 0 and Y(Λ) = −νΛ. From this last
equality, Λ is a smooth invariant curve of Y with cofactor −ν. Hence, the
change of variables (x, y) → (u, v) orbitally linearizes the vector field X
because Λ(0, 0) = 1 + · · ·. This is due to the fact that X (u) = λuΛ, that is,
(λx + · · ·)∂x(x + · · ·) + (µy + · · ·)∂y(x + · · ·) = (λx + · · ·)(Λ(0, 0) + · · ·), and
at first order we have Λ(0, 0) = 1.

On the other hand, Ω is either a constant or a smooth first integral
of X in a neighborhood of the origin. If Ω is a smooth first integral of
X , then, the change (x, y) 7→ (u(x, y), v(x, y)) also orbitally linearizes the
vector field Y because Ω(0, 0) = 1. This is due to the fact that, from
Y(u) = uΩ, that is, (x+o(x, y))∂x(x+o(x, y))+(y+o(x, y))∂y(x+o(x, y)) =
(x + o(x, y))(Ω(0, 0) + o(x, y)), at first order we get Ω(0, 0) = 1. On the con-
trary, if Ω is a constant, it is different from zero because otherwise, from (4.6),
u and v would be smooth first integrals of Y and this fact contradicts Propo-
sition 4.2. Therefore, if Ω is a constant the change (x, y) 7→ (u(x, y), v(x, y))
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linearizes the vector field Y .

Remark. We recall that given a vector field X = P (x, y)∂x + Q(x, y)∂y

which admits an infinitesimal generator Y = ξ(x, y)∂x + η(x, y)∂y of a Lie
symmetry of X in U , we can always construct an inverse integrating factor
of X in U as V (x, y) := X ∧Y = Pη −Qξ. The converse is not always true.
If we know the existence of an inverse integrating factor V of X in U in some
cases we can not construct an infinitesimal generator Y of a Lie symmetry of
X well defined in U and therefore we can not apply our procedure. We recall
that a singular point p ∈ U of X is called weak if divX (p) = 0. If there is
no weak singularity of X in U , then we can do at least one of the following
constructions:

(i) Prescribe the function ξ(x, y) and solve η(x, y) from V = Pη −Qξ.

(ii) Prescribe the function η(x, y) and solve ξ(x, y) from V = Pη −Qξ.

(iii) Take the rescaled hamiltonian vector field Y =
1

divX (−∂V

∂y
∂x+

∂V

∂x
∂y),

defined in U\{(x, y) ∈ U : divX = 0}.

The equivalence between inverse integrating factors and Lie symmetries for
planar vector fields X is not true, in general, in neighborhoods of weak
singular points of X . Of course, in some special weak singular points the
equivalence can be done. For instance, in a neighborhood U ⊂ R2 of a non-
degenerate center (i.e., a type center singular point with eigenvalues different
from zero), X always possesses an analytic first integral, an analytic inverse
integrating factor as well as an analytic infinitesimal generator Y of a Lie
symmetry of X well defined in U , see [34, 64].

In the next theorem we show a method to obtain the change of coordinates
that orbitally linearizes (4.1) when A is semisimple and µ = −λ 6= 0. Notice
that in this case the origin of system (4.1) is a weak singular point. Hence,
given an inverse integrating factor of X , we can not obtain applying (1.8)
an infinitesimal generator Y = ξ(x, y)∂x + η(x, y)∂y of a Lie symmetry of X
well defined in U . Therefore, in the following theorem we look for another
approach in order to obtain the change of coordinates that orbitally linearizes
(4.1) around a weak singular point.
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Theorem 4.7 Let X = (λx + o(x, y))∂x + (−λy + o(x, y))∂y with λ 6= 0
and Y = (x + o(x, y))∂x + (y + o(x, y))∂y be two smooth vector fields in a
neighborhood U ⊂ C2 of the origin such that [X ,Y ] ≡ νX with ν a smooth
scalar function satisfying ν(0, 0) = 0. Then, a smooth near–identity change
of variables φ(x, y) = (u, v) = (x+o(x, y), y+o(x, y)) that orbitally linearizes
X is obtained from f(H(x, y)) = uv, where H is a first integral of X .

Proof. From Theorem 1.17 we know the existence of an orbital lineariz-
ing change of variables (x, y) 7→ (u, v) that brings the vector field X to
φ∗X = λh(u, v)(u∂u − v∂v). Therefore H̃ = uv is a first integral of φ∗X .
Pulling back H̃ to the initial coordinates we obtain a first integral H(x, y) =
(x + o(x, y))(y + o(x, y)) of X . In the rest of the proof we will see that any
factorization of H of the form H(x, y) = (x + o(x, y))(y + o(x, y)) gives us a
change of variables u = x+o(x, y), v = y+o(x, y) that orbitally linearizes X .
Taking into account XH ≡ 0 it follows vX (u) + uX (v) ≡ 0. Therefore, we
have X (u) = uΩ and X (v) = −vΩ with Ω(x, y) certain smooth function in
a neighborhood of the origin. Hence, the change of variables (x, y) 7→ (u, v)
orbitally linearizes the vector field X because Ω(0, 0) = λ 6= 0. This value
of Ω at the origin follows by taking the first order term in the expansion
of X (u) = uΩ given by (λx + · · ·)∂x(x + · · ·) + (−λ y + · · ·)∂y(x + · · ·) =
(x + · · ·)(Ω(0, 0) + · · ·).

On the other hand, it is known that a resonant hyperbolic saddle (i.e.,
a singular point which eigenvalues satisfy λ/µ ∈ Q−) of an analytic vector
field is analytically orbitally linearizable if, and only if, it has an analytic
first integral in the neighborhood of it, see [37]. Theorem 4.7 generalizes
this result in the case of a weak singularity for smooth vector fields with an
infinitesimal generator of a Lie symmetry, giving also the explicit change of
variables.

The following proposition clarifies how is the normal form when system
(4.1) is analytic and A is semisimple with µ = λ.

Proposition 4.8 Let X = (λx + o(x, y))∂x + (λy + o(x, y))∂y be an analytic
vector field in a neighborhood U ⊂ C2 of the origin. Then, the origin is an
analytically linearizable 1:1 resonant node of X .

The proof of the Proposition 4.8 comes from normal form theory, see [10].
In the light of this result, in this work we do not take into account the case
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µ = λ because it is already solved in Chapter 3.

In the next theorem we obtain the method to get the change of coordinates
that orbitally linearizes (4.1) when the linear part of the system takes the
form (ii) of (4.2).

Theorem 4.9 Let X = (λx + y + o(x, y))∂x + (λy + o(x, y))∂y with λ 6= 0
and Y = (x + o(x, y))∂x + (y + o(x, y))∂y be two smooth vector fields in a
neighborhood U ⊂ C2 of the origin such that [X ,Y ] ≡ νX with ν a smooth
scalar function such that ν(0, 0) = 0. Then, a smooth near–identity change
of variables u = x + o(x, y), v = y + o(x, y), that orbitally linearizes X is
obtained as follows:

u = g(I)f(H) exp[λg(I)] , v = f(H) exp[λg(I)] , (4.7)

where H and I are first integrals of X and Y, respectively, and f and g are
two functions such that f(H(x, y)) = (y + · · ·) exp [−λ(x + · · ·)/(y + · · ·)],
g(I(x, y)) = (x + · · ·)/(y + · · ·).

Proof. From a given infinitesimal generator Ȳ of a Lie symmetry of X of the
form Ȳ = (x+o(x, y))∂x +(y+o(x, y))∂y and using the same procedure than
in the proof of Theorem 4.6, we get another infinitesimal generator Y1 of a
Lie symmetry of X . Then, taking

Y = Y1 + 2X/divX ,

we have an infinitesimal generator Y = (x + o(x, y))∂x + (y + o(x, y))∂y of
a Lie symmetry of X with V (x, y)/divX as inverse integrating factor of Y .
From (4.7) we have that f(H) = v exp(−uλ/v) and g(I) = u/v are first
integrals of X and Y respectively. Using the fact that X f(H) = Yg(I) ≡ 0
we get

X (u) = Λ(v + λu) , X (v) = λvΛ ,Y(u) = uΩ , Y(v) = vΩ . (4.8)

On the other hand, taking into account [X ,Y ] ≡ νX and (4.8) we obtain

X (Ω)− λY(Λ) = νλΛ , uX (Ω)− (v + λu)Y(Λ) = ν(v + λu)Λ

for some smooth functions Ω(x, y) and Λ(x, y) defined in a neighborhood of
the origin. This is a linear homogeneous algebraic system for the unknowns
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X (Ω) and Y(Λ) with associated determinant v2. So the unique solution in
C2\{(u, v) ∈ C2 : v = 0} is X (Ω) = 0, Y(Λ) = −νΛ. Therefore Λ is a
smooth invariant curve of Y with cofactor −ν. Hence, repeating verbatim
the last paragraph of the proof of Theorem 4.6 we have that the change
(x, y) 7→ (u(x, y), v(x, y)) orbitally linearizes the vector field X and also lin-
earizes or orbitally linearizes the vector field Y depending if Ω is either a
smooth first integral of X or a constant.

The following proposition shows the local structure of orbitally lineariz-
able nilpotents singular points.

Proposition 4.10 Consider the smooth vector field X = (y + o(x, y))∂x +
o(x, y)∂y in a neighborhood U ⊂ C2 of the origin, which is a nilpotent singular
point. If X is orbitally linearizable near the origin, then it is a nonisolated
singular point of X . In this case, X must be of the form X = g(x, y)(1 +
o(x, y)∂x + o(x, y)∂y) with g(x, y) = y + · · ·. Moreover, all the infinitesimal
generators Y = (x + o(x, y))∂x + (y + o(x, y))∂y of a Lie symmetry of X in
U must have the invariant curve g(x, y) = 0.

Proof. The vector field X = (y + o(x, y))∂x + o(x, y)∂y) written in the co-
ordinates in which it is orbitally linearized is X = v h(u, v)∂u. Since v = 0
is a line filled of singular points of the vector field X , the singular point of
X in the original coordinates must be a nonisolated singular point. Then,
it follows that X must be of the form X = g(x, y)(1 + o(x, y)∂x + o(x, y)∂y)
with g(x, y) = y + · · ·. On the other hand, since the flow of the vector field
Y maps singular points into singular points of X , all the Lie symmetries
Y = (x+ o(x, y))∂x +(y + o(x, y))∂y of X in U must have the invariant curve
g(x, y) = 0.

4.4 Examples

In the following example we obtain the orbital linearizing change of variables
φ(x, y) = (u, v) that orbitally linearizes a vector field X by using Theorem
4.6.

Example 1. In [35] the authors consider the following vector field

X = (x− 2x2/q + y2)∂x + (−qy/4 + xy)∂y, (4.9)
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with q a parameter such that −2 6= q 6= 0 which admits an infinitesimal
generator of a Lie symmetry Ȳ of X of the form

Ȳ =

(
x(q − 2x)

q − 4x
− 2qy2

(2 + q)(q − 4x)

)
∂x + y∂y.

From the wedge product of X and Ȳ we get an inverse integrating factor
V of X . Then applying (1.8) we have an infinitesimal generator Y1 of a Lie
symmetry of X well defined if q 6= 4. Using (4.5) we obtain another Lie
symmetry of (4.9) generated by

Y =
(2 + q)(q − 2x)x− 2qy2

(q − 4x)(2 + q)
∂x + y∂y,

which has V (x, y)/divX as inverse integrating factor. Integrating both vector
fields X and Y , we take the following first integrals

f(H) =
(2q + q2)q/4

(q2x− 4x2 + 2q(x− x2 + y2))q/4)y
, g(I) =

(q2x− 4x2 + 2q(x− x2 + y2)
(2q + q2)y

.

Since,

f(H) =
u−q/4(x, y)

v(x, y)
, g(I) =

u

v
,

from equations (4.4) we obtain the change of variables that orbitally linearizes
(4.9) as

u(x, y) =
(q2x− 4x2 + 2q(x− x2 + y2))

(2q + q2)
, v(x, y) = y.

We notice that the change of variables (x, y) 7→ (u(x, y), v(x, y)) also lin-
earizes both vector fields, Ȳ and Y . Moreover, the change also works for
q = 4.

In the following example we obtain the orbital linearizing change of vari-
ables φ(x, y) = (u, v) that orbitally linearizes a vector field X by using The-
orem 4.7.

Example 2. In [35] the authors consider the following vector field

X = (x− x2/2 + y2)∂x + (−y + xy)∂y, (4.10)
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which admits a Lie symmetry Y given by

Y =

(
x(4− 2x)

4− 4x
− 4y2

3(4− 4x)

)
∂x + y∂y.

H = y(x − x2/2 − 3x2) is a first integral of X associated to the inverse
integrating factor V = X ∧Y . Taking u = x−x2/2− 3x2 and v = y we have
the change of variables that orbitally linearizes (4.10).



Chapter 5

Orbital Linearization in the
Quadratic Lotka-Volterra
Systems

Summary. In this chapter we consider the lineariz-
ability and orbital linearizability properties of the
quadratic Lotka-Volterra system in the neighborhood
of a singular point with eigenvalues 1 and −q. We
will use the procedures explained in Chapters 3 and
4 to get the change of variables that linearizes or
orbitally linearizes a smooth planar vector field on C2

around an elementary singular point from a given Lie
symmetry as well as the called Darboux linearization.
As a consequence, we generalize from q ∈ N\{0, 1} to
q ∈ C\{0, 1} some necessary and sufficient conditions
of linearization or orbital linearization for such a family
given in previous works.

5.1 Introduction

We consider the quadratic Lotka–Volterra family

ẋ = x(1 + ax + by), ẏ = y(−q + cx + dy) (5.1)

67
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defined in C2 with q ∈ C\{0, 1}. We say that X = x(1+ax+ by)∂x +y(−q +
cx + dy)∂y is the vector field associated to the differential system (5.1).

The Lotka–Volterra model appears in a large variety of problems in
physics, biology and applied mathematics. Is for that reason that it has
been widely studied.

In this work we are mainly concerned about the classical problem of local
linearization and orbital linearization of system (5.1) in a neighborhood U ⊂
C2 of the origin. More concretely, we give the explicit smooth near–identity
change of variables φ : U → C2 of the form φ(x, y) = (u(x, y), v(x, y)) =
(x + o(x, y)), y + o(x, y)) that linearizes or orbital linearizes system (5.1). In
[20] necessary and sufficient conditions for analytic linearizability and orbital
analytic linearizability (5.1) are given for q ∈ N\{0, 1}. The case q ∈ {0, 1}
is studied in [21]. See also [36, 40] for some generalizations of the values of
q.

There exists the so called Darboux linearization method for polynomials
systems by using invariants curves, see [20]. We want to comment that the
innovations presented in this work come from an approach to the linearization
(resp. orbital linearization) problem based on Lie symmetries. Thus, we use
two different methods. We obtain the linearizing (resp. orbital linearizing)
change of coordinates φ from a given commutator. In some cases, in order
to obtain the linearizing (resp. orbital linearizing) change of coordinates φ
we use an improved version of the Darboux linearization method.

The next theorem is a straightforward generalization of the version’s one
given in [20] about Darboux linearization. Before the statement of the theo-
rem, we recall a previous definition.

Definition 5.1 A smooth function F (x, y) satisfying XF = KF is called a
Darboux factor of X and the smooth function K(x, y) is called its associated
cofactor.

Theorem 5.2 System ẋ = λx + o(x, y), ẏ = µy + o(x, y) with λ and µ
complex numbers different from zero is orbitally linearizable around the origin
if there exist Darboux factors Fi(x, y), for i = 1, . . . , m, with Fi defined in a
neighborhood U of the origin and numbers αj, βj ∈ C, such that F1(x, y) =
x+ o(x, y), Fm(x, y) = y + o(x, y), Fi(0, 0) 6= 0 for i = 2, . . . , m− 1 in such a
way that

∑m−1
i=1 αiKi(x, y) = λh(x, y) and

∑m
i=2 βiKi(x, y) = µh(x, y) where

h is smooth on U and h(0, 0) 6= 0. Here, Ki is the cofactor of Fi. Under these
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conditions, a change of variables (x, y) 7→ (u, v) that brings the system into its

orbitally linearizable normal form is given by (u, v) =
(∏m−1

i=1 Fαi
i ,

∏m
i=2 F βi

i

)
.

Proof. Since u̇ = X (u) =
∑m−1

i=1 αiX (Fi)u/Fi, taking into account that
Fi(x, y) are Darboux factors, it follows that u̇ = u

∑m−1
i=1 αiKi(x, y). Hence,

u̇ = λuh(x, y). Analogously, v̇ = µvh(x, y).

5.2 Quadratic Lotka–Volterra family

Theorem 5.3 For q ∈ C\{0, 1} system (5.1) has an analytically linearizable
saddle at the origin if one of the conditions listed bellow are satisfied.

(i) c = 0;

(ii) b = d = 0;

(iii) a = c, b = d;

(iv) b = (q − 1) a + c = 0.

Moreover, if one of the following conditions are satisfied

(v) q a b− (q − 1) a d− c d = 0;

(vi) ma + c = 0, m = 0, . . . , q − 2;

then, the origin of (5.1) is analytically orbitally linearizable.

Proof. We will compute either the analytic linearizing or the orbital analytic
linearizing changes of variables (x, y) 7→ (u(x, y), v(x, y)) in each case.

Case (i) c = 0. In this case system (5.1) has the following Darboux factors,
F1(x, y) = x, F2(x, y) = dy−q, F3(x, y) = (1−dy/q)b/d+1/q+ax 2F1(−1/q, 1−
b/d− 1/q, 1− 1/q, dy/q) and F4(x, y) = y, with cofactors K1 = 1 + ax + by,
K2 = dy, K3 = (dy + aqx + byq)/q and K4 = dy − q, where 2F1 (a1, a2; b; x)
is the hypergeometric function defined by

2F1 (a1, a2; b; x) =
∞∑

k=0

(a1)k(a2)k

(b)k

xk

k!
.
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It is straightforward to check the existence of numbers α1, α2, α3, β2, β3, β4

verifying α1K1 + α2K2 + α3K3 = 1, β2K2 + β3K3 + β4K4 = −q, being
α1 = −α3 = 1, α2 = 1/q, β4 = −β2 = 1, and β3 = 0. Hence, applying
Theorem 5.2 we obtain the change of variables that, in this case, linearizes
(5.1), given by u(x, y) = x(dy − q)1/q/F3, and v(x, y) = y(dy − q)−1.

Case (ii) b = d = 0. In this case, system (5.1) takes the form

ẋ = x(1 + ax) ẏ = y(−q + cx). (5.2)

The vector field associated to system (5.2) admits a quadratic polynomial
commutator Y , given by Y = x(1+ax)∂x +y(1+ cx)∂y. Taking into account
that V = X ∧Y is an inverse integrating factor for both vector fields X and
Y , we can integrate them. We take the following first integrals in order to
apply Theorem 3.6.

f(H) =
(1 + ax)q+c/a x−q

y
, g(I) =

y (1 + ax)1−c/a

x
.

Since f(H) = u−q/v and g(I) = u/v, from equation (3.9) we obtain that the
linearizing change of variables u(x, y) = x/(1 + ax), v(x, y) = y/(1 + ax)c/a.
We notice that this change of variables also linearizes Y .

Case (iii) a = c, b = d. This case is already solved in Chapter 3, but we
include it for sake of completeness. In this case, system (5.1) reads for

ẋ = x(1 + cx + dy) ẏ = y(−q + cx + dy). (5.3)

The vector field associated to system (5.3) commute with Y = x(1 + cx −
d y/q)∂x + y(1 + cx − d y/q)∂y. Then, we obtain the inverse integrating
factor V = X ∧Y of both vector fields X and Y that allows us to obtain the
following first integrals

H(x, y) = xy
1
q (−dy + (1 + cx)q)−

1+q
q , I(x, y) =

x

y
,

of X and Y , respectively. Since Y is orbitally linearizable, then I(x, y) is
the trivial first integral u/v. Taking the following new first integral f(H) =
q−1−qH−q = u−q/v, the change of variables (x, y) 7→ (u(x, y), v(x, y)) where
u(x, y) = x/(1 + cx − dy/q), v(x, y) = y/(1 + cx − dy/q), linearizes both
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X and Y . Notice that in the cases (ii) and (iii) for q = −1, X = Y and
consequently V ≡ 0. Hence, we can not apply our method. However, as the
change of variables in both cases also linearizes Y , the same change linearizes
X when q = −1.

Case (iv) b = (q − 1)a + c = 0. In this case, system (5.1) reads for

ẋ = x(1 + ax) ẏ = y(−q + (1− q)ax + dy). (5.4)

The vector field X associated to system (5.4) has three algebraic invariant
curves. This fact allows us to get an inverse integrating factor V = y2xq+1.
Applying (1.8) we obtain from V a vector field, Ȳ , such that it is a Lie
symmetry of X . Then, using the structure of normalizers of X we look for
a commutator Y of X with radial linear part given by Y = x(1 + cx)∂x +
y(dy(cxq−1)+(1+cx)q(1+c(x−xq)))/(q+cxq)∂y. The first integrals H(x, y)
and I(x, y) associated to V of X and Y (after deleting some logarithmic
functions) are given by

H(x, y) =
−x−q(dy − (1 + cx)q)

qy
, I(x, y) =

−qy(1 + cx)1+q

x(dy − (1 + cx)q)
.

Hence, it follows f(H) = H(x, y) = u−q/v, g(I) = I(x, y)−1 = u/v where

u(x, y) =
x

1 + cx
, v(x, y) =

−qy(1 + cx)q

(dy − (1 + cx)q)
.

Notice that the change of variables linearizes both, X and Y .

Case (v) q a b − (q − 1) a d − c d = 0. First, we consider the case d 6= 0
i.e., we take c = a(qb − (q − 1)d)/d. In this case, system (5.1) has three
Darboux factors, F1(x, y) = x, F2(x, y) = −dy + q + aqx, and F3(x, y) = y,
and their respective cofactors are K1 = 1 + ax + by, K2 = ax + d, and
K3 = −q + cx+ dy. It is straightforward to check the existence of a numbers
α1, α2, β2, β3 verifying α1K1 + α2K2 = h, β2K2 + β3K3 = −qh, being α1 =
β1 = 1, α2 = −1 β2 = −(d−dq + bq)/d and h = 1+ by−dy. Hence, applying
Theorem 5.2 we obtain the change of variables that, in this case, orbitally
linearizes (5.1), given by

u(x, y) = qx(−dy+q+qax)−1, v(x, y) = q(d−dq+bq)/dy(−dy+q+qax))−(d−dq+bq)/d.

Let us to compute again a change of variables that orbitally linearizes (5.1)
by using Lie symmetries. V = xy(−dy + q + qax) is an inverse integrating
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factor for system (5.1). Then, proceeding as in the case (iv) we obtain a
Lie symmetry Y , with radial linear part Y = Kdx(2dy(1 + q) + q(1 + 2by −
q + a(1 + q)x))∂x +Ky(d2y(q − 1) + d(1 + 4ax− q)q + 2abq2x)∂y, with K =
1/[q(2d2y + d(1+ by− ax(q− 3)− q)+ abqx)]. Integrating both vector fields,
X and Y , we get

f(H) =
(dy − (1 + ax)q)(d+bq)/d

xqy
, g(I) =

x(dy − (1 + ax)q)(−3d−2bq−dq)/(d(q−1))

y
.

From Theorem 4.6 the change of variables that orbitally linearizes (5.1) and
linearizes the Lie symmetry Y , reads for

ū(x, y) = x(dy − (1 + ax)q)
2d+bq
d(1−q) , v̄(x, y) = y(dy − (1 + ax)q)

d+(b+1)q
d(q−1) .

We now consider the case when d = 0. Since the other cases are already
solved, if d = 0 it follows a = 0. We shall use the same procedure than
in the case d 6= 0. In this case system (5.1) has three Darboux factors,
F1(x, y) = x, F2(x, y) = exp(−cx + by), and F3(x, y) = y. Their respective
cofactors are K1 = 1+ by, K2 = −(cx+ byq), and K3 = −q + cx. There exits
numbers α1, α2, β2, β3 verifying α1K1 + α2K2 = h, β2K2 + β3K3 = −qh. It
is easy to see that α1 = α2 = β1 = 1, β2 = 1− λ and h = 1− cx + by − bqy.
Hence, applying Theorem 5.2 we obtain the change of variables that orbitally
linearizes system (5.1)

u(x, y) = x exp(−cx + by), v(x, y) = y exp((1− q)(−cx + by)).

In the following computations we obtain the change from a given symmetry
Y . V = xy is an inverse integrating factor for system (5.1). Moreover, as in
the former cases, we obtain a Lie symmetry Y , with radial linear part

Y =
x(1 + 2cy − q)

1 + cx + by − q
∂x +

y(1 + 2bx− q)

1 + cx + dy − q
∂y.

Integrating X and Y we obtain

f(H) =
exp(cx− by)

xqy
, g(I) =

x exp
(

2(cx−by)
1−q

)

y
.

From Theorem 4.6 we obtain the change of variables that orbitally linearizes
(5.1) and also linearizes the Lie symmetry Y , that is

u(x, y) = x exp

(
by − cx

q − 1

)
, v(x, y) = y exp

(
by − cx

1− q

)
.
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Case (vi) ma + c = 0 with m = 0, . . . , q − 2. In this case system (5.1) has
the following Darboux factors, F1(x, y) = x, and F3(x, y) = y, with cofactors
K1 = (m−cx+bmy)/m, and K3 = cx+dy−q. There exits another Darboux
factor F2(x, y) satisfying qK1 +K2 +K3 = 0. This fact allows us to compute
the cofactor of F2(x, y) without the explicit knowledge of it. Thus, solving
the former expression for K2 we obtain K2 = (cx(q −m) − ym(d + bq))/m.
Applying Theorem 5.2 we get the numbers α1 = 1, α2 = 1/(q−m), β2 =
m/(m− q), β3 = 1. Hence, the change of variables that orbitally linearizes
system (5.1) is u(x, y) = xF2(x, y)1/(q−m), v(x, y) = yF2(x, y)m/(m−q), where
F2(0, 0) 6= 0, see [30].

In fact, the necessary and sufficient conditions (cases (v) and (vi)) for
analytic integrability, i.e., systems with an analytic first integral defined in a
neighborhood of the origin, were given in [30]. The case (vi) is also lineariz-
able for q ∈ N\{1}, see [20].
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Chapter 6

Newtonian Systems with
2-Dimensional Lie Symmetry
Algebra

Summary. In this chapter we study some aspects
of the dynamics in the phase plane of smooth second
order differential equations ẍ = w(x, ẋ) possessing an
r–dimensional Lie point symmetry algebra Lr with
r ≥ 2, focusing on the existence, nonexistence and
localization periodic orbits. Finally, it is proved that
the polynomial Liénard systems ẍ = f(x)ẋ + g(x) with
f, g ∈ R[x] having a Lr with r ≥ 2 do not have limit
cycles. As far as we know, this is the first work that
relates Lie point symmetries and periodic orbits.

6.1 Introduction

We consider Newtonian systems, that is, autonomous second order differen-
tial equations

ẍ = w(x, ẋ) , (6.1)

with w ∈ C∞(U) and U ⊂ R2 an open set. We shall write (6.1) as a first
order planar system defined on U in the usual way

ẋ = y , ẏ = w(x, y) . (6.2)
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We associate to equations (6.1) and (6.2) the vector fields X = ∂t + ẋ∂x +
w(x, ẋ)∂ẋ and X̄ = y∂x + w(x, y)∂y, respectively. In the following, divX
stands for the divergence of the vector field X . A singular point of X̄ is a
point (x0, 0) ∈ U such that w(x0, 0) = 0.

All the general concepts and the specific ones about Lie theory introduced
in this section can be generalized to the nonautonomous case ẍ = w(t, x, ẋ),
but we omit them. A C1 nonconstant function I(t, x, y) is called an invariant
(or non–autonomous first integral) of system (6.2) in U if it is constant along
the solutions of (6.2). In other words, X I ≡ 0 must be satisfied in U . Of
course, we can find at most two functionally independent invariants of (6.2).

A symmetry of (6.1) is a diffeomorphism Φ : (t, x) 7→ (t̄, x̄) that maps the
set of solutions of (6.1) into itself. Therefore, the symmetry condition for
(6.1) is just x̄′′ = w(t̄, x̄, x̄′), where the prime denotes the derivative ′ = d/dt̄.
When the symmetry is a 1–parameter Lie group of point transformations Φε,
then

t̄ = t + εξ(t, x) + O(ε2) , x̄ = x + εη(t, x) + O(ε2) ,

for ε close to zero, and the vector field Y = ξ(t, x)∂t + η(t, x)∂x is called the
infinitesimal generator of the 1–parameter Lie group of point transformations
Φε. It is well known (see for instance the books [9, 38, 39, 51, 57]) that, the
determining equations for Lie point symmetries can be obtained from the
linearized condition

Y [2](ẍ− w(x, ẋ)) = 0 when ẍ = w(x, ẋ) , (6.3)

where Y [2] = Y + η[1](t, x, ẋ)∂ẋ + +η[2](t, x, ẋ, ẍ)∂ẍ is the so–called second
prolongation of the infinitesimal generator Y and η[1](t, x, ẋ) = Dtη − ẋDtξ,
η[2](t, x, ẋ, ẍ) = Dtη

[1]− ẍDtξ where Dt = ∂t + ẋ∂x + ẍ∂ẋ is the operator total
derivative with respect to t. More precisely,

η[1](t, x, ẋ) =
∂η

∂t
+

(
∂η

∂x
− ∂ξ

∂t

)
ẋ− ∂ξ

∂x
ẋ2 ,

η[2](t, x, ẋ, ẍ) =
∂2η

∂t2
+

(
2

∂2η

∂t∂x
− ∂2ξ

∂t2

)
ẋ +

(
∂2η

∂x2
− 2

∂2ξ

∂t∂x

)
ẋ2 − ∂2ξ

∂x2
ẋ3

+

(
∂η

∂x
− 2

∂ξ

∂t
− 3

∂ξ

∂x
ẋ

)
ẍ .

Introducing these expressions of η[1](t, x, ẋ) and η[2](t, x, ẋ, ẍ) into (6.3) we
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get the determining equations

∂2η

∂t2
+

(
2

∂2η

∂t∂x
− ∂2ξ

∂t2

)
ẋ +

(
∂2η

∂x2
− 2

∂2ξ

∂t∂x

)
ẋ2 − ∂2ξ

∂x2
ẋ3 (6.4)

= −
(

∂η

∂x
− 2

∂ξ

∂t
− 3

∂ξ

∂x
ẋ

)
w + η

∂w

∂x
+

[
∂η

∂t
+

(
∂η

∂x
− ∂ξ

∂t

)
ẋ− ∂ξ

∂x
ẋ2

]
∂w

∂ẋ
.

Several equations (6.1) that arise from applications have the property
that w(x, ẋ) is a polynomial in ẋ. So, since both ξ and η are independent
of ẋ, the determining equation are solved usually splitting into a system of
partial differential equations by equating powers of ẋ. Of course, since (6.1) is
autonomous, it always admits the generator Y = ∂t of a Lie point symmetry.

Let Lr denote the set of all infinitesimal generators of 1–parameter Lie
groups of point symmetries of the differential equation (6.1). It is known
that Lr is a finite dimensional real vector space. In the following we denote
r = dimLr and {Y1, . . . ,Yr} a basis of Lr with Yi = ξi(t, x)∂t + ηi(t, x)∂x

for i = 1, . . . , r. Moreover, see for instance [38, 57], for autonomous second
order differential equation like (6.1), r ∈ {1, 2, 3, 8}. Additionally, r = 8 if
and only if (6.1) is linear or linearizable by a point transformation (t, x) 7→
(t̄(t, x), x̄(t, x)) defined in certain domain.

Given Y1,Y2 ∈ Lr, we define its Lie bracket or commutator in the usual
way [Y1,Y2] = Y1Y2 − Y2Y1. It is easy to see that, the Lie bracket is in-
dependent of the coordinate system. Additionally, if Y1,Y2 ∈ Lr, then
[Y1,Y2] ∈ Lr. This means that Lr is closed under the commutator oper-
ation and so Lr is not only a vector space; it is a real Lie algebra. In short,
[Yi,Yj] =

∑r
k=1 ck

ijYk where the constants ck
ij ∈ R are called the structure

constants of the Lie algebra Lr. In particular, if all the structure constants
are zero then Lr is called Abelian.

For any Yi = ξi(t, x)∂t + ηi(t, x) ∂x ∈ Lr, easily one can check that

[X ,Y [1]
i ] = µi(t, x, ẋ)X where µi(t, x, ẋ) = X ξi and Y [1]

i = Yi + η
[1]
i (t, x, ẋ)∂ẋ

is the first prolongation of Y . If r ≥ 2, we define the functions

Vij(t, x, ẋ) = det{X ,Y [1]
i ,Y [1]

j } =

∣∣∣∣∣∣

1 ẋ w(x, ẋ)

ξi(t, x) ηi(t, x) η
[1]
i (t, x, ẋ)

ξj(t, x) ηj(t, x) η
[1]
j (t, x, ẋ)

∣∣∣∣∣∣
(6.5)

for i, j ∈ {1, . . . , r} with 1 ≤ i < j ≤ r. In this work, we will show that, the
zero–set of these functions Vij will play a fundamental role in the dynamics
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of system (6.2).

When a Lie symmetry acts in the phase plane (x, y) instead of the plane
(t, x) it is called an orbital Lie symmetry. In this different context, the
infinitesimal generator Ȳ = ξ(x, y)∂x + η(x, y)∂y of the orbital Lie symmetry
of a vector field X̄ = P (x, y)∂x+Q(x, y)∂y has the property that the local flow
of Ȳ sends orbits of X̄ into orbits of X̄ . This assertion for C1(Ω) transversal
vector fields X̄ and Ȳ in Ω ⊆ R2 is equivalent to the condition [X̄ , Ȳ ] =
µ(x, y)X̄ for certain scalar function µ.

The C1(Ω) function V (x, y) = det{X̄ , Ȳ} = Pη − Qξ, which satisfies
X̄V = V divX̄ is called inverse integrating factor of X̄ in Ω. It is clear that
the zero–set of V (x, y) given by V −1(0) := {(x, y) ∈ Ω : V (x, y) = 0} is
an invariant curve of X̄ . Moreover, see [6, 31, 33] for more details, the set
V −1(0) contains most of the relevant orbits of the phase portrait of X̄ in Ω
such as singular points, separatrices, limit cycles and graphics provided they
are α or ω–limit sets of X̄ .

The aim of this work is to generalize the concept of inverse integrating
factor V (x, y) of system (6.2) via the functions Vij(t, x, y) defined in (6.5). In
fact, in the autonomous particular case ∂Vij/∂t ≡ 0, we get that Vij is just
an inverse integrating factor of (6.2). On the contrary, when ∂Vij/∂t 6≡ 0, we
will show that the zero–sets V −1(0) and V −1

ij (0) have similar properties.
We want to remark here that while the search of an orbital symmetry Ȳ

or inverse integrating V (x, y) factor in closed form for system (6.2) is neither
algorithmic nor easy in general, to obtain the generators Yi for the eventual
Lie point symmetry algebra Lr of (6.2) is often a systematic work.

As far as we know, this is the first time that from the knowledge of a
Lie algebra Lr with r ≥ 2 of point symmetries of the differential equation
(6.1) some dynamical consequences (such as existence or nonexistence and
location of periodic orbits) are deduced.

Let L2 be a Lie algebra with generators Y1,Y2 ∈ L2. Of course, the basis
of L2 can be changed to new generators Ŷ1, Ŷ2 as follows Ŷi =

∑2
j=1 aijYj

for i = 1, 2, such that det A 6= 0 with A = (aij) ∈ M2(R). Two Lie algebras
of equal dimension Lr and L̄r are isomorphic if there is a linear one-to-
one map f : Lr → L̄r such that f([Y1,Y2]) = [f(Y1), f(Y2)]. Two finite
dimensional Lie algebras are isomorphic if and only if they have the same
structure constants for certain basis. Let L2 be a 2–dimensional Lie algebra
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generated by Y1 and Y2. Then it is well known that L2 is isomorphic to
either an Abelian Lie algebra or to a Lie algebra satisfying the commutation
[Y1,Y2] = Y1. On the other hand, two Lie algebras Lr and L̄r of vector fields
on Rn are similar if one is obtained from the other by a change of variables.
If two r–dimensional Lie algebras of vector fields on Rn are similar, then they
are isomorphic. The converse is not true. In summary, we have the following
well–known classification of 2–dimensional non–similar Lie algebras, see for
instance [57].

Type Structure Canonical Form

I [Y1,Y2] = 0, Y1 ∧ Y2 6= 0 Y1 = ∂
∂s , Y2 = ∂

∂r

II [Y1,Y2] = 0, Y1 ∧ Y2 = 0 Y1 = ∂
∂s , Y2 = r ∂

∂s

III [Y1,Y2] = Y1, Y1 ∧ Y2 6= 0 Y1 = ∂
∂s , Y2 = r ∂

∂r + s ∂
∂s

IV [Y1,Y2] = Y1, Y1 ∧ Y2 = 0 Y1 = ∂
∂s , Y2 = s ∂

∂s

Figure 6.1: Non–similar 2–dimensional Lie algebras L2 and canonical forms
of generators.

Here, the wedge product is defined as Y1∧Y2 := det{Y1,Y2}. We emphasize
that, in the classification of canonical forms given in this table we have used
the so–called canonical coordinates (r, s). Let Y1 = ξ1(t, x)∂t+η1(t, x)∂x. The
functions r(t, x), s(t, x), are defined as solutions of the linear partial differen-
tial system Y1(r) = 0 and Y1(s) = 1 such that the jacobian of (r(t, x), s(t, x))
is different from zero in order to be invertible the change of coordinates. It
is clear that, in these canonical coordinates we have Y1 = ∂s. Of course,
canonical coordinates cannot be defined in some neighborhood of a singular
point (t0, x0) ∈ R2 of Y1, i.e., satisfying ξ1(t0, x0) = η1(t0, x0) = 0. Moreover,
canonical coordinates are not uniquely defined because, if (r, s) are canon-
ical coordinates then (r̄, s̄) = (f(r), s + g(r)) are canonical coordinates for
arbitrary smooth functions f and g such that f ′(r) 6= 0. In this work we
do not use canonical coordinates because, in general, they only have a local
definition domain and we want to study global dynamical properties.

6.2 The zero–set of Vij

Although the next result is not new, we provide a proof for sake of complete-
ness.
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Proposition 6.1 Assume that system (6.2) possesses an r–dimensional Lie
point symmetry algebra with r ≥ 2 and define the functions Vij(t, x, ẋ) as in
(6.5).

(i) Vij satisfies the linear partial differential equation XVij = Vij divX , where
X = ∂t + ẋ∂x + w(x, ẋ)∂ẋ.

(ii) If r ≥ 3 then, the ratio of any two nonzero Vij is either a constant or
an invariant of (6.2).

(iii) If Vij ≡ 0, then (ηi − yξi)/(ηj − yξj) is an invariant of system (6.2).

Proof. We associate to each infinitesimal generator Yi = ξi(t, x)∂t +ηi(t, x)∂x

its characteristic Qi(t, x, ẋ) = ηi − ẋξi. Then, straightforward calculations
shows that the functions Vij can be written as

Vij = QiXQj −QjXQi . (6.6)

Again, it is tedious but straightforward to check that, the determining equa-
tions (6.4) for the infinitesimal generator Yi expressed via the characteristic
is just

X 2Qi − ∂w

∂ẋ
XQi − ∂w

∂x
Qi = 0 . (6.7)

Hence, using (6.6) and (6.7), we obtain

XVij = QiX 2Qj −QjX 2Qi = Vij
∂w

∂ẋ
= Vij divX ,

proving thus statement (i). Statement (ii) is proved by computing

X
(

Vij

Vk`

)
=

Vk`XVij − VijXVk`

V 2
k`

≡ 0 ,

where, in the last step, we have used (i).
Finally, when Vij ≡ 0, then from (6.6) we have

X
(

Qi

Qj

)
≡ 0 ,

where Qi/Qj is not a constant because Yi and Yj are linearly independent.
Hence, statement (iii) holds.
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Remark 6.2 Consider the functions Vij(t, x, ẋ) = det{X ,Y [1]
i ,Y [1]

j } for all
i, j ∈ {1, . . . , r} with 1 ≤ i < j ≤ r. Then, any linear combination

V̂12(t, x, ẋ) =
∑
i,j

cijVij

with cij ∈ R, satisfies X V̂12 = V̂12divX . In fact, the underlying idea consists
on to perform a change of basis in Lr. For instance, take any linearly inde-
pendent couple Ŷ1, Ŷ2 ∈ Lr, next construct V̂12(t, x, ẋ) = det{X , Ŷ [1]

1 , Ŷ [1]
2 }

and take into account that Ŷi =
∑r

j=1 aijYj with aij ∈ R for i = 1, 2. Recall

that the set of C1 solutions of the partial differential equation XV = V divX
is a linear subspace of the set of C1 functions from R3 to R.

Every curve C given in parametric form by the graph (t, x(t)) in the
(t, x)–plane that is invariant under the Lie group generated by Yi must sat-
isfies Qi(t, x, ẋ)|C ≡ 0 with Qi the characteristic of Yi. Hence, in order to
derive solutions of (6.1) that are invariant under the 1–parameter Lie group
generated by Yi, first we have to solve the first order differential equation
ηi − ẋξi = 0 and then, check which (if any) of these solutions satisfy (6.1).
Notice that, curves C such that det{Y1,Y2}|C ≡ 0 are candidates to in-
variant solutions of both generators Y1 and Y2. From (6.6) we have the
next four sufficient conditions in order to obtain a function x(t) such that
V12(t, x(t), ẋ(t)) ≡ 0 for all t.

1. Q1(t, x(t), ẋ(t)) = Q2(t, x(t), ẋ(t)) ≡ 0. This means that all the com-
mon solutions x(t) of the first order differential equations ηi − ẋξi = 0
with i = 1, 2, are such that V12(t, x(t), ẋ(t) ≡ 0. Of course, if Y1 = ∂t,
then only constant functions x(t) = x0 are allowed.

2. Q1(t, x(t), ẋ(t)) = XQ1(t, x(t), ẋ(t)) ≡ 0. If Y1 = ∂t, then Q1(t, x, ẋ) =
−ẋ and XQ1 = −w(x, ẋ). Therefore, V12(t, x, y) vanishes in all the
singular points of X̄ = y∂x + w(x, y)∂y.

3. XQ1(t, x(t), ẋ(t)) = XQ2(t, x(t), ẋ(t)) ≡ 0. If Y1 = ∂t, in order to get
all the functions x(t) belonging to this case, first we solve the differential
equation XQ1 = w(x, ẋ) = 0. Let φt(x0) be the solution such that
φ0(x0) = x0. Finally, if there is a particular solution φt(x̄0) for some
x̄0 ∈ R such that XQ2|φt(x̄0) ≡ 0, then the function x(t) = φt(x̄0)
vanishes V12. But, the former function x(t) will be a solution of ẍ =
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w(x, ẋ) if and only if ẍ(t) = 0 and therefore x(t) is not a periodic
solution.

4. Q2(t, x(t), ẋ(t)) = XQ2(t, x(t), ẋ(t)) ≡ 0. In this work we will see that,
if Y1 = ∂t, then this case does not contain periodic solutions x(t) of
(6.1) that are limit cycles (isolated periodic solutions) of (6.2).

The next theorem is a general result about the invariant curves of X̄
contained in the zero–set of the functions Vij. We put special emphasis on
periodic orbits of (6.2) of any kind (isolated and, therefore, limit cycles or
nonisolated and so belonging to a period annulus). Recall here that a limit
cycle γ parameterized by {(x(t), y(t)) ∈ U : 0 ≤ t < T} is called hyperbolic if∮

γ
divX̄ (x(t), y(t))dt 6= 0. On the other hand, a C1 curve f(x, y) = 0 defined

on U is an invariant curve of X̄ if X̄ f = Kf for some function K(x, y) called
the associated cofactor of f = 0.

Theorem 6.3 Let U ⊂ R2 be an open set and assume that ẍ = w(x, ẋ) with
w smooth in U admits an r–dimensional Lie point symmetry algebra Lr with
r ≥ 2. Consider the functions Vij(t, x, ẋ) defined in (6.5) for i, j ∈ {1, . . . , r}
with 1 ≤ i < j ≤ r. Suppose that γ = (x(t), y(t)) ⊂ U is a T–periodic orbit
of (6.2). Then the next statements hold:

(i) If Vij(t, x, ẋ) = V (x, ẋ) 6≡ 0, with V ∈ C1(U), then V (x, y) is an inverse
integrating factor of system (6.2) in U . In particular, if γ is a limit
cycle, then γ ⊂ {V (x, y) = 0}.

(ii) If Vij(t, x, ẋ) = F (t)G(x, ẋ) 6≡ 0 with non–constants F and G ∈ C1(U),
then Ḟ = αF with α ∈ R\{0} and G(x, y) = 0 is an invariant curve of
system (6.2). Moreover, we have:

(ii.1) If γ ⊂ {G = 0} and G is analytic on U , then G is not square–
free, i.e., G(x, y) = gn(x, y)u(x, y) with a positive integer n > 1
and g and u are analytic functions on U satisfying γ ⊂ {g = 0}
and γ 6⊂ {u = 0}.

(ii.2) If γ 6⊂ {G = 0} then γ is hyperbolic and αT =
∮

γ
divX̄ (x(t), y(t))dt.

Proof. From statement (i) of Proposition 6.1, the function Vij satisfies the
linear partial differential equation XVij = VijdivX . Moreover, X = ∂t + X̄
so that divX = divX̄ . Therefore, if Vij does not depend on t, then it verifies
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X̄Vij = VijdivX̄ and therefore Vij is an inverse integrating factor of system
(6.2) in U proving the statement (i).

To prove statement (ii), assume first that Vij(t, x, y) = F (t)G(x, y). Then,
from XVij = VijdivX , we get ḞG+F X̄G = FGdivX̄ . Hence we deduce that
Ḟ = αF with α ∈ R\{0} and

X̄G = (−α + divX̄ )G . (6.8)

This last equations means that G = 0 is an invariant curve of system (6.2)
with associated cofactor KG = −α + divX̄ .

From now, we denote by γ = (x(t), y(t)) ⊂ U , one T -periodic orbit of
(6.2) of minimal period T > 0.

Let us assume that G is square–free inside the class of analytic functions
on U . Let p ∈ γ a point such that G(p) = ∇G(p) = 0, that is, p is a
critical point of the invariant curve G = 0. Then, p is also a singular point
of system (6.2) which is impossible since γ is periodic orbit of (6.2). Since
G = 0 is an invariant curve of (6.2), if G(p) = 0 then G|γ = 0. Therefore, the
condition ∇G|γ = 0 is equivalent to the fact that G is not square–free, that
is, G(x, y) = gn(x, y)u(x, y) with an integer n > 1 and analytic functions g
and u on U .

In order to prove statement (ii.1), assume by contradiction that γ ⊂ {G =
0} and ∇G|γ 6= 0. Then, using the main result of [32] we have

∮

γ

KG(x(t), y(t)) dt =

∮

γ

divX̄ (x(t), y(t)) dt ,

from which we deduce the contradiction αT = 0, proving thus the point
(ii.1).

Finally, assume γ 6⊂ {G = 0}. Then, dividing both members of (6.8) by
G and integrating over γ one have

0 =

∮

γ

X̄G

G
(x(t), y(t))dt = −αT +

∮

γ

divX̄ (x(t), y(t))dt ,

from which we obtain
∮

γ
divX̄ (x(t), y(t))dt 6= 0 and therefore γ must be a

hyperbolic periodic orbit of (6.2).

Corollary 6.4 Assume that ẍ = w(x, ẋ), with w smooth in the open set
U ⊂ R2, admits an r–dimensional Lie point symmetry algebra Lr with r ≥ 2.
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Consider the functions Vij(t, x, ẋ) for i, j ∈ {1, . . . , r} with 1 ≤ i < j ≤ r.
If there is one Vij(t, x, y) = F (t)G(x, y) 6≡ 0 with non–constants F and
G ∈ C1(U), then system (6.2) does not have period annulus in U .

Proof. Assume the existence of a period annulus A ⊂ U for (6.2). It is clear
that A 6⊂ {G = 0}, so there is a periodic orbit γ ⊂ A such that γ 6⊂ {G = 0}.
Then, from statement (ii.2) of Theorem 6.3, γ must be hyperbolic, in con-
tradiction with the fact that γ ⊂ A.

In the sequel, we concentrate our attention in the 2–dimensional case
L2. In this case, the following classification shows that, if ∂t ∈ L2 then, the
autonomous or separate time–variable forms of Vij(t, x, ẋ) given in Theorem
6.3 are the only possibilities.

Proposition 6.5 Assume that ẍ = w(x, ẋ) with w smooth in the open set
U ⊂ R2 admits a 2–dimensional Lie point symmetry algebra L2 spanned by
C1 vector fields Y1 and Y2 in its domain of definition. Then, for Y1 = ∂t,
we have

Y2 =

{
(c1t + α(x))∂t + β(x)∂x if c2 = 0 ,
(α(x) exp(c2t)− c1/c2)∂t + β(x) exp(c2t)∂x if c2 6= 0 ,

for some C1–functions α and β and where [Y1,Y2] = c1Y1 + c2Y2 with
structure constants ci. In addition, V12(t, x, ẋ) = ẋ2[c1 + ẋα′(x) − β′(x)] +
β(x)w(x, ẋ) if c2 = 0 and V12(t, x, ẋ) = exp(c2t)[ẋ(−c2β(x) + c2ẋα(x) +
ẋ2α′(x)− ẋβ′(x)) + β(x)w(x, ẋ)] if c2 6= 0.

Proof. Since ẍ = w(x, ẋ) is autonomous, it always possesses the infinitesimal
generator Y1 = ∂t of a Lie point symmetry. Assuming Y1 ∈ L2 and denoting
Y2 = ξ2(t, x)∂t + η2(t, x)∂x, a straightforward calculation shows that

[Y1,Y2] =
∂ξ2

∂t
∂t +

∂η2

∂t
∂x .

It must be satisfied [Y1,Y2] = c1Y1 + c2Y2 for certain structure constants
ci ∈ R. Hence we get

c1 = −ξ2

η2

∂η2

∂t
+

∂ξ2

∂t
, c2 =

1

η2

∂η2

∂t
. (6.9)
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From the second above condition we have

η2(t, x) = β(x) exp(c2t) ,

for certain function β. Now, the first condition in (6.9) is just

c1 = −c2ξ2 +
∂ξ2

∂t
,

from which,

ξ2(t, x) =

{
c1t + α(x) if c2 = 0 ,
α(x) exp(c2t)− c1/c2 if c2 6= 0 ,

for some function α. The expressions of V12 are straightforward from its def-
inition. Hence, the proposition is proved.

Notice that, from Proposition 6.5, if Y1 = ∂t and Y2 generate a 2–
dimensional Lie point symmetry algebra L2 of differential equation (6.1),
then the generators are analytic for all t ∈ R. Therefore we define the do-
main of definition of the generators as the unbounded open strip Ξ = {(t, x) ∈
R× X} ⊂ R2.

Theorem 6.6 Assume that ẍ = w(x, ẋ) with w smooth in U ⊂ R2 admits a
2–dimensional Lie point symmetry algebra L2 spanned by the C1(Ξ) vector
fields Y1 = ∂t and Y2 such that [Y1,Y2] = c1Y1 + c2Y2.

(i) If c2 = 0 and Y2 ∈ C2(Ξ), then V12(t, x, ẋ) = G(x, ẋ) with G(x, y) =
y2[c1 + yα′(x) − β′(x)] + β(x)w(x, y) an inverse integrating factor of
X̄ in W = U ∩ {X × R} provided that G 6≡ 0. Moreover, for analytic
vector fields Y2 in Ξ, X̄ has no limit cycles in W .

(ii) If c2 6= 0 then, changing the basis of L2 given in Proposition 6.5 in
the form Ȳ1 = c1/c2Y1 + Y2, Ȳ2 = −Y1/c2, one has [Ȳ1, Ȳ2] = Ȳ1

and V̄12(t, x, ẋ) = exp(c2t)Ḡ(x, ẋ) with Ḡ(x, ẋ) = ẋ[c2ẋα(x)− c2β(x) +
ẋ2α′(x)− ẋβ′(x)] + β(x)w(x, ẋ). In addition, ∂w/∂x ≡ 0 or β(x) ≡ 0.
If Ḡ 6≡ 0 and U is a simply connected domain, then X̄ has no periodic
orbits in U and all the α or ω–limit sets of X̄ are contained in the
invariant curve Ḡ(x, y) = 0 of X̄ .
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Proof. The first part of statement (i) is a corollary of Proposition 6.5 and
statement (i) of Theorem 6.3. Now we will show the nonexistence of limit
cycles in W for X̄ . We proceed, by contradiction, assuming the existence
of a limit cycle γ = (x(t), y(t)) ⊂ W of X̄ = y∂x + w(x, y)∂y. Since γ ⊂
{G(x, y) = 0}, first we get β(x) 6≡ 0 (otherwise the curve G = 0 cannot have
ovals) and second one has G(x(t), y(t)) = 0 for all t ∈ [0, T ) with T > 0 the
minimum period of γ. Hence, the T–periodic functions (x(t), y(t)) satisfy

ẋ(t) = y(t) , ẏ(t) = w(x(t), y(t)) =
−y2(t)[c1 + y(t)α′(x(t))− β′(x(t))]

β(x(t))
,

where β(x(t)) 6≡ 0 due to the analiticity of β. But, this takes to contradiction
because the differential system

ẋ = y , ẏ =
−y2[c1 + yα′(x)− β′(x)]

β(x)
,

does not possesses periodic orbits since it has the first integral H(x, y) =
A(x) + B(x)/y with

B(x) = β(x) exp

(
−c1

∫
1/β(x) dx

)
, A(x) = −

∫
B(x)α′(x)/β(x) dx .

Hence, the level sets of H(x, y) has not ovals.

Now we shall prove statement (ii). After the change of basis of L2 we
have

Ȳ1 = ξ̄1(t, x)∂t + η̄1(t, x)∂x = exp(c2t)(α(x)∂t + β(x)∂x) , Ȳ2 = −1/c2∂t ,

from where, the expression of V̄12(t, x, ẋ) = det{X , Ȳ [1]
1 , Ȳ [1]

2 } = exp(c2t)Ḡ(x, ẋ)
given in the theorem is obtained.

On the other hand, it is easy to check that Ȳ1 satisfies the determining
equations if and only if β(x) ≡ 0 or ∂w/∂x ≡ 0. In either case, taking
into account the determining equations that Ȳ2 satisfies, it follows that, if
Ḡ(x, ẋ) 6≡ 0, then Ω1/V̄12 is a closed 1–form, where

Ω1 :=

∣∣∣∣∣∣

dt dx dẋ
1 ẋ w(x, ẋ)

ξ̄1(t, x) η̄1(t, x) η̄
[1]
1 (t, x, ẋ)

∣∣∣∣∣∣
= exp(c2t)Ω(t, x, ẋ) ,
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with Ω(t, x, ẋ) = −c2Ḡ(x, ẋ) dt + H̄(x, ẋ) dx + L̄(x, ẋ) dẋ and

H̄(x, ẋ) = c2ẋα(x)− c2β(x) + α(x)w(x, ẋ) + ẋ2α′(x)− ẋβ′(x) ,

L̄(x, ẋ) = β(x)− ẋα(x) .

In short, in simply connected domains R × U , the 1–form Ω1/V̄12 is exact
and then there is a function I(t, x, ẋ) such that dI = Ω1/V̄12 = Ω/Ḡ.

We claim that I(t, x, ẋ) is an invariant of ẍ = w(x, ẋ). This property
is true because, if V̄12(t, x, ẋ) 6≡ 0 then, the system of partial differential
equations

X (I) = 0 , Ȳ [1]
1 (I) = 0 , Ȳ [1]

2 (I) = 1 , (6.10)

always has a unique solution I(t, x, ẋ) up to an additive constant. To see
that, develop (6.10) as the linear algebraic system

It + ẋIx + wIẋ = 0 , ξ̄1It + η̄1Ix + η̄
[1]
1 Iẋ = 0 , ξ̄2It + η̄2Ix + η̄

[1]
2 Iẋ = 1 ,

for the unknowns It, Ix and Iẋ, where the subindex means partial derivative.
Since the associated determinant is just V̄12 6≡ 0, we solve the linear algebraic
system and obtain, using that Ω1/V̄12 is exact, that I is computed as the line
integral

I(t, x, ẋ) =

∫
Ω1

V̄12

.

Of course, I(t, x, ẋ) is an invariant of ẍ = w(x, ẋ) due to the first equation
in (6.10).

In our particular case, I must be of the form I(t, x, ẋ) = −c2t + J(x, ẋ)
where J(x, ẋ) is well–defined except on the set {Ḡ(x, ẋ) = 0}.

Let Γ ⊂ U be the α or ω–limit set of some orbit (x(t), y(t)) of X̄ . Then
I(t, x(t), y(t)) is a constant for all t. Since (x(t), y(t)) → Γ as t → ∞ or
t → −∞, we have that J(x(t), y(t)) is not defined as t → ∞ or t → −∞.
Therefore, the only possibility is that Γ ⊂ {Ḡ(x, y) = 0}.

The fact that no periodic orbits exists for X̄ is trivial if ∂w/∂x ≡ 0. For
the other case, namely β(x) ≡ 0, no limit cycles can exists because of the
expression of Ḡ(x, y) and there are no period annulus from Corollary 6.4.

Theorem 6.7 Assume that ẍ = w(x, ẋ) with w smooth in U ⊆ R2 admits a
2–dimensional Lie point symmetry algebra L2 spanned by the C1(Ξ) vector
fields Y1 = ∂t and Y2 such that V12 ≡ 0. Then X̄ has not periodic solutions
in U and its α or ω–limit sets are contained into {y = 0} which is fulfilled
of singular points of X̄ .
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Proof. From Proposition 6.5 we know the expression of Y2 and V12. First of
all, we note that the condition β(x) ≡ 0 is incompatible with the hypothesis
V12 ≡ 0 due to the linear independence of Y1 and Y2. Hence, V12 ≡ 0 implies
that

ẍ = w(x, ẋ) =

{
− ẋ2[c1+ẋα′(x)−β′(x)]

β(x)
if c2 = 0 ,

− ẋ[c2ẋα(x)−c2β(x)+ẋ2α′(x)−ẋβ′(x)]
β(x)

if c2 6= 0 .

Therefore, the associated vector field X̄ = y∂x−yΨ(x, y)∂y has the line y = 0
fulfilled of singular points. Out of this straight line, the phase portrait of X̄
in U is the same as the phase portrait of ∂x−Ψ(x, y)∂y which obviously has
not periodic solutions. In addition, since V12 ≡ 0, from statement (iii) of
Proposition 6.1, (η2− yξ2)/(η1− yξ1) is an invariant of X̄ . Hence, we get the
invariants

I(t, x, y) =

{ −c1t + (yα(x)− β(x))/y if c2 = 0 ,
exp(c2t)(yα(x)− β(x))/y if c2 6= 0 .

Therefore, the α or ω–limit sets of X̄ in U are contained in the continuum
of singular points on y = 0.

6.3 Lie point symmetries for polynomial Liénard

systems

The subject of this section is the polynomial Liénard family

ẍ = −f(x)ẋ− g(x) , (6.11)

with real polynomials f(x) and g(x) of degrees n and m respectively. Regard-
ing the existence of invariant algebraic curves of (6.11), ŻoÃla̧dek in [68] has
shown that for m > n there exist systems (6.11) with an invariant algebraic
curve. But generic Liénard systems do not have such curves. Moreover, for
2 < n+1 < m but (n,m) 6= (2, 4) there exist systems with an algebraic limit
cycle. In the cases (n,m) = (0,m), (1, m) for m 6= 3, (4, 2) and (n + 1, n)
there cannot exist algebraic limit cycles. Moreover, for the remaining case
(n,m) = (1, 3), in [14] the authors show that (6.11) cannot have simultane-
ously an algebraic invariant curve and a limit cycle.

Now, we present a characterization of the maximal dimension r of the Lie
point symmetry algebra Lr of (6.11) in terms of the couple (n,m).
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Theorem 6.8 Let Lr be the maximal r–dimensional Lie point symmetry
algebra associated to the polynomial Liénard equation (6.11). Then, for
deg f = n and deg g = m, the next holds:

(i) If (n,m) ∈ {(0, 0), (0, 1)} then r = 8. In addition, there are families with
(n,m) = (1, 3) and r = 8.

(ii) If either m = n + 1 or m = 2n + 1 or n = 0 and m ≥ 2, then r = 2 can
exists.

(iii) r = 1 otherwise.

The proof of Theorem 6.8 is given in Appendix 6.4. There you can see
the precise conditions (algebraic relations between the coefficients of f(x)
and g(x)) to get Lr and its infinitesimal generators.

Corollary 6.9 Assume the polynomial Liénard equation (6.11) possesses r–
dimensional Lie point symmetry algebra Lr with r ≥ 2. Then, there is a
2–dimensional subalgebra L2 ⊆ Lr such that ∂t ∈ L2.

Proof. If r ≥ 2, from the proof of Theorem 6.8, we know that r ∈ {2, 8} and
the corollary follows when r = 2.

When r = 8 it is well known, see for instance [39], the existence of a
change of coordinates (t, x) 7→ (r(t, x), s(t, x)) defined in some region of the
(t, x)–plane such that the Liénard equation (6.11) becomes d2s/dr2 = 0.
Moreover, this linear equation admits a 8–dimensional Lie point symmetry
algebra L8 with generators Y1 = ∂r, Y2 = r∂r, Y3 = s∂r, Y4 = sr∂r + s2∂s,
Y5 = r2∂r + rs∂s, Y6 = ∂s, Y7 = r∂s and Y8 = s∂s. The commutators table
of this L8 is the following one.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Y1 0 Y1 0 Y3 2Y2 + Y8 0 Y6 0
Y2 0 −Y3 0 Y5 0 Y7 0
Y3 0 0 Y4 −Y1 Y8 − Y2 −Y3

Y4 0 0 −Y2 − 2Y8 −Y5 −Y4

Y5 0 −Y7 0 0
Y6 0 0 Y6

Y7 0 Y7

Y8 0
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We observe that, for any generator Yj of L8 there is a 2–dimensional sub-
algebra L2 ⊂ L8 such that Yj ∈ L2. Since the structure constants of a Lie
algebra are preserved under changes of variables and ∂t ∈ L8, we conclude
that there exists L2 ⊆ L8 with ∂t ∈ L2.

Theorem 6.10 The polynomial Liénard differential equations (6.11) having
a r–dimensional Lie point symmetry algebra Lr with r ≥ 2 has no limit cycles
in R2.

Proof. As a consequence of Corollary 6.9, there is a 2–dimensional subalgebra
L2 ⊆ Lr generated by Y1 = ∂t and Y2. Moreover, Y2 is an analytic vector
field in R2. The proof of this fact is given by comparing the expression of
Y2 = ξ(t, x)∂t +η(t, x)∂x in Proposition 6.5 and the general expression (6.16)
of the components of an infinitesimal generator of the polynomial Liénard
differential equations (6.11). Therefore, applying Theorems 6.6 and 6.7 the
result follows.

Remark 6.11 Another proof of Theorem 6.10 not based on the analyticity
of the generator Y2 of L2 is given by the following reasoning. Applying
Theorems 6.6 and 6.7, it follows that necessary conditions to have limit cycles
are [Y1,Y2] = c1Y1 and V12(t, x, ẋ) = det{X ,Y [1]

1 ,Y [1]
2 } = G(x, ẋ) 6≡ 0 with

G(x, y) an inverse integrating factor of the polynomial Liénard vector field
X̄ = y∂x − [f(x)y + g(x)]∂y. Since Y2 = (c1t + α(x))∂t + β(x)∂x, one has

G(x, y) = α′(x)y3 + [c1 − β′(x)]y2 − f(x)β(x)y − g(x)β(x) . (6.12)

Imposing G to be an inverse integrating factor of X̄ we obtain
∑3

i=0 Ai(x)yi ≡
0, that is, Ai(x) ≡ 0 for i = 0, . . . , 3, where

A3(x) = −α′′(x) ,

A2(x) = 2f(x)α′(x) + β′′(x) ,

A1(x) = c1f(x) + 3g(x)α′(x) + β(x)f ′(x) ,

A0(x) = 2c1g(x)− g(x)β′(x) + β(x)g′(x) .

Therefore, from A3(x) ≡ 0 we have α(x) = a0 + a1x with arbitrary constants
ai. We will split the proof in two cases according to the vanishing or not of a1:
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i) We assume a1 6= 0. From A2(x) = A1(x) ≡ 0, we can express f(x) =
−β′′(x)/(2a1) and g(x) = [c1β

′′(x) + β(x)β′′′(x)]/(6a2
1). In particular, these

relations means that β(x) is a polynomial. Hence, we write

β(x) =
d∑

i=0

bix
i , (6.13)

with bd 6= 0. The last equation to solve is

A0(x) = 2c2
1β

′′(x)−c1β
′(x)β′′(x)+3c1β(x)β′′′(x)+β2(x)β(4)(x) ≡ 0 . (6.14)

We must investigate whether this fourth order nonlinear differential equa-
tions admits polynomial solutions. Introducing (6.13) into (6.14) and as-
suming d ≥ 4 we have that A0(x) has degree 3d− 4 with leading coefficient
d(d − 1)(d − 2)(d − 3)b3

d and we get a contradiction. Therefore, the upper
bound d ≤ 3 is satisfied. In fact, if d < 3 then the Liénard vector field X̄
becomes linear and no limit cycles can exist. So d = 3 and X̄ is a cubic
Liénard vector field with linear damping, i.e., f and g have degrees 1 and
3 respectively. But, this family cannot have simultaneously an algebraic in-
variant curve (in our case G(x, y) = 0) and a limit cycle, see [14].

ii) We suppose a1 = 0. Hence A2(x) = β′′(x) and A2(x) ≡ 0 implies
β(x) = b0 + b1x. We note here that β(x) 6≡ 0 because, otherwise, from the
expression of G in (6.12), the invariant curve G(x, y) = 0 has not ovals in
contradiction with the existence of any limit cycle of X̄ . Now, f(x) and
g(x) satisfy the differential equations A1(x) = c1f(x) + (b0 + b1x)f ′(x) = 0
and A0(x) = (2c1 − b1)g(x) + (b0 + b1x)g′(x) = 0 respectively. Non–trivial
polynomial solutions f and g are only possible for b1 6= 0. More concretely,
if n is the degree of f , then

f(x) = K0(b0 + b1x)−c1/b1 , g(x) = K1(b0 + b1x)1−2c1/b1 ,

with Ki arbitrary constants and c1 = −nb1. But then

G(x, y) = −b1(n + 1)y2 −K0(b0 + b1x)n+1y −K1(b0 + b1x)2(n+1) ,

and the invariant algebraic curve G(x, y) = 0 has not ovals proving Theorem
6.10.
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6.3.1 The Wilson system

One interesting example inside the polynomial Liénard families is the Wilson
system, see [65]. The degrees of f and g are (n,m) = (2, 5) and the system
is

ẋ = y, ẏ = −µ(x2 − 1)y − x− µ2x3

16
(x2 − 4), (6.15)

with µ 6= 0. System (6.15) has the invariant algebraic curve

φ := [y + (µ/4)x(x2 − 4)]2 + x2 − 4 = 0,

as a limit cycle when 0 < |µ| < 2. For |µ| ≥ 2 the invariant algebraic curve
φ turns out to contain a singular point, and so it cannot be a limit cycle.
Moreover, system (6.15) has two additional invariant algebraic curves

φ± := y +
µ

4
x(x2 − 2)±

√
µ2 − 4

2
x = 0 ,

and the Darboux first integral H(x, y) = φ
φ+φ−

(
φ+

φ−

)µ
λ
. It is straightfor-

ward to see, according with statement (ii) of Theorem 6.8, that Wilson
system possesses a 2–dimensional Lie point symmetry algebra L2 if and
only if µ = ±4/

√
3. Of course, no limit cycle appears for these values

of the parameter µ according with Theorem 6.10. In short, the genera-
tors of L2 are Y1 = ∂t and Y2 = 1/2 exp(∓2t/

√
3)[∓√3∂t − x∂x]. Tak-

ing the new base Ȳ1 = Y1/k and Ȳ2 = kY2 with k = ±2/
√

3 we get
[Ȳ1, Ȳ2] = Ȳ2 and its associated V̄12(t, x, y) = exp(−kt)Ḡ(x, y) with Ḡ(x, y) =
3x2−4x4+x6∓6

√
3xy±4

√
3x3y+9y2 according to statement (ii) of Theorem

6.6. In summary, although system (6.15) is integrable for all values of µ, the
Lie point symmetry method does not reflect this integrability.

6.4 Appendix

Proof of Theorem 6.8. We shall use the notation f(x) =
∑n

i=0 fix
i and

g(x) =
∑m

i=0 gix
i with fi, gi ∈ R such that fn 6= 0 and gm 6= 0. Since (6.11) is

autonomous, it is obvious that always admits the Lie point symmetry Y = ∂t.
Hence, if we denote by Lr the r–dimensional Lie point symmetry algebra as-
sociated to (6.11), we have r ≥ 1.
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Let Y = ξ(t, x)∂t + η(t, x)∂x ∈ Lr. Then, the functions ξ(t, x) and η(t, x)
must satisfy the determining equations (6.4). Such equation is a polynomial
of degree 3 in the variable ẋ, i.e.,

∑3
i=0 Λi(t, x)ẋi ≡ 0 where

Λ3(t, x) = −∂2ξ

∂x2
,

Λ2(t, x) = 2f(x)
∂ξ

∂x
+

∂2η

∂x2
− 2

∂2ξ

∂t∂x
,

Λ1(t, x) = ηf ′(x) + 3g(x)
∂ξ

∂x
+ f(x)

∂ξ

∂t
+ 2

∂2η

∂t∂x
− ∂2ξ

∂t2
,

Λ0(t, x) = ηg′(x) + g(x)

(
2
∂ξ

∂t
− ∂η

∂x

)
+ f(x)

∂η

∂t
+

∂2η

∂t2
.

Hence, from the vanishing of the cubic and quadratic coefficients Λ3(t, x) =
Λ2(t, x) ≡ 0, the following expressions follows

ξ(t, x) = A(t)x + B(t) , η(t, x) = Ȧ(t)x2 + C(t)x + D(t)− 2A(t)

∫
F (x) dx ,

(6.16)
for some functions A(t), B(t), C(t) and D(t). Here F (x) is a primitive of
f(x), that is, F ′(x) = f(x). Hence, in order to solve the determining equa-
tions, the only that remains to do is to impose Λ1(t, x) = Λ0(t, x) ≡ 0. Such
a coefficients Λi are polynomials in the variable x. So, we have to annul all
its coefficients.

(i) Assume m > 2n+1 (in particular m > 1) and n > 1. Then, degx Λ1(t, x) =
m with leading coefficient 3gmA(t). So we have A(t) ≡ 0. Now, degx Λ1(t, x) =
n with leading coefficient fn(nC(t) + Ḃ(t)). Hence we put C(t) = −Ḃ(t)/n.
Therefore, degx Λ1(t, x) = n−1 with leading coefficient [n2fnD(t)+fn−1Ḃ(t)]/n,
from which we have D(t) = −fn−1Ḃ(t)/[n2fn].

Hence, degx Λ0(t, x) = m with leading coefficient (2n + 1−m)gmḂ(t)/n
and so we get Ḃ(t) = 0, that is, the constant B(t) = b0 ∈ R. Finally, we
have ξ(t, x) = b0 and η(t, x) = 0 or equivalently dimLr = 1.

(ii) Assume m < n+1 and n > 0. Then, degx Λ1(t, x) = 2n+1 with leading
coefficient −2nf 2

nA(t)/[(n + 1)(n + 2)]. So we have A(t) ≡ 0. From now, we
may simply repeat verbatim the first paragraph of part (i) obtaining thus
C(t) = −Ḃ(t)/n and D(t) = −fn−1Ḃ(t)/[n2fn].
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Moreover, degx Λ0(t, x) = n+1 with leading coefficient −fnB̈(t)/n and so
we get B̈ = 0, that is, B(t) = b0 + b1t with bi ∈ R. Under these assumptions,
degx Λ0(t, x) = m with leading coefficient b1gm(2n+1−m)/n. Then, the only
option is b1 = 0 and therefore ξ(t, x) = b0 and η(t, x) = 0, that is, dimLr = 1.

(iii) Assume n + 1 ≤ m < 2n + 1. The unbounded set (n,m) ∈ N2 in the
degrees space with these restriction may be studied by using the straight
lines parametrization m = n + k with n ≥ k and k ∈ N\{0}.

We put m = n + k. Since n ≥ k, we have degx Λ1(t, x) = 2n + 1 with
leading coefficient −2nf 2

nA(t)/[(n + 1)(n + 2)]. Therefore we get A(t) ≡ 0.
With exact arguments, we repeat verbatim the first paragraph of part (i)
obtaining thus C(t) = −Ḃ(t)/n and D(t) = −fn−1Ḃ(t)/[n2fn].

From now we have two possibilities, namely, either k = 1 or k > 1.

(a) If k > 1 then degx Λ2(t, x) = n + k with leading coefficient (n + 1 −
k)gn+kḂ(t)/n. This implies Ḃ(t) ≡ 0 because gn+k 6= 0 by hypothesis
and n + 1 − k > 0 due to the condition n ≥ k. Hence, we take the
constant B(t) = b0 ∈ R. But, in this case we get Y = ξ(t, x)∂t +
η(t, x)∂x = b0∂t so that dimLr = 1.

(b) If k = 1 then degx Λ2(t, x) = n + 1 with leading coefficient [ngn+1Ḃ(t)−
fnB̈(t)]/n. The vanishing of this coefficient gives a linear ordinary
differential equation for B(t) which general solution is

B(t) = b1 + b0
fn

ngn+1

exp

(
ngn+1

fn

t

)
,

with b0 and b1 arbitrary real constants. Moreover, one must impose
b0 6= 0 in order to have dimLr > 1. In short, we have that Λi(t, x) ≡ 0
if and only if the polynomials Pi(x) ≡ 0 for i = 1, 2 where

P1(x) = −[f1fn−1 + n2(n + 2)gn+1] +
n−1∑

i=0

[n(n− i)fnfi − (i + 1)fn−1fi+1]xi ,

P2(x) = [nf3
ng0 + 2n2f3

ng0 − fn−1f
2
ng1 − nf0fn−1fngn+1 − n2fn−1g

2
n+1]

−fn[−2n2f2
ng1 + 2fn−1fng2 + nfn−1f1gn+1 + n2fnf0gn+1 + n3g2

n+1]x +
n∑

i=2

fn[nf2
ngi(1− i + 2n)− fnfn−1gi+1(1 + i)− ngn+1(fifn−1 + nfi−1fn)]xi,

Moreover, the Lie point symmetry algebra has dimLr = 2 and it is
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spanned by

Y1 =
∂

∂t
, Y2 = exp

(
ngn+1

fn

t

)(
fn

ngn+1

∂

∂t
− fn−1 + nfn x

n2fn

∂

∂x

)
.

(iv) We suppose m = 2n + 1 and n > 0 (in particular m > 2). Then,
degx Λ1(t, x) = 2n + 1 with leading coefficient A(t)Ψ1, where Ψ1 := 3g2n+1−
2nf 2

n/(2 + 3n + n2). So we have two options, either A(t) ≡ 0 or Ψ1 = 0.

(a) Taking A(t) ≡ 0 we get, repeating verbatim the first paragraph of part
(i), C(t) = −Ḃ(t)/n and D(t) = −fn−1Ḃ(t)/[n2fn]. Under these con-
ditions we have

Y = B(t)
∂

∂t
− fn−1 + nfnx

n2fn

Ḃ(t)
∂

∂x
,

so that, a necessary condition to have dimLr > 1 is Ḃ(t) 6≡ 0. Then,
we have

Λ1(t, x) = −(fn−1 + nfnx)Ḃ(t)

n2fn

f ′(x) + Ḃ(t)f(x)− 2 + n

n
B̈(t) .

Solving the first order differential equation Λ1(t, x) = 0 with respect to
f(x) we obtain

f(x) = k0(fn−1 + nfnx)n +
n + 2

n

B̈(t)

Ḃ(t)
,

with k0 nonvanishing real constant. Since f(x) does not depend on t,
it follows B̈(t)/Ḃ(t) = k with k ∈ R. Hence, the general solution for
B(t) is

B(t) =

{
b0 + b1 exp(kt)

k
if k 6= 0 ,

b0 + b1t if k = 0 ,

with arbitrary constants bi. So we have two cases:

(a.1) When k 6= 0, we have

Λ0(t, x) =
−b1 exp(kt)

n3fn

Λ̄0(x) ,
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where

Λ̄0(x) = n(fn−1 + nfnx)g′(x)− n2(1 + 2n)fng(x)

+k(fn−1 + nfnx)(2k(n + 1) + k0n(fn−1 + nfnx)n)

Solving the first order differential equation Λ̄0(x) = 0 with respect
to g(x) we obtain

g(x) = (fn−1+nfnx)
[
k1(fn−1 + nfnx)2n +

k2(1 + n) + kk0n(fn−1 + nfnx)n

n3fn

]

with constant k1 ∈ R\{0}. We conclude that the Lie point sym-
metry algebra has dimLr = 2 and it is spanned by

Y1 =
∂

∂t
, Y2 = exp(kt)

(
1

k

∂

∂t
− fn−1 + nfn x

n2fn

∂

∂x

)
.

(a.2) If k = 0, then

Λ0(t, x) =
b1

n2fn

Λ̄0(x) ,

where Λ̄0(x) = −(fn−1 + nfnx)g′(x) + n(2n + 1)fng(x). Since
Ḃ(t) = b1 6= 0 in order to have dimLr > 1, Λ0(t, x) = 0 if and
only if Λ̄0(x) = 0 from which we get

g(x) = k1(fn−1 + nfnx)2n+1 ,

with k1 a real constant different from zero. Finally we obtain that
the Lie point symmetry algebra has dimLr = 2 and it is spanned
by

Y1 =
∂

∂t
, Y2 = t

∂

∂t
− fn−1 + nfn x

n2fn

∂

∂x
.

(b) If A(t) 6≡ 0, then we can solve g(x) from the equation Λ1(t, x) = 0 and
we obtain

g(x) = [4F (x)Ȧ(t)− f(x)(xȦ(t) + Ḃ(t))− 2Ċ(t)− {D(t)− (6.17)

2A(t)
∫

F (x)dx + x(C(t) + xȦ(t))}f ′(x)− 3xÄ(t) + B̈(t)]/[3A(t)],

where F ′(x) = f(x). From this expression, we deduce for n > 0
that degx g(x) = n2 + n + 1 with nonvanishing leading coefficient
[3nf 2

n]/[3(n + 1)(n + 2)] 6= 0. But, our hypothesis is degx g(x) = m =
2n + 1. This is only possible if n = 1 and this case is further analyzed
in case (viii). The remaining case, namely n = 0 and m = 1, is trivial
because the Liénard equation is linear and so dimLr = 8.
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After the analysis performed in (i)–(iv), only remains open the cases n = 0
and n = 1 with m > 3. Of course, when (n,m) ∈ {(0, 0), (0, 1)} then the
Liénard equation is linear and it has a 8–dimensional Lie point symmetry
algebra. Let us study the remaining cases.

(v) Suppose n = 0 and m > 2. Then, degx Λ1(t, x) = m with leading
coefficient 3gmA(t). So we have A(t) ≡ 0. Therefore Λ1(t, x) = Λ̄1(t) =
f0Ḃ(t) − B̈(t) + 2Ċ(t). On the other hand, degx Λ0(t, x) = m with leading
coefficient gm[2Ḃ(t)+(m−1)C(t)] so that Ḃ(t) = (1−m)C(t)/2 and, solving
the differential equation Λ̄1(t) = 0, we get C(t) = c0 exp[(m− 1)f0t/(m + 3)]
with arbitrary constant c0. Now, degx Λ0(t, x) = m−1 with leading coefficient
mgmD(t)− gm−1C(t). Hence we put D(t) = gm−1C(t)/(mgm). We note here
that, a necessary condition to have dimLr > 1 is c0 6= 0. Under these
conditions,

Λ0(t, x) =
c0 exp[(m− 1)f0t/(m + 3)]

m(m + 3)2gm

Λ̄0(x) ,

where Λ̄0(x) is the next polynomial

Λ̄0(x) = m2(3 + m)2g0gm − gm−1[2(m2 − 1)f 2
0 + (3 + m)2g1]

+
{
m(m− 1)gm[(3 + m)2g1 − 2(m + 1)f 2

0 ]− 2(3 + m)2g2gm−1

}
x

+
m−1∑
i=2

(3 + m)2[m(m− i)gmgi − (i + 1)gm−1gi+1]x
i .

Finally, if Λ̄0(x) ≡ 0, then the Lie point symmetry algebra has dimLr = 2
and it is spanned by

Y1 =
∂

∂t
, Y2 = − exp

(
(m− 1)f0t

m + 3

) (
m + 3

2f0

∂

∂t
− gm−1 + mgmx

mgm

∂

∂x

)
.

(vi) Suppose n = 0 and m = 2. Then, degx Λ1(t, x) = 2 with leading coeffi-
cient 3g2A(t). So we have A(t) ≡ 0. Now, degx Λ0(t, x) = 2 with leading co-
efficient g2[2Ḃ(t)+C(t)] so that C(t) = −2Ḃ(t). Therefore degx Λ0(t, x) = 1
with leading coefficient 2[D(t)g2 + g1Ḃ(t)− f0B̈(t)−B(3)(t)], so that D(t) =
[−g1Ḃ(t)+f0B̈(t)+B(3)(t)]/g2. Now, since Λ1(t, x) = f0Ḃ(t)−5B̈(t), we van-
ish Λ1(t, x) obtaining B(t) = b0 + 5b1 exp[tf0/5]/f0 with arbitrary constants
bi. Hence

Λ0(t, x) =
b1 exp[tf0/5]

625g2

(36f 4
0 − 625g2

1 + 2500g0g2) .
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We emphasize here that, a necessary condition to have dimLr > 1 is b1 6= 0.
Finally, if the parameter relation 36f 4

0 − 625g2
1 + 2500g0g2 = 0 is satisfied,

then the Lie point symmetry algebra has dimLr = 2 and it is spanned by

Y1 =
∂

∂t
, Y2 = exp

(
f0t

5

) (
5

f0

∂

∂t
− 25g1 − 6f 2

0 + 50g2x

25g2

∂

∂x

)
.

(vii) Suppose n = 1 and m > 3. Then, degx Λ1(t, x) = m with lead-
ing coefficient 9gmA(t). So we have A(t) ≡ 0. Now, degx Λ1(t, x) = 1
with leading coefficient f1[Ḃ(t) + C(t)] so that C(t) = −Ḃ(t). Therefore
Λ1(t, x) = f1D(t) + f0Ḃ(t) − 3B̈(t) so that D(t) = [3B̈(t) − f0Ḃ(t)]/f1.
Now, degx Λ0(t, x) = m with leading coefficient (m − 3)f1gmḂ(t). Hence,
B(t) = b0 ∈ R and we get a 1–dimensional Lie point symmetry algebra.

(viii) Assume n = 1 and m = 3. Then, degx Λ1(t, x) = 3 with leading
coefficient A(t)(9g3 − f 2

1 )/3. So we have two possibilities:

(a) Let A(t) ≡ 0 and 9g3 − f 2
1 6= 0. Hence, degx Λ1(t, x) = 1 with leading

coefficient f1[Ḃ(t) + C(t)] so that C(t) = −Ḃ(t). Therefore Λ1(t, x) =
f1D(t) + f0Ḃ(t) − 3B̈(t) so that D(t) = [3B̈(t) − f0Ḃ(t)]/f1. Now,
degx Λ0(t, x) = 2 with leading coefficient [(f1g2 − 3f0g3)Ḃ(t) + (9g3 −
f 2

1 )B̈(t)]/f1. From the vanishing of this coefficient, two cases arise:

(a.1) If f1g2 − 3f0g3 6= 0 then

B(t) = b0 +
b1(f

2
1 − 9g3)

f1g2 − 3f0g3

exp

(
(f1g2 − 3f0g3)t

f 2
1 − 9g3

)

with arbitrary constants bi. We remark here that, a necessary condition
to have dimLr > 1 is b1 6= 0. Then, Λ0(t, x) ≡ 0 if and only if the
parameter relations

0 = f2
1 (f2

1 g1 − 2f0f1g2 + 4g2
2) + 3[f2

1 (f2
0 − 6g1) + 4f0f1g2 − 9g2

2]g3

+9(9g1 − 2f2
0 )g2

3 ,

0 = 3f6
1 g0 − f0f

5
1 g1 + 27g2

3(4f
2
0 g2 + 9g1g2 − 81g0g3)− f4

1 [g2(f2
0 − 3g1)

+81g0g3] + f0f
3
1 [2g2

2 + 3g3(f2
0 + 6g1)]− 9f0f1g3[5g2

2 + g3(4f2
0 + 9g1)]

+3f2
1 [g3

2 + 2g2g3(f2
0 − 9g1) + 243g0g

2
3] ,

are satisfied. In short, the Lie point symmetry algebra has dimLr = 2
and it is spanned by

Y1 =
∂

∂t
,
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Y2 = exp
(

(f1g2 − 3f0g3)t
f2
1 − 9g3

)(
f2
1 − 9g3

f1g2 − 3f0g3

∂

∂t
+

3g2 − f0f1 + (9g3 − f3
1 )x

f2
1 − 9g3

∂

∂x

)
.

(a.2) If f1g2 − 3f0g3 = 0 then, taking g2 = 3f0g3/f1, degx Λ0(t, x) =
2 with leading coefficient (9g3 − f 2

1 )B̈(t)/f1. So B̈(t) ≡ 0, that is,
B(t) = b0 + b1t. In order to have dimLr > 1 we need b1 6= 0. Finally,
Λ0(t, x) ≡ 0 if and only if

0 = f 2
1 g1 − 3f 2

0 g3 , 0 = 3f1g0 − f0g1 .

In summary, the Lie point symmetry algebra has dimLr = 2 and it is
spanned by

Y1 =
∂

∂t
, Y2 = t

∂

∂t
− f0 + f1x

f1

∂

∂x
.

(b) Let A(t) 6≡ 0. Then we can solve g(x) from the equation Λ1(t, x) = 0 and
we obtain (6.17). More precisely, g(x) = f 2

1 x3/9 + f0f1x
2/3 + ḡ1(t)x +

ḡ0(t) with ḡ1(t) = −[f1C(t) − 3f0Ȧ(t) + f1Ḃ(t) + 3Ä(t)]/[3A(t)] and
ḡ0(t) = −[f1D(t) + f0Ḃ(t) + 2Ċ(t)− B̈(t)]/[3A(t)]. This means

g3 =
f 2

1

9
, g2 =

1

3
f0f1 ,

and, from ḡi(t) = gi with i = 0, 1, we solve C(t) and D(t) as a function
of A(t), B(t) and some of their derivatives. Finally, degx Λ1(t, x) = 1
and Λ1(t, x) ≡ 0 if and only if A(t) and B(t) satisfy the following two
coupled linear differential equations of order 4 with constant coefficients

−9A(iv) + 6f0A
(iii) + 3(f 2

0 − 3g1)Ä + 3(3f1g0 − f0g1)Ȧ = Ω1(B) ,

3f1B
(iv) − 6f1B

(iii) + f1(3f1g0 − f0g1)Ḃ = Ω2(A) ,(6.18)

with Ω1 = 2f1(3g1−f 2
0 )Ḃ+6f1B

(iii) and Ω2 = 6(f0f1g0−g2
1)Ȧ+6(f 2

0 −
2g1)A

(iii)− 6A(v). Hence, the general solution A(t) depends linearly on
4 arbitrary constants (and similarly for B(t)). In short, the Lie point
symmetry algebra is 8–dimensional. Here, we do not obtain the closed
form of the generators Yi, but their analyticity in all R2 is guaranteed
because the functions A(t) and B(t) are analytic in R since they are
solutions of the linear system (6.18).
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(ix) We suppose n = 1 and m = 2. Then, degx Λ1(t, x) = 3 with leading
coefficient −f 2

1 A(t)/3. So A(t) ≡ 0. Now, following verbatim the first para-
graph of part (viii)-(a) we get C(t) = −Ḃ(t) and D(t) = [3B̈(t)−f0Ḃ(t)]/f1.
Now, degx Λ0(t, x) = 2 with leading coefficient g2Ḃ(t)− f1B̈(t). Therefore,

B(t) = b0 +
b1f1

g2

exp

(
g2t

f1

)
,

with arbitrary constants bi. Moreover, b1 6= 0 if we want dimLr > 1. Finally,
Λ0(t, x) ≡ 0 if and only if the parameter relations

0 = f 2
1 g1 + 2g2(2g2 − f0f1) ,

0 = 3f 4
1 g0 − f0f

3
1 g1 − f 2

1 g2(f
2
0 − 3g1) + g2

2(2f0f1 + 3g2) ,

are satisfied. Hence, under these conditions, the Lie point symmetry algebra
has dimLr = 2 and it is spanned by

Y1 =
∂

∂t
,

Y2 = exp

(
g2t

f1

) (
f1

g2

∂

∂t
+

f0f1 − 3g2 + f 2
1 x

f 2
1

∂

∂x

)
.

(x) We suppose n = 1 and m = 1. The analysis is totally analogous to the
case (ix), obtaining A(t) ≡ 0, C(t) = −Ḃ(t) and D(t) = [3B̈(t)− f0Ḃ(t)]/f1.
Now, degx Λ0(t, x) = 2 with leading coefficient −f1B̈(t). Therefore, B(t) =
b0+b1t with arbitrary constants bi. Moreover, we need b1 6= 0 for dimLr > 1.
But, degx Λ0(t, x) = 1 with leading coefficient 2b1g1 which never vanishes.
Hence dimLr = 1.

(xi) We take n = 1 and m = 0. The analysis is the same as case (x) and
we get A(t) ≡ 0, C(t) = −Ḃ(t), D(t) = [3B̈(t)− f0Ḃ(t)]/f1, B(t) = b0 + b1t
with arbitrary constants bi and b1 6= 0 if we have dimLr > 1. Finally,
Λ0(t, x) = 3b1g0 6= 0 and therefore dimLr = 1.
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Chapter 7

Reversibility and the Center
Problem

Summary. In this work we study the narrow relation
between reversibility and the center problem and also
between reversibility and the integrability problem. It
is well known that an analytic system having either a
non-degenerate or nilpotent center at the origin is an-
alytically reversible or orbitally analytically reversible,
respectively. Here we prove the existence of a smooth
map that transforms an analytic system having a
degenerate center at the origin into a reversible linear
system (after rescaling the time). Moreover, if the
degenerate center has an analytic or a C∞ reversing
symmetry, the transformed system by the map has
also a reversing symmetry. From the knowledge of a
first integral we give a procedure to detect reversing
symmetries.

7.1 Introduction

This chapter is focused in the planar differential systems with a reversing
symmetry. A reversing symmetry is one of the fundamental symmetries in
natural science and it arises in many branches in physics, see for instance
[44, 59] and references therein. More specifically, this work is devoted to the

102
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study of two problems arising in the theory of analytic reversible systems in
the plane. The first one is the study of the narrow relation between reversibil-
ity and the center problem, see [50, 60]. It is well–known that an analytic
system having a non-degenerate (resp. nilpotent) center at the origin is an-
alytically reversible (resp. analytically orbitally reversible), see [8, 53, 58].
Nevertheless the relation between reversibility and the center problem for
degenerate singular points is not established. Here we prove the existence
of a smooth map that transforms an analytic system having a degenerate
center at the origin into a reversible linear system (after rescaling the time).
Moreover, if the degenerate center has an analytic or a C∞ reversing sym-
metry, the transformed system by the map has also a reversing symmetry.
From the knowledge of a local smooth first integral near the center we give
a procedure to detect reversing symmetries in some cases. The second prob-
lem in which we focus our attention is the study of the existence of a local
analytic first integral in a neighborhood of a non-degenerated singular point
for a reversible system and also for certain degenerate singular points.

The work is organized as follows: In Section 7.2 we summarize some
general definitions and results about reversible systems. In Section 7.3 we
study the relation between reversibility and the center problem presenting our
results for degenerate singular points. In Section 7.4 we show that an orbitally
analytically reversible system has always a local analytic first integral in a
neighborhood of a non-degenerate singular point. Moreover, we prove the
existence of a local analytic first integral in a neighborhood of a degenerate
singular point for some reversible systems.

7.2 Background

Consider two-dimensional analytic differential systems

ẋ = P (x, y), ẏ = Q(x, y), (7.1)

defined in a neighborhood U ⊂ R2 of the origin such that P (0, 0) = Q(0, 0) =
0. We denote by X = P (x, y)∂x + Q(x, y)∂y the associated vector field to
system (7.1) and divX = ∂P/∂x + ∂Q/∂y its divergence.

Recall that an analytic involution R : U → R2 is an analytic diffeomor-
phism different from the identity such that R ◦ R = Id, where Id is the
identity map. The following proposition can be deduced from the works
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developed by Montgomery and Zippin. In [49] the proposition is given for
C∞–involutions. For sake of completeness we give its proof.

Proposition 7.1 After a linear change of coordinates, any analytic involu-
tion different from the identity takes the form R(x, y) = (R1, R2) = (x +
r1(x, y),−y + r2(x, y)) with analytic functions ri without constant nor linear
terms. Moreover, the analytic near–identity change of coordinates φ(x, y) =
(u, v) = (x + · · · , y + · · ·) with

u =
x + R1

2
, v =

y −R2

2

linearizes the involution, that is, R0(u, v) = φ ◦R ◦ φ−1(u, v) = (u,−v).

Proof. Since R is a diffeomorphism near the origin, it is clear the linear part
of R is not null. Moreover, if we denote by B ∈ M2(R) the non vanishing
matrix associated to the linear part of R, it is easy to check that R ◦R = Id,
implies B2 = I2, the identity matrix. Hence, B is of the form

B =

(
a b
c d

)
,

with a2 + bc = cb + d2 = 1 and b(a + d) = c(a + d) = 0. Hence, we have two
cases: (i) a = −d and d2 + bc = 1; (ii) b = c = 0 and a2 = d2 = 1. Notice
that, when a and d have different sign, then case (ii) is included in case (i). It
is easy to see that no nonlinear involution R can exists in case (ii) with equal
sign of a and d. More precisely, in case b = c = 0 and a = d = ±1 we have
R(x, y) = (±x + f(x, y),±y + g(x, y)) with f and g functions without linear
nor constant terms. Then, the condition R(±x + f(x, y),±y + g(x, y)) = Id
does not have solution for any f and g.

From now we only study case (i) which is equivalent to the conditions
TrB = 0 and det B = −1. Therefore, doing a linear change of coordinates,
we can assume

B =

(
1 0
0 −1

)

without loss of generality. This implies that R(x, y) = (x + r1(x, y),−y +
r2(x, y)).
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Finally, taking into account R ◦ R = Id and the explicit expression of φ,
it is easy to see that

R0(u, v) = φ ◦R ◦ φ−1(u, v) = φ(R(x, y)) = φ(R1, R2)

= (u(R1, R2), v(R1, R2)) =

(
R1 + R1 ◦R

2
,
R2 −R2 ◦R

2

)

=

(
R1 + x

2
,
R2 − y

2

)
= (u,−v) ,

finishing the proof.

Definition 7.2 System (7.1) is Ck–reversible with k ∈ {1, 2, . . . ,∞, w} if
there is a Ck diffeomorphism R : U → U which is an involution such that
R∗X = −X ◦R, where X is the vector field associated to system (7.1).

When system (7.1) is reversible by means of an involution R, we will say
that R is a reversing symmetry for system (7.1). The manifold Fix(R) of
fixed points of R is defined as Fix(R) = {(x, y) ∈ R2|R(x, y) = (x, y)} and
it is assumed to be of dimension 1. If X is Cw–reversible, we also say that
X is analytically reversible. We will call orbitally analytically reversible to a
system (7.1) when in the set of all systems which are analytically orbitally
equivalent to it there is one which is analytically reversible.

The first examples of reversible systems were given by Poincaré, see [53].
Systems which are reversible by means of the involution R0(x, y) = (x,−y)
are called time–reversible systems. Notice that system (7.1) is time–reversible
if and only if P (x,−y) = −P (x, y) and Q(x,−y) = Q(x, y).

Remark. We note that the analytic near–identity change of coordinates
φ(x, y) = (u, v) that linearizes the involution R(x, y) transforms the reversible
system (7.1) into a time–reversible system

u̇ = vP̃ (u, v2), v̇ = Q̃(u, v2). (7.2)

Proposition 7.3 The critical point at the origin of a reversible system (7.1)
is always weak, that is, divX (0, 0) = 0. In particular, if the origin is a
nondegenerated singular point, then it is either a center or a weak hyperbolic
saddle.
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Proof. We shall prove that, if A is the matrix associated to the linear part
of a reversible system (7.1), then TrA = 0. If A = 0 it is obvious. So, we
assume A 6= 0. We take

A =

(
α β
γ δ

)
,

and the involution R(x, y) = (ax + by + · · · , cx− ay + · · ·) with a2 + bc = 1.
Imposing the reversibility condition R∗X = −X ◦R, we obtain at first order
the condition α + δ = 0. Hence divX (0, 0) = 0.

7.2.1 The non-invertible map Ψ

Let Ψ be a non-invertible map such that Ψ◦R = Ψ where R is an involution.
We have the following definition depending on the functional class of Ψ.

Definition 7.4 A reversible system (7.1) by means of the involution R(x, y)
defined in U is said to be algebraically reversible if Ψ = (f(x, y), g(x, y))
being f and g algebraic over C(x, y). Additionally, if f and g are rational
over C(x, y). Then, the system is said to be rationally reversible.

Definition 7.5 A reversible system (7.1) by means of the involution R(x, y)
defined in U is reducible at the origin via the map Ψ = (f(x, y), g(x, y)),
with f and g analytic functions (real or complex) around of it, if the differ-
ential equation associated to the system is the pull-back associated to Ψ of a
differential equation without singularities on Ψ(U).

We want to remark that in [22] and [66] the authors define an algebraically
(resp. rational) reversible system as a reversible reducible system via the al-
gebraic (resp. rational) map Ψ. The standard example of rationally reversible
system is the time–reversible system ẋ = −y + P (x2, y), ẏ = x(1 + Q(x2, y))
which has the reversing symmetry R0 = (−x, y). In this case, Ψ0 = (x2, y) is
the map realizing the reversibility. Notice that Ψ0 ◦ R0 = Ψ0. The curve of
non-invertibility of Ψ is the so-called fold curve. The pull–back induced by
Ψ creates a symmetric system respect to the fold curve, that is, of the y axis.
The next proposition shows the behavior of the the map Ψ under a change of
coordinates. Let system (7.1) be reversible by means of an involution R(x, y).
After apply the change of variables φ that linearizes the involution R, system
(7.1) is transformed into system (7.2). Then, the following result holds.
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Proposition 7.6 If system (7.2) is reducible at the origin via the map Ψ0,
then system (7.1) is reducible at the origin via the map Ψ = φ−1 ◦Ψ0 ◦φ such
that φ is the change of variables that linearizes the involution R of system
(7.1).

Proof. Let X and X̄ be the vector fields associated to system (7.1) and
system (7.2), respectively. In other words, φ∗X = X̄ .

We will show that if the map Ψ0 reduces the vector field X̄ to a non–
singular vector field Ȳ at the origin (that is, Ȳ is a rescaling of Ψ0∗X̄ ) then
the map φ−1 ◦Ψ0 ◦ φ reduces the vector field X to the vector field Y , which
is non–singular at the origin after a rescaling. Let Ψ = φ−1 ◦ Ψ0 ◦ φ. Then,
it follows

Y = Ψ∗X = Ψ∗(φ∗X̄ ) = (Ψ ◦ φ−1)∗X̄ = (φ−1 ◦Ψ0)∗X̄ = φ∗(Ψ0∗X̄ ) .

Finally, since Ψ0∗X̄ is orbitally equivalent to a non–singular vector field at
the origin and φ is a diffeomorphism, we get that Y is orbitally equivalent to
a non–singular vector field at the origin.

Hence, given an analytic involution R and using the change of variables
that linearizes this involution we always can find the non-invertible map Ψ,
see Lemma 3.6 in [59]. The reciprocal problem, that is to find R from the
knowledge of Ψ, is a strong problem based in the relation Ψ ◦R = Ψ.

7.3 Reversibility and the center problem

The origin of system (7.1) is called monodromic if there are no orbits tend-
ing to or leaving the origin with a certain angle. For analytic systems, a
monodromic singular point is always a center or a focus, see [43]. Poincaré
shown that if the origin of system (7.1) is monodromic and satisfying R0∗X =
−X ◦R0, with R0 the involution R0 = (−x, y), then the system has a center
at the origin (the symmetry principle), see [50]. Time–reversibility implies
some geometric properties, y–axis is a line of symmetry for the orbits of the
system, hence, no trajectory around the origin can be a spiral.

In this section we discuss the relation between reversibility and the sys-
tems having a center type singularity at the origin. Let us consider the
system (

ẋ
ẏ

)
= Ai

(
x
y

)
+

(
f(x, y)
g(x, y)

)
, (7.3)
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with Ai a real 2 × 2 matrix. The system is defined in an open set U ⊂ R2

having a center at the origin, where f and g are analytic functions in U
starting in at least second order terms. Doing a linear change of coordinates
and a rescaling of time (if necessary), the system can be written with its
linear part into the Jordan form, that is, Ai must be of the form:

(i) A1 =

(
0 −1
1 0

)
, (ii) A2 =

(
0 1
0 0

)
, (iii) A3 =

(
0 0
0 0

)
. (7.4)

When the origin of (7.3) is a center, the class (i) is called non-degenerated
center, the class (ii) nilpotent center and (iii) degenerated center. According
to Poincaré, system (7.3) with linear part A1 has a center at the origin if,
and only if, there exists a near–identity analytic change of coordinates

(u, v) = φ(x, y) = (x + o(|(x, y)|), y + o(|(x, y)|)) ,

transforming system (7.3) with linear part A1 into the normal form

u̇ = −v[1 + ψ(u2 + v2)] , v̇ = u[1 + ψ(u2 + v2)] , (7.5)

with ψ an analytic function near the origin such that ψ(0) = 0. It is clear
that the transformed system (7.5) is time–reversible. Then, the original
system (7.3) with linear part A1 is reversible by means of the involution
R = φ−1 ◦R0 ◦ φ. It follows that all system (7.3) with linear part A1 having
a center is reversible. This assertion is also stated in [60]. Thus, we have the
following result.

Theorem 7.7 System (7.3) with linear part A1 is a center if, and only if, it
is analytically reversible.

Strózyna and ŻoÃla̧dek have proved in [58] that there exits an analytic
change of coordinates near the origin transforming the nilpotent system (7.3)
with linear part A2 into a generalized Liénard system ẋ = y, ẏ = a(x)+yb̄(x)
with a(x) = asx

s + · · ·, s ≥ 2, and b̄(0) = 0. In fact, following [58], if the
nilpotent singularity is monodromic then there is a change of variables and a
time rescaling leading to ẋ = y, ẏ = −x2n−1 + yb(x) with n ≥ 2. Hence, the
center problem for nilpotent singularities reduce to the study of the parity
of the function b(x) according with the center conditions for the Liénard
systems, see also [8]. Thus the following theorem can be established.
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Theorem 7.8 Suppose that the analytic system (7.3) with linear part A2 has
a center at the origin. Then, there exists an analytic change of variables and
a unity time rescaling such that it can be written as

ẋ = y, ẏ = −x2n−1 + yb(x) , (7.6)

with n ≥ 2 an integer and b(x) an analytic odd function.

It is straightforward to check that system (7.6) is analytically reversible
by means of the involution R(x, y) = (−x, y). Hence, we can establish the
following result.

Theorem 7.9 System (7.3) with linear part A2 satisfying the monodromy
conditions is a center if, and only if, is orbitally analytically reversible.

The problem that remains open is to characterize when an analytic system
having a degenerate center is Ck–reversible. A contribution towards the
solution of this problem is the objective of the following section.

7.3.1 Reversibility for degenerated centers

In the previous subsection, we have seen that all non-degenerated and nilpo-
tent analytic centers are analytically reversible or orbitally analytically re-
versible, respectively. However, in [7] is proved the existence of analytic
systems with a degenerated center that admits neither a Liouville first inte-
gral nor a nontrivial reversal symmetry. A natural open question is if any
degenerated center admits a Ck(U) involution where U ⊂ R2 containing the
center with k ∈ N∪{∞} or perhaps a non-continuous involution R, see [59].
In the following we investigate the existence of a C∞ map Φ bringing system
(7.1) having a degenerated center at the origin into a reversible linear system.
Moreover, we study the existence of an analytic or a C∞ involution R and
the relation between them.

Assume that system (7.1) has a degenerated center at the origin. In [48]
the authors prove the following results.

Theorem 7.10 System (7.1) has a center at the origin if and only if there
exits a first integral of class C∞ with an isolated minimum at the origin in a
neighborhood of it.
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Proposition 7.11 System (7.1) has a center at the origin if and only if there
exits an invariant Lebesgue measure with density µ of class C∞ defined in a
neighborhood of it.

From a classical Liouville result, it is known that a measure with density
µ is invariant for the flow of X if and only if X (µ) + µ divX = 0. Hence,
Proposition 7.11 proves the existence of an integrating factor µ of class C∞
near the center at the origin of system (7.1). Moreover, we can establish the
following result.

Proposition 7.12 System (7.1) with a C∞ first integral H defined in a
neighborhood of the origin has always an inverse integrating factor V of class
C∞ in a neighborhood of the origin.

Proof. Taking V = PH/(∂H/∂y) = −QH/(∂H/∂x), it is straightforward to
see, by construction, that this V is of class C∞.

Remark. Assume that system (7.1) has a center at the origin. We claim
that there always exists a C∞ integrating factor µ of Proposition 7.11 dif-
ferent from 1/V , being V the C∞ inverse integrating factor of Proposition
7.12. This fact follows because, if we assume µ = 1/V , then we can always
construct another C∞ integrating factor µ̄ of the form µ̄ = µH with H a C∞
first integral of Theorem 7.10. Hence, µ̄ 6= 1/V . This point will be useful in
the proof of the next theorem.

In the next theorem we present the main result of this section.

Theorem 7.13 Assume that the analytic system (7.1) has a degenerated cen-
ter at the origin. Then, there exits a map Φ(x, y) of class C∞ in a neighbor-
hood U of the origin such that transforms (after rescaling the time) system
(7.1) into a linear time reversible system.

Proof. We will split the proof in two parts according to wether system (7.1)
is or not hamiltonian.

We consider first the case in which system (7.1) is not hamiltonian. From
Theorem 7.10 we know the existence of a smooth first integral of system (7.1)
in a neighborhood of the origin. Applying Proposition 7.12 it follows that
there exits an inverse integrating factor V of class C∞ in a neighborhood of
the origin. Moreover, from Proposition 7.11 we also know the existence of
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an integrating factor µ of class C∞ in a neighborhood of the origin. Then,
it is well known that we can construct another first integral H of class C∞
in a neighborhood of the origin of system (7.1) of the form H = µV . Since
XV = (divX )V and Xµ = −(divX )µ, we can define a map of class C∞ in
a neighborhood of the origin as Φ1 = (V, µ) such that system (7.1) in the
new coordinates (V, µ) takes the form V̇ = (divX )V and µ̇ = −(divX )µ.
Performing the linear change of variables Φ2 = (r, s) = (V − µ, V + µ) the
system becomes, after rescaling the time, the linear system r′ = s and s′ = r
which is a reversible system by means of the involution R(s, r) = (−s, r).
Therefore, the map Φ = Φ2 ◦ Φ1 of class C∞ in a neighborhood of the origin
transforms (after rescaling the time) system (7.1) into a time–reversible sys-
tem.

Assume now that the analytic system (7.1) is hamiltonian. In this case we
can not follow the same reasonings of the previous case because any integrat-
ing factor or inverse integrating factor is of the form f(H), where H is a first
integral of system (7.1). System (7.1) has an analytic first integral H(x, y)
around the origin such that H(0, 0) = 0. Since the origin is a center for sys-
tem (7.1), it has no invariant straight line through it. It follows that neither
x nor y can divide H(x, y). Hence, there is a positive integer m such that
∂kH(0, 0)/∂yk = 0 for k = 1, . . . , m−1 and ∂mH(0, 0)/∂ym 6= 0. From Weier-
strass Preparation Theorem, see [11], it follows that in a neighborhood of the
origin, the function H(x, y) can be represented as H(x, y) = w(x, y)u(x, y)
where w(x, y) =

∑m
i=0 ϕi(x)yi with ϕm ≡ 1 and ϕi(x) analytic functions near

the origin for 0 ≤ i ≤ m − 1 and u is a unity, that is, u(x, y) is an analytic
function in a neighborhood of the origin satisfying u(0, 0) 6= 0.

We can always factorize w(x, y) =
∏k

i=1(y − gi(x))mi with
∑k

i=1 mi = m
where gi(x) are the analytic branches of w(x, y) near the origin and the
positive integers mi their multiplicities, see [11]. Notice that, since w(x, y)
has an isolated zero at (0, 0), it follows that no branches gi(x) can be real–
valued. In fact, branches appear in complex conjugates couples. Thus, we can
write w(x, y) = v(x, y)v̄(x, y) where we define v(x, y) =

∏k/2
i=1(y − gi(x))mi

and the overbar denotes complex conjugated operation, that is, v̄(x, y) =∏k
i=k/2+1(y − gi(x))mi . Of course, this means that H(x, y) = (f 2(x, y) +

g2(x, y))u(x, y) where f and g are real valued functions satisfying v = f + ig
with i2 = −1. Hence, one can take a C∞ map in a neighborhood of the
origin as Φ = (r, s) = (f

√
u, g

√
u) that transforms (after rescaling the
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time) system (7.1) into the time–reversible system r′ = −s and s′ = r.
In order to characterize the time–rescaling realized above, we must to com-
pute either X (f

√
u) or X (g

√
u) with X = P (x, y)∂x + Q(x, y)∂y. Taking

into account that that ∂H/∂x = Q/V and ∂H/∂y = −P/V where V (x, y)
is the inverse integrating factor of system (7.1) with associated first inte-
gral H(x, y) = (f 2(x, y) + g2(x, y))u(x, y), it is straightforward to see that
X (f

√
u) = −2V JΦg

√
u where JΦ(x, y) is the jacobian determinant of the

map Φ. Then, the time–rescaling realized is t 7→ τ with dτ = 2V JΦ dt.

In fact, the former result shows how system (7.1) having a degenerated
center at the origin is transformed, after rescaling the time, into a time-
reversible system having either a linear saddle or the linear center at the
origin (see the proof of Theorem 7.13). Let R̃(f, g) be any analytic involution
near the origin. Let X̄ be either the linear center −g∂f + f∂g or the linear
saddle g∂f + f∂g. Assume that X̄ is reversible under R̃. Then, R̃(f, g) =
(af +cg+ · · · , cf−ag+ · · ·) with a2 +c2 = 1 in the center case and R̃(f, g) =
(af − cg + · · · , cf − ag + · · ·) with a2 − c2 = 1 for the saddle. The proof of
this fact is just to take a formal power series around the origin for R̃ whose
linear part be a linear involution and to obtain its coefficients by imposing
the reversibility condition R̃∗X̄ = −X̄ ◦ R̃.

The next proposition states that the condition of being reversible X is
invariant under the map Φ of Theorem 7.13. Moreover, Proposition 7.15
shows that the the condition of being reversible Φ∗X defined on Φ(U) is
invariant after rescaling the time.

Proposition 7.14 Assume that the analytic system (7.1) has a degener-
ated center at the origin and is C∞–reversible by means of the involution
R. Let Φ be a smooth map defined on U such that the curve of noninvertibil-
ity det(dΦ) = 0 divide U in open sets Ui. Then, the vector field Φ∗X defined
on Φ(U) is reversible by means of the involution Ra = Φ◦R◦Φ−1

i where Φ−1
i

is the inverse of the diffeomorphism Φ|Ui
for some i.

Proof. Using the notation of the proposition, the open neighborhood U of
the origin is given by the union

U = ∪iUi ∪ {(x, y) ∈ U : det(dΦ(x, y)) = 0} .

Then, from the inverse function theorem, we have that the restriction of the
smooth map Φ : U → Φ(U) to the open subset Ui denoted by Φ|Ui

is a
smooth diffeomorphism for all i having as inverse Φ−1

i : Φ(U) → Ui.
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Let X be an analytic vector field defined on U which is reversible by
means of the involution R. We define the map Ra : Φ(U) → Φ(U) as
Ra = Φ ◦ R ◦ Φ−1

i . We note that, in fact, Ra is an involution. Finally,
if we define Y the vector field on Φ(U) given by Y = Φ∗X , we claim that
Ra∗Y = −Y ◦ Ra proving thus the proposition. We have

Ra∗Y = (Ra ◦ Φ)∗X = (Φ ◦R ◦ Φ−1
i ◦ Φ)∗X = (Φ ◦R)∗X = Φ∗(R∗X )

= −Φ∗(X ◦ R) = −Φ∗X ◦ Φ∗R = −Y ◦ Ra ,

and the claim is proved.

Proposition 7.15 Assume that a vector field hX is reversible under an in-
volution R where h is a scalar function. Hence, the reescaled vector field X
is reversible under R.

Proof. Since hX is a reversible vector field under R, we have R∗(hX ) =
−(hX )◦R. Therefore (h◦R−1)R∗X = −(h◦R)(X ◦R). Taking into account
h ◦R = h ◦R−1 = h, the proposition is proved.

The following result shows that given an involution R on U there exists
a fold mapping Ψ, that is, satisfying Ψ ◦ R = Ψ and it shows that from the
knowledge of Φ we can look for an analytic or a C∞ involution R.

Proposition 7.16 Assume that the analytic system (7.1) has a degenerated
center at the origin. Assume also that there exists an involution R of class
C∞ such that Φ ◦ R = Ra ◦ Φ and R∗X = −X ◦ R, where Ra ∈ R̃. Then,
system (7.1) is a C∞–reversible center in a neighborhood of the origin by
means of the map Ψ = Ψ0 ◦ ϕ ◦ Φ where ϕ is the change of coordinates that
brings the involution Ra to R0 = (−x, y), that is, Ra = ϕ−1 ◦R0 ◦ ϕ.

Proof. Since Ψ0 ◦ R0 = Ψ0, it follows Ψ0 ◦ ϕ ◦ Ra = Ψ0 ◦ ϕ. Taking into
account Φ ◦ R = Ra ◦ Φ, we get Ψ0 ◦ ϕ ◦ Φ ◦ R = Ψ0 ◦ ϕ ◦ Φ which means
Ψ ◦R = Ψ.

The following figure clarifies how a neighborhood U of the origin con-
taining part of the curve of non-invertibility Γ = det(dΦ) = 0 and the curve
of fixes points of R i.e., the fold curve Fix(R), is transformed by the map
Ψ = Ψ0 ◦ ϕ ◦ Φ realizing the reversibility.
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7.3.2 The functional class of the map Ψ realizing the
reversibility

Notice that, given a reversible analytic system with a degenerated center at
the origin, the functional class of the map Ψ of Proposition 7.16 realizing
the reversibility on U is deeply related with the functional class of the first
integral H defined around of the center. In the light of the result of Theorem
7.13 the following result holds.

Proposition 7.17 Assume that the analytic system (7.1) be a reversible
hamiltonian system with a degenerated center at the origin. Then, the map
Ψ of Proposition 7.16 realizing the reversibility on U is analytic.

Proof. From Theorem 7.13 it follows that the two factors of the first inte-
gral of (7.1) around the origin are analytic which implies that Φ is analytic.
Hence, since the map Ψ = Ψ0 ◦ϕ ◦Φ is a composition of analytic maps, Ψ is
analytic.

In the next proposition we show the relationship between the functional
class of the map Ψ realizing the reversibility for system (7.1) having a degen-
erated center at the origin and the fact that system (7.1) possess a Darboux
first integral defined in a neighborhood of the degenerated center, see [16, 17].

Proposition 7.18 Assume that the analytic system (7.1) be a reversible sys-
tem with a degenerated center at the origin. Moreover, assume also that sys-
tem (7.1) possesses a Darboux first integral of the form H =

∏k
i=1 fαi

i where
fi = 0 are irreducible invariant algebraic curves and αi ∈ Q. Then, the map
Ψ of Proposition 7.16 realizing the reversibility is rational.
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Proof. It is straightforward to see that a system which admits a Darboux
first integral around the origin with αi ∈ Q admits a Darboux first integral
around the origin of the form H =

∏k
i=1 fβi

i with βi ∈ Z. Moreover, always
exists a factorization of H such that the factors are rational. Hence, the map
Φ and the map Ψ realizing the reversibility are rational functions.

In the next section we apply the results obtained in Theorem 7.13 and
Proposition 7.16 in order to determine the reversibility condition for systems
having a degenerated center at the origin.

7.3.3 Examples

The method works as follows. First, we factorize the C∞ first integral around
the center of system (7.1) in order to obtain the map Φ which brings the sys-
tem into a time–reversible system (after rescaling the time). Second, we solve
the equation Φ◦R = R̃◦Φ to find an involution R such that R∗X = −X ◦R,
where X is the vector field associated to system (7.1). Here R̃ is a family of
reversing symmetries of the linear center. According with Proposition 7.15
any involution Ra admitted by Φ∗X is an involution of the linear center, i.e.,
Ra ∈ R̃. Finally, applying Proposition 7.1 we get the analytic change of
variables that transform system (7.1) into a time–reversible system.

Example 1. Consider the hamiltonian system

ẋ = −6y2(x3 + 2y3), ẏ = 6x2(x3 + y3). (7.7)

which has the analytic first integral H = 2y6+x6+2x3y3. The origin of system
(7.7) is a center because is a monodromic singular point with an analytic first
integral around of it. We can factorize H = (x3 + (1 + i)y3)(x3 + (1− i)y3).
Taking Φ = (f, g) = (x3 + y3, y3), H becomes H = f 2 + g2 and system (7.7)
is transformed into

ḟ = −g k(f, g), ġ = f k(f, g) , (7.8)

where k = 9(f − g)2/3g2/3. Notice that rescaling the time we obtain the lin-
ear center which admits the family of linear involutions given by R̃(f, g) =
(af + cg, cf − ag) with c2 = 1 − a2. We are looking (if it exists) for a real
value ã such that k ◦Rã = k. Recall that, if there exists such ã, then system
(7.8) is reversible by means of the involution Rã. Finally, we will search for
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an involution R of class C∞ such that Φ ◦ R = Rã ◦ Φ and R∗X = −X ◦ R
where X is the vector field associated to system (7.7).

It is easy to see that k(f, g) = k(af + cg, cf − ag) when a = c =√
2/2. Therefore system (7.8) is a reversible system by means of the in-

volution R√
2/2(f, g) =

√
2/2(f + g, f − g). Moreover, the involution R =

(21/6y, 2−1/6x) satisfies Φ◦R = R√
2/2Φ and R∗X = −X ◦R. Hence, we have

showed that system (7.7) is reversible by means of R.

Since the analytic change of variables φ = (z, w) = 1/2(−2−1/6x +
y, 2−1/6x + y) brings the involution R to the canonical Jordan form R0 =
(−z, w), it follows that φ transforms system (7.7) into the time reversible
system

ż = w((1 +
√

2)w4 + 2(−1 + 5
√

2)w2z2 + (1 + 5
√

2)z4),

ẇ = −z((−1 + 5
√

2)w4 + 2(1 + 5
√

2)w2z2 + (−1 +
√

2)z4).

Moreover, applying Proposition 7.16 we obtain the map realizing the re-

versibility as Ψ = Ψ0 ◦ ϕ ◦ Φ = ((2 − √
2)(x3 − √

2y3)2, (
√

2 +
√

2)(x3 +√
2y3))with ϕ = (((

√
2−√2)/2)f − ((

√
2 +

√
2)/2)g, ((

√
2 +

√
2)/2)f +

((
√

2−√2)/2)g) because Ψ ◦ R = Ψ. Notice that system (7.7) is reducible
at the origin via the map Ψ.

Example 2. Consider the hamiltonian system

ẋ = −y2(3x2 + y + 9x2y3 − 9xy6 + 3y9), ẏ = (x + y3)3 , (7.9)

which has the polynomial first integral H = y4 + (x + y3)4 around the ori-
gin. The origin of system (7.9) is a center because it is a monodromic sin-
gular point with an analytic first integral around of it. We can factorize
H = ((x + y3)2 − iy2)((x + y3)2 + iy2). Taking Φ = (f, g) = ((x + y3)2, y2),
system (7.9) is transformed into ḟ = 2

√
fg g and ġ = −√fg f which

is a reversible system by means of the involution R0(f, g) = (g, f), i.e.,
Ra(f, g) with a = 0 and consequently c = 1. Moreover, the involution
R = (y− (x + y3)3, x + y3) satisfies Φ ◦R = R0Φ and R∗X = −X ◦R, where
X is the vector field associated to system (7.9). Hence, we have showed that
system (7.9) is reversible by means of R.
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In the next example we consider an analytic system with a degenerated
center at the origin which has a C∞ first integral around of it.

Example 3. Consider the system

ẋ = (x5 − y)(2x2 + x4 + x10 + 2x12 + x20 − 2x5y − 4x7y − 4x15y + y2

+2x2y2 + 6x10y2 − 4x5y3 + y4), (7.10)

ẏ = x(2x2 + 2x4 + 11x10 + 9x12 + 5x18 + 12x20 + 5x28 − 12x5y − 13x7y

−15x13y − 38x15y − 25x23y + y2 + 4x2y2 + 15x8y2 + 42x10y2

+50x18y2 − 5x3y3 − 18x5y3 − 50x13y3 + 2y4 + 25x8y4 − 5x3y5),

which has a C∞ first integral H = exp[−1/(x2 + (x5 − y)2)](2x2 + (x5 −
y)2) around the origin. The origin of system (7.10) is a center because is
a monodromic singular point with a first integral of class C∞ around of
it. Factorizing H, we obtain the map Φ = (f, g) = exp[−1/ (2(x2 + (x5 −
y)2)] (

√
2 x, x5 − y) of class C∞ around the origin that transforms system

(7.10) into the system ḟ =
√

2 (1 + W (s))/W (s)2 g and ġ = −√2 (1 +
W (s))/W (s)2 f , where W (s) is the Lambert function and s = 2/(f 2 + 2g2).
The Lambert W function, is the inverse function of f(w) = wew where ew

is the natural exponential function and w is any complex number. Notice
that the transformed system is a time–reversible system by means of the
involution R1(f, g) = (f,−g). Moreover,

R =
(
x((x2 + (x5 − y)2) W (r) )−1/2, exp[1/2((−1/(x2 + (x5 − y)2) + W (r) )]

(x5 − y + x5 ((x2 + (x5 − y)2) W (r) )−2)
)
,

where r = exp[1/(x2 + (x5 − y)2)] (x2 + (x5 − y)2), satisfies the equation
Φ ◦ R = R1 ◦ Φ. In fact, using the property W (exp(α) α) = α, we can
simplify the expression of R as R = (x,−y + 2x5), which is an involution
satisfying R∗X = −X ◦ R, where X is the vector field associated to sys-
tem (7.10). From Proposition 7.1, we get the analytic change of variables
φ = (z, w) = (x,−x5 + y) bringing system (7.10) into the time–reversible
system ż = −w(2z2 + w2 + (z2 + w2)2), ẇ = z(2z2 + w2 + 2(z2 + w2)2).

In [3] the authors present the following polynomial system having a non
analytically reversible degenerated center at the origin, i.e., the system does
not admits as reversing symmetry a local analytic involution near the center.
We shall obtain the map Φ which transforms such system (after rescaling
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the time) into a time–reversible system and we will use it to confirm the
aforementioned property.

Example 4. Consider the following hamiltonian function H = (1+ b2)x10−
2bx5y3 + y6 with b > 0. Associated to H, one has the following hamiltonian
system

ẋ = 6y2(bx5 − y3), ẏ = 10x9 + 10b2x9 − 10ax4y3, (7.11)

having a degenerated center at the origin. Since, we can write H = (y3 −
bx5)2 + y6, we take Φ = (f, g) = (y3 − bx5, y3). Performing the map Φ we
obtain (after rescaling the time) the linear center f ′ = −g, g′ = f . The
time–rescaling realized is given by dτ = (15/211/15 g2/5(f + bg)4/3)dt. On the
other hand, the set of analytic reversing symmetries admitted for the linear
center is given by the following 2–parameter family R̃(f, g) = (af + cg +
K(x, y)), cf−ag+M(x, y)), with a2+c2 = 1 and M(x, y) and K(x, y) starting
at order greater or equal than two. Therefore, the family of maps R(x, y) =
(2−1/3(( (−2ba±√1− a2 (1−b2) )x5+(a±√1− a2 b )y3 +K(−bx5+y3, x5)+
bM(−bx5 + y3, x5)))1/3, (2−1/5(±√1− a2 y3 − (a± b

√
1− a2) x5 M(−bx5 +

y3, x5)))1/5) satisfies the equation Φ ◦ R = R̃ ◦Φ. It is clear that there is no
involutions inside the family R.

7.4 Analytic integrability via reversibility

Consider the systems which are time–reversible with R0 = (x,−y), that is

ẋ = yP (x, y2), ẏ = Q(x, y2). (7.12)

Taking z = y2, we obtain (after ignoring a common factor) the reduced
system

ẋ = P (x, z), ż = 2Q(x, z). (7.13)

When the linear part of system (7.12) takes the form A1, then the reduced
system (7.13) is a non-singular system at the origin because P (0, 0) 6= 0.
Hence (7.13) has a local analytic first integral near the origin. Pulling back
this first integral we obtain an analytic first integral around the origin of
system (7.12). In this example, the map Ψ0 = (x, y2) provides a tool for de-
tecting an analytic first integral of system (7.12). In the following results we
prove the existence of an analytic first integral for some reversible systems by
using this method. Let us consider first system (7.1) with a non-degenerated
singular point.
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Proposition 7.19 If system (7.1) is an analytically reversible differential
system with a hyperbolic weak saddle (i.e., with real eigenvalues λ1 and λ2,
satisfying λ1/λ2 = −1) at the origin, then it has a local analytic first integral
at the origin.

Proof. If system (7.1) is an analytically reversible system by means of an
involution R(x, y), then applying Proposition 7.1 there exists an analytic
change of variables (x, y) 7→ (u, v) that transforms system (7.1) into system
(7.2). More precisely, since the origin is a hyperbolic weak saddle, we have
u̇ = (av + vP̃ (u, v2))h(u, v), v̇ = (bu + Q̃(u, v2))h(u, v) with ab > 0 where
P̃ (0, 0) = 0 and Q̃(0, 0) = ∂Q̃/∂u(0, 0) = 0. After ignoring the common
factor h(u, v), we take z = v2 and (deleting a common factor again) we
obtain the reduced system u̇ = (a + P̃ (u, z)), ż = 2(bu + Q̃(u, z)). Since
P̃ (0, 0) = 0, the reduced system is non–singular at the origin. Then, we can
get a local analytic first integral H(u, z) around the origin. Pulling back to
the initial coordinates, we obtain a local analytic first integral H(x, y) around
the origin of system (7.1).

Proposition 7.20 Assume that the analytic system (7.1) has an analyti-
cally integrable weak saddle at the origin, then it is an orbitally analytically
reversible system.

Proof. It is well known that a weak saddle of an analytic system has a local
analytic first integral around it if and only if all the saddle quantities vanish.
In particular, the saddle must be analytically orbitally linearizable, see [37].
Hence, there exists an analytic change of variables φ(x, y) = (u, v) = (x +
· · · , y+· · ·) that transforms system (7.1) into u̇ = λuh(u, v), v̇ = −λvh(u, v)
with λ ∈ R\{0} and h(0, 0) 6= 0, which is orbitally equivalent to an analyt-
ically reversible system with analytic reversing symmetry R̃(u, v) = (v, u).

Theorem 7.21 Assume that the analytic system (7.1) has a non–degenerated
weak singular point at the origin. Then, it has a local analytic first integral
around the origin if and only if it is orbitally analytically reversible.

Proof. We recall that, a topological obstruction for the existence of an an-
alytic first integral in a neighborhood of a singular point is the existence
of at least one parabolic or elliptic sector, see [52]. Hence, taking into ac-
count the kinds of elementary singular points, we conclude that the origin of
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system (7.1) will be analytically integrable only in the cases of centers and
saddles. Centers are analytically reversibles and analytically integrable from
Poincaré’s result. On the other hand, taking into account Propositions 7.19
and 7.20, we prove the result.

In the next result we present an improvement of a theorem stated for
nilpotent centers in [18]. We want to emphasize that our approach gives a
short proof using elementary methods. Moreover, our theorem is a general-
ization that can be applied to other types of nilpotent singular points.

Theorem 7.22 Consider the time–reversible analytic differential system with
a nilpotent singularity at the origin of the form

ẋ = y(1 + P (x, y2)), ẏ = Q(x, y2), (7.14)

with P and Q analytic functions in a neighborhood of the origin such that
P (0, 0) = 0, Q(0, 0) = ∂Q/∂x(0, 0) = 0 . Then, system (7.14) has a local
analytic first integral at the origin.

Proof. Taking z = y2, we obtain (after ignoring a common factor) the reduced
system

ẋ = 1 + P (x, z), ż = 2Q(x, z)

which is a non–singular system at the origin. Hence, it has a local analytic
first integral H(x, z). Doing the pull–back we obtain a local analytic first
integral H(x, y2) of system (7.14).

Notice that Theorem 7.22 also works with other types of nilpotent singu-
larities like for instance the family ẋ = y, ẏ = ax2m(1 + f(x)) + y2g(x, y2),
where a ∈ R, m ∈ N and with f and g analytic functions around the origin
such that f(0) = 0. This family has a cusp at the origin. In the following the-
orem we show a generalization of Theorem 7.22 for degenerated singularities,
i.e., singularities with null eigenvalues.

Proposition 7.23 Consider the analytic time–reversible system with a de-
generated singular point at the origin of the form

ẋ = y2n−1P (x, y2n), ẏ = Q(x, y2n), (7.15)

such that P (0, 0) 6= 0, Q(0, 0) = ∂Q/∂x(0, 0) = 0 and n ≥ 2 an integer
number. Then, system (7.15) has a local analytic first integral at the origin.
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Proof. Taking z = y2n, we obtain (after deleting a common factor) the
reduced system

ẋ = P (x, z), ż = 2n Q(x, z)

which is a non-singular system at the origin and therefore it has a local
analytic first integral H(x, z). Doing the pull–back, we obtain a local analytic
first integral H(x, y2n) of system (7.15).
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[67] H. ŻoÃla̧dek, Remarks on the classification of reversible cubic systems
with center, Topol. Methods Nonlinear Anal. 8 (1996), 335–342.
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