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PROLOGUE 
 
 
This thesis project focused on the assessment of long-term exposure 
to traffic-related air pollution and its association with atherosclerosis. 
This is the first study that evaluated such association among the 
Mediterranean population.  
 
This doctoral thesis contributes to the characterization of the spatial 
distribution of nitrogen dioxide, heavy metals and ultrafine particles 
in Girona, to the methodology in air pollution exposure assessment 
studying different markers of traffic-related air pollution, 
measurement instruments and protocols, as well as to the 
development of the LUR technique, identifying potential bias in the 
resulting coefficients of the health model and practical solutions to 
avoid them. Finally, this thesis added to the evidence that long-term 
exposure to traffic-related air pollution is associated with 
atherosclerosis and identified potential susceptibility factors for the 
Mediterranean population.  
 
This doctoral thesis is based on the following original publications:  
 

I. Monitoring of heavy metal concentrations in home outdoor 
air using moss bags 

II. Spatial distribution of ultrafine particles in urban settings: a 
land use regression model 

III. Effect of the number of measurement sites on Land Use 
Regression Models in estimating local air pollution 

IV. Long-term exposure to traffic-related air pollution and 
subclinical atherosclerosis 

 
Based on original research and guided by her thesis directors, the 
doctoral candidate’s contribution included the exposure assessment 
design; participation and coordination of fieldwork and data 
collection; data management; training and supervising five 
technicians on data collection, data entry and quality control for the 
traffic and ultrafine particle monitoring; linkage of traffic intensity 
data to the digital road network; statistical analysis and reports 
writing; communications of results in internal meetings and 
international conferences; and writing the four scientific articles that 
constitute this doctoral thesis.  
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ABSTRACT  
 
Epidemiological evidence on the effects of long-term exposure to air 
pollution on the chronic processes of atherogenesis is limited. Given 
the widespread exposure to traffic-related pollutants and the large 
and rising global burden of cardiovascular diseases, elucidating and 
quantifying the association of exposure to air pollution with 
atherosclerosis is of great relevance for public health. The aims of 
this thesis were to characterize people’s exposure to long-term 
traffic-related pollution and evaluate its association with subclinical 
atherosclerosis in the adult population of the Mediterranean Spanish 
region.   
 
We used data of the re-examination (2007-2010) of 2780 
participants, 32 to 86 years of age, from the REGICOR study. 
REGICOR is a population-based prospective cohort from Girona, 
Spain. The main health outcome was the carotid artery intima media 
thickness (IMT), a validated marker of subclinical atherosclerosis, 
added to the study protocol at the 2007-2010 re-examination. To 
characterize local-scale pollution we conducted measurements of 
heavy metals for eight weeks -using mosses as biomonitors-, nitrogen 
dioxide (NO2) for four weeks -using passive samplers- and 
simultaneous measures of traffic counts and ultrafine particles (UFP) -
using mobile condensation particle counters- for 15-minute periods. 
To assess the spatial variability of these markers of traffic-related 
pollution, we developed land use regression (LUR) models. We also 
conducted a methodological study on the effects of the number of 
measurements on the performance of LUR models. From the 
characterized markers, NO2 and traffic intensity were used to assign 
exposure to participants. Long-term exposure was calculated as the 
time-weighed average of NO2 estimates across all residences of 
each participant in the last 10 years. The cross-sectional association 
between air pollution and IMT was investigated using multivariate 
linear regression analyses. 
 
(i) The best predictor of heavy metals was the number of bus lines in 
the nearest street. Metals were not highly correlated with NO2 and 
showed higher spatial variability than NO2. LUR models explained 
between 40 to 85% of metals and 72% of NO2 variability. Given 
the higher toxicity, stronger association with local traffic and higher 
spatial variability of heavy metals compared to NO2, monitoring 
with mosses is an appealing alternative for long-term exposure 
assessment. (ii) The best predictors of UFP were traffic intensity, 
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distance to nearest major crossroad, area of high density residential 
land and household density. The LUR models of UFP explained 
between 36 to 51% of UFP total variation. For a subset of sites, 
using the mean of two repeated measurements improved the LUR 
model R2 to 72%. The distribution of UFP can be modeled with fair 
performance based on short-term mobile monitoring. (iii) Models 
based on a small number of sampling sites, e.g. 20-30, result in 
artificially high adjusted R2 and leave-one-out cross-validation R2. 
The differences between these estimators and the “true” validation 
R2 could be as high as 60% for small samples sizes (≤20) and of 
around 10% for sample sizes above 100. The selection of predictor 
variables for the LUR model introduces classical measurement error 
resulting in bias of the health effect estimates. The magnitude of the 
error depends on the number of sampling sites and variables 
offered to the model. LUR models for complex urban settings should 
be based on a large number of measurement sites (>80) and the 
number of potential predictor variables should be restricted. (iv) 
Average residential traffic (load and intensity) was associated with 
2% thicker IMT. Associations of residential NO2 with IMT were weak 
and reached statistical significance in the subgroups of people with 
high education level and men above 60 years (a difference of 
25µg/m3 in NO2 was associated with a 4.6 and 4.3% increase in 
IMT respectively). Long-term exposure to traffic-related air pollution 
is associated with carotid subclinical atherosclerosis in a random 
healthy population.  
 
This thesis contributes to the characterization of the spatial 
distribution of NO2, heavy metals and UFP in Girona, to the 
methodology in air pollution exposure assessment studying different 
markers of traffic-related air pollution, measurement instruments and 
protocols, as well as to the development of the LUR technique, 
identifying potential bias in the resulting coefficients of the health 
model and practical solutions to avoid them. Finally, this thesis 
added to the evidence that long-term exposure to traffic-related air 
pollution is associated with atherosclerosis and identified potential 
susceptibility factors for the Mediterranean population.  
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RESUMEN  
 
La evidencia epidemiológica de los efectos de la exposición a largo 
plazo a la contaminación atmosférica sobre el proceso aterogénico 
es limitada. Dada la exposición generalizada de la población a 
contaminantes procedentes del tráfico y la elevada y creciente 
carga de morbilidad que suponen las enfermedades 
cardiovasculares a nivel mundial, entender y medir la asociación 
entre la exposición a contaminación atmosférica y la aterosclerosis 
es de gran relevancia para la salud pública. Los objetivos de esta 
tesis son caracterizar la exposición a largo plazo a contaminantes 
derivados del tráfico y evaluar su asociación con aterosclerosis 
subclínica en la población adulta de la región Mediterránea de 
España. 
 
Utilizamos datos del re-examen  (2007-2010) de 2780 
participantes con edades entre 32 y 86 años procedentes del 
estudio REGICOR. REGICOR es una cohorte poblacional prospectiva 
de Girona, España. El principal indicador de salud fue  el grosor de  
la íntima media  de la arteria carótida (IMT), un marcador validado 
de aterosclerosis subclínica que se adicionó al protocolo del estudio 
para el re-examen de 2007-2010. Para caraterizar la 
contaminación a escala local medimos las concentraciones de 
metales pesados durante ocho semanas –usando musgos como 
biomonitores-, NO2 durante cuatro semanas –mediante 
muestreadores pasivos- y medimos simultáneamente la intensidad de 
tráfico y la concentración de partículas ultrafinas (UFP) –usando 
contadores de partículas por condensación portátiles- durante 
periodos de 15 minutos. Para evaluar la variabilidad espacial de 
estos marcadores de contaminación por tráfico, aplicamos modelos 
de regresión “land use” (LUR). Además, desarrollamos un estudio 
metodológico sobre el efecto del número de medidas sobre la 
bondad de ajuste de los modelos LUR. Entre estos marcadores, el 
NO2 y la intensidad de tráfico se utilizaron para calcular la 
exposición. La exposición a largo plazo se calculó mediante el 
promedio ponderado en el tiempo de las predicciones de NO2 en 
todas las residencias de cada participante en los últimos diez años. 
La asociación transversal entre contaminación atmosférica e IMT se 
investigó mediante análisis de regresión lineal múltiple.    
 
(i) El mejor determinante de los metales pesados fue el número de 
líneas de autobús en la calle más cercana. Los metales no estaban 
altamente correlacionados con el NO2 y mostraron mayor 
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variabilidad espacial que este último. Los modelos LUR explicaron 
entre el 40 y el 85% de la variabilidad de los metales y el 72% de 
la variabilidad del NO2. Dada la elevada toxicidad, la fuerte 
asociación con el tráfico local y la mayor variabilidad espacial de 
los metales pesados en comparación con el NO2, el monitoreo con 
musgos es una alternativa atractiva para la evaluación de la 
exposición a largo plazo. (ii) Los mejores predictores de UFP fueron 
la intensidad de tráfico, distancia al cruce más cercano y el área de 
alta densidad residencial. Los modelos LUR de UFP explicaron entre 
el 36 y el 51% de la variabilidad total de UFP. Para un subconjunto 
de los puntos de muestreo en que se utilizó el promedio de dos 
medidas repetidas, la R2 alcanzó el 72%. La distribución de las 
partículas ultrafinas puede modelarse con una bondad de ajuste 
aceptable basándose en monitoreos móviles de corto tiempo. (iii) 
Los modelos basados en pocos puntos de muestreo (de 20 a 30 
puntos), resultan en R2 ajustados y R2 de “leave-one-out cross-
validation”  artificialmente elevados. Las diferencias entre estos 
estimadores y el R2 verdadero puede llegar a ser del 60% para 
tamaños de muestra pequeños  (≤20) y de alrededor del 10% 
para tamaños de muestra  mayores a 100. La selección de las 
variables predictoras para el modelo LUR introduce un error de 
medida clásico que resulta en estimaciones sesgadas del efecto de 
la exposición sobre la salud. La magnitud de dicho error depende 
del número de puntos de muestreo y del número de variables 
ofrecidas al modelo. Los modelos LUR para áreas urbanas 
complejas deberían basarse en un tamaño de  muestra grande 
(>80) y el número de variables independientes iniciales debería ser 
limitado. (iv) La intensidad de tráfico residencial promedio en los 
últimos 10 años se asocia con un engrosamiento del 2% de la íntima 
media. Las asociaciones entre el NO2 residencial con la IMT fueron 
débiles y alcanzaron la significación estadística en los subgrupos de 
población con alto nivel educativo y hombres de más de 60 años  
(una diferencia de 25µg/m3 en NO2 se asoció a un incremento del 
4.6 y el 4.3% de IMT respectivamente). La exposición a largo plazo 
a contaminantes atmosféricos provenientes del tráfico se asocia a un 
incremento del riesgo de aterosclerosis subclínica en una muestra 
aleatoria de individuos sanos. 
  
Esta tesis contribuye a la caracterización de la distribución espacial 
del NO2, los metales pesados y las UFP en Girona, a la 
metodología de la evaluación de la exposición a contaminación 
atmosférica habiendo estudiado diferentes marcadores de 
contaminación por tráfico, instrumentos de medida y protocolos, así 
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como al desarrollo de la técnica de modelos LUR para los que se 
identificaron sesgos potenciales sobre la estimación del efecto sobre 
la salud de dicha exposición y aporta soluciones prácticas para 
evitarlos. Finalmente, esta tesis añade a la evidencia de que la 
exposición a largo plazo a la contaminación procedente del tráfico 
se asocia a la aterosclerosis e identifica factores de susceptibilidad 
potenciales para la población mediterránea. 
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RESUM 
 
L’evidència epidemiològica de l’efecte de la contaminació 
atmosfèrica sobre el procés crònic de l'aterogènesi és limitada. 
Donada l’exposició generalitzada de la població a contaminants 
procedents del trànsit i a l’elevada i creixent càrrega de morbiditat 
que suposen les malalties cardiovasculars a nivell mundial, entendre 
i quantificar l’associació entre l’exposició a contaminació atmosfèrica 
i l'aterosclerosi és de gran rellevància per la salut pública. Els 
objectius d'aquesta tesi són caracteritzar l'exposició a llarg termini a 
contaminants derivats del trànsit i avaluar la seva associació amb 
l'aterosclerosi subclínica en la població adulta de la regió 
mediterrània d'Espanya. 
 
Vàrem utilitzar dades de la re-avaluació (2007-2010)  de 2780 
participants amb edats entre 32 i 86 anys procedents del estudi 
REGICOR. REGICOR és una cohort poblacional prospectiva de 
Girona, Espanya. El principal indicador de salut va ser el gruix de 
la íntima mitjana  de l'arteria caròtida (IMT), un marcador validat 
d'aterosclerosi subclínica que es va afegir al protocol de l'estudi en 
la re-avaluació del 2007-2010. Per a caracteritzar la contaminació 
a nivell local vàrem mesurar les concentracions de metalls pesats 
durant vuit setmanes -mitjançant molses com a biomonitors-, diòxid 
de nitrogen (NO2) durant quatre setmanes -mitjançant mostreig 
passiu- i vàrem mesurar simultàniament la intensitat de trànsit i la 
concentració de partícules ultra-fines (UFP) -mitjançant comptadors 
portàtils de partícules per condensació- durant períodes de 15 
minuts. Per avaluar la variabilitat espacial d’aquests marcadors de 
contaminació per trànsit, vàrem aplicar models de regressió “land 
use” (LUR). Així mateix, vàrem desenvolupar un estudi metodològic 
sobre l'efecte del nombre de mesures sobre la robustesa dels 
models LUR. D'entre aquests marcadors, el NO2 i la intensitat de 
trànsit es van utilitzar per calcular l'exposició. L'exposició a llarg 
termini es va calcular com la mitjana de NO2 ponderada pel temps 
viscut en totes les residències en els darrers deu anys. L’associació 
transversal entre contaminació atmosfèrica i IMT es va investigar 
mitjançant anàlisi de regressió lineal múltiple.    
 
(i) El millor determinant dels nivells de metalls pesats va ser el 
nombre de línies d'autobús al carrer més proper. Els metalls no 
estaven altament correlacionats amb NO2 i varen mostrar major 
variabilitat espacial que el NO2. Els models LUR varen explicar 
entre el 40 i el 85% de la variabilitat dels metalls i el 72% de la 
variabilitat del NO2. Donada la seva elevada toxicitat, la forta 
associació amb el trànsit local i la major variabilitat espacial dels 
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metalls pesats en comparació amb el NO2, el monitoratge amb 
molses és una alternativa atractiva per l'avaluació de la exposició a 
llarg termini. (ii) Els millors predictors de UFP varen ser intensitat del 
trànsit, distància a l’encreuament més proper, àrea de gran densitat 
residencial i densitat d’habitatges. Els models LUR de UFP varen 
explicar entre el 36 i el 51% de la variabilitat total de UFP. Quan 
per a una mostra de punts de mostreig amb dues mesures repetides 
es va utilitzar la mitjana de les dues mesures, la R2 va arribar al 
72%. La distribució de partícules ultra-fines pot modelar-se amb 
una bondat d'ajust acceptable basant-se en un monitoratge mòbil 
de curta durada. (iii) Els models basats en un nombre petit de punts 
de mostreig (de 20 a 30 punts), resulten en R2 ajustats i R2 de 
validació creuada artificialment elevats. Les diferencies entre 
aquestes estimacions i el verdader R2 pot arribar a ser del 60% per 
grandàries de mostra petites  (≤20) i del voltant del 10% per 
grandàries de mostra per sobre de 100. La selecció de les 
variables predictores per al model LUR introdueix un error de 
mesura clàssic que resulta en estimacions esbiaixades de l'efecte. La 
magnitud d’aquest error depèn del nombre de punts de mostreig i 
de les variables ofertes al model. Els models LUR per a espais 
urbans complexos haurien de basar-se en una gran mostra de punts 
(>80) i el nombre de variables independents inicials hauria de ser 
petit. (iv) La mesura d'intensitat i volum de trànsit a les residències 
dels últims 10 anys s'associa amb un engruiximent del 2% de la 
íntima mitjana. Les associacions entre el NO2 residencial dels últims 
10 anys amb IMT varen ser febles i varen assolir la significació 
estadística en els sub-grups de població amb alt nivell educatiu i 
homes de més de 60 anys  (una diferència de 25µg/m3 en NO2  es 
va associar a un increment del 4.6 i el 4.3% de IMT respectivament). 
L'exposició a llarg termini a contaminants atmosfèrics provinents del 
trànsit es va associar a un increment del risc d'aterosclerosi subclínica 
en una mostra aleatòria d'individus sans. 
  
Aquesta tesi contribueix a la caracterització de la distribució espacial 
del NO2, els metalls pesats i les UFP a Girona, a la metodologia de 
l'avaluació de l'exposició a contaminació atmosfèrica utilitzant 
diferents marcadors de contaminació per trànsit, instruments de 
mesura i protocols, així com al desenvolupament de la tècnica LUR 
per identificar biaixos potencials sobre l’estimació de l'efecte en salut 
d’aquesta exposició i solucions pràctiques per a evitar-los. Finalment, 
aquesta tesi contribueix a l'evidència que l’exposició a llarg termini 
a la contaminació procedent del trànsit s'associa a l'aterosclerosi i 
identifica factors de susceptibilitat potencials per a la població 
mediterrània. 
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1 ATHEROSCLEROSIS AND CARDIOVASCULAR 
DISEASES 

 
Cardiovascular diseases (CVD) are a group of disorders that affect 
the cardiovascular system, including heart diseases, and diseases of 
the blood vessels. Although they can be due to several causes, the 
more prevalent are related to atherosclerosis, a progressive disease 
characterized by the accumulation of lipids and fibrous elements in 
the large arteries (Lusis, 2000) (Figure 1). CVD not related to 
atherosclerosis include congenital heart disease, rheumatic heart 
disease, cardiomyopathies, cardiac arrhythmias and inflammatory 
heart diseases (myocarditis, pericarditis, endocarditis and 
cardiomyopathy). Those related to atherosclerosis include ischaemic 
heart disease (heart attack), cerebrovascular disease (stroke or ictus) 
and diseases of the arteries (hypertensive heart disease and 
peripheral vascular disease). The latter cause 83% and 86% of 
total mortality due to CVD in women and men respectively.  
 
The process of atherosclerosis begins in childhood (McGill et al., 
1998) and there is a long induction period until evolving to clinical 
stages of the disease in middle and advanced ages. By measuring   
atherosclerosis, instead of cardiovascular events, the subclinical 
stages of the disease can be studied.  
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Figure 1. Illustration of the progression of atherosclerosis in the 
coronary arteries. Adapted from (Wikimedia Commons, 2007) 
 
1.1 Burden of disease 
 
Cardiovascular diseases (CVD) accounted for 17.3 million deaths 
worldwide in 2008 (World Health Organization, 2011).  This 
represents 31% of all-cause mortality (32% in women and 27% in 
men), making CVD the leading causes of death worldwide. The 
elderly population is the most affected by CVD. It is however 
estimated that more than 3 million of the global deaths due to CVD 
occurred before the age of 60 (2008). CVD were responsible for 
151 million Disability Adjusted Life Years (DALY), accounting for 
10% of the total DALY estimated on a global scale for the year 
2004. More than half of this burden involved people aged less than 
60 years (World Health Organization, 2008). In Spain, CVD are the 
main cause of death accounting for 120.053 deaths in 2009, which 
represents 44% of all-cause death in women and 32% in men (INE, 
2011), i.e. 31.2% of overall total deaths. 
 
In the recent decades, the incidence of CVD has doubled in low- and 
middle-income countries. This and the aging of population will lead 
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to an increase in the global cardiovascular deaths in 2030 to a 
projected estimate of 23.4 million (World Health Organization, 
2008).  
 
1.2 Mechanisms and Risk factors 
 
Atherosclerosis is a complex disease and its mechanisms are not fully 
elucidated. Biological pathways include systemic inflammation, 
endothelial dysfunction, alterations of extracellular matrix 
metabolism and hyper-reactivity of smooth muscle cells. Inflammation 
is triggered after injuries in the arterial wall. Such injuries are 
caused mainly by LDL molecules that are deposited on the wall and 
then oxidized by free radicals, becoming toxic. In response, 
inflammatory cells produce cytokines that activate the endothelium, 
shifting completely its antiadhesive and anticoagulant properties into 
adhesive and procoagulant properties (Angiolillo et al., 2004). 
Monocytes and T lymphocytes are then allowed to migrate from the 
blood stream into the arterial wall. Monocytes acquire characteristics 
of macrophages and foam cells and secrete reactive oxygen 
species, cytokines, metalloproteinases growth factor and tissue factor 
increasing the local inflammatory response (Figure 2). Over time, 
accumulation of macrophages, foam cells and cellular necrotic debris 
form atherosclerotic plaques that are covered by a fibrous cap. The 
plaque development results in arterial wall thickening. In late stages 
of the disease arterial stenosis (abnormal narrowing) may occur. 
Also, macrophages can secrete metalloproteinases that degrade the 
fibrous cap until its rupture. Blood enters in contact with tissue factor, 
a pro-coagulant protein, and thromboses are formed. Procoagulant 
properties of activated endothelial cells may alternatively lead to 
thrombi formation, which eventually leads to acute clinical 
manifestations, such as myocardial infarction, stroke or vascular 
dementia.  
 
The evolution of atherosclerosis follows a life-long pathway and may 
or may not lead to an acute event. Many patients with 
atherosclerosis remain stable all through their life, while others, even 
with less severe atherosclerosis, develop an acute event as the first 
symptom of CVD. Thus, the mechanisms and also the risk factors for 
the process of atherogenesis and those for the development of an 
acute event are not necessarily the same (Angiolillo et al., 2004; 
Künzli et al., 2011). 
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Current concepts assume that the degree of atherosclerosis depends 
both on genetic factors and the total cumulative exposure to 
endogenous and exogenous (environmental) risks factors. Risk factors 
for acute events are the presence of atherosclerosis and 
circumstances occurring within one hour and up to ten days before 
the event, such as, a transient thrombotic change due to an infection 
(Künzli et al., 2011), use of cocaine, heavy meals, physical exertion, 
stressful situations or high levels of air pollution (Nawrot et al., 
2011).  Established risk factors for atherosclerosis development are 
high cholesterol levels, hypertension, diabetes, overweight and 
obesity, metabolic syndrome (Iglseder et al., 2005), sedentary 
lifestyle, unhealthy diet, smoking, high intake of alcohol, family 
history of atherosclerosis or CVD, poverty, psychological factors (e.g. 
hopelessness) (Whipple et al., 2009) and long-term radiation 
therapy (close to the heart) (Wittig et al., 2011). Unmodifiable risk 
factors are sex –with men being at higher risk for development of 
clinically relevant atherosclerosis- and age. In fact atherogenesis is 
inherently related to aging. Artery walls get thicker continuously and 
disease progression depends on the overall level and duration of 
exposure to the mentioned risks factors. 
 

 
 

Figure 2. Illustration of the dynamic pathophysiology of 
atherosclerosis showing relationships between potential metabolic, 
cellular, and inflammatory biomarkers. Reproduced from Hansson 
(2005). 
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1.3 Measurements of atherosclerosis 
 
A review of the surrogate measures of atherosclerosis in air pollution 
research was presented by Künzli et al. (2011). A brief description 
of the most common surrogates and a detailed description of the 
ones used in this thesis, namely carotid intima media thickness and 
ankle brachial index, are provided.  
 
Carotid intima media thickness (IMT) measures the thickness of the 
artery walls, which is used as a marker of subclinical atherosclerosis. 
IMT is widely used in clinical trials and epidemiological studies and 
relies on non-invasive high-resolution ultrasound imaging coupled 
with automatic data processing systems (see Figures 4 and 5). It is 
associated with increased risks of CVD and with risk factors 
correlated with development and progression of carotid 
atherosclerosis  in both population-based samples and high-risk 
populations (de Groot et al., 2008; Mancini et al., 2004). IMT 
predicts coronary heart disease, cardiovascular (MI, coronary death) 
and cerebrovascular events, such as stroke (Revkin et al., 2007), in 
both patients and asymptomatic individuals (Holewijn et al., 2010).  
 
Several studies report that IMT measurements are reliable and 
reproducible, although there is not a standardized measurement 
protocol and the optimal site of measurement remains controversial 
(common carotid, bifurcation, internal carotid, posterior (far) or 
anterior wall). Comparison between studies can thus be difficult. 
Longitudinal studies to assess the effect of clinical interventions have 
found that a reduction in cholesterol (total and LDL) is associated 
with regression of IMT in most cases and with inhibition of IMT 
progression in other cases (de Groot et al., 2008). Regarding 
prediction of clinical outcomes, it has been suggested that the 
reduction in CV risk factors is not always associated with reduction in 
IMT progression (Mancini et al., 2004), however, research in this 
topic is not conclusive. For example, angiotensin-converting enzyme 
(ACE) inhibitors reduce CV events in high-risk patients. However, 
several but not all clinical trials suggested that ACE inhibitors reduce 
IMT progression (Lonn et al., 2009). This could be explained by 
differences in measurements protocols, observational period, or by a 
pathway that is not mediated by IMT or atherosclerosis reduction 
(lower blood pressure, reduced left ventricular mass or reversal of 
endothelial dysfunction has been suggested (MacMahon et al., 
2000)). 
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Arterial stiffness is a measure of the vessel elasticity during systole 
after applying pressure. This measurement relies on non-invasive 
ultrasound imaging or tonometry and measurement of blood 
pressure simultaneously. It predicts cardiovascular events,  
cardiovascular morbidity and all-cause mortality (Cavalcante et al., 
2011). 
 
Ankle brachial index measures the ratio of blood pressure in the 
peripheral arteries (in the legs) to that in the proximal segments (in 
the arms). Low blood pressure in the legs, compared to the arms, 
indicates narrowing or blockage of the peripheral arteries. ABI is 
thus a marker of the degree of subclinical peripheral atherosclerosis 
and the severity of stenosis. Low ABI at rest predicts cardiovascular 
outcomes both in persons with underlying CVD and low-risk 
population. An index lower than 0.9 is associated with higher 
morbidity and mortality risks and is used as a cutoff point to 
diagnose peripheral arterial disease (PAD). An index higher than 
1.3 has also been associated to higher mortality, calcification of the 
arterial wall and CVD risk factors. It relies on blood pressure 
measurements using Doppler technique. It is a simple, non-invasive 
and inexpensive test (Holewijn et al., 2010).  
 
Angiography is the former “gold standard” measurement of 
atherosclerosis (Revkin et al., 2007). It consisted in injecting a 
radiopaque contrast media in the blood vessels followed by x-ray 
imaging. The lumen of the vessels could then be measured from the 
images. The invasive nature of this technique with its inherent risks 
and limitation to symptomatic patients, and the exposure to 
radiation drove innovations toward non-invasive imaging techniques.  
 
Coronary artery calcification and aortic artery calcification are 
measures of coronary and systemic atherosclerosis, respectively, that 
predict clinical cardiovascular events (Pletcher et al., 2004). They 
rely on electron-beam or multi-detector computed tomography, non-
invasive techniques that, however, expose to radiation.  
 
Retinal vessel diameter measure the micro-vascular atherosclerosis, 
which is related to cerebrovascular diseases, coronary calcifications, 
coronary morbidity and mortality, and risk of heart failure, and 
stroke (Mimoun et al., 2009). It relies on non-invasive retinal 
photography that poses no risks.  
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The use of these and other measurements in air pollution research 
has been discussed by Künzli et al. (2011). A summary table is 
provided in Table 1. 
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Table 1. Scoring with regard to 5 criteria determining the usefulness of the outcome measure to investigate long-term 
atherogenic effects of ambient air pollution in epidemiological studies. Reproduced from (Künzli et al., 2011). 
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2 EXPOSURE TO AIR POLLUTION ASSOCIATED TO 
ATHEROSCLEROSIS 

2.1 Previous evidence 
 
The American Heart Association recently concluded that there is a 
causal relationship between traffic and combustion related air 
pollution and cardiovascular mortality and morbidity (Brook et al., 
2010). Most of the evidence is on the associations between short-
term exposure to air pollution and clinical cardiovascular outcomes, 
such as acute myocardial infarction (AMI), stroke, all cause- and 
cardiovascular-mortality (Dominici et al., 2003; Katsouyanni et al., 
2001; Ostro et al., 2011), and with subclinical measures or 
surrogates of CVD, such as increase in oxidative stress and systemic 
inflammation. There is epidemiological evidence on the association 
of long-term exposure with cardiovascular mortality and ischaemic 
heart disease, but more investigation on its association with 
subclinical measures or surrogates of CVD is needed. Particularly, it 
is not yet clear to what extent long-term exposure to air pollution 
contributes to the chronic processes of atherogenesis and how the 
observed acute effects due to short-term exposures may contribute 
to the chronic effect (Brook et al., 2010).  
 
There is evidence that long-term exposure to ambient particulate 
matter (PM) (Sun et al., 2005), ultrafine particles (UFP) (Araujo et 
al., 2008), and diesel and gasoline exhaust cause atherosclerosis 
and enhance plaque vulnerability in animals (Brook et al., 2010). But 
there are only a few human exposure studies. The first study was 
carried out in Los Angeles in a heterogeneous sample of 798 
volunteers participating in two clinical trials (Künzli et al., 2005). A 
cross-sectional difference of 10 μg/m3annual residential PM2.5 was 
associated with a 4.2% increase in IMT (95%CI -0.2 to 8.9). This 
association was confirmed afterwards in a longitudinal study (Künzli 
et al., 2010; Künzli et al., 2005a) on 1503 participants of five 
clinical trials including those mentioned before. An increase of 10 
μg/m3 PM2.5 was associated with an IMT progression rate of 2.53um 
per year (95%CI -0.31 to 5.38). Annual cross-sectional differences 
of 4.2 μg/m3 PM2.5 were associated with 4.3% increase (95%CI 1.9 
to 6.7%) in IMT while no association was found for PM10 in 3380 
population-based participants of the Heinz Nixdorf Recall study in 
Germany (Bauer et al., 2010). In a related study from the same 
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cohort, PM2.5 was nonsignificantly associated with higher coronary 
artery calcification (Hoffmann et al., 2007). A population-based 
study in 750 young adults in the Netherlands found no association of 
annual residential NO2, PM2.5, SO2, black smoke, proximity to traffic 
and traffic intensity with IMT. Among the same measured pollutants, 
NO2 and SO2 were associated with arterial stiffness (Lenters et al., 
2010).  In a population-based sample of 5172 participants from the 
US Multi-Ethnic Study of Atherosclerosis (MESA) 20-yr average 
contrast in 2.5 µg/m3 PM2.5 and 21 µg/m3 PM10 were associated 
with 1% increase (95%CI 0 to 2%) and 3% increase (95%CI 1 to 
5%) in IMT, respectively, while no association with carotid artery 
calcification was found (Diez Roux et al., 2008). In a cross-sectional 
study in 1147 participants of the same cohort, a difference of 10 
μg/m3 of PM2.5 was associated with higher prevalence of abdominal 
aortic calcium (OR 1.06, 95%CI 0.96 to 1.16). In an occupational 
health study in Turkey, 61 highway toll collectors had 0.8mm thicker 
IMT (SD 0.2) on average, while 41 controls had IMT of 0.6mm (SD 
0.1) (Erdogmus, 2006). 
 
Among the mentioned studies, four investigated the associations of 
subclinical atherosclerosis with proximity to traffic. Additionally, a 
cross-sectional study on children in Salerno, Italy (Iannuzzi et al., 
2010) also evaluated this association. Only one of these studies 
found an association between residential proximity to traffic and 
IMT. In the study on volunteers of clinical trials, for participants living 
within 100m of a highway, representing 1.55% of the total sample, 
the progression of atherosclerosis was 5.46µm/yr (95%CI 0.13 to 
10.8) faster than among those living further away.  
 
No association was found between exposure to PM and ABI. Neither 
20-yr residential exposure to PM2.5 nor PM10 (Diez Roux et al., 
2008) in the MESA study and one year exposure to PM2.5 (Hoffmann 
et al., 2009b) in 4302 participants from the Recall study, were 
associated with ABI. The Recall study also investigated associations 
with residential proximity to high traffic. This variable was 
associated with both ABI and prevalence of PAD. An odds ratio for 
PAD of 1.77  (95%CI 1.01 to 3.10) was found for participants living 
within 50m of a major road (10.000 to 130.000 veh/day) 
compared to those living more than 200m away (Hoffmann et al., 
2009b).  
  
The characteristics of the study population, exposure assessment, 
main results and effect modifications of the mentioned studies, as 
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well as published studies on other subclinical markers of CVD are 
summarized in Table 2.  
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Table 2. Population characteristics, exposure assessment, main results and effect 
modifications of the published epidemiological studies on subclinical markers of 
CVD. Adapted from Künzli et al. (2011) 
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2.2 Potential mechanisms involved  
 
Exposure to air-pollutants can mediate CVD through direct and 
indirect effects. Direct effects include systemic transmission of signals 
and translocation of gaseous pollutants, particle soluble constituents 
and possibly ultrafine particles into the blood and cardiovascular 
system, mediating acute effects within hours of pollutants inhalation. 
The direct pathway is thoroughly explained by Simkhovich et al.  
(2008) and Brook et al. (2010). The indirect effects include 
perturbations to the autonomic nervous system, which increases the 
low- and high-frequency heart rate variability, and pulmonary and 
systemic oxidative stress and inflammation, which is relevant to the 
atherogenic process.   
 
Pulmonary oxidative stress causes the release of pro-inflammatory 
mediators (e.g., cytokines, activated immune cells, or platelets) or 
vasculoactive molecules (e.g., circulating endothelin , possibly 
histamine, or microparticles) (Brook et al., 2010). But the 
inflammatory responses go beyond the lungs: exposure to 
particulate matter increases the serum levels of IL-6, which 
determines the synthesis of C-reactive protein, a marker of systemic 
inflammation directly associated with higher risk of CVD. The latter is 
also positively associated with exposure to total suspended particles 
(TSP) and PM. Inflammation through cytokines and C-reactive protein 
promotes atherosclerosis via the mechanisms previously described 
(Section 1.2).  
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3 MEASUREMENT OF TRAFFIC-RELATED AIR 
POLLUTION 

3.1 Surrogates of traffic-related exposure 
 
The effects of traffic-related pollution on health started to be 
studied in the 1920’s as part of more general studies of the effects 
of air pollution (Henderson Y, 1921; Sayers et al., 1924). In 1931, 
the New York academy of medicine reported on the deleterious 
effects of prolonged exposure to heavy traffic presumably due to 
carbon monoxide levels (The New York Academy of Medicine, 
1931).  Exposure to traffic-related pollutants is, most of the times, 
still measured indirectly, for example, using atmospheric 
concentrations of one or a few components of the traffic-emitted 
mixture used as surrogates. The complex mixture of pollutants 
emitted by traffic is mainly generated in the fuel combustion process, 
but also in the resuspension of dust particles and brake and tire 
wearing. The most commonly used surrogates are NO2, NOx, 
particulate matter and SO2, among others.  
 
The most widely used surrogate in health effect studies is nitrogen 
dioxide (NO2). This is because affordable samplers have been 
developed for its passive measurement (based on diffusion without 
the need for air pumping); NO2 is regulated with standards 
available worldwide (See Appendix 1) and standardized 
measurement protocols; most NO emitted in combustion processes –
traffic exhaust and industry- is converted to NO2; and it is the main 
contributor to the formation of tropospheric ozone (Brook et al., 
2004). 
 
Particulate matter (PM), a mixture of solid and liquid particles 
generated by direct emissions (primary PM) and particle formation 
(secondary PM), is also widely used as a marker of traffic emissions. 
Primary particles are mainly composed of elemental carbon (EC, 
also called soot and black carbon), polycyclic aromatic 
hydrocarbons and metals. Secondary particulate matter is produced 
by the oxidation in the atmosphere of precursor pollutants such as 
NOx (53%), SO2 (22%) and NH3. Its composition depends on time 
(hour, day, season), climate variations, geographical position and 
emission sources. Sources of particulate matter include vehicle 
emissions, tire fragmentation and resuspension of road dust, fossil 
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fuel combustion, metal processing, construction agriculture, domestic 
heating, wood burning, forest fires, cigarette smoke, natural trees, 
windblown soil, pollens and molds, forest fires, volcanic emissions, 
and sea spray. PM is classified depending on the diameter of the 
particles in PM10 the fraction with diameter less than 10 µm, coarse 
particles (PM2.5–PM10, diameter 2.5–10 µm), fine particles (PM2.5, 
diameter <2.5 µm), and ultrafine particles (UFP or PM0.1, diameter 
<0.1 µm). Nowadays, traffic contributes to approximately 15% 
(with a range of 4% to 25%) of PM2.5 at seven U.S. EPA supersites 
(Watson et al. 2008).  In Barcelona, traffic was the main source of 
PM2.5 (vehicle exhaust contributed 30% of total mass) and PM10 
(vehicle exhaust contributed18%, and road dust 17% of total mass) 
in weekly measurements, since 2003 to 2007 in an urban 
background monitoring station (Ostro et al., 2011). Measurements of 
particulate matter are obtained using a pump to draw ambient air 
at a constant flow rate into a specially shaped inlet, where 
particulate matter is separated into size fractions, and through a 
filter. Airborne particulate matter is then collected on the filter. The 
concentration of particles in the air is calculated dividing the 
particulate matter weight by the total volume of air filtered.  
 
Air quality guidelines of the European Union for these pollutants are 
presented in Appendix 1. 
 
Ultrafine particles (UFP) acquired relevancy in the last years due to 
their high proportion in the number of particles within PM, their high 
toxicity and capacity to reach the alveolar area in the lungs and, 
potentially, the circulatory system (Brook et al., 2010). Main sources 
of UFP include fuel combustion, wood smoke, industrial sources, and 
formation of new particles (nucleation) by chemical reactions with 
sulfate, nitrate and organic PM as precursors. The atmospheric 
lifetimes of UFP are short, and their concentrations decrease rapidly 
with distance from the source –such as roads- (Zhu et al., 2006). 
Between 52 to 86% of UFP (size range 20-800 nm) annual average 
(2003-2004) was emitted by vehicles at an urban background 
monitoring station in Barcelona (Pey et al., 2009).  UFP can be 
measured as mass concentration in a similar way as described 
above for PM measurements or as number concentration by optical 
instruments that count the number of particles in a given volume of 
air pumped. These instruments have been used for short-term 
personal monitoring. Technology is, however, not yet ready for 
large-scale applications in epidemiologic studies because of the cost 
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of the monitors and the burden for the subjects (HEI Panel on the 
Health Effects of Traffic-Related Air Pollution, 2010).  
 
Specific constituents of particulate matter have also been used as 
traffic markers due to their high chemical reactivity and toxicity. 
Heavy metals are highly biorreactive elements –some of them, such 
as chromium, lead and arsenic can induce carcinogenic effects- that 
get bound to particulate matter of all size fractions. More toxic 
metals, however, show higher concentrations in the finer fractions of 
PM, for example lead, nickel, cadmium, copper, zinc and arsenic 
(Moreno et al., 2006). Due to specificity of metals as constituents of 
e.g. catalytic converters, brake pads or fuel additives, some are 
used as markers of emissions from those sources, for example, 
vanadium, chromium and nickel are related to fuel combustion; 
copper, antimony and molybdenum are markers of brake emissions. 
Metal concentrations for air pollution studies have been measured in 
tailpipe emissions, brake and tire wear emissions, roadway dust, 
roadway tunnel and ambient air. Only the latter have been used in 
epidemiological studies in humans. Heavy metal measurements 
consist in collecting particulate matter followed by chemical 
elemental analysis to identify the concentrations of metals in the PM 
collected. 
 
Exposure to traffic-related pollutants can also be assessed indirectly 
by measuring nearby traffic as a surrogate for pollutants from 
vehicle exhausts and/or resuspended dust (dust deposited on the 
road that is resuspended by passing traffic, wind and turbulences). 
Traffic measures include vehicle mix (i.e. diesel and gasoline-fueled 
or light and heavy-duty vehicle intensity), traffic intensity also called 
traffic density/volume/count (daily number of vehicles) in a given 
street or within a given buffer (e.g. 100m), traffic load (sum of 
traffic intensity multiplied by length of road segment in all segments 
of a given buffer), length of street segments in a given buffer and 
self-reported traffic exposures (e.g. nuisance of road traffic). All 
these approaches attempt to characterize exposure to near-road 
pollutants, thus, the term ‘proximity models’ is often used. Figure 3 
shows the GIS maps and information used to calculate these 
measurements.  
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Figure 3. Example of GIS maps and information layers used to 
measure traffic proximity markers as surrogates of air pollution 
exposure. Red dots are monitoring sites. Purple circles are buffers 
around the monitoring sites. 
 

3.2 Exposure assessment  
 
As explained above, atherogenesis is a long-term process that 
develops over life time. The degree of atherosclerosis reached at 
any point in time is the cumulative sum of all pro- and anti-
atherogenic exposures. Accordingly, from an air pollution 
perspective, the relevant time-window for exposures leading to 
atherosclerosis development is as well the accumulated life-time 
exposure. Whereas life-time exposure is ultimately the sum of 
exposures over time – e.g. the sum of all daily exposures – the 
degree of atherosclerosis measured at some point in time point is not 
dependent on ‘yesterdays’ pollution’. The latter is informative to 
investigate the role of short-term exposure in triggering acute 
events. Instead, studies investigating the atherogenic role of pollution 
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need to assign some measures of long-term exposure. Being 
practically impossible to measure exposure during lifetime, studies 
have used estimates of pollution over shorter ‘long-term windows’, 
such as the average ambient concentrations of one or a few years, 
as a proxy.  The detailed interplay between long- and short-term 
exposure in the development of atherosclerosis remains to be 
explored. However, there is no evidence of short-term pollution 
events such as isolated peaks (e.g. due to peaks in emission levels–
e.g. traffic rush hours, unusual meteorological conditions, travelling to 
places with very contrasting pollution levels or compositions, or a 
smog episode etc.) and/or independent relevance for the chronic 
health effects. Therefore, studies on long-term effects of air pollution 
assume that the long-term mean concentrations (which include those 
peak conditions as well) reflect well the accumulated exposure.  
 
From a study design perspective, it is important to distinguish 
temporal and spatial variability of ambient air pollutants. Temporal 
variability is mostly driven by meteorological factors, which cause 
simultaneous variations in air pollution components, including those 
from different sources (Brauer, 2010). Since general meteorological 
conditions usually influence larger regions simultaneously, the 
temporal variability of air pollution within one urban area (or air 
shed) is typically rather homogeneous across space. In other words, 
the daily fluctuations are usually paralleled across larger areas. 
Spatial variability is instead due to the change in pollution levels 
from one place to another. Within a city or town the spatial 
variability is mainly driven by local sources of pollution such as 
industry, residential heating and in particular road traffic with its 
major influence at a very local spatial scale. The spatial contrast 
between different locations within an area as usually considered to 
be rather stable over several years, as empirically shown in a few 
studies (Hoek et al., 2008a). In the long run, the spatial variability 
within an urban area is often larger than the temporal variability 
(Hoek et al., 2008a). The differences in long-term exposure between 
individuals are thus well characterized by spatial variability in the 
average pollutant concentrations. The exposure assessment methods 
that are described next are focused on characterizing spatial 
variability in air pollution, although some could be extended or 
modified to capture temporal variability. 
 
Each of the surrogates described in the previous section was 
historically measured at specific locations, such as, near industries or 
at routine monitoring stations with the purpose of controlling levels to 
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comply with limits set to protect humans and the environment from 
adverse effects. Environmental epidemiology studies on the effects 
of air-pollution made use of such measurements to compare 
populations exposed to different levels. Ecological estimates 
constituted one of the early exposure assessment methods of 
environmental epidemiology (Morris, 1981).  
 
Some pollutants -in particular primary pollutants such as NO and 
ultrafine particles- are unequally distributed across different areas 
within one town. Assignment of the same concentration, measured at 
a single monitor, to all people living within a city or community 
(Dockery et al., 1993), does not characterize differences in personal 
exposure to such pollutants (Carnow et al., 1969).   
 
Thus, the development of personal exposure monitoring within the 
environmental monitoring field (it has already been extensively used 
in industrial hygiene) was recommended by the National Academy 
of Sciences (Study Group on Environmental Monitoring, 1977). 
Personal monitoring is based on measuring air pollution levels with 
devices that are worn or carried by the participants. It is still 
considered today the method providing the most accurate estimates 
of actual personal exposure to specific pollutants per se. However, it 
has several practical disadvantages that limit its use particularly in 
long-term and also in large studies: it is expensive, labor intensive, 
the measurement period is limited to a few hours or days, and 
carrying the equipment and completing the time-activity diary, that 
is usually required, lead to respondent burden and the difficulty of 
ensuring compliance. Moreover, from a policy perspective, one is 
interested in the effects and burden related to pollution from a 
specific source, e.g. traffic, rather than a single pollutant per se (e.g. 
NO2). As long as there is no unique source-specific marker of 
pollution available, personal exposure measurements of a pollutant 
may not necessarily be more informative then some ambient 
monitoring or modeling approaches. E.g. a life-time measurement of 
personal exposure to NO2 will not enhance our understanding of the 
effects of traffic-related pollution given that the total personal 
exposure to NO2 is dependent on exposure to gas cooking, traffic, 
tobacco smoke and other sources of combustion. Thus, proper 
characterization of the ambient conditions, combined with 
information on the time people spend in these conditions remains a 
highly important approach to estimate personal exposure to outdoor 
air pollution. 
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Accordingly, refinements to the use of the pollution concentration at 
one or a few monitoring station started to get developed.  Modeling 
to estimate pollution at unmeasured sites based on measurements at 
fewer sites was applied (Horie et al., 1976; Namekata et al., 1979; 
Sidorenko et al., 1972) and time activity patterns were incorporated 
to weight the pollution levels at different locations by the time spent 
at each location (Dockery et al., 1981; Moschandreas et al., 1979; 
Ott, 1982). Consequently, to characterize exposure at different 
locations, monitoring at indoor and outdoor residential environments, 
microenvironments and while commuting (Holland, 1983; Lambert et 
al., 1992; Ott et al., 1973; Ott, 1982) were implemented. Exposure 
assessment based on residential or personal monitoring alone is not 
efficient and even unrealistic for long-term studies. Although in the 
last decades the monitoring equipment have evolved and more 
accurate portable devices have become available nowadays, the 
biggest innovations in the exposure assessment field have been 
modeling techniques and software, which have been largely 
benefited from the development of GIS tools. 
 

3.3 Modeling approaches for the assessment of 
exposure to local pollutants.  

 
Economic and logistic constraints make it unfeasible to collect 
measurements from every participant (or his/her residence) of 
epidemiological studies. Thus several modeling techniques have been 
applied to estimate concentrations of pollutants based on 
information that is easier or less expensive to collect for all the study 
areas on a relevant scale (resolution). Models can be developed at 
every scale, from the very local (10’s of meters) to the regional and 
even country wide areas. For pollutants with high concentration 
variability on the intra-urban scale, such as NOx –including NO2 and 
in particular NO– and UFP, methods providing enough resolution are 
needed. The methods more widely used at the local-scale will be 
described. More detailed evaluation and comparison of methods, is 
given by Jerrett et al. (2004), Briggs (2005) and the Health Effects 
Institute (HEI Panel on the Health Effects of Traffic-Related Air 
Pollution, 2010). The latter two references describe the modeling on 
the regional scale. 
 
Proximity models estimate exposure as the concentration near by 
sources weighted by the distance from each source –e.g. distance to 
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traffic). For example distance to a road. Since emissions or 
concentrations levels at the roads are not available most of the time, 
the traffic intensity might be used as a surrogate. In cases where 
traffic intensity is neither available, the type of road (major road, 
highway, etc.) might be used instead. Distance cut-offs are also used 
to define exposure as a categorical variable; those living in the 
nearest buffer are more exposed than those living further away. 
Since these measures are based on source’s location and are 
unspecific to any single pollutant, they are advantageous when 
exposure to the source, rather than to an individual pollutant, is of 
interest (Briggs, 2005). 
 
Dispersion models are based on Gaussian dispersion equations,  
physicochemical laws and mass balance laws to estimate the 
concentration at a point for a specified time period given the 
background pollution levels, emissions, meteorological conditions and 
topography in the surrounds. They require thus an exhaustive 
quantity of input data that may not be available for many locations 
and are/or may be expensive. Emissions are usually specified as 
daily or annual means and thus, unmeasured temporal variability 
can introduce exposure measurement error. On the other hand, they 
incorporate spatial and temporal variability and can be applied at 
different spatial scales ranging from the regional (100–1000 km) to 
the micro (10–100 m) scale (Jerrett et al., 2004). 
 
(Geostatistical) Interpolation models provide predictions estimated 
by interpolating the concentrations at the nearest locations where the 
concentration is known (monitors). They rely on geostatistical 
techniques, ranging from the most simple such as inverse distance 
weighting to more complex such as, splines (fit n-order equations as 
a function of coordinates x and y) (Wood, 2003), kriging, universal 
kriging. A major advantage of kriging is that they provide the 
standard error of every predicted value, an indicator of its 
reliability. Universal kriging takes into account a global trend in the 
spatial variability in addition to the local variability. These models 
require a relatively dense monitoring network  and a level of 
expertise to develop the analyses (Jerrett et al., 2004) but are 
attractive tools to apply e.g. to existing health data to assign 
exposure to individuals Künzli et al. (2005a). They assume a 
homogeneous spatial variability determined by distance, and do not 
take into account that dispersion is also determined by topography 
and buildings. It is also possible to include covariates measuring such 
determinants. The method is called co-kriging. 
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Land use regression (LUR) models also called GIS-based pollution 
mapping, regression mapping or regression modeling are stochastic 
models that explain the spatial variability of air pollutants. In such 
equations, the measured concentration of a pollutant is the 
dependent variable and several predictors are tested as 
independent variables. Regression analysis is applied to find the set 
of independent variables that best describe the variability in the 
pollutant levels. The independent variables are potential 
determinants of the pollution levels, i.e. selected based on 
knowledge of physicochemical processes that govern pollutants 
formation and distribution. They could go from proximity variables, 
like distance to the nearest major road or distance to the nearest bus 
stop, to a description of the surroundings in terms of emission sources 
e.g. traffic intensity or area of ports, population density and built 
environment e.g. area of buildings or area of green spaces in a 
100m radius. These variables are commonly derived using 
geographical information systems (GIS). LUR models do not require 
emission inventories and are a practical approach for the assessment 
of exposure to traffic-related pollution (Jerrett et al., 2004). Where 
sufficient measurements exists, LUR area-specific models can be 
developed locally offering an extremely high resolution (Briggs, 
2005). This method also requires a dense monitoring network to 
obtain robust models (Basagaña et al., In press.). A detailed revision 
of LUR model performance and application is given by Hoek et al. 
(Hoek et al., 2008a). 
 
Space-time models also called dynamic modeling integrate models 
measuring spatial distribution of pollution with temporal patterns of 
pollution and/or time-activity patterns of people. Examples of 
models with time varying patterns linked to residential history have 
been used in epidemiological studies by Oosterlee et al. (Oosterlee 
et al., 1996) based on dispersion models  and by Diez Roux et al. 
(2008) based on trend, cyclic and autoregressive components to 
derive the time variability and thin-plate splines to characterize the 
spatial variability. Space-time models integrating time-activity 
patterns have been implemented by Jensen et al. (2001) and 
Gulliver and Briggs (2005), who derived a dispersion model for 
different microenvironments coupled with people’s aggregated time-
activity data and individual-level data from activity diary surveys, 
respectively. Künzli et al (1997) adopted similar approaches to 
characterize long-term exposure to ozone where a Californian 
ozone surface was combined with time-activity information. Effect 
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estimates of ozone on lung function in college students were however 
not sensitive to the inclusion or exclusion of personal time-activity 
information. 
 
Hybrid models combine different modeling techniques to determine 
local, urban and regional contributions/components of air pollution, 
and may also couple them with personal monitoring. Hoek et al. 
(2002) and Beelen et al. (2007a) derived hybrid models for 
application in epidemiology. They made separate estimates of local 
traffic-related, urban background and regional background 
concentrations of elemental carbon, NO2 and SO2 using inverse-
distance weighting and regression modeling.  These models could 
also integrate time-activity patterns as in the so-called hybrid 
individual-exposure models (HEI Panel on the Health Effects of 
Traffic-Related Air Pollution, 2010). 
 
There is nothing that can be considered a generalized best 
approach or one that serves all purposes. Choosing which model or 
measure of exposure to use in an epidemiological study depends on 
1) defining what is the exposure time-period relevant for the health 
effect under investigation, e.g. long-term or short-term; 2) the 
relevant pollutant, or the marker of a mix of pollutants to be 
characterized, which depends on the source or sources investigated; 
3) The scale relevant to the exposure distribution, which should be 
determined based on the previous points and the geographical 
characteristics of the study area (see discussion in Section 9) and 4) 
the availability of information and resources (time, money and 
expertise) to be invested in the exposure assessment. 
 
Finally, it should be borne in mind that “All models are wrong” 
(Sterman, 2002),  i.e. they are an estimate of a measure limited by 
what they were designed for. For example, routine monitoring is 
designed with regulatory purposes; models based on such 
measurements are thus not necessarily representative of the 
population’s exposure. Models account for only part of the total 
exposures (e.g. estimates for known and inventoried sources, 
individual pollutants rather than mixes, pollutants mass rather than 
components, average exposure rather than integrated exposure 
(Ott, 1982)) and part of the total variability of such exposures (e.g. 
unmeasured temporal variability from scattered events such as dust 
episodes or spatial variability not taken as a continuum but 
averaging pollution in microenvironments). Models are tools to guide 
decisions, to inform decisions, but it should be the researcher who 



 

Measurement of traffic-related air pollution 
 
 
 

49 

makes those decisions taking into account the uncertainties inherent to 
the exposure model. 
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4 RATIONALE 
 
Since the 1990’s, numerous studies investigated the short-term 
effects of air-pollution on cardiovascular health. However, the 
evidence on the effects of long-term exposure on cardiovascular 
chronic processes, pathologies or diseases in humans is based on far 
fewer studies. The association of exposure to air pollution with 
markers of the degree of atherosclerosis has been investigated in 13 
studies (see Table 2). Most, but not all of them, have found positive 
associations of air pollution with atherosclerosis (see Section 2.1).  
 
All except one study (Diez Roux et al., 2008) relied on 1-year 
estimates of residential pollution used as a proxy for long-term 
exposure. Besides, all studies relied on residential outdoor pollution 
levels derived from models based on measurements at a few 
monitoring locations. One study used a chemical dispersion model at 
a 1Km scale. Model-derived estimates of pollutant markers for 
longer term, e.g. 10-years, based on a dense network at the 
residential level would provide more precise exposure 
measurements, of added value to the assessment of their association 
with atherosclerosis.  
 
The REGICOR population-based cohort study conducted in the 
Girona region is a unique resource to investigate the atherosclerosis-
air pollution hypothesis in a Mediterranean region. The Girona 
region is particularly interesting given that the cardiovascular 
mortality rates are among the lowest in Europe while the established 
risk factors are among the highest. This is known as the French 
paradox (Masiá et al., 1998). This thesis is the first study on 
atherosclerosis and air pollution in the Mediterranean region.  
 
Considering the widespread exposure to traffic-related pollutants 
and the large, and rising, global burden of CVD, measuring the risks 
associated with long-term exposure to air-pollution is of great 
relevance for public health. 



 
 
 
 
 
 
 
 
 
 
 
 
 

52 

 
Olot   Photo: Pere Crosas



Objectives 
 
 

 53 

5 OBJECTIVES 
 
General Objectives  
 

I. Assess the long-term exposure to traffic-related air pollution 
in Mediterranean towns.    

 
II. Evaluate the association of long-term exposure to traffic-

related air pollution with subclinical atherosclerosis.  
 
Specific Objectives 

 
1. Develop spatial models to characterize the spatial 

distribution of NO2 based on long-term measurements at 
participant’s residences. 

2. Characterize the long-term local distribution of heavy metals 
using mosses. Identify the main determinants of the spatial 
distribution of heavy metals in Girona, Spain.  

3. Develop a traffic intensity road network database for the 
REGICOR-Air towns based on a short-term traffic count 
protocol. 

4. Evaluate a monitoring strategy based on short-term UFP 
measurements in a highly dense monitoring network using 
mobile condensation particle counters to characterize the 
spatial variability of UFP. Test the performance of LUR 
models for ultrafine particles based on such short-term 
measurements in the region of Girona, Spain. 

5. Investigate the effect of the number of measurement sites on 
the LUR model performance. 

6. Investigate the association between long-term exposure to 
traffic-related air pollution and subclinical atherosclerosis in 
Spain. 
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6 HYPOTHESIS 
 
This thesis developed and evaluated methods and tools for exposure 

assessment to ultimately investigate the following main hypothesis: 

 

Long-term exposure to traffic-related air-pollution is associated with 

subclinical atherosclerosis. 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Historical quarter and Onyar River, Girona city.      Photo: Albert Marin (www.graph.cat) 
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7 METHODS  
 
This section provides a brief summary integrating the methods used 
for the different papers included in this thesis. Further 
methodological details can be found in the results section (Section 8). 
 

7.1 Study population and health assessment 
 
The REGICOR study is a series of population-based cohorts of 
randomly selected adults living in Girona province. This study’s main 
objective is to determine the prevalence, incidence and risk factors 
of the ischaemic heart disease in Spain (www.regicor.org). Within its 
framework, the REGICOR-Air project is an ongoing study that aims 
to determine the long-term effects of local traffic-related air 
pollution on cardiovascular health, including atherosclerosis. (Künzli 
et al., 2005a). This thesis is part of the REGICOR-Air project and is 
based on the follow-up of the cohorts originally enrolled in 1995, 
2000 and 2005. 
 
The follow-up of such cohorts was conducted in 2007-2010 and 
included a complete reassessment of the health status and collection 
of address history linked to time period during the last 10 years.  It 
also included measurements of the IMT of the carotid artery by 
ultrasound (Figures 4 and 5), which constitute the main health 
outcome in this thesis. A detailed description of the methodology is 
presented in Paper IV (page172).  
 
The study area of REGICOR-Air includes 12 towns of the province of 
Girona, Spain. These towns include settings like the average mid-size 
Mediterranean city of Girona and adjacent Salt, tourism getaways 
on the beach, industrial centers, maritime ports, historic quarters and 
small villages in the valleys and mountains. Most of these towns have 
a historical quarter used for residences and businesses with narrow 
streets and less than three-story buildings. The architecture in the 
downtown is also compact –high buildings and narrow streets– 
especially in the biggest towns. The façade of buildings and houses 
is separated from the road only by a narrow sidewalk and in a few 
cases also by a hallway or garden. Figures 6 and 7 are pictures of 
different areas of these towns. Other pictures are provided at the 
beginning of each section.  
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A map of the study area is provided in Appendix 2 (KLM files can 
be viewed in Google Earth).  
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carotid flow divider  

Figure 4. Measurement 

of intima media 

thickness of the aortic 

carotid artery by 

ultrasound. 
Photo: Eric de Groot. Amsterdam 

Medical Centre 

Figure 5. Resulting 

image and 

schematic drawing 

from intima media 

thickness 

measurement. 

CCA: common 

carotid artery. 
Images: Eric de Groot. 

Amsterdam Medical Centre 
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Figure 6. Downtown Girona city.      Photo: Jesus (http://www.dzoom.org.es) 
 
 

 
Figure 7. Residential area. Girona city.  Photo: Marcela Rivera    
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7.2 Exposure Assessment for the REGICOR-Air study  
 

For the proper assessment of exposure to traffic-related local air 
pollutants, a good characterization of the spatial dispersion of air 
pollutants is required. Characterization of the distribution of air 
pollutants in the REGICOR-Air towns, with the exception of data on 
NO2 from a report on air quality published by the local authorities 
(Targa, 2008), was lacking.  
 
To achieve the first general objective we conducted monitoring 
campaigns based on different measurement techniques, subsequently 
used to build land-use regression models for several air pollutants. 
 
NO2 was measured using Palmes diffusion tubes in the balcony of 
562 participants’ homes, for one month between June of 2007 and 
July of 2009 (Figure 8). The methodology for NO2 characterization 
is in Paper IV (page 178).  
 
Heavy metals were measured using moss samplers (Figure 9) 
indoors and outdoors of 20 participant’s residences and 3 outdoor 
locations during 2 months in 2008. In parallel, NO2 was measured 
by diffusion tubes. In this thesis only the data of outdoor pollutants 
was used. The complete methodology for heavy metals 
measurements is written in Paper I (page 73). 
 
Given that official data on traffic intensity was very limited or 
absent, and particularly unavailable for low intensity streets, we 
counted the number of vehicles driving in both directions for 15 
minutes in 675 streets of the REGICOR-Air towns using a manual 
tally counter and a chronometer (Figure 10). Traffic counts were 
performed during non-rush hour period. Vehicles were distinguished 
as heavy or light vehicles. A similar traffic counting protocol was 
used before by Van Roosbroeck et al. (2007). As they proposed, we 
scaled the short-term counts to 24-hrs to estimate daily traffic 
intensity. The traffic intensity data was inputted to a road network in 
GIS format and the data were extrapolated to other segments of 
the same street until the street intersected with a medium or major 
street (see roadnetwork in Figure 12, page 207). The complete 
methodology for traffic intensity measurements is written in Paper II 
(page 107). 
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Simultaneously to the traffic count, UFP measurements were 
collected. UFP were measured for 15 minutes on the sidewalk of 
644 participants’ homes in 2009 using mobile condensation particle 
counters (P-Trak) (Figure 10). The complete methodology for UFP 
measurements is written in Paper II (page 106). 
 
Because of the differences in urban structure in the Mediterranean 
cities compared to cities of northern Europe and the United States 
and given the not well known impact of narrow street canyons on 
near-road pollution, characteristic of some Mediterranean cities, we 
performed the monitoring of all pollutant components in high number 
of sites per unit of area i.e. a dense monitoring network (Figure 11). 
All these measurements and other measurements of potential 
predictors made out in the field, plus geographical information was 
used to study the distribution of pollutants across the towns, 
determine their main predictors and build models to estimate the 
pollutants concentrations at the participant’s residences.  
 
To evaluate the performance of the LUR model and the effect of the 
number of measurement sites on such performance, we conducted a 
methodological study using the NO2 measurements. The complete 
methodology of this study is written in Paper III (page 140). 
 
Finally, to achieve the second general objective we measured the 
participants’ long-term exposure to air pollution using NO2 and 
traffic proximity (intensity) markers and studied its association to 
subclinical atherosclerosis. The complete methodology to estimate 
long-term exposure and to assess its relationship with atherosclerosis 
is written in Paper IV (page 174). The other markers of exposure –
UFP and heavy metals- will be studied in future analyses of the 
REGICOR-Air study (see Section 9.4.2).  
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Figure 8. Picture of the NO2 passive sampler set outdoor of 
participant’s homes 
 
 

 
Figure 9. Picture of the moss monitor set outdoors of participants’ 
homes.  
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Figure 10. Picture of the mobile condensation particle counter (P-
Trak) and tally counter and setting used to monitor outdoors of 
participants’ homes. 
 

 
Figure 11. Locations of UFP, NO2 and heavy metals measurements in 
the cities of Girona and Salt.  
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8 RESULTS 
 

8.1 Monitoring of heavy metal concentrations in home 

outdoor air using moss bags (Paper I) 

 

 

Rivera, M., Zechmeister, H., Medina-Ramón, M., Basagaña, X., 

Foraster, M., Bouso, L., Moreno, T., Solanas, P., Ramos, R., 

Köllensperger, G., Deltell, A., Vizcaya, D., Künzli, N., 2010. 

Environmental Pollution 159(4), 954-962.*

                                             
* This paper is reproduced according to the original print version. References of this 
paper are included in Section 10. 

http://www.sciencedirect.com/science/article/pii/S0269749110005683
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Supplementary Data 

Chemical Analysis 
 
The concentrations of Al, As, Cd, Cr, Cu, Mo, Pb, Sb, Sn and Zn were 
measured by inductively coupled plasma sector field mass 
spectrometry (ICP-SFMS) carried out on an Element 2 ICP-SFMS 
(ThermoFisher, Bremen, Germany). When the monitoring was 
finished, the mosses were shipped to the University of Natural 
Resources and Applied Life Sciences, Department of Chemistry and 
the Umweltbundesamt GmbH laboratories in Vienna (Austria), where 
the chemical analysis was performed.  
 
Moss samples were dried at 30ºC (for 72 hours) and grinded under 
liquid nitrogen in porcelain vessels, and then submitted to microwave 
digestion with H2O2/HNO3. Sample aliquots of 200 mg plus 4mL 
of ultra-pure nitric acid and 1 mL 30% H2O2 solution (ultra-pure, 
Merck) were filled into acid-steam-cleaned PFA (perfluoroalkoxy 
polymer)-microwave digestion vessels and closed with pre-cleaned 
PTFE (polytetrafluoroethylene) caps. The digestion was performed 
applying a microwave program employing maximum microwave 
power of 450 W. After cooling, the digested samples were 
transferred to PP (polypropylene) vials and filled up to 10 mL with 
ultra-pure water. Microwave digestion blanks were prepared using 
ultra-pure water.  For quantification multi-element standards were 
prepared from Merck ICP-Single element standard in PFA bottles 
and vials through dilution in ultra-pure water and addition of 1% 
nitric acid. The acid content was matched to the content in the 
respective samples. Prior to ICP-SFMS measurement, Indium was 
added to all samples as an internal standard at a final 
concentration of 1 µg/L. The certified reference material (CRM) TM 
27.2 (low level fortified sample for trace elements) was used for 
calibration quality control. The certified values and the obtained 
values agreed within measurement uncertainty for the tested CRM. 
 
Elemental analysis was carried out on an Element 2 ICP-SFMS 
(ThermoFisher, Bremen, Germany). As sample introduction system a 
PFA micro-flow nebulizer (Elemental Scientific Inc., Cuming, Omaha, 
USA) with an internal diameter of 45 µm was used during the study. 
The self aspirating PFA micro-flow nebulizer (ESI) at a flow of 100 
µL/min was combined with a PFA double pass Scott-type spray 
chamber,  a sapphire injector pipe, a quartz torch and  platinum 
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sampler and skimmer cones (all parts Thermo Fisher). The following 
ICP-SFMS operating conditions were applied in this study: RF power 
of 1300 W and plasma gas flow of 16 L/min. Sample gas and 
auxiliary gas flows were set to 1.06 L/min and 0.86 L/min, 
respectively.  
 
Selected isotopes for interference- free ICP-SFMS measurement 
were 195Pt and 208Pb at low resolution (LR), 27Al, 52Cr, 65Cu, 66Zn, 
95Mo, 111Cd, 118Sn, 121Sb, at medium resolution (MR) and 75As at 
high resolution. During all measurements 115Indium was used as 
internal standard at all resolutions. Nominal mass resolutions of the 
Element 2 ICP-SFMS for low resolution (LR), medium resolution (MR) 
and high resolution (HR) are 350, 4 500 and 10 000, respectively.  
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Table 1. Spearman correlation coefficients across pollutants. 
(N=21 locations)a.  
 

 
a Two outdoor samplers located in streets are not included  
Significant at 0.05 (2-tailed);  
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Figure 1.  Cluster analysis (Partitioning Around Medoids method) 
for metals and NO2; Numbers of clusters k=4. Components are 
derived from principal component analysis (data not shown). N=23 
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Figure 2.  Cluster analysis (Partitioning Around Medoids method) 
for metals and NO2; Numbers of clusters k=3.  N=21 Two outdoor 
samplers located in non-residential sites are not included.  
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8.2 Spatial distribution of ultrafine particles in urban 

settings: a land use regression model (Paper II) 

 

 

Rivera, M., Basagaña, X., Aguilera A., Agis D., Bouso, L. , 

Foraster, M.,  Medina-Ramón, M., Pey, J., Künzli, N., Hoek, G.,  

In press. Atmospheric Environment.  

Submitted September 21, 2011, revised version submitted 

December 8, 2011, accepted January 20, 2012.*

                                             
* This paper is reproduced according to the revised version submitted. References of 
this paper are included in Section 10. 
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Abstract 
 

Background: The toxic effects of ultrafine particles (UFP) are a 
public health concern. However, epidemiological studies on the long 
term effects of UFP are limited due to lacking exposure models. 
Given the high spatial variation of UFP, the assignment of exposure 
levels in epidemiological studies requires a fine spatial scale. The 
aim of this study was to assess the performance of a short-term 
measurement protocol used at a large number of locations to derive 
a land use regression (LUR) model of the spatial variation of UFP in 
Girona, Spain. 
 
Methods: We measured UFP for 15 minutes on the sidewalk of 644 
participants’ homes in 12 towns of Girona province (Spain). The 
measurements were done during non-rush traffic hours 9:15-12:45 
and 15:15-16:45 during 32 days between June 15 and July 31, 
2009. In parallel, we counted the number of vehicles driving in both 
directions. Measurements were repeated on a different day for a 
subset of 25 sites in Girona city. Potential predictor variables such 
as building density, distance to bus lines and land cover were 
derived using geographic information systems. We adjusted for 
temporal variation using daily mean NOx concentrations at a central 
monitor. Land use regression models for the entire area (Core 
model) and for individual towns were derived using a supervised 
forward selection algorithm.  
  
Results: The best predictors of UFP were traffic intensity, distance to 
nearest major crossroad, area of high density residential land and 
household density. The LUR Core model explained 36% of UFP total 
variation. Adding sampling date and hour of the day to the Core 
model increased the R2 to 51% without changing the regression 
slopes. Local models included predictor variables similar to those in 
the Core model, but performed better with an R2 of 50% in Girona 
city. Independent LUR models for the first and second measurements 
at the subset of sites with repetitions had R2’s of about 47%. When 
the mean of the two measurements was used R2 improved to 72%. 
 
Conclusions: LUR models for UFP were developed, based on a 
highly cost-effective short-term monitoring campaign at a large 
number of sites, with fair performance. Complementing the approach 
with further strategies to address sources of temporal variation of 
UFP is likely to result in improved models as indicated by the good 
performance of the model based on the subset of sites with one 
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repeated measurement. Our approach is promising for UFP and 
possibly for other PM components requiring active sampling. 
 
 
Keywords: Particle number concentration; PM0.1; LUR; exposure 
assessment; monitoring; outdoor home; traffic; Girona; Spain. 
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Background 
 
There is increasing evidence that ultrafine particles (UFP) are of 
public health concern (Ibald-Mulli et al., 2002; Peters et al., 2011). 
UFP, also known as particulate matter PM0.1, are airborne 
particulates with aerodynamic diameter smaller than 100 nm (0.1 
µm). Some studies comparing the effects of UFP and PM2.5 have 
reported stronger associations between respiratory outcomes and 
UFP in humans (Peters et al., 1997; Politis M, 2008). Studies on 
animals provide evidence of stronger cardiovascular effects and 
promotion of early atherosclerosis associated to UFP (Araujo et al., 
2008). The epidemiological evidence is still insufficient, with only a 
few studies reporting on the short-term associations between 
mortality and UFP. According to a recent expert elicitation, daily all-
cause mortality was reported to increase between 0.1 and 0.4% 
per 1000 particle/cm3 increase in ambient UFP (Hoek et al., 2009). 
There are no studies on the effects of long-term exposure to UFP. 
However, the burden due to chronic long-term effects is usually much 
larger than that due to acute effects (Brook et al., 2010; Künzli et 
al., 2010), thus, studies on the long-term effects of UFP are 
necessary (Hoek et al., 2009; World Health Organization, 2006). 
Relying on proximity to busy roads as a marker for exposure to 
traffic-related pollutants, such as UFP, has several limitations, and 
transferring such results into policy is difficult (HEI Panel on the 
Health Effects of Traffic-Related Air Pollution, 2010). Thus, 
information on the spatial distribution of long-term mean UFP levels 
is needed. 
 
The use of one or a few fixed-site monitors to represent the average 
concentration in a city or large urban area is usual for some 
pollutants as PM2.5 (Pope et al., 2002a), but is not appropriate when 
studying UFP. Ultrafine particles are emitted by combustion 
processes, and tail-pipe exhaust from motor vehicles. Based on one-
year measurements of UFP (2003-2004) in Barcelona, Pey et. al. 
found that between 52 to 86% of the particles with size range 20-
800 nm was emitted by vehicles (2009). Because UFP are a primary 
pollutant that is rapidly transformed by physicochemical processes 
(dispersion, coagulation, deposition, etc.), and emitted mainly by 
mobile sources, they show a very high spatial variation. In open 
spaces, pollutant concentrations can drop to background levels at 
distances of 100-300 m from important sources such as highways 
(Zhou, 2007; Hagler, 2009). In the compact urban structures 
characteristic of European cities, spatial extent is even smaller (10’s 
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of meters) because traffic intensity inside the city is typically lower 
than on highways and concentrations fall to background levels 
behind a row of uninterrupted buildings (Bloemen et al., 1993). 
Additionally, given the small distances from home to road and the 
narrow streets typical of these towns, even modest traffic intensities 
of a few thousands vehicles per day determine outdoor and 
personal exposure concentrations. Therefore, to properly 
characterize the UFP spatial distribution, estimates at a fine spatial 
scale are needed.  
 
To assess exposure at a fine spatial scale, both deterministic and 
stochastic models have been developed. A thorough review of 
intraurban models is presented by Jerret et al. (2004). In general, 
the models that give the most reliable estimations of air pollution are 
dispersion models, integrated emission-meteorological models and 
land use regression models (LUR). The first two methods require an 
exhaustive quantity of input data such as the configuration of the 
setting, wind speed and direction, emission inventory and emission 
factors estimates. These data are not always available, particularly 
for small cities and low income countries. In the specific case of UFP, 
availability of emission data is more limited than for regulated 
pollutants such as NO2 or PM10. In contrast, LUR models use as input 
data potential determinants of pollution levels that are commonly 
available or can be derived through geographic information systems 
(GIS). Such variables typically include traffic counts, proximity 
variables (e.g. to roads) and street configuration variables. 
 
To our knowledge, only one LUR model of UFP has been published. 
This model, developed for the city of Amsterdam (The Netherlands), 
captured 67% of the UFP variability using long-term measurements 
in 50 locations (Hoek et al., 2010). The model was based upon a 
17-month monitoring period with weekly measurements at each 
location performed in the framework of a study aimed at evaluating 
temporal correlations across urban areas. Such an extensive 
campaign is not feasible when the aim is to develop a LUR model. 
Typical LUR models are based upon monitoring campaigns at 40-
100 sites with one to four weeks of sampling (Brauer et al., 2003). 
Additionally, the use of integrated samplers left unattended at the 
sites for 1-2 weeks, as is common for PM campaigns, is not possible 
in UFP monitoring because of the cost of equipment (typically 6-10 
instruments used in these studies) and the need to supervise it. More 
affordable mobile condensation particle counters allow monitoring 
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for short time periods and easier access to locations were the 
conventional instruments can not be deployed.  
 
The objective of this study was thus to evaluate a monitoring 
strategy based on short UFP measurements in a highly dense 
monitoring network using mobile condensation particle counters. We 
tested the performance of LUR models for ultrafine particles based 
on such short-term measurements in the region of Girona, Spain.  
 
 
Methods 
 

Study design 
 
Ultrafine particles were monitored outside the residences of 
participants of the REGICOR study (http://www.regicor.org/). 
REGICOR is a series of population-based cohorts of adults, 
randomly selected in Girona province in 1995 and 2000 (Masiá et 
al., 1998). Girona is the northernmost province of Spain. Its towns 
include settings like the average mid-size Mediterranean city of 
Girona and adjacent Salt, tourism getaways on the beach, industrial 
centers, maritime ports, historic quarters and small villages in the 
valleys and mountains. Most of these towns have a historical quarter 
used for residences and businesses with narrow streets and less than 
three-story buildings. The architecture in the downtown is also 
compact –relatively high buildings (usually 5-8 stories) and narrow 
streets– especially in the larger towns. The façade of buildings and 
houses is separated from the road only by a narrow sidewalk or, in 
a few cases, by a sidewalk and a hallway or garden. In the study 
sites the median distance from the front door to the curb was 2.5 m. 
 
This study was designed to share efforts and resources with an 
assessment of traffic density. The most important local determinant 
of UFP is traffic. In the absence of reliable traffic data on local 
streets, we adapted a traffic counting protocol used before in the 
Netherlands (Van Roosbroeck et al., 2007), expanded by parallel 
measurements of UFP. Sites were selected to cover a broad range 
of traffic-related pollution. In the absence of UFP data, the selection 
was based on previous measurements of NO2 assuming that this 
strategy would as well maximize the distribution of UFP. 
Additionally, sites covered a broad range of urban settings, such as 
low and high building-density areas, narrow and broad streets, 
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downtowns, historical quarters and peripheral residential areas. The 
sites selected in each town were broadly representative also of the 
residential locations of the cohort participants and were well 
distributed across the town. The number of sites and measurements 
was limited by the seven-week period in which logistics - including 
equipment - were available: 32 working days between June 15 and 
July 31, 2009. 
 

UFP and traffic monitoring 
 
We measured UFP for 15 minutes on the sidewalk of 644 
participants’ homes in 12 towns of Girona province (Spain) (Table 1, 
Figure 1) with the highest number of sites selected in the city of 
Girona (N=167). We performed repeated measurements in 
different days for 25 sites in Girona. The UFP were monitored with 
P-Trak counters (TSI model 8525) located perpendicularly to the 
street, 1.5 m above ground on the sidewalk and, whenever possible, 
at 1.5 m from the façade. Five P-Traks were used. The P-Trak counts 
the total number of particles in the size range of 20-1000 nm. 
Particles in this range both exclude the 10-20 nm and extend 
beyond the 100 nm limit of the UFP but represent well the ultrafine 
particles as has been found after comparing P-Trak measurements 
with Scanning Mobility Particle Sizer coupled to a Condensation 
Particle Counter measurements (Pearson correlation coefficient for 
the size range 10-70 nm ranged between 0.7-0.9) (Hagler et al., 
2009). In urban areas, UFP typically account for about 80% of the 
total particle number count. For ease of terminology, we will refer to 
the P-Trak measurements as UFP. We took measurements for 6-hour 
periods before and after the monitoring period to evaluate the 
agreement of the P-Traks. Intra-class correlation between the five P-
Trak measurements was 0.989. The maximum relative difference 
was on average 15.6.  
 
In parallel, we counted the number of light, heavy and motorcycle 
vehicles driving in both directions. Traffic was counted manually 
using tally counters. Since 15-minute traffic measurements in the non-
rush hour period have been shown to represent well the long-term 
traffic mean (Van Roosbroeck et al., 2007) and the within-day 
pattern of UFP concentrations closely resembles that of traffic load 
(Diapouli et al., 2007; Wang et al., 2010), we conducted all 
measurements in non-rush hour periods during daytime. Based on 
continuous 24-hour traffic measurements at 22 locations, available 
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from the city council Mobility plan of 2007 
(www.ajgirona.cat/mobilitat/plamobilitat.html), we defined the non-
rush hour periods as 9:15 to 12:45 and 15:15 to 16:45. Spearman 
correlation coefficient between the 15-minute traffic from our counts 
and the 24-hour traffic at these locations was 0.71 (p-value 
0.0003). These measurements were also used to scale the 15-minute 
traffic averages to 24-hour averages. The scaling ratio was 
1/69.48, very similar to that reported for The Netherlands, 1/61.92 
(Van Roosbroeck et al., 2007).  
 

Other predictor variables 
 
Addresses of participants’ homes were geocoded at the front door 
level by a private company (Arvato Services). Addresses geocoded 
with less than maximum precision (i.e. exact address) were again 
geocoded by entering the address to the web mapping application 
of the Cartographic Institute of Catalonia (http://mercuri.icc.cat) and 
capturing the geocode at the building’s door. We compared the 
geocodes with maximum precision level provided by Arvato with 
those obtained from the mapping application for a subsample of 64 
sites. The median distance was 13.6 meters.  
 
We assigned the 24 hour scaled total traffic and the fractions of 
heavy duty traffic and motorcycles vehicles to the central road 
network used within ESCAPE (www.escapeproject.eu). We defined 
“major road” as having a traffic intensity higher than 7000 
veh./day. Data on land-cover and geographic characteristics, e.g. 
area of residential land, distance to the sea and to continental 
water, altitude, were taken from the CORINE database (European 
Environmental Agency). Data on land used for industry was obtained 
from the Cartographic Institute of Catalonia. Meteorological data, 
at four stations in the study area, were available from the 
Catalonian Meteorology Service. Population and household density 
were available from the 2001 Spanish census (INE, 2004). Routes of 
bus lines and location of bus stops were provided by the city councils 
of Girona, Salt and Olot. Predictor variables referring to road 
length or to a given area around the monitoring location were 
derived for buffers of 25, 50, 100, 150, 300, 500 and 1000m. 
Detailed distribution of these variables is given in Supplementary 
Table S1. 
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Statistical Analysis  
 
As sites were measured on different days and times, temporal 
variation may affect the modeling of spatial variability. In the 
Amsterdam study, UFP data at a central urban-background site 
were used for adjustment (Hoek et al., 2010). In the Girona area 
there was no fixed site with UFP data available. To account for the 
temporal variation, we calculated the ratio of the mean level of NOx 
in the 7-week measurement period to the NOx in the day of each 
measurement at an urban background fixed station in Girona city. 
Then, each measurement was multiplied by this ratio. This approach 
was built on the assumption that the relationship of the 15-minute 
UFP measurement with the 7-week average UFP at any location 
within the study area is equal to the relationship of the daily NO2 to 
the 7-week average NOx at the fixed monitoring station. Other 
approaches like the adjustment using hourly measurements of NO2, 
hourly and daily measurements of NOx, and the UFP measurements 
trend over time were also explored.  
 
The models were derived by supervised forward linear regression 
following the methodology used by Hoek et al. (2010). Log-
transformed values of temporally adjusted UFP minus a factor of 
659.2 were used, because in exploratory analyses the residuals of 
the models did not follow a normal distribution. The factor of 659.2 
is a small quantity compared to the monitored concentrations and 
was subtracted so that the skewness equals zero. The forward 
selection process started with an empty model. In every iteration, all 
the potential predictors were entered independently. The predictor 
variable producing the highest increase in the adjusted R2 was 
retained provided the adjusted R2 increase was higher than 1% and 
the direction of the association with UFP was as expected (i.e. for 
traffic or road length a positive association was conditioned, while 
for distance to traffic or area of nature a negative association was 
conditioned). We repeated this process until no additional variables 
could increase the adjusted R2 more than 1%. Covariates with p-
value higher than 0.1 were sequentially removed from the model.  
 
We developed models for the full area and for separate groups of 
towns. Because of the heterogeneity in the study area we combined 
adjacent towns with similar urban characteristics and traffic intensity 
levels, resulting in seven geographic groups. For those locations 
where we had repeated measurements, we additionally fitted 
independent models for the first and second measurement as well as 
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for the average across the two repeated measurements. We 
investigated the influence of the short-term sampling variability by 
comparing the performance of the model for the average of two 
measurements with the models for a single measurement. To evaluate 
the suitability of the temporal adjustment approach, we added 
sampling date and hour to the core model. Significant effects would 
indicate residual temporal variation in the adjusted UFP levels.  
 
To assess the predictive ability of the model to a new dataset, cross-
validation R2 was computed by the leave-one-out method (see 
detailed explanation in Supplementary Material).  
 
The analyses were done using Stata 10.1 (StataCorp, College 
Station, TX) and ArcGIS 9.2 (ESRI, Redlands, CA). 
 
 
Results 
 
Descriptive statistics of the UFP for the study area and by groups of 
towns are presented in Figure 2. Median of UFP concentrations was 
8.313 particles per cm3 ranging from 1.840 to 53.103. The highest 
concentrations of UFP were found in Girona, Blanes and Salt the 
larger cities in the study area. The lowest were in 
Sta.Cristina/Llagostera, two small towns on the coast. UFP 
concentrations adjusted for temporal variations were very similar to 
unadjusted concentrations. 
 
The weather in the monitoring days was relatively constant, with 
mean daily temperatures ranging from 19 to 27ºC except for one 
day with temperature of 29.8ºC in Girona city and 28.2C in the 
coast (Figure 3). Average daily temperature in the closest 
meteorological station was inversely associated with the number of 
ultrafine particles. Wind velocity on measurement days ranged from 
0.6m/s in Girona to 3.2 in Banyoles/Porqueres and 3.5m/s in the 
coast. Relative humidity varied between 43 and 81%. A few 
showers occurred on 14 monitoring days. Only two of these days 
had rainfall of more than 2.5mm (equivalent to l/m2). UFP 
monitoring was avoided during the rain but in nine measurements it 
started raining after the measurements were initiated. Figure 3 
illustrates temporal correlation in weather patterns across the areas 
(particularly temperature), but also illustrates differences in absolute 
values of especially wind speed and relative humidity on the same 
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day, supporting the decision to evaluate local LUR models in 
addition to a study-area overall model. 
 
The best predictors of the UFP distribution were the 24h traffic 
intensity, high density residential land in a 1.000 m buffer, distance 
to the nearest intersection of two major crossroads and household 
density in a 100 m buffer (Table 2). The median traffic intensity was 
695 vehicles per day and it ranged between 69 and 35.781. 
Especially in the smaller towns, the number of sites with moderate or 
high traffic counts was few. Traffic distribution by towns is shown in 
Figure 4. The median area of high density residential land in a 
1.000 m buffer was 1.16km2. The median distance to the nearest 
intersection of two major roads was 299 m. And the median number 
of households in a 100 m buffer was 42. This is equivalent to 1337 
households per km2.  
 
The LUR model for the entire study area is shown in Table 2 (core 
model). It had a moderate performance explaining 36% of UFP 
total variation and the cross-validation R2 was 0.35 (Supplementary 
Figure S1). The same model using the untransformed UFP, instead of 
its logarithm, showed very similar results with an R2 of 0.33 and a 
cross-validation R2 of 0.31 
 
Because differences in the UFP dispersion may exist between towns 
we added town to the core model. The explained variability 
increased to 40%. Three towns significantly accounted for the UFP 
variability: Blanes, St.Joan/Olot and Porqueres/Banyoles. Since the 
predictors’ effects could be different by town, we included 
interaction terms in the core model. The interactions of town and high 
density residential land and distance to the intersection of two major 
roads were statistically significant and the model explained 42% of 
the UFP variability (Supplementary Table S2).  
 
Since part of the UFP variability was captured by the class variable 
town, we evaluated both the performance of the core model in each 
town and the performance of local models. Applying the core model 
(Table 2) to each group of towns showed a good performance in 
Sta.Cristina/Llagostera, similar performance than the core model in 
Girona, Blanes, and Palamos/La Bisbal/Palafrugell and poor 
performance in Salt, St.Joan/Olot, and Porqueres/Banyoles. The 
goodness of fit and cross-validation R2 are shown in Table 3. The 
local models included predictor variables similar to those of the core 
model: Traffic, distance to traffic and proxies of building and 
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household density. Additionally, length of major roads in 50 m and 
100 m buffers, length of bus lines, North-South orientation of the 
nearest major street and area of natural and industrial land were 
also selected as best predictors for the UFP distribution in the town-
specific models (Table 3). Most predictor variables in these models 
had small spatial scales in the range of 100 m, and the areas with 
wider extension sampled (Sta.Cristina/Llagostera and Palamos/La 
Bisbal/ Palafrugell) also had variables with spatial ranges between 
500 and 1000m. Overall, local models performed better –
sometimes substantially better– than the model for the entire study 
area, except for the town Porqueres/Banyoles where performance 
remained poor. We investigated whether specific weather 
circumstances explained this low performance. Excluding 
measurements on days with mean wind velocity above 3 m/s did not 
improve the model.  
 
When we added sampling date and hour of the day as categorical 
variables to the core model, they resulted as significant predictors of 
the UFP levels and the adjusted R2 increased to 51% 
(Supplementary Table S3). Similar improvements were observed 
when adding these variables to the core models adjusted for town 
and town interactions (data not shown). The regression slopes of the 
spatial predictors were, however, almost identical to the slopes 
without temporal predictors (Supplementary Table S3 and Table 2). 
 
Repeated measurements 
 
The Pearson correlation coefficient and intra-class correlation for 
repeated measurements of UFP levels were 0.24 and 0.32 
respectively (Figure 5). This low correlation was not due to 
variability in total traffic levels during the two 15-minute periods. 
Correlation coefficient for the total traffic counts (heavy, light and 
motorcycles) was 0.95 (p-value <0.0001). Correlation coefficient for 
heavy vehicles in the first and second measurements was 0.59 
(0.0018).  
 
The LUR models for the first and second measurements on these 25 
locations had R2’s of 0.47, but strongly improved to 0.72 when the 
mean of the two measurements was used (Table 4). The main 
predictors in these models were length of roads in buffers smaller 
than 150m, length of and distance to bus lines and characteristics of 
the urban space as building density in a 100 m buffer and the area 
urban green land in a 500 m buffer. Nevertheless, traffic intensity, a 
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very common variable in the core model and the town specific 
models, was only selected into the model for the second 
measurement. The main determinants of UFP in the subset of 25 
locations with repeated measurements were very similar to those for 
the full set for Girona city (Table 3).  
 
Costs 
 
Average fieldwork time for one visit was 50 minutes. This time 
includes commuting time (average in our study was approximately 
15 minutes) from one location to the next, completing datasheets, 
downloading data from the P-Trak, and emailing collected data to 
the study center (Barcelona) every two days.  
 
 
Discussion  
 
We derived LUR models that captured between 36 and 42% of the 
spatial variability of ultrafine particles in the study area. Traffic 
intensity, distance to nearest major crossroad, area of high density 
residential land and household density were the main UFP 
predictors.  
 
The predictors of UFP in Girona are similar to those reported for 
Amsterdam, namely product of traffic and inverse distance to traffic 
squared, address density in 300 m buffer and area of port in 3000 
m buffer (Hoek et al., 2010). The performance of the Amsterdam 
model was better, explaining 65% of variability. The performance 
of our model is however similar to a variation of the Amsterdam 
model (R2=44%) in which the variables collected on the field, 
specifically, distance from sampling site to the road, were removed 
and the potential predictors were limited to GIS derived variables, 
as in our study. The lower R2 of the GIS model compared to the GIS 
plus field observations model in Amsterdam was attributed to limited 
geographical precision of geocoding and GIS predictors (Hoek al. 
2010). Our study area is more geographically complex whereas the 
Amsterdam study was based on inner city locations only. The model 
for Girona city, the biggest city in our area, explained 50% of the 
UFP variability. Finally, UFP data for Amsterdam were available for 
a longer time period (one week) than UFP data for Girona (15 
minutes), but at fewer sites. 
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Model performance 
 
Several reasons might have led to the moderate predictive ability of 
our models, specifically: the temporal variability in the UFP levels not 
captured by the temporal adjustment, the heavy traffic variability 
not properly captured by 15-minute traffic counts, the moderate 
UFP levels and the limited variance in the distribution of some 
covariates and its related measurement error. 
 
Temporal variability 
 
Despite monitoring in the non-rush hours in a consecutive 7-week 
monitoring period in one season and adjusting for temporal 
variation using NOx at an urban background site, including sampling 
date and hour to the LUR models improved the R2 of the core model 
from 36 to 51% (Supplementary Table S3). This illustrates that 
temporal variation remained in our measurements despite the 
adjustment. Some of the variability that the models were unable to 
capture is thus explained by remaining temporal variability. The 
variation of the UFP levels with the monitoring hour was consistent 
with the pattern described in several studies (Hoek et al., 2008b; 
Pey et al., 2009; Wang et al., 2010). After a morning peak 
simultaneous to that of traffic, the UFP levels steadily decrease, 
largely because of the increase in atmospheric turbulence and 
atmospheric instability that develops after sunshine. Other methods 
to adjust for temporal variability in the UFP levels were tested (NO2 
and NOx hourly levels, NO2 daily levels, splines of the temporal 
patterns in our measurements) as a sensitivity analysis. None of them 
increased the R2 of the LUR models. Adjustment was likely insufficient 
because we did not have UFP measurements available from a 
monitoring station and UFP has only a moderately high correlation 
with NO2 and NOx (Paatero et al., 2005). Furthermore, the NOx 
concentrations in Girona may not adequately capture the temporal 
variation in the other towns. An important observation was that the 
coefficients of the covariates of the spatial part of the LUR models 
did not change compared to the core model without the temporal 
part. Hence these coefficients can be used to model the spatial 
variation of UFP. 
 
The repeated measurements showed a low correlation; this can be 
explained by differences in traffic composition, time of day and day 
to day variability in the processes that govern the UFP dispersion i.e. 
wind, solar radiation, turbulence, etc. Although the total traffic 
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showed a very high correlation across the two measurement periods, 
the correlation for the heavy traffic was lower. Variability of heavy 
traffic in a 15-minute period is higher than that of the total traffic. 
Since heavy duty vehicles emit more particles, the variability in the 
number of heavy vehicles explains, in part, the modest correlation of 
the UFP repeated measurements, and thus, the modest R2 of the LUR 
models. The mean temperature, relative humidity and wind speed in 
the first and second measurement days were uncorrelated (Pearson 
correlation coefficient and p-values 0.06, 0.77; 0.13, 0.53; 0.24, 
0.24, respectively). Wind away from the monitoring site may 
account for differences in the UFP observed levels. However, this is 
unlikely to play a role at most sites given the narrow streets and the 
short monitor to traffic distance.  
 
One strategy to address the temporal variation is the use of 
repeated measurements. As shown, the use of two instead of a single 
15-minute UFP measurement in 25 sites in Girona city increased 
substantially the performance of the related local LUR model (from 
47 to 72% explained variance). Such rather simple expansion of the 
protocol may thus result in LUR models with higher performance, 
while still capitalizing on the major logistic advantages of short-term 
monitoring periods. Extending the measurement period would better 
capture the temporal variability, particularly from heavy traffic 
measurements. Longer measurement periods may though require 
different logistic approaches. 
 
UFP levels 
 
Compared to larger cities –e.g. Barcelona, Amsterdam – the UPF 
levels observed in our towns were relatively low. However, the UFP 
contrasts were larger across the Girona sites as compared to the 
Amsterdam sites (interdecile range/median was 1.86 compared to 
1.09) from the previous UFP LUR study (Hoek et al., 2010). The 
mean UFP concentration in Girona was 10.523 part/cm3, around 
40% less than the mean levels for the period November 2003–
December 2004 in an urban background monitoring site in 
Barcelona (mean level of particles with diameter 13–800 nm = 
17.000 part/cm3) and about 50% less than the UFP concentrations 
at the Amsterdam sites. Moderate levels are in correspondence to 
the size of the towns, and traffic levels in the study area. While the 
traffic intensity in the major road nearest to the station in Barcelona 
was 106.000 vehicles per day, the mean traffic in the nearest major 
road in our sites was 11.500 vehicles per day.  
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We measured during non-rush hours, a time of lower UFP levels. For 
traffic density it is known that the annual mean of daily counts are 
better represented by the traffic during non-rush hours. Since vehicle 
exhaust is the main source of UFP, a focus on the more 
representative non-rush hours appears to be an appropriate 
approach to estimate the mean daily levels. The observed UFP levels 
may also underestimate the long-term mean due to seasonal factors. 
Low temperatures and atmospheric stability presumably enhance the 
formation of ultrafine particles, which show lower levels in the 
summer (Wang et al., 2010), when the monitoring was done. 
However, spatial variation may still be similar across seasons, as has 
been documented for other traffic-related pollutants including NO2 
(Hoek et al., 2008a).  
 
A disadvantage of our study relates to the use of the P-Trak with 
particles in the lowest size range (10-20 nm) being below detection 
limit. While the use of P-Trak may have affected the absolute levels 
of our UFP measurements, the spatial difference between locations 
and the performance of LUR model is hardly affected. The annual 
average seven-minute mode of UFP (particle diameter 13–800 nm) 
concentrations measured in Barcelona was approximately 35 nm 
(Pey et al., 2009). 
 
Covariate range and measurement error 

 
Model performance was particularly modest in small towns. Low 
absolute values and a low range in traffic intensity may in part 
explain this. Similar results were observed in a Danish study where 
the correlation between traffic intensity and measured NO2 was 
much higher within Copenhagen city than in the smaller towns around 
Copenhagen (Raaschou-Nielsen et al., 2000). The measurement 
error of the covariates is inherent to the limited precision in the GIS 
based predictors. Given that UFP concentration drops to background 
level in a few tens to hundreds of meters from its source, the urban 
characteristics relevant to UFP dispersion are in this scale. Therefore 
the precision of the GIS-derived measurements may affect the 
performance of the predictive models. The exclusion of sites located 
less than 25 m from a major road intersection did not change the 
coefficients neither the predictability of our models.  
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Monitoring Strategy 
 
A major advantage of our approach compared to more 
conventional campaigns with active samplers left in the field for 
weeks is the much higher flexibility in site selection as the technician 
supervises sampling. In most cities, it is a major challenge to find safe 
locations within major streets which is why investigators rely on first 
floor sampling such as balconies. Thus, the cost of finding 
appropriate sites will be diminished. 
 
In light of limited resources, the choice of the monitoring strategy is 
always a trade-off between optimizing number of locations, number 
of measurements per location, and duration of measurements. Our 
study reduces the measurement duration from the usual several 
weeks to only 15 minutes, while drastically increases the number of 
sites to a density not seen in any other study (e.g. 69 sites within an 
area of 2 km2 in the town of Salt). While this decision was primarily 
driven by our needs to count traffic in the absence of reliable data, 
the performance of the UFP model was good. Short-term 
measurements ranging from only 5 to 13 minutes have been used 
before to develop a LUR model for black carbon (Larson et al., 
2009). In that study the concentrations were measured from a 
vehicle driving around the four blocks surrounding 39 monitoring 
locations and the monitoring period was 8 days. Models R2’s ranged 
from 0.51 to 0.72. 
 
The monitoring strategy we used overcomes one of the main 
limitations of LUR modeling, allowing a monitoring of a large number 
of locations in a short study period. Specifically for UFP, current 
instruments are expensive and/or cannot be left unattended for 
weeks as is feasible for the integrated PM sampler. Depending on 
the number of sites and number of repetitions, costs are likely lower 
as well. It was previously estimated that a campaign with active PM 
sampling at 40 locations with four 1-week measurements per 
location required 64 person days of fieldwork (Hoek et al., 2008a, 
Table 7). Implementing our protocol for a UPF monitoring campaign 
at 40 locations with four 15-minute measurements in different days 
would require 17 person days of fieldwork.  
 
The number of sites in LUR models largely depends on logistics and 
economic resources available. It has been suggested that the 
sampling size is less important for the performance of the models 
than the variability of the covariates (Ryan et al., 2007b). 



Paper II 
 

 

118 

Maximizing the covariate’s variability is indeed important. The 
exposure predictions derived with a LUR model with high variability 
of the covariates in the monitoring locations would more likely result 
in more precise health effects estimates (Szpiro et al., 2011a). 
Nevertheless the sample size could also play a role in the models 
performance. In a recent study, training sets of different sample 
sizes (N= 20 to 140) were randomly selected from a dataset of 
NO2 monthly mean concentrations in 159 locations in Girona city, 
while the remaining points constituted the validation sets. For each N 
the random selection was repeated 200 times. LUR models were 
derived using the training set, and then validated using the 
validation set. With decreasing sample size the adjusted R2 and 
leave-one-out cross-validation R2 increased while the validation R2 
(true R2) decreased. It was concluded that the smaller the sample 
size the larger overestimation of the true R2 and the lower 
predictability and stability of the models (Basagaña et al., 2011). 
Whether these results extend to other cities and areas remains to be 
explored.  
 
 
Conclusion  
 
A LUR model was developed for ultrafine particles based upon 
short-term monitoring at 644 locations in Girona province that 
explained up to 42% of the spatial variability. A single 15-minute 
repeat at a subset of 25 sites, conducted within a few weeks, 
improved the LUR substantially, thus we recommend the use of 
repeated measurements. Further efforts to better control factors 
affecting temporal variation of UFP, such as having continuous 
measurement of UFP at multiple reference sites, may improve these 
models as well. We conclude that far shorter monitoring protocols 
than currently assumed to be needed provide very promising models 
at lower costs. Such protocols are of particular relevance in resource 
constraint settings as low income countries and small towns. This 
approach is also useful to derive a first approximation of the UFP 
spatial distribution that helps both guiding the design of new 
epidemiological studies on UFP and deciding where to invest for LUR 
models. 
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Tables and Figures  
 
Table 1. Distribution of monitoring locations across towns. 
Population in 2010, approximate size of sampled area in km2, 
number of sampling sites (N and %), number of days with monitoring 
activity, and monitoring period.  
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Table 2. Land use regression model for ln (ultrafine particles -
659.2): Core model. N=644. UFP are expressed in (part/cm3). 
Predictor variables are divided by the difference between the10th 
and 90th percentile indicated in parenthesis. Coefficients are 
expressed as proportional change in UFP for an increase between 
the 10th and 90th percentile in each of the predictors. 
 

Coef. P>t [95% CI]  R2
A  R2(cv).

Core model
0.36 0.35

heavy, light and motorcy. veh in 24 hours (veh/9726) 0.433 <0.001 0.35 0.52
area of high density residential land within 1000m (m2/1930508) 0.355 <0.001 0.20 0.51
distance to intersection of two major roads (m/904) -0.21 <0.001 -0.28 -0.13
household density within 100m (number/184) 0.144 0.008 0.04 0.25
constant 8.679 <0.001 8.56 8.79

 R2
A: adjusted coefficient of determination

 R2(cv): cross-validation coefficient of determination
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Table 3. Town-specific LUR models and performance of Core model, model adjusted for town and model 
with effect modifications of town applied to each town.  
 

Town/Area N

Determinants  R2
A  R2(cv).  R2

A  R2(cv).  R2
A  R2(cv).  R2

A  R2(cv).

Girona 167

length of major roads within 50m; area of buildings within 

100m; length of bus lines within 300m; heavy, light and 

motorcy. veh. in 24 hours; distance to highway AP-7

0.50 0.47 0.38 0.35 0.37 0.34 0.37 0.32

Salt 69
heavy, light and motorcy. veh in 24 hours; Product T.I on 

nearest major road*inverse distance to nearest major 

road; population density within 100m

0.32 0.26 0.17 0.13 0.18 0.12 0.31 0.21

Blanes 104
household density within 100m; heavy, light and motorcy. 

veh. in 24 hours; area of buildings within 100m; area of 

residential land within 100m

0.43 0.36 0.27 0.19 0.32 0.28 0.38 0.27

St. Joan, Olot 38
household density within 500m; 24 hour total traffic load 
of all roads in 150m; N-S orientation of nearest major 
road

0.55 0.45 0.08 0.00 0.07 0.00 0.13 0.00

Sta.Cristina, Llagostera 45
heavy, light and motorcy. veh in 24 hours; area of natural 

land within 500m;  household density within 1000m; area 

of industrial land within 1000m 

0.76 0.74 0.53 0.45 0.54 0.46 0.63 0.58

Porqueres, Banyoles 76
heavy, light and motorcy. veh in 24 hours;  population 

density within 100m
0.13 0.09 0.10 0.00 0.11 0.07 0.19 0.12

Palamos, La Bisbal, Palafrugell 145

length of major roads within 100m; heavy, light and 
motorcy. veh. in 24 hours; area of residential land within 
1000m; Product T.I on nearest road*inverse distance 
squared

0.35 0.32 0.33 0.22 0.32 0.27 0.31 0.28

 R2
A: adjusted coefficient of determination

 R2(cv): cross-validation coefficient of determination

Core model 
applied to 
each town

Model with 
effect 

modifications of 
town applied to 

each town

Model 
adjusted for 

town applied 
to each town

Town specific LUR models
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Table 4. Land use regression models for ultrafine particles 
(part/cm3) in locations with repeated measurements. N=25 
 

Determinants  R2
A R2(cv)

Measurement Day 1
length of major roads within 50m; area of buildings 

within 100m 0.47 0.39

Measurement Day 2
24 hour total traffic load of all roads in 150m; natural 

logarithm of distance to nearest regular bus line 0.47 0.40

Average Day 1 and Day 2 
length of major roads within 150m; area of urban green 
land within 500m; length of all roads within 50m; length 
of bus lines within 25m 0.72 0.68

 R2
A: adjusted coefficient of determination

 R2(cv): cross-validation coefficient of determination
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Figure 1. Monitoring locations. Points represent monitoring 
locations. 
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Figure 2. Distribution of ultrafine particles (part/cm3) across 
towns.  
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Figure 3. Daily average temperature, relative humidity and wind 
speed, on monitoring days, at four meteorological stations 
located in the study area. 
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Figure 4. Distribution of heavy, light and motorcycle vehicles in 
24 hours (number of vehicles) across towns. 
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In the box plots, the box represents the interquartile range, solid line in the box is 
the median. The whiskers extend to the upper and lower adjacent values. The 
upper adjacent value is defined as the largest data point less than or equal to the 
75th percentile + 1.5 x interquartile range. The lower adjacent value is defined 
as the smallest data point greater than or equal to the 25th percentile + 1.5 x 
interquartile range. All values outside the adjacent values are represented with 
dots. 
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Figure 5. Scatter plot of UFP measured in Day 1 and Day 2. 
Dashed line: y=x. Continuous line: Fitted values. Pearson correlation 
coefficient 0.2351, significance 0.2579.  
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Supplementary Material 
 
Leave one out cross-validation 
 
The leave-one-out cross-validation procedure consists in using n-1 
observations to fit the model. The resulting model equation is then 
used to predict the response for the observation that has been left 
out. This process is repeated n times so that each point has a 
prediction based on a model that did not use the observed value in 
the model fitting. The leave-one-out cross-validation R2, R2(cv), was 
then calculated as one minus the ratio of the mean squared 
prediction error (MSPE) to the sample variance of the response. 
Where MSPE is the average of the squared differences between the 
observed values iy  and the predicted values iŷ , 

( )∑
=

−=
n

i
ii yy

n
MSPE

1

2ˆ1
. 
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Table S1 Distribution of predictor variables that resulted in any LUR model. N=644 except when noted. Minimum, 
10th percentile, median, 90th percentile and maximum. Distances are expressed in m, areas are in m2, traffic 
intensities in number of vehicles/day. Major roads: with traffic intensity >7000 veh/day. T.I.: Traffic intensity 
 

Predictor Variable min p10 p50 p90 max

heavy, light and motorcy. veh in 24 hours 0 69 695 9796 35781
24 hour total traffic load of all roads within 150m 0 731586 3810000 10300000 18500000
length of bus lines within 25m 0 0 0 140 413
length of bus lines within 300m * 0 1019 2219 5599 10202
length of major roads within 50m 0 0 0 106 313
length of major roads within 100m 0 0 0 301 775
length of major roads within 150m 0 0 13 550 1045
length of all roads within 50m 0 133 226 344 583
product T.I on nearest road and inverse distance squared 0 1 34 1602 180000000
distance to highway AP-7† 106.8 759 2249 3210 4738
product T.I on nearest major road*inverse distance to major road 3.92 17 80 1467 261308
distance to intersection of two major roads 1.23 69 299 974 4334
ln. distance to nearest regular bus line † -2.99 1 3 5 6
population density within 100m 0.54 14 105 494 1522
household density within 100m 0.2 5 42 189 537
household density within 500m 5.04 200 1154 3481 4956
household density within 1000m 31.02 798 3638 10293 14029
area of high density residential land within 1000m 0 271981 1160000 2200000 2980000
area of buildings within 100m 0 3589 9449 16534 21361

area of residential land within 100m 0 7166 31413 31413 31413
area of residential land within 1000m 0 741270 1440000 2370000 3050000
area of natural land within 500m 0 0 0 161765 623566
area of urban green land within 500m 0 0 0 0 258550
area of industrial land within 1000m - source ICC 0 0 49801 435534 806331

* only available for Girona, Salt and Olot
 † only available for Girona and Salt.  
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Table S2. Land use regression models for ln (ultrafine particles -
659.2) adjusted for town and with effect modification of town. 
N=644.UFP are expressed in (part/cm3). Predictor variables are 
divided by the difference between the10th and 90th percentile 
indicated in parenthesis. Coefficients are expressed as proportional 
change in UFP for an increase between the 10th and 90th percentile 
in each of the predictors.  
 

Coef. P>t [95% CI]  R2
A  R2(cv)

LUR model adjusted for town
0.40 0.38

heavy, light and motorcy. veh in 24 hours (veh/9726) 0.456 <0.001 0.37 0.54
area of high density residential land within 1000m (m2/1930508) 0.25 0.003 0.08 0.42
distance to intersection of two major roads (m/904) -0.2 <0.001 -0.30 -0.11
household density within 100m (number/184) 0.222 <0.001 0.11 0.34
Sta.Cristina, Llagostera (ref. category)
Salt 0.072 0.554 -0.17 0.31
Girona 0.133 0.237 -0.09 0.35
Porqueres, Banyoles 0.339 0.004 0.11 0.57
Blanes 0.337 0.003 0.11 0.56
Palamos, La Bisbal, Palafrugell 0.008 0.942 -0.20 0.22
St.Joan, Olot 0.429 <0.001 0.19 0.67
constant 8.54 <0.001 8.30 8.78

LUR model with effect modifications of town
0.42 0.40

heavy, light and motorcy. veh in 24 hours (veh/9726) 0.47 <0.001 0.38 0.55
area of high density residential land within 1000m (m2/1930508) 2.29 <0.001 1.03 3.56
interaction of area of high density residential land within 1km with:

Salt -3.08 <0.001 -4.78 -1.37
Girona -2.05 0.002 -3.33 -0.77
Porqueres, Banyoles -2.03 0.002 -3.33 -0.73
Blanes -2.30 0.001 -3.61 -0.98
Palamos, La Bisbal, Palafrugell -2.09 0.003 -3.47 -0.71
St.Joan, Olot -1.61 0.027 -3.04 -0.18

distance to intersection of two major roads (m/904) -0.04 0.663 -0.20 0.13
interaction of distance to intersection of two major roads with:

Salt 1.09 0.015 0.21 1.97
Girona -0.13 0.500 -0.52 0.25
Porqueres, Banyoles 0.33 0.129 -0.10 0.75
Blanes -0.11 0.686 -0.65 0.43
Palamos, La Bisbal, Palafrugell -0.52 0.006 -0.90 -0.15
St.Joan, Olot 0.14 0.441 -0.22 0.51

household density within 100m (number/184) 0.26 <0.001 0.13 0.38
Sta.Cristina, Llagostera (ref. category)
Salt 1.24 0.028 0.13 2.35
Girona 0.92 0.007 0.25 1.59
Porqueres, Banyoles 0.91 0.007 0.25 1.57
Blanes 1.30 <0.001 0.58 2.01
Palamos, La Bisbal, Palafrugell 1.00 0.005 0.30 1.71
St.Joan, Olot 0.62 0.187 -0.30 1.54
constant 7.72 <0.001 7.12 8.32

 R2
A: adjusted coefficient of determination

 R2(cv): cross-validation coefficient of determination

 



Paper II 
 

 

132 

Table S3. Core model for ln (ultrafine particles -659.2) adjusted 
by monitoring date and hour. UFP are expressed in (part/cm3). 
Predictor variables are divided by the difference between the10th 
and 90th percentile indicated in parenthesis. Coefficients are 
expressed as proportional change in UFP for an increase between 
the 10th and 90th percentile in each of the predictors. Coefficients 
for monitoring date are not shown.  
 

Coef. P>t [95% CI]  R2
A  R2(cv).

LUR model adjusted for monitoring date and hour
0.51 0.48

heavy, light and motorcy. veh in 24 hours (veh/9726) 0.42 <0.001 0.34 0.50
area of high density residential land within 1000m (m2/1930508) 0.34 <0.001 0.19 0.49
distance to intersection of two major roads (m/904) -0.20 <0.001 -0.27 -0.12
household density within 100m (number/184) 0.17 0.003 0.06 0.28
monitoring hour (ref. category 9:15-10:30)
      10:30-11:30 -0.30 <0.001 -0.41 -0.20
      11:30-12:45  -0.37 <0.001 -0.47 -0.26
      15:15- 16:00 -0.39 <0.001 -0.50 -0.28
      16:00-16:45 -0.54 <0.001 -0.70 -0.39
constant 9.38 <0.001 8.68 10.09

 R2
A: adjusted coefficient of determination

 R2(cv): cross-validation coefficient of determination
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Figure S1. Scatter plot of ln (ultrafine particles -659.2) vs. 
Predicted values using the Core model. Continuous line: y=x 
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8.3 Effect of the number of measurement sites on Land 
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Abstract 
 
Land use regression (LUR) models are often used in epidemiologic 
studies to predict the air pollution exposure of health study 
participants. Such models are often based on a small to moderate 
number of air pollution measurement sites across the study area, and 
on a set of variables characterizing factors such as traffic patterns 
and surrounding land uses that are used as potential predictors. We 
used resampling techniques on a set of 148 measurement sites of 
NO2 in the urban area of Girona (Spain) to investigate the effect of 
the number of measurement sites on the LUR model performance, in 
particular on predictive ability and on the variables being chosen in 
the final model. In addition, we investigated the effect of the number 
of potential predictors and the variable selection algorithm used, 
and the consequences of the use of LUR predictions in regression 
models for a health outcome. Our results showed that, especially in 
small samples, both the adjusted within-sample R2 and the leave-
one-out cross-validation R2 tended to give highly inflated values 
when compared to their prediction ability in a validation dataset. 
When the number of potential predictors was high, LUR models 
developed with a small number of measurement sites tended to give 
higher within-sample and cross-validated R2 than those developed 
with more sites. Validation dataset R2 showed a poor performance 
of models developed with a small number of sites that improved as 
the number of sites increased. Models developed with a small 
number of sites tended to select a different set of variables every 
time, were very sensitive to the number of potential predictors 
offered and resulted in stronger attenuation of coefficients when air 
pollution predictions were used in a health model. Our results 
suggest that LUR models aimed at characterizing local air pollution 
levels in complex urban settings should be based on a large number 
of measurement sites (>80 in our setting) and that the set of 
potential predictors should be restricted. 
 
Keywords: land use regression; measurement error; modeling; NO2; 
residential exposure; Spain. 
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1. Introduction 
 

Measuring individual exposure to outdoor air pollution in a 
large cohort of study participants is not feasible in terms of cost and 
logistics. Thus, epidemiologic studies often perform a set of air 
pollution measurements throughout the study area and use statistical 
models to predict the exposure at participants’ residential 
addresses. One of these techniques, usually called land use 
regression (LUR) modeling, incorporates a set of predictor variables 
that are available for all study participants’ residences through 
Geographic Information Systems (GIS) into a linear regression model 
to obtain air pollution predictions at unmeasured sites. The set of 
predictor variables typically includes traffic patterns, surrounding 
land characteristics and population density. The number of sampling 
sites often employed are small to moderate (20 to 60), while only a 
few studies reach 80 or more sampling sites (Hoek et al., 2008a; 
Ryan et al., 2007a). Most of the LUR models report quite high 
percentage of variance explained (R2) with only a few predictors in 
the final model. Typically, the R2 of the models is around 70%, with 
several models reporting values over 80% (Hoek et al., 2008a; 
Ryan et al., 2007a).  

 
It is known from the statistical literature that, with small 

datasets and a large number of predictor variables to choose from, 
it is easy to end up with a final model with a very high within-sample 
R2 (or adjusted R2) that does not reflect the true predictive ability of 
the model (Derksen et al., 1992; Flack et al., 1987; Hastie et al., 
2001; Rencher et al., 1980). A R2 measure based on leave-one-out 
cross-validation is often reported to alleviate this problem, although 
additional difficulties may arise with small datasets (Davison et al., 
1997; Hastie et al., 2001; Isaksson et al., 2008; Molinaro et al., 
2005). A previous study showed that LUR models developed for 
New Haven, CT with a small number of measurements had poor out-
of-sample predictability even when the in-sample R2 was high 
(Johnson et al., 2010). However, their evaluations were conducted on 
modeled rather than measured air pollution concentrations. In this 
paper, we use data from the REGICOR-AIR study (www.regicor.org), 
with 148 NO2 measurements sites across one geographic urban 
area, to explore the effects of the number of measurement sites on 
LUR model performance, including predictive ability and the choice 
of variables in the final model. In addition, we explore other issues 
such as the effect of the number of potential predictors used, the 
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variable selection algorithm, and the consequences of using LUR 
predictions in regression models for a health outcome. 
 
 
2 Methods 
 
2.1. Data 
 
 We used data from the two adjacent cities of Girona and 
Salt, two mid-size Mediterranean cities in northeastern Spain 
covering an area of 45.7 km2. Measurements of NO2 were 
available for 148 sites, mainly study participant residences, evenly 
distributed across the area (Figure 1). Briefly, NO2 was measured 
using Palmes passive sampler tubes in several 1-month campaigns 
from June 2007 to July 2009, and the different measurements from 
the same site were averaged to represent annual means. Prior to 
averaging, each measurement was adjusted for temporal variation, 
derived from one background in the month with average 
concentration more approximated to the annual mean. The mean 
and standard deviation of the annual mean NO2 concentrations in 
the 148 sites were 28 μg/m3 and 9.1 μg/m3, respectively. A set of 
106 geographic variables were available to enter a LUR model to 
predict annual mean NO2 levels. Geographic variables included 
surrounding land uses (urban, industrial, green areas), topography 
(altitude), population and household density, building density, 
traffic-related variables (average daily traffic, road length, and 
length of bus lines), and distance to emission sources (roads, parking 
lots, and bus stops). Some of the variables were computed for 
circular buffers from 25m to 1000m, depending on the type of 
variable. As most of the sampling sites were residential addresses, 
we also included the building floor number where the sampler was 
placed, as a proxy of the sampler height above ground. 
 
2.2. Statistical Analysis 
 
 Training samples of NO2 measurement sites of size n = 20 to 
120 were randomly drawn from the original dataset of N = 148 
sites. In addition, a random sample of nv = 28 sites was held out to 
validate the model. The process was repeated 300 times for each n. 
For each dataset, we derived the regression model by applying the 
following algorithm: 
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 FORWARD_R2a: a forward selection algorithm. In each step, the 
variable generating the highest increase in the adjusted R2 (R2a) 
enters the model, provided that the improvement in R2a is greater 
than 1%, the sign of the regression coefficient agrees with the 
pre-specified expected sign, and the sign of the remaining 
coefficients in the model does not change. When no additional 
variables can improve R2a by more than 1%, variables with a p-
value >0.10 are sequentially removed from the model. 

 
In order to explore how other variable selection algorithms 
performed, we also applied the following two algorithms to the 
same datasets: 
 
 FORWARD_L1OCV: the same algorithm than FORWARD_R2a but 
based on the leave-one-out cross-validation R2 (described below) 
instead of on R2a. 

 Deletion/Substitution/Addition (DSA) algorithm. This algorithm is 
described elsewhere (Sinisi et al., 2004) and was developed to 
provide both good estimation and a good assessment of the 
model performance. The algorithm uses cross-validation to search 
for the subset of variables that minimizes the sum of squared 
residuals. The algorithm allows the incorporation of polynomial 
transformations of the original variables as well as products of 
two or more variables (interactions). However, for the purpose of 
this study, all variables were kept in the original scale and 
interactions were not allowed. A library implementing the DSA 
algorithm is available in the R software (R Development Core 
Team, 2010) (http://www.stat.berkeley.edu/~laan/Software/) 

 
For each final model, we computed four different measures 

aimed to estimate prediction error:  
 

 The adjusted R2, R2a. 
 The leave-one-out cross-validation R2, R2cv. In the leave-one-out 
cross-validation procedure the model is fitted using n-1 
observations and the resulting model equation is used to predict 
the response for the observation that has been left out. This 
process is repeated n times so that each site has a prediction 
based on a model that did not use that same observation in the 
model fitting step (Hastie et al., 2001). The R2cv was then 
obtained from a regression model of the observed against the 
predicted values. 
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 Validation set R2, R2V(corr). The model derived with the n sites is 
used to predict the observations in the validation dataset of nv 
sites. Then, the R2V(corr) is derived from a regression model of the 
observed against the predicted values in the validation dataset, 
or, equivalently, as the squared Pearson correlation coefficient 
between observed and predicted values.  

 Validation set R2 based on mean squared prediction error, 
R2V(MSPE). The previous measure, R2V(corr), is only based on the 
correlation of predicted vs. observed values, but it does not 
take into account their absolute values. When it is important to 
predict the actual values of air pollution, and not merely a 
correlate of air pollution, prediction ability is often measured in 
terms of mean squared prediction error (MSPE), defined as the 
average of the squared differences between observed and 
predicted values. One can transform MSPE into a R2-like 
formula by computing 
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where ty  is the average of the response in the training sample 
(Harrell, 2001; Szpiro et al., 2011a). R2V(MSPE) can yield 
negative values when, in the validation set, the average of the 
observed values performs better, in terms of mean squared 
error, than the predictions of the model. 

 
As a sensitivity analysis, we repeated the same process but 

sampling the sites in the training sample stratifying by four 
categories of NO2 according to quartiles. In this way, all training 
datasets had the same number of sites in each of the four categories 
and the range of NO2 was more homogeneous between datasets. In 
a separate analysis, we also repeated the R2V(corr) and R2V(MSPE) 
calculation by truncating the values of the predictors in the 
validation dataset that were outside the range of values observed in 
the training dataset, in order to prevent the effect of extreme 
predictions based on extrapolations. 
 
 As a result of the resampling and model fitting processes, we 
obtained 300 final models for each n, with their associated R2 
measures and sets of final variables. To summarize the results, we 
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reported the median and the interquartile range (IQR) of the R2 
measures, the frequency of appearance of each variable in a final 
model, and listed the ten predictor variables that appeared more 
frequently for different values of n. 
 

To assess how the number of potential predictors affects the 
R2 of the final models, we performed two analyses. First, we 
restricted the number of predictors in the following way. We 
performed a principal component analysis of the original 106 
variables, which resulted in 18 components with an eigenvalue 
greater than one that explained 90% of the total variation in the 
dataset. We performed a varimax rotation of the 18 components 
and picked the variables that had the highest factor loading in each 
of the 18 components. We repeated all the aforementioned 
analyses with this restricted set of predictors.  Second, we generated 
an independent set of 106 random predictors which, together with 
the NO2 measurements, entered the same resampling and model 
fitting process described above. The resulting R2 of these models 
based on random predictors was then studied for different values of 
n and different numbers of random predictors offered.  
 
2.2.1. Measurement error 
 
 In epidemiological studies, the air pollution predictions from a 
LUR model are used to assign exposure values to study participants, 
and this exposure is then used as an explanatory variable in a 
regression model for a health outcome. Because of the imperfect 
measure of exposure, the health model is then subject to the effects 
of measurement error in covariates (Carroll et al., 2006). 
Measurement error from LUR models is often considered to be in the 
form of Berkson error. For the sake of clarity, in this explanation we 
do not consider the classical-like measurement error that would be 
introduced by estimating the regression coefficients of the exposure 
model and will consider that the regression coefficients are known 
(Szpiro et al., 2011a; Szpiro et al., 2011b). If we call iX  the true 

exposure and iW  the imperfect measure of exposure, then Berkson 
error is defined as  
 

iii UWX += , (2) 
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where iU  is the error term, which is assumed to have mean zero 

given iW . Thus, under (2), the true exposure has more variability 
than the estimated exposure. A LUR model has the form 
 

ikki UZZZX +++++= γγγγ Λ22110   (3) 
 
where the variables jZ  are the final covariates in the model and 

the jγ  are their associated regression coefficients. By setting  

kki ZZZW γγγγ ++++= Λ22110 , one can clearly see that the LUR 
equation (3) has the Berkson error form (2).  
 

Suppose that we are interested in a health outcome iY , for 
which we would like to fit the regression model  

iii XY εββ ++= 10 .  (4) 
 
Pure Berkson error, as the one defined in equation (2), has the 
important property that, if we fit a regression model of iY  on iW , 

we will obtain unbiased estimates of 1β . This is readily seen by 
plugging equation (2) into (4) to obtain 
 

*
10110 iiiiii WUWY εββεβββ ++=+++= , and then taking 

expected values. 
 
 An often overlooked fact is that performing model selection 
with a large number of candidate variables may lead to an 
alteration of the pure Berkson error model because of overfitting, 
which will in turn bias the coefficients of the health model when iW  is 

used instead of iX . When the model is developed in a training 
sample to predict the exposure in an independent sample, the slope 
of the regression of observed vs. predicted in the independent 
sample will be less than one, i.e.  
 

iii UWX ++= 10 αα , (5) 
 
where 11 <α  (Harrell, 2001; Harrell et al., 1996). This is a result of 
regression to the mean, by which the high model predictions will be 
too high and the low model predictions will be too low in the new 
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sample. Equation (5) is equivalent to a regression calibration 
equation for classical measurement error (Carroll et al., 2006). Now, 
if we plug (5) into (4) we obtain 

*
11

*
01010 )( iiiii WUWY εβαβεααββ ++=++++= , and by taking 

expected values we can see that the coefficient associated to iW  

estimates 1α  times the coefficient we would obtain if we used the 
true iX , 1β . Since 11 <α , using iW  instead of iX  leads to an 

attenuation of the coefficient. We call 1α  obtained from (5) the 
attenuation factor (AF). Based on the performance of the model in 
the validation datasets, we calculated the attenuation factor as a 
function of n.  
 

Measurement error may not only have effects on the 
regression coefficients (bias) but will also have an effect on the 
standard errors. In particular, the standard errors of the coefficients 
obtained in the regression of iY  on iW  are underestimated and one 
needs to use special methods to obtain the correct ones (Carroll et 
al., 2006). In this paper we will not study the effects on standard 
errors. 

 
 

3. Results 
 
3.1. Prediction ability 
 
 Figure 2a illustrates the median of the four different 
measures of prediction ability over 300 datasets. R2CV produced 
slightly smaller values than R2a and both measures decreased when 
the number of training sites n increased. This decrease was faster at 
smaller values of n. R2a decreased from around 80% for n=20 to 
around 60% for n=120. The two validation measures of R2 (R2V(MSPE) 
and R2V(corr)) showed the opposite pattern, i.e. the R2 increased when 
the number of training sites increased. The differences of R2a or R2CV 
with the validation measures decreased as n increased, but the 
difference was still of around 10% at n=120. R2V(MSPE) had negative 
values for n=20, indicating that, for the validation set, the sample 
mean of the training set had a better predictive ability, in terms of 
prediction mean squared error, than the predictions of the model. 
However, in terms of correlation between predictions and measured 
values, R2V(corr) achieved values around 20% at n=20, which were 
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still much smaller than the values around 70%-80% of R2a or R2CV. 
R2V(MSPE) and R2V(corr) tended to give similar values as n increased. 
 
 Figure 2b shows the variability of the R2 measures over the 
300 datasets.  
R2a and R2CV showed the smaller variability, with an IQR of 20% at 
n=20 that decreased to around 5% at n=120. R2V(MSPE) showed a 
very high variability for small values of n, which makes its use 
impractical in real settings. R2V(corr) had IQR values of around 25%, 
which did not decrease much when n increased. 
 

The results were almost identical when the selection of sites 
for the training dataset was stratified according to NO2 levels. 
When the predictors in the validation dataset were truncated to the 
range of values observed in the training dataset, the median R2V(corr) 
improved around 10% for n=20, and the median R2V(MSPE) moved 
from a negative value to 12% for n=20. For both measures, the 
benefits obtained by truncating predictors vanished at around n=70. 
 
3.2. Attenuation of health-exposure associations 
 

In Figure 3 we show the performance of the LUR models in 
terms of the attenuation of regression coefficients of a hypothetical 
health outcome model, when using the predictions of the LUR model 
as an explanatory variable instead of the true (measured) exposure. 
With the original set of 106 predictors we found that, for n=20, the 
regression coefficients from such a model could be halved compared 
to the true ones. The attenuation was quite pronounced for small 
values of n. It was not until n=70 that the attenuation reached 0.8, 
and until n=110 that it approached 0.9. 
 
3.3. Variables selected 
 
 For every one of the 300 datasets for each n a different 
final model could be obtained. We pooled the results of these 
models and reported the percent of times each variable was 
selected into the final models in Figure 4. When the training dataset 
contained 120 sites, 34 of the original 106 variables made it at 
least once into the final model, but only seven of them appeared in 
more than 25% of the models. When n decreased, a wider range of 
variables appeared at least once in the final model, and even the 
variables appearing more frequently were only included in the final 
model in a small percentage of datasets. In the extreme case of 
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n=20, almost all the original variables were in at least one final 
model, and the variable appearing most often was only present in 
less than one third of them.   
  
 Table 1 includes a list of the ten variables most frequently 
selected for each of n=120, n=80 and n=20, which after taking 
repetitions into account, corresponds to a set of 15 unique variables. 
The three variables appearing in more than 80% of the models for 
n=120 also appeared in the first three positions for n=80, although 
in that case they appeared in less than 60% of the models. For 
n=20, the most frequently selected variable appeared in only 33% 
of the models, and all the rest had a small probability of being 
selected. 
 
3.4. Effect of number of potential predictors 
 
 When we performed the analysis with the restricted set of 
18 predictors, the values of R2a and R2CV were reduced, especially 
for small n (Figure 5). The decreasing trend of R2CV with n that was 
observed with the set of 106 predictors disappeared. This trend was 
still observed for R2a but it had a flatter slope. Both R2a and R2CV still 
showed higher values than the two validation measures (R2V(MSPE) and 
R2V(corr)), especially for small n. All R2 measures were smaller than in 
the case of 106 predictors because variables with good predictive 
properties may not be in the restricted set. The attenuation factors 
were slightly higher compared to the ones obtained using 106 
predictors, but were still low (e.g. 0.57 for n=20) and did not reach 
0.9 until n=90 (Figure 3). 
 
 Figure 6 shows the R2CV obtained when applying the variable 
selection algorithm to the NO2 measurement sites and a set of 
randomly generated predictors. The number of predictors showed to 
be an important factor especially for small n. When n=20, we could 
achieve cross-validated R2 as high as 80% by using 106 variables 
generated at random. This decreased to 20% when only 50 
variables were offered to the algorithm. As soon as n increased, the 
problem became much less severe, and with models developed with 
n=50 the final R2CV was less than 10% even with 106 potential 
predictors.  
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3.5. Variable selection algorithm 
 

Figure 7a shows the distribution of the number of variables in 
the final model for the three model selection algorithms. The number 
of variables in the final model was higher for FORWARD_R2, 
followed by FORWARD_L1OCV and DSA included the lowest 
number of predictors. At n=20, the average number of variables 
was 4.6 for FORWARD_R2, 3.4 for FORWARD_L1OCV, and 1.1 for 
DSA, which chose an empty model a substantial number of times. In 
those cases, the DSA algorithm did not provide a LUR model that 
could be used to predict pollution levels. When n increased, the 
number of variables in the final model increased as well (average 
numbers for n = 120 were 5.8, 5.2 and 4.5, respectively). 

 
Figure 7b shows the number of variables, out of the 106 

original ones, that appeared in at least one of the final models in 
the 300 datasets. FORWARD_R2A and FORWARD_L1OCV 
behaved very similarly. While they included almost all variables at 
least once for n = 20, DSA was a bit more restrictive. However, for n 
= 120, the number of included variables decreased to less than 40 
for FORWARD_R2A and FORWARD_L1OCV while it was still 60 for 
DSA. 

 
The predictive ability of the final models obtained with the 

three algorithms is described in Figure 7c. FORWARD_L1OCV had a 
similar behavior than FORWARD_R2a but with slightly smaller 
values for R2a. DSA behaved differently. Because the final DSA 
models included fewer variables, they reached smaller values of R2a, 
starting from 50% for n=20 and slightly increasing as n increased. 
For training datasets with more than 100 sites, the R2a obtained from 
DSA were very similar to those obtained with the other algorithms. In 
terms of prediction ability in the validation datasets (R2V(corr)), DSA 
performed similarly to the other algorithms for n=20, but slightly 
worse for larger values of n.   

 
In terms of attenuation of the coefficients in a health model, 

the predictions from a model developed with the DSA algorithm 
performed slightly better for models developed with small n (Figure 
7d). This occurred despite the fact that the validation R2s were 
smaller for the DSA models.  
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4. Discussion 
 
 We explored the effect of the number of measurement sites 
on several performance aspects of LUR models using real data. Our 
results show that, if a high number of potential predictors is offered 
to the model, both the adjusted R2 and the leave-one-out cross-
validation R2 tended to provide higher values when the models were 
developed with a small number of sites than in cases where more 
sites were available. When the R2 were computed from validation 
datasets, though, models developed with a small number of sites 
performed rather poorly, and the performance improved as the 
number of sites increased. The differences between the validation R2 
and the other measures could be as high as 60% for a situation with 
small number of sites and high number of potential predictors. 
Restricting the number o potential predictors helped in reducing 
these differences, but models developed with a small number of sites 
still showed inflation of the adjusted and cross-validated R2, and 
attenuation of  the regression coefficients when air pollution 
predictions were used in a health model  
 
 We confirmed with real air pollution measurements that LUR 
models developed with a small number of sampling sites may have a 
poor performance in predicting air pollution levels even if the cross-
validation R2 of the model is high. The same result was obtained in a 
previous study that used the predictions from a hybrid dispersion 
and regional model as the true ambient levels for NO2, benzene 
and PM2.5 to fit and evaluate LUR models with training data sets 
ranging from n = 25-285 and corresponding validation data sets 
ranging from nv = 293-33 in size (Johnson et al., 2010). Of note, 
our results in Figure 2a were very similar to their results in Figure 6b. 
That study found that the values of the adjusted R2 and the 
validation R2 began to converge for models developed with 125 
sites, which is similar to what we observed. Compared to that study, 
our measurements were collected in a more compact area, 
suggesting that, even in small areas, a substantial number of 
measurement sites are needed to correctly characterize the air 
pollution levels in a complex urban structure. As in Johnson et al. 
(2010), we found that the adjusted and cross-validated R2 were 
inversely correlated with the number of measurement sites, indicating 
that even when presenting cross-validated R2 measures, it is more 
likely to obtain inflated values in smaller studies. A previous review 
found no correlation between the published R2 and the number of 
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sampling sites (Ryan et al., 2007a), but this result was probably due 
to the between-study design of that comparison. 
  
 The adjusted R2 of a model is known to inflate its true 
prediction ability (Derksen et al., 1992; Flack et al., 1987; Hastie et 
al., 2001; Rencher et al., 1980). Part of this inflation is due to using 
the same sites to develop the final model and to assess its 
performance. A solution to that is to test the model in a separate 
held out dataset, or alternatively to use techniques such as cross-
validation (e.g. leave-one-out cross-validation) or the bootstrap that 
create several training and validation datasets via resampling, 
making a more efficient use of the data. When variable selection is 
performed on a large number of potential predictors, there is 
additional inflation of the adjusted R2 and also of the cross-
validated measures, since they are derived using the same data 
points that were used to select the variables in the final model 
(Hawkins, 2004). One solution that has been proposed is to split the 
data into three parts: a training set to fit the models, a validation set 
to estimate prediction error for model selection and a test set to 
evaluate the prediction ability of the final model (Hastie et al., 
2001). Since this solution is often logistically unfeasible in practice 
due to limited number of samples, other methods, such as 
incorporating cross-validation in the selection process 
(FORWARD_L1OCV) (Hawkins, 2004) or the DSA algorithm (Sinisi et 
al., 2004) have been suggested.  
 

In our data, neither FORWARD_L1OCV nor the DSA 
algorithm solved the problem of inflated R2. The DSA algorithm was 
the most restrictive in terms of including variables into the model. This 
resulted in much smaller values of R2a for small n, although they were 
still too optimistic when compared to the validation R2. For n=20, 
none of the 106 variables could enter the model under the DSA 
algorithm in one third of the datasets. Although in such cases this 
would leave the researcher without a LUR model to predict air 
pollution levels, this reflects a true limitation of the reduced set of 
measurements, which is also confirmed by the fact that the validation 
R2 obtained from FORWARD_L1OCV did not reach 15% in a third 
of the models. 

 
The two validation R2 measures, R2V(MSPE) and R2V(corr), were 

obtained via held out data. Since the LUR models are intended to 
predict air pollution levels at locations that were not used to develop 
the model, these two measures can better reflect the prediction 
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ability in that separate dataset of locations. R2V(MSPE) and R2V(corr) 
showed an increasing trend when the number of measurements 
increased. This result is more intuitive than the one obtained for R2a 

and R2CV, since one expects models developed with more data to be 
more robust and to have better properties. When the aim of the LUR 
model is to use the predictions as covariates in a regression model 
for a health outcome, a variable that correlates with the true values 
is still useful to detect associations even if the absolute values show 
strong departures. In some cases, for example when pure Berkson 
measurement error can be assumed, they are also useful to quantify 
the size of health effects. R2V(corr) was based on the squared 
correlation between observed and predicted values in the validation 
dataset, and therefore it may be more informative than R2V(MSPE) in 
the situation just mentioned. However, we have shown that there are 
some cases where a model with predictions highly correlated with 
true values but that are not well-calibrated can still bias the 
coefficients of the health model. R2V(MSPE) can be more useful to 
detect those cases. R2V(corr) has the limitation that one can get a 
positive value even if the predictions are negatively correlated with 
the observed values in the validation dataset. This actually occurred 
in 5% of the cases for n=20. For large n, R2V(MSPE) and R2V(corr) 

produced similar values, although they differed for small n. 
 
Our results were based on sampling small datasets from a 

larger one. However, in practice, only one small dataset is often 
available. Several papers report that holding out some 
measurements does not make an efficient use of the data and 
advocate for other procedures such as cross-validation or the 
bootstrap (Hawkins et al., 2003; Molinaro et al., 2005). In our data, 
the leave-one-out cross-validation R2 was upwardly biased, and 
similar results were obtained when we applied other procedures 
such as K-fold cross-validation or the 0.632 bootstrap to our data 
(Figure S1 in the Supplementary material). On the other hand, the 
cross-validation R2 is a much less variable measure than the R2 
obtained from a validation dataset, so the investigator is faced with 
the usual trade-off between bias and variance, with the additional 
consideration of costs. Small validation datasets have been 
considered of no value because of bias and very high variance. In 
particular, it has been suggested that small validation datasets can 
lead to downwardly biased validation R2 (Hawkins, 2004; Hawkins 
et al., 2003). Our results on median R2V(corr) did not change when the 
validation set size was increased (Figure S2 in the Supplementary 
material). If the mean R2V(corr)  was computed instead of the median, 
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slightly smaller R2V(corr) were obtained when using larger validation 
datasets, indicating that computing the mean R2 may be sensitive to 
the size of the validation set. In terms of variability, R2V(MSPE) showed 
an extreme variability at small training sample sizes (e.g. IQR for 
R2V(MSPE) was greater than 80% for n=20), but the variability was 
smaller for R2V(corr). The IQR of R2V(corr) for n=20 was around 25%, 
very similar to that of R2CV, although for the latter only n=20 
measurement sites were used compared to n+nv = 20+28 for 
R2V(corr). Increasing the size of the validation dataset had the 
expected consequence of reducing the variability of the estimates 
(Figure S2 in the Supplementary material). 

 
LUR models are often used in epidemiologic studies to 

predict air pollution exposure of study participants. This predicted 
exposure is then used as an independent variable in a regression 
model for a health outcome. Because the LUR model does not 
exactly predict the observed exposure, the use of this imperfect 
measure of exposure introduces the effects of exposure 
measurement error in the health model, namely an attenuation of the 
regression coefficient of exposure (compared to the one that would 
be obtained if the true exposure was used) and a loss of power 
(Carroll et al., 2006). LUR models are usually evaluated by a R2 
measure, but this does not directly inform about attenuation of 
regression coefficients. We computed the attenuation factor to 
directly see how this is affected by the number of measurements. In 
our data, coefficients could be halved if the LUR model was 
developed with only 20 measurement sites, although the leave-one-
out cross-validation R2 would wrongly suggest a good fit of over 
70% of variance explained. It was not until more than 100 
measurement sites were used that the attenuation factor reached 
values of 0.9. Interestingly, even the validation R2 does not directly 
inform about attenuation, as shown by the predictions obtained with 
the DSA algorithm, which resulted in less attenuation than predictions 
obtained with FORWARD_R2a, even though they had smaller 
validation R2. This phenomenon has been recently described 
elsewhere (Szpiro et al., 2011a). In addition to attenuation, 
measurement error also produces inflation of the standard errors of 
the coefficients in the health model. This was not investigated in 
detail here because results would be study-dependent, since the 
inflation of the standard errors depends on the size of the health-
exposure association and on the residual variance of the health 
model (Carroll et al., 2006).  

 



Paper III 
 

 

153 

We also investigated the effect of the number of potential 
predictors in the performance of LUR models. We found that having 
a small number of measurement sites and a large number of 
potential predictors, it is very easy to find models with very high 
cross-validation R2 even when no relationship exists. This has been 
known for quite some time in the statistics literature (Flack et al., 
1987). In addition, it has been reported that when there is 
substantial correlation between the potential predictors, which is 
often the case with the geographic variables used to develop LUR 
models for air pollutants, the risk of selecting noise variables into the 
final model increases (Derksen et al., 1992; Flack et al., 1987). In 
practice, it is therefore recommended to restrict the pool of potential 
predictors to those that are believed to have the strongest effect, 
especially for small datasets, and to avoid using highly collinear 
variables. 

 
The results obtained for the variables selected in the final 

model were those that were initially expected, i.e. as the number of 
measurement sites increased, the number of variables appearing in 
at least one model decreased, which is interpreted as having less 
chance of including noisy variables in the final model (Flack et al., 
1987). However, we acknowledge that our experiment was not 
perfect in the sense that, given the total sample size (148 sites), the 
different datasets of size n = 120 contained mostly the same set of 
sites and therefore were more likely to always select the same 
variables.  

 
Even though we only had data on NO2, many of the 

statistical mechanisms involved in producing our results will be shared 
in problems developing LUR models for other local air pollutants. 
Our study area was mostly urban space of 45.7 km2. While this 
setting is similar to many others where LUR models have been 
developed, others have developed spatial models for far larger 
geographic areas, often with various geographic clusters. Whether 
and how our findings can be generalized to such modeling conditions 
is uncertain but worth investigating. 

 
In summary, LUR models based on a high number of sampling 

sites have a better performance and are to be preferred. However, 
this superiority can be masked by the adjusted R2 and the leave-
one-out cross-validation estimate, which tend to give higher and 
more inflated values for smaller sample sizes, particularly in cases 
where the number of potential predictors is high and model selection 
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is performed. Epidemiological analyses using LUR-based exposure 
estimates need to address the biases that depend on the number of 
sites available for the LUR modeling. 
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Table 1. Percent of times a variable is selected into the final model for different values of n. Only variables 
appearing in the top ten for n =120, n=80 or n=20 appear in the table. 

Variable names 
Rank 

(n=120) 

% 
appearance 

(n=120) 
Rank 

(n=80) 

% 
appearance 

(n=80) 
Rank 

(n=20) 

% 
appearance 

(n=20) 
Area of buildings within 500m 1 90 2 58 14 8 
24 hour total traffic load of all roads in 25m 2 88 3 58 10 10 
Floor 3 83 1 60 1 33 
Length of major roads within 500m 4 60 7 27 16 8 
Household density within 100m 5 58 5 39 4 13 
Distance to highway AP-7 6 50 4 44 2 21 
Background concentration of elemental carbon 7 48 6 38 3 15 
24 hour total traffic load of major roads in 300m 8 20 8 18 34 6 
Area of high density residential land within 100m 9 16 13 10 20 7 
Length of major roads within 1000m 10 8 9 14 44 4 
Length of bus lines within 25m 16 4 19 6 5 12 
Length of all roads within 25m 18 3 12 12 9 10 
Area of buildings within 300m 26 1 10 13 7 10 
Area of buildings within 100m - - 37 2 6 11 
Population density within 100m - - 46 1.3 8 10 
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Figure 1. Map of the study area. 
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Figure 2. Percent of variance explained, as measured by different R2 indicators, as a function of the number of 
measurement sites in the training dataset. Panel (a) shows the median R2 of 300 final models for each n, and panel (b) 
its variation measured by the interquartile range (IQR). 
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Figure 3. Attenuation of the association between a hypothetical 
health outcome and air pollution when the association is evaluated 
using the LUR predictions of exposure instead of the true exposure 
levels. In other words, the attenuation factor is the ratio between the 
regression coefficient obtained from the model ‘health outcome vs 
true exposure’ and the regression coefficient obtained from the 
model ‘health outcome vs LUR predicted exposure’. 
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Figure 4. Percent of times a variable is selected into the final model. 
Variables are sorted in the x-axis according to the percent of times 
they were selected for the n =120 case. 
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Figure 5. Percent of variance explained, as measured by different 
R2 indicators, as a function of the number of measurement sites in the 
training dataset. Results are based on the restricted set of 18 
predictors. 
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Figure 6. Median R2CV of 300 final models for each n as a function 
of n, when the variable selection algorithm was applied to the NO2 
measurements using as potential predictors a set of 106, 80 or 50 
randomly generated variables.  
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Figure 7. Performance of the three model selection algorithms in 
terms of: a) Number of variables in the final model. The size of the 
dots is proportional to the frequency. b) Number of variables 
appearing in at least one of the 300 final models for each n. c) 
Percent of variance explained, as measured by R2a and R2V(corr), as a 
function of the number of sites in the training dataset. All points in 
the graph are medians of 300 R2 measures obtained from the final 
models for each n.  d) attenuation of the regression coefficient when 
the exposure predicted by the LUR model is used instead of the 
measured exposure in a model regressing a health outcome against 
exposure. 
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Supplementary material  
 
THE EFFECT OF THE NUMBER OF MEASUREMENT SITES ON LAND 
USE REGRESSION MODELS OF LOCAL AIR POLLUTION 
 
 
Xavier Basagaña, Marcela Rivera, Inmaculada Aguilera, David Agis, 
Laura Bouso, Roberto Elosua, Maria Foraster, Audrey de Nazelle, 
Mark Nieuwenhuijsen, Joan Vila, Nino Künzli 
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Figure S1. Percent of variance explained, as measured by the 0.632 bootstrap and the K-fold cross-validation (CV) 
R2, as a function of the number of measurement sites in the training dataset. K is defined as the smallest integer not less 
than min (n1/2, 10) as suggested in Davison and Hinkley, (1997). R2V(corr) is added for comparison. Panel (a) shows the 
median R2 of 300 final models for each n, and panel (b) its variation as measured by the interquartile range (IQR) 
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Figure S2. Comparison of the median (panel a), mean (panel b) and 
interquartile range (IQR) (panel c) of the R2V (corr) obtained using 
different sizes of the validation datasets. In one case, nv=28 for all 
values of n, while in the other, nv uses all the observations not used in 
the training dataset (i.e. nv=148-n). 
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8.4 Long-term exposure to traffic-related air pollution 

and subclinical atherosclerosis (Paper IV) 
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Abstract 
 
 
Epidemiological evidence of the effects of long-term exposure to air 
pollution on the chronic processes of atherogenesis is limited. We 
investigated the association of long-term exposure to traffic-related 
air-pollution with subclinical atherosclerosis.  
 
We performed a cross-sectional analysis using data of the re-
examination (2007-2010) of 2780 participants of the REGICOR 
study, a population-based prospective cohort in Girona, Spain. 
Long-term exposure was calculated as the time-weighed average of 
residential NO2 estimates, traffic intensity in the nearest street and 
traffic intensity in a 100m buffer across residences in the last 10 
years. The main health outcome was the carotid artery intima media 
thickness (IMT), a marker of subclinical atherosclerosis. The 
association between exposure and IMT was assessed using 
multivariate linear regressions controlling for individual level 
confounders. 
 
An increase of 25µg/m3 in NO2 was weakly associated with IMT 
(percent change in IMT 0.56%, 95%CI: -1.47 to 2.59%) and 
reached statistical significance in people with high education level 
(4.6%, 95%CI: 0.4 to 8.9%) and men above 60 years (4.3%, 
95%CI: 0.2 to 8.4%). An increase of 15000veh/day in traffic in the 
nearest street was associated with a 2.32% increase in IMT (95%CI: 
0.48 to 4.17%) and an increase of 7 200 000veh-m/day in traffic 
load in 100m was associated with a 1.91% increase in IMT (95%CI: 
-0.24 to 4.06). Stronger associations between all exposure markers 
and IMT were observed in the subgroups of high education level and 
men above 60 years.  
 
Long-term exposure to traffic-related air pollution is associated with 
subclinical carotid atherosclerosis in healthy individuals.  
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Background 
 
Air pollution from traffic and other sources is an established cause of 
premature mortality (Brook et al., 2010). A relevant part of this 
environmental burden of disease relates to cardiovascular diseases 
(CVD), which were responsible for 10% of total Disability Adjusted 
Life Years in 2004 and the leading causes of death worldwide in 
2008 (World Health Organization, 2008). The common basis of this 
group of diseases is atherosclerosis, a chronic and degenerative 
process that mainly occurs in large and medium-sized arteries 
morphologically characterized by asymmetric focal thickenings of 
the innermost layer of the artery, the intima . The development of 
atherosclerosis is the result of the total cumulative exposure to 
atherogenic risk factors such as hypertension, high cholesterol, 
diabetes, obesity, smoking, physical inactivity and other lifestyle 
factors and its interactions with genetic susceptibility (Lusis, 2000). 
Acute events such as myocardial infarction or stroke can be 
triggered by short-term exposure to air pollution. However, whether 
and how ambient air pollution contributes to atherogenesis is subject 
to debate. While experimental studies on animals provide strong 
evidence for a causal atherogenic role of air pollution, in particular 
in obese mice (Sun et al., 2005), the number of epidemiological 
studies is limited.  
 
The long induction period of atherosclerosis makes the study of 
subclinical disease feasible. The association between air pollution 
and intima media thickness (IMT), an established marker of 
subclinical atherosclerosis,  was reported for the first time in 
volunteers participating in two clinical trials in California (Künzli et 
al., 2005a). Two population-based cross-sectional analyses, namely 
the RECALL study in Germany (Bauer et al., 2010) and the MESA 
Cohort in the United States (Diez Roux et al., 2008) confirmed these 
results while one study in young adults in the Netherlands found no 
association (Lenters et al., 2010a). The observed thicker artery walls 
in highway toll station workers in Turkey may be interpreted as an 
effect of high exposure to traffic-related pollutants (Erdogmus, 
2006). So far only one longitudinal study has been published, based 
on heterogeneous samples of volunteers participating in five clinical 
trials (Künzli et al., 2010). The study suggested a possible role of 
ambient air pollutants, indicated by PM2.5 and living close to busy 
highways, in the progression of IMT.  
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Most of these studies showed that the impact of air pollution 
differed across various subgroups; for example, some observed 
stronger effects in women and the elderly (Hoffmann et al., 2009b; 
Künzli et al., 2010). However, these patterns were not consistent, 
thus, a clear understanding of susceptibility factors is still lacking. 
Although observed in animal studies (Sun et al., 2005), none of the 
human studies investigated whether diet modifies the effect of air 
pollution – a plausible hypothesis given its interaction with pathways 
of oxidative stress and systemic inflammation – both likely involved 
in the systemic effects of ambient air pollution (Brook et al., 2010).   
 
The Mediterranean region of Girona, and Spain in general, is known 
to have one of the lowest cardiovascular mortalities in Europe, while 
the conventional cardiovascular risk factors are among the highest 
(Masiá et al., 1998). It has been shown though that the paradox 
may in part be explained by the protective effect of Mediterranean 
diet (Guallar-Castillón et al., 2011; Martínez-González et al., 
2011; Zhu et al., 2011). Our study aimed to investigate the 
association between long-term exposure to traffic-related air 
pollution and subclinical atherosclerosis in Spain and the effect 
modification of such association by demographic characteristics, 
established risks factors of atherosclerosis and diet. We investigated 
this in the follow-up of participants of three population-based 
cohorts recruited in the REGICOR study (Grau et al., 2008). 
Subclinical atherosclerosis was measured by carotid intima media 
thickness (IMT), a validated marker of atherosclerosis (Bots et al., 
2002; Coll et al., 2008). Additionally we measured ankle brachial 
index (ABI), a marker of the presence and severity of peripheral 
artery disease. Both IMT and ABI  are associated with 
cardiovascular events and mortality (Ankle Brachial Index 
Collaboration, 2008; Lorenz et al., 2007; Polak, 2009; Ramos et 
al., 2009). In the absence of particulate matter measurements in this 
region, we used estimates of the 10-year average home outdoor 
nitrogen dioxide (NO2) concentrations and residential traffic 
intensity as markers of exposure to local traffic-related air 
pollutants. 
 
Methods 

Study design 
 
REGICOR-Air is a cross-sectional study nested in the REGICOR 
(REgistre GIroni del COR, Girona Heart Registry) cohort study (Grau 
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et al., 2007). We used data from the follow-up (in 2007-2010) of 
three population-based cohorts of REGICOR originally enrolled in 
1995, 2000 and 2005. A two-stage framework was used in the first 
two cohorts: in the first stage a fixed number of towns of Girona 
province were randomly selected: 33 towns in 1995 and 17 towns in 
2000. In the second stage an equal number of men and women 
between 25 and 74 years were randomly recruited from each 
selected town. For the third cohort, residents of Girona city were 
randomly selected. The response rate was > 71% in the three 
surveys. For the REGICOR-Air study, 12 of the original towns that 
provided the maximum contrast in ambient air pollution levels, while 
keeping the travel distance between towns to a minimum, were 
selected (see map in Supplement Figure S1 and Girona.KLZ file in 
Appendix 2). These towns are spread over an area of 
approximately 65x70 km and represent the geographic diversity of 
the Girona Province, including settings like the average mid-size 
Mediterranean city of Girona and adjacent Salt (96 200 and 
30 300 inhabitants, respectively), tourism getaways on the beach, 
industrial centers, maritime ports, historic quarters and small villages 
in the valleys and mountains. During 2007-2010, the participants 
residing in these towns, who were alive and not institutionalized, 
were invited to participate in REGICOR-Air. Response rate for the 
re-examination was approx. 82%. Information for the complete 
reassessment of the health status, measurements of IMT and ABI and 
address history linked to time period during the last 10 years were 
collected. 
 
This study was approved by the Hospital del Mar Research Institute 
ethics committee and participants gave written informed consent. 
 

Health and life-style measurements  
 
The main outcomes were: a) the mean IMT of left and right common 
carotid artery (IMTcca) and b) the mean IMT of left and right 
common carotid artery, internal carotid artery and carotid bulb 
(IMT6seg). Each measurement was the average thickness in a 1cm 
segment of the artery far wall. 
 
For assessment of carotid intima-media thickness (IMT) three trained 
and certified sonographers performed ultrasound examinations of 
the carotid arteries. Standardized scan and image analyses 
protocols were used. For imaging, an Acuson Aspen ultrasound 
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instrument (Acuson-Siemens, Erlangen, Germany) equipped with an 
L7 5-12MHz transducer and dedicated REGICOR application scan 
protocol (AMC IMAGELAB, University of Amsterdam/Technical 
University Eindhoven, The Netherlands) were used. Of each arterial 
segment a still image was saved as a DICOM (Digital Information 
and Communication in Medicine) file. These source files were locally 
stored and securely transferred to the IMAGELAB, where trained 
and certified sonographers analyzed the images using validated 
software eTrack REGICOR (Department of Physiology and Vascular 
Medicine Academic Medical Centre, Amsterdam) (de Groot et al., 
2008). The IMT was defined as the average distance between the 
lumen-intima and media-adventitia interfaces of a given segment. To 
assess repeatability two measurements of the IMT were taken in 42 
participants at two occasions with two weeks between the visits. In 
each visit, up to three sonographers measured IMT in each 
participant. Between-sonographer and between–visit variability 
were measured. 
 
ABI measurements were done by operators meticulously trained by 
a senior vascular surgeon. After a 5-minute rest, systolic blood 
pressure was measured in the brachial artery in the antecubital 
fossa of both arms, and subsequently in the posterior tibial and 
dorsalis pedis arteries in the distal calf of both legs in supine 
position. A continuous Doppler device (SONICAID 421, Oxford 
Instruments), 8MHz probe was used. Right and left ABI were 
calculated as the ratio of the highest systolic pressure in each lower 
limb to the highest of left and right brachial systolic pressure. The 
lowest resulting ABI value was categorized (low: <0.9; medium: 0.9-
1.3; high: >1.3) for analysis. Categories were selected according to 
reported mortality risks associated to ABI level (Ankle Brachial Index 
Collaboration, 2008; McDermott et al., 2005). Repeatability was 
also assessed by independent measurements. 
 
In addition, we measured fasting lipid profile and glycaemia, blood 
pressure and anthropometric characteristics by standard protocols. 
Hypertension was defined as either systolic blood pressure 
>140mmHg, diastolic blood pressure >90 mmHg or taking 
antihypertensive medication. Hypercholesterolemia was defined as 
having total cholesterol levels above 250 mg/dl or taking lipid-
lowering medication. Weekly energy expenditure in the leisure-time 
was measured with the Minnesota questionnaire (Elosua et al., 
1994), converted to metabolic equivalents and categorized in 
tertiles. Adherence to Mediterranean diet was measured by a 10-



Paper IV 
 

 

177 

point index based on sex-specific intake tertiles of 8 beneficial 
(cereals, fruits, vegetables, legumes, seafood, nuts, moderate red 
wine) and 2 detrimental (meats, dairy products) food groups, and 
categorized in quartiles, as described in previous studies in these 
cohorts (Schröder et al., 2004). Modifications such as eliminating 
low-fat dairy products or white meats, or incorporating several 
unhealthy food groups (e.g. soft drinks, salty snacks, pastries) as 
detrimental components had no meaningful impact on findings in 
sensitivity analyses (not shown). The plausibility of reported dietary 
intakes was assessed based on disparities between reported energy 
intakes and estimated energy requirements calculated using the 
Goldberg method modified with updated basal metabolic rate 
estimates (Mendez et al., 2011). Highest achieved education level 
(low refers to illiterate or primary school, medium to secondary 
school and high to college, university or higher degree), occupational 
status (employed, inactive, retired or unemployed), smoking habits 
(never, former, current smoker), marital status (single, married or 
equivalent, divorced, widow, other) were collected in a 
questionnaire administered during the reassessment visit. Participants 
also reported any current medication treatment, which was later 
checked and coded by a physician into main therapeutic groups 
defined in the REGICOR study protocol. Percentage of people with 
low education at the census tract level was available from the 2001 
Spanish census.  We assigned this area-level variable to each 
participant according to the census tract where they had lived the 
longest during the 10-year period before the IMT measurement.  
 
Clinical history of CVD was defined as having had myocardial 
infarction, stroke, angina, catheterization, angioplasty, bypass 
surgery or amputation due to circulatory problems. Participants with 
clinical signs of CVD were also excluded (n=227) since medication 
use or altered health behaviors among these subjects may have 
influenced IMT/ABI measures obtained for this study. 
 

Address history  
 
Ten-year residential history was collected by questionnaires 
administered at the time of IMT measurement. Addresses were 
geocoded at the front door level by a Geographic Information 
System (GIS) services company. Addresses geocoded with less than 
maximum precision level (i.e. exact address) were manually 
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geocoded using the web mapping application of the Cartographic 
Institute of Catalonia (http://mercuri.icc.cat).  
 

Exposure Assessment 
 
We assigned exposure to each participant estimating the 10-year 
time-weighted average of the home outdoor concentrations of NO2 
using land use regression models.  In the absence of air quality data 
in most of these towns, we conducted an extensive monitoring 
campaign based on NO2 passive samplers (Palmes tubes) used and 
validated before in Girona and internationally (Targa J. et al., 
2008).   
 
A previous study conducted with the same Palmes tubes in the town 
of Girona indicated surprisingly high levels of NO2 in some narrow 
street canyons with rather low traffic density. Thus, we decided to 
take measurements at a far higher number of locations than those 
suggested in established protocols developed for non-
Mediterranean cities (Brauer et al., 2003), where models are based 
on repeated measurements taken on some 40-50 locations, but limit 
the seasonal repeats. The latter decision was based on the 
observations from previous monitoring data from local authorities 
and our own pilot study measurements indicating that monthly mean 
NO2 levels during spring (mainly April and May) and fall (mainly 
October and November) approximated the annual mean. Thus, we 
conducted our largest campaigns during these months.  
 
We measured NO2 in the balcony of 562 participants’ homes for 
one month, in spring and fall campaigns between June 2007 and 
July 2009. Homes were selected to cover a broad range of traffic-
related pollution (based on mentioned previous study) and urban 
settings (e.g. low and high building-density areas), to be 
representative of the residential locations of the cohort participants 
and to be well distributed across the towns. The added surface area 
covered by sample monitoring across towns was approx. 81km2. 
Since all measurements were not made simultaneously, we adjusted 
for the temporal variability of the NO2. To do so, we also measured 
monthly mean NO2 concentrations at one fixed location in each town 
for at least one year, including simultaneous measurements during 
the campaigns. NO2 annual means were derived multiplying the 
monthly means at each location by the ratio of the annual to the 
same month mean NO2 at the town’s fixed location.  
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To predict NO2 at each participant’s residence we used land use 
regression (LUR) models. LUR models were developed using the NO2 
annual means and data on traffic intensity, bus routes and stops, 
distance to traffic, land cover, building density, and other GIS-
derived variables. Given the geographic diversity of the study area 
and differences in the availability of GIS data among towns, we 
divided the study area into seven subareas, i.e. clusters of adjacent 
towns. LUR models were derived for each cluster. The cluster-specific 
models explained between 33 and 63% of NO2 (cross-validation R2 
0.32 and 0.61 respectively) (Supplement Table S1).  
 
We estimated the outdoor annual mean NO2 at each residential 
location by applying the LUR models to the address geocode. 
Historical data on NO2 concentrations since 1997 were available 
from only one urban background fixed station, located 40km south 
east from Girona city. Long-term temporal trends in NO2 levels were 
taken into account by multiplying the NO2 derived for each address 
by the ratio of the mean NO2 for the period living in that address to 
the mean NO2 for the monitoring campaigns period at the urban 
background station. Finally, for each participant we calculated the 
time-weighed average of NO2 estimates across all residences in the 
10 years prior to the IMT measurement (10yr NO2 exposure). The 
time periods when participants lived at addresses geocoded with 
low precision or outside of the study area were not taken into 
account to derive the 10yr NO2 exposure. Participants who lived in 
the study towns less than 6 years or had maximum precision 
geocodes for fewer than 6 years of the address history (n=365) 
were excluded from the main analyses. 
 
We also used traffic proximity markers as surrogates of air pollution 
exposure in independent analyses. Traffic intensity was collected 
from local registries and urban mobility reports (Urban mobility plan 
for Girona, 2007) and was assigned to the central road network 
used within ESCAPE (www.escapeproject.eu). Traffic counts were 
conducted at approximately 670 streets with missing traffic 
information (Rivera et al. 2012) to complete the traffic inventory. 
For each address the traffic intensity at the nearest street and traffic 
load (sum of traffic intensity multiplied by length of road segment in 
all segments) in a 100m buffer were calculated. The 10-year 
average traffic intensity and 10-year average traffic load in 100m 
were then derived for each participant. 
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All GIS calculations were done using ArcGIS 9.2 (ESRI, Redlands, 
CA).  
 

Statistical Analysis 
 
The crude and adjusted association of IMT with individually-assigned 
air pollution exposure was assessed with linear regression models. 
The residuals of the regression analyses showed heteroscedasticity, 
thus we used the natural logarithm of IMT as the outcome variable. 
The linearity of the associations was explored using generalized 
additive models (GAM). We analyzed ABI as a categorical variable 
using multinomial logistic regression. We initially adjusted our models 
by age and sex. The final models included two sets of adjustment 
variables. Using directed acyclic diagrams (Figure 1) that represent 
the hypothetical relationship between long-term exposure to air 
pollution and IMT, according to epidemiological evidence (Brook et 
al., 2010; Künzli et al., 2005a; Künzli et al., 2011), we defined a 
minimal adjustment set (Model 1), which included: sex, age, sex-age 
interaction, smoking status, education level (as a proxy of 
socioeconomic status) and marital status.  
  
We further adjusted for potential intermediates and other 
covariates (Model 2): Model 1 plus occupational status, body mass 
index (BMI), high-density lipoprotein (HDL), waist circumference, 
systolic and diastolic blood pressure, weekly energy expenditure in 
physical activity during leisure-time, adherence to Mediterranean 
diet score, plausibility of reported dietary intakes, any 
cardiovascular or antihypertensive medication treatment (defined as 
any of beta blockers, calcium antagonists, aspirin to prevent heart 
disease, cumarinics, statins, antiaggregants or any other treatment 
for hypercholesterolemia or hypertension) and percentage of 
people with low education at the census tract level. In models for 
traffic load, outcomes were also adjusted for occupational status. 
 
The results are expressed as the cross-sectional percent change in 
IMT associated with a 10-year exposure contrast corresponding to 
the difference between the 95th and 5th percentiles in the study 
population.  
 
We tested heterogeneity of the effects of air pollution by including 
interaction terms in the covariate adjusted models (Model 2). 
Potential modifiers tested were sex, age, education level, smoking 
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status, menopausal status in women, obesity (bmi≥30), hypertension, 
diabetes, any cardiovascular or antihypertensive medication 
treatment and adherence to Mediterranean diet. 
 
Analyses were done using Stata 10.1 (StataCorp, College Station, 
TX) and R 2.12 (http://www.R-project.org). 
 

Sensitivity analyses  
 
We stratified the analysis by movers and non-movers (participants 
who lived in the same address for the 10 years before the IMT 
measurement). Errors in exposure assignment and geographic co-
variates are likely reduced in the latter, thus, effects may be 
expected to be less biased. We also tested whether the results using 
exposures at the address of longest residence differed much from 
those using the average for the complete 10-year address history. 
To assess the sensitivity of the results to the NO2 LUR models, instead 
of using the modeled NO2 estimates, we restricted the analyses to 
participants living within 100m and within 200m of a monitoring 
location and assigned them the annual mean NO2 at the monitor 
closest to the address of longest residence. We did not adjust the 
exposure-outcome associations for area of residence in the main 
analyses since the study area was relatively small (65x70Km), data 
collection in every town was done by the same team and using the 
exact same procedures and it would partially remove the exposure 
contrast corresponding to between-town variability. We then 
explored the sensitivity of the results to the inclusion of area of 
residence (corresponding to the address of longest residence) as a 
random effect variable using the xtmixed function of Stata. Some 
recent studies suggest that the association of air pollution and 
cardiovascular health could be confounded by traffic noise. Traffic 
noise data was only available for a subsample of participants living 
in Girona city (n=1084). Thus, in this subsample we evaluated the 
association of IMT with traffic noise exposure. Night-time (11pm – 7 
am) road traffic noise levels (dB(A)) at the building’s façade were 
estimated for the address of longest residence with a validated city-
specific noise model (Environmental Noise Directive 2002/49/EC) 
(Foraster et al., 2011).  
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Results 
 
Information on IMTcca, IMT6seg and ABI was available for 2780, 
2188 and 2738 participants respectively. The characteristics of the 
study populations are summarized in Table 1. Participants were 32 
to 86 years old. Percentages of the study population with low, 
medium and high education reflect those of Spain (census 2001). 
Participants included in the analyses did not differ from those 
excluded in terms of personal characteristics and exposure levels. 
The median IMTcca was 0.68mm and it ranged between 0.40 and 
2.05mm. The repeatability study showed intraclass correlation 
coefficients for sonographers and visits of 0.83 for the IMTcca and 
of 0.77 for the IMT6seg. ABI was on average 1.10 and ranged 
between 0.5 and 1.75, with 2.0% of the study population with low 
ABI (<0.9) and 4.2% with high ABI (>1.3). Participants with low ABI 
were on average nine years older than participants with normal ABI. 
Participants with high ABI did not differ on age with participants 
with normal ABI. Inter- and intra-operator variability of ABI 
measurements were also low, with an intraclass correlation 
coefficient of 0.92 and 0.94, respectively. 

 
The 10-year average home outdoor nitrogen dioxide concentrations 
varied from 5 to 48 ug/m3 and its correlation with NO2 at the 
address of longest residence was >0.99 over all subjects, and 0.96 
among those who moved at least once during the 10 years. A broad 
variability was also observed in the distribution of the time-weighted 
average traffic in the nearest street and in a 100m buffer around 
the addresses reported for the 10-year period (Table 2). Nitrogen 
dioxide and traffic exposure variables were moderately correlated 
(correlation coefficients between 0.52 and 0.72), and the two traffic 
variables (intensity and load) had a correlation of 0.58 
(Supplement Table S3). 
 
In univariate analyses, both 10-year averaged NO2 and NO2 at the 
address of longest residence were directly and significantly 
associated with age, HDL, higher education level, being divorced, 
being a former smoker, having high adherence to Mediterranean 
diet, and inversely associated with BMI, blood pressure and 
percentage of low education at the census tract level. Traffic load in 
100m buffer was associated with the same variables as NO2 (same 
direction of association) except for smoking status (no association). 
Additionally, exposure to higher traffic load was associated with 
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being unemployed. Finally, traffic in the nearest street was 
associated with the same variables as NO2 (same direction of 
association) except for smoking status, marital status and diet (no 
association).  
 
The associations of log-transformed IMT with exposures were linear. 
In unadjusted models, nitrogen dioxide, traffic in the nearest street 
and traffic in the 100m buffer were directly and strongly associated 
with the intima media thickness (both IMTcca and IMT6seg) (Table 3). 
Associations decreased in the adjusted models, particularly after 
adjusting for age. The two sets of adjustment variables provided 
similar results. The positive association of 10-year averaged NO2 
with carotid intima media thickness (both IMTcca and IMT6seg) was 
smaller and no longer significant. A difference in exposure between 
the 5th and 95th percentiles of 7 200 000 veh m/day in traffic load 
in 100m was directly associated with a nonsignificant 1.91% 
increase in IMTcca (95%CI: -0.24 to 4.06) and with a 2.06% 
increase in IMT6seg (95%CI: -0.09 to 4.21). A difference of 
15000veh/day in traffic in the nearest street was associated with a 
2.32% increase in IMTcca (95%CI: 0.48 to 4.17%) and a 1.80% 
increase in IMT6seg (95%CI: 0.01 to 3.59%). 
 
Both 10-year NO2 and residential traffic were associated with 
increased risk of high ABI (see Table 4). The adjusted relative risk 
ratio (RRR) of high ABI for a difference of 25µg/m3 in NO2 was 
1.98, 95%CI: 1.09 to 3.60; for a difference of 7 200 000veh/day 
in traffic load in 100m was 1.89, 95%CI: 1.07 to 3.34; and for a 
difference in 15 000veh/day in the nearest street 1.70, 95%CI: 
1.13 to 2.57, as compared to persons with medium ABI. The RRR of 
low ABI compared to medium ABI were non-significant for all 
exposures.  
 

Effect modification 
 
The association of all exposure markers with IMT differed across 
education level (Figure 2). In people with higher education, the 
association of 10-year exposure to air pollution with IMT was 
stronger, with a p-value for interaction of 0.07 (Model 2 with NO2 
and IMTcca). Effects estimates of the associations were 4.6% (95% 
CI: 0.4 to 8.9%) for NO2; 4.8% (95% CI: 0.7 to 8.9%) for traffic 
load; 3.3% (95% CI:  -0.02 to 6.7%) for traffic in the nearest 
street). Similar patterns were observed for the associations of 
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exposure to air pollutants with IMT6seg. Effects estimates were also 
stronger in men older than 60 years, showing significant associations 
of NO2 and traffic load in 100m with IMT (percent change in IMTcca 
4.3% (95% CI: 0.2 to 8.4%) for NO2; 5.9% (95% CI: 1.6 to 10.3%) 
for traffic load; 3.4% (95% CI: -0.07 to 7.0%) for traffic in the 
nearest street). No significant differences were observed in the 
associations of exposures with IMT by groups of age, sex, smoking 
status, menopause, obesity (bmi≥30), hypertension, diabetes, any 
cardiovascular or antihypertensive medication treatment or 
adherence to Mediterranean diet (results for menopause, obesity, 
hypertension diabetes and diet not shown).  
 

Sensitivity analyses  
 
Restricting the analyses to non-movers did not influence the results 
except in the precision of the effect estimates. Using the exposure 
estimated at the address of longest residence instead of the 10-
year average exposures or the NO2 unadjusted for the10-year 
temporal trends did not affect the results. Using the exposure 
estimated at the current address at the time of examination the 
effect estimate and its precision decreased. E.g. Excluding 57 
participants who did not live in the study area at the time of 
examination, the effect of NO2 on IMT for the people with high 
education was 4.56, 95% CI: 0.32 to 8.81 using 10-year average 
NO2, 4.33, 95% CI: 0.41 to 8.25 using NO2 at the address of 
longest residence and 3.54, 95% CI: -0.44 to 7.51 using NO2 at 
current residence. Similar results were observed for residential 
traffic.  
 
Using annual mean NO2 at the closest monitor instead of 10-year 
modeled NO2 restricted the sample size because only those living 
close to a monitor were kept in this analysis. There were 2265 and 
1778 participants living within 200m of a monitoring location and 
with data available on IMTcca and IMT6seg, respectively. Median 
distance to the closest monitor was 90m. As expected, modelled 
concentrations included fewer observations at the extremes of the 
distribution (see Supplement Figure S2).  All associations were in the 
same direction with effect estimates for IMTcca being approximately 
0.6% lower and less precise as compared to the estimates based on 
modeled NO2 done in the same subsample.  
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Including area of residence as a random effect variable, the trend 
of the associations remained the same but the estimates were closer 
to the null and less precise, e.g. 1.93% change in IMTcca  95%CI: 
0.05 to 3.8 (Model 2 with traffic on the nearest street). Entering 
night-time traffic noise to the models of IMT with NO2 did not 
influence the results.  
 
Discussion  
 
Our multivariate models revealed positive correlations between 
three markers of long-term exposure to traffic-related air pollution, 
namely traffic load within 100m of the residence, traffic intensity in 
the nearest street and modeled concentration of home outdoor NO2 
concentrations with carotid subclinical atherosclerosis in a random 
healthy population sample of the Spanish Mediterranean region. 
However, associations with NO2 were weak and reached statistical 
significance only in the subgroups of people with high education 
level and men above 60 years. Residential traffic (load and 
intensity) was associated with 2% thicker carotid intima-media. High 
exposures to NO2 and traffic were also associated with increased 
risk of high ABI (RRR between 1.70 for traffic intensity in nearest 
street and 1.98 for NO2). To put these results in context with common 
risks factors for atherosclerosis, in the same study population 
included in main analyses, a 10 year difference in age was 
associated with 8% (95%CI: 7.3 to 9.0) thicker carotid walls 
(IMTcca) and a RRR of 10.3 (95%CI: 10.0 to 10.5) for high ABI. 
Interestingly, age strongly confounded the association of pollution 
with IMT. Atherosclerosis is a life-time process, thus, age is a strong 
correlate of the cumulated life-time exposure to air pollution as well 
as the main determinant of atherosclerosis.  
 
Our results indicate that long-term exposure to traffic-emitted 
pollution might induce atherosclerosis at the carotid artery level.  This 
is in line with prior results indicating the association of medium- to 
long-term exposure with subclinical atherosclerosis (Brauer et al., 
2003; Diez Roux et al., 2008; Hoffmann et al., 2007; Künzli et al., 
2005a) and systemic inflammatory markers (Hoffmann et al., 
2009a). Direct comparison of our results with published data is 
limited given our use of NO2 as a marker of pollution whereas 
others used measures of PM mass. However, our effect estimates are 
in the same order of magnitude like in previous studies.  
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In contrast, the association between pollution and ABI was less clear. 
While pollution was associated with having high ABI (>1.3), the risk 
of a low ABI was not associated with pollution. The segment of ABI 
that is more clearly associated to higher mortality and 
cardiovascular risks is ABI<0.9. ABI higher than 1.3 have been less 
studied. It has been associated to calcification of the arterial wall, 
higher levels of many CVD risk factors (McDermott et al., 2005), 
higher risk of all-cause mortality (Ankle Brachial Index 
Collaboration, 2008), and foot ulcers and weakly associated with 
heart failure and stroke (Allison et al., 2008). Thus, there is higher 
cardiovascular risk at low and high levels of ABI. This u-shape 
association with cardiovascular risk makes ABI a complex marker 
and makes comparison between studies difficult.  
 
Regarding the association of low ABI with air pollution we can refer 
to only two studies, providing conflicting results. A study in Germany 
found that living at 50m from a major road compared to living more 
than 200m away was associated with a decrease in ABI (modeled 
as continuous variable) of -0.024  (95%CI: -0.047 to -0.001) and 
with an OR of 1.77 for peripheral artery disease (95%CI: 1.01 to 
2.1), while no associations were found with annual residential PM2.5; 
in this study participants with ABI higher than 1.3 were excluded 
(Hoffmann et al., 2009b). On the other hand, in the MESA study, 20-
year exposures to PM2.5 and PM10 were not associated with ABI, 
while 1-year PM10 exposures were associated with higher ABI 
(modeled as continuous and dichotomous variable ABI≤0.9); 
participants with ABI higher than 1.3 were included in this analysis 
(Diez Roux et al., 2008). Smoking could be considered a proxy for 
high exposure to combustion related pollution. Strong direct 
associations of current smoking with ABI<0.9 have been reported in 
several studies (Agarwal, 2009; Hobbs et al., 2005; Ramos et al., 
2009). No association between passive smoking (self-reported 
nonsmokers with serum cotinine levels above 0.05ng/ml) and low ABI 
was found in a population-based study in the US (Agarwal, 2009). 
Low ABI was associated with cotinine levels above 155mg/ml 
(threshold).  In another population-based study in women older than 
60 years in China, passive smoking was associated with ABI<0.9 
(OR 1.47, 95%CI: 1.07 to 2.03) and a dose response relationship 
was found (He et al., 2008).. Exposure levels in China were higher 
than in the US. This might indicate that effects on low ABI could be 
detectable only after high exposures to air pollution (a threshold 
effect for pollution is unlikely). The lack of association between air 
pollution and low ABI in our study might be due to that in addition to 
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the small number of participants with low ABI and the resultant low 
power to detect an association.  
 
To our knowledge, the association of air pollution with high ABI has 
not been investigated before. Current and former smoking have 
been negatively associated to high ABI (Allison et al., 2008; 
McDermott et al., 2005; Wattanakit et al., 2007) compared to 
normal ABI. In our study both were associated to lower risks of high 
ABI although for current smokers this risk was not significant. ABI is a 
ratio of systolic blood pressures, thus higher ABI could result from low 
brachial or high ankle pressures or both (Allison et al., 2008). While 
our results need confirmation from future studies, they lead to 
speculate that the atherosclerotic response to varying levels of air 
pollution differs between the carotid arteries and the peripheral 
arteries. This hypothesis would also be supported by our results that 
high ABI was not associated to IMT compared to normal ABI levels, 
while low ABI was associated with higher RRR of thicker IMT.  
 
In contrast to our findings, the effects of 20-year exposure to PM2.5 
and PM10, in the MESA study, were weakly associated with carotid 
IMT (1 to 3% increases in IMT for increases of 12.5 ug/m3 in 20-
year average PM2.5 or 21ug/m3 in 20-year average PM10) but not 
with ABI, or coronary artery calcification (Diez-Roux 2008). In Los 
Angeles, a 10µg/m3 increase in modeled PM2.5 assigned to the 
current address only, was associated with a 4.2% (95%CI: -0.2 to 
8.9) increase in IMT (Künzli et al., 2005a). Positive, though not 
significant, associations between traffic intensity and IMT, but no 
association between NO2 and IMT, were found in a population-
based study of young adults in Utrecht. A 17 000veh/day increase 
in traffic in the nearest road was associated with a 0.47% increase 
in IMT (95%CI: -1.79 to 2.73) and an increase in 472 000veh/day 
in the sum of traffic intensity in a 100m buffer with a 1.04% 
increase in IMT (95%CI: -0.95 to 3.03) (Lenters, 2010).  
 
Given the worldwide rising burden of atherosclerotic vascular 
diseases (World Health Organization, 2008), the association of 
long-term pollution with atherosclerosis has important public health 
implications. Ninety five percent of our study population was 
exposed to traffic intensity levels in the nearest street higher than 
15 000veh/day. However, these levels are low when compared to 
other European cities. In larger cities, such as Barcelona, many 
people live within very short distances to streets with traffic intensity 
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of about 50 000 to 100 000veh/day. Likewise, levels of NO2 can 
exceed 100µg/m3 near streets with high traffic intensity.  
 
Our population-based study used exposure measurements (both 
NO2 and traffic) collected outdoors of participant’s residences. 
Similar studies rely on models based on measurements at routine air 
quality monitoring stations as far away as 10km or more from 
participants’ residences (Diez Roux et al., 2008). Besides, our traffic 
markers were based not only on proximity and road type 
classification, which probably lead to larger exposure 
misclassification (Allen et al., 2009; Hoffmann et al., 2009a), but 
rather on actual traffic intensity derived from a dense traffic-count 
network.  
 
Reasons that may have led to not detecting a significant association 
of IMT with NO2 for the overall population, if the association exists, 
are exposure misclassification and NO2 not being a good proxy of 
the agents in the pollutant mixture that actually promote 
atherosclerosis. Moderate R2s of the NO2 models introduce exposure 
measurement error. Reasons that led to the variability of LUR’s R2 
across towns are not known. Possible explanations include that 
available geo-spatial variables did not fully capture the complex 
air quality conditions in street canyons or the local wind fields that 
determine dispersion. Nevertheless, using the measured (at the 
closest monitor) instead of modeled NO2 did not influence the results, 
thus the measurement error introduced by the models, if any, should 
be low.  
 
Although findings using traffic as a surrogate of exposure appear to 
be more consistent across studies than those based on pollutants, 
more research is needed to clarify the role of different constituents 
of the air pollution’s complex mixture on atherogenesis. In the 
referred study in Utrecht, the associations of NO2, black smoke, 
PM2.5 and SO2 with the IMT, pulse wave velocity and augmentation 
index (the last two are markers of arterial stiffness) were 
investigated. Significant associations were found only for NO2 with 
pulse wave velocity and augmentation index and for SO2 with 
augmentation index. The evidence on the effects of NO2 is 
inconsistent. It has been associated with stronger effects on 
cardiovascular mortality compared to PM2.5, black smoke and SO2 
(Beelen et al., 2007b) and on cardiopulmonary mortality compared 
to PM10, total suspended particles, black smoke and SO2 (Gehring 
et al., 2006). While Pope et.al (2002b) found no association 
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between NO2 and cardiopulmonary mortality. Thus, as it happens 
for the correlation of NO2 with traffic intensity (Raaschou-Nielsen et 
al., 2000), the correlation of NO2 with the components of the traffic 
emissions cocktail that are responsible for promoting atherosclerosis, 
might vary across locations.  
 

Effect modification 
 
We tested effect modification by a pre-determined set of variables, 
based on differences in the atherosclerosis progression given by sex, 
age, menopause, etc, in addition to effect modifiers found in 
previous studies (see Supplement Table S2), Stronger positive 
effects in people with high education level and in men older than 60 
years were consistent across IMT measurements, IMTcca and 
IMT6seg, and across all markers of pollution. No evidence of effect 
modification by age, sex, menopause, Mediterranean diet, common 
risks for CVD or subclinical disease (indicated by medication 
treatment) was observed. Other studies have found heterogeneous 
effects across subgroups of age, sex, BMI, smoking status, 
socioeconomic status, town of residence and other cardiovascular 
risks factors (Bauer et al., 2010; Künzli et al., 2005a; Lenters et al., 
2010a). The detection of interactions in epidemiologic studies is 
often underpowered (Greenland, 1993) and testing many 
interactions can also lead to a multiple comparison problem. 
However, our subgroup analyses were based on the results of 
previous studies, and although our results may be subject to the 
aforementioned problems, the accumulated evidence over different 
studies will help to shed light on the very important question of 
susceptible subgroups.  
In Girona, exposure to traffic-related pollutants (all markers) was 
higher for people with high education level. The same was observed 
at the census tract level: higher mean concentrations of NO2 were 
found at the most privileged census tracts (see Supplement Figure 
S4). This has been reported before for other South European cities 
(Cesaroni et al., 2010) where wealthy people live in downtown 
areas that are more polluted. In Strasbourg (central Europe), 
Havard et al. (2009) observed an inverted-U shaped association 
between annual NO2 at the census tract and deprivation index at 
the census tract level. These two patterns are in sharp contrast to 
what has been observed in North American (Gunier et al., 2003; 
Jerrett et al., 2001; Morello-Frosch et al., 2005) and other 
European studies (Chaix et al., 2006; Wheeler et al., 2005) in which 
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the most deprived bear the highest air pollution concentrations. 
Repeating our analysis using socioeconomic variables at the census 
tract level (percentage of people with low education, deprivation 
index) yielded the same results.  
 
The people with higher levels of education were also younger, have 
lower blood pressure, BMI, glucose levels, lower LDL, a higher 
percent have quitted smoking and a lower percent have never 
smoked compared to people with low and medium education. The 
stronger effects of air pollution on atherosclerosis for this subgroup 
were, nevertheless, not explained by age interactions. This may 
indicate higher susceptibility but, more likely, a better detectability 
among people with fewer competing risks for atherosclerosis (due to 
less confounding). It is difficult to evaluate if this is supported by 
previous studies given that results are very heterogeneous. No effect 
modification by education level has been observed before for the 
association of PM2.5 with IMT, ABI or coronary artery calcification 
(Diez Roux et al., 2008), neither for the association of NO2 or PM2.5 
with IMT, pulse wave velocity or augmentation index (Lenters et al., 
2010a). Whereas increasing effects of roadway proximity on aortic 
artery calcification have been reported for increasing income (trend 
P <0.01) (Allen et al., 2009). Effects of PM2.5 on systemic 
inflammation markers have been reported to be stronger in men, 
and more specifically, in highly educated men (Hoffman 2009), in a 
population-based study in Germany. On the contrary, stronger 
effects of PM2.5 on IMT have been found for women in a study in 
participants of clinical trials in California (Künzli et al., 2005a). The 
change in augmentation index associated with increased levels of 
NO2, black smoke and PM2.5 was also higher for women in the study 
of young adults in Utrecht. These interactions might also be partially 
explained by differential misclassification bias across subgroups. 
NO2 and traffic measurements were done outdoors of residences. 
These might not accurately represent the personal exposure and, 
thus, potentially introduce differential measurement error given the 
different time activity patterns for men and women, younger and 
elderly populations. Further research to identify susceptibility factors 
is still needed.  
 

Sensitivity analyses  
 
Using the exposure at the address of longest residence would 
minimize errors from reported addresses, geocoding and averaging 
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NO2 estimates for the different addresses. Our results were indistinct 
when using exposure at the address of longest residence compared 
to 10-year averaged exposure. Thus, for settings similar to the 
Spanish Mediterranean region in terms of mobility (i.e. 20% of 
people changed address at least once in the 10 years) and patterns 
of spatial distribution of NO2, the exposure at the address of 
longest residence is a good proxy for long-term exposure. 
Collecting, geocoding and assigning exposure levels to only one 
address per participant would be simpler and more efficient both 
for participants and researchers. On the other hand, using the 
exposure at the current address (at the time of examination), as is 
common in other studies, the effect estimates and their precision 
decrease, indicating exposure misclassification.  
 
Adjusting for random-effects of area of residence yields estimates 
closer to the null and less precise. This is consistent with a decrease in 
the exposure contrast, which makes the detection of an effect more 
difficult, but on the other hand it may indicate correction for some 
confounding by area. Although some residual confounding is 
possible, we had already adjusted our estimates by a large array 
of confounders, including education at the census tract level, which 
makes the reduction in exposure contrast a more likely explanation. 
Living near busy roads is also associated with traffic-related noise. 
As shown for Girona, this correlation is moderate and differs across 
neighborhoods (Foraster et al., 2011). Our results were not sensitive 
to adjustment for noise. 
 
Other limitations of our study are the cross-sectional design, 
possibility of unmeasured confounding, including confounding related 
to environmental tobacco smoke and lack of daily activity patterns 
to assess time spent at home. Major strengths include being the first 
study of traffic-related pollution and atherosclerosis in the 
Mediterranean region; the large population-based sample size; a 
thorough assessment of health and potential confounders; 
availability of 10-year address history that allowed estimating 
long-term NO2 and traffic exposure markers; and a dense NO2 and 
traffic monitoring network at participant’s home outdoor.  

 
In conclusion, long-term exposure to traffic-related air pollution is 
associated with subclinical carotid atherosclerosis, with stronger 
associations in people with high education level and men above 60 
years, and with high ABI levels. Longitudinal studies are needed to 
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confirm whether air pollution contributes to the chronic processes of 
atherogenesis. 
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Table 1. Descriptive statistics of the study population included in 
main analyses n=2780. N (%) unless otherwise indicated. 

 

IMTcca (mm), median ± IQR  0.68 ± 0.19
IMT6seg (mm), median ± IQR  0.67 ± 0.18
Ankle Brachial Index (minimum of left and right), median ± IQR 1.10 ± 0.12
Age (yrs), median ± IQR  58 ± 18
Sex  (women) 1491 (53.6)
Education level  

     Primary school or illiterate 1476 (53.1)
     Secondary school 758 (27.3)
     Technician or higher education degree 526 (18.9)
Occupational status

     Employed 1447 (53.1)
     Inactive or house keeper  358 (12.9)
     Retired  852 (30.7)
     Unemployed  68 (2.5)
 Smoking status  

     Never smoker  1202 (54,5)
     Former smoker 628 (28,5)
     Current smoker  377 (17,1)
Marital status

     Single 165 (5.9)
     Married / living together 2178 (78.4)
     Divorced 171 (6.2)
     Widow 247 (8.9)
     Other 9 (0.3)
Menopause (% in women) 1075 (38.7)
Body mass index, median ± IQR 26.6 ± 5.5
Waist circumference (cm), median ± IQR 93 ± 17
Hypertension† 1265 (45.5)
Diabetes mellitus 349 (12.6)
High density lipoprotein (mg/dl), median ± IQR 52.9 ± 15.6
Hypercholesterolemia 690 (24.8)
Any cardiovascular or antihypertensive medication treatment 1137 (40.9)
Mediterranean diet index ‡, median ± IQR 25 ± 4
Energy expenditure in leasure time (MET-min/week)*, median ± IQR  1515 ±1937
People with low education in the census tract (%), median ± IQR 11 ±12.2
Living at the same address for 10 years before IMT measurement 2252 (81)

* MET: Metabolic equivalent
† Systolic blood pressure >=140 mm Hg or   diastolic blood pressure  >= 90 mm Hg. or treatment
‡ Adherence to Mediterranean diet was defined as quartiles of the index
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Table 2. Descriptive statistics of exposure to air pollution and traffic. 
n=2780. Minimum, 5th percentile, mean, standard deviation, 95th 
percentile and maximum.  
 

min 5th perc. mean sd 95th perc. max

10yr. average NO2  (µg/m3) 4.9 9.7 20.7 8.4 35.5 47.7

NO2 at address of longest residence (µg/m3) 3.5 10.3 22.0 9.0 37.9 50.4

NO2 at current address (µg/m3)* 3.5 10.2 21.9 9.0 37.7 50.4

NO2 at the closest monitor within 200m (µg/m3)† 3.7 9.2 22.3 9.3 40.5 52.9

10yr. average traffic load 100m buffer (1000 veh m/day) 0 231 2551 2246 7436 11149

10yr. average traffic intensity nearest street (1000 veh/day) 0 0.1 3.2 5.4 15.2 34.2

* Sample size restricted to participants living in study area at moment of examination N=2723 
† Sample size restricted to participant living within 200m of monitoring site N=2265.  NO2 was monitored with passive samplers
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Table 3. Effect estimates of percent change in intima media thickness 
(IMT) associated with a 10-yr average exposure contrast between 
the 5th and 95th percentiles. Exposure contrast indicated in 
parenthesis. 
 
 

N N

NO2 (25 µg/m3)
crude 2780 3.67 ( 1.37 to 5.98 ) 2188 4.98 ( 2.65 to 7.31 )
adjusted for sex 2780 3.67 ( 1.38 to 5.96 ) 2188 4.88 ( 2.58 to 7.18 )
adjusted for age & sex 2780 0.04 ( -1.83 to 1.92 ) 2188 0.84 ( -1.02 to 2.71 )
Model 1 2738 0.35 ( -1.63 to 2.32 ) 2155 0.71 ( -1.25 to 2.67 )
Model  2 (possible intermediates) 2632 0.56 ( -1.47 to 2.59 ) 2074 0.52 ( -1.52 to 2.57 )

Traffic load in a 100m buffer (7.200.000 veh m/day)
crude 2780 5.25 ( 2.76 to 7.74 ) 2188 6.38 ( 3.89 to 8.88 )
adjusted for sex 2780 5.21 ( 2.73 to 7.68 ) 2188 6.31 ( 3.85 to 8.78 )
adjusted for age & sex 2780 1.39 ( -0.64 to 3.42 ) 2188 1.99 ( -0.02 to 4.00 )
Model 1 2738 1.78 ( -0.33 to 3.89 ) 2155 2.08 ( 0.00 to 4.17 )
Model 2 (possible intermediates) 2609 1.91 ( -0.24 to 4.06 ) 2053 2.06 ( -0.09 to 4.21 )

Traffic intensity in nearest street (15.000 veh/day)
crude 2780 4.18 ( 2.01 to 6.35 ) 2188 4.55 ( 2.43 to 6.68 )
adjusted for sex 2780 4.13 ( 1.98 to 6.29 ) 2188 4.42 ( 2.32 to 6.51 )
adjusted for age & sex 2780 1.74 ( -0.02 to 3.50 ) 2188 1.75 ( 0.05 to 3.44 )
Model 1 2738 1.96 ( 0.14 to 3.77 ) 2155 1.70 ( -0.04 to 3.44 )
Model 2 (possible intermediates) 2632 2.32 ( 0.48 to 4.17 ) 2074 1.80 ( 0.01 to 3.59 )

IMTcca
%change*

IMT6seg
%change*   (95%   CI)    (95%   CI)

 
Model 1: sex, age, sex-age interaction, smoking status, education and marital status  
Model 2: model 1 plus BMI, HDL, waist circumference, systolic and diastolic blood 
pressure, weekly energy expenditure in physical activity during leisure-time (tertiles), 
adherence to Mediterranean diet, plausibility of reported diet, medication treatment 
and percentage of people with low education at the census tract level, In models for 
traffic load outcomes were also adjusted for occupational status. 
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Table 4. Effect estimates of relative risk ratio of categories of ankle 
brachial index (ABI) (reference category ABI= 0.9 to 1.3) associated 
with a 10-yr average exposure contrast between the 5th and 95th 
percentiles. Exposure contrast indicated in parenthesis. 

 

NO2 (25 µg/m3)
Model  2 (possible intermediates) 0.72 ( 0.29 to 1.75 ) 1.98 ( 1.09 to 3.60 )

Traffic load in a 100m buffer (7.200.000 veh m/day)
Model 2 (possible intermediates) 1.02 ( 0.40 to 2.61 ) 1.89 ( 1.07 to 3.34 )

Traffic intensity in nearest street (15.000 veh/day)
Model 2 (possible intermediates) 0.48 ( 0.16 to 1.46 ) 1.70 ( 1.13 to 2.57 )

ABI<0.90  
RRR

ABI>1.3
RRR   (95%   CI)    (95%   CI)

 
Estimates adjusted by Model 2: sex, age, sex-age interaction, smoking status, 
education and marital status, BMI, HDL, waist circumference, systolic and diastolic 
blood pressure, weekly energy expenditure in physical activity during leisure-time 
(tertiles), adherence to Mediterranean diet, plausibility of reported diet, medication 
treatment and percentage of people with low education at the census tract level, In 
models for traffic load outcomes were also adjusted for occupational status. 
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Figure 1. Directed Acyclic Graph (DAG) for the association of 
exposure to traffic-related pollutants with atherosclerosis.  
 

 
 
SES: Socioeconomic status surrogate used educational level.  
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Figure 2. Subgroup analysis: Effect estimates of percent change in intima media thickness (IMT) associated with an 
exposure contrast between the 5th and 95th percentiles by groups of sex, sex and age, education level, medical treatment 
and smoking status. 
Estimates adjusted by sex, age, sex-age interaction, smoking status, education and marital status plus BMI, HDL, waist circumference, systolic and 
diastolic blood pressure, weekly energy expenditure in physical activity during leisure-time (tertiles), adherence to Mediterranean diet, plausibility 
of reported diet, medication treatment and percentage of people with low education at the census tract level. In models for traffic load outcomes 
were also adjusted for occupational status.  Effect estimates for traffic load in 100m and for IMT6seg are shown in Supplement Figure S3.  
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Supplemental Material 
 
Table S1. Variables and performance of land use regression models 
for each group of towns. 
 



Paper IV 
 

 
 

200 

Table S2. Population characteristics, exposure assessment, main 
results and effect modifications of the published epidemiological 
studies on subclinical markers of CVD. Adapted with permission from 
Künzli et al. (2011). 

 
 
This table is the Table 2 of the thesis Introduction Section (page 34) 
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Table S3. Correlations between markers of exposure to traffic-related pollutants N=2780. All correlation coefficients are 
significant at the 0.001 p-value level.  

 
 

10yr averaged 

NO2 (ug/m3)

NO2 at address 

of longest 

residence (ug/m3)

NO2 at current 

address (µg/m3)*

NO2 at the closest 

monitor within 

200m (µg/m3)†

10yr. average 
traffic load 100m 
buffer (1000 veh 
m/day)

10yr. average 

traffic int. nearest 

st.(1000 veh/day)
10yr averaged NO2  (µg/m3)

1

NO2 at address of longest 

residence  (µg/m3)
0.990 1

NO2 at current address 

(µg/m3)*
0.986 0.979 1

NO2 at the closest monitor 

within 200m (µg/m3)†
0.770 0.780 0.761 1

10yr. average traffic load 

100m buffer (1000 veh m/day)
0.720 0.720 0.713 0.570 1

10yr. average traffic int. 

nearest st.(1000 veh/day)
0.520 0.520 0.514 0.360 0.580 1

* Sample size restricted to participants living in study area at moment of examination N=2723 
† Sample size restricted to participant living within 200m of monitoring site N=2265.  NO2 was monitored with passive samplers  
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Figure S1. Map of study region and locations of study participants. 
Points represent address of longest residence. 
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Figure S2. Scatter plot of concentrations derived with the models vs. 
concentrations at the measurement locations for participants living 
within 200m of a measurement location. 
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Figure S3. Subgroup analysis: Effect estimates of percent change in 
intima media thickness (IMTcca and IMT6seg) associated with an 
exposure contrast between the  5th and 95th percentiles by groups of 
sex, sex and age, education level, medical treatment and smoking 
status. 
Estimates adjusted by sex, age, sex-age interaction, smoking status, education and 
marital status plus BMI, HDL, waist circumference, systolic and diastolic blood 
pressure, weekly energy expenditure in physical activity during leisure-time 
(tertiles), adherence to Mediterranean diet, plausibility of reported diet, 
medication treatment and percentage of people with low education at the census 
tract level. In models for traffic load outcomes were also adjusted for 
occupational status. 
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Figure S4. Scatter plot of residential NO2 and deprivation index at 
the census tract level. Both measured at the address of longest 
residence  
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Figure 12. Traffic intensity road network database. Area shown: 
Girona city and Salt.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Palamós                  Photo: Talavan



Discussion 
 

 

209 

9 DISCUSSION  
 
This section is complementary to the discussion paragraphs included in 
each of the four papers. It aims to give a broader and more integrated 
interpretation of the entire thesis project.  
 

9.1 Choice of air pollution marker and monitoring 
technique 

 
The project used a range of markers and methods to characterize 
peoples’ long-term exposure to traffic-related air pollution, including 
the novel approach using mosses deployed for 2 months, 4-week 
NO2 monitoring with passive sampler, and short measurements of 
UFP and traffic intensity. Each method has inherent advantages and 
limitations to be discussed. 
 
Mosses are useful as passive samplers for long-term monitoring of 
heavy metals, particularly for residential monitoring. The moss 
samplers need neither maintenance nor electricity and do not emit 
noise, which is a challenge if monitors are run with pumps. Moreover, 
the moss samplers are small, thus can be employed almost 
everywhere, including places where conventional PM monitors are 
rather intrusive such as indoor sampling at homes of study 
participants. On the other hand, the resulting concentrations of 
elements deposited in mosses include all particle size ranges, thus it 
is not possible to distinguish if an element is enriched in e.g. the fine 
or coarse fraction. However, this might not be necessary for 
epidemiological studies given that all PM fractions –ultrafine, fine 
and coarse- have been associated to health effects (Hoek et al., 
2009) (Bell et al., 2009) (Perez et al., 2008).  
 
Passive monitoring of NO2 is a widely used method given its 
relatively low costs, ease to install and possibility to cover a wide 
range of location types (indoor and outdoor homes, traffic lights, 
street poles and personal monitoring).  As shown before and 
confirmed in our study, passive samplers can be used for periods of 
up to four weeks (Targa, 2008), being thus appropriate for long-
term measurements. Compared to the two-week average NO2 

measured in several studies (Beelen et al., 2011; Lewné et al., 
2004), four-week average might be less affected by short-term 
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peaks and, depending on the study area, might be sufficient to 
characterize the annual mean if deployed in the month with average 
concentration closer to the annual mean. The use of residential 
outdoor NO2 as an exposure indicator is discussed in the next 
sections. 
 
For the UFP, we tested a completely different and novel approach 
of fast mobile, monitoring of ultrafine particles for short-term 
periods to estimate long-term averages. The technique is very 
appealing considering its cost-effectiveness. The lack of studies on 
the long-term exposure to UFP was rated, in a recent expert panel 
elicitation study (Hoek et al., 2009), as the main factor of 
uncertainty to estimate effects of UFP on all-cause mortality. 
Implementing relatively inexpensive techniques, such as the one we 
used, would allow more studies on UFP as well in resource constraint 
settings. The mobile monitoring technique allows profiting from the 
trade-off between sampling period and number of monitoring 
locations: instead of using conventional equipment to conduct 
measurements during one or more weeks in one or a few locations, 
hand-held particle counters (such as p-Traks or condensation particle 
counters) can be used to do short-term measurements at several 
locations in one day. This is particularly relevant when considering 
the increase in model performance resulting from a higher number of 
monitoring sites (see Section 9.2 for discussion of this point). 
Nevertheless, the question of what is the shortest time period needed 
to adequately capture an UFP concentration that approximates the 
long-term mean remains unexplored.  
 
Annual averages of traffic intensity are surprisingly well 
characterized with one single 15-minute measurement taken during 
non-rush hour periods (Van Roosbroeck et al., 2007). With traffic 
being the main source of UFP in a city like Girona, we piggy-backed 
for the first time a 15-min UFP measurement protocol to the traffic 
count protocol to pilot its use to establish a long-term average of the 
UFP number concentration. The UFP variability, however, depends 
not only on the number of vehicles but on physicochemical processes 
determined by distance to the source, meteorological conditions, 
dispersion patterns, etc., thus being much more complex than the 
variability in traffic count. We have tempered this problem through 
adjustment of temporal variability and repeated measurements in a 
subset of locations. Temporal variability was adjusted based on 
measurements at a fixed monitoring station in Girona, city. However, 
this adjustment was not sufficient as shown by the improvement of 
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the models when including monitoring day and hour. To properly 
adjust for temporal variability, having at least one central 
monitoring site or, if possible, one per urban area is recommended. 
They should be located in an urban background location (i.e. >75 m 
away from road traffic or other local sources). Repeated 
measurements in a subset (N=25), showed that performance of 
models to estimate the long-term averages improved from a 
moderate 0.40 using one measurement to a rather high cross-
validation R2 of 0.69 when using the average of two measurements. 
While our pilot study was restricted to only one repeat, further 
improvements could be expect for protocols based on 2-3 repeated 
measurements to estimate long-term mean UFP. This would still be 
far less resource demanding than monitoring during some 2 week 
periods in each season as done in traditional study protocols.  
 
Based on these novel findings, I expect substantial benefits from 
collecting repeated measurements on randomly selected days and 
hours for every location and from having continuous measurement of 
UFP at multiple reference sites. Further studies may determine the 
optimal number of short-term repeats needed to efficiently estimate 
long-term exposures.  
 
Traffic-intensity measurements can be used directly or as predictor 
variables to model any pollutant component of the traffic-related 
mixture. This data is sometimes not available, not accessible or not 
precise. A common example of the latter is when the traffic in streets 
considered “low traffic” streets is not measured, but assigned using 
heuristics. Using such data to model pollution might result in error, 
particularly in situations when low traffic is associated to high 
pollution e.g. in street canyons; automotive park with poor 
quality/efficiency engines, etc. Collecting direct measures of traffic 
intensity is a simple and relatively inexpensive alternative; traffic 
counting can be easily integrated within mobile monitoring or any 
other field measurements; traffic measures are stable over years 
(Beelen et al., 2007a) provided the street's traffic-direction are not 
changed and traffic restrictions are not implemented;  using these 
measures to derive exposure is straightforward, particularly now 
with the development of recent GIS applications.   
 
Collecting traffic counts also have the advantage that the vehicle 
type (light or heavy duty, autobuses) can be distinguished. For 
example, using tally counters we counted heavy vehicles with the left 
hand, and light vehicles with the right hand whereas motorcycles 
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counts were just kept in memory. With two people doing the count, 
buses can be differentiated also, particularly in absence of bus 
routes and frequencies. For total traffic (sum of heavy, light, buses 
and motorcycles) 15-minute counting has been reported to properly 
capture the annual average traffic intensity and this was later 
confirmed with official data for our study area. Nevertheless the 
shortest sufficient counting time to reliably estimate annual average 
traffic intensity of the different types of vehicles (heavy, light, bus 
and motorcycles) need to be investigated. The different types of 
traffic might be independently associated to different components of 
pollution. Thus, differentiating them in the traffic count would allow 
investigating associations of specific vehicle-type traffic intensity with 
health outcomes. This could be of added value in policy making.  
 

9.1.1 Comparison between markers of long-term exposure 
to air pollution 

 
Another key issue is whether each of these markers, independently, is 
a reasonable proxy for different aspects of the complex mixture of 
local traffic-related pollution. The validity of using individual 
components as indicators of the mixture remains unexplored. 
However, from the exposure assessment perspective, the suitability 
of the markers we used can be evaluated.  The following evaluation 
is based on the specific monitoring protocol that we used for each 
marker and, thus can not be extrapolated to all monitoring 
methodologies. 
 
Heavy metals showed a higher spatial variability than NO2. This 
indicates that metals capture spatial components of local pollution 
that an NO2 surface may not fully characterize. Metals also showed 
a stronger association with traffic intensity in the nearest street than 
NO2. Compared to NO2 and other markers of combustion processes, 
some metals such as antimony and molybdenum are markers almost 
exclusive of road traffic, reflecting though not tail pipe emissions–
such as in case of NO2–but emissions from break pads and 
resuspensions.  Finally, the use of heavy metals is appealing given its 
established toxicity. Thus, monitoring heavy metals as markers of 
traffic-related local pollution should be considered complementary 
to the monitoring/modeling of markers of local tail-pipe primary 
and secondary pollutants such as NO2 and of markers of urban 
background and secondary pollutants such as PM10 or PM2.5 mass, 
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which do not capture local contrasts but combine the impact of a 
broad range of sources.  
 
In our case, traffic was the main determinant of all studied markers 
of pollution: for UFP and NO2 it was the total traffic (sum of heavy 
and light traffic) and for heavy metals it was the buses circulating in 
the nearest street. The correlations between two-month averages of 
NO2 and metals simultaneously measured were low to moderate 
(Spearman rank coefficient between NO2 and cadmium was 0.15 
and between NO2 and antimony was 0.61). The correlations 
between annual average NO2 and short-term UFP measurements 
were higher (Pearson correlation coefficient by town ranged 
between 0.66 and 0.87). Nevertheless, in other studies, only 
moderate spatial correlation of long-term mean  UFP with NO2 have 
been observed, with Pearson correlations of 0.34 in Raleigh, North 
Carolina (Hagler et al., 2009); 0.62 in Vancouver Canada 
(Abernethy et al., 2011); 0.42 to 0.48 in Basel, Switzerland 
(Phuleria et al., 2011). This raises the question to what extent spatial 
models of NO2 -available since many years in many cities- may be 
considered markers of UFP exposure. Developing spatial models of 
UFP for the assessment of long-term exposure should thus be 
considered an alternative.  
 
Direct measures of traffic, in spite of some limitations, are appealing 
markers of local exposure to traffic-related pollution, particularly 
for communities where information in GIS format such as maps of 
urban structure, population density by given area, etc. may not be 
available. Although there are many towns that lack such data, the 
road networks are more easily available. Thus, if traffic counts are 
conducted, they can be integrated to the roadnetwork and exposure 
measures can be estimated. The limitations of using traffic intensity 
as a measure of exposure include: “they are error prone because 
ignore dispersion parameters and physicochemical activity of the 
pollutants”; “estimates based on proximity can be confounded by 
factors such as socioeconomic status and noise” (HEI Panel on the 
Health Effects of Traffic-Related Air Pollution, 2010). Nevertheless, it 
is recognized that these limitations especially apply to simple 
measures of proximity to roads or road length and of pollutant 
surrogates without specific traffic data; while more elaborated 
measures, such as traffic intensity in a 100m buffer, might be more 
valid. Although the traffic intensity is stable over years, the emissions 
from traffic would be changed if the traffic fleet (trucks, diesel and 
gasoline powered vehicles) changes or if the maximum allowed 
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speed changes. On the other hand, the use of direct traffic measures 
have some advantages: since they measure the source of pollution, 
results of epidemiology or risk assessment studies may be more 
directly applicable to policy related questions and interventions; 
besides, intermediate evaluations of such policies are easily 
measurable (traffic counts); health effects associated to measures of 
traffic intensity, as well as, prevention or abatement policies based 
on them should be easier to communicate to the public, compared to 
results associated to pollution levels.  
 
Our direct-traffic measurements showed higher spatial variability 
than NO2 (IQR/p50 was 2.51 for 10-yr traffic in the nearest street 
and 0.73 for 10-yr NO2). The traffic measurements were input as 
potential predictors to the NO2 LUR model selection process. They 
were selected in all the town-specific LUR models along with other 
measures of traffic such as length of roads within buffers; therefore, 
some of the spatial variability of traffic intensity is included in the 
modeled NO2. Thus, the main differences between what these two 
traffic markers capture are that annual average NO2 outdoor 
homes includes NO2 emitted by other sources different than traffic 
such as residential heating, gas cooking, cigarette smoking, etc; while 
traffic measurements do not take into account dispersion patterns 
except for distance (as for traffic load in a 100m buffer). 
 
In our study, the traffic intensity might have captured the variability 
of personal exposure to traffic-related pollution (adjusted for indoor 
sources) better than the outdoor NO2. The correlation between 
outdoor and personal NO2 varies from as low as 0.06 for children 
living near busy roads in urban areas of Dusseldorf (Krämer et al., 
2000), to correlations as high as 0.72 for elderly population in 
Hamilton, Canada (Sahsuvaroglu et al., 2009). Validation studies 
between direct measures of traffic and personal exposure are 
scarce, particularly for long-term exposure measurements. The 
existent studies use measurements of traffic intensity on the nearest 
street or proximity to high versus low traffic, however, traffic 
intensity within buffers has not been validated. Differences in the 
validation of these measurements are expected given the moderate 
correlation between them, e.g. in our study the correlation between 
traffic intensity in the nearest street and traffic intensity in a 100m 
buffer was 0.58. In three studies in The Netherlands, traffic intensity 
in the nearest street and proximity to high versus low traffic were 
consistently associated with children’s personal exposure to soot (also 
called elemental carbon and measured as PM2.5 absorbance). 
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However, outdoor NO2 was not associated with personal exposure 
to NO2 (Van Roosbroeck et al., 2008; Van Roosbroeck et al., 2006; 
Van Roosbroeck et al., 2007). 
 
In summary, there is large variability in the percentage of personal 
exposure explained by both traffic measurements and residential 
NO2. In some instances, traffic has been a better indicator of 
personal exposure to traffic related pollution. Nevertheless, it is very 
difficult to generalize results from other studies given that the 
association between personal exposure and outdoor pollution or 
traffic is modified by the segment of the population under study 
(children, adults, elderly; men, women, etc.), indoor sources, time-
activity patterns, life-style, weather, ventilation, housing stock, traffic 
composition, etc., most of them specific to the study area. Thus, 
ideally, measurements of these factors should be included in the 
exposure assessment. Or as an alternative, the exposure 
measurements used should be validated by personal exposure 
measurements for a subset of participants to adjust for measurement 
error (Baxter et al., 2009).  
 
Another factor that may explain the stronger associations found 
between IMT and traffic intensity than between IMT and NO2 is that 
traffic is directly used in the health model, while NO2 was modeled 
in terms of several additional covariates, in order to extrapolate the 
measurements to all participants. Modeling exposure can also 
introduce measurement error. This is further discussed in the next 
section.  
 

9.2 Modeling of air pollution markers by land use 
regression  

 
The measurements of the different markers of exposure to traffic-
related pollution were used to build (LUR) models so that predictions 
could be drawn for places where measurements were not taken. 
NO2 measurements were collected in a highly dense monitoring 
network and annual averages were successfully derived, thus we 
used these measurements to test the effect of the sample size in the 
LUR models. Our study was one of the first to formally address and 
quantify the impact of having large number of sites to model the 
local distribution of pollution. 
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Performance of land use regression models is usually measured by 
the adjusted R2 and leave-one-out cross-validation R2, nevertheless, 
these measurements largely overestimate the true R2 (held-out 
validation R2) when using small sample sizes and the overestimation 
is less pronounced when n increases. This this is true especially when 
the final variables included in the model are selected from a large 
set of potential predictors. To correct for this overestimation and 
have models with better performance, a larger number of 
monitoring sites is required. This is reflected in the increase in the 
attenuation coefficient (decrease in exposure measurement error) 
with increasing sample size. For sample sizes above 80 measurement 
sites the attenuation coefficient is higher than 0.85 (on average). This 
means that the estimates of the health model would be biased to the 
null by 15% as compared to the association estimated from a model 
with direct measurements. For most of our town-specific LUR models 
we had more than 80 monitoring sites, however, for two of the towns 
the sample size was smaller (N=43 for Llagostera, Sta. Cristina and 
N=56 for Banyoles, Porqueres). In those cases there could be an 
attenuation of the effects of NO2 on IMT of approximately 0.65 to 
0.7. To formally test the influence of modelled versus measured NO2 
values, I compared the estimates effects yield by both measurements 
for the subset of participants living within 100m and within 200m of 
a monitoring location.  Interestingly, there was no difference in the 
estimates, which indicates that the measurement error introduced by 
the variable selection in the LUR modeling did not lead to 
attenuation of the effects. This might be due to few participants 
living in the towns with fewer monitoring sites and to random 
variation. 
 
If regression based modeling (LUR) is intended it is advised to use 
dense monitoring networks and consider doing the monitoring in 
batches to use the information collected on the first batch to inform 
the site selection process for the second, using methods as the one 
proposed by Kanaroglou et al. (2005). 
 
There are 2 main types of measurement error, “classical” and 
“Berkson”. Classical error is introduced because the measured 
exposure is likely to vary around the true exposure. Thus, the 
measurements are expected to have more variation than the true 
levels (e.g. blood pressure). As a result of Berkson type error, the 
measurements are expected to have less variation than the true 
levels (e.g. assigning the value of a central monitor to all inhabitants 
of a town). Both types of measurement error increase the standard 
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errors in the health model, but only classical measurement error 
biases the coefficients in the health model (towards the null). It is 
usually reported that exposure estimates derived through regression 
models introduce Berkson-like measurement error, being this the 
largest component of the error (Suglia et al., 2008) (Alexeeff et al.). 
Nevertheless, such exposure estimates might introduce classical error 
as well. We showed that in the presence of variable selection, there 
is bias (attenuation) in the exposure-effect relationship, and this bias 
depends on the number of monitoring sites (and variables) used to 
build the exposure model. Thus considering the error introduced by 
LUR models to be Berkson type only, with the subsequent assumption 
that the coefficients of the health model will not be biased, is 
erroneous. Classical measurement error resulting from predictors’ 
selection in regression modeling (of exposure) should be taken into 
account when quantifying the effects of measurement error. Also, a 
correction or evaluation of the impact on the associations between 
exposure and health should be performed. 
 
Because of measurement error, model assumptions and low 
quality/precision of the data input to the model, the measurement 
error introduced with the model might offset the advantages of using 
modeled estimates of exposure over using direct measures of traffic 
intensity (HEI Panel on the Health Effects of Traffic-Related Air 
Pollution, 2010). Thus, the marker of pollution used to build the 
model should be a better marker of personal exposure to the 
hypothesized causal agents than traffic intensity itself.  
 
A limitation of assessing exposures based on measurements or 
models of residential pollution/traffic is that exposures at places 
other than the residence are assumed negligible. In our case, time 
activity and mobility patterns are not taken into account as only 
residential location was used in the LUR models. This could have 
introduced bias towards the null hypothesis (Setton et al., 2011). It is 
difficult to have an approximated estimate of this bias given that it 
depends on time spent away from home and the levels of pollution 
at the alternative locations.    
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9.3 Effects of long-term exposure to air-pollution on 
atherosclerosis 

 
We have found significant associations between residential outdoor 
traffic intensity and subclinical atherosclerosis in healthy population 
of the Spanish Mediterranean region; instead modeled NO2 
concentrations were associated with these outcomes only in the 
subgroups of high education levels and men above 60 years. In 
general, results using direct traffic measurements as a surrogate 
seem to be more consistent across studies (see Table 2). 
 
This is the first study on the association of long-term exposure to air 
pollution and atherosclerosis in the Mediterranean region. This 
region is particular because it has one of the lowest cardiovascular 
mortalities in Europe, while the conventional cardiovascular risks 
factors are among the highest (Masiá et al., 1998). In this region, 
vehicle densities within cities are among the highest in Europe. For 
example, the number of vehicles per total surface in Barcelona and 
Milan were 6100 and 4100 veh/km2 respectively (in 2007). Our 
study was conducted in small- to medium size- towns, where vehicle 
density is moderate compared to large Mediterranean cities–1500 
veh/km2 in Girona city- but still high compared to northern European 
cities–e.g. 1600 veh/km2 in London. In our study, a contrast between 
the fifth and ninety-fifth percentiles of 10-yr exposure to residential 
traffic (load and intensity) was associated with approximately 2% 
thicker IMT.  
 
Reasons that might have led to find an association of IMT with traffic 
intensity but not with NO2 include the lower spatial variability of 
NO2 compared to traffic intensity. Other hypothetical reasons (not 
addressed in our study) include, lower spatial correlation (and 
agreement) between outdoor NO2 and personal exposure to traffic-
related pollution than between traffic intensity and personal 
exposure; low spatial correlations between NO2 and other 
components of the traffic-related air pollution mixture that are 
responsible for inducing atherosclerosis, e.g. heavy metals, PM, UFP, 
volatile compounds, resuspended dust and noise; and traffic markers 
not taking into account dispersion patterns of pollution, except 
proximity in the case of traffic intensity within buffers (discussed 
above).  
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Regarding ABI, we found that higher exposures to traffic-related 
pollution were associated with increased risk of high ABI. Also that 
high ABI was not associated to thicker IMT while low ABI was. The 
segment of ABI that is more clearly associated to higher 
cardiovascular risks is ABI<0.9, it has thus received more interest in 
the literature. We have very few participants with ABI<0.9, which 
might explain not finding an association between air pollution and 
low ABI. The segment of ABI>1.3 have been also associated to 
higher cardiovascular risk. This u-shape of the association between 
ABI and cardiovascular risk makes ABI a complex marker and makes 
comparison between studies difficult. The more common approach in 
studies on the association of ABI with air pollution is to categorize 
ABI in lower or higher than 0.9. However, some have opted for 
excluding the ABI higher than 1.3 (Hoffmann et al., 2009b) while 
others include them (Diez Roux et al., 2008). Dichotomizing the ABI 
using the 0.90 cut point may lead to underestimation of effects 
(Allison et al., 2008). And excluding the segment of high ABI would 
not allow a better understanding of the risks and possibly the 
mechanisms of peripheral atherosclerosis. We opted thus for a 
multinomial analysis including low, normal and high ABI levels. Our 
results suggest that higher air pollution is associated to high ABI and 
thicker IMT. While further confirmation from other studies is needed, 
our results lead to speculate that the atherosclerotic response to 
varying levels of air pollution in the carotid arteries is different to 
that in the peripheral arteries. 
 
Long-term exposure to NO2 and traffic intensity was associated to 
many of the established risk factors of atherosclerosis even after 
adjusting for age and sex.  Very strong confounding, particularly by 
age, was observed in the associations of traffic-related pollution 
and subclinical atherosclerosis. This was not due to interaction by 
age. Atherosclerosis is a cumulative process that starts in childhood 
and age is its principal determinant. On the other hand, age was 
strongly correlated with 10-year NO2, current NO2 and obviously 
with the cumulated life-time exposure to air pollution. Adjustment 
covariates were selected based on the directed acyclic graph DAG, 
which is defined based on prior knowledge and associations 
observed in our data. A DAG is not a conceptual model of the 
mechanisms or pathways of the disease; it is a tool to infer on biases 
and facilitate the decision of which variables need to be adjusted 
for.  
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In a DAG only the common causes of any pair of variables in the 
diagram need to be drawn. The chosen DAG is a simplification of 
the temporal variability of exposure. In addition, we implicitly 
assumed that there were no feedback loops in the association. A 
feedback loop could occur if, for example, exposure to air pollution 
induced atherosclerosis and once ahterosclerosis progressed, people 
tried to avoid future exposure to air pollution. We further adjusted 
by variables that might be in the pathway of the association, 
nevertheless residual confounding might still remain.  
 
Statistical adjustment might not be enough to control for established 
cardiovascular risk factors that were associated to NO2. For 
example, NO2 was inversely associated to several factors that 
increase the risk of atherosclerosis e.g. BMI, blood pressure and 
percentage of low education in the census tract. It is also directly 
associated to factors that decrease the risk of atherosclerosis such as 
education level as a proxy of socioeconomic status (SES). In case that 
education level was not a good enough indicator of SES, it would not 
capture all the variability of SES and adjustment would not be 
sufficient to control for such confounding.     
 
As mentioned before (section 9.1.1) adjusting for noise and SES is 
recommended when using direct traffic measurements (HEI Panel on 
the Health Effects of Traffic-Related Air Pollution, 2010). Adjusting 
for noise is recommended because the effects of traffic are not only 
caused by the chemical pollutants but also by the noise they emit. In 
our case, this adjustment was done in a sensitivity analysis for a 
subset with available modeled noise from traffic and results did not 
change. Adjusting for socioeconomic characteristics is recommended 
particularly when using distance-only metrics as exposure markers; 
this recommendation was driven by the evidence from US studies 
where the social deprived are more likely to live close to traffic. As 
shown in paper IV (page 189) and Supplemental Figure S4 of the 
same paper), the opposite is true in Girona. Adjustment by SES was 
done in all our analyses and it was confirmed a strong confounder 
and effect modifier of the association of air pollution and 
atherosclerosis. Given the different confounding patterns of 
socioeconomic status (SES) observed in the US and northern Europe 
compared to southern Europe, analyses of the association of air 
pollution and atherosclerosis should be presented stratifying by SES. 
 
The exposure associated to the address of longest residence resulted 
as precise as the exposure associated to the last 10-year period 
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(derived as the time-weighted average of residential NO2 
extrapolated back in time). For study areas with similar mobility 
patterns and pollution ranges as the Mediterranean Spanish region, 
collecting the address of longest residence instead of the residence 
history might be sufficient.  
 
As in most population-based studies, the possibility of a selection 
bias resulting in the observed associations as well as the lack of 
associations cannot be ruled out. If air pollution promotes 
atherosclerosis and if the consequences of atherosclerosis, e.g. a 
stroke or infarction, reduce the likelihood to participate in the study, 
one would expect an underestimation of the true – unknown- 
associations. 
 
Reverse causation cannot be ruled out either as a possible 
explanation for our results. This could be given if people at 
increased risk of atherosclerosis move to live in polluted areas, 
because of age, SES (not necessarily low), accessibility (e.g. in 
downtown areas the stores, clinics, parks are at a walking distance), 
etc. One would need longitudinal studies taking into account IMT 
progression and changes in addresses. Only one longitudinal study 
of IMT progression has been published so far, confirming a faster 
progression of IMT in people with higher exposures to traffic 
proximity and PM2.5 (Künzli et al., 2010), which makes reverse 
causation a less likely explanation. Last but not least it has to be re-
emphasized that several animal studies have consistently shown that 
ambient PM and particularly UFP accelerates the development of 
atherosclerosis (Araujo et al., 2008; Sun et al., 2005). 
 

9.4 Implications 

9.4.1 For public health 
 
The whole population is exposed to traffic-related air pollution, to a 
higher or lower extent. Our findings in a healthy population support 
that people living closer to streets with high traffic intensity are at 
increased risk of atherosclerosis due to traffic-related pollution. In 
the Mediterranean population, this risk is particularly higher for 
people with high education level and men older than 60. Thus, effect 
modification factors play an important role in the association 
between traffic related air pollution and atherosclerosis, but are not 
yet fully elucidated and might differ across populations.  
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Increased traffic intensity in the nearest street and in a 100m around 
the residence were associated to a higher degree of subclinical 
atherosclerosis. Reducing traffic levels particularly in areas of high 
population density are thus expected to have substantial health 
benefits. An alternative policy would be to replace the current 
vehicle fleet with “zero-emissions” vehicles to reduce pollution in such 
areas. To estimate the impact of such policies, a better 
understanding of the independent health effects of emissions from 
tail-pipe pollutants, resuspended dust and brake and tire wearing is 
needed.  
 
Bus lines in the nearest street were the main predictors of residential 
outdoor heavy metals in Girona city.  While public transportation is 
an alternative to reduce traffic intensity and related air pollution, 
the type of fuel used and composition and quantity of emissions 
generated by public transportation vehicles should be carefully 
evaluated and translated into policies.  
 
Our results should be confirmed with other studies, and particularly 
including several markers of air pollution (traffic intensity, elemental 
carbon, UFP, heavy metals). If these results reflect a true effect it is 
important to translate those into measurements that are relevant for 
a person (e.g. risk of developing a CVD event); to quantify the risks 
at the population level that are attributable to the long-term 
exposure to air pollution, i.e. how prevalent is living near traffic and 
what would be the reduction in risk if those people were not 
exposed to high levels of traffic-related pollution; and to quantify 
the reduction in risk resulting from the shift of the population 
distribution of IMT or ABI by a given percent. 
 
The preventive measures to reduce the exposure to air pollution that 
could be achieved at the individual level are rather limited. Thus 
there is need for public health measures addressed to the general 
population, and in particular to people living in urban areas with 
high traffic intensity. 
 

9.4.2 For the scientific community: open research questions 
 

Several gaps in the current knowledge on long-term exposure to 
traffic-related air pollution call for further research in the following 
areas:  
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• Validation studies of long-term traffic indicators -particularly 

traffic intensity within buffers- against personal exposure to 
pollutants derived from traffic are needed. 

• Identification of the shortest monitoring time period needed 
to adequately capture the long-term distribution of the UFP 
remains unexplored. 

• Verifying the association of other traffic markers with 
subclinical atherosclerosis and further investigation of the 
susceptibility factors that may modify those associations. The 
REGICOR-Air will continue to address this question for the 
Mediterranean population. It is planned to investigate the 
association between exposure to UFP based on short-term 
monitoring and subclinical atherosclerosis; as well as conduct 
statistical analyses of indoor heavy metals and indoor and 
outdoor PAH, also measured with the moss monitors and 
benzene, toluene, ethylbenzene and xylenes (BTEX) 
measured in parallel. With a similar methodology to the one 
used in this thesis the association of this markers of exposure 
to traffic-related pollution with subclinical atherosclerosis will 
be investigated.  

• Other health effects of long-term exposure to traffic related 
pollution need to be investigated jointly, such as the effect of 
noise on hypertension and atherosclerosis. REGICOR-Air will 
investigate the prevalence and incidence of hypertension 
associated with traffic-related noise, independently of the 
effects of air pollution. 

Results from these studies will shed more light on to health effects of 
traffic-related pollution as well as disentangle potential confounding 
between traffic-related pollutants and noise.  

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Banyoles Lake, Banyoles.        
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10 CONCLUSIONS  
 

1. Mosses can be used to measure the distribution of metals at 
home outdoors within cities.  In Girona city, heavy metals 
showed higher spatial variability than NO2 and a significant 
percentage of its distribution was explained by the number 
of bus lines passing in the nearest street. For long-term 
exposure studies, heavy metals measured by mosses should 
be considered an alternative to PM and complementary to 
NO2 monitoring. 

 
2. The use of direct measures of traffic intensity is a very 

valuable approach to derive crucial information on traffic-
related pollution.  Those measures may serve as direct 
markers of exposure as well as key co-variates in models of 
traffic related pollutants.  Traffic intensity road network 
databases can be derived based on short-term traffic count 
protocols.    

 
3. Distribution of UFP can be modeled with fair performance 

based on short-term mobile monitoring. Complementing the 
approach with further strategies to address sources of 
temporal variation of UFP is likely to result in improved 
models as indicated by the good performance of the model 
for the subset of sites with one repeated measurement. Far 
shorter monitoring protocols than currently assumed to be 
needed provide very promising models at lower costs. 

 
4. Models based on a small number of sampling sites result in 

artificially high adjusted R2 and leave-one-out cross-
validation R2 compared to the “true” prediction ability 
(validation in an independent set). The selection of predictor 
variables for the LUR model might result in biased health 
effect estimates. LUR models for complex urban settings 
should be based on a large number of measurement sites 
(>80) and the number of potential predictors variables 
should be restricted. 

  
5. Long-term exposure to traffic-related air pollution is 

associated with carotid subclinical atherosclerosis with 
stronger associations in people with high education level and 
men above 60 years. 
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Appendix 1. Air quality standards of the European 
Union.  
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Appendix 2. KLZ file of Study Area 
 
The file Girona.KLZ is located in the website: 
 
http://www.mediafire.com/?yt1b6t3h3lpdsdr 
 
This file can be viewed in Google Earth.  
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