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RESUMEN (ABSTRACT IN SPANISH)

Las ecuaciones de Jacobi constituyen un conjunto de ecuaciones diferenciales parciales no

lineales que surgen al implementar, en un sistema de coordenadas arbitrario, una estructura

de Poisson definida en una variedad finito-dimensional suave. En esta disertación se investigan

ciertas soluciones antisimétricas de estas ecuaciones. Esto se hace desde una doble perspectiva

que incluye tanto la determinación de nuevas familias de soluciones, como la construcción de

nuevos análisis globales de Darboux para estructuras de Poisson. Los resultados más gene-

rales investigados se refieren al caso de soluciones de dimensión arbitraria. Esta perspectiva

tiene interés en vista del número, relativamente modesto, de familias de soluciones de este

tipo tratadas en la literatura. Adicionalmente, el análisis global de Darboux de matrices de

estructura conlleva, en primera instancia, la determinación global de conjuntos completos de

invariantes distinguidos funcionalmente independientes, la cual proporciona una descripción

global de la estructura simpléctica del espacio de fases de cualquier sistema de Poisson aso-

ciado; y en segundo término, requiere la determinación global y constructiva de la forma

canónica de Darboux. Este tipo de análisis es de interés ya que la construcción de las coorde-

nadas de Darboux es conocida sólamente para una muestra limitada de estructuras de Poisson

y, además, el hecho de llevar a cabo globalmente dicha reducción mejora el alcance del teorema

de Darboux, que sólo garantiza en principio la existencia local de las coordenadas de Darboux.

En este trabajo, tales reducciones hacen uso en ocasiones de reparametrizaciones temporales,

por tanto en consonancia con las definiciones usuales de equivalencia entre sistemas. De hecho,

las reparametrizaciones temporales desempeñan un papel destacado en la comprensión de las

condiciones bajo las cuales la forma canónica de Darboux se puede construir globalmente,

cuestión esta que también se investiga en detalle en esta disertación. Las implicaciones de

tales resultados en relación a propiedades de integrabilidad se consideran asimismo en este

contexto.

La disertación se estructura como sigue. El Caṕıtulo 1 se dedica a la revisión de diversos

resultados clásicos que describen el marco básico de la investigación. Las contribuciones

originales de la tesis se incluyen en los Caṕıtulos 2 a 4. Finalmente, el trabajo concluye en el

Caṕıtulo 5 con la presentación de conclusiones.
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RESUM (ABSTRACT IN CATALAN)

Les equacions de Jacobi constitueixen un conjunt d’equacions diferencials parcials no lineals

que sorgeix de l’aplicació en un sistema arbitrari de coordenades d’una estructura de Poisson

definida en una varietat llisa de dimensió finita. Certes solucions antisimètriques d’aquestes

equacions s’investiguen en aquesta dissertació. Això es fa des d’una perspectiva doble incloent-

hi tant la determinació de famı́lies de solucions noves com la construcció global d’anàlisis de

Darboux de les estructures de Poisson. La majoria dels resultats generals investigats es refe-

reixen al cas de solucions de dimensió arbitraria. La perspectiva aix́ı obtinguda és d’interès en

vista del relativament modest nombre de famı́lies de solucións d’aquesta classe comunicades

en la literatura. Aix́ı mateix, l’anàlisi global de Darboux de les matrius d’estructura dona, en

primer lloc, la determinació global de conjunts complets d’invariants distingits funcionalment

independents, proporcionant aix́ı una descripció global de l’estructura simplèctica de l’espai

de fases de qualsevol sistema de Poisson associat; i en segon lloc, la determinació construc-

tiva i global de la forma canònica de Darboux. Aquest tipus d’anàlisi és d’interès perquè

la construcció de les coordenades de Darboux és només coneguda per una mostra limitada

d’estructures de Poisson i, a més a més, el fet de globalment realitzar tal reducció millora

l’abast del teorema de Darboux, les úniques garanties del qual en principi son l’existència lo-

cal de les coordenades de Darboux. En aquest treball, aquestes reduccions a vegades fan ús de

reparametritzacions del temps, aix́ı en acord amb les definicions usuals d’equivalència de sis-

temes. De fet, les reparametritzacions del temps juguen un paper significatiu en la comprensió

de les condicions sota les quals la forma canònica de Darboux es pot implementar globalment,

una qüestió també investigada en detall en aquesta tesi. Les implicacions d’aquests resultats

dins la connexió amb la integrabilitat són també considerades en aquest context.

La tesi s’estructura de la manera següent. El Caṕıtol 1 és una revisió de diversos resultats

clàssics i coneguts que descriuen el marc bàsic de la investigació. Les contribucions originals

de la tesi s’inclouen en els Caṕıtols 2, 3 i 4. Finalment, el treball acaba en el Caṕıtol 5 amb

la presentació d’algunes conclusions.
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ABSTRACT

Jacobi equations constitute a set of nonlinear partial differential equations which arise

from the implementation in an arbitrary system of coordinates of a Poisson structure defined

on a finite-dimensional smooth manifold. Certain skew-symmetric solutions of such equations

are investigated in this dissertation. This is done from a twofold perspective including both

the determination of new solution families as well as the construction of new global Darboux

analyses of Poisson structures. The most general results investigated refer to the case of

solutions of arbitrary dimension. The perspective thus obtained is of interest in view of

the relatively modest number of solution families of this kind reported in the literature. In

addition, the global Darboux analysis of structure matrices deals, in first place, with the

global determination of complete sets of functionally independent distinguished invariants,

thus providing a global description of the symplectic structure of phase space of any associated

Poisson system; and secondly, with the constructive and global determination of the Darboux

canonical form. Such kind of analysis is of interest because the construction of the Darboux

coordinates is a task only known for a limited sample of Poisson structures and, in addition,

the fact of globally performing such reduction improves the scope of Darboux’ theorem, which

only guarantees in principle the local existence of the Darboux coordinates. In this work, such

reductions sometimes make use of time reparametrizations, thus in agreement with the usual

definitions of system equivalence. In fact, time reparametrizations play a significant role in

the understanding of the conditions under which the Darboux canonical form can be globally

implemented, a question also investigated in detail in this dissertation. The implications of

such results in connection with integrability issues are also considered in this context.

The dissertation is structured as follows. Chapter 1 is devoted to the revision of diverse

classical and well-known results that describe the basic framework of the investigation. The

original contributions of the thesis are included in Chapters 2 to 4. Finally, the work ends in

Chapter 5 with the presentation of some conclusions.
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ESTRUCTURA Y RESULTADOS DE LA TESIS

Esta disertación compendia una investigación sobre ciertas soluciones antisimétricas de las

ecuaciones en derivadas parciales de Jacobi para estructuras de Poisson finito-dimensionales.

Tales ecuaciones diferenciales parciales, junto a las condiciones de antisimetŕıa que las acom-

pañan, surgen de la implementación de una estructura de Poisson definida en una variedad

finito-dimensional suave, en un sistema de coordenadas arbitrario. Por tanto, en esta tesis

se asume la formulación del problema en términos de ecuaciones en derivadas parciales,

definiéndose aśı como una investigación de las propiedades de las soluciones escritas en forma

de matrices de estructura.

La caracterización y el análisis de nuevas familias de soluciones de estructuras de Poisson

están bien justificados desde varios puntos de vista. Desde una visión puramente matemática,

este es un ejemplo no trivial de sistema de ecuaciones diferenciales parciales no lineales

y acopladas, por lo cual tiene un interés intŕınseco (que incluye tanto aspectos anaĺıticos

como de clasificación de soluciones) que ha merecido atención en la literatura durante varias

décadas. Adicionalmente, la determinación de una matriz de estructura adecuada es un paso

insoslayable en el problema de reexpresar (si ello es posible) un sistema dinámico dado (más

exactamente, un sistema de ecuaciones diferenciales ordinarias de primer orden descrito en

términos de un campo vectorial) como un sistema de Poisson finito-dimensional. En tal sen-

tido, llevar a cabo dicha reescritura abre la posibilidad de emplear gran variedad de métodos

anaĺıticos y numéricos espećıficamente desarrollados para sistemas de Poisson. Más aun, el

teorema de Darboux asegura la equivalencia dinámica (al menos local) entre los sistemas de

Poisson y los sistemas Hamiltonianos clásicos. En consecuencia, si la transformación de Dar-

boux existe y puede construirse (y especialmente si esto puede hacerse globalmente) es también

posible la transferencia de información entre las ecuaciones de movimiento de Poisson y de

Hamilton, en la cual todas las herramientas y resultados bien conocidos existentes en la teoŕıa

Hamiltoniana pueden aplicarse al análisis del sistema de Poisson en consideración. Por último,

el interés de las estructuras y sistemas de Poisson es comprensible en vista de su frecuente

presencia en multitud de dominios de la matemática aplicada, la f́ısica y la ingenieŕıa.

Los resultados desarrollados en esta tesis consideran tanto la determinación de nuevas
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familias de soluciones antisimétricas de las ecuaciones de Jacobi, como la construcción de

nuevos análisis globales de estructuras de Poisson. Los resultados más generales investigados

se refieren al caso de soluciones de dimensión arbitraria. Esta perspectiva tiene interés en

vista del número, relativamente modesto, de familias de soluciones de dimensión arbitraria

tratadas en la literatura. Adicionalmente, el análisis global de matrices de estructura con-

lleva, en primera instancia, la determinación global de conjuntos completos de invariantes

distinguidos funcionalmente independientes, la cual proporciona una descripción global (que

además es independiente del Hamiltoniano) de la estructura simpléctica del espacio de fases de

cualquier sistema de Poisson asociado; y en segundo término, requiere la determinación global

y constructiva de la forma canónica de Darboux. Este tipo de análisis es de interés ya que la

construcción de las coordenadas de Darboux es conocida sólamente para una muestra limitada

de estructuras de Poisson y, además, el hecho de llevar a cabo globalmente dicha reducción

mejora el alcance del teorema de Darboux, que sólo garantiza en principio la existencia local

de las coordenadas de Darboux. En este trabajo, tales reducciones hacen uso en ocasiones

de reparametrizaciones temporales, por tanto en consonancia con las definiciones usuales de

equivalencia entre sistemas. De hecho, las reparametrizaciones temporales desempeñan un

papel destacado en la comprensión de las condiciones bajo las cuales la forma canónica de

Darboux se puede construir globalmente, cuestión esta que también se investiga en detalle en

esta disertación. Las implicaciones de tales resultados en relación a propiedades de integrabi-

lidad se consideran asimismo en este contexto. Para concluir, merece la pena indicar que a lo

largo del trabajo se plantea y analiza un número significativo de ejemplos de interés aplicado.

Tras esta visión de conjunto, en lo que sigue vamos a desarrollar el resumen de los resultados

que se exponen a lo largo de esta disertación. Dicho resumen va a seguir el mismo esquema

organizativo que la tesis en su conjunto, en cuanto a la ordenación por caṕıtulos y secciones.

Asimismo conviene señalar que la exposición que sigue va a ser fundamentalmente de tipo

descriptivo, es decir se van a obviar buena parte de los aspectos y condiciones más técnicos

para centrarse en una presentación en la que primen la visión conceptual y la exposición

concisa y generalista de las aportaciones incluidas en este trabajo. Como es lógico, para

un tratamiento formal con la totalidad de los detalles (tales como hipótesis, suposiciones y

requisitos técnicos para la validez de un resultado, etc.) se dirige al lector a la presentación

completa tal y como se desarrolla en los caṕıtulos posteriores. En lo que sigue tampoco se hará

referencia a los numerosos ejemplos aplicados que se detallan a lo largo del trabajo, remitiendo
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al lector a los mismos a fin de complementar en tal sentido la sinopsis que aqúı se expone.

En el Caṕıtulo 1 se presenta una introducción cuya finalidad es hacer que la obra sea,

en la medida de lo posible, autocontenida. Para ello se exponen los prerrequisitos necesarios

junto con algunos resultados clásicos que serán de utilidad posteriormente.

Aśı, en la Sección 1.1 se hace una revisión somera de los aspectos más básicos relativos

a los sistemas Hamiltonianos, con especial énfasis en el corchete canónico de Poisson, en

las transformaciones canónicas y en el teorema de Liouville. Estos tres son los aspectos de

mayor importancia para lo que ha de venir más tarde: en el caso del corchete canónico de

Poisson, porque el concepto más amplio de estructura de Poisson se basa en la generalización

del corchete canónico; en cuanto a las transformaciones canónicas, conviene notar que las

limitaciones asociadas a las mismas se van a superar en buena medida en el contexto más

amplio de los sistemas de Poisson, lo cual se verá en el marco del formalismo simpléctico o

matricial para dichas transformaciones; por último, el teorema de Liouville es la base para una

generalización posterior importante como es la idea de sistema conservativo, que es una de las

motivaciones conceptuales más importantes para la introducción de los sistemas de Poisson.

La Sección 1.2 se ocupa de hacer una presentación autocontenida de los sistemas y

estructuras de Poisson, incluyendo todos los elementos necesarios para el tratamiento posterior.

Se comienza motivando la necesidad de generalizar los sistemas Hamiltonianos clásicos a la

luz del teorema generalizado de Liouville y la idea de sistema conservativo. Seguidamente

se introducen los conceptos más importantes de la teoŕıa Poissoniana, comenzando con las

definiciones básicas de corchete de Poisson general y sus propiedades, aśı como las de estructura

y sistema de Poisson finito-dimensionales, junto con otras definiciones y resultados asociados

como los de la matriz de estructura, las identidades (ecuaciones en derivadas parciales) de

Jacobi, y los invariantes distinguidos (o de Casimir) y las relaciones (ecuaciones diferenciales

parciales) que los caracterizan. En todo lo anterior, el concepto de sistema de Poisson ocupa

una posición central. Dichos sistemas tienen la forma

ẋ = J (x) · ∇H(x)

o equivalentemente, por componentes

dxi
dt

=
n∑
j=1

Jij(x)∂jH(x) = {xi,H} , i = 1, . . . , n

donde J = (Jij) constituye la matriz de estructura, y H es el Hamiltoniano (que es por

construcción una integral primera). Con posterioridad se analiza la estructura del espacio
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de fases (la foliación simpléctica) para los sistemas de Poisson, descripción esta que culmina

con la exposición del teorema de Darboux, verdadera base de la equivalencia dinámica en-

tre los sistemas de Poisson y los sistemas Hamiltonianos. Por la utilidad y ubicuidad de las

transformaciones en este trabajo, se presentan también los resultados prácticos fundamentales

relativos a cómo afectan las transformaciones de coordenadas y las reparametrizaciones tem-

porales (o NTTs, por “new-time transformations”) a los sistemas de Poisson. Esta es una

vertiente en la que los sistemas de Poisson muestran su amplitud como generalización, ya

que en un sentido muy literal, en la dinámica de Poisson todas las transformaciones pueden

considerarse canónicas (preservan el formato) lo cual supone un gran avance operativo con

respecto al caso Hamiltoniano. La sección concluye con la presentación de algunos ejemplos

clásicos de sistemas de Poisson, que permiten ilustrar las definiciones y conceptos anteriores,

junto con algunas consideraciones en torno al interés fundamental y aplicado de los sistemas

de Poisson.

En la Sección 1.3 se presenta un enfoque espećıfico sobre las ecuaciones diferenciales

parciales de Jacobi para las matrices de estructura, que constituyen el núcleo conceptual y

operacional del estudio desarrollado en esta disertación,
n∑
l=1

(Jil∂lJjk + Jjl∂lJki + Jkl∂lJij) = 0 , i, j, k = 1, . . . , n

junto a las condiciones de antisimetŕıa que las acompañan:

Jij = −Jji , i, j = 1, . . . , n

Como es sabido, estos dos conjuntos de ecuaciones constituyen las condiciones necesarias y

suficientes para que una matriz sea matriz de estructura. En esta sección se consideran en

primer lugar las propiedades más básicas de estas ecuaciones, como cuestiones de notación

y terminoloǵıa, un análisis del número de ecuaciones e incógnitas independientes, y el falso

problema de la sobredeterminación. Seguidamente se desarrolla una perspectiva en torno al

estado de la cuestión relativo a algunas de las principales soluciones ya conocidas, además de

la evolución histórica del problema. Todo esto proporciona la base para delimitar con mayor

claridad el propósito de este trabajo, que de forma breve puede resumirse como la búsqueda y

el análisis global de soluciones antisimétricas de las ecuaciones de Jacobi, entendiendo análisis

global en el doble sentido de (a) la determinación global de los invariantes de Casimir; y (b) la

construcción, también global, de la forma canónica de Darboux. Las motivaciones para ello son

claras: el interés intŕınseco de las ecuaciones de Jacobi como ejemplo de sistema de ecuaciones

diferenciales parciales no lineales acopladas; con propósitos de clasificación de soluciones y
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de identificación de nuevas estructuras de Poisson; la unificación conceptual y operativa de

distintos sistemas de Poisson que pueden verse desde una perspectiva común al encontrar una

nueva familia de matrices de estructura que abarque a las anteriores; la utilidad aplicada para

el problema de reescribir un campo vectorial dado como sistema de Poisson (si es posible)

con el número de herramientas de análisis que ello aporta; la transferencia de información y

técnicas de análisis que se pueden emplear si se sabe construir globalmente la forma canónica

de Darboux, y por tanto la formulación Hamiltoniana clásica a la que se reduce el sistema de

Poisson inicial. Esta sección se concluye con algunas consideraciones metodológicas.

La Sección 1.4 se dedica a una revisión de resultados matemáticos misceláneos que son de

uso frecuente a lo largo de la disertación. En primer lugar, y dada la importancia de las ma-

trices de estructura y sus propiedades algebraicas, se revisan algunas propiedades del álgebra

matricial, con especial énfasis en congruencia de matrices antisimétricas. Seguidamente se

pasa a propiedades funcionales, entre las que destacan resultados clásicos sobre dependencia e

independencia funcionales, aśı como el teorema de la función inversa para funciones de varias

variables. Seguidamente se presentan algunas consideraciones sobre un concepto de interés

como es la equivalencia entre sistemas dinámicos dados por ecuaciones diferenciales ordina-

rias (esto es campos vectoriales). En este contexto se presentan las nociones de equivalencia

orbital topológica (TOE) y equivalencia orbital suave (SOE), haciéndose un hincapié especial

en el papel del tiempo y sus reparametrizaciones (NTTs) en estas definiciones. La presente

sección finaliza con un apartado dedicado a algunas definiciones básicas sobre integrabilidad,

principalmente los conceptos de constante del movimiento, aśı como de integrabilidad en los

sentidos algebraico y de Liouville, todos los cuales también serán de aplicación posterior.

Una vez presentados en el Caṕıtulo 1 diversos resultados clásicos bien conocidos, en los

Caṕıtulos 2 a 4 se exponen los resultados originales de la tesis. Estos siguen un orden de

complejidad creciente, de forma que en los Caṕıtulos 2, 3 y 4 se describen los resultados para

dimensiones 3, 4 y arbitraria n, respectivamente.

En el Caṕıtulo 2 se consideran distintas contribuciones que tienen como denominador

común el trabajo sobre estructuras de Poisson tridimensionales. En este contexto, los diversos

análisis globales que se van a llevar a cabo, junto a la investigación de cómo el uso de un

determinado ansatz puede simplificar notablemente las ecuaciones de Jacobi, comenzarán a

sentar las bases para los desarrollos de caṕıtulos posteriores.
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En la Sección 2.1 se hace una breve introducción al caṕıtulo y se describe la estructura

general del mismo.

Las primeras contribuciones del caṕıtulo se presentan en la Sección 2.2. En la misma se

hace una investigación sistemática de ciertas soluciones tridimensionales globalmente anali-

zables. El resultado es una familia que se divide en tres subfamilias, de ah́ı el nombre de triple

familia (“threefold family”) dado a la misma.

La primera subfamilia de la Sección 2.2 viene dada por las expresiones:
u(x) = η(x)ψ1(x1)ψ2(x2)φ3(x3)

v(x) = η(x)ψ1(x1)φ2(x2)ψ3(x3)

w(x) = η(x)φ1(x1)ψ2(x2)ψ3(x3)

O bien, de forma más breve:

Jij(x) = η(x)ψi(xi)ψj(xj)
3∑

k=1

εijkφk(xk) , i, j = 1, 2, 3

Para este tipo de soluciones que, bajo las hipótesis establecidas, tienen rango 2 en todo el

dominio, se puede construir de manera global el único invariante de Casimir independiente,

que puede expresarse de la forma siguiente:

D(x) =
3∑
i=1

∫
φi(xi)
ψi(xi)

dxi

Esto permite la reducción global a la forma canónica de Darboux por medio de un algoritmo

en dos etapas sucesivas, la primera de las cuales es un cambio de coordenadas y la segunda una

reparametrización temporal. Todo lo anterior permite demostrar la integrablidad algebraica y

de Liouville (esta última para el sistema Hamiltoniano resultante tras la reducción) para esta

primera subfamilia.

La segunda subfamilia de la Sección 2.2 aparece a su vez estructurada en tres subcasos

diferentes, que brevemente pueden expresarse como sigue:

Subcaso 1 ⇒ (u = 0, v = η(x), w = η(x)ξ(x1, x2))

Subcaso 2 ⇒ (v = 0, w = η(x), u = η(x)ζ(x1, x3))

Subcaso 3 ⇒ (w = 0, u = η(x), v = η(x)χ(x2, x3))

Estos tres subcasos de la segunda subfamilia se pueden analizar globalmente en la situación

denominada separable, que por ejemplo en el Subcaso 1 anterior consiste en que la función

ξ(x1, x2) tenga la forma ξ(x1, x2) = ξ1(x1)/ξ2(x2), y análogamente en los Subcasos 2 y 3,
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mutatis mutandis. Estando satisfecha la hipótesis de separabilidad, y siguiendo con el ejemplo

del Subcaso 1, un invariante de Casimir global vendŕıa dado por:

D(x1, x2) =
∫
ξ1(x1)dx1 +

∫
ξ2(x2)dx2

La determinación de este invariante permite nuevamente la reducción global y constructiva

del sistema a la forma canónica de Darboux por medio de un cambio de coordenadas seguido

de una reparametrización temporal. Lo anterior conduce también a establecer la doble inte-

grabilidad (algebraica, y de Liouville para el campo vectorial Hamiltoniano resultante) para

tales sistemas de Poisson.

La tercera subfamilia de la Sección 2.2 es comparativamente simple, siendo idénticamente

nulas dos de sus tres componentes independientes, lo cual hace que la determinación global del

invariante distinguido, la reducción global a la forma canónica de Darboux y el establecimiento

de la integrabilidad, sean todos ellos muy sencillos de llevar a cabo.

En la Sección 2.3 se estudia una familia tridimensional diferente, denominada ćıclica de

tipo I. Esta familia tiene una propiedad de interés, a saber que su análisis global requiere de

una clasificación de casos, empleándose en cada uno de tales casos un invariante de Casimir

diferente. Esto es indicativo de que la mera caracterización de un conjunto completo de

invariantes de Casimir puede no ser suficiente para construir la forma canónica de Darboux

con toda generalidad para una familia dada. Las soluciones ćıclicas de tipo I tienen la forma

siguiente

Jij(x) = η(x) (ψi(xi)− ψj(xj) + κij)
3∑

k=1

(εijk)2φk(xk) , i, j = 1, 2, 3

donde para cada i = 1, 2, 3, la función ψi(xi) denota una de las primitivas de φi(xi), y las

constantes κij verifican las propiedades

κij + κji = 0 , para todo i, j

κ12 + κ23 + κ31 = 0

Equivalentemente podemos escribir:
J12(x) = η(x) (ψ1(x1)− ψ2(x2) + κ12)φ3(x3)

J23(x) = η(x) (ψ2(x2)− ψ3(x3) + κ23)φ1(x1)

J31(x) = η(x) (ψ3(x3)− ψ1(x1) + κ31)φ2(x2)

Los tres invariantes de Casimir complementarios que se necesitan para estudiar la reducción

a la forma canónica de Darboux son:

D1(x) =
ψ3(x3)− ψ1(x1) + κ31

ψ2(x2)− ψ3(x3) + κ23
=
χ31(x3, x1)
χ23(x2, x3)

si χ23(x2, x3) 6= 0
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D2(x) =
ψ1(x1)− ψ2(x2) + κ12

ψ3(x3)− ψ1(x1) + κ31
=
χ12(x1, x2)
χ31(x3, x1)

si χ31(x3, x1) 6= 0

D3(x) =
ψ2(x2)− ψ3(x3) + κ23

ψ1(x1)− ψ2(x2) + κ12
=
χ23(x2, x3)
χ12(x1, x2)

si χ12(x1, x2) 6= 0

Gracias a los mismos, es posible hacer una clasificación de reducciones globales a la forma

canónica de Darboux, todas las cuales hacen uso sucesivo de una transformación de coorde-

nadas y de una reparametrización temporal. Con ello se demuestra también la integrabilidad,

tanto algebraica como en el sentido de Liouville (esta para el sistema Hamiltoniano obtenido

tras efectuar la reducción) de los sistemas de Poisson basados en este tipo de matrices de

estructura.

Lo sucedido con las familias ćıclicas de tipo I no es excepcional. Ello se demuestra en

la Sección 2.4 en la que se estudian las familias ćıclicas tipo II. Estas son en gran medida

análogas (pero diferentes como soluciones) a las de tipo I. Por ello, las observaciones hechas

para estas en párrafos anteriores van a permanecer válidas ahora. Las matrices de estructura

ćıclicas de tipo II tienen la forma siguiente

Jij(x) = η(x)ψi(xi)ψj(xj) (ψi(xi)− ψj(xj))
3∑

k=1

(εijk)2φk(xk) , i, j = 1, 2, 3

donde para cada i = 1, 2, 3, la función ψi(xi) denota una de las primitivas de φi(xi). O, de

manera equivalente,
J12(x) = η(x)ψ1(x1)ψ2(x2) (ψ1(x1)− ψ2(x2))φ3(x3)

J23(x) = η(x)ψ2(x2)ψ3(x3) (ψ2(x2)− ψ3(x3))φ1(x1)

J31(x) = η(x)ψ3(x3)ψ1(x1) (ψ3(x3)− ψ1(x1))φ2(x2)

En este caso, nuevamente aparecen tres invariantes distinguidos complementarios que debemos

tener en cuenta, y que vienen dados por las expresiones siguientes:

D1(x) =
ψ2(x2)(ψ3(x3)− ψ1(x1))
ψ1(x1)(ψ2(x2)− ψ3(x3))

=
ψ2(x2)ω31(x3, x1)
ψ1(x1)ω23(x2, x3)

si ω23(x2, x3) 6= 0

D2(x) =
ψ3(x3)(ψ1(x1)− ψ2(x2))
ψ2(x2)(ψ3(x3)− ψ1(x1))

=
ψ3(x3)ω12(x1, x2)
ψ2(x2)ω31(x3, x1)

si ω31(x3, x1) 6= 0

D3(x) =
ψ1(x1)(ψ2(x2)− ψ3(x3))
ψ3(x3)(ψ1(x1)− ψ2(x2))

=
ψ1(x1)ω23(x2, x3)
ψ3(x3)ω12(x1, x2)

si ω12(x1, x2) 6= 0

Estos tres invariantes permiten construir sendas reducciones globales a la forma canónica de

Darboux para cada caso, todas ellas establecidas a partir de un cambio de coordenadas seguido

de una reparametrización temporal. A su vez, esta reducción global a la forma Hamiltoniana

clásica implica la demostración de la doble integrabilidad, de manera análoga a la ya vista

en otras familias de soluciones, de los sistemas de Poisson establecidos sobre la base de estas

14



matrices de estructura. Estamos por tanto ante una familia paralela a la ćıclica de tipo I, que

lleva a conclusiones similares, lo cual permite completar una perspectiva de los condicionantes,

aun en dimensión 3, que se dan a la hora de plantear el análisis global de una familia de

estructuras de Poisson.

Para concluir el caṕıtulo, en la Sección 2.5 se plantea una idea que muestra cómo mediante

un enfoque relativamente directo es posible simplificar notablemente la complejidad del pro-

blema consistente en construir soluciones antisimétricas de las ecuaciones de Jacobi. El mayor

interés del enfoque desarrollado en esta sección es de tipo conceptual, ya que el plantear esta

clase de procedimiento sienta las bases para una de las secciones de mayor importancia de esta

disertación, como es la que aparece en el Caṕıtulo 4 dedicada a las reparametrizaciones tem-

porales, las cuales tienen en el plano formal una gran relación con el planteamiento objeto de

la Sección 2.5. Por tanto esta sección sirve para establecer e ilustrar de forma sencilla las bases

de una filosof́ıa de trabajo cuya adaptación posterior bajo la forma de reparametrizaciones

temporales será en gran medida la culminación de buena parte de los resultados desarrollados

a lo largo de la presente disertación. La idea básica de la Sección 2.5 es, por consiguiente, sim-

plificar el problema de la determinación de matrices de estructura por medio de un ansatz de

tipo aditivo. Es decir, partiendo de una solución ya conocida (u0(x), v0(x), w0(x)), se plantea

una generalización de la forma

(u0(x), v0(x), w0(x)) −→ (u0(x) + ξ(x), v0(x) + ξ(x), w0(x) + ξ(x))

donde ξ(x) es una función arbitraria. Este planteamiento lleva inmediatamente a que la (única)

ecuación de Jacobi independiente para el caso tridimensional

u∂1v − v∂1u+ w∂2u− u∂2w + v∂3w − w∂3v = 0

se simplifica notablemente, quedando reducida a

(u0 − v0)∂1ξ + (w0 − u0)∂2ξ + (v0 − w0)∂3ξ = λ(x)ξ

donde

λ(x) = ∂1(u0 − v0) + ∂2(w0 − u0) + ∂3(v0 − w0)

Vemos aśı que se obtiene una triple simplificación del problema, a saber:

(a) Se transforma un problema no lineal en un problema lineal.

(b) La ecuación en derivadas parciales de Jacobi se reduce a un problema en ecuaciones

diferenciales ordinarias, esto es el definido por las ecuaciones caracteŕısticas para la

ecuación lineal que debe satisfacer ξ(x).

15



(c) Reducimos el número de incógnitas de tres a una.

El problema de determinar ξ(x) se puede resolver en general para todos los casos posibles, que

resultan ser tres. La resolución detallada de cada uno de ellos se presenta en la Sección 2.5, y

dado que su descripción es relativamente técnica se omite aqúı por brevedad. En este punto

queda completada la presentación de resultados del Caṕıtulo 2 que, como ya se ha venido

viendo, tiene por objeto el caso de dimensión n = 3.

Por último, el caṕıtulo se cierra con la Sección 2.6 que recapitula brevemente los resul-

tados obtenidos y enumera algunas de las cuestiones que quedan planteadas para su examen

en etapas posteriores del trabajo.

En el Caṕıtulo 3 se pasa a considerar el caso inmediatamente superior desde el punto

de vista dimensional, esto es n = 4. Si bien las estructuras de Poisson han sido estudiadas y

desarrolladas en la literatura con una preferencia especial por el escenario tridimensional (el

más sencillo que no es trivial) también es cierto que los casos de dimensiones más altas como

n = 4 y n = 5 son bastante frecuentes (aunque menos) en muy diversas aplicaciones. Además,

en dimensión cuatro hay una mayor riqueza dinámica y de posibles valores no triviales del

rango de la matriz de estructura, todo lo cual parece indicar que detenerse en un problema

de dimensión cuatro no sólo está justificado, sino que puede proporcionarnos algunas claves

de interés en la transición entre la situación n = 3, más sencilla, y el caso en que n es

completamente arbitraria, en que la complejidad y generalidad del problema son las mayores

posibles.

Sobre esta base, la Sección 3.1 presenta una breve introducción al caṕıtulo, planteando

algunas de las ideas anteriormente expuestas que justifican la necesidad de una etapa de

transición entre la situación tridimensional y la puramente n-dimensional. Como se verá a

la luz de los resultados obtenidos, esta estrategia estará bien justificada. Según se indica en

la Sección 3.1, todo el Caṕıtulo 3 está dedicado a la caracterización y análisis de una familia

concreta de soluciones antisimétricas de las ecuaciones de Jacobi.

El grueso de las contribuciones del Caṕıtulo 3 se desarrolla en la Sección 3.2. La familia

de matrices de estructura considerada tiene la forma

Jij(x) = σijη(x)ψi(xi)ψj(xj)
4∑

k,l=1

εijklφl(xl) , i, j = 1, . . . , 4

donde, entre otras propiedades, cabe destacar que las constantes σij son simétricas

σij = σji para cada par (i, j) , i 6= j
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y cumplen la relación

σ12σ34 = σ13σ24 = σ14σ23

Por tanto, se trata de analizar las matrices de estructura de la forma:

J = η


0 σ12ψ1ψ2(φ4 − φ3) σ13ψ1ψ3(φ2 − φ4) σ14ψ1ψ4(φ3 − φ2)

σ12ψ1ψ2(φ3 − φ4) 0 σ23ψ2ψ3(φ4 − φ1) σ24ψ2ψ4(φ1 − φ3)

σ13ψ1ψ3(φ4 − φ2) σ23ψ2ψ3(φ1 − φ4) 0 σ34ψ3ψ4(φ2 − φ1)

σ14ψ1ψ4(φ2 − φ3) σ24ψ2ψ4(φ3 − φ1) σ34ψ3ψ4(φ1 − φ2) 0


Bajo las condiciones que se asumen para estas matrices de estructura, puede demostrarse que

las mismas tienen rango 2 globalmente en el dominio de definición. Esta constancia del rango

proporciona la base para considerar la caracterización global de los invariantes distinguidos

(de los que evidentemente habrá dos, funcionalmente independientes) aśı como la reducción

global y constructiva a la forma canónica de Darboux. Todo ello se considera en detalle en la

Sección 3.2 cuya descripción ahora nos ocupa. Sucede que resolver este problema en toda su

extensión lleva a un análisis bastante prolijo en casos y subcasos, tanto para los invariantes

distinguidos a emplear como para las posteriores reducciones, por lo cual no parece oportuna la

reproducción de todo ello en esta sinopsis. Baste decir a este respecto, que nuevamente ocurre

en todos los casos que la reducción a la forma canónica de Darboux se produce siempre en las

dos etapas ya citadas, siendo la primera un cambio de coordenadas, en tanto que la segunda

es una reparametrización temporal. Conceptualmente, y expresado en términos muy simples,

la situación que encontramos en este contexto es similar a la que se daba con las familias

ćıclicas (de ambos tipos, I y II). Esto es: el mero conocimiento de un conjunto completo de

invariantes de Casimir independientes no garantiza la construcción de una vez por todas de la

forma canónica de Darboux, aun en el caso de rango constante, debido a que la complejidad

de la familia de soluciones puede hacer que sean necesarias distintas descomposiciones en

las que se empleen diversos invariantes, requiriéndose aśı un análisis sistemático y por casos

en orden a demostrar que la familia realmente puede reducirse de manera global a la forma

canónica de Darboux. Como resultado de esta clasificación, se demuestra también en todos

los casos que los sistemas de Poisson construidos sobre la base de estas matrices de estructura

son integrables algebraicamente y en el sentido de Liouville, en este último caso referido al

sistema Hamiltoniano resultante tras la reducción, como es lógico.

El Caṕıtulo 3 termina en la Sección 3.3, en la cual se recapitula acerca de las distintas

reducciones construidas hasta ese punto de la disertación, destacando la pauta común que

puede apreciarse, según la cual es la combinación de una transformación de coordenadas y
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una reparametrización temporal la que permite la construcción global de la forma canónica de

Darboux. Esto tiene relación con el hecho de que las reparametrizaciones temporales preservan

la estructura de Poisson en todos los casos considerados. Es conocida la propiedad de que

para n ≤ 3 las NTTs preservan la estructura de Poisson, lo cual no sucede necesariamente

para n ≥ 4, pese a que śı sea el caso en la familia 4-d considerada en este caṕıtulo. El hecho

de que las reparametrizaciones temporales no preserven siempre la estructura de Poisson en

dimensión arbitraria (n ≥ 4) suscita asimismo el interrogante acerca de la posible construcción

global de la forma canónica de Darboux para familias de dimensión n general con la ayuda

de este tipo de transformaciones. Queda aśı planteado este estado de cosas, que se clarificará

en gran medida en el caṕıtulo siguiente. Se intuye, ya en este estadio, que el papel de las

reparametrizaciones temporales será destacado en el contexto de la construcción global de

la forma canónica de Darboux, al menos en ciertos casos, intuición esta que se confirmará

posteriormente.

En el Caṕıtulo 4 se pasa ya al problema de investigar las soluciones antisimétricas de las

ecuaciones de Jacobi en su forma más general correspondiente a dimensión arbitraria n. Es,

por tanto, el caṕıtulo más largo de la disertación, y sus resultados son también los de mayor

amplitud e interés, por varias razones, entre las que cabe citar que es en este caso en el que las

soluciones de las ecuaciones de Jacobi son peor conocidas y menos tratadas en la literatura,

además de que la situación de dimensión arbitraria incluye como casos particulares a los

considerados en los Caṕıtulos 2 y 3. De hecho, se verá que bastantes resultados considerados

en los caṕıtulos anteriores se van a ver generalizados en el actual, que ahora se inicia.

La exposición comienza en la Sección 4.1, en la cual se presenta una introducción al

caṕıtulo. En la misma se enfatiza el interés del caso de dimensión arbitraria, al que ya nos

hemos referido en el párrafo anterior, además de anticipar en ĺıneas generales los contenidos

por venir, que fundamentalmente consisten: (a) en la caracterización de nuevas soluciones

antisimétricas de las ecuaciones de Jacobi, que serán de un interés especial si, además de tener

dimensión arbitraria, permiten también valores cualesquiera del rango y están definidas en

términos de funciones de no linealidad arbitraria; (b) en el análisis global y constructivo de

las correspondientes familias de soluciones, esto es familias de matrices de estructura; y (c) en

un estudio espećıfico de las reparametrizaciones temporales, orientado a su empleo para los

problemas (a) y (b) recién enumerados. En relación a todo lo anterior cabe mencionar que

en los resultados expuestos en el Caṕıtulo 4 los ı́tems (a) y (b) no van necesariamente juntos,
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dándose casos en que esto es aśı, pero también reportándose resultados en los que (a) no va

acompañado de (b), y viceversa, según se irá viendo.

La Sección 4.2 se dedica a la caracterización y análisis global de una nueva familia de

estructuras de Poisson denominadas separables. Las mismas tienen matrices de estructura de

la forma siguiente

Jij(x) = sijψi(xi)ψj(xj) , i, j = 1, . . . , n

siendo S ≡ (sij) una matriz real, antisimétrica y constante. A pesar de su simplicidad formal,

las matrices de estructura separables son muy generales, en el sentido de aparecer con gran

frecuencia en aplicaciones de muy diversos campos, como se constata por medio de ejemplos.

Además, cumplen los requisitos anteriormente expuestos de tener dimensión arbitraria, admi-

tir valores cualesquiera del rango, y estar definidas en términos de funciones de no linealidad

arbitraria. Bajo las hipótesis consideradas para esta familia, puede verse que el rango de estas

matrices es igual al rango de S. Esto tiene la consecuencia de asociar de manera natural el

problema de determinar un conjunto completo de invariantes de Casimir globales e indepen-

dientes con la caracterización de una base del núcleo de la matriz constante S, obteniéndose

aśı que dicho conjunto completo puede expresarse en la forma

Di(x) =
n∑
j=1

k
[i]
j

∫
dxj
ψj(xj)

, i = r + 1, . . . , n

siendo r el rango de S, y (k[r+1], . . . , k[n]) una base de Ker(S), donde k[i] = (k[i]
1 , . . . , k

[i]
n )T para

i = r + 1, . . . , n. Es interesante comprobar que estos resultados permiten la determinación

global y constructiva de la forma canónica de Darboux para la familia separable, y además esto

es aśı exclusivamente mediante transformaciones de coordenadas, es decir sin recurrir al uso de

reparametrizaciones temporales. En el caso de rango 2, lo anterior permite asimismo demostrar

la doble integrabilidad, algebraica y de Liouville (esta última en el sentido ya habitual para

el sistema Hamiltoniano relacionado) asociada naturalmente a este tipo de estructuras de

Poisson.

Otro nuevo tipo de matrices de estructura con propiedades cualitativamente bastante si-

milares es el considerado en la Sección 4.3. Dichas soluciones se han denominado multise-

parables. Su definición es, sin embargo, algo más elaborada. Para la misma se introducen dos

matrices n × n reales y regulares (n ≥ 2) A = (aij) y B = (bij), con A = B−1. Llamaremos

además Bi ≡ (bi1, . . . , bin) a la i-ésima fila de B, para i = 1, . . . , n. Adicionalmente, si

2 ≤ r ≤ n es un entero par, y si denotamos por ψi(x), con i = 1, . . . , r, a r funciones de

la forma ψi(x) = ϕi(Bi · x), entonces las matrices de estructura multiseparables van a estar
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definidas según la expresión

Jij(x) =
r/2∑
k=1

Λ2k−1,2k
ij ψ2k−1(x)ψ2k(x) , i, j = 1, . . . , n

donde por definición

Λklij ≡

∣∣∣∣∣∣ aik ail

ajk ajl

∣∣∣∣∣∣ = aikajl − ailajk , i, j, k, l = 1, . . . , n

Para las matrices de estructura multiseparables puede demostrarse que su rango es igual al

número r globalmente en todo el dominio, y además un conjunto completo de invariantes

distinguidos funcionalmente independientes viene dado por:

Di(x) =
n∑
j=1

bijxj , i = r + 1, . . . , n

Por tanto estamos de nuevo ante matrices de estructura de dimensión y rango arbitrarios,

definidas en términos de funciones no lineales generales. Una propiedad interesante en este

sentido es que toda matriz de estructura multiseparable tiene un conjunto completo de inva-

riantes de Casimir lineales, según se ve, pero el rećıproco no es cierto. Además, gracias a estos

invariantes es ahora posible construir globalmente en todo el dominio la reducción a la forma

canónica de Darboux, lo cual se lleva a cabo nuevamente sólo por medio de transformaciones

de coordenadas, por tanto sin recurrir a reparametrizaciones temporales. Al igual que para

las matrices separables, la doble integrabilidad (en el sentido ya habitual del término) se

demuestra para el caso r = 2. En esta sección se incluye también una comparativa entre

las familias separable y multiseparable, a fin de clarificar su relación mutua, llegándose a la

conclusión de que ambas familias son diferentes, es decir ninguna está contenida en la otra, si

bien tienen intersección no nula.

La Sección 4.4 se ocupa de una nueva familia de soluciones antisimétricas de las ecuaciones

de Jacobi, adicional a las anteriores, y que se ha denominado familia de matrices de estructura

distinguidas, o bien D-soluciones. Estas vienen dadas como las soluciones de las ecuaciones

de Jacobi distinguidas, que son las siguientes: J T = −J

J · ∇Jij = 0 para todo i, j = 1, . . . , n

O equivalentemente:
Jij = −Jji
n∑
l=1

Jkl∂lJij = 0
, para todo i, j, k = 1, . . . , n
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No es complicado demostrar que toda solución de las ecuaciones de Jacobi distinguidas es

solución también de las ecuaciones de Jacobi, y por tanto matriz de estructura. Más aun, dada

una solución distinguida J (x), todas sus componentes Jij(x) son invariantes distinguidos de

J (x), de ah́ı el nombre que recibe esta familia. En otras palabras, y expresándolo de forma

muy sucinta, una matriz de estructura distinguida es la que está formada en su totalidad por

funciones de estructura que, al mismo tiempo, son invariantes de Casimir de la propia matriz.

Debido a este carácter especial, es posible demostrar que las D-soluciones tienen una serie

de propiedades que permiten con gran facilidad obtener una infinidad de nuevas soluciones

distinguidas a partir de una dada.

El carácter tan peculiar de las D-soluciones plantea la cuestión de su misma existencia. Esta

se responde afirmativamente dentro de la propia Sección 4.4 mediante la construcción expĺıcita

de las denominadas Dψ-soluciones. Dados dos enteros positivos n y ρ ≤ n, se consideran las

(n− ρ) funciones

Dl(x) = xl −
ρ∑

k=1

alkxk , l = ρ+ 1, . . . , n

donde alk son constantes reales para todo l, k. Adicionalmente, para i, j = 1, . . . , ρ, sean

ψij(y1, . . . , yn−ρ) funciones antisimétricas en sus sub́ındices, esto es

ψij(y1, . . . , yn−ρ) = −ψji(y1, . . . , yn−ρ)

para todo i, j. Finalmente, sea J ≡ (Jij) la matriz n× n definida como:

Jij(x) =



ψij(Dρ+1(x), . . . , Dn(x)) , i, j = 1, . . . , ρ

ρ∑
k=1

ajkψik(Dρ+1(x), . . . , Dn(x)) , i = 1, . . . , ρ ; j = ρ+ 1, . . . , n

ρ∑
k=1

aikψkj(Dρ+1(x), . . . , Dn(x)) , i = ρ+ 1, . . . , n ; j = 1, . . . , ρ

ρ∑
k,l=1

aikajlψkl(Dρ+1(x), . . . , Dn(x)) , i, j = ρ+ 1, . . . , n

Entonces, J es una D-solución globalmente definida en Rn y cuyo rango es menor o igual que

ρ − ρ mod 2 para todo x ∈ Rn. Además, las (n − ρ) funciones Dl(x) constituyen en todo Rn

un conjunto de invariantes de Casimir de J funcionalmente independientes.

En la sección se demuestran también otras propiedades, por ejemplo que toda matriz

antisimétrica constante es una D-solución (y una Dψ-solución también). La peculiaridad

de las D-soluciones, tanto por su forma funcional como por el hecho de no garantizarse la
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constancia del rango, hace que en esta familia no resulte clara la posibilidad de construir

globalmente la forma canónica de Darboux. Asimismo, en la Sección 4.4 se compara la familia

distinguida con las familias separable y multiseparable. En ambos casos se demuestra que la

familia distinguida es diferente a las otras dos (no está contenida en ninguna de ellas, ni las

contiene) pero, también en ambos casos, las D-soluciones tienen una intersección no nula con

ambas familias.

La disertación prosigue en la Sección 4.5 con el tratamiento de una familia adicional,

denominada hemiseparable de tipo I. Como sucedió en el caso de dimensión tres con las

familias ćıclicas, en este contexto vamos a tener que recurrir a una clasificación de invariantes

de Casimir para poder resolver en todos los casos posibles el análisis global de estas estructuras

de Poisson. La familia hemiseparable de tipo I viene dada por:

Jij(x) = η(x)ϕi(xi)ϕj(xj)χij(xi, xj) , i, j = 1, . . . , n

Adicionalmente, la caracterización de la familia hemiseparable de tipo I se basa en la definición

de las funciones

ψi(xi) =
∫

dxi
ϕi(xi)

, i = 1, . . . , n

cada una de las cuales denota una primitiva de 1/ϕi(xi), aśı como en la definición de las

funciones χij(xi, xj) conforme a

χij(xi, xj) = ψi(xi)− ψj(xj) + κij , i, j = 1, . . . , n

siendo κij , i, j = 1, . . . , n, constantes reales arbitrarias que son antisimétricas

κij + κji = 0 , i, j = 1, . . . , n

y satisfacen las condiciones de suma cero siguientes:

κij + κjk + κki = 0 , i, j, k = 1, . . . , n

En función de las demás propiedades con las cuales se definen estas matrices de estructura,

se puede probar que las mismas tienen rango 2 globalmente. Esto permite identificar por

casos un conjunto completo de invariantes distinguidos globalmente definidos, como sigue: sea

χij(xi, xj) 6= 0 para el par (i, j) en el dominio de interés, entonces dicho conjunto completo

viene dado por:

Dk(x) =
ψj(xj)− ψk(xk) + κjk
ψi(xi)− ψj(xj) + κij

=
χjk(xj , xk)
χij(xi, xj)

, k = 1, . . . , n ; k 6= i, j
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La existencia de estos invariantes demuestra al mismo tiempo la integrabilidad algebraica

para sistemas de Poisson con matrices de estructura de este tipo. Por tanto, en función de

qué conjunto de invariantes sea el que se utiliza, puede demostrarse la posibilidad de construir

globalmente la forma canónica de Darboux, esta vez por medio de la combinación de un

cambio de coordenadas y una reparametrización temporal. A su vez, este resultado implica

la integrabilidad en el sentido de Liouville (para el sistema Hamiltoniano que se obtiene tras

llevar a cabo la reducción) asociada a este tipo de estructuras de Poisson. Un resultado

adicional de interés que se demuestra en la Sección 4.5, en forma de ejemplo, es que la familia

hemiseparable de tipo I contiene como caso especial a la familia ćıclica de tipo I ya tratada

en el caṕıtulo sobre resultados en dimensión tres.

Con una estructura muy similar a la recién vista, en la Sección 4.6 se estudia una familia

de soluciones que es formalmente paralela a la anterior, razón por la cual se la denominará

familia de matrices de estructura hemiseparables de tipo II. Nuevamente, va a suceder que

la construcción de la forma canónica de Darboux requiere un tratamiento por casos, con lo

que se muestra que este comportamiento no debe considerarse como algo excepcional. Por

supuesto, a pesar de las similitudes aludidas entre ambas clases, las matrices de estructura

hemiseparables de los tipos I y II constituyen familias diferentes. Las matrices de estructura

hemiseparables de tipo II tienen la forma

Jij(x) = η(x)ϕi(xi)ϕj(xj)ωij(xi, xj) , i, j = 1, . . . , n

donde se define que

ψi(xi) = ai exp
(∫

dxi
ϕi(xi)

)
, i = 1, . . . , n

siendo las ai 6= 0, i = 1, . . . , n, constantes reales arbitrarias (no nulas) y cada exponente∫
dxi
ϕi(xi)

, i = 1, . . . , n

denota una primitiva de 1/ϕi(xi). Finalmente, las funciones ωij(xi, xj) se definen como

ωij(xi, xj) = ψi(xi)− ψj(xj) , i, j = 1, . . . , n

En esta ocasión, suponiendo que ωij(xi, xj) 6= 0 para el par (i, j) en el dominio en cuestión,

se tiene que el rango de estas matrices de estructura es 2 con carácter global, y además un

conjunto completo de invariantes de Casimir globales para las mismas viene dado por:

Dk(x) =
ψi(xi)[ψj(xj)− ψk(xk)]
ψk(xk)[ψi(xi)− ψj(xj)]

=
ψi(xi)ωjk(xj , xk)
ψk(xk)ωij(xi, xj)

, k = 1, . . . , n ; k 6= i, j
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Claramente, este resultado implica la integrabilidad algebraica para los sistemas de Poisson

basados en estas estructuras de Poisson. Adicionalmente, la caracterización por casos que se ha

obtenido para los conjuntos completos de invariantes de Casimir anteriores permite construir

sendas reducciones globales a la forma canónica de Darboux, las cuales proceden nuevamente

en dos etapas, que son un cambio de coordenadas y una reparametrización temporal que

le sigue. Con ello se demuestra en todos los casos que los sistemas de Poisson basados en

matrices de estructura hemiseparables de tipo II llevan también a sistemas Hamiltonianos

integrables en el sentido de Liouville. Dentro de los ejemplos aplicados que se presentan en

esta sección cabe destacar la demostración de que las matrices de estructura ćıclicas de tipo

II, vistas en el Caṕıtulo 2, son un caso especial de la familia hemiseparable de tipo II. Con

ello resulta que las cuatro familias (ćıclicas y hemiseparables, de los tipos I y II) mantienen

una relación conceptual especial dentro de esta disertación, pues aportan por duplicado un

tipo de casúıstica de especial interés, como es la constatación de que el mero conocimiento de

un conjunto completo de invariantes distinguidos independientes puede no bastar para cons-

truir en todos los casos posibles la reducción global a la forma canónica de Darboux para una

familia dada de estructuras de Poisson.

Como ya se ha anticipado, el papel de las reparametrizaciones temporales (o NTTs) es

importante tanto en la obtención de nuevas estructuras de Poisson a partir de una dada, como

en la construcción de la forma canónica de Darboux, al menos en muchos de los casos tratados

a lo largo del trabajo. Por este motivo el objetivo de la Sección 4.7 es clarificar esta cuestión,

por tanto desarrollando una investigación espećıfica sobre las reparametrizaciones temporales

la cual, como veremos, será de utilidad para comprender aspectos relevantes de cuanto se ha

ido desarrollando a lo largo de la disertación. Para ello se introduce el concepto de factor de

reparametrización para una matriz de estructura J (x) de rango constante, que es una función

η(x) suave y que no se anula tal que η(x)J (x) sigue siendo matriz de estructura. Es interesante

notar que al multiplicar por un factor de reparametrización una matriz de estructura, los

invariantes distinguidos no cambian, y la reducción global a la forma canónica de Darboux

de η(x)J (x) es inmediata si previamente suponemos conocido el mismo tipo de reducción

para J (x). Como sucedió al estudiar el uso de un ansatz aditivo en el caso tridimensional,

podemos ahora considerar la investigación de los factores de reparametrización (o lo que es

equivalente, de reparametrizaciones temporales) como un ansatz multiplicativo que se aplica

sobre una solución (matriz de estructura) previamente conocida. Al igual que sucedió en

el caso aditivo, se comprueba ahora que el problema general de investigar las ecuaciones de

24



Jacobi n-dimensionales se simplifica notablemente, llevando al siguiente sistema de ecuaciones

diferenciales parciales para η(x):

n∑
l=1

(JilJjk + JklJij + JjlJki)∂lη = 0 , i, j, k = 1, . . . , n

O lo que es equivalente, según puede comprobarse:

n∑
l=1

l 6=i,j,k

(JilJjk + JklJij + JjlJki)∂lη = 0 ,

 i, j, k = 1, . . . , n

i 6= j; i 6= k; j 6= k

En última instancia, el núcleo de la investigación de los factores de reparametrización va a

consistir en buscar familias de soluciones (en dimensión arbitraria) del sistema de ecuaciones

en derivadas parciales para η(x).

En la Sección 4.7 se reportan dos familias de factores de reparametrización. La primera

de tales familias está relacionada con los invariantes distinguidos, ya que los mismos (si no se

anulan en el dominio de interés) son siempre factores de reparametrización válidos en cualquier

dimensión n y para cualquier valor r del rango de la matriz de estructura. Por este motivo

los invariantes de Casimir que no se anulan se denominan en este ámbito “primera familia

de factores de reparametrización”. En el mismo contexto, el segundo resultado de interés

que se desarrolla en la Sección 4.7 muestra que si el rango de la matriz de estructura (que

se está suponiendo constante) es igual a 2 entonces, independientemente de la dimensión,

cualquier factor de reparametrización es admisible, esto es preserva el carácter de sistema de

Poisson. Y de manera complementaria, si la matriz de estructura es simpléctica con n ≥ 4,

entonces los únicos factores de reparametrización que admite son las constantes. En este

contexto, cuando se habla de “segunda familia de factores de reparametrización” nos referimos

a todas las funciones suaves y que no se anulan en el dominio de interés, que son factores de

reparametrización válidos cuando el rango es 2, para dimensión arbitraria n.

Los resultados sobre factores de reparametrización tienen dos aplicaciones importantes que

se resumen a continuación.

La primera de ellas es la generalización de las matrices de estructura separables, multisepa-

rables y distinguidas, ya que la multiplicación de las mismas por factores de reparametrización

adecuados hace que el resultado ya no sea, respectivamente, una matriz de estructura sepa-

rable, multiseparable o de tipo D-solución. Dado que en esta etapa se dispone de factores de

reparametrización expĺıcitos, únicamente dependientes del rango, ello hace que este tipo de

generalización sea en gran medida directa. Por tanto esta primera aplicación se refiere a la
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caracterización de nuevas matrices de estructura n-dimensionales, tomando como base las ya

conocidas, conforme a la filosof́ıa anteriormente expuesta.

La segunda aplicación que surge como consecuencia del estudio de factores de reparame-

trización es la determinación global y constructiva, bajo condiciones muy generales, de la

forma canónica de Darboux para sistemas de Poisson de dimensión arbitraria con matrices

de estructura de rango constante e igual a 2. Esto es posible en base a un algoritmo de dos

etapas, la primera de las cuales es un cambio de coordenadas, mientras que la segunda es una

reparametrización temporal. Concretamente, sea un sistema de Poisson n-dimensional,

dx
dt

= J (x) · ∇H(x) , x ∈ Rn

con matriz de estructura n× n, que denotaremos J (x) ≡ (Jij(x)), y tal que el rango de J es

2 en todas partes. Sea (D3(x), . . . , Dn(x)) un conjunto completo de invariantes de Casimir de

J (x), independientes en el dominio de interés. Adicionalmente, se consideran dos funciones

suaves y arbitrarias (d1(x), d2(x)) tales que la transformación yi = di(x) , i = 1, 2

yj = Dj(x) , j = 3, . . . , n

sea uno a uno globalmente, y su matriz Jacobiana M verifique:

|M |=
∣∣∣∣∂(d1(x), d2(x), D3(x), . . . , Dn(x))

∂(x1, . . . , xn)

∣∣∣∣ 6= 0 , para todo x

Entonces el sistema de Poisson se reduce a la forma canónica de Darboux en las coordenadas

(y1, . . . , yn) anteriores y en el nuevo tiempo τ , dado por la reparametrización temporal:

dτ = ({d1(x), d2(x)}J )|x(y) dt =
[
(∇xd1(x))T · J (x) · (∇xd2(x))

]∣∣
x(y)

dt ≡ η(y)dt

En la reducción anterior, el hecho de que la matriz de estructura tenga rango 2, y por tanto

cualquier función suave y que no se anule sea admisible como factor de reparametrización,

hace que podamos aplicar a conveniencia una reparametrización temporal arbitraria, lo cual

permite completar satisfactoriamente la construcción de la forma canónica de Darboux. Como

corolario, esto nos muestra que los sistemas de Poisson cuya matriz de estructura tiene rango

2 son, bajo las hipótesis establecidas al efecto, algebraicamente integrables y reducibles a un

sistema Hamiltoniano integrable en el sentido de Liouville. Es evidente entonces en este punto

que muchos de los ejemplos considerados con anterioridad son de hecho casos particulares de

esta reducción, lo cual es indicativo también de la generalidad y aplicabilidad práctica del

presente resultado.
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En este momento es ya posible tener una perspectiva clara del papel relativo desempeñado

por varios de los resultados desarrollados a lo largo de la disertación. Este es el propósito de

la Sección 4.8. En la misma se pone de manifiesto cómo los distintos tipos de reducciones

considerados, aparentemente diversos, en realidad se ciñen a lo permitido por los resultados

sobre factores de reparametrización identificados en la sección precedente. Aśı, en los caṕıtulos

2 y 3 (dimensiones 3 y 4, respectivamente) siempre era posible proceder combinando cambios

de coordenadas con reparametrizaciones temporales, ya que las estructuras de Poisson consi-

deradas eran siempre de rango 2. Por el contrario, en el caso de dimensión general la situación

es más rica: cuando se trabaja con matrices de estructura de rango arbitrario (separables

y multiseparables) entonces las reducciones a la forma canónica de Darboux, si son comple-

tamente generales para la familia en cuestión, necesariamente han de emplear únicamente

transformaciones de coordenadas, ya que las reparametrizaciones temporales arbitrarias no

van a ser admisibles para rango r ≥ 4, y de hecho van a estar limitadas a la mı́nima ex-

presión en el caso simpléctico (existente tanto para las estructuras de Poisson separables como

para las multiseparables). En cambio, todav́ıa en el contexto n-dimensional, la combinación

de transformaciones de coordenadas y reparametrizaciones temporales está vigente en casos

como los de las familias hemiseparables de ambos tipos (I y II) dado que en situaciones como

esas tenemos matrices de estructura de rango 2. De esta forma el estudio de las NTTs ha

clarificado en un grado muy amplio el sentido de las reducciones globales a la forma canónica

de Darboux en situaciones distintas y en buena medida complementarias. En la Sección 4.8

este argumento se emplea también como hilo conductor para mostrar los aspectos compara-

tivos más generales de las distintas familias de estructuras de Poisson investigadas a lo largo

del caṕıtulo, que concluye de esta manera.

Una vez finalizada la presentación de resultados, se procede en el Caṕıtulo 5 a siste-

matizar brevemente las principales conclusiones que pueden obtenerse de todo lo anterior. En

la disertación se ha procedido a desarrollar una doble ĺınea de investigación, que combina

tanto (a) la búsqueda de nuevas familias de estructuras de Poisson; como (b) la construcción

de nuevos análisis globales (esto es, determinación global de los invariantes distinguidos y

reducción global a la forma canónica de Darboux) para matrices de estructura. Ambos enfo-

ques, que son evidentemente complementarios, han estado presentes de manera simultánea en

algunos casos (como las matrices separables y multiseparables) mientras que en otros es sólo

uno de los dos el que se aporta, bien sea en un sentido (caso de las D-soluciones) o bien en el
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contrario (como en las familias hemiseparables de ambos tipos). De cualquier modo, los re-

sultados obtenidos tienden a combinar el interés matemático fundamental con una proyección

aplicada, lo que parece claro a la luz de las implicaciones en integrabilidad y cálculo de in-

variantes, en la presentación de resultados que mejoran el alcance del teorema de Darboux,

en la caracterización y clasificación de nuevas soluciones antisimétricas de las ecuaciones de

Jacobi, en la comprensión del papel del parámetro temporal en la existencia de la estructura

de Poisson como tal, en relación a distintos problemas aplicados ya mencionados, aśı como

por la diversidad e interés de los muchos ejemplos tratados a lo largo del trabajo. Otras

consideraciones en torno a implicaciones adicionales de los resultados examinados, aśı como a

posibles ĺıneas futuras de investigación en este campo, son también objeto de comentario en

el Caṕıtulo 5. Con ello finaliza la presente disertación como tal.

Por cuestiones técnicas de mero interés operacional se ha incluido el Apéndice 1. En

efecto, las relaciones que caracterizan a los invariantes de Casimir constituyen un sistema de

ecuaciones diferenciales parciales acopladas. Dado que la determinación de tales invariantes es

una necesidad frecuente en este trabajo, se ha incluido en el citado Apéndice 1 una descripción

del método Pfaffiano para el cálculo de dichas constantes del movimiento. El método Pfaf-

fiano proporciona una alternativa demostrablemente más eficaz para la determinación de los

invariantes distinguidos, preferible al procedimiento habitual (antes aludido) consistente en

resolver el sistema de ecuaciones diferenciales parciales que caracteriza a estos invariantes.

Como es la norma a lo largo de toda la disertación, la descripción del método Pfaffiano en

este apéndice se acompaña de ejemplos detallados que lo ilustran.

Finalmente, los Apéndices 2 y 3, por su parte, se limitan a cuestiones de notación y

terminoloǵıa matemática empleadas a lo largo de la presente tesis, en el caso del primero, y a

la enumeración de las abreviaturas de uso común en este trabajo, en el segundo. En cuanto

al Apéndice 4, en el mismo se incluyen a modo de indicios de calidad las publicaciones en

revistas con ı́ndice de impacto derivadas (hasta el momento) de la investigación descrita en

esta tesis.
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CHAPTER 1.

INTRODUCTION

1.1. CLASSICAL HAMILTONIAN SYSTEMS

It is difficult to overemphasize the scope and relevance of Hamiltonian dynamics. Hamil-

tonian theory is a very rich subject with deep mathematical implications in diverse domains,

specially differential equations, geometry and integrability theory. The very specific form of

Hamilton’s equations has allowed also the development of a plethora of specialized meth-

ods of great applied projection, the canonical perturbation theory or the specifically adapted

numerical methods (symplectic integrators) being some of the most celebrated. Hamilton’s

equations are also the basis for the understanding of very different applied systems, from

classical to quantum mechanics, from celestial mechanics to electrodynamics, from optics to

plasma physics or fluid dynamics. The diversity of dynamical behaviors embraced by Hamil-

tonian dynamics include not only regular motions, but also chaotic dynamics (the celebrated

KAM theorem being one of the paramount results in this field). Even the mere mention, if

exhaustive, of all of the previously cited aspects of the Hamiltonian theory would be (by far)

out of the scope of this section. Our purpose here is just to provide a very concise introduction

of some of the most significant results regarding Hamilton’s formalism, in order to make this

dissertation self-contained. For such purpose, in this section we shall be mainly inspired by

the classical treatments of Goldstein [57] and Landau and Lifshitz [108]. For their central

interest for the generalization from Hamilton to Poisson systems, special emphasis will be

put on the significance of Poisson brackets and in the symplectic (or matrix) formulation of

Hamilton’s equations. The reader interested in more detailed presentations of Hamiltonian

theory is referred to the classic literature in the field [1,9,21,57,108,110,159,161,164,167,173]

and references therein.
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1.1.1. Introductory aspects of classical Hamiltonian systems

We shall not enter here in the subject of how the canonical equations can be derived

from Lagrange’s formulation by means of Legendre transformations. This issue is extensively

considered in the literature and is not essential for this introduction. For practical purposes,

our starting point here will be to consider Hamilton’s canonical equations of motion, which

are given by the following set of ODEs (see Appendix 3 for the different abbreviations used

in this work):

q̇i =
∂H(q, p, t)

∂pi
, ṗi = −∂H(q, p, t)

∂qi
, i = 1, . . . , s (1)

(the notation ẋ will denote the time derivative of a function x(t), namely ẋ = dx/dt; the

reader is referred to Appendix 2 for mathematical notation). In system (1) the variables qi

are generalized coordinates, while the pi are termed generalized momenta. Together, variables

(qi, pi) are known as canonical variables, and they constitute a coordinate system of a phase

space of dimension n = 2s. Function H(q, p, t) often corresponds to the energy of the system,

and is known as a Hamiltonian (or Hamilton’s) function. Thanks to the structure of equations

(1) it is easy to verify that:

dH
dt

=
∂H

∂t
+

s∑
i=1

∂H

∂qi
q̇i +

s∑
j=1

∂H

∂pj
ṗj =

∂H

∂t

Therefore if the Hamiltonian is time-independent, energy is conserved for the system. In what

follows, the name classical Hamiltonian system or simply Hamiltonian system will always be

referred to a set of canonical equations of the form (1). In addition, a Hamiltonian system

of the form (1) is frequently termed in the literature a Hamiltonian system of s degrees of

freedom.

A form of reexpressing the canonical equations that will be of great importance for the

rest of the work is known as the symplectic or matrix notation. Consider that we denote the

canonical coordinates by a single column vector x ≡ (q1, . . . , qs, p1, . . . , ps)T . We then define

the symplectic matrix Sn as:

Sn =

 Os Is

−Is Os

 (2)

Then it is clear that system (1) can be equivalently written in matrix form as:

ẋ = Sn · ∇xH (3)

Expression (3) for Hamilton’s equations is known as their symplectic or matrix form. The

most relevant properties of Sn at this stage are that it is skew-symmetric and invertible for

any n, namely Rank(Sn) = n.
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1.1.2. The canonical Poisson bracket

Let f(q, p, t) be a given smooth function of the canonical variables and time. The total

time derivative of f(q, p, t) is, according to its standard definition [57,108]:

df
dt

=
∂f

∂t
+

s∑
k=1

(
∂f

∂qk
q̇k +

∂f

∂pk
ṗk

)
Making use of the canonical equations (1) this is equivalent to:

df
dt

=
∂f

∂t
+ {f,H}c

where {f,H}c denotes the canonical Poisson bracket of f and H, defined as [57,108]:

{f,H}c =
s∑

k=1

(
∂f

∂qk

∂H

∂pk
− ∂f

∂pk

∂H

∂qk

)
(4)

If we consider (see Subsection 1.4.4 for additional details) that a first integral is a function

I(x, t) such that its total time derivative is zero

dI
dt

= 0

we find that such condition can equivalently be written as:

dI
dt

=
∂I

∂t
+ {I,H}c = 0

In particular, if we are dealing with a time-independent first integral, then the condition is

simply {I,H}c = 0. For two arbitrary smooth functions f(q, p, t) and g(q, p, t) the definition

is the same:

{f, g}c =
s∑

k=1

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
(5)

The canonical Poisson bracket (5) has the following fundamental properties (in a sense to be

specified later) that can be deduced from its definition:

• Skew-symmetry:

{f, g}c = −{g, f}c

• Bilinearity:

{k1f1 + k2f2, g}c = k1{f1, g}c + k2{f2, g}c , {f, k1g1 + k2g2}c = k1{f, g1}c + k2{f, g2}c

for all constants k1, k2 ∈ R.
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• Leibnitz’ rule:

{f, g1g2}c = g2{f, g1}c + g1{f, g2}c

• Jacobi identity:

{{f, g}c, h}c + {{g, h}c, f}c + {{h, f}c, g}c = 0

Actually, if we consider that the canonical Poisson bracket of two functions f and g defines a

product between those functions, then it can be seen that the previous properties imply that

the canonical Poisson bracket induces a structure of a Lie algebra [57]. We shall return to this

issue later.

Notice in particular that for the canonical coordinates we have:

{qi, qj}c = {pi, pj}c = 0 , {qi, pj}c = δij , i, j = 1, . . . , s (6)

where δik accounts for Kronecker’s delta. Regarding the symplectic (or matrix) formulation (3)

it is interesting to note that the canonical Poisson bracket of two functions can be equivalently

expressed in terms of column gradient vectors as:

{f, g}c = (∇f)T · Sn · ∇g (7)

Following the same column vector terminology x = (x1, . . . , xn)T ≡ (q1, . . . , qs, p1, . . . , ps)T

introduced before for the symplectic form of the equations, note in particular that according

to (6) and (7) we have:

{xi, xj} = (Sn)ij , i, j = 1, . . . , n (8)

An important property of the Poisson bracket (known as Poisson’s theorem) is that if

I1(q, p, t) and I2(q, p, t) are first integrals of the system, then their Poisson bracket is also a

first integral:

{I1, I2}c = constant

Of course, by a successive application of Poisson’s theorem there is no guarantee that new

nontrivial first integrals are to be determined. The reason is clear: the number of functionally

independent global first integrals is limited to (2s − 1), where s is the number of degrees of

freedom, as indicated. In some cases the outcome is a trivial first integral, namely an actual

constant. In other cases, the first integral obtained is simply a function of the initial first

integrals I1 and I2. If none of these two possibilities takes place, then the Poisson bracket of

I1 and I2 is an additional (independent of I1 and I2) first integral of the Hamiltonian system.
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1.1.3. Canonical transformations in the symplectic formalism

One of the advantages of Hamilton’s equations is that the choice of the generalized coor-

dinates is not limited, as they can be any set of variables determining the state of the system.

However the canonical equations (1) are not formally invariant when a general smooth change

of coordinates

q∗i ≡ q∗i (q, p, t) , p∗i ≡ p∗i (q, p, t) , i = 1, . . . , s (9)

is performed. This explains why in the canonical formalism, a key issue is the determination

of the conditions under which the form of Hamilton’s equations remains unaltered after such

a transformation is applied. In other words, the goal is to determine the conditions by which

after the change of variables (9) applied to (1) the new system remains formally

q̇∗i =
∂H∗(q∗, p∗, t)

∂p∗i
, ṗ∗i = −∂H

∗(q∗, p∗, t)
∂q∗i

, i = 1, . . . , s

with a new Hamiltonian H∗(q∗, p∗, t). When this is actually the case, the transformation is

termed canonical. In practice (and also for our purposes in this work) the canonical trans-

formations that do not explicitly depend on time have a special interest, namely those of the

kind:

q∗i ≡ q∗i (q, p) , p∗i ≡ p∗i (q, p) , i = 1, . . . , s (10)

Canonical transformations of the form (10) are known as restricted canonical transformations.

There are two equivalent points of view [57,108,110,161,167,173] for the study of canonical

transformations. One of them is based on the use of generating functions. Such method is

not natural for our purposes in this work, and consequently it will not be described here. The

second possibility works directly on the symplectic form of the canonical equations. This point

of view is the one to be adopted in what follows. For this, consider the canonical equations

written in the symplectic (or matrix) form (3), namely ẋ = Sn · ∇xH. Similarly to what was

done for the definition of vector x, let y ≡ y(x) be a new system of canonical coordinates

defined in terms of x by means of a smooth transformation. Let

M =
∂(y1, . . . , yn)
∂(x1, . . . , xn)

(11)

be the Jacobian matrix of such transformation. Then it is not difficult to prove that after the

change of coordinates, the transformed system has the form:

ẏ = M · Sn ·MT · ∇yH
∗(y)
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where H∗(y) = H(x(y)). It is known that, in the case of restricted canonical transformations,

the Hamiltonian function of the transformed system is just the one of the original system

reexpressed in terms of the new variables, i.e.

ẏ = Sn · ∇yH
∗(y)

again withH∗(y) = H(x(y)). Accordingly, the condition for the transformation to be canonical

is simply:

Sn = M · Sn ·MT , or equivalently Sn = MT · Sn ·M (12)

Actually, it can be shown [57] that (12) is a necessary and sufficient condition for the change

of coordinates y = y(x) to be a restricted canonical transformation. The corresponding

calculations are more complicated in the case of general (or time-dependent) canonical trans-

formations. However, it is also possible to prove [57] that condition (12) is also necessary and

sufficient for the transformation to be canonical even in the case (9) in which the time appears

explicitly.

These results have some implications in connection with Poisson brackets. Let us first

recall the identities (6-8). As before, consider now a smooth change of variables y ≡ y(x)

of Jacobian matrix (11). Then, substitution in equation (7) allows computing the canonical

Poisson brackets of the new variables y in terms of the initial variables x. The outcome can

be shown to be:

{yi, yj}c = (∇xyi)T · Sn · ∇xyj = (M · Sn ·MT )ij , i, j = 1, . . . , n

Of course, if the transformation is canonical, then equation (12) implies that

{yi, yj}c = (Sn)ij , i, j = 1, . . . , n (13)

which is actually analogous to (8) for the new variables. And reciprocally, if (13) holds, then

the transformation is canonical. The Poisson brackets among the canonical variables, such as

(8) or (13), are known as fundamental Poisson brackets.

Therefore these results imply that the fundamental Poisson brackets always have the same

value in any system of canonical variables, namely they are invariant under restricted canonical

transformations (actually they are invariant under general canonical transformations, but we

shall not be concerned with this issue in the present work, in which we shall only deal with

time-independent transformations of coordinates). Thus, the invariance of the fundamental

Poisson brackets is equivalent to the canonical nature of the transformation. In fact, it is

possible to prove that the canonical Poisson bracket between any two functions is also invariant
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under canonical transformations (either restricted or not). This is why all canonical Poisson

brackets (for any two functions) are canonical invariants, namely they always take the same

value, independently of the system of canonical variables in which the bracket is computed.

This reason explains why the canonical Poisson brackets are denoted by the symbol {, }c,

without reference to the set of canonical variables being employed.

Thus, we see that Hamilton’s equations are invariant under canonical transformations. In

an analogous fashion, canonical invariance of Poisson brackets implies that the equations ex-

pressed in terms of Poisson brackets are also form-invariant under canonical transformations.

As it can be seen [57], it is possible to develop an entire coordinate-free formulation of clas-

sical mechanics, parallel to Hamilton’s formalism, that is expressed only by means of Poisson

brackets. Such formulation has the same form in all the systems of canonical coordinates,

and is specially useful for the transition from classical to quantum mechanics by means of the

correspondence principle.

1.1.4. Liouville’s theorem

We of course do not intend here to provide a review of classical Hamiltonian systems, but

only an outline of some properties relevant to what is to follow. Many important aspects of

the theory are thus being disregarded. For its conceptual interest for future developments, one

of the issues that is worth recalling, even briefly, is Liouville’s theorem. For this, note that

every point of the 2s-dimensional phase space corresponds to a definite state of the system.

When the system evolves, such a point moves in phase space describing a phase trajectory.

The differential dν given by

dν = dq1 . . .dqsdp1 . . .dps

can be physically interpreted as a volume element in phase space R2s. Consider then the

Riemann integral
∫

dν extended to a given region Ω of phase space, and thus representing

the volume of that region. It is possible to show [108] that such integral has the property of

being invariant with respect to canonical transformations q∗ ≡ q∗(q, p, t) and p∗ ≡ p∗(q, p, t),

namely the value of the integral is independent of the system of canonical variables used,∫
. . .

∫
Ω

dq1 . . .dqsdp1 . . .dps =
∫
. . .

∫
Ω∗

dq∗1 . . .dq
∗
sdp

∗
1 . . .dp

∗
s

with Ω∗ denoting the region Ω expressed in terms of the new canonical variables (q∗, p∗).

Actually, this is a consequence of the fact that the Jacobian determinant of a canonical trans-

formation is always equal to one, or |M |= 1 in the previous notation. Moreover, it is possible
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to prove that the time evolution of a Hamiltonian system, namely the evolution in time of

the canonical variables (q, p), can be considered as a canonical transformation, as we shall see

now. To be precise, this means the following: let q(t) and p(t) be the values of the canonical

variables at time t, and let q(t+%) and p(t+%) be the values at time t+%, with % a parameter

corresponding to the time interval elapsed. Then the latter are functions of the former (and

of the time interval % as a parameter):

q(t+ %) = q(q(t), p(t), %) , p(t+ %) = p(q(t), p(t), %) (14)

Thus the transformation (14) of the canonical variables associated with the time evolution of

the system is in fact a canonical transformation, as it can be established [57,108]. This implies

that a region Ω of phase space that evolves according to the time evolution of the system can

of course get deformed but always maintains a constant volume:

V (t) =
∫

Ω
dν = constant

This result is known as Liouville’s theorem, and is one of the most distinctive features of

Hamiltonian dynamics. In the framework of this thesis, it is conceptually relevant because its

generalization will lead to the important concept of conservative system (Subsection 1.2.1).

As indicated, it is unavoidable to skip here many significant aspects of the Hamiltonian

theory. Some classical topics at this level are the generating function formalism for canonical

transformations, the Hamilton-Jacobi equation, the principle of least action, the canonical

perturbation theory, etc. The interested reader is referred to the classical literature on the

subject.

36



1.2. POISSON STRUCTURES AND POISSON SYSTEMS

We shall now focus on the kind of dynamical systems providing the framework of this

thesis, which are finite-dimensional Poisson systems [21,110,139,159,163,167]. This type of

systems of ODEs arise from the general concept of Poisson structure, which is essentially a

smooth manifold endowed with an abstract Poisson bracket operation (to be defined in what

follows). Here we shall only provide a brief introduction to Poisson structures, which are

analyzed in detail in different classic references [1,21,109,139,159,167,171]. As we shall see

also in the following introduction, Poisson systems constitute for several reasons a natural

and wide generalization (in a sense to be specified) of Hamiltonian systems, while retaining

the essential aspects of the latter after the generalization process. The reader interested in

further basic aspects of the theory of finite-dimensional Poisson systems is referred to the

classical works just mentioned, which have been the basis of the present introductory review.

1.2.1. Generalized Liouville’s theorem and conservative systems

A relevant result to be discussed at this stage is the generalized Liouville’s theorem [96].

Consider a general n-dimensional nonautonomous system of ODEs:

ẋ = f(x, t) , x ∈ Rn (15)

Let Ω(0) ⊂ Rn be a domain in phase space at time t = 0, and let Ω(t) represent this domain

at time t as transformed by the time evolution of the system. In other words, Ω(t) is the set

of all points x(t) such that x(0) ∈ Ω(0), according to the time evolution defined by equations

(15). We then consider the volume integral (in the Riemann sense) of some smooth function

m(x, t) : Rn × R → R over this moving domain Ω(t):

I(t) =
∫
. . .

∫
Ω(t)

m(x, t)dx1 . . .dxn (16)

The integral I(t) is called an integral invariant of system (15) if its value is constant in time,

namely if it is a constant of motion:
dI
dt

= 0

It is then possible to establish the generalized Liouville’s theorem, which states that the

integral I(t) in (16) is an integral invariant of system (15) if and only if:

∂m(x, t)
∂t

+∇ · [m(x, t)f(x, t)] = 0
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This is the general form of the so-called Liouville equation. This greatly generalizes the result

seen for classical Hamiltonian systems, for which it is simple to check that it is m(x, t) = 1. In

such case, the generalized Liouville theorem reduces to ∇p,q · f = 0, a result often mentioned

in the framework of classical Hamiltonian systems. More generally, in the case in which

m(x, t) is time-independent and nonnegative, such function can be seen as a weight associated

with every point of phase space in a measure µ such that dµ = m(x)dx1 . . .dxn. Then

the generalized Liouville’s theorem states that the total measure µ(Ω(t)) of the set Ω(t) is

constant in time if and only if ∇ · [m(x)f(x, t)] = 0. Such measure-preserving (also known as

conservative) flows are of interest because they share a basic but fundamental constraint on the

trajectories in phase space. It is then clear that conservative systems provide a generalization

of classical Hamiltonian systems: notice, for instance, that odd-dimensional flows are not

excluded in the definition of conservative or measure-preserving systems. Moreover, also in

the even-dimensional case conservative systems (non-negative m(x)) are significantly more

general than Hamiltonian systems (m(x) = 1). Actually, the appearance in the applications

of non-Hamiltonian systems of ODEs which however display measure-preserving properties

that strongly suggest a parallelism with Hamiltonian systems, has motivated the search of

generalizations of the latter able to account for odd-dimensional flows and being more general

than Hamiltonian systems also in the even-dimensional case. One of the paramount extensions

of Hamilton’s equations is provided by Poisson systems, which are the subject of this work.

They are described in the following subsections.

1.2.2. Poisson structures and finite-dimensional Poisson systems

As it was mentioned at the end of Subsection 1.1.3, it is possible to develop coordinate-

free formulations of classical Hamiltonian systems, only based on the use of canonical Poisson

brackets. Precisely, the use of such kind of approach allows naturally the definition of Poisson

structures and systems [139]. Due to this reason, and following such reference, this is the

point of view that will be adopted in this subsection.

Definition 1.2.2.1. (Poisson bracket). A Poisson bracket on a smooth manifold M is an

operation that assigns a smooth real-valued function {f, g} on M to each pair of smooth and

real-valued functions f and g defined on M, according to the properties:

(a) Skew-symmetry:

{f, g} = −{g, f}
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(b) Bilinearity:

{k1f1 + k2f2, g} = k1{f1, g}+ k2{f2, g} , {f, k1g1 + k2g2} = k1{f, g1}+ k2{f, g2}

for all constants k1, k2 ∈ R

(c) Leibnitz’ rule:

{f, g1g2} = g2{f, g1}+ g1{f, g2}

(d) Jacobi identity:

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

In all these equations, f , g and h denote arbitrary smooth functions on M.

Now some remarks are in order. In first place, we note that for the purposes of this work

the manifolds of interest are Rn or some domain Ω ⊂ Rn, all of which are smooth manifolds.

Secondly, it is interesting to recall that properties (a) to (d) in Definition 1.2.2.1 do coincide

with those already seen in Subsection 1.1.2 for the canonical Poisson bracket.

A manifold M endowed with a Poisson bracket is called a Poisson manifold, MP, the

bracket defining a Poisson structure on such manifold. The notion of a Poisson manifold is

more general than that of a manifold with a classical (canonical) Poisson bracket, as it will be

proved in brief. In particular, a Poisson manifold needs not be even-dimensional, as we shall

see now in the following:

Example.

Consider the canonical Poisson bracket (4) defined in an even-dimensional real space MP =

Rn, n = 2s, with canonical variables (q1, . . . , qs, p1, . . . , ps):

{f, g} =
s∑

k=1

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
(17)

As we know, all the properties (a)-(d) indicated in Definition 1.2.2.1 are verified by (17). More

generally, a Poisson bracket can also be defined on Rn for every value of n. Let (q, p, z) =

(q1, . . . , qs, p1, . . . , ps, z1, . . . , zl) with 2s + l = n, and define the Poisson bracket between two

functions f(q, p, z) and g(q, p, z) by the same expression (17). It can be seen that the same

properties (a)-(d) in Definition 1.2.2.1 are still satisfied. Actually this example plays an

important role in what is to follow: Darboux’ theorem will show that locally (except at
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singular points, to be defined) every Poisson bracket can be reduced to this one. Note also

that every function depending only on the z variables commutes (in the sense of the bracket)

with any other function. In other words, if f ≡ f(z), then {f, g} = 0 for any function g, in

the sense of the Poisson bracket (17). Such functions f(z), and in particular the variables

z1, . . . , zl, are known as distinguished functions or Casimir functions, and are characterized

by the property that their Poisson bracket with any other function is always zero. Notice that

now the basic relationships (6) are supplemented by the additional ones:

{qi, zk} = {pi, zk} = {zj , zk} = 0 , i = 1, . . . , s , j, k = 1, . . . , l

The previous example motivates thus the following definition:

Definition 1.2.2.2. (Casimir or distinguished function). Let MP be a Poisson manifold.

A smooth, real-valued function D : MP → R is called a distinguished (or Casimir) function

if the Poisson bracket of D with any other real-valued function vanishes identically, namely

{D, f} = 0 for all f : MP → R.

In the case of the canonical Poisson bracket (on MP = R2s) the only distinguished functions

are the constants, which always verify the requirements of the definition. On the other extreme,

if the Poisson bracket is completely trivial (namely {f, g} = 0 for every f and g) then every

function is distinguished.

As it was anticipated in Subsection 1.1.2, Poisson brackets have the structure of a Lie

algebra. Actually, it can be proved that there exists an important connection between the

Poisson bracket of two functions and the Lie bracket of the vector fields induced by such

functions [139]. This issue will not be considered here for the sake of conciseness. However,

this relationship allows the establishment of the analysis of Poisson manifolds in terms of

coordinate systems. Let x = (x1, . . . , xn) be local coordinates on MP, then it can be proved

[139] that the Poisson bracket of two functions f(x) and g(x) takes the form:

{f, g} =
n∑

i,j=1

{xi, xj}
∂f

∂xi

∂g

∂xj
(18)

Then, in order to compute the Poisson bracket of any pair of functions in a system of local

coordinates, is suffices to know the Poisson brackets between all pairs of coordinate functions

xi. Such basic brackets will be termed structure functions:

Jij(x) = {xi, xj} , i, j = 1, . . . , n
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Thus, the structure functions of the Poisson manifold MP relative to the coordinates xi

uniquely determine the Poisson structure itself. For convenience, the structure functions

are grouped into a skew-symmetric n×n matrix J , called structure matrix. Therefore, in the

usual column gradient vector notation formula (18) can be expressed as:

{f, g} = (∇f)T · J · ∇g (19)

From a constructive point of view, it is also possible to show from (19) that the distinguished

functions are the solution set of the following system of PDEs:

J (x) · ∇D(x) = 0 (20)

It can be seen [139] that, in the system of coordinates x, the vector field associated with

a smooth function H(x) for a Poisson bracket of structure matrix J (x) takes the form (in

evident notation):

ẋ = J (x) · ∇H(x) = {x,H} (21)

Equation (21) gives the general form of a Poisson system. In terms of the individual coordi-

nates:
dxi
dt

=
n∑
j=1

Jij(x)∂jH(x) = {xi,H} , i = 1, . . . , n (22)

We see then that we obtain a generalization of classical Hamiltonian systems, in which odd

dimensions are allowed. As before, H(x) plays the role of Hamiltonian, and J (x) is a gener-

alization of the symplectic matrix. For instance, in the case of bracket (17) defined on Rn for

an arbitrary value of n and coordinates (q, p, z) with 2s+ l = n, the structure matrix is:

J (x) = S2s ⊕Ol (23)

We then obtain the canonical Poisson bracket for classical Hamiltonian systems in the partic-

ular (even-dimensional) case l = 0. Of course, it is necessary to know which skew-symmetric

matrices J (x) are structure matrices for Poisson brackets. In other words, we need to char-

acterize those matrices such that, according to (18), verify properties (a)-(d) of Definition

1.2.2.1. The answer is the following one [139]:

Theorem 1.2.2.3. (Structure matrices). Let J (x) ≡ (Jij(x)) be an n × n matrix of

functions Jij(x) : Ω → R defined over an open subset Ω ⊂ Rn. Then J (x) is the structure

matrix for a Poisson bracket {f, g} = (∇f)T · J ·∇g over Ω if and only if it has the following

properties:
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(a) Skew-symmetry:

Jij = −Jji , i, j = 1, . . . , n (24)

(b) Jacobi identities (Jacobi partial differential equations):

n∑
l=1

(Jil∂lJjk + Jjl∂lJki + Jkl∂lJij) = 0 , i, j, k = 1, . . . , n (25)

for all x ∈ Ω.

Notice that equations (25) form a set of nonlinear coupled PDEs which must be verified

by the structure functions. In particular, any constant skew-symmetric matrix trivially sat-

isfies the system (24-25) and thus determines a Poisson bracket. This remark, in spite of its

simplicity, already constitutes a wide generalization of the classical symplectic matrices (2)

and also of their noncanonical generalization (23) which thus become particular cases of the

family of constant structure matrices.

1.2.3. Phase space structure: symplectic foliation and Darboux’ theorem

In order to understand the phase space geometry induced by a general Poisson structure on

a manifold, a closer look at the structure matrix J (x) which determines the local coordinate

form of the Poisson bracket is unavoidable. As it will be explained, the rank is the most

important invariant of a structure matrix. We are going to see that in the case of maximal rank

we are in the situation of a symplectic Poisson structure, well-known in classical Hamiltonian

theory. In the more general case of nonmaximal rank, the Poisson manifold MP is going to be

foliated into symplectic submanifolds in such a way that any Poisson system on MP naturally

restricts to any one of the symplectic submanifolds and hence, by restriction, returns us to the

canonical case, the classical scenario of Hamiltonian dynamics. However, for many problems

it may be more natural to remain in the larger Poisson manifold itself, specially when the

noncanonical variables are more natural for that specific problem (e.g. for physical reasons)

or when one is interested in the collective behavior of systems depending on parameters, with

the underlying symplectic structure varying with the parameters themselves.

Given a Poisson manifold MP in which a set of local coordinates x is defined, it is necessary

to introduce the following important definition:
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Definition 1.2.3.1. (Rank of a Poisson manifold). The rank of a Poisson manifold at a

point x is equal to the rank of the structure matrix J at that point.

Actually, it can be shown that the rank of a Poisson manifold is independent of the choice

of the coordinates. According to Theorem 1.4.1.1, we know immediately that the rank of a

Poisson manifold at any point is always even. In this sense, notice (according to equation

(20) for the Casimir invariants) that such invariants are directly related to the kernel of the

structure matrix, and do not exist (apart from the trivial solutions, namely the real constants)

if Rank(J ) = n. This case is usually denoted by means of a specific term:

Definition 1.2.3.2. (Symplectic manifold). A Poisson manifold of dimension n is said

to be symplectic if its Poisson structure has maximal (and thus even) rank n everywhere.

Symplectic manifolds will be denoted by MS and they lie at the basis, for instance, of

classical Hamiltonian systems (notice that the symplectic matrix Sn is of maximal rank n

everywhere). A structure matrix is said to be trivial if it has zero rank everywhere in the

Poisson manifold.

When J has constant rank r, it can be seen [139] that each Poisson manifold naturally

splits into a collection of even-dimensional symplectic submanifolds, what is known as the

symplectic foliation of a Poisson manifold. Therefore, phase space is split in a family of even-

dimensional symplectic leaves, the dimension of each leaf being equal to r = Rank(J ). In fact

the symplectic leaves can be seen to be obtained as the slices, or level sets, of a set of (n− r)

functionally independent Casimir invariants, namely by the equations {Di(x) = ai | ai ∈

R , i = 1, . . . , n−r}. Since (n−r) is the maximal number of functionally independent Casimir

invariants, such a set is termed a complete set of independent Casimir invariants. If the rank of

the Poisson manifold is not constant, then the symplectic leaves will have varying dimension.

In this work, we shall be concerned only with constant-rank structure matrices, for which

Darboux’ theorem (to be introduced shortly) is applicable and the symplectic foliation does

not have variable dimension. Thus, in the constant-rank case, the dynamics of every Poisson

system can be naturally restricted to any symplectic leaf, thus becoming a symplectic system.

The precise meaning of this assertion will be clear shortly with Darboux’ theorem. Actually,

in spite that Poisson systems are clearly a formal generalization of classical Hamiltonian

systems, it is not evident at this stage that this generalization preserves the Hamiltonian (or
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conservative, in general terms) nature of the dynamics. In other words, we need a result

accounting for the dynamical equivalence between classical Hamiltonian and Poisson systems

in order to state that the latter are a rightful generalization of the former. The central result

that justifies such gap is Darboux’ theorem [109,139,171]:

Theorem 1.2.3.3. (Darboux’ theorem). Let MP be an n-dimensional Poisson manifold

of constant rank r = 2s everywhere. Then, in a neighborhood of each x0 ∈ MP there exist

local variables (q, p, z) ≡ (q1, . . . , qs, p1, . . . , ps, z1, . . . , zl), with n = r+ l, in terms of which the

Poisson bracket takes the form:

{f, g} =
s∑

k=1

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
(26)

The leaves of the symplectic foliation intersect the coordinate chart in the slices

z1 = k1 , . . . , zl = kl

determined by the distinguished coordinates z.

In other words, every Poisson system for which the rank of the Poisson structure is constant

can be (locally at least) reduced in the neighborhood of each point to a Poisson system of the

form: 
q̇i =

∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , s

żj = 0 , j = 1, . . . , l
(27)

We thus see that system (27) is essentially an s-degree of freedom classical Hamiltonian system

plus l = (n − r) decoupled (and constant) Casimir invariants given by z1, . . . , zl. Equations

(27) are known as the Darboux canonical form of the Poisson system. Therefore, the Darboux

canonical form corresponds to the structure matrix J = S2s ⊕Ol regarded in (23). Darboux’

theorem provides a (local) link between Poisson systems and classical Hamiltonian systems

accounting for their dynamical equivalence (apart from the embedding corresponding to the

symplectic foliation, which is decoupled in the Darboux canonical form). The explicit con-

struction of the Darboux coordinates may be a complicated task in general, specially in the

case of their global determination, in which the transfer of results between the Poisson and the

classical Hamiltonian formats is optimal for the applications. The global construction of the

Darboux canonical form for different families of Poisson structures will be one of the central

issues of this thesis. Accordingly, it is worth recalling that, unless otherwise specified, we shall

systematically work with structure matrices of constant rank in the region of interest.
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For the sake of clarity, in most of what is to follow, the Darboux canonical form will be

written in a way slightly different from that corresponding to (23), which is obtained sim-

ply by reordering the canonical variables (q, p) which are to be grouped in canonical pairs,

while the decoupled Casimir invariants remain at the same places. Thus the new ordering is

(q1, p1, . . . , qs, ps, z1, . . . , zl). The fact of grouping the variables in canonical pairs can be some-

times advantageous from the point of view of clarity, while of course the Darboux canonical

form is exactly the same: the new equations for the Darboux canonical form are still those in

(27), but the new order for the variables has the consequence of introducing a permutation of

rows and columns in the structure matrix, which changes from (23) to:

JD[n,r] ≡

 0 1

−1 0

 s︷ ︸︸ ︷
⊕ . . .⊕

 0 1

−1 0

⊕O1

(n−r)︷ ︸︸ ︷
⊕ . . .⊕O1 (28)

The notation JD[n,r] given by (28) will be maintained throughout the work. Notice that in

(28) the expression A
k︷ ︸︸ ︷

⊕ . . .⊕A, for any matrix A, denotes the direct sum of k matrices A.

1.2.4. Changes of coordinates and time reparametrizations

In practice, if we wish to investigate issues such as the global determination of the Darboux

canonical form for Poisson systems, it is necessary to make use of certain types of transforma-

tions that ensure system equivalence (see Subsection 1.4.3 for a discussion of this concept). In

this paragraph, two important types of transformations and their effect on Poisson systems

are considered.

The first kind of transformation of interest in our context is provided by smooth coordinate

transformations. Consider a general Poisson system (22) defined in a given domain Ω ⊂ Rn in

terms of a set of coordinates x. Let y ≡ y(x) be a general smooth coordinate transformation,

and let M ≡ (Mij) be the associated Jacobian matrix, namely:

M =
∂(y1, . . . , yn)
∂(x1, . . . , xn)

Then it can be proved that, after such a change of coordinates, the transformed ODEs obtained

from (22) still constitute a Poisson system in terms of the y coordinates in Ω∗ = y(Ω):

ẏ = J ∗(y) · ∇H∗(y) (29)

Now in (29) the new structure matrix J ∗(y) is given by:

J∗ij(y) =
n∑

k,l=1

∂yi
∂xk

Jkl(x)
∂yj
∂xl

, i, j = 1, . . . , n (30)
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or equivalently,

J ∗ = M · J ·MT

And the new Hamiltonian is simply H∗(y) = H(x(y)). This is a significant feature of Poisson

systems: in a sense, all smooth transformations can be regarded as “canonical” now, as far as

they preserve the key property of having the form of a Poisson system for the transformed set of

ODEs. When compared to the restrictions imposed by canonical transformations on classical

Hamiltonian systems (see Subsection 1.1.3) we obtain an indication about the generalization

achieved by means of Poisson systems.

The second kind of transformations to be considered in this paragraph corresponds to time

reparametrizations (also known in the literature as new-time transformations, or NTTs) for

Poisson systems [21], which are transformations of the form

dτ =
1

η(x)
dt (31)

where t is the initial time variable, τ is the new time and η(x) : Ω ⊂ Rn → R is a smooth

function in Ω which does not vanish in Ω. Thus, again if (22) is an arbitrary Poisson system

defined in Ω, then every time reparametrization (31) leads from (22) to the system:

dx
dτ

= ηJ · ∇H (32)

Equations (32) are not necessarily of Poisson type because ηJ may lose the property of being

a structure matrix, in spite that J is. Of course, time reparametrizations do not alter the

topology of trajectories in phase space, their only dynamical role amounts to modify the

“speed” at which every point moves on the system trajectories. A well-known result [70] is

that the system (32) obtained from (22) after a general time reparametrization is always a

Poisson system in the cases of dimensions n = 2 and n = 3. On the contrary, this is not

necessarily the case for dimensions n ≥ 4. Time reparametrizations will play an important

role both for the determination of the Darboux canonical form and for the understanding of

some detailed conditions under which such a construction can be carried out. In a sense, the

results to be developed in connection with such kind of transformations will provide a unifying

perspective of the results given in this thesis. This reason explains that precisely the end of

this work is devoted to time reparametrizations (Section 4.7). Additional aspects regarding

the connection between time reparametrizations and system equivalence are considered in

Subsection 1.4.3.
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1.2.5. Introductory examples of Poisson structures and systems

In order to clarify and illustrate the previous theory as well as an advance of some typical

features to be found throughout the work, two simple and well-known instances of Poisson

structures of applied interest are briefly presented in what follows. The first one corresponds

to a mechanical system (Euler top) and is clearly close to the physical roots of classical

Hamiltonian systems, in the sense that the Hamiltonian corresponds to the system energy and

the constancy of the Casimir invariants also reflect the conservation of angular momentum.

The second example, on the contrary, has a biomathematical inspiration and describes a

population dynamics system (Lotka-Volterra equations) for which neither the Hamiltonian nor

the distinguished functions have a clear physical interpretation, thus suggesting conceptually

new domains of applicability of Poisson systems. Both examples chosen are three-dimensional,

as far as the visualization of the phase space structure (namely, of a nontrivial symplectic

foliation) should be simpler in such case. The reduction to the Darboux canonical form can

be globally carried out for both systems. However, it will not be provided here because

both reductions are particular cases of more general results to be presented in Chapter 2.

Consequently, for the moment we limit ourselves here to an illustrative description of the

systems in order to appreciate the naturalness of the Poisson description. Of course, many

other examples are going to appear along this work.

Example 1. Euler equations for the rigid body (Euler top)

We shall consider the following system of ODEs known as Euler equations [139], which

describe the rotation of a rigid body, or Euler top:

ẋ1 =
µ2 − µ3

µ2µ3
x2x3

ẋ2 =
µ3 − µ1

µ3µ1
x3x1

ẋ3 =
µ1 − µ2

µ1µ2
x1x2

Here xi denotes the i-th component of angular momentum, and constants µi are the moments

of inertia about the coordinate axes, both for i = 1, 2, 3. Energy is conserved for this system,

but of course the flow is odd-dimensional and a classical Hamiltonian formulation is excluded.
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However this system is of Poisson kind in terms of the following structure matrix:

J (x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0


Notice that the rank of the structure matrix is 2 everywhere in R3 except at the origin, in

which the rank vanishes. The Hamiltonian is the total energy (kinetic energy, in this case):

H(x) =
1
2

(
x2

1

µ1
+
x2

2

µ2
+
x2

3

µ3

)
Since the rank is 2 (excluding the origin from the analysis) there must be (n−r) = 1 indepen-

dent Casimir invariants. Recall that these invariants are the solutions of the system of PDEs

(20), or:

J (x) · ∇D(x) = 0

In our case, the independent distinguished function can be chosen to be:

D(x) = (x2
1 + x2

2 + x2
3)

1/2 = ||x || (33)

Namely, the distinguished invariant (33) is the Euclidean norm of the angular momentum,

which is a conserved quantity during the system rotation. Of course, any other smooth

function of D(x) in (33) will be also a Casimir invariant. Therefore, the symplectic foliation

is given by:

x2
1 + x2

2 + x2
3 = constant (34)

which are concentric spheres in R3. We thus see that the symplectic leaves (34) are even-

dimensional (two-dimensional, in this case) and therefore Darboux’ theorem ensures that on

the symplectic leaves the dynamics is Hamiltonian in the classical sense, at least locally (in

the neighborhood of each point). The actual trajectories of the system in phase space are

obtained by the intersection of the symplectic leaves with the energy level sets

H(x) =
1
2

(
x2

1

µ1
+
x2

2

µ2
+
x2

3

µ3

)
= constant

which in geometric terms are ellipsoids in phase space.
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Example 2. 3-d Lotka-Volterra equations

Let us now consider the system of ODEs [63,136]:
ẋ1 = x1(λ1 + cx2 + x3)

ẋ2 = x2(λ2 + x1 + ax3)

ẋ3 = x3(λ3 + bx1 + x2)

(35)

This is a 3-d instance of Lotka-Volterra equations, which are models of common use in math-

ematical biology for the description of population interactions. The number of individuals of

every species corresponds to the system variables xi > 0 for all i = 1, 2, 3. Constants λ1, λ2

and λ3 account for the specific growth rates, and constants a, b and c account for interspecific

interactions. System (35) is Poisson for certain values of the parameters (a, b, c, λ1, λ2, λ3).

Here we shall consider one of such cases [136] in which the system parameters verify:

abc = −1 , λ3 = λ2b− λ1ab

When these conditions are satisfied, one possibility for the structure matrix is:

J (x) =


0 cx1x2 bcx1x3

−cx1x2 0 −x2x3

−bcx1x3 x2x3 0


Again, the rank of J is 2. In this case, the Hamiltonian function is:

H(x) = abx1 + x2 − ax3 + λ3 lnx2 − λ2 lnx3 (36)

Contrarily to the previous example, now the Hamiltonian (36) does not have an evident inter-

pretation, let it be physical or biological. Since Rank(J ) = 2, there must be one independent

Casimir invariant, and the symplectic leaves are two-dimensional. In this case, one possible

choice is given by the following quasimonomial function:

D(x) = (x1)1/c(x2)b(x3)−1

As it was here the case with H(x), this distinguished invariant does not seem to have a direct

interpretation in terms of the model itself. Again, the system trajectories in phase space will

be given by the intersection of the level surfaces of functions H(x) and D(x).

49



1.2.6. Interest and applications of Poisson structures and systems

Today, finite-dimensional Poisson systems (e.g. see [126,139] and references therein for

an overview and a historical discussion) are ubiquitous in the literature in most fields of

applied mathematics, physics, engineering and mathematical biology, such as in mechan-

ics [1,4,5,36,37,38,39,40,41,65,91,106,107,119,122,128,141,151,152,153,155], dynamical systems

theory [25,29,33,63,83,86,117,143], fluid mechanics [134], electromagnetism [31,42,94,112,113],

plasma physics [142], population dynamics [53,56,83,88,101,102,103,135,136,143,144,145,146],

optics [6,42,43,93,94], quantization [150], control theory [19,148], delay equations [118], net-

work analysis [129,154], field theories [52], etc. Of course, the investigation of such applied

systems has provided the basis for a very diverse mathematical research, both fundamental

and applied, that has been active for decades. Such activity has led to the development

of very varied methods and results: describing a given system in terms of a Poisson struc-

ture allows the obtainment of a wide range of information which may be in the form of

perturbative solutions [31] and use of generating functions [45], invariants [84,175], bifur-

cation properties and characterization of chaotic behavior [12,35,43,142], efficient numerical

integration [97,99,130,131,149], use of variational principles [32,34,115], integrability results

[7,20,21,44,58,100,118,120,138], reductions [6,42,43,70,76,77,78,79,83,85], as well as stability

analysis in terms of either the energy-Casimir algorithm [18,86,92,93,107,140,147,172] or the

energy-momentum method [155], to cite a sample.

There are several reasons justifying the importance and flexibility of Poisson systems. The

first one, already mentioned, is that it provides a wide generalization of classical Hamiltonian

systems, allowing not only for odd-dimensional vector fields, but also because (even in the

symplectic case) a structure matrix verifying (24-25) admits a great diversity of forms apart

from the classical constant symplectic matrix [57]. The determination of Casimir invariants

and their use in order to carry out a reduction (local, in principle) is the cornerstone of the (at

least local) equivalence between Poisson systems and classical Hamiltonian systems, as stated

by Darboux’ theorem [139,171]. This justifies that Poisson systems can be regarded, to a large

extent, as a rightful generalization of classical Hamiltonian systems. This connection is an

additional and important advantage of Poisson systems, as far as it accounts for the potential

transfer of results and techniques from classical Hamiltonian theory once a given system has

been recognized as a Poisson one and the Darboux canonical form has been constructed,

specially if this can be achieved globally.

On the other hand, it was already indicated that sometimes the Poisson representation
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is preferable to a Darboux reduction to classical Hamiltonian form. There are several dif-

ferent reasons that can account for such preference. One is that in many applications it

is found that the noncanonical variables are desirable, for instance because they are more

natural on a physical or modelling basis. A simple instance is provided by the Lotka-

Volterra model of the previous subsection as well as diverse models in population dynamics

[63,83,101,102,103,135,136,143,144,145,146]. Other instances well-known in the literature are,

for example, [112,113] in electromagnetism, the Euler top in mechanics [139] just seen in Sub-

section 1.2.5, etc. Moreover, many methods of analysis have been specifically developed for

the Poisson representation and their use may be advantageous in terms of the original Poisson

system format. Some instances of this are given by noncanonical perturbation theory [31],

by the energy-Casimir [18,86,92,93,107,140,147,172] and energy-momentum [155] methods, a

variety of numerical methods [97,99,130,131,149], etc. The energy-Casimir method is specially

illustrative in this sense, because its application requires the use of the Casimir invariants of

the Poisson system, thus being excluded in practice in the case of the reduced Hamiltonian

system. To conclude, it was also mentioned the case of systems depending on parameters,

with the underlying symplectic structure varying with the parameters themselves, where the

use of the Poisson formulation allows a joint analysis of the different symplectic leaves [81].

What has been said in this subsection up to now concerns Poisson systems of the ODE

type, namely finite-dimensional Poisson systems. Of course, the reason is that this is the

subject of the present work. However, it is interesting to stress that the concept of Poisson

structure does not incorporate any dimensional limit. Well the opposite, it can be said that

the domain in which Poisson systems theory has achieved the greatest successes is the one

of evolution equations (partial differential equations) for nondissipative systems, for which

the underlying Poisson manifold has an infinite dimension. In such case, the concept of

Poisson bracket admits a direct generalization that can be carried out with the help of some

mathematical modifications. Despite this field is not the subject of this thesis, and therefore

will be mentioned only briefly here, it is worth recalling the plethora of application domains

and results [139,163] obtained in the last years in fluid dynamics [11,27,49,92,121,132,137,160],

plasma physics [11,68,133], continuum mechanics [48,160], field theories [54,125], etc. This

enumeration is of course not exhaustive (as it is not the list of references given, which is

merely illustrative). The interested reader is referred to these works and references therein for

further details.
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1.3. THE JACOBI PARTIAL DIFFERENTIAL EQUATIONS

We have seen that the Jacobi PDEs (25) together with the skew-symmetry conditions (24)

are one essential aspect of the formulation of a dynamical system as a finite-dimensional Pois-

son system. Actually, such equations constitute the basis for the determination of the structure

matrix, and consequently of the Poisson structure itself when expressed in an arbitrary sys-

tem of coordinates. The investigation of the Jacobi equations, including the determination of

solutions and the analysis of such solutions, is the central subject of the present thesis. It is

thus natural that after a general treatment of finite-dimensional Poisson systems we now focus

our description on the more specific subject of the Jacobi PDEs. In what follows, terms such

as “Jacobi equations” or “skew-symmetric Jacobi equations” will systematically denote the

joint system composed by (24-25) unless otherwise specified. In addition, expressions such as

“n-dimensional Poisson structure” or “n-dimensional solution of the Jacobi equations” shall

refer to Poisson structures for which n is the dimension of the associated Poisson manifold

(and of the corresponding vector field given by the respective Poisson system); in terms of

coordinates, such expressions allude to n× n structure matrices.

1.3.1. General properties

Let us then focus on the main subject of this thesis, which is primarily given by the Jacobi

partial differential equations. We thus look at the system:
n∑
l=1

(Jil∂lJjk + Jjl∂lJki + Jkl∂lJij) = 0 , i, j, k = 1, . . . , n (37)

As we know, this is a set of coupled nonlinear partial differential equations, in which the solu-

tions form the entries of a skew-symmetric n×n matrix. This implies a degree of redundancy

related to the fact that Jij = −Jji for all i 6= j. Taking this into account, the number of

nonredundant unknowns in (37) is:

Nunknowns =
n(n− 1)

2
= 1, 3, 6, 10, 15, . . . (for n ≥ 2)

Consequently, for large n the number of unknowns increases quadratically. Let us look, on the

other hand, at the number of equations in (37). Simply speaking, the number of equations is

of course n3. However, this is not the actual number of independent equations. The reason is

clear if we examine the situation when two or more indexes coincide. For instance, let us look

at system (37) if i = j (for any value of k). Then the equation (i, i, k) vanishes identically:
n∑
l=1

(Jil∂lJik + Jil∂lJki + Jkl∂lJii) =
n∑
l=1

(Jil∂l[Jik + Jki]) = 0 , i, k = 1, . . . , n
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Clearly, the cyclic symmetry of (i, j, k) in equations (37) implies that this is the situation

whenever at least any two indexes (i, j, k) coincide. Therefore, it is necessary to determine the

number of independent equations, and such number corresponds to those for which the three

indexes (i, j, k) are all different. In addition, equations (37) are invariant under permutations

of the three indexes (i, j, k). Taking this into account, the number of independent equations

in (37) is thus [26]:

Nequations =

 n

3

 =
n!

3!(n− 3)!
=
n(n− 1)(n− 2)

6
= 0, 1, 4, 10, 20, . . . (for n ≥ 2)

Therefore, for n = 2 the Jacobi PDEs are identically satisfied, while for large n the number

of independent equations grows as the cube of n. We shall return to this issue later in this

subsection and also in the next one. But before, for illustrative purposes it is interesting to

explicitly write the (independent) Jacobi PDEs arising in the simplest nontrivial cases n = 3

and n = 4. To begin with, consider the case n = 3, in which a single independent equation

is present, as we know in advance. If we choose the nonredundant unknown functions as J12,

J23 and J31, it is not difficult to verify that system (37) amounts to one equation that can be

written as:

J12∂1J31 − J31∂1J12 + J23∂2J12 − J12∂2J23 + J31∂3J23 − J23∂3J31 = 0

Some aspects of the three-dimensional case will be analyzed in Chapter 2 of this work. Simi-

larly, let us look at the case n = 4, for which we know in advance that there are 4 independent

equations (with 6 nonredundant unknown functions). With a choice of the unknowns consist-

ing in using those Jij for which i < j, the system can be written as:

J12∂1J13 − J13∂1J12 + J12∂2J23 − J23∂2J12 + J13∂3J23 − J23∂3J13+

J14∂4J23 + J34∂4J12 − J24∂4J13 = 0

J12∂1J14 − J14∂1J12 + J12∂2J24 − J24∂2J12 + J14∂4J24 − J24∂4J14+

J13∂3J24 − J23∂3J14 − J34∂3J12 = 0

J13∂1J14 − J14∂1J13 + J13∂3J34 − J34∂3J13 + J14∂4J34 − J34∂4J14+

J12∂2J34 + J23∂2J14 − J24∂2J13 = 0

J23∂2J24 − J24∂2J23 + J23∂3J34 − J34∂3J23 + J24∂4J34 − J34∂4J24−

J12∂1J34 + J13∂1J24 − J14∂1J23 = 0

Some considerations and results on the case n = 4 will be the goal of Chapter 3. We see then

that the Jacobi equations seem to become progressively complex as dimensionality increases.
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Actually, the brief analysis just carried out already shows two interesting facts, worth being

stressed, about the Jacobi equations:

(a) The Jacobi equations are identically satisfied in dimension n = 2. This is a well-known

result, as it will be mentioned in the next subsection.

(b) The number of independent equations increases (for growing n) faster than the number

of unknowns, in the sense that:

Nunknowns

Nequations
=

3
n− 2

→ 0 , when n→∞

This is the reason that explains the belief, even in relatively recent literature [66], that

the Jacobi equations could be overdetermined for sufficiently large n, apart from some

simple known instances valid for arbitrary n. This issue will be also discussed in the

next subsection.

Some of the questions posed after the analysis presented in this subsection suggest that it

would be convenient to review aspects such as what are the most important known solutions

of the Jacobi equations, the existence of solutions of arbitrary dimension and rank, and the

progression in the generality of the solution families reported in the literature. In addition,

this will provide a framework for the contributions to be presented in this thesis. The next

paragraph is devoted to such issues.

1.3.2. A perspective on some important families of solutions

We shall now briefly review some well-known families of structure matrices together with

some related issues. As mentioned before, the comparatively faster increase in the number

of equations with respect to the number of unknowns has motivated that even in relatively

recent times [66] some authors have considered that in general the Jacobi equations form an

overdetermined system for large n. On the other hand, some specific families defined for

arbitrary dimension have been known for long, as we shall recall in this subsection.

Generally speaking, given that equations (25) constitute a set of coupled nonlinear partial

differential equations, the characterization of solutions of (24-25) has proceeded by means of ei-

ther suitable ansatzs [29,63,71] or through a diversity of other (sometimes ad hoc) approaches

[28,36,42,45,53,55,63,66,70,76,77,78,79,81,85,89,90,98,119,135,136,141,143] which have led to

the determination of the general solution for certain particular cases [13,62,64,111,127] that
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shall be discussed in this subsection. Roughly speaking, these efforts have led to the progres-

sive determination of certain families of solutions of increasing complexity in two senses: in

first place, a dimensional increase, and in second term, an increase in the degree of nonlin-

earity. Regarding the dimensional increase, the growing complexity of the Jacobi equations

(25) as the dimension n increases has determined that the analysis is very often focused on

three-dimensional solutions [13,42,53,55,62,63,64,66,70,71,75,76,81], while the characterization

of solutions of dimensions four [58,65,77,151,156], five [94,122,151], etc. is significantly less

frequent. In addition, some wide families of n-dimensional solutions have also been analyzed in

the literature [16,17,36,78,79,85,111,143]. In parallel, the advances in the investigation of the

Jacobi PDEs have led to known solutions of increasing nonlinearity. Starting with the most

basic, which are the constant structure matrices (of which the symplectic matrices [57] are

just a particular case), we can also speak of linear (or Lie-Poisson) [111,139], affine-linear [16],

quadratic [17,104,116,143], and cubic [63] structures, together with some solution families

which comprise functions of arbitrary nonlinearity [13,55,62,64,66,70,71,76,77,78,79,85,127].

On the other hand, when we focus on the important issue of structure matrices for which the

Darboux canonical form has been constructed globally, the number of instances falls signifi-

cantly [6,42,70,73,76,77,78,79,83,85,102,103,114,142,153,171]. Of course, the previous enumer-

ations are not intended to be exhaustive, since this would greatly exceed the scope of this

work. More modestly, they just illustrate from a very generic perspective some of the main

trends in the constructive investigation of the Jacobi PDEs.

As anticipated, some solution families deserve an explicit mention in this introduction,

both because of their special relevance and generality, as well as due to their comparative

interest for this work. In some sense, they can be regarded as the most general solution

families known (but of course, this does not prevent that other ad hoc instances of structure

matrices not comprised in such categories might have been determined in different contexts).

Such families of interest are now enumerated and briefly discussed:

(a) Constant skew-symmetric matrices. It is evident in the form of the Jacobi equations

that every constant skew-symmetric real matrix is a structure matrix. In spite of being

apparent, such solutions are interesting as far as they generalize the symplectic matri-

ces Sn and the structure matrices JD[n,r] associated with the Darboux canonical form.

In addition, constant skew-symmetric matrices have relevant applications in different

domains, see for instance [57,101,102,103,142].

(b) Lie-Poisson structure matrices. A logical step after the constant structure matrices is
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the search of linear ones. A nice result in this context is that every linear skew-symmetric

matrix of entries

Jij(x) =
n∑
k=1

ckijxk , i, j = 1, . . . , n (38)

is a structure matrix if and only if the ckij are the structure constants of a Lie algebra

[62,109,111,139,171]. This reason, as well as the fact that the structure matrices of the

form (38) are due to Lie himself [111], account for the name of Lie-Poisson given to such

Poisson structures.

(c) Structure matrices of arbitrary dimension and rank 2. An interesting result is the general

form [13,62,64] of structure matrices of rank 2 (at most) and dimension n ≥ 3: given a

set of (n− 1) smooth functions Rn → R denoted by (η(x), D1(x), . . . , Dn−2(x)) then

Jij(x) = η(x)
n∑

k1,...,kn−2=1

εi,j,k1,...,kn−2

n−2∏
l=1

∂kl
Dl(x) , i, j = 1, . . . , n (39)

defines a structure matrix J (x) such that Rank(J (x)) ≤ 2 at every point x, where

εi,j,k1,...,kn−2 denotes the Levi-Civita symbol. In addition, functions (D1(x), . . . , Dn−2(x))

are Casimir invariants of J in (39). Conversely, for every structure matrix of rank at

most 2, there exist smooth functions (η(x), D1(x), . . . , Dn−2(x)) such that (39) holds.

From the point of view of this thesis, in which the global construction of the Darboux

canonical form is of central interest, this form of the solution is to some extent inconve-

nient because the constancy of the rank is not guaranteed, and therefore the applicability

of Darboux’ theorem is not ensured. In spite that one of the results of this work is the

global Darboux reduction for n-dimensional Poisson structures of rank 2 (see Chapter

4) the form (39) is not employed for the establishment of the result due to such reason.

(d) Symplectic structure matrices. It can be seen that a matrix J (x) determines a symplectic

Poisson structure in a manifold M ⊂ Rn if and only if its inverse K(x) = [J (x)]−1 is

skew-symmetric and verifies the following system of linear PDEs:

∂kKij + ∂jKki + ∂iKjk = 0 , i, j, k = 1, . . . , n (40)

Precisely, equations (40) are the Jacobi equations for the inverse matrix K(x) ≡ (Kij(x)).

The general solution of these linear equations is known to be [127] of the form of a

“generalized curl”

Kij(x) = ∂ifj(x)− ∂jfi(x) , i, j = 1, . . . , n (41)

for any given set of smooth functions (f1(x), . . . , fn(x)).
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The previous considerations may be illustrative in order to provide some hints about the

present-day state of the art in what regards to the determination of Poisson structures and

their global Darboux analysis. Such issues are, generally speaking, the purpose of this work.

It is worth, however, giving more detailed explanations about the subject and aims of this

dissertation. This is precisely the goal of the next paragraph.

1.3.3. The subject of this work: motivation, methods, aims and applications

As indicated, the study of solution families of the Jacobi equations (24-25) and the con-

struction of global Darboux reductions for them is the generic framework of this thesis. Before

giving a more detailed description of such matters, it is interesting to add some background

on the motivation underlying this kind of analysis.

In first place, it is clear that the issue of describing a given vector field ẋ = f(x) not yet

explicitly written in the form (21) in terms of a Poisson structure is a fundamental question in

this context. This can be regarded as a sort of “inverse problem” which still remains as an open

issue (for instance, see [22,29,30,42,63,66,81,83,89,90,100,105,119,127,135,136,141,142,143,153]

and references therein). Expressing a vector function defining a vector field, f(x) : Rn →

Rn, in the form f(x) = J (x) · ∇H(x), with J (x) being a structure matrix, is a nontrivial

decomposition to which important efforts have been devoted in past years in a variety of

approaches. The source of the difficulty is obviously twofold: first, a known constant of

motion H(x) of the system able to play the role of the Hamiltonian is required. The problem

of constructing first integrals has been extensively investigated in the literature (for instance,

see [60] and references therein for a survey on the subject). Apart from the first integral H(x),

it is clearly necessary to find a suitable structure matrix for the vector field. Consequently,

finding a solution of the identities (25) complying also with the skew-symmetry conditions

(24) is unavoidable. Compared to the determination of first integrals (which is a consolidated

branch of research) this is a subject still in progress. Therefore, the need for a structure

matrix in the decomposition f(x) = J (x) ·∇H(x) just mentioned provides a first explanation

about the attention deserved in the literature by the obtainment and classification of skew-

symmetric solutions of the Jacobi equations (in this sense, see the discussion in Subsection

1.3.2 and references therein). Accordingly, the determination of new solutions of arbitrary

dimension will be an important part of this thesis.

In addition, in this context it will be of special interest the characterization of n-dimensional

solution families (with n arbitrary) leading to Poisson systems for which the Darboux con-
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struction can be globally determined. The reason is twofold: in one hand, we have that while

three-dimensional Poisson structures have been widely investigated, the number of known

families of arbitrary dimension is quite limited (in this sense, recall again the discussion in

Subsection 1.3.2). Additionally, we have already seen that (depending on the kind of appli-

cation) the mere knowledge of a given family of structure matrices may be not sufficient for

applied purposes if the Darboux canonical form cannot be globally constructed, thus providing

a full connection between the corresponding Poisson system and a classical Hamiltonian for-

mulation. Detailed reasons for this have been exposed in Subsection 1.2.6. In this sense, it is

worth emphasizing that the number of n-dimensional families for which an explicit and global

construction of the Darboux canonical form has been determined is quite limited, as it was

detailed in the previous subsection. Consequently, the construction of global Darboux reduc-

tions for different Poisson structures plays an important role in what follows, as we shall see.

Actually, the strategy of finding and analyzing solution families has the additional benefit of

providing a conceptual and operational unification of (seemingly) very different Poisson struc-

tures and systems that, when identified as particular cases of such a family, can be regarded

from a more elegant and economic standpoint. In fact, the general procedures developed for

the entire family now become directly applicable to every member of it, thus avoiding the

need of a case-by-case analysis. Various examples of this conceptual and operational unifica-

tion shall be seen in this work.

Together, the combined problem of determining new solutions of the Jacobi equations (24-

25) and the global Darboux analysis of those solutions (which includes the determination of

its Casimir invariants and thus the construction of the symplectic foliation for the system)

constitute a kind of nonlinear analysis to be applied over a set of coupled nonlinear PDEs.

Of course, such analysis entails an intrinsic mathematical interest which seems worth being

explored.

Therefore, in the next chapters attention will be paid to the combined problem of the

determination and the Darboux analysis of different Poisson structures. In this sense, several

comments are to be done. In Chapters 2 and 3 the most important conceptual contribution

lies in the Darboux analyses because the general solution of the Jacobi equations is already

known, as indicated in equations (39) and (41) of Subsection 1.3.2. However, this statement

is to some extent misleading because the knowledge of (39) and (41) is not of real usefulness

for the purposes of this work, and specifically for the construction of the Darboux canonical

form, due to the facts that (i) the constancy of the rank of solutions (39) is not ensured; and
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(ii) solution (41) is defined for the matrix inverse of J . This implies a specific interest in

the determination of suitable solution families of the Jacobi equations amenable to analysis.

Chapter 2 also includes, in Section 2.5, an illustration of a technique allowing a very significant

simplification of the Jacobi equations. The presentation of this methodology is justified as far

as it will provide the conceptual basis for the analysis of time reparametrizations in Chapter

4. In fact, the different Darboux reductions considered in Chapters 2 and 3 constitute also

the guide for the more general developments of Chapter 4. In this one, it is possible to

combine the determination of new solutions with their global analysis. This is done for different

families that are considered in detail. D-solutions are an exception to this trend since (due to

their remarkable mathematical character) their global Darboux analysis seems to be a very

specific issue not possible in general. Nevertheless, D-solutions display very general properties

regarding the generation of new Poisson structures from a given one, a subject considered

in detail. Chapter 4 also makes use of the philosophy anticipated in Section 2.5 in order to

provide additional results, based on time reparametrizations, which allow the generalization

of solution families previously determined in the chapter, as well as a better understanding

of when and how the Darboux analysis is actually possible. Specifically, some of the most

interesting results allowed by such methodology are the general global Darboux reduction for

n-dimensional Poisson structures of rank 2 (again, the use of (39) is to be excluded for this

purpose) and the generalization of the separable, multiseparable and D-solutions. In fact,

the perspectives developed from the concept of time reparametrization greatly unify most

lines of research considered along the work, which naturally converge on it. Accordingly, the

contributions based on the use of NTTs constitute the natural ending of this thesis.

From a purely methodological perspective, some significant issues deserve at least a short

explanation, which is briefly presented here. From the point of view of the general structure of

the dissertation, it can be emphasized that it basically consists in first place of an Introduction

(Chapter 1) devoted to recalling classical and well-known results necessary in order to make

this thesis self-contained. This is followed by Chapters 2, 3 and 4, which comprise the original

contributions of the work in an order of increasing complexity (and increasing dimension).

Finally, Chapter 5 contains the conclusions. It is worth indicating that the different sections

of Chapters 2 to 4 of this thesis have been written, as much as possible, in such a way that

they are also self-contained and readable independently, once a common terminological and

operational basis has been established in the present chapter.

It is necessary to specify that the tensor notation sometimes used in the investigation
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of the Jacobi equations (specially in those analyses relying on geometric techniques) will be

completely avoided here for the sake of simplicity, given that it is not necessary for the PDE

perspective adopted in this work, in which a standard subindex notation is simpler and equally

effective. Of course, it is well-known that Poisson structures have been widely investigated on

the basis of geometric techniques in which, for instance, the structure matrix is described as

a differential form rather than as a skew-symmetric matrix. As indicated, the point of view

of the present dissertation is the one of DEs. However, for the interested reader it is worth

mentioning some classical and modern references that develop in detail the geometric setting

of Poisson structures and systems [1,2,11,47,126,165,166].

In addition, still in a methodological context, it is precise to note that the majority of the

calculations performed in this dissertation can be carried out by hand. In this sense, useful

references frequently employed are [3,8,26,158]. However, many of such calculations have

been done (or verified) by means of the symbolic program Mathematica c© (for instance, see

[15,174] for a reference regarding this working environment).
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1.4. MISCELLANEOUS BACKGROUND AND TERMINOLOGY

The aim of this section is to provide a brief outline of some useful concepts that will be

useful throughout the forthcoming chapters. The motivation for doing this is twofold: in first

place, this is convenient in order to achieve a self-contained presentation; and in second term,

it also helps in fixing the notation and the terminology to be employed.

The structure of the section is the following. In Subsection 1.4.1 the domain of matrix

algebra is considered. Classical results on functional independence are regarded in Subsection

1.4.2. The important concept of equivalence between dynamical systems is the subject of

Subsection 1.4.3. To conclude, some definitions of integrability and related topics are presented

in Subsection 1.4.4.

1.4.1. Some results on matrix algebra

In this work real matrices will be used frequently. Accordingly, we review here some linear-

algebraic elementary results regarding such matrices [14,69,123,158,168]. Without exception,

all matrices considered in this work are real, and all definitions and properties also refer to

real matrices.

A square matrix will be termed regular or invertible if it has maximal rank. Otherwise it

will be named singular or degenerate matrix. If a matrix has n rows and m columns it will be

termed an n×m matrix. If a matrix is square with n rows and columns, we shall equivalently

say that such matrix is n× n or that it has order n.

Specifically, skew-symmetric matrices play an important role in what is to follow. A square

matrix S is termed skew-symmetric if ST = −S, with ST denoting the transpose of S. The

next one is an important property of these matrices:

Theorem 1.4.1.1. (Rank of a skew-symmetric matrix). If S is a real skew-symmetric

matrix, then Rank(S) is an even number.

In spite of its simplicity (the proof is straightforward) this property will play a very signif-

icant role in the next chapters, both from a mathematical and from a dynamical perspective.

We now define the direct sum of square matrices. Let A1, A2, . . . , Ak be square matrices of

arbitrary orders n1, n2, . . . , nk, respectively. The direct sum of such matrices will be denoted

either by A1⊕A2⊕ . . .⊕Ak or also by diag(A1, A2, . . . , Ak), and is given by the block-diagonal
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matrix:

A1 ⊕A2 ⊕ . . .⊕Ak = diag(A1, A2, . . . , Ak) =


A1 On1×n2 . . . On1×nk

On2×n1 A2 . . . On2×nk

...
...

. . .
...

Onk×n1 Onk×n2 . . . Ak



Sometimes it is convenient to use the expression A1

k︷ ︸︸ ︷
⊕ . . .⊕Ak instead of A1 ⊕A2 ⊕ . . .⊕Ak.

A useful property of the direct sum of matrices is that if A = diag(A1, A2, . . . , Ak) and B =

diag(B1, B2, . . . , Bk), where Ai and Bi have the same orders for all i = 1, . . . , k, then for the

product we have that A ·B = diag(A1 ·B1, A2 ·B2, . . . , Ak ·Bk).

Two real square matrices A and B of the same order n are said to be congruent on R if

there exists a regular real matrix L such that B = L · A · LT . It can be proved that two real

matrices congruent on R always have the same rank. In addition we have the following result,

specific for skew-symmetric matrices [14]:

Theorem 1.4.1.2. (Congruence of skew-symmetric matrices). Let S be a real skew-

symmetric matrix of order n and rank r = 2s. Then:

(a) Every real matrix congruent on R with S is also skew-symmetric.

(b) Matrix S is congruent on R with a canonical matrix JD[n,r] of the form:

JD[n,r] =

 0 1

−1 0

 s︷ ︸︸ ︷
⊕ . . .⊕

 0 1

−1 0

⊕O1

(n−r)︷ ︸︸ ︷
⊕ . . .⊕O1 (42)

(c) Two real skew-symmetric matrices of the same order are congruent on R if and only if

they have the same rank.

The use of the notation JD[n,r] for the canonical form (42) should be clear after the results

discussed in Section 1.2. In particular, subindexD refers to the fact that JD[n,r] is the Darboux

canonical form structure matrix.

1.4.2. Functional independence and related topics

It is worth recalling also some classical concepts and results that will be of use in the work,

mainly regarding the inverse function theorem and the concept of functional independence
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[50,95,124,139]. As usual, we shall say that a real function f : Rn → R is of class Cp if all

the partial derivatives up to order p exist and are continuous. The same function is termed

smooth or of class C∞ if it is of class Cp for all the positive integers p. The functions considered

throughout the dissertation will be usually defined in open subsets, or in domains (namely

open and connected subsets) of Rn.

Let us begin by the inverse function theorem. In general, if we have n functions of the

form 
y1 = f1(x1, . . . , xn)
...

...

yn = fn(x1, . . . , xn)

then the problem consists of studying whether or not to every (y1, . . . , yn) there is associated

a unique (x1, . . . , xn) = (g1(y1, . . . , yn), . . . , gn(y1, . . . , yn)), in such a way that
x1 = g1(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))
...

...

xn = gn(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))

and also 
y1 = f1(g1(y1, . . . , yn), . . . , gn(y1, . . . , yn))
...

...

yn = fn(g1(y1, . . . , yn), . . . , gn(y1, . . . , yn))

The classical result in this sense is provided by the inverse function theorem [50,124]:

Theorem 1.4.2.1. (Inverse function theorem). Let f(x) ≡ (f1(x), . . . , fn(x)) : Ω → Rn,

be a function of type C1(Ω), where Ω is an open subset of Rn, and let x0 ∈ Ω be a point such

that the determinant of the associated Jacobian matrix is different from zero at x0:∣∣∣∣ ∂(f1, . . . , fn)
∂(x1, . . . , xn)

(x0)
∣∣∣∣ 6= 0

Then there exists a neighborhood Υx0 of x0 in Ω and an open neighborhood Υy0 of y0 ≡ f(x0),

such that f(Υx0) = Υy0 and the restriction of f to Υx0 has a C1 inverse f−1(y) ≡ g(y) =

(g1(y), . . . , gn(y)) : Υy0 → Υx0. In addition, for y ∈ Υy0 and x = f−1(y) = g(y) we have:

∂(g1, . . . , gn)
∂(y1, . . . , yn)

=
(
∂(f1, . . . , fn)
∂(x1, . . . , xn)

)−1

Moreover, if f is of class Cp, p ≥ 1, so is g = f−1.

63



It is thus clear that the inverse function theorem is an existence theorem: it guarantees

the existence of the inverse function, but it does not provide an explicit expression for it.

Actually, such an expression may not exist in terms of elementary functions even in simple

cases. In addition it is important to note that, under the hypotheses of the theorem, the

transformation leading from x to f(x) is locally invertible, in a neighborhood of the point x0

in which the determinant of the Jacobian is not zero. But, in general, such transformation

will not be globally invertible, namely on the entire domain of definition of the function f . For

instance, consider the function:

f(x1, x2) =

 f1(x1, x2)

f2(x1, x2)

 =

 ex1 cosx2

ex1 sinx2


The determinant of the Jacobian is now:∣∣∣∣ ∂(f1, f2)

∂(x1, x2)

∣∣∣∣ =
∣∣∣∣∣∣ e

x1 cosx2 −ex1 sinx2

ex1 sinx2 ex1 cosx2

∣∣∣∣∣∣ = ex1 6= 0

for all (x1, x2) ∈ R2. Then, according to the inverse function theorem such function is injective

in a neighborhood of every point of R2. However, the function is not injective on the entire

plane R2 since obviously f(x1, x2) = f(x1, x2 + 2π).

Let us now turn to the notions of functional dependence and independence. These con-

cepts correspond in an intuitive way to the idea of a given function being, at the same time,

expressible as a function of one or more other functions, an issue that often appears in practice

in a great variety of situations. To be precise, let f1(x), . . . , fm(x) (with x = (x1, . . . , xn)) be

a set of m functions of class C1 defined in an open set Ω ⊂ Rn. It is said that a function

fk depends functionally in Ω on the functions fi(x), for i = 1, . . . ,m, i 6= k, if there exists

a class C1 function ψ such that fk(x) = ψ(f1(x), . . . , fk−1(x), fk+1(x), . . . , fm(x)) for every

x ∈ Ω. It is also said that the set of functions f1(x), . . . , fm(x) are functionally dependent

in Ω if at least one of them depends functionally on the rest. If this is not the case, the

functions f1(x), . . . , fm(x) are termed functionally independent. The following result provides

the classical necessary condition for functional dependence [50]:

Theorem 1.4.2.2. (Functional dependence). Let f1(x), . . . , fm(x) be m functions of class

C1 in an open set Ω ⊂ Rn. If f1(x), . . . , fm(x) are functionally dependent in Ω, then the rank

of the Jacobian matrix
∂(f1, . . . , fm)
∂(x1, . . . , xn)

is strictly less than m at every point x ∈ Ω.
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Notice in particular that in the case m = n, Theorem 1.4.2.2 states that in order that n

functions f1(x), . . . , fn(x) of n variables x = (x1, . . . , xn) are functionally dependent in Ω it

is necessary that the Jacobian determinant vanishes at every point x ∈ Ω. From Theorem

1.4.2.2 we also obtain easily the following corollary [50]:

Corollary 1.4.2.3. (Functional independence). Let f1(x), . . . , fm(x) be m functions of

class C1 in an open set Ω ⊂ Rn. If the rank of the Jacobian matrix

∂(f1, . . . , fm)
∂(x1, . . . , xn)

is equal to m at some point x0 ∈ Ω, then the functions f1(x), . . . , fm(x) are functionally

independent in Ω. In particular, if the determinant of the Jacobian matrix of n functions

f1(x), . . . , fn(x) with respect to x = (x1, . . . , xn) is different from zero at some point x0 ∈ Ω,

then the functions f1(x), . . . , fn(x) are functionally independent in Ω.

Additional necessary and sufficient conditions can be found in the literature. However, the

previous statements are the most used in practice, and they suffice in order to make this work

self-contained.

1.4.3. Equivalence between dynamical systems of the ODE type

One issue of great importance in this thesis regards the concept of system equivalence,

when applied to the comparison of smooth dynamical systems of the ODE type (as it is the

situation in the case of Poisson systems). There is not a unique, systematically applied, answer

to this question [21]. However, one of the most commonly accepted is the concept of topological

orbital equivalence (TOE) [10,21,96]. The basic notion underlying TOE is that two systems

are regarded as equivalent if the phase portrait of one of them can be continuously deformed

into the other, possibly retaining the sense of motion (namely the orientation) in the phase

space. TOE can be formally expressed in the following way: recall that a homeomorphism is

an association of the points x ∈ Rn and y ∈ Rn which is an one-to-one, continuous map with

a continuous inverse. Namely, we have f : X → Y or y = f(x), where f(x) is single-valued

and continuous. Moreover, the inverse x = f−1(y) is likewise single-valued and continuous.

A set in X is said to be topologically equivalent to a set in Y if the two sets can be mapped

into each other by a homeomorphism. This equivalence is too general for dynamic purposes,
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and in particular for TOE. A homeomorphism is called a diffeomorphism if both f and f−1

are differentiable at all points. In addition, a homeomorphism is orientation-preserving if a

right-handed coordinate system in X is mapped into a right-handed system in Y . (Recall

[46] that a right-handed coordinate system in Rn of basis {Bi = (bi1, . . . , bin) | i = 1, . . . , n}

expressed in terms of the canonical basis of Rn, is the one for which | B |> 0, where matrix

B is defined as B ≡ (bij) for i, j = 1, . . . , n). If the map is a diffeomorphism, then it is

orientation-preserving if the determinant of the Jacobian matrix is everywhere positive:∣∣∣∣∂(f1(x), . . . , fn(x))
∂(x1, . . . , xn)

∣∣∣∣ > 0 , everywhere.

If phase portraits (i.e. all orbits) of two given smooth ODE systems ẋ = f(x), with x ∈ Rn,

and ẏ = g(y), also with y ∈ Rn, can be related by an orientation-preserving homeomorphism,

then the two systems are TOE. In addition, if the transformation is also a diffeomorphism

this kind of equivalence is known as smooth orbital equivalence or SOE [21].

An interesting aspect of system equivalence is the fact that the preservation of the param-

eter on the trajectories (the time variable) is not required. In other words, for the purpose

of equivalence every trajectory is considered as a curve without parametrization but with the

orientation induced by the flow. Let us comment further on these issues. Consider two smooth

systems of ODEs:
dx
dt

= f(x) ,
dy
dτ

= g(y)

with both x ∈ Rn and y ∈ Rn. Then the concept of equivalence means that both systems are

TOE (respectively, SOE) if there exists an orientation-preserving homeomorphism (respec-

tively, diffeomorphism) y = y(x) together with a time reparametrization dτ = η(x)dt, with

η(x) > 0, which allow transforming each system into the other one. (See Subsection 1.2.4 for

the definition of time reparametrizations, also known as new-time transformations, or NTTs

for short).

For the conceptual framework of this thesis, SOE is the definition of system equivalence

adopted. In practice, however, the requirement to the diffeomorphism of being orientation-

preserving will be often disregarded in what is to follow. The reason is that the properties

to be analyzed here in connection with the concept of system equivalence (typically, the

determination of Casimir invariants of the global reduction to the Darboux canonical form)

are, without exception, not affected by possible changes in the orientation of the flow. This

explains that for practical purposes the equivalence between two systems will be often relaxed

in this work to the existence of a diffeomorphism and a time reparametrization connecting

those systems, with the understanding that inversions of the orientation may be present in
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such a case, but they do not alter the scope of the results considered. This explains also that

in Subsection 1.2.4 the function η(x) defining a time reparametrization was defined to be C∞

and nonvanishing (instead of being strictly positive). In what follows, every time that two

systems of ODEs are related, the exact form of the relationship between them will be specified.

1.4.4. Integrability of dynamical systems of the ODE type

Integrability is in its own right an important branch of nonlinear science in general, and

of Hamiltonian (and Poisson) systems in particular [9,21,60,110,159,161,164,167]. Needless to

say, the purpose of this subsection is not to account for the state of the art (such a thing

would be impossible here) but merely to fix the terminology as well as to provide a concise

review of the main results required for this work.

As in the case of system equivalence, there is not a unique or precise meaning for the term

“integrable system”. However some definitions and criteria are of very common use, and these

will be the ones adopted here.

Given an ODE-type dynamical system ẋ = f(x), with x ∈ Rn, a first integral (also called a

constant of motion) defined on an open subset U ⊂ Rn and interval T ⊂ R is a C1 real-valued

function I(x, t) : U × T → R such that its time derivative is zero for all (x, t) ∈ U × T :

dI(x, t)
dt

=
∂I(x, t)
∂t

+
n∑
i=1

fi(x)
∂I(x, t)
∂xi

= 0

Often the functions of interest are time-independent first integrals, namely those of the form

I(x). This case is of special dynamical interest because, when present, the system solutions

lie on the level sets of the time-independent constants of motion. A first integral is called

trivial if I(x, t) is actually a real number, namely it is independent of x and t. Clearly, if

I is a first integral so is g(I), where g is any C1 function. Obviously, I and g(I) are not

functionally independent first integrals. In practice, a set of first integrals is useful for the

dynamical investigation of the system as far as they are functionally independent.

Commonly, integrability is understood as the existence of sufficiently many first integrals

to render the global integration of the differential equations possible. In this context, the

term “global” is crucial: the question of local integrability is somehow trivial in the sense that

locally a sufficient number of independent first integrals always exists, as the following result

shows [60]:
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Theorem 1.4.4.1. Let f be C0 on an open subset V ⊂ (U × R). If the initial value problem

ẋ = f(x) with x(t0) = x0 has a unique C1 solution, then the vector field has n independent

first integrals of class C1 in a neighborhood of a point (x0, t0) ∈ V .

Therefore, the problem of finding local first integrals is trivial in the sense that the initial

value problem always provides local first integrals that can be built from the unique local

solution. Thus, the problem of integrability is generally understood as the problem of finding

globally defined first integrals. In what follows, this global character is assumed in connection

with integrability, and actually the global investigation of some integrability properties of

Poisson systems will be an important subject of this work. As said, different notions of

integrability and integrable systems can be found in the literature. We shall review here two

of special interest for what is to follow. The first one is valid for general dynamical systems

(namely systems that are not necessarily Hamiltonian) [60]:

Definition 1.4.4.2. (Algebraic integrability). A vector field ẋ = f(x), with x ∈ Rn, is

algebraically integrable if there exist (n−1) independent first integrals Ii, with i = 1, . . . , (n−1),

which are algebraic over R.

(Recall that a real-valued function I(x), with x ∈ Rn, is said to be algebraic over R if

there exist polynomials in x with real coefficients, υ0(x), υ1(x), . . . , υk(x), with k > 0, such

that: υ0 + υ1I + . . .+ υkI
k = 0).

A second standard definition, this time valid for classical Hamiltonian systems, is the

following one [60]:

Definition 1.4.4.3. (Liouville integrability). A Hamiltonian system of s degrees of free-

dom (s = n/2) and of Hamiltonian H(p, q) is Liouville integrable if there exist s independent

analytic first integrals I1 = H(p, q), I2, . . . , Is, in involution (namely, {Ii, Ij}c = 0 for all

i, j = 1, . . . , s).

Moreover, if the manifolds defined by the intersection of their level sets
s⋂
i=1

{Ii = ai | (p, q) ∈ Rn}

are compact and connected, then a theorem due to Arnol’d [9] states that they are topologically

real tori, namely they are homeomorphic to real tori. (In the context of Definition 1.4.4.3,
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recall that a real-valued function I(x), with x ∈ Rn, is termed analytic in an open set Ω ⊂ Rn

if it is smooth in Ω and its Taylor series expansion at any point x0 ∈ Ω is convergent to the

value of I(x) everywhere in a neighborhood of x0).

Compared to algebraic integrability, Liouville integrability is dimensionally advantageous.

In the case of algebraic integrability, it is intuitively clear that one first integral can be used

to reduce the dynamics of an n-dimensional system to a system evolving on a manifold of

dimension (n−1). Nicely, the structure of Hamiltonian systems is such that a first integral in an

n-dimensional phase space can be used to reduce the dynamics to an (n−2)-dimensional phase

space. If more first integrals in involution are known, the Liouville reduction can be repeated

to lower the dimension of the system. If the number of first integrals in involution is (s− 1),

then the system can be reduced to an one degree of freedom (hence, integrable) Hamiltonian

system. The construction of action-angle variables [57,110] is a well-known reduction of this

kind. The condition that the first integrals must be in involution is important for the existence

of the canonical coordinates that allow the Liouville integration of the Hamiltonian system.

It is interesting to note also that such involution condition implies that the first integrals

employed are isolating (the definition of isolating first integral is somehow technical and will

not be precise in this work; the interested reader is referred to [110]). For instance, in the

generalized case of Poisson systems (to which the concept of Liouville integrability can be

extended) the Casimir invariants are not isolating first integrals. Therefore the dimensional

reduction obtained from the use of Casimir functions must be based on the idea of algebraic

integrability, rather than on the one of Liouville integrability.

Remark 1.4.4.4. In the rest of this work it will be assumed that, if required, the smooth first

integrals (Casimir invariants and Hamiltonian functions) considered in connection with the

different problems examined, satisfy the functional properties that might be necessary for the

application of Definitions 1.4.4.2 and 1.4.4.3. To be precise, it is assumed that:

(a) When the property of algebraic integrability (Definition 1.4.4.2) is discussed for a Poisson

system, all the members of the complete set of Casimir invariants under consideration

as well as the Hamiltonian, are algebraic functions everywhere in the domain of interest.

(b) When the property of Liouville integrability (Definition 1.4.4.3) is discussed for a Hamil-

tonian system, its Hamiltonian is an analytic function everywhere in the domain of

interest.
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CHAPTER 2.

THREE-DIMENSIONAL SOLUTIONS

2.1. INTRODUCTION

This chapter is devoted to the global analysis of three-dimensional solutions of the Jacobi

equations. As we shall see along the work, the justification for this study is mainly twofold.

In one hand, this investigation will be the source of new results, mainly the explicit and global

characterization of the symplectic structure of the Poisson structures under consideration,

which leads to new global and constructive determinations of the Darboux canonical form,

a procedure only known for a very limited sample of Poisson structures. Another line of

investigation that is regarded in this chapter is the generation of new solutions starting from

a known one, a strategy that seems to be very fruitful as far as it leads to a significant

simplification of the Jacobi equations. These contributions provide interesting results and

methods that will lead to important clues for the investigation of the Jacobi equations in the

more general n-d framework in Chapter 4. Thus, a second fundamental justification for the

investigation of the 3-d scenario (regarding both the global determination of Casimir invariants

and of Darboux reductions, as well as the generation of solution families from a known one) is

the potential usefulness of these ideas, necessary for the development of generalized methods

and results in the n-d case.

The structure of the present chapter is the following. In Section 2.2 an investigation of

the 3-d Jacobi equations is performed. This leads to the determination of a threefold family

of solutions for which the global analysis is possible. Such analysis, including the global

characterization of the distinguished invariants and the global construction of the Darboux

canonical form, is presented on a case-by-case basis. In Sections 2.3 and 2.4 two additional

and formally very similar one each other (but different, namely not equivalent) families of

3-d Poisson structures are also characterized and globally analyzed in detail. To conclude, in

Section 2.5 it is proved how the knowledge of a given 3-d solution of the Jacobi equations can
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be used as a basis for the determination of an infinite family of additional solutions, in such

a way that the problem consisting in solving the Jacobi equations is significantly simplified:

this kind of philosophy will be very useful in the n-d context, as we shall see. Throughout the

different subsections, very diverse applied examples are presented in detail. The chapter ends

in Section 2.6 with some conclusions and final comments.
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2.2. A THREEFOLD THREE-DIMENSIONAL FAMILY

In this section, a systematic investigation of the skew-symmetric solutions of the three-

dimensional Jacobi equations is presented. As a result, three disjoint and complementary

subfamilies of solutions are characterized and globally analyzed [70].

The structure of the section is as follows. Subsection 2.2.1 provides an introduction in

which some notation is fixed. In Subsections 2.2.2 to 2.2.4, respectively, three different, disjoint

and complementary subfamilies of solutions are investigated including their characterization,

symplectic properties and global reduction to the Darboux canonical form. To conclude,

Subsection 2.2.5 contains some case-by-case instances reported in the literature.

2.2.1. Introduction

As indicated, the development of a systematic investigation of the three-dimensional Ja-

cobi equations (24-25) is the purpose of this section. As we shall see, three disjoint categories

of solutions of the problem appear naturally. For each of them, a subfamily of solutions is

found. Such subfamilies are remarkably general. This explains that many well-known three-

dimensional Poisson structures and dynamical systems now happen to appear embraced as

particular cases of a wider family, as we shall show in detail. Therefore, a first outcome is

that of the unification of many different Poisson structures seemingly unrelated. Moreover,

this unification is not only conceptual. In fact, the new families are amenable to explicit

and detailed analysis, in spite of their generality. In particular, it is possible to develop al-

gorithms for the determination of important properties such as the symplectic structure and

the Darboux canonical form. The advantage of these common strategies is that they are si-

multaneously valid for all the particular cases which can now be analyzed in a unified and

very economic way, instead of using a case-by-case approach. In addition, the methods devel-

oped are valid globally in phase space, thus improving the usual scope of Darboux’ theorem

which does only guarantee, in principle, a local reduction. The possibility of constructing the

Darboux canonical form is also remarkable in view that the practical determination of the

Darboux coordinates is a complicated task in general, which has been carried out only for a

very limited sample of systems, as discussed in the previous chapter.

For the sake of conciseness, in what follows we shall use the following notation for the

entries of three-dimensional structure matrices:

u(x) ≡ J12(x) , v(x) ≡ J31(x) , w(x) ≡ J23(x) (43)
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Now, if in the case n = 3 we simplify the Jacobi identities (25) with the help of (24) and

substitute also definition (43), then the joint system (24-25) takes the form:

u∂1v − v∂1u+ w∂2u− u∂2w + v∂3w − w∂3v = 0 (44)

The three-dimensional version of system (24-25) shall be written in the compact form (44) in

the rest of this section.

2.2.2. First case: characterization and global Darboux analysis

For the characterization of the first subfamily of solutions, it is convenient to begin with

the establishment of an important general property [63,70] of equation (44):

Proposition 2.2.2.1. Let (u(x), v(x), w(x)) be a set of C∞(Ω) functions solution of equation

(44) in a domain Ω ⊂ R3, and let η(x) : Ω → R be an arbitrary C∞(Ω) function. Then

(u∗(x), v∗(x), w∗(x)) = (η(x)u(x), η(x)v(x), η(x)w(x)) is also a solution of equation (44).

Proof. After substitution of (u∗(x), v∗(x), w∗(x)) = (η(x)u(x), η(x)v(x), η(x)w(x)) into equa-

tion (44) we arrive at:

η [u∂1(ηv)− v∂1(ηu) + w∂2(ηu)− u∂2(ηw) + v∂3(ηw)− w∂3(ηv)] =

η [ηu∂1v + uv∂1η − ηv∂1u− uv∂1η + ηw∂2u+ uw∂2η−

ηu∂2w − uw∂2η + ηv∂3w + vw∂3η − ηw∂3v − vw∂3η] = 0

This completes the proof. Q.E.D.

It is important to stress that this proposition is not valid in general in dimensions higher

than three, as it can be easily verified [70]. In order to physically interpret the result contained

in Proposition 2.2.2.1 it is necessary to first recall the concept of time reparametrization (see

Subsection 1.2.4). For the moment, here we provide the following specific definition, valid for

the rest of the chapter:

Definition 2.2.2.2. Let Ω ⊂ R3 be a domain. A reparametrization of time is defined as a

transformation of the form

dτ =
1

η(x)
dt (45)
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where t is the initial time variable, τ is the new time and η(x) : Ω → R is a C∞(Ω) function

which does not vanish in Ω.

In addition, let
dx
dt

= J · ∇H (46)

be an arbitrary three-dimensional Poisson system defined in a domain Ω ⊂ R3. Then, every

reparametrization of time of the form (45) leads from (46) to the differential system:

dx
dτ

= ηJ · ∇H (47)

Consequently, in the three-dimensional case reparametrizations (45) preserve the existence

of a Poisson structure in the system, this time with structure matrix ηJ in (47). On the

contrary, such transformations in general destroy the Poisson structure in higher dimensions

because for a given J which is a structure matrix, ηJ is not necessarily a solution of (24-25).

We proceed now to characterize a first subfamily of solutions of equation (44). For this,

we shall assume that none of the solution functions (u(x), v(x), w(x)) is identically zero (the

relaxation of this condition will lead to the other two subfamilies of solutions, as we shall see

in Subsections 2.2.3 and 2.2.4).

Definition 2.2.2.3. For every domain Ω ⊂ R3, we shall denote by Γ[u,v,w](Ω) the set of

solutions of equation (44) defined in Ω which are of the form (u(x), v(x), w(x)), with u(x),

v(x) and w(x) nonvanishing in Ω and C∞(Ω).

We now have the following result:

Theorem 2.2.2.4. Consider the family of functions of the form
u(x) = η(x)ψ1(x1)ψ2(x2)φ3(x3)

v(x) = η(x)ψ1(x1)φ2(x2)ψ3(x3)

w(x) = η(x)φ1(x1)ψ2(x2)ψ3(x3)

(48)

defined in a domain Ω ⊂ R3, where (η, ψi, φi), i = 1, 2, 3, are arbitrary C∞(Ω) functions of

their respective arguments which do not vanish in Ω. Then the family of functions (48) belongs

to Γ[u,v,w](Ω).
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Proof. For solutions belonging to Γ[u,v,w](Ω), we can equivalently write (44) as:

u2∂1

(v
u

)
+ w2∂2

( u
w

)
+ v2∂3

(w
v

)
= 0 (49)

From (49) it is clear that (u(x), v(x), w(x)) are solutions if we take:

v

u
= α(x2, x3) =⇒

 u = u1(x2, x3)ψ1(x)

v = v1(x2, x3)ψ1(x)
(50)

u

w
= β(x1, x3) =⇒

 u = u2(x1, x3)ψ2(x)

w = w2(x1, x3)ψ2(x)
(51)

w

v
= γ(x1, x2) =⇒

 v = v3(x1, x2)ψ3(x)

w = w3(x1, x2)ψ3(x)
(52)

In (50-52) the functions (α, β, γ, ui, vi, wi, ψj), with i ∈ {1, 2, 3} and j = 1, 2, 3, are C∞(Ω)

and nonvanishing arbitrary functions of their respective arguments. A family of solutions of

equations (50-52) is found if we assume that ψj(x) ≡ ψj(xj) for all j = 1, 2, 3. Then, taking

also into account Proposition 2.2.2.1 and Definition 2.2.2.3 we arrive at result (48). Q.E.D.

Therefore, we can equivalently state:

Corollary 2.2.2.5. For every domain Ω ⊂ R3, solution (48) can be written as:

Jij(x) = η(x)ψi(xi)ψj(xj)
3∑

k=1

εijkφk(xk) , i, j = 1, 2, 3 (53)

where (η, ψi, φi) are arbitrary C∞(Ω) functions of their respective arguments which do not

vanish in Ω and ε is the Levi-Civita symbol.

Now it is convenient to introduce the following:

Definition 2.2.2.6. For every domain Ω ⊂ R3, the subset of Γ[u,v,w](Ω) composed of those

solutions of equation (44) given in Theorem 2.2.2.4 will be denoted ∆(Ω).

As anticipated in Subsection 2.2.1, the generality of solutions (53) is not an obstacle in what

regards the characterization of their main properties. We begin by the symplectic structure

and the Casimir invariant.
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Proposition 2.2.2.7. For every domain Ω ⊂ R3, the rank of the structure matrices belonging

to ∆(Ω) is constant in Ω and equal to 2, and a Casimir function of the family of solutions

(53) forming ∆(Ω) is

D(x) =
3∑
i=1

∫
φi(xi)
ψi(xi)

dxi (54)

Moreover, the Casimir invariant (54) is globally defined in Ω.

Proof. The rank is constant in Ω and has value 2 as a consequence of the nonvanishing

properties of functions (η, ψi, φi). In addition, according to the Pfaffian method for the deter-

mination of Casimir invariants (see Appendix 1 and references therein), which is the simplest

in this case, the Casimir function is found to be the solution of the system

3∑
i=1

φi(xi)
ψi(xi)

dxi = 0

The integration is immediate and leads to (54). The remaining properties of the Casimir

invariant also arise from those of functions φi and ψi. Q.E.D.

It is interesting to note that η(x) does not affect neither the symplectic structure nor the

form of the Casimir invariant. This is to be expected from the fact that it is a common factor

of the structure functions. An additional consequence of Proposition 2.2.2.7 is:

Corollary 2.2.2.8. Consider that the assumptions of Remark 1.4.4.4 hold. Every three-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ R3 and such that the

structure matrix J (x) belongs to ∆(Ω), is an algebraically integrable system in Ω.

We proceed now to construct globally the Darboux canonical form.

Theorem 2.2.2.9. For every three-dimensional Poisson system

dx
dt

= J (x) · ∇H(x)

defined in a domain Ω ⊂ R3 and such that J ∈ ∆(Ω), the Darboux canonical form is ac-

complished globally in Ω in the new coordinate system (z1, z2, z3) and the new time τ , where
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(z1, z2, z3) is related to (x1, x2, x3) by the diffeomorphism globally defined in Ω

z1(x1) =
∫

φ1(x1)
ψ1(x1)

dx1

z2(x2) =
∫

φ2(x2)
ψ2(x2)

dx2

z3(x) =
3∑
i=1

∫
φi(xi)
ψi(xi)

dxi

and the new time τ is given by a time reparametrization of the form:

dτ = η(x(z))φ1(x1(z))φ2(x2(z))φ3(x3(z))dt

Proof. We begin by noticing that Darboux’ theorem (Theorem 1.2.3.3) is applicable to family

(53) because its members have constant rank 2 everywhere in Ω, as seen in Proposition 2.2.2.7.

This is a key necessary condition which is verified in the case of ∆(Ω). Recall also that, after a

general smooth change of coordinates y = y(x), a given structure matrix J (x) is transformed

into another one J ∗(y) according to the rule (30):

J∗ij(y) =
n∑

k,l=1

∂yi
∂xk

Jkl(x)
∂yj
∂xl

, i, j = 1, . . . , n (55)

The reduction can be carried out in three steps:

Step 1. We perform a first change of variables, which is globally diffeomorphic in Ω:

yi(xi) =
∫

φi(xi)
ψi(xi)

dxi , i = 1, 2, 3 (56)

The diffeomorphic character of (56) is a direct consequence of the fact that both yi(xi)

and its inverse xi(yi) are differentiable for every i = 1, 2, 3, and in addition we have

y′i(xi) 6= 0 and x′i(yi) 6= 0 everywhere. According to (55) we arrive at:

J ∗(y) = η̃(y)


0 1 −1

−1 0 1

1 −1 0

 (57)

where η̃(y) = η(x(y))φ1(x1(y1))φ2(x2(y2))φ3(x3(y3)).
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Step 2. We can make use of the Casimir D(y) = y1 + y2 + y3 of J ∗(y) in (57) and perform

a second change of variables globally diffeomorphic in Ω∗ = y(Ω) ⊂ R3:
z1 = y1

z2 = y2

z3 = y1 + y2 + y3

(58)

In the case of (58) the diffeomorphic nature of the transformation in R3 is clear since it

is a linear and invertible transformation. The new structure matrix can be found again

by means of (55):

J ∗∗(z) = η̂(z)


0 1 0

−1 0 0

0 0 0


where η̂(z) = η̃(y(z)).

Step 3. Finally, we can carry out a reparametrization of time of the form (45), namely dτ =

η̂(z)dt, where τ is the new time and η̂(z) is easily seen to be nonvanishing in Ω∗∗ =

z(y(Ω)) and C∞(Ω∗∗). The result is, according to Proposition 2.2.2.1 and (46-47), a

new Poisson system with structure matrix

JD[3,2](z) =


0 1 0

−1 0 0

0 0 0

 (59)

and time τ . Consequently, the structure matrix JD[3,2] in (59) is already the one corre-

sponding to the Darboux canonical form.

The reduction is thus globally completed. Q.E.D.

According to the remarks made in Section 1.2 in connection with Darboux’ theorem,

it is worth noting an interesting corollary of Theorem 2.2.2.4, namely that all the diverse

instances shown in Subsection 2.2.5 can actually be seen as the global representation of the

same basic Poisson structure (namely the Darboux one) in different systems of coordinates.

This is obviously a consequence of the transformation rule (55). However, in the case of

Theorem 2.2.2.9 this equivalence is proved globally in Ω, thus exceeding the usual scope of

Darboux’ theorem. Notice also how this is founded on the fact that the rank of the structure

matrix remains constant in Ω, which is ensured by the nonvanishing conditions verified by

the structure functions. Consideration of a possible variability in the value of the rank would
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lead to additional geometric issues [109,114,171] not regarded in this work for the sake of

conciseness. In addition, the global Darboux reduction implies the following:

Corollary 2.2.2.10. Consider that the assumptions of Remark 1.4.4.4 hold. Every three-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ R3 and such that the

structure matrix J (x) belongs to ∆(Ω), can be reduced globally and diffeomorphically in Ω to

a Liouville integrable Hamiltonian system.

The description of the first subfamily of solutions is thus completed. We now proceed to

examine the second possibility.

2.2.3. Second case: characterization and global Darboux analysis

The second subfamily of solutions arises when we consider the case in which one of the

structure functions (u, v, w) is identically zero, while the remaining two are not.

Definition 2.2.3.1. For every domain Ω ⊂ R3, we shall denote by Γ[v,w](Ω), Γ[u,w](Ω) and

Γ[u,v](Ω) the sets of solutions (u, v, w) of equation (44) defined in Ω which are of the forms

(0, v(x), w(x)), (u(x), 0, w(x)) and (u(x), v(x), 0), respectively, where u(x), v(x) and w(x) are,

when present, C∞(Ω) and nonvanishing in Ω.

Then, for the present context we have the following result:

Theorem 2.2.3.2. For every domain Ω ⊂ R3, the general solutions of equation (44) corre-

sponding to Γ[v,w](Ω), Γ[u,w](Ω) and Γ[u,v](Ω) are, respectively,

Γ[v,w](Ω) ⇒ (u = 0, v = η(x), w = η(x)ξ(x1, x2)) (60)

Γ[u,w](Ω) ⇒ (v = 0, w = η(x), u = η(x)ζ(x1, x3)) (61)

Γ[u,v](Ω) ⇒ (w = 0, u = η(x), v = η(x)χ(x2, x3)) (62)

where functions (η, ξ, ζ, χ) appearing in (60-62) are arbitrary, C∞(Ω) with regard to their

respective arguments and nonvanishing in Ω.

Proof. It is immediate after substitution in equation (44). Q.E.D.
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Accordingly, for example in the case u = 0 we have found structure matrices of the form

J = η(x)


0 0 −1

0 0 ξ(x1, x2)

1 −ξ(x1, x2) 0

 (63)

where η(x) and ξ(x1, x2) are C∞(Ω) and nonvanishing in Ω. As it can be seen, the overall

factor considered in Proposition 2.2.2.1 already appears explicitly in (63) and needs not be

added a posteriori.

Following the same scheme than in the previous subsection, we now proceed to develop

the main properties of the solutions just found. For the sake of conciseness this shall be done

only for the case Γ[v,w](Ω), given that all the corresponding algorithms and results are entirely

analogous for Γ[u,w](Ω) and Γ[u,v](Ω).

We shall begin with the symplectic structure and Casimir invariants. Again, the Pfaffian

method (see Appendix 1) seems to be the simplest one in order to characterize these properties.

From (63) the Pfaffian system to be solved is easily seen to be ξ(x1, x2)dx1 +dx2 = 0. Clearly,

this equation cannot be solved without some additional information because it is very generic.

In order to restrict the problem, it is worth introducing an additional condition:

Definition 2.2.3.3. Let Ω ⊂ R2 be a domain and let ξ : Ω → R be a C∞(Ω) function which

does not vanish in Ω. We shall say that ξ(x1, x2) is separable in Ω if it can be written in the

form

ξ(x1, x2) =
ξ1(x1)
ξ2(x2)

(64)

for all (x1, x2) ∈ Ω, where ξ1(x1) and ξ2(x2) are C∞(Ω) and do not vanish in Ω.

Now note that all specific systems found in practice (see Subsection 2.2.5) verify the

property that ξ(x1, x2) is separable (notice that the only exception is the case of 3-d systems

with a known first integral [81], but this is not a specific system but a generic situation

which does not correspond to any particular vector field, and therefore it does not affect the

generality of (64)). An analogous property is verified for all examples of functions ζ(x1, x3)

and χ(x2, x3). Consequently, it seems well justified to conclude that, typically, ξ, ζ and χ will

be separable in the form indicated in Definition 2.2.3.3.
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Proposition 2.2.3.4. For every domain Ω ⊂ R3, if a solution of the form (60) belonging to

Γ[v,w](Ω) has a function ξ(x1, x2) which is separable in Ω according to (64), then the rank of

such structure matrix is constant in Ω and has value 2, and a Casimir function of the Poisson

structure is

D(x1, x2) =
∫
ξ1(x1)dx1 +

∫
ξ2(x2)dx2 (65)

In addition, the Casimir invariant (65) is globally defined in Ω.

Proof. The rank is constant and of value 2 in Ω due to the nonvanishing properties of η, ξ1

and ξ2. Additionally, taking (64) into account the Pfaffian system to be solved (see Appendix

1) becomes ξ1(x1)dx1 + ξ2(x2)dx2 = 0. This leads to the Casimir function immediately. The

remaining properties of the Casimir invariant are a direct consequence of those of ξ1 and ξ2.

Q.E.D.

Thus, only the knowledge of the Casimir invariant (65) leads to:

Corollary 2.2.3.5. Suppose that the assumptions of Remark 1.4.4.4 hold. Consider a three-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ R3 in which the

structure matrix J (x) is of the kind (60) belonging to Γ[v,w](Ω) and has a function ξ(x1, x2)

which is separable in Ω according to (64). Then such Poisson system is algebraically integrable

in Ω.

In addition, the Darboux canonical form can also be computed under similar assumptions:

Theorem 2.2.3.6. For every three-dimensional Poisson system

dx
dt

= J (x) · ∇H(x)

defined in a domain Ω ⊂ R3 and such that J ∈ Γ[v,w](Ω) is given by (60) and ξ(x1, x2) in

(60) is separable in Ω according to (64), the Darboux canonical form is accomplished globally

in Ω in the new coordinate system (y1, y2, y3) and the new time τ , where (y1, y2, y3) is related

to (x1, x2, x3) by the diffeomorphism globally defined in Ω
y1 =

∫
ξ1(x1)dx1 +

∫
ξ2(x2)dx2

y2 = x2

y3 = x3

(66)
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and the new time τ is given by a time reparametrization of the form:

dτ = η(x(y))
ξ1(x1(y))
ξ2(y2)

dt

Proof. Notice first that Darboux’ theorem is applicable in this case because solutions of

Γ[v,w](Ω) of the form (63-64) have constant rank 2 everywhere in Ω, as anticipated in Propo-

sition 2.2.3.4. The reduction can be carried out in two steps:

Step 1. The change of variables (66), which is globally diffeomorphic in Ω, is introduced. To

see that it is actually a global diffeomorphism, notice that it is globally one-to-one as a

consequence that ξ1(x1) 6= 0 everywhere, and in addition the transformation is globally

onto (since Ω∗ = y(Ω) by definition). Thus transformation (66) is a global bijection:

therefore its global inverse exists and is unique, and moreover both are differentiable

everywhere because transformation (66) is smooth and its Jacobian is regular everywhere

in Ω. Notice that (66) is not the only possibility but it would be similar, for instance, to

choose (y1 = x1, y2 = D(x1, x2), y3 = x3). From (55), (63), (64) and (66) we are led to:

J ∗(y) = η̃(y)


0 0 0

0 0 1

0 −1 0


where η̃(y) = η(x(y))ξ(x(y)) = η(x(y))ξ1(x1(y))/ξ2(y2).

Step 2. A reparametrization of time of the kind (45), i.e. dτ = η̃(y)dt, where τ is the new

time and η̃(y) is clearly nonvanishing in Ω∗ = y(Ω) and C∞(Ω∗). The resulting structure

matrix is

J̃D[3,2](y) =


0 0 0

0 0 1

0 −1 0

 (67)

Since J̃D[3,2] in (67) corresponds to the Darboux canonical form (given that it coincides with

JD[3,2] apart from a simple reordering of the variables) we have that the reduction has been

accomplished globally. Q.E.D.

This reduction implies also:
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Corollary 2.2.3.7. Suppose that the assumptions of Remark 1.4.4.4 hold. Consider a three-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ R3 in which the

structure matrix J (x) is of the kind (60) belonging to Γ[v,w](Ω) and has a function ξ(x1, x2)

which is separable in Ω according to (64). Then such Poisson system can be reduced globally

and diffeomorphically in Ω to a Liouville integrable Hamiltonian system.

The present analysis of the solutions of (44) can now be completed without difficulty. This

is the aim of the next subsection.

2.2.4. Third case: characterization and global Darboux analysis

Following the previous considerations, the last possibility is to look for solutions of (44)

such that two of the three functions (u, v, w) are identically zero, while the remaining one is

not.

Definition 2.2.4.1. The sets of solutions (u, v, w) of equation (44) defined in a domain

Ω ⊂ R3 which are of the forms (u(x), 0, 0), (0, v(x), 0) and (0, 0, w(x)), where u(x), v(x)

and w(x) are C∞(Ω) and nonvanishing in Ω, will be denoted Γ[u](Ω), Γ[v](Ω) and Γ[w](Ω),

respectively.

Since all the results which are going to be examined are completely analogous for Γ[u](Ω),

Γ[v](Ω) and Γ[w](Ω), we shall concentrate without lack of generality on the analysis of Γ[w](Ω).

Theorem 2.2.4.2. For every domain Ω ⊂ R3, the general solution of equation (44) corre-

sponding to Γ[w](Ω) consists of the sets of functions of the form (u = 0, v = 0, w(x)), where

w(x) is an arbitrary function of class C∞(Ω) and nonvanishing in Ω. Analogous results hold

for Γ[u](Ω) and Γ[v](Ω).

Proof. It is immediate from equation (44). Q.E.D.

Accordingly, for example in the case of Γ[w](Ω) we have arrived to solutions of the form

J (x) = η(x)


0 0 0

0 0 1

0 −1 0

 (68)
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with η(x) a function C∞(Ω) and nonvanishing in Ω. Notice that the multiplication by a global

factor considered in Proposition 2.2.2.1 needs not be taken into account here, since it is already

explicit in (68). Note also that solutions described by Theorem 2.2.4.2 correspond to structure

matrices which are just time reparametrizations of the Darboux canonical form (in particular,

the Casimir invariant D(x) = x1 appears as already decoupled, and therefore it is explicit).

Consequently, this kind of solutions is quite simple and is only considered here for the sake of

completeness: the analysis of features such as the Casimir invariants (which are decoupled)

or the construction of the Darboux canonical form (which amounts to performing a time

reparametrization) becomes a straightforward version of those considered in Subsections 2.2.2

and 2.2.3, and can therefore be omitted. To conclude, we also have the following statement

about integrability issues:

Corollary 2.2.4.3. Suppose that the assumptions of Remark 1.4.4.4 hold. Consider a three-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ R3 in which the

structure matrix J (x) is of one of the three kinds Γ[u](Ω), Γ[v](Ω) or Γ[w](Ω) characterized

in Theorem 2.2.4.2. Then such Poisson system is algebraically integrable in Ω, and it can be

reduced globally and diffeomorphically in Ω to a Liouville integrable Hamiltonian system.

We conclude this section by regarding to some instances of Poisson structures of the three

kinds just analyzed.

2.2.5. Case-by-case examples

The number of Poisson structures embraced by the previous three subfamilies is very

significant. For this reason, we shall not attempt to provide instances of how the constructive

procedures developed work (namely the determination of Casimir invariants or the reduction

to the Darboux canonical form) since in this case it seems more illustrative of the generality of

the results achieved to provide a brief enumeration of the very diverse Poisson structures and

systems that hereafter appear to be unified in the common methodological and conceptual

framework established after the solution subfamilies investigated.

In first place, it can be said that the family of solutions ∆(Ω) is very general, therefore con-

taining numerous previously known structure matrices of very diverse three-dimensional sys-

tems as particular cases, as we shall see in detail now. Of special relevance are the Lie-Poisson

structure matrix associated with the Lie algebra so(3) (for which ψi(xi) = 1, φi(xi) = xi and
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η = 1, such as in the Euler top [139]) as well as the separable matrices [85] (φi(xi) = constant,

η = 1). Among other instances of well-known Poisson structures described by the solution

subfamily (48) just analyzed, we can mention the Kermack-McKendrick model for epidemics

[63,135], several integrable cases of the Lorenz system [55], the Lotka-Volterra equations from

population dynamics [63,136,143], their QP (or Quasi-Polynomial) Poisson generalization [83],

the Maxwell-Bloch equations [42], different formulations of the Rabinovich system [55], the

RTW interaction equations [55], or the spin system [114]. A detailed list analyzing these

examples can be found in [70] (see Table I of such reference). It is worth recalling that the

time dependence of some of the structure matrices enumerated in the previous list of examples

is immaterial in this context, since the Jacobi equations are time-independent and therefore

time plays the only role of a parameter in the solutions.

Analogously, numerous well-known systems from diverse fields have structures matrices

which are particular cases of (60), (61) or (62). Let us cite a sample of each kind.

As particular cases of Γ[v,w](Ω), we can mention the Poisson structure for the system

of circle maps [63], the May-Leonard equations [63], several formulations of the Rabinovich

system [55], or the Poisson structure for 3-d systems with a known first integral [81].

Regarding Γ[u,w](Ω), some instances are found in connection with the Kermack-McKendrick

model for epidemics [63,135], some integrable cases of the Lorenz system [55,63] and of the

Maxwell-Bloch equations [42,63], and the two energy level system equations [63].

And in connection with Γ[u,v](Ω), we have instances in the context of the system of circle

maps [63], the Lorenz system [63], the Maxwell-Bloch equations [42], the May-Leonard system

in population dynamics [63] or the Rabinovich equations [55].

Detailed tables analyzing these three families of examples can be found in [70], specifically

Table II for Γ[v,w](Ω), Table III for Γ[u,w](Ω) and Table IV for Γ[u,v](Ω). The reader is referred

to such tables for further details regarding the functional structure of the previous examples.

To conclude, it can be said that in spite of their simplicity, examples of Poisson structures

corresponding to Γ[u](Ω), Γ[v](Ω) or Γ[w](Ω) are not uncommon in the literature [42,70]. In

addition, it is worth mentioning that there is an important category of particular cases of (68)

which are present in diverse applications, namely the Lie-Poisson structure matrices associated

with the Lie algebra so(3) when expressed in certain systems of noncartesian coordinates
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(y1, y2, y3). The simplest possibility is perhaps that of spherical coordinates [139]:

Jso(3)(y1, y2, y3) = − 1
y1 sin y3


0 0 0

0 0 1

0 −1 0


Additional instances of (68) arising from the Lie algebra so(3) for other choices of the coordi-

nate system are also of customary use [114].
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2.3. CYCLIC SOLUTIONS OF TYPE I

In this section, an additional three-dimensional family of solutions of the Jacobi equations

is characterized and globally analyzed [76]. In particular, it is worth noting that in spite of

its general form (defined in terms of functions of an arbitrary nonlinearity) it is possible the

explicit and global determination of its main features, such as the case-classification of the

Casimir invariants and the global construction of the Darboux canonical form. As we shall

see, the analysis of this family has a special interest arising from the fact that a complete

understanding of the global analysis of these solutions implies a case classification such that a

different distinguished invariant is to be used in each case. In other words, the mere knowledge

of one nontrivial distinguished invariant now does not guarantee the reduction to the Darboux

canonical form, in spite that we are dealing with a structure matrix of constant rank 2.

Accordingly, the symplectic analysis of this kind of Poisson structures requires the use of

a case-dependent global Casimir invariant and subsequent global Darboux reduction. Such

classification is carried out in the present section.

The structure of the section is the following. In Subsection 2.3.1 the solution family

is characterized. The classification of the Casimir invariants and the associated Darboux

reductions are developed in Subsection 2.3.2. The analysis concludes in Subsection 2.3.3 with

some examples.

2.3.1. Characterization of the family

The first result to be presented is the following one:

Theorem 2.3.1.1. Let (η(x), φ1(x1), φ2(x2), φ3(x3)) be a set of functions defined in a domain

Ω ⊂ R3, all of which are C∞(Ω) and nonvanishing in Ω. In addition, let κij, i, j = 1, 2, 3, be

arbitrary real constants that are skew-symmetric

κij + κji = 0 , for all i, j (69)

and satisfy the zero-sum condition

κ12 + κ23 + κ31 = 0 (70)

Then J = (Jij) is a family of 3-d structure matrices which are globally defined in Ω, with

Jij(x) = η(x) (ψi(xi)− ψj(xj) + κij)
3∑

k=1

(εijk)2φk(xk) , i, j = 1, 2, 3 (71)
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where εijk is the Levi-Civita symbol, and for every i = 1, 2, 3, function ψi(xi) denotes one of

the primitive functions of φi(xi).

Proof. Skew-symmetry is already explicit in expression (71). Recall that for n = 3, system

(24-25) actually consists of the following independent nonlinear equation:

J12∂1J31 − J31∂1J12 + J23∂2J12 − J12∂2J23 + J31∂3J23 − J23∂3J31 = 0 (72)

Consider first family (71) in the particular case η(x) = 1. For this, let Ĵij(x) ≡ Jij(x)/η(x) in

(71). Then, substitution in (72) produces after some algebra:

Ĵ12∂1Ĵ31 − Ĵ31∂1Ĵ12 + Ĵ23∂2Ĵ12 − Ĵ12∂2Ĵ23 + Ĵ31∂3Ĵ23 − Ĵ23∂3Ĵ31 =

(ψ1 − ψ2 + κ12)φ3(−φ1)φ2 − (ψ3 − ψ1 + κ31)φ2φ1φ3 + (ψ2 − ψ3 + κ23)φ1(−φ2)φ3−

(ψ1 − ψ2 + κ12)φ3φ2φ1 + (ψ3 − ψ1 + κ31)φ2(−φ3)φ1 − (ψ2 − ψ3 + κ23)φ1φ3φ2 =

−2φ1φ2φ3(κ12 + κ23 + κ31) = 0

This proves the result for the case η = 1. For general η it suffices to recall Proposition

2.2.2.1 in which it is shown that in the 3-d case ηJ is a structure matrix for every arbitrary

nonvanishing C∞ function η(x) and for every structure matrix J . The proof is thus complete.

Q.E.D.

Now some remarks are in order. In first place, it is useful for what is to follow to give the

explicit form of the components of J for family (71), which are:
J12(x) = η(x) (ψ1(x1)− ψ2(x2) + κ12)φ3(x3)

J23(x) = η(x) (ψ2(x2)− ψ3(x3) + κ23)φ1(x1)

J31(x) = η(x) (ψ3(x3)− ψ1(x1) + κ31)φ2(x2)

As indicated in Theorem 2.3.1.1, for every i the primitive ψi(xi) of φi(xi) must be chosen to

be one and the same for all the entries of J . However, the specific choice is actually arbitrary.

To see this it suffices to notice that if a different integration constant is selected, for instance

after replacing ψi(xi) by ψi(xi) + ki for every i, then the outcome is also a member of the

solution family, this time with constants κ̃ij = κij + ki − kj , which also verify (69-70). Thus

conditions (69-70) express in a generalized form this degree of freedom associated with the

choice of the primitives of functions φi(xi).

Secondly, notice that the form of the Poisson structures we are dealing with is such that

only two possibilities exist regarding the vanishing of the independent entries (J12, J23, J31) at
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a given point, namely: (i) either none or one of them vanishes (case of rank two), or (ii) all

of them vanish (case of zero rank). To see this, it is convenient to define the functions:

χij(xi, xj) ≡ ψi(xi)− ψj(xj) + κij , i, j = 1, 2, 3

Thus it is clearly not possible that only two of such entries (J12, J23, J31) vanish at the same

point, as a consequence of the zero-sum relation χ12(x1, x2) + χ23(x2, x3) + χ31(x3, x1) =

0. Accordingly, when dealing with the nontrivial case in which the rank of these structure

matrices is equal to 2, we know in advance that for every point x ∈ Ω there are at least two

pairs (i, j) ∈ {(1, 2), (2, 3), (3, 1)} for which function χij(xi, xj) 6= 0. These features will be

useful in the next subsection.

To conclude, it is interesting for what is to come to recall the physical interpretation of the

degree of freedom corresponding to the factor η(x), namely the fact that in the 3-d case ηJ is

a structure matrix if and only if J is [63,70]. Such result is not generally valid for dimension

n ≥ 4, as already mentioned. The interpretation of such three-dimensional feature is naturally

associated with time reparametrizations [70], which are transformations of the form

dτ =
1

η(x)
dt (73)

where t is the initial time variable, τ is the new time and η(x) : Ω → R is a C∞(Ω) function

which does not vanish in Ω. Thus, if

dx
dt

= J · ∇H (74)

is an arbitrary three-dimensional Poisson system defined in Ω, then every time reparametriza-

tion (73) leads from (74) to the system:

dx
dτ

= ηJ · ∇H (75)

Therefore, in the 3-d case time reparametrizations (73) preserve the Poisson structure, this

time with structure matrix ηJ in (75). This is not the case in general for n ≥ 4, as indicated.

2.3.2. Casimir invariants and global Darboux analysis

We can now characterize some of the properties of the family identified in Theorem 2.3.1.1.

In first place, we focus on the following:
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Theorem 2.3.2.1. Let J = (Jij) be a structure matrix of the form (71) characterized in

Theorem 2.3.1.1, which is defined in a domain Ω ⊂ R3 and such that for a given pair (i, j) it

is χij(xi, xj) 6= 0 everywhere in Ω. Then Rank(J )= 2 in Ω and a Casimir invariant for J is

Dk(x) =
ψj(xj)− ψk(xk) + κjk
ψi(xi)− ψj(xj) + κij

=
χjk(xj , xk)
χij(xi, xj)

(76)

where (i, j, k) is a cyclic permutation of (1, 2, 3). Moreover, every Casimir invariant (76) is

globally defined in Ω.

Proof. After some algebra it is not difficult to show that

∂iDa(x) = −
φi(xi)χjk(xj , xk)

χ2
bc(xb, xc)

= −
Jjk(x)

η(x)χ2
bc(xb, xc)

where both (a, b, c) and (i, j, k) are cyclic permutations of (1, 2, 3). With the help of this

property the result can be directly shown through the verification of the fact that J ·∇Dk = 0

for each of the three cases k = 1, 2, 3 indicated. The statement is completed taking into account

the C∞(Ω) property of the φi(xi) . Q.E.D.

Therefore it is possible to give the explicit list of Casimir invariants corresponding to the

three complementary cases just analyzed:

D1(x) =
ψ3(x3)− ψ1(x1) + κ31

ψ2(x2)− ψ3(x3) + κ23
=
χ31(x3, x1)
χ23(x2, x3)

if χ23(x2, x3) 6= 0 in Ω

D2(x) =
ψ1(x1)− ψ2(x2) + κ12

ψ3(x3)− ψ1(x1) + κ31
=
χ12(x1, x2)
χ31(x3, x1)

if χ31(x3, x1) 6= 0 in Ω

D3(x) =
ψ2(x2)− ψ3(x3) + κ23

ψ1(x1)− ψ2(x2) + κ12
=
χ23(x2, x3)
χ12(x1, x2)

if χ12(x1, x2) 6= 0 in Ω

Notice the symmetry of such a choice, since D1D2D3 = 1 when all of them are defined in Ω.

We can also state:

Corollary 2.3.2.2. Consider that the assumptions of Remark 1.4.4.4 hold. Every three-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ R3 in which the

structure matrix J (x) is of the kind (71) characterized in Theorem 2.3.1.1 and such that for

a given pair (i, j) it is χij(xi, xj) 6= 0 everywhere in Ω, is an algebraically integrable system in

Ω.

The previous results allow the constructive and global determination of the Darboux canon-

ical form for this kind of Poisson structures:
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Theorem 2.3.2.3. Let Ω ⊂ R3 be a domain where a Poisson system (22) with n = 3 is

defined everywhere, for which J = (Jij) is a structure matrix of the form (71) characterized

in Theorem 2.3.1.1, and such that for a given pair (i, j) it is χij(xi, xj) 6= 0 everywhere in Ω.

Then such Poisson system can be globally reduced in Ω to an one degree of freedom Hamiltonian

system and the Darboux canonical form is accomplished globally in Ω in the new coordinate

system (y1, y2, y3) and the new time τ , where (y1, y2, y3) are given by the diffeomorphism

globally defined in Ω 
yi(x) = xi

yj(x) = xj

yk(x) = −Dk(x)

(77)

in which (i, j, k) is a cyclic permutation of (1, 2, 3) and Dk(x) is the Casimir invariant (76);

while the new time τ is defined by a time reparametrization of the form:

dτ = Jij(x(y))dt (78)

Proof. Only the situation χ12(x1, x2) 6= 0 will be considered here, since the analysis of the

other two cases is analogous. Note that, according to Theorem 2.3.2.1, Darboux’ theorem is

applicable because J has constant rank 2 everywhere in Ω. Recall also that, after a general

smooth coordinate change y = y(x), an arbitrary structure matrix J (x) is transformed into

another one J ∗(y) as:

J∗ij(y) =
n∑

k,l=1

∂yi
∂xk

Jkl(x)
∂yj
∂xl

, i, j = 1, . . . , n (79)

The reduction can be carried out in two steps. We first perform the change of variables (77),

which in this case is 
y1 = x1

y2 = x2

y3 = −D3(x)

(80)

where D3(x) is given by (76). For what is to come it is necessary to explicitly write the

transformation inverse of (80) which is:
x1 = y1

x2 = y2

x3 = ζ3 [ψ2(y2) + κ23 + (ψ1(y1)− ψ2(y2) + κ12) y3]

(81)
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where function ζ3 is the inverse function of ψ3(x3). Note that ζ3 exists and is differentiable

in Ω̃ = ψ3(Ω). In fact, since ψ′i = φi is smooth and nonvanishing for every i, we have

that ζ ′3 = 1/ψ′3 = 1/φ3 is also smooth and nonvanishing everywhere in Ω̃, and therefore ζ3 is

everywhere a smooth and strictly monotonous function. Then the examination of (80-81) easily

shows that the variable transformation (80) to be performed exists and is a diffeomorphism

everywhere in Ω as a consequence that by hypothesis we have χ12(x1, x2) 6= 0 and φ3(x3) 6= 0

in Ω. Then, according to (76) and (80), and taking (79) into account, after some algebra we

are led to

J ∗(y) = J12(x(y))


0 1 0

−1 0 0

0 0 0

 (82)

where from equations (71) and (81) we have

J12(x(y)) = η(y1, y2, x3(y)) (ψ1(y1)− ψ2(y2) + κ12)φ3(x3(y)) (83)

The explicit dependence of x3(y) is obviously the one given in (81) and was not displayed in

(83) for the sake of clarity. Note that J12(x(y)) is nonvanishing in Ω∗ = y(Ω) and C∞(Ω∗).

These properties allow the accomplishment of the second step of the reduction which is a

reparametrization of time. Thus, making use of (83) in equation (78), the transformation

dτ = J12(x(y))dt is performed. According to (73-75) this leads from the structure matrix (82)

to the Darboux one:

JD[3,2](y) =


0 1 0

−1 0 0

0 0 0

 (84)

The reduction is thus globally completed. Q.E.D.

After the previous global reduction, we can consequently establish:

Corollary 2.3.2.4. Consider that the assumptions of Remark 1.4.4.4 hold. Every three-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ R3 in which the

structure matrix J (x) is of the kind (71) characterized in Theorem 2.3.1.1 and such that for

a given pair (i, j) it is χij(xi, xj) 6= 0 everywhere in Ω, can be reduced globally and diffeomor-

phically in Ω to a Liouville integrable Hamiltonian system.

The previous results can be now illustrated by means of some instances. This is the aim

of the next subsection.
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2.3.3. Examples

We shall consider three examples. The first one involves a Poisson structure reported for

the Halphen equations. Example 2 regards a very similar structure matrix, this time relevant

to the study of the system of circle maps. To conclude, the third instance refers to a classical

mechanical system, the Euler top.

Example 1. Poisson structure for the Halphen equations

Let us first consider the following structure matrix which has deserved some attention

regarding the analysis of the Halphen system [63]:

J (x) = η(x)


0 x1 − x2 x1 − x3

x2 − x1 0 x2 − x3

x3 − x1 x3 − x2 0

 (85)

with

η(x) = [2(x1 − x2)(x2 − x3)(x3 − x1)]−1 (86)

It can be seen that the structure matrix (85-86) belongs to the family (71) with ψi(xi) = xi

and κij = 0 for all i, j = 1, 2, 3, provided xi 6= xj in Ω for every pair i 6= j. If this is the

case, function η(x) is C∞(Ω) and nonvanishing in Ω. Note that this condition also implies

χij(xi, xj) 6= 0 (and therefore Jij(x) 6= 0) in Ω for every pair i 6= j. In order to perform the

Darboux reduction it should be noted that every Casimir invariant (76) is now defined in Ω

and can thus be employed. For instance, we can focus on D3(x):

D3(x) =
x2 − x3

x1 − x2
(87)

Therefore the reduction to Darboux form now makes use of the following diffeomorphism
y1 = x1

y2 = x2

y3 = −D3(x)

with D3(x) given by (87). The inverse of this transformation is then:
x1 = y1

x2 = y2

x3 = y2 + (y1 − y2)y3
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After applying (79) the outcome is that J in (85-86) is transformed into:

J ∗(y) = (y1 − y2)η(y1, y2, y2 + y3(y1 − y2))


0 1 0

−1 0 0

0 0 0

 ≡ J̃12(y)


0 1 0

−1 0 0

0 0 0


with J̃12(y) = [2(y1−y2)2y3(1−y3)]−1. The reduction is then completed by means of the time

reparametrization dτ = J̃12(y)dt, which finally leads to the Darboux canonical form (84) with

y3 acting as the decoupled Casimir function and (y1, y2) as classical Hamiltonian canonical

variables.

Example 2. Poisson structure for the system of circle maps

In addition, it is worth mentioning in this context the Poisson structure appearing in the

study of the system of circle maps [63]. The structure matrix is of the form (85), but this time

with

η(x) = −[(x1 − x2)(x2 − x3)(x3 − x1)]−1

Thus the conditions for the regularity of the functions are exactly the same, the functions

φi(xi) and ψi(xi) retain their definitions, and the constants κij have the same zero values,

than in the case of the Poisson structure for the Halphen system. The difference existing in

η(x) does not induce variations in the form of the Casimir invariants, in the diffeomorphic

changes of variables leading to the Darboux reduction, or in the conditions indicating when

all of them are properly defined. Consequently these results also remain valid in the context

of the Poisson structure for the system of circle maps.

Example 3. Euler top

As a third example, the following cubic and homogeneous structure matrix appearing [63]

in the analysis of the Euler equations for a triaxial top will be considered:
J12(x) = (α2x

2
1 − α1x

2
2)x3

J23(x) = (α3x
2
2 − α2x

2
3)x1

J31(x) = (α1x
2
3 − α3x

2
1)x2

(88)

where the αi are real constants related to the principal moments of inertia µi of the top

according to the expressions:

α1 =
µ2 − µ3

µ2µ3
, α2 =

µ3 − µ1

µ1µ3
, α3 =

µ1 − µ2

µ1µ2
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Assuming that α1α2α3 6= 0, equations (88) can be equivalently written as:

J12(x) =
1

2α1α2α3
(α2α3x

2
1 − α1α3x

2
2)(2α1α2x3)

J23(x) =
1

2α1α2α3
(α1α3x

2
2 − α1α2x

2
3)(2α2α3x1)

J31(x) =
1

2α1α2α3
(α1α2x

2
3 − α2α3x

2
1)(2α1α3x2)

(89)

Expressed in this way, the structure matrix (89) can be recognized as a member of family (71)

with

η = (2α1α2α3)−1 , ψ1(x1) = α2α3x
2
1 , ψ2(x2) = α1α3x

2
2 , ψ3(x3) = α1α2x

2
3

and κij = 0 for all i, j = 1, 2, 3. Since functions φi(xi) must be nonvanishing in Ω, this

implies that in what follows the structure matrix (89) is to be analyzed in a domain of the

set {(x1, x2, x3) ∈ R3 | x1x2x3 6= 0}. In addition, according to (76) we can employ different

forms for the Casimir invariant. For instance, if χ12(x1, x2) = α2α3x
2
1 − α1α3x

2
2 6= 0 in Ω, we

have:

D3(x) =
α1α3x

2
2 − α1α2x

2
3

α2α3x2
1 − α1α3x2

2

(90)

Then, in this case a transformation leading to the Darboux canonical form is defined by (80)

and (90), and its inverse is a diffeomorphism in y(Ω) given by:
x1 = y1

x2 = y2

x3 = ς3

[
α3

α2
y2
2 +

(
α3

α1
y2
1 −

α3

α2
y2
2

)
y3

]1/2

where ς3 ≡ sign(x3) denotes the usual sign function, namely ς3 is a constant of value (+1) if

x3 > 0 and (−1) if x3 < 0 (recall that x3 6= 0 in Ω). The rest of the Darboux reduction does

not present special features apart from the ones indicated in the proof of Theorem 2.3.2.3,

and therefore is omitted for the sake of conciseness.
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2.4. CYCLIC SOLUTIONS OF TYPE II

The present section is to a great extent parallel to the previous one. As it was the case

there, another three-dimensional family of solutions of the Jacobi equations is characterized

and globally analyzed. This solution family (denoted as cyclic of type II) is formally very

similar to the cyclic of type I, a parallelism accounting for such terminology. Apart from this,

it is worth noting that both families are of course different, as a simple examination shows.

On the other hand, the cyclic solutions of type II also have a very general form (defined

in terms of functions of arbitrary nonlinearity) in spite of which it is possible the explicit

and global determination of their main features, such as the case-classification of the Casimir

invariants and the global construction of the Darboux canonical form. Again, the analysis of

this family displays a remarkable feature, namely that a complete understanding of its global

analysis implies a case classification such that a different distinguished invariant is to be used

in each case. Therefore, we again find a situation in which the knowledge of one nontrivial

distinguished invariant now does not guarantee the reduction to the Darboux canonical form,

in spite of working with a structure matrix of constant rank 2. Thus, as it was the case in the

previous section, now the symplectic analysis of this family of Poisson structures requires the

use of both case-dependent global Casimir invariants and global Darboux reductions. Such

classification is done in what follows.

The structure of the section is now anticipated. In Subsection 2.4.1 the solution family

is characterized. In Subsection 2.4.2, the classification of the Casimir invariants and the

associated Darboux reductions are constructed. To conclude, some examples are provided in

Subsection 2.4.3.

2.4.1. Characterization of the family

In first place, the following result is presented:

Theorem 2.4.1.1. Let (η(x), φ1(x1), φ2(x2), φ3(x3)) be a set of functions defined in a domain

Ω ⊂ R3, all of which are C∞(Ω) and nonvanishing in Ω. In addition, let ψi(xi) denote for every

i = 1, 2, 3, one primitive function of φi(xi) defined in such a way that ψi(xi) is nonvanishing

in Ω. Then J = (Jij) is a family of 3-d structure matrices which are globally defined in Ω,

with

Jij(x) = η(x)ψi(xi)ψj(xj) (ψi(xi)− ψj(xj))
3∑

k=1

(εijk)2φk(xk) , i, j = 1, 2, 3 (91)
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where εijk denotes the Levi-Civita symbol.

Proof. Skew-symmetry can be directly verified in (91). Regarding the Jacobi equations,

recall that for n = 3, system (24-25) can be reduced to the following independent nonlinear

equation:

J12∂1J31 − J31∂1J12 + J23∂2J12 − J12∂2J23 + J31∂3J23 − J23∂3J31 = 0 (92)

Let us first consider family (91) in the particular case η(x) = 1. For this, let Ĵij(x) ≡

Jij(x)/η(x) in (91). Then, substitution in (92) produces after some algebra:

Ĵ12∂1Ĵ31 − Ĵ31∂1Ĵ12 + Ĵ23∂2Ĵ12 − Ĵ12∂2Ĵ23 + Ĵ31∂3Ĵ23 − Ĵ23∂3Ĵ31 =

φ1φ2φ3ψ1ψ2ψ3 [(ψ1 − ψ2)(ψ3 − ψ1)− ψ1(ψ1 − ψ2)− (ψ1 − ψ2)(ψ3 − ψ1)−

ψ1(ψ3 − ψ1) + (ψ2 − ψ3)(ψ1 − ψ2)− ψ2(ψ2 − ψ3)− (ψ1 − ψ2)(ψ2 − ψ3)−

ψ2(ψ1 − ψ2) + (ψ3 − ψ1)(ψ2 − ψ3)− ψ3(ψ3 − ψ1)− (ψ2 − ψ3)(ψ3 − ψ1)− ψ3(ψ2 − ψ3)] = 0

The result is thus proved for the case η = 1. For general η it is sufficient to make use

of Proposition 2.2.2.1, according to which in the 3-d case ηJ is a structure matrix for an

arbitrary nonvanishing C∞ function η(x) and for every structure matrix J . This completes

the proof. Q.E.D.

It is now convenient to provide some comments. In first place, we can display the explicit

form of the components of J for family (91), which are:
J12(x) = η(x)ψ1(x1)ψ2(x2) (ψ1(x1)− ψ2(x2))φ3(x3)

J23(x) = η(x)ψ2(x2)ψ3(x3) (ψ2(x2)− ψ3(x3))φ1(x1)

J31(x) = η(x)ψ3(x3)ψ1(x1) (ψ3(x3)− ψ1(x1))φ2(x2)

As mentioned in Theorem 2.4.1.1, for every i the primitive ψi(xi) of φi(xi) must be chosen

to be one and the same for all the entries of J . However, the specific choice is actually

arbitrary as far as the nonvanishing character of such function is respected.

In second term, it is worth noting that the form of the structure matrices (91) is such that

there are only two possibilities regarding the vanishing of the independent entries (J12, J23, J31)

at a given point, namely: (i) either none or one of them vanishes (case of rank two), or (ii)

all of them vanish (case of zero rank). To see this as well as for future use, it is convenient to

define the functions:

ωij(xi, xj) ≡ ψi(xi)− ψj(xj) , i, j = 1, 2, 3
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Then, clearly it is not possible that just two of such entries (J12, J23, J31) vanish at the same

point, as a consequence of the zero-sum relation ω12(x1, x2) + ω23(x2, x3) + ω31(x3, x1) = 0.

As a consequence, in the analysis of the nontrivial case in which the rank of the structure

matrices is equal to 2, we can make use of the feature that for every point x ∈ Ω there are

at least two pairs (i, j) ∈ {(1, 2), (2, 3), (3, 1)} for which function ωij(xi, xj) 6= 0. This kind of

property will be employed in the next subsection.

To finish, in order to make the section self-contained we shall recall again the physical

interpretation of the degree of freedom corresponding to the factor η(x), namely the fact that

in the 3-d case ηJ is a structure matrix if and only if J is [63,70]. Such result is not generally

valid for dimension n ≥ 4, as we already mentioned. As we know, the interpretation of such

three-dimensional feature is naturally associated with time reparametrizations [70], which are

transformations of the form

dτ =
1

η(x)
dt (93)

where t is the initial time variable, τ is the new time and η(x) : Ω → R is a C∞(Ω) function

which does not vanish in Ω. Accordingly, if

dx
dt

= J · ∇H (94)

is an arbitrary three-dimensional Poisson system defined in Ω, then every time reparametriza-

tion (93) leads from (94) to the system:

dx
dτ

= ηJ · ∇H (95)

Then, we see that in the 3-d case time reparametrizations (93) preserve the Poisson structure,

this time with structure matrix ηJ in (95).

2.4.2. Casimir invariants and global Darboux analysis

It is now possible to determine the main properties of the family identified in Theorem

2.4.1.1:

Theorem 2.4.2.1. Let J = (Jij) define a structure matrix of the form (91) characterized in

Theorem 2.4.1.1, which is defined in a domain Ω ⊂ R3 and such that for a given pair (i, j) it

is ωij(xi, xj) 6= 0 everywhere in Ω. Then Rank(J )= 2 in Ω and a Casimir invariant for J is

Dk(x) =
ψi(xi)(ψj(xj)− ψk(xk))
ψk(xk)(ψi(xi)− ψj(xj))

=
ψi(xi)ωjk(xj , xk)
ψk(xk)ωij(xi, xj)

(96)
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where (i, j, k) is a cyclic permutation of (1, 2, 3). Moreover, every Casimir invariant (96) is

globally defined in Ω.

Proof. It is not difficult to show after some calculations that

∂iDa(x) = −
φi(xi)ψj(xj)ψk(xk)ωjk(xj , xk)

(ψa(xa)ωbc(xb, xc))2
= −

Jjk(x)
η(x)(ψa(xa)ωbc(xb, xc))2

where both (a, b, c) and (i, j, k) are arbitrary cyclic permutations of (1, 2, 3). Making use of

these equalities, the simplest procedure to prove the result is through the direct verification

of the fact that J · ∇Dk = 0 for each of the three cases k = 1, 2, 3 indicated. The proof is

completed by taking into account the C∞(Ω) property of the φi(xi). Q.E.D.

Accordingly, we can now give the explicit list of Casimir invariants corresponding to the

three complementary cases just analyzed:

D1(x) =
ψ2(x2)(ψ3(x3)− ψ1(x1))
ψ1(x1)(ψ2(x2)− ψ3(x3))

=
ψ2(x2)ω31(x3, x1)
ψ1(x1)ω23(x2, x3)

if ω23(x2, x3) 6= 0 in Ω

D2(x) =
ψ3(x3)(ψ1(x1)− ψ2(x2))
ψ2(x2)(ψ3(x3)− ψ1(x1))

=
ψ3(x3)ω12(x1, x2)
ψ2(x2)ω31(x3, x1)

if ω31(x3, x1) 6= 0 in Ω

D3(x) =
ψ1(x1)(ψ2(x2)− ψ3(x3))
ψ3(x3)(ψ1(x1)− ψ2(x2))

=
ψ1(x1)ω23(x2, x3)
ψ3(x3)ω12(x1, x2)

if ω12(x1, x2) 6= 0 in Ω

It is worth noting the symmetry of the choice made for the complementary forms of the

Casimir invariant, since D1D2D3 = 1 when all of them are simultaneously defined in Ω. The

case characterization of the independent Casimir invariant leads to:

Corollary 2.4.2.2. Consider that the assumptions of Remark 1.4.4.4 hold. Every three-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ R3 in which the

structure matrix J (x) is of the kind (91) characterized in Theorem 2.4.1.1 and such that for

a given pair (i, j) it is ωij(xi, xj) 6= 0 everywhere in Ω, is an algebraically integrable system in

Ω.

The results just shown make possible the constructive and global determination of the

Darboux canonical form for this family of Poisson structures:

Theorem 2.4.2.3. Let Ω ⊂ R3 be a domain where a Poisson system (22) with n = 3 is

defined everywhere, for which J = (Jij) is a structure matrix of the form (91) characterized
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in Theorem 2.4.1.1, and such that for a given pair (i, j) it is ωij(xi, xj) 6= 0 everywhere in Ω.

Then such Poisson system can be globally reduced in Ω to an one degree of freedom Hamiltonian

system and the Darboux canonical form is accomplished globally in Ω in the new coordinate

system (y1, y2, y3) and the new time τ , where (y1, y2, y3) are given by the diffeomorphism

globally defined in Ω 
yi(x) = xi

yj(x) = xj

yk(x) = −Dk(x)

(97)

in which (i, j, k) is a cyclic permutation of (1, 2, 3) and Dk(x) is the Casimir invariant (96);

while the new time τ is defined by a time reparametrization of the form:

dτ = Jij(x(y))dt (98)

Proof. Here we can consider only the case ω12(x1, x2) 6= 0, since the analysis of the other

two possibilities is analogous. Notice that, according to Theorem 2.4.2.1, Darboux’ theorem

is applicable because J has constant rank 2 everywhere in Ω. Recall also that, after a general

smooth coordinate transformation y = y(x), an arbitrary structure matrix J (x) is converted

into another one J ∗(y) as:

J∗ij(y) =
n∑

k,l=1

∂yi
∂xk

Jkl(x)
∂yj
∂xl

, i, j = 1, . . . , n (99)

It is possible to carry out the reduction in two steps. We first perform the change of variables

(97), which in this case is 
y1 = x1

y2 = x2

y3 = −D3(x)

(100)

where D3(x) is given by (96). For what is to come it is necessary to explicitly write the

transformation inverse of (100) which is:
x1 = y1

x2 = y2

x3 = ζ3

(
ψ1(y1)ψ2(y2)

ψ1(y1)− ω12(y1, y2)y3

) (101)

where function ζ3 is the inverse function of ψ3(x3). We see that ζ3 exists and is differentiable

in Ω̃ = ψ3(Ω). Actually, since ψ′i = φi is smooth and nonvanishing for every i, we have
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that ζ ′3 = 1/ψ′3 = 1/φ3 is also smooth and nonvanishing everywhere in Ω̃, and therefore ζ3

is everywhere a smooth and strictly monotonous function. Then the examination of (100-

101) easily shows that the variable transformation (100) to be performed exists and is a

diffeomorphism everywhere in Ω as a consequence that by hypothesis we have ω12(x1, x2) 6= 0

and φ3(x3) 6= 0 in Ω. In particular, notice that the denominator of the argument inside ζ3 in

equation (101) does not vanish, since:

ψ1(y1)− ω12(y1, y2)y3 =
ψ1(x1)ψ2(x2)

ψ3(x3)

Thus, according to (96) and (100), and taking (99) into account, after some algebra we are

led to

J ∗(y) = J12(x(y))


0 1 0

−1 0 0

0 0 0

 (102)

where from equations (91) and (101) we have

J12(x(y)) = η(y1, y2, x3(y))ψ1(y1)ψ2(y2)ω12(y1, y2)φ3(x3(y)) (103)

The explicit dependence of x3(y) is obviously the one given in (101) and was not displayed in

(103) for the sake of clarity. Notice that J12(x(y)) is nonvanishing in Ω∗ = y(Ω) and C∞(Ω∗).

These properties allow the accomplishment of the second step of the reduction which is a

reparametrization of time. Thus, making use of (103) in equation (98), the transformation

dτ = J12(x(y))dt is to be performed. According to (93-95) this leads from the structure matrix

(102) to the Darboux one:

JD[3,2](y) =


0 1 0

−1 0 0

0 0 0

 (104)

Therefore the reduction is globally completed. Q.E.D.

We then arrive at the following corollary:

Corollary 2.4.2.4. Consider that the assumptions of Remark 1.4.4.4 hold. Every three-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ R3 in which the

structure matrix J (x) is of the kind (91) characterized in Theorem 2.4.1.1 and such that for

a given pair (i, j) it is ωij(xi, xj) 6= 0 everywhere in Ω, can be reduced globally and diffeomor-

phically in Ω to a Liouville integrable Hamiltonian system.
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The aim of the next subsection is to provide some examples of application of the previous

results.

2.4.3. Examples

In what follows some instances of the solution family just analyzed are considered. The first

one deals with the Poisson formulation for Lotka-Volterra systems, which is later generalized

to the framework of the Quasi-Polynomial equations in the second example. Finally, the third

instance considers a Poisson structure related to the system of circle maps.

Example 1. Lotka-Volterra system

In first place we shall consider a Poisson structure employed in the analysis of the 3-d

Lotka-Volterra (LV) equations. The following LV system has received some attention in the

literature [63,136], 
ẋ1 = x1(λ1 + a2x2 + x3)

ẋ2 = x2(λ2 + x1 + a3x3)

ẋ3 = x3(λ3 + a1x1 + x2)

(105)

in which xi > 0 for all i. Notice that system (105) is the same considered in Example 2

of Subsection 1.2.5. However, for convenience (related to the generalization to be performed

in the next example) we now give different names to the system constants. Among several

classical integrable cases of interest, the following one is to be considered [63]:

ai = 1 , λi = 0 , i = 1, 2, 3 (106)

System (105-106) is Poisson, in terms of the structure matrix:

Jij(x) = xixj(xi − xj) , i, j = 1, 2, 3 (107)

And the following first integral plays the role of Hamiltonian:

H(x) = ln

[(
x3

x1x2
(x1 − x2)2

)−k ( x1

x2x3
(x2 − x3)2

)k−1
]

(108)

for arbitrary k ∈ R. It can be seen that the structure matrix (107) belongs to the family

(91) with η(x) = 1, φi(xi) = 1 and ψi(xi) = xi for i = 1, 2, 3. Since xi > 0 for all i, such
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structure matrix is defined in every domain Ω ⊂ R3
+. In addition, now ωij(xi, xj) = (xi − xj)

for every pair (i, j). Thus if xi 6= xj in Ω for a pair i 6= j, then ωij(xi, xj) 6= 0 (and therefore

Jij(x) 6= 0) in Ω. Depending on i and j, we have to employ according to (96) different forms

for the Casimir invariant. For instance, if ω12(x1, x2) 6= 0 in Ω, we have:

D3(x) =
x1(x2 − x3)
x3(x1 − x2)

(109)

Thus the reduction to Darboux form begins with the following diffeomorphism
y1 = x1

y2 = x2

y3 = −D3(x)

(110)

with D3(x) given by (109). The inverse of this transformation is then:
x1 = y1

x2 = y2

x3 =
y1y2

y1 − (y1 − y2)y3

(111)

Notice that y1 − (y1 − y2)y3 = x1x2/x3 and consequently does not vanish, as expected. Thus,

after the application of (99) the result is that J (x) in (107) is transformed into:

J ∗(y) = y1y2(y1 − y2)


0 1 0

−1 0 0

0 0 0

 ≡ J̃12(y)


0 1 0

−1 0 0

0 0 0


Finally, the reduction is completed by means of the time reparametrization dτ = J̃12(y)dt,

which produces the Darboux canonical form (104) with (y1, y2) in the role of canonical Hamil-

tonian variables and y3 as a decoupled Casimir invariant.

Example 2. A nonstandard Quasi-Polynomial generalization of the

Lotka-Volterra system

In this second example the previous LV system is generalized as a Quasi-Polynomial (QP)

flow in such a way that its associated Poisson structure is also generalized, while remaining

in the framework of the family characterized in Theorem 2.4.1.1. The reader is referred to

[23,24,51,60,61,72,73,80,82,83,86,87] and references therein for an approach to QP systems and

their related formalism.
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Let us thus consider system (105-106) and perform the quasimonomial transformation

xi = ycii , i = 1, 2, 3 ; c1c2c3 6= 0 (112)

followed by the time reparametrization

dτ =

(
3∏
i=1

ciy
ci−1
i

)−1

dt (113)

The outcome is the following QP generalization of the LV flow, this time defined in terms of

variables yi and time τ : 
ẏ1 = c2c3y

c1
1 y

c2−1
2 yc3−1

3 (yc22 + yc33 )

ẏ2 = c1c3y
c1−1
1 yc22 y

c3−1
3 (yc11 + yc33 )

ẏ3 = c1c2y
c1−1
1 yc2−1

2 yc33 (yc11 + yc22 )

(114)

Both transformations (112) and (113) become identical in the case c1 = c2 = c3 = 1, and

system (114) is thus reduced to (105-106) in such situation. On the other hand, equations

(114) still conform to a Poisson system. Actually, the Hamiltonian (108) is directly generalized

as:

H∗(y) = ln

[(
yc33
yc11 y

c2
2

(yc11 − yc22 )2
)−k ( yc11

yc22 y
c3
3

(yc22 − yc33 )2
)k−1

]
for arbitrary k ∈ R. Finally, both the quasimonomial transformation and the time reparame-

trization transform the structure matrix (107) leading to the more general form:

J∗ij(y) = ycii y
cj
j (ycii − y

cj
j )

3∑
k=1

(εijk)2cky
ck−1
k , i, j = 1, 2, 3 (115)

Structure matrix (115) belongs to family (91) with η(y) = 1 and ψi(yi) = ycii . Since we have

yi > 0 for all i, (115) is correctly defined in R3
+ without further assumptions. Now the reduction

to the Darboux canonical form can also be performed globally and it is a generalization of the

one for the LV case. For this, note first that if (i, j, k) is a cyclic permutation of (1, 2, 3) and

ωij = (ycii − y
cj
j ) 6= 0 in Ω, then the Casimir invariant Dk(y) is:

Dk(y) =
ycii (ycjj − yckk )

yckk (ycii − y
cj
j )

Then, use of the corresponding transformation can be made in order to carry out the reduction

to Darboux form. For instance, if ω12 6= 0:
z1 = y1

z2 = y2

z3 =
yc11 (yc33 − yc22 )
yc33 (yc11 − yc22 )
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And the inverse of this transformation is also a generalization of (111):
y1 = z1

y2 = z2

y3 =
(

zc11 z
c2
2

zc11 − (zc11 − zc22 )z3

)1/c3

The remaining details of the Darboux reduction are essentially similar to those of the LV case

and are not given. To conclude, it is worth noticing that extensive families of QP Poisson

systems have been analyzed in detail in the literature [73,83,86], but always in terms of a

different (in fact separable [85] and quadratic) kind of Poisson brackets. In such context the

family (115) is not only new, but in addition it provides an instance of non-standard family

of Poisson structures for QP systems.

Example 3. Poisson structure for the system of circle maps

As a last example the following structure matrix, which is of interest for the analysis of

the system of circle maps [63], will be considered:

Jij(x) = η(x)xixj(xi − xj) , i, j = 1, 2, 3 (116)

where

η(x) = −[(x1 − x2)(x2 − x3)(x3 − x1)]−1 (117)

This structure matrix is to a great extent similar to the one in Example 1, apart from the

factor η(x) which nevertheless introduces some differences. As before, we have ψi(xi) = xi

and φi(xi) = 1 for every i = 1, 2, 3. But according to Theorem 2.4.1.1, now the structure is

defined provided that in Ω we have xi 6= 0 for every i, and xi − xj 6= 0 for every pair i 6= j. If

this is the case, function η(x) is C∞(Ω) and nonvanishing in Ω. Note that the same conditions

also imply ωij(xi, xj) 6= 0 (and Jij(x) 6= 0) in Ω for every pair i 6= j. Consequently, Theorem

2.4.2.1 implies that now every alternative form (96) of the Casimir invariant is simultaneously

defined in Ω, namely:

D1(x) =
x2(x3 − x1)
x1(x2 − x3)

, D2(x) =
x3(x1 − x2)
x2(x3 − x1)

, D3(x) =
x1(x2 − x3)
x3(x1 − x2)

Therefore, in order to perform the Darboux reduction of (116-117) either expression can

be employed. For instance, if we focus again on D3(x), which coincides with (109), then

transformation (110) is also the same. The rest of the reduction is thus analogous to the one
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in the Lotka-Volterra case, just with minor differences due to the presence of η(x) as given

by (117). Since such reduction does not present any feature not mentioned in the proof of

Theorem 2.4.2.3, the rest will be omitted for the sake of conciseness.
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2.5. USE OF AN ANSATZ FOR THE SIMPLIFICATION OF THE

JACOBI EQUATIONS

In this section we provide a relatively simple method for the determination of additional

3-d skew-symmetric solutions of the Jacobi equations from a known one. More precisely, it is

proved that the knowledge of a single and arbitrary solution of the three-dimensional Jacobi

equations allows determining an infinity of new solutions, which can be generally and explicitly

constructed [71]. The main motivation underlying this kind of methodology is that it is very

illustrative of how the previous knowledge of a single solution can help much in the study of

the Jacobi equations, leading to a remarkable simplification of the problem. In particular,

this philosophy will be very useful in Chapter 4, in which it will be the basis for the study

of the new-time transformations (NTTs). In fact, the use of NTTs for the generation of new

solutions from a single one will help much in the obtainment of a deeper understanding of

important cases in which the Darboux canonical form can be globally obtained, as well as in

the generalization of known solution families, thus leading to aspects of central interest for

this work.

The structure of the section proceeds as follows. In Subsection 2.5.1 the method is pre-

sented and developed, analyzing and solving all the different possibilities existing. Case-by-

case examples are presented in Subsection 2.5.2. We finish in Subsection 2.5.3 with some

conclusions and final remarks.

2.5.1. Description of the method and case classification

For the sake of conciseness, the following simplified notation for the entries of 3-d structure

matrices will be used again:

u(x) ≡ J12(x) , v(x) ≡ J31(x) , w(x) ≡ J23(x) (118)

In the case n = 3, system (24-25) actually consists of a single independent equation. If we

make use of the definition (118) we know that such equation can be written in the form:

u∂1v − v∂1u+ w∂2u− u∂2w + v∂3w − w∂3v = 0 (119)

The equation corresponding to the 3-d version of system (24-25) will be written in the form

(119) in the rest of the section.

Now let (u0(x), v0(x), w0(x)) be a known solution of (119). In what follows it will be

assumed that it is a regular and nontrivial solution, i.e. that the rank of the structure matrix

108



represented by (u0(x), v0(x), w0(x)) is constant and equal to 2 everywhere in the domain of

interest. Then we can look for new solutions according to the ansatz (u0(x) + ξ(x), v0(x) +

ξ(x), w0(x) + ξ(x)), where ξ(x) is an arbitrary smooth function to be determined. If we

substitute the ansatz in (119) we see after some algebra that all the nonlinear terms are of

the form ξ∂iξ, for i = 1, 2, 3, and in fact all such terms do cancel out. Consequently, we arrive

at the following linear PDE for ξ:

(u0 − v0)∂1ξ + (w0 − u0)∂2ξ + (v0 − w0)∂3ξ = λ(x)ξ (120)

where

λ(x) = ∂1(u0 − v0) + ∂2(w0 − u0) + ∂3(v0 − w0) (121)

Therefore, the mere knowledge of one solution of (119) allows a threefold simplification of

the problem of finding new solutions:

(a) We can transform a nonlinear problem into a linear problem.

(b) We can transform the PDE problem (119) into an ODE problem, namely the one given

by the characteristic equations of (120-121).

(c) We can reduce the number of unknowns from three to one.

We can now proceed to analyze equation (120-121). Three cases must be distinguished:

I. Case λ(x) = 0

It is relatively frequent, as we shall see in the examples section, that (u0(x), v0(x), w0(x))

are such that λ(x) in (120-121) vanishes at every point of the domain of interest. In such case

the characteristic equations of (120) are:

dx1

u0 − v0
=

dx2

w0 − u0
=

dx3

v0 − w0
, dξ = 0 (122)

Obviously, we need two constants of motion of (122) in order to have the general solution

of (120-121). It is not difficult to verify that two such constants can be chosen as I1(x) =

x1 + x2 + x3 and I2(x) = D(x), where D(x) is a Casimir invariant of the known solution

(u0(x), v0(x), w0(x)). Accordingly, the general solution of (120-121) now is:

ξ(x) = Ψ(x1 + x2 + x3, D(x)) (123)
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where Ψ is an arbitrary smooth function of its two real arguments. Therefore we have arrived

to the following new family of solutions of (119):

(u(x), v(x), w(x)) =

(u0(x) + Ψ(I1(x), I2(x)), v0(x) + Ψ(I1(x), I2(x)), w0(x) + Ψ(I1(x), I2(x)))

We can now consider the second possibility.

II. Case λ(x) 6= 0, with invertible I1(x) and I2(x)

This time the characteristic equations are:

dx1

u0 − v0
=

dx2

w0 − u0
=

dx3

v0 − w0
=

dξ
λξ

(124)

We need three constants of motion of (124) in order to find the general integral of (120-121).

However, the two constants known from Case I, i.e. I1(x) = x1 + x2 + x3 and I2(x) = D(x)

(where D(x) is a Casimir invariant of the known solution (u0(x), v0(x), w0(x)) being used) are

also first integrals of (124). The third constant of motion required is then evident and takes

the form of a quadrature: Assuming that the standard invertibility conditions (see Theorem

1.4.2.1) arise for I1(x) and I2(x), it will be possible to make use of both invariants and express

two independent variables in terms of the remaining one, I1 and I2. For instance:

x2 = α(x1, I1, I2) , x3 = β(x1, I1, I2) (125)

Then it is immediate to write:

dξ
ξ

=
λdx1

u0 − v0
≡ ν(x1, I1, I2)dx1

After integration we finally obtain the third constant of motion:

I3(x) =
ξ

h(x1, I1(x), I2(x))

where

h(x1, x2, x3) = exp
(∫

ν(x1, x2, x3)dx1

)
(126)

Consequently, from (126) we arrive at the following general integral for ξ in the case λ 6= 0:

Φ
(
I1(x), I2(x),

ξ

h(x1, I1(x), I2(x))

)
= 0

where Φ is an arbitrary smooth function of its three real arguments.

We finally have:
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III. Case λ(x) 6= 0, with non-invertible I1(x) and I2(x)

It may still happen that the usual invertibility conditions are not satisfied for I1(x) and

I2(x), i.e. it is not possible to determine equations of the form (125). In this case it is

still feasible to easily construct infinite families of solutions from a given one. As usual,

(u0(x), v0(x), w0(x)) denote the known solution, corresponding to a structure matrix J (x). It

is well-known that after a smooth change of variables y = y(x) a structure matrix J (x) is

transformed into another structure matrix J ∗(y) according to the rule (30):

J∗ij(y) =
3∑

k,l=1

∂yi
∂xk

Jkl(x)
∂yj
∂xl

, i, j = 1, 2, 3 (127)

In principle, the change of variables (127) needs not be globally defined on the domain of

interest for what is to follow. However, for the sake of simplicity the global character of the

transformation shall be assumed. In the case of a change of variables restricted to a subdomain

the procedure described below is not affected, the only difference being that we would arrive

at new families of solutions of the Jacobi equations defined on that subdomain of the initial

domain of definition.

Therefore, a new system of coordinates in which (120-121) can be solved for J ∗(y) is to

be introduced. This is very simple to do, but obviously there is not a unique choice. For

instance, a straightforward possibility is the Darboux canonical form of matrix J (x), i.e.

J ∗(y) = JD[3,2] =


0 1 0

−1 0 0

0 0 0

 (128)

According to (118) and (127), in the case of the choice (128) we are mapping the functions

(u0(x), v0(x), w0(x)) into

(u∗0(y), v
∗
0(y), w

∗
0(y)) = (J∗12(y), J

∗
31(y), J

∗
23(y)) = (1, 0, 0)

Notice that equations (120-121) become trivial for (128) because in the Darboux form we

are in Case I, actually. Then, the general solution of (120-121) for matrix (128) is ξ(y) =

Ψ(y1 + y2 + y3, y3). In this way we have arrived to the family of solutions:

(u∗(y), v∗(y), w∗(y)) = (u∗0(y), v
∗
0(y), w

∗
0(y)) + Ψ(y1 + y2 + y3, y3)(1, 1, 1) =

(1, 0, 0) + Ψ(y1 + y2 + y3, y3)(1, 1, 1) (129)
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in evident notation. Then we can make use of (127) and transform back the solution family

(u∗(y), v∗(y), w∗(y)) in (129) into the original coordinates x. We thus arrive at:

(u(x), v(x), w(x)) = (u0(x), v0(x), w0(x))+

Ψ(y1(x) + y2(x) + y3(x), y3(x))(Q12(x), Q31(x), Q23(x)) (130)

where

Qij(x) =
3∑

k,l=1

∂xi
∂yk

akl
∂xj
∂yl

, i, j = 1, 2, 3

with the akl being the entries of

A =


0 1 −1

−1 0 1

1 −1 0


This completes the procedure of Case III. Of course, the whole method remains entirely

identical in the case of choices different from (128).

The result just described in Case III is interesting for several reasons:

(a) The first one is that we are producing solutions such that the terms added to u0, v0 and

w0 in (130) now are not one and the same due to the presence of the functions Qij .

Clearly this is due to the fact that we are making a previous transformation of variables.

Therefore the procedure allows determining solutions which are not only those of the

form (u0 + ξ, v0 + ξ, w0 + ξ), actually. In other words, we see that the method is in fact

more general that it seemed in principle, leading to more general families of solutions

than those originally expected.

(b) The second one is that the procedure described in Case III is, in fact, also applicable

to Cases I and II, because the verification of condition (125) is not essential for the

introduction of a new coordinate system. Therefore the generality of the method, as

considered in the previous item, applies to the three Cases I to III and is an intrinsic

feature of this approach to the construction of solutions.

2.5.2. Case-by-case examples

We can now proceed to see some examples illustrating each of the three possibilities pre-

viously analyzed.

112



Example 1. Constant structure matrices

Constant structure matrices are, in spite of their simplicity, ubiquitous in very diverse

problems [101,102,103,142], one important example being the Darboux representation of 3-

d Poisson structures. Obviously, every constant 3-d skew-symmetric matrix is a structure

matrix. Therefore, let (u0, v0, w0) be constants, not all equal to zero. We then have λ = 0 in

(120-121). Two cases must be distinguished:

(i) u0 = v0 = w0 6= 0. In this situation equation (120-121) becomes trivial and every smooth

ξ(x) is a solution.

(ii) u0, v0 and w0 are not equal. This is the generic case. According to (123) we only need

to find a Casimir invariant of (u0, v0, w0). It is straightforward to check that one choice

is D(x) = w0x1 + v0x2 + u0x3. Consequently we arrive at the family of solutions:

(u, v, w) = (u0, v0, w0) + Ψ(x1 + x2 + x3, w0x1 + v0x2 + u0x3)(1, 1, 1)

in evident notation, with Ψ arbitrary and smooth. Notice that I1(x) = x1 +x2 +x3 and

I2(x) = w0x1 + v0x2 + u0x3 are independent when u0, v0 and w0 are not equal, as we

are now assuming by hypothesis.

Thus starting from a simple, constant solution we have arrived to a nonconstant family of

solutions just by finding one Casimir invariant.

Example 2. Lie-Poisson so(3) and Hamiltonian ray optics Poisson structures

Another important Poisson structure is given by the Lie-Poisson bracket associated with

the Lie algebra so(3), namely (u0, v0, w0) = (x3, x2, x1). For instance, see [114,139,162]. In

this case we again have λ = 0, and the resulting PDE (120-121) is:

(x3 − x2)∂1ξ + (x1 − x3)∂2ξ + (x2 − x1)∂3ξ = 0

It is well-known that a Casimir invariant of this Poisson structure is D(x) = x2
1 + x2

2 + x2
3.

The general solution is then ξ = Ψ(x1 + x2 + x3, x
2
1 + x2

2 + x2
3). Therefore we have arrived to

the family:

(u, v, w) = (x3, x2, x1) + Ψ(x1 + x2 + x3, x
2
1 + x2

2 + x2
3)(1, 1, 1)

Consequently, the Lie-Poisson so(3) structure can now be seen as a particular case of a wider

set.
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Many other 3-d Poisson structures of the Lie-Poisson kind can also be generalized in a very

similar way. For instance, we can consider the Hamiltonian ray optics structure [93] given by

(u0, v0, w0) = (4x3,−2x1,−2x2). In this case we again have λ = 0. The Casimir invariant is

D(x) = x1x2 − x2
3 and consequently we arrive at the family of solutions:

(u, v, w) = (4x3,−2x1,−2x2) + Ψ(x1 + x2 + x3, x1x2 − x2
3)(1, 1, 1)

Therefore the treatment is completely similar to that of so(3), as anticipated.

Example 3. Kermack-McKendrick model Poisson structure

We now take as our starting point the Kermack-McKendrick structure matrix [63,135]

given by (u0, v0, w0) = (−bx1x2, 0,−ax2), with a and b real constants. In this case λ is not

identically zero, and system (120-121) becomes:

−bx1x2∂1ξ + (bx1x2 − ax2)∂2ξ + ax2∂3ξ = [b(x1 − x2)− a]ξ (131)

Of course we know a first invariant I1(x) = x1 + x2 + x3, and a second one which is given by

a Casimir function of (u0, v0, w0). This is easily found to be I2(x) = D(x) = x3 + (a/b) lnx1.

Therefore we only need the third invariant I3 in order to have the general integral of (131).

We can first make use of I1 and I2 to find relationships of the type (125). In our case, after

some algebra we obtain:

x1 = exp
(
b

a
(I2 − x3)

)
(132)

x2 = I1 − x3 − exp
(
b

a
(I2 − x3)

)
(133)

Substituting (132-133) in the characteristic equations we arrive at:

dξ
ξ

=
b(x1 − x2)− a

ax2
dx3 =

bx3 − bI1 − a+ 2b exp
(
b

a
(I2 − x3)

)
aI1 − ax3 − a exp

(
b

a
(I2 − x3)

) dx3 (134)

Integrating (134) and simplifying we can set:

I3(x) =
ξ

x2
exp

(
bx3

a

)
Therefore the general integral of equation (131) is

Φ
[
x1 + x2 + x3, x3 +

(a
b

)
lnx1,

ξ

x2
exp

(
bx3

a

)]
= 0 (135)
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with Φ an arbitrary smooth function of three variables. In spite of its seeming complexity,

equation (135) contains families of very simple solutions. As an example of this assertion, it

is straightforward to verify that, for instance, the solution ξ(x) = kx1x2, k ∈ R, belongs to

the general integral (135).

Example 4. Lotka-Volterra and Quasi-Polynomial Poisson structures

As a final example we consider the LV [63,136,142,143,144,145,146] and QP [83,86] struc-

ture matrices of the form

(u0, v0, w0) = (a12x1x2, a31x1x3, a23x2x3) (136)

where the aij are real constants for all i, j, and xi > 0 for all i (i.e. the domain of definition

of these structure matrices is the interior of the positive orthant, namely R3
+). For the sake of

conciseness, we shall consider here the generic case in which none of the aij is zero. It is then

easy to check that

λ = (a31 − a12)x1 + (a12 − a23)x2 + (a23 − a31)x3 (137)

does not vanish in general. Therefore we have to make use of the two invariants, namely

I1 = x1 + x2 + x3 and the Casimir I2 = xa23
1 xa31

2 xa12
3 and find two relationships of the form

(125). Clearly this is not possible in this case, as anticipated in Subsection 2.5.1. Consequently

we have to apply the procedure of Case III. For this we shall perform a suitable change of

variables which is diffeomorphic and globally defined in the interior of the positive orthant

of R3: we define (y1, y2, y3) = (xα1 , x
β
2 , x

γ
3). According to equation (127) it is not difficult

to show that always there exist suitable values of α, β and γ such that (u∗0(y), v
∗
0(y), w

∗
0(y))

become either (y1y2, y1y3, y2y3) or (−y1y2,−y1y3,−y2y3). In both cases, equation (137) is still

applicable in the new variables and now we do have λ(y) = 0. Therefore in the variables

(y1, y2, y3) we are in Case I of Subsection 2.5.1 and we are thus led to the general solution

ξ(y) = Ψ(y1 + y2 + y3, y1y2y3), with arbitrary smooth Ψ. If we now transform back these

results into the original variables (x1, x2, x3) we arrive at the family of solutions given by:

(u, v, w) = (a12x1x2, a31x1x3, a23x2x3)+

Ψ(xα1 + xβ2 + xγ3 , x
α
1x

β
2x

γ
3)(a12x

1−α
1 x1−β

2 , a31x
1−α
1 x1−γ

3 , a23x
1−β
2 x1−γ

3 ) (138)

As suggested in Subsection 2.5.1 (Case III) the derivation of solutions taking (136) as

starting point and making use of the Darboux canonical form (128) is another possible line
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of action. Here it has been preferred the use of a different choice in order to emphasize the

multiplicity of suitable possibilities for the determination of new solutions. However, the use

of the Darboux canonical form is an equally good and simple alternative in this case. It will

be omitted here for the sake of brevity, although it is straightforward in the present example

(see [85] for the algorithm of global reduction of the structure matrices (136) to the Darboux

form). It is worth recalling that the solutions found in the case of the Darboux reduction are, of

course, different from (138) since the multiplicity of choices obviously reflects the multiplicity

of solutions that can be determined in this way.

2.5.3. Some remarks

We have described a method according to which the knowledge of one solution of the

Jacobi equations greatly simplifies the procedure of determining additional solutions in the

3-d case. In particular, this is possible due to two main reasons:

(i) Knowledge of a given solution allows reformulating the problem into a linear one (as it

can be verified without difficulty, this property only holds in dimension 3). This is not

the first time that such kind of simplification is presented in the literature regarding 3-d

Poisson systems [55,66,81]. However, relevant advantages of the present method when

compared to [55,66,81] are that:

(a) Now we operate directly on the Poisson structure independently of the form of the

Hamiltonian, while in [55,66,81] an specific Hamiltonian is to be assumed.

(b) The present method produces in a straightforward way a large number of new

solution families. In this sense, it seems to be more effective and simpler to apply

than [55,66,81].

(ii) The second is that the use of a known solution as starting point allows reducing the

number of unknowns from three to one. Again, this type of reduction in the number of

unknowns is not new in the field, a good example being the so called conformal invariance

of the solutions of the 3-d Jacobi equations [63], which is a property equivalent to the

preservation of the Poisson structure after an arbitrary NTT. However, the quantity

and richness of solutions produced by the method described in the previous subsections

is remarkable when compared to the single, multiplicative family of solutions that the

conformal invariance generates.
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Therefore the present approach can be regarded quite naturally in the framework of the

analysis of the Jacobi identities. However, it is the simultaneous combination of the two

previous properties in the present method what actually makes it fruitful and simple to apply

for the determination of solutions.

There are some additional comments of interest in connection with the procedure developed

in this section, and more precisely with its possible generalization. An evident question in this

sense is the possible extension of additive ansatzs to dimensions higher than 3. This issue is

not considered here for the sake of conciseness, but an examination of the problem suggests

that the powerful advantages found in the 3-d case are not present in higher dimensions,

in which the associated equations are significantly more complicated. Nevertheless, there is

another possible and natural line of research (just mentioned) that provides a logical extension

of the present one, which is the use of a multiplicative (instead of an additive) ansatz. In such

case we find an evident connection with the operation of time reparametrization discussed in

Subsections 1.2.4 and 1.4.3, and systematically applied throughout the present chapter. In this

sense, the interest is twofold: not only as an alternative procedure for the idea of constructing

an infinity of solutions from a known one, but also as an operation of great interest for the

global determination of the Darboux canonical form. The advance in this direction will be

the purpose of Section 4.7, already in the general n-d framework.
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2.6. A PERSPECTIVE OF THE THREE-DIMENSIONAL SOLUTIONS

CONSIDERED

We can now present some unifying perspectives regarding the different 3-d results obtained.

Among the many features that might be emphasized, for what is to come in future chapters

it is important to stress now an issue common to all the Darboux reductions presented, namely

the fact that a concluding NTT is always applicable. Of course, at this stage it is not clear

why this should be the case. In fact, in Chapter 4 we shall analyze some n-d families in

which a mere diffeomorphism suffices for a global reduction to the Darboux canonical form.

On the other hand, along the present chapter a combination of diffeomorphism and time

reparametrization was always possible. In fact, it is evident that in the 2-d case only an NTT

(without diffeomorphism) suffices in order to achieve the global Darboux reduction. Needless

to say, all the previous possibilities are in complete agreement with the criteria for system

equivalence presented in Subsection 1.4.3. These issues will be progressively investigated in

the following chapters.

In addition, in Section 2.5 the method based on the use of an additive ansatz has been

presented. It might seem that this line of analysis has no relationship with the construction

of global Darboux reductions. As indicated in the previous subsection, this is not the case, at

least on a conceptual level. In fact, this kind of strategy will be of fundamental importance

for such reductions, since the idea of constructing an infinite family of solutions from a known

one can (and will) be directly applied in the framework of NTTs, and consequently in the

investigation of an essential aspect of Darboux reductions, in the general n-d case. This point

of view, already examined in the discussion provided in Subsection 2.5.3, will be developed

and should become apparent in Chapter 4.

Before proceeding to the study of the general n-d problem, in Chapter 3 we shall still

focus on dimensionally specific problems, this time with n = 4. The investigation of the n-d

situation will be the goal of Chapter 4.
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CHAPTER 3.

FOUR-DIMENSIONAL SOLUTIONS

3.1. INTRODUCTION

The 3-d results investigated in Chapter 2 are to be complemented in the 4-d context in

the present chapter. There are several reasons accounting for the convenience of extending

the 3-d analysis of Chapter 2 with a detailed study of a 4-d solution family.

The first of such reasons is that in the 4-d case there is a wider dynamical freedom from the

point of view of the symplectic structure of the phase space. This will confirm some interesting

aspects (already reported in the framework of the cyclic families of both types I and II) related

to the need of a case classification for the global Darboux reductions. This issue has some

relevant implications, already mentioned in the 3-d context, and it will be reexamined in the

4-d framework in Subsection 3.2.4.

In second term, we already know that the applied use of solutions of the Jacobi equations

has focused mostly in the 3-d case, also with a significant (but numerically less important)

sample of applied Poisson structures in the 4-d domain, while the instances in dimensions 5 and

higher become progressively less frequent. Therefore, a detailed consideration of a 4-d solution

family can provide significant complementary elements allowing a better understanding of the

features reported in dimension 3. As it will be clear in Chapter 4, the analysis of solutions in

dimensions 3 and 4 provides the background required for the general investigation in arbitrary

dimension n, which is the purpose of such chapter.

The structure of the present chapter includes two additional sections, namely Section 3.2

in which the 4-d family is characterized and analyzed in full detail [77], followed by Section 3.3

which is oriented towards the discussion and the conceptual analysis of the results obtained.

119



3.2. A FOUR-DIMENSIONAL FAMILY

The structure of this section is the following. In Subsection 3.2.1 the main theorem giving

the characterization of the 4-d solution family is provided. This is the basis for the analysis

presented in Subsection 3.2.2, in which the different possible complete sets of independent

Casimir invariants are classified, together with the subsequent global reductions to the Dar-

boux canonical form. Some instances are the subject of Subsection 3.2.3. The section is

concluded with some final remarks in Subsection 3.2.4.

3.2.1. Characterization of the family

We begin this paragraph with one of the main results of the chapter:

Theorem 3.2.1.1. Consider the family of functions of the form

Jij(x) = σijη(x)ψi(xi)ψj(xj)
4∑

k,l=1

εijklφl(xl) , i, j = 1, . . . , 4 (139)

defined in a domain Ω ⊂ R4, where εijkl denotes the Levi-Civita symbol and such that:

(a) Constants σij ∈ R are defined for every pair (i, j), i 6= j.

(b) σij = σji for every pair (i, j), i 6= j.

(c) σij 6= 0 for at least one pair (i, j), i 6= j.

(d) η(x), ψi(xi) and φi(xi) are C∞(Ω) functions of their respective arguments for every i.

(e) η(x) and ψi(xi) are nonvanishing in Ω for every i.

(f) The differences (φi(xi)− φj(xj)) are nonvanishing in Ω for every pair (i, j), i 6= j.

Then the set of functions Jij(x) defined in (139) constitutes in Ω a skew-symmetric solution

of the four-dimensional Jacobi identities

4∑
l=1

(Jil∂lJjk + Jkl∂lJij + Jjl∂lJki) = 0 , i, j, k = 1, . . . , 4 (140)

and therefore J = (Jij) is a four-dimensional structure matrix in Ω, if and only if:

σ12σ34 = σ13σ24 = σ14σ23 (141)
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Proof. Consider first functions (139) in the case η = 1. Substitution of (139) in equation

(140) of indexes (i, j, k) leads after some algebra to:∑4
l=1(Jil∂lJjk + Jkl∂lJij + Jjl∂lJki) =

ψiψjψk
∑4

r1,r2,s1,s2=1 {(σijσjkεijr1r2εjks1s2 + σkjσijεkjr1r2εijs1s2)(∂jψj)φr2φs2+

(σkiσijεkir1r2εijs1s2 + σjiσkiεjir1r2εkis1s2)(∂iψi)φr2φs2+

(σikσjkεikr1r2εjks1s2 + σjkσkiεjkr1r2εkis1s2)(∂kψk)φr2φs2+

(σis2σjkεis2r1r2εjks1s2 + σks2σijεks2r1r2εijs1s2 + σjs2σkiεjs2r1r2εkis1s2)ψs2φr2(∂s2φs2)} =

ψiψjψk
∑4

r1,r2,s1,s2=1

{
(σis2σjkδ

is2r1r2
jks1s2

+ σks2σijδ
ks2r1r2
ijs1s2

+ σjs2σkiδ
js2r1r2
kis1s2

)ψs2φr2(∂s2φs2)
}

(142)

where the δ symbol denotes the generalized Kronecker delta according to its standard definition

[8,59,123,157] namely: given q superindexes (i1, . . . , iq) and q subindexes (j1, . . . , jq) all of

them taking values in the range (1, . . . , n), then δ
i1...iq
j1...jq

is defined by the properties: (a) it is

totally antisymmetric in the superindexes; (b) it is totally antisymmetric in the subindexes;

(c) if the superindexes are all different (this is, ia1 6= ia2 if a1 6= a2) and the subindexes

are a permutation of the superindexes, then δ
i1...iq
j1...jq

takes the value +1 (respectively, −1) if

(i1, . . . , iq) and (j1, . . . , jq) are permutations of the same (of different) sign; (d) the value of

δ
i1...iq
j1...jq

is zero otherwise. Consequently, it can be verified that the expression in (142) vanishes

if two of the three indexes (i, j, k) are equal. Consider then the case in which i, j and k are

different. If m is the integer, 1 ≤ m ≤ 4, such that (i, j, k,m) is a permutation of (1, 2, 3, 4),

we arrive at: ∑4
l=1(Jil∂lJjk + Jkl∂lJij + Jjl∂lJki) =

ψiψjψkψm(∂mφm) {σimσjk(φk − φj) + σkmσij(φj − φi) + σjmσki(φi − φk)} =

ψiψjψkψm(∂mφm) {(σjmσki − σkmσij)φi + (σkmσij − σimσjk)φj + (σimσjk − σjmσki)φk}
(143)

Now let p, where 0 ≤ p ≤ 4, be the number of functions φi which have constant value

everywhere in Ω. Taking into account hypothesis (f) of the theorem, there are five different

possibilities to be examined for equation (143):

p = 0 : in this case it is straightforward that (143) vanishes if and only if (141) holds.

p = 1 : the analysis and the result are similar to those of the case p = 0.

p = 2 : assume without loss of generality that φk and φm are constant in Ω while φi and φj

are not. Then expression (143) vanishes if and only if:

σimσjk − σjmσik = (σimσjk − σijσkm)φk + (σijσkm − σimσjk)φm = 0

121



Given that φk 6= φm, these equations are equivalent to (141).

p = 3 : suppose without loss of generality that φi, φj and φk are constant in Ω, while φm is

not. Then expression (143) is equal to zero if and only if:

{(σjmσki − σkmσij)φi + (σkmσij − σimσjk)φj + (σimσjk − σjmσki)φk} ∂mφm = 0

Taking into account that ∂mφm does not vanish everywhere in Ω, and that φi, φj and

φk are arbitrary (as far as hypothesis (f) of the theorem is respected) the outcome is

again that (141) is necessary and sufficient for the vanishing of (143).

p = 4 : equations (143) vanish because ∂mφm = 0 for all possible values of m. This is to be

expected because in this case we are dealing with a separable Poisson structure [85].

Then conditions (141) are necessary and sufficient for the vanishing of (143) when 0 ≤ p ≤ 3.

For p = 4 expression (143) is always zero. This concludes the analysis of the case η = 1.

Let us now turn to the general form (139) of the solution, namely to general η. To analyze

this case, consider an arbitrary four-dimensional skew-symmetric solution Jij(x) of the Jacobi

equations. If such solution is multiplied by a C∞(Ω) function η(x) the resulting set of functions

Ĵij(x) = η(x)Jij(x) will be a skew-symmetric solution of (140) if and only if η verifies:

(JimJjk + JkmJij + JjmJki) ∂mη = 0 (144)

where again (i, j, k,m) denotes every permutation of (1, 2, 3, 4). We now apply condition (144)

to the functions Jij in (139) for which η = 1, just considered in the first part of this proof. It

can thus be seen that:

JimJjk + JkmJij + JjmJki =

ψiψjψkψm
∑4

p,q,r,s=1 φqφs

{
σimσjkδ

jkrs
impq + σijσkmδ

ijrs
kmpq + σjmσkiδ

kirs
jmpq

} (145)

To evaluate this expression, consider first the cases 0 ≤ p ≤ 3, which are verified if and only

if (141) is valid. In such situations equation (145) becomes

JimJjk + JkmJij + JjmJki =

ψiψjψkψmσimσjk
∑4

p,q,r,s=1 φqφs

{
δjkrsimpq + δijrskmpq + δkirsjmpq

}
= 0

and the result is proved. For the remaining case p = 4 it can be seen after some algebra that

(145) amounts to:

JimJjk + JkmJij + JjmJki = ψiψjψkψm {(σimσjk − σjmσki)(φiφj + φkφm)+

(σijσkm − σimσjk)(φiφk + φjφm) + (σjmσki − σijσkm)(φiφm + φjφk)}
(146)
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This expression must vanish everywhere in Ω if (139) is to be a solution for arbitrary η in this

case. Since p = 4 (namely all φi are constant in Ω) then hypothesis (f) implies that there are

two possibilities: either φi 6= 0 for every i = 1, . . . , 4; or φi = 0 for just one value of i. It can

be shown in both situations that (146) vanishes if and only if (141) is verified. Consequently,

the inclusion of function η implies that conditions (141) are also necessary and sufficient in

the case p = 4. This completes the proof of Theorem 3.2.1.1. Q.E.D.

Therefore the family of Poisson structures just characterized has the matrix form

J = η


0 σ12ψ1ψ2(φ4 − φ3) σ13ψ1ψ3(φ2 − φ4) σ14ψ1ψ4(φ3 − φ2)

σ12ψ1ψ2(φ3 − φ4) 0 σ23ψ2ψ3(φ4 − φ1) σ24ψ2ψ4(φ1 − φ3)

σ13ψ1ψ3(φ4 − φ2) σ23ψ2ψ3(φ1 − φ4) 0 σ34ψ3ψ4(φ2 − φ1)

σ14ψ1ψ4(φ2 − φ3) σ24ψ2ψ4(φ3 − φ1) σ34ψ3ψ4(φ1 − φ2) 0


(147)

where additionally σ12σ34 = σ13σ24 = σ14σ23. For what is to follow, the next definition will

be necessary:

Definition 3.2.1.2. For every domain Ω ⊂ R4, the set of structure matrices defined in Ω

and of the kind (139) characterized in Theorem 3.2.1.1 will be denoted Θ(Ω).

To provide the basis for the analysis of the symplectic structure and Darboux reduction

in Subsection 3.2.2, and also in order to complete the description of these Poisson structures,

the following result is important:

Proposition 3.2.1.3. Let Ω ⊂ R4 be a domain, then every structure matrix J ∈ Θ(Ω) has

constant rank of value 2 everywhere in Ω.

Proof. The determinant of J in (147) is:

|J |= η(ψ1ψ2ψ3ψ4)2[(σ14σ23 − σ13σ24)(φ1φ2 + φ3φ4)+

(σ12σ34 − σ14σ23)(φ1φ3 + φ2φ4) + (σ13σ24 − σ12σ34)(φ1φ4 + φ2φ3)]2

Due to identities (141) we obtain that | J |= 0. Therefore the rank cannot be 4, but only 2

or 0. The fact that the rank is 2 everywhere in Ω is implied by conditions (c), (e) and (f) of

Theorem 3.2.1.1. Q.E.D.
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Proposition 3.2.1.3 provides the basis for the explicit and global determination of the

symplectic structure and Darboux reduction of these Poisson structures. This is the purpose

of the next subsection.

3.2.2. Casimir invariants and global Darboux analysis

Before developing the main issues of this subsection it is convenient to recall a known

definition (see Subsection 1.2.4) that will be needed for their establishment. For this reason,

as we did in Chapter 2, now a definition specifically adapted for the present chapter is provided:

Definition 3.2.2.1. Let Ω ⊂ R4 be a domain. A reparametrization of time is defined as a

transformation of the form

dτ =
1

η(x)
dt (148)

where t is the initial time variable, τ is the new time and η(x) : Ω → R is a C∞(Ω) function

which does not vanish in Ω.

Recall that the sense of this definition is the following: let

dx
dt

= J · ∇H (149)

be an arbitrary four-dimensional Poisson system defined in a domain Ω ⊂ R4. Then, every

reparametrization of time of the form (148) leads from (149) to the differential system:

dx
dτ

= ηJ · ∇H (150)

Note however that such transformation often destroys the Poisson structure for systems of

dimension higher than three [63,70], because for a given J which is a structure matrix, ηJ is

not necessarily a solution of (24-25) as it has been discussed in the proof of Theorem 3.2.1.1

in connection with the four-dimensional case.

The main purpose of this subsection is the investigation of the symplectic structure of

family Θ(Ω). The central result in this sense corresponds to the next theorem, for which

the proof is constructive and completely classifies the different cases arising in the explicit

determination of the Casimir invariants and the global reduction to the Darboux canonical

form for the members of Θ(Ω):
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Theorem 3.2.2.2. For every four-dimensional Poisson system

dx
dt

= J (x) · ∇H(x)

defined in a domain Ω ⊂ R4 and such that J ∈ Θ(Ω), both a complete set of independent

Casimir invariants as well as the reduction to the Darboux canonical form, can be globally

constructed in Ω.

Proof. The proof begins with an auxiliary result:

Lemma 3.2.2.3. Let Ω ⊂ R4 be a domain, then every J ∈ Θ(Ω) can be transformed into

a structure matrix J ∗ defined in a domain Ω∗, of rank constant and equal to 2 in Ω∗ and

components of the form

J∗ij(y) = σijη
∗(y)

4∑
k,l=1

εijklφ
∗
l (yl) , i, j = 1, . . . , 4 (151)

Moreover, J ∗ is obtained through the change of variables globally diffeomorphic in Ω

yi(xi) =
∫

dxi
ψi(xi)

, i = 1, . . . , 4 (152)

and Ω∗ = y(Ω) is the diffeomorphic image of Ω through transformation (152).

Proof of Lemma 3.2.2.3. Recall that after a general smooth coordinate change y ≡ y(x),

a given structure matrix J (x) is transformed into another one J ∗(y) according to the rule

(30). The use of (30) with transformation (152) on J leads to (151) with η∗(y) = η(x(y))

and φ∗i (y) = φi(x(y)) for i = 1, . . . , 4. The fact that the rank of (151) is constant and of

value 2 everywhere in Ω∗ is a direct consequence of Proposition 3.2.1.3 and identity (30).

Transformation (152) is a global diffeomorphism as a consequence that both yi(xi) and its

inverse xi(yi) are differentiable for every i = 1, . . . , 4, and in addition y′i(xi) 6= 0 and x′i(yi) 6= 0

everywhere. Q.E.D.

The structure matrix (151) will be the starting point for the rest of the proof. Now two

complementary cases are to be distinguished:

CASE I: σij 6= 0 for all pairs (i, j), i 6= j. The analysis of this case must begin with a

definition and some preliminary results:
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Definition 3.2.2.4. Given a domain Ω ⊂ R4, a structure matrix belonging to Θ(Ω)

is said to be σ-positive if all its constants σij can be chosen to be positive, where i, j =

1, . . . , 4 and i 6= j.

The previous definition leads to:

Lemma 3.2.2.5. Let Ω ⊂ R4 be a domain, and let J ∈ Θ(Ω) be a structure matrix for

which σij 6= 0 for every pair i 6= j, where i, j = 1, . . . , 4. Then J is σ-positive and can

be expressed in terms of the set of constants σ̃ij =||σij || for i, j = 1, . . . , 4, with i 6= j.

Proof of Lemma 3.2.2.5. We define σ ≡ σ12σ34 = σ13σ24 = σ14σ23 from now on in

this section (recall equation (141)). Four main cases can be distinguished:

Case 1: σij > 0 for all i 6= j. The matrix is already in σ-positive form.

Case 2: σij < 0 for all i 6= j. This is reduced to Case 1 by redefining φi(xi) as

φ̃i(xi) = −φi(xi) for every i.

Case 3: σ > 0 with constants σij both positive and negative. There are two subcases:

Case 3.1: There are two negative and four positive constants σij with i < j.

Case 3.1.1: σ12 < 0 and σ34 < 0.

Case 3.1.2: σ13 < 0 and σ24 < 0.

Case 3.1.3: σ14 < 0 and σ23 < 0.

The three subcases 3.1.x are reduced in two steps:

Step 1: redefine φi(xi) as φ̃i(xi) = −φi(xi) for every i.

Step 2: redefine ψi(xi) as ψ̃i(xi) = −ψi(xi) for i = 3, 4 in subcase 3.1.1,

for i = 1, 3 in subcase 3.1.2 and for i = 1, 4 in subcase 3.1.3.

Case 3.2: There are two positive and four negative constants σij with i < j.

These are three possible cases that coincide with the ones appearing after Step

1 of items 3.1.1, 3.1.2 and 3.1.3 and therefore their reduction corresponds to

the transformations indicated in Step 2 of those three subcases.

Case 4: σ < 0. Clearly it can be assumed without loss of generality that σ12 < 0.

Then there are four possibilities:

126



Case 4.1: σ13 < 0 and σ14 < 0. Redefining ψ̃1(x1) = −ψ1(x1) it is reduced to

Case 1.

Case 4.2: σ13 > 0 and σ14 > 0. Redefining ψ̃2(x2) = −ψ2(x2) it is reduced to

Case 1.

Case 4.3: σ13 > 0 and σ14 < 0. Redefining ψ̃3(x3) = −ψ3(x3) it is reduced to

Case 2.

Case 4.4: σ13 < 0 and σ14 > 0. Redefining ψ̃4(x4) = −ψ4(x4) it is reduced to

Case 2.

This completes the proof of Lemma 3.2.2.5. Q.E.D.

A result that complements the last lemma is the next one:

Lemma 3.2.2.6. For every set of positive real constants (σ12, σ13, σ14, σ23, σ24, σ34) ver-

ifying conditions (141) there exists a unique set of positive real constants (σ1, σ2, σ3, σ4)

such that the equalities σij = σiσj are satisfied for every pair (i, j), with i < j, 1 ≤ i ≤ 3,

2 ≤ j ≤ 4.

Proof of Lemma 3.2.2.6. The existence of the constants σi can be seen on their

explicit expressions

σ1 =
(σ12σ13σ14

σ

)1/2
, σ2 =

(
σσ12

σ13σ14

)1/2

, σ3 =
(
σσ13

σ12σ14

)1/2

, σ4 =
(
σσ14

σ12σ13

)1/2

where now σ > 0. To prove uniqueness, taking logarithms of equalities σij = σiσj allows

reducing the problem to the investigation of the following linear system:

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1


·


lnσ1

lnσ2

lnσ3

lnσ4

 =



lnσ12

lnσ13

lnσ14

lnσ − lnσ14

lnσ − lnσ13

lnσ − lnσ12


(153)

Then the application of the Rouché-Fröbenius theorem [69,168] shows that system (153)

has a unique solution for (σ1, σ2, σ3, σ4) and the result is proved. Q.E.D.
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Therefore notice that in Case I, Lemma 3.2.2.5 can be used to assume that all the σij > 0.

Moreover, Lemma 3.2.2.6 can also be employed to write σij = σiσj in every case. Then

from (151) we have the following type of Poisson matrix:

J∗ij(y) = σiσjη
∗(y)

4∑
k,l=1

εijklφ
∗
l (yl) , i, j = 1, . . . , 4 (154)

with σi > 0 for i = 1, . . . , 4. We can now state:

Lemma 3.2.2.7. For a domain Ω ⊂ R4, assume that J ∈ Θ(Ω) is equivalent after

transformation (152) to a structure matrix J ∗ of the form (154) defined in y(Ω) = Ω∗ ⊂

R4 and such that σi > 0 for i = 1, . . . , 4. Then a complete set of independent Casimir

invariants of such structure matrix J ∗ which are globally defined in Ω∗ is given by:

D1(y) = σ2σ3σ4y1 + σ1σ3σ4y2 + σ1σ2σ4y3 + σ1σ2σ3y4 (155)

D2(y) = σ1σ2σ3σ4

4∑
i=1

∫
φi(yi)
σi

dyi (156)

Proof of Lemma 3.2.2.7. The result is obtained as an application of the Pfaffian

method (see Appendix 1). The simplest proof, however, consists in the direct verification

of the identities J ∗(y) · ∇yDi(y) = 0 for i = 1, 2 in (155-156). Q.E.D.

We can then proceed to the reduction to the Darboux canonical form in Case I. For this,

consider the following change of variables globally defined in Ω∗:

z1 = y1

z2 = y2

z3 = D1(y)

z4 = D2(y)

(157)

where D1(y) and D2(y) are those in (155) and (156). Transformation (157) is everywhere

differentiable and invertible, since (y1, y2, D1(y), D2(y)) are functionally independent in

Ω∗ because their Jacobian determinant never vanishes in Ω∗. If in addition we assume
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that (157) is one-to-one in Ω∗, then such change of variables is a global diffeomorphism.

When the transformation rule (30) is applied for (157) to matrix (154) the result is:

J ∗∗(z) = η∗∗(z) ·


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0


which is defined in Ω∗∗ = z(Ω∗), and where η∗∗(z) = σ1σ2η

∗(y(z))[φ∗4(y(z))− φ∗3(y(z))].

To conclude, the reduction to the Darboux canonical form is achieved making use of

Definition 3.2.2.1 to perform a time reparametrization of the form (148), namely dτ =

η∗∗(z)dt, where τ is the new time and η∗∗(z) is clearly nonvanishing in Ω∗∗ and C∞(Ω∗∗).

According to (149) and (150) the result is a new Poisson system with Darboux-type

structure matrix:

JD[4,2] =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 (158)

The reduction is thus globally completed in Case I.

CASE II: σij = 0 for some pair (i, j), i 6= j. Again matrix (151) is our starting point. Now

notice that σ = 0 and as a consequence of conditions (141) we actually have σij = 0 for

at least three of the six pairs (i, j), with i < j, 1 ≤ i ≤ 3, 2 ≤ j ≤ 4. This leads to eight

possible subcases:

{ (II.A.1 : σ14 = σ24 = σ34 = 0), (II.A.2 : σ12 = σ13 = σ14 = 0),

(II.A.3 : σ12 = σ23 = σ24 = 0), (II.A.4 : σ13 = σ23 = σ34 = 0),

(II.B.1 : σ13 = σ14 = σ34 = 0), (II.B.2 : σ12 = σ13 = σ23 = 0),

(II.B.3 : σ12 = σ14 = σ24 = 0), (II.B.4 : σ23 = σ24 = σ34 = 0) }

(159)

As it can be seen, these subcases are grouped in two different four-member sets (II.A

and II.B). The four members of each set present analogous symplectic structures and

similar reduction procedures to Darboux form. Let us start with the II.A possibilities:

Lemma 3.2.2.8. For a domain Ω ⊂ R4, assume that J ∈ Θ(Ω) is equivalent after

transformation (152) to a structure matrix J ∗ of the form (151) defined in y(Ω) = Ω∗ ⊂

R4 and corresponding to one of the subcases II.A.1 to II.A.4 in (159). Then a complete
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set of independent Casimir invariants of such structure matrix J ∗ which are globally

defined in Ω∗ is, respectively:

II.A.1 : D1(y) = y4

D2(y) = σ23

∫
φ1(y1)dy1 + σ13

∫
φ2(y2)dy2 + σ12

∫
φ3(y3)dy3 −

(σ23y1 + σ13y2 + σ12y3)φ4(y4)

II.A.2 : D1(y) = y1

D2(y) = σ34

∫
φ2(y2)dy2 + σ24

∫
φ3(y3)dy3 + σ23

∫
φ4(y4)dy4 −

(σ34y2 + σ24y3 + σ23y4)φ1(y1)

II.A.3 : D1(y) = y2

D2(y) = σ34

∫
φ1(y1)dy1 + σ14

∫
φ3(y3)dy3 + σ13

∫
φ4(y4)dy4 −

(σ34y1 + σ14y3 + σ13y4)φ2(y2)

II.A.4 : D1(y) = y3

D2(y) = σ24

∫
φ1(y1)dy1 + σ14

∫
φ2(y2)dy2 + σ12

∫
φ4(y4)dy4 −

(σ24y1 + σ14y2 + σ12y4)φ3(y3)

Proof of Lemma 3.2.2.8. It is similar to the one of Lemma 3.2.2.7. Q.E.D.

We carry out now the reduction to the Darboux canonical form for subcase II.A. For the

sake of conciseness this will be done for the first possibility II.A.1, since the procedure

is entirely analogous for the remaining situations II.A.2 to II.A.4. Thus for II.A.1 the

following change of variables globally defined in Ω∗ is defined:

v1 = y1

v2 = y2

v3 = D2(y)

v4 = D1(y)

(160)

where D1(y) and D2(y) are those in Lemma 3.2.2.8 for subcase II.A.1 and according

to hypothesis (c) of Theorem 3.2.1.1 it is assumed σ12 6= 0 without loss of generality.

Now we see that transformation (160) is everywhere differentiable and invertible, since
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(y1, y2, D1(y), D2(y)) are functionally independent in Ω∗ because their Jacobian determi-

nant never vanishes in Ω∗. Additionally, if we assume that (160) is one-to-one in Ω∗, then

the change of variables is a global diffeomorphism. Applying (30) and (160) to such struc-

ture matrix it is again obtained a structure matrix of the form J ∗∗(v) = η∗∗(v)JD[4,2]

defined in v(Ω∗), where now η∗∗(v) = σ12η
∗(y(v))[φ∗4(y(v)) − φ∗3(y(v))] and JD[4,2] is

given in (158). The reduction is concluded by means of a time reparametrization (148)

of the form dτ = η∗∗(v)dt, where η∗∗(v) is nonvanishing in v(Ω∗) and C∞(v(Ω∗)). The

result is thus a new Poisson system with structure matrix (158) and the reduction is

globally completed.

Consider next subcases II.B in (159). For each of them both generic and nongeneric

possibilities must be distinguished, according to the following definition:

Definition 3.2.2.9. Given a structure matrix of the kind (151) characterized in

Lemma 3.2.2.3 and corresponding to one of the subcases II.B.1 to II.B.4 in (159), such

structure matrix will be called generic if only three of the six constants σij vanish, for

i < j, 1 ≤ i ≤ 3, 2 ≤ j ≤ 4, while if four or five of such constants are zero the same

type of structure matrices will be termed nongeneric.

Obviously the case in which all constants σij vanish is excluded due to condition (c) of

Theorem 3.2.1.1. Now the generic II.B subcases will be treated first. For them we have

the following result:

Lemma 3.2.2.10. For a domain Ω ⊂ R4, assume that J ∈ Θ(Ω) is equivalent after

transformation (152) to a structure matrix J ∗ of the form (151) defined in y(Ω) = Ω∗ ⊂

R4 and corresponding to one of the generic subcases II.B.1 to II.B.4 in (159). Then a

complete set of independent Casimir invariants of such structure matrix J ∗ which are

globally defined in Ω∗ is, respectively:

II.B.1 : D1(y) = σ23σ24y1 + σ12σ24y3 + σ12σ23y4

D2(y) = σ23σ24

∫
φ1(y1)dy1 + σ12σ24

∫
φ3(y3)dy3 + σ12σ23

∫
φ4(y4)dy4

II.B.2 : D1(y) = σ24σ34y1 + σ14σ34y2 + σ14σ24y3

D2(y) = σ24σ34

∫
φ1(y1)dy1 + σ14σ34

∫
φ2(y2)dy2 + σ14σ24

∫
φ3(y3)dy3
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II.B.3 : D1(y) = σ23σ34y1 + σ13σ34y2 + σ13σ23y4

D2(y) = σ23σ34

∫
φ1(y1)dy1 + σ13σ34

∫
φ2(y2)dy2 + σ13σ23

∫
φ4(y4)dy4

II.B.4 : D1(y) = σ13σ14y2 + σ12σ14y3 + σ12σ13y4

D2(y) = σ13σ14

∫
φ2(y2)dy2 + σ12σ14

∫
φ3(y3)dy3 + σ12σ13

∫
φ4(y4)dy4

Proof of Lemma 3.2.2.10. It is similar to the one of Lemma 3.2.2.7. Q.E.D.

Regarding the reduction to the Darboux canonical form for the generic II.B subcases,

possibility II.B.1 will be the only one explicitly considered, since again the procedure is

completely analogous for the other cases II.B.2 to II.B.4. Then for II.B.1 (generic) the

transformation globally defined in Ω∗ to be performed is:

w1 = y1

w2 = y2

w3 = D1(y)

w4 = D2(y)

(161)

where D1(y) and D2(y) are those in Lemma 3.2.2.10 for II.B.1. Once (161) is defined,

the rest of aspects and procedures of the reduction for the generic II.B.1 case are entirely

similar to those of subcase II.A.1.

The only remaining situations are the nongeneric II.B subcases. The results to be

presented are completely analogous for the four possibilities II.B.1 to II.B.4, and conse-

quently we shall only deal explicitly with II.B.1 for the sake of brevity. For this, notice

that there are two possible nongeneric situations for II.B.1:

II.B.1.a: One of (σ12, σ23, σ24) vanishes. These three subcases are retrieved as particular

instances of the II.A cases already analyzed, in such a way that the complete set of

independent Casimir invariants and the reduction to the Darboux canonical form

are also obtained as particular results of the ones given for II.A. Specifically, we

may have:

• σ12 = 0: Such matrix is a particular case of II.A.2 in which σ34 = 0.

• σ23 = 0: This is a particular case of II.A.4 with σ14 = 0.
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• σ24 = 0: It is a particular case of II.A.1 with σ13 = 0.

II.B.1.b: Two of (σ12, σ23, σ24) vanish. Then the Casimir invariants are apparent and

only a time reparametrization remains in order to reduce the Poisson system to the

Darboux canonical form.

The classification is similar for the nongeneric II.B.2 to II.B.4 possibilities. Case II is

thus concluded.

The demonstration of Theorem 3.2.2.2 is therefore complete. Q.E.D.

Thus not only the structure matrices considered but also their possible kinds of Casimir

invariants and global reductions to the Darboux canonical form are completely characterized

after the previous results. Consequently, we are now able to state:

Corollary 3.2.2.11. Suppose that the assumptions of Remark 1.4.4.4 hold. Consider a

four-dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ R4 in which

the structure matrix J (x) is of the kind (139) characterized in Theorem 3.2.1.1. Then such

Poisson system is algebraically integrable in Ω, and it can be reduced globally in Ω to a Liouville

integrable Hamiltonian system.

Once the main properties have been considered in detail, it is interesting to put in per-

spective the family just analyzed, as far as it is closely related to other Poisson structures

reported in the literature. This is the aim of the next paragraph.

3.2.3. Examples and relationship with other Poisson structures

In this subsection the relationship of the family of solutions investigated with some other

well-known Poisson structures is briefly explored. This is useful not only because the family

of form (139) characterized in Theorem 3.2.1.1 provides a generalization of other structures or

families of structures to be mentioned, but also because pointing up the intersections among

different families should be helpful for future investigations regarding the Jacobi equations.

Additionally, such illustrations provide interesting examples of the solutions analyzed through-

out the section.

Consider first the particular case of members of Θ(Ω) for which functions η(x) and φi(xi)

(i = 1, . . . , 4) have constant values. The result is always a separable structure matrix (see Sec-
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tion 4.2 for a detailed description), namely a structure matrix of the form Jij = sijψi(xi)ψj(xj),

where the sij are real constants that constitute the entries of a skew-symmetric matrix

S = (sij), and the ψi(xi) are nonvanishing C∞(Ω) functions. Recall that separable matri-

ces are always solutions of the Jacobi equations (24-25) independently of the dimension of

the Poisson manifold [85]. There are several interesting kinds of Poisson systems for which

separable structures are natural in general dimension n, and consequently in the specific case

of dimension n = 4. This is the case of Poisson models arising in the domain of population

dynamics (for either Lotka-Volterra systems [63,136,143,144,145,146] or generalizations of the

QP type [83,86]), plasma models [142], and systems such as the Toda and relativistic Toda

lattices [4,5,36,37,38,39,40,41]. The reader is referred to Section 4.2 for further examples and

the full details regarding issues such as the determination of the Casimir invariants and the

reduction to the Darboux canonical form for separable Poisson structures [85]. Note in ad-

dition that according to Proposition 3.2.1.3 the structures belonging to Θ(Ω) have constant

rank of value 2 everywhere in Ω, while the rank of a separable matrix is the rank of S. Then it

is interesting to remark that the particular case in which η and φi (i = 1, . . . , 4) are constant

does not comprise all possible four-dimensional separable matrices but only separable struc-

tures of rank two, thus illustrating an intersection between two different families of Poisson

structures.

As a second example, consider the limit case in which the functions ψ4(x4) = φ4(x4) = 0

are considered in (147). In the resulting structure matrix, it is clear that x4 is a Casimir

function. Then if a reduction is carried out to the symplectic leaf x4 = c, the outcome is the

3-d Poisson structure of matrix:

J3d = η̃ ·


0 ψ1ψ2φ̃3 −ψ1ψ3φ̃2

−ψ1ψ2φ̃3 0 ψ2ψ3φ̃1

ψ1ψ3φ̃2 −ψ2ψ3φ̃1 0

 (162)

where η̃(x1, x2, x3) = η(x1, x2, x3, c) and φ̃i = σjkφi for i = 1, 2, 3, where (i, j, k) denotes an

arbitrary permutation of (1, 2, 3). Dropping the tildes for the sake of clarity, the resulting

structures can also be expressed as:

(J3d)ij(x1, x2, x3) = η(x1, x2, x3)ψi(xi)ψj(xj)
3∑

k=1

εijkφk(xk) , i, j = 1, 2, 3 (163)

Structure matrices of the form (162-163) have been studied in detail in Chapter 2 (Section 2.2)

as well as in the literature [70], and actually they comprise as particular cases very different

Poisson matrices employed before in several domains, including the Euler top, the Kermack-

McKendrick model, certain integrable cases of the Lorenz system, population models such
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as those of LV and QP types, the Maxwell-Bloch equations, the Rabinovich system, or the

RTW interaction equations. A discussion of these particular instances as well as an analysis

of the structure matrices (162-163) including their symplectic structure, Casimir invariants

and construction of the Darboux coordinates, are present in the aforementioned reference

[70] as well as in Chapter 2. Such family is also interesting from the point of view of the

separable Poisson structures considered in the first part of this subsection, since it is evident

that three-dimensional separable structure matrices are also particular cases of (163).

It can be thus appreciated how the identification of the solutions characterized in Theo-

rem 3.2.1.1 leads to the establishment of some new links among different families of Poisson

structures.

3.2.4. Some remarks about the case classification

The case classification arising in the global construction of the Darboux canonical form

carried out in Subsection 3.2.2 is, apart from its intrinsic interest, significant in the following

sense: the mere knowledge of one possible complete set of independent Casimir invariants

globally defined, does not guarantee the construction of such canonical form. Interestingly,

even if the rank of the structure matrix remains constant and equal to 2 (as it is always the

case in the family reported in the present section) several different decompositions may arise,

as we have seen, requiring a systematic analysis in order to prove that the family can actually

be reduced globally to the Darboux form in all possible cases. This feature was already present

in some of the 3-d families examined (to be precise, in the case of the type I and II cyclic

Poisson structures) and now is reported also in dimension 4 (this time with an increasing

number of possible subcases, actually).

In a sense, such feature is quite relevant in connection with the n-dimensional structure

matrices of rank lower or equal to 2 given by equation (39) of Subsection 1.3.2. In spite

of being the general solution corresponding to the case of general n and r ≤ 2, expression

(39) is of not practical use for our purposes, as the analysis of the present section shows, for

two different reasons: first of all, because the constancy of the rank is not guaranteed in the

structure matrices (39), which is a key condition for the applicability of Darboux’ theorem.

And, in second term, because expression (39) is defined on the basis of a single set of Casimir

invariants, on which no further assumptions are imposed. As we have seen, just one complete

set of independent Casimir invariants may be not sufficient for practical purposes, including

the mere definition of the family according to (39), depending on the actual complexity of the
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Poisson structure under consideration. This is the reason why a family such as the one in (139)

characterized in Theorem 3.2.1.1 considered in this chapter is not, in practice, described by

expression (39). Exactly the same situation was found in Sections 2.3 and 2.4 in the context

of both types of 3-d cyclic Poisson structures. We shall see in Chapter 4 (Subsection 4.7.8) the

result providing the global Darboux reduction for Poisson structures of arbitrary dimension

n and constant rank 2. This explains the inclusion here of the present considerations, and

accounts also for the fact that structure matrices expressed in the form (39) are not convenient

for the establishment of such result.
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3.3. INSIGHTS PROVIDED BY THE FOUR-DIMENSIONAL FAMILY

ANALYZED

We have seen that features quite similar to those found in the 3-d case now appear in the 4-d

situation, but obviously with a greater richness of possibilities associated with the increasing

dimension of phase space, while the rank remains constant and equal to 2. In particular,

as it was the rule in 3-d, now we still have an essentially double-step reduction procedure,

consisting in a first change of variables, followed by a final time reparametrization. Now we

have the background necessary to investigate in the next chapter the general n-dimensional

case. There, many of the previous features will be elucidated and put under a common

perspective. Specifically, it will be proved that the kind of reductions previously investigated

are based on the assumption that all possible NTTs are acceptable in the sense that they

preserve the Poisson structure. This is valid in the systems analyzed in Chapters 2 and 3, but

not in general. It is known in the literature (and it was mentioned in different points of the

exposition in Chapters 2 and 3) that all time reparametrizations are acceptable in dimensions

2 and 3, but not in general in dimensions equal or higher than 4. But, in addition, in the

present chapter we have seen that every NTT preserves the Poisson structures associated with

matrices (147) in spite of being a 4-d family. This state of affairs will be clarified and notably

refined in the next chapter. As a consequence, the conditions for the applicability of this

kind of two-step global Darboux reduction procedure will be identified and analyzed in what

follows. In other words, the fact that the role of time reparametrizations is important for the

perspective adopted in the present work explains that, apart from being used when required,

it will be necessary to focus on them as a subject of research on which much of what has been

done converges. To this it must be added that in the next chapter we shall see instances of

n-d solution families for which a global Darboux reduction can be achieved without the need

of NTTs. On the other hand, the specific investigation of time reparametrizations will lead

to the general and global Darboux reduction for Poisson structures of rank 2. This seeming

diversity of situations will be completely understood in relatively simple terms in the next

chapter.
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CHAPTER 4.

SOLUTIONS OF ARBITRARY DIMENSION

4.1. INTRODUCTION

We now start the most important chapter of this thesis, in which a study of the general

n-dimensional situation is carried out. The reasons for this significance are very diverse and

of a fundamental nature. Many of them have been already considered in different points of

this dissertation, but due to their importance it is worth recalling them, at least briefly, in the

present introduction.

First of all, it is evident that the n-d case is of course the most important and, on the other

hand, it is the most poorly understood. Consequently, progress in this sense is of paramount

importance for the understanding of the solutions of the Jacobi equations and their global

analysis. In particular, the number of known n-d solutions is rather limited, specially if

we wish to consider solution families of arbitrary dimension and rank, defined in terms of

functional forms not limited to a given degree of nonlinearity. To such requirements we must

attach the interest of identifying those kinds of solutions that, in addition, are amenable to

a global symplectic analysis as well as to a global and constructive reduction to the Darboux

canonical form. The significance of new contributions of this type is increased by taking into

account the scarcity of similar results in the literature. In addition, it is worth anticipating

that the n-d analysis to be presented here will allow a complete understanding of the results

presented in Chapters 2 and 3.

Apart from the characterization and global analysis of n-d Poisson structures, but in close

connection with it, a significant part of the chapter will be devoted to the investigation of

NTTs that preserve the Poisson structure, also in the n-d framework. For this reason, as well

as for the sake of completeness, it is necessary to provide here a general n-d definition of time

reparametrizations. Such definition will be of great importance in the present chapter:
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Definition 4.1.1. Let Ω ⊂ Rn be a domain. A reparametrization of time is defined as a

transformation of the form

dτ =
1

η(x)
dt (164)

where t is the initial time variable, τ is the new time and η(x) : Ω → R is a C∞(Ω) function

which does not vanish in Ω.

Let us recall, in addition, the close relationship of NTTs with the role of time in Poisson

systems. Precisely, this is the reason why NTTs are also termed time reparametrizations in

this work and in the literature. Let

dx
dt

= J · ∇H (165)

be an arbitrary n-dimensional Poisson system defined in a domain Ω ⊂ Rn. Then, every

reparametrization of time of the form (164) leads from (165) to the differential system:

dx
dτ

= ηJ · ∇H (166)

The question regarding whether or not the vector field (166) is a Poisson system will be of

interest in this chapter, since it is known that, in general, such transformations destroy the

Poisson structure in dimensions n ≥ 4 because for a given J which is a structure matrix, ηJ

is not necessarily a solution of the Jacobi equations (24-25).

The structure of the chapter is the following. In Sections 4.2 and 4.3 two n-d solution

families are investigated (the separable family in the case of 4.2, and the multiseparable

family in the case of 4.3). Such families are defined for arbitrary values of n and r, and can

be globally analyzed (including the reduction to the Darboux canonical form) without resort

to the use of NTTs, namely by purely diffeomorphic transformations. A very special kind

of Poisson structures, termed distinguished solutions (or D-solutions) will be the subject of

Section 4.4. D-solutions are also defined for arbitrary values of n and r. In this case, apart from

the family characterization, the functional form of D-solutions is mathematically remarkable

and permits the investigation of properties associated with them which allow a simple but

elegant generalization of any given D-solution. In Sections 4.5 and 4.6 we focus on two

formally similar (but different) families of Poisson structures termed hemiseparable solutions

(of types I and II, respectively) which are defined for arbitrary n but only admit the value

r = 2, and can also be globally analyzed, including the global reduction to Darboux canonical

form. Curiously, the reduction of both hemiseparable families requires the combined use of

a diffeomorphism and an ending NTT. After the background acquired in the n-dimensional
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context, the clarification of this situation will be carried out in Section 4.7, which is devoted

to the investigation of families of NTTs valid in arbitrary dimension. The results obtained

lead not only to the understanding of the naturalness of the several procedures employed in

different situations, but in addition allow the generalization of the separable, multiseparable

and D-solution families, as well as a very general result regarding the global construction of

the Darboux canonical form for structure matrices of rank 2 and arbitrary dimension. The

present chapter is finished in Section 4.8 with some concluding remarks.
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4.2. SEPARABLE SOLUTIONS

In this section, the characterization of a family [85] of n-d solutions of the Jacobi identities

is presented. Such a family is very general, as far as it is defined for arbitrary values of

the rank, and it is functionally built on the use of functions of arbitrary nonlinearity. Such

solution family can be regarded as the result of applying the classical method of separation

of variables [8,67,170,176], a feature which accounts for the denomination given to it. As

an outcome of their generality, separable Poisson structures unify in a common framework

many different and well-known Poisson systems seemingly unrelated. This unification is not

only conceptual, but also allows the development of general and global methods of analysis,

including the constructive determination of the Darboux canonical form.

The section begins with the characterization of the family in Subsection 4.2.1. Later, Sub-

section 4.2.2 is devoted to the global construction of the Casimir invariants and the Darboux

canonical form. The analysis is concluded in Subsection 4.2.3 with some examples.

4.2.1. Characterization of the family

We first provide the characterization of the separable family of structure matrices:

Theorem 4.2.1.1. Let Ω ⊂ Rn be a domain, and let (ψ1(x1), . . . , ψn(xn)) be a set of functions

defined in Ω, which are C∞(Ω) and do not vanish in any point of Ω. In addition, let S ≡ (sij)

be an n × n constant skew-symmetric real matrix. Then every matrix J (x) ≡ (Jij(x)) given

by

Jij(x) = sijψi(xi)ψj(xj) , i, j = 1, . . . , n (167)

is a structure matrix globally defined in Ω.

Proof. Skew-symmetry is clear in (167) by construction. To complete the proof of the

statement, we substitute the entries of matrix J in (167) into the Jacobi equations (25). We

arrive at:
n∑
l=1

(Jil∂lJjk + Jjl∂lJki + Jkl∂lJij) =

n∑
l=1

[silsjkψiψl(δjlψ′jψk+δklψjψ
′
k)+sjlskiψjψl(δklψ

′
kψi+δilψkψ

′
i)+sklsijψkψl(δilψ

′
iψj+δjlψiψ

′
j)]

(168)
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where ψ′i means dψi/dxi for every i, and δij is Kronecker’s delta. Simplifying the deltas in

(168) we arrive at:
n∑
l=1

(Jil∂lJjk + Jjl∂lJki + Jkl∂lJij) =

ψiψjψk[ψ′j(sjisjk + sijsjk) + ψ′k(sjkski + skjski) + ψ′i(skisij + siksij)] = 0

due to the skew-symmetry of S. This proves the result. Q.E.D.

Definition 4.2.1.2. The structure matrices of the form (167) characterized in Theorem

4.2.1.1, as well as the Poisson structures associated with them, will be termed separable.

Clearly, the name separable is related to the fact that we have characterized solutions for

which a separation of variables has been carried out, a classical method for the determination

of solutions in linear PDEs [8,67,170,176] which also works in the present domain (however,

not producing the general solution, as it is often the case in the framework of linear equations).

The need for the nonvanishing condition ψi(xi) 6= 0 in Ω for all i = 1, . . . , n, will become clear

in the next subsection. In this sense, the following results are devoted to analyze the main

properties of the separable structure matrices, and specifically the symplectic structure and

the global construction of the Darboux canonical form.

4.2.2. Casimir invariants and global Darboux analysis

We shall start by considering the determination of the Casimir invariants:

Theorem 4.2.2.1. Let J be a separable structure matrix of the form (167) which is defined

in a domain Ω ⊂ Rn. In addition, let r = Rank(S), and let (k[r+1], . . . , k[n]) be a basis of

Ker(S), where k[i] = (k[i]
1 , . . . , k

[i]
n )T for i = r + 1, . . . , n. Then Rank(J ) = r everywhere in Ω

and the functions

Di(x) =
n∑
j=1

k
[i]
j

∫
dxj
ψj(xj)

, i = r + 1, . . . , n (169)

form a complete set of independent Casimir invariants of J which are globally defined in Ω.

Proof. We proceed following three steps, which take the form of auxiliary lemmas.

Lemma 4.2.2.2. Let J be a separable structure matrix of the form (167) which is defined in

a domain Ω ⊂ Rn. Then, Rank(J ) = Rank(S) at every point x ∈ Ω.
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Proof of Lemma 4.2.2.2. Note that we can write J = Q · S ·Q, where matrix Q is defined

by Q = diag(ψ1(x1), . . . , ψn(xn)). As a consequence of the nonvanishing character of functions

ψi(xi) in Ω for every i = 1, . . . , n, we have that matrix Q is invertible everywhere in Ω. Thus

matrices J and S are congruent on R at every point of Ω. This completes the proof of Lemma

4.2.2.2. Q.E.D.

Then, according to Lemma 4.2.2.2, there are (n − r) functionally independent Casimir

invariants defined in every point of Ω. In fact they can be globally characterized, which is the

aim of the next two lemmas:

Lemma 4.2.2.3. Let J be a separable structure matrix of the form (167) which is defined in

a domain Ω ⊂ Rn. In addition, let k = (k1, . . . , kn)T ∈ Rn be a vector such that k ∈ Ker(S).

Then, the function

D(x) =
n∑
j=1

kj

∫
dxj
ψj(xj)

(170)

is a Casimir invariant of J globally defined in Ω.

Proof of Lemma 4.2.2.3. Function (170) is obtained by application of the Pfaffian method

(see Appendix 1). However, the simplest proof consists in checking that under the hypotheses

of the lemma, function D(x) in (170) verifies J · ∇D = 0. The C∞(Ω) character of D(x) is

a consequence of the fact that functions ψi(xi) are C∞(Ω) and do not vanish in Ω, for every

i = 1, . . . , n. This proves Lemma 4.2.2.3. Q.E.D.

Actually, it can be seen that there exists a natural association between linearly independent

vectors in Ker(S) and functionally independent Casimir invariants of the form (170). The last

auxiliary lemma proves this property:

Lemma 4.2.2.4. Let J be a separable structure matrix of the form (167) which is defined in

a domain Ω ⊂ Rn, and such that Rank(S) = r. Additionally, let (k[r+1], . . . , k[n]) be a basis of

Ker(S), where k[i] = (k[i]
1 , . . . , k

[i]
n )T for i = r + 1, . . . , n. Then the functions (169)

Di(x) =
n∑
j=1

k
[i]
j

∫
dxj
ψj(xj)

, i = r + 1, . . . , n

form a complete set of independent Casimir invariants of J which are globally defined in Ω.
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Proof of Lemma 4.2.2.4. From Lemma 4.2.2.3 we know that every function Di(x) in (169)

is a Casimir invariant globally defined in Ω. Thus we only need to verify the functional

independence of functions (169). This can be seen immediately after evaluating the Jacobian

matrix associated with (Dr+1(x), . . . , Dn(x)), which is:

∂(Dr+1(x), . . . , Dn(x))
∂(x1, . . . , xn)

=


k

[r+1]
1 /ψ1(x1) . . . k

[r+1]
n /ψn(xn)

...
...

k
[n]
1 /ψ1(x1) . . . k

[n]
n /ψn(xn)

 (171)

Obviously, Jacobian (171) is of maximal rank (equal to n−r) everywhere in Ω as a consequence

of the linear independence of the vectors (k[r+1], . . . , k[n]), together with the nonvanishing

property of the ψi(xi) in Ω for every i = 1, . . . , n. Since the number of Casimir functions

in the set (169) is equal to (n − r), namely the rank of the Jacobian, it is also proved that

(Dr+1(x), . . . , Dn(x)) is a complete set of independent Casimir invariants of J . The proof of

Lemma 4.2.2.4 is finished. Q.E.D.

Together, the three previous lemmas prove Theorem 4.2.2.1. Q.E.D.

Therefore, the Casimir invariants of the separable structure matrices can be completely

determined from the kernel of the constant matrix S, which is a significant simplification of

the problem with respect to the general case. We shall see several instances of this in the next

subsection. We also have the following outcome:

Corollary 4.2.2.5. Suppose that the assumptions of Remark 1.4.4.4 hold. Consider an n-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ Rn in which the

structure matrix J (x) is separable and has the form (167) with Rank(S) = 2. Then such

Poisson system is algebraically integrable in Ω.

We can now examine the global reduction to the Darboux canonical form. Such result is

accomplished in the following theorem, of which the proof is constructive:

Theorem 4.2.2.6. Let Ω ⊂ Rn be a domain where a Poisson system ẋ = J (x) · ∇H(x)

is defined everywhere, for which J (x) is a separable structure matrix. Then, such Poisson

system can be globally reduced in Ω to the Darboux canonical form by means of a coordinate
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transformation which is a diffeomorphism in Ω.

Proof. We shall use expression (30) for the transformation of the structure matrix (167)

under general smooth coordinate changes, y ≡ y(x):

J∗ij(y) =
n∑

k,l=1

∂yi
∂xk

Jkl(x)
∂yj
∂xl

, i, j = 1, . . . , n (172)

We introduce a first diffeomorphic transformation, which is globally defined in Ω:

yi =
∫

dxi
ψi(xi)

, i = 1, . . . , n (173)

The diffeomorphic character of the coordinate change (173) in Ω is clear since the transforma-

tion is everywhere continuous, one-to-one and differentiable, as well as onto Ω∗ by definition

(since Ω∗ ≡ y(Ω)). Accordingly, the inverse exists and is also continuous, one-to-one and

differentiable. These properties arise as a consequence of the fact that functions ψi(xi) are

C∞(Ω) and do not vanish in Ω, for every i = 1, . . . , n. When (167) and (173) are substituted

in (172), we obtain:

J∗ij(y) = sij , i, j = 1, . . . , n (174)

In other words, we have transformed the structure matrix in such a way that now J ∗(y) = S

is a matrix of constant entries. In addition to this, we now apply to the structure matrix (174)

a second transformation z ≡ z(y), which is linear and therefore defined globally in Rn:

zi =
n∑
j=1

lijyj , i = 1, . . . , n (175)

In (175) matrix L ≡ (lij) is a constant, n× n invertible matrix. The diffeomorphic character

(everywhere in Rn) of transformation (175) is evident because it is linear and invertible.

According to (172), the structure matrix J ∗(y) now is transformed in a new one:

J ∗∗(z) = L · J ∗ · LT = L · S · LT (176)

It is well-known (recall Theorem 1.4.1.2) that the invertible matrix L in (176) can be chosen

in order to have:

J ∗∗(z) = JD[n,r] =

 0 1

−1 0

 r/2︷ ︸︸ ︷
⊕ . . .⊕

 0 1

−1 0

⊕O1

(n−r)︷ ︸︸ ︷
⊕ . . .⊕O1 (177)

where r = Rank(S) is an even number because S is skew-symmetric, as we know. With (177)

the Poisson system has been reduced globally to the Darboux canonical form, since J ∗∗(z) is
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a direct sum of r/2 symplectic matrices S2 plus (n− r) null 1× 1 matrices O1 associated with

the Casimir invariants, which in the Darboux representation are decoupled and correspond to

the variables (zr+1, . . . , zn). The proof is complete. Q.E.D.

It is worth emphasizing that the reduction has been completed explicitly and globally

in the domain of interest, as anticipated. This is remarkable, since the number of Poisson

structures for which this can be done is exceedingly limited. Well on the contrary, in the

present case this is possible in a quite natural way. The previous reduction implies also the

following result:

Corollary 4.2.2.7. Suppose that the assumptions of Remark 1.4.4.4 hold. Consider an n-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ Rn in which the

structure matrix J (x) is separable and has the form (167) with Rank(S) = 2. Then such

Poisson system can be reduced globally and diffeomorphically in Ω to a Liouville integrable

Hamiltonian system.

In addition to their advantageous manipulation properties, the separable structure matrices

embrace and unify many different Poisson structures of very common use in the literature.

We shall now see a sample in the following subsection.

4.2.3. Examples

The first two instances to be shown deal with separable Poisson structures appearing in

very diverse kinds of dynamical systems (Example 1) and in different Toda lattice equations

(Example 2). The third instance regards the important family of constant skew-symmetric

matrices. The subsection concludes with some varied examples briefly displayed, and grouped

under the common denomination of “further examples”, which complement the presentation

of applied instances of Poisson structures of the separable kind.

Example 1. Lotka-Volterra and Quasi-Polynomial systems

The following kind of separable structure matrices

Jij(x) = sijxixj , sij = −sji ∈ R , i, j = 1, . . . , n (178)
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were first recognized by Plank [143] in the characterization of Poisson structures of the Lotka-

Volterra equations, and were important later in the wider case of QP Poisson systems [83,86].

However, particular cases of (178) had been previously found in different contexts, such as

plasma physics [142] or population dynamics [29,63,136] (see also the relativistic Toda lattice

equations in the next example).

In (178) we have ψi(xi) = xi, and therefore the Casimir invariants are immediately found

to be, according to (170), of the form:

D(x) =
n∑
j=1

kj ln(xj) , k = (k1, k2, . . . , kn)T ∈ Ker(S) (179)

In the specific case of Lotka-Volterra equations, the first integrals (179) were already noticed

by Volterra himself [169], but they were not generically recognized as Casimir invariants until

Plank’s work [143]. Being Hamiltonian-independent, they also appear in more general types

of models sharing the structure matrix (178), such as those treated in [83,86].

The first transformation (173) necessary to achieve the Darboux canonical form now is:

yi =
∫

dxi
ψi(xi)

= ln(xi) , i = 1, . . . , n (180)

The change of variables (180) is to be followed by the linear transformation (175). This kind of

two-step reduction to a classical Hamiltonian formulation has been known for long —outside

the framework of Poisson structures— in the particular case of conservative, even-dimensional

and symplectic Lotka-Volterra systems [101,102,103]. The realization that such reduction is,

in fact, Hamiltonian-independent and inherent to structure matrices of the kind (178) was

formalized in [83].

Example 2. Toda lattice and relativistic Toda lattice

Toda lattice equations when expressed in Flaschka’s variables (α1, . . . , αN−1, β1, . . . , βN )

constitute a Poisson system with brackets

{αi, βi} = −αi , {αi, βi+1} = αi , i = 1, . . . , N − 1 (181)

while the rest of the elementary brackets vanish [36,37,38,39,40,41]. The Poisson bracket (181)

corresponds to a separable structure matrix given by the following elements, ψi(αi) = αi , i = 1, . . . , N − 1

ψj(βj) = 1 , j = 1, . . . , N
(182)
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S =

 O(N−1) R(N−1)×N

−(R(N−1)×N )T ON

 (183)

where the subindexes of the submatrices indicate their sizes, O denotes as usual the null

matrix, and

R(N−1)×N =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −1 1


It is immediate that the kernel of S is one-dimensional, a basis of which is provided by the

vector

k = (
N−1︷ ︸︸ ︷

0 , . . . , 0 ,
N︷ ︸︸ ︷

1 , . . . , 1 )T

Consequently, from (170) there is only one independent Casimir invariant,

D =
N∑
j=1

∫
dβj =

N∑
j=1

βj

which is the result found in [36]. The reduction to the Darboux form also becomes straight-

forward, since we have to perform transformation (173) α̃i = ln(αi) , i = 1, . . . , N − 1

β̃j = βj , j = 1, . . . , N

and then carry out the linear change of variables (175).

Analogously, we consider now the relativistic Toda equations expressed in similar variables

[36], namely (α1, . . . , αN−1, β1, . . . , βN ). Again, it is a Poisson system with brackets
{αi, αi+1} = αiαi+1 , i = 1, . . . , N − 2

{αi, βi} = −αiβi , i = 1, . . . , N − 1

{αi, βi+1} = αiβi+1 , i = 1, . . . , N − 1

while the rest of the elementary brackets vanish. This Poisson bracket corresponds to a

separable structure matrix of the form (178) examined in Example 1. Therefore, all the

considerations mentioned there hold also in the present instance.

Example 3. Constant structure matrices

A simple but important example is provided by constant structure matrices, or equivalently

by constant n × n skew-symmetric real matrices of arbitrary rank. Such matrices not only
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include the entire classical Hamiltonian theory, but in addition appear frequently in very

diverse developments for which the use of noncanonical variables is necessary, such as in the

case of population dynamics [83,101,102,103] and plasma physics [142], to mention a sample.

Actually, it is immediate that constant structure matrices constitute a particular case of

those of the form (167) regarded in the previous subsections. In this situation it is worth

noting that ψi(xi) = 1, and thus the Casimir functions (169) are linear. Due to these facts,

when globally constructing the Darboux canonical form we find that transformation (173)

amounts to the identity, and therefore the reduction to the Darboux form only involves the

linear transformation (175-177). The reduction of constant structure matrices to classical

Hamiltonian form is a well-known procedure [56,101,102,103] that now is retrieved, however,

just as a particular case in the wider framework of separable Poisson structures.

Constant structure matrices will be very useful for the purpose of comparing different

families, as we shall see in the next sections. In part this is due to the fact that, in spite

of their simplicity, they are defined for all possible values of the dimension n and the rank

r. Because of this combination of simplicity and generality, they are going to be specially

adequate for some of the verifications required in what is to follow.

Further examples: Kermack-McKendrick model, circle maps, Lotka-Volterra

equations, 2× 2 games

We end the present subsection with a brief enumeration of other examples which have also

deserved some interest in the literature. We shall not elaborate on them with the detail of the

previous instances, but only outline the most interesting features.

As a first example we touch upon the Kermack-McKendrick model [63,135], which admits

a 3-d Poisson structure in terms of matrix:

J (x1, x2, x3) =


0 −bx1x2 0

bx1x2 0 −ax2

0 ax2 0

 (184)

where the xi denote the system variables and a, b are real constants. We again have a separable

matrix with (ψ1(x1), ψ2(x2), ψ3(x3)) = (x1, x2, 1). Therefore, this example turns out to be

very similar to the nonrelativistic Toda lattice examined before, as it can be seen from (182-

183). We thus find that seemingly unrelated problems can be analyzed in a general, unifying

framework.
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Next we shall mention the 3-d Poisson structures appearing in the study of certain circle

maps [63], in which we have:

J (x1, x2, x3) =


0 0 −(x1)2(x3)2

0 0 −(x2)2(x3)2

(x1)2(x3)2 (x2)2(x3)2 0


We thus find ψi(xi) = (xi)2, a more nonlinear kind of function. The evaluation of the Casimir

invariants and the Darboux canonical form do not present any special difficulty in this case

and are omitted.

The list of structure matrices employed for the study of conservative Lotka-Volterra sys-

tems is not limited to those of the form (178) already considered. For instance [143], in the

two-dimensional case a symplectic structure matrix for which J12 = x1−l1
1 x1−l2

2 was employed,

with l1, l2 ∈ R. Thus we now have ψi(xi) = x1−li
i for i = 1, 2. Of course, no nontrivial Casimir

invariants exist now. Note also that S is the 2× 2 symplectic matrix S2, and the linear trans-

formation (175) is not necessary: the reduction to the classical Hamiltonian form only involves

transformation (173) or, alternatively, the use of a single and direct NTT. Again, the details

of the reduction to the Darboux canonical form are omitted for the sake of conciseness, as far

as it does not present particular difficulties for any values of the constants l1 and l2.

Finally we shall consider a very different kind of 2-d structure matrix found in the context

of 2× 2 games [88], in which:

J (x1, x2) =

 0 x1(1− x1)x2(1− x2)

−x1(1− x1)x2(1− x2) 0


Now we have that Ω = Int($1×$1) is the interior of the cartesian product of two probability

simplices, and ψi(xi) = xi(1 − xi) for i = 1, 2. Obviously there are no nontrivial Casimir

functions in this case. Again, S is the symplectic matrix S2, and no linear transformation

(175) is required, namely the reduction to the classical Hamiltonian form only makes use of

transformation (173):

yi =
∫

dxi
xi(1− xi)

= ln
(

xi
1− xi

)
, i = 1, 2

Notice that all the manipulations are properly defined because functions ψi(xi) are smooth

and nonvanishing in the domain Ω.
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4.3. MULTISEPARABLE SOLUTIONS

A family of skew-symmetric solutions of the Jacobi partial differential equations is char-

acterized and analyzed in this section. As it was the case for separable Poisson structures,

the new family (termed multiseparable in what follows) has some remarkable properties [78].

In first place, it is defined for arbitrary values of the dimension and the rank. Secondly, it is

described in terms of arbitrary smooth functions, namely it is not limited to a given degree

of nonlinearity. Additionally, it is possible to determine explicitly the fundamental properties

of those solutions, such as their Casimir invariants and the algorithm for the reduction to the

Darboux canonical form which, as we know, have been reported only for a very limited sam-

ple of finite-dimensional Poisson structures. Moreover, such analysis is carried out globally in

phase space, thus improving the usual local scope of Darboux’ theorem.

The structure of the section is the following. In Subsection 4.3.1 the multiseparable solution

family is characterized. Globally defined Casimir invariants and construction of the Darboux

canonical form are provided in Subsection 4.3.2. Some applied examples of multiseparable

Poisson structures are later examined in Subsection 4.3.3. To conclude, it is convenient to

carry out a comparison with the separable family in order to clarify their respective domains

of applicability. This issue is analyzed in Subsection 4.3.4.

4.3.1. Characterization of the family

In first place, a preliminary definition is provided:

Definition 4.3.1.1. Let A = (aij) and B = (bij) be two n × n real and regular matrices

(n ≥ 2) such that A = B−1. Let also Bi ≡ (bi1, . . . , bin) denote the i-th row of B, for

i = 1, . . . , n. In addition, let Ω ⊂ Rn be a domain in which a system of local coordinates

x = (x1, . . . , xn) is defined. If r is an even integer, 2 ≤ r ≤ n, we shall denote by Ω∗i ⊂ R the

subsets Ω∗i ≡ {Bi · x | x ∈ Ω}, for i = 1, . . . , r. Let also ψi(x) : Ω → R, with i = 1, . . . , r,

denote r functions which are C∞(Ω) and do not vanish at any point of Ω, and such that they

can be expressed in the form ψi(x) = ϕi(Bi · x), where every function ϕi(yi) : Ω∗i → R is

C∞(Ω∗i ) and does not vanish in any point of Ω∗i . Finally let

Λklij ≡

∣∣∣∣∣∣ aik ail

ajk ajl

∣∣∣∣∣∣ = aikajl − ailajk , i, j, k, l = 1, . . . , n (185)
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Then an n×n matrix J (x) ≡ (Jij(x)) defined in Ω is termed multiseparable if it has the form:

Jij(x) =
r/2∑
k=1

Λ2k−1,2k
ij ψ2k−1(x)ψ2k(x) , i, j = 1, . . . , n (186)

Moreover, for every n ≥ 2, multiseparable matrices will be also defined in Ω for the additional

even value r = 0 as Jij(x) = 0 for i, j = 1, . . . , n and for every x ∈ Ω.

This definition provides the basis for the following result:

Theorem 4.3.1.2. Let n ≥ 2 be an integer, and let Ω ⊂ Rn be a domain in which a

multiseparable matrix J is defined. Then J is a structure matrix globally defined in Ω.

Proof. Since the case r = 0 is clear, we shall focus on the case r ≥ 2. Skew-symmetry of J is

a consequence of the fact that Λ2k−1,2k
ij = −Λ2k−1,2k

ji for i, j = 1, . . . , n and for k = 1, . . . , r/2

in (185-186). Let us now turn to the Jacobi identities (25). Substitution of (186) into (25)

produces after some rearrangements:

n∑
l=1

(Jil∂lJjk + Jjl∂lJki + Jkl∂lJij) =

r/2∑
p,q=1

ϕ2p−1ϕ2p

[
ϕ′2q−1ϕ2q

n∑
l=1

b2q−1,l

(
Λ2p−1,2p
il Λ2q−1,2q

jk + Λ2p−1,2p
jl Λ2q−1,2q

ki + Λ2p−1,2p
kl Λ2q−1,2q

ij

)

+ϕ2q−1ϕ
′
2q

n∑
l=1

b2q,l

(
Λ2p−1,2p
il Λ2q−1,2q

jk + Λ2p−1,2p
jl Λ2q−1,2q

ki + Λ2p−1,2p
kl Λ2q−1,2q

ij

)]
≡

r/2∑
p,q=1

ϕ2p−1ϕ2p

(
ϕ′2q−1ϕ2qT1 + ϕ2q−1ϕ

′
2qT2

)
(187)

where T1 and T2 are terms to be examined separately. Let us first look at T1. Using the

definition of the constants Λklij given in (185), after some algebra it is found that:

T1 =

∣∣∣∣∣∣ ai,2p−1 ai,2p

δ2q−1,2p−1 δ2q−1,2p

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ aj,2q−1 aj,2q

ak,2q−1 ak,2q

∣∣∣∣∣∣+∣∣∣∣∣∣ aj,2p−1 aj,2p

δ2q−1,2p−1 δ2q−1,2p

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ ak,2q−1 ak,2q

ai,2q−1 ai,2q

∣∣∣∣∣∣+
∣∣∣∣∣∣ ak,2p−1 ak,2p

δ2q−1,2p−1 δ2q−1,2p

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ ai,2q−1 ai,2q

aj,2q−1 aj,2q

∣∣∣∣∣∣
where the symbol δij stands for Kronecker’s delta. Notice that in T1 it is always δ2q−1,2p = 0

since p and q are integers. Now consider two complementary cases for T1:
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Case 1.1. Assume p = q in T1. Then δ2q−1,2p−1 = 1 and T1 becomes:

T1 = ai,2p(aj,2pak,2p−1 − aj,2p−1ak,2p) + aj,2p(ak,2pai,2p−1−

ai,2pak,2p−1) + ak,2p(ai,2paj,2p−1 − ai,2p−1aj,2p) = 0

Case 1.2. Let p 6= q in T1. Now δ2q−1,2p−1 = 0 and T1 vanishes straightforwardly.

Consequently it is T1 = 0 in all cases. Similarly, let us now examine T2. Following an analogous

procedure it can be found that:

T2 =

∣∣∣∣∣∣ ai,2p−1 ai,2p

δ2q,2p−1 δ2q,2p

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ aj,2q−1 aj,2q

ak,2q−1 ak,2q

∣∣∣∣∣∣+∣∣∣∣∣∣ aj,2p−1 aj,2p

δ2q,2p−1 δ2q,2p

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ ak,2q−1 ak,2q

ai,2q−1 ai,2q

∣∣∣∣∣∣+
∣∣∣∣∣∣ ak,2p−1 ak,2p

δ2q,2p−1 δ2q,2p

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ ai,2q−1 ai,2q

aj,2q−1 aj,2q

∣∣∣∣∣∣
As before, note that δ2q,2p−1 = 0 in T2 since p and q are integers. Two complementary cases

appear now for T2:

Case 2.1. It is p = q in T2. Thus δ2q,2p = 1 and T2 reduces to:

T2 = ai,2p−1(aj,2p−1ak,2p − aj,2pak,2p−1) + aj,2p−1(ai,2pak,2p−1−

ai,2p−1ak,2p) + ak,2p−1(ai,2p−1aj,2p − ai,2paj,2p−1) = 0

Case 2.2. Assume p 6= q in T2. Then δ2q,2p = 0 and it is immediate that T2 vanishes.

Therefore we also have T2 = 0 in all cases. Together with the previous result T1 = 0, this

implies in (187) that multiseparable matrices verify the Jacobi equations (25) for r ≥ 2. This

completes the proof of Theorem 4.3.1.2. Q.E.D.

One of the most significant features of the multiseparable family of Poisson structures

is that it can be explicitly and globally analyzed both for the determination of its Casimir

invariants and for the construction of the Darboux canonical form. The development of such

issues is the purpose of the next subsection.
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4.3.2. Casimir invariants and global Darboux analysis

In what follows, a theorem summarizing the main features of the multiseparable solutions

is provided. The proof of such theorem is constructive:

Theorem 4.3.2.1. For every n-dimensional (n ≥ 2) Poisson system ẋ = J (x) · ∇H(x)

defined in a domain Ω ⊂ Rn and such that J ≡ (Jij) is a multiseparable structure matrix of

the form characterized in Definition 4.3.1.1, we have that:

(a) Rank(J )= r everywhere in Ω.

(b) The functions

Di(x) =
n∑
j=1

bijxj , i = r + 1, . . . , n (188)

form globally in Ω a complete set of functionally independent Casimir invariants of J .

(c) It is possible to perform globally in Ω the reduction of such Poisson system to the Darboux

canonical form by means of a transformation which is a diffeomorphism everywhere in

the domain Ω.

Proof. The proof of the theorem begins with an auxiliary result:

Lemma 4.3.2.2. If J is a multiseparable structure matrix defined in the domain Ω ⊂ Rn,

then functions (188) form a set of functionally independent Casimir invariants of J in Ω.

Proof of Lemma 4.3.2.2. Functional independence can be seen by direct evaluation of the

Jacobian matrix of functions (188):

∂(Dr+1(x), . . . , Dn(x))
∂(x1, . . . , xn)

=


br+1,1 . . . br+1,n

...
...

bn,1 . . . bn,n

 (189)

Thus the Jacobian (189) has constant rank (equal to n−r) in Rn as a consequence that matrix

B is invertible, and accordingly functions (188) are functionally independent in Ω. In addition,

let us show that such functions are Casimir invariants. If r = 0 the result is direct. For r ≥ 2,

we evaluate the i-th component of the matrix product J · ∇Dp for every p = r + 1, . . . , n:

(J · ∇Dp)i =
n∑
j=1

Jij∂jDp =
r/2∑
k=1

ϕ2k−1ϕ2k

n∑
j=1

bpjΛ
2k−1,2k
ij (190)
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After some algebra, (190) amounts to:

(J · ∇Dp)i =
r/2∑
k=1

ϕ2k−1ϕ2k

∣∣∣∣∣∣ ai,2k−1 ai,2k

δp,2k−1 δp,2k

∣∣∣∣∣∣ (191)

But note that p = r + 1, . . . , n, while 1 ≤ k ≤ (r/2). This implies that in all cases it is

δp,2k−1 = δp,2k = 0, and the expression in (191) vanishes. Consequently, it is J · ∇Dp = 0 for

all p = r + 1, . . . , n and the proof of Lemma 4.3.2.2 is complete. Q.E.D.

A direct outcome of Lemma 4.3.2.2 is that Rank(J )≤ r everywhere in Ω. Let us now

prove that, in fact, r is the actual value of the rank:

Lemma 4.3.2.3. If J is a multiseparable structure matrix defined in the domain Ω ⊂ Rn,

then Rank(J )= r everywhere in Ω.

Proof of Lemma 4.3.2.3. According to Definition 4.3.1.1, the result is verified if r = 0.

For r ≥ 2, in order to prove this lemma recall first that under a smooth change of variables

y ≡ y(x), every structure matrix J (x) is transformed into a new structure matrix J ∗(y)

according to the rule:

J∗ij(y) =
n∑

k,l=1

∂yi
∂xk

Jkl(x)
∂yj
∂xl

, i, j = 1, . . . , n (192)

In our case, we shall perform the following change of variables:

yi =
n∑
j=1

bijxj , i = 1, . . . , n (193)

In (193) we obviously have ∂yi/∂xj = bij for all i, j = 1, . . . , n. Taking this into account,

substitution of (186) in (192) implies that:

J∗ij(y) =
r/2∑
p=1

ϕ2p−1(y2p−1)ϕ2p(y2p)
n∑

k,l=1

bikbjlΛ
2p−1,2p
kl (194)

The use of definition (185) in (194) leads after some calculations to:

J∗ij(y) =
r/2∑
p=1

∣∣∣∣∣∣ δi,2p−1 δi,2p

δj,2p−1 δj,2p

∣∣∣∣∣∣ϕ2p−1(y2p−1)ϕ2p(y2p) (195)

In (195) three cases can be distinguished:

Case 1. If it is (i, j) = (2p − 1, 2p) we have J∗ij(y) = ϕi(yi)ϕj(yj). This is thus the case for

(i, j) = {(1, 2), . . . , (r − 1, r)}.
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Case 2. When it is (i, j) = (2p, 2p − 1) we find J∗ij(y) = −ϕi(yi)ϕj(yj). This happens for

(i, j) = {(2, 1), . . . , (r, r − 1)}.

Case 3. In any other situation, it is J∗ij(y) = 0.

Consequently, we have just arrived to the following structure matrix:

J ∗(y) =

 0 ϕ1ϕ2

−ϕ1ϕ2 0

 r/2︷ ︸︸ ︷
⊕ . . .⊕

 0 ϕr−1ϕr

−ϕr−1ϕr 0

⊕O1

(n−r)︷ ︸︸ ︷
⊕ . . .⊕O1 (196)

where O1 denotes the 1× 1 null submatrix. Let us define the set Ω∗ ⊂ Rn according to Ω∗ ≡

{B ·x | x ∈ Ω}. It is clear that J ∗(y) in (196) is defined on Ω∗. Now let y∗ = (y∗1, . . . , y
∗
n) ∈ Ω∗

be a point in which J ∗(y) is evaluated. We then have y∗ = B · x∗ for some x∗ ∈ Ω. But this

means that y∗i = Bi · x∗ for i = 1, . . . , r, which implies that y∗i ∈ Ω∗i for all i = 1, . . . , r. On

the other hand, it is assumed by Definition 4.3.1.1 that every function ϕi(yi) does not vanish

in Ω∗i for i = 1, . . . , r. We see then that Rank(J ∗)= r everywhere in Ω∗. Since according to

transformation (192) matrices J (x) and J ∗(y) are congruent, this implies in particular that

Rank(J )= r at every point of Ω. Lemma 4.3.2.3 is thus proved. Q.E.D.

As a consequence of Lemmas 4.3.2.2 and 4.3.2.3, we have that the Casimir invariants (188)

constitute a complete set. After this remark, the statements (a) and (b) of Theorem 4.3.2.1

are already proved. Let us then regard item (c). The fact that Rank(J )= r is constant in

Ω implies that Darboux’ theorem is applicable. In the case r = 0 the statement (c) of the

theorem is valid since J does coincide with its Darboux canonical form, the diffeomorphic

transformation thus being the identity. Then, in what remains of the proof we shall focus on

the case r ≥ 2. For this, the starting point will be matrix J ∗(y) in (196) which was obtained

after the diffeomorphic transformation y = B · x. Since every function ϕi(yi) does not vanish

in Ω∗i for i = 1, . . . , r, it is possible to perform on J ∗(y) an additional transformation of

coordinates z ≡ z(y) defined as:
zi =

∫
dyi
ϕi(yi)

, i = 1, . . . , r

zi = yi , i = r + 1, . . . , n
(197)

Transformation (197) is globally defined in Ω∗, and actually it is not difficult to verify that

it is also diffeomorphic: since functions ϕi(yi) are C∞ and nonvanishing, both zi(yi) and its

inverse are always differentiable and strictly monotonic for every i = 1, . . . , n. The outcome

after transformation (197) is a new structure matrix J ∗∗(z) which is obtained from (192) and
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(196) as:

J∗∗ij (z) =
n∑

k,l=1

∂zi
∂yk

J∗kl(y)
∂zj
∂yl

=
dzi
dyi

J∗ij(y)
dzj
dyj

, i, j = 1, . . . , n (198)

Now two different cases are to be recognized:

Case 1. If 1 ≤ i ≤ r and 1 ≤ j ≤ r, then from (198) we have:

J∗∗ij (z) =
J∗ij(y)

ϕi(yi)ϕj(yj)
, i, j = 1, . . . , r

Case 2. In any other case different from the previous one, we obtain J∗∗ij (z) = 0 because for

all those values of i and j it is J∗ij(y) = 0 in expression (198).

Accordingly, a comparison with (196) shows that:

J ∗∗(z) = JD[n,r] =

 0 1

−1 0

 r/2︷ ︸︸ ︷
⊕ . . .⊕

 0 1

−1 0

⊕O1

(n−r)︷ ︸︸ ︷
⊕ . . .⊕O1 (199)

Therefore the Darboux canonical form (199) is globally constructed by means of a diffeomor-

phism for every r ≥ 2. The proof of Theorem 4.3.2.1 is complete. Q.E.D.

Thus the multiseparable Poisson structures considered, as well as their complete families of

Casimir invariants and the global reduction to the Darboux canonical form, have been entirely

characterized after the previous results, which lead us to the establishment of the following:

Corollary 4.3.2.4. Suppose that the assumptions of Remark 1.4.4.4 hold. Consider an n-

dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ Rn in which the

structure matrix J (x) is multiseparable according to (186) and Definition 4.3.1.1, and it has

r = 2. Then such Poisson system is algebraically integrable in Ω, and it can be reduced globally

and diffeomorphically in Ω to a Liouville integrable Hamiltonian system.

At this stage, it is convenient to illustrate by means of some examples the generality of

the family just analyzed as well as the different procedures described. This is the purpose of

the next subsection.
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4.3.3. Examples

We shall consider several instances, most of them regarding Poisson structures well-known

in the literature, including domains such as population dynamics (Kermack-McKendrick sys-

tem) or mechanics (Toda lattice). In addition, other examples are useful in order to better

explain the nature and scope of the results just developed. This is specially the case in the

first two instances analyzed in what follows.

Example 1. A counterexample on the linearity of Casimir invariants

As we have seen, always there exists a complete set of linear Casimir invariants for multi-

separable matrices. The purpose of this instance is to show that such condition is necessary but

not sufficient for a structure matrix to be mulstiseparable. As a counterexample of sufficiency,

consider the following three-dimensional structure matrix:

J (x) =


0 η(x) 0

−η(x) 0 0

0 0 0

 (200)

where η(x1, x2, x3) is a smooth and nonvanishing function. Accordingly, matrix J in (200) is

always a structure matrix, as it can be easily verified, its rank being 2 in all points. In addition,

the only independent Casimir invariant can be chosen to be linear, precisely D(x) = x3. On

the other hand, there are cases in which matrix (200) is not multiseparable. To see this, note

that for the multiseparable case with n = 3 and r = 2 the general form arising from Definition

4.3.1.1 is just: 
J12(x) = Λ12

12ϕ1(B1 · x)ϕ2(B2 · x)

J13(x) = Λ12
13ϕ1(B1 · x)ϕ2(B2 · x)

J23(x) = Λ12
23ϕ1(B1 · x)ϕ2(B2 · x)

(201)

Consequently, if function η(x) is not of the form ϕ1(B1 ·x)ϕ2(B2 ·x) then the structure matrix

(200) cannot be multiseparable, in spite of having always a complete set of independent linear

Casimir invariants.

Example 2. Constant structure matrices

In spite of their simplicity, constant structure matrices are important both for their prac-

tical applications (including the entire classical Hamiltonian theory as well as very diverse
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applications based on the use of noncanonical coordinates [101,102,103,142]) and also for pur-

poses relative to the comparison of the separable, multiseparable and distinguished solutions

(as we shall see in the next section, constant skew-symmetric matrices have the property

of belonging to those three families at the same time). In addition, they are of interest as

mere examples due to their generality, since constant structure matrices comprise all possible

combinations of dimension and rank.

In order to see that every constant structure matrix is a multiseparable matrix, let us first

recall Theorem 1.4.1.2, in which it was shown that every constant n× n skew-symmetric real

matrix S of rank r is congruent in R with JD[n,r], namely there exists an n × n constant

invertible real matrix A such that S = A · JD[n,r] · AT . Vice versa, every matrix of the form

A · JD[n,r] · AT is skew-symmetric by construction, as it is easy to check. In other words, the

set of constant skew-symmetric real matrices and the set of matrices of the form A ·JD[n,r] ·AT

coincide. Now if we expand in detail the product A · JD[n,r] ·AT for arbitrary values of n and

r ≥ 2, and for arbitrary A, it is immediate to show that the outcome is a matrix S ≡ (sij) of

the form:

sij =
r/2∑
k=1

Λ2k−1,2k
ij , i, j = 1, . . . , n

And consequently, such matrix S is multiseparable in terms of functions ψi(x) = 1 for all

i = 1, . . . , r. The zero-rank case (namely matrix On) is of course embraced trivially in this

argument after Definition 4.3.1.1. It is thus proved that every constant skew-symmetric real

matrix is multiseparable.

Example 3. Kermack-McKendrick system

The following structure matrix is of interest [63,135] for the analysis of the well-known

Kermack-McKendrick model for epidemics:

J (x) = bx1x2


0 1 −1

−1 0 1

1 −1 0

 (202)

where b > 0 is a real constant. Since xi > 0 for all i = 1, 2, 3, it is Rank(J )= 2, a Casimir

invariant being D(x) = x1 +x2 +x3. For what is to follow it is interesting to notice that (202)

is not a separable structure matrix. In terms of the elements described in Definition 4.3.1.1,

160



matrix (202) is multiseparable with:

A =


1 0 0

0 1 0

−1 −1 1

 , B = A−1 =


1 0 0

0 1 0

1 1 1


and functions ϕi(yi) = κiyi for i = 1, 2, where κ1 and κ2 are arbitrary real constants verifying

the condition κ1κ2 = b. We can check how J in (202) is generated according to Definition

4.3.1.1 and (201):

J12 = Λ12
12ϕ1(B1 · x)ϕ2(B2 · x) =

∣∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣∣κ1x1κ2x2 = bx1x2

J13 = Λ12
13ϕ1(B1 · x)ϕ2(B2 · x) =

∣∣∣∣∣∣ 1 0

−1 −1

∣∣∣∣∣∣κ1x1κ2x2 = −bx1x2

J23 = Λ12
23ϕ1(B1 · x)ϕ2(B2 · x) =

∣∣∣∣∣∣ 0 1

−1 −1

∣∣∣∣∣∣κ1x1κ2x2 = bx1x2

The calculations for the remaining nonzero entries are entirely similar as far as Λklij = −Λklji

for all i, j, k, l. Let us now consider the Darboux canonical form for J . If we apply (192) for

the coordinate change (193), namely y = B · x, we arrive after some calculations at:

J ∗(y) = by1y2


0 1 0

−1 0 0

0 0 0

 (203)

To complete the reduction to the Darboux canonical form according to the procedure given in

the previous subsection, an additional transformation (197) is to be applied to matrix J ∗(y)

in (203). Now such transformation amounts to:

z1 =
∫

dy1

κ1y1
=

1
κ1

ln y1

z2 =
∫

dy2

κ2y2
=

1
κ2

ln y2

z3 = y3

(204)

Then, the result after the change of coordinates (204) is the Darboux canonical form:

J ∗∗(z) = JD[3,2] =


0 1 0

−1 0 0

0 0 0
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Consequently, the reduction is globally and constructively completed. The diffeomorphic

character of all the transformations involved is also evident.

Example 4. Poisson bracket for the Toda lattice

As a last instance, a Poisson structure which is frequently employed for the study of

the Toda system shall be considered [4,5,36,37,38,39,40,41]. The Toda lattice ODEs, when

expressed in Flaschka’s variables x = (x1, . . . , xn) = (α1, . . . , αN−1, β1, . . . , βN ) are a Poisson

system with noncanonical brackets

{αi, βi} = −αi , {αi, βi+1} = αi , i = 1, . . . , N − 1

while the rest of elementary brackets are zero. Therefore, this is a Poisson structure of dimen-

sion n = (2N − 1) and having the following structure matrix

J =



−α1 α1

O(N−1) −α2 α2

. . . . . .

−αN−1 αN−1

α1

−α1 α2

−α2
. . . ON

. . . αN−1

−αN−1



(205)

where as usual, O denotes the square null submatrix of size given by the subindex. This

example is conceptually interesting, since matrix (205) is at the same time linear (Lie-Poisson),

separable and (as we are going to see) multiseparable. Regarded as a separable matrix, it was

already analyzed in this chapter, precisely in Subsection 4.2.3 (Example 2). This double

separable and multiseparable nature provides also an additional motivation for a comparison

of both families, a task carried out in Subsection 4.3.4. In addition, let us notice again that

the rank of J is r = n − 1 = 2N − 2. Consequently, there is only one independent Casimir

invariant, which can be chosen to be D(x) =
∑N

i=1 βi.

Let us first show that the structure matrix (205) is multiseparable for every n ≥ 3. In

terms of Definition 4.3.1.1, we now have the functions: ϕi(yi) = −yi , i = 1, 3, . . . , r − 1 = n− 2 = 2N − 3

ϕi(yi) = 1 , i = 2, 4, . . . , r = n− 1 = 2N − 2
(206)
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And the matrices A and B are given in what follows. In first place, we have for A:

A =



−1 0 0 0 0 0 . . . 0 0 0

0 0 −1 0 0 0 . . . 0 0 0

0 0 0 0 −1 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . −1 0 0

0 1 0 0 0 0 . . . 0 0 0

0 −1 0 1 0 0 . . . 0 0 0

0 0 0 −1 0 1 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 0 1 0

0 0 0 0 0 0 . . . 0 −1 1



(207)

Notice that for the sake of clarity, every row of A is symbolically split in two parts of sizes

2N − 2 (left) and 1 (right), while vertically every column is also divided schematically in two

pieces of sizes N − 1 (up) and N (down). For B we have:

B =



−1 0 0 . . . 0 0 0 0 0 . . . 0 0

0 0 0 . . . 0 1 0 0 0 . . . 0 0

0 −1 0 . . . 0 0 0 0 0 . . . 0 0

0 0 0 . . . 0 1 1 0 0 . . . 0 0

0 0 −1 . . . 0 0 0 0 0 . . . 0 0

0 0 0 . . . 0 1 1 1 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 . . . −1 0 0 0 0 . . . 0 0

0 0 0 . . . 0 1 1 1 1 . . . 1 0

0 0 0 . . . 0 1 1 1 1 . . . 1 1



(208)

Again, for clarity every row of B has been divided in two parts of sizes N − 1 (left) and N

(right), while vertically every column is also separated in two pieces of sizes 2N − 2 (up) and

1 (down). It is simple to check that A in (207) and B in (208) are invertible and A = B−1.

Let us verify that these elements generate the structure matrix (205). According to Definition

4.3.1.1 and equations (206-208) we now have: ϕi(Bi · x) = α(i+1)/2 , i = 1, 3, . . . , r − 1 = n− 2 = 2N − 3

ϕi(Bi · x) = 1 , i = 2, 4, . . . , r = n− 1 = 2N − 2
(209)
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Therefore using (186) together with (209) we arrive at:

Jij(x) =
r/2∑
k=1

Λ2k−1,2k
ij αk , i, j = 1, . . . , n (210)

If we examine matrix A in (207) we see that four cases appear in (210):

Case 1: 1 ≤ i ≤ (N − 1), 1 ≤ j ≤ (N − 1). In this case, every determinant Λ2k−1,2k
ij contains

at least three zeros, and thus vanishes.

Case 2: N ≤ i ≤ (2N − 1), N ≤ j ≤ (2N − 1). Now every determinant Λ2k−1,2k
ij has a null

column, and consequently also vanishes.

Case 3: 1 ≤ i ≤ (N − 1), N ≤ j ≤ (2N − 1). Examination of A shows that the coefficient

Λ2k−1,2k
ij will be different from zero if and only if for a given i it is k = i, and j takes

any of the two values j = (i+N − 1) or j = (i+N). Then, according to (210) the only

entries of J that do not vanish are the ones associated with those determinants Λ2k−1,2k
ij

that are not zero, which are: Λ2i−1,2i
i,i+N−1 = −1 ⇒ Ji,i+N−1 = −αi , i = 1, . . . , N − 1

Λ2i−1,2i
i,i+N = 1 ⇒ Ji,i+N = αi , i = 1, . . . , N − 1

(211)

Case 4: N ≤ i ≤ (2N − 1), 1 ≤ j ≤ (N − 1). This case is skew-symmetrical of Case 3,

therefore it is not necessary to repeat the calculations since the argument is entirely

similar.

The outcome of the previous classification is precisely matrix J in (205), as expected.

To conclude the example, let us now turn to the construction of the Darboux canonical

form, developed in the last subsection. As we know, the first step is the coordinate transfor-

mation (193) of the form y = B · x, where y = (y1, . . . , yn). From the definition of B in (208)

note in particular that we now have:

y2i−1 = −αi , i = 1, . . . , N − 1 (212)

Making use of (210), (211) and (212), the application to J in (205) of the transformation rule

(192) for the change (193) leads after some algebra to:

J ∗(y) =

 0 −y1

y1 0

 (N−1)︷ ︸︸ ︷
⊕ . . .⊕

 0 −y2N−3

y2N−3 0

⊕O1 (213)
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We now apply to (213) the second transformation (197) which now becomes:

zi = −
∫

dyi
yi

= − ln yi , i = 1, 3, . . . , 2N − 3

zi =
∫

dyi = yi , i = 2, 4, . . . , 2N − 2

zi = yi , i = 2N − 1

(214)

Taking (198) into account, the application of transformation (214) to the structure matrix

(213) finally leads to the Darboux canonical form:

J ∗∗(z) = JD[2N−1,2N−2] =

 0 1

−1 0

 (N−1)︷ ︸︸ ︷
⊕ . . .⊕

 0 1

−1 0

⊕O1

Recall also how the diffeomorphic character of both coordinate transformations (193) and

(214) is clear in practice.

4.3.4. Comparison with the separable family

As we have seen through the examples, there is to some extent an overlap between the

separable and the multiseparable families. Clearly they are very different, but it is interesting

anyway to provide some additional details regarding the actual relationship between both

kinds of solutions. For reasons that will be clear in the presentation, it is illustrative to follow

a progressive treatment in three steps, namely n = 2, n = 3 and finally the general case of

practical interest n ≥ 3.

Case n = 2

If s12 ∈ R is a real constant, in the separable case we have J12(x) = s12ψ1(x1)ψ2(x2). When

n = 2, it is always possible to suppress formally s12 by redefining one function (or both), for

example as ψ̃1(x1) = s12ψ1(x1). Thus, we can equivalently say that for the separable case it

is J12(x) = ψ1(x1)ψ2(x2). On the other hand, for the multiseparable family (with r = 2) now

we have:

J12(x) = Λ12
12ϕ1(B1 · x)ϕ2(B2 · x) =

∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣∣ϕ1(B1 · x)ϕ2(B2 · x) (215)

In particular, if we make the choice A = B = I2, then (215) becomes:

J12(x) = ϕ1(x1)ϕ2(x2)
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Therefore, we obtain that in the case n = 2, separable solutions are a subset of multiseparable

solutions (note the common requirement of smoothness for the structure functions in both

families). The converse is not true, because in general (215) is given by:

J12(x) = Λ12
12ϕ1(b11x1 + b12x2)ϕ2(b21x1 + b22x2) (216)

And clearly, the structure function (216) is not separable in general. Consequently, for n = 2

the separable Poisson structures are properly contained in the multiseparable ones (notice

that the case r = 0, namely matrix O2, is also embraced by the previous statement after

Definition 4.3.1.1). Thus, all the two-dimensional separable examples (and the corresponding

global analyses carried out for them) considered in Subsection 4.2.3 now become particular

instances in the more general framework of multiseparable Poisson structures.

Case n = 3

We are going to see three simple instances that provide complementary results for this

case.

To begin with, an example of a multiseparable structure matrix which is not separable

is presented. Such instance was developed previously (matrix (202) of Example 3 from Sub-

section 4.3.3). The proof of the multiseparable character of (202) is therefore not necessary,

since it was already provided at that stage. In addition, it is evident that matrix (202) is not

separable, something that can be appreciated by simple inspection (in particular, note that

the element J23 = bx1x2 of (202) does depend on x1). Consequently, for n = 3 multiseparable

matrices are not a subset of separable matrices.

Let us prove also the converse by means of a second instance. This can be done with the

help of Example 3 from Subsection 2.5.2, which is also a structure matrix for the Kermack-

McKendrick model (a well-known bi-Hamiltonian system [63,135]). Such matrix was also

regarded in Subsection 4.2.3 about separable matrices, and in particular it is given by (184).

We then see that this matrix is of rank 2. In Subsection 4.2.3 the separable nature of this

structure matrix was already shown. It is interesting to note that a possible choice for the

Casimir invariant of (184) is

D(x1, x2, x3) = x3 +
a

b
lnx1

which is neither linear nor functionally dependent on a single linear function. This is already

a proof in the sense that matrix (184) cannot be multiseparable. Alternatively, this can be
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verified directly on the form of the matrix. To see this, notice that in the case n = 3, r = 2,

the form of a general multiseparable structure matrix is given by (201). According to such

equation, the functional dependence of J12, J23 and J31 is the same (apart from a multiplicative

real constant). Thus, if J12, J23 and J31 do not vanish then they share the same functional

dependence on x. On the other hand, in matrix (184) we have J12 = −bx1x2, J23 = −ax2 and

J31 = 0, which is not in agreement with a multiseparable functional form. Then, for n = 3

separable matrices are not a subset of multiseparable matrices.

To conclude the case n = 3 we go back to Example 4 (the Toda lattice) analyzed in the

previous subsection. In such example it was already mentioned that the structure matrix (205)

considered is at the same time separable and multiseparable. In particular, matrix (205) is

defined for the values n = 3, N = 2 and r = 2, thus taking the following form:

J =


0 −α1 α1

α1 0 0

−α1 0 0

 (217)

Matrix (217) is defined in terms of variables (α1, β1, β2), and its multiseparable formulation

is obtained from matrices

A =


−1 0 0

0 1 0

0 −1 1

 , B = A−1 =


−1 0 0

0 1 0

0 1 1


and functions ϕ1(y1) = −y1 and ϕ2(y2) = 1. The separable structure of matrix (217) is, on

the other hand, evident.

Then, the three previous examples for the case n = 3 show that the separable and multi-

separable structure matrices have nonempty intersection, but none of the families is a subset

of the other one.

In what follows the general case n ≥ 3 is considered. Of course, this includes the case

n = 3 just seen. However, the separate consideration of the n = 3 scenario has allowed the

presentation of purely three-dimensional examples of interest that otherwise would be excluded

from the general n ≥ 3 analysis that follows. Moreover, considering here the case n = 3 will

allow a more complete presentation of the general situation in which n ≥ 3, as it will become

clear in what follows.
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Case n ≥ 3

For general n ≥ 3 we follow a structure similar to the one employed for n = 3, namely the

consideration of three complementary examples. The instances employed are such that they

are dimension-independent, namely they are defined for every n ≥ 3.

In first place, we look at examples of structure matrices that are multiseparable but not

separable. Among the infinity of possible choices, we can make use here of the one defined in

terms of the following elements:

A =



1 0 0 . . . 0

−1 1 0 . . . 0

−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1


, B = A−1 =



1 0 0 . . . 0

1 1 0 . . . 0

1 0 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 1


, n ≥ 3

In order to comprise at the same time any possible value of n ≥ 3, we obviously must fix

r = 2. If, to be specific, we choose functions ϕi(yi) = yγi
i for i = 1, 2, with both γ1, γ2 > 0, we

arrive at structure matrices of the form:

Jij(x) = Λ12
ij ϕ1(B1 · x)ϕ2(B2 · x) = Λ12

ij x
γ1
1 (x1 + x2)γ2 , i, j = 1, . . . , n (218)

Evidently, matrix (218) is not separable in general. For instance, the entry J23 of the multi-

separable matrix (218) is:

J23(x) = Λ12
23x

γ1
1 (x1 + x2)γ2 = xγ11 (x1 + x2)γ2

It is clear that a great diversity of analogous examples can be generated in a similar way.

Given that the case n = 3 was specifically regarded in the previous item, we can also

consider now another kind of examples for which n ≥ 4. This has the advantage of allowing

the consideration of the case r = 4 in the multiseparable framework. Thus if n ≥ 4 and r = 4

we have multiseparable structure matrices of the form:

Jij(x) = Λ12
ij ϕ1(B1 · x)ϕ2(B2 · x) + Λ34

ij ϕ3(B3 · x)ϕ4(B4 · x) , i, j = 1, . . . , n (219)

It is also evident now that, in general, structure matrices of the form (219) are not separable,

because Jij in (219) consists of a sum of functions, and in addition such entry Jij typically

will not depend only on variables xi and xj , as it would be the case for a separable structure

matrix. We thus conclude that for any n ≥ 3, the multiseparable structure matrices are not

a subset of the separable ones.
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Let us now turn to a reciprocal set of examples, namely those of separable structure

matrices which are not multiseparable, for any n ≥ 3. A simple instance is provided by

the separable matrices considered in Example 1 of Subsection 4.2.3, and given by expression

(178), namely Jij = sijxixj , with sij = −sji for i, j = 1, . . . , n. For simplicity it is preferable

to restrict ourselves to the case Rank(J ) = Rank(S) = (n−1). If this is the case, there exists

only one independent Casimir invariant, which can be chosen to be:

D(x) =
n∑
i=1

ki lnxi (220)

where k = (k1, . . . , kn)T ∈ Ker(S). We see thus that the Casimir invariant (220) is not

linear, and in fact it is not linearly dependent on a linear function (apart from particular

instances such as those in which D(x) in (220) only depends on a single variable). Since

we know that every multiseparable matrix has a complete set of independent linear Casimir

invariants, it is then proven that the present kind of separable structure matrices is not in

general multiseparable, for any n ≥ 3.

To conclude, we consider a last family of examples which are, for every n ≥ 3, separable

and multiseparable at the same time. Such family can be generated by means of the multi-

separable definition in the following way: according to Definition 4.3.1.1 and expression (186)

we introduce the multiseparable family obtained for the choice A = B = In. The outcome has

the form:

Jij(x) =
r/2∑
k=1

Λ2k−1,2k
ij ψ2k−1(x)ψ2k(x) =

r/2∑
k=1

∣∣∣∣∣∣ δi,2k−1 δi,2k

δj,2k−1 δj,2k

∣∣∣∣∣∣ϕ2k−1(x2k−1)ϕ2k(x2k) , i, j = 1, . . . , n (221)

A multiseparable structure matrix of the form (221) has already been analyzed in the present

section, and in particular in the proof of Theorem 4.3.2.1, see the analysis accompanying

equations (195-196). According to this, matrix (221) is actually of the form:

J =

 0 ϕ1ϕ2

−ϕ1ϕ2 0

 r/2︷ ︸︸ ︷
⊕ . . .⊕

 0 ϕr−1ϕr

−ϕr−1ϕr 0

⊕O1

(n−r)︷ ︸︸ ︷
⊕ . . .⊕O1 (222)

Consequently, the structure matrix (222) is multiseparable by construction, but it is also

separable, as it is apparent (note the dependences ϕi ≡ ϕi(xi) for every i = 1, . . . , r). And, in

addition, structure matrices of the form (222) are defined for every n ≥ 3, as intended.

Thus for the case n ≥ 3 we conclude that both families of structure matrices have nonempty

intersection, but none of them is contained in the other one. In fact, for n ≥ 3 there is an

infinity of structure matrices verifying either of the following propositions:
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(a) They are separable but not multiseparable.

(b) They are multiseparable but not separable.

(c) They are both separable and multiseparable.

The case-by-case comparison is thus complete. We have therefore arrived to some concluding

remarks:

Conclusions of the comparison

Throughout the present subsection the fundamental goal has been to establish that the

separable and multiseparable families are different. This was to be expected to some extent,

but the purpose of the comparison has allowed an example-based discussion in which use

has been made of some instances, useful for a better description of the relationship between

both kinds of structure matrices. From the analysis, as well as from the rest of examples in

Subsection 4.3.3, it has been learned essentially that:

(a) For every multiseparable structure matrix there is a complete set of independent linear

Casimir invariants, but the converse is not true: there exist structure matrices with such

kind of complete set that are not multiseparable.

(b) Considered as a whole, both families have a nonempty intersection but none of them is

contained in the other one.

(c) However, for n = 2 the separable family is a subset of the multiseparable family.

(d) In addition, for every n ≥ 3 both families have a nonempty intersection, but such that

none of them is a subset of the other one.
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4.4. DISTINGUISHED SOLUTIONS (D-SOLUTIONS)

In this section, another new n-d family of skew-symmetric solutions of the Jacobi PDEs is

investigated. Such family is mathematically remarkable, as far as the functional dependences of

the solutions appear to be associated with the Casimir invariants of the solutions themselves.

This kind of Poisson structures (termed distinguished solutions or D-solutions due to this

reason) are defined for every possible combination of values of the dimension (n ≥ 3) and the

rank, and are also determined in terms of arbitrary nonlinear smooth functions, properties

usually not present at the same time in the already known solution families. In particular, D-

solutions display simple properties allowing the generation of an infinity of D-solutions from a

given one, which is a relevant feature, when present, in the framework of the Jacobi equations.

Additionally, some families of D-solutions of special significance and complying to the previous

requirements are constructively characterized and analyzed. Different properties of interest

are discussed with the help of detailed examples.

The section is structured as follows. In Subsection 4.4.1 the family of D-solutions is

characterized, and different general properties naturally associated with it are determined. A

special (but important) particular subset of D-solutions is given by Dψ-solutions, which are

characterized in Subsection 4.4.2. The analysis of D-solutions in general, and Dψ-solutions in

particular, is continued by means of a discussion, frequently illustrated with examples, which

takes place in Subsections 4.4.3 and 4.4.4. To conclude the section, detailed comparisons with

the multiseparable and the separable families are developed in Subsections 4.4.5 and 4.4.6,

respectively.

4.4.1. Distinguished Jacobi equations and distinguished Poisson structures

We begin with a description of the problem:

Definition 4.4.1.1. Let J ≡ (Jij) be an n×n matrix defined in a domain Ω ⊂ Rn (n ≥ 3) and

composed by C∞(Ω) real functions Jij(x). Then J is said to be a solution of the distinguished

Jacobi equations in Ω if for every x ∈ Ω it is skew-symmetric and
n∑
l=1

Jkl∂lJij = 0 , i, j, k = 1, . . . , n (223)

or, equivalently, if J T = −J and J · ∇Jij = 0 for all i, j = 1, . . . , n, where the superscript
T denotes the transpose matrix. Every matrix J being a solution of the distinguished Jacobi

equations (24,223) will be termed a distinguished solution, or a D-solution.
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This definition implies two relevant consequences that can be summarized as follows:

Corollary 4.4.1.2. Let J ≡ (Jij) be a D-solution defined in a domain Ω ⊂ Rn, then:

(a) J is a solution of the Jacobi equations (24-25), and therefore it is a structure matrix in Ω.

The converse is obviously not true, namely not every structure matrix is a D-solution.

(b) Functions Jij(x) are Casimir invariants of J globally defined in Ω for all i, j = 1, . . . , n.

Therefore, briefly speaking D-solutions can be described as structure matrices defined in

terms of their own Casimir invariants. As indicated in Subsection 1.2.2, Casimir invariants are

also termed “distinguished functions” in the literature on Poisson systems [139]. This is the

reason accounting for the denomination of “distinguished solutions” given here to the present

kind of structure matrices entirely composed of Casimir invariants. Later in this section, a

wide family of D-solutions will be constructed and characterized in full detail. Before that, it

is interesting to further focus on some general properties associated with D-solutions. Such

properties are not present in general in Poisson structures, but can be easily determined in

D-solutions. In order to see this, a preliminary definition is convenient:

Definition 4.4.1.3. Let N ≡ (Nij(x)) be an n×n real matrix defined in a domain Ω ⊂ Rn and

such that functions Nij(x) are C∞(Ω) for all i, j = 1, . . . , n. A C∞(Ω) function f(x) : Ω → R

is said to be kernel-gradient (or KG) for matrix N if N · ∇f = 0 for every x ∈ Ω.

The previous definition is natural in this context, since a D-solution is just a skew-

symmetric matrix for which all the entries belong to the set of its KG functions. This point of

view will be useful in brief because a C∞ function g(f1, . . . , fk) of one or more KG functions

(f1(x), . . . , fk(x)) is also a KG function of the same matrix. We can now state a first result:

Theorem 4.4.1.4. Let J ≡ (Jij) be an n×n D-solution defined in a domain Ω ⊂ Rn and such

that Rank(J ) = r in Ω. Let (Dr+1(x), . . . , Dn(x)) be a complete set of independent Casimir

invariants of J in Ω. In addition, let A ≡ (αij) denote an n×n matrix of entries of the form

αij(Dr+1(x), . . . , Dn(x)) such that the real functions αij(y1, . . . , yn−r) are C∞(Rn−r) for all

i, j = 1, . . . , n. Then:
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(a) For every odd real polynomial of J ,

P (J ) =
k∑
i=0

a2i+1J 2i+1 , k ≥ 0, (224)

and for every skew-symmetric matrix A of the aforementioned kind, the matrix product

(P (J ) ·A)m · P (J ) is a D-solution in Ω for every integer m ≥ 0.

(b) For every odd real polynomial P (J ) of J of the form (224) and for every symmetric

matrix A of the kind indicated which commutes with J , the product (A · P (J ))m is a

D-solution in Ω for every odd integer m ≥ 1.

(c) For every even real polynomial without constant term of J ,

Q(J ) =
k∑
i=1

a2iJ 2i , k ≥ 1,

and for every skew-symmetric matrix A of the kind already indicated, the matrix product

(Q(J ) ·A)m ·Q(J ) is a D-solution in Ω for every odd integer m ≥ 1.

(d) If η(y1, . . . , yn−r) : Rn−r → R is an arbitrary C∞(Rn−r) real function, then the product

η(Dr+1(x), . . . , Dn(x))J is a D-solution in Ω.

Proof. (a) All Casimir invariants of J are also KG functions for (P (J ) ·A)m · P (J ). Then,

the form of A implies that every entry of (P (J ) · A)m · P (J ) is a KG function of the matrix

itself. To conclude, notice that P (J ) is skew-symmetric:

[P (J )]T =
k∑
i=0

a2i+1(−1)2i+1J 2i+1 = −P (J )

According to this, (P (J ) ·A)m · P (J ) is also skew-symmetric:

[(P (J ) ·A)m · P (J )]T = −P (J ) · [AT · (P (J ))T ]m = −(P (J ) ·A)m · P (J )

(b) The Casimir invariants of J are KG functions of (A · P (J ))m. Due to the functional

dependence of A, matrix (A · P (J ))m is entirely composed by KG functions of (A · P (J ))m.

In addition, it can be seen that (A · P (J ))m is skew-symmetric because P (J ) is, since:

[(A · P (J ))m]T = ([P (J )]T ·AT )m = (−P (J ) ·A)m = −(A · P (J ))m

(c) Every Casimir invariant of J is a KG function of (Q(J )·A)m ·Q(J ), so that taking into

account the form of A, we have that (Q(J ) ·A)m ·Q(J ) is composed by its own KG functions.
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The proof will be complete after verifying the skew-symmetry of (Q(J ) · A)m ·Q(J ). To see

this, note first that Q(J ) is symmetric:

[Q(J )]T =
k∑
i=1

a2i(−1)2iJ 2i = Q(J )

And consequently, we have:

[(Q(J ) ·A)m ·Q(J )]T = Q(J ) · [−A ·Q(J )]m = −(Q(J ) ·A)m ·Q(J )

(d) Matrix η(Dr+1(x), . . . , Dn(x))J is obviously skew-symmetric. The Casimir invariants

of J are KG functions of ηJ , and consequently this matrix is fully composed of its own KG

functions.

This completes the proof of the theorem. Q.E.D.

In the previous theorem, note in particular that matrix A can be constant. As indicated,

this kind of properties, when present in the context of the Jacobi PDEs, deserve some inter-

est. In particular, Theorem 4.4.1.4 is significant for several reasons. First, because it is not

limited from the point of view of the dimension or the rank for which it can be applied, and

consequently it is remarkably general. And second, because such kind of results are uncom-

mon in the usual context of finite-dimensional Poisson structures. We see however that they

are present in the specific domain of the distinguished problem. Some less general instances

of this kind of properties for nondistinguished Poisson structures can be found in [70,71] for

certain three-dimensional situations and in [83] for some n-dimensional solution families. In

this work, this type of results is also found in Sections 2.5 and 4.7.

4.4.2. The family of Dψ-solutions

The fact that D-solutions are given in terms of their Casimir invariants is mathematically

nice but, at the same time, the issue of the practical determination of some representative

D-solutions requires further investigation. This is actually possible: as anticipated, after the

previous definitions and general properties the aim now is to consider one family of D-solutions

which is amenable to constructive characterization. This is the content of the next result:

Theorem 4.4.2.1. Let n ≥ 3 and ρ ≤ n be two positive integers, and consider the (n − ρ)

functions

Dl(x) = xl −
ρ∑

k=1

alkxk , l = ρ+ 1, . . . , n (225)
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where alk are real constants for all l, k. In addition, for i, j = 1, . . . , ρ, let ψij(y1, . . . , yn−ρ) be

C∞(Rn−ρ) functions that are skew-symmetric in their subindexes, namely ψij(y1, . . . , yn−ρ) =

−ψji(y1, . . . , yn−ρ) for all i, j. Finally, let J ≡ (Jij) be the n× n matrix given by:

Jij(x) =



ψij(Dρ+1(x), . . . , Dn(x)) , i, j = 1, . . . , ρ

ρ∑
k=1

ajkψik(Dρ+1(x), . . . , Dn(x)) , i = 1, . . . , ρ ; j = ρ+ 1, . . . , n

ρ∑
k=1

aikψkj(Dρ+1(x), . . . , Dn(x)) , i = ρ+ 1, . . . , n ; j = 1, . . . , ρ

ρ∑
k,l=1

aikajlψkl(Dρ+1(x), . . . , Dn(x)) , i, j = ρ+ 1, . . . , n

(226)

Then, J is a D-solution of the Jacobi equations which is globally defined in Rn and such that

Rank(J )≤ ρ − ρ mod 2 for every x ∈ Rn. In addition, the (n − ρ) functions Dl(x) in (225)

constitute everywhere in Rn a set of functionally independent Casimir invariants of J .

Proof. The proof is constructive. For this, let us first consider the submatrix structure of J

as suggested by equation (226), namely:

J ≡

 J [1] J [2]

J [3] J [4]

 (227)

where J [1], J [2], J [3] and J [4] are submatrices of sizes ρ × ρ, ρ × (n − ρ), (n − ρ) × ρ

and (n − ρ) × (n − ρ), respectively. In the rest of the proof, the entries of J [k] will be

denoted J
[k]
ij for all k = 1, . . . , 4. Therefore, according to (226) and (227) we have J [1]

ij =

ψij(Dρ+1(x), . . . , Dn(x)) for all i, j = 1, . . . , ρ. Regarding J [2], note that from (226) we have:

J
[2]
ij =

ρ∑
k=1

ajkJ
[1]
ik , i = 1, . . . , ρ , j = ρ+ 1, . . . , n (228)

Similarly for J [3], equation (226) implies that:

J
[3]
ij =

ρ∑
k=1

aikJ
[1]
kj , i = ρ+ 1, . . . , n , j = 1, . . . , ρ (229)

To conclude, notice that from (226) we also obtain for J [4]:

J
[4]
ij =

ρ∑
k,l=1

aikajlJ
[1]
kl , i, j = ρ+ 1, . . . , n (230)
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Taking (228) into account, we can express (230) in an alternative form, very similar to that

for J [3] in (229):

J
[4]
ij =

ρ∑
k=1

aikJ
[2]
kj , i, j = ρ+ 1, . . . , n (231)

For what is to come, it is also necessary to observe that for J [4] there is another expression

analogous to the one displayed in (231). Now such alternative dependence can be obtained

from (229) and (230) in terms of J [3] as:

J
[4]
ij =

ρ∑
k=1

ajkJ
[3]
ik , i, j = ρ+ 1, . . . , n (232)

With the help of expressions (228-232) some auxiliary results can be provided now:

Lemma 4.4.2.2. Matrix J ≡ (Jij) in (226) is skew-symmetric.

Proof of Lemma 4.4.2.2. Submatrix J [1] is skew-symmetric by definition. Let us now prove

that submatrices J [2] and J [3] also verify skew-symmetry. According to (228) and (229) we

have:

J
[2]
ij + J

[3]
ji =

ρ∑
k=1

ajkJ
[1]
ik +

ρ∑
k=1

ajkJ
[1]
ki = 0 , i = 1, . . . , ρ , j = ρ+ 1, . . . , n

To conclude, making use of (230) for J [4] we have:

J
[4]
ji =

ρ∑
k,l=1

ajkailJ
[1]
kl = −

ρ∑
k′,l′=1

aik′ajl′J
[1]
k′l′ = −J [4]

ij , i, j = ρ+ 1, . . . , n

Lemma 4.4.2.2 is thus proved. Q.E.D.

Lemma 4.4.2.3. Functions Dl in (225) are KG for matrix J in (226) for all l = ρ+1, . . . , n.

Proof of Lemma 4.4.2.3. Consider the first ρ rows of J (namely those comprising J [1] and

J [2]). Thus for i = 1, . . . , ρ and for l = ρ+ 1, . . . , n we have:

(J · ∇Dl)i =
n∑
j=1

Jij∂jDl = −
ρ∑
j=1

J
[1]
ij alj +

n∑
j=ρ+1

J
[2]
ij δlj = 0

where δlj denotes Kronecker’s delta and the last equality is a consequence of (228). Analo-

gously, consider now the last (n − ρ) rows of J (which involve submatrices J [3] and J [4]).

Then for i, l = ρ+ 1, . . . , n we arrive at:

(J · ∇Dl)i =
n∑
j=1

Jij∂jDl = −
ρ∑
j=1

J
[3]
ij alj +

n∑
j=ρ+1

J
[4]
ij δlj = 0
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where now the last identity arises as a result of (232). The proof of Lemma 4.4.2.3 is therefore

complete. Q.E.D.

Lemma 4.4.2.4. For all i, j = 1, . . . , n, functions Jij(x) entering matrix J in (226) are KG

for J .

Proof of Lemma 4.4.2.4. By construction in (226), all entries Jij are either functions

ψij(Dρ+1(x), . . . , Dn(x)), as it is the case of J [1], or linear combinations with constant coef-

ficients of such functions (as happens for J [2], J [3] and J [4]). Therefore, in a compact and

unified way it can be said that there exist real constants bijkl such that:

Jij =
ρ∑

k,l=1
l>k

bijklψkl(Dρ+1(x), . . . , Dn(x)) , i, j = 1, . . . , n (233)

From (233) it can be seen that:

∇Jij =
ρ∑

k,l=1
l>k

bijkl

n∑
q=ρ+1

(
∂ψkl
∂Dq

)
∇Dq , i, j = 1, . . . , n (234)

Finally, as a consequence of (234) and Lemma 4.4.2.3 we obtain J ·∇Jij = 0 for i, j = 1, . . . , n.

This proves Lemma 4.4.2.4. Q.E.D.

Therefore it is proved that J is a D-solution. Then as a consequence of Lemma 4.4.2.3,

the (n−ρ) functions Dl in (225) are Casimir invariants, for which the functional independence

is clear. To complete the proof, note that by construction the rows ρ+1, . . . , n of J are linear

combinations (with constant coefficients) of the first ρ ones, as implied by (229) and (231).

Then it is clear that Rank(J ) ≤ ρ. Since the rank of a skew-symmetric matrix is always even,

from Lemma 4.4.2.2 this means that necessarily it is Rank(J ) ≤ ρ − ρ mod 2, which is the

bound given. This completes the proof of the theorem. Q.E.D.

Of course, in the D-solution family described in Theorem 4.4.2.1 the linear dependences

among the elements of J have been chosen in such a way that the ρ first rows and columns

(those conforming J [1]) span the rest of rows and columns, as it is clear from equations

(228-232). Actually, this choice is entirely arbitrary and was used without loss of generality.

Analogous families of D-solutions can be generated on the basis of the rest of possible ρ × ρ

submatrices. This fact, the convenience for future use and the notation employed in (226)

motivate the following definition:

177



Definition 4.4.2.5. Every D-solution being either of the type constructed in Theorem 4.4.2.1

or a permutation of such construction will be termed a Dψ-solution.

After presenting the main definitions and results, the purpose of the next subsection will

be to provide some comments and examples aimed at clarifying the content and implications

of the previous developments.

4.4.3. Discussion and examples

The first basic aspect of D-solutions which is interesting to consider regards the possible

rank values of D-solutions in general, and of Dψ-solutions in particular, for a given value of

n. The fact that D-solutions are composed by Casimir invariants seems to suggest that such

Poisson structures must be degenerate and therefore that the maximal possible rank (namely

n − n mod 2) should be excluded for D-solutions having an even value of n. However such

statement is not mathematically correct, as the following example displays.

Example 1. Constant structure matrices

As mentioned, constant structure matrices play a significant role in the theory of Poisson

systems, not only because they comprise as a special case the classical symplectic matrices

(and therefore the whole classical Hamiltonian theory) but also because they are the source of

very varied noncanonical applications. Constant structure matrices of arbitrary rank are D-

solutions, since they are entirely composed by (trivial, namely constant) Casimir invariants: in

fact, constants are Casimir invariants for every structure matrix. This is interesting because

constant structure matrices are able to take all possible ranks associated with every given

value of n. Therefore it is worth emphasizing the next statement:

Corollary 4.4.3.1. For every integer n ≥ 3 and for every possible nontrivial rank value

(r even, 2 ≤ r ≤ n − n mod 2) there exists an infinity of n-dimensional D-solutions having

constant rank r in Rn.

In particular, constant structure matrices also arise from Theorem 4.4.2.1 as Dψ-solutions.

To see this, it suffices to consider the value ρ = n. In such case, there are (n − ρ) = 0
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functions Dl of the form (225) and J in (226) is entirely given by submatrix J [1], in other

words J = J [1]. Moreover, functions J [1]
ij = ψij(Dρ+1(x), . . . , Dn(x)) lose their dependences

and become arbitrary constants. Consequently, J is an arbitrary constant skew-symmetric

real matrix, which can have every admissible (even) rank. Thus, in this situation we still

have Dψ-solutions, but in the limit case in which no Casimir invariants of the form (225) are

implemented.

Let us now present an additional example of Dψ-solution. Such instance has been chosen

to illustrate the fact that the upper bound to the rank may not be reached.

Example 2. A four-dimensional Dψ-solution

The following matrix corresponds to the form studied in Theorem 4.4.2.1 with n = 4,

ρ = 2, and with the two linear Casimir invariants D3(x) = x2 + x3 and D4(x) = x1 + x2 + x4

of the kind (225) implemented. If ψ(y1, y2) : R2 → R is an arbitrary C∞(R2) function, the

matrix is:

J =


0 ψ(D3, D4) −ψ(D3, D4) −ψ(D3, D4)

−ψ(D3, D4) 0 0 ψ(D3, D4)

ψ(D3, D4) 0 0 −ψ(D3, D4)

ψ(D3, D4) −ψ(D3, D4) ψ(D3, D4) 0

 ≡

 J [1] J [2]

J [3] J [4]


(235)

It is evident that J in (235) is skew-symmetric, that both D3(x) and D4(x) are KG functions

for such matrix, and that all the entries of J are C∞ functions of D3(x) and D4(x). Moreover,

the structure (226) of the matrix (or, more in detail, the identities (228-232) among the four

submatrices) can be easily verified. Accordingly, J in (235) is a Dψ-solution. In addition, for

the rank we obtain from Theorem 4.4.2.1 the bound Rank(J ) ≤ ρ−ρ mod 2 = 2, which will be

in general the case almost everywhere in R4, but not in the hypersurface ψ(D3(x), D4(x)) = 0

where Rank(J ) vanishes.

Another aspect of interest of Dψ-solutions is the possible presence of nonlinear Casimir

invariants, additional to those implemented in (225). Associated with this issue is again the

fact that Rank(J ) can take lower values than the upper bound ρ−ρ mod 2. These possibilities

are illustrated in the next instance.
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Example 3. An additional four-dimensional Dψ-solution

The following matrix is a Dψ-solution, this time with n = 4 and ρ = 3:

J (x) =


0 x2 + x4 (x2 + x4)2 −x2 − x4

−x2 − x4 0 0 0

−(x2 + x4)2 0 0 0

x2 + x4 0 0 0

 ≡

 J [1] J [2]

J [3] J [4]

 (236)

In this case, the linear function of the form (225) defined is D4(x) = x2 +x4. Thus J in (236)

is a D-solution because it is skew-symmetric and D4(x) is a KG function for J . Actually,

the submatrix structure (227) can be identified without difficulty for all J [i], i = 1, . . . , 4,

according to the constructive steps of the proof of Theorem 4.4.2.1. In addition, the same

theorem predicts the bound Rank(J ) ≤ ρ−ρ mod 2 = 2. Accordingly, at least one additional

functionally independent Casimir invariant must exist. Actually, it can be easily verified that

it is given by D3(x) = x3 + x2x4 + x2
4, which is obviously nonlinear. In fact, both D3(x) and

D4(x) are functionally independent as we can see on their Jacobian:

∂(D3, D4)
∂(x1, x2, x3, x4)

=

 0 x4 1 x2 + 2x4

0 1 0 1

 (237)

Functional independence is thus proven since Jacobian (237) has rank 2 everywhere in R4. On

the other hand, this set of Casimir invariants is not complete when the upper bound Rank(J )

= 2 is not accomplished. Actually this is possible, since all the entries of J vanish in the

hyperplane x2 +x4 = 0. On the contrary, Rank(J ) = 2 everywhere else in R4, thus complying

to the upper bound predicted by Theorem 4.4.2.1. In such case, Casimir invariants D3(x) and

D4(x) constitute a complete set.

A relevant question indirectly posed by Theorem 4.4.2.1 regards the construction of D-

solutions for which the implemented Casimir functions are nonlinear. In general, the method

should consist of the a priori specification of (n− ρ) future independent Casimir invariants of

the form

Di(x) = xi − µi(x1, . . . , xρ) , i = ρ+ 1, . . . , n (238)

where the µi(x1, . . . , xρ) are smooth functions. Let Ri denote the i-th row of the matrix.

According to the procedure used in Theorem 4.4.2.1 for the case of linear invariants, we

have that Ri =
∑ρ

j=1(∂jµi)Rj for i = ρ + 1, . . . , n in the matrix to be obtained, together

with a similar relationship for the columns, so that the Di(x) in (238) are KG functions by

180



construction. Similarly to what is done in Theorem 4.4.2.1, J should be splitted in four

regions, with J [1] defined as in (226), so that the entries of J [1] are KG functions of the

resulting matrix. This is exactly the procedure used in Theorem 4.4.2.1, but applied to the

nonlinear functions (238). The problem however is that the outcome for J [2], J [3] and J [4]

generally produces functions that are not KG functions of the matrix thus constructed. The

reason for this is that now the coefficients of the linear combinations generating the entries

of J [2], J [3] and J [4] are of the form ∂jµi, namely they are not constant (as in the case

of Theorem 4.4.2.1). The outcome is that the entries of J [2], J [3] and J [4] lose in general

their functional dependence with respect to functions (238). On the contrary, such functional

dependence is preserved in the case of linear invariants (225) because (in the notation of

Theorem 4.4.2.1) in this situation we have that ∂jµi = aij is always a constant. A simple

example now illustrates this situation.

Example 4. A counterexample in dimension 3

Let us consider the case n = 3, ρ = 2 for the implementation of a nonlinear Casimir

invariant of the form D3(x) = x3−µ(x1, x2). For D3(x) to be by construction a KG function,

it has to be R3 = (∂1µ)R1 + (∂2µ)R2, and a similar relationship for the columns. Thus,

defining J12(x) = ψ(D3(x)) we are led to the matrix:

J (x) = ψ(D3(x))


0 1 ∂2µ(x1, x2)

−1 0 −∂1µ(x1, x2)

−∂2µ(x1, x2) ∂1µ(x1, x2) 0

 (239)

Now it is evident that J in (239) is skew-symmetric and that D3(x), J12(x) and J21(x)

are KG functions for J , as expected. However, it is straightforward to check that the rest

of nondiagonal entries are not in general KG functions of J . Consequently, J in (239) is

generally not a D-solution. Notice that in the particular case (225) of linear Casimir functions

the partial derivatives of µ(x1, x2) are constant as indicated, and then every entry of J in

(239) is a KG function, thus conforming a Dψ-solution. On the contrary, when functions

∂iµ(x1, x2) are not constant, the property of being a D-solution is not necessarily preserved.

Since the previous reasoning is clear, the naturalness of the result contained in Theorem

4.4.2.1 suggests yet another relevant question, namely the possibility that all the solutions of

the distinguished Jacobi equations (24,223) are actually Dψ-solutions. This is certainly not

the case, as it can be seen in what follows.
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Example 5. A counterexample in arbitrary dimension

In this example D-solutions of arbitrary dimension n ≥ 3 and not being Dψ-solutions will

be considered. In fact, such D-solutions do not have linear Casimir invariants at all, as we

shall see in what follows. Consider the following n× n skew-symmetric matrix:

J (x) =



0 x3/x2 (x3/x2)2 . . . (x3/x2)n−1

−x3/x2

−(x3/x2)2

... O(n−1)

−(x3/x2)n−1


(240)

In (240) the symbol O denotes a null submatrix of size indicated by the respective subindex.

Matrix (240) will be defined in a domain Ω ⊂ Rn in which x2 6= 0 and x3 6= 0 for every x ∈ Ω.

In such case, we have Rank(J ) = 2 everywhere in Ω. It is then possible to find (n − 2) KG

functions for matrix (240) functionally independent in Ω. These are:

D3(x) =
x3

x2
; Di(x) =

x3xi−1

x2
− xi , i = 4, . . . , n (241)

That they are KG functions is simple to verify. Regarding functional independence, notice

that we have the Jacobian:

(
∂(D3, D4, . . . , Dn)
∂(x1, . . . , xn)

)T
=



0 0 . . . 0

−x3/x
2
2 −x2

3/x
2
2 . . . −x3xn−1/x

2
2

1/x2 2x3/x2 . . . xn−1/x2

0 −1 . . . 0

0 0 . . . 0
...

...
...

0 0 . . . x3/x2

0 0 . . . −1



(242)

Thus if we choose in (242) the submatrix composed by the last (n − 2) rows, we see that it

is upper triangular with determinant [(−1)n−3/x2] 6= 0 in Ω. Accordingly, functional inde-

pendence of D3(x), . . . , Dn(x) holds in Ω for every n ≥ 3. Since all the entries of J in (240)

are C∞ functions of D3(x) we have that such matrix is a D-solution for every n ≥ 3, and

functions D3(x), . . . , Dn(x) in (241) form a complete set of independent Casimir invariants of
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J in Ω. On the other hand, recall that if a Dψ-solution of constant rank has one or more

independent Casimir invariants, then at least one of them can be taken to be linear: in the

case ρ < n this is so by construction; and according to Example 1, in the complementary

case ρ = n the matrix is constant, which implies the existence of linear Casimir invariants

when such matrix is degenerate. Conversely, a degenerate structure matrix of constant rank

without linear Casimir invariants is not a Dψ-solution. This is evidently the case for matrix J

in (240) since the ansatz of a generic linear Casimir invariant D(x) =
∑n

i=1 aixi substituted

in the identity J · ∇D = 0 immediately leads to ai = 0 for all i = 1, . . . , n. Therefore it is

proved that J in (240) is a D-solution but not a Dψ-solution, for every n ≥ 3.

Note in addition that the significance of the last example is reinforced in view of the results

displayed in Theorem 4.4.1.4. This motivates the following conclusion:

Corollary 4.4.3.2. For every n ≥ 3, there exists an infinity of n-dimensional D-solutions

that are not Dψ-solutions.

In other words, Dψ-solutions do not provide the general solution of the distinguished

Jacobi equations (24,223). In the next subsection we conclude the present discussion by

briefly regarding some of the previous issues as well as other questions from a more general

perspective.

4.4.4. Further remarks about D-solutions

As discussed in Chapter 1, skew-symmetric Jacobi equations become increasingly complex

as dimension grows. This explains that the characterization of families of arbitrary dimension

composed by generic functions (namely not limited to a given degree of nonlinearity) and

having arbitrary rank is very uncommon (some instances of the same kind are provided by

the separable and multiseparable Poisson structures considered in the two previous sections

of this chapter). For this reason, D-solutions may well be regarded as a significant contri-

bution in such sense. When compared to the analyses of the separable and multiseparable

families just mentioned, it can be seen that a typical outcome is the global construction of

the Darboux canonical form. This is clearly not possible in the case of D-solutions, neither

in general nor in the specific case of Dψ-solutions. In both cases, this is mainly due to (a)

the generality of the functional form of the entries Jij(x) of such structure matrices; and (b)
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the possible lack of constancy of the rank (already illustrated in the examples) which is a

necessary condition for the applicability of Darboux’ theorem. Together, both reasons seem

to exclude a global application of Darboux’ theorem in the case of D-solutions, at least in

general. To conclude, notice also that in spite of the mathematically nice specialization of

the general skew-symmetric Jacobi equations which is provided by the D-solution problem,

this does not seem to imply that even a complete identification of D-solutions is at hand, as

Corollary 4.4.3.2 points out. Consequently, even in the more specific distinguished version,

skew-symmetric Jacobi equations retain their interest as a significant problem to be analyzed.

4.4.5. Comparison with the multiseparable family

The D-solutions (specially in the case of Dψ-solutions) and multiseparable structure matri-

ces have in common the important role played by the linear Casimir invariants. This feature

suggests and motivates a comparison between both solution families in order to establish their

difference as solution sets. As we are going to see now, both families are unlike in spite of

such common feature. Let us show it.

In first place, notice that (according to Theorem 4.3.2.1) for multiseparable structure

matrices always exists a complete set of independent linear Casimir invariants. On the other

hand, for general D-solutions this needs not be the case as it has been seen, for instance, in

Example 5. In fact, the same statement remains valid even if we restrict ourselves to Dψ-

solutions, as it can be seen from the previous examples (such as Example 3). According to

this, neither D-solutions nor Dψ-solutions are subsets of the set of multiseparable solutions.

Conversely: let us recall that multiseparable solutions are not, in general, structure ma-

trices composed by Casimir invariants since, according to Definition 4.3.1.1 and Theorem

4.3.2.1, these structure matrices depend on (B1 · x, . . . , Br · x), while their Casimir invariants

are (Br+1 ·x, . . . , Bn ·x). To further clarify this issue, notice in addition that both sets of linear

functions (B1 · x, . . . , Br · x) and (Br+1 · x, . . . , Bn · x) are functionally independent because

matrix B is invertible. Therefore, multiseparable solutions are not a subset of D-solutions

(and obviously, not a subset of Dψ-solutions, because in such a case they would be also a

subset of D-solutions).

Accordingly, the family of multiseparable structure matrices is different from the family

of D-solutions, and also different from the family of Dψ-solutions. Nevertheless, the three

families have an infinite intersection. For example, we know from previously seen instances

(Example 2 in Subsection 4.3.3 and Example 1 in Subsection 4.4.3) that the entire set of
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constant structure matrices is contained at the same time in the multiseparable, in the D-

solution and in the Dψ-solution families. This clarifies completely the relationship between

the multiseparable and the D (or Dψ) solutions.

4.4.6. Comparison with the separable family

For the sake of completeness, a brief comparison between D-solutions and separable so-

lutions is also provided. In this case both families display strong differences that anticipate

their radically different nature. Such analysis is interesting, nevertheless, as far as it com-

pletes the pairwise comparison among the three n-dimensional families already presented in

this dissertation. As in the previous subsection, the use of suitable examples will suffice for

our purposes.

In one sense, we can make use of matrix (240) from Example 5 in Subsection 4.4.3, which

is a D-solution structure matrix defined for arbitrary n ≥ 3. Moreover, we see that matrix

(240) is not separable, as it is evident from simple inspection. We therefore conclude that

D-solutions are not a subset of separable solutions.

In the opposite sense, and being also defined for every n ≥ 3, we can consider the structure

matrices provided in Example 1 of Subsection 4.2.3, which are given by the expression (178).

The entries of such structure matrices are, in general, clearly functionally independent of the

Casimir invariants (179) of such matrices. For instance, let us consider for simplicity the

case of rank (n− 1) in which a single independent Casimir invariant of the form (179) exists.

Equivalently we can write the Casimir invariant as

D(x) =
n∏
j=1

x
kj

j (243)

with k = (k1, . . . , kn)T ∈ Ker(S). On the other hand, the number of nonredundant entries

of the structure matrix is n(n − 1)/2, which for instance can be taken to be those over the

diagonal of J . It is clear that, in general, at most one of the nonvanishing nonredundant

entries of the matrix will be functionally dependent on the Casimir invariant (243), the rest

being by construction independent of it, thus showing that the matrix is generically not a

D-solution. Therefore, we obtain from this example that separable solutions are not a subset

of D-solutions.

To conclude, notice also that both families are not disjoint, since constant structure matri-

ces are both separable (see Example 3 of Subsection 4.2.3) and D-solutions (see Example 1 of
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Subsection 4.4.3). Actually, constant skew-symmetric matrices are also Dψ-solutions, as it was

shown in the same Example 1 of Subsection 4.4.3. Thus there is an intersection between sep-

arable structure matrices and D-solutions, containing an infinity of elements for every n ≥ 3.

The same can be said, of course, between separable structure matrices and Dψ-solutions.

It is worth noting the conceptually relevant role played by constant structure matrices

for the purpose of family comparison, because they are at the same time separable structure

matrices, multiseparable structure matrices, D-solutions and also Dψ-solutions. Thus, in spite

of their simplicity, constant skew-symmetric matrices have been very useful for the pairwise

comparisons we were interested in. Such comparisons are now concluded, as far as they will

not be required any more in what is to follow for the additional families of Poisson structures

to be discussed.
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4.5. HEMISEPARABLE SOLUTIONS OF TYPE I

In this section, an additional family of n-dimensional solutions of the Jacobi equations

is characterized and globally analyzed. In particular, it is worth noting that in spite of its

general form (defined in terms of functions of an arbitrary nonlinearity) it is possible the

explicit and global determination of its main features, such as the case-classification of the

Casimir invariants and the global construction of the Darboux canonical form (which is a result

known for a limited sample of n-d Poisson structures, as we know). This family presents the

special feature that a complete understanding of its global analysis implies a case classification

such that different distinguished invariants are to be used in each case. Consequently, the mere

knowledge of one complete set of distinguished invariants does not guarantee the throughout

reduction to the Darboux canonical form, in spite that we are dealing with structure matrices of

constant rank. Accordingly, the symplectic analysis of this kind of Poisson structures requires

the use of a case-dependent (i) complete set of global Casimir invariants, and (ii) subsequent

global Darboux reduction to be constructed. Such classification is carried out in the present

section. The family embraces as particular cases different systems of applied interest that are

also analyzed as examples.

In Subsection 4.5.1 the analysis begins with the main results regarding the functional

characterization of the solution family. Then, in Subsection 4.5.2 the global analysis of the

family is provided. The section concludes with some applied examples, which are the subject

of Subsection 4.5.3.

4.5.1. Characterization of the family

We begin the subsection by providing a first result:

Theorem 4.5.1.1. Let η(x) and ϕi(xi), for i = 1, . . . , n, be functions defined in a domain

Ω ⊂ Rn, all of which are C∞(Ω) and nonvanishing in Ω. Let κij, i, j = 1, . . . , n, be arbitrary

real constants that are skew-symmetric

κij + κji = 0 , i, j = 1, . . . , n (244)

and satisfy the zero-sum conditions

κij + κjk + κki = 0 , i, j, k = 1, . . . , n (245)
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In addition let

ψi(xi) =
∫

dxi
ϕi(xi)

, i = 1, . . . , n (246)

denote one primitive of 1/ϕi(xi). Finally, let the functions χij(xi, xj) be defined by

χij(xi, xj) = ψi(xi)− ψj(xj) + κij , i, j = 1, . . . , n

and assume that χij(xi, xj) is nonvanishing in Ω at least for one pair (i, j). Then J = (Jij)

is a family of n-dimensional structure matrices globally defined in Ω, where

Jij(x) = η(x)ϕi(xi)ϕj(xj)χij(xi, xj) , i, j = 1, . . . , n (247)

Proof. Skew-symmetry is evident in (247). We then substitute J in (247) into the Jacobi

identities (25) and obtain after some algebra:

n∑
l=1

(Jli∂lJjk + Jlj∂lJki + Jlk∂lJij) = ηT1 + η2T2

where T1 and T2 are the following terms, to be examined separately:

T1 =
n∑
l=1

ϕiϕjϕkϕl(∂lη)(χilχjk + χjlχki + χklχij)

T2 =
n∑
l=1

{
ϕiϕlχil

[
δljϕ

′
jϕkχjk + δlkϕjϕ

′
kχjk + ϕjϕk

(
δlj

1
ϕj
− δlk

1
ϕk

)]
+

ϕjϕlχjl

[
δlkϕ

′
kϕiχki + δliϕkϕ

′
iχki + ϕkϕi

(
δlk

1
ϕk

− δli
1
ϕi

)]
+

ϕkϕlχkl

[
δliϕ

′
iϕjχij + δljϕiϕ

′
jχij + ϕiϕj

(
δli

1
ϕi
− δlj

1
ϕj

)]}
Regarding T1, if every χij is substituted by its expression χij = ψi − ψj + κij and the result

is simplified, it is found that:

χilχjk + χjlχki + χklχij =

(κjk + κkl − κjl)ψi + (κki + κil − κkl)ψj + (κij + κjl − κil)ψk−

(κjk + κki + κij)ψl + κilκjk + κjlκki + κklκij

In the last identity, the terms multiplied by one of the (ψ1, . . . , ψn) vanish due to the zero-sum

relations (245). In addition, using the same equations (245) we have:

κilκjk + κjlκki + κklκij =
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κil(κjl − κkl) + κjl(κkl − κil) + κkl(κil − κjl) = 0

It is thus proved that T1 = 0. We proceed now with T2: expanding its expression and cancelling

out similar terms, after a suitable rearrangement we arrive at:

T2 = 2ϕiϕjϕk[χij + χjk + χki] = 2ϕiϕjϕk[κij + κjk + κki] = 0

Therefore it is also T2 = 0 and the proof is complete. Q.E.D.

Let us now provide some brief but relevant comments. In first place recall that, as indicated

in Theorem 4.5.1.1, for every i the primitive ψi(xi) obtained from ϕi(xi) in (246) must be

chosen to be one and the same for all the entries of J . However, the specific choice is actually

arbitrary. In this sense, notice that if a different integration constant is selected, for instance

after replacing ψi(xi) by ψi(xi) + ki for every i, then the outcome is also a member of the

solution family, this time with constants κ̃ij = κij +ki−kj , which also verify (244-245). Thus

conditions (244-245) express in a generalized form this degree of freedom associated with

the choice of primitives (246). Secondly, note that by construction the functions ψi(xi) and

χij(xi, xj) are C∞(Ω). In third place, it is worth observing that the definition (246) allows an

alternative expression for the solution family just characterized, namely J = (Jij) can also be

written as

Jij(x) =
η(x)

ψ′i(xi)ψ
′
j(xj)

χij(xi, xj) =
η(x)

ψ′i(xi)ψ
′
j(xj)

[ψi(xi)−ψj(xj)+κij ] , i, j = 1, . . . , n (248)

where functions ψ′i(xi) are C∞(Ω) and nonvanishing in Ω, while the rest of defining properties

were already presented in Theorem 4.5.1.1. Under these assumptions, this can be taken as

an alternative definition of the solution family of structure matrices. Both ways of expressing

such family will be useful for what is to follow.

4.5.2. Casimir invariants and global Darboux analysis

We can now characterize some of the properties of the family described in Theorem 4.5.1.1:

Theorem 4.5.2.1. Let J be a structure matrix of the form (247) characterized in Theorem

4.5.1.1, which is defined in a domain Ω ⊂ Rn and such that the pair (i, j) verifies that function

χij(xi, xj) is nonvanishing in Ω. Then Rank(J )= 2 everywhere in Ω and a complete set of

independent Casimir invariants for J is given by:

Dk(x) =
ψj(xj)− ψk(xk) + κjk
ψi(xi)− ψj(xj) + κij

=
χjk(xj , xk)
χij(xi, xj)

, k = 1, . . . , n ; k 6= i, j (249)
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Moreover, every Casimir invariant in (249) is globally defined in Ω.

Proof. Given that functions η(x) and ϕi(xi) are nonvanishing in Ω, the use of rank-preserving

matrix transformations shows that Rank(J ) = Rank(X) in Ω, where X ≡ (χij(xi, xj)) for

every pair (i, j). Since at least one of the entries ofX is also nonvanishing in Ω, this implies that

Rank(J ) ≥ 2 everywhere in Ω. We can now submit matrix X to additional rank-preserving

transformations: notice that Rank(X) is also maintained if we subtract the first row to the

rest of rows, and then if on the resulting matrix we subtract the first column to every one of

the remaining columns. This leads to a new matrix X∗ given by:

X∗ =


0 χ12 . . . χ1n

−χ12 0 . . . 0
...

...
. . .

...

−χ1n 0 . . . 0

 (250)

It is then clear from (250) that Rank(J ) = Rank(X∗) ≤ 2 in every point of Ω. Therefore

we conclude that Rank(J ) = 2 in Ω. This proves the first part of the statement. For the

second part, notice first that every function Dk(x) in (249) always depends on xi, xj and xk

(since functions ψk(xk) cannot be constant for any k, according to the conditions established)

and in addition Dk(x) does not depend on the rest of variables. This implies immediately

the functional independence of the set {Dk(x) | k = 1, . . . , n; k 6= i, j}. Moreover, since both

χjk(xj , xk) and χij(xi, xj) are C∞(Ω) and χij(xi, xj) 6= 0 everywhere in Ω, function Dk(x) is

necessarily C∞(Ω). Therefore, to complete the proof it is only required to prove that functions

Dk(x) are Casimir invariants for every k. The simplest procedure to see this is to verify that

J ·∇Dk = 0 for every k = 1, . . . , n, with k 6= i, j (notice that for both values k = i, j, function

Dk(x) is a constant, and then also a Casimir invariant, but trivial). We thus have:

∂iDk(x) =
ψ′iχkj
(χij)2

, ∂jDk(x) =
ψ′jχik

(χij)2
, ∂kDk(x) =

ψ′kχji
(χij)2

, k = 1, . . . n ; k 6= i, j

Then for every l = 1, . . . , n it can be seen that:
n∑
s=1

Jls∂sDk = Jli∂iDk + Jlj∂jDk + Jlk∂kDk =
ηϕl

(χij)2
(χliχkj + χljχik + χlkχji) (251)

In (251) the last term vanishes for every choice of i, j, k, l,

χliχkj + χljχik + χlkχji = 0

as it was already shown in the proof of Theorem 4.5.1.1. Consequently, J ·∇Dk = 0 for every

k 6= i, j. This completes the proof. Q.E.D.
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As a consequence, we have that every Poisson system of this kind has (n− 2) independent

Casimir invariants, additional to the Hamiltonian. In other words:

Corollary 4.5.2.2. Consider that the assumptions of Remark 1.4.4.4 hold. Every n-dimen-

sional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ Rn in which the structure

matrix J (x) is of the kind (247) characterized in Theorem 4.5.1.1, is an algebraically integrable

system in Ω.

In order to make the section self-contained, it is necessary to recall the concept of time

reparametrization for Poisson systems (see Definition 4.1.1) which are transformations of the

form

dτ =
1

η(x)
dt (252)

where t is the initial time variable, τ is the new time and η(x) : Ω → R is a C∞(Ω) function

which does not vanish in Ω. Thus, if

dx
dt

= J · ∇H (253)

is an arbitrary Poisson system defined in Ω, then every time reparametrization (252) leads

from (253) to the system (not necessarily of Poisson type):

dx
dτ

= ηJ · ∇H (254)

Having this in mind, an additional consequence of the previous results is that they allow the

constructive and global determination of the Darboux canonical form for this kind of Poisson

systems. This statement is contained in the following:

Theorem 4.5.2.3. Let Ω ⊂ Rn be a domain where a Poisson system

dx
dt

= J (x) · ∇H(x)

is defined everywhere, for which J (x) is a structure matrix of the form (247) characterized in

Theorem 4.5.1.1, and such that the pair (i, j) verifies that function χij(xi, xj) is nonvanishing

in Ω. Then such Poisson system can be globally reduced in Ω to an one degree of freedom

Hamiltonian system and the Darboux canonical form is accomplished globally in Ω in the

new coordinate system (y1, . . . , yn) and the new time τ , where (y1, . . . , yn) are given by the
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diffeomorphism globally defined in Ω
yi(x) = xi

yj(x) = xj

yk(x) = Dk(x) , k = 1, . . . , n; k 6= i, j

(255)

in which the Dk(x) are the Casimir invariants (249); and the new time τ is defined by the

time reparametrization:

dτ = Jij(x(y))dt (256)

Proof. Note that, according to Theorem 4.5.2.1, Darboux’ theorem is applicable because J

has constant rank 2 in Ω. For the sake of clarity and without loss of generality, assume that

it is χ12 6= 0 everywhere in Ω. Recall also that, after a general smooth change of coordinates

y ≡ y(x), an arbitrary structure matrix J (x) is transformed into another one J ∗(y) as:

J∗ij(y) =
n∑

k,l=1

∂yi
∂xk

Jkl(x)
∂yj
∂xl

, i, j = 1, . . . , n (257)

For the family of interest, the reduction is carried out in two steps. We first perform the

change of variables (255), which in this case is
y1(x) = x1

y2(x) = x2

yk(x) = Dk(x) , k = 3, . . . , n

(258)

where the Dk(x) are given by (249), namely:

Dk(x) =
χ2k(x2, xk)
χ12(x1, x2)

=
ψ2(x2)− ψk(xk) + κ2k

ψ1(x1)− ψ2(x2) + κ12
, k = 3, . . . , n (259)

Notice that the change of coordinates (258) is invertible everywhere in Ω, its inverse being
x1(y) = y1

x2(y) = y2

xk(y) = ζk[ψ2(y2) + κ2k − ykχ12(y1, y2)] , k = 3, . . . , n

(260)

where function ζk is the inverse function of ψk for every k. The examination of (258-260)

shows that the variable transformation (258) to be performed exists and is a diffeomorphism

everywhere in Ω as a consequence that by hypothesis we have χ12(x1, x2) 6= 0 and ψ′k(xk) 6= 0
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in Ω. Then, according to (258) and (259), and taking (257) into account, after some algebra

we are led to

J ∗(y) = J12(x(y))



0 1 0 . . . 0

−1 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


(261)

where from equations (247) and (260) we have

J12(x(y)) = η(y1, y2, x3(y), . . . , xn(y))ϕ1(y1)ϕ2(y2)χ12(y1, y2) (262)

The explicit dependences of (x3(y), . . . , xn(y)) are obviously the ones given in (260) and were

not displayed in (262) for the sake of clarity. Note that J12(x(y)) is nonvanishing in Ω∗ = y(Ω)

and C∞(Ω∗). These properties allow the accomplishment of the second step of the reduction

which is a reparametrization of time, which in this case does not suppress the Poisson structure

of the vector field. Thus, making use of (262) in equation (256), the transformation dτ =

J12(x(y))dt is performed. According to (252-254) this leads from the structure matrix (261)

to the Darboux canonical one:

JD[n,2](y) =



0 1 0 . . . 0

−1 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


= S2 ⊕O(n−2) (263)

Therefore the reduction is globally completed. Q.E.D.

The global reduction just achieved also implies the following consequence:

Corollary 4.5.2.4. Consider that the assumptions of Remark 1.4.4.4 hold. Every n-dimen-

sional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ Rn in which the structure

matrix J (x) is of the kind (247) characterized in Theorem 4.5.1.1, can be reduced globally and

diffeomorphically in Ω to a Liouville integrable Hamiltonian system.

This concludes the analysis of the family of Poisson structures, since at this stage the reduc-

tion directly connects the initial Poisson systems with their classical Hamiltonian formulation.

193



In what follows, the results just developed are illustrated by means of some applied examples.

This provides several instances of physical systems embraced by the previous setting, and also

illustrates the procedures introduced. This is the purpose of the next subsection.

4.5.3. Examples

Now some illustrations of the solution family (247) are given. The first one deals with

certain Poisson structures of interest in connection with the Halphen equations and the system

of circle maps. The second one is applied to a Poisson structure arising in the study of the

Euler top. Finally, in the last example it is shown that the cyclic Poisson structures of type I

analyzed in Section 2.3 are actually a particular 3-d case of the type I hemiseparable solutions

considered in the present section.

Example 1. Generalization of the Poisson structures for the Halphen equations

and the system of circle maps

Let us consider a family of three-dimensional structure matrices of the kind:

Jij(x1, x2, x3) = η3(x1, x2, x3)(xi − xj) , i, j = 1, 2, 3 (264)

Poisson structures of this form have deserved some attention both for the study of the Halphen

system [63], in which

η3(x1, x2, x3) = [2(x1 − x2)(x2 − x3)(x3 − x1)]−1

as well as for the Poisson formulation of the system of circle maps [63], this time with

η3(x1, x2, x3) = −[(x1 − x2)(x2 − x3)(x3 − x1)]−1

Instead of analyzing the three-dimensional case, it is feasible to first generalize the previous

structures and then to provide a dimension-independent analysis. For this, and following

Theorem 4.5.1.1, consider a domain Ω ⊂ Rn in which the Poisson structure is to be defined,

together with a generic function η(x) ≡ η(x1, . . . , xn) defined in Ω and complying to the

requirements of such theorem. Moreover, we set ϕi(xi) = 1 and consistently ψi(xi) = xi for

every i = 1, . . . , n, as well as κij = 0 for every pair (i, j). This leads to a natural n-dimensional

generalization of the previous structure matrices (264):

Jij(x) = η(x)(xi − xj) , i, j = 1, . . . , n (265)
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In order to fully comply with the requirements of Theorem 4.5.1.1 (and necessarily for the

application of Theorems 4.5.2.1 and 4.5.2.3) it must be also assumed that there exists at least

one pair of indexes (i, j) for which χij(xi, xj) = xi − xj 6= 0 everywhere in Ω. Consistently

with the previous style, in what follows this will be the case for χ12.

Therefore, according to (249) and Theorem 4.5.2.1 a complete set of functionally indepen-

dent Casimir invariants associated in Ω to the structure matrices (265) is:

Dk(x) =
x2 − xk
x1 − x2

, k = 3, . . . , n (266)

Then the reduction to Darboux form now makes use of the diffeomorphism (258), with the

Dk(x) given by (266). The inverse of this transformation is also a diffeomorphism, of equations:
x1 = y1

x2 = y2

xk = y2 − (y1 − y2)yk , k = 3, . . . , n

After applying rule (257) the outcome is that J in (265) is transformed into the structure

matrix (261), this time with

J12(x(y)) ≡ J̃12(y) = η(y1, y2, y2 − (y1 − y2)y3, . . . , y2 − (y1 − y2)yn)(y1 − y2)

The reduction is then completed by means of the time reparametrization dτ = J̃12(y)dt, which

finally leads to the Darboux canonical form (263) with (y3, . . . , yn) being trivial decoupled

Casimir functions and (y1, y2) acting as classical canonical variables.

Example 2. Generalization of the Poisson structure for the Euler top

We now consider the following cubic structure matrix appearing [63] in the analysis of the

Euler equations for a triaxial top:

Jij(x1, x2, x3) = (αjx2
i − αix

2
j )

3∑
k=1

(εijk)2xk , i, j = 1, 2, 3 (267)

where εijk is the Levi-Civita symbol, and for i = 1, 2, 3, the αi are real constants related to

the principal moments of inertia µi of the top according to the expressions:

α1 =
µ2 − µ3

µ2µ3
, α2 =

µ3 − µ1

µ1µ3
, α3 =

µ1 − µ2

µ1µ2

As in the previous example, an n-dimensional generalization will be developed and analyzed.

Before doing that, it is interesting to first investigate how the structure matrix (267) fits in
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the framework of Theorem 4.5.1.1. For this, and assuming that α1α2α3 6= 0, equations (267)

can be equivalently written as:

J12(x1, x2, x3) = (4α1α2α3x1x2x3)
1

(2α2α3x1)
1

(2α1α3x2)
(α2α3x

2
1 − α1α3x

2
2)

J23(x1, x2, x3) = (4α1α2α3x1x2x3)
1

(2α1α3x2)
1

(2α1α2x3)
(α1α3x

2
2 − α1α2x

2
3)

J31(x1, x2, x3) = (4α1α2α3x1x2x3)
1

(2α1α2x3)
1

(2α2α3x1)
(α1α2x

2
3 − α2α3x

2
1)

(268)

Taking into account the alternative form (248) of the solution family, the structure matrix

thus expressed in (268) can be recognized in terms of:

η(x1, x2, x3) = 4α1α2α3x1x2x3 , ψi(xi) = α1α2α3
x2
i

αi
, i = 1, 2, 3 (269)

and κij = 0 for all i, j = 1, 2, 3. Therefore, by means of the recasting (268-269), now it becomes

possible to generalize this Poisson structure to arbitrary dimension n. For this, let Ω ⊂ Rn be

a domain such that xi 6= 0 for every x ∈ Ω and for every i = 1, . . . , n, and let us also define:

• A set of n nonvanishing real constants (α1, . . . , αn), their product being termed:

α =
n∏
k=1

αk 6= 0

• An arbitrary function ν(x) which is C∞(Ω) and does not vanish in Ω. Together with it,

now function η(x) is also defined as:

η(x) = 4αν(x)
n∏
k=1

xk

• Functions ψi(xi) = αx2
i /αi for every i = 1, . . . , n.

• Constants κij , which are taken to vanish for all i, j = 1, . . . , n.

• To conclude, it is assumed for instance (and without loss of generality) that χ12(x1, x2) 6=

0 in Ω, where now it is:

χ12(x1, x2) = α

(
x2

1

α1
− x2

2

α2

)
In this case, a generalized family of n-dimensional structure matrices is completely defined in

Ω and complies to the requirements of Theorem 4.5.1.1, the result being of the form:

Jij(x) = ν(x)(αjx2
i − αix

2
j )

n∏
k=1
k 6=i,j

xk , i, j = 1, . . . , n (270)
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Notice that in the case n = 3 and ν(x) = 1, the structure matrix (270) reduces to (267), as

expected.

Therefore, Poisson systems with n-dimensional structure matrix of the generalized form

(270) have the following set of (n− 2) functionally independent Casimir invariants in Ω:

Dk(x) =
α1αkx

2
2 − α1α2x

2
k

α2αkx
2
1 − α1αkx

2
2

, k = 3, . . . , n (271)

Consequently, in this case the diffeomorphic coordinate transformation leading to the Darboux

canonical form is defined by (258) and (271), and its inverse is also a diffeomorphism in y(Ω)

given by: 
x1 = y1

x2 = y2

xk = ςk

[
αk
α2
y2
2 −

(
αk
α1
y2
1 −

αk
α2
y2
2

)
yk

]1/2

, k = 3, . . . , n

where ςk ≡ sign(xk) is a constant defined in terms of the usual sign function, namely (+1) if

xk > 0 and (−1) if xk < 0 in Ω (recall that xk 6= 0 in Ω for all k = 1, . . . , n). From this stage

on, what remains of the Darboux reduction does not present any special feature not specified

in the proof of Theorem 4.5.2.3, and therefore will be omitted for the sake of brevity.

Example 3. Generalization of the cyclic Poisson structures of type I

Consider now the form of the hemiseparable structure matrices of type I, as provided in

expression (248). Using this as starting point, let us now define the functions φi(xi) ≡ ψ′i(xi)

for all i = 1, . . . , n. Accordingly, functions φi(xi) are C∞(Ω) and do not vanish in Ω. We are

thus led to the following form for the structure matrices:

Jij(x) =
η(x)

φi(xi)φj(xj)
χij(xi, xj) =

η(x)
φi(xi)φj(xj)

[ψi(xi)−ψj(xj)+κij ] , i, j = 1, . . . , n (272)

The properties of the functions φi(xi) just defined allow a simple redefinition of function η(x)

as

η̂(x) = η(x)
n∏
k=1

φk(xk) (273)

Substituting (273) into (272) we finally obtain:

Jij(x) = η̂(x)χij(xi, xj)
n∏
k=1
k 6=i,j

φk(xk) = η̂(x) [ψi(xi)− ψj(xj) + κij ]
n∏
k=1
k 6=i,j

φk(xk) , i, j = 1, . . . , n

(274)
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In the case n = 3, it is therefore evident that the hemiseparable family of type I given in

(274) becomes exactly the family of nontrivial cyclic structure matrices of type I, as it was

developed in equation (71) and Theorem 2.3.1.1. Here the term “nontrivial” deserves a brief

explanation. Notice that the cyclic Poisson structures of type I were defined in Theorem

2.3.1.1 in such a way that the rank could in principle vanish (something later excluded in their

global analysis). The reason for doing this was the interest of analyzing and classifying the

different possible reductions to the Darboux canonical form arising according to the vanishing

of different functions ωij . On the contrary, doing such kind of classification is not necessary in

our present stage, and accordingly the possibility of a null rank was not present in Theorem

4.5.1.1, in which hemiseparable structure matrices of type I were directly defined in order

to have nonzero rank. According to these considerations, we see that hemiseparable Poisson

structures of type I are the natural generalization to arbitrary dimension of the 3-d family given

by the cyclic structure matrices of type I. Actually, we see that the rank of the Poisson manifold

has remained constant (and equal to 2) after such generalization to arbitrary dimension. This

explains also the strong parallelism existing in the examples considered, in spite that in the

present section the treatment has been different, mainly based on the idea of generalizing

well-known 3-d Poisson structures to general dimension n.
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4.6. HEMISEPARABLE SOLUTIONS OF TYPE II

A supplementary family of n-dimensional solutions [79] of the Jacobi equations (the last in

the work) is considered in this section. The family is completely characterized and investigated

globally. As it was the case in the previous section, this solution family has a functionally

general form, defined in terms of functions of an arbitrary nonlinearity. In fact, the new family

is formally reminiscent of the hemiseparable family of type I, and accordingly it is termed

hemiseparable of type II. In spite of their parallelism, however, both families are different. In

the new analysis it is also possible the explicit and global determination of the main features,

such as the case-classification of the Casimir invariants and the global construction of the

Darboux canonical form. Again, in this family it is found that the understanding of its

global analysis implies a case classification such that different distinguished invariants are to

be used in each case. Namely, only the knowledge of one complete set of Casimir invariants

does not guarantee everywhere the reduction to the Darboux canonical form, in spite of the

constancy of the rank. Thus, the analysis of this kind of Poisson structures requires the use

of a case-dependent set of global Casimir invariants which determines the kind of subsequent

global Darboux reduction to be constructed. Such classification is given in this section. Some

applied examples of interest are also discussed.

The analysis starts in Subsection 4.6.1 by providing the main results about the functional

characterization of the solution family. In Subsection 4.6.2, the global analysis of the family

is presented. We finish in Subsection 4.6.3 with some examples of applied significance.

4.6.1. Characterization of the family

The first result to be presented is the following one:

Theorem 4.6.1.1. Let η(x) and ϕi(xi), for i = 1, . . . , n, be functions defined in a domain

Ω ⊂ Rn, all of which are C∞(Ω) and nonvanishing in Ω. In addition let

ψi(xi) = ai exp
(∫

dxi
ϕi(xi)

)
, i = 1, . . . , n (275)

where ai 6= 0, i = 1, . . . , n, are arbitrary nonzero real constants, and every exponent in (275)∫
dxi
ϕi(xi)

, i = 1, . . . , n (276)

denotes one primitive of 1/ϕi(xi). Finally, let the functions ωij(xi, xj) be defined as

ωij(xi, xj) = ψi(xi)− ψj(xj) , i, j = 1, . . . , n
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and assume that ωij(xi, xj) is nonvanishing in Ω at least for one pair (i, j). Then J = (Jij)

is a family of n-dimensional structure matrices globally defined in Ω, where

Jij(x) = η(x)ϕi(xi)ϕj(xj)ωij(xi, xj) , i, j = 1, . . . , n (277)

Proof. Skew-symmetry is clear from simple inspection in (277). We can then substitute J

in (277) into the Jacobi identities (25) and obtain after some calculations:

n∑
l=1

(Jli∂lJjk + Jlj∂lJki + Jlk∂lJij) = ηT1 + η2T2

Here T1 and T2 are the following two terms, which we examine separately:

T1 =
n∑
l=1

ϕiϕjϕkϕl(∂lη)(ωilωjk + ωjlωki + ωklωij)

T2 =
n∑
l=1

{
ϕiϕlωil

[
δljϕ

′
jϕkωjk + δlkϕjϕ

′
kωjk + ϕjϕk

(
δlj
ψj
ϕj
− δlk

ψk
ϕk

)]
+

ϕjϕlωjl

[
δlkϕ

′
kϕiωki + δliϕkϕ

′
iωki + ϕkϕi

(
δlk
ψk
ϕk

− δli
ψi
ϕi

)]
+

ϕkϕlωkl

[
δliϕ

′
iϕjωij + δljϕiϕ

′
jωij + ϕiϕj

(
δli
ψi
ϕi
− δlj

ψj
ϕj

)]}
With regard to T1, if every ωij is substituted by its expression ωij = ψi − ψj and the result is

simplified, it is found that:

ωilωjk + ωjlωki + ωklωij = 0

Then we have proved that T1 = 0. We proceed now with T2 by expanding its expression and

cancelling out similar terms. After a rearrangement we are led to:

T2 = ϕiϕjϕk[ωijψj − ωikψk + ωjkψk − ωjiψi + ωkiψi − ωkjψj ] = 0

Thus we also have T2 = 0 and the proof is finished. Q.E.D.

Some brief but important remarks must be provided at this point. First of all recall that,

as indicated in Theorem 4.6.1.1, for every i the primitive (276) obtained from ϕi(xi) must be

chosen to be one and the same for all the entries of J . However, the specific choice is actually

arbitrary. In such sense, notice that if different integration constants are selected, then the

outcome is also a member of the solution family, this time with rescaled parameters ai. In

second term, notice that by construction the functions ψi(xi) and ωij(xi, xj) are C∞(Ω). In
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third place, it can be observed that the definition (275) allows an alternative writing of the

family just characterized, namely J = (Jij) can also be expressed as

Jij(x) = η(x)
ψi(xi)ψj(xj)
ψ′i(xi)ψ

′
j(xj)

ωij(xi, xj) = η(x)
ψi(xi)ψj(xj)
ψ′i(xi)ψ

′
j(xj)

[ψi(xi)− ψj(xj)] , i, j = 1, . . . , n

(278)

where functions ψi(xi) must be C∞(Ω) and nonvanishing in Ω, and such that functions ψ′i(xi)

are also nonvanishing in Ω, while the rest of defining properties were already presented in

Theorem 4.6.1.1. Under these assumptions, (278) can be taken as an alternative definition of

the solution family of structure matrices. Both ways of expressing the family will be employed

in the forthcoming analysis.

4.6.2. Casimir invariants and global Darboux analysis

The main global properties of the family identified in Theorem 4.6.1.1 are characterized

in what follows:

Theorem 4.6.2.1. Let J be a structure matrix of the form (277) characterized in Theorem

4.6.1.1, which is defined in a domain Ω ⊂ Rn and such that the pair (i, j) verifies that function

ωij(xi, xj) is nonvanishing in Ω. Then Rank(J )= 2 everywhere in Ω and a complete set of

independent Casimir invariants for J is given by:

Dk(x) =
ψi(xi)[ψj(xj)− ψk(xk)]
ψk(xk)[ψi(xi)− ψj(xj)]

=
ψi(xi)ωjk(xj , xk)
ψk(xk)ωij(xi, xj)

, k = 1, . . . , n ; k 6= i, j (279)

Moreover, every Casimir invariant in (279) is globally defined in Ω.

Proof. Since functions η(x) and ϕi(xi) are nonvanishing in Ω, the use of rank-preserving ma-

trix transformations shows that Rank(J ) = Rank(W ) in Ω, where W ≡ (ωij(xi, xj)). Given

that at least one of the entries of W is also nonvanishing in Ω, this implies that Rank(J ) ≥ 2

everywhere in Ω. Matrix W can be now submitted to additional rank-preserving transforma-

tions: notice that Rank(W ) is also unaltered if we subtract the first row to the rest of rows,

and then if on the resulting matrix we subtract the first column to every one of the remaining

columns. The result is a new matrix W ∗ of the form:

W ∗ =


0 ω12 . . . ω1n

−ω12 0 . . . 0
...

...
. . .

...

−ω1n 0 . . . 0

 (280)
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Thus, it is evident from (280) that Rank(J ) = Rank(W ∗) ≤ 2 in every point of Ω. Therefore

we conclude that Rank(J ) = 2 in Ω. This proves the first part of the statement. For the

second part, notice first that every function Dk(x) in (279) always depends on xi, xj and xk

(since functions ψk(xk) cannot be constant for any k, according to the conditions established)

and in addition Dk(x) does not depend on the rest of variables. This implies immediately

the functional independence of the set {Dk(x) | k = 1, . . . , n; k 6= i, j}. Moreover, since all

functions composing Dk(x) are C∞(Ω) and ψk(xk)ωij(xi, xj) 6= 0 everywhere in Ω, function

Dk(x) is necessarily C∞(Ω). Therefore, to complete the proof it is only required to prove that

functions Dk(x) are Casimir invariants for every k. The easiest way to see this is to verify that

J · ∇Dk = 0 for every k = 1, . . . , n, with k 6= i, j (notice as well that for both values k = i, j,

function Dk(x) is a constant, and then also a Casimir invariant, but trivial). We have then:

∂iDk(x) =
ψ′iψjψkωkj
(ψkωij)2

, ∂jDk(x) =
ψiψ

′
jψkωik

(ψkωij)2
, ∂kDk(x) =

ψiψjψ
′
kωji

(ψkωij)2

for k = 1, . . . n, k 6= i, j. Thus for every l = 1, . . . , n it can be seen that:
n∑
s=1

Jls∂sDk = Jli∂iDk + Jlj∂jDk + Jlk∂kDk =

ηϕlψiψj
ψk(ωij)2

(ωliωkj + ωljωik + ωlkωji) (281)

In equation (281) the last term vanishes for every choice of i, j, k, l,

ωliωkj + ωljωik + ωlkωji = 0

as it was already shown in the proof of Theorem 4.6.1.1. Therefore, J · ∇Dk = 0 for every k.

Now the proof is complete. Q.E.D.

Accordingly, every Poisson system of this kind has (n−2) independent Casimir invariants,

additional to the Hamiltonian function. This implies that:

Corollary 4.6.2.2. Consider that the assumptions of Remark 1.4.4.4 hold. Every n-dimen-

sional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ Rn in which the structure

matrix J (x) is of the kind (277) characterized in Theorem 4.6.1.1, is an algebraically integrable

system in Ω.

For the sake of completeness, we recall again the concept of time reparametrization for

Poisson systems (see Definition 4.1.1) which are transformations of the form

dτ =
1

η(x)
dt (282)
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where t is the initial time variable, τ is the new time and η(x) : Ω → R is a C∞(Ω) function

which does not vanish in Ω. Therefore, if

dx
dt

= J · ∇H (283)

is an arbitrary Poisson system defined in Ω, then every time reparametrization (282) leads

from (283) to the system (not necessarily of Poisson type):

dx
dτ

= ηJ · ∇H (284)

With this issue in mind, another consequence of the previous results is that they allow the

constructive and global determination of the Darboux canonical form for this family of Poisson

structures. This statement is provided in the next:

Theorem 4.6.2.3. Let Ω ⊂ Rn be a domain where a Poisson system

dx
dt

= J (x) · ∇H(x)

is defined everywhere, for which J (x) is a structure matrix of the form (277) characterized in

Theorem 4.6.1.1, and such that the pair (i, j) verifies that function ωij(xi, xj) is nonvanishing

in Ω. Then such Poisson system can be globally reduced in Ω to an one degree of freedom

Hamiltonian system and the Darboux canonical form is accomplished globally in Ω in the

new coordinate system (y1, . . . , yn) and the new time τ , where (y1, . . . , yn) are given by the

diffeomorphism globally defined in Ω
yi(x) = xi

yj(x) = xj

yk(x) = Dk(x) , k = 1, . . . , n; k 6= i, j

(285)

in which the Dk(x) are the Casimir invariants (279); and the new time τ is defined by the

time reparametrization:

dτ = Jij(x(y))dt (286)

Proof. It follows from Theorem 4.6.2.1 that Darboux’ theorem is applicable because J has

constant rank 2 in Ω. Without loss of generality and for the sake of clarity, assume that it

is ω12 6= 0 everywhere in Ω. Recall also that, after a general smooth change y ≡ y(x), an
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arbitrary structure matrix J (x) is transformed into another one J ∗(y) as:

J∗ij(y) =
n∑

k,l=1

∂yi
∂xk

Jkl(x)
∂yj
∂xl

, i, j = 1, . . . , n (287)

For the present solution family, the reduction is carried out in two steps. We first perform the

change of variables (285), which in this case is
y1(x) = x1

y2(x) = x2

yk(x) = Dk(x) , k = 3, . . . , n

(288)

where the Dk(x) are given by (279), namely:

Dk(x) =
ψ1(x1)ω2k(x2, xk)
ψk(xk)ω12(x1, x2)

=
ψ1(x1)(ψ2(x2)− ψk(xk))
ψk(xk)(ψ1(x1)− ψ2(x2))

, k = 3, . . . , n (289)

Note that this change of variables is invertible everywhere in Ω, and its inverse is
x1(y) = y1

x2(y) = y2

xk(y) = ζk

(
ψ1(y1)ψ2(y2)

ψ1(y1) + ykω12(y1, y2)

)
, k = 3, . . . , n

(290)

where function ζk is the inverse function of ψk for every k. The examination of (288-290)

shows that the variable transformation (288) to be performed exists and is a diffeomorphism

everywhere in Ω as a consequence that by hypothesis we have ω12(x1, x2) 6= 0 in Ω, as well as

ψk(xk) 6= 0 and ψ′k(xk) 6= 0 for every k in Ω. Then, according to (288) and (289), and taking

(287) into account, after some calculations we arrive at

J ∗(y) = J12(x(y))



0 1 0 . . . 0

−1 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


(291)

where from equations (277) and (290) we have

J12(x(y)) = η(y1, y2, x3(y), . . . , xn(y))ϕ1(y1)ϕ2(y2)ω12(y1, y2) (292)

The explicit dependences of (x3(y), . . . , xn(y)) are obviously the ones given in (290) and were

not displayed in (292) for the sake of clarity. Note that J12(x(y)) is nonvanishing in Ω∗ = y(Ω)

and C∞(Ω∗). These properties allow the accomplishment of the second step of the reduction
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which is a reparametrization of time, which in this case does not suppress the Poisson structure

of the vector field. Thus, making use of (292) in equation (286), the transformation dτ =

J12(x(y))dt is performed. According to (282-284) this leads from the structure matrix (291)

to the Darboux canonical form:

JD[n,2](y) =



0 1 0 . . . 0

−1 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


= S2 ⊕O(n−2) (293)

Thus the reduction is globally accomplished and the proof is complete. Q.E.D.

As a consequence, we now have:

Corollary 4.6.2.4. Consider that the assumptions of Remark 1.4.4.4 hold. Every n-dimen-

sional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ Rn in which the structure

matrix J (x) is of the kind (277) characterized in Theorem 4.6.1.1, can be reduced globally and

diffeomorphically in Ω to a Liouville integrable Hamiltonian system.

The analysis of the family of Poisson structures is thus completed, since at this stage

the reduction directly relates the initial Poisson systems with their classical Hamiltonian

counterparts. In the next subsection, the results developed are exemplified by means of some

instances of applied interest. This provides several cases of systems embraced and generalized

by the previous results.

4.6.3. Examples

The first example to be considered is related to a certain kind of Poisson structures appear-

ing in different domains, including Lotka-Volterra equations and the system of circle maps.

The motivation of the second example is to prove that the cyclic Poisson structures of type

II considered in Section 2.4 are in fact a particular 3-d case of the solution family currently

investigated, which thus provides the natural generalization of the former.
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Example 1. Generalization of the Poisson structures for the Lotka-Volterra

equations and the system of circle maps

We shall first consider the family of three-dimensional structure matrices of the form:

Jij(x1, x2, x3) = η3(x1, x2, x3)xixj(xi − xj) , i, j = 1, 2, 3 (294)

This kind of Poisson structures have received some attention both for the study of conservative

Lotka-Volterra systems [63], in which

η3(x1, x2, x3) = 1

as well as for the Poisson formulation of the system of circle maps [63], this time with

η3(x1, x2, x3) = −[(x1 − x2)(x2 − x3)(x3 − x1)]−1

It is feasible to generalize the previous structure matrices in order to provide a dimension-

independent analysis, instead of directly analyzing the three-dimensional case. For this, and

following Theorem 4.6.1.1, consider a domain Ω ⊂ Rn in which the Poisson structure is to be

defined, together with a generic function η(x) ≡ η(x1, . . . , xn) defined in Ω and complying to

the requirements of such theorem. Moreover, we set ϕi(xi) = xi and consistently ψi(xi) = xi

for every i = 1, . . . , n. This leads to a natural n-dimensional generalization of the structure

matrices (294) previously introduced:

Jij(x) = η(x)xixj(xi − xj) , i, j = 1, . . . , n (295)

If we wish to fully comply with the requirements of Theorem 4.6.1.1 (and necessarily for

the application of Theorems 4.6.2.1 and 4.6.2.3) it must be assumed that xi 6= 0 in Ω for

every i = 1, . . . , n, and also that there exists at least one pair of indexes (i, j) for which

ωij(xi, xj) = xi − xj 6= 0 everywhere in Ω. In agreement with the previous style, in what

follows this will be the case for ω12.

Then, according to (279) and Theorem 4.6.2.1 a complete set of functionally independent

Casimir invariants associated in Ω to the structure matrices (295) is:

Dk(x) =
x1(x2 − xk)
xk(x1 − x2)

, k = 3, . . . , n (296)

Therefore the reduction to the Darboux canonical form now makes use of the diffeomorphism

(288), with the Dk(x) given by (296). The inverse of this transformation is also a diffeomor-
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phism, of equations: 
x1 = y1

x2 = y2

xk =
y1y2

y1 + (y1 − y2)yk
, k = 3, . . . , n

The outcome after applying rule (287) is that J in (295) is transformed into the structure

matrix (291), this time with:

J12(x(y)) ≡ J̃12(y) = η

(
y1, y2,

y1y2

y1 + (y1 − y2)y3
, . . . ,

y1y2

y1 + (y1 − y2)yn

)
y1y2(y1 − y2)

Then the reduction is completed by means of the time reparametrization dτ = J̃12(y)dt,

which finally leads to the Darboux canonical form (293) with (y1, y2) now being Hamiltonian

canonical variables, while (y3, . . . , yn) are trivially decoupled distinguished invariants.

Example 2. Generalization of the cyclic Poisson structures of type II

Let us now turn back to the general form of the hemiseparable structure matrices of type

II, as expressed in equations (278). Recall that this expression is found after making use of

equation (275) and writing ψi(xi) = ϕi(xi)ψ′i(xi) for all i = 1, . . . , n. According to this, we

have that functions ψi(xi) are C∞(Ω) and do not vanish in Ω. Consistently, functions ψ′i(xi)

are also C∞(Ω) and do not vanish in Ω. Let us now define functions φi(xi) ≡ ψ′i(xi) for all

i = 1, . . . , n. In this way, the following equivalent form for the type II hemiseparable structure

matrices is found:

Jij(x) = η(x)
ψi(xi)ψj(xj)
φi(xi)φj(xj)

ωij(xi, xj) = η(x)
ψi(xi)ψj(xj)
φi(xi)φj(xj)

[ψi(xi)− ψj(xj)] , i, j = 1, . . . , n

(297)

Now notice that the nonvanishing properties of the functions φi(xi) just defined allow a redef-

inition of function η(x) as

η̂(x) = η(x)
n∏
k=1

φk(xk) (298)

After substitution of (298) into (297) we finally arrive at:

Jij(x) = η̂(x)ψi(xi)ψj(xj)ωij(xi, xj)
n∏
k=1
k 6=i,j

φk(xk) =

η̂(x)ψi(xi)ψj(xj) [ψi(xi)− ψj(xj)]
n∏
k=1
k 6=i,j

φk(xk) , i, j = 1, . . . , n (299)
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We then conclude easily from (299) that if n = 3, then the hemiseparable family of type

II reduces exactly to the family of nontrivial cyclic structure matrices of type II, as it was

displayed in equation (91) and Theorem 2.4.1.1. And, as it was the case when considering

type I Poisson structures in the previous section, now “nontrivial” requires a brief comment.

This is based on the fact that the cyclic structure matrices of type II were defined in Theorem

2.4.1.1 in such a way that the rank could in principle vanish (of course, this feature was

later excluded in the corresponding global analysis). On the contrary, such possibility is not

present in Theorem 4.6.1.1, in which hemiseparable structures of type II were defined as having

nonzero rank. In both cases, the reasons are entirely similar to those presented in Example

3 of Subsection 4.5.3 in connection with type I hemiseparable and cyclic structure matrices.

Therefore, hemiseparable Poisson structures of type II are a natural generalization to arbitrary

dimension of the 3-d family given by the cyclic Poisson structures of type II. In fact, we have

seen that the rank of the Poisson manifold has remained constant and equal to 2 after the

generalization. Again, this accounts for the parallelism existing in the examples considered,

in spite that in the present subsection the treatment has been essentially different, mainly

based now on the goal of generalizing to an arbitrary dimension n some 3-d Poisson structures

already known in the literature.

208



4.7. THE ROLE OF TIME REPARAMETRIZATIONS

We now start the concluding section of this thesis, in which the use of time reparametriza-

tions will provide a unifying perspective of many previously seen results. In this sense, it is

of central importance Definition 4.1.1 of time reparametrization in the general n-dimensional

case. The most relevant outcomes of the forthcoming analysis will be the following: (a) the

characterization of some wide families of time reparametrizations that preserve the Poisson

structure for general n-dimensional Poisson systems; (b) the generalization of some of the n-

dimensional solution families already characterized in this chapter; (c) the explicit and global

construction of the Darboux canonical form for n-dimensional Poisson structures of rank 2.

4.7.1. Introduction and formulation of the problem

Provided J (x) is an n-dimensional structure matrix of constant rank in a domain Ω ⊂ Rn,

we shall now consider the following problem: given an arbitrary function η(x) : Ω → R which

is smooth in Ω and does not vanish in Ω, we would like to investigate the conditions such that

the product η(x)J (x) is also a structure matrix.

The naturalness of this question should be clear at this stage: notice the close relationship

of this issue with the problem of determining whether or not a specific time reparametrization

preserves a given Poisson structure, as mentioned in Subsection 1.2.4 and in Section 4.1. Ac-

cording to Definition 4.1.1, recall that a time reparametrization (or NTT) is a transformation

(164) of the form

dτ =
1

η(x)
dt

where t is the initial time variable, τ is the new time and η(x) : Ω ⊂ Rn → R is a smooth

function in Ω which does not vanish in Ω. Thus, given a Poisson system (165) defined in

Ω, then the time reparametrization (164) leads from (165) to the system (not necessarily of

Poisson type) of the form (166):
dx
dτ

= ηJ · ∇H

As it was indicated in Subsection 1.2.4 and in Section 4.1, the new vector field obtained

from (165) after a general time reparametrization is always a Poisson system in the cases

of dimensions n = 2 and n = 3. On the contrary, this is not necessarily the situation for

dimensions n ≥ 4, which are then our subject in what follows. Therefore, apart from being a

natural problem in this framework, the study of time reparametrizations is interesting in the

present context because we have seen that sometimes they are required in order to achieve the
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Darboux canonical form for n-dimensional solution families. In particular, notice that time

reparametrizations are not required for such task in the case of separable and multiseparable

solutions (both having arbitrary dimension and rank), while they are employed in the Darboux

reduction of hemiseparable solutions of types I and II (which have arbitrary dimension and

rank 2). As we shall see, the investigation of time reparametrizations provides important

clues on which many of the preceding developments converge, including their role in the

generalization of some of the previous solution families, as well as a tool for the determination

of the Darboux canonical form.

In this context, it is also convenient to give a brief explanation about the condition η(x) 6= 0

in Ω just introduced. Two fundamental reasons account for this requirement. The first one is

that by definition, every time reparametrization must be defined in terms of a smooth function

η(x) which does not vanish anywhere on its domain of definition (see Subsections 1.2.4 and

1.4.3, as well as Section 4.1, for additional details). Of course, it would be mathematically

acceptable to investigate the conditions such that η(x)J (x) is a structure matrix provided

J (x) is, with the only requirement of a smooth η(x). However such problem could not be as-

similated to the use of time reparametrizations, which is of central interest here. Additionally,

the second key reason for choosing a nonvanishing function η(x) is derived from the fact that

if Rank(J (x)) is constant in Ω, then the rank of η(x)J (x) will be also constant in Ω. The

interest in this constancy is of course the applicability of Darboux’ theorem (recall that con-

stancy of the rank is a requirement of such theorem). Therefore, the nonvanishing character

of η(x) preserves the applicability of Darboux’ theorem, also of paramount importance in this

work.

The following definition is natural for the problem considered:

Definition 4.7.1.1. Let J (x) be an n × n structure matrix defined everywhere in a domain

Ω ⊂ Rn and of constant rank in Ω, and let η(x) : Ω → R be a smooth function which does not

vanish in Ω and such that η(x)J (x) is also a structure matrix defined everywhere in Ω. Then,

the function η(x) will be called a reparametrization factor for J (x) in Ω.

In connection with the previous definition, it will be of future use the following direct, but

useful result:

Proposition 4.7.1.2. Let J (x) be an n×n structure matrix defined everywhere in a domain
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Ω ⊂ Rn and of constant rank in Ω, and let η(x) be a reparametrization factor for J (x) in Ω.

Then:

(a) Function D(x) is a Casimir invariant of η(x)J (x) in Ω if and only if it is a Casimir

invariant of J (x) in Ω.

(b) If a Poisson system having the structure matrix J (x) can be reduced globally and diffeo-

morphically in Ω to the Darboux canonical form, then every Poisson system having the

structure matrix η(x)J (x) can also be reduced globally and diffeomorphically in Ω to the

Darboux canonical form.

Proof. The proof of (a) is clear since Casimir invariants are the solution set of the system

of PDEs given by J · ∇D = 0. Regarding (b), for the reduction of η(x)J (x) it suffices to

perform a preliminary time reparametrization dτ = η(x)dt, where as usual t is the initial time

variable, and τ is the new time. The outcome is thus a Poisson system with structure matrix

J (x) and time variable τ . The rest of the global reduction then follows the diffeomorphic

steps known by hypothesis for J (x). Q.E.D.

The previous proposition thus implies that the identification of a reparametrization factor

for a family of structure matrices immediately generalizes such family, while the operational

framework provided by the knowledge of the Casimir invariants and the global Darboux re-

duction for the initial solution family is preserved in the generalization. This is an additional

justification of the interest of reparametrization factors.

In addition, the investigation of reparametrization factors is physically relevant as far as

it aims at characterizing those Poisson structures that are not destroyed by (certain, at least)

time reparametrizations. In this sense, it is worth recalling also the general mathematical

interest of time reparametrizations, which lie at the basis of many important aspects of dy-

namical systems theory, specially in connection with integrability issues [60]. In this context,

the role of time reparametrizations should be clear in the framework of this thesis, since their

use for the determination of the Darboux canonical form has led frequently to integrability

results throughout the dissertation.

With regard to the problem formulation, let us first recall that the Jacobi PDEs

n∑
l=1

(Jil∂lJjk + Jkl∂lJij + Jjl∂lJki) = 0 , i, j, k = 1, . . . , n (300)
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vanish identically if i, j, k are not all different, as it can be easily verified (see Subsection 1.3.1).

Thus, for convenience, in what follows we shall sometimes make use of equations (300) with

i, j, k = 1, . . . , n together with the additional conditions i 6= j, i 6= k and j 6= k. As indicated

at the beginning of the present subsection, assume that an n-dimensional structure matrix

J (x) is defined in a domain Ω ⊂ Rn, together with a function η(x) which is C∞(Ω) and does

not vanish in Ω. If we substitute the product η(x)J (x) in equations (300) we arrive at the

conditions:

η

n∑
l=1

(Jil∂lJjk + Jkl∂lJij + Jjl∂lJki) +
n∑
l=1

(JilJjk + JklJij + JjlJki)∂lη = 0 , i, j, k = 1, . . . , n

Since J is by hypothesis a structure matrix, this leads to:
n∑
l=1

(JilJjk + JklJij + JjlJki)∂lη = 0 , i, j, k = 1, . . . , n (301)

Consistently, we see that equations (301) vanish if two or three of the indexes i, j and k

take the same value. Moreover, identities (301) also vanish identically if one of such indexes

coincides with l, even in the case in which i, j and k are all different. Accordingly, equations

(301) can be equivalently expressed as:

n∑
l=1

l 6=i,j,k

(JilJjk + JklJij + JjlJki)∂lη = 0 ,

 i, j, k = 1, . . . , n

i 6= j; i 6= k; j 6= k
(302)

In the future developments, either form (301) or (302) will be preferred according to con-

venience. Notice that the outcome of the ansatz η(x)J (x) is a new problem in which now

only one unknown function η(x) exists. Moreover, equations (301) or (302) constitute a set

of linear PDEs. Both features imply a significant simplification of the problem. Note also

that η(x) = c 6= 0, with c ∈ R being an arbitrary constant, is always a solution. This trivial

result will become a particular case of the first solution family of reparametrization factors

to be determined in brief. As an additional comment, it is worth saying that the linearity of

equations (301) or (302) does not imply that a traditional technique such as the use of the

characteristics method should be useful in this case, mainly for two reasons: in first place,

because we are dealing with a system of simultaneous equations, which is quite difficult to

handle in terms of such method; and secondly, because equations (301) or (302) are very

generic in form, and in particular we are not making any assumption on the functional form of

the structure functions Jij(x), something often necessary in order to perform the integrations

required by the aforementioned method. Before proceeding further, it is also important to cite

an additional comment of interest: as it can be seen in equations (301) or (302), we are again
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reducing the full complexity of the Jacobi equations to the study of a system of linear PDEs

for a single function η(x). This is of course a significant improvement, very similar to the one

first introduced in Section 2.5 in the three-dimensional situation. As it was the case there, the

procedure aims at determining new solutions from a given one which is used as starting point,

thus allowing a significant simplification of the problem. It can thus be appreciated how such

a philosophy can be employed again now, and actually it will lead to developments that allow

the conceptual unification of many of the results previously seen.

In what follows we shall provide two wide solution families relative to problem (301) or

(302). This is the purpose of the next two subsections.

4.7.2. First family of reparametrization factor solutions

The result corresponding to a first family of solutions of equations (301) is described in

the following:

Theorem 4.7.2.1. Let J (x) be an n × n structure matrix of constant rank everywhere in a

domain Ω ⊂ Rn, and let D(x) be a Casimir invariant of J (x) globally defined in Ω. Then

D(x)J (x) is a structure matrix everywhere in Ω.

Proof. Let us consider the problem equations in the form (301). Such identities can be

written in the following form:

Jjk

n∑
l=1

Jil∂lη + Jij

n∑
l=1

Jkl∂lη + Jki

n∑
l=1

Jjl∂lη = 0 , i, j, k = 1, . . . , n (303)

Thus, equations (303) can be expressed as:

Jjk(J · ∇η)i + Jij(J · ∇η)k + Jki(J · ∇η)j = 0 , i, j, k = 1, . . . , n (304)

Consequently, if η(x) is a Casimir invariant, equations (304) are identically satisfied, as far as

Casimir functions constitute the solution set of the system J (x) · ∇D(x) = 0. Q.E.D.

The previous proof is somehow reminiscent of the kind of manipulations employed in the

study of distinguished solutions. Theorem 4.7.2.1 has a direct consequence:

Corollary 4.7.2.2. Let J (x) be an n × n structure matrix of constant rank r in a domain

Ω ⊂ Rn, having (n − r) functionally independent Casimir invariants globally defined in Ω.
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Then there are (n − r) functionally independent reparametrization factors for J (x) globally

defined in Ω, and every nonvanishing C∞(Rn−r) function of them is also a reparametrization

factor for J (x) everywhere in Ω.

Proof. It is sufficient to make use of the following two remarks: in first place, every C∞

function of one or more Casimir invariants is also a Casimir invariant; and secondly, as a

consequence of the previous statement, a Casimir invariantD(x) which is vanishing somewhere

in a given domain Ω can be trivially replaced by a nonvanishing one functionally dependent

on it (for instance D2(x) + 1). Q.E.D.

The previous results also allow regarding as a particular case the fact (already mentioned)

that constants are always solutions of equations (301), just as a consequence that constants

are (trivial) Casimir invariants of every structure matrix. Constant reparametrization factors

are thus always present, even in the symplectic case (r = n). On the other hand, if the rank is

lower than the dimension (r < n) then the number of nonconstant reparametrization factors

is infinity. We shall turn back to these issues in the next subsection.

There is an alternative perspective that shows the naturalness of the result in Theorem

4.7.2.1. For this, consider a Poisson system ẋ = J (x) · ∇H(x). If we rescale the Hamiltonian

as H∗(x) = D(x)H(x) with D(x) being a Casimir invariant associated with the structure

matrix J (x), then the new system remains as a Poisson one, namely ẋ = J (x) ·∇[D(x)H(x)].

However, this implies that:

ẋ = J (x) · ∇[D(x)H(x)] = J (x) · [D(x)∇H(x) +H(x)∇D(x)] = D(x)J (x) · ∇H(x)

And therefore it is clear that such rescaling of the Hamiltonian (which is thus equivalent to a

rescaling of the structure matrix) must preserve the existence of a Poisson structure.

The family of reparametrization factors just characterized corresponds to a sufficient (but

not necessary) condition for the verification of equations (301). An obvious question is if

additional solutions might exist. The answer is positive, as the next subsection describes.

4.7.3. Second family of reparametrization factor solutions

Let us turn back to the problem of searching reparametrization factors, this time making

use of the equations in the form (302). Obviously, a sufficient condition (different from the

214



one previously considered in Theorem 4.7.2.1) for the verification of (302) is that:

JilJjk + JklJij + JjlJki = 0 ,

 i, j, k, l = 1, . . . , n

i 6= j, k, l; j 6= k, l; k 6= l
(305)

The interest of the conditions (305) is that they are merely algebraic, which is a remarkable

simplification of the initial PDE problem. If (305) is verified, then every C∞ and nonvanishing

function η(x) will be a valid reparametrization factor. The investigation of this possibility is

the subject of the next theorem, which is the main result of this subsection:

Theorem 4.7.3.1. Let J (x) be an n× n structure matrix defined in a domain Ω ⊂ Rn and

of constant rank r everywhere in Ω. Then the product η(x)J (x) is a structure matrix in Ω for

every C∞(Ω) function η(x) if and only if r ≤ 2.

Proof. Every implication will be shown separately.

In one sense, let us first prove that if Rank(J )≤ 2, then the product by every C∞ function η

preserves the property of being a structure matrix. For this, consider the following submatrix

of J , which is obtained after deleting all its rows and columns different from those at the

positions i, j, k and l (with i, j, k, l all different):

J [ijkl] =


0 Jij Jik Jil

−Jij 0 Jjk Jjl

−Jik −Jjk 0 Jkl

−Jil −Jjl −Jkl 0

 (306)

If Rank(J )≤ 2, then it must be |J [ijkl] |= 0 in (306) for all possible values of the four indexes

i, j, k, l. But notice that in fact it is:

|J [ijkl] |= (JilJjk + JklJij + JjlJki)2

Consequently, identities (305) are verified and the proof in this sense is already accomplished.

Conversely, let us prove that if the product by every C∞ function η preserves the character

of structure matrix, then Rank(J )≤ 2. For convenience, we shall equivalently prove that if

Rank(J )≥ 4, then the product by every possible C∞ function η does not always preserve the

property of being a structure matrix. For this, we shall consider a given point x0 ∈ Ω, and let

Jij(x0) ≡ aij for all i, j = 1, . . . , n. The first part of the following reasoning is very similar to

the one employed for the construction of the normal form for skew-symmetric matrices [14].
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In first place, let us assume without loss of generality that a12 6= 0. If this is not the case, it

is always possible to place another nonzero element in the position (1, 2): let aij 6= 0, then

we can permute the first and second rows with the i-th and j-th rows, respectively, and later

the first and second columns of the resulting matrix can also be permuted with the i-th and

j-th columns, respectively. Therefore, independently of the value of a12 the outcome is the

following skew-symmetric matrix

S∗x0
=


0 aπ1π2 aπ1π3 . . . aπ1πn

aπ2π1 0 aπ2π3 . . . aπ2πn

...
...

...
...

aπnπ1 aπnπ2 aπnπ3 . . . 0

 ≡


0 aπ1π2 E2×(n−2)

−aπ1π2 0

E(n−2)×2 E(n−2)×(n−2)


(307)

where (π1, . . . , πn) is a permutation of (1, . . . , n): if a12 6= 0, then such permutation is the

identical one; and if a12 = 0, the permutation is given by π1 = i, πi = 1, π2 = j, πj = 2, and

πk = k for every k different from 1, 2, i and j. Thus matrix (307) is our starting point in either

case, with aπ1π2 6= 0. In the right-hand side of (307), the letter E denotes three submatrices of

the sizes indicated by their respective subindexes. Since row and column elementary operations

do not alter the rank of a matrix, we can make use of them in order to transform (307) into

the skew-symmetric matrix:

S∗∗x0
=


0 aπ1π2 O2×(n−2)

−aπ1π2 0

O(n−2)×2 Ẽ(n−2)×(n−2)

 (308)

In submatrix Ẽ(n−2)×(n−2) of (308) we now have the entries,

Ẽ(n−2)×(n−2) =


0 ãπ3π4 . . . ãπ3πn

ãπ4π3 0 . . . ãπ4πn

...
...

...

ãπnπ3 ãπnπ4 . . . 0


where it is:

ãπkπl
= aπkπl

+
1

aπ1π2

(aπ1πl
aπ2πk

− aπ1πk
aπ2πl

) , k, l = 3, . . . , n (309)

At this stage, since Rank(S∗∗x0
)≥ 4, there must be a nonzero element in Ẽ(n−2)×(n−2): if

ãπ3π4 6= 0, then we do not need to perform any changes for what is to follow. On the contrary,

if ãπ3π4 = 0 we can again permute rows and columns in such a way that the position (3, 4)
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is occupied by a nonzero entry ãπkπl
from Ẽ(n−2)×(n−2) (with both πk and πl different from

π1 and π2), the resulting matrix being also skew-symmetric. Consequently, we can assume

without loss of generality that it is ãπ3π4 6= 0. Then, from matrix S∗∗x0
in (308) we can pick

out the following submatrix composed by the intersection of the first four rows and columns:

S̃[1234]
x0

=


0 aπ1π2 0 0

−aπ1π2 0 0 0

0 0 0 ãπ3π4

0 0 −ãπ3π4 0

 (310)

with both aπ1π2 6= 0 and ãπ3π4 6= 0, as indicated. The determinant of S̃[1234]
x0 in (310) is

| S̃[1234]
x0 |= (aπ1π2 ãπ3π4)

2 6= 0. Now without loss of generality and for the sake of clarity, let us

assume πi = i for all i = 1, . . . , 4. From (309) we thus have that:

(a12ã34)2 =
[
a12

(
a34 +

1
a12

(a14a23 − a13a24)
)]2

6= 0 (311)

Equation (311) immediately implies that:

J12(x0)J34(x0) + J14(x0)J23(x0) + J31(x0)J24(x0) 6= 0 (312)

Let us investigate the implications of (312) in equations (302). For this we may consider, for

instance, the equation in (302) corresponding to the choice i = 1, j = 2 and k = 3. Such

equation takes the form:

(J14J23 + J34J12 + J24J31)∂4η +
n∑
l=5

(J1lJ23 + J3lJ12 + J2lJ31)∂lη = 0 (313)

Now two cases must be distinguished, namely n = 4 and n ≥ 5:

Case I: n = 4. We proceed by means of two auxiliary lemmas:

Lemma 4.7.3.2. Let J (x) ≡ (Jij(x)) be an n× n skew-symmetric matrix defined in a

domain Ω ⊂ Rn. Then, for every x ∈ Ω the quantities

Ξijkl(x) ≡ Jil(x)Jjk(x) + Jkl(x)Jij(x) + Jjl(x)Jki(x) , i, j, k, l = 1, . . . , n

are completely skew-symmetric in all the subindexes (i, j, k, l).

Proof of Lemma 4.7.3.2. The result can be verified by direct evaluation of the index

skew-symmetry properties. Q.E.D.
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The second lemma required now is:

Lemma 4.7.3.3. Let J (x) be a 4 × 4 structure matrix defined in a domain Ω ⊂ R4

and such that Rank(J )= 4 everywhere in Ω. Then the only possible reparametrization

factors allowed for J (x) in Ω are the constant ones.

Proof of Lemma 4.7.3.3. Now equations (302) amount to:

(JilJjk + JklJij + JjlJki)∂lη = 0 (314)

where in (314) the indexes (i, j, k, l) may be every possible permutation of (1, 2, 3, 4).

Due to the skew-symmetry property shown in Lemma 4.7.3.2, the number of independent

equations in (314) is actually four:

(i, j, k, l) = (1, 2, 3, 4) ⇒ (J14J23 + J34J12 + J24J31)∂4η = 0

(i, j, k, l) = (1, 2, 4, 3) ⇒ (J13J24 + J43J12 + J23J41)∂3η = 0

(i, j, k, l) = (1, 3, 4, 2) ⇒ (J12J34 + J42J13 + J32J41)∂2η = 0

(i, j, k, l) = (2, 3, 4, 1) ⇒ (J21J34 + J41J23 + J31J42)∂1η = 0

(315)

In addition, if J is a regular 4× 4 skew-symmetric matrix, its determinant is:

|J |= (J12J34 + J31J24 + J14J23)2 6= 0 (316)

Hypothesis (316) implies that equations (315) are actually simplified to ∂lη = 0 for all

l = 1, . . . , 4, namely η is a constant. Lemma 4.7.3.3 is thus proven. Q.E.D.

Therefore η(x) cannot be an arbitrary function when n = 4 and Case I is proved. Let

us now turn to the second possibility considered:

Case II: n ≥ 5. Notice now that equation (313) is valid, in particular, at x0 ∈ Ω. Assume,

for instance, that a function η(x) is chosen in such a way that ∂4η 6= 0 at x0. Then,

equation (312) implies that it is not possible at the same time to make the choice ∂lη = 0

at x0 for all l ≥ 5. Consequently, function η(x) cannot be arbitrary in the complementary

case n ≥ 5. This proves Case II.

218



The proof of Theorem 4.7.3.1 is thus complete. Q.E.D.

The results provided in the framework of this second family of reparametrization factors

now investigated, can be complemented by means of an additional result, which actually

generalizes Lemma 4.7.3.3:

Theorem 4.7.3.4. Let J (x) be an n×n structure matrix (n ≥ 4) defined in a domain Ω ⊂ Rn

and such that Rank(J ) = n everywhere in Ω. Then the only possible reparametrization factors

allowed for J (x) in Ω are the constant ones.

Proof. We begin with an auxiliary result:

Lemma 4.7.3.5. Consider the matrix JD[n,n], with n ≥ 4 an even integer. Let Ω ⊂ Rn be

a domain. Then the only possible reparametrization factors allowed for JD[n,n] in Ω are the

constant ones.

Proof of Lemma 4.7.3.5. For the sake of clarity, recall that it is:

JD[n,n] =

 0 1

−1 0

 n/2︷ ︸︸ ︷
⊕ . . .⊕

 0 1

−1 0


Let us consider four different cases for the entries of JD[n,n]:

Case I. Let i be odd, with 1 ≤ i ≤ (n− 3). Now we choose indexes (i, j, k) = (i, i+ 1, i+ 2).

Then from equations (301) we obtain:
n∑
l=1

(JilJjk + JklJij + JjlJki)∂lη =
n∑
l=1

Ji+2,l∂lη = Ji+2,i+3∂i+3η = ∂i+3η = 0 (317)

and consequently (317) implies ∂lη = 0 for l = i+ 3 = 4, 6, . . . n.

Case II. Now let (i, j, k) = (1, 3, 4). Again from (301) we are led to:
n∑
l=1

(JilJjk + JklJij + JjlJki)∂lη =
n∑
l=1

J1l∂lη = J12∂2η = ∂2η = 0

Case III. This time we choose even values of i, with 2 ≤ i ≤ (n − 2). Then, with indexes

(i, j, k) = (i, i+ 1, i+ 2) from equations (301) we now have:
n∑
l=1

(JilJjk + JklJij + JjlJki)∂lη =
n∑
l=1

Jil∂lη = Ji,i−1∂i−1η = −∂i−1η = 0 (318)

and thus (318) leads to ∂lη = 0 for l = i− 1 = 1, 3, . . . , (n− 3).
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Case IV. Finally, let (i, j, k) = (n− 3, n− 2, n). Therefore (301) implies:
n∑
l=1

(JilJjk + JklJij + JjlJki)∂lη =
n∑
l=1

Jnl∂lη = Jn,n−1∂n−1η = −∂n−1η = 0

Together, Cases I-IV provide the result stated in Lemma 4.7.3.5. Q.E.D.

Let us now continue the main proof. For this, it is worth noticing that after a general

smooth change of variables y ≡ y(x) transforming a structure matrix J (x) into a new one

J ∗(y), every reparametrization factor η(x) is converted into η∗(y) = η(x(y)). To see this, it

suffices to recall the general transformation rule for structure matrices subjected to smooth

coordinate changes y ≡ y(x):

J∗ij(y) =
n∑

k,l=1

∂yi
∂xk

Jkl(x)
∂yj
∂xl

, i, j = 1, . . . , n (319)

Clearly, according to (319) the transformation of η(x)J (x) leads to η∗(y)J ∗(y), with η∗(y) =

η(x(y)), as indicated. Now let x0 ∈ Ω be a point, and consider the value of the matrix at that

point, namely J (x0). As it was already mentioned, it is well-known [14] that there exists a

regular matrix Ex0 such that Ex0 · J (x0) · ETx0
= JD[n,n]. On the basis of this relationship,

we perform on J (x) the change of variables, diffeomorphic in Rn, given by y = Ex0 · x.

According to (319), the outcome is evidently J ∗(y) = Ex0 · J (x(y)) · ETx0
. Let y0 ≡ Ex0 · x0.

Thus, in particular we have that J ∗(y0) = JD[n,n]. Consider then equation (301) for the

reparametrization factor in the new variables y:
n∑
l=1

[J∗il(y)J
∗
jk(y) + J∗kl(y)J

∗
ij(y) + J∗jl(y)J

∗
ki(y)]∂yl

η∗(y) = 0 , i, j, k = 1, . . . , n (320)

Since equations (320) are valid everywhere in Ω∗ = y(Ω), they are valid in particular in

y0 ∈ Ω∗, namely:
n∑
l=1

[J∗il(y0)J∗jk(y0)+J∗kl(y0)J∗ij(y0)+J∗jl(y0)J∗ki(y0)](∂yl
η∗(y)|y0) = 0 , i, j, k = 1, . . . , n (321)

Given that J ∗(y0) = JD[n,n], as indicated, the analysis provided in Lemma 4.7.3.5 is immedi-

ately applicable to equations (321). Consequently we find that:

∂η∗(y)
∂yi

∣∣∣∣
y0

= 0 , i = 1, . . . , n (322)

Taking into account that it is η∗(y) = η(x(y)), or equivalently that η(x) = η∗(y(x)), an

application of the chain rule combined with (322) shows that:

∂η(x)
∂xi

∣∣∣∣
x0

=
∂η∗(y(x))

∂xi

∣∣∣∣
x0

=
n∑
j=1

(
∂η∗(y)
∂yj

∣∣∣∣
y0

)(
∂yj
∂xi

∣∣∣∣
x0

)
= 0 , i = 1, . . . , n (323)

220



Since the analysis leading to (323) can be carried out for every point x0 ∈ Ω, we conclude

that actually it is ∂xiη(x) = 0 everywhere in Ω for all i = 1, . . . , n, namely η(x) is in fact a

constant. The proof of Theorem 4.7.3.4 is complete. Q.E.D.

Of course, in Theorem 4.7.3.4 the maximal rank condition Rank(J ) = n implies that we are

dealing with even values of the dimension n. In spite of being a somehow exclusive result, such

theorem complements the previous contributions for the characterization of reparametrization

factors.

In the rest of the section the goal will be to provide different applications and illustrations

of the results just considered. Such applications will be relevant to the understanding of

important aspects of what has been developed along the entire work.

4.7.4. Miscellaneous examples

It is interesting to make use of this subsection in order to briefly recall the Poisson struc-

tures and systems for which the reduction to the Darboux canonical form was considered in

Chapters 2 and 3. Now such Darboux reductions can be regarded with a wider perspective,

and consequently all the systems analyzed in those chapters become valid instances of the

results developed in the present section.

Specifically, Chapter 2 was devoted to the establishment of global reductions for a variety

of 3-d Poisson systems. Obviously, a 3-d Poisson structure which is of constant rank in its

domain of definition must be of rank 2 provided it is nontrivial. This was of course the case

in Chapter 2 for the threefold family (Section 2.2), as well as for the cyclic families of types I

and II (Sections 2.3 and 2.4, respectively). In all cases, NTTs of arbitrary form were employed

in the different global reductions to the Darboux canonical form. That this could be done is

understandable now, since we know at this stage that every time reparametrization preserves

the existence of the Poisson structure if it has constant rank of value 2.

In addition, the subject in Chapter 3 was a 4-d family, for which a case classification was

developed in order to completely characterize the reduction to the Darboux canonical form in

all possible situations. Without exception, use of arbitrary NTTs was again necessary. In con-

nection with this, it was shown in the proof of Theorem 3.2.1.1 that in such family the Poisson

structure is not lost after the multiplication by an arbitrary smooth and nonvanishing func-

tion, which is of course equivalent to the application of an arbitrary time reparametrization.

Actually, the demonstration of this issue was a significant part of the proof of such theorem.
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However, now all these features appear as natural since the rank of such family of structure

matrices is also 2. With this knowledge in mind, the proof of Theorem 3.2.1.1 becomes simpler

and we are able to recognize in advance that free use of time reparametrizations can be made

for the reduction to the Darboux canonical form, at every stage of the reduction procedure.

4.7.5. Application to the generalization of separable solutions

The previous results of this section allow a direct generalization of separable structure

matrices, as it is summarized in the next:

Corollary 4.7.5.1. Let Ω ⊂ Rn be a domain in which an n × n separable structure matrix

J (x) ≡ (Jij(x)) is defined as Jij(x) = sijψi(xi)ψj(xj) in terms of the skew-symmetric constant

matrix S ≡ (sij) and the functions ψi(xi), for all i, j = 1, . . . , n. In addition, let Rank(S)= r,

and let (k[r+1], . . . , k[n]) be a basis of Ker(S), such that

Di(x) =
n∑
j=1

k
[i]
j

∫
dxj
ψj(xj)

, i = r + 1, . . . , n

is a complete set of independent Casimir invariants of J (x) in Ω. Then:

(a) If Rank(S) = 2, then J̃ (x) = η(x)J (x) is also a structure matrix in Ω for every function

η(x) which is C∞(Ω) and does not vanish in Ω.

(b) If n > Rank(S) ≥ 4, then J̃ (x) = η(Dr+1(x), . . . , Dn(x))J (x) is also a structure matrix

in Ω for every function η(y1, . . . , yn−r) which is C∞(Rn−r) and does not vanish in Rn−r.

(c) If Rank(S) = n ≥ 4, then J̃ (x) = η(x)J (x) is also a nontrivial structure matrix in Ω if

and only if η(x) is constant in Ω, with η 6= 0.

(d) In Cases (a)-(c) the Darboux canonical form for J̃ (x) can be constructed globally and

diffeomorphically in Ω by means of the procedure indicated in Proposition 4.7.1.2.

(e) Consider in addition that the assumptions of Remark 1.4.4.4 hold. Every Poisson system

ẋ = J̃ (x)·∇H(x) defined in Ω for which the structure matrix J̃ (x) is of the kind specified

in Case (a) is an algebraically integrable system in Ω, and can be reduced globally and

diffeomorphically in Ω to a Liouville integrable Hamiltonian system.
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We then see that the generalization is established in terms of a very simple property, such

as the rank of the constant matrix S. Notice also that in Case (c) we do not obtain a gener-

alization of separable structure matrices, contrarily to what is achieved in Cases (a) and (b).

The reason accounting for such remark regarding Case (c) is that the product by a constant

reparametrization factor amounts to a rescaling of matrix S, namely S̃ = ηS, thus preserv-

ing the separable nature of the structure matrix. On the contrary, the structure matrices

obtained after Cases (a) and (b) are clearly not separable in general. At the same time, in

all situations considered the reduction to the Darboux canonical form can still be carried out

on the basis of the same algorithm employed for separable matrices (see Subsection 4.2.2),

with the only addition of a previous time reparametrization, in agreement with the general

procedure presented in Proposition 4.7.1.2. Accordingly, the separable family is generalized

while maintaining the scope of the global results developed, both for the family properties

(such as the Casimir invariants) and for the global reduction to the Darboux canonical form.

Let us mention a simple example of how the generalization can be identified in practice.

Example. Poisson structure for the Kermack-McKendrick model

Let us consider again the structure matrix [63,135] arising in the study of the Kermack-

McKendrick model for epidemics:

J (x) = bx1x2


0 1 −1

−1 0 1

1 −1 0

 ≡ (bx1x2)Ĵ (x) (324)

where b is a positive real constant. Clearly, matrix (324) is not separable, but of course Ĵ is. In

addition, matrix Ĵ is embraced by the generalization provided by Corollary 4.7.5.1, specifically

in terms of Case (a): since it is Rank(Ĵ )= 2, the reparametrization factor η(x) = bx1x2 is

admissible, thus producing the structure matrix (324).

Many other separable Poisson brackets well-known in the literature can be generalized

after Corollary 4.7.5.1. For instance, a sample can be found among the separable examples

presented in Subsection 4.2.3. More precisely, we can mention the following instances:

(a) Separable Poisson structures with n = r = 2: we can include in this category different

formulations of the LV system [29,136,143] as well as game-theoretic models [88].
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(b) Separable Poisson structures with n = 3 and r = 2: we also have LV models [63,136],

as well as the Poisson structures for the circle maps system [63] and the Kermack-

McKendrick model [63,135].

(c) Separable Poisson structures with arbitrary n:

• With arbitrary r: we can mention Poisson systems of the LV [143,146] and the QP

[83,86] forms.

• With r = (n − 1): in the literature we can find some examples of the LV form in

the domain of plasma physics [142], and specially among the very diverse Poisson

structures associated with Toda lattices [4,36,37,38,39,40].

Needless to say, this enumeration is by no means exhaustive. Its only purpose is illustrative, the

goal being to display the fact that the number of already known separable Poisson structures

generalized after Corollary 4.7.5.1 is quite significant.

4.7.6. Application to the generalization of multiseparable solutions

As it was the case with the separable family, it is relevant at this stage to briefly consider the

application of the results on time reparametrizations to the generalization of multiseparable

structure matrices. As in the previous subsection, such results are summarized as follows:

Corollary 4.7.6.1. Let Ω ⊂ Rn be a domain in which an n × n multiseparable structure

matrix J (x) ≡ (Jij(x)) is defined according to Definition 4.3.1.1, namely as

Jij(x) =
r/2∑
k=1

Λ2k−1,2k
ij ψ2k−1(x)ψ2k(x) , i, j = 1, . . . , n

in terms of the even number r (with n ≥ r ≥ 2), the constant n × n matrices A ≡ (aij) and

B = A−1 ≡ (bij), and the functions (ψ1(x), . . . , ψr(x)). In addition, consider the functions

Di(x) = Bi · x =
n∑
j=1

bijxj , i = r + 1, . . . , n

which constitute a complete set of independent Casimir invariants of J (x) in Ω. Then:

(a) If r = 2, then J̃ (x) = η(x)J (x) is also a structure matrix in Ω for every function η(x)

which is C∞(Ω) and does not vanish in Ω.
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(b) If n > r ≥ 4, then J̃ (x) = η(Dr+1(x), . . . , Dn(x))J (x) is also a structure matrix in Ω for

every function η(y1, . . . , yn−r) which is C∞(Rn−r) and does not vanish in Rn−r.

(c) If r = n ≥ 4, then J̃ (x) = η(x)J (x) is also a nontrivial structure matrix in Ω if and only

if η(x) is constant in Ω, with η 6= 0.

(d) In Cases (a)-(c) the Darboux canonical form for J̃ (x) can be constructed globally and

diffeomorphically in Ω by means of the procedure indicated in Proposition 4.7.1.2.

(e) Consider in addition that the assumptions of Remark 1.4.4.4 hold. Every Poisson system

ẋ = J̃ (x)·∇H(x) defined in Ω for which the structure matrix J̃ (x) is of the kind specified

in Case (a) is an algebraically integrable system in Ω, and can be reduced globally and

diffeomorphically in Ω to a Liouville integrable Hamiltonian system.

We see that, again, the kind of generalization achieved becomes very natural, as far as

it is entirely controlled by a simple solution feature such as the even number r. In addition,

in Cases (a) and (b) the multiseparable family is clearly generalized, in the sense that the

outcome is, in general, not multiseparable. In Case (c) such a generalization is not present,

since a constant reparametrization factor can be used in order to redefine, for instance, the

even (or, alternatively, the odd) functions ψk as ψ̃k = ηψk, thus remaining in the framework

of multiseparable matrices. And, as usual, the results regarding the existence and form of

the Casimir invariants and the global reduction to the Darboux canonical form remain valid

after the generalization and can still be applied, with minor modifications, as in the original

(non-generalized) family. Let us illustrate the previous ideas by means of the same instance

just employed in the separable case.

Example. Poisson structure for the Kermack-McKendrick model revisited

Let us consider again the structure matrix (324) for the Kermack-McKendrick equations.

Such structure matrix is actually multiseparable, as it was shown thoroughly in Example 3

of Subsection 4.3.3 (see it for the details, which are not recalled here for the sake of concise-

ness). Since it is Rank(J ) = 2, from Case (a) of Corollary 4.7.6.1 it is immediate that such

multiseparable structure matrix can actually be generalized to:

J̃ (x) = η(x1, x2, x3)


0 1 −1

−1 0 1

1 −1 0

 (325)

225



where η(x1, x2, x3) is a C∞ and nonvanishing function. This ensures that the reduction to the

Darboux canonical form provided in Subsection 4.3.3 can be immediately extended to (325)

by means of Proposition 4.7.1.2, as indicated in item (d) of Corollary 4.7.6.1.

4.7.7. Application to the generalization of distinguished solutions

To complete the family generalizations reported in the previous two subsections, it is

also interesting to provide a brief description of the consequences that the results on time

reparametrizations have, when applied to D-solutions.

Corollary 4.7.7.1. Let Ω ⊂ Rn be a domain in which an n×n distinguished structure matrix

J (x) ≡ (Jij(x)) is defined and has constant rank r everywhere. Let (Dr+1(x), . . . , Dn(x)) be

a complete set of independent Casimir invariants of J (x) in Ω. Then:

(a) If r = 2, then J̃ (x) = η(x)J (x) is also a structure matrix in Ω for every function η(x)

which is C∞(Ω) and does not vanish in Ω.

(b) If n > r ≥ 4, then J̃ (x) = η(Dr+1(x), . . . , Dn(x))J (x) is also a structure matrix in Ω for

every function η(y1, . . . , yn−r) which is C∞(Rn−r) and does not vanish in Rn−r.

(c) If r = n ≥ 4, then J̃ (x) = η(x)J (x) is also a nontrivial structure matrix in Ω if and only

if η(x) is constant in Ω, with η 6= 0.

(d) Consider in addition that the assumptions of Remark 1.4.4.4 hold. Every Poisson system

ẋ = J̃ (x)·∇H(x) defined in Ω for which the structure matrix J̃ (x) is of the kind specified

in Case (a) is an algebraically integrable system in Ω.

This corollary has nice implications when compared to the already known properties of

the distinguished solutions. In spite of not being primarily concerned with the construction of

the Darboux canonical form in the case of D-solutions, notice that the constancy of the rank

is necessary in order to preserve unaltered the complete set of Casimir invariants, precisely

because these are the entries of the D-solution structure matrix J (x).

In Case (a) of the previous corollary, it is worth a comparison with Case (d) of Theorem

4.4.1.4. (Recall that, according to the latter, if η(y1, . . . , yn−r) : Rn−r → R is an arbitrary

C∞(Rn−r) real function, then the product η(Dr+1(x), . . . , Dn(x))J (x) is a D-solution in Ω).

Thus, Case (a) of Corollary 4.7.7.1 provides a direct generalization for D-solutions of rank two,
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since now no limits are imposed to the functional form of η(x). On the other hand, property

(d) of Theorem 4.4.1.4 is interesting as far as it is family-preserving, namely the outcome is

always a D-solution, something not valid in general in the present generalization.

Regarding Case (b) of Corollary 4.7.7.1, we now have that it coincides with statement (d)

of Theorem 4.4.1.4. Thus now no generalization is provided by the corollary. However, it is

interesting to recall that after the study of time reparametrizations, we know that such kind

of property is actually valid for every structure matrix, and thus item (d) of Theorem 4.4.1.4

can now be seen as a particular case. In other words, property (d) of Theorem 4.4.1.4 can be

regarded as an illustration for D-solutions of Theorem 4.7.2.1 characterizing the first family

of reparametrization factor solutions.

Let us finally turn to Case (c) of Corollary 4.7.7.1. According to Example 1 in Subsection

4.4.3, we know that if r = n ≥ 4 and J is a D-solution, then J must be a constant skew-

symmetric matrix. When multiplying such a matrix by a constant reparametrization factor,

the outcome is again a constant skew-symmetric real matrix, thus providing no generalization

from the point of view of the functional form of the structure functions.

4.7.8. Global Darboux reduction for Poisson structures of rank two

An interesting consequence of the study of time reparametrizations for Poisson systems

(and in particular of the second family of reparametrization factors, characterized in Sub-

section 4.7.3) is the possibility of constructing the global Darboux reduction for structure

matrices of rank two and arbitrary dimension, something possible under very general assump-

tions, as we shall see now. This ameliorates significantly the scope of Darboux’ theorem for

such systems. The result is given in the next theorem:

Theorem 4.7.8.1. Let Ω ⊂ Rn be a domain (n ≥ 2) where is defined a Poisson system

dx
dt

= J (x) · ∇H(x)

having an n× n structure matrix J (x) ≡ (Jij(x)), and such that Rank(J )= 2 everywhere in

Ω. Let (D3(x), . . . , Dn(x)) be a complete set of independent Casimir invariants of J (x) in Ω.

In addition, let (d1(x), d2(x)) be two arbitrary C∞(Ω) functions such that the transformation yi = di(x) , i = 1, 2

yj = Dj(x) , j = 3, . . . , n
(326)
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is one-to-one everywhere in Ω and its Jacobian matrix M verifies:

|M |=
∣∣∣∣∂(d1(x), d2(x), D3(x), . . . , Dn(x))

∂(x1, . . . , xn)

∣∣∣∣ 6= 0 , for all x ∈ Ω (327)

Then such Poisson system can be reduced globally in Ω to an one degree of freedom Hamiltonian

system and the Darboux canonical form is accomplished globally and diffeomorphically in Ω

in the new coordinate system (y1, . . . , yn) and the new time τ , where (y1, . . . , yn) are given by

transformation (326) which is a diffeomorphism globally defined in Ω; while the new time τ is

defined by the time reparametrization:

dτ = ({d1(x), d2(x)}J )|x(y) dt =
[
(∇xd1(x))T · J (x) · (∇xd2(x))

]∣∣
x(y)

dt ≡ η(y)dt (328)

Proof. The constancy of Rank(J ) implies that Darboux’ theorem is applicable. In column

matrix notation for the gradients, the Jacobian matrix of (326) can be written as:

M ≡ ∂(d1(x), d2(x), D3(x), . . . , Dn(x))
∂(x1, . . . , xn)

= (∇xd1(x) ∇xd2(x) ∇xD3(x) . . . ∇xDn(x))
T

(329)

Note in particular that functions d1(x) and d2(x) cannot be Casimir invariants because they

are functionally independent of a complete set of independent Casimir functions. The effect

of (326) is to transform J (x) into a new structure matrix J ∗(y) = M · J ·MT according to

the rule (30). With the help of (329) we find, still in column matrix notation:

J ∗ = M · ([J · ∇xd1(x)] [J · ∇xd2(x)] On×1 . . . On×1) (330)

Using in (330) the fact that for any pair of matrices A and B that can be multiplied, we can

write A ·B = (BT ·AT )T , we immediately find that (330) becomes:

J ∗ =



−(∇xd1)T · J · ∇xd1 −(∇xd2)T · J · ∇xd1 0 . . . 0

−(∇xd1)T · J · ∇xd2 −(∇xd2)T · J · ∇xd2 0 . . . 0

0 0 0 . . . 0
...

...
...

...

0 0 0 . . . 0


(331)

But now recall that, as it was indicated in Chapter 1, for any two functions f(x) and g(x) it

is, in agreement with (18) and (19):

{f(x), g(x)}J (x) = (∇xf)T · J · ∇xg =
n∑

i,j=1

(∂xif)Jij(∂xjg) (332)
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According to (331) and (332) we arrive at:

J∗11 = {d1(x), d1(x)}J = 0 , J∗22 = {d2(x), d2(x)}J = 0

and J∗12 = {d1(x), d2(x)}J = −J∗21. Therefore we obtain by construction that matrix J ∗ is

skew-symmetric, consistently with what is to be expected. Moreover, since Rank(J ) = 2 and

Rank(M) = n everywhere in Ω by hypothesis, matrix J ∗ is congruent on R with J and then

it is also Rank(J ∗) = 2 everywhere in Ω∗ = y(Ω). Accordingly it is J∗12(y) 6= 0 everywhere

in Ω∗. This implies that in order to fulfill the Darboux reduction we only need to perform

the time reparametrization dτ = η(y)dt as detailed in (328), which is well defined everywhere

because now

η(y) = ({d1(x), d2(x)}J )|x(y) =
[
(∇xd1(x))T · J (x) · (∇xd2(x))

]∣∣
x(y)

= J∗12(y)

is C∞(Ω∗) and does not vanish in Ω∗. Evidently, this time reparametrization transforms the

structure matrix J ∗ into the Darboux canonical one JD[n,2], thus completing the global reduc-

tion. In order to conclude the proof, it is only required to show that transformation (326) is a

global diffeomorphism in Ω. This is actually a consequence of several facts: the change of coor-

dinates (326) is a function globally onto (since Ω∗ = y(Ω) by definition) and by hypothesis one-

to-one in Ω. Consequently, (326) is a global bijection and the inverse function of (326) exists

everywhere and is unique. Moreover, both the transformation (326) and its inverse are globally

differentiable (and therefore continuous) since the functions (d1(x), d2(x), D3(x), . . . Dn(x)) are

C∞(Ω) and |M |6= 0 in all points of Ω, as indicated in (327). The proof is complete. Q.E.D.

We have the following direct consequence of the previous result:

Corollary 4.7.8.2. Suppose that the assumptions of Remark 1.4.4.4 hold. Consider an

n-dimensional Poisson system ẋ = J (x) · ∇H(x) defined in a domain Ω ⊂ Rn in such a

way that the same hypotheses of Theorem 4.7.8.1 are verified. Then such Poisson system is

algebraically integrable in Ω, and it can be reduced globally and diffeomorphically in Ω to a

Liouville integrable Hamiltonian system.

Now some remarks are in order. In principle, the previous results might appear as in-

tuitively reasonable, since according to Darboux’ theorem a Poisson system with a rank-two

structure matrix essentially looks like a one degree of freedom classical Hamiltonian system

embedded in an n-dimensional phase space by means of (n−2) Casimir invariants that produce

229



the symplectic foliation. Thus, the two results in this subsection basically seem to show how

to decouple the Casimir invariants in order to reverse such construction. Accordingly, since

a Poisson system with a rank-two structure matrix appears essentially as a two-dimensional

(embedded) system, it also seems to be natural that every time reparametrization is admis-

sible, according to what was already said in Subsection 1.2.4, and thus we can always make

use of such a reparametrization in order to complete the Darboux reduction. This picture of

the situation looks reasonable, but it is somehow misleading. The reason is that such point

of view is to some extent rough, precisely because it does not take into account the essential

limitation of Darboux’ theorem, namely that it is a merely local result. Therefore there is no

guarantee at all in the sense that such embedding can be globally reversed —actually such a

global embedding might not exist at all. In spite that the constant rank condition ensures that

Darboux’ theorem is applicable, the obtainment of a global result is precisely the improvement

with respect to the local picture provided by Darboux’ theorem, which in principle constructs

the reduction in a neighborhood of each point.

A second remark concerns the hypotheses of Theorem 4.7.8.1. In particular, two key

assumptions are that: (i) transformation (326) is one-to-one globally in Ω; and (ii) |M |6= 0

everywhere in Ω from condition (327). Clearly, such requirements are needed in order to

imply the globally diffeomorphic character of the reduction, and are interesting as far as they

can display to what extent such a reduction is feasible in practice. The naturalness of such

conditions is very clear (as they become trivial) in the case n = 2. Moreover, those conditions

have been successfully tested for all n ≥ 3 in Chapters 2 and 3 as well as in earlier sections of

this chapter. Therefore most of the solution families previously considered in this work (among

those being of rank two or admitting in particular this rank value, and for which the Darboux

canonical form has been globally and diffeomorphically constructed) can be now regarded in

a unified framework as applied instances of the results developed in this subsection.

230



4.8. A PERSPECTIVE OF THE RESULTS FOR ARBITRARY

DIMENSION

At this stage, the relative roles played by the different contributions presented in this

chapter should be understandable. In first place, we have considered some solution families

of arbitrary rank (separable and multiseparable) for which the global Darboux reduction was

completely general and direct by means of a pure diffeomorphism, namely without the use

of time reparametrizations. On the contrary, when dealing with Poisson structures for which

the rank is 2 (such as in the case of hemiseparable solutions of both types, as well as in

Theorem 4.7.8.1) the use of arbitrary NTTs becomes possible, thus providing us with an

additional degree of freedom that can be applied to the global construction of the Darboux

canonical form (but obviously with no influence on the degree of difficulty associated with the

determination of a complete set of independent Casimir invariants). Accordingly, in the case

in which it is Rank(J ) = 2 the global reduction procedure (if feasible) becomes to some extent

algorithmic, as far as it suffices the direct dynamical decoupling of the distinguished functions,

and the remaining two nonzero entries of the structure matrix are then reduced to the Darboux

canonical form by means of an NTT, independently of how functionally involved such entries

could be. This is the method implemented in Theorem 4.7.8.1. Clearly, this approach is

possible in the case of rank 2, but arbitrary time reparametrizations are not generally valid

for ranks equal or larger than 4. In such case this kind of NTT-based strategy is no longer

valid, and the typical procedure must rely, in principle, on a direct reduction based on the only

use of an adequate global coordinate transformation. These results clearly elucidate much of

the previous story, providing a knowledge (about how and when a global Darboux reduction

is feasible) that goes beyond the mere identification of solution families.

After Section 4.7 some additional aspects of the significance of time reparametrizations in

the framework of Poisson structures have been uncovered. Specifically, this is valid regarding

the conditions for the preservation of the Poisson structure itself. In particular, it is remarkable

the rank dependence of the existence of reparametrization factors. As indicated, after this

now it is a posteriori clear that NTTs were usable in all the Poisson systems considered in

Chapters 2 and 3, since we were always dealing with Poisson structures of constant rank of

value 2. Moreover, in the context of the validity of NTTs it is also interesting the importance

of the distinguished functions, which induce time reparametrizations which always preserve

the Poisson structure, irrespectively of its rank. This is also significant in the context of

this work, in view of the fact that the existence of nontrivial Casimir invariants is a purely
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noncanonical feature, not present in classical Hamiltonian systems (actually, not even present

in noncanonical but symplectic Poisson systems).

The degrees of freedom provided by the distinguished functions have been fundamental

also for the definition of the family of D-solutions. In this case the global analysis seems to be

nontrivial, if possible, but this drawback is compensated by the remarkable (and uncommon)

properties of D-solutions. Such properties lead to very general procedures for the generation

of an infinity of new D-solutions obtainable from a given one. Precisely, this kind of strategy

was also the one leading to the investigation of NTTs, already mentioned, since the charac-

terization of a family of reparametrization factors automatically generalizes a known solution.

Eventually, this point of view has allowed the generalization of the separable, multiseparable

and D-solution families in Section 4.7.

To conclude, it is worth recalling the significance of the global analyses performed for very

different n-d families of structure matrices, often allowing arbitrary ranks, and always defined

in terms of functions of arbitrary nonlinearity. In spite that this is quite uncommon in the

literature, it seems however a unavoidable issue of interest for the establishment of a bridge

(dynamically global, and thus usable from the point of view of many applications) with the

fruitful realm of classical Hamiltonian theory.
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CHAPTER 5.

CONCLUSIONS

In this dissertation very diverse results regarding the study of the Jacobi PDEs for finite-

dimensional Poisson systems as well as the global analysis of their skew-symmetric solutions

have been presented. The investigation of families of Poisson structures has comprised two

different and complementary points of view. In first place, a search of solutions amenable to

global analysis has involved 3-d, 4-d and n-d solution families. In second term, the charac-

terization of novel Poisson structures has been focused on the most interesting n-d scenario.

Of course, both categories overlap in some relevant n-d cases, such as in connection with

separable and multiseparable structure matrices, but also has interesting exceptions such as

the hemiseparable families of types I and II, in one sense, and the distinguished solutions, in

the opposite. The results thus obtained cover different aspects of the theory and applications

of finite-dimensional Poisson systems. In one hand, it is evident the contribution provided

by the new families characterized, which are typically of a remarkable applied generality, as

the number of Poisson structures well-known in the literature that become unified by them

shows. In the other, it is clear the interest of the global results established since these provide

us not only with new invariants (of the distinguished type) but also with reductions to the

Darboux canonical form (a task only reported in the literature for a very limited sample of

systems) which in addition improve the local scope of Darboux’ theorem. Apart from the

new solution families and global results developed, the analysis followed in the present thesis

has led to the determination of new integrability results (both in the algebraic and in the

Liouville senses) and also to a better understanding of the unexpected but important role of

time reparametrizations in the context of finite-dimensional Poisson structures and systems.

A brief consideration of problems still to be investigated can also be helpful in order to

properly establish the framework and relevance of the present contributions. From a purely

mathematical perspective, the obvious open problem is the determination of the general solu-

tion of the skew-symmetric Jacobi equations in arbitrary dimension n. However, this does not
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exhaust the list of issues deserving attention in this context. The problem of recasting (if pos-

sible) a given vector field for which a first integral is known, in terms of a finite-dimensional

Poisson system, would be the second landmark in the route to a general understanding of

the theory of dynamical systems in the framework of Poisson structures. A third domain of

theoretical and applied progress would be the achievement of sufficiently general global re-

sults (in the sense of the determination of the Darboux canonical form) allowing a widespread

transfer of information and methods between the classical Hamiltonian representation and the

finite-dimensional Poisson format. The contributions displayed in this dissertation have been

directed to an improvement in the context of the first and third previous issues, and also to the

second in an indirect way (as far a the knowledge of novel solutions should also imply a better

state of the art for such problem). But, needless to say, the answer of the three questions just

enumerated constitutes an ambitious program of research that probably will require years, if

not decades, of investigation.

Consequently, it can be said that every new contribution to the study of skew-symmetric

solutions of the Jacobi equations tends to provide a more general perspective of the field of

finite-dimensional Poisson structures. Typical features of this fact can be appreciated in the

previous analysis. As already mentioned, not only the identification of new finite-dimensional

Poisson structures constitutes in itself a relevant problem from the points of view of applied

mathematics and mathematical physics but, as indicated, this knowledge provides a richer

framework for the fundamental problem of recasting a given differential flow into a Poisson

system, whenever possible. And, in addition, it is worth noting that the characterization of a

sufficiently general family of solutions often allows the conceptual and operational unification

of diverse Poisson structures and systems previously well-known but unrelated, which can

hereafter be regarded from a more general and economic standpoint. Very diverse examples

of this have been given throughout the work. In particular, in such sense it is physically

interesting to identify the Casimir invariants and to develop the reduction procedure to the

Darboux canonical form for the new solution families. These are features of special relevance

when they can be globally achieved, thus providing an additional instance of a result that goes

beyond the a priori scope of Darboux’ theorem and has been reported in the literature only

in a limited number of cases. This kind of results suggests that the direct investigation of the

Jacobi equations constitutes a fruitful line of research not only for classification purposes but

also for the detailed analysis of Poisson structures, not to mention its mathematical interest

as an example of nonlinear system of coupled PDEs. Additionally to these considerations,
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it is worth recalling that dimension three is the simplest nontrivial case for the analysis of

the Jacobi equations and has consequently been studied in much more detail than higher

dimensions, as discussed in Chapter 1. On the other hand, the Jacobi partial differential

equations (25) become increasingly complex as the dimension of the Poisson manifold grows.

This explains the relative scarcity of results for dimensions four and higher. Certainly, a

complete knowledge of the skew-symmetric solutions of the Jacobi equations is probably still

far, but nevertheless the investigation of the problem seems to be a unavoidable issue for a

better understanding of finite-dimensional Poisson structures, and therefore of the scope of

Hamiltonian dynamics.
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APPENDIX 1.

THE PFAFFIAN METHOD

A1.1. DESCRIPTION OF THE METHOD

Since it is in the basis of many of the calculations developed throughout this work, it

seems convenient to provide the description of the Pfaffian method for the determination of

Casimir invariants [84,175]. This approach is very advantageous when compared to traditional

procedures such as the characteristics method [8,67,170,176], as it will be seen in what follows.

Let us consider an n-d Poisson system (21-22), and a domain of the n-d phase space in

which the rank of J (x) is constant and equal to r = 2s < n. Without loss of generality, if

the 2s first rows of J (x) are the linearly independent, then there exists a set of 2s× (n− 2s)

smooth functions γik(x), where i = 2s+ 1, . . . , n, and k = 1, . . . , 2s, such that:

Jij(x) =
2s∑
k=1

γik(x)Jkj(x) , j = 1, . . . , n (333)

The importance of the proportionality functions γik(x) was already noticed by Littlejohn [114].

Let us assume for the moment that they are known (their calculation is just a technical step

for which we shall give a procedure later in this subsection). Then, the substitution of (333)

into the Poisson system equations,

dxi
dt

=
n∑
j=1

Jij(x)∂jH(x) = {xi,H} , i = 1, . . . , n

gives immediately the following relations:

ẋi =
2s∑
k=1

γik(x)ẋk , i = 2s+ 1, . . . , n (334)

These equations reveal the degeneracy which is present in the Poisson system due to the fact

that the rank of matrix J (x) is not maximum, i.e., they express all interdependences among

the system variables induced by the existence of the Casimir functions, which arise from such
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rank degeneracy according to equation (20), or J (x) · ∇D(x) = 0, as explained in Chapter 1.

Then, from equations (334) we immediately obtain a system of (n− 2s) Pfaffian DEs for the

Casimir invariants:

dxi =
2s∑
k=1

γik(x)dxk , i = 2s+ 1, . . . , n (335)

Note that the system of Pfaffian equations (335) to be integrated, is equivalent to the tradi-

tional set of PDEs given by equation (20) namely J (x) ·∇D(x) = 0, as it can be demonstrated

[175]. It is not difficult to see [84] that (335) leads to the Casimir functions: let D[i](x) be a

solution of the i-th equation, where 2s + 1 ≤ i ≤ n. Then there exists a function ϑ(x) such

that:

dD[i] = ϑ(x)

(
2s∑
k=1

γikdxk − dxi

)
(336)

The j-th component of the vector J · ∇D[i] will be:

(J · ∇D[i])j =
n∑
k=1

Jjk∂kD
[i] = ϑ(x)

(
2s∑
k=1

Jjkγik − Jji

)
=

ϑ(x)

(
Jij −

2s∑
k=1

γikJkj

)
= 0 , j = 1, . . . , n

Here we have applied the original degeneracy relations (333). This shows that the result of

integrating each of the (n − 2s) Pfaffian DEs (335) leads to the Casimir functions of matrix

J (x). We know, on the other hand, that there are (n− 2s) functionally independent Casimir

invariants. From (336) it can be easily shown that the solutions of two different equations of

the set (335) are always functionally independent. Consequently, the integration of equations

(335) produces all the Casimir functions of the system [84,175].

We end this section by indicating how functions γik can be calculated. To do so we proceed

to write (333) in matrix form as:

(J̃ [2s])T ·G = (J̃ [n−2s])T (337)

where J̃ [2s] is the 2s× n submatrix composed by the first 2s rows of J , while J̃ [n−2s] is the

(n− 2s)× n submatrix composed by the last (n− 2s) rows of J , and

G =


γ2s+1,1 . . . γn1

...
...

γ2s+1,2s . . . γn,2s


A rank analysis of the matrix equation (337) shows immediately that there always exists a

unique matrix G which is the solution. In fact, since J̃ [2s] is a 2s×n matrix, there are (n−2s)2
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redundant equations in (337). If we assume again that these redundant equations are those

corresponding to the last (n − 2s) rows of (J̃ [2s])T , we can write (337) in the nonredundant

matrix form:

(J [2s])T ·G = (J [n−2s])T

where

J [2s] =


J11 . . . J1,2s

...
...

J2s,1 . . . J2s,2s

 , J [n−2s] =


J2s+1,1 . . . J2s+1,2s

...
...

Jn1 . . . Jn,2s


Since now J [2s] is an invertible matrix, the solution is:

G =
(
J [n−2s] · (J [2s])−1

)T
(338)

To summarize, the Pfaffian method for the determination of the Casimir functions proceeds

in two steps:

(i) Calculation of matrix G through relation (338).

(ii) Integration of the system of Pfaffian equations (335).

We shall now illustrate the procedure by means of some applied examples.
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A1.2. EXAMPLES

Example 1. 3-d Lotka-Volterra system

Let us turn back to system (35) already considered in the Example 2 of Subsection 1.2.5.

Nutku has shown [136] that the 3-d LV equations
ẋ1 = x1(λ1 + cx2 + x3)

ẋ2 = x2(λ2 + x1 + ax3)

ẋ3 = x3(λ3 + bx1 + x2)

(339)

are biHamiltonian when abc = −1 and λ3 = λ2b − λ1ab. In this case, the vector field (339)

can be written as a Poisson system in two different ways:

ẋ = J1 · ∇H1 = J2 · ∇H2

Here, we have

J1(x) =


0 cx1x2 bcx1x3

−cx1x2 0 −x2x3

−bcx1x3 x2x3 0



J2(x) =


0 cx1x2(ax3 + λ2) cx1x3(x2 + λ3)

−cx1x2(ax3 + λ2) 0 x1x2x3

−cx1x3(x2 + λ3) −x1x2x3 0


and, in addition, the respective Hamiltonian functions are: H1(x) = abx1 + x2 − ax3 + λ3 lnx2 − λ2 lnx3

H2(x) = ab lnx1 − b lnx2 + lnx3

Since the rank of both J1 and J2 is 2 everywhere in the interior of the positive orthant, there

is one independent Casimir invariant. We shall apply the Pfaffian method to both structure

matrices.

For J1 we have, after simple inspection:

(row3) =
x3

cx1
(row1) +

bx3

x2
(row2)

In other words, γ31 = x3/cx1 and γ32 = bx3/x2. The Pfaffian equation we must solve is then:

dx3 =
x3

cx1
dx1 +

bx3

x2
dx2
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The integration of this equation is immediate and gives

ab lnx1 − b lnx2 + lnx3 = constant

which is Nutku’s result. Since any function of a Casimir invariant is also a Casimir, the general

solution will be

D(x) = Ψ (ab lnx1 − b lnx2 + lnx3)

with Ψ a smooth one-variable function.

Similarly, for J2 we see that:

(row3) = − x3

c(ax3 + λ2)
(row1) +

x3(x2 + λ3)
x2(ax3 + λ2)

(row2)

Consequently, γ31 = −x3/(c(ax3 + λ2)) and γ32 = x3(x2 + λ3)/(x2(ax3 + λ2)). This implies

that:

dx3 = − x3

c(ax3 + λ2)
dx1 +

x3(x2 + λ3)
x2(ax3 + λ2)

dx2

After integration we arrive easily at

abx1 + x2 − ax3 + λ3 lnx2 − λ2 lnx3 = constant

which is the solution. In general:

D(x) = Ψ (abx1 + x2 − ax3 + λ3 lnx2 − λ2 lnx3) (340)

It is interesting to compare this procedure with the standard method of characteristics.

We shall do it for J2. Since Rank(J2)= 2 in the domain of interest, the third equation of the

system J2 · ∇D = 0 is a linear combination of the first and second ones, and can therefore be

suppressed. The system of PDEs we have to solve in order to determine D is then:

cx1x2(ax3 + λ2)
∂D

∂x2
+ cx1x3(x2 + λ3)

∂D

∂x3
= 0 (341)

−cx1x2(ax3 + λ2)
∂D

∂x1
+ x1x2x3

∂D

∂x3
= 0 (342)

The characteristic equations for (341) are:

dx2

cx1x2(ax3 + λ2)
=

dx3

cx1x3(x2 + λ3)
, dx1 = 0

Since D is a function of three variables, we have to perform two integrations from the charac-

teristic equations. It can be found easily that x1 = k1 and x2 − ax3 + λ3 lnx2 − λ2 lnx3 = k2,

where k1 and k2 are constants of integration. Then, the general solution of equation (341) is

of the form:

D[1] = Ψ[1](x1, x2 − ax3 + λ3 lnx2 − λ2 lnx3) (343)
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Similarly, for the second PDE (342), the system of characteristic equations is:

− dx1

cx1x2(ax3 + λ2)
=

dx3

x1x2x3
, dx2 = 0

We can obtain without difficulty that x2 = k1 and abx1 − ax3 − λ2 lnx3 = k2, and then the

general solution of (342) is:

D[2] = Ψ[2](x2, abx1 − ax3 − λ2 lnx3) (344)

Now we must take into account that the Casimir invariants of the system are simultaneous

solutions of (341) and (342). This means that they are functions of the xi complying to both

formats (343) and (344). After inspection, one arrives directly to the solution (340). We shall

further comment in Section A1.3 on the differences between both methods.

Example 2. A higher-dimensional system: the light top

We shall now analyze in detail a six-dimensional example due to Weinstein [171]: the

equations of motion of a rigid body anchored at one point, which moves in a gravitational

field. The system variables are the components of the angular momentum in body coordinates,

L = (L1, L2, L3), as well as those of the gravitational force, also in body coordinates, F =

(F1, F2, F3). From now on, we shall take the six variables according to the following order:

(L1, L2, L3, F1, F2, F3). Then, the structure matrix and the Hamiltonian are, respectively:

J =



0 L3 −L2 0 F3 −F2

−L3 0 L1 −F3 0 F1

L2 −L1 0 F2 −F1 0

0 F3 −F2 0 0 0

−F3 0 F1 0 0 0

F2 −F1 0 0 0 0


,

and

H =
3∑
i=1

(
L2
i

2µi
+ xiFi

)
In H, the µi are the principal moments of inertia, and the xi are the coordinates of the body’s

center of mass measured from the anchor point (see [171] and references therein for further

details).

We shall first apply the Pfaffian procedure for the determination of the Casimir functions

of this system. For the sake of comparison, we shall later solve the same problem through the

traditional method of characteristics.
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(a) Solution of the problem by the Pfaffian method.

Clearly, Rank(J ) = 4, the third and the sixth rows being linear combinations of the rest.

Then there are two independent Casimir functions. We can find the γik by means of (338):

G =

 γ31 γ32 γ34 γ35

γ61 γ62 γ64 γ65

T

=
(
J [2] · (J [4])−1

)T
where

J [4] =


0 L3 0 F3

−L3 0 −F3 0

0 F3 0 0

−F3 0 0 0

 , J [2] =

 L2 −L1 F2 −F1

F2 −F1 0 0



The solution for G is:

G =


−F1/F3 0

−F2/F3 0

(F1L3 − L1F3)/F 2
3 −F1/F3

(F2L3 − L2F3)/F 2
3 −F2/F3


We then have to solve the following system of two Pfaffian DEs:

dL3 = −F1

F3
dL1 −

F2

F3
dL2 +

(
F1L3

F 2
3

− L1

F3

)
dF1 +

(
F2L3

F 2
3

− L2

F3

)
dF2 (345)

dF3 = −F1

F3
dF1 −

F2

F3
dF2 (346)

The last one is straightforward and gives a first Casimir: D1 = F 2
1 + F 2

2 + F 2
3 = ‖F‖2. Now,

if we expand (345) and regroup terms we have:

F1dL1 + F2dL2 + F3dL3 + L1dF1 + L2dF2 = L3

(
F1

F3
dF1 +

F2

F3
dF2

)
(347)

Making use of equation (346) in the right-hand side of (347) leads immediately to d(L1F1 +

L2F2 + L3F3) = 0. Thus, the second independent Casimir is D2 = L1F1 + L2F2 + L3F3 =

L · F . We can write, as usual, the most general form of a Casimir invariant as

D = Ψ
(
[F 2

1 + F 2
2 + F 2

3 ]1/2, L1F1 + L2F2 + L3F3

)
= Ψ(||F ||, L · F )

where Ψ is a smooth two-variable function.

(b) Solution of the problem by the method of characteristics.

We can now compare the previous procedure with the direct solution of the system of PDEs

given by (20), namely J ·∇D = 0. For this, we should begin by recalling the same observation
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than before: since Rank(J ) = 4, two of the equations of the system will be redundant, which

can be taken to be those corresponding to the third and sixth rows of J . Therefore, the

system of PDEs we have to solve is:

L3
∂D

∂L2
− L2

∂D

∂L3
+ F3

∂D

∂F2
− F2

∂D

∂F3
= 0 (348)

−L3
∂D

∂L1
+ L1

∂D

∂L3
− F3

∂D

∂F1
+ F1

∂D

∂F3
= 0 (349)

F3
∂D

∂L2
− F2

∂D

∂L3
= 0 (350)

−F3
∂D

∂L1
+ F1

∂D

∂L3
= 0 (351)

The characteristic equations of (348) are:

dL2

L3
= −dL3

L2
=

dF2

F3
= −dF3

F2
, dL1 = dF1 = 0 (352)

Since the unknown D is a function of six variables, we have to find five constants from the

characteristic equations (352) in order to construct the general solution of the PDE (348). We

immediately find from (352) four of them:

L1 = k1 , F1 = k2 , L2
2 + L2

3 = k3 , F 2
2 + F 2

3 = k4

We can derive a fifth one as follows:

0 ≡ L3dF3 − L3dF3 + F3dL3 − F3dL3 =

L3dF3 + F3dL3 + L2dF2 + F2dL2 =

d(L2F2 + L3F3)

Here we have made use of the characteristic equations (352). The fifth constant is thus

k5 = L2F2 + L3F3. The general solution of the PDE (348) is then:

D[1] = Ψ[1](L1, F1, L
2
2 + L2

3, F
2
2 + F 2

3 , L2F2 + L3F3)

The second PDE (349) can be obtained from the first one (348) if we exchange the

subindexes 1 and 2. Then we can directly write:

D[2] = Ψ[2](L2, F2, L
2
1 + L2

3, F
2
1 + F 2

3 , L1F1 + L3F3)

For the third equation (350) we now have:

dL2

F3
= −dL3

F2
, dL1 = dF1 = dF2 = dF3 = 0
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This leads to:

L1 = k1 , F1 = k2 , F2 = k3 , F3 = k4

Since F2 and F3 are constants, we also arrive at k5 = L2F2 +L3F3. Consequently, the general

solution of the PDE (350) is:

D[3] = Ψ[3](L1, F1, F2, F3, L2F2 + L3F3)

And finally, we again obtain the fourth PDE (351) from the third one (350) by permutation

of the subindexes 1 and 2. Therefore:

D[4] = Ψ[4](L2, F1, F2, F3, L1F1 + L3F3)

Now, the Casimir functions are simultaneous solutions of all the PDEs (348-351). Then,

we now have to compare the four solutions D[i], for i = 1, . . . , 4, and look for those functions

of L and F compatible with all of them. After inspection, it is not difficult to arrive at the two

most obvious possibilities: ‖F‖2 and L ·F , which are the two independent Casimir invariants

already known.
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A1.3. CONCLUDING REMARKS

We have seen how the Pfaffian approach allows the calculation of the Casimir functions

in a quite natural and rapid way. In addition, this procedure provides some insight on how a

symplectic foliation arises from the degeneracy present in a singular Poisson structure.

A comparison with the traditional method relying on the system of PDEs (20) seems to

be convenient. If we wish to solve equations (20), the two simplest strategies are separation

of variables and the method of characteristics.

Separation of variables, which is rather lengthy even for simple PDEs and usually requires

an eigenvalue analysis of the resulting ODEs, is clearly much less efficient than the Pfaffian

method in the present situation.

On the other hand, we have already given in the examples a comparative solution of the

problems by both the Pfaffian approach and the method of characteristics. Before entering in

more quantitative and general arguments, two observations can be drawn from the examples.

The first one is that the Pfaffian method is clearly less computationally consuming than the

one of characteristics. Notice that the former technique reduces the problem to the solution

of one Pfaffian DE per Casimir. The number of ODEs which has been necessary to handle

and the number of quadratures which must be integrated in the method of characteristics is

certainly higher, in both examples. The second important remark is that both techniques

do not lead to the same set of equations, i.e., the Pfaffian method is not a shortcut for the

obtainment of the characteristic equations, as it can be easily checked.

Let us compare in a quantitative way the complexity of both methods. We shall give as a

measure of such complexity the number of quadratures which have to be calculated in every

case to determine the solution. This number is Np = (n−2s) for the Pfaffian method, namely

the corank of the structure matrix, as we already know.

In the method of characteristics, on the other hand, we have to solve system (20), which

consists of 2s nonredundant PDEs (the remaining (n − 2s) equations are redundant due to

the degeneracy in rank of the structure matrix, and can therefore be suppressed, as we have

seen in the examples). In order to compute the total number of quadratures in the method of

characteristics, let us consider the i-th PDE of system (20). Its characteristic equations are

of the form:
dx1

Ji1
= . . . =

dxi−1

Ji,i−1
=

dxi+1

Ji,i+1
= . . . =

dxn
Jin

, dxi = 0

Since D is a function of n variables, we need (n− 1) quadratures. However, we always have a

trivial one, which is xi = constant. Therefore, we only have to carry out (n− 2) quadratures
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per PDE, in general. Consequently, the total number of quadratures is Nc = 2s(n− 2) for the

method of characteristics. It is then straightforward to verify the bound

Np

Nc
< 1 (353)

in all nontrivial cases (the only situation in which (353) is not satisfied for a singular structure

matrix, is the immaterial case corresponding to a trivial Poisson structure, namely to a null

structure matrix). When the number of Casimir functions is large, for example if 2s = 2,

we obtain Np/Nc = 1/2. When such a number is medium, namely for 2s ' n/2, we have

that Np/Nc ' 1/(n− 2), thus decreasing with increasing size of the structure matrix. Finally,

when the number of Casimir invariants is small, say 2s ' (n − 1), we arrive at Np/Nc '

1/[(n− 1)(n− 2)]. In this case the ratio decreases as n−2 as n grows, and the Pfaffian method

is now much more economic for a large structure matrix.
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APPENDIX 2.

MATHEMATICAL NOTATION

The following symbols and expressions are of common use throughout the text:

a, b, . . . Real constants

A,B, . . . Constant real matrices

||a || Absolute value of the real number a

||x || Euclidean norm of vector x ∈ Rm

Ck(Ω) k times continously differentiable function in the set Ω

C∞(Ω) Smooth function in the set Ω

· Euclidean scalar product in Rm, or matrix product

∂if, ∂xif Partial derivative of f with respect to xi

D, D(x) Distinguished function (Casimir invariant)

δ Kronecker’s delta or generalized Kronecer’s delta

|A | Determinant of the square matrix A

diag() Matrix formed by a direct sum of submatrices

ẋ Time derivative of x(t)

ε Levi-Civita symbol

≡ Equal by definition, equivalent to

η, η(x) Time reparametrization factor

H, H(x, t) Hamiltonian function, either in the classical or in the Poisson sense

I(x) Time-independent first integral

I(x, t) Time-dependent first integral

Im m×m identity matrix or submatrix

∞ Infinity

Int(U) Interior of the set U ⊂ Rm⋂
Intersection of sets
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A−1 Inverse of the square matrix A

J , J (x) Structure matrix

JD[n,r] n× n Darboux canonical form structure matrix of rank r

J [k], J [k](x) k-th submatrix of the structure matrix J (x)

Jij , Jij(x) Structure functions

J
[k]
ij , J

[k]
ij (x) Structure functions in the k-th submatrix J [k](x) of the structure

matrix J (x)
∂(f1, . . . , fk)
∂(x1, . . . , xm)

Jacobian matrix of functions (f1, . . . , fk) with respect to (x1, . . . , xm)

Ker(A) Kernel (nullspace) of matrix A

ln(a) Natural (or Napierian) logarithm of a (with a real and positive)

M Jacobian matrix of a differentiable change of coordinates

M Smooth manifold

MP Poisson manifold

MS Symplectic manifold

a mod b Remainder of the integer division a/b (with a, b positive integers)

n Dimension of the Poisson manifold

∇ Nabla operator

∇xf Column gradient vector of function f with respect to coordinates x

Om m×m null matrix or submatrix

Om1×m2 m1 ×m2 null matrix or submatrix

Ω Open subset of Rm, or domain (open and connected subset of Rm)

⊕ Direct sum

A1

k︷ ︸︸ ︷
⊕ . . .⊕Ak Direct sum of k matrices A1, . . . , Ak

p ≡ (pi) Set of canonical generalized momenta pi

{f, g} Poisson bracket of functions f and g

{f, g}c Canonical Poisson bracket of functions f and g

{f, g}J Poisson bracket with structure matrix J of functions f and g

f ′ Derivative of the one-variable function f

q ≡ (qi) Set of canonical generalized coordinates qi

r Rank of a structure matrix

Rank(A) Rank of matrix A

Rm m-dimensional Euclidean space

Rm
+ Interior of the positive orthant of Rm
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s r/2, with r being the rank of a structure matrix

∈ Set member

sign(a) Sign function of the real number a 6= 0 (it takes value (+1) if a > 0

and (−1) if a < 0)

' Similar or equal

⊂ Subset

S Skew-symmetric constant real matrix

Sn n× n symplectic matrix (n even)

| Such that

t Time variable

τ New time variable (reparametrized time variable)

U × V Cartesian product of the sets U and V

m1 ×m2 Size of a matrix of m1 rows and m2 columns

AT Transpose of matrix A⋃
Union of sets

Υx Neighborhood of x ∈ Rm

u, u(x) Structure function J12(x) in three-dimensional structure matrices

v, v(x) Structure function J31(x) in three-dimensional structure matrices

w, w(x) Structure function J23(x) in three-dimensional structure matrices

x, y, z Column vectors of the sets of local coordinates (x1, . . . , xn),

(y1, . . . , yn) and (z1, . . . , zn), respectively
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APPENDIX 3.

ABBREVIATIONS

In addition to the symbols indicated in Appendix 2, the abbreviations now enumerated are of

common use in the present dissertation:

2-d Two-dimensional

3-d Three-dimensional

4-d Four-dimensional

n-d n-dimensional

DE Differential equation

D-solution Distinguished structure matrix

Dψ-solution D-solution of the kind characterized in Subsection 4.4.2

KAM Kolmogorov-Arnol’d-Moser (theorem)

KG Kernel-gradient (functions) —see Definition 4.4.1.3

LV Lotka-Volterra (systems of ordinary differential equations)

NTT New-time transformation (time reparametrization)

ODE Ordinary differential equation

PDE Partial differential equation

Q.E.D. End of a proof (“Quod erat demonstrandum” )

QP Quasi-Polynomial (systems of ordinary differential equations)

SOE Smooth orbital equivalence

TOE Topological orbital equivalence

VV.AA. Various authors
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APPENDIX 4.

PUBLICATIONS WITH IMPACT FACTOR

The following is a list of the articles (already published in journals with impact factor) which

have been developed as a part of the research carried out in this thesis work:

1. B. Hernández-Bermejo: “New solutions of the Jacobi equations for three-dimensional

Poisson structures”, Journal of Mathematical Physics 42 (2001) 4984-4996.

2. B. Hernández-Bermejo: “One solution of the 3D Jacobi identities allows determining an

infinity of them”, Physics Letters A 287 (2001) 371-378.

3. B. Hernández-Bermejo: “Characterization and global analysis of a family of Poisson

structures”, Physics Letters A 355 (2006) 98-103.

4. B. Hernández-Bermejo: “New four-dimensional solutions of the Jacobi equations for

Poisson structures”, Journal of Mathematical Physics 47 (2006) 022901 1-13.

5. B. Hernández-Bermejo: “New solution family of the Jacobi equations: Characterization,

invariants, and global Darboux analysis”, Journal of Mathematical Physics 48 (2007)

022903 1-11.

6. B. Hernández-Bermejo: “Characterization, global analysis and integrability of a family

of Poisson structures”, Physics Letters A 372 (2008) 1009-1017.

7. B. Hernández-Bermejo and V. Fairén: “Simple evaluation of Casimir invariants in finite-

dimensional Poisson systems”, Physics Letters A 241 (1998) 148-154.

8. B. Hernández-Bermejo and V. Fairén: “Separation of variables in the Jacobi identities”,

Physics Letters A 271 (2000) 258-263.

9. T. W. Yudichak, B. Hernández-Bermejo and P. J. Morrison: “Computing Casimir in-

variants from Pfaffian systems”, Physics Letters A 260 (1999) 475-483.
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In addition, the following manuscripts have been accepted for publication (again, in jour-

nals with impact factor) prior to the dissertation defense (thesis viva voce):

10. B. Hernández-Bermejo: “Generalization of solutions of the Jacobi PDEs associated to

time reparametrizations of Poisson systems”, Journal of Mathematical Analysis and

Applications, in press.

11. B. Hernández-Bermejo: “An integrable family of Poisson systems: characterization and

global analysis”, Applied Mathematics Letters, in press.
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