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Abstract

Despite the fact that the most viable L1 memories in processors are caches,
on-chip local memories have been a great topic of consideration lately. Lo-
cal memories are an interesting design option due to their many benefits: less
area occupancy, reduced energy consumption and fast and constant access time.
These benefits are especially interesting for the design of modern multicore pro-
cessors since power and latency are important assets in computer architecture
today. Also, local memories do not generate coherency traffic which is important
for the scalability of the multicore systems.

Unfortunately, local memories have not been well accepted in modern processors
yet, mainly due to their poor programmability. Systems with on-chip local
memories do not have hardware support for transparent data transfers between
local and global memories, and thus ease of programming is one of the main
impediments for the broad acceptance of those systems. This thesis addresses
software and hardware optimizations regarding the programmability, and the
usage of the on-chip local memories in the context of both single-core and multi-
core systems.

Software optimizations are related to the software caching techniques. Soft-
ware cache is a robust approach to provide the user with a transparent view
of the memory architecture; but this software approach can suffer from poor
performance. In this thesis, we start optimizing traditional software cache by
proposing a hierarchical, hybrid software-cache architecture. Afterwards, we de-
velop few optimizations in order to speedup our hybrid software cache as much
as possible. As the result of the software optimizations we obtain that our hy-
brid software cache performs from 4 to 10 times faster than traditional software
cache on a set of NAS parallel benchmarks.

We do not stop with software caching. We cover some other aspects of the
architectures with on-chip local memories, such as the quality of the generated
code and its correspondence with the quality of the buffer management in local
memories, in order to improve performance of these architectures. Therefore,
we run our research till we reach the limit in software and start proposing opti-
mizations on the hardware level. Two hardware proposals are presented in this
thesis. One is about relaxing alignment constraints imposed in the architectures
with on-chip local memories and the other proposal is about accelerating the
management of local memories by providing hardware support for the majority
of actions performed in our software cache.
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Chapter 1

Introduction

This chapter is the introductory chapter of this thesis. It is organized in five sections, as
follows. In Section 1.1, we start with background on the evolution of the microprocessors
from single cores to muti-cores. In Section 1.2, we discuss some of the challenges for the
design of the multi-core processors. Introduction of on-chip local memories appears in
Section 1.3. This section introduces some of the main architectural considerations for the
inclusion of on-chip local memories in processors, and it presents the major programmability
issues of the architectures with on-chip local memories. Finally, we switch to describing the
contributions and the structure of the thesis. Contributions are described in Section 1.5,
and the structure of the rest of the document is described in Section 1.6

1.1 From a Single Core to a Multi-Core

During the last decade, the computer processors industry has taken a particular path to-
wards parallel computing and including multiple cores on a chip. Chip Multiprocessors
(CMPs) are key aspect of computer architecture today and they can be found in almost
every computer system. There are many reasons why multi-cores appeared on the market
and completely changed the previous single-core era.

During past two decades (in the 1980s and 1990s), vendors focused on designing single-
core CPUs that would run single threaded applications. All that time, the performance
increase from generation to generation was easy to see. It was achieved mostly by an increase
in frequency. Frequency was the most important source of delivering better computer
performance at that time. In Figure 1.1 1, we can see that frequency has been scaling for
30 years (from 1971 to 2000) and then in the last 10 years almost flat line is observed.
Officially, the end of the frequency scaling was announced in May 2004 by Intel. Intel was
working on the Tejas processor that was to be a successor of Pentium 4 processor. The Tejas
processor run at very high frequency, around 7GHz, but that high clock frequency caused
power consumption and heat dissipation at detrimental levels which led Intel to cancel the
project. In Figure 1.2 2, we can see that the power density reached relatively high level even

1Manually drawn figure using online sources (e.g., wikipedia and processors technical documentation).
2Manually drawn figure using online sources (e.g., wikipedia and processors technical documentation).
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1. INTRODUCTION

in 2000 with Pentium 4. It was not too far from the power density of nuclear reactor, while
the power density of heating plate was surpassed more than 15 years ago (see Figure 1.2).
Therefore, it became mandatory not to increase power density anymore and then frequency
stopped scaling due to power restrictions. This led engineers to find a new way to deliver
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Figure 1.3: Moore’s law.

better performance coming from sources other than the increased clock frequency.

The only available resource to be used was the increased transistor count. In Figure 1.3 1,
we have plotted the transistor count for a variety of microprocessors, dating from 1971 till
2010. All of them follow the same trend, the transistor count has been doubling every
two years. This trend is known as Moore’s Law [73, 74] and it has been guiding computer
architecture for four decades so far and it is still valid today. From year to year, more
space has been available on a chip for new hardware. So, how to use this additional space
has become a big matter. Surely, one option could have been to aggressively improve core
microarchitecture (out of order execution, speculative execution, branch prediction, larger
caches etc) but this strategy reached a point of diminishing returns - a huge number of
transistors was devoted to hardware that did not give enough performance improvement
in return (performance per transistor started to decrease). At this point engineers started
to think about putting multiple cores on a single die [80]. This became a reality in 2001
when industry began to introduce Chip Multirocessors. The first CMP was IBM POWER4
[108, 116] processor with two cores on a die, debated in 2001. Today, there is no high
performance processor family without a multi-core design.

Multiple cores on a single die improve computer performance since two or more cores
can share the same workload and, by doing so, application throughput increases. But the

1Manually drawn figure using online sources (e.g., wikipedia and processors technical documentation).

3
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performance improvement is not the only reason for multi-core design, the power density
has become as important as performance is. With a multi-core design it is possible to gain
performance and to keep the power density within a reliable range. In Figure 1.2, we can
see that in the last decade (decade of multi-cores) the power density has not scaled but
before it has been doubling every two years. Today, all multi-cores keep power density
around 100 watts/cm2 (see Figure 1.2) which is very near to the power density of some
single-cores such as the Intel Pentium 4 processor.

1.2 Challenges in Multi-Core Era

Multi-core era has brought many hardware and software challenges. It is expected to have
many-core CMPs (e.g. 128 cores or more) in the near future but nobody knows how to
efficiently deal with that number of cores for real and non trivially parallel applications,
how to program it and how to build good hardware. Along with the increased number of
cores, scalability becomes an immediate issue. Putting more cores on a chip is meaningless
if the computer performance does not scale when more hardware resources are present on
a die. The scalability issue is mostly related to the memory system organization since
multiple cores must communicate in order to synchronize when they work on the same
workload and this communication is supported by the memory system. In a case of intensive
communication needs, memory system becomes a bottleneck for good scalability. It is not
yet clear what memory organization is the best, whether to put on-chip coherent caches,
non-coherent caches, or even local memories. Additionally, power efficiency, as one of the
primary metrics for processors designs in the multi-core era, imposes a big challenge for the
selection of the proper memory system for building future power-aware CMPs. It can be
said that the power density of the existing multi-cores is on the edge and it shouldn’t go
higher. It is not clear how to build many-core CMPs and to keep power density, at least,
at the level of the existing processors.

All mentioned issues and challenges have stimulated many design studies for CMPs
to be present in research and development today. For instance, the majority of existing
general purpose CMPs are Shared Memory MultiProcessors (SMPs). The appearance of
the shared memory CMPs has been dictated mainly by the software community since
through the history of parallel computing, shared memory models have been well accepted
by programmers due to transparent view of shared memory space. So, programmability has
dictated the memory system organization for the majority of existing CMPs. On example,
IBM Power7 [115] includes 8 cores with 256KB L2 private and coherent caches plus a
big shared L3 cache of 32MB. Sun SPARC T3 [101] has 16 cores and each core has L2
coherent cache of 6MB but no shared cache level. AMD Opteron [2] has 16 cores with 1MB
coherent L2 caches and 16MB shared L3 cache. Intel Xeon E7 [3] has ten cores with 256KB
coherent L2 caches and one shared L3 cache of 30MB. It is common for majority of existing
SMPs to have relatively small number of cores (up to 16) but to devote a big number of
transistors to the cache hierarchy and to the hardware support for cache coherence. All
of them scales well due to a relatively small number of cores but their cache coherence
protocols are not projected to scale well for many-core SMPs. Both the power consumption

4
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originated in the memory hierarchy and the scalability of the memory coherence protocols
constrain the sharing and the size of caches when cores are replicated up to a certain level
[57, 62, 68, 78, 94, 114]. As an immediate consequence, the memory hierarchy is expected to
evolve up to some novel organization that satisfies the scalability requirements and avoids
potential bottlenecks in the shared levels of the memory hierarchy.

One of the solutions for large multi-core architectures (many-core CMPs) is to take
a form of a distributed memory system on a chip. The recent Intel Single-chip Cloud
Computer (SSC) architecture [69] is a clear example of this type of solution. It includes 48
simple cores organized in 24 homogeneous tiles. All cache levels are private to each core
(16KB L1 data cache and 256KB L2) without any cache coherence protocols implemented.
Besides to this reduced amount of cache memory there is a 16KB local memory to accelerate
message-passing operations, shared between the two cores in every tile. This approach forces
programmers to use distributed memory programming paradigms such as Message Passing
Interface (MPI) which is well accepted in research but not in the commercial development.
This kind of memory system organization is good example for how much programmability
can be affected by a different memory system organization.

Another possible solution to the lack of power efficiency and scalability of current co-
herence protocols for SMPs is the introduction of on-chip local memories, also known as
scratchpad memories [13].

1.3 On-chip Local Memories

The key element of the study in this thesis is on-chip local memory. We study its introduc-
tion, programmability, and optimizations regarding its usage in the context of single-core
and multi-core systems.

Local memories have been successfully introduced in heterogeneous CMPs like the Cell
BE [52, 56]. In addition, recently they have been introduced side to the cache hierarchy
in GPGPUS [41] and in general-purpose cores [15] to form what is called a hybrid mem-
ory model. The advantages of local memories are that they offer similar performance as
caches do but in a much more power-efficient way [13], and moreover they offer fast and
constant access time without generating any coherence traffic. Also, local memories can
feed functional units with relatively big chunks of data (bigger than cache lines) without
producing stall cycles as frequently as caches do due to cache miss penalties. This property
is especially desirable for Single Instruction Multiple Data (SIMD) functional units. Data
transfers to/from local memories are supported by Direct Memory Access (DMA) engines
but they are under software control. Data transfers are explicitly controlled by programmers
and can be overlapped with computation which enables programmers to address another
important limitation of conventional architectures, known as the memory wall.

1.3.1 Architectural considerations

In Figure 1.4, we present high level design of a processor with local memory. We can see in
Figure 1.4 that three main blocks appear: CPU, Local Memory, and DMA engine. Local
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Local
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Figure 1.4: Local Memory and DMA engine.

memory is used to feed functional units in the CPU with the data while the DMA engine is
used to move the data between the local memory and the main memory. It is important to
emphasize that if we need data from the global memory, then we have to explicitly program
the DMA engine to transfer it. So, all data transfers to or from the local memory are
under software control. Programming data transfers consists of a simple communication
to the DMA controller of a DMA engine in order to schedule a DMA command for the
transfer. Three basic DMA commands are: dma-put, dma-get, and dma-synch. The dma-
get command transfers data from the global memory to the local memory while the dma-put
does it in the opposite direction. The main parameters of these two commands are: source
address, destination address, size of the transfer and a tag to be assigned to the transfer.
The dma-synch is used to synchronize with the data transfers associated to a particular set
of tags.

In the context of the cache coherency it is important to mention what is happening
when local memories are mixed with caches. In Figure 1.5, we show a hybrid multi-core
system with three type of cores with different memory organization that may exist when
local memories are taken into consideration.

• The first core on the left is the traditional core without local memory and only with
the cache hierarchy. This type of core is the conventional general purpose core like
the most cores in the existing SMPs. In the hybrid CMPs this type of cores are used
to run operating system (e.g. PPE in Cell BE).

• The core in the middle is the core with the local memory only. This type of core is not
general purpose core since cache hierarchy is missing and then it is not convenient
to process general purpose workloads in this type of core. This kind of cores are
accelerator cores (very optimized to accelerate computation intensive workloads) in
the existing systems (SPE in Cell BE, GPGPU).

• The last core on the right is the core with the hybrid memory model where local
memories exist aside a cache hierarchy in the same core (e.g. Intel’s SCC cores have
similar organization). In this type of cores local memories can exist independently of
caches, being completely managed by software, or local memories can have tag entries
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Figure 1.5: Memory system variations with and without local memories.

into a L1 cache, making it a software managed cache where the cache accesses get
either data from the local memory or from the L1, depending on where the data is.

• Finally, all cores may have a shared L3 cache, meaning that all memory transfers
(DMA transfers for local memories and read/write transfers for L2 caches) generated
by the cores in the multi-core system go through a shared cache level that is responsi-
ble of communicating to the main memory through the Memory Interface Controller
(MIC) which is directly connected to the shared cache level in this case. If a shared
cache level does not exist then MIC is directly connected to the Interconnection Net-
work.

Cache coherency in these systems is maintained on a DMA transfer level [43]. Local
memories are not coherent but DMA transfers are. The dma-get command brings data
from the main memory, (potentially through a shared L3 cache if exists), but if the copy of
the same data is present in any of the L2 caches in the system, then the DMA engine can
get and invalidate data from the appropriate cache. Invalidation in caches also happens
when DMA write data to the main memory. So, coherency is maintained on the DMA
transfer level which is much less frequent than on the memory access level. This relaxation
in the memory coherency model is one of the reasons why multi-cores with local memories
scale better than multi-cores with caches.

Additionally, for a fine grain maintaining of the memory consistency in the multi-core
systems, DMA engines support atomic DMA transfers that work in a read-modify-write
manner. This kind of transfers are inefficient in terms of performance since the process of
reading the data, modifying it, and writing back to the main memory must be repeated
until no failure in the atomicity is produced. Programmers usually try to avoid this kind of
transfers, but as the architectural support it is a necessity in the multi-core systems, since
exclusive access to a portion of the main memory must be guaranteed somehow, even in
the architectures with on-chip local memories.
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1.3.2 Programmability

All mentioned advantages of local memories are very desirable in a many-core CMPs. The
problem is that local memories impose hard programmability difficulties - programming
on a memory transfer level by hand coding every data transfer. Local memories impose a
particular execution model that consists of the following four phases:

1. Bringing the data to the local memory. Essentially, programmer has to allocate
buffer in the local memory and to program DMA transfer to bring data in. In order
to do so, programmer has to assign the buffer in the local memory to the data in the
main memory and to provide source address, destination addresses, and a tag for the
transfer to the DMA engine. But besides programming DMA transfers, programmer
has to take care about possible memory aliasing when assigning buffers to memory
references (sometimes buffers are shared by few references in the code).

2. Synchronization with the DMA transfers. In this phase, programmer has to
synchronize with the DMA transfers that bring data to be used in the computation.
It must be ensured that the data transfers are finished prior to using the data in the
local memory. Synchronization is done according to set of tags that programmer has
to provide. So, programmer has to maintain time and place of the synchronization.

3. Actual computation. In this phase, data from the buffers is fetched in the functional
units and after the appropriate computation is performed, output data is written
back to the output buffers in the local memory. If the functional units are Single
Instruction Multiple Data (SIMD) units, which are the most common multimedia
extensions today. then additional programming challenges appear since SIMD units
impose data alignment constraints and, moreover, use data arranged by a programmer
in the local memory. So, in contrast to cache based architectures, here programmer
can always try to do better when arranging the data in the local memory in order to
achieve better application performance and improve SIMD coding by satisfying SIMD
alignment constrains as much as possible. Dealing with alignment constraints is an
important issue.

4. Flushing the modified data from the local memory. In this phase, all output
buffers must be flushed back to the main memory. When flushing modified data in the
multi-core environment, it is important to maintain memory consistency in order to
ensure that the main memory contains the correct data when all cores finish flushing
the data. Again, this is something that programmer has to do.

If the whole workload cannot fit in the local memory then the workload data is divided
in smaller chunks that can fit in the local memory and the mentioned four steps repeat
until the all chunks are processed. At the end, for the sake of efficiency, it is important to
implement every step optimally (involing as litle of the additional code as possible) and to
schedule DMA transfers efficiently in order to achieve good overlap of the communication
and the computation (usualy done by using double buffering techniques). In Figure 1.6, we
outline the main programming issues mentioned in this section that are encountered when
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programming applications for on-chip local memories. We summarize all programmability
issues into four categories:

• Buffer management. This is mostly related to the first phase of the execution
model and the actions taken there: buffer allocation, buffer mapping, assignment of
references, handling of aliasing, and DMA programming.

• Memory consistency. This issue occurs in the forth phase of the execution model
when modified data has to be written-back to the main memory.

• Efficient data transfers. This issue targets overlapping communication with com-
putation and mostly targets to minimize synchronization overhead present in the
second phase of the execution model.

• Alignment constraints. Architectures with on-chip local memories and DMA en-
gines have heavy alignment constraints imposed in the DMA engines. We observe
that inability of doing unaligned DMA transfers can prevent programmers of freely
dealing with buffer management for on-chip local memories which can additionally
interfere with some alignment constraints imposed in the functional units, such as
alignment constraints in SIMD units.

1.4 Motivation

Nowadays, it is desirable to write a code in a high level programming models, such as
OpenMP, and to have a compiler and runtime system that can solve all mentioned pro-
grammability issues and port successfully the high level code to the underlying architecture,
in our case to the architecture with on-chip local memory. This kind of compiler-based so-
lutions are often difficult to deploy due to the lack of sufficient information at compile time
to generate correct and efficient code. One of the main aims of this thesis is to develop such
a runtime system that can help solving programmability issues (outlined in Figure 1.6) for
the on-chip local memories.

On-chip local memories have been present in the computer architecture for a while,
especially in the embedded systems domain. So, there are many techniques about handling
programmability issues for on-chip local memories. Here, we select one particular work
which is the most representative one in terms of the state-of-the-art techniques for handling
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programmability issues in local memories. That work is about IBM’s compiler for Cell
architecture [37]. Our interest is focused on two key techniques that IBM’s compiler uses
to handle programmability of on-chip local memories. Those two techniques are:

• Tiling with static data buffering. This techniques completely relies on compiler.
It is aimed for references exposing stride access pattern (regular references). All
buffer management in this approach is done at compile time. Since here memory
aliasing must be handled at compile time then sometimes complex compiler analyses
is required by this technique and this is the main drawback of tiling with static data
buffering. The main advantage of this approach is the low control code overhead and
the ability to work with big chunks of data in the computation phase of the execution
model.

• Compiler-controlled software cache. In contrast to the static data buffering,
this techniques relies on runtime systems. It is aimed for references exposing irregu-
lar access pattern (e.g.: pointer accesses). All buffer management is done at runtime.
Buffers are organized as cache lines in the local memory and explicit data transfers
are hidden via emulation of a hardware cache in software. IBM’s compiler implements
a 4-way set-associative software cache with 128-byte cache lines using a relaxed con-
sistency model maintained through a dirt bits structure. Size of the cache storage is
a configurable to the next sizes: 8KB, 16KB, 32KB, 64KB, and 128KB. Emulation
of the hardware caches in software enables memory aliasing to be solved dynamically
at runtime by doing look-up in software cache. The main advantage of this technique
is that it is easy in terms of compiler analysis since the only thing compiler has to
do is to guard every memory reference by control code responsible for all the actions
which are typical for a cache, namely look-up, placement/replacement, data transfers,
synchronization, address translation, and consistency. The main drawback of IBM’s
software cache is that it results in high overheads due to the dedicated control code
that surrounds every global memory reference. In the rest of the thesis we refer to
the IBM’s software cache as traditional software cache (TSC).

To illustrate the performance gap between tiling with static data buffering and tradi-
tional software cache, we compile STREAM kernels [67] with IBM XLC v10.1 compiler for
the Cell BE [37] and execute on the Cell processor utilizing 8 SPEs. On X-axis in Figure 1.7,
we have four STREAM kernels (Copy, Scale, Add, and Triad) and on Y-axis we have the
obtained bandwidths from the executed STREAM kernels (theoretical maximal bandwidth
in Cell is 25.6 GB/s, for details we refer to Appendix B). Two configurations are presented
per kernel. One configuration corresponds to kernels compiled to use only tiling with static
data buffering. We refer to this configuration as TIILING. The other configuration corre-
sponds to the compilation that instruments a code to use only traditional software cache.
We obtain the best performance in the tested kernels when configuring size of the tradi-
tional software cache to 64KB. We refer to this configuration as TSC. In Figure 1.7, we can
see a huge gap in performance which shows the overhead present in the traditional software
cache approach. Obtained bandwidths in kernels working with traditional software cache
are more than ten times lower than bandwidths obtained in the kernels working under tiling
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with static data buffering. STREAM kernels are the best examples where tiling with static
data buffering can give the best performance. Overhead in the traditional software cache
approach is for a level of magnitude higher than in the tiling approach.

Traditional software cache and tiling in IBM’s compiler are used complementary. Tra-
ditional software cache is a reliable approach used by default and tiling with static data
buffering is an optimization used to improve performance. Compiler always tries to maxi-
mize the usage of tiling with static data buffering in order to get the best performance from
the applications. In order to see how efficient this is in the real applications, we conduct
an experiment on a set of NAS parallel benchmarks [12]. We compare the execution times
with and without tiling optimization in architecture with on-chip local memories (SPEs in
Cell BE). Additionally we compare performance obtained in the architecture with on-chip
local memories against a SMP architecture. For this purpose, we use PowerPC 970MP
processor [1] as a powerful SMP used in large High Performance Computing (HPC) in-
frastructures, and built in the same technology (90 nm) as the Cell processor. Comparing
Cell programmed as a SMP to PowerPC 970MP is an immediate comparison to a modern
SMP of the time when the Cell processor was launched. By no means this comparison is
intended to evaluate and compare both architectures and generate architectural conclusions
on whether which architecture is outperforming the other and in what cases. The main
purpose is to quantify the obtained performance in the architecture with on-chip local mem-
ories where memory management is done in software (tiling and traditional software cache)
in contrast to a completely hardware-based SMP architecture. We use a comparison to
SMP architecture (PowerPC 970MP) in this thesis as a merit for competitiveness in perfor-
mance of techniques for dealing with programmability issues in architectures with on-chip
local memories.

In Figure 1.8 we present obtained execution times for IS, CG, FT, and MG applications
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Figure 1.7: Overhead of the traditional software cache approach in respect to tiling with
static data buffering approach in STREAM kernels.
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executed under three different configurations. The first two configurations are TSC and
TSC-TILING, both compiled by IBM XLC v10.1 compiler for Cell, and executed utilizing
all 8 SPEs in the Cell processor. In the TSC configuration compiler is instrumented to use
only traditional software cache. Size of the tradional software cache is configured to 64KB
since we obtain the best performance for that size in the tested applications. In the rest
of the thesis we always use this size for the traditional software cache. The TSC-TILING
configuration corresponds to the default compilation where traditional software cache is
used only at places where compiler fails to apply tiling optimization. The last configuration
is PPC970MP, which is executed in PowerPC 970MP processor. This configuration is
compiled by IBM XLC v10.1 compiler for SMP architectures.

We can see that tiling optimization improves performance in all tested applications.
In some cases performance is improved more than 4 times (IS and FT). PowerPC 970MP
performs better in CG, FT and MG while in IS we can see that execution time obtained
in Cell processor is improved from being 2.5 times slower than PowerPC 970MP when
traditional software cache is used, to being 1.7 times faster than PowerPC 970MP when
tiling with static buffering is used. In the rest of the tested applications (CG, FT, and
MG), PowerPC 970MP does better. The IS application is the simplest among the tested
applications. It has four simple kernels where only one reference exposes irregular access
pattern and requires usage of traditional software cache. Due to successful usage of tiling
optimization in this application, good performance is obtained in the total execution time.
We can see that it is even better than the execution obtained in PPC970MP configuration.
In the rest of applications, picture is a bit different. Due to compiler restrictions, tiling is
not applied at many places in CG, FT, and MG applications and then traditional software
caches is used even for references which expose stride access pattern. For instance, in
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some cases possible memory aliasing appears between different memory references and the
compiler is not able to determine a correct buffer allocation and tiling optimization fails.
This is especially noticeable in MG application which is full of stride access references but
with a plenty of references which are aliasing. Here tiling is applied in very few cases which
results in poor improvements in the total execution time. We can see that TSC-TILING
configuration in MG application is doing just 1.10 times better than TSC configuration. On
the other side, FT application is also full of stride access references and we can see that TSC
configuration is accelerated more than 4 times which makes TSC-TILING configuration to
be competitive to PPC970MP configuration. The CG application suffers from irregular
accesses which are treated by traditional software cache which is not competitive to the
execution in SMP architecture.

In conclusion, the analyzed state-of-the-art technique for dealing with programambil-
ity issues in architectures with on-chip local memories could be optimized. A potential
for performance improvements is in optimizing software caching and in relaxing compiler
restrictions.

1.5 Contributions

The potential for the performance improvements of the anlyzed state-of-the-art technique
for dealing with architectures with on-chip local memories, outlined in the previous section,
is the main source of motivation for our first contribution which is the optimized runtime
design and implementation of the hybrid software cache architecture that is in the middle of
tiling with static data buffering and traditional software cache. Our aim is to optimize the
way irregular memory references are treated, and for regular references to take good sides
of tiling, such as low overheads and working with big buffers, but in general to unify the
view of the software cache architecture in the applications in order to keep the simplicity
of the required compiler analysis and bridge the compilers gap between tiling with static
data buffering and software caching.

Our first contribution about hybrid software cache motivates our second contribution
which is about addressing some of the programmability issues in Figure 1.6 through hard-
ware optimizations. We propose a novel hardware for DMA engines that can better antici-
pate the needs of the execution model for on-chip local memories.

For each of two contributions we have few technical achievements. Achievements that
are related to software caching are:

• The design and implementation of the novel hybrid access-specific software cache is
the first and the main technical achievement of the first contribution of this thesis.
Our approach classifies at compile time memory accesses in two classes, high-locality
and irregular. Then it steers the memory references toward one of two specific cache
structures optimized for their respective access pattern. The specific cache structures
are optimized to enable high-level compiler optimizations to aggressively unroll loops,
reorder cache references, and/or transform surrounding loops so as to practically elim-
inate the software cache overhead in the innermost loop. This achievement addresses
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mainly buffer management and efficient data transfers issues in Figure 1.6. As the
result of the work done for this achievement, the next paper has been published:

– Marc Gonzalez, Nikola Vujic, Xavier Martorell, Eduard Ayguade, Alexander
Eichenberger, Kathryn O’Brien, Kevin O’brien, Chen Tong, Zehra Sura, Tao
Zhang, “Hybrid Access-Specific Software Cache Techniques for the Cell BE Ar-
chitecture”, In Proceedings of the 17th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT 2008), Toronto, Canada, Octo-
ber, 2008.

• The second technical achievement is adaptive and speculative memory consistency
support for multi-core architectures with on-chip local memories. This approach
presents a set of alternatives to smooth the impact of considerable overheads related
to software mechanisms to maintain the memory consistency in software cache im-
plementations for multi-cores. In our approach, a specific write-back mechanism is
introduced based on some degree of speculation regarding the number of threads ac-
tually modifying the same cache lines. This technical achievement addresses memory
consistency issue in Figure 1.6. One paper has been published for this work:

– Nikola Vujic, Lluc Alvarez, Marc Gonzalez, Xavier Martorell, Eduard Ayguade,
“Adaptive and Speculative Memory Consistency Support for Multi-core Architec-
tures with On-chip Local Memories”, In Proceedings of the 22nd Annual work-
shop on Languages and Compilers for Parallel Computing (LCPC 2009), Newark,
Delaware, US, October, 2009.

• The third technical achievement addresses enabling prefetch techniques for our hybrid
software cache. The new cache design enables automatic prefetch for high-locality
memory accesses and modulo scheduling transformations for irregular memory ac-
cesses. Addressing memory wall by overlapping of the communication and computa-
tion in our hybrid software cache is the main purpose of this achievement. Efficient
data transfers in Figure 1.6 are addressed specifically by this work. Two papers have
been published:

– Nikola Vujic, Marc Gonzalez, Xavier Martorell, Eduard Ayguade, “Automatic
Prefetch and Modulo Scheduling Transformations for the Cell BE Architecture”,
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 21, no. 4,
pp. 494–505, April 2010.

– Nikola Vujic, Marc Gonzalez, Xavier Martorell, Eduard Ayguade, “Automatic
Pre-Fetch and Modulo Scheduling Transformations for the Cell BE Architec-
ture”, In Proceedings of the 21st Annual workshop on Languages and Compilers
for Parallel Computing (LCPC 2008), Edmonton, Canada, August, 2008.

In the software caching contribution, we start from the initial design of the novel hybrid
software cache and we analyse where the bottlenecks are in order to propose new optimiza-
tions for the software cache - that is how optimized memory consistency and prefetching
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proposals come up. We do not stop with software caching, we cover some other aspects of
the architectures with on-chip local memories, such as the quality of the generated code
and its correspondence with the quality of the buffer management in local memories, in
order to improve performance of these architectures. Therefore, we run our research till
we reach the limit in software and start proposing optimizations on the hardware level in
order to improve performance and programmability of the architectures with on-chip local
memories. Thus, the second contribution of this thesis is about hardware optimizations.
Here we have two main technical achievements:

• The first achievement addresses alignment constraints imposed in architectures with
on-chip local memories. We propose a hardware realignment unit in the DMA engine
that breaks alignment constraints imposed on the DMA transfer level in order to
give more freedom to programmers and compilers when organizing data in the on-
chip local memories. This proposal is motivated by the fact that the code generated
by the compiler to exploit SIMD units suffers from significant memory alignment
constraints which increases the code complexity as, in the general case, the compiler
cannot be sure of the proper alignment of data. For that, the ISA provides either
unaligned memory load and store instructions, or a special set of instructions to
perform realignments in software. So, we propose a hardware realignment unit that
takes advantage of the DMA transfers needed in architectures with on-chip local
memories. While the data is being transferred, it is realigned on the fly by our
realignment unit, and stored at the desired alignment in the local memory. This
mechanism can help programmers to better organize data in the local memory so that
SIMD units can possibly access the data with no special instructions. Finally, the
data is realigned properly also when put back to main memory. Alignment constraints
issue mentioned in Figure 1.6 is addressed by this work. We have published two papers
related to this technical achievement:

– Nikola Vujic, Felipe Cabarcas, Marc Gonzalez, Alex Ramirez, Xavier Martorell,
Eduard Ayguade, “DMA++: On the Fly Data Realignment for On-Chip Mem-
ories”, IEEE Transactions on Computers, vol. 61, no. 2, pp. 237–250, February
2012.

– Nikola Vujic, Marc Gonzalez, Felipe Cabarcas, Alex Ramirez, Xavier Martorell,
Eduard Ayguade, “DMA++: On the Fly Data Realignment for On-Chip Memo-
ries”, In Proceedings of the 16th International Symposium on High-Performance
Computer Architecture (HPCA-16), Bangalore, India, January 2010.

• The second technical achievement is a novel DMA engine that embeds the func-
tionality of cache into the DMA engine and applies aggressive optimizations using
novel hardware. We notice that even highly optimized hybrid software cache handlers
sometimes result in high overheads (around 30% of the execution time) and then we
propose to map some functionalities of our software cache into DMA engine in order
to accelerate buffer management for on-chip local memories and test the limit of such
approach. This proposal is an optimization addressing mainly buffer management
issue in Figure 1.6. Related to this achievement, one paper has been published:
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– Nikola Vujic, Lluc Alvarez, Marc Gonzalez, Xavier Martorell, Eduard Ayguade,
“DMA-circular: an Enhanced High Level Programmable DMA Controller for
Optimized Management of On-chip Local Memories ”, In Proceedings of the 9th
ACM International Conference on Computing Frontiers (CF’12), Cagliari, Italy,
May 2012.

1.6 Structure

The structure of the thesis is as follows:

• Chapter 2 describes applications and methodology used to evaluate our contributions.

• Chapter 3 describes hybrid access-specific software cache, our first technical achieve-
ment of the first contribution of this thesis.

• Chapter 4 addresses the adaptive and speculative memory consistency support for
our initial design of the hybrid software cache from Chapter 3.

• Chapter 5 is about efficient data transfers. Here, we describe prefetching and modulo
scheduling transformations for overlapping communication and computation.

• Chapter 6 describes our first achievement of the second contribution of this thesis.
Breaking alignment constraints on a DMA transfer level by doing realignments on the
fly is described in this chapter.

• Chapter 7 is about our second hardware optimization where we explain the overheads
of the software solution, and propose mapping of many software caching actions to
the DMA engine.

• Chapter 8 concludes the thesis and presents some future work.

All technical chapters (Chapter 3, Chapter 4, Chapter 5, Chapter 6, and Chapter 7) are
organized as follows. At the beginning of each chapter, we motivate the work and then we
present its technical details. At the end, we present the evaluation of the proposal followed
by the related work section and some conclusions.
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Chapter 2

Methodology

This chapter describes the essential methodology and frameworks used for the evaluation
of the proposals in this thesis. The organization of the chapter is as follows. Applications
used for the evaluation are described in Section 2.1. Section 2.2 describes methodology for
the real executions done in the thesis, while Section 2.3 introduces two frameworks used for
the simulation of the hardware optimizations in this thesis.

2.1 Applications

For the evaluation purposes, we use the following applications in this thesis:

• IS, CG, FT, and MG - parallel applications from the NAS benchmark suite [12],
which are parallelized using OpenMP directives. These four applications belong to the
scientific computation domain: IS does an integer sort, CG is a conjugate gradient
algorithm, FT computes a Fourier transformation, and MG realizes 3-dimensional
multigrid relaxation with periodic boundary conditions. The most of the loops found
in these applications operate on data structures organized as vectors, two or three
dimensional matrices, accessed in most cases with stride accesses and in few cases
under irregular access patterns. All of these applications can be used under few
classes. In this thesis, we use class B of IS application. CG application is used under
class B and shortened iteration space of 5 iterations, instead of 75 which are originally
defined by class B of this application. We use shortened iteration space due to long
execution time of CG application. Class A is used for FT and MG.

• STREAM: A simple synthetic benchmark that measures computation rate and sus-
tainable memory bandwidth (in GB/s) for four simple vector kernels [70].

• RandomAccess: A simple synthetic benchmark that measures the rate of integer
random updates or memory (GUPs) [67].

• Matmul: A blocked matrix multiplication, implemented with the kernel from Daniel
Hackenberg [47].
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• SparseLU: A blocked LU decomposition, that computes L and U and checks if
A = L× U up to a certain accuracy [86].

• Cholesky: A blocked Cholesky factorization using the kernels by Alfredo Buttari
[18].

• Kmean: The k-means clustering [58].

• Knn: The k-nearest neighbors algorithm [49].

In the evaluation section of each proposal, we list the applications which are used for
the evaluation. In general, we always use IS, CG, FT, and MG applications, but for some
proposals, we accompany these four applications with more applications in order to cover
the wider range of applications when needed for better evaluation.

2.2 Real Executions

Real executions are used for the evaluation of the first contribution of this thesis. Two
processors are used for the real executions:

• Cell, and

• PowerPC 970MP.

2.2.1 Executions on the Cell processor

All executions regarding the usage of on-chip local memories are performed on the Cell
processor [44, 52, 56, 59]. This processor is the first-generation Cell Broadband Engine
Architecture (CBEA) processor which is a hybrid multicore, built in 90nm technology,
comprised of a PowerPC Processor Element (PPE), and eight Synergistic Processor Ele-
ments (SPEs). SPEs are accelerator cores that are equipped with on-chip local memories.
Due to importance of the Cell processor for this thesis, we present more details about Cell
processor in Appendix B.

All measurements are performed on a QS21 Cell BE blade [5] with two Cell processors
running at 3.2 GHz with 1 GB of memory (512 MB per processor) under Linux Fedora
release 7 (Kernel 2.6.22-5.fc7) and IBM Cell SDK 3.0. Only one Cell BE processor is used
for the evaluation and all of eight SPEs are utilized. In all measurements, we exclude PPE
from executing parallel regions in the tested applications. Unless explicitly mentioned, our
results always use all 8 SPEs.

We use IBM XLC V10.1 compiler for the Cell BE [37] to compile programs for the exe-
cutions. In general, we compile two different applications’ code versions with this compiler
in the thesis:

• One code version corresponds to TSC and TSC-TILING configurations (already in-
troduced in Section 1.4), and this code version is compiled by single source compiler
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(cbexlc) which is capable of instrumenting SPE code to work with traditional soft-
ware cache or, potentially, to use tiling with static data buffering optimization. The
TIILING configuration, which is used only with STREAM application, is the same
as TSC-TILING configuration. We refer to it as TIILING since we know that tiling
with static data buffering optimization is completely applied in STREAM kernels and
no traditional software caching is used.

• The other version of the applications’ code corresponds to a code transformed to
work with our hybrid software cache. Required compiler transformations are de-
scribed in the appropriate sections (Sections 3.3, 4.3, and 5.3) of the chapters related
to the hybrid software cache. We do not implement single source compiler for our
code transformations. For the evaluation purposes, all code transformations are done
manually in accordance to the described compiler requirements and transformations.
Usually, transformed code consists of a PPE and SPE source code files which require
separate compilation (ppuxlc, and spuxlc) and embeding of a SPE binary to a PPE
binary (ppu-embedspu) in order to get the final CBEA executable.

Both versions of the code are compiled with the same level of optimization (-O5), without
simdization (-qhot=nosimd) and including basic loop unrolling (-qunroll=auto). As we are
conscious of the expensive execution of branch instructions on the Cell BE, we investigated
loop unrolling of the innermost loops in the tested applications. We did not achieve any
significant improvement (from 1% to 3%). Slight speedup was obtained by unrolling the
loops up to 8 times, while for unrolling factor of 16 we obtained slower execution time
than for unrolling factor 8. That is why in the used methodology not very aggressive loop
unrolling performed by native XLC compiler (-qunroll=auto) is used. Regarding TSC-
TILING configuration, two buffers are used for multibuffering, and the size of the static
buffers for tiling optimization is adjusted to cause similar size of the DMA transfers as we
have in the hybrid software cache.

2.2.2 Executions on the PowerPC 970MP processor

The PowerPC 970MP processor [1] is 64-bit Power Architecture dual-core processor built
in 90nm technology with L2 cache of 1MB per core. It is designed to run on clock speeds
between 1.2 and 2.5 GH with a maximum power usage of 75 W at 1.8 GHz and 100 W at
2.0 GHz.

All measurements are performed on a blade server type JS21, with two PowerPC 970MP
processors running at 2.3 GHz with 8 GB of shared memory, under SUSE Linux Enterprise
Server 10 (Kernel 2.6.16.60-perfctr-0.42.4-ppc64). Only one PowerPC was used for the
evaluation. For the compilation, we use IBM XLC V10.1 compiler for SMP architectures
under the highest level of optimization (-O5). In this thesis, measurements for PPC970MP
configuration corresponds to the executions in this processor.
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2.3 Simulations

Simulations are used for the evaluation of the second contribution of this thesis where
hardware optimizations are proposed. Two different simulation infrastructures are used for
the evaluation of the second contribution of this thesis. Those simulation infrastructures
are:

• TaskSim, and

• PTLSim.

2.3.1 TaskSim

TaskSim [92] is a trace-driven simulator for multicore architectures with on-chip local memo-
ries, and cache-based multicore architectures. TaskSim provides cycle-accurate simulations
of memory transfers: DMA transfers, or transfers initiated by a cache hierarchy. Thus,
TaskSim models the memory system in a cycle-accurate mode: the DMA engine, the
cache-hierarchy, the on-chip Interconnection Network, the Memory Interface Controller,
the DRAM channels, and the DIMMs.

Three main simulation modes, supported in TaskSim, are:

• Inout Mode. This mode provides precise simulation of multicore architectures with
on-chip local memories. It is based on the idea that, in the distributed memory
architectures, the computation time on a given processor does not depend on what
is happening in the rest of the system. Such is the case of architectures with on-
chip local memories, where each processor’s computation is based on data available
in its private local memory. Nothing that happens on another processor can have
an impact on the computation time. Execution time does depend on inter-thread
synchronization, and the memory system: how long does it take to finalize a DMA
transfer determines how long the processor will be waiting for data. Thus, TaskSim
provides cycle-accurate simulations of DMA transfers in this mode, while it does not
model the processors themselves. It relies on the computation time to be recorded
in the trace in order to measure the delay between memory operations (starting /
synchronizing with a DMA transfer) or inter-processor synchronizations (modeled as
blocking semaphores). Also, events for starting / synchronizing with a DMA transfer
are recorder in the trace.

• Mem Mode. This mode is for multicore cache-based architectures. Here, com-
putation time is not recorded in the trace. Instead, instruction trace is provided
to the simulator and execution time is completely based on executing only memory
instructions.

• Instr Mode. In addition to the Mem Mode, this mode is enriched with processing
all instructions in the instruction trace. Even executing the complete instruction
trace, this mode does not model processor’s pipeline in detail. Speed of executing
the complete instruction trace is based on the instruction issue bandwidth limited
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by a dependency check for memory instructions. The core architecture model is
intentionally simplistic, so that the modeling effort is devoted to the memory system.

In general, TaskSim is aimed for a cycle-accurate profiling on a memory transfer level,
while cycle-accurate simulations of functional units and pipelines is out of the context of this
simulator. In this thesis, we use TaskSim in Inout Mode for accurate simulations of DMA
transfers. In this thesis, all traces for TaskSim are collected by executing applications on
the Cell processor in the CELL BE blade described in Section 2.2.1. Also, the applications
used for the trace gathering are hand-coded and compiled by XLC V10.1 compiler for the
Cell BE under the highest optimization level (-O5).

For the details about simulator and for the accuracy and how the simulator is cali-
brated we refer to the TaskSim technical report [92], and some recently published materials
regarding the usage of TaskSim [90, 91].

2.3.2 PTLsim

PTLsim [121] is a cycle accurate full system x86-64 microprocessor simulator. PTLsim
models a modern superscalar out of order x86-64 compatible processor core. It is able
to model processor core at a high level of detail and configurability. It provides highly
detailed RTL-level model of all pipeline structures (e.g., issue scheme, branch predictor,
functional units, register file). In addition, all microcode, the complete cache hierarchy,
and I/O devices are modeled with true cycle accuracy. PTLsim runs unmodified 32-bit x86
and 64-bit x86-64 applications without special compilers.

PTLsim used in this thesis includes Wattch [17] library for gathering power and energy
results from the simulations. Wattch is an architectural simulator that estimates CPU
power consumption and the power consumption of its components. Power estimate used
by Wattch in this thesis is based on a per-cycle resource usage counts generated through
cycle-accurate simulations of the PTLsim.

In contrast to TaskSim, PTLsim is much slower, especially for simulations of the multi-
core architectures, due to a high level of simulation details. In this thesis, we use PTLsim
for simulations where cycle-accurate profiling of the instruction pipeline is needed. All the
applications, that are used by PTLsim in this thesis, are compiled by GCC compiler version
4.4.3 under the highest optimization level (-O3).

For more details about PTLsim, we suggest reading of the introductory paper about
PTLsim [121], and the PTLsim technical report [120].
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Chapter 3

Software Caching

This chapter is about hybrid access-specific software cache. We analyze traditional software
cache architectures and motivate our proposal in Section 3.1. Then, we present detailed
design of our hybrid software cache in Section 3.2. Along with the novel software cache,
new code transformation is needed and it is descirbed in Section 3.3. Section 3.4 evaluates
our approach using NAS benchmarks. We present related work in Section 3.5 and conclude
the chapter in Section 3.6.

3.1 Motivation

As mentioned in the previous chapter, traditional software caching imposes high overheads
in contrast to tiling with static data buffering. In this section we want to get more insights
into those overheads and into a potential space for optimizations. In that manner, we
analyse here a code transformation used by traditional software caching.

Consider the code example in Figure 3.1. The original code in Figure 3.1(a) shows three
references, index[i], v[i], and w[tmp]. Assuming the arrays in global memory, Figure 3.1(b)
depicts the same code with all of the required calls to a traditional software cache handler.
Before each reference r1, r2, and r3, we need to check if the data is resident in the software
cache (using the HIT macro). When not present, we call the miss handler (using the MAP
miss handler). As shown in Figure 3.1(c), the miss handler MAP first locates a suitable
cache line to evict, possibly writing the evicted line back to global memory, and then
loads the requested line. Once the data has arrived (i.e. after a synchronization or blocking
DMA), the data can be accessed, using the REF macro, in read or write mode. Following the
r2 and r3 references, a consistency operation is performed to maintain relaxed consistency
across all processors in the system. Consistency operations typically consist of updating
dirty bits on write-back caches, or data communication on write-through caches. In our
example, updating of memory consistency structures is associated to the CONSISTENCY
handler.

All the software handlers surrounding references in Figure 3.1c are the reason for high
overheads imposed by traditional software cache. Clearly, the transformed code in Fig-
ure 3.1(b) is far from optimal, especially for a high spatial-locality reference such as index[i]
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fct1 (v1[], v2[], N)

{ 

   for (i=0; i<N; i++) 

   {

      if (!HIT(h1, &index[i])) 

         MAP(h1, &index[i]);

      tmp = REF(h1, &index[i]);
     

      if (!HIT(h2, &w[tmp])) 

         MAP(h2, &w[tmp]);
     

      if (!HIT(h3, &v[i])) 

         MAP(h3, &v[i]);
     

      REF(h2, w[tmp]) = REF(h3, &v[i]);

      CONSISTENCY(h2, &w[tmp]);
     

      REF(h3, &v[i]) = REF(h3, &v[i]) + 1;

      CONSISTENCY(h3, &v[i]);

   }

}

fct1(v1[], v2[], N)

{ 

   for (i=0; i<N; i++)

   {

      tmp = index[i];

      w[tmp] = v[i];

      v[i]++;

   }

}

add calls to software

cache handler to

each reference

r3

r1

r2

HIT(handle, addr)

    handle = Lookup(addr);

    return handle != NULL;
   

REF(handle, addr)

    return &handle.local + addr & MASK
   

CONSISTENCY(handle, addr)

   Update dirty-bits

MAP(handle, addr)

    handle = Placement(addr);

    if (NeedToEvict(handle))

         WriteBack(handle);

         Synchronize();

    ReadIn(addr, handle);

    Synchronize();

r1

r3r2

r3

r2

r3

r3

(a) Original code example. (b) Traditional software cache.

(c) Software cache handler.

Figure 3.1: Code operating with software cache approache.

and v[i] with i = 0 . . . N . In tiling with static data buffering, index[i] and v[i] references are
brought in big chunks in the local memory data is freely and efficiently accessed without any
control code handlers surrounding memory accesses. In contrast to that, traditional soft-
ware cache imposes overheads by executing HIT, MAP, and potentially CONSISTENCY
handlers per each memory access. The scheme of emulating hardware caches in software
and the execution of the trasformed code in Figure 3.1(b) provides too few guarantees
to enable compiler optimizations that could significanntly lover software cache overheads.
However, some good sides of tiling could be applied in software caching since for high-locality
references, it is trivial to compute the number of useful data present in the current cache
line. In other words, we can easily compute the number of loop iterations for which the
current cache line can provide data for such references. Given such a number of iterations
without a miss, we can iterate over these computations without any further software cache
overhead. Also, it would be desirable to have a big cache line size in order to maximize the
number of iterations that could be executed with no need of any cache intervention. How-
ever, needed code transformation is not possible with a traditional software cache interface.
There are two main reasons why it is not possible to apply mentioned optimization using
the traditional software cache interface:

• First, we must be able to pin a cache line in the software-cache storage, releasing it
only when all high-locality references are done with it.
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• Second, the cache must have at least one cache line per distinct high-locality reference
in the loop, if we want to remove all checking code from the innermost loop.

Due to the listed requirements, software cache design has to be changed in order to
enable some additional control over the geometry of the cache.

The code in Figure 3.1(b) is also suboptimal with respect to the second reference,
w[tmp], where tmp is equal to the original value of index[i]. This access pattern corresponds
to an indirect access, which typically exhibit very poor data locality. Because of this
irregular access pattern, the data is unlikely to be found in the cache. Performance can
only be achieved by exercising as many irregular accesses as possible in parallel (i.e. without
synchronization or blocking DMA) for maximum communication overlap. Again, traditional
caches interfaces are not suitable, as they typically provide only a small set-associativity,
which directly limits the number of concurrent irregular accesses. Also, since no spatial
reuse is expected, typical (long) cache lines are likely to waste bandwidth and thus slow
down the execution.

Our proposal is to design a hierarchical, hybrid software-cache architecture that is de-
signed from the ground up to enable compiler optimizations that reduce software-cache
overheads. We identify two main data access patterns, one for high-locality and one for
irregular accesses. Because the compiler optimizations targeting these two patterns have
different objectives and requirements, we have designed two distinct cache structures that
best respond to these distinct access patterns and optimization requirements. In particular,
our design includes:

• A high-locality cache with a variable configuration, fully associative scheme, lines that
can be pinned, and a sophisticated eager write-back mechanism

• A transactional cache with fast, fully associative lookup, short lines, and an efficient
write-through policy.

Performance evaluation indicates that improvements due to the optimized software-
cache structures combined with the proposed code transformations translate into 3.5 to
8.4 speedup factors, compared to a TSC approach (Section 1.4) for a set of parallel NAS
applications. In some applications our hybrid approach performs as good as TSC-TILING
approach (Section 1.4) or even better achieving competitive performance in respect to SMP
architectures such as PowerPC 970MP.

3.2 Software Cache Design

We describe in this section the design of our hierarchical, hybrid software-cache. Figure 3.2
shows the high level architecture of our software cache. Memory references exposing a high
degree of locality are mapped by the compiler to the High Locality Cache, and the others,
irregular accesses are mapped into the Transactional Cache. The Memory Consistency
Block implements the necessary data structures to maintain a relaxed consistency model
according to the OpenMP memory model [51].
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Figure 3.2: Block diagram of our software cache.

The cache is accessed through one block only, either the High Locality Cache or the
Transactional Cache. Both caches are consistent with each other. The hybrid approach
is hierarchical in that the Transactional Cache is forced to check for the data in the High
Locality Cache storage during the lookup process.

3.2.1 The High Locality Cache

The High Locality Cache enables compiler optimizations for memory references that expose
a high degree of spatial locality. The main characteristics are:

• The ability to pin cache lines using explicit reference counters

• Deliver good hit ratios

• Full associativity

• Maximize the overlap between computation and communication.

3.2.1.1 High Locality Cache Structures

The High Locality Cache is composed of the following six data structures, depicted in
Figure 3.3:

• The Cache Storage to store application data.

• The Cache Line Descriptors to describe each line in the cache

• The Cache Directory to retrieve the lines

• The Cache Unused List to indicate the lines that may be reused

• The Cache Translation Record to preserve for each reference the address resolved by
the cache lookup
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• The Cache Parameters to record global configuration parameters.

The Cache Storage is a block of data storage organized as N cache lines, where N is
total cache storage divided by the line size. The line size is described by the Cache Line Size
parameter, and must be a power of 2. Note that the storage overhead for control structures
(metadata such as the Cache Line Descriptors, the Cache Directory, and the Cache Unused
List) is directly proportional to the number of cache lines. For an architecture specific
implementation purposes, it is important to estimate the space that can be used for the
metadata and according to that to determine the minimum line size to be supported (the
minimum line size determines the maximum number of cache lines to be supported for a
specific cache storage size).

Each cache line is associated with a unique Cache Line Descriptor that describes all
there is to know about that line. The Global Base Address is a global memory address
that corresponds to the base address associated with this line in global memory. Its Local
Base Address corresponds to the base address of the cache line in the local-memory cache
storage. Its Cache Line State records state such as whether the line holds modified data
or not. Its Reference Counter keeps track of the number of memory references that are
currently referencing this cache line. Its Directory Links is a pair of pointers used by the
cache directory to list all of the line descriptors that map to the same cache directory
entry. Its Free Links is a pair of pointers used to list all the lines that are currently unused
(i.e. with reference counter of zero). Its Communication Tags are a pair of integer values
used to synchronize data transfers to/from the software cache. For synchronization we use
DMA tags. Number of distinct DMA tags to be used for synchronization depends on the
number of DMA tags supported in the architecture itself (the specific numbers related to
our implementation for the Cell BE architecture are present in Section 3.4.1).

The Cache Translation Record preserves information generated by the lookup process
and to be later used when data is accessed by the actual reference. It contains 3 elements;
the global base address of the original reference, the local base address in the cache storage,
and a pointer to the cache line descriptor.

We implement an efficient, fully associative cache structure using the Cache Directory
structure. It contains a sufficiently large number of double-linked lists (we denote to it
as M double-linked lists), where each list can contain an arbitrary number of cache line
descriptors. A hash function is applied to the global base address to locate its corresponding
list, which is then traversed to find a possible match. The use of a hash function enables
us to efficiently implement cache configurations with up to M -way fully associative caches.
Basically, we have a fully associative cache with a lookup speed of M -way set associative
caches. In practice, this number M is limited by the allowed metadata size, since more
double-linked lists there are, more storage overhead has to be introduced for maintaining
the heads of M double-linked lists.

The Cache Unused List is a double-linked list which contains all the cache line de-
scriptors no longer in use. Other cache parameters include parameters such as the Cache
Directory Hash Mask, a mask used by the cache directory to associate a global base address
with its specific linked list.

27



3. SOFTWARE CACHING

. . .

C
a
c
h
e
 D

ir
e
c
to

ry

lookup(g5)

Global addr:      g5

Local data addr: l2

State (modif...)

Ref counter

DMA Tags

Directory links

Free links

U
n
u
s
e
d
 L

is
t

First Last

Cache line descriptors

Cache param. line size directory hash mask

. . .

l7

l2

l4

Cache Storage

Global addr:          g5

Local data addr:    l2

Cache line descriptor

Translation Record

Figure 3.3: Structures of the High Locality Cache.

3.2.1.2 High Locality Cache Operational Model

The operational model for the High Locality Cache is composed of all the operations
that execute upon the cache structures and implement the primitive operations shown in
Figure 3.1(c), namely lookup, placement, communication, synchronization and consistency
mechanisms. The following paragraphs describe each type of operation.

The lookup operation for a given reference r, translation record h, and global address g
is divided in two different phases. The first phase checks if the global address g is found in
the cache line currently pointed to by the translation record h. When this is the case, we
have a hit and we are done. Otherwise, we have a situation where the translation record will
need to point to a new cache line in the local storage. The lookup process then enters its
second phase. The second phase accesses the cache directory to determine if the referenced
cache line is already resident in the cache storage. When we have a hit, we update the
translation record h and we are done. Otherwise, a miss occurred and we continue with
placement and communication operations.

The reference counter is often updated during the lookup process. Whenever a trans-
lation record stops pointing to a specific cache line descriptor, the reference counter of this
descriptor is decremented by one. Similarly, whenever a translation record starts pointing
to a new cache line descriptor, the reference counter of this new descriptor is incremented
by one.

The placement code is invoked when a new line is required. Free lines are discovered
when their descriptors reference counter reaches zero. Free lines are immediately inserted at
the end of the unused cache line list. Modified lines are then eagerly written back to global
memory. When a new line is required, we grab the line at the head of the unused cache
line list after ensuring that the communication performing the write-back is completed, if
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the line was modified.
We support a relaxed consistency model. While it is the Memory Consistency Block

responsibility to maintain consistency, the High Locality Cache is responsible for informing
the consistency block of which subsets of any given cache line have been modified and
how to trigger the write-back mechanism. Every time a cache line miss occurs, cache thus
informs the Memory Consistency Block about which elements in the cache line are going
to be modified.

The communication code performs all data transfer operations asynchronously. For a
system such as the Cell BE processor with a full-featured DMA engine, we reserve a half
of the full available range of DMA tags for data transfers from main memory to the local
memory, and the other half for data transfers in the reverse direction. In both cases, tags
are assigned in a circular manner. Tags used in the communication operations are recorded
in the Communication Tags field of the Cache Line Descriptor. All data transfers tagged
with the same DMA tag are forced by the DMA hardware (using DMA fences) to strictly
perform in the order they were programmed.

The synchronization operation is supported by the data in the Cache Line Descriptor,
in the Communication Tags field. The DMA tags stored in this field are used to check if
any pending data transfer is completed. The Communication Tags record every tag that
invokes the corresponding cache line.

When accessing data, the global to local address translation is supported through the
translation record. The translation operation is composed of several arithmetic computa-
tions required to compute the reference’s offset in the cache line and to add the offset to
the local base address.

3.2.2 The Transactional Cache

The Transactional Cache is aimed at memory references that do not expose any spatial
locality. Due to expected high miss ratios, this cache is designed to deliver very low hit and
miss overhead while increasing concurrency and offering high throughput that can enable
a good overlap of computation and communication. It supports a relaxed consistency
model using a write-through policy. The design introduces very simple structures that
allow supporting for lookup, placement, communication, consistency, synchronization, and
translation mechanisms.

3.2.2.1 Transactional Cache Structures

The Transactional Cache is composed of the following four data structures, shown in Fig-
ure 3.4:

• The Cache Directory to retrieve the lines.

• The Cache Storage to hold the application data.

• The Translation Record to preserve the outcome of a cache lookup for each reference.

• Some additional cache state.
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Figure 3.4: Structures of the Transactional Cache.

The Cache Directory is organized as a vector of K 4-byte entries. Each entry holds the
global base address associated with this entry’s cache line. The index of the entry in the
directory structure is also used as index into the Cache Storage to find the data associated
with that entry. The directory entries are packed in memory and aligned at the boundary
that enables the use of fast SIMD compares to more quickly locate entries. As we will
see in the evaluation section (Section 3.4), the performance overhead of the Transactional
Cache is very important since its handlers are invoked per each irregular memory access.
Thus, designing directory on a way to enable fast SIMD compares serves the purpose of
making fully associative lookup in the transactional cache as fast as possible. For instance,
on platforms where 4 entries fit into one SIMD register, such as the SPEs, we perform a K -
way address match using K/4 compare SIMD instructions. Obviously, K should not be too
big number in order to have reasonably quick lookup time. As explained in Section 3.2.2.2,
we bound the number of cache lines by the number of DMA tags due to consistency issues.

To increase concurrency, the Cache Directory and storage structures are logically divided
in two equal-size partitions; the Cache Turn Ticket indicates which partition is actively
used. Within the active partition, the Cache Placement Index points to the cache line that
will be used to service the next miss.

At a high level, the active partition is used to bring in the cache lines required by the
current transaction, while the other partition is used to buffer the cache lines of the prior
transaction while their modified data is being written back to global memory.

In order to achieve high throughput, we use small lines for the Transactional Cache in
order to minimize communication time, rather than trying to capture already poor locality
of the irregular access patterns by bigger cache lines. Thus, we set the cache line size for the
Transactional Cache to be the smallest transfer size that can efficiently use the available
bus bandwidth.

3.2.2.2 Transactional Cache Operational Model

In this thesis, a transaction is a set of computation and related communication that will
happen as a unit (but never rollback). Operations in a transaction happen in four consec-
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utive steps:

1. Initialization.

2. Communication into local memory.

3. Computation associated with the transaction.

4. Propagation of any modified state back to global memory.

During initialization, in Step 1, the Cache Turn Ticket is flipped to point to the other
partition. The Cache Placement Index is set to the first cache line of the new active
partition. In our configuration, its value is either 0 or K/2 when the ticket is, respectively,
pointing to partition 0 or 1. In addition, all the cache directory entries in the new active
partition are erased.

In Step 2, the data corresponding to each global-memory reference is brought into the
local memory, using sequences of lookup and possibly calls to the misshandler. The lookup
process for a given reference r, translation record h, and global address g first proceeds
with a standard High Locality Cache lookup, since we do not want to replicate data in
both cache structures, and if miss occurs then it proceeds with lookup in the Transactional
Cache. This first lookup can be avoided if address g can be guaranteed not to be found in
the High Locality Cache. When a hit occurs, the Local Base Address field in translation
record h is simply set to point to the appropriate sub-section of the line in the High Locality
Cache storage. When a miss occurs, however, we proceed by checking the address g against
the entries in transactional cache directory. As mentioned in Section 3.2.2.1, this lookup
is fast on architectures with SIMD units, such as in the Cell BE SPEs [45]. When a miss
occurs, a placement operation is executed. When a hit occurs, the lookup can operate in
one of two ways. If the hit occurred within the active partition, we simply update the
transaction record h. If, however, the hit occurred within the other partition, we need (for
simplicity) to migrate the line to the active partition; a placement operation is used for this
operation as well.

The placement code simply installs a new directory entry and associated cache line
data at the line pointed by the Cache Placement Index. The placement index is then
increased by one (modulo K ). Communications generated by the miss in Step 2 results into
an asynchronous line size transfer into local memory.

Step 3 proceeds with the computation, using the same translation record as seen in
Section 3.2.1.

In Step 4, every modified storage location that was modified by a store in Step 3 is
directly propagated (write through) into global memory. This approach to relaxed con-
sistency eliminates the need for any extra data structures (such as dirty bits) and do not
introduce any transfer atomicity issue. These asynchronous communications occur regard-
less of whether a hit or miss occurred in Step 2. Moreover, only the modified bytes of data
(not the entire line, unless the entire line was modified) are transferred into global memory
during Step 4.

In order to ensure consistency within and across transactions, every data transfer is
tagged with the index of the cache line being used, and a fence is placed right after the data
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transfer operation. Due to the fence, all data transfers tagged with the same tag are forced
by the hardware to perform strictly in the order under which they were programmed. This
bounds the maximum number of cache lines to the number of available tags, but it makes
the communication tags management trivial with very low overhead. The synchronization
code occurs in precisely two places. The first synchronization is placed between Steps 2 &
3, to ensure that the data arrive before being used. When Partition 0 is active, we wait for
data transfer operations with tags [0 . . . K

2
− 1], and wait for tags [K

2
. . .K − 1] otherwise.

For the data transfer initiated in Step 4, the synchronization code is placed at the beginning
of the next transaction with the same value for the Cache Turn Ticket, synchronizing with
the data transfer operations tagged with numbers [0 . . . K

2
− 1], or [K

2
. . .K − 1].

3.2.3 Memory Consistency Block

The Memory Consistency Block (MCB) is designed to maintain a relaxed consistency model,
for memory references mapped into High Locality Cache, in accordance to the OpenMP
memory model [51]. The block includes the necessary data structures to support the write-
back operation, that is, the transfer of a modified cache line from the local memory to main
memory. It corresponds to a traditional implementation based on the use of dirty-bits and
atomicity. More detailed work on optimizing MCB is presented in Chapter 4.

3.2.3.1 Standard Write-Back

The eviction process is executed at the hardware cache line level, as atomicity is supported in
the DMA engine at this data granularity. The hardware cache line size is usually 128 bytes,
therefore, software cache lines are evicted in chunks of that size: every 128 bytes within a
cache line are read, then modified data is merged according to the dirty-bits information and
finally the 128-bytes are sent back to main memory atomically. If the atomic data transfers
fails, the whole process is repeated until no failure is produced. The data structure required
to support this mechanism is the Local Dirty Bits structure that keeps track of modified
parts of the resident cache lines. This metadata structure is allocated in the local memory
of every core and it is an important storage overhead.

3.3 Initial Code Transformations

We describe in this section the type of code transformation techniques that are now enabled
using our hierarchical, hybrid software cache. It uses here the distinction between mem-
ory references with high-locality and irregular access pattern. Accesses with high-locality
patterns are mapped to the High Locality Cache and all irregular accesses are mapped to
the Transactional Cache. With no loss of generality, the code transformation targets the
execution of loops.

The code transformations are performed in three ordered phases:

1. Classifying memory references into high-locality (regular) and irregular accesses

2. Code transformation to optimize high-locality memory references
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i=0;

while(i<N){

   n = N;

   if(!AVAIL(h1, &index[i], 4)

      HMAP(h1, &index[i]);

   n = min(n,i+AVAIL(h1,&index[i],4);

 

   if(!AVAIL(h3, &v[i], 4)

      HMAP(h3, &v[i]);

   n = min(n, i+AVAIL(h3, &v[i], 4);

   HCONSISTENCY(n, h3);

   

   HSYNC(h1, h3);

   for(;i<n;i++){

      tmp = REF(h1, &index[i]);

      w[tmp] = REF(h3, &v[i]);

      REF(h3, &v[i]) = 

              REF(h3, &v[i])+1;

   }

}

for (i=0; i<N; i++)

{

   tmp = index[i];

   w[tmp] = v[i];

   v[i]++;

}

add calls to software

cache handler to

each reference

High locality refs.: r1, r3

Irregular refs.: r2

r3 r1

AVAIL(handle, addr, stride): return the number of data entries that 

     found within the cache line pointed to by the handle.

HMAP(handle, addr): locate, determine hit, update reference counter, 

     eagerly write back and bring in line when needed.

HCONSISTENCY(trip count, handle1, handle2, ...): update memory 

     consistency for each of the handles and for the given trip count.

HSYNC(handle1, handle2, ...): synchronize with all pending DMAs 

     recorded in the handle list and generated by HMAP calls.
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for(;i<2*[n/2];i+=2){

   TINIT();

   tmp = REF(h1, &index[i]);

   GET(h2, &w[tmp]);
  

   tmp' = REF(h1, &index[i+1]);

   GET(h2', &w[tmp']);

    

   TSYNC(h2, h2');

     

   REF(h2,&w[tmp])=REF(h3,&v[i]);

   PUT(h2,&w[tmp]);

   REF(h3,&v[i])=REF(h3,&v[i])+1;
   

   REF(h2',&w[tmp'])=REF(h3,&v[i+1]);
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TINIT(): initialize transaction.

GET(handle, addr): locate, and bring in data into 

     cache when needed.

TSYNC(handle1, handle2, ...): synchronize with all

     pending DMAs recorded in the handle list and 

     generated by GET calls.

PUT(handle, addr, size): generate DMA to write 

     back into global memory.

(a) Original code. (b) High Locality Cache transform. (c) Transactional Cache transform.

(d) High Locality Cache handler. (e) Transactional Cache handler.

Figure 3.5: Example of C code and its code transformation. Without losing generality, we
assume data size of 4 bytes in the used arrays.

3. Code transformation to optimize irregular memory references.

We illustrate this process in Figure 3.5.

3.3.1 Classification of Memory Accesses

Reference analysis used in this phase is based on the algorithms presented in [81]. In this
phase, memory accesses are classified as high-locality or irregular accesses. A strided access
with constant stride less than the size of a cache line in the High Locality Cache is classified
as a high-locality (regular) access. All the other accesses are classified as irregular accesses.
For high-locality accesses, it is important that the stride between them is constant. The
size of a stride is important in determining how many accesses can be done per cache line.
If the size of a stride is bigger than the size of a cache line then it does not make sense to use
High Locality Cache. If it is not possible to determine the size of a stride then we classify
the related accesses as irregular. In terms of correctness, the code will not be inconsistent
if we classify them as high-locality accesses, but in terms of performance and wasting of
the cache storage it is better to classify them as irregular accesses.

The size of a cache line is a configurable parameter in our software cache and depends on
the number of regular accesses determined during the classification of memory accesses. It
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is desirable to have cache lines as big as possible and in that sense we use a greedy strategy
in order to determine the optimal size of a cache line. In the first attempt we set a size of a
cache line to be the biggest value (as described in Section 3.4.1, in our configuration for Cell
it is 4K). Then we classify memory accesses. Since we need as many cache lines as there are
high-locality memory references in a code section, after classification we have to check if
this is satisfied. If this condition is not satisfied then we downgrade the size of a cache line
and repeat classification again. We repeat those steps until we find a correct match, which
is possible as long as the number of high-locality memory references in a loop is less than
the maximum number of the supported cache lines in the High Locality Cache. Otherwise,
extra memory references are classified as irregular and mapped into Transactional Cache.

Figure 3.5(a) shows the classification of the references for our exemplary code, where
memory accesses index[i], and v[i] with i = 0 . . . N are labeled as high-locality or regular
while memory access w[tmp] (with tmp=index[i]) is labeled as irregular memory accesss.

3.3.2 High-Locality Access Transformations

In Phase 2, we transform the original for -loop into two nested loops that basically perform
a dynamic subchunking of the iteration space. As shown in Figure 3.5(b), the outer while-
loop iterates as long as we have not visited all of the original N iteration points. The
inner for -loop iterates over a dynamic subset of iterations, n, where n is computed as the
largest number of iterations for which none of the high-locality references will experience a
miss. As shown in the innermost loop in Figure 3.5(b), there is no cache overhead (REF
overheads detailed in Figure 3.1(c) are essentially free).

We detail now the work introduced by each high-locality reference in the outer while-
loop body. Consider in Figure 3.5(b) the work associated with reference r1 with translation
record h1 and global memory address g1=&index[i]. First, we compute with the AVAIL
macro the number of iterations for which address g1 will be present in the cache line cur-
rently pointed to by its translation record h1. If this number is zero, we have a miss, and we
invoke the HMAP miss handler. This miss handler performs as indicated in Section 3.2.1.2.
Note that a miss does not imply communication, as the cache line may already be present
in the cache due to other references. Once the new line is installed in the translation record
h1, we recompute AVAIL and update the current dynamic sub-chunking factor n so as to
take into account the number of iterations for which reference r1 will not experience a miss.
Next high-locality reference (v[i]) is processed on the same way. Hence it is write access
reference, it is additionally instrumented with the call to a HCONSISTENCY handler.

After processing all high-locality references, the dynamic sub-chunking factor n is defini-
tive, and can be used to inform the memory consistency block of all of the memory locations
that will be touched by high-locality references in the inner for -loop. Note that all this
work is performed in parallel with the asynchronous DMA requests possibly initiated by
the HMAP miss handler.

The last operation is to perform synchronization on all pending DMAs, using the com-
munication tags found in the cache line descriptors associated with each of the high-locality
references.

An additional task is to compute the optimal High Locality Cache configuration. At
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the very least, we need one cache line per distinct high-locality memory reference, but a
few more enables better latency hiding for the eager writeback process. Note, however,
that we may always downgrade one or more high-locality memory accesses to be treated
as irregular references. In practice, we select the largest line size that satisfies each of the
high-locality memory references present in the loop.

3.3.3 Irregular Accesses Transformations

In Phase 3, we transform the inner for -loop to optimize cache overhead for irregular memory
accesses. The first task is to determine the transactions. In our work, the scope of a trans-
action is a basic block, or a subset of. Large transactions are beneficial as they potentially
increase the number concurrent misses, thus increasing communication overlap. In general,
a transaction can contain as many distinct irregular accesses as there are entries in a single
partition of the transactional cache (for instance, it is 16 entries in our configuration for
Cell, as described in Section 3.4.1). Because of our focus on loops, larger transactions are
mainly achieved through loop unrolling. In our example, we unrolled the inner for -loop by
a factor of 2 (for conciseness) so as to include two w[tmp] and w[tmp’] references within a
single transaction.

The code generated for a transaction closely follows the four step process outlined in
Section 3.2.2.2. As shown in Figure 3.5(c), we first initialize the transaction (Step 1) and
then proceed in asynchronously acquiring the data of each irregular reference r2 and r2
using the GET macro (Step 2). Once all irregular references have been processed, we issue
a TSYNC operation to synchronize on all pending DMAs issued by the GET operations.
We then access the data using the REF macro (Step 3) and write back the modified data
using the PUT macro (Step 4).

The code generated for a transaction closely follows the four step process outlined in
Section 3.2.2.2. As shown in Figure 3.5(c), we first initialize the transaction (Step 1) and
then proceed in asynchronously acquiring the data of each irregular reference r2 and r2’
using the GET macro (Step 2). Once all irregular references have been processed, we issue
a TSYNC operation to synchronize on all pending DMAs issued by the GET operations.
We then access the data using the REF macro (Step 3) and write back the modified data
using the PUT macro (Step 4).

3.3.4 Summary of Code Transformations

To summarize the achievement of the code, we observe that there is no software cache
overhead associated with high-locality memory accesses in the innermost loop (for -loop
in Figure 3.5(c)). Second, all communications generated by high-locality memory access
misses occur concurrently. Third, all communications generated by irregular memory access
misses occur concurrently.
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3.4 Evaluation

We present in this section an evaluation of the initial design of our hybrid software-cache ap-
proach. We first present implementation details of our hybrid software cache for Cell. Then,
we investigate what are the main components that contribute to the significant speedup
in the overall performance achieved by our cache design compared to the TSC approach
and we study the overall performance and compare with TSC-TILING and PPC970MP
configurations. Then, we analyze cache overhead distribution looking for potential places
to be addressed by further optimizations. The CG, IS, FT, and MG applications are used
for the evaluation under methodology described in Section 2.2.

3.4.1 Implementation parameters for Cell

Our implementation of the hybrid software cache is for the Cell BE architecture (See Ap-
pendix B for the details about the architecture). A small local memory of 256KB in SPEs
is shared for code and data. In order to leave enough space for the code, we select the fol-
lowing parameters for the implementation of our hybrid software cache. The High Locality
Cache storage is 64KB big, and it can store between 16 to 128 cache lines of sizes from
512 to 4K bytes. The Cache Directory Hash Mask is set to support 128 double-linked lists.
Due to 32 distinct DMA tags in Cell BE, our communication tags thus range from 0 to
31. In the High Locality Cache tags 0 to 15 are used for data transfers from main memory
to the local memory, and tags 16 to 31 for data transfers in the reverse direction. The
Transactional Cache storage is organized as a small 4KB capacity cache, with 32 128-bytes
cache lines where each line is aligned at a 128-byte boundary to enable fast lookup with
SIMD compares. The storage overhead for the metadata for both cache structures is around
45KB in total. Approximately, complete footprint of our implementation is 113KB (64KB
+ 4KB + 45KB) used for the software cache storage and control structures. The rest of
the SPEs local memory (143 KB) is for code and stack data only.

3.4.2 Overall Performance

In this section, we evaluate the performance impact of the two major features that sig-
nificantly contribute to higher performance. The first one is the ability of reducing the
amount and complexity of the control code surrounding the global memory references; and
the second one is the ability of overlapping communication and control code execution.

We study here two configurations of our hybrid approach. The first configuration is our
cache prototype as described in Section 3.2, using all of the code transformations proposed in
Section 3.3. We refer to this configuration as HYBRID thereafter. The second configuration
is a modified version of HYBRID, where each data transfer is performed synchronously
(blocking DMA) to prevent any overlap between computation and communication. We
refer to this configuration as HYBRID-synch thereafter. Both configurations are compared
against TSC, TSC-TILING and PPC970MP configurations introduced in Section 1.4.

Figure 3.6 shows the execution time in seconds for the IS, CG, FT and MG applications.
Let us first compare the HYBRID-synch and TSC designs. This comparison gives us an
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Figure 3.6: Performance of the hybrid software cache approach.

indication about which configuration has higher software-cache overhead as both configu-
rations uses blocking (synchronous) DMA requests. Among the four applications, FT and
MG, are highly dominated by regular memory accesses. For these two, large lines (4KB
and 2KB) found in the High Locality Cache of the hybrid scheme significantly reduce the
number of communications, compared to the 128B lines of the traditional software cache.
Also, the hybrid approaches get rid of all lookup code within the innermost loop, whose trip
count is roughly proportional to the size of 4KB or 2KB cache line; whereas the traditional
approach has one lookup per global memory reference. This results in speedup factors of
1.83 for FT and 2.98 for MG over the entire applications.

The two other applications, CG and IS, are highly dominated by irregular memory
accesses. We have measured that 90% of the execution time in CG and 70% of the execution
time in IS is devoted to the execution around references steered to the Transactional Cache
in the HYBRID-synch approach. So, these two applications are dominated by the activity
in the Transactional Cache. When comparing the execution time of HYBRID-synch versus
TSC achieved speedup factors are 1.82 for IS and 1.68 for CG. Interestingly, this speedup
factors do not come from reduced miss ratios, as shown in Table 3.1. Indeed, since both
configurations use blocking DMA, the reduced execution time can only be explained by
faster software cache primitives found in the hybrid configurations. Specifically, the write-
through mechanism used by the Transactional Cache is far more efficient than a mechanism

Table 3.1: MISS ratios for the IS and CG applications

Application HYBRID TSC

IS 33.39% 35.46%

CG 17.29% 17.16%
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based on dirty bits and atomicity. Indeed, the dirty-bit mechanisms (such as those found
in traditional scheme and in the High Locality Cache of the hybrid approach) require an
atomic operation involving one DMA to read the line, a merge of the modified data, followed
by a DMA to write back the modified line. In addition to these two DMA operations, the
execution of the control code for the Dirty Bits structure is typically a highly branching
code. None of these overheads are found in the Transactional Cache in the hybrid design.

Let us now compare, in Figure 3.6, the TSC and TSC-TILING configurations to the
HYBRID configuration, which uses asynchronous DMA commands to enable overlapping
communication and the control code execution. We now achieve speedup factors of 4.79 for
IS, 8.52 for CG, 2.12 for FT and 3.12 for MG in respect to TSC configuration. Not surpris-
ingly, the applications dominated by irregular memory references benefit much more from
the asynchronous communications, as the transactional cache and associated code transfor-
mations attempt to maintain up to 32 DMA misses in flight. In respect to TSC-TILING,
we obtain speedups of 1.11 for IS, 3.73 for CG, 2.85 for MG, while for FT, HYBRID con-
figuration is two times slower than TSC-TILING. The HYBRID configuration does better
when the memory references in the loop computations cannot be safely treated by the tiling
transformation because of compiler restrictions. CG and IS applications are dominated by
irregular memory accesses that are treated more efficiently by Transactional Cache than
traditional software cache. In MG application, memory aliasing appears between different
memory references and the compiler is not able to determine a correct buffer allocation, as
mentioned in Section 1.4. In those situations the compiler generates inefficient code that
uses traditional software cache which is not as efficient as HYBRID configuration using High
Locality Cache in regular applications such as MG application. On the other side, TSC-
TILING successfully applies tiling with static data buffering in FT application, which makes
HYBRID not to be competitive to TSC-TILING in this applications due to low overheads
of the tiling with static data buffering approach. The HYBRID configuration uses long
cache lines of the High Locality Cache in FT application, but some overheads still remain.
For instance, memory consistency mechanism in the High Locality Cache maintains dirty
bits information and uses it in a time of write-back, which tiling with static data buffering
does not suffer from. In order to determine what should be further optimized in our hybrid
software cache, the detailed evaluation of the overheads of the HYBRID configuration is
presented in the next section.

In respect to PPC970MP configuration, HYBRID performs better only in IS application,
being 1.90 times faster. In CG and MG, HYBRID is competetive to the PPC970MP being
no more than 1.30 times slower. For FT, HYBRID is far behind PPC970MP and should
be improved by factor of 3 in order to be competetive with PPC970MP.

3.4.3 Cache Overhead Distribution

Six loops are described in Figure 3.7 in terms of the cache overhead distribution. Loops are
selected as the representative cases of what is generally observed in the tested applications.
For applications dominated by irregular accesses (CG and IS) two loops are selected, one is
the most time consuming loop from the application (loop 10 in CG, and loop 3 in IS), and
the other is a loop dominated by regular accesses. For applications dominated by regular
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Figure 3.7: Cache overhead distribution for CG (loops 1 and 10), IS (loops 1 and 3), FT
(loop 2), and MG (loop 4). Total execution time is broken down and percentages are
displayed. Components of the execution time which correspond to less than 1% of the
execution time are omitted from the charts.

accesses (FT and MG), the most time consuming loops are selected (loop 2 in FT, and loop
4 in MG).

Loop 1 in CG is an example of a loop doing initialization on plenty of references. This
loop is dominated by the activity in the High Locality Cache. The actual loop computation
in this loop takes only 9% of the total loop execution. Notice how the memory consistency
support (write-back and update of dirty bits) corresponds to a considerable amount of over-
head, around 78%, divided in to a 36% for updating the dirty bits information and 42%
devoted to the write-back operation. This is due to high degree of write-access references in
this loop, five out of six regular references require maintaining of the memory consistency.
Notice that mapping a cache line to the High Locality Cache corresponds to 10% of the ex-
ecution time which is more than the time spent in the computation phase. Synchronization
on the barrier in this loop takes 3% of the execution. For the second case of CG (loop 10),
the distribution is very different. This loop is dominated by the activity in the Transac-
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tional Cache and it is the most time consuming loop of CG. Here, the actual computation
corresponds to a 46%, while 18% is devoted to control code on the Transactional Cache,
plus a 22% of time devoted to synchronize with the DMA engine for transactional data
transfers. The case of loop 10 in CG represents a case which does not suffer from memory
consistency issues since in this loop there is only one regular write-access reference which is
not as frequently accessed as the rest of references in this loop. The case of CG loop 10 is
composed of two nested loops where mentioned regular write-access reference is preset at
the outer level while the inner most loop contains reduction operation which modifies one
scalar value. That’s why write-back and update of dirty bits are omitted from the chart
for this loop since both stand for close to 0% of the execution time in this particular loop.

On the other side, the case of loop 3 in IS is dominated by the activity in the Transac-
tional Cache but contains some regular write-access references which are accessed as often
as the irregular references in this loop (accesses at the same loop-nest level). We can see
that write-back corresponds to 10% of the execution time while the update of dirty bits
is around 13% of the execution time. Due to noticeable memory consistency components,
actual computation corresponds to much less percentage than computation in loop 10 in
CG. Here it is 22% in contrast to 46% observed in loop 10 in CG. Notice that only 1%
is devoted to control code for High Locality Cache, while 17% is devoted to the Transac-
tional control code in this loop with the significant time, 36% of loop execution, spent in
synchronizing with transactional DMA transfers. The other case of IS is loop 1 which has
no irregular memory accesses. In this looop situation is similar to the case of CG loop 1.
Actual computation corresponds to only 13% of the total execution, while memory consis-
tency takes 82% (48% for update of dirty bits, and 34% for write-back mechanism). In this
loop, synchronization with DMA transfers takes only 1%.

The case of FT loop 2 consists of more complex kernels with plenty of references to
be handled by the High Locality Cache. In this loop overhead of the memory consistency
is as high as in simple kernels, such as CG loop 1 and IS loop 1. Notice, update of dirty
bits and write-back mechanism take 28% and 46% of the loop execution respectively, while
control code for High Locality Cache takes only 5% of loop execution. Work component
corresponds to 20% of the execution.

Loop 4 from MG is the most time consuming loop in MG application. It is more
complex kernel than CG and IS loops. Similarly to FT loop 2, MG loop 4 contains only
high locality references but with a different degree of write-access references. In FT loop
2, 50% of all references treated through the High Locality Cache require maintaining of
memory consistency. In a case of MG loop 4, that percentage is lower and equal to 17
(three out of 18 references are write-access references). Due to smaller degree of write-
access references, memory consistency in this loop takes 35% of total execution time (16%
for update of dirty bits, and 19% for write-back mechanism), in contrast to 74% in FT loop
2. Control code for the High Locality Cache takes 15% of the loop execution, while only
2% are devoted to synchronizing with DMA transfers.

In general, actual computation component is saturated by the cache overhead. Compu-
tation can be as little as 10% of the execution time in some loops. No matter the type of
loop, whenever regular write-access references exist, memory consistency component (up-
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date of dirty bits and write-back) significantly contribute to low percentage of time devoted
to the computation phase. This is drastic in a case of loops with no activity in the Transac-
tional Cache since there memory consistency overhead can go above 80% of loop execution
time. In loops dominated by the activity in the Transactional Cache, noticeable overheads
are the synchronization with transactional DMA transfers and the control code for op-
erating with Transactional Cache. So, even we achieved good overlap of communication
with control code execution, some communication is still not overlapped enough imposing
high synchronization overheads in the Transactional Cache. Synchronization with DMA
transfers in High Locality Cache does not seem to be a problem by now.

3.5 Related Work

As analyzed in the evaulation, tiling transformations and static buffers may be used to
reach the same level of code optimization [37]. In general, when the access patterns in
the computation can be easily predicted, static buffers can be introduced by the compiler,
usually involving loop tiling techniques. This approach, however, requires precise infor-
mation about memory aliasing at compile time. When not available at compile time, one
could still generate several code versions depending on runtime alignment conditions, at a
cost in code size. Or, we can follow the approach in this chapter, where we postpone the
association between static buffers and memory references until run time. In doing so, we
solve all the difficulties related to memory aliasing since the High Locality Cache lines are
treated as buffers that are dynamically allocated. Of course, if the performance of a soft-
ware cache approach is to match that of static buffers, clearly, any efficient implementation
should work with a cache line size similar to that of the static buffers (usually 1KB, 2KB,
4KB, depending on the number of memory references to treat) [21]. This is the case of the
software cache design presented in this chapter.

Chen et al [22, 23, 64] have further developed an integrated static-buffer and software-
cache approach so as to enable the parallelization of loops that include references directed
to both structures. Their scheme specifically addresses software-cache references that may
potentially use data currently present in static buffer, or vice versa. Their approach at-
tempts to minimize coherency operations using a layered approach including compile time
and runtime disambiguation.

S. Seo et al [98], propose a software cache architecture, with a fast and adaptive place-
ment and replacement mechanism for accelerator-based architectures with local memories.
In general, this solution defines simple mechanisms and compiler code transformations to
smooth the overhead related to the local memory management. Proposed software cache
architecture operates on the similar way as traditional software cache, using similar code
transformation. This approach does not expose any aggressive optimizations such as those
found in our proposal: hybrid design which highly optimizes accesses to high-locality ref-
erences and maximizes overlapping of the communication with the control code execution.

Miller and Agarwal [71] proposed a software instruction cache. The main issue is how to
treat the direct/indirect jumps. The proposed mechanisms, although falling into software
caching techniques, are very different from the ones presented in this chapter. There is one
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particular aspect in common to our proposal. Their approach must be able to pin basic
blocks in the instruction software cache while there might be jumps that point to them.
Our solution is based on counters indicating how many memory references point to a cache
line.

The work in HotPages/FlexCache [75, 76] is similar to our work but is not as powerful
and simple as the work described in this thesis. It relies on mechanisms of considerable
complexity and needs of a compiler analysis with some degree of accuracy (e.g: pointer
analysis). In addition, it does not provide a solution where the compiler fully removes the
checking code around memory references presumed to reference the hot pages.

Software caching techniques have been applied to reduce the amount of power consump-
tion associated to cache management. These proposals face similar problems as the ones
addressed in our work. For instance, Direct Addressed Caches [118] propose the elimination
of the tag checks by making the hardware to remember the exact location of a cache line,
so that hardware can access data directly. This proposal requires the definition of new
registers in the architecture to relate load/store operation to specific cache lines, leaving to
the compiler the decision of what memory references have to be associated to the additional
registers. In addition, this proposal requires new load/store instructions to actually make
use of the associated registers. The work in SoftCache [40] is based on binary rewriting,
which requires a complete control-flow and data-flow analysis of binary images. Clearly
this is not the case in the proposal of our work, which avoids such complexity.

In Udayakumaran et al. [110] data allocation in scratchpad memories is addressed.
Although a different context, the problems solved are similar to the ones addressed in
this chapter. The proposal is based on code region analysis through code profiling, plus
frequency analysis of memory accesses. Derived from this information, a timestamp process
is applied to basic blocks and specific points in the code are defined where control code is
injected to move data between DRAM and SRAM. The solution is able to efficiently treat
memory accesses that could be statically associated to a specific code point. Pointerbased
accesses and aliasing are not totally solved, since the presented solution explicitly maintains
a side structure (e.g: a height tree) for detecting if data is missing in the SRAM and ensure
a correct address translation. The proposal in this chapter is generic enough to not rely
on any profiling information for the compiler to statically allocate data. On the opposite,
the proposal in this chapter delays at runtime the allocation and mapping decision, and
succeeds in removing most if not all the control code surrounding the memory references.

3.6 Conclusions

This chapter presents a novel, hybrid access-specific software cache architecture that maps
memory accesses according to the locality they expose. It presents a design of two dis-
tinct and custom cache structures that are tailored for two different kind of references:
high-spatial locality and irregular references. Performance evaluation indicates that the
hybrid design is more efficient than TSC-TILING approach in IS, CG, and MG applications
achieving speedup factors in the 1.11 to 3.73 range. Achieved performance in these three
benchmarks is also competetive to execution in the PowerPC 970MP processor. However,
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performance should be further improved since HYBRID is far enough from TSC-TILING
and PPC970MP configurations in FT application.

Performance evaluation analyses overhead distribution for the hybrid software cache by
giving insights on how execution time is distributed when hybrid approach is used. We
outline two main overheads to be addressed. Evaluation shows that overhead related to
the update of dirty bits and write-back for High Locality Cache can take up to 80% of
the execution time. Memory consistency maintaining through dirty-bits is inherited from
the traditional software cache without any optimizations in our initial design of the hybrid
software cache. This overhead is a candidate to be addressed. Also, significant time spent in
the synchronization with transactional DMA transfers denotes second important overhead
to be addressed. In the next chapter we address memory consistency overhead and in
Chapter 5 we address the synchronization overhead.
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Chapter 4

Memory Consistency

This chapter is about adaptive and speculative memory consistency support for multi-core
architectures with on-chip local memories. We analyze sources of memory consistency
overheads in our hybrid-access specific software cache and motivate further optimization
regarding memory consistency support in Section 4.1. Then, we present detailed design of
the new memory consistency block in Section 4.2. Needed compiler support is explained as
well, and Section 4.3 is devoted to it. Section 4.4 evaluates our proposal. Related work is
presented in Section 4.5 and conclusions of the chapter are in Section 4.6.

4.1 Motivation

As it is shown in Chapter 3, hybrid access-specific approach can substantially accelerated
code by first determining whether a reference exhibit a high-locality or an irregular access
pattern, and then directing each reference to one of two custom cache structures that are
tailored for their respective access pattern. Figure 4.1(d) shows the code transformation
following this hybrid approach. Comparing the codes in Figure 4.1(b) and Figure 4.1(d),
it is clear that the control code surrounding memory references r1 and r3 has been totally
removed, and now this control code is executed at cache line level, not at memory reference
level. This is not the case for the code responsible for memory consistency, as every store
operation requires control to monitor the modified data. Thic control is done by CON-
SISTENCY macro in traditional software cache, and by HCONSISTENCY macro in our
High Locality Cache. In this chapter, we address this source of overhead in the context of
a cache design that enables the code transformation in Figure 4.1(d).

Software caching techniques rely on mechanisms that keep track of which elements in
a cache line hold modified data. This is typically done using a dirty-bits data structure
that is kept up-to-date by compiler introduced code. Every store operation is instrumented
so as to record which bytes are being modified in the accessed cache line. The dirty-bits
information is then used during the write-back process, so that only the modified parts
of the cache line are transferred to main memory. Usually this implies reading the cache
line, merging the modified data with the unmodified data, and then transferring the whole
cache line back to main memory. The overall process suffers from two different sources of
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i=0;

while(i<N){

   n = N;

   if(!AVAIL(h1, &index[i], 4)

      HMAP(h1, &index[i]);

   n = min(n, i+AVAIL(h1, &index[i], 4);

 

   if(!AVAIL(h3, &v[i], 4)

      HMAP(h3, &v[i]);

   n = min(n, i+AVAIL(h3, &v[i], 4);

   HCONSISTENCY(n, h3);

   

   HSYNCH(h1, h3);

   for(;i<n;i++){

      tmp = REF(h1, &index[i]);

      if(!HIT(h2, &w[tmp])

         MAP(h2, &w[tmp]);

      REF(h3, &v[i]) = REF(h2, &w[tmp]);

   }

}

for (i=0; i<N; i++)

{

   tmp = index[i];

   v[i] = w[tmp];

}

High locality: r1, r3

Irregular: r2

r1

AVAIL(handle, addr, stride): return the number of data entries that 

     found within the cache line pointed to by the handle.

HMAP(handle, addr): locate, determine hit, update reference counter, 

     eagerly write back and bring in line when needed.

HCONSISTENCY(trip count, handle1, handle2, ...): update memory

     consistency for each of the handles and for the given trip count.

HSYNC(handle1, handle2, ...): synchronize with all pending DMAs

     recorded in the handle list and generated by HMAP calls.

REF(handle, addr): return &handle.local + addr & MASK

r1

r2r3

r3

r2

 for (i=0; i<N; i++) 

 {
  

    if (!HIT(h1, &index[i])) 

       MAP(h1, &index[i]);

    tmp = REF(h1, &index[i]);
   

    if (!HIT(h2, &w[tmp])) 

       MAP(h2, &w[tmp]);
     

    if (!HIT(h3, &v[i])) 

       MAP(h3, &v[i]);
     

    REF(h3, &v[i]) = 

          REF(h2, &w[tmp]);

    CONSISTENCY(h3, &v[i]);

 }

r1

r3

r2

HIT(handle, addr)

    handle = Lookup(addr);

    return handle != NULL;
  

CONSISTENCY(handle, addr)

   Update dirty-bits
   

REF(handle, addr)

    return &handle.local + 

                   addr & MASK;
   

MAP(handle, addr)

    handle = Placement(addr);

    if (NeedToEvict(handle))

         WriteBack(handle);

         Synchronize();

    ReadIn(addr, handle);

    Synchronize();

r2

(a) Original code example. (b) Traditional software cache. (c) Traditional handler.

(d) High Locality Cache transform.

(e) High Locality Cache handler.

Figure 4.1: Code transformation for traditional software cache design and High Locality
Cache design. The assumed size of the data found in the used arrays is 4 bytes.

overhead:

• The number of executed instructions is increased in order to update the dirty-bits as
well as to perform the merging operation.

• The transfer of the line from and to main memory result in additional communication
for which we must further enforce atomicity to ensure correctness.

One interesting measurement is the number of cache lines that actually need the use of
both dirty-bits and atomicity. Those cache lines are the ones that have been modified by
more than one thread. In general, determining which cache lines are going to be modified
by more than one thread is not a simple problem. This information is not available at
compile time, and at run time, complex mechanisms have to be introduced to distribute
the data describing which thread is modifying which cache line.

The simplest solution is to generally introduce atomicity and dirty-bits (this is used
in the traditional software cache and our High Locality Cache inherited it from there),
regardless of the fact that a cache line actually does not need both. This creates a significant
loss of performance, most noticeable in the scientific domain where parallel loops are mostly
composed of regular and predictable access patterns that translate into the fact that very
few cache lines are modified by more than one thread. For instance, assume that the i -loop
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in Figure 4.1(a) is parallelized and the iteration space is cut in even chunks containing
consecutive i -iterations. In such situation only the cache lines accessed within the borders
of the assigned chunks of iterations are going to be modified by more than one thread. If
the i -loop is executed by N threads, only N-1 cache lines might be concurrently modified,
while all other cache lines are going to be modified by only one thread. This defines a
significant disproportion that in the context of a fully software controlled environment, it is
likely to incur in unacceptable overheads. It is necessary to provide the cache design with
the ability to detect and adapt to particular access patterns that result in the situation
previously described.

Our proposal is to design an adaptive and speculative memory consistency support in
the context of a hybrid cache architecture. Adaptive and speculative memory consistency
support is implemented in the Memory Consistency Block (presented in Chapter 3). The
Memory Consistency Block is enhanced with new functionality and besides the standard
write-back (Section 3.2.3.1) there are two new write-back mechanisms:

• Lock-Unlock Write-Back

• Speculative Write-Back.

Performance evaluation indicates that improvements due to the optimized memory con-
sistency translate into speedup factors from 1.30 to 2.60, comparing hybrid software-cache
with optimized memory consistency to the initial design of the hybrid software-cache with
standard write-back.

4.2 Enhanced Memory Consistency Block

The main characteristic of the modified design is that of implementing a speculative write-
back mechanism for specific cache lines. The enhanced Memory Consistency Block (MCB)
defines one heuristic to classify cache lines and according to this classification some cache
lines are decided to be treated speculatively, while others are not. The basis for this
classification is the definition of memory regions and an associated access pattern among
the executing threads.

4.2.1 Cache Line Classification

The adaptive and speculative behavior of the MCB is controlled by information collected
at runtime. This information describes memory regions and how they are supposed to
be accessed by the executing threads. Once this information is obtained (usually at the
beginning of the execution), its main purpose is to guide MCB to behave in a particular
way throughout the rest of the execution. It is important to bear in mind that memory
regions are supposed to be useful only for High Locality Cache, which suffers from memory
consistency overheads. Therefore, memory regions are specified only for a data that is
exclusively modified by the High Locality Cache.

Memory regions are specified by three parameters. Two parameters are starting and
ending addresses of the memory region while the third parameter is a description of the
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access pattern within the memory region. The access pattern within a memory region is
described as a data distribution: the memory region is cut in even chunks, and chunks are
assigned to cores according to some pre-determined distribution schemes. The supported
schemes try to capture the most common access patterns defined by parallel loops that
operate and modify data structures in the form of vectors or multi-dimensional matrices.
In that direction, the STATIC and INTERLEAVE schemes are supported. A STATIC
distribution causes the memory region being cut in as many chunks as the number of
executing threads. Then every chunk is assigned to a core. The INTERLEAVE scheme
cuts the memory region in chunks of a particular size, determined at runtime. Then the
chunks are assigned to cores in a round robin fashion. Both schemes are totally inspired
in their correspondence to loop scheduling schemes. Finally, a RANDOM distribution is
supported for generality, to indicate that it is not possible to make a correspondence between
the access pattern in the computation and a distribution of a memory region.

The memory regions and their distribution allow for classifying the cache lines and select
a specific mechanism to implement the write-back operation. Cache lines are classified as:

• Volatile - those that do not belong to any memory region. These cache lines are
assumed to be modifiable by any thread at any time and through the High Locality
Cache and the Transactional Cache indistinctly.

• Random - cache lines that fall only into RANDOM memory region. They are as-
sumed to be modifiable by any thread at any time but exclusively through the High
Locality Cache.

• Speculative - those that fall either into a STATIC or INTERLEAVE memory region.
These cache lines are assumed to be modified by just one thread and exclusively
through the High Locality Cache. A particular owner concept is associated to these
cache lines. Given the base address of a cache line, it is possible to determine the
memory region it falls into, and particularly, the core where the cache line belongs to,
according to the distribution of the memory region and assignment between chunks
of the memory regions and cores. Therefore, the owner of a cache line is the core that
owns the chunk of the memory region where the cache line is located.

The aim of the cache line classification is to relax the write-back mechanism. For volatile
cache lines, no ownership information is available so a very conservative and costly write-
back is designed. For random cache lines, although it is not possible to know what threads
are going to modify the cache line, it is ensured that the cache line is exclusively modified
through the High Locality Cache. This allows for relaxing the atomicity requirements
leading to a more optimized write-back. Finally, speculative cache lines are treated under
two assumptions or speculations: first, the cache line is going to be modified under a single-
writer scheme; second, a guess is made on the core that is going to modify the cache line.
The basis for this speculation is the definition of the owner concept associated to speculative
cache lines.

The owner of a cache line is allowed to evict the cache line using a very simple mechanism
that does not need to track modified parts nor relies on atomic data transfers. Simply, the
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Figure 4.2: Global and local data structures of the enhanced MCB.

owner sends back the modified cache line with no regard of any other write-back operation
to be performed by another thread on the same cache line. If a thread evicts a not-owned
cache line, this means the speculation was wrong and now the write-back process becomes
far more complex, since the consistency protocol is open to the fact that one thread is
allowed to freely modify the memory state. In this case, a mandatory synchronization is
necessary between the owner and the non-owner, at the moment the latter has to evict a
not-owned cache line. Evicting a not-owned cache line is going to require a complex protocol
that is likely to result in significant overhead. Although that, notice that the impact on
performance strictly depends on how often threads evict not-owned cache lines. The main
objective of memory regions is to match the access pattern of the parallel computation,
and consequently define appropriate owners. Then the impact of this new approach can be
extremely reduced. In order to ensure consistency, owners are guaranteed to be unique and
computable by any executing thread. Therefore, the MCB requires that every thread has
exactly the same information about memory regions. The task of defining the unique and
appropriate memory regions is assigned to the compiler and is discussed in Section 4.3.

Figure 4.2 shows the data structures in the MCB, in particular the memory regions and
their distribution are recorded in the Local Memory Region Descriptors. This structure is
organized as a table where every entry describes one region and the associated distribution.

Depending on the type of a cache line, a particular write-back mechanism is executed
to flush the cache line. Volatile cache lines are evicted using the standard write-back that is
already described in Section 3.2.3.1. Random cache lines are evicted using the Lock-Unlock
write-back (Section 4.2.2) and speculative cache lines are evicted using the speculative write-
back (Section 4.2.3).
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4.2.2 Lock-Unlock Write-Back

This write-back mechanism is implemented through atomicity and dirty-bits information,
but the effect of atomicity is considerably smoothed. Atomicity is guaranteed through
the definition of a mapping between cache lines and a set of locks. The applied mapping
function takes the base address of the cache line (B) and computes B modulo N, where N
corresponds to the total number of locks in the MCB. The output of this function points
out one of the available locks and it is going to be used at the beginning of the write-
back process. Whenever a cache line has to be evicted, the write-back process starts by
the locking action over the selected lock. When this operation succeeds, the cache line in
main memory is read and transferred to the local memory (this is a temporal metadata
introducing additional storage overhead). Then a merge operation is applied between both
versions, the one resident in the cache storage and the one recently transferred. Finally, the
output of the merge is sent back to main memory and the selected lock is freed. Of course,
atomicity is only guaranteed if no thread is allowed to modify the cache line with no other
mechanism than the Lock-Unlock write-back. This is ensured by the fact that one line is
mapped to only one policy and memory regions are unique among the executing threads
(more details follow in Section 4.3). Figure 4.2 shows the runtime structure supporting
this mechanism: the Global Hashed Locks structure. It is organized as a vector of N cells,
where every one implements a lock data structure.

4.2.3 Speculative Write-Back

This write-back mechanism is based on the ownership relation between cores and cache lines.
Two different implementations are executed depending on who is executing the write-back
process.

The cache line owner is allowed to directly transfer his version of the cache line with no
regard of any other ongoing write-back processes operating on the same cache line. Notice
that this corresponds to a very efficient write-back, as both atomicity and dirty-bits are
avoided.

Non owners postpone the write-back process and temporarily evict the cache line to a
buffer allocated in main memory (Figure 4.2, the Global Conflict Buffers). This buffer holds
the cache line version plus the dirty-bits content that is going to be necessary when the
actual write-back process takes place. Solving the pending write-backs requires isolation in
the sense that it is not acceptable to allow one thread to solve a pending write-back while it
is possible that another thread freely flushes the same cache line acting as an owner, that is,
transfers the cache line with no regard of any other modifying thread. In order to observe
this restriction, the execution of pending write-backs is performed by all threads at a time at
particular execution points. According to the relaxed memory consistency model, pending
write-backs are expected to be solved at a synchronization point located at the end of the
parallel computation where the executing threads synchronize under a barrier scheme. Of
course, it is possible that the buffers get full in the middle of the parallel execution: then
the affected thread blocks the execution until all other threads reach the synchronization
point or all threads are blocked because pending write-backs have exceeded their buffer size.
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When write-backs are completed, blocked threads resume their execution, and eventually
reach the synchronization point. The impact on performance of this process is totally
conditioned on how often buffers get full, on the actual write-backs and the cost of the
necessary synchronization to start the execution of pending write-backs. Figure 4.2 shows
the runtime structures supporting this mechanism. The Global Conflict Buffer corresponds
to the buffer that every core uses to postpone the write-back operations. Every core has
assigned one exclusive partition of this buffer of M entries. The Local Conflict Translation
Table keeps up to M temporary translations for cache lines that have been evicted using the
Global Conflict Buffers. In general case, the look-up process of the High Locality Cache is
forced to check this structure to maintain the memory consistency. Preferably, parameter
M is a small number so as to skip huge overheads for the look-up process of the High
Locality Cache. This system is designed to perform with low overheads only when conflicts
occur rarely. The Global Barrier Register is used to ensure the isolation along the pending
write-back process. The Local Dirty Bits allow for monitoring the modified parts of resident
cache lines.

4.3 Compiler Support

In this section we describe the compiler technology to activate the capabilities of the cache
design at runtime. In particular, memory consistency is addressed and the compiler support
to define appropriate memory regions is discussed, as well as the restrictions to be observed
in the context of a hybrid design. This section is not intended to describe in full detail a
code generation algorithm, but to show that the compiler techniques needed to efficiently
exploit the memory consistency mechanisms that have been proposed, are based on well
studied techniques, such as array section and pointer analysis.

With no loss of generality, the compiler techniques target the execution of parallel loops,
assuming the code transformation that is showed in Figure 4.1(d). The code transformation
is performed in four ordered phases:

1. Classification of memory references into high-locality and irregular accesses. The high
locality references are those exposing a stride access pattern, all other references are
considered irregular;

2. Introducing of memory regions for high-locality memory accesses

3. Code transformation to optimize high-locality memory references

4. Code transformation to optimize irregular memory references.

Compiler support presented in this section corresponds to the phase 2. All other phases
are described in Section 3.3.

4.3.1 Memory Regions Definition

In the example in Figure 4.1(a), assume the i -loop has been parallelized. It is out of
the scope of this thesis to cover the mechanisms to support the work distribution among
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the executing threads. Assume that the iteration space is distributed among the threads
according to an OpenMP STATIC scheduling: the i -iteration space is cut in even chunks
of consecutive iterations and every chunk is assigned to one thread.

In order to generate appropriate and consistent memory regions we rely on two main
compiler analysis: array section and pointer analysis. Array section analysis [81] can be
applied to determine the range of every write high-locality reference. Ranges can be de-
scribed with the triplet notation [100]: starting address, ending address and access stride.
Clearly, ranges can be directly translated to memory regions. The work of the compiler
starts by deciding if any of the available distributions matches how the memory regions
are going to be accessed given the loop scheduling and the range information. In case the
range information is not sufficient to determine the correspondence to memory regions, a
RANDOM distribution can be defined. Remember that the applied distribution is only
used for selecting a particular mechanism at the write-back moment. A distribution that
at runtime does not match the access pattern in the computation will lead to poor perfor-
mance, but in any case it is not opening the design to cause memory inconsistency. The
only restriction to be observed is that of the possible interaction between the High Locality
Cache and the Transactional Cache. Remember that the Transactional Cache operates
under a write-through scheme. Because of this behavior, the consistency model is open to
allow threads to freely modify the memory state through the Transactional Cache. This
collides with assumptions made along the write-back process for cache lines in the range of
defined memory regions. It becomes mandatory to ensure that data mapped to the Trans-
actional Cache is never within the range of any defined memory region. For this particular
subject, pointer analysis [96, 117] is necessary to determine whether any irregular access
can reference a datum within a memory region obtained after the range analysis. If this is
the case, the memory region affected by this type of alias can not be defined and all cache
lines in the region will be treated as volatile cache lines and evicted with the standard
write-back process. In this particular topic, the compiler always has to be conservative.
It is not acceptable to define a memory region as long as it can not be ensured that no
irregular access is going to modify any datum in the region.

4.4 Evaluation

The evaluation section is divided into three parts. First, we measure the performance
impact of the proposed memory consistency optimizations. Second, we study the overall
performance and compare with TSC, TSC-TILING and PPC970MP configurations. Finally,
we measure the overheads introduced by the software cache when using speculative write-
back. The CG, IS, FT, and MG applications are used for the evaluation under methodology
described in Section 2.2.

Three different hybrid cache configurations are used. The HYBRID is our initial hybrid
design (as described in Section 3.2) with standard write-back which treats every modi-
fied cache line as volatile. Second configuration is the HYBRID-lock that considers every
modified cache line as random. Finally, the last configuration is the one that relies on
memory regions for classifying every modified cache line. We refere to this configuration as
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Figure 4.3: Performance impact of memory consistency support in CG, IS, FT, and MG
applications.

HYBRID-speculative.

In our implementation for Cell, we use the Global Conflict Buffers of 16 entries per
thread, and the Global Hashed Locks structure of 128 locks.

4.4.1 Optimized memory consistency effect evaluation

Figure 4.3 shows the performance of every parallel loop (28 loops in total) in the tested
applications. The chart shows execution times normalized to the HYBRID configuration.
Therefore, the Y-axis shows reduction of the execution time in percentage respect that
version.

The CG application is composed by 14 parallel loops. Figure 4.3 shows that most of
them show a good response in front of the optimizations in the write-back mechanism.
This is the case for loops 1, 3, 4, 8, 11, 12, and 14, where the improvements range between
40% and 60% for the HYBRID-speculative versions. Figure 4.4(a) shows the execution
time breakdown for loop 1 in CG. Notice how HYBRID-lock version improves only write-
back mechanism while update of dirty bits remains the same. In the HYBRID-speculative
version both components are improved, being both just 8% of loop execution time, with low
overhead imposed by solving pending conflicts. The case of loops 2, 5, 6, 9, and 13 suffer
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from a reduction operation which modifies only scalar values which makes unnoticeable the
improvements in the write-back mechanisms. Finally, loops 10 and 7 suffer from a huge
activity in the Transactional Cache. Figure 4.4(b) shows the executing time breakdown for
loop 10 in every of its versions. The optimizations in the memory consistency support are
unnoticeable in this kind of loops but do not impose any overheads in the control code as
well.

The IS application is composed by 4 loops that work with a working set organized under
several vectors. Loops 1, 2, and 4 are similar to CG loop 1. These loops show improvements
ranging from 20% up to 70%. Overall execution of the IS application is totally dominated
by loop 3. This loop suffers from the memory consistency overheads and the activity in
the Transactional Cache. Figure 4.4(c) breaks down the execution time of this loop and
confirms the expected trend: write-back code is significantly imporoved in the HYBRID-
lock version, while both, the update of dirty bits and the write-back code are practically
eliminated in the HYBRID-speculative version.

In the MG application the main core of the computation is composed by 5 parallel loops.
Unless for loop 5, all loops expose the same trend, in average: the HYBRID-lock version
gives an initial improvement about 20%, and the HYBRID-speculative version improves
for about 40%. To explain those improvements, Figure 4.4(d) shows the execution time
breakdown for loop 4. In the HYBRID version, the write-back and the update of dirty-
bits represent 35% of loop execution time, and in the HYBRID-lock only the write-back
process is improved, being both issues 28% of total execution time. In the HYBRID-
speculative version, both write-back and update of dirty-bits are improved resulting in less
than 1% of loop execution time. Solving pending conflicts is negligible in the HYBRID-
speculative version of this loop. It is not visibile in Figure 4.4(d) since it corresponds to
less than 1% of the execution time. In general, we do not observe any significant overhead
for solving conflicts since it was easy to precisely specify memory regions for the tested
openmp parallel loops. In general, MG loops 1, 2, 3, and 4 show the same trend, and all
of them are affected by a reduced number of conflicts (between 1 and 5, depending on the
number of matrices being modified in the loop). This explains the obtained efficiency in
the HYBRID-speculative version: very few cache lines are actually evicted relying on dirty
bits and atomicity. Finally, loop 5 exposes a very different behavior: this loop computes
two reduction operations, thus, it only modifies two scalar values which does not respond
in front of the optimized write-back mechanisms.

The FT application is composed by 5 loops that show a behavior very similar to the one
exposed by loop 4 in the MG application. Similar results are obtained in what concerns to
time distribution. Improvements are about 20-40% for the HYBRID-lock version, and up
to 70% for the HYBRID-speculative version.

In conclusion, we observe that the speculative write-back succeeds in avoiding the over-
heads of the memory consistency support, which ranges from 20% to 80% of loops execution
time. In all tested loops the access patterns are easily translated to memory regions and
appropriate memory distributions.
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Figure 4.4: Execution time breakdown for CG (loops 1 and 10), MG (loop4) and IS (loop3)
applications threated under three different memory consistency mechanisms.

4.4.2 Overall Performance

Overall execution times of the tested applications are presented in Figure 4.5. As it is de-
scribed, MG and FT applications are dominated by high-locality accesses, improvements in
those applications are better than in CG and IS which are dominated by transactional ac-
cesses. In MG application, HYBRID-lock version gives improvement of 13% and HYBRID-
speculative approach gives improvement of 30% versus HYBRID configuration. This is
expected since in average all loops in MG show similar improvements. In FT application,
reduction in overall execution time of 33% comes from HYBRID-lock version and reduc-
tion of 60% comes from HYBRID-speculative version. FT application benefits a lot from
HYBRID-speculative version. Obtained execution times for FT are in accordance with
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Figure 4.5: Performance of the hybrid software cache approach with memory consistency
optimizations.

results obtained per loop in FT application. Overall execution time for CG shows that
this application does not benefit from memory consistency optimizations. In a per loop
analysis, it is shown that some loops benefit from HYBRID-lock and HYBRID-speculative
versions in CG but their benefit is not achievable in overall execution time due to loop
10 which is the most consuming loop (90% of execution time) dominated by transactional
accesses which does not suffer from memory consistency issues. Besides IS is dominated by
transactional accesses, situation is a little bit better than in CG because execution time of
the most consuming loop in IS (loop 3) takes 60% of the overall execution time in IS, in
contrast to 90% in CG. Improvement of HYBRID-lock version versus HYBRID version in IS
is 10% of reduction in overall execution time while improvement from HYBRID-speculative
version is around 25%.

Improvement of HYBRID-speculative approach over TSC-TILING is noticeable in all
loops, resulting in speedups of 1.50, 3.82, 1.27, 4.17 for IS, CG, FT and MG applications
respectively. In respect to PPC970MP configuration, besides having speedup of 2.56 in
IS application, HYBRID-speculativeperforms 1.15 times faster in MG application as well.
Performance obtained in CG and FT applications for HYBRID-speculative version is near
the performance of PPC970MP but still close to 20% behind.

4.4.3 Cache Overhead Distribution

The main aim of this section is to analyze the cache overheads and determine an upper
bound for the further optimizations. For that purpose, the same six loops from Section 3.4.3
are described here in terms of cache activity under HYBRID-speculative approach. Fig-
ure 4.6 shows the time distribution for the selected loops in IS, CG, FT and MG applications.

The case of loop 1 in CG is improved a lot by in the HYBRID-speculative version.
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Figure 4.6: Cache overhead distribution for CG (loops 1 and 10), IS (loops 1 and 3), FT
(loop 2), and MG (loop 4) under HYBRID-speculative configuration. Total execution time
is broken down and percentages are displayed. Components of the execution time which
correspond to less than 1% of the execution time are omitted from the charts.

Instead of only 9% of loop execution time devoted to computation phase in HYBRID
version (Section 3.4.3), now that percentage is 27. It is increased 3 times but still not
enough. Due to optimized memory consistency, which now takes only 8% instead of 78%
in HYBRID version, a component which is drastically increased now is the synchronization
with DMA transfers in the High Locality Cache. This synchronization time takes 15%
of loop execution time, while in the HYBRID version it was below 1%. Control code
is not long enough anymore to overlap all communication and then the synchronization
component becomes noticeable in the HYBRID-speculative configuration. Solving pending
conflicts does not incur in unacceptable overheads since 4% of loops execution time is
devoted to that, while 12% is devoted to the barrier at the end of parallel section. Barrier
overhead is due to small workload granularity. The overhead distribution in CG loop 10 is
not changed after memory consistency optimization. It is almost the same as with HYBRID
configuration. Some minor changes of up to 1% appear in the control code for High Locality
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Cache. In general, this loop is still dominated by 18% of execution in the control code for
the Transactional Cache, and by 22% of loop execution in the synchronization with DMA
transfers in the Transactional Cache.

The case of loop 1 in IS application corresponds to a loop which benefits a lot from
HYBRID-speculative approach. Memory consistency corresponds to less than 1% of loop
execution time which makes computation phase to become more significant component,
taking 46% of loop execution time now. The trend of increased synchronization time is
observed here as well. Synchronizing with DMA transfers in High Locality Cache takes
17% of loop execution, while the rest of time is devoted to the control code in High Locality
Cache (26%), and to the synchronization on the barrier at the end of parallel section (11%).
Barrier component is also present in this loop because of small workload granularity. The
case of loop 3 in IS corresponds to a loop affected by an important amount of activity
in the Transactional Cache (22%) and about 47% of the execution is spent in waiting for
data transfers in the Transactional Cache. So, even significant synchronization time in the
HYBRID version, is more significant now when memory consistency overhead is practically
removed.

The cases of loop 2 of FT and loop 4 of MG represents a case which benefits a lot
from memory consistency optimization. In FT loop 2, actual computation corresponds to
70% of the total execution time while cache activity is mostly devoted to the mapping of
cache lines to the local memory (about 20%). In this loop, only 5% of total time is devoted
to synchronization with the DMA transfers in the High Locality Cache. In loop 4 of MG,
computation takes 66% of loop execution time, while the rest is mostly devoted to the cache
overhead of mapping cache lines to the local memory which takes 25% of execution time.

In general, we do not observe any significant overhead for solving conflicts since it was
easy to precisely specify memory regions for the tested openmp parallel loops. The rest
of overhead in HYBRID-speculative version is mainly accumulated in synchronizing with
the DMA engine, control code of the High Locality Cache and Transactional Cache, the
cache line pinning mechanism, and waiting on the barrier. Notice that synchronization with
DMA transfers is greater in the HYBRID-speculative than in the HYBRID (Section 3.4.3)
configuration since control code is faster and then it is not long enough to overlap with all
DMA transfers. In contrast to HYBRID configuration, synchronization with DMA transfers
in the High Locality Cache appears to be a problem in HYBRID-speculative configuration.

4.5 Related Work

For software maintained memory consistency, there have been several proposals based on
adaptive consistency protocols in Software Distributed Shared Memory (SDSM) systems
[8, 9, 19, 35, 54]. In order to reduce consistency-related communication, those approaches
try to match the data flow in the computation to several schemes that describe how the data
is accessed and modified. The single writer and multiple writer access patterns configure
the consistency protocol. Besides, the adaptability of the consistency protocols also targets
the minimization of the communication events, by dynamic page aggregation. Basically,
the runtime responsible for all of the communication is able of coalescing data transfers
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affected by the same consistency attributes. In these works, the compiler is not involved in
providing any type of information to guide the system adaptability.

Therefore, Dwarkadas et al. [36] proposed an integrated compile-time/runtime SDSM
system. This integrated system is based on explicit compiler-generated calls for performing
aggregated communication prior to loop executions in order to minimize costly runtime
interventions. Regular section descriptors are used to identify opportunities for communi-
cation optimizations which resulted in a good performance for regular applications. Later,
Lu et al. [65] extended this integrated SDSM system with a compiler support for irregular
applications. Basically, compiler generates data access information for irregular access pat-
terns prior to loop executions, enabling a runtime system to precompute the set of pages
that will be accessed by each core through irregular accesses. Then, the runtime system
requests precomputed pages prior to the loop execution, reducing the amount of communi-
cation, if any, needed during the loop execution itself. Efficiency of this approach greatly
depends on how precise compiler analysis can be for the irregular access patterns.

Many differences arise between these works and the proposal in this chapter. First, the
presented mechanisms are adaptive and speculative in the sense that the implementation
works with non exact information about whether or not a cache line is going to be modi-
fied by one or more threads. Adapting the consistency protocol according to single writer
and multiple writer schemes requires precise information about the data that is going to
be modified in each execution flow. Moreover, in the integrated SDSM systems, compiler
has to generate precise information about data accesses in order to achieve efficient com-
munication. This requires a complex compiler analysis. In our system, compiler provides
with hints to configure the runtime mechanisms supporting the memory consistency for
regular access patterns. For irregular access patterns, we do not use any compiler analysis
to predict data accesses, instead we increase communication and computation overlap as
addressed in Chapter 5. Finally, in SDSM systems data is distributed and challenges are
imposed on reducing the amount of communication to remote nodes, while in our system
data is centralized in the main memory, since local memories are to small to contain the
whole applications’ workload. So, SDSM systems have to maintain memory consistency
across nodes, while in our work we have to maintain the consistency of the main memory.
However, one similarity is imposed. When false sharing happens in our system we use less
efficient write-back mechanism that is based on merging the modified parts of the cache
line to the original cache line, according to the dirty bits information. This is similar in
the SDSM systems, since merging the modified parts enables communication reduction by
transferring only modified data through the network. A structure similar to the dirty-bits
is used to track the modifications in the SDSM systems as well.

Costa et al. [29] studied a runtime alignment of loop boundaries to page boundaries.
This technique collects runtime information about page faults in SDSM systems. Data
structures are build to describe which thread is modifying what page and in what particular
iteration. We observe two different aspects: first, the information collected at runtime
does not relate loop iterations with cache lines, and secondly, speculative techniques are
introduced guided by hints introduced by the compiler.
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4.6 Conclusions

This chapter describes novel memory consistency mechanisms in the context of software
cache techniques. The main achievement is that of minimizing the impact on performance
for the most critical aspects in software-based implementations: atomicity and control code
execution related to dirty-bits data structures. Performance evaluation indicates that the
proposed mechanisms are significantly more efficient: speedup factors between 20% and
40% are observed in several applications in the scientific domain.

Overhead distribution analysis for the HYBRID-speculative configuration confirms that
overhead of synchronizing with DMA transfers in both High Locality Cache and Transac-
tional Cache is a candidate to be optimized. The potential effect of overlapping the commu-
nication with computation ranges between 1% and 40%, depending on the loop type. For
loops dominated by activity in the High Locality Cache, up to 20% of the loop execution
time is spend in the non-overlapped communication. Loops dominated by activity in the
Transactional Cache might experience significant improvements of close to 40%. Besides
the potential positive effect of prefetching we have to point out, as a negative aspect of
the software cache, that the cache overhead of mapping data to the local memory (control
code of High Locality Cache and Transactional Cache) is a significant chunk of execution
time, sometimes more than 30% of loop execution time. In the next chapter, we address
overlapping of the communication with computation in order to decrease the overhead of
synchronizing with DMA transfers. Also, the essential overhead of mapping data to the
local memory is addressed by some hardware optimizations in Chapter 7.
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Chapter 5

Prefetching

This chapter is about prefetching techniques used to achieve efficient data transfers by
increasing the overlap of communication and computation in our hybrid access-specific
software cache. This chapter is organized as follows. Motivation of the proposal is presented
in Section 5.1. The detailed design of the prefetching support for the High Locality Cache
and the Transactional Cache is presented in Section 5.2, while Section 5.3 explaines needed
compiler transformation. Section 5.4 evaluates our proposal. Related work is presented in
Section 5.5 and conclusions of the chapter are in Section 5.6.

5.1 Motivation

Smoothing the impact of the synchronous DMA transfers in order to achieve good overlap of
the communication with the control code execution is significantly addressed in our hybrid
software cache. In contrast to traditional software cache, all DMA transfers that appear
in our hybrid design are scheduled on a way to be overlapped at least with some control
code execution. Overlap of DMA transfers which are bringing data is supported through
grouped control code and asynchronous DMA transfers, while overlap of DMA transfers
which are moving modified data to main memory is supported by eager write-back in the
High Locality Cache, and by write-through policy in a combination with partitioning scheme
in the Transactional Cache. As described in Chapter 3, this communication overlap is one of
the main reasons for great improvements in respect to traditional software cache. According
to the analysis in Section 3.4.2, especially good overlap is achieved in the Transactional
Cache.

However, analysis of the cache overheads in the previous chapter (Section 3.4) shows
that synchronizing with DMA transfers is still an important overhead. Whatever the imple-
mentation of the control code for bringing data to local memory, it is necessary to introduce
a synchronization between the data transfers and the actual load/store operation the control
code is associated to. This typical scheme of control code followed by the synchronization
and the associated computation phase (control-synch-compute scheme), hinders the pos-
sibility of overlapping communication with computation in both cache geometries of our
hybrid design. Prefetch techniques can be introduced to hide the memory latencies, but in
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 for (i=0; i<N; i++) 

 {

    if (!HIT(h1, &index[i])) 

       MAP(h1, &index[i]);

    tmp = REF(h1, &index[i]);
   

    if (!HIT(h2, &w[tmp])) 

       MAP(h2, &w[tmp]);
     

    if (!HIT(h3, &v[i])) 

       MAP(h3, &v[i]);
     

    REF(h2, w[tmp]) = REF(h3, &v[i]);

    CONSISTENCY(h2, &w[tmp]);
     

    REF(h3, &v[i]) = REF(h3, &v[i]) + 1;

    CONSISTENCY(h3, &v[i]);

 }

 for (i=0; i<N; i++)

 {

    tmp = index[i];

    w[tmp] = v[i];

    v[i]++;

 }

add calls to software

cache handler to

each reference

r3

r1

r2

REF(handle, addr)

    return &handle.local + addr & MASK
   

MAP(handle, addr)

    handle = Placement(addr);

    if (NeedToEvict(handle))

         WriteBack(handle);

         Synchronize();

    ReadIn(addr, handle);

    Synchronize();

r1

r3r2

r3

r2

r3

r3

i=0;

if (!HIT(h1, &index[i])) 

   AMAP(h1, &index[i]);

tmp = REF(h1, &index[i]);

if (!HIT(h2, &w[tmp])) 

   AMAP(h2, &w[tmp]);

if (!HIT(h3, &v[i])) 

   AMAP(h3, &v[i]);

   

for (i=0; i<N-1; i++) {

   if (!HIT(h1’, &index[i+1])) 

      AMAP(h1’, &index[i+1]);

   tmp’ = REF(h1’, &index[i+1]);

   if (!HIT(h2’, &w[tmp’]))  

      AMAP(h2’, &w[tmp’]);

   if (!HIT(h3’, &v[i+1]))  

      AMAP(h3’, &v[i+1]);

          

   TSYNC(h1, h2, h3);

          

   REF(h2, &w[tmp]) = REF(h3, &v[i]);

   CONSISTENCY(h2, &w[tmp]);

   REF(h3, &v[i]) = REF(h3, &v[i]) + 1;

   CONSISTENCY(h3, &v[i]);

   h1 = h1’; h2 = h2’; h3 = h3’;

   tmp = tmp’;

}

TSYNC(h1, h2, h3);

REF(h2, &w[tmp]) = REF(h3, v[i]);

CONSISTENCY(h2, &w[tmp]);

REF(h3, &v[i]) = REF(h3, &v[i]) + 1;

CONSISTENCY(h3, &v[i]);

AMAP(handle, addr)

    handle = Placement(addr);

    if (NeedToEvict(handle))

         WriteBack(handle);

         Synchronize();

    ReadIn(addr, handle);

    //asynchronous MAP

TSYNC(handle1, handle2, ...)

     Synchronize with data transfers 

     associated with handlers.

CONSISTENCY (handle, addr)

   Update dirty-bits

HIT(handle, addr)

    handle = Lookup(addr);

    return handle != NULL;
   

r1

r3

r2

r1'

r3'

r3'

r2

r3

r2

r3

(a) Original code. (b) Traditional software cache. (c) Modulo scheduling.

(d) Software cache handler.

Figure 5.1: Modulo scheduling transformation as a prefetching technique.

the context of software cache systems, prefetch does not come for free. Prefetching requires
execution of control code related to the look-up, placement/replacement and data transfer
operations. Besides, it is necessary to ensure that the prefetched data is in the range of the
valid address space.

One well known concept to break down the typical control-synch-compute scheme is
shown in Figure 5.1. In Figure 5.1(b), a code transformation for the traditional software
cache is applied for a code example in Figure 5.1(a). A code transformation for the tra-
ditional software cache uses MAP handler to get data and wait until it comes. In order
to enable overlap of the communication and computation it is necessary to break syn-
chronous communication in the MAP handler into calls: asynchronous MAP (AMAP) to
get data, and TSYNC to wait until the data has arrived (descriptions of MAP, AMAP,
TSYNC and other handlers are shown in Figure 5.1(d)). Now, it is possible to schedule
a work between a given AMAP and its associated TSYNC in order to overlap communi-
cation with computation. Modulo scheduling execution [61, 87, 88] in one such technique
used to schedule a work in between AMAP and TSYNC. In Figure 5.1(c), we illustrate
what changes should be made in order to apply this technique to a code operating with
traditional software cache. Basically, data used in iteration i+1 is prefetched in iteration
i. Asynchronous communications in AMAP makes possible to overlap some computation
in iteration i with some communication related to data used in iteration i+1. Notice that
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TSYNC call, is not associated to the last executed control code burst as it would be in
the typical control-synch-compute scheme. TSYNC call in iteration i+1 is associated to
the control code executed in iteration i. However, the modulo scheduling transformation is
not easy to support, especially in the traditional software cache. There are two undesirable
situations that make the transformation in Figure 5.1(c) inapplicable:

• It is necessary to ensure that no conflicts appear between the set of consecutive AMAP
operations. This is related to the associative level of the cache design and suggests a
full associative scheme, always limited by the look-up overheads.

• It is possible that some write-back operation is triggered along an AMAP operation.
If it implies some communication that has to be performed synchronously, then the
effect of the modulo scheduling transformation is useless.

In contrast to traditional software cache, our hybrid design does not suffer from the
mentioned undesirable situations. Fully associativity scheme is already required by our code
transformation for both cache geometries due to grouped control code execution which is
already present in our design. Also, synchronous transfers are highly avoided in our design
due to write-through policy in the Transactional Cache, and due to speculative and adaptive
memory consistency support for the High Locality Cache.

Thus, our proposal is to improve our hybrid cache design to include specific support of
overlapping communication and computation. According to the nature of memory accesses
and in order to exploit performance, our support of overlapping communication and com-
putation is access-specific. We use specific support for automatic prefetch in High Locality
Cache, and we adapt the design of the Transactional Cache to efficiently support modulo
scheduling transformation.

Performance evaluation indicates that optimized structures of our hybrid software cache
combined with the proposed prefetch techniques translate into speed-up between 10% and
20% for a set of parallel NAS applications. Finally, as a result of all proposed optimizations
for software caching, we can achieve similar performance on the Cell BE processor as on a
modern server-class multi-core such as the IBM PowerPC 970MP processor.

5.2 Modified Software Cache Design

In this section, we describe our software cache design improved to enable automatic prefetch
for regular memory references and to enable modulo scheduling transformations for irregular
memory references. Software cache design described in Chapter 3 is extended with one
additional block named Prefetch Block in Figure 5.2.

5.2.1 The High Locality Cache

The High Locality Cache structures and operational model are the same as it is described
in Section 3.2.1 except that the operational model is extended with the functionality to
communicate with Prefetch Block. The High Locality Cache can communicate with the
Prefetch Block in order to trigger prefetching of a cache line and during that communication
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Figure 5.2: Block diagram of our improved software cache design.

two parameters have to be passed to the prefetch block: the global base address of the cache
line that triggers prefetch and the distance, in a number of cache lines, from the cache line
that triggers prefetch to the cache line to be prefetched. This is everything about new
features in the High Locality Cache.

5.2.2 The Prefetch Block

The Prefetch Block enables automatic prefetch for regular memory references. The Prefetch
Block is selective in the sense that not all regular memory references trigger the prefetch.
It is activated under demand according to the activity in the High Locality Cache. For
selected references, the memory addresses are forwarded to the Prefetch Block. Then the
prefetch can be activated and all forwarded addresses determine the next cache lines to be
prefetched.

5.2.2.1 The Prefetch Structures

The Prefetch Block is composed of the following four structures:

• Prefetch Translation Record to preserve for each reference the address resolved by the
prefetch operation

• Prefetch Translation Table to keep track of records being used in prefetch operation

• The Prefetch Communication Tags to preserve DMA tags used for prefetching.

The Prefetch Translation Record structure consists of four fields:

• The prefetch global address is the base address of the cache line that triggers prefetch

• The prefetch local address is the base address of the cache line allocated to hold the
prefetched data in the local memory
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• the prefetch cache line descriptor is a pointer to the cache line descriptor of the
prefetched line

• The prefetch distance that indicates the next cache line to be prefetched as a distance
(in a number of cache lines) from the cache line base address that triggered the
prefetch.

The Prefetch Translation Table is a table where each entry holds one Prefetch Transla-
tion Record. The Prefetch Counter keeps track of the number of pending prefetch opera-
tions.

The Prefetch Communication Tags consists of all communication tags actively used for
prefetching purposes. These tags are going to be used to synchronize the data transfers
associated to the prefetched data.

5.2.2.2 The Prefetch Block Operational Model

Memory references that have been selected to trigger the prefetch are recorded in the
Prefetch Translation Table. Prefetch is activated from the High Locality Cache and this
causes the Prefetch Block to traverse the Prefetch Translation Table and for every non
empty entry performs the look-up, placement and replacement operations as if the cache
line being prefetched was referenced by the actual computation. Along this process all the
communication tags used in the data transfers are recorded in the Prefetch Communication
Tags register. Under control of the High Locality Cache, it is possible to synchronize with
the prefetched data using this register.

Introducing prefetch support requires reserving some of the available communication
tags specifically for that purpose. The range of tags that was used to bring data in to the
cache storage is split in two different ranges (in our implementation for Cell, one range is
from 0 to 7, and the other from 8 to 15). Both ranges are assigned in a circular manner and
the High Locality Cache and the Prefetch block are coordinated to switch from one range
to the other every time the Prefetch block is required to perform prefetch operations.

5.2.3 The Transactional Cache

Transactional Cache structures and the operational model described in the Section 3.2.2
are changed in order to support efficient modulo scheduling transformations.

5.2.3.1 The Transactional Cache Structures

Essentially the Transactional Cache structures are untouched. The major changes appear
in partitioning of the directory and storage structures. To increase concurrency, the cache
directory and storage structures are logically divided in four equal-size partitions (Fig-
ure 5.3). The Cache Turn Ticket indicates which partition is actively used. Within the
active partition, the Cache Placement Index points to the cache line that will be used to
service the next miss.
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Figure 5.3: Structures of the Transactional Cache adapted for modulo scheduling.

At a high level, the active partition is used for buffering cache lines which are going to be
used in the current transaction and these cache lines were prefetched. The next partition,
in circular manner, is used for placing cache lines which we are prefetching and which are
going to be used in the next transaction in the next iteration of the unrolled loop. Other
two partitions are used to buffer data of the two previous transactions while their modified
data is being flushed back to the main memory. Based on this explanation, we defined three
states in which our partitions can be: in-use, prefetching and flushing.

5.2.3.2 The Transactional Cache Operational Model

A transaction has the same meaning as it is explained in Section 3.2.2.2 and operations in a
transaction happen, as usual, in four consecutive steps: (1) initialization, (2) communication
into local memory, (3) computation associated with the transaction, and (4) propagation
of any modified state back to global memory. All changes in operational model are done
due to new partitioning scheme.

In addition to the explanations about Step 1 (Section 3.2.2.2), during this step the
Cache Placement Index can have values 0, K/4, K/2, and 3K/4 (in our implementation
for Cell, these values are 0, 8, 16 and 24 respectively) when the Cache Turn Ticket is,
respectively, pointing to partition 0, 1, 2, and 3.

The major change is done in Step 2 in the look-up, placement and replacement routines.
Just to remember, the look-up process for a given reference r, translation record h and
global address g proceeds first with look-up in High Locality Cache and if miss occurs
then it proceeds with look-up in a Transactional Cache directory. If miss occurs in the
Transactional Cache directory system operates as usual (Section 3.2.2.2). Handling of the
hit within the Transactional Cache directory is now different. When a hit occurs, the
look-up can operate in one of two ways. If the hit occurred within the active partition
(partition where we are going to prefetch the data for next iteration), we simply update
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the translation record h. If the hit occurred within the next partition, in circular manner,
then we need to do two actions. First, we need to migrate the line to the active partition, a
placement operation is used for this operation as well. Second, we need to inform previous
partition (partition which is in in-use state) about migrated cache line in order to maintain
consistency between transactions. If however hit occurs within the other partitions, we
simply update the translation record h.

In the synchronization routines that are used to ensure consistency within and across
transactions, we have to be aware of using exact tags for synchronization which are not
the same as in the Section 3.2.2.2. When partition 0 is active, we wait for data transfer
operations with tags [0 . . . K

4
− 1], for partition 1 appropriate tags are [K

4
. . . K

2
− 1], for

partition 2 tags are [K
2
. . . 3K

4
− 1], and for partition 3 wait is for tags [3K

4
. . .K − 1]. Note

that in our implementation for Cell, these groups of tags are [0 . . . 7], [8 . . . 15], [16 . . . 23],
and [24 . . . 31] respectively for partitions 0, 1, 2, and 3.

5.3 Code Transformations

We describe in this section the type of code transformation techniques that are now enabled
using our prefetching and modulo scheduling approach in the software cache. With no loss
of generality, the code transformation targets the execution of loops.

The code transformations are performed as usual (Section 3.3) in three ordered phases:

1. Classifying of memory references into regular and irregular accesses

2. Transformation of the code to optimize regular memory accesses

3. Transformation of the code to optimize irregular memory accesses.

This process is illustrated in Figure 5.4.
First phase is the same as it is described in Section 3.3, references r1 and r3 are regular

and reference r2 is irregular (Figure 5.4(a)). Second and third phase are different and here
we are going to explane those differences.

5.3.1 High-Locality Access Transformations

Code transformation related to the regular references is not significantly changed. There are
two major changes: new handler named HMAP PF is used instead of old HMAP handler
and in addition to prior transformations, PREFETCH handler is provided for prefetching
purposes.

Just to remember, original for -loop is transformed into two nested loops (Figure 5.4(b)).
Work done in the inner for -loop (related to regular memory accesses) does not have any
cache overhead. In the while loop we are introducing necessary code transformations per
each regular memory reference. The look-up, dynamic sub-chunking, consistency maintain-
ing, prefetching and synchronization operation are done in the while loop.

The look-up operation checks if the address &index[i] of the reference r1 is in the
cache line pointed to by the translation record (handle) h1. This checking is done by
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i=0;

while(i<N){

   n = N;

   if(!AVAIL(h1, &index[i], 4)

      HMAP_PF(h1, &index[i], 1);

   n = min(n,i+AVAIL(h1,&index[i],4);

 

   if(!AVAIL(h3, &v[i], 4)

      HMAP_PF(h3, &v[i], 1);

   n = min(n, i+AVAIL(h3,&v[i],4);

   HCONSISTENCY(n, h3);

   

   PREFETCH();

   HSYNC(h1, h3);

   for(;i<n;i++){

      tmp = REF(h1, &index[i]);

      w[tmp] = REF(h3, &v[i]);

      REF(h3, &v[i]) = 

              REF(h3, &v[i])+1;

   }

}

for (i=0; i<N; i++)

{

   tmp = index[i];

   w[tmp] = v[i];

   v[i]++;

}

add calls to software

cache handler to

each reference

High locality refs.: r1, r3

Irregular refs.: r2

r3 r1

AVAIL(handle, addr, stride): return the number of data entries that are 

     found within the cache line pointed to by the handle

HMAP_PF(handle, addr, distance): communicate with Pre-Fetch Block, 

     locate, determine hit, update reference counter, eagerly write back 

     and bring in line when needed (using appropriate set of tags)

HCONSISTENCY(trip count, handle1, handle2, ...): update memory

     consistency for each of the handles and for the given trip count

HSYNC(handle1, handle2, ...): synchronize with all pending DMAs

     recorded in the handle list and generated by HMAP_PF calls from

     current iteration or by PREFETCH call from the previous 

     iteration

PREFETCH(): trigger prefetch operation in the prefetch block.

r1

r3r2

r3
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r3
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TINIT_PF();

tmp = REF(h1, &index[i]);

GET_PF(h2, &w[tmp]);

tmp’ = REF(h1, &index[i+1]);

GET_PF(h2’, &w[tmp’]);

for(i=i+2;i<2*[n/2];i+=2){

   TINIT_PF();

   tmp_pf = REF(h1, &index[i]);

   GET_PF(h2_pf, &w[tmp_pf]);

   tmp_pf’ = REF(h1, &index[i+1]);

   GET_PF(h2_pf’, &w[tmp_pf’]);

   TSYNC(h2, h2’);

   REF(h2, &w[tmp])=REF(h3, &v[i-2]);

   PUT(h2, &w[tmp], 4);

   REF(h3, &v[i-2])=REF(h3, &v[i-2])+1;

   REF(h2’, &w[tmp’])=REF(h3, &v[i-1]);

   PUT(h2’, &w[tmp’], 4);

   REF(h3, &v[i-1])=REF(h3, &v[i-1])+1;

   h2 = h2_pf; tmp = tmp_pf;

   h2’ = h2_pf’; tmp’ = tmp_pf’;

}

//epilogue of the loop corresponding to

//the remaining Step 3&4 is omitted

//for conciseness.
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TINIT_PF(): initialize transaction for pre-fetching

GET_PF(handle, addr): locate and bring in data

     into cache when needed, in prefetching manner

TSYNC(handle1, handle2, ...): synchronize with all

     pending DMAs recorded in the handle list and

     generated by GET_PF calls

PUT(handle, addr, size): generated DMA to write back 

     Into global memory.
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(a) Original code. (b) High Locality Cache transform. (c) Transacional Cache transform.

(d) High Locality Cache handler.

(e) Transactional Cache handler.

Figure 5.4: Example C code and its prefetching and modulo scheduling code transformation.
The assumed size of the data found in the used arrays is 4 bytes.

using AVAIL macro. The AVAIL macro returns for reference r1 number of iterations for
which this reference will be present in the cache line pointed to by handle h1. If this
number is greater than zero we have hit and then we are proceeding with determining of
the upcoming dynamic sub-chunk of the iteration space. If this number is equal to zero then
macro HMAP PF is invoked to serve a miss. Notice the third argument of the HMAP PF
macro, indicating if prefetch has to be considered for the given memory reference. This
argument corresponds to the prefetch distance, indicating the next cache line to be most
likely accessed by the memory reference. In case the distance is other than zero, prefetch
is activated and the address is forwarded to the Prefetch Block. Next step is determining
of the upcoming dynamic sub-chunk of the iteration space. Once we have sub-chunking
factor n we can process with consistency and synchronization operations. Since reference
r1 is read only access reference then consistency operation is not processed for r1 but is
processed for r3 which is read and write access reference. The PREFETCH macro triggers
prefetch for all forwarded addresses. Notice that the prefetch code is executed before the
synchronization with the DMA engine takes place, giving the opportunity to overlap the
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Figure 5.5: Applied modulo scheduling.

prefetch code to actual communication.

5.3.1.1 Irregular Access Transformations

All work done in Section 3.3.3 is valid here and in addition to that work, we apply modulo
scheduling transformation exploiting advantage of four-partitioned Transactional Cache.
Transaction identification and code generated for a transaction follow the same concept
described in initial code transformation (Section 3.3.3). In addition to initial code trans-
formation, we apply modulo scheduling and we cross transactions among loop iterations.

Conceptually, the work inside transactions, in modulo scheduled loop, can be visualized
as four tasks. This is shown in Figure 5.4(c). In the loop prologue we prefetch data which
are going to be used within computation section in the first iteration of the unrolled loop.
In the prologue we use translation records h2 and h2’. We assign task Step1&2 to the
prologue. At the beginning of the unrolled loop body we prefetch data which is going to be
used in the next iteration or in the loop epilogue. In this part of the code we use translation
records h2 pf and h2 pf’. We assign task Step1’&2’ to this part of the unrolled loop body.
After this we have a necessary synchronization point where we synchronize with pending
DMAs determined by translation records h2 and h2’. When we are sure that data has
arrived in the cache, we execute computation section and at the end, modified data is sent
back to main memory (PUT macro). This corresponds to task Step3&4. In the end of the
unrolled loop body translation records h2 and h2’ are updated with values from translation
record h2 pf and h2 pf’ respectively. In the steady state of the loop, partitions go changing
of state: prefetch, in-use, and flushing. Note that for conciseness, the loop unrolling has
been done assuming that the number of iterations was a multiple of two. Fourth step named
Step3’&4’ is placed in the epilogue of the loop. Epilogue is emitted here for conciseness.
Applied modulo scheduling is illustrated in Figure 5.5.

69



5. PREFETCHING

Step1&2

prefetching

init

init

init

Step1'&2'

in-use

prefetching

init

init

TSYNC Step3&4

flushing

prefetching

init

init

Step1'&2'

flushing

in-use

prefetching

init

TSYNC Step3&4

flushing

flushing

prefetching

init

Step1'&2'

flushing

flushing

in-use

prefetching

TSYNC Step3&4

flushing

flushing

flushing

prefetching

Step1'&2'

prefetching

flushing

flushing

in-use

0

1

2

3p
a
rt

it
io

n
s

C
a
c
h
e
 s

to
ra

g
e

START WAIT

START

START

START

WAIT

START

START

WAIT

START

START

WAITDMA

DMA

DMA

DMA

DMA

DMA

DMA

Figure 5.6: Sequence of events in a modulo scheduled loop.

Figure 5.6 shows the evolution of each partition for three iterations of the loop. Distance
between starting of DMA and synchronizing on TSYNC point is one iteration of the unrolled
loop. Except in first iteration where TSYNC synchronizes with data prefetched in the loop
prologue. Synchronization point inside Step1&2 is placed two iterations far from starting of
appropriate DMA commands what is very important because in this point we synchronize
with data being flushed back. Hence only modified parts (less than 16 bytes) of the cache
lines (not whole cache lines) are flushed back, it means that DMA is programmed to work
with inefficient transfer sizes. Mentioned distance of two iterations gives us opportunity for
good overlap of computation and communication.

5.4 Evaluation

The evaluation section is divided into two parts. First, we measure the impact in perfor-
mance of the proposed prefetching techniques: automatic prefetch for regular references,
modulo scheduling for irregular references. Second, we study the overall performance and
compare with TSC, TSC-TILING, and PPC970MP configurations. For the prefetch effect
evaluation, the STREAM and the RandomAccess synthetic kernels are used, while CG,
IS, FT and MG applications are used for the overall performance study. This evaluation
relies on the methodology described in Section 2.2. In this evaluation, we have some cases
of utiliazing only one SPE in Cell processor. Those cases are explicitly indicated in the
presented results.

Two different hybrid cache configurations are used. One is HYBRID-speculative con-
figuration as described in the previous chapter. The other one is HYBRID-speculative-pf
which is the HYBRID-speculative configuration optimized with automatic prefetching and
modulo scheduling transformation. The HYBRID-speculative-pf configuration is the most
optimized version of our hybrid software cache in this thesis, using all of the code transfor-
mations proposed in Section 5.3.
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Figure 5.7: Cache overhead distribution for the STREAM kernels.

5.4.1 Prefetch effect evaluation

This section measures and checks the effectiveness of the proposed prefetch technique.
Prefetch has been applied to the computational kernels in the STREAM application. Fig-
ure 5.7 shows the execution of every kernel with 1 SPE (Figure 5.7(a)) and 8 SPEs (Fig-
ure 5.7(b)). Execution time is decomposed into actual computation, cache overhead and
non overlapped communication. Prefetch affects this last component. The legends in the
X-axis identify the versions with and without prefetch. The first thing to notice is that
the computation remains constant for both versions in all kernels. For the case of running
on one SPE, prefetch succeeds in avoiding stalls associated to DMA transfers, but it also
increases the cache overhead component because of the extra executed instructions. This
is also happening when running on eight SPEs. The impact of prefetch is different between
the two configurations (one and eight SPEs) because the average data transfer time does
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Figure 5.8: Cache overhead distribution for the RandomAccess kernel.

not remain constant. With one SPE, all bus bandwidth is devoted to a single execution
flow. In contrast, the bus is shared among all SPEs when DMA requests are concurrently
originated in every SPE. This causes the non-overlapped communication to be increased,
and the effect of prefetch is more noticeable.

Figure 5.8 exposes the analysis for RandomAccess. Similar results are observed, but
now associated to the activity of the Transactional Cache and the modulo scheduling trans-
formations. The execution time is decomposed into the same components that have been
analyzed for the STREAM kernels. In this case, both the computation and cache overhead
remain at similar levels, as here prefetch is not incurring any increase in the number of
executed instructions. The non overlapped communication has a similar weight no matter
the number of SPEs, and the effect of prefetch is similar also. This application already
saturates the bus with one SPE.

In conclusion, we see that the automatic prefetch technique succeeds in diminishing
the stalls caused by DMA data transfers without incurring an unacceptable increase in the
number of the executed instructions.

5.4.2 Loop Performance

In this section, we evaluate the performance impact of prefetch in our software cache on a per
loop basis. The comparison measures improvement in terms of speed-up of the HYBRID-
speculative-pf version in respect to HYBRID-speculative version. Figure 5.9 shows speedup
factors obtained by enabling prefetch in a variety of loops from CG, IS, FT, and MG
applications.

In the case of CG, the improvements range from 1% up to 16% of speedup. The majority
of the loops dominated by regular references do not expose significant improvements, usually
that is speedup of 3%. Loops 1 and 12 expose a bit bigger speedups of 12% and 14%
respectively, since in these two loops the High Locality Cache operates over more references
than in the other regular loops of CG and greater synchronization time is addressed by
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Figure 5.9: Speed-up factors for automatic prefetch and modulo scheduling. Modulo
scheduling is used in CG loops 7 and 10, in IS loop 3, and in FT loop 5, due to CG,
IS, and FT are totally dominated by irregular memory accesses in the mentioned loops. 8
SPEs are in use.

prefetching optimization. In Section 4.4.3, 15% of synchronization overhead is presented
for loop 1 of CG, which is in accordance with the obtained speedup of 12% in this loop.
Loops 7 and 10 are dominated by irregular references and the applied modulo scheduling
transformation gives an improvement of 13% and 16% respectively. Optimization space for
prefetching optimization in CG loop 10 is 22% according to the cache overhead analysis in
Section 4.4.3, and modulo scheduling optimized the most of it by giving improvement of
16% in this loop.

In the case of IS application, the benefits obtained in the regular loops follow similar
trends as those observed in the CG application (speedups from 3% to 15% for loops 1, 2,
and 4), while the benefits obtained from the modulo scheduling in the irregular loop 3 of
this application is quite impressive. Introduced modulo scheduling transformation causes a
speedup of 43% which is good improvement since, according to the analysis in Section 4.4.3,
maximal expected speedup for overlapping communication with computation in this loop
is 47%.

The case of FT is different and exposes very poor improvements of up to 6% for regular
loops. Only loop 5, affected by irregular references is improved by a factor of 41% caused
by the applied modulo scheduling transformation. MG loops are dominated by regular
references and they do not improve with applied prefetching or even incur some slowdown,
due to increased length of the control code and inefficient prefetching in these loops.

In conclusion, improvements obtained on a per loop basis show that prefetching and
modulo scheduling optimizations succesfully targets the non-overlapped communication for
the loops in the cache overhead analysis in Section 4.4.3 of the previous chapter.

5.4.3 Overall Performance

In this section we present comparison of overall performances. Execution times fo the tested
applications are presented in Figure 5.10.
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Figure 5.10: Performance of the hybrid software cache design with prefetching optimization
and optimized memory consistency support.

Prefetching optimization improves applications dominated by irregular accesses better
than applications dominated by regular accesses, due to greater optimization space in ir-
regular applications which is successfully handled by modulo scheduling transformation in
our design. So, our best speedups of HYBRID-speculative-pf configuration in respect to
HYBRID-speculative configuration are: 1.22 in IS, and 1.16 in CG. FT benefits close to 6%
from the prefetching optimization, while in MG speedup factor is 0.99. Improvement of 41%
in FT loop 5 (which takes 10% of the total execution time of FT in HYBRID-speculative
version), and improvements of 5% and 6% in loops 2 and 3 successfully contribute to the
total improvement of 6% in this application. MG is an example of benchmark with a large
number of references which occupy almost all storage and does not leave any space for
potential prefetching. Besides that, in some MG loops, implemented prefetching is not able
to capture actual access pattern and prefetched data is wrong and performance is wasted.
Good side is that obtained slowdown in the total execution time of the MG benchmark is
just 1%.

Improvement of HYBRID-speculative-pf approach over TSC-TILING is now more no-
ticeable in all loops. Obtained speedups are: 1.84, 4.43, 1.34, and 4.13 for IS, CG, FT and
MG applications respectively. We accompany these results with the performance compari-
son of the HYBRID-speculative-pf and TIILING approaches in STREAM kernels. Obtained
bandwidths are shown in Figure 5.11. As expected, the STREAM kernels benefit more from
the tiling transformation than from our hybrid software cache since STREAM loops are the
best examples where tiling optimization can give the best performance. At least, the gap
in performance between TIILING and HYBRID-speculative-pf is not that high as between
TIILING and TSC, as described in Section 1.4.

Finally, we observe that the HYBRID-speculative-pf approach is competitive with Pow-
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Figure 5.11: Overhead of the HYBRID-speculative-pf approach in respect to tiling with
static data buffering approach in STREAM kernels.

erPC 970MP processor in all the tested benchmarks. For IS and CG applications, both Cell
BE and PowerPC 970MP suffer from a high degree of communication with main memory.
For PowerPC, we know that the working set and access patterns cause a high miss ratio in
its cache. The limitation in the local memory capacity in Cell BE has the same effect. In a
case of CG, HYBRID-speculative-pf version is close to PPC970MP version instead of being
17% behind when prefetching is not used. Prefetching makes IS to be 3.1 times faster on
Cell BE than on PowerPC (instead of previous 2.5 times when prefetching is not activated).
Slowdown in MG application causes HYBRID-speculative-pf version to be 1.13 times faster
than PPC970MP configuration, instead of previous 1.15 under HYBRID-speculative.

Of all applications, only for FT application HYBRID-speculative-pf performs slower
than PPC970MP. Basically, the FT application computes several FFT over a 3-dimensional
matrix of complex numbers. The FFT are processed using the following pattern: every
plane in a 3-dimensional matrix is evenly cut and every cut is then copied to a temporary
variable where the actual FFT computation is done. After that, the output of the FFT
is copied back to the 3-dimensional matrix. In the PPC970MP version, the temporary
variable fits nicely in cache, thus every FFT computation always hits in cache. In the
HYBRID-speculative-pf version, besides all the applied optimizations, FT suffers from a
much higher degree of communication because the local memories of the Cell BE are much
smaller than the cache of the PowerPC 970MP.

5.5 Related Work

The most related prefetching technique is implemented in the IBM’s compiler for the Cell
BE architecture which uses software caching and tiling transformations with static buffer
assignments [37]. Regular memory references are treated by static buffers which are in-
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troduced by the compiler, usually involving loop tiling techniques. Prefetching for these
memory references is done by double-buffering techniques which are supported by the com-
piler. However, this approach requires precise information about memory aliasing at compile
time which is not the case for our prefetching in the High Locality Cache. On the other
side, this approach is well integrated [22] with traditional software cache which is further
improved with prefetching techniques for irregular memory references [23]. Prefetching ir-
regular references is based on the inspector/executor model in this approach. Original loop
is distributed into inspector and executor loops. Inspector loop collects all addresses to be
accessed in the computation. Then, all the collected addresses are used to prefetch data so
that needed data is in the local memory once the execution reaches executor loop. In our
case we do not split loop execution into inspector and executor loops. Instead, we integrate
prefetching and computation by applying modulo scheduling transformation.

Prefetching mechanisms for hardware caches are more widespread [113]. A variety of
mechanisms are present there: software controlled mechanisms [20, 63, 66, 77], specula-
tive mechanisms conditioned by a pre-computation in separate execution threads [26, 27],
inspector/executor prefetching mechanisms [31, 105], and totally transparent and auto-
matic hardware prefetching mechanisms [55, 82]. However, all the listed prefetching mech-
anisms rely on the hardware support for data prefetching, which is not the case in our,
totally software-based, approach. Similarly to our approach, many of these hardware-based
prefetching mechanisms make a disambiguation of different type of access patterns that
memory references expose, in order to take advantage of different prefetching polices. The
most common memory references that are treated by prefetching mechanisms for hardware
caches are: stride references [48, 55, 77, 82], linked references [48, 63, 66, 95, 122] and
irregular references[10, 26, 27, 48, 95, 105, 122]. Stride and irregular references are handled
in our work, while prefetching of memory references belonging to linked data structures are
not focus of this thesis.

Besides general prefetching mechanisms, many domain-specific prefetching techniques
are present in research as well. For instance, Memory Hierarchical Layer Assignment
(MHLA) [32] is a unified technique which addresses the problem of optimizing the data
assignments into memory layers and the block transfers between memory layers. This tech-
nique starts from the source code specification of the application and by collecting profiling
information optimizes memory mapping and execution order of data transfers. Also, mem-
ory organization is potentially customized by this technique. The similarity of this technique
with our approach is that prefetching is implemented by invoking DMA operations in or-
der to overlap computation and communication. In contrast to our technique, MHLA is
aimed for buffering techniques and simple memory organizations due to application-specific
prefetching approach.

Interrupt Triggered Software Prefetching (ITSP) [14] is a prefetching technique for real-
time embedded systems that adds prefetching instructions in interrupt handler software
to target cache misses. Prefetching optimizations done in ITSP tunes the software to be
executed based on observed performance during previous executions. In contrast with our
work, ITSP relies on profiling information collected during previous executions of applica-
tion and hardware prefetching instructions are used.
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5.6 Conclusions

This chapter describes and evaluates two prefetch techniques for our hybrid software cache
architecture. Automatic prefetch is introduced for memory references exposing a high de-
gree of spatial locality, while modulo scheduling is introduced for the memory references
exposing no locality and irregular access patterns. The design has been evaluated with a
several parallel numerical applications from the NAS benchmark suite and with the syn-
thetic STREAM benchmark. Prefetch was introduced in several parallel loops and speedups
ranging from 1% up to 40% have been observed. In two MG loops, some slowdown is ob-
served due to the fact that in the software caching systems prefetching does not come for
free, control overhead of executing prefetching code is imposed. In general, implemented
prefetching and modulo scheduling transformations successfully improves overlapping of the
communication with computation in most of the tested applications. In return, HYBRID-
speculative-pf configuration performs better then TSC-TILING configuration in all tested
applications. Also, HYBRID-speculative-pf configuration is competitive to PPC970MP
configuration in all tested applications.

Finally, overhead distribution from the Section 4.4.3 of the previous chapter and the
speedups of the prefeching from this chapter show that the overhead of synchronizing with
pending DMA transfers is not an issue anymore. Therefore, the only left issue in the
software caching is the essential overhead of executing control code for managing High
Locality Cache and Transactional Cache. This control code overhead is a necessity in the
systems where buffer management is done through software-based techniques. However,
we address minimizing the control code overheads for buffer management of on-chip local
memories by some hardware optimizations in Chapter 7.
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Chapter 6

Realignments On The Fly

This chapter is about our first hardware optimization. Here, we propose a novel DMA
engine (DMA++) that breaks alignment constraints imposed on the DMA transfer level by
doing data realignments on the fly. This chapter is organized as follows. Summary of the
main challenges for dealing with alignment constrains and the motivation for our proposal
is presented in Section 6.1. Section 6.2 presents detailed design of the DMA++ engine for
realignments on the fly. Section 6.3 evaluates our approach using some real applications.
Related work is presented in Section 6.4 and the conclusions are presented in Section 6.5.

6.1 Motivation

Multimedia extensions have been successfully introduced in the design of general purpose
multi-core processors for some time. Existing multimedia extensions are supported by
Single-Instruction Multiple-Data (SIMD) units and they can be found in a variety of pro-
cessors such as the Intel (IA-32), IBM (PowerPC, SPE), Alpha and MIPS architectures as
well as in graphics engines, accelerators in high-performance computing, and Digital Signal
Processors (DSP).

SIMD units and their efficiency are usually bounded by alignment constraints related
to the memory architecture. Load and store instructions can access only a vector of data at
the register-length aligned memory addresses (aligned accesses). SIMD units are optimized
to be efficient for aligned memory accesses while they suffer from a performance penalty for
the unaligned memory accesses [28, 103]. SIMD code with aligned memory accesses (aligned
code) is better in many aspects (performance, power efficiency, and code size) than code
with unaligned accesses (unaligned code). It has been shown that aligned code is between
1.5 and 3 times faster than unaligned code in a variety of multimedia applications [6, 99].

Two major approaches for handling unaligned memory accesses exist in the current
processor designs:

• A variety of hardware mechanisms to perform transparent unaligned load and store
operations.

• A special set of instructions used to do the realignment in software.
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Figure 6.1: Hardware Solution for unaligned memory accesses.

Besides these two approaches, some architectures produce system exceptions that generate
calls to the operating system to solve the problem of unaligned accesses. However, some
architectures do not have any support for unaligned memory accesses (e.g.: many traditional
DSP architectures).

6.1.1 Hardware Based Solutions

Hardware based solutions [16, 104, 109, 112] mainly consist of a network that realignes data
(a realignment network) in between the load/store execution units and the L1 data cache.
In Figure 6.1 we present a hardware based solution where we assumed the vector size of
16 bytes. In order to produce one vector of data, the realignment network, in Figure 6.1,
reads two vectors of data executing two aligned memory accesses. The two aligned accesses
produce two contiguous vectors of data and after loading these two vectors, the realignment
network applies a shift and merge operation in order to produce the requested vector that
contains correct data for the original memory access.

6.1.2 Software Based Solutions

Software based solutions are used in architectures with no hardware support for unaligned
memory accesses. Data for unaligned accesses is generated through a very similar process
as the one implemented in hardware based solutions. A set of instructions is executed,
comprising different steps: two load instructions generate the two data vectors and then
shift and merge instructions are executed to produce the data required by the unaligned
access. Merging instructions rely on a realignment token that specifies how to merge the low
and high parts of the two vectors [79]. The realignment token consists of a bit mask that
either corresponds to the unaligned address (like in MIPS-3D and Alpha) or is produced
by special instructions like in Altivec with its Load Vector for Shift Left instruction. In
general, software solutions always incur some performance penalty, although the actual
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overhead of the realignment process depends on architectural aspects like the number of
execution units in the architecture and the ability of the compiler to appropriately schedule
the shift and merge instructions to hide their overhead [38, 119].

6.1.3 On-chip Local Memories, DMA Engines, and SIMD Units

In the context of accelerator-based architectures, such as the Cell BE SPE [39, 45, 46],
there is one particular aspect of their architecture which enlarges the set of optimizations
for SIMD parallelism. In these architectures, every accelerator core combines the usage of
SIMD units with on-chip local memories, DMA engines, and a very fast access to the mem-
ory subsystem through a high bandwidth interconnection network. These architectures are
affected by heavy alignment restrictions, to meet design simplicity and high levels of power
efficiency. These restrictions apply to the on-chip local memory access (load/store instruc-
tions executed in the SIMD execution unit), as well as to the DMA programming where
specific restrictions are imposed in bus protocols and observed in terms of the alignment of
the local/global addresses and the amount of transferred data. Current bus protocols (e.g.,
AXI [7], OCP [11], and a bus protocol for Cell BE [59]) for high-performance architectures
define that both addresses used in the DMA transfer have to be equally aligned and the
amount of data to transfer must be a multiple of the memory granularity the architecture
supports, that is usually the size of the vector registers in the architecture.

In Figure 6.2 we have an example of a typical work to be done in the accelerator-based
architectures. Here we have to do a computation on a big matrix in global memory. In order
to do that in the accelerator, we have to transfer that matrix in smaller pieces in the local
memory. So, in Figure 6.2, first we transfer (DMA-in) a part of the main matrix, pointed
to by the starting address A, from global memory to local memory at the place pointed to
by address B. Then we have iteratively to load data in the SIMD unit, to compute, and
to store the computed data in local memory at the place reserved for the output matrix (a
matrix with starting address C in Figure 6.2). When computation is done, output matrix
is transferred (DMA-out) to the global memory at the address pointed to by D in our
example. In the explained scenario, two alignment restrictions arises: (1) Addresses A and
B in Figure 6.2 must be equally aligned due to DMA engine alignment restrictions. The
same restriction applies for C and D; (2) Addresses B and C must be aligned on a vector
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 1 for(i=0; i<n; i++)

 2    for(j=0; j<n; j++)

 3       c[i][j]=b[i][j] + ...

 4 //Here we assume:

 5 //data size of 4 bytes

 6 //vector size of 16 bytes

(a) Computation example.

 1 for(i=0; i<n; i++)

 2    for(j=0; j<n; j+=4)

 3       Rb<−load(&b[i][j])

 4       ...

 5       Rc<−add(Rb, ...)

 6       store(Rc)−>&c[i][j]

(b) Aligned code.

 1  ll      

 2     11

 3 for(i=0; i<n; i++)

 4    for(j=0; j<n; j+=4)

 5       Rb1<−load(&b[i][j])

 6       Rb2<−load(&b[i][j+4])

 7       Rb<−sh_merge(Rb1, Rb2)

 8       ...

 9       Rc<−add(Rb, ...)

10       store(Rc)−>&c[i][j]

(c) Unaligned code.

 1 for(i=0; i<n; i++)

 2    Rb1<−load(&b[i][j])

 3    ...

 4    for(j=0; j<n; j+=4)

 5       Rb2<−load(&b[i][j+4])

 6       Rb<−sh_merge(Rb1, Rb2)

 7       Rb1<−Rb2

 8       ...

 9       Rc<−add(Rb, ...)

10       store(Rc)−>&c[i][j]

(d) Optimized unaligned code.

Figure 6.3: Source code example.

boundary due to SIMD unit alignment restriction.

Note, the efficiency of the SIMD unit depends on the alignment of the matrix A in
global memory, since that alignment has to be preserved during the DMA-in transfer. If
A is not aligned on a vector boundary in main memory then B cannot be aligned on a
vector boundary also, and we will have to handle unaligned accesses in SIMD unit. For
these architectures, the problem of unaligned accesses is solved by pure software-based
techniques. Hardware-based solutions are discarded to keep a simple and efficient design.
In Figure 6.3(c) and Figure 6.3(b) we can see examples of unaligned and aligned code
for the computation in Figure 6.3(a). In a case of unaligned code (Figure 6.3(c)), the
programmer or compiler introduces additional load operations and generates appropriate
shift and merge instructions assuming particular alignments for load and store instructions.
In Figure 6.3(d), we have an example showing how unaligned code can be more optimized
for stride-one references [38, 119] by reusing registers in a second shift and merge actions.
There, one load is moved in the prologue and one load is in the loop body. A value that is
loaded in the loop body is reused in two iterations of the inner loop. In the case of aligned
code (Figure 6.3(b)), we have one vector load per reference and the rest of the code is free
of the shift and merge overhead. Impact of the unaligned code on a computation has been
already studied [6, 99] and we are not addressing this issue in this work.

In the example (Figure 6.3(c)) we assumed that the store address is aligned because we
can allocate matrix C at the most appropriate place. But even if we allocate matrix C on
the vector boundary we will face the alignment restriction imposed by DMA if alignment C
does not match the alignment of the destination address D in the global memory. Handling
of an unaligned store operation has a bigger overhead than handling of an unaligned load
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operation [6].

In order to avoid those alignment problems, it is common to use special allocation
functions (e.g. posix memalign) to control the alignments of the data in global memory.
In Figure 6.2, when possible, programmers can try to explicitly allocate memory for matrices
A and D on the vector boundary. This optimization scheme works fine if it is known at
compile time which data is going to be transferted between global and local memory, so we
can optimize memory allocation for that data. But if the starting addresses of the data in
global memory (addresses A and D in Figure 6.2) are dynamically determined at run time
(e.g. in many video codec applications) then using the specific allocation functions cannot
help.

Yet, in order to help avoid those problems of dealing with unaligned accesses, there
is one unexplored solution based on enlarging the capabilities of the DMA engine. One
alternative is to relax the restrictions on the DMA engine, and support DMA commands
that involve unaligned memory addresses and an unrestricted amount of data. With this
support, we will be able, no matter the alignment of the data in global memory (matrices
A and D in Figure 6.2), to choose the most appropriate alignment of the data in local
memory (matrices B and C in Figure 6.2). So, among two separate alignment issues in the
context of accelerator-based architectures with SIMD units and local memories we face the
alignment restrictions imposed in DMA engines by modifying the way the data is treated
in the DMA engine as long as transfers are in flight between the local memory and global
memory.

The main achievement here is the design of a DMA engine without any alignment
restriction. The basis of the design is the inclusion of a realignment logic that operates
during the transfer of data. The new design realigns data at a coarser granularity since
data will be transferred, shifted and merged at the bus transfer block (the largest unit of
data that can be transferred with one bus transaction) level, not at the register level as in
the software solutions. Data realignment, in the new design, happens in parallel as data
is transferred through the bus, hence, ensuring that it has no impact on the block transfer
time. The main novelty of the design is the place and time where realignments happen.
It is important to emphasize that the software-based techniques are still necessary since
we do not face alignment restrictions imposed in SIMD units and it still may happen that
an unaligned access occurs in a program. For instance, it may happen that two or more
memory references in a program point to the same buffer in local memory but they require
different alignments. In this case it would be good to have an option to deal with unaligned
data, since it may be unlikely (in terms of efficient local memory usage) to transfer the
same data few times in separate buffers in local memory just in order to achieve different
alignments. Note that the approach that we propose is an alternative that programmers
can use in order to better organize the data in local memory and to avoid unaligned data
for SIMD operations as much as possible. To the best of our knowledge, this is the first
proposal for realignments placed at the bus transfer level in the context of multi-cores and
shared memories. We evaluated the proposal on the simulated multicore architecture with
eight accelerator cores. The design is general enough to be introduced in any architecture
with SIMD support, on-chip local memories and a DMA engine. We have observed that
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Figure 6.4: Multicore accelerator-based architecture and the DMA++ Engine.

the our DMA design does not incur noticeable overheads in terms of available bandwidth
per core.

6.2 DMA++ Design

We describe in this section the design of the DMA++ engine for realignments on the fly.
Figure 6.4 shows a high level architecture of the DMA++ engine as a part of the accelerator
cores in the context of the multicore architecture consisting of multiple accelerator cores
(CPU in Figure 6.4) and one general purpose core (GP CPU in Figure 6.4). It is common
that the general purpose core (in other words, the master core) is present in this kind
of systems in order to drive the accelerator-based cores by a mean of synchronizing and
scheduling jobs on them. In the system that we describe in this section we are addressing
accelerator-based cores and the DMA++ engine while the general purpose core is mentioned
here just in order to clarify who is utilizing the accelerator cores.

In contrast to a traditional DMA engine, the DMA++ engine is enriched with a Realign-
ment Unit. The Realignment Unit introduces new structures and actions in the operational
model of the DMA engine that affect how the data blocks are transferred from/to global
memory and the local memory. In our proposal, data is realigned in the DMA engine along
with the ongoing data transfers (see Figure 6.5) and realignment actions are performed at
the block granularity. We can see in Figure 6.5 that the first and the last blocks of the
transfer, namely the head and tail blocks respectively are partially occupied with useful
data. Atomic merge actions are required for the head and tail blocks in order to maintain
memory consistency. The rest of the blocks, namely the body of the transfer, are not af-
fected by this requirement. The realignment process needs all the blocks to be treated in
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sequential order. Yet, even if we normally expect blocks to come in the requested order,
blocks might arrive to the DMA engine under some degree of disorder (e.g.: block B2 could
arrive before block B1 even if block B1 was requested before block B2 ) due to latencies in
the Interconnection Network, Cache miss penalties, and DRAM conflicts in global memory
banks. Accordingly, we define the disorder degree as the distance between the expected
block (first missing block in the requested order) and the received block. We propose the
introduction of a reorder buffer to ensure sequential order at the moment of the realign-
ment. Figure 6.5 shows how data blocks are reused across the shift and merge actions. On
the other side, notice that disorder cannot appear when the transfer originates at the local
memory.

In order to present the operational model of the proposed DMA engine, we introduce
structures and characteristics of the components that appear in the DMA++ engine. The
presented set of structures support the most basic functionalities in DMA engines. In
the rest of the section we use V and B to denote the vector and block lengths (in bytes)
respectively.

6.2.1 The Structure Of The System

The DMA++ engine consists of a DMA Controller (DMAC), a Bus Interface Unit (BIU),
and a Realignment Unit (RU). The DMAC is connected to the Execution Unit and the
BIU. The BIU is connected to the DMAC, the RU, and the Interconnection Network. The
RU is connected to the BIU and the Local Memory. Interconnection Network connects all
accelerators to a Cache block and Memory Interface Controller (MIC).
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6.2.1.1 DMA Controller

The main structure of the DMA Controller is a DMA command table. The DMA command
table contains DMA commands, and each entry in the table has 4 fields: (1) the local
address, (2) the global address, (3) the size of the transfer, and (4) a DMA command
descriptor for the direction of the data transfer. For realignment purposes, we do not
support DMA transfers less than B bytes, otherwise this would cause the head and tail
to fall into the same block. In the case of a transfer of less than B bytes, an exception is
generated. In the evaluation section we show that this is not a significant limitation for
most common applications. The maximum transfer size must be a multiple of B and we use
M*B to denote this size. No other restrictions apply regarding the size of the data transfer.
The two basic DMA commands are: the dma put and dma get commands. The dma put
command transfers data from local memory to global memory while dma get does it in the
opposite direction.

In addition to these two commands, we define two atomic primitives: get and lock
and test and put. The get and lock command is conceptually used in conjunction with a
subsequent test and put command to emulate a read-modify-write operation on a specified
block in global memory. This feature is already supported in standard DMA engines, for
instance the Cell BE processor includes similar support [59]. Our proposal needs atomic
commands for merging actions used for the head and tail transfers.

6.2.1.2 Bus Interface Unit

The main structure in the Bus Interface Unit (BIU) is a transaction queue where each entry
describes one bus transaction. A transaction is a bus transfer of B or less bytes of data.
According to this, BIU supports naturally aligned transfers of 1, 2, 4, ..., V, and multiple
of V (up to B) bytes of data. Each entry in the transaction queue has four fields: (1) the
physical local address, (2) the physical global address, (3) the size of the transfer, and (4)
a bus operation descriptor indicating the transfer direction. The two basic bus operations
are: put and get. The number of outstanding transactions is limited by the size of the BIU
queue. We use OT to denote that number.

6.2.1.3 Interconnection Network

The Interconnection Network (ICN) has its data bus width W and the block size B is an
integral multiple of this data bus width. Therefore, every block physically arrives in chunks
of W bytes and in the best case chunks will arrive cycle by cycle. In the best case when
transactions are pipelined through the ICN, the number of cycles between two consecutive
arriving blocks is equal to B/W.

6.2.1.4 Cache Block and Memory Interface Controller

A Cache Block that appears in between of the Interconnection Network and Memory In-
terface Controller (see Figure 6.4) is shared among all cores in the system and operates in
the way L3 caches operate in the standard shared memory processors. We have found that
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the Cache Block has a significant impact on some particular parts of the design and in the
evaluation we consider a configuration without the Cache Block as well as the configuration
with the Cache Block. When the Cache Block is present in the system then every DMA
transfer will go first to the Cache Block and only in a case of a miss a memory request
will be sent to MIC by the Cache Block. When the Cache Block is not present then MIC
is directly connected to the ICN and every BUS transaction goes directly to MIC. MIC
supports naturally aligned memory requests of 1, 2, 4, ..., V, and multiple of V (up to B)
bytes of data. Puts of sizes V and multiple of V bytes can be directly written to memory
using a masked write operation. Puts smaller than V bytes need a read-modify-write op-
eration supported in MIC. Requests of B bytes are always served at the maximum speed.
Gets are simplified and return always a full block of data. In this case BIU has to select
the requested data from the returned block of data.

6.2.1.5 Local Memory

The local memory is accessible by two units: the Execution unit and the DMA++ engine.
Because of this, the local memory has at least two ports. The DMA engine can read/write
naturally aligned blocks of data (B bytes) from/into local memory in one cycle. Note that
in Figure 6.6 we define several paths in the DMA engine to write data to the local memory,
but the operational model ensures that only one can be active at a time. Therefore a single
port is enough to support access to the local memory.

6.2.1.6 Realignment Unit

The Realignment Unit contains the following structures: a Reorder Buffer (ROB), a Two-
entry buffer, Block Decrementers, Realignment Networks, and Merge Networks. The RU
design is shown in Figure 6.6 and it has two separate paths, one path for dma put commands
(Figure 6.6(a)) and one for dma get commands (Figure 6.6(b)).

The get path contains the reorder buffer where incoming blocks are buffered. Every
entry in the reorder buffer has three fields: (1) the physical local address, (2) the data,
and (3) a valid bit. The reorder buffer supports three basic operations: (1) the writing of
the transferred block into the buffer, (2) reading of the two first blocks from the head of
the buffer, and (3) shifting of the contents of the buffer one entry towards the head of the
buffer. The head is assigned to entry 0 of the buffer. The put path is slightly different in
terms of structure. The put path contains a two-entry buffer. The two-entry buffer has
the same fields as the reorder buffer and supports the same basic operations as the reorder
buffer.

The Realignment Network consists of a shift count register, and a B-byte wide Barrel
shifter that shifts data on a byte granularity with the maximum shift of V-1 bytes. Shift
count is determined and stored in the shift count register in the beginning of every transfer.
The log2B least significant address bits define the address alignment within the block,
namely the offset respect to the nearest address aligned to the block boundary. Shift
count is equal to the absolute distance of the destination address offset from the source
address offset. If the determined shift count is bigger than V-1 bytes, an exception is
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Figure 6.6: Realignment Unit design (all data lines have width of block size).

generated. Shifting up to more then V-1 bytes requires more hardware and it would be
waste of the resources since the vector width is V bytes and shifting of up to V-1 bytes is
enough to achieve proper alignment for the SIMD unit. Note that if there are two separated
realignment networks, for the get and put paths, then RU can handle simultaneous dma get
and dma put commands. In the evaluation we are addressing the design where only one
DMA command can be active at a time.

In support of the merging process (Section 6.2.2.5), the head and tail slice registers are
introduced in the Merge Network. The head slice register contains the address of the first
useful byte in the head transfer, while the tail slice register contains the address of the
first byte in the tail transfer not involved in the DMA command. The head and tail slice
registers identify what parts of the head or tail are modified. In the case of the head, the
contents of the block to the right of the head slice point have to be written to memory
while contents to the left have to remain unchanged in memory. In the case of the tail,
the contents of the block to the left of the tail slice point have to be written in memory
while the part to the right remains unchanged in memory. The head and tail slice points
are specified in Figure 6.5. The head/tail block base address and offset within the block
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can be determined by selecting the proper bits from the head/tail slice register.

In addition to the introduced structures, next to the reorder buffer and the two entry
buffer there are Block Decrementers that indicate how many blocks have not been trans-
ferred. Every time a block is written into the reorder buffer or into the two-entry buffer
the associated block decrementer is decreased by one. Every time a new DMA command
starts, the appropriate decrementer is initialized to the total number of blocks that are
going to be transferred by the command. This total number of blocks is determined during
the unrolling process.

6.2.2 DMA++ Operational Model

The operational model of the DMA++ engine is organized in five steps: (1) select the
command from the DMA command table and perform the address translation, (2) unroll
the selected command, (3) issue the transactions from the BIU, (4) realign blocks of the
data and write the realigned data to the destination memory, and (5) perform merge actions
for the head and tail blocks.

6.2.2.1 Step 1: Command Selection

In the first step, the DMAC selects a DMA command from the DMA command table
ensuring that only one command can be active at a time. Prior to unrolling, the DMAC
has to perform the address translation for the logical addresses in the command. We assume
a conventional address translation involving the Memory Management Unit (MMU). When
the address translation is completed, the DMA engine enters in step two.

6.2.2.2 Step 2: Unrolling

In the second step, the DMAC starts by computing the shift direction. If the offset within
the block (the log2B least significant address bits) in the source address is greater than the
offset within the block in the destination address then it has to shift data to the left. If the
offset in the source address is less than the offset in the destination address then data has
to be shifted to the right. Otherwise, data is equally aligned in global and local memory
and the data can be transferred without any realignments.

Details about the unrolling and initialization process are presented in Table 6.1. Here,
we define k to be the number of the blocks occupied by the source data: 2 blocks for the
head and tail (potentially partially occupied) and k-2 blocks for body (fully occupied). In
the unrolling process, the source and destination addresses are truncated to the nearest
block boundary by ignoring log2B least significant bits from the addresses. We use S and
D to denote the truncated source and destination addresses respectively. The rest of the
unrolling and initialization process depends on the shift direction.

An example of the shift left and shift right cases is shown in Figure 6.7. In Figure 6.7(a)
and Figure 6.7(c), we can see how unrolling and initialization is done for our transfer
examples according to the rules described in Table 6.1. If it has to merge two blocks of
source data starting at addresses S and S+B in order to produce a block of the destination

89



6. REALIGNMENTS ON THE FLY

S D

S+B D+B

S+2B D+2B

S+3B D+3B

data V 

0

0

U
n
ro

ll
in

g

In
it

ia
li
z
a
ti

o
n

Source

Destination

Address

Address

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

S S+B S+2B S+3B S+4B

D D+B D+2B D+3B D+4B

Block Dec.

4

Tail BaseHead Base

addr. 

/

D

Reorder/Two-entry Buffer

(a) Shift left transfer with unrolling and initializa-
tion.

D+B

D

addr. data V 

/

D 1

0

1

1

D+2B

D+B 1

1

0

0

D+3B

D+2B 1

1

1 2 3 4

1 2 3 4

5 6 7 8

5 6 7 8

9

Block Dec.

3

2

1

0

Head transfer

at addr. D

Body transfer

at addr. D+B

Tail transfer

at addr. D+2B

0 1 2

3 4 5 6

7 8 9

Trans. 1:

Trans. 2:

Trans. 3:

Trans. 4:

(b) Transfers and realignment for shift left exam-
ple.

S D+B

S+B D+2B

S+2B D+3B

data V 

1

0

U
n
ro
ll
in

g

In
it

ia
li
z
a
ti

o
n

Source

Destination

Address

Address

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

S S+B S+2B S+3B S+4B

D D+B D+2B D+3B D+4B

Block Dec.

3

addr. 

/

D

Reorder/Two-entry Buffer

Tail BaseHead Base

(c) Shift right transfer with unrolling and initial-
ization.

D+2B

D+B

addr. data V 

D+B

D 1

1

1

1

D+3B

D+2B 1

1

/

D+3B 1

0

2 3 4 5

2 3 4 5

6 7 8 9

6 7 8 9

Block Dec.

2

1

0

0

Body transfer

at addr. D+B

Body transfer

at addr. D+2B

Tail transfer

at addr. D+3B

5 6 7 8

9

Trans. 1:

Trans. 2:

Trans. 3:

Trans. 4:

Head transfer

at addr. D
0

0 1

0 1
1 2 3 4

(d) Transfers and realignment for shift right exam-
ple.

Figure 6.7: Shift left and shift right transfer examples with unrolling, initialization, and
evolution of the realignment logic during the transfer time.

Table 6.1: Unrolling and Initialization.

Shift Left Shift Right

op. src. addr. dst. addr. sizeUnrolling

1

2
...

k

Init.

get/put

get/put

get/put

S

S+B

S+(k-1)*B

D

D+B

D+(k-1)*B

B

B

B

Write address D in the address

field of the head of the buffer. 

Invalidate all data in the buffer. 

Block Decrementer is set to k.

Write address D in the address 

field of the head of the buffer 

and set valid bit for that entry. 

All other entries are invalidated. 

Block Decrementer is set to k.

...
...

...
...

op. src. addr. dst. addr. size

get/put

get/put

get/put

S

S+B

S+(k-1)*B

D+B

D+2*B

D+k*B

B

B

B

...
...

...
...

data starting at address D, then the unrolling process always places address D next to
address S. This explains why we have differences in the unrolling for shift left and shift
right cases (Table 6.1). The unrolling process has to be aware of these differences in order
to drive the Realignment Unit (RU) to work correctly. In a case of shift right transfers in
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order to produce a block of the destination data at address D we have to merge blocks of
source data at addresses S-B and S. Since block at address S-B is out of the useful area
then the head of the Reorder/Two-entry buffer is initialized as valid containing trash data
(Figure 6.7(c)) and the first pair in the unrolling is S → D + B instead of S → D as in
the shift left case. In the shift left case a valid bit for the head of the Reorder/Two-entry
buffer will not be set (Figure 6.7(a)). The address field of the head of the Reorder/Two-
entry buffer is always initialized with address D. The Block Decrementer is equal to k
which matches the number of the bus requests generated by the unrolling process. Note
that unrolling in Table 6.1 ends up generating only block size requests, which are the most
efficiently served in the MIC. Finally, the shift count will be used by the RU to apply the
appropriate data realignment.

6.2.2.3 Step 3: Transaction Issuing

In the third step, BIU issues the transactions. Here we have to consider cases for get and
put data paths.

In the case of dma get commands (Figure 6.6(b), packets are requested from global
memory and after an arbitrary number of cycles, data starts coming to the DMA engine.
The transferred data has to be assigned to the specific entries in the reorder buffer. To
do so, the RU relies on the physical address in the local memory to select one particular
entry. We define the distance between received block and the head of the buffer as the
difference between the physical address stored in the head of the buffer and the target
physical address. The value of the distance is used to identify the entry to be used to store
the arrived data. It might happen that the distance value is outside the range of valid
entries. Then, data has arrived under unexpected disorder, and the reorder buffer cannot
hold the data as it is waiting for the blocks previously requested. In this case, data has to
be discarded and the associated bus request has to be reissued. We found that the Cache
Block is an important element with a significant impact on the transaction reissuing and
accordingly we use two different strategies to reissue transactions:

• reissue (without Cache Block): In this case we reissue transactions as soon as
possible, hence a reissued request has to take the whole path from the DMA engine to
MIC and to wait in the MIC’s queues along with the other outstanding transactions,
until data will be returned to the DMA engine.

• reissue (with Cache Block): Since in this case the Cache Block is acting like
a big buffer, then every reissued transaction is most probably going to hit in the
Cache Block and data will be provided very fast. According to this behavior, we
postpone a reissuing of a transaction as long as there is no available space in the ROB
for that transaction. Whenever a place in the ROB becomes available for storing
a new transaction, we check whether the appropriate transaction has already been
scheduled in BIU queue or not. In the latter case, the transaction is scheduled in the
front position of the BIU queue, so as to be the next one to be issued on the bus.

The impact on performance of this behavior is conditioned by the relation of two factors:
the number of outstanding transfers at the bus level and the size of the reorder buffer.
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In the case of dma put commands (Figure 6.6(a), the BIU provides the RU with the
physical local address and the physical global address (see Figure 6.6(a)). The physical local
address is immediately used to read data from local memory while the RU uses the global
address to determine in which entry from the Two-entry buffer data from local memory is
going to be written. The buffer entry is calculated in the same manner as in the case of
the reorder buffer. According to the received physical global address and the address that
is placed in the head of the Two-entry buffer, the index (0 or 1) of the entry is calculated.
The global address is written into the selected entry together with data from local memory.

Note that reorder/two-entry buffers can serve only one active unaligned DMA transfer
at a time. While they are occupied by one DMA command they can’t accept packets
from any other DMA command. This means that we can have only one active unaligned
DMA command at time. Along with an unaligned DMA transfer it is possible to have
one or more aligned DMA transfers in parallel since aligned transfers do not require use
of the realignment unit and there is no resource contention in this case. If we want to
support multiple unaligned transfers at a time then one solution could be to replicate the
reorder/two-entry buffer as many times as needed. In this case, when we receive or we have
to send a package, we will have to determine which buffer holds appropriate data and then
to use that buffer. In the evaluation of the proposal we are focused on our initial design in
which only one DMA command can be active at a time.

6.2.2.4 Step 4: Realignments

In step four, when the reorder/two-entry buffer contains necessary data, the Realignment
Network uses the two first entries of the buffer and according to the shift count, produces a
block of the realigned data (see Figure 6.6). The produced block is written in to local/global
memory always at the address that is stored at the entry 0 (head) of the reorder/two-entry
buffer. After this, the appropriate buffer is shifted. We propose hardware (see Figure 6.8)
to ensure that the reorder/two-entry buffer contains the necessary data to be processed
by the Realignment Network. If one of the signals (body, merge head, and merge tail) is
active then the Realignment Network can consume the data. Otherwise, the data is not
ready to be realigned. Note that only one of those signals can be active at the same time,
because we support transfers of at least B bytes, which means that head and tail of the
transfer cannot fall into the same block. In Figure 6.8, we can see that the Realignment
Network works with the head of the transfer if the address from the entry 0 corresponds to
the head base address and both entries are valid. The tail of the transfer is considered if
the address from entry 0 corresponds to the tail base address and the Block Decrementer is
equal to zero. The body of the transfer is considered if neither the merge head nor merge
tail signals are active and the first two entries of the buffer are valid. In the case of the
body, realigned data is directly written to the destination memory. Realigning the data in
the RU is overlapped (pipelined) with transfers of the other outstanding transactions. All
transactions are pipelined in the Interconnection Network and after the initial overhead, in
the best case, transactions will start coming, one block every B/W cycles. We expect that
traversing the RU could be possible in no more that three cycles: one cycle to write data in
the buffers, another cycle to traverse the realignment network and one more cycle to write
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data to the local memory or deliver data to the BIU. Besides, during the last cycle buffers
are shifted towards the head.

It is important to emphasize that if the number of cycles needed to traverse the RU
can fit in the B/W cycle window (which is possible, for instance, in the Cell architecture
[4]) then traversing the RU will be fully pipelined with the ongoing transfers. In this case
the traversing the RU will have almost no impact on the data transfers. In terms of added
latency, a delay of 3 cycles (the number of cycles needed to traverse the RU) will be present
in the beginning of every unaligned DMA transfer. Overall, an overhead of just a couple of
cycles will be introduced on top of thousands of cycles needed to transfer the data involved
in a DMA command.

Examples of the realignment logic evolution during the transfer time of shift left and
shift right transfer are shown in Figure 6.7(b) and Figure 6.7(d). In these figures we can
see how data blocks are transferred and which fields of the Reorder/Two-entry buffer are
occupied and how they evolve. Here we can see how unrolling and initialization done in
Step 2 drive the RU during the transfer time. Since every realigned block of data is stored
to the destination at the address that is present at the head of the Reorder/Two-entry
buffer, unrolling and initialization have known this address. The address field of the head
of the Reorder/Two-entry buffer is therefore initialized with address D.

6.2.2.5 Step 5: Merge for Head and Tail

Step 5 deals with the head and tail cases. We have to distinguish between merge operations
for dma get and dma put commands:

• Merge for dma get command: The Merge Network first reads the appropriate data
from local memory, then applies the merge action (according to the context of the
head or tail slice register) and finally the merged data is written into local memory.
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These three operations read-modify-write must be atomic hence the Execution Unit
must not modify the same block in memory at the same time because it could lead
to an inconsistency. Note that the atomicity requirement is similar to the one needed
for fractional transfers. Therefore, the proposed design relies on already existing
mechanisms.

• Merge for dma put command: This merge operation repeats three major steps: (1)
read the block from global memory using the get and lock primitive, (2) the merge
action (according to the context of the head or tail slice register), and (3) write
the block into global memory using the test and put primitive. If test and put fails
then these steps must be repeated until the test and put succeeds. This case is not
as simple as in the previous one. We require micro-code control to implement the
repetition of this process until the update of memory succeeds. Besides, this process
might be affected by other execution flows that concurrently are updating the same
data block in global memory, potentially increasing the transfer time for the head
and tail. To mitigate the effect of this issue, one option is to schedule in parallel the
transfer of the body blocks with the transfer of the head and tail.

6.3 Evaluation

In the evaluation we consider the system in Figure 6.4 with the following parameters: block
size (B) is 128 bytes, data bus width (W) is 16 bytes, maximal DMA transfer size (MB)
is 16K, and vector size (V) is 16 bytes. All simulations are performed with the TaskSim
simulation infrastructure (Section 2.3.1), which we extend with the DMA++ design, as
described in Section 6.2.

Table 6.2 shows the configuration parameters used for the simulation. In general, we
have two configurations: one when the Cache Block is used and one without the Cache
Block. All elements connected to the Interconnection Network (ICN) have bandwidth of
25.6 GB/s. Since in our applications every DMA communicates only with global memory
(through the Cache Block, when present), then our ICN supports two communications in
one cycle, one going to memory and one responding from memory to one of the cores. The
Cache Block implements a 2MB 4-way set-associative cache. One MIC and DRAM with 4
channels are used. In our simulations, the master processor does not consume or produce
data, and it is only used for synchronization.

The evaluation of the new DMA engine design considers the modifications that are made
in the DMA engine and studies how data transfers are affected by new functionalities. The
next two sections describe applications that are used for the evaluation and describe all
aspects of the DMA engine evaluation.

6.3.1 Applications

The following applications are used for the evaluation: CG, FT, MG, STREAM, Matmul,
SparseLU, Cholesky, Kmean, and Knn. All of them are introduced in Section 2.1.
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Figure 6.9: DMA size distribution.

For the evaluation of this proposal a bit different set of applications is interesting in
contrast to the applications used for the software caching contribution. Here, it is impor-
tant to cover wider range of DMA transfer sizes in the applications. Thus, all the used
applications are hand-coded for the Cell processor to introduce the necessary DMA trans-
fers, and then the applications are executed on the Cell processor in order to get TaskSim
traces. Figure 6.9 characterizes used applications in terms of the size of DMA transfers.
We can see that presented applications are dominated by a variety of the DMA transfers.
Matmul, SparseLU, and Cholesky use only big DMA transfers, greater than 9984 bytes,
usually 12K and 16K. FT and CG are dominated by 8K transfers. Kmean and Knn mix
both, big and small DMA transfers. MG is dominated by 4K transfers while STREAM
benchmark is coded to exploit small DMA transfers that are equal to 2K in this case. We
classify these applications according to the DMA transfer size distribution since we noticed

Table 6.2: TaskSim configuration parameters.
Parameter Description

Cache Block When enabled it is: 2MB, 4-way set-associative cache

DMA engine

16-entry DMA command table, DMA block size of 128B
1 DMA transfer at a time, maximal DMA transfer size of 16KB
Number of the Outstanding Transactions (16, 32, 64, 128)
ROB size (8, 16, 32, 64)

Interconnection Network
Two communications in one cycle, maximum number of
concurrent transfers equal to the number of links
1 cycle link latency, link bandwidth of 25.6 GB/s
Data bus width of 16B

Memory Interface Controller
128-entry queue, data interleaving mask is 4096
4 DIMMs

DRAM DIMM
800 million transfers per second
autoprecharge enabled, 8 bursts per access
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that in our design the transfer size is important for the disorder and blocks reissuing that
may happen in the Realignment Unit. We expect that bigger transfers can result in higher
disorder degrees. In the rest of the evaluation, all transfers mentioned here are forced to use
the Realignment Unit. We want to test the worst case scenario in which the Realignment
Unit and Reorder Buffer are saturated by all transfers in the applications.

6.3.2 DMA Engine Evaluation

The most critical issue for the DMA evaluation is the command reissue that appears due
to the new DMA design. This depends on the amount of disorder that is observed along
the execution of the bus commands. In particular, the parameters that directly affect the
number of reissued bus commands are the size of the ROB, the number of outstanding
transactions in the bus, namely, the size of BIU queue, and finally the amount of observed
disorder.

In order to explore the relation between the three parameters, we have defined the
following methodology:

• First, we measure the observed packet disorder in the traditional DMA (no ROB
and no packet reissue) on a set of applications using different values for the number
of outstanding bus transactions. We expect the outcome of this study to be the
maximum disorder degree, giving us an upper bound for setting the potential size of
the ROB.

• Second, we account for the number of reissued packets under different configurations
of the ROB and BIU. The size of the ROB is set to different values in the range
defined in the previous step, and the number of outstanding transactions varies in
a pre-defined range. We expect the outcome of this study to determine the optimal
configuration that minimizes the number of reissued packets.

• Finally, we study the actual bandwidth per core under the optimal configuration and
we show that bandwidth is not affected by the introduction of the realignment logic.

Since the Cache Block has an impact on the observed amount of disorder then all simulations
are performed under two configurations, one with the Cache Block and one without the
Cache Block. The following three sections describe the evaluation process for the new DMA
design.

6.3.2.1 Observed Disorder

The disorder degree in the arrival time of transferred blocks depends on two main factors:
the number of outstanding transactions at the BIU level, hereby denoted OT, and the
number of cores that concurrently transfer data. We have analyzed the Matmul application
under different configurations for these two parameters. During the simulations, we col-
lected data on how many blocks arrived at a particular disorder degree for each simulated
configuration.
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Figure 6.10: Disorder degree in Matmul application.

Figure 6.10(a) presents graphs for the configuration that keeps constant the number
of outstanding transactions (OT=128) and varies the number of executing cores. On the
X-axis we show the disorder degree and on the Y-axis we can read the percentage of blocks
that arrived at that particular disorder degree. This chart presents the effect of the bus and
MIC utilization on the observed disorder. Increasing the number of cores causes a decrease
in the number of blocks arrived in-order (disorder degree of zero) and an increase in the
number of blocks arrived at the higher disorder degrees. For instance, the percentage of
transactions arrived at disorder degree of zero for 1, 2, 4, and 8 executing cores is 100, 95,
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Figure 6.11: Disorder distribution from all tested applications for 8 executing cores and
128 outstanding transactions.

85, and 68 when the cache is not used, and 90, 86, 83, and 78 when the cache is used. For
all the other disorder degrees it appears to have more transactions when more cores are
executing simultaneously. This distinction is clearly noticeable for all disorder degrees in the
configuration without the cache. When the cache is used, the same effect is still noticeable
in the tested application but for the disorder degrees less than 21 (Figure 6.10(a)). However,
notice that disorder levels greater than 20 account for very few data transfers (less than
0.01% of all transfers) in the tested application.

Figure 6.10(b) presents graphs in order to show the effect of the number of outstanding
transactions on the observed disorder, for the maximum pressure in the bus usage when
eight cores are executing simultaneously. Now, the number of outstanding transactions
does not make a big difference when the cache block is used while some distinction can
be seen when the cache is not used. The higher OT causes an increase in the number of
transactions at some disorder degrees. For instance, starting from a disorder degree of 18
configuration with 16 OT appears below the other configurations. We observed that the
disorder degree is changing faster by increasing the number of cores than by increasing the
number of outstanding transactions.

Since the configuration of 128 outstanding transactions and 8 executing cores stresses
the system the most, in order to determine the potential size of the ROB, we collected the
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disorder data from all tested applications for that particular configuration and presented
in Figure 6.11. From the charts in Figure 6.11 we can read for any disorder degree n
on the X-axis, what percentage (Y-axis) of the total bus transactions has arrived at the
disorder degrees greater than n. Here we do not distinguish between applications, it is only
important to see the maximal values for each disorder degree on the X-axis. The ROB of n
entries can handle all transactions that arrived at the disorder degree less or equal to n-2.
Therefore, the charts in Figure 6.11 allow us to conclude that ROBs of 8, 16, and 32 entries
(look for disorder degrees 6, 14, and 30 in Figure 6.11) will not be able to handle up to
35%, 20%, and 1% of transfers from some of the tested applications when the cache is not
used, or up to 40%, 15%, and 2% of transfers when the cache is used. This study does not
take into account that reissuing will eventually affect the disorder degree. The next section
addresses this fact.

6.3.2.2 Reissuing Overhead

This section measures the reissue effect caused by the relation between the number of
outstanding bus requests and the size of the ROB. The main purpose for this is to define
the optimal size for the ROB, minimizing the number of reissued transfers and the storage
devoted to the ROB. We have studied different configurations for both parameters. The
number of outstanding transactions is set to 16, 32, 64 and 128 transfers. The size of the
ROB is set to 8, 16, 32 and 64 entries. The charts in Figure 6.12 show the transaction
reissuing overhead that has been observed in all tested applications for 1, 2 ,4 and 8 cores.
The Y-axis shows the increment factor, where the value 1 stands for having no reissued bus
requests.

The most significant overheads are observed when 8 cores are active and the ROB has
a small number of entries, just eight. In the worst configuration (8 entries in the ROB and
128 outstanding transactions on the BIU), the reissue degree in the configuration without
cache is around 6 (which means that every transactions is reissued at least 6 times) for the
applications that are dominated by big transfers (Matmul, SparseLU, Cholesky), while it
is from 1.12 to 1.35 when the cache is used. This difference comes from the fact that in
the system where the Cache Block is not used we reissue transactions as soon as possible
in order to minimize reissuing impact on bandwidth, and it may happen a transaction be
reissued more than once. When cache is used, every reissued request is about to hit in the
cache and data can be provided fast, thus reissuing action can be postponed as long as there
are no available space in the ROB for that transaction. Kmean, Knn and FT experience
reissue degrees of 5, 1.4, and 1.45 respectively when the Cache Block is not used while CG,
MG and STREAM experience reissue degrees of 2.6, 1.01, and 1.08 respectively. When the
Cache Block is used, about 40%, 15%, 20%, 10% of transactions are reissued in Kmean,
Knn, CG and FT, while MG and STREAM expose very small reissue overhead in this case
(less than 1%).

As expected, a very small reorder buffer can cause a large number of reissued transac-
tions and the bigger DMA transfers we use, the larger the overhead is produced. When
we switch to a ROB of 16 entries, the reissue degrees improve significantly and get to a
level below 10% in the configuration with cache, and below 50% without cache. For a ROB
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Figure 6.12: Transactions reissuing overhead (X-axis: Size of ROB - Number of OT, Y-axis:
Relative Number of Issued Transactions).

of 32 or 64 entries, the reissue degree is close to zero, having a negligible effect in both
configurations. Therefore, we conclude it is possible to find sufficient size of the ROB, at
least if just the reissue degree is taken into account (e.g. sufficient size of the ROB in the
tested applications is 32). In general, the behavior that is observed for the 8-core case is
observed for the cases where 1, 2 and 4 cores are executing. The observed trends are the
same, only the absolute numbers of the reissue degree change. The next section measures
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Figure 6.13: Bandwidth.

the impact of the bus requests reissue in terms of actual bandwidth.

6.3.2.3 Bandwidth

In terms of performance it is important to know the impact of the studied parameters on
bandwidth. In the previous sections, we have observed that a ROB with 16 entries is not
as efficient as a ROB with 32 entries. Yet, it is not clear how both configurations differ
on the achieved bandwidth per core. The achieved bandwidth by a core is determined by
the total number of bytes transfered by the DMA engine of that core during the execution
time and by the number of cycles needed for all those transfers. In this section, we present
average bandwidth obtained per core (calculated as the arithmetic mean of the bandwidths
achieved in every core) in a system with 8 cores.

Figure 6.13 shows the actual bandwidth obtained for all studied configurations. On the
leftmost parts of the four presented charts a baseline configuration (size of ROB is equal
to zero) appears. This configuration corresponds to an ideal case where no packet needs
a reissue. We denoted that the size of ROB is zero in this case and in the simulator we
configured to have an ideal ROB that can handle any disorder degree so that benchmarks
can be executed at the maximum speed with no reissue overhead. In the rest of the config-
urations we have variations in the size of reorder buffer and in the number of outstanding
transactions.

Clearly, when the Cache Block is used, the bandwidth curves do not expose any sig-
nificant variations as long as the size of the ROB is increased, only a ROB with 8 entries
reduced the bandwidth for about 10% at most. When the Cache Block is not used, we
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discard a ROB with 8 entries, as we see that the bandwidth is drastically reduced (up to
factor of 20) while for a ROB with 16 entries bandwidth is reduced for 10%-60%. For more
that 16 entries in the ROB, the bandwidth curves do not expose any significant variation.
In the tested applications a ROB with 16/32 entries is sufficient in the configuration with
and without cache. As a side effect of this experiment, we observed that bandwidth of some
applications can be improved when the Cache Block is not used (e.g. SparseLU, Kmean,
Knn, FT).

6.4 Related Work

Two major trend lines exist for handling misaligned memory accesses. On one side, pure
hardware-based solutions, that include hardware mechanisms to perform transparent un-
aligned load and store operations. On the other side, pure software-based solutions based
on a special set of instructions used to realign data.

Hardware-based solutions generally work at the level of the memory access granularity
of the architecture, and they all have in common the introduction of a realignment network
that is activated in the presence of a misaligned access. The realignment logic is placed
between the Load/Store execution units and the L1 data cache. In the presence of a
misaligned reference, an extra memory access is triggered to produce the required data for
the misaligned access. This process consists of shift and merge operations that combine
the data produced by the two accesses. This or similar hardware support is used in the
SSE3 extensions providing the LDDQU (Load Unaligned Integer 128 bits) instruction that
performs a 32-byte load in order to extract the corresponding 16 bytes of unaligned data
[16]. This instruction potentially can result in performance degradation, what has been
discussed in [53]. The Trimedia TM3270 processor has support for unaligned load and
stores with no performance penalty [112]. The TMS320C4X processor (developed by Texas
Instruments) [109] and MIPS64 architecture [104] also support unaligned loads and stores.

Software-based solutions rely on the use of specific instructions in the ISA that support
the shift and merge operations already mentioned in the context of pure hardware-based
solutions. This is the case of the Altivec extensions in the PowerPC [34] architecture,
or the MIPS-3D [106] and Alpha [102] architectures. The merging operation relies on a
special instruction to merge low and high parts of two vectors into a third one according
to a realignment token [79]. In software solutions, it is not possible to ensure that no
performance penalty is going to be introduced. The final result depends on many factors,
such as the ability of the compiler or programmer to correctly schedule the instructions and
hide the shift and merge operations. Eichenberger et al. [38] describes several compilation
techniques for stride-one memory references. Their data reorganization is very efficient when
they have compile-time information about misalignments. Runtime alignments in [38] use
zero shift policy, similar like in a few prior works [24, 30]. Wu et al. [119] improves runtime
alignment handling and exploits other policies, the eager shift and lazy shift policies. Larsen
et al. [60] exposes a very detailed discussion of memory alignment considerations. This work
presents a technique to detect memory alignments and focuses on maximizing the number
of equally aligned references in a loop. It uses a variety of techniques (loop unrolling, loop
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peeling, padding multidimensional arrays, etc.).
An enhanced DMA controller is proposed by Payá-Vayá [83]. It is specially designed

for specific VLIW media processors aimed for video applications. The DMA controller is
proposed taking the video transfers characteristics into account. The operational model
is designed for special requirements - transferring matrices of pixels. Authors emphasized
padding issues in video applications and proposed a hardware approach for padding in
DMA controller. It is not explained how the enhanced DMA controller deals with blocks
that arrive out of the requested order (we referred to that as disorder). In contrast to the
enhanced DMA, the DMA++ is aimed at general purpose multi-cores equipped with DMA
engines and local memories (e.g. Cell, Intel Larabbee [97]) tailored for accelerator-based
computing of critical application kernels.

6.5 Conclusions

In this chapter, we have described the hardware proposal for dealing with unaligned memory
transfers in modern high-performance accelerator-based architectures with local memories
and DMA engines. We took advantage of the DMA transfers needed in the accelerators
with local memories, and designed the Realignment Unit that performs data realignment
in the DMA engines while data is in transfer between local and global memory. In this
approach, the mentioned realignment happens in parallel with data transfers and imposes
a negligible overhead on the block transfer time. With this support, programmers can
move data from any alignment in the global memory to the most convenient alignment in
the local memory and vice versa. This hardware offers a freedom of arranging the data
in the local memory that has an immediate impact on improving the quality of the SIMD
code in the accelerators by avoiding unaligned data in local memory due to better memory
management offered by new functionalities.

We have evaluated our design, and the observed measurements show that the Realign-
ment Unit can be introduced in the DMA engines with no performance loss in terms of
available bandwidth.
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Chapter 7

Accelerated Buffer Management

In this chapter, we present a novel DMA controller (DMA-circular) that accelerates buffer
management for on-chip local memories by mapping some functionalities of our software
cache into DMA engine. The aim of this chapter is to disuss overheads of software cache
approach and to offer an option to accelerate such overheads. Organization of this chapter is
as follows. Motivation for the proposal is presented in Section 7.1. Section 7.2 describes the
design of our enhanced DMA controller and its programming interface. Section 7.3 evaluates
the design. Section 7.4 discusses some related work, and finally Section 7.5 concludes the
chapter.

7.1 Motivation

As introduced in the first chapter of this thesis, on-chip local memories impose programming
difficulties since they are completely managed by software through programmable DMA en-
gines. The best performance is obtained when local memories are managed manually by
tuning every DMA transfer in conjunction with a good knowledge of the applications’ be-
haviour. This option has been very successful in the High Performance Computing (HPC)
and the embedded domain but is not viable in scenarios where programmability is impor-
tant. Therefore, besides obtaining good performance, for the acceptance of local memories
it is important to overcome the non-transparent/explicit memory management they require,
getting closer to a level of programmability where little or no information about applica-
tions’ behaviour is necessary to automatically adapt the context of local memories to the
applications’ needs.

So far, software caching has solved the programmability issues but at the cost of some
performance penalties. We have seen that our hybrid software cache, even highly opti-
mized, ends up in significant overheads for both irregular and regular memory references
(Section 4.4.3). Accelerating control code related to memory management for irregular
memory references is out of the contex of this thesis, since any improvement for this type of
references would lead to having typical hardware caches in contrast to local memories which
are in the focus of this thesis. Interesting overheads to be addressed are those that happen
when managing regular references. Regular references are typical references to be handled
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in local memories and in terms of HPC, it is desirable to minimize control code overheads
for dealing with this type of references. In our hybrid software cache, regular references
are highly optimized: software lookups are removed from the inner most loops, memory
consistency mechanisms are optimized, and automatic prefetching is supported. Anyhow,
some overheads still remain and those overheads come from the mapping of the memory
references to the on-chip local memory. As we have seen in the introductory chapter in
the section about programmability (Section 1.3.2), the essential action of the mapping is to
program DMA transfers to bring or write-back data, but that is not all. Since DMA engines
provide just basic operations to transfer data to/from the local memory, the software is re-
sponsible for all the buffer management: buffer allocation, buffer assignment to references,
buffer mapping to the local memory and address translation. Buffer management is a com-
plex problem because it requires memory aliasing analyses. Since even complex compiler
analyses cannot reliably answer on the memory aliasing question, compilers have to emit
control code that checks aliasing conflicts to consistently perform the buffer management.
This control code turns to be an important drawback due to high overheads it generates.
The main reason for the overheads is the poor support in current DMA controllers for
managing local memories, and that is what we target in this chapter.

In this chapter, we propose an enhanced DMA controller tailored for reducing overheads
of managing local memories. The main achievement is the bringing of the DMA controllers
to a high level extension aimed for specific applications’ needs at exactly appropriate places
where local memories and DMAs make sense but still end up in unacceptable overheads
due to the need for the control code to substitute the lack of advanced data management
support in the DMA controllers. We show that our enhanced DMA controller is able to
provide high performance by keeping the control code under 15% of the execution time.
Also, speedups with respect to traditional DMA controllers range from 1.20x to 1.70x.

7.2 DMA-circular Design

This section describes the design, programmability and applicability of our extended DMA
controller (DMA-circular).

Figure 7.1 describes the design of the DMA-circular which is build to accelerate typical
control actions which occure in our High Locality Cache. Essential parts of the DMA-
circular design are three blocks: Memory References Block, Directory Block, and Transla-
tion Block.

Memory References Block serves as an input where all references to be handled by
new DMA are placed in order to be used by the other components which do actual data
management. The most important block for all the buffer management is the Directory
Block which is a cache like structure with a table describing all buffers resident in the local
memory. Buffer allocation is addressed by splitting local memory space into equally sized
buffers (with a size being power of two), which actually resembles cache lines. Therefore,
Directory Block contains one descriptor for each buffer (line) in the local memory. Those
descriptors are used to establish the mapping of the buffers from the main memory to the
local memory. Memory aliasing is simply addressed by associative lookup in the directory
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block (as it is done in the caches). So, Directory Block serves as cache like structure capable
of doing associative lookup in order to find out whether some data is already mapped in
the local memory or not, while the local memory is storage for all buffers. Directory Block
is capable of automatically scheduling DMA transfers in a case of missing data in the local
memory or in a case of writing-back modified data. Directory Block does buffer assignment
which effect is reflected in the Translation Block that holds all local memory addresses
resulting from the buffer assignments. So, every reference is mapped to some of the buffers
in the local memory, and since those buffers are usually smaller than the whole workload
needed for the reference, then actual work can run only for some number of iterations - as
long as buffers in the local memory can feed the computation. Memory References Block
addresses this issue and computes the mentioned number of iterations.

Essentially, extended DMA is aimed automatically to handle all references which are
placed in the Memory References Block by bringing data buffers to serve them, placing
buffers at the appropriate places in the local memory, handling memory aliasing and proper
buffer assignment to references. It provides outputs in terms of the local memory addresses
resulting from the buffer assignment, the number of iterations that are possible to exe-
cute over the buffers present in the local memory, and the set of tags to be used in the
synchronization.

In terms of the programming interface, new DMA controller is brought on a higher
level. Inputs are descriptions of references to be handled while the outputs are tags for
the synchronization, local memory addresses to be used in the computation, and the it-
eration space for the computation. In contrast to the basic DMA engines (described in
Section 1.3.1), new DMA engine provides a higher level programmable hardware interface
designed to offload from software many control actions for buffer management.

In the following sections, we describe the extended DMA design in greater detail.

7.2.1 DMA-circular Structures

The extended DMA consists of the Memory References Block, the Directory Block, the
Translation Block, the Configuration Block, the Prefetch Block, and two registers named
reg-tags and reg-iters. All these components extend basic DMA controller which corre-
sponds to only Transfer Block in Figure 7.1.

7.2.1.1 Configuration Block

This block supports configuring of the DMA-circular regarding the total number and size
of the buffers as well as the place where those buffers should be allocated in the local
memory. Size of a buffer and the number of buffers determine the total size of storage for
the buffers, while the third parameter is the address where that storage should start in the
local memory. For example, if someone wants to devote just half of the local memory to be
used by DMA-circular then it is possible to configure that with mentioned three parameters.

It is important to emphasize that the number of buffers meet a limitation dictated by
the Directory Block. Hence every buffer has its descriptor in the Directory Block than there
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Figure 7.1: DMA-circular high level design.

is a hardware limit for the number of the buffers (similarly to caches and the number of
the cache lines). In this work, we use limit of 32 buffers.

7.2.1.2 Memory Reference Block

Memory References Block (MRB) is shown in Figure 7.2. The main structure of the MRB
is the Memory References Table (MRT) which contains descriptions for all the memory
references to be treated by the new DMA controller. It is important to emphasize that
the new DMA controller is tailored to handle references which appear in the loops, but
only those exposing strided access pattern with constant strides since only for this type of
references it is possible to calculate how long (in terms of iterations) a buffer in the local
memory can feed the computation. In the MRT, three fields are devoted for description of
this type of references: (1) address - the address which is going to be accessed by reference in
the first iteration of the loop, (2) stride - the size of the stride, and (3) rw - the read/write
information which is used later to figure out whether a buffer assigned to a reference is
modified or not. These three fields must be provided by the user while the other two fields
(buffer-id and iters) are maintained by MRB.

Once the hardware is provided with the size of the stride and address of the first element
to be accesses by the reference than it is easy to calculate how many iterations it is possible
to do within a given buffer of data. The iters field corresponds to the iterations while the
buffer-id field identifies the buffer in the local memory which is assigned to the reference.
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Figure 7.2: Memory References Block.

If iters is zero, then we do not have buffer assigned to the reference, or we have reached
the end of the currently assigned buffer. Both cases trigger actions in the Directory Block
to bring new buffer of the data for the reference.

Loop Stack structure that appears in Figure 7.2 is used for maintaining references in a
case of nested loops. We comment more on this in Section 7.2.2.

7.2.1.3 Directory Block

Directory Block (DB) is shown in Figure 7.3. We can see that this block is similar to the
organization of standard caches, but extended with some specific features targeting buffer
management for local memories. The main structure of the DB is the Directory Table
(DT) which contains descriptors for all buffers in the local memory. First entry describes
first buffer, second entry second buffer and so on and so forth. Each buffer is described
by four fields in the DT (see Figure 7.3): baddr, counter, dirty, and pf field. The baddr
field is the base address of the mapped buffer from the main memory. The counter field
is a counter that keeps track of the number of references where the buffer is assigned to.
Basically, this means that counter number of references are using this buffer. The dirty
field describes whether the buffer is modified or not. The pf field specifies if the buffer is
under prefetching.

The main purpose of the DB is to provide correct buffer assignment to references, and
to handle memory aliasing. This is done in a cache manner, similarly as in our software
cache but here it is done in hardware. When some buffer is needed for a reference, then
associative lookup is performed in the DT. If a hit occurs, then buffer is simply assigned to
the reference by updating its buffer-id field in MRT. Also, the counter field of the buffer is
incremented and dirty field is updated using reference’s rw field from the MRT. If buffer is
mapped to any write-access reference, then write-access must be reflected in the dirty field
to notify that buffer will be modified. In a case of a miss, some buffer in the local memory is
selected to serve a miss and the Directory Block automatically schedules dma get command
to transfer mapped data.

The main difference compared to caches is that DB does not support replacement of a
buffer. It is designed to maintain free and used buffers so that only free buffers can serve
new references. The counter field is used for this purpose. Buffer is free if its counter field
is equal to zero. If there are no free buffers, then no more references can be mapped to the
local memory. This constraint is necessary hence all buffers assigned to references must be
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resident in the local memory during the whole evolution of the actual work. It must not
happen that one buffer get replaced by the other when both buffers are needed. So, new
DMA controller can handle as many references as there are entries in the Directory Table.
In this work, we consider 32 entries in the DT. Code using new DMA controller must be
aware of this limitation and must not try to handle more than possible number of references.
Limitation of 32 references seems not to be a big problem for scientific High-Performance
Computing kernels since even our software solutions using basic DMA controller had similar
limitations (Chapter 3). However, DMA-circular is aimed for acceleration purposes, so it
should handle as many references as possible while others can be handled using some other,
less efficient, techniques.

Besides incrementing the counter field, it is also necessary to decremented it when
a reference does not use buffer any longer. Memory References Block is responsible for
notifying Directory Block when to decrement the counter. If the iters field in the Memory
References Table reaches zero because reference reached the end of the buffer then prior to
triggering lookup in the DB to request new buffer, it is necessary first to release currently
assigned buffer and this results in decremented counter field. Additionally, if the counter
field of the dirty buffer reaches zero value then DB schedules dma put command to transfer
buffer back to the main memory.

7.2.1.4 Prefetch Block

This block is responsible for prefetching action. It uses a Prefetch Queue that preserves
the addresses to be used for prefetching. When Directory Block does lookup for an address
then according to the sign of the stride of the reference, DB schedules prefetching of the
next buffer by placing its base address in the Prefetch Queue. Once prefetching action is
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triggered by the user, Prefetch Block starts invoking lookup in the DB for all addresses
found in the Prefetch Queue. User should invoke this operation before actual computation
in order to overlap computation with communication. When prefetching buffers, DB sets
pf field in the DT, but it does not increment counter field since prefetched buffers are not
assigned to any reference.

7.2.1.5 Translation Block

This component is an interface for the hardware to communicate to the software translated
addresses resulting from the buffer assignment. When requesting a buffer for a reference,
its main memory address is provided to the Directory Block which does buffer assignment
and outputs the local memory address within the assigned buffer. These local memory
addresses are preserved in the Translation Table so that a user can read them and use in
the work phase.

7.2.1.6 The reg-iters and reg-tags Registers

The reg-iters register is used to provide the software with the number of iterations that
can be done in the next work phase. This register is managed by the Memory References
Block.

The reg-tags register is used to provide the software with the tags to be used for the
synchronization with all transfers related to the buffers that are needed in the work phase.
Those transfers are either transfers resulting from the miss handling in the Directory Block
or prefetching transfers in a case that some lookup hits in a prefetched buffer (buffer with
the pf field set). The reg-tags register is managed by the Directory Block.

In the next section, we describe in more details how all these components work together.

7.2.2 Operational Model

In this section, we describe how the DMA-circular works and how to use it from the user
point of view. In Figure 7.4, we present a code example (Figure 7.4(a)) and its code trans-
formation to operate with the new DMA engine (Figure 7.4(b)). When operation with
DMA-circular, the first thing to do is to configure the DMA-circular as described in Sec-
tion 7.2.1.1. This is annotated with the CONFIG DMA macro in Figure 7.4(b). Then the
registration of references takes place. The macro START MEM REF REGISTRATION
annotates begining of the new loop which triggers actions in the Memory References Block.
A value pointing to the last registered reference in MRT (total num of references in Fig-
ure 7.2) is pushed at the top of the Loop Stack (Figure 7.2) in order to remember the
context of the MRT before references from the new loop are registered. Pointer to the top
of the Loop Stack is actually pointer to the current nest level, as shown in Figure 7.2. Reg-
istration itself is done by REGISTER MEM REF macro which is responsible for placing
descriptions of references in the Memory References Table. In our example, two references
are registered (a[i+K] and a[2*i]). Figure 7.5(a) shows the MRT after the registration of
these two references for their given footprint in the maim memory.
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   CONFIG_DMA(ADDR,SIZE,NUM);

   i = 0;

   START_MEM_REF_REGISTRATION();

   REGISTER_MEM_REF(&a[i+K],4,0);

   REGISTER_MEM_REF(&a[2*i],4,1);
 

   while(i<N)

   {

      STOP_PREFETCH();

      START_UPDATE();

      WAIT_UPDATE();

      int *_b1 = READ_TRANSLATION(0);

      int *_b2 = READ_TRANSLATION(1);

      iters = READ_DMA_ITERS();

      n = (i+iters>N)?N:i+iters;

      tags = READ_DMA_TAGS()

      START_PREFETCH();            

    

      dma_synch(tags);

      for(_i=0;i<n;_i++,i++)    

      {

         _b2[2*_i] = _b1[_i]*2

      }

   }

   MEM_REF_REMOVAL();

W
o
rk

Synch.
C
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tr
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l 
C
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for(i=0; i<N; i++)

{

   a[2*i] = a[i+K] * 2;

}

(a) Original code example. (b) DMA-circular code transformation.

Figure 7.4: A code example that operates with DMA-circular.

The most important actions in the control code are START UPDATE andWAIT UPDATE.
In Figure 7.5(b), we present flow diagram and evolution of Memory References Table dur-
ing the first two executions of the control code for the new DMA controller. We can see
that START UPDATE will trigger actions in Memory References Block to bring buffers for
references which iters field in the MRT is zero. Since, in the beginning, both references
are without assigned buffer, then two lookups (lookup for address 5 and 1 ) are triggered
in Directory Block. Since there are no buffers in local memory, both lookups miss and
DB schedules two dma get commands to bring new data. Additionally, two addresses (8
and 4 ) are placed in the Prefetch Queue in order to be used for prefetching later. In re-
turn, DB updates buffer-id entries in MRT. We can see that one reference got buffer 0
assigned, and the other got buffer 1. Along with this, MRB updates the iters fields. We
can see that, for the given example in Figure 7.5(a), reference a[i+K] can do three iter-
ations in the first buffer while the reference a[2*i] can do two iterations in the assigned
buffer. Min of these two is placed in reg-iters, and it denotes the maximum number of
iterations to be executed in the work phase. All this time while the MRB and DB are
doing these actions CPU is waiting on WAIT UPDATE. Once all updates are done, con-
trol is returned to CPU, and it can proceed with the next actions: reading local memory
addresses from the Translation Table (macro READ TRANSLATION in Figure 7.4), read-
ing reg-iters register (macro READ DMA ITERS), adjusting iteration bound for the inner
most loop, reading reg-tags register (macro READ DMA TAGS), starting of the prefetch-
ing (macro START PREFETCH), synchronization with read tags, and finally actual work
phase. Prefetching is started prior to synchronization, and in Figure 7.5(b) we can see that
while CPU executes synchronization and work phases, Prefetch Block triggers lookup in
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Figure 7.5: Operational Model.

DB for addresses found in Prefetch Queue. In our example, those addresses are 8 and 4.
Former will miss in the DB and dma get will be programmed, while latter will hit.

After the work phase, control phase is repeated since not whole workload has been
executed. In the second control phase, first action to be taken is to stop prefetching and start
update in the MRB again. Now, MRB first updates address and iters fields. The address
field is updated to the next address to be accessed (address = address+stride×reg−iters),
and the iters field is decremented by reg-iters number of iterations. We can see this evolution
of MRT in Figure 7.5(b). Since now iters is zero for the a[2*i] reference, then prior to
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invoking lookup for the new address (address 4 ) it is necessary first to release old buffer
(buffer 1 ). Since a[2*i] is write access reference then when releasing buffer 1, DB schedules
dma put command to transfer modified buffer back to the main memory.

So, this process repeats until whole original iteration space for the loop is done. At
the end when exiting from the loop, macro MEM REF REMOVAL (Figure 7.4) is used to
release all buffers assigned to references from the current nesting level and to notify MRB
that we are exiting from the loop so that Loop Stack (Figure 7.2) can be popped in order
to switch the MRB to work with the references from the previous nesting level.

7.2.3 Applicability

New DMA engine conforms the best to distributed systems where each core work with
private data (e.g., Intel SCC architecture). The reason for this applicability is the way
how DMA-circular does write-back of the modified data. DMA-circular schedules dma put
commands to write whole buffer of data back even if only a portion of a buffer is modified.
In Figure 7.5(b), dma put is scheduled to transfer a buffer where actually every second
element is modified. So, it can be used in shared memory systems for read-only references
or even for write-access references when a user is sure that buffer is not going to be shared
among cores.

7.3 Evaluation

The evaluation section is divided into five parts. First, we explain the methodology used
in the evaluation. Second, we measure control code overheads with basic DMA controller.
Third, we measure the effect of control code acceleration. Fourth, we study the overall
impact in performance of the proposed DMA controller, and finally we study energy con-
sumption.

7.3.1 Methodology

We have used loops from CG, IS, FT, and MG applications. In this evaluation, we execute
them on a single-core. Obviously, we can execute parallel MPI version of these benchmarks
and use DMA-circular on each node but the parallel execution is out of the context of this
work. Our aim is to evaluate the effect of offloading the control code, for dealing with stride
access references with constant strides, from the software to the new DMA controller. For
this purpose, it is enough to use single core. We have selected mentioned loops because they
are HPC workloads which contain plenty of stride access references with constant strides
which are the only references to be addressed by the proposal in this chapter.

All loops are coded to use basic DMA controller and DMA-circular. Baseline is the
implementation that uses basic DMA controller, and this implementation is based on our
High Locality Cache (Chapter 3). To execute selected loops, we use the PTLsim simulation
infrastructure, as described in Section 2.3.2. Additionally, we extend PTLsim with a local
memory, a traditional DMA controller, and DMA-circular. In Table 7.1, we present the
configuration parameters used for the simulations.
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We configure PTLsim to work with a hybrid memory model where on-chip local memory
is integrated in the core, side to the cache hierarchy. Figure 7.6 shows the high level design
of the hybrid memory model used in this evaluation. Used hybrid memory model has
been recently proposed in a study about local memory design space exploration for High-
Performance Computing [15].

In order to operate with the integrated local memory, an address range of physical
addresses is reserved and direct-mapped to logical addresses. When a memory operation
is executed, a range check for the logical address is performed to determine if the memory
operation is to the local memory or to the cache hierarchy. This check is done in parallel
with the segmentation mechanism, prior to any action of the logical to physical address
translation in the Memory Management Unit (MMU) [50]. If the virtual address is in the
range reserved for the local memory the MMU is bypassed and a physical memory address
that points to the local memory is generated [15]. Avoiding the address translation in
MMU keeps the access time to the local memory fast and constant, which are two very

Table 7.1: PTLsim configuration parameters.
Parameter Description

Issue scheme
Out-of-order (Fetch, Decode, Rename, Issue
and Commit width of 4 instructions)

Branch predictor
Hybrid 4K selector, 4K G-share, 4K Bimodal,
4K BTB 4-way and RAS 32 entries

Functional units
3 integer ALUs, 3 floating point ALUs
and 2 load/store units

Register file
256 integer registers
256 floating point registers

L1 I-cache
32 KB, 8-way set-associative, 64-byte lines
2 cycles latency

L1 D-cache
32 KB, 8-way set-associative, 64-byte lines
2 cycles latency

L2 cache
256 KB, 24-way set-associative, 64-byte lines
15 cycles latency

L3 cache
4 MB, 32-way set-associative, 64-byte lines
40 cycles latency

Local memory
size = 32 x studied buffer size
2 cycles latency

DMA-circular

1 cycle latency: loop stack operations,
accessing an entry in MRB, lookup in DT,
prefetch in DT, releasing a buffer in DB,
writing to Translation Table, and queuing
an address in to Prefetch Queue
4 cycles latency to calculate iters in MRB,
with maintaining the minimum iters value.
3 cycles latency to update address and
iters fields in MRB with maintaining the
minimum iters value.

I/O mapped
6 cycles latency

load and store
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Figure 7.6: Simulated architecture with the hybrid memory model.

good properties of local memories. Address translation in the MMU is done only if the
access is directed to the cache hierarchy.

As we introduced in the first chapter of the thesis, memory coherency at the DMA
transfer level is important in the systems where on-chip local memories are mixed with
caches. In the simulated system, it is ensured on the following way. The L1 and L2
caches are write-through and all the levels of the hierarchy are inclusive. The bus requests
generated by a dma-get snoop the L3 cache. If the data is present in the L3 cache it is
copied from there to the local memory, otherwise it is copied from the main memory. The
bus requests generated by a dma-put copy the data from the local memory to the main
memory and, in case the cache line is present in the L3 cache, it is invalidated.

Hybrid memory model is used in this evaluation for the simplicity reasons. We handle
irregular memory references through the cache hierarchy only, while the local memory is
exclusively devoted to the regular references (stride access references with constant strides).
Simulated memory model, potentially, opens the system to be inconsistent since local mem-
ories are not coherent with caches. Therefore, it must not happen that the local memory
and L1 cache work with the same data at the same time and that at least one of them
modifies the data. We have checked and it is not happening in the simulated loops.

Good side is that a new problem is emphasized. As a result of some preliminary studies,
we find that the presence of the Directory Block in our DMA-circular enlarges the possi-
bilities of supporting the coherency of local memories and caches in the hybrid memory
models. However, this study is ouf of the context of this thesis and we leave it for the
future work.

7.3.2 Control Code Overheads

The main aim of this section is to analyse control code overheads when dealing with ba-
sic DMA controller, and determine an upper bound for the acceleration effect. For that
purpose, all tested loops are described in terms of overheads. Figure 7.7 shows the time
distribution for the selected loops in CG, FT, IS, and MG applications. Total execution
time has been broken down to control, synchronization and work components. In Figure
7.7, percentages of the total execution time are displayed. Each loop is tested with different
configuration for the size of the buffers. We used buffers of 1KB, 2KB, and 4KB. There are
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Figure 7.7: Control code overhead with basic DMA controller. Three bars associated to
each loop are for three different buffer sizes. From left to right, sizes are: 1KB, 2KB, and
4KB.

three bars corresponding to each loop in Figure 7.7. The leftmost bar corresponds to buffer
size of 1KB, middle bar is for buffers of 2KB in size, and the rightmost bar represents usage
of 4KB buffers.

We can see in Figure 7.7 that a variety of overheads is present in the tested loops. There
are loops with very little overhead, less than 20% of the execution time and loops with huge
overheads of up to 60% of the execution time.

Loops which are not suffering from control code overheads are: CG-07, CG-10, IS-3, IS-
4, and MG-5. These loops are computation bounded loops where very little of the execution
time is spent in the control code due to very few references handled there. On example,
loop 4 in IS application, handles only two references which are aliasing and sharing a buffer
almost all the time. In other words, while the actual work performs operations for two
references, control code is almost as efficient as control dealing with only one reference
since handling one of the references ensures data for the other reference as well in this loop.
Only 5% of the execution time is spent in the control code of IS-4 loop, when working with
big (4KB) buffers. Big buffers require less frequent control code interventions for a given
workload than smaller buffers. We can see that overhead increases when smaller buffers are
in use. When 1KB buffer is used then overhead is around 20% of the execution time in this
loop. This means that what DMA-circular is trying to improve, corresponds to 5%-20% of
the total execution time in this case.

Loop 10 in CG application contains one scalar reduction variable and three references
which perform array access. One of those three references is irregular and cannot be handled
by DMA-circular. This reference is handled through cache hierarchy since it does not
alias with any of the references mapped to the local memory. Irregular access pattern of
this reference results in requiring missing data along the computation and then the work
component takes the most significant part of the computation in this loop, while the control
code, which handles the other two references, is at most 10% of the execution time. Similar
situation is with the CG-07, IS-3 and MG-5 loops.
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In the rest of CG loops we observed overheads ranging from 20% to 60% of the execution
time. The case of CG-02, CG-05, CG-06, CG-09, and CG-13 are simple loops which do
reduction on one or two arrays. Computation is fast and performed over, at most, two
arrays and two scalar reduction variables. Due to the fast computation in these loops,
control code takes a significant part of the execution time. Control code overhead is around
20% for big buffers, while it is close to 30% and 40% for 2KB and 1KB buffers, respectively.
The rest of CG loops, as well as IS-1 and IS-2 loops, consist of simple computations over
one or two arrays. Some of them does only copy operation or initialization of arrays, such as
loop CG-01 which does initialization of six arrays. Due to a simple computation and a high
number of references treated in the control code, loop CG-01 ends up in huge overheads
ranging from 30% to 60% of the execution time.

The case of FT application consist of more complex kernels with plenty of loops and
with more references to be handled than in IS and CG applications. In the case of FT-1,
FT-2 and FT-3, 20% of the execution time corresponds to the control code when 4KB
buffers are used. With 2KB buffers, observed overhead is around 35%, while with 1KB
buffers, overhead is around 50% of the execution time. The FT-4 and FT-5 kernels threat
less references than FT-1, FT-2, and FT-3 kernels and, as shown in Figure 7.7, result in
less overhead which ranges from 15% to 40%.

The case of MG-1, MG-2, MG-3, and MG-4 are interesting examples where control
overhead is high, around 40% or 50%, for all tested buffer sizes. Buffer size does not make
any significant difference for the control overhead in these kernels. For example, MG-4
kernel (the most time consuming kernel in MG) is a case of 3 nested loops where the inner-
most loop has short iteration space and considerable number of references (18 references
handled in the control code). Due to short iteration space, the majority of iterations for the
inner most loop can fit in only one 1KB buffer, which means that very few buffers (mostly
one or two) per reference, can cover all inner-most iteration space. So, after the inner most
loop is sub-chanked with very few buffers and executed, the outermost loops are executed.
Afterwards, the control code for the new instance of the inner most loop is executed again.
So, instead of having significant number of control code phases due to sub-chunking the
inner-most loop, here, no matter the size of the buffer, number of control code instances
in the inner-most loop is similar. Execution of the control code is dictated by the iteration
space of the outer loops. Acceleration bound for the DMA-circular in this case is high,
since 50% of the execution time could be addressed.

In conclusion, the potential effect of acceleration ranges between 5% and 50%, depending
on the loop type and the buffer size. Loops which are computation bounded with very few
references handled in the control code (for instance, CG-10 and IS-4), offer low potential for
acceleration (between 5% and 20%, depending on the buffer size). Big overheads (from 20%
to 50%) can be expected from variety of loops, such as: loops which are not computation
bounded so that weight is pushed on the control code side (e.g., many CG loops), nested
loops with short inner loops (e.g., MG-1, MG-2, MG-3, and MG-4 kernels), and any type
of loop where the majority of references that appear in the work phase are mapped in the
local memory and handled in the control code (e.g., FT kernels).

Next section evaluates acceleration effect of the DMA-circular.
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7.3.3 Acceleration effect evaluation

This section measures and checks the effectiveness of DMA-circular. We have select 4 loops
(CG-10, FT-2, IS-2, and MG-1) as representative of what has been observed in the tested
applications to explain the acceleration effect in detail. Figure 7.8 shows the execution of the
selected loops, each one executed using basic DMA controller and DMA-circular. Execution
time is decomposed into actual work, control overhead and synchronization. Each loop is
executed using three different buffer sizes: 1KB, 2KB, and 4KB.

The case of CG loop 10, in Figure 7.8(a), represents a case dominated by the work
component. Control code, in this loop, corresponds to less than 10% of the execution,
but we can see that even that small control code has been significantly decreased with
DMA-circular. New control code corresponds to just few percent of the execution time.
Execution time of the work component remains flat in all versions which is expected since
DMA-circular imposes changes in the control code only, while the source code for the work
phase remains unchanged. Finally, the synchronization time gets a bit increased due to
much shorter control code which is not long enough to completely overlap communication
and computation when DMA-circular is used.

The case of loop 2 in IS application is a loop which is still dominated by the work
component but with noticeable portion of the execution time devoted to the control code
execution. Figure 7.8(b) shows the execution time breakdown for this loop and we can see
that control code is around 30% when buffers of 1KB are in use, while it is a bit less for
smaller buffers: 20% for 2KB buffers and 15 % for 4KB buffers. DMA-circular successfully
accelerates original control code in this loop by decreasing it to very few percentage points.
In a case of 1KB buffers, control code is accelerated almost 9 times, from its 33% percent
in the baseline, it turns to only 5% percent of the execution time in the accelerated version.
Similarly to the CG-10, synchronization is a bit increased here also. Additionally, we
observed in this loop some slight variations in the execution time of the work component.
Control code for the new DMA is much shorter which sometimes can make an impact on
compiler to better optimize the work phase itself. We observed variations of at most 10%
in the work components of all the tested loops.

A middle case in terms of control code dominance is FT loop 2 in Figure 7.8(c). In this
loop, control code corresponds to 50%, 35% and 25% of the execution time for buffers of
1KB, 2KB, and 4KB respectively. The trend of increased synchronization due to accelerated
control time, is clearly noticeable in this loop. In the case of 4KB buffers, original control
code has been accelerated by factor of seven, while the synchronization has been increased
by factor of five. Interestingly, if we calculate the same numbers but for smaller buffers,
then we get control code acceleration by factors of 8 and 12 for 2KB and 1KB buffers,
respectivelly. This means that acceleration effect of the DMA-circular is better for smaller
buffers, and thus accelerated control code for smaller buffers is similar to the accelerated
control code for bigger buffers, or at least, variations are not that drastical as they are when
basic DMA is used.

At the end, the case of loop 1 in MG application (Figure 7.8(d)) is representative of loops
dominated by the control code. In this loop, for all variations of buffer sizes, control code is
more than 50% of the execution time when basic DMA is used. Acceleration of the control
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(b) IS-2
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(c) FT-2
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(d) MG-1

Figure 7.8: Execution time decomposition into actual work, control overhead and synchro-
nization for CG-10, IS-2, FT-2, and MG-1 loops, using basic DMA and DMA-circular with
three different buffer sizes (1KB, 2KB, and 4KB).

code in this loop is significant and it is around factor of seven. Interesting observation, in
this loop, is a drastic increment in the synchronization time, especially for 1KB and 2KB
buffers, when DMA-circular is used. Synchronization time for 1KB and 2KB buffers is a bit
bigger in this loop than in the other loops in Figure 7.8. This is because MG-1 suffers from
wrong prefetching when 1KB and 2KB buffers are used while with 4KB buffers prefetching
works fine. That is why in Figure 7.8(d), synchronization in a case of 1KB and 2KB buffers
is much higher than in a case of 4KB buffers. However, increment in the synchronization
time is not that drastic to diminish effects of the acceleration and thus speedups in total
are observed. We can also see that the execution time of the work phase depends on the
size of the buffer in MG loop 1, while in the other loops in Figure 7.8 it is not the case. This
does not have anything with DMA-circular, this is an effect of subchunking the iteration
space. It is faster to execute whole iteration space in one shot than to break it down in
few shots. In the latter case, more jump instructions will be involved in total. For long
iteration spaces (e.g.: CG-10, FT-2, and IS-2) increment of jump instructions has negligible
impact on the total number of executed instructions but for short iteration spaces, such as
MG-1, it has a significant impact which is noticeable in Figure 7.8(d).

120



7.3 Evaluation

In conclusion, we have observed similar trends in all tested loops. DMA-circular succeeds
in diminishing the control code cycles without incurring an unacceptable increase in the
other components of the execution time. Synchronization usually increases with DMA-
circular since new control code is not long enough to overlap all transfers, but that increment
is not big enough to diminish the effect of the acceleration in the total execution time of
the loops. We have observed that speedup factors for the acceleration of the control code
ranges from 6 to 12, usually being more efficient for smaller buffers than for bigger buffers
in the tested loops.

Finally, notice that new code operating with small buffers is sometimes faster than
baseline’s code operating with big buffers. On example, in FT-2, IS-2 and CG-10 loops,
total execution time with DMA-circular and 1KB buffers is better than the total execution
time for the basic DMA and 4KB buffers. In a case of MG-1, it is not the case due to
long synchronization when 1KB buffers are used with DMA-circular. But we can see that
MG-1 with DMA-circular and 2KB buffers performs, in total, almost the same as basic
DMA with 4KB buffers. This observation is interesting since it means that DMA-circular
could save area by requiring less local memory in order to achieve comparable performance
as the basic DMA with much bigger local memory. This is an interesting parameter for the
study and in Section 7.3.5, we analyse what the trends are in the rest of the tested loops.

7.3.4 Overall loop performance

In this section, we evaluate the overall loop performance. We compare basic DMA against
DMA-circular for three different buffer sizes (1KB, 2KB and 4KB). The comparison mea-
sures improvement in terms of speedup. Figure 7.9 shows speedup factors obtained in all
the tested loops.

We saw that loops CG-07, CG-10, IS-3, IS-4, and MG-5 do not suffer from huge con-
trol code overheads. Accordingly, obtained speedup in those loops is low, less than 1.1
(Figure 7.9). In these loops we have very little space for optimization but good thing is
that some speedups are obtained even in these loops which are not good candidates for
acceleration.

Other loops, which had more significant control code overhead, benefit more from DMA-
circular. On example, we saw in Figure 7.7 that FT loop 2 had control code overhead of
50%, 40%, and 20% for 1KB, 2KB and 4KB buffers, respectively. In Figure 7.9, we can see
that obtained speedups in this loop for 1KB, 2KB, and 4KB buffers are: 1.8, 1.4, and 1.2
respectively. These speedup numbers correspond to the overheads seen in Figure 7.7. The
same trend is obtained in the other loops. In general speedups are higher when small buffers
are used. CG-01 reaches even two times faster execution with DMA-circular when small
buffer of 1KB is used. This high speedup is obtained due to high control code overhead
(around 60% of overhead in Figure 7.7) that is successfully accelerated with DMA-circular.
Obtained speedups for 2KB and 4KB buffers are lower in majority of the tested loops. In
CG, FT and IS loops speedup for 4KB buffers is around 1.2. In the MG loops, trend is a
bit different. As we saw in Section 7.3.2, control code overhead for MG loops 1, 2, 3, and
4 are more or less the same no matter the buffer size. For the same reason, as expected,
speedup is the same no matter the size of the buffers. We can see that MG-1, MG-2, MG-3,
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Figure 7.9: Speedup factors for the system using DMA-circular against system working with
basic DMA. Three bars associated to each loop are speedups obtained for three different
buffer sizes: 1KB (left-most bar), 2KB (middle bar), and 4KB (righ-most bar). Speedup is
obtained by comparing execution time of the system working with DMA-circular and the
selected buffer size against the system working with basic DMA and the same buffer size.
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Figure 7.10: Control code overhead with DMA-circular. Three bars associated to each loop
are for three different buffer sizes: 1 KB, 2 KB, and 4 KB (from left to right).

and MG-4 loops have speedups ranging between 1.4 and 1.5. Only MG loop 1 has a bit
lower speedup for 2KB buffer and this is because of the increased synchronization time due
to wrong prefetching, as explained in the previous section.

Finally, we accompany the speedup numbers with the Figure 7.10 which shows control
code overhead when new DMA is used. In contrast to control code overhead with basic DMA
(Figure 7.7, it is noticeable that new DMA reduces all control code overheads significantly.
We can see that new control almost never exceeds 15% of the execution time while with the
basic DMA it was going up to 60% of the execution time in some loops. On example, CG
loop 4 had control code overhead of around 40% for 2KB buffers, while with DMA-circular
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Figure 7.11: Execution time of all tested versions working with DMA-circular, normalized
to the execution of the fastest version working with basic DMA (version working with 4KB
buffers). Value one on Y-axis corresponds to the execution time of the version working with
basic DMA and 4KB buffers.

it is around 15% which results in speedup of 1.4 for this particular loop and buffer size.

In general, obtained speedups ranges from 1.2 to 2 for 1KB buffers and from 1.1 to 1.6
for 2KB and 4KB buffers.

7.3.5 Impact on the Local Memory Size

In Section 7.3.3, we noticed that DMA-circular working with small buffers can be sometimes
as efficient as basic DMA working with big buffers. We saw that this is a trend in CG-10,
FT-2, and IS-2. In this section, we check what is a trend in the other tested loops.

In Figure 7.11, we compare the basic DMA working with 4KB buffers and the new DMA
working with 1KB, 2KB, and 4KB buffers. The normalised execution time is present in
Figure 7.11. The main observations is that the DMA-circular with a 1KB buffers almost
always outperforms the basic DMA with 4KB buffers. In some loops, slowdown of up to
10% is observed. However, when DMA-circular works with 2K buffers then, in all tested
loops, basic DMA that is using two times bigger buffers results in worse performance.

This is an important advantage of DMA-circular. Being able to achieve good perfor-
mance with small buffers, what is not possible with basic DMA, has tremendous benefits,
especially in area and power. In the basic DMA approach, the smaller the buffer, the more
control bursts have to be executed so more overhead is introduced. This situation also
happens with the DMA-circular, but with a big difference that the execution of the control
code has a very low cost, as we saw in Section 7.3.3. and then the increment of control burst
executions becomes affordable. Being able to efficiently work with small buffers translates
to being able to have smaller local memories.
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Figure 7.12: Energy consumption of the system working with DMA-circular, normalized
to the energy consumption of the system working with basic DMA. Buffer size is fixed to
2KB.

7.3.6 Energy consumption and Power

Figure 7.12 compares energy consumption of the processor using basic DMA controller
versus processor equiped with DMA-circular. Presented numbers are for a buffer size of
2KB.

We do not compare energy consumption of DMA controllers itself since we observed
that energy consumed by the DMA engine itself is always less than 5% of the total energy
consumption. In terms of energy the main source of benefit is the decreased instruction
count in the control code. Less instructions executed in the control code decreases total
energy consumed by a processor. For instance, in Figure 7.12 we observed that accelerated
version of FT-1 benefits 30% in energy (see Figure 7.12) respect the baseline version. In
this loop, observed speedup due to acceleration effect of DMA-circular (around 30% of the
control code overhead has been decreased to 5% of overhead) is 1.3 and the same trend is
observed for energy consumption. Since we observed speedups in all tested loops, we also
observed more energy efficient execution of all loops. Figure 7.12 shows that energy savings
for all the tested loops range from 5% to 40%. 5% of energy efficiency is observed in loops
suffering from little speedups: CG-07, CG-10, IS-3, and MG-5. In the rest of the loops
higher speedups are observed and then higher energy savings are present in Figure 7.12.

So, energy savings are obvious since shorter execution time ensures that but what is
happening with power. We spend less energy in less time which requires power consumption
study of the new design. In Figure 7.13, we compare power consumption of the processor
working with basic DMA versus processor using DMA-circular. We can see that in all
loops power consumption of the version using DMA-circular does not vary a lot from the
baseline’s power consumption. Observed variations in power are mostly within 10% of the
baseline’s power consumption.
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Figure 7.13: Power consumption of the system equiped with DMA-circular, normalized to
the power consumption of the system working with basic DMA. Size of the used buffer is
2KB in this chart.

7.4 Related Work

Previous research works targeting the management of an on-chip local memory mainly
differ on the existing hardware support for the actual management and how this hardware
interacts with the software execution. In the case where no specific hardware support
is available, explicit buffer allocation and a DMA programming style totally based on
loop tiling techniques [21, 39] is the solution. This approach, however, requires precise
information about memory aliasing of regular memory references at compile time which is
not a case in our proposal.

S. Seo et al [98], propose a pure software cache architecture, with a configurable cache
line size, a fast and adaptive placement and replacement mechanism for accelerator-based
architectures with local memories. In general, this solution defines simple mechanisms
and compiler code transformations to smooth the overhead related to the local memory
management. The proposal in this chapter is a natural hardware design that accelerates
several aspects of the software-based solutions. The proposed DMA engine is general enough
to support and accelerate most of the mechanisms in this work.

Software caching techniques have been also applied to reduce the amount of power
consumption associated to cache management. These proposals face similar problems as
the ones addressed in this work and introduce explicit hardware support that could be
adopted for the management of a local memory. For instance, Direct Addressed Caches
[118] propose the elimination of the tag checks by making the hardware to remember the
exact location of a cache line, so that hardware can access data directly. This proposal
requires the definition of new registers in the architecture to relate load/store operation to
specific cache lines, leaving to the compiler the decision of what memory references have to
be associated to the additional registers.

In Osman Unsal et al. [111], a tag-less cache architecture for scratchpad memories is
described. The miss handler is implemented in software but there is specific hardware to
notify the program there has been a cache miss. New registers are introduced implementing
the hotcachelines, associated to memory references that their access pattern can be easily
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7. ACCELERATED BUFFER MANAGEMENT

predicted at compile time. The main aim of this approach is to reduce the energy consump-
tion related to the tag checking. The scratchpad memory is totally managed by software,
so there is no support for buffer allocation and memory disambiguation between buffers,
and the eviction process of modified data is also under software control with no acceleration
given by the hardware. All this points are addressed in the DMA-circular with dedicated
hardware to accelerate these mechanisms.

Other works coming from embedded systems [25, 89] also address the management of
a local memory. In general, these works target energy savings in the cache subsystem.
The cache architecture is partitioned and fine grain placement mechanisms to skip the tag
checks. The compiler generates enhanced load and stores operations that directly access to
a specific partition. It is needed complex compiler analysis to appropriately map memory
references to partitions. In general, this solution requires profile information, something
very usual in embedded systems, but not so accepted for programming general purpose
cores.

In this last context, similar ideas have been explored [42, 72, 93] but implemented on top
of dynamic mechanisms supported in hardware at the cache logic level. These works define
cache partitions to adapt to the observed locality at runtime. In general, all these works
define two trends: first, place the control of the cache events at software level, and second,
dynamically accommodate the cache mechanisms to the access patterns in the computation.
The proposal in this chapter mixes both strategies, and in particular takes the first strategy
up to a limit where the DMA-circular is mostly controlled by software.

7.5 Conclusions

This chapter describes the design and evaluation of the DMA-circular, a new DMA con-
troller that operates with on-chip local memories. The motivation of the design is to accel-
erate control code overheads of managing buffers in the local memories while not imposing
programmability issues. The two key features of the new design are: the introduction of
cache functionalities within the DMA controller and the addition of specific hardware blocks
that accelerate the common control actions and events associated to the operability of a
local memory.

The DMA-circular is evaluated with several high performance computational kernels of
the NAS benchmark suite. The results indicate that the design reduces the control code
overheads under 15% of the execution time. The overall performance of the tested kernels
is improved between 1.2x to 2x when DMA-circular is used. Also, energy consumption
is reduced from 5% to 40% respect the energy consumption when basic DMA is used.
Reduced energy consumption is proportional to the obtained improvement in the execution
time which turns the power disipation to be comparable to the power disipation of the
systems using basic DMA
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Chapter 8

Conclusions and Future Work

In this thesis, we address efficient usage and programmability of local memories in the
context of both single core and multi-core processors. We start with software optimizations
regarding the utilization of local memories and in that context, we develop an optimized
infrastructure for software caching.

Out first contribution is motivated by overheads imposed by traditional software cache.
As a result, we propose the novel hybrid access-specific software cache architecture that
maps memory accesses according to the locality they expose. It presents a design of two
distinct and custom cache structures that are tailored for two different kind of references:
high-spatial locality and irregular references. Performance evaluation indicates that the
hybrid design is significantly more efficient than traditional software cache approaches for
a set of NAS parallel benchmarks, with speedup factors in the 2.8 to 8.5 range.

Afterwards, we continue optimizing our hybrid software cache. We analyze overhead
distribution of our hybrid software cache and we locate new sources of overhead. The
write-back of dirty cache lines imposes huge overhead in the initial implementation and
we address that overhead for optimization. That is how we end up with the novel adap-
tive and speculative memory consistency mechanisms for our software cache. The main
achievement is that of minimizing the impact on performance for the most critical aspects
in software-based implementations: atomicity and control code execution related to dirty-
bits data structures. Performance evaluation indicates that the proposed mechanisms are
significantly more efficient: speedup factors between 20% and 40% are observed in several
applications in the scientific domain.

We check again the overhead distribution or our software cache and we analyze the
evolution from the traditional software cache to the hybrid software cache. As a result of
the mentioned analysis, we locate new overhead to be addressed. This time it is about
overlapping communication with computation. In that context, we develop two prefetching
techniques for our hybrid access-specific software cache. We develop automatic prefetch for
high-locality references and modulo scheduling transformation for irregular references. We
observe that automatic prefetch can improve some loops by 20% due to better overlapping
of the communication with the computation, while modulo scheduling transformation for
irregular references results in speedups ranging from 20% to 40%.
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So, at the end of the day we get optimized software cache infrastructure for efficient
utilization of local memories. But this is not all. We continue analysing other problems
related to the utilization of local memories and we propose optimizations on the hardware
level in order to make handling of local memories more convenient and faster. One of those
optimizations come up from the experience collected during the development of the software
cache. We notice that DMA engines, responsible for data transfers to/from local memories,
impose hard alignment constraints which prevent programmers from achieving the most
convenient data allocation in local memories. Simply, allocation of data in local memory
must resemble data alignment of the corresponding data from the global memory and this
can make an impact on the efficient usage of SIMD units which also impose alignment con-
straints. Therefore, we describe the hardware proposal for dealing with unaligned memory
transfers in modern high-performance architectures with local memories and DMA engines.
We take advantage of the DMA transfers needed in the processors with local memories, and
design the Realignment Unit that performs data realignment in the DMA engines while data
is in transfer between local and global memory. With this support, programmers can move
data from any alignment in the global memory to the most convenient alignment in the
local memory and vice versa. This hardware offers a freedom of arranging the data in the
local memory. Evaluation shows that the proposed Realignment Unit can be introduced in
the DMA engines with no performance loss in terms of available bandwidth.

Finally, we propose to accelerate software cache handlers by mapping them to hardware.
More precisely, we propose the design of the new DMA controller, namely DMA-circular,
that is capable of accelerating control code overheads of managing buffers in the local
memories while not imposing programmability issues. The two key features of the DMA-
circular are: the introduction of cache functionalities within the DMA controller and the
addition of specific hardware blocks that accelerate the common control actions and events
associated to the operability of the local memory. The evaluation results indicate that the
design reduces the control code overheads from 50% of the execution time under 15% of
the execution time. The overall performance of the tested kernels is improved between 1.2x
to 2x when DMA-circular is used. Also, energy consumption is reduced from 5% to 40%
respect the energy consumption when basic DMA is used.

Last proposal motivate some future work regarding the coherency in the hybrid mem-
ory models where caches and local memories coexist in a processor. We know that local
memories are not coherent since programmers are responsible for managing local memories
and for maintaining the coherency with other entities in the memory hierarchy. However,
caching functionalities introduced in the DMA-circular motivate us to think about hard-
ware support and compilers’ interaction for the coherency of local memories and caches in
the hybrid memory models. We have observed encouraging preliminary results that we are
going to address in the future work.
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As the result of the research done so far, next papers have been published:
Journal papers:

• Nikola Vujic, Felipe Cabarcas, Marc Gonzalez, Alex Ramirez, Xavier Martorell, Ed-
uard Ayguade, “DMA++: On the Fly Data Realignment for On-Chip Memories”,
IEEE Transactions on Computers, vol. 61, no. 2, pp. 237–250, February 2012.

• Nikola Vujic, Marc Gonzalez, Xavier Martorell, Eduard Ayguade, “Automatic Prefetch
and Modulo Scheduling Transformations for the Cell BE Architecture”, IEEE Trans-
actions on Parallel and Distributed Systems (TPDS), vol. 21, no. 4, pp. 494–505,
April 2010.

Conference papers:

• Nikola Vujic, Lluc Alvarez, Marc Gonzalez, Xavier Martorell, Eduard Ayguade, “DMA-
circular: an Enhanced High Level Programmable DMA Controller for Optimized Man-
agement of On-chip Local Memories ”, In Proceedings of the 9th ACM International
Conference on Computing Frontiers (CF’12), Cagliari, Italy, May 2012. [Acceptance
rate: 28%].

• Nikola Vujic, Marc Gonzalez, Felipe Cabarcas, Alex Ramirez, Xavier Martorell, Ed-
uard Ayguade, “DMA++: On the Fly Data Realignment for On-Chip Memories”,
In Proceedings of the 16th International Symposium on High-Performance Computer
Architecture (HPCA-16), Bangalore, India, January 2010. [Acceptance rate: 18%].

• Marc Gonzalez, Nikola Vujic, Xavier Martorell, Eduard Ayguade, Alexander Eichen-
berger, Kathryn O’Brien, Kevin O’brien, Chen Tong, Zehra Sura, Tao Zhang, “Hybrid
Access-Specific Software Cache Techniques for the Cell BE Architecture”, In Proceed-
ings of the 17th International Conference on Parallel Architectures and Compilation
Techniques (PACT 2008), Toronto, Canada, October, 2008. [Acceptance rate: 19%].

Workshop papers:

• Nikola Vujic, Lluc Alvarez, Marc Gonzalez, Xavier Martorell, Eduard Ayguade, “Adap-
tive and Speculative Memory Consistency Support for Multi-core Architectures with
On-chip Local Memories”, In Proceedings of the 22nd Annual workshop on Languages
and Compilers for Parallel Computing (LCPC 2009), Newark, Delaware, US, October,
2009. [Acceptance rate: 58%].
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• Nikola Vujic, Marc Gonzalez, Xavier Martorell, Eduard Ayguade, “Automatic Pre-
Fetch and Modulo Scheduling Transformations for the Cell BE Architecture”, In
Proceedings of the 21st Annual workshop on Languages and Compilers for Parallel
Computing (LCPC 2008), Edmonton, Canada, August, 2008. [Acceptance rate: 51%].
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Appendix B Cell Processor

The Cell processor is the first-generation Cell Broadband Engine Architecture (CBEA)
processor. It is a heterogeneous, multicore chip that consists of a PowerPC Processor
Element (PPE), eight Synergistic Processor Elements (SPEs), high-bandwidth memory
controller, and a high bandwidth I/O controller. All elements are connected via on-chip
high-bandwidth Element Interconnect Bus (EIB). All key elements of the this processor
and bandwidths between them are shown in Figure 1. In general, this processor is designed
to work on a high frequencies but to be power efficient. The processor units operate on
frequency of 3.2 GHz while EIB operates on a half of that frequency (1.6 GHz).

The PPE is a dual-issue, in-order 64-bit Power Architecture core with two-way simul-
taneous multithreading. This core has vector multimedia extension (VMS) unit, and a
traditional cache hierarchy: 32KB L1 instruction and data caches, and a coherent 512KB
L2 cache. The PPE is Cell’s main processor that is aimed to run the operating system and
schedule jobs on SPEs.

The SPEs are accelerator based cores which provide the most of the compute power in
this system. Figure 2 shows the SPE’s main components and bandwidths between them.
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Figure 1: Block diagram of the Cell processor.
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Figure 2: Block diagram of the SPE.

The SPE consists of a Synergistic Processor Unit (SPU) and a DMA engine. The SPU is a
RISC-style in-order processor designed for high-performance data-intensive computations.
All functional units in SPU are organized as Single Instruction Multiple Data (SIMD) units.
The SPU has no cache hierarchy, it is provided with on-chip local memory shared for both
data and program. The SPU cannot access main memory directly, but it can issue, under
software control, a command to the DMA engine which is capable of transferring data
between local memory and main memory.

Local memory is the largest component of the SPU. It is a single ported, 256 KB
SRAM [33] that supports fully-pipelined 16-byte accesses for memory instructions and 128-
byte accesses for instruction fetch and DMA transfers. Since SPU’s local memory is single
ported, then functional units, instruction issue unit, and DMA engine compete for the same
port when accessing the local memory.

Instruction fetch occurs when local memory is idle. Instructions are fetched into Instruc-
tion Line Buffer (ILB) which is organized into 3.5 lines of 128 bytes. Each line is fetched in
two cycles and can hold 32 instructions. All instructions in SPUs are 4-byte SIMD instruc-
tions which work with 16-byte of data at four granularities: 16-way 8-bit integers, eight-way
16-bit integers, four-way 32-bit integers or single-precision floating point numbers, and two
64-bit floating point numbers. The SPU can dispatch up to two instructions per cycle
to execution units that are organized in two instruction pipes: even and odd pipe. Even
pipe is only for floating and fixed point execution units, while odd pipe executes permute,
branch and memory instructions. Each instruction is issued in-order and routed to a cor-
responding pipe. Table 1 shows instruction latencies and pipe assignments. Instructions
in each pipe can operate on up to three 16-byte source operands and produce one 16-byte
result. Thus, the unified register file supports six reads and two writes of 16 bytes per cycle
(bandwidth of 51.2 GB/s due to frequency of 3.2 GHz) to one of its 128 16-byte registers.
The memory instructions transfer 16 bytes of data between the register file and the local
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Table 1: Instructions latencies and pipe assignment for SPE.

Instructions Pipe Latency

Arithmetic, logical, compare, select even 2

Shift, rotate, byte sum/diff/avg even 4

float even 6

16-bit integer multiply-accumulate even 7

128-bit shift/rotate, shuffle, estimate odd 4

Load, store, channel read/write odd 6

Branch odd 1-18

memory. Supported bandwidth between memory unit and the local memory is 16 bytes
per cycle, or 51.2 GB/s. When accessing local memory, some additional constraints are
imposed. Each memory access must be aligned on a 16-byte boundary. In the architecture,
it is ensured by always ignoring 4 lower bits of load/store byte address. In order to support
load/store of values smaller than 16 bytes, instruction for extracting/merging an individual
value from/into a 16-byte register is supported.

Execution of branch instructions is expensive in SPUs since there is no branch predictor.
Branches are assumed not-taken but the architecture allows for a branch hint instruction.
In order to have efficient execution of a correctly-hinted taken branches, the branch hint
instruction prefetches, in one of the lines of the ILB, up to 32 instructions starting from the
branch target. Also, a bit-wise select instruction is provided in the architecture in order to
support elimination of short branches.

The DMA engine accesses local memory at granularity of 128 bytes and can support up
to 16 DMA transfers at a time. Maximal supported DMA transfer size is 16KB and DMA
transfers are issued on the bus in requests of 128 bytes. DMA transfers can be initiated
by a program running on the SPE itself, by a program running on some other SPE, or by
a program running on the PPE. The DMA engine can do transfers between SPE and any
other element connected via EIB. In order to use correct physical addresses when issuing
DMA requests on the EIB, the DMA engine translates all DMA requests by an MMU unit.
The next three types of DMA transfers can happen:

• SPE to SPE. These transfers have a peak bandwidth of 25.6 GB/s since it is the
bandwidth between DMA engine and EIB (16 bytes per cycle under EIB’s frequency
of 1.6 GHz).

• SPE to main memory. The aggregate bandwidth of these transfers for the en-
tire Cell processor is 25.6 GB/s, since it is a bandwidth supported by the memory
controller.

• SPE to an I/O device. A bandwidth of these transfers is conditioned by the
bandwidth supported by the I/O controller. The I/O controller is configured to
provide a peak bandwidth of 35 GB/s outbound, and 25 GB/s inbound.
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Every link to the EIB has a bandwidth of 25.6 GB/s in each direction. I/O controller
has two links to the EIB, while all the other elements are connected to the EIB via a single
link. Having 12 (eight for SPEs, one for PPE, one for memory controller, and two for
I/O controller) links connected to EIB, each one capable of sending and receiving 16 bytes
in one EIB’s cycle (25.6 GB/s), gives us that the EIB can transfer up to 192 bytes per
EIB’s cycle. Unfortunately, the rate of 192 bytes per cycle does not determine the EIB’s
maximum data bandwidth. The EIB’s maximum data bandwidth is conditioned by the
coherency mechanism and the rate at which addresses are snooped across the system. The
mentioned rate is one address per EIB’s cycle, where each address request can transfer up
to 128 bytes. So, the EIB’s theoretical peak data bandwidth is 204.8 GB/s. Finally, the
EIB itself is organized as a ring bus of four 16-byte-wide data rings: two running clockwise
and the other two counterclockwise.

For more details about the architecture and implementation of the Cell processor, we
suggest reading of:

• the first paper about the Cell processor [52],

• its architecture overview with some details [44, 45, 56, 59], and

• the circuits and physical implementation [33, 84, 85, 107].
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enhanced dma controller in simd processors for video applications. In Proceedings
of the 22nd International Conference on Architecture of Computing Systems, pages
159–170, 2009. 103

[84] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,
M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa. The
design and implementation of a first-generation cell processor. IEEE International
Solid-State Circuits Conference, Digest of Technical Papers, pages 184–592 Vol. 1,
Feb. 2005. 134

[85] D.C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Har-
vey, P.M. Harvey, H.P. Hofstee, C. Johns, et al. Overview of the architecture, circuit
design, and physical implementation of a first-generation cell processor. IEEE Journal
of Solid-State Circuits, 41(1):179–196, 2006. 134

[86] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. LU Decomposition and Its
Applications. Numerical Recipes in FORTRAN: The Art of Scientific Computing,
pages 34–42, 1992. 18

[87] B.R. Rau. Iterative modulo scheduling: an algorithm for software pipelining loops. In
Proceedings of the 27th annual international symposium on Microarchitecture, pages
63–74. ACM New York, NY, USA, 1994. 62

[88] BR Rau, MS Schlansker, and PP Tirumalai. Code Generation Schema For Modulo
Scheduled Loops. In Microarchitecture, 1992. MICRO 25., Proceedings of the 25th
Annual International Symposium on, pages 158–169, 1992. 62

[89] R. Ravindran et al. Compiler-managed partitioned data caches for low power. In Pro-
ceedings of the 2007 ACM SIGPLAN/SIGBED conference on Languages, compilers,
and tools for embedded systems, pages 237–247, 2007. 126

[90] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero. Trace-driven
simulation of multithreaded applications. In 2011 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 87–96. IEEE, 2011.
21

142



REFERENCES

[91] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion, A. Ramirez,
and M. Valero. On the simulation of large-scale architectures using multiple appli-
cation abstraction levels. In 7th International Conference on High-Performance and
Embedded Architectures and Compiler (HiPEAC), 2012. 21

[92] Alejandro Rico, Felipe Cabarcas, Antonio Quesada, Milan Pavlovic, Augusto Javier
Vega, Carlos Villavieja, Yoav Etsion, and Alex Ramirez. Scalable simulation of de-
coupled accelerator architectures. Technical Report UPC-DAC-RR-2010-14, UPC,
2010. URL http://gsi.ac.upc.edu/reports/2010/14/tasksim.pdf. 20, 21

[93] J.A. Rivers et al. Reducing conflicts in direct-mapped caches with a temporality-
based design. In Parallel Processing, 1996., Proceedings of the 1996 International
Conference on, pages 154–163, 2002. 126

[94] A. Ros, M.E. Acacio, and J.M. Garcia. Cache Coherence Protocols for Many-Core
CMPs. 5

[95] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence based prefetching
for linked data structures. In Proceedings of the eighth international conference on
Architectural support for programming languages and operating systems, pages 115–
126. ACM, 1998. 76

[96] R. Rugina and M.C. Rinard. Pointer analysis for structured parallel programs.
ACM Transactions on Programming Languages and Systems (TOPLAS), 25(1):70–
116, 2003. 52

[97] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, et al. Larrabee: a many-core x86 architecture
for visual computing. In Proceedings of the International Conference on Computer
Graphics and Interactive Techniques, pages 1–15, 2008. 103

[98] S. Seo et al. Design and implementation of software-managed caches for multicores
with local memory. In Proceedings of the 15th International Symposium on High
Performance Computer Architecture, pages 55–66, 2009. 41, 125

[99] A. Shahbahrami, B. Juurlink, and S. Vassiliadis. Performance Impact of Misaligned
Accesses in SIMD Extensions. In Proceedings of the 17th Annual Workshop on Cir-
cuits, Systems and Signal Processing, pages 23–24, November 2006. 79, 82

[100] Z. Shen, Z. Li, and P.C. Yew. An empirical study of Fortran programs for parallelizing
compilers. IEEE Transactions on Parallel and Distributed Systems, 1(3):356–364,
1990. 52

[101] J.L. Shin, Dawei Huang, B. Petrick, Changku Hwang, K.W. Tam, A. Smith, Ha Pham,
Hongping Li, T. Johnson, F. Schumacher, A.S. Leon, and A. Strong. A 40 nm 16-core
128-thread sparc soc processor. IEEE Journal of Solid-State Circuits, 46(1):131–144,
2011. 4

143

http://gsi.ac.upc.edu/reports/2010/14/tasksim.pdf


REFERENCES

[102] R.L. Sites. Alpha Architecture Reference Manual. Digital Press, 1998. 102

[103] Nathan Slingerland and Alan Jay Smith. Measuring the performance of multimedia
instruction sets. IEEE Transactions on Computers, 51(11):1317–1332, 2002. 79

[104] S.B. Stepanian. SB-1 MIPS64 CPU Core. In Embedded Processor Forum, 2000. 80,
102

[105] Jimmy Su and Kathy Yelick. Array prefetching for irregular array accesses in titanium.
In In Sixth Annual Workshop on Java for Parallel and Distributed Computing, 2004.
76

[106] D. Sweetman. See MIPS Run. Morgan Kaufmann, 2006. 102

[107] O. Takahashi, R. Cook, S. Cottier, SH Dhong, B. Flachs, K. Hirairi, A. Kawasumi,
H. Murakami, H. Noro, H. Oh, et al. The circuits and physical design of the synergistic
processor element of a cell processor. In Symposium on VLSI Circuits. Digest of
Technical Papers., pages 20–23. IEEE, 2005. 134

[108] J.M. Tendler, J.S. Dodson, JS Fields, H. Le, and B. Sinharoy. Power4 system mi-
croarchitecture. IBM Journal of Research and Development, 46(1):5–25, 2002. 3

[109] User Manual SPRU732C: TMS320 C64x/C64x+ DSP CPU and Instruction Set Ref-
erence Guide. Texas Instruments, 2005. 80, 102

[110] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic allocation for scratch-pad
memory using compile-time decisions. ACM Transactions on Embedded Computing
Systems (TECS), 5(2):472–511, 2006. 42

[111] Osman S. Unsal et al. Cool-cache for hot multimedia. In Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture, pages 274–283,
2001. 125

[112] J.W. VAN De Waerdt, S. Vassiliadis, S. Das, S. Mirolo, C. Yen, B. Zhong, C. Basto,
J.P. van Itegem, D. Amirtharaj, K. Kalra, et al. The TM3270 Media-processor. In
Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchi-
tecture, page 12, 2005. 80, 102

[113] Steven P. Vanderwiel and David J. Lilja. Data prefetch mechanisms. ACM Computing
Surveys (CSUR), 32:174–199, June 2000. 76

[114] Hangsheng Wang, Li-Shiuan Peh, and Sharad Malik. Power-driven design of router
microarchitectures in on-chip networks. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, 2003. 5

[115] M. Ware, K. Rajamani, M. Floyd, B. Brock, J.C. Rubio, F. Rawson, and J.B.
Carter. Architecting for power management: The ibm R© power7TM approach. In
IEEE 16th International Symposium on High Performance Computer Architecture
(HPCA), pages 1–11, 2010. 4

144



REFERENCES

[116] J.D. Warnock, J.M. Keaty, J. Petrovick, J.G. Clabes, C.J. Kircher, B.L. Krauter, P.J.
Restle, B.A. Zoric, and C.J. Anderson. The circuit and physical design of the power4
microprocessor. IBM Journal of Research and Development, 46(1):27–51, 2002. 3

[117] R.P. Wilson and M.S. Lam. Efficient context-sensitive pointer analysis for C programs.
ACM SIGPLAN Notices, 30(6):1–12, 1995. 52

[118] E. Witchel, S. Larsen, C.S. Ananian, and K. Asanovic. Direct Addressed Caches
for Reduced Power Consumption. In International Symposium on Microarchitecture:
Proceedings of the 34 th annual ACM/IEEE international symposium on Microarchi-
tecture, volume 1, pages 124–133, 2001. 42, 125

[119] P. Wu, A.E. Eichenberger, and A. Wang. Efficient SIMD Code Generation for Run-
time Alignment and Length Conversion. In Proceedings of the international sympo-
sium on Code generation and optimization, pages 153–164, 2005. 81, 82, 102

[120] M. Yourst. Ptlsim users guide and reference, 2007. 21

[121] Matt T. Yourst. PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural
Simulator. In Proceedings of the 7th International Symposium on Performance Anal-
ysis of Systems and Software, pages 23–34, 2007. 21

[122] Zheng Zhang and Josep Torrellas. Speeding up irregular applications in shared-
memory multiprocessors: Memory binding and group prefetching. In In Proceedings of
the 22nd Annual International Symposium on Computer Architecture, pages 188–200.
ACM Press, 1995. 76

145


	Contents
	List of Figures
	Introduction
	From a Single Core to a Multi-Core
	Challenges in Multi-Core Era
	On-chip Local Memories
	Architectural considerations
	Programmability

	Motivation
	Contributions
	Structure

	Methodology
	Applications
	Real Executions
	Executions on the Cell processor
	Executions on the PowerPC 970MP processor

	Simulations
	TaskSim
	PTLsim


	Software Caching
	Motivation
	Software Cache Design
	The High Locality Cache
	The Transactional Cache
	Memory Consistency Block

	Initial Code Transformations
	Classification of Memory Accesses
	High-Locality Access Transformations
	Irregular Accesses Transformations
	Summary of Code Transformations

	Evaluation
	Implementation parameters for Cell
	Overall Performance
	Cache Overhead Distribution

	Related Work
	Conclusions

	Memory Consistency
	Motivation
	Enhanced Memory Consistency Block
	Cache Line Classification
	Lock-Unlock Write-Back
	Speculative Write-Back

	Compiler Support
	Memory Regions Definition

	Evaluation
	Optimized memory consistency effect evaluation
	Overall Performance
	Cache Overhead Distribution

	Related Work
	Conclusions

	Prefetching
	Motivation
	Modified Software Cache Design
	The High Locality Cache
	The Prefetch Block
	The Transactional Cache

	Code Transformations
	High-Locality Access Transformations

	Evaluation
	Prefetch effect evaluation
	Loop Performance
	Overall Performance

	Related Work
	Conclusions

	Realignments On The Fly
	Motivation
	Hardware Based Solutions
	Software Based Solutions
	On-chip Local Memories, DMA Engines, and SIMD Units

	DMA++ Design
	The Structure Of The System
	DMA++ Operational Model

	Evaluation
	Applications
	DMA Engine Evaluation

	Related Work
	Conclusions

	Accelerated Buffer Management
	Motivation
	DMA-circular Design
	DMA-circular Structures
	Operational Model
	Applicability

	Evaluation
	Methodology
	Control Code Overheads
	Acceleration effect evaluation
	Overall loop performance
	Impact on the Local Memory Size
	Energy consumption and Power

	Related Work
	Conclusions

	Conclusions and Future Work
	Appendix A Publications
	Appendix B Cell Processor
	References

