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Abstract

Models of warped extra-dimensions have been studied over the last decade as can-
didates to complete the Standard Model (SM) of particle physics, for they provide
a natural mechanism to address its hierarchy problem. In this thesis we study a
number of aspects of the five-dimensional warped models, and in particular the
possibility of generalizing the well-known Randall-Sundrum (RS) solution, which
is based on the Anti-de Sitter metric (AdS).

We first discuss on the construction of soft-wall models, which are a modifica-
tion of RS where the infrared brane is substituted by a naked singularity in the
metric. We provide recipes for constructing consistent models of this kind and ad-
dress the issue of how the length of the extra dimension can be stabilized. We also
discuss on the spectrum of fluctuations that arise in soft-wall models, finding that
it can range from a continuous spectrum above a mass gap to a discrete spectrum
with a variable level spacing. We discuss on the possible applications of soft-wall
models, and finally present a concrete model where a large ultraviolet/infrared
hierarchy can be generated without any fine-tuning.

Next, we return to the original two-brane setup to study how the electroweak
symmetry can be broken in warped models with generalized metrics when the Higgs
boson propagates in the bulk. We show how the bounds on the Kaluza-Klein (KK)
scale that arise from electroweak precision observables can be alleviated when the
Higgs is localized towards the infrared brane. We apply our results to a minimal
5D extension of the SM and consider the AdS geometry and a deformation of it
inspired by soft-walls. We find that the deformed geometry greatly reduces the
bounds on the KK scale, to a point where the KK states can be within the range
of the LHC and the little hierarchy problem can be removed without requiring the
introduction of any custodial symmetry.

Finally, we study the propagation of all SM fermions in the bulk of the extra
dimension, which we use to address the flavor puzzle of the SM. We find general
explicit expressions for oblique and non-oblique electroweak observables, as well
as flavor and CP violating operators. We apply these results to the RS model and
the model with deformed geometry, for which we perform a statistical analysis
departing from a random set of 5D Yukawa couplings. The comparison of the
predictions with the current experimental data exhibits an improvement of the
bounds in our model with respect to the RS model.



Resum

Durant la passada decada, els models de dimensions extra corbades han estat
estudiats com a candidats per a completar el Model Estandard (ME) de la fisica
de particules. En aquesta tesi estudiarem una serie d’aspectes dels models amb
una dimensié extra corbada; en particular, la possibilitat de generalitzar la ben
coneguda solucié de Randall-Sundrum (RS), la qual es basa en la metrica Anti-de
Sitter (AdS).

Primer, discutim la construccié dels models de soft-wall, que sén una modifi-
caci6 de RS on la brana infraroja ha sigut substituida per una singularitat nua a la
metrica. Donem receptes per a construir models consistents d’aquests tipus i es-
tudiem com la longitud de la dimensi6 extra pot ser estabilitzada. També estudiem
Iespectre de les fluctuacions que apareixen en els models de soft-wall, i trobem
que podem obtenir des d'un espectre continu a partir d’una certa massa fins a un
espectre discret amb un espaiament variable. Discutim les possibles aplicacions
dels models de soft-wall, i finalment presentem un model concret on es pot generar
una jerarquia ultravioleta/infraroja prou gran sense necessitat de cap ajust fi.

Després, retornem a la construccio original amb dues branes per tal d’estudiar
com la simetria electrodebil pot ser trencada en models amb metriques general-
itzades quan el bos6 de Higgs es propaga a l'engrés de la dimensié extra. Veiem
com les cotes sobre 'escala dels modes de Kaluza-Klein (KK), que apareixen a
causa dels observables electrodebils de precisio, poden ser reduides quan el Higgs
esta localitzat a prop de la brana infraroja. Apliquem els nostres resultats a una
extensiéo minima del ME en 5D, i considerem la geometria AdS i una deformacio
d’aquesta inspirada pels models de soft-wall. Trobem que la geometria deformada
redueix enormement les cotes sobre 'escala de KK, fins al punt en que els estats
de KK es poden trobar dins del rang de 'LHC i el problema de la petita jerarquia
pot ser eliminat sense requerir la introduccié de cap simetria custodial.

Finalment, estudiem la propagacié de tots els fermions del ME al llarg de la
dimensié extra, la qual cosa fem servir per tractar el problema del sabor en el ME.
Trobem expressions generals i explicites per als observables electrodebils oblics i
no oblics, aixi com per als operadors que violen sabor i la simetria CP. Apliquem
aquest resultat al model RS i al model amb geometria deformada, per la qual cosa
fem un estudi estadistic a partir d’'un conjunt aleatori d’acoblaments de Yukawa en
5D. La comparaci6 de les prediccions amb les dades experimentals actuals mostren
una millora de les cotes en el nostre model en comparacié6 amb RS.
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Preface

The Standard Model of particle physics (SM), which describes three of the four
fundamental interactions, is one of the most successful theories in the history of
science, measured in terms of the agreement of its predictions with the results
of many experiments. However, there are a number of reasons that make most
physicists believe it is an incomplete theory. One of the most important reasons
is the hierarchy problem, related to the question of why the gravitational force is
much weaker than the nuclear and electroweak forces.

The quest of solving the problems of the SM has led vast amounts of research
during the past decades, and several models have been proposed as candidates
to extend the SM. Among them, we will choose to study models of extra dimen-
sions, which attempt a geometrical explanation of the hierarchy problem. More
concretely, we will focus on models of warped extra dimensions, which have been
able to elegantly provide solutions to some of the SM’s problems, while providing
interesting possibilities for model building.

In this thesis, we will study several aspects of models of warped five-dimensional
spaces. The intention is to present the most general results, so that they can be
applied to a wide variety of geometries. Later, we will apply them to more concrete
models that provide some additional interest.

The contents of this thesis are the fruit of a collaboration with Dr. Mariano
Quirds and Dr. Gero von Gersdorff, whom I have had the pleasure to work with
and learn from. Previously, our work was published in Refs. [1-6]. In this thesis
we will review the results first presented in these publications, with the aim of
providing a global approach to them.

The structure of this thesis is as follows:

In Chap. 1 we will very briefly review some of the basics of the Standard
Model (SM) of particle physics, in order to understand its theoretical problems
and motivate the need for New Physics. In particular, we will pay attention to the
Higgs mechanism, as it gives rise to the Hierarchy Problem, arguably the major

11



12 Preface

motivation for New Physics. Afterwards, we will introduce the Randall-Sundrum
model (RS), which represents the original and most simple formulation of models
with a warped extra dimension. We will show how this model can deal with the
Hierarchy Problem and also how it can be used to explain the hierarchy between
the fermion masses in the SM.

Chap. 2 will be devoted to introducing the so-called Soft-Wall models, a class
of warped 5D spaces which feature a naked singularity located at a finite distance
from a (UV) brane. This constitutes an alternative to the hard-wall models such
as RS, where two branes are used to set a finite length for the extra dimension.
We will discuss on how to construct soft-wall models, on the conditions required
for their consistency, and on how to stabilize the length of the extra dimension
using a bulk scalar field. We will also classify these models in function of the mass
spectrum of Kaluza-Klein states, which can range from a continuum spectrum
with a mass gap to a discrete spectrum with a non-trivial spacing.

In Chap. 3 we will consider the question of how Electroweak Symmetry Break-
ing (EWSB) can be modeled in general 5D Warped models with two branes, where
we will allow the Higgs boson to propagate in the bulk of the extra dimension.
This will be used to describe a minimal 5D extension of the SM. We will provide
expressions for electroweak precision observables in a simplified setup where all
fermions are located on the UV brane (the discussion of fermions in the bulk is
delayed to Chap. 5). Finally, we will apply our results to the RS model, and we
will see how the experimental bounds on the KK scale can be relaxed by consider-
ing a heavy bulk Higgs, without requiring the presence of an additional Custodial
Symmetry.

In Chap. 4 we will meet a model of warped EWSB that does not require
a Custodial Symmetry, even with a light Higgs boson. The model is based on
a deformed Anti-de Sitter metric and a bulk Higgs boson. In fact, our metric
is inspired by the soft-wall models of Chap. 2, although here we are considering
models with two branes. We will see how we can obtain low bounds on the KK
scale, that can be less than 1 TeV, using a minimal 5D extension of the SM.

Chap. 5 is about the propagation of fermions in the bulk, something that is
not considered before for simplicity. We will generalize the results of the previous
chapters to this case, and see how a theory of flavor can be constructed in general
warped models with a bulk Higgs. We will discuss on the main sources of exper-
imental constraints, namely the apparition of flavor and C'P violating processes
and anomalous contributions to some electroweak observables. These results will
be applied to RS and to the non-custodial model described in Chap. 4, and we will
see how the former is also useful to relax the experimental constraints from flavor.

Finally, Chap. 6 is devoted to some concluding remarks. In particular, we
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will review the big picture of our work, we will discuss the consequences of soft-
wall and non-custodial models and the research paths they might open, and we
will identify some of the topics not covered in this thesis that are worth of future
research.

This thesis also includes five appendices where more technical details are pro-
vided that can be useful to follow our results. In App. A the propagation of gauge
bosons in the bulk of a 5D warped space is discussed. In App. B and App. C we
derive the propagators for bulk gauge bosons and fermions, respectively. App. D
contains results about the four-fermion terms that appear from the exchange of
KK gauge bosons. Finally, in App. E we extend the analysis done in Chap. 5 to
the case where a right-handed hierarchy is followed by the 5D Yukawa matrices.
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Chapter 1

Introduction

The Standard Model (SM) is one of the most successful theories in science to
date. It describes three of the four known fundamental interactions (electromag-
netism and the strong and weak nuclear forces) in the unifying framework of the
gauge principle. This model divides the most fundamental entities of Nature in
two blocks: the matter particles and the force carriers. The matter particles are
fermions, with spin-1/2, and are classified in two groups as quarks (the constituents
of protons and neutrons) or leptons (which include the electron). The force carriers
are vector bosons, with spin-1, and include the photons (which mediate electro-
magnetism), the W and Z bosons (responsible for weak interactions) and eight
gluons (that mediate strong interactions). The interactions between matter parti-
cles and force carriers are dictated by a gauge symmetry, described by the group
SU(3). x SU(2)r x U(1)y, which provides a predictive and elegant mathematical
structure from which the precise form of the interactions arises.

The key to the SM’s success is that it has been able to explain a wide range
of microscopic phenomena and to pass several experimental tests over the past
decades, many of them within extraordinary levels of precision. Although some
observables have been measured to be slightly deviating from the SM prediction?,
the difficulty associated with their calculation and measurement have not affected
the general consensus that the SM is still unchallenged experimentally.

However, one of the key ingredients of the SM is yet to be discovered: the
Higgs boson, a spin-0 particle that has eluded experimental detection to date.
The importance of the Higgs relies in that its Vacuum Expectation Value (VEV)
is responsible for breaking the electroweak symmetry SU(2), x U(1)y down to
the U(1)gp of quantum electrodynamics, and in this process it provides masses

LOne example is the anomalous magnetic moment of the muon, which features a 3.20 deviation
from the SM prediction. [7]
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18 Chapter 1. Introduction

to the rest of (massive) elementary particles. The confirmation of this EWSB
mechanism, which would require finding the Higgs and analyzing its properties,
remains the major cornerstone for the validation of the SM.

In fact, the EWSB mechanism of the SM, although theoretically self-consistent,
features an unnatural property called the hierarchy problem [8-10]. This problem
is related to the question of why the weak force is 103? times stronger than gravity.
More precisely, for the EWSB mechanism to work, the Higgs boson is required
to have a mass of the order of the weak scale (~ 100 GeV). On the other hand,
the Higgs mass receives quantum corrections that are quadratically sensitive to
any new physics that might appear above that scale. Therefore, there should
be a contribution of the order of the Planck mass (~ 10 GeV) squared, where
new physics is expected to appear to describe gravity. One would thus expect that
these corrections make the Higgs several orders of magnitude heavier than required
by EWSB, unless there is a huge fine-tuning cancellation between the quantum
corrections and the bare mass. Or if some kind of new physics appears a little
above the weak scale to counteract these corrections.

In addition to the hierarchy problem, there are a number of theoretical issues
that lead us to think that the SM is not a complete theory. Of course, the SM
does not describe gravity, and it will need to be extended at the Planck scale
when gravity becomes important compared to the other three interactions. But
there are still some issues relevant at much lower scales. To begin with, the SM
does not have a candidate for a Dark Matter particle, although its existence has
been inferred by astrophysical arguments. Another issue is the strong C'P problem,
related to the difficulty of explaining why the SM does not seem to violate the CP-
symmetry. Another example is the flavor puzzle, or the fact that the SM lacks of
any structure to explain the pattern of fermion masses, which span 12 orders of
magnitude with no apparent relation between them.

The quest for a solution to some of these issues, and in particular to the hier-
archy problem, has led to vast amounts of research for constructing new models of
physics beyond the SM. Most of the research has been conducted along three ma-
jor directions: supersymmetry, consisting of the introduction of an extra symme-
try that protects the quadratic contributions to the Higgs mass; Higgsless models,
which replace a fundamental Higgs by another entity capable of mediating EWSB,
thereby the problem of quadratic corrections; and models of extra dimensions,
that rely on the introduction of extra spatial dimensions in order to account for
the scale between gravity and weak interactions. This last direction is the one we
will choose to explore in this thesis.

The question of which (if any) low-energy extension of the SM solves the hier-
archy problem (and the other theoretical issues) might in fact be solved soon. At
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the moment of writing this thesis, the Large Hadron Collider (LHC), a particle
accelerator with a potential collision energy of 14 TeV, is completing its first year
of operation. The data collected by the particle detectors is now above 1 fb~!,
although no conclusive hints of new physics or the Higgs boson have been found.
However, given the energy range of the experiment, the question of which is the
true EWSB mechanism will hopefully be solved soon.

In this thesis, we will be studying one of these classes of models proposed to
solve the Hierarchy problem: models of warped extra dimensions. A very well-
known example of them is the RS model [11,12], which features just one extra
dimension. In this thesis we will consider generalizations of the RS model, to study
their phenomenology and confront them with the currently available experimental
data. In particular, in Chapter 2 we will consider a class of models with naked
singularities, and in Chapter 3 we will study general warped models with a Higgs
propagating in the bulk.

One of the key phenomenological predictions of the RS-like models is that, for
every SM particle that propagates in the bulk of the extra dimensions, a tower of
particles appears which have the same quantum numbers. These excitations are
referred to as KK modes. If we expect to solve the fine-tuning problem in this
framework, the KK modes should appear at the EWSB scale, not too far from the
weak scale, what would mean that, in general, they should be within the range of
the LHC. However, the extremely precise measurement of some SM observables
are pushing lower bounds on the masses of the KK modes. The construction of
warped 5D models that are able to alleviate these bounds is an ongoing area of
research, and in fact we will present a proposal in this direction in Chapter 4.

In the remaining of this chapter we will briefly present some basic facts about
the SM, with the intention to understand the hierarchy problem that arguably
motivates most of the research in physics beyond the SM. We will afterwards give
a brief review about the construction of 5D warped models, and in particular about
the RS model, which will serve as a starting point for the rest of this thesis.

1.1 The Standard Model and its hierarchy prob-
lem

Let us now present a very brief review about the SM. The intention of this section
is only to present some of the basic facts about its EWSB mechanism in order
to understand the hierarchy problem. A complete general introduction to the SM
can be found in Refs. [13,14], among many others.



20 Chapter 1. Introduction

I IT III
up (u) charm (c) top (t)
24MeV  2/3 | 1.3GeV  2/3 | 171GV 2/3
Quarks down (d) strange (s) bottom (b)
4.8 MeV —1/3 | 104 MeV —1/3 | 4.2 GeV -1/3
electron (e) muon () tau (1)
0.51 MeV -1 106 MeV -1 1.8 GeV -1
Leptons - - -
e-neutrino (v,) | p-neutrino (v,) | T-neutrino (v,)
< O(eV) 0 <S O(eV) 0 <S O(eV) 0

Table 1.1: Fermionic content of the Standard Model. Along with every element we
show its mass (left) and its electric charge (right). For each of the fermions shown
here there is a corresponding anti-particle with equal mass and opposite electric
charge.

1.1.1 Elementary particles and force carriers

Subatomic matter is made of spin-1/2 particles (fermions). The SM classifies
fermions in two groups: quarks and leptons. In total, the SM distinguishes 24 dif-
ferent fermions: 6 quarks and 6 leptons, each with its corresponding anti-particle.
Moreover, the elementary fermions are grouped into three generations, each com-
prising two quarks and two leptons (plus their antiparticles). This classification is
represented in Tab. 1.1, where the mass and charge of each particle is also shown.

Quarks and leptons interact by exchanging force carriers, which are spin-1
bosons responsible for the electromagnetic, weak and strong interactions. FElec-
tromagnetism is mediated by photons (), it has an infinite interaction range and
affects all particles with an electric charge. The weak force affects all fermion and
is mediated by W= and Z° bosons. Finally, the strong force, is mediated by gluons
(g9) and acts only on quarks. In Fig. 1.1 a schematic view of the SM particles and
their interactions can be found.

The strength of the interactions between particles is predicted by the SM from a
simple and elegant mathematical principle: by postulating the existence of a gauge
symmetry. The Lagrangian of a physical system is said to be gauge invariant, or
equivalently to have a gauge symmetry, if it remains constant under a continuous
phase transformation. The Lagrangian of the SM originates from imposing sym-
metry under the gauge group SU(3). x SU(2);, x U(1)y, where SU(3). is the group
responsible for the strong interaction, and SU(2), x U(1)y is responsible for the
weak and electromagnetic interactions unified into the electroweak theory.

However, this gauge symmetry requires all gauge bosons to be massless, which
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Leptons Quarks
e u T u ct
Vo, Vi, Y, d s, b

Higgs Boson

Figure 1.1: A diagram summarizing the tree-level interactions between elementary
particles described in the Standard Model. The black circles represent different
kinds of particles, and the blue lines connecting them represent interactions that
can take place. The diagram is organized so that the matter particles are in the
top row, the force carriers are in the middle row, and the Higgs boson is found at
the bottom [15].
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is not the case as the W+ and Z° are massive (with masses 80.4 GeV and 91.2 GeV
respectively). In order to solve this, it is required to break the SU(2), x U(1)y
subgroup into the U(1).,, of electromagnetism. The Higgs field is the respon-
sible for triggering this EWSB mechanism. This constitutes a central, and yet
unconfirmed, point of the SM, so it is worth to study it with a bit of detail.

1.1.2 The Higgs mechanism

Let us have a look at the electroweak part of the SM Lagrangian, dictated by the
gauge symmetry SU(2);, x U(1)y, with respective gauge bosons W (i = 1,2,3)
and B, and couplings g and ¢'. It can be written as

Lew = —%FWF;‘V — %BWBW + ; Py, D by (1.1)
where
F, = 0W, — 0,W. + ge"*WW (1.2)
By, = 9,B, — 0,B,,
D, =d, - z’ggﬁf - ig'%Bu. (1.4)

) represent the fermions, which under SU(2),, are organized in multiplets as

wL:<;E>7 ¢R:fR7 ’ll);%:f}/%, (15)
where for quarks f = w,c,t and f' = d,s,b, and for leptons f = v, v,, v, and

"= e, u, T, respectively for each generation.

Since we know that the W* and Z° gauge bosons are massive, we would like
to consider additional terms in the Lagrangian (1.1). One might naively add mass
terms of the form

miWawer (1.6)

but in fact these terms violate the gauge symmetry, and are thus forbidden. There-
fore, we need to find a mechanism by which these masses can be accounted for.

The SM solves this by introducing the Higgs, a scalar (spin-0) field that trans-
forms as a doublet under SU(2):

H:(%) (1.7)
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The introduction of this field leads to an additional piece in the Lagrangian
Litgss = (DuH) (D'H) = V(H'H) (1.8)
where V' is the Higgs potential and is given by
V(H'H) = *H'H + \(H'H)*. (1.9)

The quartic coupling A in this potential needs to be positive, so that V' is bounded
from below. As for the mass term 2, there is no restriction as for its sign. However,
if we choose it to be negative, we can see that this potential has a minimum which
is not at (H) = 0, and therefore the Higgs acquires a non-trivial VEV. This
means that the vacuum of the theory breaks spontaneously the gauge invariance,
and this process is known as spontaneous symmetry breaking. More explicitly, the
SU(2), x U(1)y is broken down to U(1)ep,.

Let us see how the fact that the Higgs acquires a VEV leads to masses for the
gauge bosons. We can always use a gauge transformation to write the VEV of the

Higgs as T ( ; ) .
=50 ) .

where v = /—p2/(2)) as can be obtained from Eq. (1.9). When substituting this
VEV into the Lagrangian (1.8), the following terms arise

2,2 2,,2 2( 42 12
G2v gv o vi(gP+g"?)
(D, H)' (D"H) > TWJVWM TWaW T =

| Z,Z",  (1.11)

where we have expressed the original gauge boson degrees of freedom in terms of
the so-called weak basis, as

Wi = % (Wh—iwy), (1.12)
W, = % Wi +iWy?) (1.13)
Z, = ﬁ (9W:—g'B,) . (1.14)
AT = ﬁ (9W2+9gB.) . (1.15)

Notice how in Eq. (1.11) we can find mass terms for the first three of these fields.
Therefore I/V#jE and Z,, can be readily identified as the charged and massive neutral
gauge bosons, with masses my = vg/2 and my = vv/g? + ¢’?/2. The measured
values for these masses and the couplings fix the Higgs VEV to v = 246 GeV. The
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W, Z

Figure 1.2: Feynman diagrams corresponding to one-loop corrections to the Higgs
mass from fermions (left) and gauge bosons (right).

remaining degree of freedom, A} features no mass term, and is identified as the
photon.

The Higgs mechanism is also used to generate fermion masses, which are also
protected by chiral symmetry. In order to do so, we need to include in the La-
grangian couplings between the fermions and the Higgs, the so-called Yukawa
couplings:

EY :ngYJUR+qLHYdeR+ZLH}/eTGR+h.C., (]_]_6)

where H = io?H* and Y; are complex 3 x 3 matrices in the generation space
(we have ignored the generation indexes here). After the Higgs gets a VEV, the
fermions acquire a mass proportional to their Yukawa couplings.

1.1.3 The hierarchy problem

After the Higgs obtains its VEV, in the scalar sector of the theory there is left
one massive degree of freedom: the physical Higgs field, an excitation over the
vacuum Higgs value (i.e., a particle). Expressing the physical Higgs as h(z), the
Higgs doublet after acquiring a VEV reads

H(x) = % < . +(;L<x) ) | (1.17)

Substituting this expression in the Lagrangian (1.8), we find a mass term for the
Higgs, from which we read the tree-level mass m?% = —u? = 202\

From measurements of the properties of the electroweak interaction we know
that the Higgs mass should be around O(100 GeV). However, a problem arises
when we consider the quantum corrections to its tree-level mass. Because of the
Higgs being an scalar field, every particle that couples to it will yield huge correc-
tions to its mass, which are quadratic on the cutoff of the theory (i.e. the scale at
which the theory is no longer valid). These corrections arise from diagrams such
as the ones shown in Fig. 1.2. The major contribution comes in fact from the most
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massive particle coupling to the Higgs, the top quark, and it is given at one-loop
level by
2 Y

Amy; = _@AUV+"' , (1.18)
where Y; ~ 1 is the Yukawa coupling of the top quark. Ayy is the cutoff scale of the
theory, and should be interpreted as the energy scale at which new physics enter
to alter the behavior of the theory. Since the SM needs to be completed at the
scale at which gravity effects become important, the Planck scale Mp; ~ 10 GeV,
the cutoff should be of this order. The fact that the corrections to the Higgs mass
are so large compared with its expected value is what is known as the hierarchy
problem. Reconciling the equation

2
2 0 2
miy :m(H) + Amy (1.19)
~~ N——
~10% GeV? ~1037 GeV?

would require an enormous amount of fine-tuning between the bare mass and the
radiative corrections, of more than 30 orders of magnitude.

Implicit in the formulation of the hierarchy problem lies the assumption that
no new physics appear between the weak scale and the Planck scale. Although, to
date, the successes of the SM when confronted to experiment do not lead us to a
need of extending the model for phenomenological reasons, the hierarchy problem
itself is a good motivation to study the introduction of new physics that are able to
remove this problem, and has in fact motivated huge amounts of research. One of
the first proposals in this direction are models of supersymmetry, which introduce
a symmetry between fermions and bosons that cancels the quadratic contributions
to the Higgs mass [16]. Other proposals have been in the direction of replacing
a fundamental scalar Higgs by other entities, such as new composite states that
play the role of the SM Higgs [17,18]. In this thesis we will study the option of
introducing extra spatial dimensions to address the hierarchy problem, and we will
in short see how it can be done.

Whatever the model chosen of physics beyond the SM, one has to be careful
not to enter in conflict with the very precise measurement of observables, to which
the SM agrees with extraordinary accuracy. The increasing amount of precision
that experiments can reach when measuring these observables pushes bounds on
the scale where new physics can manifest, for a given model. This might lead
to the so-called little hierarchy problem, which would result from a model where
new physics appears at a scale more than one order of magnitude above the weak
scale. In this case there would still be a fine-tuning between the Higgs mass and its
corrections, indeed much smaller than the original hierarchy problem but still not
negligible. For example, for a theory where new physics appear at 1 TeV, around a
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1% fine-tuning would be necessary. Constructing models that do not feature this
little hierarchy problem without increasing their complexity is a difficult problem

and a very active line of research, and the question will hopefully be illuminated
soon by the LHC.

1.2 Five-dimensional warped models:
the Randall-Sundrum model

Of the many different possibilities that can be explored to solve the hierarchy
problem, in this thesis we will explore the so-called 5D warped models. In order
to introduce them, let us very briefly explore here the first proposal of this kind
of models: the Randall-Sundrum (RS) model [11,12]. Complete reviews on this
subject can be found in, e.g., Refs. [19-21].

The RS model proposes that spacetime is described by a 5D Anti-de Sitter
(AdS) metric, which is given in the proper coordinate system by

ds® = ey, detdx” + dy? (1.20)

where k is the curvature scale of the warped extra dimension and 7, is the usual
4D Minkowski metric. We can also express this metric in conformal coordinates,
defined by z = €, as

1
ds* = 5B (nwdx“dx” + sz) : (1.21)

This spacetime is a solution to the 5D action

S = /d4xdy\/—g (M§’R+ A) , (1.22)
where Mj5 is the 5D Planck scale. The constant A is given by
A= —12M2K*, (1.23)

and is, in fact, a 5D cosmological constant with negative value.

In the original formulation of the RS model, often referred to as RS1 (see
Ref. [11]), the spacetime is cut by two flat 4D boundaries, referred to as the UV
(at y = 0) and IR (y = y;) branes, and a S'/Z, symmetry is imposed that relates
y <> —y. In the original formulation, all SM fields were localized on the IR brane,
although it was afterwards realized that the resolving the hierarchy only required
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the Higgs to be IR-localized [22].? The most distinct signature of this setup is the
appearance of a tower of Kaluza-Klein (KK) modes for each field propagating in
the bulk, with masses of the order

my ~ ke " m, ~nmy, (1.24)

where n = 1 represents the lightest new mode of the tower. This approximation
is very rough and only gives us an idea of the order of magnitude. Finding the
precise values for the KK masses requires solving the 5D equations of motion for
each particular field.

1.2.1 Solving the hierarchy problem

From Eq. 1.24 we can already see how, if the distance between branes is large
enough, we can obtain masses for the first KK modes which are suppressed with
respect to the curvature scale k. In fact, something similar will happen to the
Higgs VEV. Let us have a look at the piece to be added to the action for an IR
localized Higgs

Su= [ d'adyy/=go(y — yo) (IDLHI = A[(HTH) = 2]") | (1.25)

where a generalization of the 4D Higgs potential (after EWSB) has been consid-
ered. By integrating over the fifth dimension we find that the 4D VEV is warped
down to

vp = e M (1.26)

This means that, if we introduce a 5D Higgs VEV of the order of k, the physical
Higgs VEV will be exponentially suppressed in function of the distance between
branes. Before claiming any relevance, we need to find where M; is compared to

the 4D Planck scale. In fact, we find
y M3
M2, = M522/ gy — (1) (1.27)
0

This shows that, naturally, one would expect M5 and k to be at the Planck scale.
Since vsp is naturally expected to be of the same order, Eq. (1.26) is telling us that

2There are a number of motivations to place the rest of SM fields in the bulk. One of them is
to address the flavor puzzle of the SM, which can be explained if fermions are located at different
distances from the IR brane, so that their physical masses can arise from Yukawa couplings of
order one. Another reason is to exploit the AdS/CFT interpretation of the model, since all fields
on the IR brane are interpreted as composite states, which is obviously not the case for SM
particles.
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we can induce the O(16) orders of magnitude between the gravitational and weak
scales with a distance between branes ky; ~ 35, which is only moderately large.
Here we have considered a IR localized Higgs, but we will see in Chapter 3 how a
bulk Higgs can also solve the hierarchy problem, provided it is localized towards
the IR brane (see also Ref. [23]).

We have therefore seen how the RS model solves the hierarchy problem in a
original and elegant way. In fact, there are other ways by which a warped model
can be exploited to address the hierarchy. One of them is by invoking AdS/CFT
conjecture [24-26]. By this correspondence, the RS model is dual to a Conformal
Field Theory (CFT) to which the fields living in the bulk are coupled. At the TeV
scale the conformal symmetry is broken, producing a composite Higgs particle,
which will in turn trigger EWSB [27]. A different possibility is to consider a
Higgsless model, where the brane boundary conditions are used to trigger EWSB.

In the following chapters we will discuss some aspects of models with warped
extra dimensions, generalizing the RS model to use an arbitrary metric. Whenever
possible, we will provide the most general expressions and consider the RS limit of
our models. Therefore more details about the RS models can be easily extracted
from the remaining of this thesis.
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Soft Walls

The most common approach to constructing 5D warped models is by considering
two branes, UV and IR, that define the length of the extra dimension. In this
chapter we will consider the so-called soft-wall models, in which one of the branes
(IR) is replaced by a spacetime singularity, effectively setting a finite length of the
extra dimension in the proper coordinate system. The term soft wall emphasizes
the fact that the IR brane (a hard wall) is substituted by a singular solution which
is reached softly due to a smoothly vanishing metric.

In RS models with two branes, the distance between those needs to be sta-
bilized by a certain mechanism, the most usual one being the Goldberger-Wise
(GW) mechanism [28,29] . This mechanism consists in the introduction of a back-
ground scalar field propagating in the bulk of the extra dimension which, after
acquiring a coordinate-dependent vacuum expectation value, triggers a 4D effec-
tive potential for the radion field with a minimum, stabilizing the distance between
the two branes at a given distance. On the other hand, this background scalar also
generates a deviation from the AdS metric near the IR, although the mechanism
is usually constructed so that this deformation is negligible. In this chapter we
will see how, using this same mechanism, we can push further the modification of
AdS and invoke a spacetime singularity at a finite proper distance, which will be
automatically stabilized.

Warped models with singularities at a finite proper distance were first intro-
duced! to address the cosmological constant problem by self-tuning [31-33], al-
though later it was shown that the cosmological constant fine-tuning could not be
removed this way [34-36]. However, it was later found that the linear spectrum of
mesons in QCD could be described by invoking the AdS/CFT correspondence in

IFor an earlier analysis of models with exponential dilatonic brane potentials see Ref. [30].

29



30 Chapter 2. Soft Walls

soft-wall models (AdS/QCD) [37,38]. The name soft-wall was not introduced until
later in Ref. [39]. Other applications of soft-wall models that have been proposed

include an holographic description [40,41] of the theory of unparticles [42], or as
an alternative to RS to describe EWSB [43].

Another interesting feature of soft-wall models was described in Ref. [44], where
it is shown that the interesting properties of soft-wall models can be equivalently
described by means of an effective infrared brane, hiding the singularity and sim-
plifying the physical understanding of these models. In this chapter, however,
we will describe the full theory and discuss about the physical feasibility of the
singularity.

In this chapter, which reviews the results first presented in [1], we will show
how we can construct soft-wall models that include a built-in stabilization mecha-
nism, which provides a new, natural setup to address the hierarchy problem using
warped extra dimensions. We will describe the spectra of KK excitations and
their particularities for soft-wall models. We will finally discuss on the possible
applications of soft-wall models, and on the feasibility of applying them to EWSB.
For this latter application, we will see that we need to reintroduce an IR brane,
losing the “soft wall”, in order to address the Higgs hierarchy problem correctly.
However, the soft-wall models remain a consistent, interesting class of models to
be studied and, as we will see later on in this thesis, some of their properties can
be exploited even after inserting this IR brane.

2.1 The scalar-gravity background

We will begin by reviewing the construction of backgrounds with 4D Poincaré
invariance in order to construct models with spacetime singularities. We will
consider a scalar field ¢(y) propagating in 5D gravity, described by the metric, in
proper coordinates,

ds® = e’QA(y)d:c“daz”nH,, + dy?, (2.1)

where 7, = diag(—, +, +, +) is the flat Minkowski metric and A(y) is an arbitrary
function. We will refer to the exponential e=24®) as the warp factor. We will also
consider a brane at y = 0 and impose the orbifold Z, symmetry y — —y under
which A(y) and ¢(y) are even.

It will also be useful to define the metric in conformally flat coordinates as
ds?* = e &) (dx'da¥n,, + d2?). (2.2)

where A(z) = Aly(z)], and the relationship between z and y coordinates is given
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by

dz Ay)
— = ) 2.3
dy c (2:3)

Our setup is described, in proper coordinates, by the 5D action

§= [dadyy=5 R~ 5007 - V()| - [dsdp/mar0)0), )

where we have introduced arbitrary bulk and brane potentials V' (¢) and A\(¢), and
where we have set the Planck mass to unity. The bulk EOMs that follow from
(2.4) read

¢" —6A'¢) — O3V (¢) =0, (2.5)
6A" —¢* =0, (2.6)
24A% — ¢ + 2V (¢) = 0. (2.7)

Eq. (2.7) is the usual zero-energy condition arising from general covariance. Af-
ter differentiating this equation with respect to y, it vanishes identically when
Egs. (2.5-2.6) are satisfied. The system is then first order in ¢ and second order
in A, and it has three integration constants. One of them is A(0), that remains
totally free, and the other two can be fixed from the BCs that follow from the
boundary pieces of the EOMs,

A(0.) = 3M@), 28)
¢'(04) = 9\ (o) , (2.9)

where ¢g = ¢(0). Using Eqs. (2.8-2.9) in Eq. (2.7) determines ¢y,
S0 Go) = A G0 = V(6. (2.10)

which can be used to replace Eq. (2.9).

In order to solve the system of Egs. (2.5-2.7), we will make use of the super-
potential method, as introduced in Ref. [45]. This method consists in introducing
an auxiliary function W (¢) related to the scalar potential by

Vie)=1 (avg{;@) W) (2.11)

Using this ansatz, the bulk EOMs can be written as a simple system of first-order
differential equations

Afy) = ¢
¥ () =0 (6). (213)
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and the BCs are satisfied when

W (60) = GA60). (2.14)
0,11 (60) = LOM(G0) (2.15)

Again, the system of Egs. (2.12-2.13) has three integration constants and in princi-
ple every solution to Egs. (2.5-2.7) can be constructed in this way. One integration
constant is the trivial additive constant A(0) that does not enter in the new set of
equations. We are left with the integration constant in Eq. (2.11) and the value ¢
to fix the two constraints Eq. (2.14-2.15). The equation for W (¢) is a complicated
non-linear differential equation, and in practice it is often easier to start with a
particular superpotential satisfying the BCs and deduce the potential needed to
reproduce it.

2.1.1 Solutions with spacetime singularities

A particularity of the scalar-gravity system with one brane is the possibility of
having naked curvature singularities at a finite proper distance. From Eq. (2.13)
we can easily find that, if the superpotential W grows faster than ¢? for large values
of ¢, the profile ¢(y) diverges a finite value of y = y,. Moreover, the curvature
scalar along the fifth dimension is given by

R =sas) - 204 = 3 (PO) - w0

so that the curvature, in general, diverges at y = y,. The interpretation is that the
spacetime ends at ys, and the region y > y,; does not have any physical meaning.
We are therefore using the naked singularity to cut the space instead of a brane.

Since we only are introducing one brane, it seems that we only have two con-
straints for the three integration constants of the EOMs. However, having dy-
namically generated a new boundary at the singularity, we must ensure that the
boundary pieces of the EOMs vanish at y = y,. Otherwise, the proposed solution
would not extremize the action, resulting in a non-zero cosmological constant.
These boundary pieces can easily read from the action (2.4) and lead to the con-
dition

SA(00) — 200 (60) +2 Jim A0 (6]y) =0 (217)

where ¢9 = ¢(0). The two first terms of this equation cancel when Eq. (2.14) is
satisfied, while the last one depends on the behavior of the superpotential near the
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singularity. Let us now find under which conditions does the last term in (2.17)
vanish. Using ¢ as a coordinate in Egs. (2.12 — 2.13), we find
dA 1 W(e)
dé 60,W ()’
from where we can see that, in order for the last term of (2.17) to vanish, W needs

to grow more slowly than e?¢/ V6 at large ¢. We thus arrive at a simple criterion
for the existence of consistent, singular solutions:

(2.18)

A singularity with ¢(ys) — oo is allowed if, and only

2.1
if, W (@) grows asymptotically more slowly than 2V, (2.19)

From this criterion follows that the potential V' needs to grow more slowly than
e2?/3 although this is not a sufficient condition (consider e.g. the trivial example
V = 0 which has the general solution W oc ¢2¢/V6).

It is instructive to compare our criterion with the one found in Ref. [33] where
AdS-CFT duality was used to classify physical singularities. According to Ref. [33]
admissible singularities are those whose potential is bounded above in the solution.
Inspection of Eq. (2.11) shows that singularities fulfilling (2.19) have a potential
that goes to —oo, while those that fail (2.19) go to +o00. Although we here employ
a much more basic condition (a consistent solution to the Einstein equations),
which in particular can be applied to theories without any field theory dual, it is
good to know that our allowed solutions have potentially consistent interpretations
as 4D gauge theories at finite temperature.

Furthermore, a detailed analysis about the feasibility of soft-wall singularities
as the ones we will cover in the remaining of this chapter is conducted in Ref. [46],
where they show that, in the cases where (2.19) is satisfied, the singularity satisfies
the necessary unitary boundary conditions.

2.1.2 On the cosmological constant fine-tuning

So far, it might seem that one can obtain flat 4D solutions with fairly generic brane
and bulk potentials without fine-tuning. This apparent self-tuning property was
pointed out in [31-33], and was studied as a possible solution to the cosmological
constant problem. However, as we will right now see, there is a hidden fine-tuning
that uncovers again the cosmological constant problem [34-36].

In fact, achieving a superpotential that grows more slowly than e??/ V6 requires
a hidden fine-tuning of the cosmological constant. To see this, it suffices to consider
a potential that behaves asymptotically as

V(¢) ~ be*?/V (2.20)
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Writing W (¢) as
W (¢) = 6w(e)e"V", (2.21)

we can express the solutions for w(¢) as the roots of

W)= AIVG — (2 + Vb + 4w?) 2 (vw F Vb + du?), (2.22)

where c is an integration constant. For v > 2 this implies that w(¢) tends asymp-
totically to the constant
b

~ + 2.23
at large ¢ and for b > 0. However, for 0 < v < 2, w generically behaves as
w(p) ~ eIV (2.24)

Only if we adjust ¢ — oo we can achieve that w behaves as in Eq. (2.23). In this
case, b has to be negative in order to have a real solution for W.

The generic solution to Eq. (2.11) thus grows as W ~ e*¢/ V6 for v > 2 and
W ~ €29/V6 for v < 2. However, it is possible to arrange for W ~ e”¢/ V6 in the
latter case by picking a particular value for the integration constant in Eq. (2.11) 2.
We are then left in two possible scenarios:

(a) The superpotential W grows as 2/ VB or faster, and the EOMs are not satisfied
at the singularity. The only consistent way-out is to resolve the singularity,
for instance by introducing a second brane located at ys (or at y < y,). In
this case, the fine-tuning of the cosmological constant is reintroduced, as two
additional BCs appear [the IR equivalents to Eqs. (2.8-2.9)] without increasing
the number of free parameters [34-36].

(b) The superpotential W grows as e’/ V6 with v < 2, or slower. The EOMs are
satisfied at the singularity, and there is no need to resolve it. However, we need
to adjust the integration constant of Eq. (2.11), losing one of our parameters
needed to satisfy the BCs of Egs. (2.14-2.15) and resulting in a fine-tuning of
the brane tension.

It is important to realize that either fine-tuning precisely corresponds to the
fine-tuning of the cosmological constant. In the second possibility above this is

2Similar reasonings apply to potentials that grow even more slowly, e.g., as a power. The
generic solution behaves as e2?/ ‘/6, but particular solutions may exist that behave as vV and
hence allow for consistent, yet fine-tuned, flat backgrounds.
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particularly obvious: the superpotential is completely specified by the bulk poten-
tial and the BC at ¢ — oco. Egs. (2.14-2.15) are then simply the minimization of
the 4D potential

Vi(9) = A(¢) — 6W (9) (2.25)

under the condition that Vj(¢) vanishes at the minimum ¢ = ¢. In fact, the
brane potential A\(¢) should be determined by physics localized at the UV brane
interacting with the scalar field ¢. For example, if the SM Higgs was localized
at the UV brane it would generate a brane potential as \(¢, H) which would in
turn provide the effective brane potential A\(¢, (H)) after EWSB. Hence, after the
electroweak phase transition, there will be a ¢-dependent vacuum energy which
will require re-tuning the cosmological constant to zero and possibly a shift in the
minimum of Eq. (2.25).

As we have seen, there exist consistent solutions to the EOMs in the full closed
interval [0, y;] that do not demand the introduction of a second brane or other
means of resolving the singularity. However, this setup does not solve the cosmo-
logical constant problem.

2.2 The 4D spectrum

In this section we will study the fluctuation of the metric and the scalar around
the classical background solutions for general metrics, and classify them according
to the asymptotic behavior of the superpotential. A general ansatz to describe all
gravitational excitations of the model is, using an appropriate gauge choice [47],

o(x,y) = 6(y) + ol y). (2.26)
ds? = e AW 2w (4 BT (0, g))datde” + (14 Gla,y)dy’,  (2.27)

where ¢(y) is the background scalar, solution of Eq. (2.13), and 2] are the trans-
verse traceless fluctuations of the metric. The Einstein equations that arise from
this ansatz have the spin-two fluctuations decoupled from the spin-zero fluctua-
tions, so we can proceed to study them independently.

2.2.1 The graviton

Let us first consider the graviton as the transverse traceless fluctuations of the
metric

ds? = e W) (1, + hy(2,y))d2a® + dy?, (2.28)
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where b /' = §,h" = 0. In order to respect the orbifold symmetry and to keep the
possibility of a constant profile zero mode, we will consider h(y) = h(—y) which
leads to the BC at the brane A/(0) = 0. The part of the action quadratic in the
graviton fluctuations becomes

S = /d%dy V—gR
1
- -3 [ wdy e (0, 00 + 2400, 0,0 ) (2.29)
Using the ansatz

hyw (2, ) = by, (2)(y), (2.30)
one can obtain the EOM for the wavefunctions h(y), which is given by

h'(y) — 44" (y)' (y) + P mPh(y) = 0. (2.31)

After an integration by parts in (2.29), one finds an additional equation due to

boundary terms at y = y,,
6—4A(ys)h'(ys) = 0. (2.32)

In addition, one has to impose that the solutions are normalizable, i.e.

Ys
dy e *Wh?(y) < 0. (2.33)
0

It is now convenient to change to conformally flat coordinates, as defined
in (2.85). In this frame, rescaling the field by h(z) = e ?4()/2h(z), Eq. (2.31)
can be written as a Schroedinger-like equation,

“h(2) + Vi(2)h(2) = m2h(2), (2.34)

where the dots (-) represent derivatives with respect to z and the potential is given

by
9

4
The boundary equations are written in the z-frame as

Vi(2) = 2A(2)? — gzﬁ(z) (2.35)

3

e 2B (2 = ¢ 34()/2 (ﬁ(z) + éA(z)ﬁ(z))

=0, (2.36)

20,%s 20,25

and the normalizability condition is

/ZS dz e 3A@p2(2) = /ZS dz h*(z) < oo. (2.37)
20 Z0



2.2. The 4D spectrum 37

2.2.2 The radion-scalar system

Now we consider the spin-zero fluctuations of the system. This is

o(z,y) = o(y) + (. y), (2.38)
ds? = e 2AW2E@y detde” + (14 J(z,y)) dy>. (2.39)

With an appropriate gauge choice, the EOMs for the y-dependent part of the KK
modes form a coupled system with only one degree of freedom. The derivation of
the equations is given with detail in [47], and the result is

F'" —2A'F' —4A"F — QE/:F’ + 4A’%I:F = —m2e*F, (2.40)
o' (W)e(y) = F'(y) — 24 (y) F(y), (2.41)
J(y) = 2F(y). (2.42)

The boundary equations on the brane depend on the brane tension A(¢). The
precise form of the dependence can be found in [47]. At the singularity, similarly
to the graviton case, one gets the boundary equation

e MW (y)], =0, (2.43)
and the normalizability condition
Ys Zs
dye W 2y) = [ dag(z) < o, (2.44)
0 20
where the field has been rescaled by @(z) = e34/2p(2).

It is convenient, as for the graviton, to use conformally flat coordinates. Rescal-
ing the field by F(z) = e 34®)/2F(2)/¢(2), Eq. (2.42) can be written as the
Schroedinger equation

—F(2) + Vi(2)F(2) = m*F(2), (2.45)
where
vﬂang@y+;M@_A@%%§r%§+2(%3). (2.46)

The relation between the rescaled field F' and the rescaled scalar field @ is

D —LZ ”(Z)—llz e
o) = )+ (G - 5A6) 7o) (2.7
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2.2.3 Classification of spectra

Let us now try to classify the different mass spectra for the Kaluza-Klein modes
that can be obtained from different superpotentials [1] [38,48]. As we will shortly
see, the mass spectrum of a soft-wall model depends basically on the asymptotic
behavior of the superpotential W (¢) near the singularity.

In general, all fields propagating in the bulk will have the same kind of spec-
trum, in terms of the dependence of the n-th KK mode mass to n. Hence, it will
be sufficient to consider the case of one field propagating in the bulk, and it can
be checked that the conclusions we are going to extract in this section apply to all
kind of bulk fields. We will then consider the case of the graviton. Recall that the
EOM for the fluctuations can be written, in conformal coordinates and after the
redefinition h(z) = e 343)/2h(2), as (2.34)

9
1

3

I (2) + Vi(2)h(z) = m*h(z),  Va(z) = 2

A2)? = 2A(2), (2.48)

and so we will only need to analyze the behavior of A(z) for large values of z.

Our aim is to classify different soft-wall models in terms of the asymptotic
behavior of A(z). In order to do that, we will consider two classes of superpoten-
tials, following the notation of Ref. [44]. Type-1 models (SW1) will be defined by
superpotentials with an asymptotic behavior given by

W(g) ~edVs <2, (2.49)

where the condition on v follows from the consistency requirement (2.19). As we
will shortly see, in the case v = 1 the subleading behavior will become important,
and so it will be convenient to define a second category of backgrounds (SW2)
defined as

W(g) ~e?Vogf  B>0. (2.50)

With this classification we will cover all different possible kinds of spectra that can
be obtained using simple soft-wall models.

SW1

Let us first consider the SW1 class (2.49). From Egs. (2.12-2.13) we know that
the asymptotic behavior of the metric is given by

A(y) ~ —iz log <1 - ﬁ) , (2.51)

v Ys
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where ys marks the position of the singularity. Since our Schroedinger-like poten-
tial is expressed in terms of the conformal coordinate z, we need to find A(z) using
the coordinate change of Eq. (2.3). The relation is given, at large z, by

. oN1-1/02 1
zN{ <yf y1) S ”fl , (2.52)
—ylog(1-2£), v=
which allows us to write
log(pz), v#1
A(Z) ~ { pz’ L — 1 , (253)

where p = O(y;') is a constant of energy dimension, which will set the energy
scale of the KK excitations. Finally the Schroedinger-like potential of Eq. (2.48)
behaves asymptotically as

V() N{ %9//2;?7 Zi} . (2.54)

We then find the following possibilities:

e When v < 1 the singularity is located at z; — oo, and the potential is
bounded below by 0. This means that there will not be confinement, and
the lightest state will have mass m = 0. In other words, we have a continuous
mass spectrum without a mass gap.

e When v = 1 the singularity is located at z; — oo, and the potential is
bounded below by (9/4)p*. Again there will not be confinement, but this

time the lightest state will have a mass m > /9/4p. In this case the spectrum
is continuum but with a mass gap.

e When v > 1 the singularity is now at a finite 25, which will lead to con-
finement and a discrete spectrum. We can approximate the behavior of the
heavy mass modes by making use of an WKB approximation, which tells us
that the n-th mass mode is given by

/Zb\/m%—Vh(z) ~nr+ 0, (2.55)

where z, and 2, correspond to the values for which Vj,(z;) = Vj(22) = m?

(i.e. the classical turning points) and 6 is a constant that will be given by
the BCs at the brane and the singularity (that we do not need to care about
at this point). Taking the approximation m? > Vj, and z, = 1/m,, > z, we
obtain

My ~ N, (2.56)

that is, a linear mass spectrum.
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With these approximations we have obtained information about the general
behavior of the KK spectrum for SW1 models. In Section 2.4 we will explicitly
solve a particular example of SW1 models covering the three possibilities described
above, and we will confirm the validity of this approximation in that case.

SW2

Now let us move on to SW2 models (2.50). As in SW1 models, near the singularity
the metric behaves as

A(y) ~ —log (1 - E) : (2.57)

Ys
while in terms of the conformal coordinates it reads
(pz)'/(1=20) , 0<pB<1)/2
A(Z) ~ epz ) B - 1/2 ) (258)

[p(zs — )Y g >1/2

where zg is the position of the singularity in conformal coordinates z; = z(ys). We
can see that the singularity is located at z; = oo when § < 1/2; and at a finite
conformal length z, < oo when 5 > 1/2. The potential (2.48) behaves, also near
the singularity, as

) (/2),2)45/(1_25) : 0<pB<1/2

~ Pz =

Vi(2)/p e, o B=1/2 : (2.59)
[o(zs — 2)] , B>1/2

Let us now explore the three cases separately

e For f < 1/2, we can see that even if the position of the singularity is at
zs = 00, the potential diverges there. Therefore, we can expect a discrete
spectrum. Making a WKB approximation as in Eq. (2.55), for m,, > V}, and
2, =mY )71 > 2 we get that

my, ~n* (2.60)

so that the spacing of the spectrum can be controlled by varying the param-
eter f3.

e For = 1/2 the arguments are the same as in the case we just explored, and
it can easily be checked that the WKB approximation yields

My ~ N, (2.61)

which coincides with taking the appropriate limit in Eq. (2.60).
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e For f > 1/2 the WKB approximation of Eq. (2.55), for m, > V} and
2y = Zs > 2,4, tells us that the spectrum is approximated by

My, ~ N, (2.62)

recovering again the linear result. In fact, this could have been expected,
since it is known that 5D models with a finite conformal length, as in this
case, always produce a linear spectrum.

To conclude this section, let us recapitulate and summarize the classification
of spectra we just obtained in Tab. 2.1, where we also show some of the results
we obtained in previous sections. We can see that we can obtain a broad range of
spectra, ranging from a continuous tower of excitations to a linear spacing between
masses, with all possibilities in between covered. This makes soft-wall models a
powerful tool to describe phenomenologically a large set of physical situations. We
will comment on the possible applications of the different kinds of soft-wall models
later on in Sec. 2.5.

< ¢? > ¢? e/ V6 e? P > 6¢N€¢§ > 26/V6
W(g) < e?/VB 0<p<i < 20/V6
Ys 00 finite
Zs 00 ‘ finite
mass . continuous discrete
continuous
spectrum w/ mass gap | my, ~ n”’ | My ~ N
consistent
solution yes no

Table 2.1: Spectra resulting from different asymptotic forms of the superpotential.
In the first row we give the asymptotic behavior of W (), with the strength of
the divergence increasing from left to right (> means “diverges faster than”, etc).
Second and third row show the finiteness of ys and zs, with the behavior changing
at W~ ¢* and W ~ e?/ \/%% respectively. The third row shows the spectrum,
while in the last one we indicate the consistency of the solution.
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2.3 Constructing soft-wall models with a hierar-
chy

The main motivation of studying warped extra-dimensional problems is their prop-
erty of generating large hierarchies with little fine-tuning. In this section we will
describe the essential properties a soft-wall model, or more precisely the superpo-
tential, must have in order to display this property.

Let us consider a soft-wall model with a superpotential W (¢), and assume
that 1 is a monotonically increasing function of ¢, i.e. W/(¢) > 0. The location
of the singularity, and hence the size of the extra dimension, is given in proper
coordinates by

Ys = ) .
o0 W'(9)

The integral is finite whenever W diverges faster than W ~ ¢2. However, the
inverse volume y; ! is, in general, not the 4D KK scale nor the mass gap as there
might be a strong AdS warping near the UV brane. The KK scale is given by the
inverse conformal volume 2! (when it is finite), calculated as

(2.63)

Ys
Zs :/ AWy . (2.64)
0

It is easy to warp the geometry near the brane without affecting y, by adding a
positive constant of O(k) to the superpotential, leading to

Aly) = Aly) + ky , for W ->W+k. (2.65)
Notice that A(y) is a monotonically increasing function of y, such that
kzg > €M (2.66)

One sees that the KK scale is warped down with respect to the compactification
scale, a phenomenon well known in RS models with two branes [11]. In order to
obtain, e.g., the TeV from the Planck scale we need

©  k
30 W'(9)

kys = de ~ 37. (2.67)

This is not hard to achieve in a natural manner. In our model, Eq. (2.77), it works
so well because the exponential behavior that was introduced for large values of
¢ is also valid at O(1) negative values and dominates the integral, leading to
Eq. (2.82).
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Moreover, there are many cases where z, is infinite, even though y, is finite.
There can still be mass gaps or even a discrete spectrum, but z, is clearly inad-
equate to characterize the energy levels. One such example is the case W = ke?
that leads to a mass gap. Let us be slightly more general and consider the class
of superpotentials of type SW2 3

W(g) = ke’ (¢ —¢1)”, (2.68)

with ¢; < ¢g. This superpotential is monotonically increasing for § > 0 and has
infinite z, for g < %, so we will assume 0 < 3 < % The volume y; is approximately

kys = e%/V0, (2.69)

so, again, ky, is (mildly) exponentially enhanced when |pg| = O(1 — 10), ¢o < 0.
In order to estimate the spectrum, we need the asymptotic behavior of the warp
factor in conformally flat coordinates. For large z, it is given by

A(z) ~ (pz)T77 (2.70)

where p = O(y;'). * The coordinate change is given by

2(y) = /eA(y)dy. (2.71)

Using our trick of adding warping while keeping y, unchanged, Eq. (2.65), we see
that near the singularity

2(y) = 2zu(y) =~ z(y)ekys . (2.72)

On the other hand, adding the warping leaves A(y) nearly unchanged near the
singularity (adding a constant kys to infinity makes no difference). Therefore,
demanding A, (y) ~ A(y) near y = y; leads to

[02(y)] 72 = [puza ()]0 = [puz(y)erv] /029, (2.73)

and hence
e_kys

pu = pe Ve ~ (2.74)

Ys
Combining this with Eq. (2.69) we find a strong suppression of p,,/k resulting just
from O(1) numbers. The quantity p,, sets the scale for the KK spectrum in this
case, and more explicitly the spectrum is approximated as

My, ~ pyn® (2.75)

3Refer to Sec. 2.4 for the explicit construction of stabilized soft-wall models of type SW1.
4Metrics of the form Eq. (2.70) have been studied in detail in Refs. [39,49].
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which can be obtained with a WKB approximation as in Sec. 2.2.3. We see that p,,
indeed sets the scale of the 4D masses, which are hence parametrically suppressed
with respect to k. The complete superpotential that accomplishes a hierarchy and
leads to the spectrum Eq (2.75) is

W(¢) = k(L + e/ Vo[p — ¢]°). (2.76)

At this point, we already have a recipe of how to construct superpotentials
that are consistent background solutions and that accomplish the stabilization of
the hierarchy and feature a specific KK spectrum. In a first step, one chooses the
asymptotic (i.e. large ¢) behavior of W. This will determine the asymptotic form
of the spectrum.

In a second step, one completes W for smaller values of ¢ in such a way as to
accomplish a mild hierarchy of the proper distance y, with respect to the funda-
mental 5D scale k, given by the simple relation Eq. (2.67). Notice that many of
the interesting spectra require some kind of exponential behavior at large ¢, such
that this region does not contribute at all to kys,.

Let us conclude this section by noting that there are certainly other ways
to obtain the mild hierarchy ky,, including moderate fine-tunings of parameters.
What is completely generic, though, is the fact that adding warping as in Eq. (2.65)
leaves ky, manifestly unchanged but suppresses the masses by an additional warp
factor e*¥s.

2.4 A self-stabilized soft-wall model

Let us now apply the results of the previous sections an consider an explicit class of
stabilized soft-wall models. That is, models with a single UV brane, a singularity
at finite y = y, and with a mass scale hierarchically smaller than the Planck scale
without fine-tuning of parameters. We will in addition require these models to
behave as AdSs near the UV brane.

Following the recipe of Sec. 2.3, we know that these properties can be obtained,
e.g., from the simple superpotential of the SW2 type

W (¢) = 6k(1 4 /v (2.77)

where £k is some arbitrary dimensionful constant of the order of the 5D Planck scale,
and v < 2. The background solution can be easily obtained using Egs. (2.12, 2.13)
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and reads
Aly) = ky — % log (1 — 5) , (2.78)
o6) = =gl (s, )] 279)

At the point y = y, we encounter a naked curvature singularity and for y < ys,
i.e. near the boundary at y = 0, the geometry is AdSs.

The bulk potential which corresponds to the superpotential (2.77) is given by
V(¢) = (3k2% — 12k2)e>#/V0 — 24)2e¥9/V6 _ 1212 (2.80)

e For v < 2 the potential is bounded from above. More precisely it satisfies
the condition

V(olyl) < V(¢o), (2.81)

necessary for the corresponding bulk geometry to support finite temperature
in the form of black hole horizons, a characteristic feature of physical singu-
larities [33], as we commented in Sec. 2.1.1. Moreover for v < 2, as we have
seen in the previous section, the EOMs are satisfied at the singularity and
there is no need to resolve it.

e For v > 2 the EOMs are not satisfied at the singularity and the latter would
need to be resolved to fine-tune to zero the four-dimensional cosmological
constant. Finally the potential is not bounded from above and finite tem-
perature is not supported in the dual theory.

The location of the singularity depends exponentially on the brane value of ¢,
1
_ —vgo/V6
kys = ¢ 0/VE, (2.82)

We know from Sec. 2.3 that the relevant mass scale for the 4D spectrum is not
the inverse volume, but rather a “warped down” quantity as in Eq. (2.73). In the
case of study, it is convenient to define

p = k(ky) et (2.83)

which, as we will shortly see, is a quantity that reflects well the scale of KK
excitations. All we need in order to create the electroweak hierarchy is thus ¢y < 0
but otherwise of order unity. This can be achieved with a fairly generic brane
potential, for instance by choosing a suitable A(¢) such that the BC of Eq. (2.15)



46 Chapter 2. Soft Walls

logy(p/k)

— kys = 30

1 12 14 16 18 2

Figure 2.1: Plot of log,(p/k) as a function of |¢o| forv =1 and v = 2 [left panel],
and as a function of v for kys = 30 (this value will be used in following plots)
[right panel].

is satisfied for our superpotential.> For negative ¢, the ratio of scales k/p exhibits
a double exponential behavior

T (2.84)

and we can create a huge hierarchy with very little fine-tuning. In Fig. 2.1 we
plot p/k as a function of |¢g| for different values of v and also as a function of v
for a fixed value ky, = 30 which generates a hierarchy of about fourteen orders of
magnitude.

A comment about the motivation for choosing this particular superpotential
is in order here. Its particular form, Eq. (2.77), guarantees full analytic control
over our solution, providing a relatively simple framework to explore some of the
interesting properties of soft-wall models, while introducing only one parameter,
v, that can be used to control the departure of our model from the AdS solution,
which is recovered at v = oco.

°In order to satisfy the other BC, Eq. (2.14), we still need a fine-tuning, for instance by adding
a ¢ independent term to A(¢). This is precisely the tuning of the 4D CC discussed above that
of course has nothing to do with the electroweak hierarchy we want to explain here.
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2.4.1 The mass spectra

From what we discussed in Sec. 2.2, and in particular having a look at Table 2.1 we
can already advance that this set of models feature a discrete solution for v > 1, a
continuous spectrum with mass gap for v = 1, and a continuous spectrum without
mass gap for v < 1. Let us, however, explicitly solve the fluctuation EOMs for our
model in order to study the mass spectrum with more detail.

Let us begin by finding an explicit expression for the relation between z and .
From Eq. (2.3) and for v > 0 we easily find

p(z = 20) = T(1 = 1/v* kys — ky) = T(1 = 1/v* ky,), (2.85)

where z; corresponds to the location of the UV brane that we assume to be at
2o = 1/k and I'(a,x) is the incomplete gamma function. Since we are taking
ek > 1 and hence k/p > 1 we can approximate ['(1 — 1/v2, ky,) ~ p/k and
(2.85) simplifies to

pz =~ T(1 —1/v* ky, — ky). (2.86)

For v > 1 the singularity at y, translates into a singularity at z; given by
pzs ~T(1—1/17). (2.87)
For 0 < v <1 the singularity at y, translates into a singularity at z, — oc.

Let us now inspect the graviton and radion fluctuations for the case of study.

The graviton

From (2.34) we know that, after the redefinition h(z) = e 34)/2h(2), we can
express the fluctuation EOMs as

—h"(2) + Vi(2)h(2) = m>h(2), (2.88)

where V},(2) is given by (2.35). In the case of study, it is only possible to obtain
an analytic expression for V},(z) in the y-frame, where it reads

2
3e—2ky (1 — y—ys) 52 (y — ys)? — 100%k(y — ys) — 202 + 5]
4vt (y - ys>2
It is however possible to invert numerically the coordinate change (2.85), and so

to plot (2.89). Its behavior for different values of v is shown in Fig. 2.2. One can
distinguish three possible situations °:

Vi(zly]) = . (2.89)

6Similar potentials were considered in Ref. [50].
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Figure 2.2: Behavior of V},(z) for different values of v. Here, Vo = V,(1/k). For
the radion, Vi (z) has the same behavior with the exception that Fig. 2.2(c) applies
for allv > 1.

e v < 1 [Fig. 2.2(a)] In this case z extends to infinity where V3, — 0. The mass
spectrum is continuous from m = 0, i. e. without a mass gap. However,
conformal symmetry is broken due to the occurrence of the scale ;.

e v =1 [Fig. 2.2(b)] z also extends to infinity but Vj, — (9/4)p?. This leads
to a continuous spectrum with a mass gap m, = (3/2)p.

e v > 1 [Figs. 2.2(c) and 2.2(d)] z, is finite and thus the mass spectrum is
discrete. The potential diverges at z, changing sign at v* = 5/2, but this
does not have observable consequences in the mass spectrum as we will see.

Equations (2.31) and (2.34) do not have analytic solutions. However, for v > 1
one can find approximations for the wavefunction in the regions near the brane
and near the singularity. Let us first consider the region near the brane (ky ~ 0).
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Assuming kys > 1 the potential (2.89) is approximated as

15 k2 151
ey~ (2.90)

Vily~o =~ —
o = = 4 22

where the coordinate change is given by (2.86), which is approximated for v > 1
as

kz o~ et (2.91)
One can see that (2.90) corresponds to an AdS metric. With this approximated
potential, Eq. (2.88) is solved by

M) |amzy = 1VkzJo(mz) + caVEzYs(mz) . (2.92)

The two coefficients can be determined by the normalization and the BC (2.36) at
Zp, 1.e.

o—3A()/2 <Z(z) + gA(z)i}(z)) =0, (2.93)
which yields
Co Ji(m/k) <m>2
R A ST (i B 2.94
o Yi(m/k) k v 20

since we expect the first mass modes to be of order m ~ (2, — 25)~!, and in our
approximation k(zs — z9) > 1.

Let us now move on to consider the region next to the singularity (y ~ y,). In
this case the potential is approximated by
3(5 — 2v?) 0> 35— 21%) 1

W TRy — g T A1 = 22 (2 — 2

Vil yy, = (2.95)

where we have used that, for v > 1, the coordinate change (2.85) is approximated

by
1/2

(b, — )] (2.96)

With this approximation, Eq. (2.34) yields the solution

plzs — z) =

h(z) = c;VmAzJ,(mA2) + cy VmAZY,(mAz) (2.97)
where L
—v
= — 2.
a 20T (2.98)

and Az = z; — z. The two integration constants can be obtained by imposing the
BC at the singularity and normalizability and by matching this solution to the
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solution for the intermediate region between the brane and the singularity. Near
the singularity (2.97) behaves like

ﬁ(z) ~ 69)<Az)3/(2u272) + C§)<Az)(4u271)/(2u272) + Cg)(Az)(2V275)/(2u272)’ (2.99)

where numerical factors are being absorbed in the constants ¢;. We have included
the next to leading order in the expansion of J, as we need it for computing the
BC, which reads

e () + SAEG) ) ~ &P (A2 P azp . (2100)

Again numerical factors have been absorbed in ¢,. Note that the BC is only
satisfied when ¢y = 0, and that this condition also ensures that the solution (2.99)
is normalizable when v? < 2.

The BCs provide the quantization of the mass eigenstates for v > 1. In order to
compute the mass spectrum for the graviton one should match the solutions at the
ends of the space with a solution for the intermediate region. Unfortunately, for
the parameter range we are interested in we do not have good analytic control for
this region. However we can extract a generic property of the spectrum by looking
at the potential Eq. (2.89) and using the form of the coordinate transformation
Eq (2.86) to deduce that, assuming e*¥s > 1, the potential has the form”

Vi(2) = p*un(p2) (2.101)

where vy, is some dimensionless function of the dimensionless variable pz. In other
words we have eliminated the two scales k,ys in favor of the single scale p given
in Eq. (2.83). The spectrum is therefore of the form

ma (v, k,ys) = pa(v) p(v, K, ys) (2.102)

where the pure numbers p, only depend on the parameter v but not on the pa-
rameters k or ys.

Moreover one can find an expression for the spacing of the mass eigenstates by
approximating the potential as an infinite well, which is valid for m? > V,,. The
result of this approximation is

p m
Am~ —— = — | 2.1
"Tra -1 s (2.103)

Note that the mass spectrum is linear (m,, ~ n), and that as one approaches v = 1

lim Am =0, (2.104)

v—1

"This behavior can actually be seen in the limiting cases Eq. (2.90) and Eq. (2.95).
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Figure 2.3: Mass modes for the graviton, computed for ky, > 4.7 The massless
(n =0) and the first 5 massive modes (n =1,...,5) are shown.

recovering the expected continuous spectrum at this value (for v < 1 the spectrum
is continuous too, since (2.103) is only valid for v > 1). The numerical result for
the mass eigenvalues is shown in Fig. 2.3 where these behaviors can be observed.
Some profiles for the graviton computed numerically using the EOM (2.88) and
the BCs (2.93) are shown in Fig. 2.4.

The radion

For the radion we make the redefinition F(z) = e 34®)/2F(2)/¢(z), after which
we get the Schroedinger-like equation (2.45)

—F(2) + Vp(2)F(2) = m?F(z), (2.105)

where, in the y-frame, the potential Vg (2), defined in Eq. (2.46), is given by

™2 (1 — L) Bk (y — ya)? + (=612 + 80 )k(y — ya) + 612 + 3]
41/4(y - ys)2 '

Vi(zly]) =
(2.106)

This potential has similar form to the graviton potential, and the three situations
presented above also apply for the radion (with the same mass gap for v = 1). A

"Numerically one finds that the scaling property in Eq. (2.102) ceases to be valid for ky, < 3,
as discrepancies from this behavior become greater than 1%.
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Figure 2.4: KK graviton profiles in the z frame for kys = 30 and v = 3/2, using the
normalization [ dzh? = 1. The massless mode (n = 0) is peaked near the brane.
The two first massive modes (n = 1,2) are also shown. The zero mode becomes
more peaked near the brane in comparison to the massive modes as kys increases.

difference is that this potential does not change the sign of divergence for v > 1,
although this does not have any observable consequences, as we have already seen.

Let us now proceed to find the approximation for the wavefunction near the
UV brane. Taking ky ~ 0 and kys > 1 and using (2.91), (2.106) is given by

3K . 31
VF|y:O ~ Te Y~ Z; s (2107)
and hence the solution to (2.45) is
F(2)|snz = ciVkzJy(mz) + coVk2Yi(mz) . (2.108)

The coefficients ¢; are to be determined using the BCs at the brane [47]. As an
example, using the condition 8 ¢(y = 0) = 0 (which we will use for the numerical

computation) yields

e h(m/k)
o = T = (2.109)

Next to the singularity, and using Eq. (2.96), the potential is approximated by

67/2 + 3 p2 61/2 -+ 3 1
Vil N 2.110
F|y7ys A4 [kr(ys _ y)]Q—Z/VQ 4(1 — 1/2)2 (Zs - 2)2 ) ( )

8This condition holds for brane potentials satisfying 9?A/9¢? > 1 [47].
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Figure 2.5: Mass modes for the radion, computed for values of ky, > 4 7. The first
6 massive modes (n =0,...,5) are shown.

that gives the solution

F(2) = csVmAzJ,(mAz) + cy VmAzY,(mAz), (2.111)
with ) )
+ v

= — . 2.112

T (2.112)

The behavior of this solution near the singularity is
F(2) ~ W (Az)@7 0/ =2) o (DA )(672=3)/02=2) 4 (DA ) =3/(27=2) (9 113)

The rescaled scalar fluctuation p(z) = e34()/2(2), related to F(z) by Eq. (2.47),
behaves near the singularity as

5(2) ~ é‘(]1)<AZ)3/(21/272) + 58)<Az)—(2u2+1)/(2u272) 7 (2.114)

to which we have to apply the normalizability condition (2.44), i.e.

/Sdzg52(z) <0, (2.115)
20
and the BC (2.43),

O — 673‘4('2)(,.0(2) ~ Ci§2) (Az)(l/2+2)/(l/271) + C;'(l) (AZ)(*2V2+2)/(1/271) . (2116)

Again, the condition ¢y = 0 is sufficient to ensure both the fulfillment of the
BCs and the normalizability. The scaling of the mass eigenvalues Eq (2.102) and
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Figure 2.6: KK profiles of the rescaled scalar fluctuations ¢(z) for kys = 30 and
v = 3/2, using the normalization [dz@* = 1. The three first massive modes
(n=0,1,2) are shown.

the approximation (2.103) for the spacing of the mass modes also holds for the
radion. The numerically obtained values for the masses are shown in Fig. 2.5. In
comparison to the graviton mass modes of Fig. 2.3, note that the first mode for
the radion is lighter than the first massive mode of the graviton. This can be
understood recalling that the radion does not have a zero mode.? Some profiles of
the scalar fluctuations of the field ¢ are shown in Fig. 2.6.

2.5 Applications of soft-wall models

As we already stated in the beginning of this chapter, there are a number of phe-
nomenological applications of soft-wall models that have been already proposed,
although most of them are still worth of future research in detail. In particular,
the possibility of having naturally stabilized soft-wall models lets us describe phe-
nomenology at the TeV scale or lower without incurring in a fine-tuning problem.

To begin with, the SW2 case (2.50) for § = 1/4 is particularly useful to provide
a holographic description of QCD. When § = 1/4 the spectrum behaves as m? ~
p2n, which corresponds to the linear Regge trajectory spectrum for the mesons,

90ne can in fact show that for v — oo, which we can only take if we resolve the singularity,
the lightest mode tends to be massless, corresponding to the radion profile in a RS2 model, as
described in Ref. [51].
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and has been shown to be appropriate for AdS/QCD models as in Ref. [39]. In
this case one would obtain the linear confinement behavior of e.g. p-mesons by
considering an additional piece in our action [ d°x\/—g e’%‘bﬁmesons. The fact that
asymptotically A(z) ~ ¢(z) ~ 2% guarantees that the resonances of the vector
mesons follow the same linear law as the ones for the scalars and tensors.

Another interesting case is the SW1 class (2.49) when v = 1. In this case the
mass spectrum of fields propagating in the bulk is a continuum above a mass gap,
which can easily be set at a scale of O(T'eV'). This continuum (endowed with a
given conformal dimension) can interact with SM fields propagating in the UV
brane as operators of a CF'T, where the conformal invariance is explicitly broken
at a scale given by the mass gap, and can model and describe the unparticle
phenomenology. This could also be applied to EWSB; as in the unHiggs theory of
Ref. [52], were the Higgs is embedded in such 5D background.

In the SW1 case for the parameter range 1 > v > 2 the spectrum is quite
similar to the RS1 model [12], with some particularities. The most interesting
feature is the fact that, at values of v close to 1 the spectrum mimics a continuum
with a mass gap (see e.g. Fig. 2.5). In this case, if the first mode is at the TeV
scale, several KK modes could be found with masses within the LHC energy range.
Provided that the KK modes couple strongly enough to SM matter, this would
provide a very particular signature of this kind of models, since in the standard
RS1 models only one or two modes can be accommodated in the TeV range (i.e. the
density of states is higher than in RS1).

2.5.1 Electroweak symmetry breaking

The fact that the SW1 case for 1 > v > 2 is similar to RS1 makes it natural to
try to apply these models to EWSB, the original motivation for RS1. The built-in
stabilization mechanism of soft-wall models seems to hint towards a solution of
the hierarchy problem, reducing even more the need for fine-tuning, provided that
a EWSB mechanism can be described in a soft-wall background.

One needs to take care of the electroweak precision observables when consider-
ing this possibility, and it was indeed shown in Ref. [43] that the S parameter could
be reduced in soft-wall models featuring a custodial symmetry. What is more, ap-
plying the results on EWSB we will describe in the remaining of this thesis to
soft-wall models indicates that the T parameter could be reduced as well [3].

However, when one tries to solve the hierarchy problem in warped models, the
Higgs needs to be localized in the IR brane or towards it [12]. In the soft-wall
case, without an IR brane the Higgs can only be in UV brane or in the bulk. The
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former case does not solve the hierarchy problem, since we need to set a very small
vacuum expectation value for the Higgs, which will be necessarily fine-tuned.

One possibility would be to consider a bulk Higgs localized towards the IR.
However, we still need some mechanism to localize the Higgs and thus trigger
EWSB. In general, and as we will see in the following chapters, it is not possible
to fix a IR-localized background for a scalar from BCs at the UV brane, unless we
again introduce a fine-tuning. The only way-out would be to use some nonlinear
dynamics on the UV brane or in the bulk, but a scalar potential that satisfies
the required properties and preserves calculability turns out to be very difficult to
construct.

We will return to the question of EWSB using soft walls in Sec. 4.4, when
we will discuss on these difficulties with more detail. For the remaining of this
Thesis, and in order to describe EWSB, we will choose to abandon the soft-wall
models. However, we will insist in using singular metrics in a two-brane setup,
i.e. introducing a brane (a hard wall) before the singularity is reached. In fact, we
will shortly see how some very interesting properties can be obtained by the use
of singular metrics.



Chapter 3

Electroweak Symmetry Breaking
with a Bulk Higgs

Having decided to abandon soft-wall models to describe EWSB, we will now focus
on the construction of warped models with two branes and general metrics that
break electroweak symmetry. In this chapter we will study some of the general-
ities of these models, and we will be focusing on those that have a Higgs boson
propagating in the bulk of the extra dimension. In particular, we will consider a
5D extension of the SM, where the electroweak sector will be propagating in the
bulk of the extra dimension, while the fermions will be located on the UV brane
for simplicity.

When gauge bosons propagate in the 5D bulk their KK excitations can con-
tribute to the Electroweak Precision Observables (EWPO).! In order to construct
realistic models, these contributions will have to be contrasted with all the SM
Electroweak Precision Tests (EWPT) [53]. Since the KK modes decouple when
they are heavy, EWPT will translate into lower bounds on their masses. If these
bounds are much larger than the TeV scale, the theories will suffer of a “little hier-
archy” problem, which means that a certain amount of fine-tuning will be needed
to stabilize the weak masses in the effective theory below the KK scale. Further-
more, when bounds on the KK scale are larger than a few TeV, the models become
phenomenologically unappealing, for they are outside the LHC range.

In general, the precision observable responsible for the stronger constraints on
5D warped models is the T parameter [19,23], as the contributions to it are volume
enhanced. In order to suppress these contributions, it was proposed to enlarge the

'In general, we would also need to consider the bounds coming from the fermionic sector.
However, placing all fermions on the UV brane conveniently removes these constraints.

o7
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gauge symmetry in the bulk by embedding the hypercharge in a extended gauge
group SU(2)r X U(1)p_r, [54]. In this case, KK resonances preserve the custodial
symmetry SU(2)y C SU(2), x SU(2)g after electroweak breaking, which protects
the T parameter from large tree-level corrections. The relevant bounds arise then
from the S parameter and turn out to be O(3) TeV for the RS model. However, an
extra discrete left—right symmetry is needed to keep under control volume enhanced
corrections to the Zbb coupling [55]. Another way of reducing the T' parameter in
the absence of an extra custodial symmetry is introducing large IR brane kinetic
terms [56]. However, since IR brane radiative corrections are expected to be small
this effect relies on unknown UV physics, which prevents calculability in the low
energy effective theory.

In this chapter, which relies in the results first presented in Refs. [2, 3], we
will study EWSB in models with arbitrary metrics and bulk Higgs profiles without
introducing this extra custodial symmetry. Our aim is to prepare the grounds for
constructing models that do not need this custodial symmetry and have O (TeV)
bounds, based on the use of generalized metrics and propagating the Higgs in the
bulk. While here we will only present the generalities, we will construct models
of this kind in Chapter 4. Finally, we will apply the results we obtain to the RS
model, and we will see how a heavy bulk Higgs eases the SM naturalness problem
and lowers the bounds on the masses of KK modes, as shown in Ref. [5].

3.1 A 5D Standard Model

We will consider the SM propagating in a warped 5D space with an arbitrary
metric given by [as in Eq. (2.1)]

ds* = e Wzt da'n,, + dy? (3.1)

and two flat branes localized at y = 0 and y = yi, at the edges of a finite S'/Z,
interval. The dynamics of the gravitational system are described by the action

M3
5= 75/61%\/—93 4S5, (3.2)

where M5 is the 5D Planck scale and Ss is the piece that contains the SM fields
propagating in the bulk [see Eq. (3.5)]. The 4D (reduced) Planck mass Mp, =
2.4-10" GeV is related to M; by

My = M? / =240 gy (3.3)
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The 5D SU(2)r x U(1)y gauge bosons will be defined as Wi, (x,y), Buy(x,v),
where 1 = 1,2,3 and M = 0,1,2,3,5. In the weak basis, these gauge bosons will
be given by A},(x,y), Zy(x,y) and Wi (x,y), corresponding respectively to the
5D photon and Z and W bosons.

Finally, we will introduce a 5D version of the SM Higgs as

1 ix(z,y 0
Hiz.y) = 5 o ( h(y) + &(z,y) ) ’ (34)

where the matrix x(z,y) contains the three 5D SM Goldstone fields x(x,y), see
Eq. (A.35). In this chapter we will consider the Higgs 5D background h(y), as well
as the metric A(y), to be arbitrary functions.

We will consider the 5D action (in units of the 5D Planck scale) for the gauge
fields, the Higgs field H and other possible scalar fields of the theory, generically
denoted as ¢, as

1 1

1.
S5 = [ d'adyy/=g (= Wiy — ;B ~ IDuHP = 5(Dyo)* = V(H.9))

= X [ dedyy=g (<17 256, H)aly — ua). (3.5)

where V(H, ¢) is the 5D scalar potential. \*(¢, H) are the 4D brane potentials
(with o = 0,1 respectively for the UV and IR branes). They are related to the
background solution by

N
Ay = S0 )| 6 =

—_— . 3.6
Y=Y 8¢ Y=Y ( )

From here on we will assume that V(H, ¢) is quadratic in H. EWSB will be
triggered on the IR brane. We thus choose the H-dependent part of the brane
potentials as

A(¢o, H) = Mo|H|? (3.7)
(g1, H) = =M, |H|> +~|H|*, (3.8)

where we denote by ¢, the VEV of ¢ at the branes denoted by a = 0, 1.

3.1.1 The gauge sector

Let us start by considering the gauge sector of our theory. We can construct the
4D effective action out of the 5D action of Eq. (3.5) by making the expansion in
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KK modes

Au(w,y) = 7 Y au(2) £ (y) (3.9)

where A = AY, Z,W=. Each of the functions fg"), that correspond to the n-th KK
mode, satisfies the EOM?

mi, fa+ (e fy) = Mifa=0, (3.10)

where the superscript (n) has been removed to simplify the notation. The functions
fa(y) are normalized as

o,
| iy = (3.10)
and satisfy the Neumann BCs (which are required for having a light mode)
le4<y)|yzo7yl = O . (312)
We have defined the 5D y-dependent gauge boson masses as
g _ 1
My (y) = gh(y)e AW Myly) = M), M) =0 (313)

where g5 and g are the 5D SU(2), and U(1)y couplings respectively, and

LN (3.14)

oy = ——
V93 + g8

In general, Eq. (3.10) will not have analytic solutions. However, we can find
an approximation for the mass of lightest mode of (3.10), that we will denote
by ma = myo, in the cases where the breaking is small, i.e. when the lightest
mode is much lighter than the subsequent KK modes (ma < my»). In the limit
where no breaking occurs, there will be a zero-mass mode with a constant profile.
Expanding around this limit we can write

faly) =1—=0a+dfaly), (3.15)
where
Y N oY
5faly) = [Ty ) [T ay M) -] (3.16)
1
51 = — [ dyofaw). (3.17)
Y1 Jo
1 Y1
mhi, = — [ Mi(y)dy, (3.18)
Y1 Jo

2Some details on the derivation of the fluctuation EOMs can be found in App. A.
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and where mu g is a zeroth order approximation for the zero mode mass ma.
Including the first order deviations from a constant profile we obtain for the light
mode mass the refined expression

iy = mig — [ dy MA) 54~ 57a(0)] (319)
Y1 /0

Following our definitions Eq. (3.13), we obtain for the photon m., = 0, while for
the massive gauge bosons my and my, have to be matched to the physical values.

Only the lightest mass eigenvalue will be significantly affected by the breaking,
so we simplify our notation by defining

My =My, fn(y> = ffrll(y> ) (320)

for the heavier modes (n > 1). In particular, masses and wave functions of the
n > 1 KK excitations of the W and Z bosons as well as photon and gluons coincide,
the splitting being negligible for all purposes in the models we will consider in this
thesis. We can also find an approximation for the profiles of the heavy modes,
expressed in conformal coordinates as

FM(2) =~ 2 [Yo(mnzo) Ji (mnz) — Jo(mnz0)Yi(mnz)] (3.21)
where J, (Y,) are the Bessel functions of the first (second) kind and order a.

On top of the modes from A, (z,y) there will also be pseudoscalar fluctuations
na(z,y) arising from the As — x sector (see App. A and Ref. [43] for details). For
each broken gauge symmetry there is a massive tower of such pseudoscalars. The
EOM and BC of the 5D wavefunctions n4(y) are given by [Eqs. (A.23-A.24)]

/ /
My, na + {Mf (e2AM3n4) } — M3ina =0, (3.22)
Na(Y)ly=0,, =0- (3.23)

In the limit of vanishing EWSB these equations unify with their counterpart for
the Higgs fluctuation [Egs. (3.26-3.27)] to form complex doublets. Hence, the
splitting for finite breaking is expected to be small (i.e. proportional to the mass
of the light Higgs).

3.1.2 The Higgs sector

Let us now consider the Higgs sector. From Eq. (3.4) and the 5D action (3.5) we
can write the EOM for the background h(y) as

o

" _4AI/ R
h"(y) R'(y) o

0, (3.24)
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while the EOMs at the branes read

N

! _
h (ya) - ah B
yi

(3.25)

Yo

For the fluctuations &(x,y), defined in Eq. (3.4), and after proceeding similarly
to the previous section, we obtain that the wavefunctions ¢™(y) satisfy the bulk

EOM and BCs

! !¢l aQV
'y) =44 (y) — Z58) + mieiE(y) = 0, (3.26)
§Ya) _ A"
g(ya) - Oh2 . (327)
The functions &(y) are normalized as
1
/0 e AW (y)dy =y, . (3.28)

With our choice of the boundary potentials, Egs. (3.7-3.8), the UV BCs for the
background and the fluctuations are the same. Hence, since we are considering a
quadratic bulk Higgs potential, for my = 0 the Higgs wave function £(y) (n = 0) is
proportional to h(y). For a small Higgs mass this will still be a good approximation
to the exact wavefunction. This means that the 5D VEV will be carried almost
entirely by the zero mode. Let us therefore simplify the discussion by considering
an effective theory by writing

H(z,y) = Vi k() (3.29)

where we have introduced the UV scale k to account for the correct dimension of
H. Now we can calculate the effective Lagrangian for the mode H(x) to find

h/
Log = —Ze 2400 | D H|? — 1400 [(% — M1> E|H|? + 7k2|7-[|41 , (3.30)
Y1
where h2(y)
_ . [ Y) —24@w)+24()
Z =k dy———e WV v 3.31
o “r2y) 3y

Several things can be learned from the effective Lagrangian of Eq. (3.30). The
warp factors have the same effect as in the usual RS compactification with a Higgs
localized on the IR brane: they red-shift all mass scales in the IR. The quantity Z
is an additional wave function renormalization depending on both the gravitational
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and Higgs backgrounds. In Sec. 3.2 we will see that a sizable Z can reduce the
electroweak precision observables.?

Minimizing the potential in L.g one finds the condition

1 h’(@h))
HY|? = M, — , 3.32
()] M( s (332)
and hence the physical Higgs mass in the EWSB minimum is
2 (v M)
2 —_ - 2 . .

Here the UV and IR scales, k and p, are related by*
p = ke AW (3.34)
Let us now rederive Eq. (3.33) in a different way. The relation &(y) o< h(y)

(exact for my = 0) can be corrected to O(m? ). Making an expansion of the EOM
(3.26) and imposing the normalization (3.28) we obtain the wavefunction

Ely) = \/@%6%‘@1) [1 —m? </0y 62’4% + /0y1 GQA%(Q — 1))] . (3.35)

where ) is a function defined as

J W2y )e AW dy’
)= e T ay

(3.36)

The true value of my (and hence the validity of this expansion) is of course de-
termined by the BCs given in Eq. (3.27). From Eq. (3.35) it follows that

) W) ,  mi
) w0 20
while from Eq. (3.24) and (3.26) we also have
h/(?/l) o 12
W) — Mk (y1), (3.38)
SO Y N A (VN

3In particular, we will see that the T parameter is suppressed by two powers of Z, the S
parameter by just one, while the Y and W are unaffected by Z

4This is a generalization of the RS model, where p = ke~*¥1. Note that the definition of p
we use here is different to the one used in soft-wall models, for Eq. (3.34) would not make sense
due to the lack of an IR brane
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Combining Egs. (3.37-3.39) one recovers Eq. (3.33) for the light Higgs mass, as
predicted from the effective theory. Moreover, notice that the BCs are universal
for all modes and hence Eq. (3.37) can be used to express the BC for the whole
Higgs KK tower in terms of the Higgs mass (my) rather than the information
about the boundary (M, 7).

We are finally interested in knowing the strength of the coupling of the light
Higgs mode to the W and Z bosons and its KK modes, since this will determine
how well perturbative unitarity is maintained. In fact, if the Higgs is light enough,
we expect only small corrections to the SM coupling. Using the definition of the

WWE, coupling,
g
hwwe, = " /O dy e W M (y) f3(9)én(y) , (3.40)

and the wave function (3.35) one can deduce that

hwwe, = Bty |1 — O(miy /miee, miy /mici)] (3.41)

so the coupling of the light to the gauge bosons only differs mildly to the SM
result. The conclusion is then that a light Higgs unitarizes the theory in a similar
way to the SM Higgs.

Achieving a light Higgs

Let us now make a few comments on the amount of fine-tuning required to have
light modes in the Higgs and gauge boson sectors. For this purpose, we will analyze
the effective SM Lagrangian, which can be written as

Loy = — |DuHSM|2 + 1° | Hsp|* = M Hsn " (3.42)

where the SM Higgs field Hgys(x) and the SM parameters p? and A are related to
5D quantities by

Hsy(z) = VZe AWH(z), (3.43)
2 -1 h/(?/l) 2
= (k2) (Ml— h(y1)> 2, (3.44)
7k
A= o (3.45)

and from where the expressions for the Higgs mass (3.33) and the gauge boson
masses (3.18) easily follow from the usual SM relations.
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The required amount of fine-tuning at the tree-level in the 5D parameters is
summarized in Eq. (3.44), where we see that, depending on the value of p and Z,
we eventually have to fine-tune the boundary mass M; with respect to h/(y1)/h(y1)
in order to obtain p ~ 100 GeV. For instance, a no-fine-tuning condition would
imply that the parameter

1 W (y1) my 7

should be of O(1), while a smaller value would imply some amount of fine-tuning®.

Controlling this fine-tuning is required when constructing particular models,
and we will take care of this when presenting our model in Chapter 4. However, we
can already advance some generalities. In fact, when constructing new models we
will be interested in having a sizable Z, as it will reduce the contribution to EWPO
and hence allow for a lower p. Moreover, we see here that the parameter pu, or
equivalently the Higgs mass, is further reduced with respect to p by a factor 1/ VZ,
which in turn reduces the required amount of fine-tuning in [M; — h/(y1)/h(y1)].
The point is that, in general, trying to lower the contributions to EWPO seems
to work in the same direction of reducing the fine-tuning of the Higgs mass, thus
allowing for a lighter Higgs.

3.1.3 The metric fluctuations

To conclude this section, we will now analyze the tensorial and scalar fluctuations of
the metric, which correspond respectively to the graviton and the radion. We have
already analyzed these fluctuations in a soft-wall context (see Sec. 2.2), although
now we will of course need to consider of the existence of two branes.

Recall from Sec. 2.2 that the metric and scalar fluctuations can be parametrized
as

ds® = e 2AW2ECD 4 by (2, y)]datde” + [+ J(z,y)] dy?, (3.47)
oz, y) = dy) + ¢(x,y), (3.48)

and that the the tensor fluctuations satisfy the EOM and BC
!, —AAN,, + e mPhy, =0, b, (ya) =0. (3.49)

The three scalars F, J, ¢ are not independent, and their EOMs are given by (2.42),

°E.g. a value of 0.1 (0.01) would amount to a 10% (1%) fine-tuning, and so on
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recall
F" —2A'F' —4A"F — 2#1?’ + 4A’%/:F = —m?e*F (3.50)
'(y)ely) = F'(y) —2A'(y) F(y) (3.51)
J(y) = 2F (y) . (3.52)

The boundary condition for the scalar at the UV and IR branes is given in Ref. [47]
as
[~ + N+ NF|] =0, (3.53)

Y=Ya
with the boundary potentials A, evaluated on the background. Notice that A (¢,)
is a constant that can be chosen at will without changing the corresponding BC for
¢, which only depends on X, (¢, ). In order to decouple the boundary condition, one
usually takes the limit of large N (¢, ), in which case ¢ is frozen at the boundary
and Eq. (3.53) together with the constraint (3.51) implies (e ?>4F)|,, = 0. To
be more general, we will for the moment not specify the value of \!(¢,), which
remains as a free parameter of the theory.

The mass of the radion

In a slice of pure AdS5 the radion is massless, and no other scalar modes are
present. In the dual theory, the radion is the Goldstone mode of the breaking
of scale invariance in the IR. Adding a stabilizing scalar field corresponds to an
explicit breaking of conformal invariance by some relevant operator, so the radion
becomes a pseudo-Goldstone field and acquires a mass. In most cases studied
in the literature, the deformation of AdS by the scalar field is small, the radion
remains light and its mass can be computed perturbatively [47]. However, when
the deformation of AdS is large (as in the models we will consider later on in this
thesis) one could expect the radion to be heavy. To be prepared, we will now
derive a general approximation of the radion mass in models with general metrics.

Using Eq. (3.51), as well as the bulk EOM (3.52), we can rewrite the BC as®

(m*F + My(e ' F)| =0, (3.54)

Y=Ya
where we have defined the effective brane mass parameter
/!
_Pa
P
6Here we are using the background EOMs and BCs. See Egs. (2.5-2.7) and subsequent
equations for their explicit form.

M, =\ (3.55)
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It will also be convenient to recast the bulk EOM Eq. (3.52) into the form
(A4 e M F)) + (P (A7)~ 2)F = 0. (3.56)

The new system of Eqs. (3.54-3.56) only depends on the background metric A
and the two free parameters M,. Notice that the quantity A” (y) is a measure of
the back reaction and goes to zero in the AdS limit. Therefore, for A”(y) = 0
the expected zero mode F(y) = €24 appears. For a small radion mass mg we can
expand around this mode to obtain the first perturbation

) 2 J"€2A
my = = = : (3.57)
[ AN+ (W AG) T — et (M, A1

Unless M, is fine-tuned to zero, the second term in the denominator can always
be neglected. The third term can however be important and hence the radion
mass will depend on it. Since we are expanding in the dimensionful parameter
m?, the region of validity of this expansion is not so clear. To better judge on its
convergence, one can compute the subleading correction dm? to Eq. (3.57). One
finds

dmg YU (MY oA gn 2

—:—2/06 -/0 e A"y (3.58)

mg
with the function x(y) defined as

Yy 2A Yy AA( A —1
0¢ o € (A")
X(y) = fdyl 24 - féﬂ 64A(A//)—1 — eddn (A/{Ml)—l ’ (359)

The important observation is that, even if A” is large, the correction Eq. (3.58) can
be small if the function x(y) is small. For instance, consider the limit M, — .
Then x(y) is the difference of two functions that monotonically increase from zero
to one. Therefore this function is always smaller than one and, in particular, it
vanishes at y = y; where A”(y) in Eq. (3.58) is expected to be largest.

Whenever dmg/m3 is small we expect the couplings of the radion to be very
well approximated by using the leading order wave function

F(x,y) ~ X Wp(g) . (3.60)

This includes, but is not limited to, the case of very light radion and small back-
reaction.
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3.2 Oblique Electroweak Precision Observables

As advanced in the beginning of this chapter, the construction of models of EWSB
requires the EWPO to be matched with the constraints coming from the experi-
mental EWPT. In fact, the impact of the KK modes on the EWPO will depend
crucially on how strongly the former couple to the Higgs currents. Writing the
relevant piece of the effective Lagrangian as

L= a,(gWpik+gBpjY) (3.61)
we can express the couplings as

koo, WP(y)
S dy—2L =2AY)+2A(y1) 62
o=z [ Wy, falw). (3.62)

where Z was defined in Eq. (3.31). We can readily see how enhanced Z factors will
reduce these couplings, provided that the integrals stay approximately constant.

We would now like to quantify the contributions of the KK modes to the EWPO
with more detail. For this reason, in this section we will derive closed expressions
for the contributions of these models to the EWPO in arbitrary backgrounds with
arbitrary Higgs profiles.” In particular, here we will parametrize the EWPO con-
tributions in terms of the standard four parameters (S, T', Y and W), introduced
in Ref. [60], which are an extension of the Peskin-Takeuchi parameters [61] that
are more adequate for the kind of models considered in this thesis.

It is well known [62] that the deviations to electroweak precision measurements
will be encoded in the momentum dependence of the propagators of the electroweak
gauge bosons. Recall that we are assuming that all the fermions are localized on
the UV brane. In this case, the coupling of the gauge bosons to the fermions are
given by the brane values of the 5D gauge fields. Therefore, need to calculate their
inverse brane-to-brane propagators. The precision observables can be obtained
from these quantities using an holographic method [60], which we will perform
shortly. Equivalently, one could integrate out the KK modes to obtain effective
dimension-six operators involving the fermions and the Higgs. This second method
is particularly useful when considering more general settings, such as models with
bulk fermions. We will thus make use of it in Chap. 5.

"Similar work has been performed in Refs. [43,57-59)]
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3.2.1 Holographic method

We will first use the holographic method to compute EWPO. For that purpose, we
will need to compute the brane-to brane propagator, so let us define the quantity

2 — o 2AW) [a (p2, y)
P(p,y) Fahy) (3.63)

where the holographic profile f4(p?, y) satisfies a similar EOM as the gauge boson
profile (3.10), that is,

(e 4% ) = (M3 + P2 4%, ) (3.64)

where here a prime (') denotes derivation with respect to y. From this it follows
that P(p?,y) satisfies the differential equation and BC

Pt PP = g ik o(y) (3.65)
P(p*,y) =0, (3.66)
where M2( )
Yy
wly) = —= (3.67)
mil,o
and we have introduced .
mio=— [ Mi(y), (3.68)
Y1 Jo

which coincides with the zeroth order approximation for the gauge boson [see
Eq. (3.18)]. The function w(y) is a distribution normalized to y;. For a Higgs
localized at the IR or UV brane, this function becomes a ¢ function supported at
the respective boundary.
We will now solve Eq. (3.65) in a series expansion in powers of p? and mjo
and finally compute the inverse brane-to-brane propagator
1
HA(pQ) = ;P(pzvo) ) (369)

from which the precision observables can be extracted. The expansion should
converge well when the precision observables are small, since the suppression scale
is expected to be at the TeV scale and both the momentum and the mass m 4 are
small compared to that scale.

Solving Eq. (3.65) order by order one finds
P+ P =0, (3.70)
P +2e* PyPy = p* + m} yw, (3.71)
Py + > (P2 +2PP,) = 0. (3.72)
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where the subindex denotes the order of both p? and mio used when doing the
expansion. Enforcing now the boundary condition (3.66) at each order one easily
finds the solution

Py(p*y) =0, (3.73)
Pi(p*,y) = =0 (1 —y) — mAaoy [1 — Q)] | (3.74)
P(p*,y) = / "0 (R — o)+ [1 - Q()]) dy (3.75)

Yy
where Q(y) is defined as in Eq. (3.36), recall

_ R )e Y dy

o) = ey

(3.76)

Q(y) is monotonically increasing from 2(0) = 0 to Q(y;) = 1. In the case of an
IR brane localized Higgs it is actually a step function and in particular it vanishes
identically in the bulk, 2 = 0.

We end up with the simple expression for the inverse brane-to-brane propagator

2
Y1
40 = 7~ g [ (1 L) sy e aa)
1
where the dots denote terms of higher order in p? and miw. This is the quan-
tity from which one can compute all electroweak precision observables related to
effective operators of up to dimension six.

All the precision observables can be very easily calculated by applying the above
IT4’s to various gauge bosons. There are three experimental input parameters
(usually referred to as €53 [63]) that are commonly mapped to the three Peskin-
Takeuchi (S, T, U) parameters [61]. However, in models with a gap between
the electroweak and new physics scales the U parameter is expected to be small
since it corresponds to a dimension-eight operator. On the other hand, there are
dimension six operators such as (9,B,,)? which in some models can have sizable
coefficients and contribute to the ¢;. Therefore, it was suggested in Ref. [60] to
consider an alternative set, defined by the 7', S, Y and W parameters, as a more
adequate basis for models of new physics.

The oblique parameters are defined as
ol = my? {c%,VHZ(O) — HW(O)} ; (3.78)
oS = 4s},chy [I1,(0) — IT,(0)] | (3.79)
2my?Y = st 15 (0) + c?,VHQ(O), , (3.80)
2my W = e 11%(0) + siy 11(0) (3.81)
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where « is the electromagnetic gauge coupling defined at the Z-pole mass. The
4D gauge couplings are defined as g* = ¢2/y; and ¢’* = g2 /y;. The quantities YV’
and W are expected to be relevant whenever the O(p?) in II(p?) terms cannot be
neglected. In theories with a Higgs mode H of mass my < mgg one can relate
T,S,Y,and W to the coefficients of the dimension six operators

HIDHP,  HWLHB,  (0,B.)°,  (D,W.)? (382

in the effective low energy Lagrangian, respectively.

Using Eq. (3.77) we can calculate the coefficients (3.78-3.81), and we obtain

y I k
oT = siymyy /0 1 A1 — Q)2 dy = si,m?% p_z % , (3.83)
Y1 I 1
as = 8sfyehm? [ e (g —y) (1 - Q) dy = 8syclym} P T
cim2 [ Iy 1
Y:WZ/ 24 (g — ) dy = Aom2 22— 385
ur 0 e (y1 —y)" dy = cymy 2 ko, ( )
W=Y, (3.86)
where we have used the identity
Y1 h2 y/ B ,
Zi—ag) = [ dy LW e2aw2am = ) (3.87)
y h?(y1)
and we have defined
Y1
I, =k /0 (g1 — )2 "un (y)e2AW 2401, (3.88)

The dimensionless integrals [, (for n = 0,1,2) are expected to be of the same
order. In particular, one expects I,/p* = O(1/m%), as one can derive these
expressions from integrating out the KK modes, as we will do in Chap. 5.

The dependence of the EWPO on the Z factors can actually be very eas-
ily understood: in Sec. 3.1 we saw that they appear in the low-energy effective
Lagrangian (3.30), so that v/Z could be interpreted as a wave function renormal-
ization for the Higgs. Therefore, the powers of Z in Egs. (3.83-3.86) arise in front
of the operators in (3.82) by canonically normalizing the Higgs field.

Having a look at Egs. (3.83-3.86) we can see that 7' is enhanced by a volume
factor, and therefore we expect it to be the leading observable. S carries no power
of the volume and it is thus the next to leading observable. On the other hand, the
W and Y parameters are suppressed with an additional volume factor compared to
S (two compared to T'). Therefore, for the majority of models the bounds coming
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from 7" and S will be the dominant ones, although the contribution of W and Y
might not be negligible in some cases. The 7" and S parameters are expected to
become of the same order when

kyl I 1 2
—— =8¢y = 6.2. 3.89
7 1, ‘w ( )
Given that the volume is usually ky; ~ O(30—35) (the amount required to generate
a large enough hierarchy), only moderate values of Z are required for this. In the
RS model with a bulk Higgs one expects Z < 0.5.

In order to conclude this section, let us comment on the finiteness of the radia-
tive corrections to the oblique parameters, which we only computed at tree-level.
Since we are not including a gauged custodial symmetry, it is possible to include
in the Lagrangian the term |H'D,H|* which violates custodial symmetry. This
is the first term in (3.82), and contributes to the T parameter. Therefore, in prin-
ciple the T parameter could be UV sensitive and thus not computable. However,
the authors of Ref. [64] found that the loop contributions to this operator (and all
operators of dimension six) are finite when the Higgs propagates in the bulk, and
hence that the oblique parameters are effectively calculable in this kind of models.
Furthermore, the finite radiative corrections are expected to be subdominant when
the coupling of the Higgs to the KK states is suppressed, and in general it will
suffice to consider only the tree-level contribution.

3.3 Application to the Randall-Sundrum model

Let us now apply the results of Sec. 3.2 to a generalization of the RS2 model which
includes a bulk Higgs.® That is, we will consider the model described in Sec. 3.1
with the AdSs metric, described by A(y) = ky.

We will also need to choose a particular form for the Higgs 5D background, so
let us assume an exponential profile given by

h(y) = h(yr)e™ ), (3.90)

where a is a parameter that controls the location of the Higgs field, with larger val-
ues corresponding to locating the Higgs closer to the IR brane. In the holographic

8A similar analysis is performed in Refs. [23,59]
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dual, the quantity a corresponds to the dimension of the Higgs condensate and we
need to demand a 2 2 in order to solve the hierarchy problem (see Sec. 4.2 for a
detailed discussion on that). Having fixed the metric and the Higgs profile, the T,
S, Y and W parameters can be readily computed from Egs. (3.83-3.86), yielding

m2 (a—1)2
The = 52 —2 (kyy) ——2— + ... 91
(07 RS SW p2 ( y1>a<2a_ 1) _'_ 9 (39 )
m2a® —1
aSRS = ZS%A/CIQ/Vp—QZT + ..., (392)
1., m% 1
Yrs = aWpgg = =2y —2 — + ... 3.93
aYprs = aWpgs 4CWp2/<;y1+ ) (3.93)

where the ellipses indicate subleading corrections in the large volume ky; and, in
this case, the parameter p just reads (3.34)

p = ke kvt (3.94)

Note how the T parameter is volume enhanced, that the S parameter is not and
that the Y and W parameters are volume suppressed, as advanced before.

These parameters need to be compared with a SM fit. Assuming that only
the T" and S parameters are relevant, which is expected due to the others being

volume suppressed, for a reference Higgs mass of m?jf = 117 GeV we read from
Ref. [53]
T =0.07£0.08, S=0.03%0.09, (3.95)

with a correlation between T and S of 87%.

In order to translate Egs. (3.91-3.93) into bounds on the KK masses, we need
to know how the mass of the KK modes relates to p. We will consider now the
gauge bosons, described by Eq. (3.10). Solving this equation numerically for the
RS model we find that the mass of the first KK mode is given by

My =~ 2.4p. (3.96)

Now comparing the expressions (3.91-3.93) with the experimental data (3.95) will
yield bounds on the KK masses. These bounds come from the most dominant
T parameter, for it is volume enhanced, and turn out to be quite strong. They are
plotted in Fig. 3.1 (continuous line), where we can see how, for a Higgs localized
on the IR brane (which translates into the a — oo limit) we get a 95% CL bound
mix > 12 TeV.? However, for a bulk Higgs the bounds can be alleviated. In
particular, for a delocalized Higgs with a = 2.1 they are lowered by a factor v/3,

9This case is also studied in Ref. [65]
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Figure 3.1: 95% CL lower bounds on the mass of the first KK mode of the elec-
troweak gauge bosons, as a function of a, for the RS model with A(y,) = 35 and
a reference Higgs mass mTHef = 117 GeV, with and without an extra Custodial
Symmetry (CS). The bounds arise from the experimental bounds on the oblique
parameters. The T parameter dominates in the case without CS while the S pa-
rameter gives the bound in the case with CS (where we set T =0).

which leads to mgx > 7.3 TeV. This bound is still quite large for phenomenological
purposes, but we will shortly see how it can be improved by considering a heavier
Higgs.

Finally, for completeness, let us analyze what happens in presence of the custo-
dial protection [54]. In this case an extra symmetry SU(2)r x U(1)p_ is gauged,
and there is a residual custodial symmetry which protects the T' parameter. Now
the bounds will come from the S parameter (see the dashed line in Fig. 3.1), and
the 95% CL experimental data translate into the restriction mpg > 4.8 TeV for a
localized Higgs and into myxx > 4.2 TeV for a delocalized Higgs with a = 2.1.

3.3.1 A heavy bulk Higgs

Let us now consider increasing the mass of the bulk Higgs boson, following the
results of Ref. [5]. Our motivation is driven by the fact that a heavy Higgs boson
can be used to soften the SM naturalness problem (see e.g. Refs. [66,67]). Recall
that, in the SM, the coupling of the top quark to the Higgs generates a one-loop
shift on the Higgs mass which behaves as Am?% ~ (3/47?)A?, which translates into
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a sensitivity to the cutoff
3 A?

:—2 5 -
A2 myy

Op (3.97)
Asking for naturalness in the theory, i.e. 0y ~ 1, requires A ~ 3.6 my, which in
turn implies for a light Higgs that the UV physics should be around the corner
at LHC (e.g. for my ~ 115 GeV, A ~ 400 GeV) while for a heavy Higgs the UV
physics can be at much higher scales (e.g. for my ~ 600 GeV, A ~ 2.2 TeV). In
view of the negative results on new physics searches at LEP2, and the increasing
bounds imposed by ongoing LHC searches, it is thus interesting to consider models
with heavy Higgs masses to alleviate this tension (also known as the little hierarchy
problem). The EWPT, when applied to the SM, point towards to a light Higgs.
However, we will now see that the RS model can easily accommodate heavy Higgs
bosons without incurring in contradiction with the experimental results.

Moreover, the construction of the 5D SM model also favors heavy Higgs bosons.
In fact, recall that the mass of the Higgs boson in the bulk is given by Eq. (3.33),
which in the RS model establishes the relation

2 M
H o (71 - a) : (3.98)

where M; is the IR-brane mass term for the Higgs. We can see that a certain
fine-tuning is required to keep mpy small, and thus larger Higgs masses will be
favored.

Let us now analyze the bounds on mg for different Higgs boson masses. We
will need to know the dependence of the bounds on 7" and S with respect to the
Higgs mass. The one-loop contribution to these parameters of a SM Higgs boson
with a mass my, normalized to its values at the reference Higgs mass mpy,., is
given by

1
AS = o |gs(mis/m) = gs(miy,./m3)] (3.99)
where
1
g5(u) = [ dra(5e —3)log(l —x +ur), (3.100)
0
and [68]
-3
A= Tonsa, lgr(m/m3) = gr(miy,./m3))] . (3.101)
where
log ¢jj, — logu log u

gr(u) =y p— et (3.102)
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Figure 3.2: 95% CL regions in the (S,T) plane for the RS model with different
values of the Higgs mass. We show two rays corresponding to a IR localized (a =
o0) or a delocalized bulk Higgs (with a = 2.1). Dot spacing is 1 TeV. Increasing
values of my correspond to incoming fluxes.

In the limit where the Higgs masses are much larger than m  one recovers the
approximate behavior in Ref. [61]. Now we can translate the experimental bounds
of Eq. (3.95), evaluated at my = 117 GeV, to different Higgs masses.

In Fig. 3.2 we show the 95% CL ellipses in the (S,T") plane for different values
of the Higgs mass my = 115, 450, 800 GeV. The solid lines are obtained from the
expressions for S and T' [Egs. (3.91-3.92)], and the dots correspond to different
values of mgk and the dot spacing is 1 TeV. The values of mgg increase as the
dots get closer to the origin. In this way the lower and (possibly) upper bounds
on mgyx can be read from the plot for the considered values of my. Note also
how considering a custodial protection mechanism (which sets 7= 0) becomes in
conflict with the experimental data when considering a heavier Higgs.

In Fig. 3.3 we show the 95% CL allowed regions in the (a,mgx) plane and
different values of the Higgs mass. We can see from the plot how RS favors a
heavy Higgs delocalized in the bulk. In particular, the 95% CL window for a
localized Higgs field with e.g. my = 450 GeV is 8.0 TeV < myx < 11.6 TeV, while
for a Higgs with a = 2.1 the window is 4.6 TeV < mgx < 6.6 TeV.
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Figure 3.3: 95% CL regions in the (a,mix) plane for the RS model with a bulk
Higgs and different values of the Higgs mass.

We also need to set bounds on the Higgs mass from theoretical considerations.
As stated in the beginning of this section, we already know that solving the natu-
ralness problem favors a heavy Higgs. However, a too massive Higgs can become
in conflict with the bounds from perturbativity. In order to quantify this, we will
follow the criterion of Ref. [69] on the beta-function of the Higgs quartic coupling,
Bx. The condition is that the two-loop corrections to S are less than 50% of the
one-loop correction ( /(\2) = 0.55,(\1)).

In Fig. 3.4 we show the 95% CL regions in the (my, mgx) plane along with the
perturbativity bound (solid line, the region on its right is excluded). We also show
different contours for the sensitivity § (see Eq. (3.97)). We can see that having
smaller values of §, without being in contradiction with the perturbativity bound,
favors a delocalized Higgs. In particular, for a localized Higgs boson (a = oo) the
95% CL lower bound on the mass of gauge KK modes imposes myx > 7.8 TeV,
which corresponds to my < 510 GeV, while the sensitivity satisfies dy > 20
(< 5% fine-tuning). For a delocalized bulk Higgs, on the other hand, the bound is
mgr > 4.4 TeV with my < 560 GeV, and the sensitivity can be as low as 0y > 5
(< 20% fine-tuning).

The conclusion is that the RS model favors a heavy bulk Higgs, the further
away from the IR brane the better, in order to satisfy the experimental and pertur-
bativity bounds and solve the SM naturalness problem. However, the bounds on
KK masses are still of order mgx = 4 TeV, which is low enough to be within the
LHC range and solve the little hierarchy problem. In the following chapter we are
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Figure 3.4: 95% CL regions in the (mpy, mix) plane for RS with a localized (a =
00 ) and bulk (a = 2.1) Higgs field. Dashed lines correspond to sensitivity i = 100
(1% fine-tuning), 6y = 20 (5%), 6y = 10 (10%) and oy =5 (20%), for A ~ mg .
The solid line is the perturbativity bound; the region to its right is excluded.

going to see how we can construct a new class of models, based in a deformation
of the AdS metric, that lower these bounds while preserving naturalness.



Chapter 4

A Non-Custodial Warped Model

In the previous chapter, we have seen how propagating a heavy Higgs in the bulk
of the RS model is enough to lower the bounds from EWPT on the masses of new
non-SM excitations, without requiring the introduction of an additional gauge
symmetry to protect the custodial symmetry. However, the improvement of the
bounds is only large enough when the Higgs is heavy, and even in this case the
bounds are not extraordinarily low (i.e. for a Higgs of 560 GeV, very close to the
perturbativity bound, we have mg > 4.6 TeV). Therefore, it is certainly fair to
study possible alternatives that could allow us to get better than that.

In this chapter, based on the results published in Refs. [2-5], we will present
a model that consists in replacing the RS metric by a asymptotically AdS metric,
generated by a bulk scalar field as in the Goldberger-Wise mechanism, along with
considering a Higgs that propagates in the bulk. The metric will be inspired by
the soft-wall model described in Sec. 2.4, and therefore it will feature a singularity
at a certain proper distance. However, we will consider a model with two branes,
placing the singularity outside the physical interval, but nearby the IR brane so
that the deformation it produces can have sizable effects.

The choice of the model has its roots in some previous results found in the
literature. First, it was shown in Ref. [23] that propagating the Higgs in the
bulk of the RS model without custodial symmetry leads to a reduction of the
S and T parameters (and therefore of the EWPT bounds). This amounts to a
sizable reduction of ~ 46% in the bounds of new KK states, although the resulting
bound results in a the bound mgx 2 7 TeV, too large to present an alternative
to custodial symmetry. Second, in Ref. [43] it was shown how using soft-wall
metrics in presence of the custodial symmetry leads to an extra suppression of
the S parameter with respect to the RS case. There were, however, negative
results in the literature regarding the reduction of the 7" parameter in models

79
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with generalized metrics when the Higgs is localized on the IR brane, as shown in

Refs. [57,70].

We will shortly see how with our model, based on a generalized metric and
a bulk Higgs, we can reduce both the 7" and S parameters with respect to RS,
to the extent that no custodial symmetry is necessary to have moderate bounds
on the new KK states. This will allow us to construct a pure 5D SM without
the presence of custodial symmetry (as presented in Chap. 3). In fact, we will
show how this reduction of the bounds can be traced back to a large wavefunction
renormalization for a light Higgs mode. We will finally find explicit values for
these bounds and consider the cases of a light and heavy Higgs.

4.1 Construction of the model

We will consider a 5D Standard Model, as introduced in Sec. 3.1 with a metric
given by A(y) and delimited by two branes. The SU(2), x U(1)y gauge bosons,
the Higgs field H and an additional scalar ¢ propagate in the bulk of the extra
dimension, and the 5D action is given by Eq. (3.5).

The bulk scalar ¢ will source our non-trivial metric, and will also act as a
Goldberger-Wise field stabilizing the distance between the two branes.! In order
to find solutions to the gravitational background, we will follow the superpotential
method described in Sec. 2.1, and we will write our scalar potential similarly to
Eq. (2.11) as

Vi) = 5 (P5) = e s o (@)

Using this ansatz the background EOM can be written as simple first-order differ-
ential equations

Aly) = S (6W) . ) =W (), (1.2

whose solutions will enter the usual second order linear equation for the 5D VEV
h(y) [see Egs. (3.4) and (3.24)]

h'(y) — 4A (y)W' (y) — M?[¢(y)] h(y) = 0. (4.3)

The boundary conditions for A(y), ¢(y) and h(y) depend on the explicit form of
the boundary potentials A*(¢, h) [see Eqgs. (3.6) and (3.25)]. In our case the brane

'We will neglect the backreaction of the Higgs field and treat it as an external scalar, subject
to the gravitational and ¢ scalar background. This working hypothesis will be justified later for
our particular model.
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potentials are described by Egs. (3.7-3.8) and the BCs for h(y) read

Wyo) _ 4,y

h(yo) S <4.4)
R'(y1) o 2

) My — vh*(y1) (4.5)

4.1.1 The scalar-gravity sector

Our model will be inspired by the soft-wall model described in Sec. 2.4. We will
therefore consider the superpotential [Eq. (2.77)]

Wy(9) = 6k(1 + be”®V0) (4.6)

where v and b are arbitrary parameters. This superpotential leads to the back-
ground configuration [Egs. (2.78-2.79)]

Aly) = ky — %log <1 — 5) , (4.7)
b(y) = == log[v*k(y: — v)] (4.8)

The metric presents a singularity at y = y,, although it will be hidden by a brane
located at a certain position y; < ys. Let us now discuss on the stabilization of
these distances.

We assume that the brane dynamics A§ fixes the values of the field ¢ = (¢o, ¢1)
on the UV and IR branes respectively. The inter-brane distance y;, as well as the
location of the singularity at y; = y; + A and the warp factor A(y,), are related
to the values of the field ¢, at the branes by the following simple expressions:

1 1
ky, = 3 [e’”‘bo/\/é — e”’d’l/‘/ﬂ . kA= ﬁe’”‘bl/\/é ,
1
Alyr) = kyi + ;(¢1 — ¢0)/V6 | (4.9)

which shows that the required large hierarchy can naturally be fixed with values
of the fields ¢, = ¢o, ¢o < 0 and O(1) in absolute value.? Note that due to its
exponential dependence on ¢y, A can be small or, in other words, the IR brane
can naturally be located very close to the singularity.

2Note that the soft-wall configuration described in Sec. 2.4 corresponds to the limit ¢; >>
1, y1 — ys.
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Let us now have a look at the 5D curvature. The curvature radius L(y), related
to the 5D curvature R(y) by

—20
L(y) = m, (4.10)
is given in our case by [see Eq. (2.16)]
2]{3 _
kL(y) = k) . (4.11)

\/1 =202 /5 + 202k (ys — y) + VK2 (ys — y)?

Near the UV brane we have kLy ~ 1,> and kL(y) remains close to unity in most
of the interbrane distance. Near the IR brane L can get small due to the spurious
singularity at y = ys. The behavior of L(y) in the IR is shown in Fig. 4.1. L(y)
is a monotonically decreasing function when v < \/% When v > \/% the
curvature radius possesses a minimum (correspondingly the curvature presents a
maximum) and eventually the curvature changes sign before the singularity. The
quantity kL(y), or better its maximum value, is a measure of the deviation of our
model from pure RS. Not surprisingly, the deviation from RS is larger as v and A
increase.

4.1.2 The Higgs sector

For the Higgs bulk mass term we will choose
9 2
M2(¢) = ak [ak - §W(¢)] . (4.12)

where a is an arbitrary real parameter. In the next section we will see that a is
constrained by the hierarchy problem, restricting us to values a > 2. The choice
Eq. (4.12) ensures that one linearly independent solution to Eq. (4.3) is given by
a simple exponential. Certainly other choices are possible, which lead to similar
results. We will comment on some of them in Sec. 4.2.

Using the superpotential formalism to define the ¢ potential amounts to some
fine-tuning among the different coefficients of the bulk potential, unless they are
protected by some underlying 5D supergravity [45]. The quadratic Higgs term,
which is generated by (4.1), can be written as k2[a(a — 4) — 4abe®/VS]|H|? and

the coefficients of the two operators |H|? and e”¢/V8|H|? can be considered as

3This shows that k is approximately the inverse AdS curvature radius.
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Figure 4.1: Contour levels of kL(y) as a function of v and k(ys — y). For v >

\/5/2, L(y) presents a minimum close to the singularity. Since we demand L(y)
to be a monotonic function we will constrain ourselves outside the region after this
minimum is reached (dotted lines).

independent parameters.®* However, since the parameter b can be traded by a
global shift in the value of the ¢ field, or in particular by a shift in its value at the
UV brane ¢, for simplicity we will fix its value to b = 1 hereafter.

Having fixed the background we can write the general solution to Eqgs. (4.3-4.5)

and the BCs as
1+ (% —~ a) /y e~ Ha=Dky <1 —~ 2) ] : (4.13)
Ys

where hy = h(0) and M is the UV brane mass term in (4.4).

h(y) = hoe™

As we saw in Chap. 3, a reduction of the S and T' parameters can occur provided
that the Z factors are sizable. Recall from Eq. (3.31) that the Z factor is defined

40f course the coefficients of the operators not involving the Higgs field remain fine-tuned as
we are using the superpotential formalism to fix them.
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as
Z =k / " gy W) —2ag+2a0n) (4.14)

0 h?(y1)
From this expression follows that, in order to obtain a large Z, we would like to
keep the exponential solution (which corresponds to the non-singular solution in
the SW limit). In the next section we will see that this imposes some restrictions

on the parameter space which will have a simple holographic interpretation.

From Eq. (4.14), and considering a Higgs profile of the form h(y) ~ e®™¥, we
can evaluate the Z factors in terms of the parameters (a, v, A), while we will fix
the total warp factor as A(y;) = 35. To see the dependence of Z on the various
parameters we plot in Fig. 4.2 the contour levels of Z in the planes (A,r) and

(a,v).

4.2 'The Hierarchy Problem

As we have found at the end of the last section, the Z factors can become large for
an exponential Higgs profile if the parameter a is “small”. From a holographic dual
point of view this can be translated to a small dimension for the Higgs condensate
in the IR. This raises the question to which extent this reintroduces the hierarchy
problem that we claimed to have solved by Higgs compositeness.

In the context of RS models this question has been discussed in Ref. [71],
whose main lines we follow essentially here. In the RS case, A(y) = ky, the Higgs
background solution to Eqgs. (4.3-4.5) is given by

. Mo/k?+a—4 aky Mo/k’—a, (4—a)ky
h<y)_h°< 2a—2) 2(a—2) ©

The observation in RS is that for a > 2 no fine-tuning is necessary in order to
keep only the first term, since near the IR brane (where EWSB occurs) the second
term is always irrelevant. On the contrary, for a < 2, the second term would be
dominating and one needs to fine-tune My/k = a in order to maintain the solution
h(y) ~ e®¥. This fact has a simple holographic interpretation: since dim(Op) = a
the hierarchy problem is solved by compositeness of the Higgs for a > 2, but not
for a < 2 (see Ref. [71] for a more detailed discussion).

(4.15)

In our case the situation is similar. Again for a < 2 the solution h(y) ~ ¥

will be fine-tuned due to the exponential enhancement in the integrand. However,
now one has to be careful even for a > 2. Let us rewrite the solution in Eq. (4.13)
as

h(y) = hoe™ |1 + (Mo/k — a) [F(y) — F(0)] |, (4.16)
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Figure 4.2: Contour levels of Z for A(yy) = 35: (a) as a function of v and kA for
a=2.2; and (b) as a function of v and a for kA = 1.
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where

e e 4
F(y) = e @ Dkvsy [ 9(q — 2)ky,] " T |1~ —5»—2(a = 2)k(y, - y>] '

(4.17)
Note that F(y) is defined as a complex function but its imaginary part cancels in

(4.16) leading to a real solution. Omne should view F(y) as the generalization of
Frs(y) = e 2@ 2k in the RS case.

Similarly to the AdS case, in order to keep the exponential solution without
the need of a fine-tuning we must require the function F(y) to be small. Since F
is a monotonically increasing function of y it will be enough to inspect F'(y;). In
order to quantify this let us define

= |F(y1), (4.18)

which will be a measure of the fine-tuning required in (My/k — a) in order to keep
the exponential solution. In particular the absence of fine-tuning requires roughly
d S O(1). § is a decreasing function of a, ¥ and A, so we need to impose a lower
bound on a = ay(v, A) below which one would need to fine-tune My/k ~ a in order
to keep the simple exponential solution that improves the EWPT. The behavior
of § as a function of ¢ and v with kA =1 is plotted in Fig. 4.3.

We can see that the lower bound on a lies (depending on the value of v) a
little above a = 2, but not by much in the shown parameter range. One can then
reinterpret this as stating that for a given a > 2 there will be a curve A(v), as it
is shown in Fig. 4.3, below which keeping the exponential solution amounts to a
fine-tuning. In particular it will be inconsistent to blindly take the limit A — 0.

There is here again a simple holographic interpretation.” The dimension of the
Higgs condensate corresponding to the solution h(y) ~ e®¥ depends on y. Since
the renormalization group (RG) scale is given by the warp factor we have

B a

di — — . 4.1
im(Op) WA 1+ oty (4.19)

Starting in the UV with some dim(QOp) > 2, as required to avoid the fine-tuning
and solve the hierarchy problem by a composite Higgs, the Higgs mass term |Op|?
will have dimension dim(|Op|?) = 2dim(|Oy|) > 4,° and will be an irrelevant op-
erator becoming more and more suppressed along the RG flow. However, following
the RG flow further, the theory departs from the conformal fixed point, dim(Op)

°See Refs. [72] for related ideas.
6We use the fact that in the large N, limit operator products become trivial.
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decreases and there will be a critical RG scale p. at which dim(Op) < 2. As a
consequence, |Og|? will become a relevant operator and will start increasing again.

As long as this happens far enough, near the IR, there is no concern as, at
the scale p., the mass term is really small and there is simply not enough RG
time for it to become large enough before EWSB occurs. On the other hand,
a low dimension of the condensate is essential to generate sizable wavefunction
renormalizations for the light Higgs mode that will eventually allow us to suppress
the S and T" parameters.

4.3 Bounds from precision observables

We have seen how we can obtain small values of Z for different values of our model
parameters. This reduction of Z also reduces the coupling of the KK modes to
the Higgs currents. In Fig. 4.4 we plot the coupling of the first KK mode of the
gauge boson to the Higgs current, ay, as defined in Eq. (3.62), as a function of a
and for different values of v (for A = 1). We can see how the coupling decreases
as a combined effect of having a small a (less localized Higgs field) and small v
(departure from AdS in the IR. This, we expect, will reduce the bounds from
EWPT on the masses of the KK states, as we are now going to check.

We will now compute the explicit bounds on the lightest new states that appear
in our model, namely the lightest (n = 1) KK modes corresponding to the fields
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Figure 4.5: Contour levels of y; (v, A), having fized A(y,) = 35.

that propagate in the bulk. We will be applying the results of Chap. 3 and, as we
did there,for simplicity we will restrict ourselves to the case in which the fermions
are localized on the UV brane. Recall that the strongest constraints on the masses
of new KK modes in the theory will be given by the dominant S and T parameters,
which can be computed from Egs. (3.83-3.86).

It will be convenient to fix the Planck-weak hierarchy by setting the warp factor
A(y;) = 35, which imposes a functional relation y; = y;(A, v) so that y; increases
with A and v. This functional relation is shown in Fig. 4.5. We can see that y;
gets closer to 35 as v or A increase, as we are approaching the RS limit.

Moreover, in order to account for the model to solve the hierarchy problem, as
discussed in Sec. 4.2, we will trade a for the fine-tuning parameter ¢§, defined in
Eq. (4.18) and shown in Fig. 4.3 (we are choosing the minimum value a = ao(v, A)).
The Higgs solution is free of fine-tuning when § < O(1), and we will therefore use
in the following plots the safe value 6 = 0.1. Increasing ¢ would allow for smaller
values of a and hence lower bounds. However, an increase from 6 = 0.1 to 6 =1
only amounts to decreasing the bounds in < 3% (see Ref. [3]).

We are therefore left with three parameters: v, A and 6. We can now compute
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Figure 4.6: 95% C.L. bounds on the mass of the first KK mode of the gauge boson
as a function of v and for different values of A, for A(y;) = 35 and § = 0.1. In this
plot we are taking into account only the contribution from S and T parameters.

the contribution of the KK of our model to the T and S parameters [Eqs. (3.83—
3.84)] and compare them with the experimental data [53] in order to set a bound
on p. We will for now consider a reference Higgs mass of my = 115 GeV, although
in the end of this chapter we will study different values for it. We will also assume
that the contribution to Y and W is negligible, which will be true in most of the
parameter space. We will discuss on the validity of this approximation later on,
in Sec. 4.3.2.

Once we have found a bound on p, we need to compute the relation between the
masses of the different KK modes and p. We will first consider the gauge bosons,
which are described by Eq. (3.10). This equation needs to be solved numerically
for each value of v and A. The ratio mg g /p is a monotonically decreasing function
of both v and A; an approximate fit for this relation when kA =1 and v 2 0.8 is
provided by

(4.20)

which, of course, coincides with the RS result when v — oo.

We show in Fig. 4.6 the 95% CL bounds for the first KK mode of the gauge
bosons, as a function of v and A, and for 6 = 0.1. We can see that lowering both
v or A results in lower bounds on the mass of the KK masses. In fact, it seems
that we can easily reach bounds of O(TeV) or even lower, although we first need
to consider other physical observables that might constrain our parameter range,
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Figure 4.7: 95% C.L. bounds on the mass of the first KK mode of the different
fields in the bulk as a function of v and for A =1, 6 = 0.1 and A(y;) = 35. The
curve for the Higgs includes the pseudoscalar field, the bound of which is around
1% larger for small values of v.

as we will do in Sec. 4.3.2.

Finally, in Fig. 4.7 we also present the bounds on KK masses for the different
fields living in the bulk, and compare them with the bounds on gauge boson KK
modes. In particular, we present the first heavy KK mode mass of the physical
Higgs [described by Eq. (3.26)] and pseudoscalar [Eq. (3.22)], for the graviton
[Eq. (3.49)] and for the radion [Eq. (3.50)]. The fact that the Higgs and the
pseudoscalar are almost degenerate follows from the fact that their EOMs unify
in the limit of vanishing EWSB; indeed we can only see a slight difference in their
masses when the p scale becomes low enough compared to the EWSB scale.

The fact that lowering v or A leads to lower bounds on mgg is an expected
result, since a smaller v or A corresponds to a larger Z, as can be read from
Fig. 4.2. A larger Z factor does in fact trigger:

e A decreased coupling of the KK modes to the Higgs currents «,, which
in turns leads to a decreasing dependence of S and T with respect to p
[Egs. (3.83-3.84)].

e A smaller angle defined by ¢ = tan(7'/S) and, consequently, using the large
correlation between the S and T parameters, a path which approaches the
major axis of the 95% CL ellipse allowing for yet lower bounds on myg.
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These two effects are exhibited in Fig. 4.8, where we show, in the (7,S) plane,
the different paths corresponding to different values of v (for A = 1) and the
corresponding values of 7" and S for different values of myx. These are plotted
along with the 95% CL regions for different values of the Higgs mass (up to now
we are considering my = 115 GeV'). For v = oo (the RS limit) the rays go mainly
along the T axis, while for smaller values of v the rays get a longer path before
getting of the ellipse.

4.3.1 On the Higgs mass

Let us now analyze two things regarding the Higgs mass. We will first study how
the bounds behave when increasing the Higgs mass, and later we will analyze the
fine-tuning required to have a light Higgs. As we will shortly see, a larger Higgs
mass yields lower bounds on mg . On the other hand, there is no need to increase
my in our model, since the fine-tuning needed to achieve a light Higgs will turn
out to be smaller than in RS.
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Figure 4.9: 95% CL regions in the (my, mg) plane for model v = 0.7, 0.6, 0.5
and kA = 1, with A(y1) = 35 and 0 = 0.1. The dashed lines correspond to
sensitivity g = 1 (no fine-tuning), oy =5 (20%) and 6y = 10 (10%). The solid
line corresponds to the perturbativity bound; the region to its right is excluded.

A heavy bulk Higgs

Let us now consider the case of a heavy bulk Higgs, as we did in Sec. 3.3.1 for RS.
In Fig. 4.8 we have already plotted the 95% CL ellipses for different Higgs masses,
using the relations in Egs. (3.99-3.102).

In fact, a quick look at Fig. 4.8 reveals how considering larger Higgs masses
allows for lower bounds on mg g, although at the same time it might impose higher
bounds. Moreover, a small value of v can be excluded for certain values of my, as
is the case of v = 0.6 for my = 800 GeV that can be clearly seen in the figure.

in Fig. 4.9 we show the 95% CL allowed regions in the (mgy, mgx) plane for
various values of the parameters. The solid line is the perturbativity bound, as
defined in Sec. 3.3.1, and the region on its right is excluded. The dashed lines
correspond to different values of the Higgs mass sensivity ¢y, defined in Eq. (3.97).

From Figs. 4.8-4.9 we see that, in general, a lower value of v implies lowering
the range of allowed values of myg. For example, for my = 450 GeV the 95%
CL window for mgg is 2.1 TeV < mygx < 2.9 TeV when v = 0.6, while it becomes
1.4TeV < migg < 1.7TeV when v = 0.7. Moreover, given a value of v implies an
upper bound on the Higgs mass; the overall bound is in fact my < 750 GeV. This
shows that, for our model, a heavy Higgs field can be consistent with KK-modes
accessible at LHC energies, and the measurement of the Higgs mass at LHC should
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Figure 4.10: (Mi/k — a) for a light Higgs mode with a mass of 120 GeV, as a
function of v and for A = 1, using the bounds on p that can be read from Fig. 4.6,
where 6 = 0.1 and A(y1) = 35. This quantity can be understood as the amount of
fine-tuning required to have a Higgs with this mass.

constrain the model parameters.

Fine-tuning in the Higgs sector

As we saw in Sec. 3.1.2, having a light Higgs requires some amount of fine-tuning.
Recall that the zero-mode of the Higgs field has a mass given by Eq. (3.33), that
is,

2
i, = — (My/k = a) p*, (4.21)

where M; is IR the brane Higgs mass term. The fine-tuning required to have a
light Higgs can be quantified by studying the quantity M;/k — a, so that when it
is of O(1) there is no fine-tuning, for O(0.1) there is a 10% fine-tuning, and so on
and so forth. It is clear that having a heavy Higgs does not require a fine-tuning,
although we have seen that a heavy Higgs constrains our model. However, in our
model there are two separate effects which favor a light Higgs, as can be seen from
Eq. (4.21): the suppression in the required value of p and the enhancement in the
value of Z.

We can quantify this fine-tuning by plotting the prefactor M; /k—a as a function
of v (for A = 1), as shown in Fig. 4.10 for a Higgs with mass my = 115 GeV. There
we can see that for values of v < 0.7 (where we find bounds mgx = 1 — 2 TeV)
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there is no fine-tuning, while in the RS case the fine-tuning would amount to
more than 0.1%. Therefore, our model removes the fine-tuning problem related to
obtaining a light Higgs.

4.3.2 Constraining the parameter space

At this point it is obvious that we would like to choose values for v and A as
small as possible in order to get the lowest possible bounds on mgyx. However,
the question of which are the minimum value of these parameters that we can take
arises. In fact, there are some factors that we need to take into account, let us
now study them.

The W and Y parameters

To begin with, in our analysis we have assumed that the contribution of the new
states to the W and Y parameters is negligible. However, one should be concerned
if they might become too large in part of the parameter space. Recall that the
expressions for W and Y are given in Egs. (3.86-3.85). These parameters are
volume suppressed but, in fact, the region were the lowest bounds are obtained also
corresponds to where the volume ky; is relatively small (see Fig. 4.5 and Fig. 4.6,
or also Tab. 4.2). Also, they correspond to the four-fermion effective operators
generated by the exchange of KK-gauge bosons, so it is natural to question whether
they remain small enough in the range of small v and A.

In Fig. 4.11 we plot the values of W =Y as a function of v for different values
of A. We should ask these values to be well below the experimental bounds. A
fit to all observables for a light Higgs yielded [60] W =Y < 1072 at 95% CL.
Therefore, we can see that in most of the shown parameter space the values of W
are well below this bound, although they can become in conflict with it when v
or A becomes too small. For example, when kA = 0.2 we hit the experimental
bound for v < 0.65, although we could in principle reach smaller values of v for a
smaller A.

Gravitational scales

We also need to check whether the perturbativity in the 5D gravity theory is
kept under control. In fact, it will be the case as long as M5L(y) 2 1 in all the
space, where M5 is the 5D Planck scale, which can be be deduced from Eq. (3.3).
Actually, it turns out that Ms # k, so we also have to check that the hierarchy
between M; and k£ does not grow too large.
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Figure 4.11: Plot of the observables W =Y as a function of v and for different
values of A, using the bounds on p that can be read from Fig. 4.0, where A(y;) = 35
and § = 0.1.

Let us now consider this point having a look on the involved scales in our
theory. For every set of variables (v, A, a), the EWPO fix a lower bound on the
parameter p. On the other hand, since we have fixed the total warp factor by
A(y;) = 35, it turns out that, for every value of p, k is fixed as k = e¥p. 7
Considering the minimal lower bounds on p provided by the EWPT we can obtain
the corresponding values of M5 and k. We plot in Fig. 4.12 these two scales (along
with the corresponding values of p, see right axis) as a function of v for A = 1.
In the top axis of the figure we show the minimum value of kL(y) (kL) that
corresponds to each value of v (see Fig. 4.1).8

From Fig. 4.12 we can see that, when the minimum curvature radius kL, de-
creases by a factor of ~ 5, p decreases by a factor ~ 20 while M5 only decreases by
a factor ~ 2. The parameter Ms L, = (Ms/k)k Ly, which controls perturbativ-
ity in the 5D gravity theory, thus increases by a factor ~ 2. This counter-intuitive
result comes from the fact that the suppression in the curvature radius is overcom-
pensated by the suppression in the value of k. This produces a small hierarchy
(one order of magnitude) between k and M;. Lowering kL; further would translate
into a larger hierarchy which in turn would translate into a subsequent amount
of fine-tuning. In order to be more explicit about this, in Tab. 4.1 we show the

"Notice that this procedure is purely operational. We could as well have fixed & (or even
the volume ky;) and have considered different warp factors for every case. Physics should not
depend on the chosen procedure.

8In parameter range shown in Fig. 4.12 the minimum value of kL(y) satisfies kLuyin = kL(y1)
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Figure 4.12: M5 and k as a function of v and for A = 1, using the bounds on p
that can be read from Fig. 4.6, where 6 = 0.1 and A(y,) = 35. On the right axis
we show the value of p in TeV. On the top axis the value of kL, corresponding
to v can be read.

kA v

2.0 | >0.40
1.0 | > 0.49
0.5 | > 0.64
0.2 | >0.80

Table 4.1: Minimum values of v, for different values of A, such that the ratio
between the 5D Planck scale and k satisfies Ms/k < 10.
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requirements on v for different values of A such that M5/k < 10. The bounds here
are more stringent than the previous requirements from the W and Y parameters,
and therefore they provide a rough estimate of the minimum values of v and A
that can be allowed for.

One should keep in mind that the scale k is really a free parameter of the
theory that only comes out here as a prediction because we have fixed the volume
by the condition A(y;) = 35 throughout our analysis. Slightly increasing the
volume does not change S and 7', and we could have used this freedom to fix k
such that e.g. M5/k ~ 5 and hence MsL;, ~ 1. Let us also mention that the
volume is generally reduced in our model since the deformation of AdS is positive,
A(y1) > kyr (see e.g. Tab. 4.2). However, it is not the main effect in improving 7'
and moreover the hierarchy is fixed by A(y;), and not y;.°

To conclude this section, in Tab. 4.2 we provide for reference some benchmark
points for our model, where we display the explicit parameters v, A, a and ky;
along with the minimum curvature radius kL;,, the product MsL,,;,, Z and the
bounds on p and the different kinds of fields living in the bulk.

KK KK KK
4 mg.b. my mgrav Mrad

TeV | TeV | TeV | TeV | TeV
048 1 1.0 32| 22 ||02| 20 | 6.6 ||0.07210.821]0.92] 1.3 | 0.28
055113128 25 103 1.1 2.1 032 | 24 | 29 | 40 |0.84
06416 25| 28 |04 086 | 1.2 0.70 | 40 | 49 | 6.5 | 1.3
073 1.7124| 30 | 051 0.78 | 0.86 1.1 52 | 6.6 | 84 | 1.6
oo | oo |21 35 1 1079 ]047 ] 3.1 7.5 12 12 0

v | kA a | kyy |kLn|MsLy| Z

Table 4.2: Values of different relevant quantities for different points, sorted by their
value of Lyin (abbreviated as Ly,) , for § = 0.1 and A(y,) = 35. The stabilization
mechanism in our model disappears when we take the RS limit, leading to vanishing
radion mass as expected.

90f course by relaxing the hierarchy requirement one can easily lower the bounds from EWPT.
The simplest examples are the so-called “little RS models” [73] which solve the hierarchy problem
up to scales much below the Planck mass. For instance in these models the requirement 7" ~ S
for an IR localized Higgs (a bulk Higgs with a ~ 2) provides the volume condition ky; ~ 4¢3,
(ky1 ~ 9¢3,), which translates into mass stabilization up to scales of ~ 30 TeV (~ 1200 TeV).



4.4. The soft-wall limit 99

4.4 The soft-wall limit

As we stated in the beginning of this chapter, the metric in Eq. (4.7) has a curvature
singularity at a point ys > w;, beyond the IR brane and outside the physical
interval. In fact, in the absence of an IR the singularity would become naked and
we would be in front of a soft-wall model (in fact the SW2 model described in
Chap. 2).

It is then natural to ask what would happen if we removed the IR brane and
considered a true soft-wall background. We briefly discussed about this possibility
in Sec. 2.5.1. Moreover, from what we have seen, it can be expected that the
T and S parameters could be greatly reduced in a soft-wall setup, making this
possibility worth of study. Also, recall from Chap. 2 that soft walls show some
other interesting features such as a greater variety of KK spectra: in particular the
density of states above the first KK excitation is typically higher than in two-brane
models (and can even be continuous) and could lead to very interesting collider
signatures.

A soft-wall model can be recovered in our model by taking the limit A — 0.
However, we cannot take this limit blindly.!® First, because of the lower bounds
on v that might arise from the considerations of Sec. 4.3.2. Second, we have to
check that our soft-wall background is consistent, according to the condition on
the superpotential expressed in (2.19), which requires in our case that v > 2. And
finally, a soft-wall model with the metric in Eq. (4.7) only presents a mass gap
when v > 1. Therefore, from these last two requirements the parameter space is
reduced to, at least, 1 < v < 2.

However, if we intend to implement EWSB there is a more important factor
to be accounted for. Without an IR brane and with a bulk Higgs we need to find
an alternative location where to trigger EWSB. The only sensible IR boundary
condition for the Higgs profile in the singular background is to demand regularity
of the solution. With a linear bulk EOM and linear UV boundary conditions
a nontrivial profile can only arise at the price of a fine tuning: satisfying the
boundary conditions at the UV brane fixes a certain linear combination of the two
bulk solutions (up to an overall normalization). This solution will in general not
be regular at ys, so the only solution is the trivial one h(y) = 0 and EWSB does
not occur. This does not come as a surprise, as we have lost the IR brane with its

10 Another minor consideration when taking the soft-wall limit is related to our fixing of the
Planck-weak hierarchy. In our analysis we have kept p/k = e~ AW fixed, but this quantity
vanishes when we take the limit y; — ys. Therefore we should fix the Planck-weak hierarchy
differently, e.g. by keeping fixed p/k = e~*¥s (kys)fu%, where we have used the definition of p
used in Chap. 2.
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EWSB potential.

Therefore, the only possibility to obtain a nontrivial profile without an IR
brane is a fine-tuning of some parameters in the Lagrangian. One can see how
this fine-tuning arises in the smooth limit y; — ys, following the logics of Sec. 4.2.
For a fixed value of a > 2 there will be a finite A = y, — y; > 0 at which the
singular solution (initially suppressed by e=2@=2*¥) resurfaces due to the presence
of the singular factor in Eq. (4.16). In this case, a fine-tuning of the UV mass
My is needed in order to select the regular solution. This is the original hierarchy
problem. Clearly, in the exact SW limit (A = 0) one needs My = a precisely, and
therefore an infinite fine-tuning.

The only way out is to trigger EWSB by nonlinear dynamics on the UV
brane [49] or in the bulk. In the former case, h(0) (the VEV of the Higgs field at
the UV brane) is unrelated to the IR scale generated by the warping.!! Breaking in
the bulk requires to go beyond a simple quadratic potential in the Higgs field and
cannot be tackled analytically. Things could be simplified by integrating over the
soft wall to create an effective IR brane at y = y; < ys, along the lines of Ref. [44].
Form factors arise on the IR brane that mimic the characteristic SW spectra, while
the bulk potential near the singularity will generate a nontrivial brane potential
that could be used to trigger EWSB [44]. It is however not straightforward to
engineer a bulk potential V' (¢, h) that can be totally neglected in the reduced bulk
y < y1 and whose only effect is the effective IR brane tension. Although it can
be expected that some of the findings of this section can be translated to the case
of a genuine bulk, breaking a quantitative statement is hard to be settled in the
absence of a precise and calculable model.

HTn fact h(0) has to be fine tuned to a very small number even though this can be made
technically natural as long as the UV brane localized Higgs mass term is Planckian.



Chapter 5

Fermions in the Bulk

In Chap. 3 we studied how to break EWSB using generalized models of extra
dimensions where the Higgs and gauge bosons propagate in the bulk. Later, in
Chap. 4 we applied those results to a concrete model where the contributions to
EWPT are greatly reduced. While those constructions were quite general, we chose
to locate the fermions on the UV brane, as this greatly simplified calculations. This
leads to the question of what would change in our conclusions if we allowed the
fermions to propagate in the bulk.

Besides our aim to consider the most general possible setup, there are a number
of reasons why it is interesting to study the propagation of fermions in the bulk.
One of them is the increased strength of the interactions between the SM fermions
and the new KK states that arise in warped models, as the coupling between bulk
and UV-brane fields are strongly suppressed. This leads to a much greater range
of interesting new phenomenology to be tested at the LHC but, on the other hand,
it might also carry stronger constraints from experimental data.

But the strongest motivation for propagating the fermions in the bulk is to
address the SM flavor puzzle, which is the failure of the SM to explain why the
masses of the fermions span 5 orders of magnitude with no apparent structure. The
RS model can address that by localizing the different kinds of fermions at different
positions further or closer to the IR brane, so that their couplings with the IR-
localized Higgs boson get respectively decreased or enhanced. However, it is well
known that the different fermion localization generates non-oblique observables.
Mainly, it modifies the Zbb coupling, as well as flavor changing neutral current
(FCNC) and CP violating dimension-six operators, which might impose further
constraints on the KK scale.

In this chapter, based of Ref. [6], we will study this mechanism to explain the
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SM flavor structure, but we will allow the Higgs to propagate in the bulk (as in
Chap. 3) and consider both RS and the model described in Chap. 4, defined by

the metric of Eq. (4.7), i.e.

Aly) = ky — %log (1 - 2) . (5.1)

In doing so, we will consider 5D Yukawa couplings of O(1) with no particular
structure! and choose specific mass terms for each kind of fermions in order to fix
their locations. We will also get bounds on mgy from the Zbb coupling and flavor
violating operators, and we will shortly see how the model (5.1) leads to milder
constraints when compared to RS.

Notice that the issue of non-oblique EWPOs in the model (5.1) has recently
been addressed in Ref. [64]. Although we employ different fermion profiles, we find
similar bounds from the Zbb coupling, with slightly more optimistic bounds in the
fully anarchic case. Moreover, our analysis is quite different and complementary
to the one done in [64], as we perform a democratic scan over possible 5D Yukawa
couplings deducing the bulk masses needed to reproduce the observed masses and
mixings. In that way we are able to associate a probability to a certain choice of
bulk masses and hence quantify the fine tuning to achieve a given KK scale that
leads to agreement with experimental constraints. The improvement of flavor/C' P
bounds with modified metrics has recently been noted in the context of soft wall
models [74]. Here we show that a similar improvement can be obtained in the hard
wall setup, and again we quantify the amount of fine tuning needed to obtain a
satisfactory bound on the KK scale.

The plan of this chapter goes as follows. In Sec. 5.1 we describe the low energy
4D theory obtained after integrating out the KK weak gauge bosons, the KK
gluons and the KK fermions. In Sec. 5.2 we give explicit expressions of oblique
and non-oblique EWPOs for arbitrary metrics, and in Sec. 5.3 we do the same
for flavor and CP violating observables. We complete our general analysis in
Sec. 5.4, where we present an approximation of the quark mass eigenstates and
mixing angles, assuming a left-handed hierarchy more general than other existing
approximations in the literature. Finally, in Sec. 5.5 we apply these results to the
RS model and the non-custodial model introduced in Chap. 4.

IThe absence of a 5D Yukawa hierarchy is also referred to as anarchy.
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Figure 5.1: Diagram contributing to the effective Lagrangian.

5.1 The low-energy effective theory

In this section we will present general expressions for oblique and non-oblique
corrections, as well as FCNC operators, for arbitrary profiles for the metric, the
Higgs and the fermions. We will first integrate out the KK modes of the weak
gauge bosons, which will be relevant for EWPOs, in Sec. 5.1.1. Dimension six
operators generated from integration of the KK modes of gluons will be considered
in Sec. 5.1.2 and those obtained from integration of the KK modes of fermions in
Sec. 5.1.3.

5.1.1 Integrating out the KK weak gauge bosons

Let us consider a general gauge interaction of the form

g5 / dx\/gANM (. y) {Z Ty (@) + Ty ()| (5.2)
P

where Jj, stands for the Higgs current and Jy, for the fermion currents, and where
Vv = Q,u,d, L, ¢ runs over the SM fermions before EWSB. For simplicity, we are
omitting here the adjoint gauge indexes and assuming an implicit sum over them.
The EOMs for the EW gauge bosons are then

DFFo + Ji, + > J5, =0, (5.3)
¥

We would like to integrate out the KK modes of the gauge bosons in order to
obtain the coefficients of the effective Lagrangian with dimension-six operators

1 1
Leg = Loy + Eahh Jn - Iy, + Za;w Jn - J¢ + 5 Z Q! Jw . J¢’ . (54)
P p!

In other words, we would like to compute the diagrams in Fig. 5.1. To this end
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we need to evaluate
1
et = g [ dydy wx(y) o) Gl ) (5.5)
1

where G(y,1') is the 5D gauge boson propagator at zero 4D momentum (with any
possible zero modes subtracted), and where we have defined

wi(y) = e *Wyd(y), (5.6)
wy(y) = e WP (y).

The precise definition of the propagator G(y,y’) and explicit expressions for it
are given in App. B. Using the result given in Eq. (B.16),% we obtain

axx = Y1 /€2A (QX — E) (QX/ — g) s (58)
hn Y1

Q= [y e g(y)
Q= [dy gy

and the wavefunctions correspond to zero-modes. The normalization conditions
on the wavefunctions imply Qx(y;) = 1.

where

(5.9)

We will rewrite the Lagrangian (5.4) as

‘Ceff - CSM + ‘Coblique + ‘Cnon—oblique s (510)
with
1 A~ A % 1 A nr12
Eoblique - éoéhh Jh . Jh —+ Oéhg [D F . Jh,/] + 50499 [D“F ] y (511)
‘Cnonfoblique - Z ) Jh Jw + = Z Oéd;wl J¢ Jw/ (512)

ww'

which can be shown to be physically equivalent to Eq. (5.4) using Eq. (5.3) and
requiring the conditions

App = OA‘hh - 2@hg + @gg s (513)
(€ OAzhw - @hg + @gg s (514)
OQW,/ = OAQMb/ + OA‘gg . (515)

2Recall that gauge bosons have Neumann-Neumann BCs.
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hold.

We can now transform away the non-oblique corrections for near UV-localized
fermions (mostly elementary) such as first and second generation leptons (which
have Q2 & 1), so all the new physics for them is encoded in the oblique parameters.
We will refer to this basis as the “oblique basis” and use it from now on. In order
to achieve Ay = 0 and Gy ~ 0 for the elementary fields a good choice is

Qng = U /€2A(1 — ) (1 - g) ) (5.16)

2
Qgg = Y1 /€2A <1 - ﬂ) , (5.17)
hn

which leads to

Qpp = Qpp + 2005 — Qgg = y1/ ( ) (5.18)

Oy = Qhy + Qg — Qg9 = yl ( E) (€ — 1), (5.19)
U1

(= 3) (o) -(-3)] o

It is clear from Egs. (5.18-5.20) that, for fermions strictly localized on the UV
brane (€ = 1), épy and Gy vanish. Consequently fermions that are only near
UV localized will still have strongly suppressed non-oblique corrections.

~ A 24
Ay = Qg — Qgg = Y1 / €

The oblique Lagrangian (5.11) gives rise to the 7', S, W and Y parameters,
while the first term of the non-oblique Lagrangian (5.12) contributes to modified
Z and W couplings to fermions. These effects will be described in Sec. 5.2. On
the other hand, the second term of (5.12) generates flavor-violating four-fermion
operators although, as we will see in Sec. 5.3, they are subleading with respect to
those induced by the KK gluons.

5.1.2 Integrating out the KK gluons

Let us now have a look at the gluons. Integrating out their KK modes we obtain
Z Qg PYNIY PPN (5.21)
w P’

where here 1 runs over the quarks (ur gr,dpg) and A\* are the SU(3) matrices
normalized to tr A"\ = 2.
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Using appropriate spinor and SU(3) identities, we can rewrite this as

2
Js ij,kl 1, i 1 - j
L=2% [’ti,qi (—— G G, T+ Sa Q’L’“’V“QJL) +L—R

2 2
" 6 (5.22)
g ‘ 1 :
ij,kl — — —a I k a
+2y00 (qu}fQ diat — 5 0"k ar "0 )} ,
where o and /3 are color indexes,® ¢ and ¢’ Tun over u, d, and we have defined
ijke 24 (i Y ij ke Y cke
Yo, = yl/e (qu y16 ) (Qq;/ y15 ) : (5.23)
with the hermitian matrices {2 defined as
Q= (Vo V)Y, x=LR. (5.24)

The Lagrangian (5.22) will give rise to the leading flavor violating effects, as
we will see in detail in Sec. 5.3.

5.1.3 Integrating out the KK fermions
We will now consider the fermion action [75]
S = [dye ™ (in v + ibnd vn)

et (@RWL — 24" YRy, — My (y) s + h-C-) :

where ¢ = (¢, %r)? (which runs over Q,u,d, L, /) is a 5D (Dirac) fermion and,
for the sake of generality, we have allowed the bulk mass to depend on .

(5.25)

Defining new wave functions

Yrr(y) = W a(y), (5.26)
we can rewrite the Dirac equation as
mipp = e My +9,)dr 1. (5.27)

For the BC we take either v, = 0 or ¢ = 0 at both branes. Then there is a zero
mode with profile

50 e~ Quv) 0
Vrr(Y) = (i eA2auy Vro(y) =0, (5.28)

3We suppress color indexes whenever they are contracted in the same way as the spinor
indexes.
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Figure 5.2: Integrating out the KK modes of the singlets (left) and doublets (right).
Notice that the zero mode is not included in the internal line.

where

v) = [ Mu(y)ay . (5:29)

The upper sign corresponds to left-handed zero modes (i. e. SU(2) doublets ¢ =
@, L) and the lower one to right-handed zero modes (i.e. SU(2) singlets 1) = u, d, ¢).
The function Q, defined in Eq. (5.9) can then be written as

Uy (y) Y AW)-2 !
Qu(y) = : Uy(y :/ eAW)=2QuW) gy 5.30
o) = s Usl) = (5.30)
The quark Yukawa coupling is then
/yl L efQQiL*qu2
Y=Y 0 -, (5.31)

) 1] 1
1 YIoA—20, (U1 A-2Q ;\ 3
( / e 2Ap? / e QL / e Tk
0 0 0

where ¢ = (u, d). Here Yq are 5D Yukawa couplings with mass dimension —%.

We would now like to integrate out the KK modes of the quarks. In particular
we are interested in the diagrams shown in Fig. 5.2. Notice that we can neglect
these contributions if the external quarks are near UV localized. This is because,
unlike the coupling of a UV localized fermion to gauge KK modes, the coupling
of a UV localized fermion to the Higgs zero mode and a KK fermion does not go
to a universal constant but rather to zero. Since we are primarily interested in
corrections to the Zbb coupling we will focus on the down sector (the up sector
works analogously with H — ioo H*). One obtains the effective 4D Lagrangian of
zero modes

;on—oblique =1 'dL [QZL }]p {HT Qq -Hﬁ [ %H }]p [Hd%}

) 2 g ) (5.32)
> gl 4 iR, ds — iR d’ V7, db

't 4

where in the second line we have also used the Dirac equation. Using the results
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of App. C we can express the couplings [ as

Y1
B = SV [T @) - Q)T - Q). (5.39)
j ,
. Y1 -
Bt = VY [T () T — 0 )T = Q). (539
J

where we have defined

[ he 0%
0 (5.35)
h

Yy Q. —Q;
/ 0,2
0

which is the cumulative distribution of the physical 4D down-type Yukawa coupling
along the fifth dimension. Thus, I' monotonically increases from zero to one; if
any of the three fields (Higgs, Q% or d%) is UV (IR) localized we can take the limit
re —1 (¢ —0)."

Ti(y) =

The non-oblique Lagrangian (5.32) will contribute with a significant amount
to the Zbb coupling, as we will describe in detail in Sec. 5.2.

5.2 Electroweak Precision Observables

In this section we will consider the relevant pieces of the effective Lagrangians we
just obtained after integrating bulk KK modes. The general procedure to evaluate
the effect of oblique and non-oblique EWPOs in the presence of New Physics is
described in detail in Ref. [76], and we will just present here some final results for
a general warped 5D model with a bulk Higgs.

5.2.1 Oblique corrections

Let us start by considering the oblique corrections, described in terms of the
(T, S,W,Y) parameters. These can be obtained from Eq. (5.11), the oblique part of
the effective Lagrangian that results from integrating the KK weak gauge bosons.
Let us rewrite the relevant piece of this Lagrangian as®
12

L= Lo+ %”dhh\HTDMHF — gsgbang HIW,, H B
Y
2
4Using this simple limit we have checked that we obtain the same result as quoted in Ref. [65]

for an IR-brane localized Higgs.
>The ellipsis denotes operators not relevant to the oblique precision observables.

(5.36)

~ ~ U
+ Qg (8,,BH,,)2 + %g§<D”W’“’)2 +...,
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from which we can read the precision observables®
2 2 A
ol = syymyon,,
aS = 8si,chmEd
= OSw Mz Qhg
2 2
Y = cyymidy,,
W =Y.

Note how this result coincides with the one obtained in Sec. 3.2.1, where we used
a holographic method instead.

5.2.2 Non-oblique corrections

Let us now focus on the non-oblique operators. In particular, the first term of
the non-oblique Lagrangian (5.12) contributes to modified Z and W couplings to
fermions. The same holds true for the operator given in Eq. (5.32). We can then
extract the contributions to the vertex corrections by going to the electroweak

vacuum.”’

Diagonalizing the physical Yukawa couplings with the rotation matrices Vg,
the Zqq couplings receive the corrections

SM
Y. Y em 1 as 2 2 2
59‘1?,21% = T (OzT + %> - Qq W (T — CuSw ol — Sw Y> s (541)
SM
gdLyR Y 1 1 &S 2 ~
5gbL,R:—2 < T+C2>+§7C%U—S%U <T—C aT—SwY>+5gbL,R7
(5.42)
Gy, = 5@33 = ( gdL mZ &y, i ) + ﬂ ) d*f’e, (5.43)
} N R v2 .
OGby, = 5g§i = (—gﬂ/[ m? ah’dgéw 7 ﬂ ) V V;ig’e, (5.44)
where
SM 3 em _2 SM em 2
9o =1g = Q¢ Suwr Ggp = Q" Su: (5.45)

and the integrals &y, and B;ﬁ have been given in Eqs. (5.18) and (5.33-5.34).
The tilde here denotes an explicit vertex correction coming from the non-oblique
operators.

Besides the equality Y = W one can also derive another relation (aS)? < z(aT)Y with
x = 64c% s2 ~ 11.2. This follows from Egs. (5.37-5.40) by use of the Cauchy-Schwarz inequality.

7 Notice, in particular that from Eq. (5.3) one has DA;‘ = —J,’;‘# + .... Hence, after EWSB,
Jn = —M?A where M? is the gauge boson mass matrix and one can directly evaluate the
product with the fermion currents.
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The most relevant observable that we can extract from these results is the
deviation of the Zbb coupling from the SM result. In particular, we should compute
the effect of the non universal Zbb coupling to the partial width

['(Z — bb)
Ry=—°—+%~. 5.46
" T(Z - q) (548)
For that matter, we write
Rtree
Ry = RM + (Z 9, ) , (5.47)
qF#t gsM
ax
where
2 2
_'_
Riree = _ Jbn T 9s RSM = (.21578. (5.48)

Z(I?ft(g(i + g§R> ’

Only the left handed bottom has both oblique and non-oblique corrections, while
all other couplings only have corrections coming from the oblique parameters, see
Eq. (5.44). This should be compared to the experimental value [53]

Ry = 0.21629 + 0.00066 , (5.49)

which will translate into a lower bound on the KK scale.

5.3 Flavor Violation

The dominant flavor violation comes from the KK gluons, in particular the off-
diagonal elements in Eq. (5.22). Additionally, the second term of the non-oblique
Lagrangian (5.12) generates flavor violating four-fermion operators. However, the
corresponding effects will be subleading with respect to those induced by the KK
gluons. The details about the four-fermion operators are included in App. D.

Following standard convention [77,78] we parametrize the most constraining
AF = 2 Lagrangian as®

EAF 2 HAF 2 _ —Cfd(dL’}/“SL)z—C(Sd(jR’}/“SR)z

+de(JLSR)(JRSL) CSd<dLSR)(dRSL) (550)

8The minus signs in the first two operators reflect our convention for the metric, n*¥ =
diag(— + ++).



5.4. Quark masses and mixing angles 111

In full analogy we can write similar operators by replacing sd — uc or bd. We can
use the results of Sec. 5.1.2 to write the coefficients explicitly as

2
Cisd — gs6y1/62A(chli)27 (551)
Cfisd — g§6y1/62A(chlQR)27 (552)
AT K (U AUAE (5.53)
2
s gs
ot = LA [eroaR), (5.54)

where Q}li has been defined in Eq. (3.36). Notice that using the unitarity of the
mixing matrices we can write

Qi = (93, — Qu, Vi Vil + (93, — )V Ve, (5.55)

L

and similarly for L — R.

The coefficients C; are related to flavor violating and/or C'P violating observ-
ables [78] from where they get upper bounds. Those will translate into lower
bounds on the KK scale of the model, as we will see shortly.

5.4 Quark masses and mixing angles

In this section we will introduce explicit quark zero mode profiles and fit the
parameters in the 5D Lagrangian to the observed quark masses, mixing angles
and C'P-violating phase.

First of all, we need to choose an explicit mass term for the fermions or. equiv-
alently, a function @y (y) as defined in Eq. (5.29). We will make the choice

Qu(y) = cpAly) , (5.56)

which coincides with that used in RS models where Qﬁs = cyky.” The mass term
that leads to our choice (5.56) can be achieved if the stabilizing field ¢ couples to
the fermions. In particular, if we use the superpotential method (see Sec. 4.1) we
can achieve (5.56) by choosing My(¢) = Fey, W (¢).'% In the end, this choice leads
to fermion zero modes given by

P(y) = eBewAw), (5.57)

90f course one could also use for a general model Q, = cyky. See e.g. Ref. [64].
0The upper sign refers to 5D fermions with left-handed zero modes and the lower sign to
those with right-handed zero modes.
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In this case, the function Uy (y), defined in Eq. (5.30), simply reads

Usly) = [ exp (1= 26,)A)] (5.58)

The relation between 4D and 5D Yukawa couplings given in Eq. (5.31) is now
Y =Y Flegy,cp ) (5.59)

where the function F'is defined as

Mg e (erter)A

Fleg, cp) = 0 T (5.60)
[/yl o—2Ap2 /yl e(1=2cL)A /y1 p(1—2cr)A | ?
0 0 0

We note the following properties of the fermion profiles and the function F"

e For any strength of the metric deformation, fermions ¢ are IR (UV) localized
for ¢y < 1 (cy > 1). This is thus the same situation as in the RS model.
Notice also that this choice of profile corresponds, in the dual theory, to the
special case of constant anomalous dimension, i.e. the fermionic operators

are not significantly disturbed by the presence of the CFT deformation.

e The larger the deformation of the AdS background, the larger is the portion of
the parameter space (cr,, cg) where the function F'(cr, cg) is enhanced. Con-
sequently, the coefficients ¢, can be slightly larger for the same 5D Yukawa
coupling in order to reproduce the same (physical) 4D Yukawa coupling.
This in turn leads to a weaker coupling of the fermions to the KK modes of
the gauge fields.

Alternatively, for fixed values of the coefficients ¢, and 4D Yukawa couplings,
the 5D Yukawa couplings (and correspondingly the couplings of fermion KK-
modes to the fermion and Higgs zero modes in Fig. 5.2) are decreased with
respect to their values in the AdS background, leading to a softening of the
bounds on the value of mg g, as we will see in Sec. 5.5.2.

This enhancement of the function F(cr,cgr) for a background with a large AdS
deformation is illustrated in Fig. 5.3 for the model (5.1) with kA =1 and v = 0.5.

Let us now consider the quark mass-squared matrices

2
M = % yayet, g=u,d (5.61)
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Figure 5.3: The function F(cp,cr) for kA =1, v = 0.5 normalized to the corre-
sponding RS value. One can see that for a wide portion of the parameter space it
leads to an enhancement of the 4D Yukawa couplings with respect to RS.

where v = 246 GeV is the VEV of the Higgs field. Unitary matrices should be
introduced to diagonalize the matrices M as

— VI Myt (5.62)

dzag

Next let us write expressions for the eigenvalues and mixing angles of the hier-
archical Yukawa couplings. In the following we will just make two reasonable
assumptions:

e First we will assume a left-handed hierarchy, i.e.
Vi <Yy < Y5 (5.63)

This will be the case whenever there is a mild hierarchy between the left-
handed ¢y, i.e. cgr > cge > cga.'!
L L L

e The only second assumption we are making is that the left-handed rotations
show a similar hierarchy as the CKM matrix

Vil ~e, Vil ~e, Vil ~é, (5.64)

1We will comment later on about possible further simplifications that take place in case there
is also a right handed hierarchy.
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where € is of the order of the Cabbibo angle. This assumption is natural since
otherwise the smallness of the CKM mixing angles would be a consequence of
large cancellations. As it turns out it is also consistent with the assumption
Eq. (5.63).

Owing to our assumption (5.64), these unitary rotations can be given in a
Wolfenstein-like parameterization as [53]

sV | Vi Vi
VQL — - 1‘12L* 1 - _| |2 Q%L I q = U‘? d (565)
(=i + Vi Vo) 2%” 1

where terms of order O(e*) have been neglected. The matrix V9. contains three
independent complex parameters and it is unitary to the considered order. The
angles and eigenvalues are best expressed in terms of the quantities

N MQL QL
M= M — . 5.66
1] % Mgg ( )
First, by demanding the off-diagonal terms in Eq. (5.62) to vanish we obtain the

mixing angles

M M
aL _ a _
‘/12 - YT ‘/21 YT (567)
22 22
aL _ aw _
Vi =228 Vil = o (5.68)
33 33
qrL MqL qL qrL
13 qr 31
Vi = — + Vil = (5.69)
13 qr ’ 31 qr :
33 /\/qu i 33

The mass eigenvalues are then obtained as:

(m§)? = M, (5.70)
(m$)* = M, (5.71)
__ MQL qL
q\2 __ q
(mfi)” = Miy — 735 : (5.72)

where we are using the notation m% = my, m4 = my, and so on. The comparison
with CKM matrix (V = V4 VIT) elements leads to the relations

Vus = ‘712 5 573
Vi = Vas, 5.74

Vb = (—‘731 + ‘/Q%L‘Z?Q)* )
Via = Vay — Vst Vsy
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where V = V. — Ve The CKM matrix defined this way does not obey the
usual phase convention [53]. One can easily obtain the standard convention by
multiplying V9 from the left with appropriate phases. One finds

i Vu*b Vus ‘/;b

= 5.77
|Vuqus‘/;b| ( )

Alternatively we can write the Jarlskog invariant as
J=1m (Vi ViVis Vo) = — T (VigVaa Vi) + [Vop | Im (Vi V31) . (5.78)

To summarize, given the complex 5D Yukawa couplings (two 3 x 3 matrices
with complex coefficients), there are nine constants €Qi > Cuiy» Cdi, which should be
adjusted to satisfy the mass relations (5.70-5.72) and the experimental CKM ma-
trix relations (5.73-5.76) and (5.78). Note that, for a given model, not every set
of 5D Yukawa couplings will admit a solution, which will in turn constrain our
possible initial Yukawa couplings. In the following chapter we will apply this to
two particular models: RS and the model 5.1.

5.5 Application to Randall-Sundrum and the non-
custodial model

Let us now apply the results we just found to the Randall-Sundrum model and to
the non-custodial model 5.1 described in Chap. 4. For that matter, we will first
generate a set of solutions to a random distribution of 5D Yukawa couplings, and
then we will compute the bounds imposed to each of the solutions by the Flavor
and EWPO constraints. This way, we will be able study statistically the behavior
of both models, which is arguably the most rigorous way to compare them.

5.5.1 Generating a set of solutions

We will start by considering a random sample of 5D Yukawa couplings (two com-
plex 3 x 3 matrices, }Afjj and }A/g) For each point of the sample, we will perform
a x? fit to the experimental quark masses (measured at the KK scale [79]) from
which we obtain the nine coefficients ¢, that minimize the x? function, using the
results of Sec. 5.4. We will accept those points that yield x? < 4 to both the RS
model and the model (5.1) with v = 0.5 and kA = 1. For each set of Yukawas,
this will give rise to two sets of the ¢, coefficients, one for RS and other for model
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Figure 5.4: The distribution of the ¢ parameters for the different quarks and chi-
ralities, for RS [dashed] and for model (5.1) with kA = 1 and v = 0.5 [solid].
Only the parameters cupy, and i, are IR localized (c < 0.5). Notice the highly
asymmetric forms of the corresponding distributions.

RS:

C(u,d)L = 0.66 £+ 0.02

C(c,s)L = 0.59 £+ 0.02

capyr = —0.1 11“8313

cur = 0.71£0.02

cer = 0.57£0.02

— +0.05

car = 0.66 £0.03

csp = 0.65 £ 0.03

cpr = 0.64 £0.02

C(u,d)L =0.714£0.02

C(c,s)L = 0.63 £ 0.02

C(t,b)L = 031J_r8é§

cun — 0.74+0.03

cer = 0.57£0.03

— +0.05
CtR — 042_011

CdRrR — 0.68 & 0.04

csp = 0.67+£0.04

Chr — 0.66 = 0.03

Table 5.1: Medians and 1o confidence intervals of the ¢ parameters corresponding
to the different species of quarks and chiralities, for RS and for model (5.1) with
EA =1, v=0.5.
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(5.1). This facilitates a direct comparison between the two models, since the 4D
effective theories originate from the same set of 5D Yukawa couplings.

From these premises, we generated a sample of 40,000 points, having chosen for
the 5D Yukawas flat prior distributions 1 < |\/E}A/Z?| <4and 0 < arg(ffg) < 2.
The results of the fit are presented in Fig. 5.4, while the corresponding central
values and 1o confidence intervals of the ¢, parameters are listed in Tab. 5.1. As
it is clear from the individual plots, the ¢, are slightly larger for our model than
in the RS model, as anticipated above.!? This means that the couplings of the
individual quarks to KK modes are more suppressed than in RS.!3

An interesting fact that we find is that the Cgi, are very much non-hierarchical.
In fact only about 30% of all points show the “traditional” hierarchy Cat, > Cgz, >
cas- As expected, our expressions (5.67-5.69) and (5.70-5.72) are much better
approximations to the true angles and eigenvalues in these cases than the ones
usually employed in the literature [80]. Note that, in practice, we never need
to have explicit expressions for the right-handed angles in terms of the Yukawa
matrices, as the former do not enter in the fit.!* On the other hand, the up-
type sector will always be hierarchical, c,1 > c,2 > ¢ or Vi < YV < Y3
equivalently, and we could have used the simpler expressions for the eigenvalues
and angles described in App. E.

5.5.2 Bounds from electroweak precision observables

Let us now find the bounds on the KK scale that arise from the electroweak
precision observables, as described in Sec. 5.2.

The analysis for oblique observables was already performed in Chap. 3 for the
RS model and in Chap. 4 for model (5.1). As we did there, we will choose the
minimum value of a consistent with solving the Hierarchy problem (see Sec. 4.2).

As for the non-oblique observables, we can draw on the results shown in Fig. 5.4
to simplify our analysis. Recall that, as mentioned before, we can neglect the
diagrams in Fig. 5.2 if the external quarks are near UV localized. Moreover, the
contribution from the gauge KK modes is universal for near-UV localized modes
and is summarized in the oblique parameters. As shown in Fig. 5.4, only the left
handed top-bottom doublet and the right handed top singlet are near IR localized.

12We have restricted ourselves to the region ¢, > —1 in order to avoid strongly IR localized
fermions, which typically have stricter perturbativity bounds for the Yukawa couplings.

13We have checked that for fixed ¢, the individual couplings of KK gauge bosons to fermion
zero modes are of the same order for both models.

1For each data point obtained in the fit it is of course a simple matter to numerically find the
right handed rotations.
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Figure 5.5: The bounds (in TeV) implied by the experimental limits on Ry, as a
function of Qs - Left panel: RS model. Right panel: our model with kA = 1,
v = 0.5. We also display the dependency on the 5D bottom Yukawa: the color-

ing interpolates between green (light gray) for \/Ef@% =1 to red (dark gray) for
VEYE = 4.

We will therefore neglect the explicit correction gy,

There are several factors which will influence the size of the non universal Zbb
coupling:

e The more UV localized the left handed top-bottom doublet, the more sup-
pressed are its coupling to the KK modes of the gauge bosons and to those
of the singlet quarks. Hence we expect a suppression of the contribution to
Zbb for larger Qs -

e The smaller the 5D bottom Yukawa 373%, the more suppressed the Yukawa
coupling of by, to the singlet KK modes appearing in the left panel of Fig. 5.2,
and hence the more suppressed is this contribution to s, .

e As shown in Chap. 4, the Higgs can become more decoupled from the IR in
the deformed background, and this reduces both the coupling to KK gauge
bosons and KK fermions.

All effects enumerated above are clearly visible in Fig. 5.5 where we present
plots of the minimal KK scale required to sufficiently suppress the observable R,
as computed in Eq. (5.44) when compared to the experimental value (5.49). In
particular, the third effect above reduces the bounds (for fixed cps and V) by
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roughly a factor of 2 when comparing the RS model to the model defined by
Eq. (5.1) for kA =1 and v = 0.5.

Moreover, in Fig. 5.6 we have considered the probability distribution functions
(PDF) and cumulative distribution functions (CDF) for the lower bound on m .
The fact that the model with the modified background generally requires larger
Qs (see Fig. 5.4) further pushes these distributions to lower KK scales, implying
milder bounds.

For a given KK scale on the horizontal axis one can read off from the CDF
(right panel of Fig. 5.6) the fraction of points consistent with such a scale for both
models on the vertical axis. This fraction is thus the probability that the KK scale
is smaller than a given value. Notice that it can also be viewed as the amount of
fine tuning necessary to obtain a given bound. Conversely one can start from a
given fraction (fine tuning) and read off the percentile on the horizontal axis for
both models.

In Tab. 5.2 we present some explicit numbers obtained from these distributions.
As we can see from Tab. 5.2, getting “acceptable” bounds depends to a large extent
on the amount of fine-tuning that we tolerate. For instance assuming a 20% (50%)
fine-tuning the lower bound is 11 TeV (16 TeV) for the RS model and 3.2 TeV (5.3
TeV) for the model with modified background.'

We have also checked the dependence on the choice of the fermion bulk mass
term. In particular Ref. [64] used a constant mass term Q(y) = ck. Although our
analysis is quite different, we have verified the results in Ref. [64] qualitatively.
In particular, for the anarchic case the bounds are slightly higher than the ones
for the choice Q(y) = cA(y) and show a stronger dependence on the 5D bottom
Yukawa coupling. This indicates that the effect of the KK fermions is dominating
for large }73%, which can easily be mitigated by lowering that coupling at the cost
of a mild O(10) hierarchy in the 5D Yukawa couplings [64].

Finally, we should mention that, to be fully consistent, one should consider a
global fit of the EWPT data to the observables S,7T" and 0g,, and also include
possible loop corrections [64]. We will leave this to future work.

5.5.3 Bounds from flavor and CP violation

Using our sample of data points we can then compute the exact mixing matri-
ces numerically necessary to find the coefficients C; defined in Sec. 5.3. It turns

15Tt has previously been noted that one can fine-tune the fermion bulk-masses in RS in order to
achieve Ry, in agreement with experiment [81]. Our analysis shows that in the minimal anarchic
RS model such a fine-tuning is sizable.
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Figure 5.6: PDF (upper panel) and CDF (lower panel) for mg from comparison
with Ry. Dashed lines correspond to the RS model and solid lines to the model in
Eq. (5.1) for kA =1 and v = 0.5.

Probability for mgg below Percentile
3TeV 5TeV 10 TeV 10% 20% 50%
RS 0% 2.4% 17% 8.0 TeV 11 TeV 16 TeV
v=05| 18%  46% 98% 2.3 TeV 3.2TeV 5.3 TeV

Table 5.2: Left panel: Integrated probability for values of mgk below 3, 5 and
10 TeV from Ry for RS (upper row) and the model in Eq. (5.1) for kA =1 and
v = 0.5 (lower row). Right panel: 10th, 20th and 50th (median) percentiles for
both models.
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out that the most constraining parameter is Im C3$¢, which is related to the C'P
violating observable in the K-system, e, and is bounded by [78§]

I G} < 2.6 x 1071 TeV 2. (5.79)

By using the expression for C§? provided in Eq. (5.53) and comparing with the
experimental bound in Eq. (5.79) we obtain bounds on m g for every data point,*6
as we did in the previous section for the coupling R,. The result is exhibited in
Fig. 5.7, where we show both the PDF and CDF for the distribution of points.

A statistical analysis similar to that done in Sec. 5.5.2 can be performed here,
and in Tab. 5.3 we present some explicit numbers obtained from these distribu-
tions. We can trace back the improvement in the bounds on mg g in the modified
background model with respect to the RS model on the weakening of couplings
of gauge KK modes to the first and second generation SM fermions, resulting in
turn from the enhancement in the coefficients c¢,. For instance, assuming a 20%
(50%) fine-tuning the lower bound for the RS model is 9.7 TeV (19 TeV), while for
the modified background model they are 2.5 TeV (6.3 TeV). The combined bounds
will be much stronger, as we will shortly see.

Finally, we should pay attention to the other coefficients: Re C§?, €3¢, C3¢
and C£%. The bounds on Re C§¢, coming mostly from Amy, are about one to
two orders of magnitude weaker than for Im C§¢. However, it is conceivable that
the favorable points that allow a low KK scale could result from an accidental
cancellation of the phase and hence the bounds from the real part turn out to
dominate. We have verified that this is not the case and the bounds are not changed
by taking into account the real part. Furthermore, notice that C:? = %de, and
hence whenever (¢ is suppressed so is Cg¢ (the experimental constraints on the two
quantities are comparable). The experimental constraints on the coefficients C3¢
and é’fd are about two orders of magnitude weaker with again a similar suppression
as C§%. We thus do not expect any additional constraints from here either.

5.5.4 Combined bounds

Concerning non-oblique versus FCNC and C'P violating observables in both models
the final comparison is as follows:

e The bounds for the modified metric model are milder than those in the RS
model. This can be clearly seen from Figs. 5.6 and 5.7 and from Tabs. 5.2

6A more refined procedure would be to link the Wilson coefficients in Eq. (5.50) to the
actual observables, in particular ex and Amyg, and apply the direct experimental bounds, see
e.g. Ref. [82].
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Figure 5.7: PDF' (upper panel) and CDF (lower panel) for my from comparison

with ‘[m C354|. Dashed lines correspond to the RS model and solid lines to the model
in Eq. (5.1) for kA =1 and v = 0.5.

Probability for mgg below Percentile

3TeV 5TeV 10 TeV 10% 20% 50%
RS 24%  6.4% 22% 6.5 TeV 9.7 TeV 19 TeV

v=05| 26%  43% 64% 1.6 TeV 2.5 TeV 6.2 TeV

Table 5.3: Left panel: Integrated probability for values of myk below 3, 5 and 10
TeV from Im C5* for RS (upper row) and the model in Eq. (5.1) for kA =1 and
v = 0.5 (lower row). Right panel: 10th, 20th and 50th percentiles for both models.
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and 5.3. The main origin of this improvement in the modified metric model
with respect to the RS model can be traced back to the fact that because of
the IR deformation of the metric fermions fitting the quark mass eigenvalues
and CKM matrix elements are shifted towards the UV in the former model
which produced a general suppression of effects in the observables.

e The bounds from FCNC and C'P violating effective operators are stronger
than those from non-oblique observables in both models. This is mainly
due to the strong constraints on these operators, in particular from the C'P
violating observable ex. Of course we expect the combined bonds to be
stronger than those from the individual constraints.

In Fig. 5.8 we show the PDF and CDF distributions corresponding to the
combined bounds from non-oblique observables and flavor/C' P violating effective
operators. A similar statistical analysis to those presented for the individual con-
tributions is done here and the results are presented in Tab. 5.4. From there we
can see that assuming a 20% (50%) fine-tuning the lower bound for the RS model
is 16 TeV (21 TeV) while for the modified background model they are 4.2 TeV
(7.2 TeV). Then since the percentile is also a measure of the fine-tuning we can
conclude that if we tolerate a fine tuning ~10%-20% a KK-mass ~ 3 TeV can be
roughly acceptable.

Let us remark that the derived bounds can be considered the most conservative
ones (i.e. the worst case scenario in the absence of further suppressions). In
particular, the Zbb bounds can be improved if one allows for a moderate hierarchy
in the 5D Yukawas, i.e. by lowering the 5D bottom Yukawa. On the other hand,
flavor bounds can be improved by including the effects of UV brane localized
kinetic term for the gluon [79], or by invoking some flavor symmetries [83, 84].
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Figure 5.8: PDF (upper panel) and CDF (lower panel) for mg from comparison
with ‘Iijd’ and Ry. Dashed lines correspond to the RS model and solid lines to
the model in Eq. (5.1) for kA =1 and v = 0.5.

Probability for mgg below Percentile

3TeV 5TeV 10 TeV 10% 20% 50%
RS 0% 0% 3.3% 13 TeV 16 TeV 21 TeV

v=05| 71% 30% 64% 3.3 TeV 42TeV 7.2 TeV

Table 5.4: Left panel: Integrated probability for values of mgk below 3, 5 and
10 TeV from Ry, and Im C5 for RS (upper row) and the model in Eq. (5.1) for

kA =1 and v = 0.5 (lower row). Right panel: 10th, 20th and 50th percentiles for
both models.



Chapter 6

Concluding Remarks

In the previous chapters, we have presented two different kinds of warped models: a
self-stabilized soft-wall model (Chap. 2) and a two-brane warped model for EWSB
that does not require the introduction of a custodial symmetry (Chap. 4). While
they share the same metric, their construction is very different and so are their
phenomenology and possible applications.

In this chapter we will briefly discuss, for each of these two classes of models,
some aspects that have not been covered in the previous chapters but might be
worth researching. We will also comment on the new research paths these models
could open, and how they might provide new interesting results.

6.1 Self-stabilized soft walls

In Chap. 2 we studied the stabilization of soft walls, i.e. 441 dimensional geome-
tries with 4D Poincaré invariance, that are only bounded by a single three-brane
but that nevertheless exhibit a finite volume for the extra dimensional coordinate.
That is achieved by replacing the second brane by a naked singularity at a fi-
nite proper distance. In particular, we saw how those soft walls arise in models
with a single scalar field, and classified the type of models that can be realized as
full solutions to the Einstein equations without destabilizing contributions at the
singularities.

Our main objective was to show how how to stabilize the position of the sin-
gularity at parametrically large values compared to the 5D Planck length. We
proposed a family of models that accomplishes this goal, which can be classified in
function of the 4D spectra they can yield: continuous, continuous with a mass gap,
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and discrete. The 4D mass scale p, controlling the mass gap in the continuous case
and the spacing in the discrete one, depends in a double exponential manner on
the value of the scalar field at the brane [see Eq. (2.84)] and can thus be naturally
suppressed with respect to the 5D mass scale k without fine-tuning.

Depending on the class of models considered, there are a number of phenomeno-
logical applications of soft-walls that are beyond the scope of this thesis but are
worth of future investigations. For the case when the spectrum is continuous and
given by m, ~n (i.e. 1 < v < 2 for a superpotential that behaves as W (¢) ~ %)
these applications are common with two-brane models, like RS1, but with some
peculiarities. However, as discussed in Sec. 4.4, it seems difficult to achieve a model
for EWSB that solves the hierarchy problem by using soft-wall models. Without
an IR brane, there is no way to localize a mechanism to trigger EWSB, unless a
fine-tuning is introduced at the UV brane. Finding a suitable way to implement
EWSB in soft-wall models while retaining calculability and without introducing
another kind of fine-tuning remains an open problem.

Another interesting feature of soft-walls is the fact that the spectrum might
present a spacing between KK modes much smaller than the mass of the first mode.
This would mean that, if the first KK mode is within the range of the LHC, many
other models could be found inside the LHC range. This would provide a striking
signature of soft-wall models, since two-brane warped models do not exhibit this
behavior. In particular, graviton (and radion) KK modes can be produced and
decay at LHC by their interaction with matter ~ h,,T"", so they are expected to
be produced through gluon annihilation [85].

In one class of soft-wall models (when the superpotential behaves as W (¢) ~
e?) the mass spectrum of fields propagating in the bulk is a continuum above a
mass gap, which can be set to be of O(TeV). This continuum (endowed with a
certain conformal dimension) can interact with SM fields living in the UV brane
as operators of a CFT, where conformal invariance is explicitly broken at a scale
given by the mass gap, and can model and describe unparticle phenomenology
[42]. In particular, the authors of Ref. [52] embedded the Higgs in a soft-wall 5D
background to describe an unHiggs theory. It would certainly be interesting to
study this phenomenology in a stabilized model such as the one described here.

Finally, soft-wall models can be constructed so that the mass spectrum behaves
as my, ~ /n (when W (@) ~ e?¢'/4). This case is particularly interesting as it
models the Regge trajectories for mesons. Therefore, it can be used to exploit
the AAS/CFT correspondence for modeling QCD (a setup usually referred to as
AdS/QCD), along the lines of Ref. [37]. The stabilization mechanism we described
opens the interesting possibility to study AdS/QCD in a model where the QCD
scale can be naturally stabilized by the scalar field.
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6.2 Non-custodial warped models

In Chap. 3 we studied how to break electroweak symmetry in a two-brane 5D
warped model when the Higgs field is propagating in the bulk of the extra dimen-
sion. We derived a series of general results valid for arbitrary metric and scalar
backgrounds. These results include the effective theory of a light bulk Higgs, gen-
eral expressions for electroweak observables S, T, Y and W, and expressions for
the mass of the radion. We identified a new contribution Z to the wave function
renormalization of the Higgs zero mode which can suppress the tree level Higgs
mass and plays a major role in reducing the contributions to the S and T param-
eters. In holographic language the Higgs wave function renormalization Z can be
large if the dimension of the Higgs condensate decreases towards the IR, while
staying sufficiently large in the UV to solve the hierarchy problem.

Looking for a way to avoid the usual paradigm of custodial gauge symmetries,
we introduced, in Chap. 4, a generalization of the RS model based on an asymptot-
ically AdS (AAdS) metric and a Higgs propagating in the bulk, which allows us to
achieve sizable values of Z and therefore avoid the need for a custodial symmetry.
For that, one needs a strong deviation from conformality in the IR, parametrized
by a large back reaction of the stabilizing field on the AdS background metric. In
order to achieve this, we propose a metric with a curvature singularity, although
we locate the IR brane so that the singularity remains outside the physical interval.

Our model is described by three input parameters: the quantities v and A =
ys — y1 entering our metric, Eq. (4.7), and the parameter a, which corresponds to
the UV dimension of the Higgs condensate. The location of the IR brane, y;, has
been fixed by imposing the Planck-EW hierarchy A(y;) = 35. The parameter k
[or equivalently p = ke~4®V] is then computed from requiring consistence with
EWPT, which in turn sets bounds on the KK masses. We considered the tree-level
contributions to the oblique EWPO and found that they are reduced when a, v
and A are lowered.

There are a number of arguments that can be used to constrain our parameter
space from theoretical considerations. First, for each fixed v and A there is a min-
imum value of a required to solve the hierarchy problem, as described in Sec. 4.2.
Moreover, the requirement that a not too large hierarchy is introduced between
k and p introduces a lower bound on v and A. In particular, for A = 1 we find
v 2 0.5 and a 2 3.1, which translates into a tree-level bound mgk 2 0.8 TeV
from oblique EWPOs and for a Higgs mass my =~ 115 TeV. Conversely, the lowest
bound that can be obtained for RS without custodial symmetry is about 7 TeV.

In Chap. 5 we studied the propagation of fermions in the bulk in our non-
custodial model as well as in RS. This lead to further constraints from non-oblique
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EWPOs (mainly from a modified Zbb coupling) and from flavor and CP violation.
After an statistic analysis, we found that the non-custodial model can improve the
bounds from these two effects about a factor 3 or better (e.g. the median combined
bound for RS is 21 TeV while for our model it is 7.2 TeV).

Therefore, the non-custodial model presented here is an attractive alternative,
or extension, to the RS model, allowing for some interesting phenomenology in the
LHC range, and therefore easing the little hierarchy problem that many models of
New Physics feature. Moreover, the fact that it features a minimal 5D extension of
the SM makes it, arguably, a simpler alternative than the introduction of additional
gauge symmetries, which in turn add calculability complications.

There are many topics that have not been covered in this thesis but which are
worth of future research. To begin with, one topic that deserves closer investigation
is the phenomenology of the radion. One unequivocal prediction of our model is
a heavy radion due to the large deviation of the metric from AdS in the IR.
Fortunately the radion wave function is approximated very well by F(y) = ¢*4®)
due to the excellent accuracy of the leading approximation for the mass, Eq. (3.57).
It should therefore be straightforward to work out its couplings to the other light
fields and establish its possible signatures at the LHC.

Another important point to keep in mind is that we have done all of our
calculations at tree-level. The authors of Ref. [64] showed that the loop corrections
to the EWPO are finite and are in fact expected to be small when compared to the
tree-level result. However, in the case where fermions are in the bulk, the radiative
corrections should depend to a large extent on the size of 5D Yukawa couplings,
so that they are very model dependent.

In fact, there are some C'P violating effects which appear only at the loop level
and which we did not consider in Chap. 5. In particular, the one-loop contribution
to the neutron electric dipole moment [86] due to non-removable Majorana phases
would probably require some kind of flavor alignment, although a bulk Higgs should
certainly alleviate the problem since it renders the one-loop diagram contributing
to it finite.

Also, we should keep in mind that the construction presented in Chap. 5 is
far from being a complete theory of flavor. The anarchic solution to the flavor
problem (more precisely, the values of the 5D Yukawa couplings and the localizing
fermion coefficients cy) should arise from a more fundamental theory.

Finally, it is worth studying with detail the collider phenomenology of the non-
custodial model. In particular, it would be interesting to find signals that could
differentiate one particular model from general models of warped extra dimensions.
In fact, the LHC data is already starting to probe a region of the parameter space
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allowed by the precision observables. Let us hope that the LHC will shed some
light on the quest for New Physics and that it will soon give us a hint about the
fate of models of warped extra dimensions.
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Appendix A

Gauge Fluctuations

In this Appendix we will study the propagation of gauge bosons in the 5D bulk in
the presence of the background provided by the Higgs field and the gravitational
metric. The results we will find here are presented in Chapter 3, where a 5D copy
of the Standard Model is described. We will first (in Sec. A.1) consider the case
of an abelian theory, and we will generalize it later (in Sec. A.2) to a non-abelian
SM-like model.

A.1 An abelian theory

We will first analyze the gauge fixing in a spontaneously broken abelian 5D theory
with a Higgs defined by

H(x,y) = %Wy) T £(, g (A1)

where h(y) is the y-dependent Higgs field background, &(x, y) the Higgs fluctuation

and x(z,y) the Goldstone fluctuation. The 5D action for the gauge field Ay (z,y)
and the Goldstone boson is given by

1
S, = / dizdy/—g (—ZFMNFMN - \DMH|2) (A.2)

where Fyyy = OvAN — ONAn, DyH = 0y H — 195 Ay H and g5 is the 5D gauge
coupling with mass dimension —1/2. The mass dimension of the 5D fields h, &
and Ay is 3/2 and that of x is 1/2. The action (A.2) is invariant under 5D gauge
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transformations

1
5

(@y) — naw+éwaw (A.3)

To quadratic order in the fluctuations Ay and x,! the action (A.2) can be
written as

1 1 1
/&uwyzwwf——eMu%f—§Mﬂ@x—An2

1
—oMie (X - A5)2], (A.4)

where we have defined the y dependent bulk mass
Ma(y) = gsh(y)e "W). (A.5)
The bulk EOM’s from action (A.4) are

DA, + (7244, = M3A, + 9, {Mix — (9" A,) — (e A45)'} = 0 (A.6)
OA; — 0" A, +MA(X —A5) = 0 (A7)
Ox — @A, + M2 (M) (' — 4)) = 0 (A8)

and the boundary conditions are
(95 — A1) ly=o = 0 (A.9)
(X" = 45) ly=041 =0 (A.10)
We can gauge away the last term in Eq. (A.6) by the gauge condition
OMA, — Mix + (e72445) = 0. (A.11)

By making the ansatz (the dot product denotes an expansion in modes)

Az, y) = M\/y_f(y) (A.12)

'We need to consider here only the fluctuations of fields Aj; and y which mix to each other
through the mechanism of electroweak breaking. The Higgs fluctuations £ will decouple from
them and are considered in Sec. 3.1.
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the EOM (A.6) becomes
mif + (e ) — Mif =0, (A.13)

where the functions f(y) are normalized as

1

a 0 fy)dy =1 (A.14)

and satisfy the boundary conditions
f’|y:07y1 =0. (A.15)

It is easy to see that the gauge condition remains invariant under the whole
set of 5D gauge transformations

a(z,y) = alz) - f(y), (A.16)

where «,(z) are arbitrary 4D gauge transformations which are the remaining 4D
invariances. A quick glance at the action, Eq. (A.4), shows that the Goldstone
boson degree of freedom (which couples to 9*A,, in the action) should be defined
as

G(x,y) = Mix — (e_QAAE)), (A.17)
while the remaining degree of freedom is defined as 2
K(z,5) =X - A5 (A18)
which satisfy the decoupled EOM’s [from Eqs. (A.7) and (A.8)]
OG + (e @) — M3G = 0 (A.19)

/
OK + | M;> (e—QAMjK)'] ~ MK = 0. (A.20)

Egs. (A.19) and (A.20) are satisfied by
my G(z) - f(y)

Glz,y) = N (A.21)
K(z,y) = Klz) nly) (A.22)

VU1

2The pseudoscalar modes K,, are physical (they are in particular gauge invariant) and could
play an important role in experimentally identifying the Higgs as a bulk field. Their equations
of motion have been derived previously in Ref. [43].
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where f(y) satisfies Eq. (A.13), and n(y) satisfies the bulk EOM
20 (M2 (e 02n) | - M2n =0 A.23
myn + | My (6 A77) AN = (A.23)
and the (Dirichlet) boundary conditions

Nly=o.y, =0 - (A.24)

The normalization for n will be fixed below. Notice that in the limit M4 — 0 there
is no massless mode since the zero mode would have the (trivial) wave function,
consistent with the boundary conditions, n(y) = 0. Only massive KK modes do
appear.

In the 4D theory the degrees of freedom are the gauge field a,(z) the Goldstone
boson G(z) and the gauge invariant scalar K(z). They transform under the 4D
gauge transformation o(z) as

daty(z) = éﬁua(x) (A.25)
5.Glz) = %a(:c) (A.26)
duK(z) = 0 (A.27)

where the 4D gauge coupling is defined as g = g5/,/y1. It is easy to obtain the 4D
effective Lagrangian upon integration of the y-coordinate in the action (A.4) by
using the decomposition

Vi As(r) = oG- 1) = i K () )
ix(zy) = mifG(x)-f(y)—%Mf (M3e2n(y) - K (z). (A.28)

In fact after integration over the y-coordinate and using the EOM (A.13) and
(A.23) one can write down the 4D Lagrangian as

1 1 1 1
Lyp = _Z@uav - 3,,%)2 - §<mfau - 8uG)2 - §<auK)2 - §m5K2 (A.29)

where we have fixed the normalization for the wave function n as

1 Y
o 1 M3e 249 dy = mfz : (A.30)

In Eq. (A.29) all the squares are to be understood as summations over modes.
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Notice that although the EOM (A.19) and (A.20) are decoupled they arise from
the coupled set (A.7) and (A.8) and as such the mass eigenvalues are common.
Of course this does not mean that Eqs. (A.13) and (A.23) should have the same
mass eigenvalues and the puzzle can be resolved by noticing that Eqs. (A.13) and
(A.23) always admit the trivial solutions f(y) = 0 and/or n(y) = 0. In fact a
solution m? and fM(y) from Eq. (A.13) corresponds to the mass eigenfunctions
(fD(y),nV(y) = 0) and the corresponding solution m32 and 7? (y) from Eq. (A.23)
corresponds to the mass eigenfunctions (f®(y) = 0,7®(y)). Then the effective
Lagrangian corresponding to all the modes can be written as

1

1
Lip = =¥ (30 (@) = 0,0 (@) + 52, (a1 (@)

bSO (@) + 1, (04 ()G (1)

S (1@[((”2)@))2 N lmfm([(("?)(x))?) (A.31)

—~\2 2

A.2 The 5D Standard Model

The generalization to non-abelian gauge theories is straightforward. In particular
in the SU(2) x U(1) SM the gauge and Higgs bosons are introduced in the usual
way with a 5D action given by

S5 = [ diadyy=g (~ 3 (Fiun ) = (Bl = IDuHP — V(@ 1)), (432

where the 5D Higgs field is written as

1 195X 0
H:ﬁe <h+§> (A.33)

and where the matrix x only includes the coset and gs is the 5D SU(2)y coupling.
The ¢ field will again decouple so we consider it separately. Following the standard
notation we have

S AT + MZM 1w+
M 2w V2 ZM (A.34)

Dy = Oy — 195An Ay = Ly -
V2 M "2

and, analogously,

c?u—s?u 1
x=| "z X X+ ) (A.35)
2 X- T2, XZ
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where the weak angle is defined as in the 4D theory, t,, = g5 /g5 = ¢’/¢g. Expanding
the Lagrangian to second order we obtain a straightforward generalization of the
abelian case, Eq. (A.4)

L=0+L7+ LV, (A.36)
with
~ 1 v \2 L o4 Y \2
L0 = = (F,) =g (Fs)” (A.-37)
1 1 1
L7 = —(FL) = 5e AR = 5Mp9uxz — ALY’
1
—5e MG — ALY, (A.38)
1.1 . -
LY = _épleFW ~ ¢ ZAF;%FMS — My (Fuxs — A:)(@HX, —4)
—e MR (= AN — A7) (A-39)

Here we have defined the 5D y-dependent gauge boson masses

M) = Lh)e O, Mply) = —Mwly), M) =0 (Ad0)

Now we should proceed as in the abelian case and define the mode expansion
for the different gauge bosons A,(z,y) with profiles fa(y) (A = W, Z,~) as in
Eq. (A.12) and the corresponding pseudoscalars K 4(z,y) with profiles n4(y) as in
Eq. (A.22) which satisfy [Eqs. (A.13) and (A.23)]

my, fat+ (e f)) = Mifa = 0 (A1)

/ /!
M2 (e Mina) | = Mina = 0 (A.42)

My, 1A +

where M, is defined in Eq. (A.40) and my, and m,, the mass eigenvalues which
are identified with the physical gauge boson masses.



Appendix B

Gauge Boson Propagators

In this appendix we compute the gauge boson propagators at zero momentum. In
other words, we would like to compute

") [
Grop (y,9) = D ( )2 ( ), (B.1)
n>1 ms,

where f, are the wave functions of the gauge bosons and B, = D, N denote
Dirichlet or Neumann BC at the boundaries at y = y,:

Gpp,(0,y') =0 or Gyp(0,y)=0, (B.2)
and

GBOD(y17 y/) =0 or G,BON(ylv y,) =0, (Bg)

respectively. The sum excludes any zero mode (if present).

The f, are the wave functions in the symmetric phase, and they satisfy

(e f) +mifu=0. (B.4)
Therefore, the propagators satisty the EOM
9y [ V0, Gp,p, (v, 1) = —11d(y —y/), (B.5)
for ByB; # NN and
0y [ D0,Grn(y,y)] = 1= 1oy —y/), (B.6)

in the case of Neumann-Neumann BC with zero mode subtracted. These equations
are easily derived from Eq. (B.4) using the completeness relation’

S L)) = oy —v). (B.7)

n>0

'Furthermore recall that our normalization reads [ fZ = y1, in particular fo(y) = 1 in the
NN case.
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Moreover, the boundary conditions have to be supplemented by the jump and
continuity relations

672A(y/) [ayGBoB1 (y/ + ¢, y/) - ayGBOBl (yl -6 I)] =Y, (BS)
GBOBl (y/ + €, y/) - GBOBI (y/ —6Y /) =0. (Bg)

For ByB; # NN the solutions are straightforward and read

Y<
Con(y.y) =i [ e (B.10)
Y1
GND(y,y’)Zyl/ e, (B.11)
Y>

() ()
[

where y. (y~) denotes the smaller (larger) of the pair y,y’. One can immediately
verify that these are solutions to the system of Egs. (B.5), (B.2), (B.3) and (B.9).

Gop(y,y) =wn (B.12)

The NN case requires more care. One can always shift the solution by a 3/
dependent constant: the bulk Eq. (B.6) is invariant under such a shift and so are
the BC and the conditions Eq. (B.9). After imposing symmetry in the interchange
of y and ¢ (obvious from the definition Eq. (B.1)), one still has an undetermined
y’" independent constant. In fact one, can immediately verify that

Gan(y,y) / dj eQA(y)y+ dy62 Dy —9) + ¢ (B.13)

is a solution (symmetric under interchange of y,y’) to the system for arbitrary
constant c¢. To fix ¢, we impose that Gyy(0,0) reduces to the brane to brane
propagator computed in Eq. (3.77):

Gnn(0,0) = —})i_)r% (ﬁ — 2%) . (B.14)

Notice that in Eq. (3.77) one can set m4 to zero in the symmetric phase. We then
find

~ 2
Gux(0.0) =y [ A (1 - yﬂ) (B.15)
0 1

which fixes ¢ uniquely. Finally, we end up with

1w .
Gan(y,Y) /dye“(nyr dj e*4 9 (y, y)——/o D g(y 7). (B.16)

y> U1



Appendix C

Fermion Propagators

In this appendix we will provide a few more details concerning the procedure of
integrating out fermionic KK modes, as done in Sec. 5.1.3. This parallels and
generalizes the computation in Appendix B for the gauge bosons. We will restrict
ourselves to the case where the KK tower contains a zero mode that has to be
subtracted, which is the most complicated case and the only relevant for this work.
In fact, in order to evaluate the first diagram in Fig. 5.2 we need to compute

€ 3,0 )] [€26) 920 91 ()

2 Y
mn

S =LV Y " dyay
n#0
(C.1)

where £°(y) is the normalized Higgs zero mode wave function. The expression for
B&R is completely analogous. The idea is now to first perform the sum over the KK
modes and then the integrations. Let us thus consider the equations of motion for
the KK modes of a fermion,

St MO, ~ QMO+ QW =0, Q] =0, (C2)
which follow from Eq. (5.27). It will be convenient to factor out the zero mode as
Duly) = e x(y) (C.3)

which transforms Eq. (C.2) into
el + (7N =0, Xily—oy, =0 (C4)

The completeness and orthonormality conditions in this basis read:
o Y1
> Xa@)xaly) = ey —y), /0 22 (1) X (Y) = G- (C.5)
=0
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We now need to compute the sum
X (Y)Xn (/
Gly,y) = ( )2 W) (C.6)
n#0 my

Note that the zero mode has been excluded from the sum. To compute G(y,v'),
we integrate Eq. (C.4) twice

Y u
() = xa(0) = m2 [ A0 [Fedn=aty ) ()
0 0

and use Eq. (C.5) to get

Gly,y) =D xn(0xn(0) _ /O T A1)+ /O g (C.8)

2
n#0 my

where (y) has been defined in Eq. (5.30), and y~ (y<) is the larger (smaller) of
the pair (y,y’). We thus have reduced the problem of finding G(y,y’) to that of
finding G(0,0), which is the zero momentum limit of the (zero mode subtracted)
brane-to-brane propagator. The latter can be written as

x(0,p*)  x5(0)

G(0,0;p%) = — — C.9
( ) X(0.p%)  p? (©9)

where (0, p?) is the solution to
—e 292y (e 7y) =0, X'\yl =0. (C.10)

(note that we do not impose a BC at y = 0). One can easily derive an equation
for x'/x and solve it in a power series in p?:

/ 2
oA —2Q() X' (y,p7) _ p2 /y1 LAW-20()
Y

x(y, p?) (C.11)

2
ot /yl AW +2Q(w) [ / " eA(””Q(”)] +.
y u

One ends up with
Y1
G(0,0) = / A1 )2 (C.12)
0
and hence

Y1 y> Yy<
G(y.y) :/0 A1 - Q) —/0 AT20(1 - Q) +/0 ATRO . (C.13)

Using this expression in Eq. (C.1) we arrive, after a series of partial integrations,
at the quoted result Egs. (5.33-5.34).



Appendix D

Four-Fermion Terms from
Electroweak KK Modes

In this appendix we explicitely write the four-fermion interactions that appear after
integrating out the KK modes of weak gauge bosons. For the neutral currents the
effective Lagrangian reads

4 kl,rs 1 rk AV S

Lo = Y S (FA FO ) (D.1)

oI

where the constants ¢ are tensors in flavor space:
2
kers € 1 SM _SM A (ki b Ty r*s)
BT <Qf@f’ R )Za&f;?(vfxvx JViVy?). (D2
Z7j

Finally, integrating out the KK modes of the W boson also leads to four-fermion

terms, which we write explicitly as

‘Cé’fC = 5ukd“,drus (ﬂlzfy‘udé) (j27“u3L> + 51/]“65,6”"1/5 (foyuei) (éTLfY“VZ)

_ _ (D.3)
+ [6ukdz7ews(uﬁy“dﬁ)(eiv“yﬁ) + h.c.} :
with

it arae = X G g VIIVIEVIIV, (D.4)

ij
Ouket ere = D Gy g VIVEVIIVS (D.5)

ij
Oykgt erys = 5 > dqivgiVuLZVd*LZ%rL]VV’fj . (D.6)

ij
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Appendix E

Right-Handed Hierarchies

In Sec. 5.4 we gave expressions for the masses and left handed mixing angles in
case there is a left handed hierarchy, Y} < Y} < Y3l This fact is well supported
by experiment, given that the CKM mixing angles are hierarchical. There is no
such analogous measurement for the right handed mixing angles. However, making
the assumptions that we also have a right-handed hierarchy,

Yi<Ys<Yi, (E.1)

the expressions given in Sec. 5.4 simplify. Although the calculation is a bit tedious,
the result is very simple: We just have to replace the mass-squared matrices by
the Yukawas. Indeed, by writing the expressions in Eqgs. (5.67-5.69) and (5.70—
5.72) explicitly in terms of the Yukawa couplings and taking the limit Eq. (E.1)
we obtain for the angles

v 12N
R v = (5] . (©2)
22 22
& Vi \"
VQL — _ﬁ VqL — ﬂ E3
Vi VLY YA\
ViR pen v () (©.4
and for the mass eigenvalues
02
(m3)? = 2 VAP, (E5)
q\2 __ U_Q 4 |2
(m3)? = 2 VAP (E6)
2
v ~ o~ ~
(mi)”* = 5 V) = YY1/ Vel (E.7)
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where we have defined

YViivs
Yas

These results agree with the ones quoted in Ref. [80], whose authors considered real

Yukawas. In the case of a right handed hierarchy, there is also an approximation to

the right handed rotations . It can be obtained from Egs. (E.2-E.4) by replacing

Y9 — Y9 leading to expressions again in accordance with Ref. [80].

f/g =Y - (E.8)
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