ÍNDICE DE FIGURAS

Figura 1.1	Plano Tecnológico de tratamiento de aguas	5
Figura 1.2	Plano Tecnológico de las zonas de operación de diferentes procesos de tratamiento de aguas	6
Figura 1.3	Caminos de reacción en la degradación del 2- clorofenol mediante la oxidación fotocatalítica heterogénea.	11
Figura 1.4	Intermedios de reacción en la oxidación fotocatalítica heterogénea del 2-clorofenol, 3-clorofenol y 4- clorofenol.	11
Figura 1.5	Caminos de reacción en la oxidación del fenol en condiciones supercríticas.	14
Figura 1.6	Intermedios de reacción identificados en la oxidación del fenol en condiciones supercríticas	15
Figura 1.7	Caminos de reacción en la oxidación de compuestos aromáticos en condiciones supercríticas	16
Figura 1.8	Caminos y productos de reacción en la oxidación del 2-clorofenol en condiciones supercríticas utilizando el catalizador CuO/ZSM	18
Figura 2.1	Clasificación de los reactores químicos en función del estado en que operan	32
Figura 2.2	Clasificación de los reactores químicos según los modos de operación y el sistema de reacción	35
Figura 2.3	Perfiles de concentración en un reactor mecánicamente agitado o slurry	38
Figura 2.4	Tipos de reactores trifásicos de lecho móvil	39
Figura 2.5	Tipos de operación con los reactores Slurry	40
Figura 2.6	Formas de operar con los reactores trifásicos de lecho fijo	42

Figura 2.7	Plano hidrodinámico de regímenes de flujo de gas y de líquido en cocorriente de bajada de los reactores trifásicos de lecho fijo, tal y como propusieron Fukushima y Kusaka	43
Figura 2.8	Planos hidrodinámicos de regímenes de flujo de gas y de líquido en cocorriente de subida de los reactores trifásicos de lecho fijo, tal y como propusieron Fukushima y Kusaka	45
Figura 2.9	Perfiles de concentración para un reactor que opere en un régimen de goteo con flujos de gas y de líquido de bajada.	50
Figura 2.10.	Mecanismo de reacción propuesto por Levec para la reacción de oxidación de fenol en un reactor Batch	55
Figura 2.11	Reacción de descarboxilación de los intermedios de reacción ácidos	56
Figura 2.12	Mecanismo y productos de reacción obtenidos en la oxidación del fenol en un reactor de lecho fijo con régimen de goteo, propuesto por Delvil y Harris	57
Figura 3.1	Equipo de impregnación	61
Figura 3.2	Reactor y equipo utilizado para la calcinación del catalizador	64
Figura 3.3	Estructuras de los compuestos tipo Brucita y Hidrotalcita	66
Figura 3.4	Equipo de precipitación para la obtención de las hidrotalcitas	67
Figura 3.5	Tipos de isotermas de adsorción	73
Figura 3.6	Ciclos de histèresis presentes en las isotermas de adsorción y desorción	74
Figura 3.7	Espectro continuo del tubo de rayos X observado al aumentar la diferencia de potencial entre el anticátodo y el filamento sobre los electrones	78
Figura 3.8	Niveles energéticos que intervienen en la generación del espectro de rayos X	80
Figura 3.9	Radiación característica del tubo de rayos X	80

Figura 3.10	Esquema del equipo discontinuo de 300 ml de capacidad	98
Figura 3.11	Esquema del equipo discontinuo de 1000 ml de capacidad	101
Figura 3.12	Esquema del equipo continuo	103
Figura 3.13	Esquema del reactor utilizado en el equipo en continuo.	105
Figura 3.14	Cromatograma típico de una muestra obtenida en la oxidación del fenol	113
Figura 3.15	Cromatograma típico de una muestra obtenida en la oxidación del 2-clorofenol	113
Figura 4.1	Difractogramas de rayos X de los catalizadores 10%CuO/Al2O3(673)(A),10%CuO/Al2O3(673)(N) y 15%CuO/Al2O3(673)(N)	126
Figura 4.2.	TPR del catalitzador CuO/γ -Al ₂ O ₃ y de una muestra pura de CuO, utilizada como referencia	131
Figura 4.3.	Energía de activación en función del grado de reducción (α), calculado por el método de Coats-Redfern, para las muestras CuO, 10% CuO/Al ₂ O ₃ (673)(N), 10% CuO/Al ₂ O ₃ (773)(N), 10% CuO/Al ₂ O ₃ (973)(N) y 10% CuO/Al ₂ O ₃ (1173)(N)	133
Figura 4.4	Scanning de la muestra 10% CuO/Al ₂ O ₃ (973) (N)	135
Figura 4.5	Conversión de fenol con los catalizadores comerciales	136
Figura 4.6	Conversión de fenol para los catalizadores preparados por impregnación sobre la γ-alúmina Norton con diferente % de CuO y calcinados a 673 K	138
Figura 4.7.	Conversión de fenol para los catalizadores preparados por impregnación de la γ-alúmina Norton con 10% de CuO calcinados a diferentes temperaturas	138
Figura 4.8	Conversión de fenol para los catalizadores preparados por impregnación de la γ -alúmina Alcoa calcinados a 673 K	140
	0/0 1	1 TU

Figura 4.9	Conversión de fenol con pH de la solución=10 (NaOH) para los catalizadores bimetálicos preparados por impregnación de la alúmina Alcoa calcinados a 673 K	142
Figura 4.10	Concentración de cobre en el efluente de salida del reactor para el catalizador 10% CuO/Al_2O_3 (673) (N).	144
Figura 4.11	Mecanismo y productos de reacción simplificados obtenidos en la oxidación del fenol	145
Figura 4.12	Intermedios de reacción detectados en los efluentes de salida del reactor en la oxidación del fenol para el catalizador 10% CuO/Al_2O_3 (673) (N)	147
Figura 4.13	Conversión de fenol y TOC eliminado detectados en los efluentes de salida del reactor en la oxidación del fenol para al catalizador 10% CuO/Al ₂ O ₃ (673) (N).	147
Figura 4.14	Difractogramas de rayos X del catalitzador 10% CuO/Al2O3 (673)(N) sintetizado vía impregnación (Alúmina Norton): (1) antes y (2) después de reacción pH=5,9)	152
Figura 4.15	Difractogramas de rayos X del catalizador 15% CuO/Al2O3 (673)(N) sintetizado vía impregnación (Alúmina Norton): (1) antes y (2) después de reacción pH=5,9)	152
Figura 4.16	Difractogramas de rayos X del catalitzador 10% CuO/Al2O3 (673)(A) sintetizado vía impregnación (Alúmina Norton): (1) antes y (2) después de reacción 2a pH=5,9; 2b pH=10)	153
Figura 4.17	Difractogramas de rayos X del catalizador 2%ZnO/10%CuO/Al2O3 (673)(A) sintetizado vía impregnación (Alúmina Alcoa): (1) antes y (2) después de reacción ((2a pH=5,9; 2b pH=10)	153
Figura 4.18	Difractogramas de rayos X del catalizador 10%NiO/Al2O3 (673)(A) sintetizado vía impregnación (Alúmina Alcoa): (1) antes y (2)	
	después de reacción ((2a pH=5,9; 2b pH=10)	154

Figura 4.19	Conversión de fenol para el catalizador de aluminato de cobre preparado por impregnación de alúmina y calcinado a 1123 K	9
Figura 4.20	Difractogramas de rayos X de las hidrotalcitas HT[1/0/0/2], HT[2/0/0/1] y HT[3/0/0/1], calcinadas a la misma temperatura (373 K)	7
Figura 4.21	Difractogramas de rayos X de las hidrotalcitas HT[0/1/0/2], HT[0/2/0/1] y HT[0/3/0/1], calcinadas a la misma temperatura (373 K)	8
Figura 4.22	Difractogramas de rayos X de la hidrotalcita HT[1/0/0/2], a diferentes temperaturas de calcinación 18	1
Figura 4.23	Difractogramas de rayos X de la hidrotalcita HT[2/0/0/1], a diferentes temperaturas de calcinación. 182	2
Figura 4.24	Difractogramas de rayos X de la hidrotalcita HT[3/0/0/1], a diferentes temperaturas de calcinación 182	3
Figura 4.25	Difractogramas de rayos X de la hidrotalcita HT[0/1/0/2], a diferentes temperaturas de calcinación 184	4
Figura 4.26	Difractogramas de rayos X de la hidrotalcita HT[0/3/0/1], a diferentes temperaturas de calcinación 18	5
Figura 4.27	Difractogramas de rayos X de la hidrotalcita HT[0/0/1/2], a diferentes temperaturas de calcinación 18	6
Figura 4.28	Difractogramas de rayos X de la hidrotalcita HT[0,75/0,25/0/2], a diferentes temperaturas de calcinación	8
Figura 4.29	Difractogramas de rayos X de la hidrotalcita HT[0,6/0,4/0/2], a diferentes temperaturas de calcinación	9
Figura 4.30	Difractogramas de rayos X de la hidrotalcita HT[0,5/0,5/0/2], a diferentes temperaturas de	0
Figura 4.31	Difractogramas de rayos X de la hidrotalcita HT[0,4/0,6/0/2], a diferentes temperaturas de	,
	calcinación	0

Figura 4.32	Difractogramas de rayos X de la hidrotalcita HT[0,25/0,75/0/2], a diferentes temperaturas de calcinación
Figura 4.33	Difractogramas de rayos X de la hidrotalcita HT[0,75/0/0,25/2], a diferentes temperaturas de calcinación
Figura 4.34	Difractogramas de rayos X de la hidrotalcita HT[0,5/0/0,5/2], a diferentes temperaturas de calcinación
Figura 4.35	Difractogramas de rayos X de la hidrotalcita HT[0,25/0/0,75/2], a diferentes temperaturas de calcinación: 373 K, 623 K, 773 K, 973 K i 1023 K 193
Figura 4.36	Difractogramas de rayos X de la hidrotalcita HT[0/0,75/0,25/2], a diferentes temperaturas de calcinación
Figura 4.37	Difractogramas de rayos X de la hidrotalcita HT[0/0,5/0,5/2], a diferentes temperaturas de calcinación
Figura 4.38	Difractogramas de rayos X de la hidrotalcita HT[0/0,25/0,75/2], a diferentes temperaturas de calcinación
Figura 4.39	Difractogramas de rayos X de la hidrotalcita HT[0,5/0,25/0,25/2], a diferentes temperaturas de calcinación
Figura 4.40.	Análisis de los gases de descomposición de la hidrotalcita HT [1/0/0/2], mediante espectrómetro de masas
Figura 4.41	Análisis de los gases de descomposición de la hidrotalcita HT [2/0/0/1], mediante espectrómetro de masas
Figura 4.42	Análisis de los gases de descomposición de la hidrotalcita HT [3/0/0/1], mediante espectrómetro de masas

Figura 4.43	Análisis de los gases de descomposición de la hidrotalcita HT [0/1/0/2], mediante espectrómetro de masas.	200
Figura 4.44	Análisis de los gases de descomposición de la hidrotalcita HT [0/3/0/1], mediante espectrómetro de masas.	201
Figura 4.45	Análisis de los gases de descomposición de la hidrotalcita HT [0/0/1/2], mediante espectrómetro de masas	201
Figura 4.46	TPR de la muestra HT [1/0/0/2] calcinada a 1023 K, realizado con la termobalanza	202
Figura 4.47	TPR de la muestra HT [3/0/0/1] calcinada a 1023 K, realizado con la termobalanza.	204
Figura 4.48	TPR de la muestra HT [0/1/0/2] calcinada a 1023 K, realizado con la termobalanza.	204
Figura 4.49	TPR de la muestra HT [0/0/1/2] calcinada a 1023 K, realizado con la termobalanza.	205
Figura 4.50	TPR de la muestra HT [0,75/0,25/0/2] calcinada a 1023 K, realizado con la termobalanza	207
Figura 4.51	TPR de la muestra HT [0,5/0,5/0/2] calcinada a 1023 K, realizado con la termobalanza	208
Figura 4.52	TPR de la muestra HT [0,25/0,75/0/2] calcinada a 1023 K, realizado con la termobalanza	208
Figura 4.53	TPR de la muestra HT [0,75/0/0,25/2] calcinada a 1023 K, realizado con la termobalanza	209
Figura 4.54	TPR de la muestra HT [0,5/0/0,5/2] calcinada a 1023 K, realizado con la termobalanza	210
Figura 4.55	TPR de la muestra HT [0,25/0/0,75/2] calcinada a 1023 K, realizado con la termobalanza	210
Figura 4.56	TPR de la muestra HT [0/0,75/0,25/2] calcinada a 1023 K, realizado con la termobalanza	211
Figura 4.57	TPR de la muestra HT [0/0,5/0,5/2] calcinada a 1023 K, realizado con la termobalanza	212

Figura 4.58	TPR de la muestra HT [0/0,25/0,75/2] calcinada a 1023 K, realizado con la termobalanza	212
Figura 4.59	TPR de la muestra HT [0,5/0,25/0,25/2] calcinada a 1023 K, realizado con la termobalanza	213
Figura 4.60	Scanning de la muestra HT [3/0/0/1] (373), sin calcinar.	214
Figura 4.61	Scanning de la muestra HT [0/3/0/1] (373), sin calcinar.	215
Figura 4.62	<i>Scanning</i> de la muestra HT [3/0/0/1], calcinada a 1023 K, donde se observa la textura del aluminato de cobre.	215
Figura 4.63	<i>Scanning</i> de la muestra HT [1/0/0/2], calcinada a 1023 K, donde se observa la textura de la espinela de cobre.	216
Figura 4.64	<i>Scanning</i> de la muestra HT [0/1/0/2], calcinada a 1023 K, donde se observa la textura de la espinela de níquel	216
Figura 4.65	<i>Scanning</i> de la muestra HT [0/0/1/2], calcinada a 1023 K, donde se observa la textura de la espinela de zinc.	217
Figura 4.66	<i>Scanning</i> de la muestra HT [0,5/0,5/0/2], calcinada a 1023 K, donde se observa la textura de la espinela de cobre y níquel	217
Figura 4.67	<i>Scanning</i> de la muestra HT [0,75/0/0,25/2], calcinada a 1023 K, donde se observa la textura de la espinela de cobre y zinc	218
Figura 4.68	<i>Scanning</i> de la muestra HT [0/0,75/0,25/2], calcinada a 1023 K, donde se observa la textura de la espinela de níquel y zinc	218
Figura 4.69	<i>Scanning</i> de la muestra HT [0,5/0,25/0,25/2], calcinada a 1023 °C, donde se observa la textura de la espinela de cobre, níquel y zinc	219
Figura 4.70	Conversión de fenol para las hidrotalcitas calcinadas a 623 K	222
Figura 4.71	Conversión de fenol para las hidrotalcitas calcinadas a 623 K.	223

Figura 4.72	Conversión de fenol para las hidrotalcitas de cobre, níquel o zinc calcinadas a 1023 K utilizando el reactor semibatch.	225
Figura 4.73	Conversión de fenol para las hidrotalcitas mixtas de níquel y zinc calcinadas a 1023 K utilizando el reactor semibatch.	226
Figura 4.74	Conversión de fenol para las hidrotalcitas mixtas de cobre y zinc calcinadas a 1023 K utilizando el reactor semibatch.	227
Figura 4.75	Conversión de fenol para las hidrotalcitas de cobre y/o níquel calcinadas a 1023 K utilizando el reactor semibatch	227
Figura 4.76	Conversión de fenol para las hidrotalcitas de cobre o níquel o zinc calcinadas a 1023 K utilizando el reactor en continuo	230
Figura 4.77	Conversión de fenol y TOC finales para las hidrotalcitas de cobre o níquel o zinc calcinadas a 1023 K utilizando el reactor en continuo	231
Figura 4.78	Conversión de fenol para las hidrotalcitas mixtas de níquel y zinc calcinadas a 1023 K utilizando el reactor en continuo.	232
Figura 4.79	Conversión de fenol y TOC finales para las hidrotalcitas mixtas de níquel y zinc calcinadas a 1023 K utilizando el reactor en continuo	232
Figura 4.80	Conversión de fenol para las hidrotalcitas mixtas de cobre y zinc calcinadas a 1023 K utilizando el reactor en continuo.	233
Figura 4.81	Conversión de fenol y TOC finales para las hidrotalcitas mixtas de cobre y zinc calcinadas a 1023 K utilizando el reactor en continuo	234
Figura 4.82	Conversión de fenol para las hidrotalcitas mixtas de cobre y níquel calcinadas a 1023 K utilizando el reactor en continuo.	235

Figura 4.83	Conversión de fenol y TOC finales para las hidrotalcitas mixtas de cobre níquel calcinadas a 1023 K utilizando el reactor en continuo	235
Figura 4.84	Conversión de fenol para las hidrotalcitas de cobre y cobre-níquel calcinadas a 1023 K utilizando el reactor semibatch en diversos test catalíticos	240
Figura 4.85	Subproductos identificados en el proceso de oxidación del fenol con el catalizador HT[1/0/0/2](1023) utilizando el reactor semibatch.	242
Figura 4.86	Subproductos identificados en el proceso de oxidación del fenol con el catalizador HT[0,5/0,5/0/2](1023) utilizando el reactor semibatch.	242
Figura 4.87	Conversión y TOC eliminado en el primer run del proceso de oxidación del fenol con el catalizador HT[1/0/0/2](1023) utilizando el reactor semibatch	243
Figura 4.88	Conversión y TOC eliminado en el primer run del proceso de oxidación del fenol con el catalizador HT[0,5/0,5/0/2](1023) utilizando el reactor semibatch	243
Figura 4.89	Espectros de CO2 obtenidos para las muestras usadas HT[1/0/0/2](1023) y HT[0,5/0,5/0/2](1023) al someterlas a una oxidación a temperatura programada (TPO)	245
Figura 4.90	Conversión de 2-clorofenol para las hidrotalcitas de cobre, níquel o zinc calcinadas a 1023 K utilizando el reactor semibatch.	246
Figura 4.91	Conversión de 2-clorofenol para las hidrotalcitas mixtas de níquel y zinc calcinadas a 1023 K utilizando el reactor semibatch	247
Figura 4.92	Conversión de 2-clorofenol para las hidrotalcitas mixtas de cobre y zinc calcinadas a 1023 K utilizando el reactor semibatch	248
Figura 4.93	Conversión de 2-clorofenol para las hidrotalcitas mixtas de cobre y níquel calcinadas a 1023 K utilizando el reactor semibatch.	249

Figura 4.94	Mecanismo y productos de reacción simplificados obtenidos en la oxidación del 2-clorofenol	251
Figura 4.95	Conversión de 2-clorofenol para las hidrotalcitas de cobre o níquel o zinc calcinadas a 1023 K utilizando el reactor en continuo.	252
Figura 4.96	Conversión de 2-clorofenol y TOC finales para las hidrotalcitas de cobre o níquel o zinc calcinadas a 1023 K utilizando el reactor en continuo	253
Figura 4.97	Conversión de 2-clorofenol para las hidrotalcitas mixtas de níquel y zinc calcinadas a 1023 K utilizando el reactor en continuo.	255
Figura 4.98	Conversión de 2-clorofenol y TOC finales para las hidrotalcitas mixtas de níquel o zinc calcinadas a 1023 K utilizando el reactor en continuo	255
Figura 4.99	Conversión de 2-clorofenol para las hidrotalcitas mixtas de cobre y zinc calcinadas a 1023 K utilizando el reactor en continuo.	256
Figura 4.100	Conversión de 2-clorofenol y TOC finales para las hidrotalcitas mixtas de cobre y zinc calcinadas a 1023 K utilizando el reactor en continuo	257
Figura 4.101	Conversión de 2-clorofenol para las hidrotalcitas mixtas de cobre y níquel calcinadas a 1023 K utilizando el reactor en continuo	258
Figura 4.102	Conversión de 2-clorofenol y TOC finales para las hidrotalcitas mixtas de cobre y níquel calcinadas a 1023 K utilizando el reactor en continuo	259
Figura 4.103	Conversión de 2-clorofenol para las hidrotalcitas de cobre y cobre-níquel calcinadas a 1023 K utilizando el reactor semibatch en diversos test catalíticos	261
Figura 4.104	Subproductos identificados en el proceso de oxidación del 2-clorofenol con el catalizador HT[1/0/0/2](1023) utilizando el reactor semibatch.	263
Figura 4.105	Subproductos identificados en el proceso de oxidación del 2-clorofenol con el catalizador	

	HT[0,5/0,5/0/2](1023) utilizando el reactor semibatch.	264
Figura 4.106	Conversión yi TOC eliminado en el primer run del proceso de oxidación del 2-clorofenol con el catalizador HT[1/0/0/2](1023) utilizando el reactor semibatch	265
Figura 4.107	Conversión y TOC eliminado en el primer run del proceso de oxidación del 2-clorofenol con el catalizador HT[0,5/0,5/0/2](1023) utilizando el reactor semibatch	266
Figura 6.1	Esquema de la planta piloto	276

12 Francesc Xavier Rodríguez i Muñoz