
Building Ethernet Connectivity Services
for Provider Networks

Eduard Bonada i Cruells

Tesi Doctoral UPF / 2012

Dirigida per

Dra. Dolors Sala i Batlle
Departament de Tecnologies de la Informació i les Comunicacions

Στoυς δυo µας

"Si em llevés i fos rei,
reuniria a les corts per incloure en el codi penal

que es prohibeixi a la gent anar pel món
buscant res que no pugui anomenar."

(De la cançó Flor Groga de Manel)

"If I woke up as king,
I would convene the court to include in the penal code
that people are forbidden to wander through the world

in search of something they cannot name."
(From the song Flor Groga by Manel)

Acknowledgements

First of all, I want to sincerely thank my advisor. Without her help, her guidance
and her support, I wouldn’t have been able to complete this work. Her continuous
dedication helped me to overtake all the obstacles that I encountered in my way.
Thank you Dolors!

Also, specially thanks to my colleagues and friends from the second floor of
Tànger building for providing me a lot of support and companionship. Thank
you for your technical discussions, coffee breaks, economical lectures, delightful
dinners, running sessions, friday after-lunch procrastination, etc. Thank you
guys!

Obviously I also want to thank my whole family for supporting me. Surely
they are the ones who have believed in me all this time, even more than myself.
Thanks a lot. (Evidentment també full agraïr a la meva família tot el support
que m’ha donat. Segurament ells són els que més han cregut en mi durant tot
aquest temps, fins i tot més que jo mateix. Moltes gràcies!)

Thanks to her. I cannot find enough words to describe my gratitude for being
there. This is why I dedicate to her the entire thesis with more than 70.000
words. Anna, ευχαριστω!

And finally, I want to thank this list of people for the enjoyable moments:
Paul, John, George, Ringo; Jarvis, Nick, Candida, Steve, Russell; David, Marc,
Dani, Xavi, Alfons; Marcus, Winston, Ben, Ted; Guillem, Arnau, Marti, Roger;
Damon , Graham, Alex, Dave; Ernest, Jordi, Jordi; Zach, Perrin, Jason, Nick,
Kristin, Paul , Jon, Kelly, Tracy, Ben, Lucy; Joan Miquel, Pau, Pere Manel,
Jaume, Joan; Win, Regine, Richard, William, Tim, Sarah, Jeremy; Joan, Can-
did, David, Lluis, Marina; Joe, Mick, Paul, Terry, Nicky; Ian, Bernard, Stephen,
Gillian, Phil, Tom, Peter; Robert, Simon, Roger, Jason, Reeves; Morrissey,
Johnny, Andy, Mike, Dale, Craig; Debbie, Chris, Clem, Leigh, Matt, Tommy;
Chris, Mike, Lee, Chas, Graham, Daniel; Sid, Steve, Paul, Glen, John; Pere,
Joan, Aleix, Lluis; Dani, Joan Enric, Eduard, Ferran; Freddie, Brian, John,
Roger; Roger, David, Nick, Richard; David; Brian, Mike, Al, David, Bruce; and
Ludwig.

v

Abstract

The continuous growing demand of data services in residential and enterprise cus-
tomers has motivated the network providers to deploy more effective networking
technologies in their infrastructures. Ethernet’s good properties offer providers an
opportunity for using it at very large scale replacing the existing ATM/SONET
and even in some extent IP networking. However, Ethernet was originally de-
signed for LANs without very strict requirements, and using it as a carrier-grade
technology represents a new application that leads to new requirements such as
quick recovery, efficient resource utilization, better path selection and provision
of path control.

In Ethernet technology the Spanning Tree Protocol (STP) is responsible of
establishing the connectivity of the different Ethernet segments in a single inter-
connected network. The STP creates an active tree on top of the physical topology
to avoid potential loops and allows the bridge functionalities to work properly.
There are some implications of using STP to prune the physical topology into
an active tree. One, selecting a single path to connect two peers eliminates
all potential redundancy that might be available through extra links. Two, the
communication over this single tree only provides optimal communication paths
between nodes in the same tree branch. Three, STP takes tens of seconds to re-
cover from a failure while providers only allow a maximum of 50msec. Although
this performance has been improved with the introduction of the Rapid Spanning
Tree Protocol (RSTP), it still takes tens of seconds to recover from some crucial
situations when the Root of the tree fails because it creates the count-to-infinity
problem. And four, the paths that form the tree are elected only based on the
link cost while provider networks require more flexibility.

In this thesis we propose a complete solution based on RSTP extensions that
addresses each one of the listed shortcomings. Our approach is based on under-
standing the fundamentals of the single tree protocol to identify the limitations
and design the concrete extensions required. First of all, we perform a detailed
characterization of RSTP providing a comprehensive description of its operations
as well as an analysis of the protocol behavior in the most common situations.
The study of the count-to-infinity effect allows us to identify the real causes and
a set of unexpected side-effects that the actual reasons of the long recovery.

The deep understanding of the original protocol allows us to design RSTP-
Conf as an extension to RSTP that addresses the long failure recovery experienced
by RSTP because of the count-to-infinity effect. It is based on a simple yet effec-
tive confirmation mechanism that avoids the count-to-infinity detecting whether
the Root has really failed or not. We evaluate the performance of RSTP-Conf
by means of network simulation and results show that this technique efficiently
reduces the recovery from the Root failure to at most twice the propagation delay
through the network diameter.

The rest of shortcomings are addressed by expanding the active topology to
multiple trees. RSTP-SP deploys an active topology based on configuring one
tree per node. This allows operating with shortest-paths in all communications
and provides an increase of resource utilization because chances are that a link

vii

viii

is active in at least one of the trees. The main challenge of this multiple tree
structure is that it requires a careful selection of such trees in order to keep the
symmetrical communication property that Ethernet bridging requires. RSTP-
SP extends RSTP and introduces the required changes so as to construct the
shortest-paths multiple trees keeping the symmetry requirement. The RSTP-SP
performance is compared to IEEE 802.1aq Shortest Path Bridging and results
show that that RSTP-SP outperforms SPB in terms of recovery time and outage
experienced but the message overhead introduced by RSTP-SP is higher than in
the SPB case.

ix

Resum

La contínua i creixent demanda de serveis de dades per part de clients residencials
i empresarials ha motivat als proveïdors de xarxes per desplegar tecnologies més
eficaces a les seves infraestructures. Les bones propietats d’Ethernet presenten
una oportunitat perquè els proveïdors l’utilitzin en els seus desplegaments a gran
escala substituint les xarxes existents basades en ATM/SONET. No obstant,
Ethernet va ser dissenyada originalment per ser implementada en LANs sense
requisits molt estrictes. Que s’utilitzi com una tecnologia a nivell de proveïdor
representa una nova aplicació que implica nous requeriments com ara una ràpida
recuperació en cas de fallades, una utilització eficient dels recursos, i una millor
selecció de les rutes així com la possibilitat de controlar-les.

A la tecnologia Ethernet el protocol d’Spanning Tree (STP) és el responsable
d’establir la connectivitat entre els diferents segments. L’STP crea una topologia
activa en forma d’arbre que evita que la xarxa tingui cicles i així permetre que les
funcions bàsiques d’Ethernet es puguin executar sense problemes. Hi ha però al-
guns inconvenients d’utilitzar STP per transformar la topologia física en un arbre
actiu. Una, la selecció d’un únic camí per connectar cada parell de nodes elimina
la redundància que podria estar disponible a través d’enllaços addicionals. Dos,
la comunicació a través d’aquest arbre només proporciona rutes de comunicació
òptimes entre els nodes de la mateixa branca. Tres, l’STP necessita desenes de
segons per recuperar-se d’un error mentre que els proveïdors només permeten un
màxim de 50 ms. Tot i que aquest rendiment ha millorat amb la introducció
del protocol de Rapid Spanning Tree (RSTP), aquest encara requereix desenes
de segons per recuperar-se de la caiguda del node que fa d’arrel de l’arbre ja
que l’RSTP pateix l’efecte de ”count-to-infinity”. I quatre, els camins que formen
l’arbre són escollits només en base al cost de l’enllaç mentre que les xarxes de
proveïdors requereixen més flexibilitat.

En aquesta tesi proposem una solució completa basada en extensions d’RSTP
que aborda cadascun dels inconvenients esmentats. El nostre enfocament es basa
en la comprensió dels fonaments del protocol per així identificar-ne les limitacions
i dissenyar les extensions concretes que facin falta. En primer lloc, realitzem una
caracterització detallada de l’RSTP proporcionant una descripció completa de la
seva operació així com l’anàlisi del comportament del protocol en les situacions
més comunes. L’estudi de l’efecte del ”count-to-infinity” ens permet identificar
les causes reals i una sèrie d’efectes inesperats que són concretament les raons per
les quals la recuperació de la caiguda del node arrel és tant lenta.

El detallat coneixement del protocol ens permet dissenyar RSTP-Conf com
una extensió d’RSTP que s’enfoca a solucionar el problema de la lenta recupera-
ció. RSTP-Conf es basa en un mecanisme de confirmació simple però eficaç que
evita el ”count-to-infinity” detectant si el node arrel ha fallat realment. L’ava-
luació de l’RSTP-Conf es duu a terme mitjançant una simulació de xarxes. Els
resultats mostren que la tècnica proposada redueix de manera eficient la recupe-
ració a un màxim de dues vegades el retard de propagació a través del diàmetre
de la xarxa.

La resta d’inconvenients són solucionats mitjançant l’ampliació de la topolo-

x

gia activa en diversos arbres. RSTP-SP desplega una topologia activa basada
en la configuració d’un arbre per cada node. Això permet operar amb comu-
nicacions que segueixen camins òptims i a més proporciona un increment de la
utilització de recursos perquè amb molta probabilitat un enllaç estarà actiu en
almenys un dels arbres. El principal repte d’aquesta estructura amb varis arbres
és que requereix d’una acurada selecció dels propis arbres per tal de mantenir la
propietat de simetria que Ethernet necessita. RSTP-SP estén RSTP i introdueix
els canvis necessaris per tal de construir camins òptims i mantenir la simetria. El
rendiment d’RSTP-SP es compara amb l’estàndard IEEE 802.1aq Shortest Path
Bridging i els resultats mostren que l’RSTP-SP supera SPB en termes de temps
de recuperació. Però, la sobrecàrrega de missatges introduïts per RSTP-SP és
més gran que en el cas de SPB.

xi

Publications derived from this work

The results obtained from this Thesis derived on the following publications:

⇒ E. Bonada, D. Sala, RSTP-SP: Shortest Path Extensions to RSTP. In Pro-
ceedings of the IEEE 13th Conference on High Performance Switching and
Routing (HPSR’12), June 2012.

⇒ E. Bonada, D. Sala, Characterizing the Convergence Time of RSTP. In
Proceedings of the Mosharaka International Conference on Communications
and Signal Processing (MIC-CSP 2012), April 2012.

⇒ E. Bonada, D. Sala, Building Ethernet Connectivity Services for Provider
Networks (Poster). In Proceedings of the 28th International Conference on
Computer Communications, IEEE Infocom 2009 Student Workshop, April
2009.

⇒ E. Bonada, D. Sala, On the Theoretical Bounds of the Spanning Tree Algo-
rithm. In Proceedings of Jornadas Telecom I+D 2008, October 2008.

⇒ E. Bonada, D. Sala, Implementation of a L2 Bridge in ns3 (Poster). In
Proceedings of the 1st International Conference on Simulation Tools and
Techniques for Communications (SIMUTools 2008), March 2008.

Contents

Contents xiii

List of Figures xvi

List of Tables xx

1 Introduction 1
1.1 Extension of Ethernet into provider networks 1
1.2 Limitations of Ethernet Bridging 5
1.3 Problem statement and solution approach 8
1.4 Thesis contributions . 9
1.5 Methodology . 10
1.6 Thesis outline . 11

2 General Background 13
2.1 Ethernet Bridging . 13

2.1.1 Basics of Ethernet . 13
2.1.2 Original Ethernet . 15
2.1.3 Ethernet Bridges . 17
2.1.4 Loop avoidance . 19
2.1.5 IEEE 802.1 Spanning Tree Protocols 21

2.2 Path selection . 22
2.2.1 Fundamentals of distance-vector protocols 23
2.2.2 Fundamentals of link-state protocols 26
2.2.3 Performance overview . 28

3 RSTP: Operation and Behavior 29
3.1 Protocol elements . 29

3.1.1 Distributed port activation 29
3.1.2 Port roles . 30
3.1.3 Priority vectors . 31
3.1.4 Additional variables . 33
3.1.5 Bridge Protocol Data Units (BPDU) 35

3.2 Protocol operation: events and procedures 37
3.2.1 Bridge events . 40
3.2.2 Port events . 40

xiii

xiv CONTENTS

3.2.3 Bridge procedures . 42
3.2.4 Port procedures . 46
3.2.5 Auxiliar sub-routines . 47

3.3 Initial configuration of the tree . 50
3.3.1 Initialization of bridges . 50
3.3.2 Processing of a received BPDU 50

3.4 Failure detection and recovery . 55
3.4.1 Failure detection . 55
3.4.2 Link failure recovery . 55

3.5 Root failure consequences and count-to-infinity 58

4 Review of Proposed Ethernet Bridging Control Protocols 63
4.1 Framework and comparison overview 64
4.2 MSTP-based extensions . 70
4.3 Routed solutions . 72
4.4 Turn prohibition . 77

5 IEEE 802.1aq Shortest Path Bridging 81
5.1 The symmetry challenge . 81
5.2 SPB protocol operation . 83

5.2.1 Bridge and port variables 84
5.2.2 Construction of the multiple trees 85

5.3 Failure recovery . 94

6 Nature of the Tree Construction Problem 95
6.1 Wave-fronts propagation effect . 95
6.2 Theoretical bound of the convergence time 97
6.3 Performance evaluation of the initial tree construction 100

6.3.1 Convergence time . 100
6.3.2 Message overhead . 104
6.3.3 Triggers of tree calculations 107

7 RSTP-Conf: Protocol Extension to Avoid Count-to-Infinity in
RSTP 111
7.1 Hidden effects of count-to-infinity 111

7.1.1 Appearance of deadlocks . 112
7.1.2 Virtual Root creation . 115

7.2 Approaches to avoid count-to-infinity 116
7.3 Fundamentals of RSTP-Conf . 118

7.3.1 Safe utilization of Alternate ports 118
7.3.2 Reliable detection of the Root failure 119
7.3.3 Same solution for the two sub-problems 120

7.4 RSTP-Conf operation . 120
7.4.1 Confirmation variables . 121
7.4.2 Trigger of the confirmation mechanism 123
7.4.3 Tree reboot after the Root failure 133

CONTENTS xv

7.5 Performance evaluation . 135
7.5.1 Characterization of count-to-infinity consequences in RSTP 136
7.5.2 Avoiding count-to-infinity with RSTP-Conf 142
7.5.3 Performance in the event of non-Root failures 150

8 RSTP-SP: Shortest Path Bridging Keeping the Distance-Vector
Approach 153
8.1 Deployment of parallel instances 153

8.1.1 Per-tree variables . 154
8.1.2 Per-tree event processing 155

8.2 Selection of symmetrical trees . 157
8.2.1 The path-array in the distance-vector environment 157
8.2.2 Changes in the protocol operation 159

8.3 Failure recovery . 166
8.4 Node failures and count-to-infinity 167
8.5 Performance evaluation . 169

8.5.1 Convergence time . 170
8.5.2 Message overhead . 172
8.5.3 Tree recomputations . 179

9 Conclusion 181
9.1 Open issues and future guidelines 183
9.2 Lessons learned . 184

Bibliography 187

List of Figures

1.1 Network infrastructure of Service Providers 2
1.2 Data communications through the single tree 6
1.3 Potential lack of symmetry . 8

2.1 Architectural reference of an Ethernet port and an Ethernet Bridge . 14
2.2 Evolution of the Ethernet network topologies 16
2.3 Examples of the bridge forwarding and bridge leaning operations . . . 18
2.4 Broadcast storm effects and how the active tree topology avoids it . . 20
2.5 Population of the forwarding tables using a common distance-vector

protocol . 24
2.6 Common distance-Vector protocols experience count-to-infinity when

one of the destinations fails . 25
2.7 Population of the forwarding tables using a common link-state protocol 27

3.1 Tree rooted at bridge B0 with active/inactive links and port roles . . . 30
3.2 Diagram indicating the bridge and port variables stored by bridge B4

once the tree is configured . 32
3.3 General diagram of the RSTP operation 39
3.4 Initial configuration of bridges (all nodes are Roots) 51
3.5 Protocol operation in the event of a BPDU reception 53
3.6 Transmission of periodical BPDUs to refresh the vectors 56
3.7 Recovered tree by RSTP after a link failure 56
3.8 Diagram of exchanged messages in RSTP in the event of the B0-B2

link failure scenario . 57
3.9 Count-to-infinity experienced in the example network with the Root

B0 failing at tf . 60

5.1 Trees rooted at B2 and B6 become symmetrical if the path-array tie-
breaking is applied. 82

5.2 Relationship between the operations of the SPB protocol 86
5.3 Example of a cold-start in SPB link-state protocol. 87
5.4 Pseudo-code of the SPB operation . 93
5.5 Example of a link failure recovery in SPB link-state protocol. 94

6.1 Propagation of wave-fronts during the tree construction 96
6.2 Diagram of exchanged BPDUs in a sub-set of nodes at network start-up. 96

xvi

LIST OF FIGURES xvii

6.3 Local operation of the proposal-agreement handshake between direct
neighbors . 99

6.4 Evolution of proposal-agreement handshake in RSTP. 99
6.5 Two-dimensional mesh topologies of degrees 4 (grid4) and 8 (grid8) . 101
6.6 Ring-based topology of increasing connectivity (or average node degree).101
6.7 Realistic structured topologies . 101
6.8 CT of RSTP in a cold start scenario locating the Root in all possible

locations of different topologies . 102
6.9 Traffic received by all nodes during cold-start 104
6.10 MOnode of RSTP in a cold start scenario locating the Root in all

possible locations of different topologies 105
6.11 Histogram of MOnode in a grid of 64 nodes locating the Root in the

corner . 106
6.12 Timeline of BPDUs received by all nodes in a cold start scenario . . . 106
6.13 TRnode of RSTP in a cold start scenario locating the Root in all

possible locations of different topologies 108
6.14 TR/MO ratio in a cold-start scenario for different types of topologies . 109

7.1 Looping BPDUs in a physical topology with several remaining loops
after the Root failure . 112

7.2 Diagram of exchanged BPDUs in a count-to-infinity scenario where a
deadlock appears between bridges B2 and B3. 114

7.3 Detail of B2 vectors update after processing one of the crossed BPDUs
received at t3 . 114

7.4 Diagrams describing the creation of a virtual Root when a deadlock
appears in a count-to-infinity situation. 116

7.5 The Neighbor detecting the failure sends a message requesting for
Root availability . 119

7.6 The Root failure is detected across the network 120
7.7 Initialization and distribution of confirmation variables 123
7.8 Example of a single link failure recovery 124
7.9 Confirmation mechanism triggered by the neighbor B4 when it detects

the failure in the Root port . 124
7.10 Exchanged Messages in the recovery of a single link failure 126
7.11 Detailed node diagrams in the recovery of a single link failure 127
7.12 General diagram of the RSTP-Conf operation (RSTP-Conf updates

in black; original RSTP operation in grey) 128
7.13 Pseudo-codes of the RSTP-Conf operation 132
7.14 Sequence of steps of the confirmation mechanism to recover from a

Root failure . 133
7.15 Root failure recovery from B1 perspective 134
7.16 Two-dimensional mesh topologies of degrees 4 (grid4) and 8 (grid8) . 135
7.17 Ring-based topology of increasing connectivity (or average node degree).135
7.18 Realistic structured topologies . 135
7.19 RT of RSTP in a Root failure scenario in the ring-based topologies . . 137

xviii LIST OF FIGURES

7.20 BPDU timelines of a Root failure recovery in a ring-based topology
with 20 nodes and degree 5 . 138

7.21 MessAge field evolution in a Root failure recovery in a ring-based
topology with 20 nodes and degree 5. 139

7.22 Message overhead of RSTP in a Root failure scenario in the ring-based
topologies . 140

7.23 Performance of RSTP in a Root failure scenario in the two-dimensional
grid topologies . 141

7.24 Performance of RSTP in a Root failure scenario in various topologies . 143
7.25 Performance of RSTP-Conf in the ring-based topologies 144
7.26 Timeline of received BPDUs during a Root failure recovery with RSTP-

Conf . 145
7.27 Performance of RSTP-Conf in the grid topologies 146
7.28 Performance of RSTP-Conf in the various topologies 148
7.29 Traffic received by all nodes during the Root failure recovery 149
7.30 Histograms of RT and MO recovering from all links possible failures

in the grid of 100 nodes and the Root in a corner 151
7.31 Histograms of RT and MO, entire network, recovering from all node

failures in the grid of 100 nodes and the Root in a corner 152

8.1 Propagation of wave-fronts started at B0-B2-B6-B1 154
8.2 The nodes store an independent set of variables for each tree instance 156
8.3 The BridgeID of the traversed bridge is appended t the path-array of

the BPDUs . 159
8.4 Exchanged messages during the initial trees configuration with RSTP-

SP. 161
8.5 B1 vectors configuration of tree T0 at t3 and t4 during the initial trees

configuration with RSTP-SP . 162
8.6 Pseudo-code of the updated operation in RSTP-SP 165
8.7 Single Link Failure recovery in RSTP-SP 166
8.8 Topologies used in the performance evaluation of RSTP-SP 170
8.9 Average CT (with 95% conf. inter.) in cold-start, central link failure,

and central node failure (100 executions with random BridgeIDs) . . . 171
8.10 Average CT (with 25%-75% percentiles) failing all possible links in

different topologies. 171
8.11 Data traffic received during the construction of the tree in different

scenarios in the grid4 topology of 64 nodes 173
8.12 Average message overhead (measured in messages and kilobytes with

95% conf. inter.) in cold-start, central link failure, and central node
failure (100 executions with random BridgeIDs). 174

8.13 Average MO (with 25%-75% percentiles) failing all possible links in
different topologies. 175

8.14 Histograms of MO per node during a cold-start 176
8.15 Histograms of MO per node during a central link failure 177
8.16 Histograms of MO per node during a central node failure 178

LIST OF FIGURES xix

8.17 Average tree computation triggers in cold-start, central link failure,
and central node failure (100 executions with random BridgeIDs) . . . 179

8.18 Percentage of nodes affected by a link failure recovery in RSTP-SP . . 180

List of Tables

2.1 Ethernet frame format . 14

3.1 Global Protocol Parameters . 33
3.2 Bridge Variables . 34
3.3 Port Variables . 34
3.4 BPDU Frame Format . 36

4.1 Performance aspects of related work techniques 67
4.2 Properties of related work techniques 68
4.3 Operational aspects of related work techniques 69

5.1 Bridge Variables . 84
5.2 Port Variables . 84
5.3 Hello Message Frame Format . 88
5.4 LSP Frame Format . 89

7.1 Additional Bridge Variables . 122
7.2 Extended BPDU Frame Format . 122
7.3 BPDU-Conf Frame Format . 125
7.4 RT in seconds after a Root failure recovery in ring-based topologies

with an average degree of 10 and different MaxAge values 139

8.1 Bridge Variables . 155
8.2 Port Variables . 155
8.3 Events and procedures, with the same operation as in RSTP, that only

apply to one of the trees (passed as argument) 158
8.4 Events with the same operation as in RSTP that apply to all trees . . 158
8.5 RSTP-SP BPDU Frame Format . 160
8.6 Operational updates as described in RSTP-Conf to introduce the con-

firmation mechanism in RSTP-SP . 168

xx

§ 1. Introduction

1.1 Extension of Ethernet into provider networks

In the last years there has been a large increase in the amount of communi-
cations generated or received by data consumers [1][2]. First, residential users
have increased their data consumption due to applications that offer triple-play
services (data, voice and video) or peer-to-peer communications. Also, the new
internet based on social networking and multimedia information, together with
the ubiquitous access to information thanks to mobile platforms, represents a
huge increase of consumed data by these end users. And second, enterprise cus-
tomers base their business on the networked platforms that seamlessly connect
their sites. Networking has actually become a business necessity that improves ef-
ficiency and productivity providing instant remote communication, resource and
information sharing or higher reliability with remote backups. In consequence,
enterprise customers need to be connected at every place and every moment, and
this results into a high traffic increase between the different physical locations of
the enterprise.

In addition, this increase of traffic comes together with more strict require-
ments that customers demand. Video or voice communications impose strict
requirements for a proper experience (minimum bit-rate, maximum latency, max-
imum jitter, etc.). In the case of enterprises, a reliable transmission of data is
the most important aspect. Long outage situations where an employee cannot
connect to the central server in the headquarters are not acceptable.

Traffic flows between residential end-users and multimedia servers or the com-
munications between distant enterprise sites are transported beyond the private
Local Area Network (LAN) through a network infrastructure formed by Ser-
vice Providers. Figure 1.1 illustrates a scheme with the three different regions
that comprise this network infrastructure: Access Network (Access), Metropoli-
tan Area Network (MAN), and Wide Area Network (WAN). As opposed to the
LANs, which are private and administered by the same owner (either residential
or business), these three regions are typically owned and managed by the network
providers and the connectivity through these networks is offered as a service for
a recurring payment.

The customer LANs directly connect to the Access segment using some physi-
cal connection owned by the provider (the Access region is also known as last/first
mile or local access loop). The Access infrastructure connects to the MAN. The
MAN region refers to the network that covers a metropolitan area, usually span-

1

2 CHAPTER 1. INTRODUCTION

to MAN
to MAN

to Access
to Access

WAN

MAN

Access

Enterpise

Customer
Residential

Customer

Wireless

Backhaul

Figure 1.1: Network infrastructure of Service Providers

ning a city and its surrounding areas, and interconnects many entities including
several Access regions, other MANs and a few WANs. A WAN refers to the
network that covers a larger geographic area and interconnects several MANs.

Delivering connectivity services in the provider networks is substantially dif-
ferent than delivering them in the LAN. First, the increase in the geographical
coverage (hundreds of meters to thousands of kilometers) leads to an increase on
the scale of the network (tens of end-users to tens of thousands). Second, regard-
ing the bandwidth, not only this must be larger in the provider environment, but
the operating model changes from a dedicated use of resources in the LAN to the
aggregated model with shared resources in the provider infrastructure. Third,
the service scope in the LAN was reduced to a few applications for specific user
needs, while in the provider networking numerous services are needed to address
the needs of a broad range of customers. Fourth, the management in the LAN is
relatively simple as it is composed of a few connections spread over a small area.

1.1. EXTENSION OF ETHERNET INTO PROVIDER NETWORKS 3

In the provider environment, managing thousands of remote users subscribed to
different services increases complexity and requires of more sophisticated mecha-
nisms. Additionally, strict Service Level Agreements (SLA) are negotiated in the
provider environment because of mission-critical applications demanded by cus-
tomers. And fifth, resiliency in LANs is not very critical because problems can be
fixed quickly. However, this aspect becomes of high importance in the provider
networks as critical unresolved failures highly impact the provider revenues and
its long-term competitiveness. This is why providers require a maximum outage
time of 50 milliseconds.

The initial attempt to provide data communication in provider networks was
to use the existing telephony infrastructure deploying solutions based on Time
Division Multiplexing (TDM) technologies and Synchronous Optical NETworking
(SONET) rings. As data-based communications started to grow, packet-based
technologies such as X.25, Frame Relay, or Asynchronous Transfer Mode (ATM)
were also deployed. However, the TDM-based SONET solution became the dom-
inant transport infrastructure.

As the amount of traffic keeps growing and the service requirements become
more and more strict, providers are reconsidering the technology used in their
deployments. These circumstances have positioned Ethernet data networks as
one of the best candidates for replacing the existing ATM/SONET infrastruc-
tures [3][4]. Providers want to build their new data networks in plain Ethernet
operating at layer 2 instead of replacing them by IP routers that contain more
complexity and require higher expertise for management. The bandwidth flexi-
bility of Ethernet (granularity of 1Mbps) in front of the limited steps of SONET
technology (1.5M, 45M, 155M, 622M, 1.25G, 2.48G, 10G) is one of the main
reasons of the intended replacement. Also, the manufacturing cost of Ethernet
devices is very low compared to SONET. In addition, the continuous innovation
of Ethernet technology implies a good strategic decision.

The adoption of Ethernet technology for provider networking actually repre-
sents a win-win situation for both the customer and the provider. The following
list briefly describes the main points that position Ethernet as a good candidate.

• Ubiquity. One of the main reasons is that Ethernet is everywhere: already
95% of the network interfaces deployed use Ethernet technology [5] and 98%
of all enterprise data traffic starts and ends their journey on Ethernet ports
[6]. Since the traffic is generated in an Ethernet interface of the LAN, it
makes sense to avoid any conversion or encapsulation to another technology
that just introduces overhead.

• Converged interface. The convergence of all services into a single interface
simplifies connectivity and equipment required in the customer premises,
optimizes the bandwidth balancing across services and allows for the quick
addition of new services without the need to install extra equipment. The
converged interface also represents an advantage for providers because it
allows for a simpler management and it is easier to deliver the services

4 CHAPTER 1. INTRODUCTION

optimally, which is turn results into an increase of revenue because of the
better use of resources.

• Bandwidth flexibility. The Ethernet bandwidth scalability and high granu-
larity allows a pay-as-you-use model where the customer only contracts the
bandwidth it really needs. This results into an increase of revenue in the
provider because many customers that had to upgrade to a much higher
and expensive bandwidth might not do it.

• Reduced Cost. Ethernet devices are cheaper than other technologies (due
to its mass production) and this allows for a reduction of the cost of the
equipment in the customer premises. In addition, in-house expertise after
several decades of Ethernet as the dominant LAN technology also avoids
additional and costly training. The providers also observe a reduction in the
cost of the service delivery (39% reduction in CAPEX and 44% in OPEX
based on a MEF study [6]).

However, this provider environment definitely represents a new application
for the Ethernet technology originally designed to operate in LANs. One of the
main provider’s concerns is the scalability of the technology. First, the provider
networks extend to infrastructures of thousands of nodes while Ethernet was de-
signed for LANs with few nodes. And second, the failure recovery mechanisms
of Ethernet are too slow to operate in such new application. Another aspect
that must be addressed is the support for Quality of Service (QoS). Since Eth-
ernet is being considered as a platform for convergence where different services
are delivered together, it should be able to support different applications with
different requirements (such as latency sensitive video and voice applications).
This is actually lacking because Ethernet was originally designed for LANs where
a best-effort performance was enough.

Provider networks are managed infrastructures that require high availability
and really need to provide the required performance. This means that the be-
havior of these networks must be configurable and efficiently administered. The
Operation, Administration and Maintenance (OAM) capability of Ethernet needs
to be improved as well. Moreover, in very large extensions there can be different
interconnected networks from different providers. This implies that some traffic
of a concrete provider may probably cross the network of another provider to get
its destination. Since the new services provided now require strict quality con-
straints, providers that transmit others traffic need to ensure these requirements
as well. The SLA that providers negotiate include all these performance restric-
tions in the contract, therefore the network must ensure the abilities to provide
this desired performance and service control capabilities.

There are several approaches that address these issues in order to prepare
Ethernet for provider networking [3]. Some proposals are based on using Eth-
ernet over other technologies already deployed in the infrastructure: copper [7],
HFC [8] or SONET[9]. Some others propose to use Ethernet as the base tech-
nology but focus on particular regions of the network: Ethernet Passive Optical
Networks (EPON) [10] in the Access and Resilient Packet Ring (RPR) [11] in

1.2. LIMITATIONS OF ETHERNET BRIDGING 5

the MAN/WAN. However, the natural solution is to evolve Ethernet Bridging
with the necessary extensions so as to meet the provider networks requirements.
The following section briefly describes the fundamentals of Ethernet Bridging and
discusses its advantages and shortcomings as the base of the Ethernet evolution
into provider networking.

1.2 Limitations of Ethernet Bridging

The original Ethernet was designed to operate in a shared medium segment within
a small coverage area and with a few connected hosts. Ethernet Bridging pro-
vides the connectivity extension required to overcome the distance and perfor-
mance limitations of a single network segment. This is achieved by means of
Ethernet Bridges that are used as devices that interconnect the several Ether-
net segments. The proper functioning of Ethernet networks relies on enabling the
broadcast operation. Therefore, this property is maintained in all Ethernet evolu-
tions: from the single shared segment where all nodes receive all messages, to the
modern point-to-point Ethernet networks where bridges flood received frames to
all ports. In summary, a bridged Ethernet network provides a broadcast domain
with unlimited distance (a broadcast reaches all segments) but with improved
performance by making the collision domain of each physical segment indepen-
dent to the other segments in the network (a collision is isolated). Note that in
point-to-point connections the collisions do not occur any more because it is not
a shared medium, and hence the collision domain becomes secondary. Section 2.1
provides a more detailed description of the basics of the Ethernet technology.

In Ethernet networking the Spanning Tree Protocol (STP) [12] is responsible
of establishing the connectivity of the different Ethernet segments in the inter-
connected network. This connectivity service is driven by the bridging principles
based on deploying a plug-and-play architecture. A bridge starts with no config-
uration and sends all received data frames to all ports except the incoming. From
this reception the bridge learns the port that leads to the source address, and
subsequent frames sent to this address are directed to this port. All frames with
unknown destination continue to be sent to all ports. The broadcast condition
guarantees the reception of frames even if the bridge is not aware of the path
to the frame destination. This broadcast could result in a continuous flooding
if the network has loops (refer to section 2.1 for a more detailed example). Two
important aspects of this operation need to be highlighted. One, the broadcast
bridging operation only works in networks without loops; hence the spanning tree
protocol is used to build a logical tree topology over any physical topology (note
a tree has no loops and only one path between any two nodes). As shown in
the example of figure 1.2, data communication is then only allowed through the
tree links (thick links in figure). And two, the learning operation learns from the
incoming frame assuming that the path coming from a node is the same than
the path reaching such node. In other words, the path has to be symmetric.
Note that the symmetry property comes natural in the tree topology as there is
a unique path between each pair of nodes.

6 CHAPTER 1. INTRODUCTION

0

4

2

5

3

6

1

Figure 1.2: Data communications through the single tree

STP is a distance-vector protocol that constructs a shortest-path tree rooted
at one of the nodes, the Root, which is arbitrarily selected. In the example of
figure 1.2, the Root is B0 because it has the lower node identifier (note that B0
refers to the node with the identifier equal to 0). The convergence of the protocol
toward the final tree structure is based on the exchange of information where
each node disseminates its own topology view (who the Root is and at which
distance). Every node hence receives the information from all neighbors and the
best one (lowest Root, or same Root and smallest distance) is selected as the
path to the Root. If this iteration is repeated every-time a neighbor notifies an
update, the topology views of all nodes eventually converge to the shortest-path
tree because all nodes select their best paths to the single Root (hence forming
the shortest-path branches).

The original STP has been updated by the Rapid Spanning Tree Protocol
(RSTP) [13], which is the the current technique specified in the standard. The
main reason for such update is that STP takes tens of seconds to detect that the
tree is completed because it is based on over-dimensioned timers. RSTP reduces
the recovery times in most situations to the order of milliseconds because it intro-
duces a reactive mechanism based on acknowledgements from the next node down
the branch of the tree. In addition, RSTP nodes keep alternate paths to the Root
through different neighbors and, in case of failure, the takeover to the new path is
immediate. However, trusting in these alternate paths results into undesired con-
sequences in the event of the Root failure because RSTP suffers count-to-infinity
[14][15]. In this situation, some nodes distribute stale topology views (about the
failed Root). Then, the messages about the new Root start looping chasing the
messages about the old Root. This leads into an endless forwarding of proto-
col messages unless the behavior is stopped. As other distance-vector protocols,
RSTP uses a hop counter in the protocol messages to detect them and mitigate
the count-to-infinity. This however results into low convergence when the Root
fails reaching recoveries of tens of seconds in large topologies. Chapter 3 provides
a more detailed description of RSTP operation including the count-to-infinity
behavior.

Regarding providers necessities, there are some implications of using RSTP

1.2. LIMITATIONS OF ETHERNET BRIDGING 7

to prune the physical topology into an active tree. One, a single tree activates
a single path to connect two peers and this eliminates all potential redundancy
that might be available through extra links. Redundancy in provider networks is
important in order to meet robustness requirements and increase global network
capacity (a network with N nodes can only have N -1 active tree links that belong
regardless the total number of links in the physical topology). Two, the commu-
nication over this single tree only provides good (optimal) communication paths
between nodes in the same tree branch, but poor (sub-optimal) communication
paths between nodes in different branches. In fact, the Root of the tree is the
only node that observes shortest paths communication to all nodes as the path
selection has been made with the criteria to be optimal to this ’elected’ node.
Three, the original STP takes too long (tens of seconds) to reconstruct the tree
after the failure of a network element. This slow recovery was enough in small
LANs without tight requirements but it remains too far from the 50ms maximum
bound allowed in provider networks. RSTP only provides quick recoveries in the
event of single failures (45ms in a network of 100 nodes); when the Root fails the
convergence is larger because of the count-to-infinity (24 seconds in a network of
100 nodes). This time is still far from the 50ms that provider SLAs require as the
top bound for network recovery times. And four, the branches that define the
tree (and hence the data communication paths) are elected only based on the link
cost. This needs to be enhanced as in provider networks there is a need to drive
the path selection from additional perspectives: different nodes in the network,
considering QoS or other SLA requirements.

The Multiple Spanning Tree Protocol (MSTP) [16] was introduced as a frame-
work to manage traffic segregation and provide QoS in Ethernet networking.
MSTP allows to assign different trees to different VLANs and introduces the
possibility to apply load balancing and traffic engineering. In turn, MSTP rep-
resents an indirect improvement of the previous drawbacks because it allows the
activation of a link either in one VLAN or another. Each one of the trees of
MSTP is still managed as an RSTP instance, therefore MSTP inherits all ad-
vantages and shortcomings of RSTP in terms of recovery time. Although MSTP
introduces a high flexibility in which trees are constructed, the main problem is
the complex configuration because each port of each bridge needs to be individ-
ually set to operate in the corresponding VLANs. However, MSTP still deploys
sub-optimal paths within each of the trees.

A simple way to deploy optimal paths with any pair of nodes is to configure
as many trees as nodes. The idea is to extend the active topology into one
tree rooted at each node of the network. Note that if each node uses its own
tree to introduce its own data traffic, shortest-path communications are achieved
between each node (Root) and the rest of nodes. The use of multiple trees also
allows for an increase on number of active links because chances are that one link
is used in one tree or another. This is what the last evolution of the family of
the spanning tree protocols proposes. The 802.1aq Shortest Path Bridging (SPB)
task group is currently defining an evolution that operates with shortest paths
between any pair of nodes [17].

The main challenge of this shortest-path multiple-tree active topology is that

8 CHAPTER 1. INTRODUCTION

0

4

2

5

3

6

1

Figure 1.3: Potential lack of symmetry

the communication paths are selected as if they were unidirectional because a
different tree is used in each direction. This requires a careful selection of such
trees because the bridge learning function requires symmetrical paths. In the
topology of figure 1.3, the tree rooted at the node B0 has configured the branch
B0-B2-B5-B1. In the SPB framework, this implies that the messages from B0
to B1 follow this path. Because of symmetry reasons, the path from B1 to B0
should be B1-B5-B2-B0. However, the tree rooted at B1 could select any of
the following shortest paths to B0: B1-B5-B2-B0, B1-B6-B3-B0, B1-B6-B4-
B0 or B1-B5-B3-B0. Using a distributed protocol such as the spanning tree
imposes a challenge because different trees might select different, and hence not
symmetrical, branches. Section 5.1 elaborates on this issue.

This is why SPB introduces the link-state approach moving away from the
distance-vector algorithms of the current spanning tree protocols. In general,
link-state algorithms are more flexible in terms of potential extendibility but at
expenses of an increase in computational complexity. Additionally, this change of
path selection paradigm permits the avoidance of the RSTP recovery problems
and introduces flexibility to make path selections based on more metrics rather
than just the link cost. There is however a big concern on the impact that a change
of path selection paradigm might have. Ethernet is a successful technology that
has always based its evolution on extensions that kept its simplicity philosophy,
a plug-n-play operation and a simple management. For instance, the spanning
tree protocols are based on conceptually complex algorithms but very simple
in operation. Introducing a link-state protocol to construct the trees involves
implementing a more complex algorithm and this might impact Ethernet’s success
in the upcoming years.

1.3 Problem statement and solution approach

In this work we present a study that analyses in detail the previous shortcomings
and describes the design and evaluation of the corresponding solutions to address
them. We propose a complete solution that:

1.4. THESIS CONTRIBUTIONS 9

• Allows for quick recoveries, meeting provider networks requirements, in all
failure situations

• Makes use of available redundancy so as to use all network links

• Provides optimal path communication between all pairs of nodes maintain-
ing the symmetry requirement

Our approach is based on the extension of the current spanning tree protocols
in order to keep the original distance-vector approach. The key point to identify
the origin of the shortcomings is to first understand the fundamentals of the
protocol operation. We therefore base our study on how RSTP constructs and
maintains the single active tree. With the analysis of the single tree protocol we
are able to understand the operation, characterize its performance and identify
the limitations. This allows us to design RSTP-Conf as the necessary extensions
to avoid the long recovery time in the scenarios where the Root of the tree fails
causing RSTP to experience the count-to-infinity effect. The basis of the solution
is the implementation of a simple yet effective confirmation mechanism that avoids
the dissemination of messages about the failed Root, hence avoids the count-to-
infinity.

The extensions that RSTP-Conf introduces only address the recovery time
issues as the updated protocol is still based on the construction of a single ac-
tive tree. We address the redundancy and path optimality shortcomings with
the design of RSTP-SP (SP stands for Shortest-Path). RSTP-SP extends the
RSTP protocol to be shortest-path for all communications. As in SPB, RSTP-
SP configures one tree rooted at each node to operate with shortest-paths. The
difference is that RSTP-SP keeps the distance-vector approach of RSTP instead
of moving to a link-state framework. This way, we maintain the advantages of
the original distance-vector approach only introducing the necessary extensions
to RSTP so it can construct the shortest-path multiple trees.

1.4 Thesis contributions

To summarize, the contributions of this thesis are the following:

• Detailed characterization of the standardized RSTP providing a comprehen-
sive operation description and a performance evaluation by means of net-
work simulation. This study has allowed us to understand the propagation-
based model of the spanning tree protocols and how this affects its perfor-
mance. In addition, this has also allowed us to (1) understand the causes of
the long recovery in RSTP when it suffers count-to-infinity and (2) identify
unexpected consequences.

• Design and evaluation of RSTP-Conf as the necessary extensions to RSTP
in order to resolve the long recovery problems in the scenarios where the
Root of the tree fails (avoiding count-to-infinity). RSTP-Conf is based on
a simple yet effective confirmation mechanism that avoids the use of the
failed Root information before it is really confirmed by the same Root.

10 CHAPTER 1. INTRODUCTION

• Design and evaluation of RSTP-SP as the necessary extensions to RSTP
to operate with optimal communication paths. The core of the RSTP is
maintained and RSTP-SP only requires the updates of very concrete oper-
ations. RSTP-SP performance is also compared to the link-state solution
in SPB.

• Implementation of the protocol modules (RSTP, RSTP-Conf, RSTP-SP
and SPB) in the ns3 network simulator.

1.5 Methodology

We base our study on identifying the nature of the problem before proposing a
solution. When analyzing distributed protocols, clearly understanding the prop-
agation of the information is essential to identify the concrete operational disad-
vantages and propose the right solutions. This is why we first deeply analyze the
behavior of the spanning tree protocol when constructing the tree. Understand-
ing the propagation model has allowed as to (1) comprehend its performance in
terms of convergence time and message overhead and (2) extend the propagation
operation to deploy multiple trees.

An important limitation of Ethernet networks is the backwards compatibility
with legacy technology. This imposes additional restrictions in the design of the
proposed solutions such as keeping the same Ethernet frame format, maintaining
the broadcast operation or preserving the plug-n-play property. Therefore, the
proposed solution must fit into this Ethernet framework.

In order to achieve the objectives we follow a methodology based on analysis,
design and validation of protocols by means of simulation. In the initial analysis
phase we have performed an in-depth study of the problem reviewing the stan-
dardized protocols in order to understand the operation and identify benefits and
disadvantages of the different protocols. The simulation platform has been very
helpful in this initial phase, as it has been used to deeply study the details of
the protocols operation. This has allowed us to identify the details that result in
the global performance behavior observed. A key aspect of this detailed analy-
sis has been the exhaustive observation of the simulator traces that provide the
step-by-step protocol evolution. This methodology allows to verify the correct
implementation of the protocol but also to detect particular cases that result in
behaviors difficult to identify only studying the protocol operation from the the-
oretical perspective. For instance, identifying the causes and consequences of the
count-to-infinity effect can only be done observing the details of each one of the
messages transmitted.

We have also chosen the simulation as the evaluation platform because it pro-
vides enough information to evaluate the protocols under study. The simulation
also allows us to perform sensitivity analysis to deeply study the protocols in or-
der to identify the key elements and to characterize operation and behavior. To
do so we have used a complete set of running scripts that allow configuring differ-
ent simulation parameters. This also permits an automatic execution of several
simulations varying particular details of the scenarios considered. In addition,

1.6. THESIS OUTLINE 11

the use of these scripts permits massive repetitions of any (and many) particular
input configuration.

It is very important to be rigorous on the implementation of a simulation
platform. First, the design and implementation includes the use of modeling and
simulation theory and software engineering practices. And second, the implemen-
tation is verified by means of exhaustive "sanity checks" performed at different
points of the simulation that test the valid configuration of the simulation vari-
ables at that instant. This can be done in a simulation platform because, although
we are actually testing a distributed protocol, the simulator actually has access
to all the information.

1.6 Thesis outline

After introducing the framework of the problem and motivating its study, the
remainder of the thesis is organized as follows.

• Chapter 2 includes general background information that extends the de-
scription already provided in the introduction. First, a review of the Ether-
net technology explains its evolution from its origins with the single shared
segment to the modern point-to-point bridged networks. And second, an
overview of path-selection techniques presents and compares the two main
paradigms: link-state and distance-vector.

• Chapter 3 provides the description of the standardized RSTP. This includes
a comprehensive review of the protocol operation and a description of the
behavior in the most common scenarios such as the initial construction of
the tree as well as the critical case of the Root failure that leads to the
count-to-infinity scenario.

• Chapter 4 contains the literature review of different proposals that address
the same or similar problems. The description of the IEEE SPB proposal is
then extended in chapter 5 because it directly compares to RSTP-SP and
hence a further explanation is provided.

• Chapter 6 includes the characterization of the RSTP tree construction.
It presents a comprehensive description of the propagation effect of the
protocol operation. This has allowed us to clearly understand how the
distributed information evolves, and hence it has been possible to derive a
theoretical bound for the protocol convergence time. An evaluation of the
RSTP performance by means of simulation is also included to confirm the
propagation analysis.

• Chapter 7 presents the further study of the count-to-infinity effect with
the identification of the unexpected side effects that delay even more the
recovery of the Root failure. While the count-to-infinity problem is known
we are not aware of a comprehensive description of the phenomenon and
its effects as the one presented in this thesis. The design of RSTP-Conf as

12 CHAPTER 1. INTRODUCTION

an extension to avoid count-to-infinity effects is presented in this chapter
as well as the performance evaluation comparing the original and extended
protocols.

• Chapter 8 describes the RSTP-SP as the extensions of RSTP to deploy the
multiple trees operating with optimal paths and presents a comparative
evaluation of RSTP-SP and SPB.

• Finally, in chapter 9 the main conclusions of this thesis are outlined and
some future work is presented.

§ 2. General Background

2.1 Ethernet Bridging

Ethernet refers to the networking technology being used in LANs for the con-
nection and communication of personal computers, printers, servers, and other
devices. Ethernet technology comprises (1) the physical interface that intercon-
nects the devices, (2) the frames being used for such action, and (3) the protocols
employed to communicate between these devices (communication, signaling and
control).

2.1.1 Basics of Ethernet

Ethernet [18] is defined by the IEEE 802.3 standard and its specification extents
to both hardware and software aspects of the design (figure 2.1(a) shows the
OSI layers correspondence). The Physical layer specifies the physical interface
on the devices connected to the LAN (Network Interface Card, NIC) and the
corresponding cabling. Each NIC has a unique static address, assigned by the
manufacturer, referred as its MAC or Ethernet Address and based on a flat-
addressing space of 6 bytes.

The OSI Data-Link layer is split into the Media Access Control (MAC) and
Logical-Link Control (LLC) sub-layers. The MAC sub-layer defines the medium-
independent capabilities built on top of the physical layer and is in charge of the
data encapsulation of the Ethernet frame and the management of the medium
access. The LLC sub-layer provides the interface between Ethernet and the upper
layers and it focuses on the multiplexing and de-multiplexing of frames transmit-
ted and received.

The IEEE 802.3 defines the basic Ethernet frame as shown in table 2.1. The
maximum size of the frame is of 1526 bytes (corresponding to a total payload of
1500 bytes) and the minimum is 64. Larger payloads than the limit are split into
different frames, and padding is added if total length is less than the minimum.
The VLAN functionality [16] can be optionally added with the introduction of
the VLAN identifier between the SA and the Type/Length field.

In terms of communication techniques between directly connected devices,
Ethernet enables half-duplex transmission (transmitting in one direction at a
time over a shared physical medium) as well as full-duplex transmission (simul-
taneously transmitting in both directions). The original Ethernet was design

13

14 CHAPTER 2. GENERAL BACKGROUND

Application

Session

Presentation

Transport

Network

Data-link

Physical

Logica-Link Control

(LLC)

Media Access Control

(MAC)

Physical Media Support

(PHY)

IEEE 802.3OSI Model

(a) Ethernet device

Higher layer entities

(STP, Bridge Management, etc.)

MAC Relay Entity

LLC

MAC

PHY

LLC

MAC

PHY

(b) 802.1 Ethernet Bridge

Figure 2.1: Architectural reference of an Ethernet port and an Ethernet Bridge

Table 2.1: Ethernet frame format

Name Description Bytes
Preamble Alternating pattern of ones and zeros that indicates to the

receiver that a frame is coming. Also used for synchronization
of bit-level parsing.

7

Start-of-frame
delimiter

Indicates to the receiver the start of the new frame. 1

DA Identifies the MAC address of the device to receive the frame. 6
SA Identifies the MAC address of the sending device. 6
Length/ Type Indicates the number of bytes in the payload or the type of

frame.
2

Data Payload Actual data being carried by the Ethernet frame. 46-
1500

Frame Check Se-
quence

Cyclic redundancy check value that is used to validate the
frame and ensure it has not been corrupted.

4

supporting the first half-duplex shared medium option, although nowadays most
Ethernet connections are point-to-point and operate in full-duplex.

2.1. ETHERNET BRIDGING 15

2.1.2 Original Ethernet

Ethernet was originally designed to work in small LANs using a simple bus topol-
ogy where all nodes were connected to the same segment (see figure 2.2(a)). When
for example a computer wants to send a printing request message to the printer in
the segment, the Ethernet frame generated at the computer is encoded with the
MAC address of the computer interface as SA and the MAC address of the printer
interface as DA. The frame is transmitted using the protocol Carrier Sense Mul-
tiple Access with Collision Detection (CSMA/CD) [19] because the devices are
connected to a shared medium. In the bus topology, this frame with the printing
request is actually received by all devices, but only the MAC sub-layer of the
printer interface processes it, and forwards it to its LLC sub-layer, because the
frame carries its own MAC address in the DA field.

The CSMA/CD is a medium access protocol designed for the original Ether-
net. A transmitting device listens to the medium (it actually senses the signal
carrier) and, if it is available, it transmits the frame immediately. If it detects that
someone else is transmitting, it retries when it is available again. It might hap-
pen that several transmitters detect an available channel and start transmitting
simultaneously. In this case a collision occurs and, when the transmitting nodes
detect it, they stop the transmission and retry the sensing of the medium after
a random time. A binary exponential backoff algorithm computes this amount
of time. If a collision reoccurs, a new backoff time is computed for each de-
vice, exponentially reducing the probability of another collision. In this fashion,
the CSMA/CD reduces collisions and improves transmission efficiency by 80%
compared to other medium access protocols at that time (ALOHA [20]).

Note that Ethernet technology has a broadcast nature on its origins because all
traffic in the segment is actually received by all devices (although only processed
by the actual destination). More technically, the logical area where nodes can
reach each other by broadcast at the Data-Link layer spans the entire segment.
This are is known as the broadcast domain. This is not efficient in terms of
medium capacity, but it is very robust because the reception at destination is
guaranteed. In addition, it provides total transparency for end nodes as they do
not need to know where the destinations are located; the computer just sends the
request and the network ensures it is received.

The disadvantage of a shared medium like this one is that concurrent trans-
missions create collisions that require retransmission of the frames. Although
CSMA/CD reduced the amount of collisions, the broadcast nature of Ethernet
still presents an added difficulty for a shared medium. In this case, the logical
area where node transmission can collide with one another if sent in a shared
medium also spans the entire segment (area is known as the collision domain).
In order to ensure the collision detection, the frame transmission time must be
larger than the propagation distance between the two further devices (so the colli-
sion is detected before the sender finishes transmitting). For the given minimum
frame size (64 bytes), this results in a maximum segment length of 2.5km for
10Mbps, 250m for 100Mbps, 25m for 1Gbps, and so on. This limitation for high
speed networks is clearly one of the drawbacks of the original shared medium.

16 CHAPTER 2. GENERAL BACKGROUND

Broadcast Domain

Collision Domain

(a) Ethernet segment as a bus topol-
ogy

Broadcast Domain

Collision

Domain

(b) Ethernet Bridging interconnecting several
bus segments

Collision

Domain

Broadcast Domain

(c) Ethernet bridging with point-to-point inter-
connections

Figure 2.2: Evolution of the Ethernet network topologies

2.1. ETHERNET BRIDGING 17

2.1.3 Ethernet Bridges

Interconnecting a large number of nodes through the same segment is not feasible
as they all would share the same collision domain and hence the data transmission
would not be efficient. Ethernet Bridging [21] came up in order to solve this
problem and provide the connectivity extension required to overcome the distance
limitations of a single network segment (see figure 2.2(b)).

An Ethernet Bridge is an interconnection device that operates at the Data-
Link layer and that is uses to join two or more LAN segments to construct a
larger LAN. Figure 2.1(b) shows the layered architecture of an Ethernet bridge
connecting two Ethernet segments. Observe how a bridge is actually composed
of several ports with Physical and MAC/LLC layers together with (1) a MAC
Relay entity that forwards data frames between such ports, and (2) upper bridge
clients that include STP and Bridge Management entities.

The main function of the bridge is to forward received frames between incom-
ing and outgoing ports. The information that these bridges maintain to correctly
forward a message to the next hop is stored in the form of forwarding tables.
The entries in these tables are composed by the correspondence between a DA
and the outgoing port that directs to such destination. This way, the message is
forwarded hop by hop from source to destination if each node in the path selects
the right outgoing port.

One of the reasons why Ethernet has become such successful is because it is
a plug-and-play technology and it does not need any initial configuration to run.
This means that the nodes do not need to configure the forwarding table in ad-
vance. At the beginning all bridges have empty forwarding tables. When a bridge
receives a frame that must be forwarded to an unknown destination, it forwards
it to all the outgoing ports except the incoming. As shown in figure 2.3(a), a
frame originated at host s and destined to host d is broadcasted (flooded to all
ports except the incoming) by the bridge and by all bridges in the network. This
unknown frame is transmitted the same as a true broadcast frame (a frame with
destination address equal to broadcast). If each bridge repeats this broadcasting
operation, the frame reaches all nodes ensuring the correct reception of the frame
at destination (host d in the figure).

However, the flooding of all frames results into a not efficient data communi-
cation framework. This is why Bridging introduces the automatic construction
of the forwarding tables as the network operates: the learning functionality. The
idea is to avoid the flooding when the forwarding tables have an entry that indi-
cates how to forward the received frame, otherwise it is still flooded. The learning
function assumes that the path that a frame came from a source node will be
the same path to reach this same node as destination, this is, assumes that the
communication is bidirectional. The learning function proceeds as follows and is
shown in figure 2.3(a). When a bridge B receives a frame from the end-station
s in port p1, it realizes that s can be reached through port p1. Then, the bridge
adds the corresponding entry in the forwarding table linking the host s with the
outgoing port p1. When later on the same bridge receives a frame that is des-
tined to s (figure 2.3(b)), it forwards it to port p1 because the forwarding table

18 CHAPTER 2. GENERAL BACKGROUND

B

s

d

s to d

DEST

s p1

PORT

learn

s
to

 d

s to d s
 t
o
 d

s to d

s
to

 d

s to d

p1

p2

p3

(a) Broadcast forwarding of a frame to a destination still un-
known at the forwarding table and learning of the source ad-
dress (bridge B learns the direction to reach s is port p when it
receives the frame that s sends to d)

B

s

d

le
ar

n

p1

d to s d to s

DEST

s p1

PORT

d to s

d p3

forward

d to s

p2

p3

(b) Unicast forwarding of a frame and with a known destination
and learning of the source address (bridge B learns d in port q)

Figure 2.3: Examples of the bridge forwarding and bridge leaning operations

indicates so. With this process the direction of all destinations is learned and the
use of flooding is minimized.

Since the bridges build the tables backwards by learning the origin of the
data frames that arrive to the node, one of the main requirements is that the
path a frame traverses to get from s to d is the same that another frame uses
to travel from d to s. Therefore the paths must be symmetrical otherwise the
learning functionality would not match the right ports and the forwarding of
frames would not be correct. In relation to this, bridges consider that each one of

2.1. ETHERNET BRIDGING 19

the entries in the forwarding tables has a lifetime (concept of aging). The default
value of the expiration is 300 seconds (5 minutes): a shorter value results in more
flooded frames because a learnt path expires before it is refreshed; a larger value
results in potentially keeping wrong information in the tables for too long.

With the forwarding and learning functionalities, bridges regulate the traffic
between the segments applying a filtering of traversing Ethernet frames. This
filtering does not affect the original broadcast property of Ethernet. It is just a
mechanism to avoid the broadcast of frames if it is not needed because the bridges
know where to send them. The broadcast nature is kept with the addition of
bridges and the broadcast domain still spans the entire network. This keeps the
end node transparency as the computer just sends the request and the bridges
in the network either broadcast it or direct it to the correct segment. Another
advantage of Ethernet bridging is the reduction of the collision domain into each
single segment. This is accomplished because bridges isolate the collisions that
occur in a particular segment and hence are not noticed in other ports.

Modern Ethernet Bridged networks are deployed using point-to-point links
that operate in full-duplex mode (see figure 2.2(c)). The operation of bridges
connecting point-to-point links remains the same and they still learn addresses to
filter frames and broadcast when needed. This implies that the broadcast domain
still spans the entire network and keeps the end-node transparency. Another
consequence of the removal of shared segments is that the collisions do not happen
any more (actually, these might only occur within each point-to-point link if half-
duplex transmission is used).

2.1.4 Loop avoidance

As already described, Ethernet has been a broadcast technology from its origins
and this property is actually one of the pillars that has been kept in all evolutions.
Although the learning functionality minimizes the amount of flooded frames, the
broadcast provision must be guaranteed because it ensures the delivery of a frame
to the destination even if the network configuration (forwarding tables) does not
indicate it. However, the broadcast forwarding becomes a problem if the network
has loops.

In broadcasting situations bridges receive a frame in one port and forward it
to the rest. If all bridges do the same and loops exist in the network, the number
of transmitted frames grows rapidly. This situation leads to a heavy congestion of
the resources until saturation and a complete network breakdown. The diagram
in figure 2.3(a) showed an example where a frame from s to d is flooded. The
diagram in figure 2.4(a) shows the following sequence where bridges continue
to flood the frame from host s that is endlessly forwarded. This results into a
quick increase of congestion and multiple receptions of the same frame at the
destination host d. This situation is called a broadcast storm. A broadcast storm
also affects the learning functionality as a bridge may receive the same frame in
different ports and the learning function would continuously change the learnt
entry creating forwarding table instabilities. In the example diagrams, bridge B
learns the frame first in port p1, then in port p2, then in port p3, and so on. This

20 CHAPTER 2. GENERAL BACKGROUND

B

s

d

DEST

s p1

PORT

s to d

s p2

le
arn

s p3

le
a
rn

s to d

p1

p2

p3

(a) Forwarding table instabilities are caused by broadcast
storms.

B

s

d

s to d

DEST

s p1

PORT

learn

p1

s to d

(b) Pruning the topology into an active tree ensures the proper
bridging operation

Figure 2.4: Broadcast storm effects and how the active tree topology avoids it

loop-less constrain cannot be a requirement of the physical topology because the
high availability in networks is usually achieved adding redundancy. Note that
loops are created with the addition of links between nodes because two points
are connected through more than one path.

Ethernet Bridging uses the STP to construct an active logical tree on top of
the physical topology in order to eliminate potential loops. As shown in figure
2.4(b), the active topology constructed by STP is a shortest-path tree rooted at
one of the nodes, the Root, which is arbitrarily selected. Shortest path branches
that connect the Root to each one of the other nodes compose this tree. If only

2.1. ETHERNET BRIDGING 21

the links that belong to the tree are used for data communication (the rest are
blocked) flooding of frames is not a problem anymore and the broadcast storm
behavior is avoided. In addition, pruning the redundant physical topology into
a tree ensures a single active path between any pair of nodes, and hence the
symmetry property required by bridge learning is also guaranteed.

2.1.5 IEEE 802.1 Spanning Tree Protocols

This section contains a summary of the different standardized spanning tree pro-
tocols: STP, RSTP and MSTP.

Spanning Tree Protocol (STP) The STP is the original loop-avoidance tech-
nique used in Ethernet bridged networks [12] and it is based on Perlman’s algo-
rithm [22]. The STP is a robust and self-configuring protocol aimed at creating
the single tree-shaped active topology in the initial LANs. Therefore it is not
optimized to provide neither (1) a high utilization of resources (not all links are
used because it configures a single tree) nor (2) a quick recovery after a failure.
The main reason why STP experiences a slow recovery is because its operation
is based on the use of timers. Basically, timers start when there is a topology
change and the protocol assumes that all the recovery operation is done when the
timer expires. For this reason the timer values must account for the worst case
and hence are configured with very large values (order of seconds). This results
into unnecessary delays when recovering from failures, which span to several tens
of seconds.

Rapid Spanning Tree Protocol (RSTP) The main objective of the RSTP
[13] is to decrease the configuration time of the tree topology and hence reduce the
outage while a recovery situation. The RSTP must be seen more as an evolution
of the STP rather than a revolution. The base of the topology construction in
both protocols is the Perlman’s algorithm [22] and most of the improvements
introduced by RSTP are small changes in the protocol operation. The RSTP
introduces three main modifications:

• Ability to quickly reconfigure the active topology using alternate paths to
the Root [23]. This reduces the convergence time because a node can in-
dependently switch over its path to the Root and other nodes do not even
notice the failure.

• Use of independent refreshment messages that allow for earlier failure de-
tection [24].

• The main enhancement aims at removing the timer dependence of STP. In-
stead of waiting for timeouts to start communicating, RSTP uses a proactive
mechanism based on confirmation messages as the topology information is
disseminated [25] [26].

22 CHAPTER 2. GENERAL BACKGROUND

Performance analysis [27][28][29][30] show that the 50ms bound is only achieved
in topologies of only a few nodes. In addition, since RSTP is a distance-vector
algorithm, it suffers the count-to-infinity problem when recovering from the Root
failure [14]. The count-to-infinity experienced by RSTP results into large recovery
times of the order of tens of seconds.

Refer to chapter 3 for a review of the RSTP protocol including a detailed
description of its operation as well as a behavior explanation in common scenarios,
such as the initial construction of the tree or failure recoveries.

Multiple Spanning Tree Protocol (MSTP) With the introduction of VLANs
into the IEEE 802 framework, the first solution is to use the same single spanning
in all VLANs. However, this does not solve the problems of the unused links or
the slow network recoveries.

The first approach to multiple instances is made by Cisco with the Per-VLAN
Spanning Tree (PVST) [31]. This solution allows the use of a distinct tree instance
for each one of the active VLANs in the network. However, the main disadvantage
of this solution is that a high number of tree instances must be computed and
maintained by the bridges.

The MSTP (now included in the VLANs IEEE standard [16]) provides a
framework for the use of various tree instances with different VLANs (many
VLANs can share the same tree instance). It also introduces the concept of
region. A region is the set of nodes that have the same configuration. Each one
of the nodes in the topology is configured by the network administrator with a
set of parameters (name, id, and list of active VLANs). All neighbor nodes that
share the same information are within the same region and each region configures
its own spanning tree.

One advantage of MSTP is that with the use of multiple trees all links of the
network can be used. In addition, with the use of regions MSTP achieves a seg-
mentation of the network and isolates potential failures that only apply to a single
region. However, each one of the tree instances still operates as a single RSTP tree
and hence neither optimal paths nor sub-50ms convergence is achieved. More-
over, the inclusion of different trees adds complexity and management difficulties
that could derive to configuration problems and network misconfigurations.

2.2 Path selection

The main objective of communication networks is to provide connectivity between
different nodes so they can exchange data messages. Since these nodes might not
be directly connected, the intermediate elements forward the messages between
the communicating peers. The sequence of traversed nodes is called the path,
and the summation of the costs of all traversed links is the path cost. The set
of all paths used for data communication is referred as the active topology, while
all existing nodes and links compose the physical topology.

There are different ways to construct these paths [32]. One option is to use
a centralized method where the physical topology is assumed known by a central

2.2. PATH SELECTION 23

control point that applies any common graph algorithm to locally calculate the
paths. These are then disseminated to the rest of nodes so they are also aware
of the calculations. Another option is to apply a distributed mechanism where
network nodes exchange topological information and independently compute the
paths.

The distributed technique is applied in most networking technologies by im-
plementing protocols that exchange information and compute the paths. There
are two main approaches to identify a communication path in a network [33]:
distance-vector and link-state. The objective of both is to select shortest (al-
though not necessarily) paths to a given destination. Finding the shortest path
from all nodes to a single destination results into constructing a shortest-path
tree rooted at the destination and where the branches are shortest paths.

2.2.1 Fundamentals of distance-vector protocols

Common distributed distance-vector (DV) protocols are used to construct the
paths and populate the forwarding tables so the data messages are correctly
routed. In order to avoid confusion, note that in this section we refer to the
distributed DV algorithms and not to the centralized versions like the original
centralized Bellman-Ford algorithm [34].

The essence of the DV protocols is the sharing of topological information,
basically the distance to a particular destination, between direct neighbors. The
processing of messages between neighbors, and the consequent updates, ensures
that all nodes eventually realize the shortest distance to each destination. Figure
2.5 shows the steps to construct the paths to destination B1. This node starts
the procedure by sending a message to its neighbors telling that it is located at
cost 0 of itself (in figure 2.5(a) this is represented by the message "I am at cost
0 of B1"). The neighbors (B5 and B6) receive such messages and realize that
they are located at cost 1 (0 + 1) from B1. In addition, they also know in which
direction B1 can be reached as they assume that the port where the "I am..."
message is received leads to B1. Observe in the forwarding tables in 2.5(a) that
B6 stores that B1 can be reached at cost 1 through port p3; similarly, B5 stores
that B1 can be reached at cost 1 through port p2. Since B5 and B6 have updated
their information on how to reach B1, they disseminate the news to the rest of
neighbors. In this case, B5 sends a message telling that it is located at cost 1 of
B1 (this is represented by the message "I am at cost 1 of B1" in 2.5(b)). B6 also
sends a similar message announcing it is at cost 1 of B1. B2-B3-B4 receive these
messages and also update their information about how to reach the destination
B1. B2 and B4 set a cost of 2 and the outgoing port as p2 and p3, respectively.
B3 has to make an additional decision because it receives both messages from B6
and B5. Assuming B6’s is received first, B3 assumes a cost of 2 through its port
p3. B3 later receives B5’s message, which also includes a cost of 1 and hence
would locate B3 at a cost of 2. B3 needs to decide which path is selected to reach
B1: through p4 (B5) or through p3 (B6). A tie-breaking condition is decided
arbitrarily and different policies can be used. However, the common decision is

24 CHAPTER 2. GENERAL BACKGROUND

0

4

2

5

3
6

1

I am at cost

0 of B1

p1

p2p3

p1

p2

p3

p1

p3

p1 p2

p3

p1

p2

p3

p4

p1

p2

p1

p2

p2

I am at cost

0+1 of B1

through p3

I am at cost

0+1 of B1

through p2

I am ...

I am ...

Dest

B1

Port

p2

Cost

1

Dest

B1
Port

p3
Cost

1

(a) B1 starts notifying about itself

0

4

2

5

3
6

1

p1

p2p3

p1 p3

p1

p3

p1 p2

p3

p1

p2

p3

p4

p1

p1

p2

p2

p2

p2

I am ...

I am ...

I am ...

I am ...

I am at cost

1 of B1
Dest

B1

B1

Dest

B1

Port

p2

Cost

2

Dest

B1
Port

p3
Cost

2

Cost

2

2

Port

p3

p4

I am at cost

1 of B1

(b) Neighbors of B1 update and continue to notify

0

4

2

5

3
6

1

p1

p2p3

p1
p3

p1

p3

p1
p2

p3

p1

p2

p3

p4

p1

p1

p2

p2

p2

p2

Dest

B1

Dest

B1

Port

p2

Cost

2

Dest

B1

Port

p3

Cost

2

Cost

2

Port

p3

Dest

B1

Port

p2

Cost

3

Dest

B1

Port

p3

Cost

1

Dest

B1

Port

p2

Cost

1

(c) Final configuration

Figure 2.5: Population of the forwarding tables using a common distance-vector
protocol

2.2. PATH SELECTION 25

0 1
p1 p1

2
p2 p1

X
D

B0

P

p1

C

1

D

B0

P

p1

C

2

(a) One of the destinations fails.

1 2
p2 p1

D

B0

P

p1

C

2

I am at

cost 2

of B0

D

B0

P

p2

C

3

(b) First iteration

1 2
p2 p1

D

B0

P

p1

C

4

I am at

cost 3

of B0

D

B0

P

p2

C

3

(c) Second iteration

1 2
p2 p1

D

B0

P

p1

C

4

I am at

cost 4

of B0

D

B0

P

p2

C

5

(d) Third iteration, and so on.

Figure 2.6: Common distance-Vector protocols experience count-to-infinity when
one of the destinations fails

to select the path that has an immediate next hop with a lower identifier. In this
case, B3 selects p4 (B5) as the port that reaches B1.

A node selects a new path and disseminates to the rest of neighbors every time
it receives information that updates its distance to B1.This leads to a situation
when the information about the distance to B1 is received in all network nodes.
Figure 2.5(c) shows the network state when the entire paths to B1 have been
already configured in each node. Observe how the active topology including the
paths to reach the destinationB1 is a shortest-path tree rooted at this destination.

The previous example describes the dissemination of distance information
from only one destination. Note that in a more realistic example each desti-
nation sends its own messages. Therefore, all nodes receive messages from all
destinations so they can build the forwarding tables to reach every node. In
practice, the created paths represent the construction of one shortest-path tree
that has a root at a different destination. In other words, each node (as po-
tential destination) floods its own messages and triggers the construction of its
own tree. The constructed paths represent the branches of the destination-rooted
shortest-path trees.

The main drawback of the DV protocols is that they experience the count-
to-infinity effect in some situations. Figure 2.6 shows a simple example where
all nodes have their tables configured telling how to reach node B0. This node
fails and B1 realizes it has no connection to B0 any more (figure 2.6(a)). When
B2 tells B1 that it is located at distance 2 of B0 (figure 2.6(b)), B1 accepts the
information and now believes it is located at distance 3 of B0. B1 now announces
the new information to B2. This accepts the received information from B1 (it
actually updates last received) and now B2 believes it is located at cost 4 of B0
(figure 2.6(c)). This exchange of messages continues and the cost increases with
each iteration(figure 2.6(d)). The counting of the cost to infinity is not stopped
unless the protocol applies a technique to detect the behavior.

26 CHAPTER 2. GENERAL BACKGROUND

2.2.2 Fundamentals of link-state protocols

As its name indicates, the link-state (LS) approach is based on the dissemination
of the link states: whether a network link is available for communication or not.
This way, all network nodes construct a database of the state of all network links.
In other words, each node is aware of the entire physical topology. With this
information available in all devices, it is just a matter of locally executing the
same path selection algorithm and constructing the active topology. Observe how
this approach extends the centralized computation of paths into a distributed
framework by first disseminating the entire physical topology to all nodes. In
consequence, the link-state approach inherits the flexibility of the centralized
protocols.

In order to deliver the physical topology to each node, link-state protocols
require a topology acquisition mechanism to disseminate the state of the links to
all network devices. This mechanism is based on flooding the state of each link
in each node. In the example of figure 2.7(a), B0 tells to its immediate neighbors
that B0 is connected to B2-B3-B4. Note that, for example, B2 already knows
that it is connected to B0, but it does not know that B0 is also connected
to B3 and B4. The information about B0’s connectivity is disseminated to
the entire network and hence all nodes learn B0’s connections. This procedure
occurs in parallel with all nodes (like B6 in figure 2.7(b)), and therefore when
the dissemination is finished all nodes share a database of link states like the
one shown in 2.7(c). Note that this list of connections is one of the possible
representations of the physical topology (in graph theory notation this is known
as an adjacency list [34]).

Once a node has the complete physical topology, it locally runs a path selection
algorithm. The algorithm used to compute the paths is arbitrary but it must be
the same in all nodes (all nodes compute the same paths as long as the algorithm
is the same). The most common selection is to compute optimal paths using
an all-pairs shortest-paths algorithm. The best option is to select Dijkstra [35]
because is the centralized shortest-path algorithm that that runs faster. Note that
the basic Dijkstra only computes the shortest paths from a particular node to all
the rest. Therefore, in order to compute the paths between all pairs, Dijsktra is
locally executed as many times as nodes in the network.

The procedure that link-state protocols follow can be graphically seen as a
distributed construction of a puzzle. A puzzle piece represents one node and its
connections. Therefore there are as many puzzle pieces as nodes in the network.
The objective is to share copies of the pieces with all network elements so each
node can independently construct the whole puzzle, which represents the entire
physical topology. Each node floods its own puzzle piece, so all nodes eventually
receive all of them. When each node completes the puzzle, the path selection
algorithm is applied.

2.2. PATH SELECTION 27

0

4

2

5

3
6

1

B0 is

connected to

B2-B3-B4

B0...

B0...

B0...

B0...

B0...

B0...
B0...

B0...

B0...

B0...

(a) Node B0 disseminates its own connections

0

4

2

5

3
6

1

B6 is

connected to

B1-B3-B4

B6...

B6...

B6...

B6...

B6...

B6...

B6...

B6...

B6...

B6...

(b) Node B6 disseminates its own connections

0

4

2

5

3

6

1

Node

B0

B1

B2

B3

B4

B5

B6

Connections

B2-B3-B4

B5-B6

B0-B5

B0-B4-B5-B6

B0-B3-B6

B0-B2-B3

B1-B3-B4

(c) Physical topology constructed in each node

Figure 2.7: Population of the forwarding tables using a common link-state pro-
tocol

28 CHAPTER 2. GENERAL BACKGROUND

2.2.3 Performance overview

The main difference between the two paradigms is how they operate to construct
the trees. In the distance-vector algorithms, the nodes realize how to reach a
particular destination comparing information from the immediate neighbors (the
best path announced is selected and disseminated so other neighbors can also se-
lect it). Differently, in link-state algorithms nodes first use a topology discovery
mechanism to acquire the entire physical topology. Then, each node individu-
ally, and locally, calculates the paths. The differences in operation between the
distance-vector and the link-state result in performance differences as well [33].
These are outlined following:

• Convergence Time. LS generally outperforms DV in the time required to
create the paths because DV protocols suffers count-to-infinity in some sit-
uations. In LS the only limitation is the propagation and processing delays.
However, the performance can become quite even when avoiding count-to-
infinity situations.

• Computation. LS are more demanding than DV. The local computation of
the entire paths depends on the complexity of the protocol used, usually Di-
jkstra. On the other hand, DV protocols do not need to make any complex
calculation because they only compare received messages with previously
received information.

• Bandwidth. Since DV rely on message dissemination as the only way to
iterate the protocol, bandwidth required is higher than in LS protocols.

• Extensibility. It is easier to add functionalities in LS protocols because the
paths are actually computed using a local algorithm. DVs operate totally
distributed, what might result into a limitation in terms of flexibility.

Depending on the network technology one approach might be preferred than
the other. For example, in the case of IP-routing the link-state protocols like
IS-IS [36] have beaten the distance-vector ones like RIP [37]. The reason is that
a router is an intelligent device that can route packets based on different metrics
and policies. This requires a flexible mechanism such as the link-state approach.

On the other hand, Ethernet Bridging relies on the active shortest-path tree.
The simplicity of Ethernet bridges has derived to the selection of distance-vector
algorithms to construct this single tree. This is why the original STP, and its evo-
lution RSTP, is a distributed distance-vector protocol that constructs the single
shortest-path tree rooted at the Root. Since the objective is to construct a single
tree the most effective solution seems to be the use of a distance-vector algorithm
that constructs only one shortest-path tree to reach only one destination (this
destination would be the Root of the tree). On the contrary, using a link-state
algorithm to construct only one tree seems inadequate because sharing the entire
network topology for constructing just one tree results inefficient.

§ 3. RSTP: Operation and Behavior

This chapter provides a detailed description of RSTP as the current standardized
technique used to construct the single tree in Ethernet bridged networks [13].
Understanding RSTP is a key point to comprehend the limitations of the standard
approach and at the same time to set the basis of the proposed extensions.

RSTP must be seen as an evolution of the original STP [12]. Both protocols
configure a single-rooted tree and their principles come from the distance-vector
algorithm defined by Perlman [22]. The main differences between STP and RSTP
are on the direction of improving the convergence time of the protocol by introduc-
ing small operation changes. The current chapter describes the RSTP operation
as it is the currently standardized technique. However, the protocol fundamentals
are also applicable to STP.

This chapter is organized as follows. First, section 3.1 describes the elements
and variables that compose the state of the nodes running RSTP. The details
of the protocol operation in response to different events is detailed in the form
of pseudo-code in section 3.2. Sections 3.3 and 3.4 review the RSTP behavior
in two common scenarios (the initial tree configuration and a failure recovery,
respectively) in order to comprehend the protocol operation. Finally, section 3.5
reviews the consequences of the Root failure that causes the to count-to-infinity.

3.1 Protocol elements

RSTP creates the shortest-path active tree electing one of the nodes as Root of
the tree and configuring shortest-path branches connecting all other nodes. Each
node has a unique identifier, the BridgeID, that is used to determine several
aspects of the tree shape.The node with the lowest BridgeID is elected as Root
of the tree (in the example of figure 3.1 the Root node is B0 because it has the
lowest identifier (0). The BridgeID is used in tie-breaking mechanisms to decide
among two equal shortest-path branches.

3.1.1 Distributed port activation

RSTP is a distributed protocol where each node executes the same operation in
order to locally decide their position within the tree. The combination of the
individual decisions results in creating a spanning tree from the global network
perspective. In terms of tree/non-tree links, this means that each node decides
whether its own ports are active or not, and only those links with two active ports

29

30 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

0

4

2

5

3

6

1

Root
p1

p2p3

p1

p2

p3

p1

p2 p3

p1 p2

p3

p1

p2

p3

p4

p1

p2

p1

p2

Active Link

Inactive Link

Designated Port

Root Port

Alternate Port

Figure 3.1: Tree rooted at bridge B0 with active/inactive links and port roles

at both sides are active from the data forwarding perspective. RSTP controls
whether this property with the port variable state: a port is in Forwarding state
if it is active and transmits data frames; a port is in Discarding state if it is
inactive and blocks the data transmission. Note that the protocol operation is
based on setting the ports, so there is no link information per se.

The bridge operation uses the state of the ports in conjunction with the for-
warding table. The data transmission effectively happens in the active tree as
follows. A bridge forwards a data frame to the port learnt in the forwarding
table if the destination address is known. On the other hand, if the destination
address is not known the bridge broadcasts the frame to all ports except the
incoming port. However, only those ports in Forwarding state actually forward
and receive the data frame while the blocked port discards all of them. Since
the blocked ports do not accept data frames, these ports can never learn any
path to any source address and hence a blocked port is never added in the bridge
forwarding table by the learning operation. Therefore, it is guaranteed that data
transmission will never be directed to blocked ports in any case (regardless if the
destination address is known or not).

3.1.2 Port roles

RSTP decides whether a port is active or inactive determining the role of the
port. The role defines the responsibility of this port in the link that connects to
the neighbor. There are three possible port roles:

• The Root port is the port that connects the bridge upwards the Root (in
the tree of figure 3.1, p1 of B5 is the Root port). The Root port is active
because it is actually the path that connects the bridge to the branch that
leads to the Root.

• The Designated port is the port that connects the bridge downwards the
leaves (p2 of B5). The Designated ports are also active because they are
also part of a branch and provide connectivity to child neighbors.

3.1. PROTOCOL ELEMENTS 31

• The Alternate port is the port that provides an extra connection to the
Root (a part from the Root port) but it is temporarily blocked because
the redundancy would lead to forwarding loops (p3 of B5). Note that the
Alternate ports are the locations where loops are broken.

Note that the active links of the tree are those that have a Root port on one
side and a Designated port on the other. Since both ports have active roles, the
transmission of data in these links is complete (links drawn with thick lines).
Differently, a blocked link that is not part of the tree is defined as having a
Designated port on one side and an Alternate port on the other. In this case, the
Designated port is still active, but the data transmission in this link is blocked
by the inactive Alternate port (links drawn with thin lines in the figure). In this
case, what is really silence (blocked) is the Alternate port as the link still has
transmission activity from the Designated. Since data communication can only
use the active links, a frame sent from B0 to B1 follows the path B0-B2-B5-
B1. This is a shortest-path connection because the Root bridge is the source.
However, a frame from B6 to B1 follows the path B6-B3-B0-B2-B5-B1, a clearly
inefficient path.

3.1.3 Priority vectors

A bridge selects the roles of its ports comparing topological information about
how far from the Root each neighbor is located. Because of the distributed nature
of RSTP, this topological information is actually exchanged between neighbors.
This allows each bridge to know at which distance from the Root each neighbor
stays and hence elect: the port that provides the best path to the Root (the
Root port); the ports where the own path is better than the neighbor’s path
(Designated ports); and the ports where the neighbor’s path is better than the
own path (Alternate ports).

These comparisons are actually implemented using priority vectors containing
topological information about how to reach the Root from a particular location.
These vectors are a set of values that relate to the distance to the Root of the
tree and are defined by the following fields.

• The Root (r) indicates the BridgeID of the Root node.

• The Cost (c) is the distance to this Root.

• The Bridge (b) is the BridgeID of the node that owns this vector.

• And Port (p) stores the PortID of the port that owns this vector.

For an easier reference to the vector fields, from now on we refer to them with
the notation [r:c:b:p].

The priority vectors are one of the essential elements in the protocol operation
as RSTP decides the port roles by comparing different vectors. A priority vector
is considered better than another if it has a lower Root; or same Root and a

32 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

0 1 4 0

0 1 3 2

Alt

Disc

1B4

BPV

p1 p2

p3

B0 B3

B
P
D
U

1

0 1 4 3PV

MessAge

B6

Role

State

PPV

MessAge

Message

Age Timer

xProp.

Agr. x

0 0 0 1

Root

Forw

0

Role

State

PPV

MessAge

x Prop.

Agr.x

Message

Age Timer

0 1 4 3

Des

Forw

1

Role

State

PPV

MessAge

x Prop.

Agr.x

Message

Age Timer

xProp.

Agr. x

DesRole

HelloTimeTimer

Forwarding Port

Discarding Port

Designated Port

Root Port

Alternate Port

Figure 3.2: Diagram indicating the bridge and port variables stored by bridge B4
once the tree is configured

lower Cost; or same Root and Cost and a lower Bridge; or same Root and Cost
and Bridge and a lower Port. For example, the vector [0:2:3:2] is better than
the vector [1:0:1:2] because the Root field of the former is smaller (0<1); but
the same vector [0:2:3:2] is worse than [0:1:2:2] because they both have the same
Root but the latter contains a lower Cost.

Observe that the four vector fields really have a topological meaning that
defines the tree structure. First, the Root field is used in the first step of the
comparison as an initial distinction, before any other topological metric is con-
sidered, because it indicates which node is the Root and determines where the
tree is rooted at. This results in vectors containing a lower Root always being
considered better regardless the Cost, Bridge or Port values. The other three
fields are topological metrics used to decide between different paths to the Root.
Comparing between vectors of the same Root is really comparing between two
paths to reach such Root. The distance to this node, the Cost field, is the used
to decide for the vector that indicates a smaller distance to the Root. This ac-
tually results in configuring the shortest-path branches. If two vectors have also
the same Cost, the node identifiers stored in the bridge field, first, and the port
identifier in the port field, then, are used as tie-breakers. This last two fields
also determine the shape of the tree because they actually elect between different
equal cost shortest-path branches.

3.1. PROTOCOL ELEMENTS 33

Table 3.1: Global Protocol Parameters
Name Description
MaxAge Maximum value for the MessAge field of BPDUs in order to limit the

time a frame can exist in the network. The value of this parameter
recommended by the standard is 20.

HelloTime Time between periodical dissemination of BPDUs. The default value
of this parameter recommended by the standard is 2sec.

Each node keeps one vector at the global bridge level, the Bridge Priority
Vector (BPV), and one vector per port, the Port Priority Vectors (PPV). The
BPV vector stores topological information that defines the tree topology from
the bridge perspective. The BPV[r:c:b:p] fields contain the BridgeID of the Root
of the tree (r), the cost to reach this Root (c), and the own BridgeID (b) (the
port field is not used in the BPV and is set to 0). Figure 3.2 shows the variables
stored byB4 of the previous example tree of figure 3.1. The BPV contains [0:1:4:0]
because the Root is B0, B4 is at cost 1 of this Root, and the own identifier is
B4.

Differently, the port vectors contain the topology information of the Des-
ignated port in that link (which might be either in the local bridge or in the
neighbor). It is defined as the BridgeID of the Root of the tree (r), the Cost to
reach this root (c), the BridgeID of the designed port of the link (b), and the
portID of the designed port of the link (p). In the example of B4, the Root
port in p1 and Alternate port in p2 store vectors of the corresponding neighbors
([0:0:0:1] and [0:1:3:2] from B0 and B3) while the Designated port in p3 stores a
vector of the own bridge ([0:1:4:3]).

In practice, RSTP decides the port roles comparing the BPV and PPV’s using
the tie-breaking rules described previously. The port with the best PPV is elected
as Root port as it determines the shortest-path branch that leads to the Root. In
the example, B4 selects p1 because the vector [0:0:0:1] is the best among those
stored in the ports. The selection of Designated and Alternate ports depends on
comparing BPV and PPVs. Those ports that have a PPV worse than the BPV
are elected as Designated. A BPV better than a PPV means that the bridge is
closer to the Root and hence the port leads to the leaves (as Designated ports do).
In B4, p3 is Designated because the BPV is better than the PPV. Otherwise, if
the PPV is better than the BPV, this means that the port is closer to the Root
than the bridge (which actually means that the neighbor is closer to the Root)
and hence the port is set to Alternate because the port of the neighbor is the
Designated. Note that an Alternate port stores a PPV, that is better than the
local BPV but it is not as good as the PPV of the Root port. B4 selects p2 as
Alternate port because its PPV is better than the BPV.

3.1.4 Additional variables

Although the priority vectors represent the core of the protocol operation, the
bridges also keep other variables (included in tables 3.1, 3.2 and 3.3).

34 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

Table 3.2: Bridge Variables

Name Description
BridgeID Unique identifier of a bridge.
Bridge
Priority Vector
(BPV[r:c:b:p])

The Bridge Priority Vector contains the information that defines the
tree topology from the node perspective. It is defined as the BridgeID
of the Root of the tree, the cost to reach this Root, and the own
BridgeID (the port field is not used in the BPV and is set to 0).

HelloTime
Timer

All bridge nodes must generate periodic BPDUs to disseminate the
bridge information to the neighbors in order to refresh the priority
vectors. The HelloTimeTimer keeps track of the period to generate
the BPDUs and its value is set to HelloTime.

Table 3.3: Port Variables

Name Description
State The state defines the operation of the ports regarding data transmis-

sion. A port in Forwarding state is active transmitting and receiving
data frames while a port in Discarding state is inactive and not al-
lowed to transmit or receive any data frames transmitted in the link.
The Root port and the Designated ports are active and hence they are
in Forwarding state. Note a Designated port is always in Forwarding
state and hence it forwards data frames to inactive "blocked" links of
the tree. However these data frames are not received by any node as
neighbor ports Alternate and stay in Discarding state.

State The role defines the responsibility of this port in the link that connects
to the neighbor. There are three types of port roles. Root role: this
port leads to the Root and receives the best BPDUs for the bridge to
disseminate to the rest of the network; designate role: this port defines
an active link down to the tree (to the leaves) and it is responsible
to send the BPDUs to this link; Alternate role: this port is an extra
port up to the tree (to reach the Root) but temporarily not in use,
hence the port is not responsible to forward BPDUs to it.

Port Priority
Vector
(PPV[r:c:b:p])

The Port Priority Vector (PPV) contains the topology information of
the Designated port in that link (which might belong either to the
local bridge or to the neighbor). It is defined as the BridgeID of the
Root of the tree (r), the cost to reach this Root (c), the BridgeID of
the designed port of the link (b), and the portID of the designed port
of the link (p).

MessAge The Age of the last BPDU processed in this port.
MessageAge
Timer

When a port does not receive BPDUs for the duration of 3 HelloTime’s
it assumes the connection to the neighbor is broken and the port
initiates the reconfiguration of the tree. The MessageAgeTimer keeps
track of this silence period and its value is set to 3xHelloTime.

Proposal/
Agreement

This flag indicates that the port must send a BPDU marked as ’pro-
posal’, initiating the handshake with the neighbor, or marked as
’agreement’, terminating the handshake with the neighbor

3.1. PROTOCOL ELEMENTS 35

• The MessAge is stored in each port and it contains the number of hops that
the information in the PPV has traversed since it was first generated in the
Root. It represents the age of the vector measured in hops and it is used to
detect messages that endlessly circulate (see section 3.5 for further details
on this issue). The Root port of B4 stores a MessAge of 0 because it is
the vector directly received from the Root. However, the Designated port
of B4 stores a MessAge of 1 computed as the MessAge of the Root port
plus an increment of 1 representing one hop. If, hop after hop, the MessAge
reaches its maximum value, MaxAge, the information in the vector is not
considered anymore and the tree is reconfigured in the node.

• One of the most important changes that RSTP introduces is a mechanism
to set Designated ports to Forwarding state but ensuring that no tempo-
rary loops are created. This is done by the proposal-agreement handshake
executed between a Designated port and the port in the neighbor. The port
variables proposal and agreement control such port activation. The propos-
al/agreement flags in the example of B4 are all reset because the handshake
has already concluded. Section 6.2 provides a further description on how
this handshake works.

• The bridges periodically send messages refreshing and confirming the vec-
tors that they disseminate. The HelloTimeTimer is run by each bridge and
manages this periodical transmission of messages every HelloTime seconds.

• In relation with this periodical refreshing, each port maintains the Mes-
sageAgeTimer to detect a lack of message reception. This timer is con-
figured to 3xHelloTime and its timeout due to no refreshing results in the
expiration of the port vector, which is removed and the makes the node to
reconfigure the tree.

3.1.5 Bridge Protocol Data Units (BPDU)

The nodes exchange information, essentially the priority vectors, by means of
Bridge Protocol Data Units (BPDU). Table 3.4 includes the details of the BPDU
frame format. The BPDUs are encoded in Ethernet data frames. RSTP is a
broadcast protocol and BPDUs are not sent to any particular destination but
to a reserved address that indicates "all bridges" (01:80:C2:00:00:00). Thus,
BPDUs are not forwarded between ports and only live in the link where they
are transmitted. At most, a received BPDU in an input port might trigger the
generation of another BPDU to an output port. The LLC is the bridge client
that receives such BPDU and redirects it to the spanning tree protocol entity
that will process the message.

The payload of the Ethernet frame is the actual BPDU that contains RSTP
information and has a fixed length of 35 bytes. The fields are described following:

• The first three fields (Protocol Identifier, Version, Message Type) are used
to distinguish the protocol version and are introduced to keep compatibility
with past and future spanning tree protocols.

36 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

Table 3.4: BPDU Frame Format

Name Description Bytes

E
th
er
ne
t
en
ca
ps
ul
at
io
n

SA Management MAC address of the bridge 6
DA Reserved address to indicate "all bridges"

(01:80:C2:00:00:00). Therefore it is a broadcast protocol
and BPDUs are not sent to a particular destination.
BPDUs are consumed at the next bridge hop and only
live in the link they are produced. These frames never
bypass a bridge but instead the bridge consumes and
reacts to it producing a corresponding BPDU for the
following neighbors when needed.

6

Length/ Type Indicates length of the BPDU. 2
LLC Indicates the bridge client that processes the received

frame and delivers it to the STP client (DSAP:42;
SSAP:42; Cntrl:03).

3

B
P
D
U

F
ie
ld
s

Protocol id.
Protocol identification fields indicating that the BPDU
received corresponds to an RSTP instance.

2
Version 1

Message Type 1

P
V

Root Contains the vector of the transmitter port defined as
the BridgeID of the Root of the tree (r), the cost to
reach this Root (c), the BridgeID of the transmitter
bridge (b), and the portID of the transmitter port (p).

8
Cost 4
Bridge 8
Port 2

MessAge The Age of the information that the BPDU conveys. It
is defined as the number of hops the BPDU has traversed
from the Root where it is initially created.

2

F
la
gs

Role It encodes the role of the transmitting port
1Prop. It indicates that the transmitter port is initiating a

proposal-agreement handshake in order to transition to
Forwarding

Agreem. It indicates that the transmitter port is terminating a
proposal-agreement handshake so the receiver port can
transition to Forwarding

MaxAge The global parameters are distributed by the Root so all
nodes use the same values. The ForwardDelay is used
by STP and kept in RSTP for backwards compatibility

2
HelloTime 2

ForwardDelay 2
Frame Check Sequence 4

3.2. PROTOCOL OPERATION: EVENTS AND PROCEDURES 37

• The priority vector of the transmitter port is included in the following 4
fields (Root, Cost, Bridge, Port). Note this is the most important informa-
tion conveyed in the BPDU as it allows disseminating the own vectors to
the neighbor nodes so they can compare and elect port roles.

• The MessAge field conveys the corresponding port variable. Note that, as
a hop counter, the MessAge is incremented every time a BPDU reaches a
bridge.

• The flags are used to encode the role of the transmitting port as well as to
include the proposal and agreement flags (used in the handshake to activate
a Designated port).

• The last three fields (MaxAge, HelloTime, ForwardDelay) encode the value
of the global parameters to configure timer values. These are included in
the BPDUs because the Root of the tree disseminates the values of these
parameters so all bridges use the same.

3.2 Protocol operation: events and procedures

The distributed nature of RSTP results into an implementation based on the
response of the protocol in the occurrence of different events. These events are
classified into those that occur at bridge level (Turn-on Bridge and HelloTime-
Timer expiration) and those at port level (BPDU reception and MessageAge-
Timer expiration). Each one of these events triggers operations that are carried
out by different procedures that are also distinguished between those that affect
the entire bridge (BecomRootBridge, ConfigureTree, PortRoleSelection and Port-
StateTransition) and those that only relate to a particular port (ExpirePortInfo
and SendBPDU).

The interconnection between events and procedures is depicted in figure 3.3.
The diagram shows an overview of the internal node operation in response to the
four events listed (black circles in the figure). Without going into the details of
each procedure (next sections describe in detail the pseudo-code of each block),
it is easy to observe that the general operation of RSTP is based on response
to the reception of BPDUs. A message with a better vector updates the current
information and this triggers a tree reconfiguration (port roles and port states)
and finally results into a dissemination of BPDUs announcing the new state,
which in turn is received in neighbors that also update and disseminate, and so
on.

Besides this action of reception-update-dissemination, there are other events
that trigger protocol actions. First, when bridges turn-on all nodes become the
Root of the tree and start disseminating their own BPDUs. These messages
are actually the start of all BPDU receptions with the corresponding update
and dissemination. This configuration with several Roots is clearly a transient
situation and section 3.3 describes in more detail how the protocol behaves in this
situation. Second, the expiration of the MessageAgeTimer in a port also triggers

38 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

the reconfiguration and dissemination of new state because the expired vector is
removed. And third, the HelloTimeTimer periodically triggers the dissemination
of BPDUs to refresh the vectors.

The following sub-sections provide the detailed description of each one of
the blocks in the diagram in the form of pseudo-code. Sections 3.2.1 and 3.2.2
include the operation executed in response to Bridge events and port events,
respectively. Sections 3.2.3 and 3.2.4 describe the operation of Bridge and Port
procedures that are called by the previous events operation. Finally section 3.2.5
contains the operation of several auxiliary sub-routines.

3.2. PROTOCOL OPERATION: EVENTS AND PROCEDURES 39

C
o

n
fi
g

u
re

T
re

e

P
ro

c
e

s
s
 B

P
D

U

T
u

rn
-O

n

B
ri

d
g

e

H
e

ll
o

T
im

e

T
im

e
r

B
P

D
U

R
e

c
e

iv
e

d

in
 p

o
rt

 p

M
e

s
s
a

g
e

A
g

e

T
im

e
r

b
e

tt
e

r

B
P

D
U

w
o

rs
e

B
P

D
U

Y
e

s
In

v
a

li
d

M
e

s
s
A

g
e

e
q

u
a

l

C
o

m
p

a
re

v
e

c
to

rs

A
m

 I

R
o

o
t?

E
x
p

ir
e

P
o

rt
In

fo

B
e

c
o

m
e

R
o

o
tB

ri
d

g
e

N
o

S
e

n
d

B
P

D
U

s
ta

rt

expiration

e
x
p
ir

a
ti
o
n

start

P
o

rt
R

o
le

S
e

le
c
ti
o

n
s

P
o

rt
S

ta
te

T
ra

n
s
it
io

n
s

F
ig
ur
e
3.
3:

G
en
er
al

di
ag
ra
m

of
th
e
R
ST

P
op

er
at
io
n

40 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

3.
2.
1

B
ri
d
ge

ev
en
ts

A
.
T
u
rn
-o
n
B
ri
d
ge

/*
It

is
tr
ig
ge
re
d
at

ea
ch

n
od
e
at

n
et
w
or
k
st
ar
t-
u
p.

A
ll
br
id
ge
s
ar
e
tr
an

si
en
tl
y
co
n
fi
g-

u
re
d
as

R
oo
ts

of
th
e
tr
ee

*/
1.

B
ec
om

eR
oo

tN
od

e(
)

/*
A
ll
va
ri
ab
le
s
ar
e
se
t
us
in
g
ow

n
br
id
ge

st
at
e
as

no
ot
he
r
in
fo
rm

at
io
n
is

no
t
av
ai
la
bl
e
ye
t
*/

2.
St
ar
t
H
el
lo
T
im

eT
im

er
/*

T
he

br
id
ge

sc
he
du

le
s
th
e
tr
an

sm
is
si
on

of
th
e
fir
st

pe
ri
od
ic
al

B
P
D
U
s
*/

B
.
H
el
lo
T
im

eT
im

er
E
xp

ir
at
io
n

/*
E
ac
h
br
id
ge

in
di
vi
du

al
ly

pe
ri
od
ic
al
ly

di
ss
em

in
at
es

B
P
D
U
s
to

m
ai
n
ta
in

th
e

tr
ee

to
po
lo
gy

al
iv
e
*/

1.
Se

nd
B
P
D
U
()

to
D
es
ig
na

te
d
po

rt
s

/*
O
nl
y
D
es
ig
na

te
d
po
rt
s
se
nd

B
P
D
U
s
do
w
n
th
e
tr
ee

*/
2.

St
ar
t
H
el
lo
T
im

eT
im

er
/*

T
he

ti
m
eo
ut

fo
r
th
e
ne
xt

pe
ri
od
ic
al

di
ss
em

in
at
io
n
is

sc
he
du

le
d
*/

3.
2.
2

P
or
t
ev
en
ts

3.2. PROTOCOL OPERATION: EVENTS AND PROCEDURES 41
C
.
B
P
D
U

R
ec
ei
ve
d
in

p
or
t
p

/*
It

is
tr
ig
ge
re
d
w
he
n

a
B
P
D
U

is
de
li
ve
re
d
to

th
e
R
S
T
P

in
st
an

ce
by

th
e
L
L
C

in
fe
ri
or

la
ye
r
*/

1.
if
(M

es
sA

ge
in

B
P
D
U

is
lo
w
er

th
an

M
ax

A
ge
)

/*
O
nl
y
B
P
D
U
s
w
it
h
a
va
lid

M
es
sA

ge
ar
e
as
su
m
ed

to
ca
rr
y
fr
es
h
in
-

fo
rm

at
io
n
an

d
he
nc
e
on

ly
th
es
e
ar
e
pr
oc
es
se
d
*/

2.
rc
vd

In
fo

=
C
om

pa
re
V
ec
to
rs
(P

V
of

B
P
D
U
,P

P
V

of
p)
;

/*
T
he

op
er
at
io
n
de
pe
nd

s
on

w
he
th
er

th
e
re
ce
iv
ed

ve
ct
or

up
da
te
s
th
e

in
fo
rm

at
io
n
st
or
ed

in
th
e
re
ce
iv
in
g
po
rt

*/
3.

if
(r
cv
dI
nf
o
is

B
E
T
T
E
R

&
&

tr
an

sm
it
te
r
is

D
es
ig
n.
)

||
(r
cv
dI
nf
o
is
W
O
R
SE

&
&

tr
an

sm
it
te
r
is
th
e
pa

re
nt
)

/*
R
ec
ei
vi
ng

a
B
P
D
U

th
at

up
da
te
s
th
e
po
rt

ve
ct
or

im
pl
ie
s
a
ch
an

ge
of

in
fo
rm

at
io
n
an

d
he
nc
e
th
e
tr
ee

m
us
t
be

re
vi
se
d.

A
w
or
se

B
P
D
U

fr
om

a
pa
re
nt

is
co
ns
id
er
ed

be
tt
er

be
ca
us
e
it

up
da
te
s
th
e
la
st

re
ce
iv
ed

by
th
e

sa
m
e
pa
re
nt

*/
4.

St
ar
t
M
es
sa
ge
A
ge
T
im

er
in

po
rt

p
/*

T
he

ti
m
er

th
at

co
nt
ro
ls
th
e
ag
e
of

th
e
re
ce
iv
ed

in
fo
rm

at
io
n
in

po
rt

p
is

re
st
ar
te
d
*/

5.
[r

:
c
:
b
:
p
]
=

B
P
D
U
.P

V
[r

:
c
:
b
:
p
]

/*
T
hi
s
is

a
te
m
po
ra
ry

lo
ca
l
va
ri
ab
le

th
at

st
or
es

th
e
pr
io
ri
ty

ve
ct
or

re
ce
iv
ed

in
th
e
B
P
D
U

*/
6.

Se
tP

V
(P

P
V

of
po

rt
,r

,c
,b

,p
)

/*
T
he

re
ce
iv
ed

in
fo
rm

at
io
n
up
da
te
s
th
e
po
rt

so
th
e
ve
ct
or

an
d
th
e
M
es
-

sA
ge

in
th
e
B
P
D
U

ar
e
st
or
ed

as
th
e
ne
w

in
fo
rm

at
io
n
in

th
e
po
rt

*/
7.

Se
t
M
es
sA

ge
of

po
rt

eq
ua

lt
o
M
es
sA

ge
of

B
P
D
U

8.
C
on

fig
ur
eT

re
e(
)

/*
A
n
up
da
ti
ng

ve
ct
or

re
qu
ir
es

a
tr
ee

re
co
nfi

gu
ra
ti
on

*/
9.

if(
B
P
D
U

is
pr
op

os
al

)
/*

A
be
tt
er

B
P
D
U

w
it
h
a
pr
op
os
al

fr
om

a
D
es
ig
na

te
d
po
rt

in
di
ca
te
s

th
at

th
e
lo
ca
l
br
id
ge

ha
s
to

re
pl
y
w
it
h
an

ag
re
em

en
t
*/

10
.

P
or
tA

ct
iv
at
io
nH

an
ds
ha

ke
(p
,’
ag
re
em

’,
’s
ta
rt
’)

11
.

if
(r
cv
dI
nf
o
is

W
O
R
SE

&
&

tr
an

sm
it
te
r
is

D
es
ig
n.
)

/*
A

w
or
se

B
P
D
U

fr
om

D
es
ig
na

te
d
in
di
ca
te
s
th
e
ne
ig
hb
or

is
w
ro
ng

an
d

a
B
P
D
U

w
it
h
ow

n
in
fo
rm

at
io
n
is

re
pl
ie
d
so

it
ca
n
be

up
da
te
d
*/

12
.

Se
nd

B
P
D
U
(p
)

13
.

if
(r
cv
dI
nf
o
is
E
Q
U
A
L
&
&

tr
an

sm
it
te
r
is
D
es
ig
na

te
d)

/*
R
ep
ea
te
d
B
P
D
U

re
affi

rm
s
th
e
st
at
e
al
re
ad
y
st
or
ed

th
us

it
re
st
ar
ts

th
e

M
es
sa
ge
A
ge
T
im

er
*/

14
.

St
ar
t
M
es
sa
ge
A
ge
T
im

er
in

po
rt

p
15
.

if
(r
cv
dI
nf
o

is
W

O
R
SE

&
&

tr
an

sm
it
te
r

is
no

t
D
es
ig
na

te
d
&
&

ag
re
em

en
t
in

B
P
D
U

)
/*

A
B
P
D
U

re
ce
iv
ed

fr
om

a
R
oo
t
or

A
lte

rn
at
e
po
rt

th
at

ca
rr
ie
s
an

ag
re
em

en
t
co
nc
lu
de
s
th
e
pr
op
os
al
-a
gr
ee
m
en
t
ha
nd

sh
ak
e.

T
hi
s
re
su
lts

in
to

th
e
po
rt

p
tr
an

si
ti
on

in
g
it
s
st
at
e
to

Fo
rw

ar
di
ng

*/
16
.

Se
t
St
at
e
of

po
rt

p
to

Fo
rw

ar
di
ng

17
.
el
se

/*
T
he

B
P
D
U

is
no

t
pr
oc
es
se
d
if
th
e
M
es
sA

ge
is

hi
gh
er

or
eq
ua

l
th
an

M
ax
A
ge

(i
nd

ic
at
es

th
at

th
e
in
fo
rm

at
io
n
in

th
e
po
rt

is
no

t
va
lid

an
y-

m
or
e)
.
T
he

tr
ee

is
re
co
nfi

gu
re
d
to

m
at
ch

th
e
ne
w

in
fo
rm

at
io
n.

*/
18
.

E
xp

ir
eP

or
tI
nf
or
m
at
io
n(
)

19
.

C
on

fig
ur
eT

re
e(
)

42 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

D
.
M
es
sa
ge
A
ge
T
im

er
ex
p
ir
at
io
n

(o
r
p
hy

si
ca
l
fa
il
u
re

d
et
ec
ti
on

)
in

p
or
t
p

/*
It

is
tr
ig
ge
re
d
w
he
n
a
po
rt

ex
pi
re
s
th
e
M
es
sa
ge
A
ge
T
im

er
or

th
e
ph
ys
ic
al

la
ye
r

de
te
ct
s
a
fa
il
u
re

in
th
e
po
rt

*/

1.
E
xp

ir
eP

or
tI
nf
or
m
at
io
n(
p)

/*
T
he

ag
in
g
ou

t
of

a
po
rt

in
fo
rm

at
io
n
m
ea
ns

th
at

th
e
st
or
ed

ve
ct
or

is
no

t
va
lid

an
ym

or
e

an
d
he
nc
e
it
ca
nn

ot
be

tr
us
te
d
*/

2.
C
on

fig
ur
eT

re
e(
)

/*
T
he

tr
ee

is
re
co
nfi

gu
re
d
to

co
ns
id
er

th
e
ch
an

ge
s
in

th
e
in
fo
rm

at
io
n
st
or
ed

in
th
e
ex
pi
re
d

po
rt

*/

3.
2.
3

B
ri
d
ge

p
ro
ce
d
u
re
s

E
.
B
ec
om

eR
oo

tB
ri
d
ge
()

/*
T
hi
s
ro
u
ti
n
e
re
se
ts

al
l
th
e
in
fo
rm

at
io
n
co
n
fi
gu
ri
n
g
al
l
va
ri
ab
le
s
in
di
ca
ti
n
g

th
at

th
e
br
id
ge

is
th
e
R
oo
t
*/

1.
Se

tP
V
(B

P
V
,B

ri
dg

eI
D
,0

,B
ri
dg

eI
D
,0

);
/*

T
he

B
P
V

is
re
se
t
us
in
g
ow

n
in
fo
rm

at
io
n:

R
oo
t
is

th
e
ow

n
B
ri
dg
eI
D
;
th
e
co
st

to
th
e

R
oo
t
is

ze
ro

as
it

is
th
e
di
st
an

ce
to

it
se
lf;

th
e
br
id
ge

fie
ld

is
th
e
ow

n
B
ri
dg
eI
D
;
th
e
po
rt

fie
ld

is
se
t
to

0
*/

2.
fo
r
ea
ch

po
rt

/*
A
ll
po
rt
s
ar
e
m
ad
e
D
es
ig
na

te
d
so

th
ey

ca
n
di
ss
em

in
at
e
B
P
D
U
s
do
w
n
th
e
tr
ee
.
T
he
se

ar
e
in
it
ia
lly

in
ac
ti
ve

(D
is
ca
rd
in
g
st
at
e)

w
ai
ti
ng

fo
r
th
e
ha
nd

sh
ak
e
to

ac
ti
va
te

th
em

.
T
he

M
es
sA

ge
is

0
be
ca
us
e
th
e
R
oo
t
in
it
ia
te
s
th
e
co
un

ti
ng
.
T
he

fir
st

B
P
D
U

of
th
is

br
id
ge

as
th
e
ne
w
R
oo
t
of

th
e
tr
ee

is
se
nt

*/

3.
Se

tI
na

ct
iv
eD

es
ig
na

te
dP

or
t(
po

rt
,0
)

4.
Se

nd
B
P
D
U
(p
or
t)

3.2. PROTOCOL OPERATION: EVENTS AND PROCEDURES 43
F
.
C
on

fi
gu

re
T
re
e
()

/*
T
he

tr
ee

co
n
fi
gu
ra
ti
on

is
tr
ig
ge
re
d
w
he
n
th
er
e
is
a
ch
an

ge
in

th
e
po
rt

ve
ct
or
s
be
ca
u
se

th
e
tr
ee

n
ee
ds

to
be

re
vi
se
d*
/

1.
Se

le
ct

th
e
R
oo

t
B
ri
dg

e
/*

T
he

R
oo
t
B
ri
dg
e
is

th
e
lo
w
es
t
B
ri
dg
eI
D

th
e
lo
ca
ln

od
e
is

aw
ar
e
of
:
th
e
lo
w
es
t
va
lu
e
st
or
ed

in
th
e

R
oo
t
fie
ld

of
th
e
R
oo
t
an

d
A
lte

rn
at
e
po
rt

ve
ct
or
s
(P

P
V
[r
])

*/
2.

if
(
I
am

th
e
R
oo

t
B
ri
dg

e
)

/*
If

th
e
R
oo
t
(l
ow

es
t
B
ri
dg
eI
D

in
th
e
po
rt
s)

is
th
e
br
id
ge

it
se
lf,

it
m
us
t
ar
is
e
as

ne
w
R
oo
t
be
ca
us
e

it
is

no
t
aw

ar
e
of

an
y
ot
he
r
be
tt
er

R
oo
t
*/

3.
B
ec
om

eR
oo

tB
ri
dg

e(
)

4.
el
se

/*
If

th
e
B
ri
dg
e
is

R
oo
t,
al
lp

or
ts

ar
e
D
es
ig
na

te
d.

O
th
er
w
is
e,

th
e
po
rt

ro
le
s
ne
ed

to
be

el
ec
te
d
ba
se
d

on
th
e
po
rt

ve
ct
or
s
*/

5.
P
or
tR

ol
es
Se

le
ct
io
n
()

/*
T
he

ro
le
s
of

ea
ch

po
rt

ar
e
se
le
ct
ed

ba
se
d
on

th
e
ne
w
in
fo
rm

at
io
n
in

th
e
po
rt

ve
ct
or
s
*/

6.
P
or
tS
ta
te
T
ra
ns
it
io
ns

()
/*

T
he

st
at
es

of
ea
ch

po
rt

ar
e
up
da
te
d
de
pe
nd

in
g
on

th
e
ne
w
ro
le
s
se
le
ct
ed

*/
7.

fo
r
ea
ch

po
rt

p
/*

T
he

ne
w
tr
ee

co
nfi

gu
ra
ti
on

is
di
ss
em

in
at
ed

to
th
e
re
st
of

ne
ig
hb
or
s.

D
es
ig
na

te
d
po
rt
s
se
nd

B
P
D
U
s

do
w
n
th
e
tr
ee

an
d
R
oo
t
an

d
A
lte

rn
at
es

se
nd

ag
re
em

en
ts

if
th
ey

ha
ve

be
en

pr
op
os
ed

by
th
e
pa
re
nt

*/
8.

Se
nd

B
P
D
U
(p
)

44 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

G
.
P
or
tR

ol
es
S
el
ec
ti
on

()
/*

A
ch
an

ge
in

a
po
rt

ve
ct
or

re
qu
ir
es

a
re
vi
si
on

of
th
e
po
rt

ro
le
s
*/

1.
Se

tR
oo

tP
or
t(
po

rt
w
it
h
be

st
P
P
V
)

/*
T
he

po
rt

w
it
h
th
e
be
st

P
V

is
el
ec
te
d
as

R
oo
t
po
rt

be
ca
us
e
it
pr
ov
id
es

th
e
be
st

pa
th

to
th
e
R
oo
t
am

on
g
al
l
br
id
ge

po
rt
s.

Si
nc
e
th
e
R
oo
t
po
rt

pr
ov
id
es

th
e
co
nn

ec
ti
on

to
w
ar
ds

th
e
R
oo
t
br
id
ge
,
th
e
B
P
V

is
up
da
te
d
us
in
g
th
e
P
P
V

of
th
e
R
oo
t
po
rt

(S
ee

Se
tR
oo
tP
or
t

de
ta
ils
)
*/

2.
fo
r
ea
ch

ot
he

r
po

rt
p

/*
O
nc
e
th
e
R
oo
t
po
rt

is
se
le
ct
ed
,
an

d
th
e
B
P
V

up
da
te
d,

th
e
re
st

of
ro
le
s
is

de
ci
de
d
*/

3.
B
ri
dg

eI
nf
o
=

C
om

pa
re
V
ec
to
rs
(B

P
V
,

P
P
V
[p
])

/*
T
he

ro
le

of
ea
ch

ot
he
r
po
rt

is
th
en

se
le
ct
ed

co
m
pa
ri
ng

th
e
in
fo
rm

at
io
n
st
or
ed

in
th
e

br
id
ge

(B
P
V
)
an

d
in

ea
ch

po
rt

(P
P
V
)
*/

4.
if
(B

ri
dg

eI
nf
o
is

B
E
T
T
E
R

)
/*

If
th
e
br
id
ge

ve
ct
or

is
be
tt
er

th
an

th
e
po
rt

ve
ct
or
,
th
e
br
id
ge

is
th
e
D
es
ig
na

te
d
no
de

in
th
at

lin
k
an

d
he
nc
e
th
e
po
rt

is
D
es
ig
na

te
d.

D
es
ig
na

te
d
po
rt
s
se
nd

B
P
D
U
s
do
w
n
th
e
tr
ee
,

he
nc
e
th
e
M
es
sA

ge
is
th
e
R
oo
t
po
rt

M
es
sA

ge
in
cr
em

en
te
d
on

e
ho
p.

In
th
is
ca
se

th
e
ve
ct
or

of
th
e
D
es
ig
na

te
d
is
fil
le
d
w
it
h
ow

n
br
id
ge

in
fo
rm

at
io
n
fr
om

B
P
V

(S
ee

Se
tD

es
ig
na

te
dP

or
t

fo
r
de
ta
ils
)
*/

5.
Se

tD
es
ig
na

te
dP

or
t
(p
,
R
oo

t
po

rt
’s

M
es
sA

ge
+

1)

6.
el
se

/*
If
th
e
br
id
ge

in
fo
rm

at
io
n
is
w
or
se

th
an

th
e
po
rt

in
fo
rm

at
io
n
th
e
D
es
ig
na

te
d
no

de
is
th
e

ne
ig
hb
or

th
us

th
e
po
rt

in
th
e
br
id
ge

is
A
lte

rn
at
e.

T
he

po
rt

ve
ct
or

is
no

t
up
da
te
d
be
ca
us
e

an
A
lte

rn
at
e
po
rt

st
or
es

th
e
in
fo
rm

at
io
n
of

th
e
D
es
ig
na

te
d
in

th
e
lin

k
(t
he

ne
ig
hb
or
)
*/

7.
Se

tA
lt
er
na

te
P
or
t(
p)

3.2. PROTOCOL OPERATION: EVENTS AND PROCEDURES 45

H
.
P
or
tS
ta
te
T
ra
n
si
ti
on

s
()

/*
T
he

tr
an

si
ti
on

of
th
e
po
rt

S
ta
te
s
re
al
ly

co
n
fi
gu
re
s
th
e
tr
ee

fr
om

th
e
da
ta

tr
affi

c
pe
rs
pe
ct
iv
e
*/

1.
if
(
St
at
e
of

R
oo

t
po

rt
is

Fo
rw

ar
di
ng

);
/*

A
R
oo
t
po
rt

is
an

ac
ti
ve

po
rt

an
d
he
nc
e
no

ac
ti
on

is
re
qu
ir
ed

if
th
e
po
rt

is
al
re
ad
y

Fo
rw

ar
di
ng

*/
2.

el
se

3.
Se

t
R
oo

t
po

rt
to

Fo
rw

ar
di
ng

st
at
e

/*
If
th
e
R
oo
tp

or
ti
s
D
is
ca
rd
in
g,

it
di
re
ct
ly
tr
an

si
ti
on

s
to

Fo
rw

ar
di
ng

st
at
e.

T
hi
s
tr
an

si
ti
on

ca
n
be

ex
ec
ut
ed

an
d
av
oi
d
po
te
nt
ia
l
lo
op
s
if
al
l
D
es
ig
na

te
d
po
rt
s
of

th
e
br
id
ge

ar
e
m
ad
e

D
is
ca
rd
in
g
at

th
e
sa
m
e
ti
m
e.

N
ot
e
th
at

an
y
po
te
nt
ia
lc
om

m
un

ic
at
io
n
be
tw
ee
n
th
e
lin

k
of

th
e
R
oo
t
po
rt
s
an

d
th
e
lin

ks
of

th
e
D
es
ig
na

te
d
po
rt
s
*/

4.
fo
r
ea
ch

D
es
ig
na

te
d
po

rt
(p
)

5.
Se

t
po

rt
p
to

D
is
ca
rd
in
g
st
at
e

6.
fo
r
ea
ch

D
es
ig
na

te
d
po

rt
p

/*
D
es
ig
na

te
d
po
rt
s
ar
e
ch
ec
ke
d
af
te
r
th
e
st
at
e
of

th
e
R
oo
t
po
rt

is
up
da
te
d
(s
om

e
D
es
ig
-

na
te
d
po
rt
s
m
ig
ht

be
D
is
ca
rd
in
g
)
*/

7.
if
(
St
at
e
of

p
is

Fo
rw

ar
di
ng

);
/*

A
D
es
ig
na

te
d
po
rt

is
an

ac
ti
ve

po
rt

an
d
he
nc
e
no

ac
ti
on

is
re
qu
ir
ed

if
th
e
po
rt

is
al
re
ad
y
Fo

rw
ar
di
ng

*/
8.

el
se

/*
A

D
is
ca
rd
in
g
R
oo
t
po
rt

m
ak
es

al
lD

es
ig
na

te
d
po
rt
s
D
is
ca
rd
in
g
be
fo
re

it
ca
n
tr
an

si
ti
on

to
Fo

rw
ar
di
ng
.
T
hi
s
re
su
lts

in
th
e
D
es
ig
na

te
d
po
rt
s
st
ar
ti
ng

pr
op
os
al
-a
gr
ee
m
en
t
ha
nd

-
sh
ak
es

w
it
h
th
ei
r
ch
ild

ne
ig
hb
or
s
*/

9.
P
or
tA

ct
iv
at
io
nH

an
ds
ha

ke
(p
,

’p
ro
p.
’,
’s
ta
rt
’)

10
.
fo
r
ea
ch

A
lt
er
na

te
po

rt
p

/*
A
n
A
lte

rn
at
e
po
rt

is
in
ac
ti
ve

an
d
it
di
re
ct
ly

tr
an

si
ti
on

s
to

D
is
ca
rd
in
g
st
at
e
*/

11
.

Se
t
po

rt
p
to

D
is
ca
rd
in
g
st
at
e

46 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

3.
2.
4

P
or
t
p
ro
ce
d
u
re
s

I.
S
en

d
B
P
D
U

(p
or
t)

/*
T
he

in
fo
rm

at
io
n
en
co
de
d
in

th
e
B
P
D
U

re
pr
es
en
ts

th
e
st
at
e

in
fo
rm

at
io
n
st
or
ed

in
th
e
po
rt

th
at

di
ss
em

in
at
es

th
e
m
es
sa
ge

*/
1.

Se
tP

V
(B

P
D
U
,P

P
V
[p
or
t]
)

/*
T
he

pr
io
ri
ty

ve
ct
or

P
P
V
[p
or
t]
,

2.
Se

t
M
es
sA

ge
of

B
D
D
U

eq
ua

lt
o
M
es
sA

ge
of

po
rt

th
e
M
es
sA

ge
,

3.
Se

t
R
ol
e
of

B
P
D
U

eq
ua

lt
o
R
ol
e
of

po
rt

an
d
th
e
ro
le

of
th
e
tr
an

sm
it
ti
ng

po
rt

ar
e
en
co
de
d
in

th
e
m
es
sa
ge

*/
4.

If
(
po

rt
is

D
es
ig
na

te
d
&
&

pr
op

os
al

in
po

rt
is

tr
ue

)
/*

T
he

pr
op
os
al

fla
g
to

in
it
ia
te

a
pr
op
os
al
-a
gr
ee
m
en
t
ha
nd

sh
ak
e
is

se
t
if

th
e
co
rr
es
po
nd

in
g
po
rt

va
ri
ab
le

in
di
ca
te
s
it
*/

5.
Se

t
pr
op

os
al

fla
g
of

B
P
D
U

to
tr
ue

6.
If
(
po

rt
is

R
oo

t
or

A
lt
er
na

te
&
&

ag
re
em

en
t
is

tr
ue

)
/*

T
he

ag
re
em

en
t
fla

g
to

te
rm

in
at
e
a
pr
op
os
al
-a
gr
ee
m
en
t
ha
nd

sh
ak
e
is

se
t

if
th
e
co
rr
es
po
nd

in
g
po
rt

va
ri
ab
le

in
di
ca
te
s
it
*/

7.
Se

t
ag
re
em

en
t
fla

g
of

B
P
D
U

to
tr
ue

8.
P
or
tA

ct
iv
at
io
nH

an
ds
ha

ke
(p
,’
pr
op

.’,
’s
to
p’
)

/*
T
he
se

po
rt

va
ri
ab
le
s
ar
e
cl
ea
re
d
on

ce
th
e
th
e
B
P
D
U

fla
gs

ar
e
se
t
*/

9.
P
or
tA

ct
iv
at
io
nH

an
ds
ha

ke
(p
,’
ag
re
em

.’,
’s
to
p’
)

10
.
Se

nd
th
e
co
ns
tr
uc
te
d
B
P
D
U

to
po

rt
/*

O
nc
e
th
e
B
P
D
U

fie
ld
s
ar
e
fil
le
d,

th
e
B
P
D
U

is
se
nt

to
th
e
ou

tg
oi
ng

po
rt

in
di
ca
ti
ng

th
e
et
he
rn
et

en
ca
ps
ul
at
io
n
de
ta
ils

to
th
e
in
fe
ri
or

su
b-
la
ye
r

(L
L
C
)
*/

J.
E
xp

ir
eP

or
tI
n
fo
rm

at
io
n
(p
or
t)

/*
A

po
rt

in
fo
rm

at
io
n
ex
pi
re
s
w
he
n
th
e
M
es
sa
ge
A
ge
T
im

er
ti
m
es

ou
t
an

d
w
he
n

a
B
P
D
U

w
it
h
a
M
es
sA

ge
>
M
ax
A
ge

is
re
ce
iv
ed

*/
1.

[r
:
c
:
b]

=
B
P
V
[r

:
c
:
b]

/*
T
hi
s
is

a
te
m
po
ra
ry

lo
ca
l
va
ri
ab
le

th
at

st
or
es

th
e
th
re
e
fir
st

fie
ld
s
of

th
e
br
id
ge

pr
io
ri
ty

ve
ct
or

B
P
V

*/
2.

Se
tP

V
(P

P
V
[p
or
t]
,r

,c
,b

,p
or
t)

/*
A
s
a
D
es
ig
na

te
d
po
rt
,
it
di
ss
em

in
at
es

do
w
n
th
e
ow

n
st
at
e,

he
nc
e
th
e
P
P
V

is
fil
le
d
us
in
g

th
e
br
id
ge

in
fo
rm

at
io
n
in

B
P
V

*/

3.2. PROTOCOL OPERATION: EVENTS AND PROCEDURES 47
3.
2.
5

A
u
xi
li
ar

su
b
-r
ou

ti
n
es

K
.
C
om

p
ar
eV

ec
to
rs

(A
,
B
)

/*
It

re
tu
rn
s
w
he
th
er

ve
ct
or

A
is

co
n
si
de
re
d

B
E
T
T
E
R
,
E
Q
U
A
L
or

W
O
R
S
E
th
an

B
ac
co
rd
-

in
g
to

th
e
ti
eb
re
ak

ru
le
s
*/

1.
if
(A

.R
oo

t
<

B
.R

oo
t
||

/*
V
ec
to
r
A

is
be
tt
er

th
an

B
if

it
ha
s
a
lo
w
er

R
oo
t,

*/
2.

(A
.R

oo
t
=
=

B
.R

oo
t
&
&

A
.c
os
t
<

B
.c
os
t)

||
/*

or
sa
m
e
R
oo
t
an

d
a
lo
w
er

co
st
,
*/

3.
(A

.R
oo

t
=
=

B
.R

oo
t
&
&

A
.c
os
t
=
=

B
.c
os
t
&
&

A
.b
ri
dg

e
<

B
.b
ri
dg

e)
||

/*
or

sa
m
e
R
oo
t,
sa
m
e
co
st

an
d
a
lo
w
er

br
id
ge
,
*/

4.
(A

.R
oo

t
=
=

B
.R

oo
t
&
&

A
.c
os
t
=
=

B
.c
os
t
&
&

A
.b
ri
dg

e
=
=

B
.b
ri
dg

e
&
&

A
.p
or
t
<

B
.p
or
t
)

/*
or

sa
m
e
R
oo
t,
sa
m
e
co
st
,
sa
m
e
br
id
ge

an
d
a
lo
w
er

po
rt

*/
5.

re
tu
rn

’B
E
T
T
E
R
’

6.
el
se

if
(A

.R
oo

t
=
=

B
.R

oo
t
&
&

A
.c
os
t
=
=

B
.c
os
t
&
&

A
.b
ri
dg

e
=
=

B
.b
ri
dg

e
&
&

A
.p
or
t
=
=

B
.p
or
t
)

/*
V
ec
to
rs

A
an

d
B

ar
e
E
Q
U
A
L
if
al
l
fie
ld
s
ar
e
th
e

id
en
ti
ca
l
*/

7.
re
tu
rn

’E
Q
U
A
L
’

8.
el
se

9.
re
tu
rn

’W
O
R
SE

’
/*

A
is

W
O
R
SE

th
an

B
if
no

ne
of

th
e
pr
ev
io
us

co
n-

di
ti
on

s
ar
e
m
et

*/

L
.
S
et
In
ac
ti
ve
D
es
ig
n
at
ed

P
or
t
(p
or
t,

m
A
ge
)

/*
S
et
ti
n
g
an

in
ac
ti
ve

D
es
ig
n
at
ed

po
rt

im
pl
ie
s
fo
rc
in
g
th
e
st
at
e
to

D
is
ca
rd
in
g
an

d
st
ar
t
a
ha
n
ds
ha
ke

to
ac
ti
va
te

it
*/

1.
Se

tD
es
ig
na

te
dR

ol
e(
p,

m
A
ge
)

/*
T
he

po
rt

va
ri
ab
le
s
ar
e
up
da
te
d
ac
co
rd
in
g
to

th
e
D
es
ig
na

te
d
ro
le

of
th
e
po
rt

(S
ee

Se
tD

es
ig
na

te
dR

ol
e
fo
r
de
ta
ils
)
*/

2.
Se

t
St
at
e
of

po
rt

p
to

D
is
ca
rd
in
g

/*
T
he

po
rt

st
at
e
is

se
t
to

D
is
ca
rd
in
g
as

a
tr
an

si
en
t
si
tu
at
io
n
w
ai
ti
ng

fo
r
an

ag
re
em

en
t
th
at

cl
os
es

th
e
ha
nd

sh
ak
e
an

d
ac
ti
va
te
s
it
*/

3.
P
or
tA

ct
iv
at
io
nH

an
ds
ha

ke
(p
,’
pr
op

os
al
’,
’s
ta
rt
’)

/*
T
he

D
es
ig
na

te
d
po
rt

is
D
is
ca
rd
in
g
an

d
he
nc
e
st
ar
ts

a
ha
nd

sh
ak
e
se
nd

in
g
a

pr
op
os
al

*/

48 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

M
.
S
et
D
es
ig
n
at
ed

P
or
t
(p
or
t,
m
A
ge
)

/*
S
et
ti
n
g
a
D
es
ig
n
at
ed

po
rt

in
cl
u
de
s
u
pd
at
in
g
th
e
po
rt

va
ri
ab
le
s:

ro
le
,
P
P
V
,
M
es
sA

ge
an

d
pr
op
os
al

*/
1.

Se
t
R
ol
e
of

po
rt

to
D
es
ig
na

te
d

2.
[r

:
c
:
b]

=
B
P
V
[r

:
c
:
b]

/*
T
hi
s
is

a
te
m
po
ra
ry

lo
ca
l
va
ri
ab
le

th
at

st
or
es

th
e
th
re
e
fir
st

fie
ld
s
of

th
e

br
id
ge

pr
io
ri
ty

ve
ct
or

B
P
V

*/
3.

Se
tP

V
(P

P
V
[p
],
r,

c,
b,

po
rt
ID

of
p)

/*
A
s
a
D
es
ig
na

te
d
po
rt
,
it
di
ss
em

in
at
es

do
w
n
th
e
ow

n
st
at
e,

he
nc
e
th
e
P
P
V

is
fil
le
d
us
in
g
th
e
br
id
ge

in
fo
rm

at
io
n
in

B
P
V

*/
4.

Se
t
M
es
sA

ge
of

po
rt

to
m
A
ge

/*
T
he

va
lu
e
of

M
es
sA

ge
is

a
pa
ra
m
et
er

be
ca
us
e
di
ff
er
en
t
si
tu
at
io
ns

re
su
lt
in

di
ff
er
en
t
M
es
sA

ge
va
lu
es

fo
r
D
es
ig
na

te
d
po
rt
s
*/

5.
P
or
tA

ct
iv
at
io
nH

an
ds
ha

ke
(p
,’
ag
re
em

en
t’
,’
st
op

’)
/*

A
po
rt

se
le
ct
ed

as
D
es
ig
na

te
d
do
es

no
t
se
nd

ag
re
em

en
ts

do
w
n
*/

N
.
S
et
R
oo

tP
or
t(
p
or
t)

/*
S
et
ti
n
g
th
e
R
oo
t
po
rt

im
pl
ie
s
ch
an

gi
n
g
th
e
R
ol
e
an

d
u
pd
at
in
g
th
e
B
P
V

*/
1.

Se
t
R
ol
e
of

po
rt

to
R
oo

t
2.

[r
:
c
:
b]

=
P
P
V
[r

:
c
:
b]

/*
T
em

po
ra
ry

lo
ca
lv

ar
ia
bl
e
th
at

st
or
es

th
e
th
re
e
fir
st

fie
ld
s
of

th
e
R
oo
t
po
rt

pr
io
ri
ty

ve
ct
or

(P
P
V
[R
oo
t

po
rt
])

*/
3.

Se
tP

V
(B

P
V
,r
,c
+
1,

b,
0)

/*
T
he

B
P
V

is
up
da
te
d
us
in
g
th
e
in
fo
rm

at
io
n
in

th
e
P
P
V

of
th
e
R
oo
t
po
rt

(
th
e
co
st

in
cr
ea
se
s)

as
it

de
te
rm

in
es

ho
w
th
e
br
id
ge

re
ac
he
s
th
e
R
oo
t
of

th
e
tr
ee

*/

O
.
S
et
A
lt
er
n
at
eP

or
t
(p
or
t)

/*
S
et
ti
n
g
an

A
lt
er
n
at
e
po
rt

on
ly

im
pl
ie
s
ch
an

gi
n
g
th
e
ro
le

of
th
e
po
rt

*/
1.

Se
t
po

rt
to

A
lt
er
na

te
ro
le

/*
N
o
ve
ct
or

is
up
da
te
d
be
ca
us
e
it
st
or
es

th
e
ve
ct
or

of
th
e
D
es
ig
na

te
d
in

th
at

lin
k
(t
he

ne
ig
hb
or
)
*/

3.2. PROTOCOL OPERATION: EVENTS AND PROCEDURES 49
P
.
S
et
P
V

(v
ec
t,

r,
c,

b
,
p
)

/*
R
ou

ti
n
e
th
at

co
pi
es

th
e
ve
ct
or

fi
el
ds

(a
rg
u
m
en
ts

r,
c,
b,
p)

in
to

th
e
ve
ct
or

in
ve
ct

*/
1.

v
ec
t
=

[r
:
c
:
b
:
p
];

Q
.
P
or
tA

ct
iv
at
io
n
H
an

d
sh
ak
e

(p
or
t,

ty
p
e,

ac
ti
on

)
/*

R
ou

ti
n
e
th
at

u
pd
at
es

th
e
po
rt

pr
op
os
al
/a
gr
ee
m
en
t
fl
ag
s
*/

1.
if
(t
yp

e
=
=

’p
ro
p’
)

2.
if
(a
ct
io
n
=
=

’s
ta
rt
’)

/*
T
he

pr
op
os
al

fla
g
of

th
e
po
rt

is
se
t
if
th
e
ne
xt

B
P
D
U

ne
ed
s
to

be
se
nt

m
ar
ke
d
as

a
pr
op
os
al

to
st
ar
t
a
ha
nd

sh
ak
e
as
ki
ng

co
nfi

rm
at
io
n
to

ac
ti
va
te

a
D
es
ig
na

te
d
po
rt

*/
3.

Se
t
pr
op

os
al

fla
g
of

po
rt

to
tr
ue

4.
el
se

if
(a
ct
io
n
=
=

’s
to
p’
)

/*
T
he

pr
op
os
al

fla
g
of

th
e
po
rt

is
re
se
t
if
no

m
or
e
B
P
D
U
s
ne
ed

to
be

se
nt

m
ar
ke
d

as
a
pr
op
os
al

be
ca
us
e
th
e
ha
nd

sh
ak
e
ha
s
al
re
ad
y
be
en

st
ar
te
d
*/

5.
Se

t
pr
op

os
al

fla
g
of

po
rt

to
fa
ls
e

6.
if
(t
yp

e
=
=

’a
gr
ee
m
’)

2.
if
(a
ct
io
n
=
=

’s
ta
rt
’)

/*
T
he

ag
re
em

en
t
fla

g
of

th
e
po
rt

is
se
t
if
th
e
ne
xt

B
P
D
U

ne
ed
s
to

be
se
nt

m
ar
ke
d
as

an
ag
re
em

en
t
to

co
nc
lu
de

a
ha
nd

sh
ak
e
an

d
ac
ti
va
te

th
e
D
es
ig
na

te
d
po
rt
*/

3.
Se

t
pr
op

os
al

fla
g
of

po
rt

to
tr
ue

4.
el
se

if
(a
ct
io
n
=
=

’s
to
p’
)

/*
T
he

ag
re
em

en
t
fla

g
of

th
e
po
rt

is
re
se
t
if
no

m
or
e
B
P
D
U
s
ne
ed

to
be

se
nt

m
ar
ke
d

as
a
pr
op
os
al

be
ca
us
e
th
e
ha
nd

sh
ak
e
ha
s
al
re
ad
y
be
en

te
rm

in
at
ed

*/
5.

Se
t
pr
op

os
al

fla
g
of

po
rt

to
fa
ls
e

50 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

3.3 Initial configuration of the tree

This section analyzes the behavior of the protocol in a network start-up scenario
where all bridges are turned-on (commonly referred as cold-start). Although this
is a situation that does not occur very often in production networks (only if a
global reset is required), it is necessary to study it because it provides the funda-
mental information to comprehend how the protocol operates when constructing
the tree from scratch. Therefore, understanding the behavior during this initial
tree construction is crucial to later understand how the protocol recovers from
failure situations.

3.3.1 Initialization of bridges

Because of the distributed nature of the protocol, the same initialization is applied
to all nodes at network start-up: each node assumes to be the Root regardless of
its BridgeID. At the beginning, RSTP nodes do not know the existence of any
other so they assume they are the only bridge in the network, therefore their
BridgeID is the lowest, and hence they configure themselves as the Root of the
tree (event Turn-on Bridge described in block A of section 3.2.1).

Figure 3.4(a) shows the diagram with the initial B4 configuration. Becoming
the Root of the tree implies that the vectors contain information about how
to reach itself (procedure BecomeRootBridge in block E of section 3.2.3). In
the example, B4’s BPV is set to [4:0:4:0] because B4 is the Root and B4 is
located at distance 0 of itself. As a Root, all ports are branches that lead to the
leaves, therefore all ports are Designated. This implies that all port vectors store
information about the own Root, [4:0:4:p], so it can be disseminated to neighbors.

It is important to note that the Designated ports are still inactive (Discarding
state) and this is why the sent BPDUs are marked as ’proposal’ so as to start a
handshake with the neighbor with the objective to activate the Designated in the
Root bridge. In addition, since the Root port is the origin of its own BPDUs,
the hop counter MessAge of each port is set to 0.

A similar configuration as this one of B4 is set into each bridge of the network
(only changing the BridgeID of each node). This means that, at the beginning,
there are as many Roots as nodes trying to construct the tree rooted at themselves
(figure 3.4(b)). Note that this is clearly a transient situation because there can
only be one Root and one tree. The protocol operation ensures that all bridges
eventually agree on one Root and one tree, and it is concretely these initial
messages sent by each bridge that trigger all the process.

3.3.2 Processing of a received BPDU

All nodes are initially configured as Roots and send the corresponding BPDUs.
This results in every bridge receiving messages form each neighbor. The operation
executed by the RSTP instance at the occurrence of a BPDU reception is detailed
in the bridge event BPDU received in port p of block C in section 3.2.2. In order
to understand the protocol operation when processing a received BPDU we will

3.3. INITIAL CONFIGURATION OF THE TREE 51

4 0 4 0

4 0 4 2

Des

Disc

0B4

BPV

p1 p2

p3

B0 B3

B
P
D
U

0

4 0 4 3PV

MessAge

B6

Role

State

PPV

MessAge

Message

Age Timer

vProp.

Agr. x

4 0 4 1

Des

Disc

0

Role

State

PPV

MessAge

v Prop.

Agr.x

Message

Age Timer

4 0 4 3

Des

Disc

0

Role

State

PPV

MessAge

v Prop.

Agr.x

Message

Age Timer

vProp.

Agr. x

DesRole

HelloTimeTimer
B
P
D
U

B
P
D
U

Forwarding Port

Discarding Port

Designated Port

Root Port

Alternate Port

(a) Detail of the initial configuration in B4

0

4

2

5

3

6

1

(b) All nodes send their BPDUs

Figure 3.4: Initial configuration of bridges (all nodes are Roots)

52 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

review in detail the reception of the message that B0 sends to B4. Figure 3.5
shows the diagrams with the entire configuration in all the steps involved.

The protocol is based on the state evolution triggered by updates of topological
information (vectors) that are received through of BPDUs. Therefore a BPDU
that carries a vector with updated information triggers a tree reconfiguration to
match the just received new information. This condition is checked comparing the
vector in the BPDU with the vector stored in the receiving port (line 2 in block
C; note that the detailed comparison rules are described in block K of section
3.2.5). In figure 3.5(a), B4 receives a BPDU from B0 with the vector [0:0:0:1]
(announcing B0, itself, as Root) and its port p1 stores [4:0:4:1] (believing B4,
itself, as Root). The received vector is considered better than the port vector
because the Root field is lower (0<4). As shown in figure 3.5(b), a received
BPDU with a better vector implies that new topology information is available in
the port (lines 4 to 7 in block C) and hence the tree configuration in the local
bridge must be revised (line 8 in block C). In addition, the MessageAgeTimer of
the port is started because the vector that this port now stores has been received
from the neighbor and the ageing of such information needs to be controlled.

Configuring the tree involves the selection of the port roles based on the
vectors information and the transition of the port states depending on the new
roles configuration. This operation is detailed in procedures of section 3.2.3:
ConfigureTree in block F , PortRoleSelection in G, and PortStateTransition in
H. The first step in revising the tree is checking which bridge is the Root based on
the available information. This is simply done looking up for the lowest Bridge
value stored in the port vectors (line 1 of block F). In the example, the just
received vector indicates that B0 is the lowest bridge identifier that B4 is aware
of, hence B4 now believes that B0 is the Root.

The fact that the selected Root is another node implies that the tree must
be configured to match this new situation. The first step is to set the port roles
(line 5 of block F), starting by choosing port with the best vector as the Root
port (line 1 of block G). In figure 3.5(c) B4 selects p1 as Root port because it is
the only port vector that contains B0 as Root, while other ports have the own
identifier B4. Setting the Root port means configuring the path to the Root,
hence the bridge vector BPV is updated with the vector in the Root port. Note
that all vector values are copied except the cost that is incremented. Observe
that at this point B4 already believes that the Root is B0 and at distance 1.

After the bridge realizes its way to reach the Root, through the Root port, it
selects the roles of the rest of ports between Designated and Alternate (lines 2 to 7
of block G). As already explained in section 3.1, a port vector whose PPV is worse
than the BPV becomes Designated because it leads to the leaves; otherwise it
becomes Alternate. In figure 3.5(d), B4 selects both ports as Designated because
the freshly received vector in p1 contains a lower Root. Since the Designated
ports store vectors about the local bridge, the BPV is used to update the PPV
of each one. The MessAge is also updated setting it to the MessAge in the Root
port plus the increment that represents the additional hop from the Root.

The change in the port roles drives the transition of port states as detailed in
block H of section 3.2.3. This procedure aims at transitioning the Root port and

3.3. INITIAL CONFIGURATION OF THE TREE 53

BPDU

m

0

4

2

5

3

6

1

p a

r c b p

Forwarding Port

Discarding Port

Designated Port

Root Port

Alternate Port

M
es

sa
g
e

A
ge

 T
im

e
r

PV

M
e
ss

A
ge

P
ro

p
.

A
gr

.

m p a

r c b p

PV

M
es

sA
g
e

P
ro

p.

A
g
r.

BPDU Port Variables

4 0 4 0

B4p1

p2

p3

B0 B3

B6

B
P
D
U

0
p

-
0
0
0
1

0 p -

4 0 4 1

0 p -

4 0 4 2

0 p -

4 0 4 3

(a) Comparison of received and port vectors

4 0 4 0

B4p1

p2

p3

B0 B3

B6

B
P
D
U

0
p

-
0
0
0
1

0 - a

0 0 0 1

0 p -

4 0 4 2

0 p -

4 0 4 3

(b) Received is better and hence updates the
port information

0 1 4 0

B4p1

p2

p3

B0 B3

B6

0 - a

0 0 0 1

0 p -

4 0 4 2

0 p -

4 0 4 3

(c) Selection of the Root port

0 1 4 0

B4p1

p2

p3

B0 B3

B6

0 - a

0 0 0 1

1 p -

0 1 4 2

1 p -

0 1 4 3

B
P
D
U

0
-
a

0
1
4
1

B
P
D
U

1
p

-

0
1
4
3

B
P
D
U

1
p

-

0
1
4
2

(d) Selection of other ports and dissemination

Figure 3.5: Protocol operation in the event of a BPDU reception

54 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

Designated ports to Forwarding and the Alternate ports to Discarding. However,
these transitions need to be safely executed in order to avoid the creation of tem-
porary forwarding loops. First, it is safe to transition a Root port to Forwarding
if we ensure that the rest of ports are Discarding. Note that forcing the Desig-
nated ports to Discarding creates a blocking "barrier" that breaks any potential
transient loop. This is why all Designated ports are moved to Discarding state
before the Root port is made Forwarding (lines 3 to 5 of block H). Second, the
transition of a Designated port to Forwarding is based in the proposal-agreement
handshake. A Discarding Designated port starts a handshake sending a BPDU
marked as proposal in order to receive the corresponding agreement from the
neighbor and, only then, transition the Designated port to Forwarding. And
third, an Alternate port is directly set to Discarding as it does not represent any
problem in terms of loop creation. In figure 3.5(d), observe how the Root port is
made Forwarding while the Designated ports remain Discarding but are marked
to send a proposal in the next BPDU so as to start the handshake with their
corresponding neighbors.

The last step of the tree configuration is to disseminate the new state to
neighbors so these can also update their port roles and states (line 8 of block F).
BPDUs are sent through Designated ports (starting a handshake procedure if the
proposal flag is marked) and BPDUs with agreements are sent back to the newly
elected Root and Alternate ports (completing the handshake if the agreement flag
is marked). In example of figure 3.5(d), B4 disseminates the new information by
sending a BPDU through the Designated ports to B3 and B6; it also confirms
to B0 with a BPDU with an agreement. The reception of this last agreement
message in B0, results into setting its Designated port to Forwarding state (lines
15 and 16 of block C).

The previous example has detailed the operation of processing a received
BPDU with a vector that updates the port vector. There is also the case that
the received message carries either a worse (line 11 of block C) or equal vector
(line 13 of block C). An example of the first case is the processing of the BPDU
that B4 initially sends to B0 (actually in the opposite direction of the previously
BPDU). In this case, B0 compares the received and stored vector and realizes
that the message does not update the local state, hence there is no change in
topology information and the tree does not need to be revised. The only action
that B0 executes is to reply to B4 with a BPDU as B0 assumes B4 is wrong and
hence it has to update the tree. Note that when this replied BPDU is received
in B4, it will be seen as equal information (second case). B4 does not take any
action but re-starting the MessageAgeTimer because the equal BPDU actually
confirms and refreshes the vector.

An additional particularity of the message processing is how to proceed de-
pending on the value of the hop counter, MessAge, of the BPDU. Recall that the
Root node sends its initial BPDUs with a MessAge equal to 0 and that this value
is incremented every time the information is disseminated by Designated ports
(line 5 of block G). The common message processing is applied always that the
received MessAge is lower than MaxAge (line 1 of block C). If otherwise MessAge
is larger than MaxAge (line 17 of block C), the message is discarded because it

3.4. FAILURE DETECTION AND RECOVERY 55

has traversed too many hops and it is a signal of a potential problem (section
3.5 describes this issue in more detail). In a cold start scenario like this one, this
condition is only met if the BPDU originated in a node traverses more hops than
MaxAge. An immediate consequence of this restriction is that the network size is
limited by the value of MaxAge. To be safe, MaxAge should be set to the number
of nodes in the topology. However, the recommended value by the standard is
20.

3.4 Failure detection and recovery

Once the tree has been initially configured, the role of RSTP is to maintain and
reconfigure it in the event of failures.

3.4.1 Failure detection

The protocol bases the detection of failures on actually detecting the lack of
BPDU receptions. This can be assumed because the RSTP bridges send period-
ical BPDUs through their Designated ports every HelloTime (event HelloTime-
Timer Expiration in block B of section 3.2.1). RSTP bridges independently send
these periodical messages to their child neighbors (like local independent heart-
beats). As shown in figure 3.6(a), the messages are transmitted towards the
leaves of the tree from Designated to Root or Alternate ports. These messages
are received and are used to refresh the vectors that they store (ports p1 and
p2 of B4 in figure 3.6(b)). Note that these periodical messages are considered
equal (line 13 of block C) and hence the MessageAgeTimer is restarted et every
periodical reception.

If three in a row of these BPDUs are not received (this is 3xHelloTime after
the last reception), the timer expires and vector stored in that particular port is
removed (event MessageAgeTimer expiration in block E of section 3.2.2). This
signal is interpreted as a lost of connectivity through that port and hence the
information stored in cannot be trusted anymore. A change in the topological
information of the port vectors results into a potential change in the tree, so this
must be reconfigured if the information in a port ages out. The failure detection
can be improved if bridge ports can directly detect a failed link at physical level.
This results into an immediate reconfiguration just after the physical detection
is notified to the RSTP instance.

3.4.2 Link failure recovery

The recovery form the failure example shown in figure 3.7(a)) is described fol-
lowing. In order to detail the example, the diagrams in figure 3.8 depict the
operation of RSTP to recover the tree after the failure of the link between B0
and B2.

Since the link has failed, B2 stops receiving the refreshment BPDUs from B0.
However, both the timer expiration due to lack of receptions and the immediate
detection at physical level trigger the same recovery operation. B2 removes the

56 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

0

4

2

5

3

6

1

(a) All Designated send the
periodical BPDUs

0 1 4 0

B4p1 p2

p3

B0 B3

B
P
D
U

0
-

-
0

0
0

1
0 p -

4 0 4 1

0 - -

0 1 3 2

1 - -

0 1 4 3

B6

B
P
D
U

1
-

-

0
1

3
2

B
P
D
U

1
-

-

0
1

4
3

Forwarding Port

Discarding Port

Designated Port

Root Port

Alternate Port

BPDU

m p a

r c b p

PV

M
e
ss

A
ge

P
ro

p
.

A
gr

.

BPDU

M
es

sa
ge

A
ge

 T
im

er

m p a

r c b p

PV
M

es
sA

g
e

P
ro

p
.

A
gr

.

Port Variables

(b) Detail of bridge B4 receiving and transmitting refreshing BPDU

Figure 3.6: Transmission of periodical BPDUs to refresh the vectors

0

4

2

5

3

6

1

X

(a) Tree before the recovery

0

4

2

5

3

6

1

X

(b) Recovered tree

Figure 3.7: Recovered tree by RSTP after a link failure

3.4. FAILURE DETECTION AND RECOVERY 57

2 0 2 0

B2

p1

p2

B0

0 p -

2 0 2 1

0 p -

2 0 2 2

XBPDU

0 p -

2 0 2 1

0 2 5 0

B5

p1

p3

p2

B3

1 - -

0 1 2 2

1 - -

0 1 3 4

2 - -

0 2 5 2

B1

BPDU

0 p -

2 0 2 2

(a) B2 arises as Root

1

-

a

0
2

5

0

2

p

-

0
2
5
2

2 0 2 0

B2

p1

p2

B0

0 p -

2 0 2 1

0 p -

2 0 2 2

X

0 2 5 0

B5

p1

p3

p2

B3

2 p -

0 2 5 1

1 - -

0 1 3 4

2 - -

0 2 5 2

B1

BPDU

2 p -

0 2 5 1

B
P
D
U

B
P
D
U

(b) B5 accepts worse vector and selects old Alternate as new Root

0 3 2 0

B2

p1

p2

B0

3 p -

0 3 2 1

2 - a

0 2 5 1

X

0 2 5 0

B5

p1

p3

p2

B3

2 p -

0 2 5 1

1 - -

0 1 3 4

2 - -

0 2 5 2

B1

BPDU

2 - a

0 3 2 2

(c) B2 receives vector about B0 and updates

Figure 3.8: Diagram of exchanged messages in RSTP in the event of the B0-B2
link failure scenario

58 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

vector stored in the failed port, which was actually its Root port, and when it
reconfigures the tree it realizes that the lowest Root it is aware of is itself because
it has no Root or Alternate ports left (line 1 of block F). Therefore, B2 arises as
Root and disseminates its own BPDU (figure 3.8(a)).

B5 receives this message and, even if it carries a worse vector (a higher Root),
it is considered to update because it is received from the parent (figure 3.8(b)).
The parent is always trusted because it provides the path to the Root, so a change
in the information that the parent notifies results into a direct update regardless
the vector. B5 reconfigures the tree and now selects the old Alternate port as
new Root port because it now stores the best vector (note that the vector in the
old Root has been updated by the message just received from the parent). The
change of Root port implies a change on the BPV and a reselection of the rest
of roles. B5 selects the other ports as Designated, forces them to Discarding to
allow the Root port to Forwarding, and disseminates the new information. B2
receives the new vector from B5 and considers that it updates because it has
a lower Root (figure 3.8(c)). The corresponding reconfiguration selects the new
Root port and B2 sends back the last agreement that concludes the tree recovery
(figure 3.7(b)).

A similar operation of recovery happens in the failure of a non-Root node.
The only difference is that different neighbors detect the failure and start the
previous process in parallel. If B3 fails, several nodes - B4, B5, B6 - reconfigure
their trees and disseminate messages. The propagation of these messages follows
the same rules and evolves similarly to the single link failure case. A particular
scenario appears when the Root fails. In this case the protocol elects a new Root,
the node with the second lowest identifier, and configures a new tree. In theory,
the Root neighbors detect the failures on their links and each one arises as new
Root. This should result into a similar situation as in a cold start where each
node is initialized as Root. However, there are some particular conditions that
trigger a count-to-infinity behavior: an unstable situation with looping BPDUs
that delay the convergence of the protocol after the Root failure. Section 3.5
describes and analyzes in detail this particular situation.

3.5 Root failure consequences and count-to-infinity

As seen in section 3.4, the recovery of the active topology after a link failure, or
a non-Root node, requires a few BPDUs to be exchanged and hence the recovery
time depends (1) on the detection time and (2) on the propagation delay propa-
gation involved in the transmission of such messages. A different situation occurs
when the failed device is the Root of the tree. The distance-vector protocols
experience count-to-infinity when a destination fails. Since in the computation of
the active tree in RSTP the Root acts as a destination, count-to-infinity appears
when this node fails. [14][15].

The count-to-infinity effect is an unstable behavior that leads to the uncon-
trolled dissemination of BPDUs. This effect delays the recovery time until these
messages are removed. As stated in [15], the condition required for count-to-

3.5. ROOT FAILURE CONSEQUENCES AND COUNT-TO-INFINITY 59

infinity to appear is that there exists at least one physical loop in the remaining
topology after the Root node has failed.

A simple example topology that meets such condition is shown in figure 3.9
(the outer node B0 is the Root that fails). The Root B0 fails at tf , hence B1
should arise as new Root as it has the lowest of the remaining identifiers. For
simplicity reasons, the bridge vectors (represented by boxes next to each node)
and the BPDUs (represented by arrows) only show the Root and Cost fields. The
rest of fields are not included in the example because the vector comparisons do
not reach the third step (comparing Bridge) hence it is not necessary to include
them.

B1 first detects the failure of its port p1 at tf . B1 has no Root or Alternate
ports left so it arises as potential new Root and sends BPDUs announcing it (1:0).
The colored bridge vector box indicates there has been a change in the Root field
(from 0 to 1) and in the cost field (from 1 to 0).

At t1, B2 receives the information about B1 on its Root port p1. The vector
in the BPDU is worse than the locally stored because the message is announcing
a Root with a higher identifier (1>0). However, the vector is transmitted by the
parent, who is always trusted, and hence B2 overwrites the previous vector and
reconfigures the tree. Since B2 has no Alternate ports, it notices that B0 is not
available anymore and sets B1 as the current Root. B2 also configures the Cost
to 1 as the summation of 0 (received) plus 1 (link cost). B2 disseminates the new
information to neighbors (1:1).

Also at t1, B3 receives the worse BPDU from the parent B1 and also reconfig-
ures the tree. The difference with the previous case is that B3 has an Alternate
port on p2 that provides an extra path to the Root B0. Because of this informa-
tion in the Alternate port, B3 still believes B0 is alive and selects this Alternate
as new Root port. B3 is now trusting in the vector that is stored in the old
Alternate port, which contains the really failed B0 as Root and at cost 3. Even
though this is a mistaken decision, B3 does not really know that B0 has failed
hence it disseminates this misleading information (0:3). At t2, B3 receives the
message from B2 with B1 as Root. Since it comes from the parent, it is accepted
and disseminated (1:2). Also, B1 receives the BPDU from B3 about B0. This
message is considered better, even if it is false information, because it carries a
lower Root (0<1). B1 reconfigures the tree assuming now B0 as Root, at cost
4 (3+1), and disseminates again (0:4). Observe that the stale information about
B0 originated by B3 at t1 now reaches B1, also mistakenly believing that B0 is
still alive, and continues its propagation. At t3, B2 receives the BPDU from B1
with B0 as Root, it accepts it and also disseminates the false vector (0:5). Also
at t3, B1 receives the BPDU from B3 about B1. This is considered worse and
discarded because 1<0. At t4 and t5, B3 and B1 keep receiving the BPDU with
B0 as Root and of increasing Cost.

Observe how this BPDU with false information is looping in the cycle topol-
ogy and the cost is incremented hop by hop. Note that the name of the effect
refers to the cost field counting to infinity if looping messages are not detected.
The count-to-infinity effect does not terminate unless the corresponding distance-
vector protocol implements a mechanism that detects the situation and termi-

60 CHAPTER 3. RSTP: OPERATION AND BEHAVIOR

R: 0

C: 0

0 1

2

3

R: 0

C: 1

R: 0

C: 2

R: 0

C: 2

p1

p1
p2

p3

p1

p2

p1

p2

Designated Port
Root Port
Alternate Port

Inactive link
Active link

Bridge vector
R: ...

C: ...

r:c BPDU

0:3
1:0

1:0

0 1

2

3

X 1

2

3

1

2

3

t1 t2

1
:1

0:4

1:2

0:6

1

2

3

1

2

3

1

2

3

t3 t4

0:7

0
:5 ...

R: 0

C: 2

R: 0

C: 2

R: 0=>1

C: 1=>0

R: 0=>1

C: 2=>1

R: 1

C: 0

R: 0

C: 2

R: 0=>1

C: 1=>2

R: 1=>0

C: 0=>4

R: 0

C: 2=>3

R: 0

C: 2=>5

R: 0

C: 4=>7

R: 1=>0

C: 2=>6

R: 1

C: 2

R: 0

C: 4

R: 0

C: 5

R: 0

C: 4

R: 0

C: 5

R: 0

C: 6

t5

tf

Figure 3.9: Count-to-infinity experienced in the example network with the Root
B0 failing at tf .

nates it. RSTP uses the field MessAge in the BPDUs as a hop counter to detect
and discard the looping messages. This hop counter is incremented every time
a bridge disseminates a BPDU through Designated ports after receiving one in
the Root port. When a node receives a BPDU with a MessAge larger than its
maximum value MaxAge (20 by default), the message is discarded and the infor-
mation in the port is removed. Note that this operation is similar to the response
to failure detection in that port. This way, nodes eventually remove all false BP-
DUs conveying vectors about the failed Root B0. Once these have been removed,
only messages about the alive nodes are being exchanged, similar to a cold-start

3.5. ROOT FAILURE CONSEQUENCES AND COUNT-TO-INFINITY 61

where the wave-front of B1 spans the entire networks and arises as new Root.
The cause of the count-to-infinity behavior is the use of stale information

stored in Alternate ports. The event that triggers the process is the update of
the current Root port when the Root is changing. If the bridge has an Alternate
port with information about the failed Root, this becomes the new Root port and
messages about the failed Root are disseminated to neighbors. If the bridge does
not have Alternate ports, it arises as new Root and the corresponding messages
informing of the failure are disseminated to the neighbors. Either fresh or stale
messages are received in child neighbors in their Root ports. The key issue is
that RSTP accepts all messages from parent even if they are worse than the
previous received. Hence, old information keeps moving around untouched. The
count-to-infinity clearly results into a larger recovery time after the failure of
the Root. The protocol first needs to reach the maximum value of the MessAge
field (20 hop delays), and then the new Root needs to disseminate its BPDUs
to the entire network (one-way trip delay). In addition, this situation also leads
to a high number of unnecessary messaged being transmitted. This results into
a remarkable increase of the protocol overhead in the critical case of the Root
failure.

§ 4. Review of Proposed Ethernet Bridging Control
Protocols

This chapter includes a review of the path selection techniques that aim at im-
proving the performance of Ethernet Bridging networks in terms of provision
of connectivity. These can be divided into 3 different groups depending on the
nature of the protocols.

MSTP-based proposals MSTP [16] is essentially a framework to deploy mul-
tiple tree instances that provides techniques to manage them. There are several
proposals based on the use of MSTP that introduce some particularities on which
trees are really created and how these are managed. These proposals only use
MSTP as a framework to deploy different trees in different VLANs. The mecha-
nism to construct the trees, the spanning tree protocol, is however removed and
substituted by offline techniques. The externally computed trees are then config-
ured in the network bridges before the communication starts. Using a multi-tree
framework mainly allows for improvements in terms of recovery time thanks to
the use of pre-configured backup trees. Other aspects such load balancing and
resources utilization are also addressed in a second term.

Routed Solutions One of the pillars of Ethernet bridging is its plug-n-play
property due to the automatic MAC learning operation. A different approach
is to avoid this automatic and introduce routing techniques where the bridge
forwarding tables are configured instead of learned from the network operation.
The operation of these proposals is based on using a routing protocol to construct
point-to-point paths between all nodes and configure this information into the
forwarding tables. These routing mechanism are mainly based on distance-vector
or link-state protocols already designed for higher layer networking solutions.

Turn prohibition A different approach to overcome the drawbacks of the
spanning tree bridging is based on a new loop-avoidance paradigm called turn-
prohibition. Instead of blocking links as the spanning tree protocols do (link-
prohibition), these protocols avoid certain turns in the topology. A turn is gener-
ally defined by a sequence of 3 nodes (A,B,C) where a message transmitted from
A received by B is directed to C. Therefore forbidding a turn means blocking the
communication to C when the message comes from A. This way, a higher number
of links is used and more optimal paths are constructed.

63

64
CHAPTER 4. REVIEW OF PROPOSED ETHERNET BRIDGING

CONTROL PROTOCOLS

4.1 Framework and comparison overview

This section provides a general review of the related work summarizing the main
characteristics of each group and providing a qualitative comparison. The anal-
ysis is divided into three topics: Performance, Properties and Operation. Each
one of these and the particular details that we compare are described follow-
ing. Each comparison topics includes the corresponding table with the details for
each proposal. Note that the IEEE 802.1 protocols introduced in section 2.1 are
also included in the comparisons to set the reference point of the standardized
techniques.

Performance

• Recovery time: time to recover the network operation after a failure event
described as the main factor that determines the time.

• Resource utilization: amount of active links that are really used for data
communication.

• Path optimization: degree of path optimality (whether the paths are
more or less close to optimal shortest-paths).

Properties

• Path control: flexibility to decide the nodes and links that a path tra-
verses.

• Plug-n-play: whether a node can immediately start transmitting data
after it is connected.

• Backwards compatible: whether the proposal can coexist with standard
techniques.

• End-node transparent: whether the end-nodes are transparent to net-
work operation and hence all networking operation is made by the bridges.

Operation

• Table population: whether the MAC addresses are automatically learnt
from received data frames or configured in-advance (manually or by means
of an automatic routing technique)

• Path selection nature: whether the paths are selected using a central-
ized/distributed technique, based on link-state/distance-vector, etc.

• Active topology type: whether the constructed active topology is a single
tree, several trees, individual point-to-point paths, etc.

4.1. FRAMEWORK AND COMPARISON OVERVIEW 65

• Protection/Restoration: whether a technique makes use of a pre-constructed
backup topology (protection) or recomputes it at the event of failures (restora-
tion).

Tables 4.1, 4.2 and 4.3 summarize the comparison between the different pro-
posals in terms of performance, properties and operation (respectively). A global
conclusion of the review of each of the initially described groups is provided fol-
lowing.

• IEEE Standards. The evolution of IEEE 802.1 protocols has always been
triggered by the need to improve one of the performance aspects: recov-
ery time (RSTP), resource utilization (MSTP), and path optimality (SPB).
However, these enhancements come at a cost with the increase of configu-
ration complexity and a corresponding reduction in plug-n-play property.
Also note how the operation is based on bridging fundamentals with a
distance-vector protocol except in SPB where a link-state solution is intro-
duced.

• MSTP-based extensions. The use of the MSTP framework to deploy
multiple trees provides a clear improvement in terms of resource utiliza-
tion. In addition, it opens the door to provide Traffic Engineering and
therefore meet the providers’ requirements. However, all this comes with
an increase of configuration complexity, mainly due to the use of MSTP as
a framework. Most of the techniques propose a protection scheme based on
the use of backup trees in order to obtain a quicker recovery time. How-
ever, this approach introduces two additional problems. First, switching
from tree to tree might result in temporary loops because the path in one
tree concatenated to the path in another independent tree might be a cycle.
And second, the construction of the primary and backup trees is done at
network startup before any communication starts, therefore removing the
plug-n-play capability of original Ethernet bridging.

• Routed approaches. The techniques based on applying routed protocols
show a significant improvement in terms of resource utilization and path
optimality. This is because of the construction of individual point-to-point
paths between network nodes. This operation does not follow the bridging
principles and compromises automaticity aspects such the need to dissem-
inate the end-hosts MAC addresses by means of a routing technique. All
protocols rely on a distributed technique and are based on a restoration
approach, but there main difference is in the paradigm used in the topol-
ogy acquisition: distance-vector or link-state. Note that the use of point-
to-point communication results into removing the broadcast condition of
Ethernet bridging.

• Turn-prohibition. This completely different approach introduces some
benefits but in general results into not compatible techniques. Moreover,
the paths are not guaranteed to be and the resource utilization depends on

66
CHAPTER 4. REVIEW OF PROPOSED ETHERNET BRIDGING

CONTROL PROTOCOLS

the algorithm used to calculate the legal turns. As in routed approaches,
the paths need to be calculated by each node after they have received the
physical topology graph, so the technique is not plug-n-play and it requires
a configuration complexity similar to routed approaches.

Certain global conclusions can be extracted from this literature review in
order to put in perspective our approach. First of all, all reviewed solutions ac-
tually improve the performance of the spanning tree protocols either in terms
of recovery time, number of links used or path optimality. However, how this
is achieved introduces additional points to discuss. Many techniques describe
high-level add-on solutions that do not really address the fundamental problems
we want to tackle in this thesis. Moreover, some proposals use a completely dif-
ferent architecture substituting essential bridging functionality. Since one of our
objectives is to keep the fundamental Ethernet operation (principally automatic
MAC learning and broadcast condition), we cannot introduce into our solution
any technique that removes of substitutes such basic operations. This is the case
of the routed approaches that are based on implementing a whole routing mech-
anism to populate the forwarding tables substituting the fundamental Ethernet
automatic learning.

In order to solve the recovery problem of RSTP, due to count-to-infinity, we
discard the option to deploy backup trees because this implies a pre-computation
of paths that removes the plug-n-play property of Ethernet. Another option
would be to use the link-state path selection paradigm because it does not suffer
count-to-infinity. We actually further study this option in chapter 5, with a de-
tailed SPB description, and in chapter 8, with a performance analysis comparing
with RSTP-SP. In order to solve the count-to-infinity problem we instead opt for
a detailed analysis of the RSTP protocol in order to identify its causes and design
the concrete extension that avoids it (see chapter 7).

Another aspect of this work that can be borrowed and explored is the use of
multiple trees to address the low resource utilization and sub-optimal paths of
the spanning tree protocols. The use of an active topology with multiple trees
is definitely a good solution to improve topological performance issues like the
number of links used and path optimality. As seen in the comparisons, not any
set of multiple trees can be used to deploy optimal communications. The active
topology composed by one tree rooted at each node in SPB seems to be the best
option. We follow this idea in the RSTP-SP proposal where we extend the original
single tree RSTP to deploy one tree rooted at each node in order to operate with
optimal communication paths (see chapter 8). Note that the proposals based on
the routed approach also operate in shortest paths. We however have discarded
this option because they substitute the fundamental automatic learning by a
configuration technique.

4.1. FRAMEWORK AND COMPARISON OVERVIEW 67

Table 4.1: Performance aspects of related work techniques

Protocol
Performance

Recovery time Resource utilization Path optimization

IE
E
E

80
2.
1

STP fixed timer of 50sec Only single tree links Only single tree links

RSTP
Propagation from
failure down the

affected tree branch*
Only single tree links Only single tree

paths

MSTP
Propagation from
failure down the

affected tree branch*

Depends on the
number of trees

Only single tree
paths

SPB
Propagation from
failure to furthest

node

Potentially all links
(one tree per node)

All Shortest paths
(one tree per node)

M
ST

P
-
ba
se
d

[38] Not specified Links of two single
trees

Slightly better than
single tree

[39] Not specified

Depends on the
number of trees

Better than single
tree but not optimal

[40] local backup tree
failover

[41] local backup tree
failover

[42]
Notification to edge
nodes of the tree

failover

Viking
Notification back and
forth to and from the

central control

R
ou

te
d
A
pp
ro
ac
he
s

STAR Not specified
Links of single tree

plus some
point-to-point paths

Paths of single tree
plus some

point-to-point paths
OSR

Propagation from
failure to furthest

node

Potentially all links
(point-to-point

paths)

All shortest paths
(point-to-point

paths)

BRouter
LSOM

RBridges
Smart
Bridge

SEATTLE

ARP-
Path

Propagation from
failure to source node
plus one round-trip

Potentially all links
(point-to-point

paths)
Close to optimal

T
ur
n
P
ro
h. Up/

Down Not specified
Potentially all links
(depends on the
turns allowed)

Better than single
tree (depends on the

turns allowed)

TBTP Not specified

Potentially all links
(depends on the

turns allowed, more
than Up/Down)

Better than single
tree (depends on the
turns allowed, better

than Up/Down)
* Count-to-infinity in the event of the Root failure

68
CHAPTER 4. REVIEW OF PROPOSED ETHERNET BRIDGING

CONTROL PROTOCOLS

Table 4.2: Properties of related work techniques

Protocol
Performance

Path control Plug-n-play Backwards
compatible

End-node
transparency

IE
E
E

80
2.
1

STP Based on link
cost yes yes yes

RSTP Based on link
cost yes yes yes

MSTP Based on link
cost no yes yes

SPB

Based on link
cost but possible
to extend to
other metrics

yes yes yes

M
ST

P
-b
as
ed

[38]

Possible to
extend to other
metrics (paths

computed
offline)

Requires
in-advance

configuration
of trees

Not specified Not specified
[39] Not specified Not specified
[40]

No (remove
STP)

yes
[41] yes
[42] yes

Viking yes

R
ou

te
d
A
pp

ro
ac
he
s

STAR Based on link
cost

yes (spanning
tree as initial
forwarding)

yes yes

OSR Based on link
cost

Requires
in-advance

configuration
of paths

No (remove
STP, no
automatic
learning, no
broadcast)

BRouter Based on link
cost yes

LSOM Based on link
cost

RBridges

Based on link
cost but possible
to extend to
other metrics

No (remove
STP, no
automatic
learning)

yes

Smart
Bridge

Based on link
cost

No (remove
STP, no
automatic
learning, no
broadcast)

yes

SEATTLE Based on link
cost yes

ARP-Path
No (paths

depend on ARP
messages)

yes

T
ur
n
P
ro
h

Up/Down Not specified Requires
in-advance

configuration
of paths

No (remove
STP, no
automatic
learning, no
broadcast)

yes

TBTP Not specified yes

4.1. FRAMEWORK AND COMPARISON OVERVIEW 69

Table 4.3: Operational aspects of related work techniques

Protocol
Performance

Table population Path selection
nature

Active topology
type

Protection/
restoration

IE
E
E

80
2.
1

STP

Automatic
learning

Distributed
Distance-Vector Single tree

Restoration
RSTP Distributed

Distance-Vector Single tree

MSTP Distributed
Distance-Vector Various trees

SPB Distributed
Link-State

One tree per
node

M
ST

P
-b
as
ed

[38]

Automatic
Learning

Centralized
computation

(offline)

2 trees Not specified
[39]

Various trees Protection

[40]
[41]
[42]

Viking

R
ou

te
d
A
pp

ro
ac
he
s

STAR

Additional
tables configured
by the routing

technique

Distributed
Distance-Vector

Single tree with
additional

point-to-point
paths

Restoration

OSR

Configured by
routing
technique

Distributed
Distance-Vector

Point-to-point
paths

BRouter Distributed
Distance-Vector

Point-to-point
paths

LSOM Distributed
Link-State

Point-to-point
paths

RBridges Distributed
Link-State

Point-to-point
paths

Smart
Bridge

Distributed
Diffusing

Computations

Point-to-point
paths

SEATTLE Distributed
Link-State

Point-to-point
paths

ARP-Path Configured by
the ARP-reply ARP-based

Point-to-point
paths (not

deterministic)

T
ur
n
P
ro
h

Up/Down Automatic
learning

Distributed
Diffusing

Computations
Turn-prohibition Restoration

TBTP Automatic
learning Not specified Turn-prohibition Not specified

70
CHAPTER 4. REVIEW OF PROPOSED ETHERNET BRIDGING

CONTROL PROTOCOLS

4.2 MSTP-based extensions

Pre-configured backup trees Some proposals describe an offline computa-
tion of trees which is then assumed to be mapped onto the MSTP nodes for
example by means of manual configuration by the network administrator.

This is the case in [38] where the authors propose the use of two edge disjoint
trees (two trees that do not share any link). The proposal does not indicate
why using two trees is an optimized solution. With the configuration of two
trees, the authors focus on improving the resources utilization (active links) and
providing better paths than the single tree. The MSTP framework is used to
map the different VLANs into one of the two trees. In case of failure, and since
the trees do not share any link, note that only one tree is affected and hence only
those VLANs that were mapped to such tree loose connectivity. The proposal
however does not describe any type of failure recovery. The trees are constructed
offline and configured manually into the nodes by the network administrator. The
authors consider the user traffic requests to optimize the creation of the trees and
the assignment of VLANs to traffic flows [43]. The study only contemplates
the topological aspects of constructing the edge disjoint trees but is has not
been implemented. These aspects are evaluated numerically. While results show
that a higher number of links is used than in the single tree (90% of links),
the maximum number of hops stays 66% larger than the case of using optimal
paths. In conclusion, this solution only improves the links utilization but it does
not provide optimal path communications. In addition, recovery issues have not
been analyzed and hence we cannot discern a conclusion on this aspect.

A similar proposal that also describes an offline algorithm to construct pre-
computed trees is described in [39]. The aim of the proposal is to reduce the
recovery time. This solution proposes to construct a primary and a backup tree for
each potential link failure. The tree switchover is then applied locally when a node
detects a failure on a port. This solution requires that the network administrator
configures in advance: the multiple MSTP active trees, the VLANs assigned to
each one of the multiple trees, and the multiple backup trees that are used in
case a link failure is detected. These tree and VLAN selections are done offline
by means of an ILP (Integer Linear Programming) that minimizes the number of
trees created to recover from all possible link failures. As in the previous case, the
analysis provided is a numerical study based on topological aspects evaluating
BW allocated in different parameters configuration. A complete convergence
time analysis would require to evaluate the protocol, for example, in a simulation
platform.

The proposal in [40] describes a technique based on the use of backup trees.
It mainly aims at improving the recovery time while at the same time provides
load balancing properties. There is not any limitation on the number of trees
to construct and the authors do not specify any rule to decide how many (it is
left to the administrator criteria). The protocol operation is based on switching
between trees when a failure is detected. The decision to switch tree is taken on
a per-frame basis in each one of the nodes. When a frame needs to be forwarded
to a failed port, the bridge switches that data flow to the next tree (actually

4.2. MSTP-BASED EXTENSIONS 71

changing the VLAN). The only requirement is that the trees must be ranked and
only switching to a higher rank tree is allowed because switching back and forth
between trees might create forwarding loops. One of the problems is that after a
long time all flows might be transmitted over the last tree and a network reboot is
needed. Another disadvantage is that switching between trees might create local
loops because a frame traverses a link in one tree that it has already traversed
in one of the previous trees. This might be a problem for keeping the symmetry
requirement. The evaluation of the protocol is done by means of simulation and it
shows an immediate single link failure recovery because of the local switchover to a
higher ranked tree. In conclusion, while the use of backup trees clearly improves
the resilience performance, requiring external tools to configure in advance all
active topologies is an important limitation in Ethernet networking.

A different approach on how to use the backup trees to reduce the recovery
time is presented in [41]. In this case each node stores a database with several
trees. The particularity of these trees is that each one will be used if a concrete
link failure occurs. That is, for each possible link failure each node stores which
is the backup tree to use. This mechanism requires that the link failures be prop-
agated to all nodes so they can switch to the corresponding tree. The calculation
of the trees is also done offline before the network starts operating and it is de-
scribed in [44]. It is based on an ILP optimization that creates as few trees as
possible but ensuring that all possible link failures are covered. The evaluation
is based on simulation and sub-50ms recoveries are achieved thanks to the use of
the backup trees.

Solution at [42] also focuses on improving the recovery time by applying a
protection mechanism based on the decisions taken by edge nodes. A set of
predefined and static multiple trees distinguished by VLAN ID are set on the
network. In doing so, alternative paths of different trees can be used in a failure
situation. They implement an operation mode where all the set of trees is initially
used by a single VLAN for each tree. The edge nodes need to be configured in
advance so they know to which VLAN they assign each traffic flow. The authors
describe in [45] the offline algorithm that constructs the best trees. The objective
of the algorithm is to configure as many trees as needed in order to ensure at
least one alternative disjoint path, in another tree, for each pair of edge nodes
(this results in less than 10 in all their evaluations). The proposal implements
a lightweight protocol based in keep-alive messages that detects a failure in the
paths. Any single link failure detected by an edge node is broadcasted to the rest
of edge nodes so they can also switch the VLAN ID and the tree. This results in
removing an entire tree for every failure. When a failure is detected in one of the
trees, the edge nodes switch the traffic from one VLAN to another in order to
switch traffic to a different tree. The evaluation is based on a test-bed and results
show that the recovery time only depends on the time to detect the failure and
notify it to all edge nodes (from 10 to 60 milliseconds in a network of 8 nodes).
However, it lacks plug-n-play property because the trees must be computed a
priori and configured in the nodes before any communication. In addition, after
several failures a network reboot might be needed if no trees are left for further
recoveries.

72
CHAPTER 4. REVIEW OF PROPOSED ETHERNET BRIDGING

CONTROL PROTOCOLS

Viking The Viking solution [46] uses the MSTP framework to deploy multiple
trees and it is based on the application of an intense network monitoring together
with a centralized computation of paths. We highlight it from the previous pro-
posals because it provides a complete practical solution.

Its objective is to reduce the time required to recover from failures and provide
load balancing. As in previous solutions, Viking is based on the use of primary
and backup paths (or trees). Each one of the trees is assigned a different VLAN
identifier and the end-hosts tag their frames, hence they select the tree, in order
to apply load balancing or to recover from a failure. Note that Viking spans its
action into the end-hosts and hence it is not transparent to the user.

The difference with the previous proposals is that Viking centralizes all the
tree calculations and the management of notifications into a central node. This
control point uses SNMP to remotely manage the MSTP instances of each net-
work node and configure the path changes for example after a failure. In addition,
it also notifies the end-hosts when to change the VLAN tag applied to the data
frames.

The construction of the trees carried out in the central control. Viking as-
sumes that the administrator manually enters the physical topology in the central
node, so no topology acquisition operation is described. The algorithm used first
computes two point-to-point paths between each pair of nodes (one primary and
one backup). The different trees are then selected based on these paths, starting
from the longest and adding one at each iteration. Finally, SNMP is used to
remotely set the MSTP configuration in the network nodes.

The central control periodically receives statistics from each end node about
the traffic load between each pair of nodes. This information is used by the cen-
tralized algorithm to recompute paths, hence trees, if necessary. At the event
of a failure, the central point is also notified and makes the corresponding re-
computations of the trees and tells the end-hosts to switch VLAN. The use of a
centralized computation allows for high flexibility in terms of paths configuration.
The use of backup paths allows for a quick recovery once the failure is detected
and notified to the central node. However, a significant amount of overhead is
introduced which in turn delay the failure recoveries to hundreds of milliseconds.
In addition, it is not transparent to end-hosts as they must be aware of the VLAN
where they belong.

4.3 Routed solutions

STAR The proposal in STAR [47] aims at improving the performance of a
network already running the spanning tree protocol. It uses some of the links that
the spanning tree protocol blocks, but keeping backwards compatibility with the
legacy standard protocol. The idea is to deploy some STAR bridges in a bridged
network together with spanning tree bridges and create an overlay logical topology
only composed by the STAR bridges. The communications that do not start and
terminate in STAR bridges still use the tree paths of the normal STP, so the
global active topology is the original tree with the addition of some optimal

4.3. ROUTED SOLUTIONS 73

paths between the STAR bridges. Note that STAR bridges are devices that both
operate the common STP and the additional STAR functionality.

STAR bridges start computing the spanning tree with the rest of common
bridges. The STAR bridges then exchange special STAR frames (encapsulated
in Ethernet data frames to bypass the STP bridges) to construct the overlay
paths. A distance-vector protocol constructs the optimal paths between the
STAR bridges. Note that these distances cannot be accurately computed be-
cause the intermediate nodes do not participate. Consequently, STAR algorithm
takes this into consideration and only considers additional paths that can be
accurately estimated.

A STAR bridge maintains the common Forwarding table of the STP operation
(FD), and the additional tables Bridge Forwarding (BF) and Host Location (HL).
BF table stores the paths between the STAR bridges and the HL table keeps the
mapping between end-hosts and such STAR bridges. When a data frame is
received by a STAR bridge, this looks up the destination address in the HL table.
With this it obtains the association between the host and the corresponding
STAR bridge and uses the BF table to determine the path to use. If the address
is not found, the regular FD table is used (and flooded if not found either).

An advantage of STAR compared to other proposals is that it is backwards
compatible with the legacy spanning tree bridges. Moreover, the STAR operation
allows for overall improvements in terms of path optimality because it allows the
use of some of the paths that STP blocks. However, still not all communications
use shortest-paths. Note that if all nodes were STAR bridges then the solution is
the same than in the following OSR or Brouter. The evaluation however focuses
on message complexity and storage necessities and does not provide information
on resource utilization of convergence time. However, in this last aspect we can
expect large times because the mechanism that determine the different phases of
the operation are based on expiration of timers.

OSR The Optimal-Suboptimal Routing (OSR) in [48] proposes a transparent
bridge architecture that aims at increasing the number of links used and providing
better paths than those in the standard spanning tree.

OSR substitutes the spanning tree protocol instance by a distance-vector rout-
ing protocol that constructs point-to-point paths. As described in 2.2, the nodes
exchange topological information to build the tables that indicate which is the
outgoing port to reach each one of the nodes (destinationBridge-nextBridge map-
ping table). In addition, each node collects the addresses of the end-hosts con-
nected to it and disseminates this information to the rest of nodes. This way,
every builds a table that contains which end-hosts are connected to each node
(host-bridge mapping table). Note that implementation of such database can be
done on two different tables or in the same merging all the information.

The utilization of both tables is the base of the forwarding function. When
a frame is destined to a particular end-host, this is looked up in the host-bridge
table. Once the destination bridge is known, the path to it is looked up in the
bridge-bridge table and the frame is forwarded to the neighbor indicated.

74
CHAPTER 4. REVIEW OF PROPOSED ETHERNET BRIDGING

CONTROL PROTOCOLS

The OSR evaluation focuses on delay and throughput obtained once the active
paths are configured. Since more links are used and individual point-to-point
paths are configured, OSR outperforms the single tree solutions (20% less delay
in average). They do not implement the protocol that constructs the active
topology so metrics such recovery time or protocol overhead are not taken into
account.

Finally note that this type of proposal is not backwards compatible with legacy
spanning tree protocols because (1) the tables are configured by the distance-
vector routing protocol implemented instead of using the automatic bridge learn-
ing, and (2) the broadcast condition is removed because a frame directed to an
unknown destination is dropped.

Brouter The Brouter proposal in [49] is very similar to OSR. It also proposes
a transparent bridge architecture that increases the number of links used and
provides better paths.

The path selection in the Brouter is also managed by a distance-vector routing
protocol. The difference is that the Brouters match the location of the end-hosts
to the LAN where they are connected. This implies that the Brouters use a host-
LAN mapping table together with a LAN-LAN table. The LANs are identified
by the individual Brouter identifiers and the port numbers (in order to decide
which Brouter "owns" the LAN, the lowest value is selected). As in OSR, the
distance-vector algorithm is used to construct the point-to-point path between
LANs, and the host-LAN table to locate the end hosts is disseminated by each
Brouter.

The Brouter evaluation provides a qualitative analysis about the amount of
overhead (memory, CPU, and BW) present in the Brouters. It does not imple-
ment the protocol either so a detailed evaluation of the protocol performance is
not available.

The Brouter proposal can be seen as an implementation of the routing philos-
ophy idea into Ethernet. First, point-to-point paths are configured. And second,
forwarding to LANs corresponds to forwarding to subnets (although masks can-
not be applied because the lack of hierarchy in the MAC address space). While
it is a transparent solution to end nodes, it requires configuration of the tables
before starting the communication. In addition, backwards compatibility is not
maintained because automatic bridge learning is not used and the broadcast op-
eration is not used.

LSOM The Link State Over MAC (LSOM) protocol described in [50] proposes
a bridging architecture that aims at improving paths and number of links used
by using a link-state algorithm to construct the paths. LSOM substitutes the
spanning tree protocol instance by a link-state routing protocol that constructs
point-to-point paths. As described in section 2.2 the nodes exchange topologi-
cal information to construct the physical topology and then apply a centralized
algorithm to compute the paths.

4.3. ROUTED SOLUTIONS 75

LSOM is a solution oriented to scenarios where bridges are used in a small
backbone network and routers are located in the edges connecting to the access.
This way, routers set the limit of the bridged network in order to reduce the
amount of addresses to be learnt (routers are seen as the end-hosts of the bridged
network).

The link-state protocol is used to share the entire physical topology formed
by the bridges. Unlike IP routing protocols, the bridge MAC addresses are used
as identifiers of each node. As a link-state, bridges disseminate their connections
to neighbors and then use Dijkstra [35] to compute the active paths between
bridges. This operation populates the table that indicates the next hop to reach
a particular destination Bridge. In addition, each bridge disseminates to the rest
of nodes which end-hosts (routers) are connected to each bridge. This information
together with the paths computed in the link-state algorithm form the routing
tables used to forward data frames. Resiliency in LSOM is obtained using keep-
alive messages sent between bridges every 10ms. When 3 in a row are not received,
the link is considered failed and the link-state procedure updates and disseminates
the new state of the link.

The LSOM evaluation focuses on delay and throughput once the topology
is constructed (using optimal paths ring or trees) but there is no estimation of
the time it takes to construct the paths and hence estimation of the convergence
time.

RBridges RBridge proposal in [51] is focuses on enhancing layer 2 Bridges
with some layer 3 functionalities. As previously described in the LSOM proposal,
RBridges also use a link-state algorithm to construct the point-to-point paths of
the active topology. This allows to operate in shortest path communications. The
link-state mechanism is also used to distribute the end-hosts that are connected
to each RBridge.

The difference with other routed-based approaches, RBridges maintain the
Ethernet broadcast requirement in order to provide backwards compatibility.
This is done by constructing, using the link-state mechanism, a spanning tree
that is only used to forward frames to unknown destinations. One of the prob-
lems of using this spanning tree for broadcast communication is that it might have
temporary loops while the topology information is being distributed. To solve
this, RBridges add a hop counter in the data frame headers to avoid potential
transient loops.

The proposal does not evaluate the protocol hence we cannot extract perfor-
mance conclusions. Also, the details of the RBridges approach are being defined
in the TRILL workgroup in the IETF at time of writing.

SmartBridge The technique described in [52] is also based on creating shortest
paths between each pair of nodes using tables that map the end-hosts with the
bridge where they are connected and tables that contain the next bridge in order
to reach a destination bridge (routing-alike)

76
CHAPTER 4. REVIEW OF PROPOSED ETHERNET BRIDGING

CONTROL PROTOCOLS

The difference is that the topology acquisition is done by means of a mecha-
nism based on diffusing computations [53]. In this type of procedure, an initiator
node sends a topology request to all its connected peers. In turn, the peers
forward the request to their own neighbors so the topology request is actually
flooded. When a node receives such request, it sends a topology reply with the
list of its directly connected neighbors to the parent node that sent the request.
Note that the topology replies with the list of connected neighbors are transmit-
ted upwards to the initiator that originally sent the topology request. Since the
initiator node receives all the replies from all nodes, it actually holds all the lists
of neighbors and hence it is aware of the entire topology. At his point the initiator
disseminates the physical topology to all nodes so they can compute the paths. In
summary, a diffusing computation can be easily seen as a 3-step procedure where
(1) the initiator requests the connections to all nodes, (2) the initiator receives
such information, and (3) the initiator disseminates the entire list of connections
so every node becomes aware of the physical topology. This topology acquisition
mechanism is triggered at start-up and when a node detects a failure.

The difference with the link-state protocols is that the diffusing computation
technique allows the initiator to detect when the process has terminated so the
nodes can start sending data using the computed active topology. This is an im-
portant issue to consider as detecting the termination of the topology construction
mechanism is one of the key points in distributed systems. Actually, the original
STP lacks of a reliable mechanism like this one and implements over-estimated
timers to decide when the algorithm has converged and start transmitting data.
Differently, RSTP introduces the proposal-agreement handshake to locally detect
the termination of the algorithm. While the mechanism in RSTP does not indi-
cate when the protocol has totally converged, it allows to start sending data as
soon as the neighbors confirm the handshake (see section 6.2 for a more detailed
explanation).

Evaluations show that the diffusing computations provides recovery times of
40msec for networks (in a 20 nodes network). In addition, the knowledge of the
entire topology in each node allows SmartBridges to operate with shortest path
communication. However, it is not backwards compatible with original Ethernet
Bridging.

SEATLLE SEATTLE [54] implements the topology acquisition using a link-
state protocol. The difference with the other link-state techniques is that the
resolution of the host location (that is to which edge node a host is connected)
is not done by means of link-state advertisements. Instead, the information that
maps each end-host with the connected bridge is distributed among all network
nodes (hence avoiding all nodes storing the entire information). When a packet
needs to be forwarded, the receiving node A use a consistent hash function with
the host destination as the key. This calculation provides the network bridge B
that contains the edge node C where the host is connected. A then sends the
packet to B, and this last forwards it to C. In order to avoid this additional
overhead in further forwarding, A is notified by B that the host is connected to

4.4. TURN PROHIBITION 77

C. In later forwarding A directly sends the frames to C.
The objective of SEATTLE is to increase Ethernet networks scalability by

means of removing the flooding of unknown destination hosts. The use of the
distributed hash tables improves the amount of overhead due to flooding of data
packets and reduces the forwarding table sizes compared to the flat approach of
original Ethernet. The study does not focus on the evaluation of the link-state
algorithm to construct the active topology and it is assumed already available.

ARP-Path A different approach is proposed in [55] where the ARP messages
are used to construct the paths substituting the bridge learning functionality.
ARP-Path aims at configuring better paths than with a single tree while reduc-
ing complexity of other proposals. When an end-node wants to send a message
to an unknown destination, it first floods an ARP request asking for that partic-
ular destination. When this request is successfully received by the destination,
this replies back an ARP reply that is used to really select the path that will
communicate source and destination introducing the corresponding entry in the
forwarding tables. The different bridges that this ARP request traverses actually
learn the port where the destination is located.

Note that this approach results in a connection-oriented solution because the
path is created using the request and reply of the ARP messages and both end-
nodes agree on the connectivity establishment. Also, the recovery is based on
a notification to the source bridge so it can re-issue the ARP-based mechanism
and re-construct the path. The bridge that detects the failure is in charge of
notifying the rest of bridges in the path to the source so they remove the learnt
ports. When this message reaches the source node, this floods a new ARP request
and the path is reconstructed.

The evaluation of the proposal focuses on studying latency and allocated
bandwidth measurements. Delay results with ARP-Path show an improvement
of 60% compared to using a single tree. In terms of throughput, the single tree
network saturates at 16% of the maximum load while in ARP-Path it saturates
at 32%.

Although ARP-Path avoids the broadcast forwarding of classical Ethernet
Bridging, the main shortcoming of this approach is that the constructed paths
depend on how the first ARP message reaches each node. This results into non-
deterministic routes that cannot be managed as they depend as instant aspects
such as network congestion and on an algorithm not designed to establish paths.

4.4 Turn prohibition

Up/Down protocol The Up/Down algorithm was originally designed for the
Autonet high-speed network [56] [57]. The objective is still to avoid the creation
of loops, but instead of stopping the communication in some links (as a tree-based
solution applies) this technique selects a set of turns that are prohibited. The
algorithm that selects which turns are allowed uses a directed spanning tree that
is constructed in a way that all links point to the Root of the tree. This results

78
CHAPTER 4. REVIEW OF PROPOSED ETHERNET BRIDGING

CONTROL PROTOCOLS

in each link having an "up" direction (to the Root) and a "down" direction (to
the leaves). In order to avoid loops, a message that is forwarded node after node
is only allowed to change the direction once: first going up, and then going down.

The Autonet nodes need to know the entire physical topology in order to
locally compute the routing tables based on the Up/Down rules. Autonet also
provides a topology acquisition mechanism similar to SmartBridge based on dif-
fusing computations [53]. A spanning tree using [22] is first constructed, and then
each node uses it to disseminate their neighbors (send this information up to the
Root). When the Root of the tree receives the adjacencies of each node, it com-
bines all this information and disseminates it to all the nodes so they are aware
of all the physical topology. At this point, nodes locally calculate the routes be-
tween all nodes taking into account the turn-prohibition rules. While this process
is being operated the data communication is not allowed as inconsistent views of
the topology might end up in forwarding loops. Once the tables are constructed,
the message forwarding is based on the entries in the tables populated by the
routing algorithm.

The main advantage of this type of protocols is that they use a higher number
of links than deploying a single tree. However, since all messages are only allowed
first to go up and then go down, there are still bottlenecks in the Root proximities
and paths are not optimal. The drawbacks are that the data communication is
cut while the topology construction is being done (the proposal does not provide
numerical evaluations on this aspect, and that the Up/Down algorithm described
does not have any upper bound on the amount of prohibited links.

These two disadvantages have triggered some proposals that aim at improving
the Autonet. The protocol in [58] describes a way to keep the data communica-
tion flowing while the construction of the tables is being done. It still uses the
Up/Down algorithm and the same topology acquisition mechanism, but the up-
date of the routing tables is different. It is based on a sequenced partial update of
the tables confirmed by the immediate neighbors (so the neighbors really confirm
what to update and when to do it). However, the changes proposed imply that
the constructed topology depends on the order of how bridges appear and hence
it is not deterministic.

Another enhancement is the Hierarchical Up/Down Routing Protocol (HURP)
described in [59]. This solution decreases the amount of prohibited turns and
does not require that nodes have the entire physical topology. The hierarchical
addresses are configured by an additional protocol that allows additional turns
ensuring a loop-free delivery under some particular conditions (this reduces the
amount of prohibited turns to 20%). In addition, the construction of routes is not
centralized because a distributed distance-vector algorithm is used to exchange
the allowed routes (similar to distance-vector solutions in section but taking into
account the prohibited turns).

Tree-based Turn-Prohibition (TBTP) The TBTP [60] is based on the the-
oretical algorithm described in [61]. It reduces the amount of prohibited turns
compared to Up/Down algorithms, and it bounds its maximum value to 50%.

4.4. TURN PROHIBITION 79

Note that the more turns are allowed, a better resource utilization is achieved.
TBTP is a centralized algorithm that is given the network topology and a span-
ning tree and it computes the set of prohibited turns (as in Autonet). In compar-
ison to Up/Down, TBTP is a more complex calculation that aims at optimizing
the number of prohibited turns while constructing optimal paths as much as
possible. Since the algorithm is locally computed in all nodes, the architecture
requires that each element knows the physical topology. The topology acquisition
mechanism is not provided but assumed as known.

§ 5. IEEE 802.1aq Shortest Path Bridging

Using a single tree as the active topology is still inefficient in terms of resources
utilization (not all links are used) and path optimality (only the Root observes
shortest-paths to all nodes). For this reason the IEEE 802.1 standardization body
is currently working on the update of the family of spanning tree protocols and is
introducing Shortest Path Bridging (SPB) [17]. Note that this SPB description
is presented in a standalone chapter, apart from the other proposals of the re-
lated work, because it represents the current standardization efforts that directly
compares to our shortest path proposal RSTP-SP described in chapter 8.

The idea of SPB is to extend the active topology into one tree rooted at each
node of the network. Note that if each node uses its own tree to introduce its
own data traffic, shortest-path communications are achieved between each Root
and the rest of nodes. Figures 5.1(a) and 5.1(b) show two trees rooted at B2 and
B6 (T2 and T6 respectively). The traffic introduced by B2 is forwarded using
T2. Note how all the communications follow a shortest-path between B2 and any
destination bridge. Similarly, B6’s traffic is transmitted using T6 and therefore
also using shortest-paths. If each node uses its own tree, all communications
follow the optimal paths. In addition, this active topology provides an increase
on network resources utilization because the links are active either in one tree or
the others.

This chapter describes several aspects related to the design of SPB. First,
deploying one tree per node introduces an additional concern to this new bridging
because it is not trivial to configure symmetrical paths between nodes (section
5.1 elaborates on this topic). And second, sections 5.2 and 5.3 describes of the
SPB protocol and provides operational examples.

5.1 The symmetry challenge

The active topology created by the spanning tree protocols determines the paths
that are learnt by the learning function and implemented in the forwarding ta-
bles. In the single tree case, the unique active topology forces the bridge to learn
bidirectional paths and, in turn, ensures symmetry. Differently, in SPB the com-
munication paths are selected as if they were unidirectional because a different
tree is used in each direction. The main challenge is that SPB needs a careful
selection of trees due to the symmetry requirement of the fundamental bridge
learning operation.

81

82 CHAPTER 5. IEEE 802.1AQ SHORTEST PATH BRIDGING

0

4

2

5

3

6

1

p1

S

D

p2
p3

(a) T2: tree rooted at B2

p1

p2

0

4

2

5

3

6

1S

D

(b) T6: tree rooted at B6

2-0-
3

0

4

2

5

3

6

1

p1

S

D

p2 p3

2-0-4

2-5-1

(c) T2: tree rooted at B2 (using path-
array)

p1

p2

0

4

2

5

3

6

1S

D

6-3-0

6-1-5

(d) T6: tree rooted at B6 (using path-
array)

Active Link

Inactive Link

Designated Port

Root Port

Alternate Port

Figure 5.1: Trees rooted at B2 and B6 become symmetrical if the path-array
tie-breaking is applied.

In the example of figure 5.1(a) the traffic generated at host S, injected by B2,
is forwarded to destination D connected to B6 using the tree rooted at B2 (T2).
And similarly in 5.1(b), traffic from D to S is injected by B6 and forwarded using
the tree T6. Assuming that all forwarding tables are empty, B2 floods the frame
from S to D to all ports where the tree T2 is active (both p1 and p2). This
frame is flooded in each bridge following T2 and eventually reaches p3 of B6.
Therefore, B6 learns that it can reach S through p3. If B6 now sends a frame
from D to S, it does not flood it because it has already learnt that it can reach S
through p3. Note that this frame is forwarded using T6, to B1 and to B5, but its
transmission is stopped because of the blocked links in B5. Hence it will never
reach S. Similarly, B6 uses T6 to flood a frame from D to S and B2 learns it in
port p1. A frame to D injected by B2, hence using T2, will not reach B1 as it
will be discarded after B3.

Since the symmetry condition needs to be met, the branch in T2 from B2 to
B6 must be the same than the branch in T6 from B6 to B2. In this example
the trees T2 and T6 are not symmetrical and the bridge learning and forwarding
functions do not properly work as seen in the previous example.

5.2. SPB PROTOCOL OPERATION 83

Any shortest-algorithm can be used to compute the trees that compose the ac-
tive topology because the objective is to select the shortest-paths from all nodes to
each Root. However, a common implementation of the selected algorithm might
easily lead to non-symmetrical trees. The reason is that when an algorithm needs
to select among multiple shortest paths, the most common applied tie-breaking
rule selects the path where the immediate next hop has the lower identifier. In
the example of figure 5.1(a), B6 selects B1 instead of B3 or B4 because 1<3<4.
Similarly in 5.1(b), B2 selects B0 because 0<5. The path between B2 and B6
is not symmetrical because the path selection depends on this local information
(immediate next hop), which results in different decisions at different points of
the network. Note that the selection of the best next hop that leads to each Root
is actually the selection of the Root port for each tree.

In order to ensure global consistency, it is a matter of extending the decision
elements and use the complete path from the Root: the path-array. Instead of
looking at the parent identifier to select among multiple routes, this approach
compares the entire array of each suitable path. Once the algorithm computes all
the eligible shortest-paths, the tie-breaking rule using the path-array is applied.
The path-array of each shortest-path is first sorted from lowest to highest, and
then the elements are compared one by one. If the element is the same in both
path-arrays, the next element is compared. Otherwise, the path-array with the
lowest element is considered better and hence selected.

In the example of figure 5.1(c), B6 decides between the path-array in p1 (2-
0-4), in p2 (2-0-3) and in p3 (2-5-1). Once sorted, the arrays become 0-2-4, 0-2-3
and 1-2-5, respectively. The path-array in p3 is discarded because of the highest
first element (0<1) and among p1 and p2, the latter is considered better because
3<4 at third position. Similarly in figure 5.1(d), B2 decides between 6-3-0 in p1
and 6-1-5 in p2. Once sorted, the arrays become 0-3-6 and 1-5-6. B2 considers p3
better because 0<1 in the first element. Since both selected paths are the same
but in opposite direction, the path between B2 and B6 are the same.

The calculation of the symmetrical trees using the path-array is straightfor-
ward in a framework where a centralized algorithm is used to compute the paths.
Note that the central node that applies the algorithm knows all the topology
and hence it can easily compute the eligible shortest-paths and then apply the
tie-breaking rule. However, the SPB requires a distributed protocol that makes
such calculations. This is one of the reasons why the SPB introduces the link-
state approach moving away from the distance-vector algorithms of the current
spanning tree protocols. As in the centralized protocols, the flexibility that the
link-state approach introduces also allows for an easy solution to compute the
path-array in a distributed framework. Following sections describe the link-state
approach proposed by 802.1 to construct the SPB multiple tree active topology.

5.2 SPB protocol operation

This section provides a description of the SPB protocol proposed by the IEEE
802.1 workgroup. What SPB really does is to implement the link-state proto-

84 CHAPTER 5. IEEE 802.1AQ SHORTEST PATH BRIDGING

Table 5.1: Bridge Variables

Name Description
BridgeID Unique identifier of a bridge.
ADJ [n] Array that contains the list of adjacencies received from each node

(e.g. ADJ[3] contains the list of adjacencies of node 3). Note that
each ADJ[i] is actually another array. Every node stores all adjacen-
cies received because the complete list represents the entire physical
topology.

seq [n] The adjacencies received from each node have an associated sequence
number so the protocol can easily distinguish between old and fresh
information. A received list of adjacencies, with a higher sequence
number than the last received, always updates the local version, oth-
erwise it is discarded.

Table 5.2: Port Variables
Name Description
Role The port roles are the same as in the spanning tree protocols (Root,

Designated, Alternate). The only difference is that SPB uses a link-
state technique to elect them.

State The state of the ports (Forwarding, Discarding) also determines which
ports actually forward or block data frames. As in the spanning tree
protocols, Root and Designated ports are Forwarding and Alternate
ports are Discarding.

col IS-IS [36] as a base and introduce the SPB particularities as extensions. As
already mentioned, one of the advantages of the link-state protocols is their flex-
ibility and ease of extendibility, and IS-IS was originally designed aiming at this
direction.

The objective of the link-state protocol used in SPB is to construct the trees
that form the active topology. This actually means setting the port roles (Root,
Designated, Alternate) and the port states (Forwarding, Discarding) of each one
of the trees that are constructed. Note that, as in the spanning tree protocols,
the link-state technique is not used to populate the forwarding tables as this is
still left to the automatic bridge learning functionality. Therefore, SPB uses a
link-state solution to only substitute the operation of the spanning tree protocols:
constructing the active topology.

5.2.1 Bridge and port variables

The state that the SPB protocol implements can be divided in two areas: (1)
those used by the link-state technique that disseminates the physical topology
and locally compute the trees, and (2) those that relate to the construction of
the trees from the bridging perspective.

In the first case, each node stores the necessary data structures to store the
link-state information that is received from other nodes. The variables to manage
the link-state operation are included in table 5.1. Note that these variables are
all stored at bridge level as there is no real port information in the link-state

5.2. SPB PROTOCOL OPERATION 85

protocols. First, a unique node identifier is needed in each device: the BridgeID.
Second, the topological information is stored in the form of adjacencies. An
adjacency is a confirmed physical connection between two nodes. Each node
stores a list of sequences of adjacencies (ADJ[n]). That is, each node keeps an
array with as many entries as nodes in the network, and where each entry is
a list of adjacencies that represent the neighbors of the node that corresponds
to that particular array entry. Note that each one of the array entries contains
the connectivity that each node disseminates. Therefore this adjacencies list can
be seen as the compilation of received information from the rest of nodes. And
third, each one of the entries also has an associated sequence number (seq[n]) to
identify whether a received adjacency updates the stored information.

And in the second, the set of port variables include the port role and the port
state as described in table 5.2. These two variables are what really determines
the shape of the tree from the bridging perspective (whether a port is active or
not). Note that each port stores one role and one state for each one of the trees.
The difference with the spanning tree protocols is that these are elected with the
computations done by the link-state protocol.

5.2.2 Construction of the multiple trees

The protocol functionality is composed by three different operations: the neighbor
discovery, the connectivity dissemination and the local computation of paths.
Figure 5.2 shows a diagram with the relationship of these three operations.

The neighbor discovery is triggered by a node when a link is added and aims
at notifying to the opposite neighbor about the existence of the first (see how the
signal "link up" calls the neighbor discovery operations in the neighbor A and B
in figure 5.2(a)). Every time a node discovers a neighbor, it realizes about the new
available connection and the connectivity dissemination is executed to announce
the new ’link state’ to other nodes. In the example, A and B execute their
connectivity dissemination and flood the new available link. The disseminated
’link state’ information is flooded and hence all other nodes eventually received it
(figure 5.2(b)). Receiving fresh information about the state of a link implies that
the database of adjacencies is updates and hence the physical topology changes.
The local computation of trees is executed to revise the paths and update the
port roles and port states accordingly.

At reception of the disseminated information including updated available con-
nections, nodes construct the physical topology and run the local computation
of paths, hence construct the trees. Node I in the diagram represents any other
node that receives the link state information and recomputes the paths. Also
observe that the trees are also recomputed by A and B when the connectivity
dissemination is triggered because of the new link.

Note that although the three operations are independent, they are linked to
each other and there is not any condition that determines the end of the operation
as the nodes are always awaiting for a notification of a new link that triggers the
process again. The details of these operations are summarized in the pseudo-code
in figure 5.4 and described next.

86 CHAPTER 5. IEEE 802.1AQ SHORTEST PATH BRIDGING

ND CDLC

ND CDLC

ND CDLC

Node A

Node B

Node K

...

‘link up’

...

(a) Neighbor Discovery triggers the Con-
nectivity Dissemination

ND CDLC

ND CDLC

ND CDLC

Node A

Node B

Node K

...

...

(b) Connectivity Dissemination
triggers the Local Computation

Figure 5.2: Relationship between the operations of the SPB protocol

Neighbor Discovery At network start-up, the nodes are not aware of any
connection hence all variables are initially cleared (see the event Turn-on bridge
in block A of figure 5.4). Turning on a bridge implies that the ports of the links are
already available, which triggers the neighbor discovery function in each bridge.
All nodes send Hello Messages to all ports in order to notify to the neighbor that
they are already available. Table 5.3 includes the description of the frame format
of a Hello message. A part from many fields inherited from IS-IS that focus on
managing the protocol and identifying the frame, the Hello Messages basically
include the BridgeID of the transmitter, in the SourceID field, so the immediate
neighbor realizes which bridge is at the other side of the link.

The reception of a Hello message is processed in the receiving node as the event
Reception of Hello Message indicates in block B of the pseudo-code in figure 5.4.
Since receiving a Hello message indicates the confirmation of the connectivity
between the neighbors, the local node adds this adjacency into its own list (that
is, the receiver B includes the M − B connection into ADJ[B]). The diagram in
figure 5.3 shows an example of the exchanged messages and processing events that
occur in a cold-start scenario in a sub-set of nodes of the example topology. The
thin arrows that are sent at t0 are the Hello messages and the number in brackets
indicates the BridgeID of the transmitter. For example, at t1 B0 receives the
Hello Messages from B3. At this instant B0 adds the connection B0−B3 to its
own ADJ[0].

After a Hello reception, the receiver B floods the new information about its
own adjacencies, ADJ[B], to all neighbors. The adjacencies are distributed en-
coding them into Link State PDU (LSP) as shown in the frame format described
in table 5.4. As in the Hello message case, this format is inherited from IS-IS
and most of the field are used to control versioning and type of frames. The
essential fields in the LSP frames are the LSP ID that includes the identifier
of the node that originates such LSP, the Sequence Number, and the array of
adjacencies including the Neighbor ID and the corresponding cost Metric. For
example, observe in the message diagram of figure 5.3 how B0 and B6 transmit

5.2. SPB PROTOCOL OPERATION 87

0 3 6
p2 p1 p3 p2

H

t0
Hello [3]

LSP[0]: 0-3

t1

t2

t3

Hello [3]

LSP[6]: 6-3

L+

Hello Hello

H

L+L+

L+

Neighbor
Discovery

Connectivity
Dissemination

Local
Computation

LSP[i]: i-j
H Hello Received
L+ LSP higher seq .

Hello[i]

LSP[0]: 0-2,0-3,0-4 LSP[6]:

6-3,6-4,6-1L+
L+tk

LSP[2]: 0-2,0-5 L+ LSP[1]:

1-5,1-6
L+

LSP[6]: 6-3

LSP[0]: 0-3

Figure 5.3: Example of a cold-start in SPB link-state protocol.

their LSPs at t1 (LSP[0]:0-3 and LSP[6]:6-3 respectively).

Connectivity Dissemination This operation is triggered every time an LSP
is received, as detailed in the event Reception of LSP in block C of figure 5.4,
where node B receives and processes the adjacencies of node M . The receiver
first compares the sequence number of the incoming LSP with the last sequence
number received. If the received is higher (lines 1 to 5 of block C), the LSP[M] is
considered to carry fresh information and the adjacencies of node M are stored
in the local database of node B (ADJ[M]). This received LSP is then forwarded
through all the ports except the incoming, so its flooding continues and ensures
that the LSP reaches all nodes.

If the received sequence is equal to the stored (lines 6 to 7 of block C), nothing
is done because it is considered repeated information and it does not update the
topology database. If the received sequence is lower (lines 8 to 9), it refers to an
old topology update and it is discarded. In this last case, the adjacencies of node
M stored in node B (ADJ[M]) are sent back to the port where the old LSP was
received so the neighbor corrects its database.

In the example of figure 5.3 the LSPs are represented by thick arrows with
the owner’s identifier between brackets and the adjacencies included written as
i − j (node i connected to node j). Note that only LSPs from nodes B0 and
B6 are shown for simplicity reasons and different line styles are applied to LSP
from different nodes. Observe how the dissemination of LSPs starts at t1 after

88 CHAPTER 5. IEEE 802.1AQ SHORTEST PATH BRIDGING

the reception of the Hello messages. The propagation of LSPs advances node
after node until reaching all network elements. For example, B3 receives LSP[0]
at t2 and forwards it to B6 that receives it at t3, and so on. Also note that, for
instance, the LSP[0] received by B3 at t1 only includes the adjacency 0 − 3 but
a more updated version of LSP[0] is received at tk with already all B0 neighbors
(0-1, 0-3, 0-4).

Table 5.3: Hello Message Frame Format

Name Description Bytes

E
th
er
ne
t
en
ca
ps
.

SA Management MAC address of the bridge 6
DA Reserved address to indicate "all bridges" (01:80:C2:00:00:00).

It is a broadcast protocol and messages are not sent to a par-
ticular destination and are consumed at the next bridge hop
and only live in the link they are produced.

6

Length/ Type Indicates total length of the frame. 2
LLC Indicates the bridge client that processes the received frame

and delivers it to the SPB client.
3

IS
-I
S
P
D
U IS
-I
S
he
ad

er

Protocol identi-
fier

Fields defined by IS-IS used to manage the identification of
the IS-IS frame.

1

Header Length 1
Protocol Ver-
sion

1

PDU type 1
PDU version 1
Reserved 1
Maximum
Area

1

H
el
lo

F
ie
ld
s

SourceID The unique identifier of the transmitter node is encoded in
the SourceID field so the receiver realizes the identifier of its
neighbor.

8

Circuit Type

Additional fields defined by IS-IS used to manage the
identification of the frame.

1
Holding Time 2
PDU length 2
Local Circuit
ID

1

Extension
TLVs

-

Frame Check Sequence 4

5.2. SPB PROTOCOL OPERATION 89

Table 5.4: LSP Frame Format
Name Description Bytes

E
th
er
ne
t
en
ca
ps
.

SA Management MAC address of the bridge 6
DA Reserved address to indicate "all bridges" (01:80:C2:00:00:00).

It is a broadcast protocol and messages are not sent to a par-
ticular destination and are consumed at the next bridge hop
and only live in the link they are produced.

6

Length/ Type Indicates total length of the frame. 2
LLC Indicates the bridge client that processes the received frame

and delivers it to the SPB client.
3

IS
-I
S
P
D
U

IS
-I
S
he
ad

er

Protocol identi-
fier

Fields defined by IS-IS used to manage the identification of
the IS-IS frame.

1

Header Length 1
Protocol Ver-
sion

1

PDU type 1
PDU version 1
Reserved 1
Maximum
Area

1

L
SP

:
he
ad

er

PDU length

Fields defined by IS-IS used to manage the identification of
the LSP information.

2
Lifetime 2
Checksum 4
Flags 2
TLV Type 1
TLV Length 1
LSP ID Identifier of the bridge that originates this LSP. This node is

actually announcing its adjacencies with this LSP.
8

Sequence Sequence number of the LSP included in the message. 4

L
SP

:
ad

ja
ce
nc
ie
s Neighbor ID

First adjacency of the LSP.
8

Metric 3
Sub-TLVs 1
...
Neighbor ID

Last adjacency of the LSP.
8

Metric 3
Sub-TLV 1

Frame Check Sequence 4

90 CHAPTER 5. IEEE 802.1AQ SHORTEST PATH BRIDGING

Local Computation of Paths When a node receives an LSP with new adja-
cencies (an LSP with a higher sequence number), it updates the physical topology
and individually computes the active trees (line 4 in block C and subroutine Com-
puteTrees() in block E of figure 5.4). Since the computation is done locally, any
technique that is able to compute shortest paths can be used as long as it is
the same in all nodes. The common option is to apply Dijkstra algorithm [35]
to compute the shortest-paths from a concrete node to the rest (note this cre-
ates a shortest-path tree rooted at the given node). Therefore, repeating the
same calculation for each Root node results in all shortest-path trees. Note that
the path-array tie-breaking rule described in section 5.1 is used to select among
multiple equal shortest-paths.

This path information is then translated into port roles (Root, Alternate,
Designated). Once the active trees are locally calculated, it is straightforward
to determine the port roles. For each tree, the port in each node that provides
the closest path to the Root is selected as Root port. Among the rest, the
port becomes an Alternate if the neighbor is closer to the Root. Otherwise it
is assigned a Designated role. Note that these distance comparisons are locally
done by each node, so each one makes the same decisions.

The local computations are represented in the diagram of figure 5.3 with the
sign "L+" (reception of an LSP with a higher sequence). Note that these are
due to the receptions from the first LSP[0] received by B3, at t2, to the last one
received at tk. This is because the distributed nodes do not know at which instant
the adjacencies received are definitive or not. Therefore the nodes keep compute
the trees every-time, which might result into transient configurations because
different nodes might have inconsistent views of the topology. For example, B3
at t2 has only received the LSPs from B0 and B5, and therefore the trees that
B3 computes are those on a topology with these 3 nodes. On the contrary, the
trees computations that B3 executes at tk (assuming all LSPs already received)
are done using the complete physical topology. Since the process is based on the
propagation of the LSPs, the convergence time of SPB in a cold start scenario
can easily be characterized as: CTSPB = (Diam+ 1)× thop (where Diam is the
diameter of the physical topology, the +1 is because of the initial Hello Messages,
and thop is the propagation delay of a dine hop).

Different nodes might configure different trees which can result into the ap-
pearance of forwarding loops if the nodes start communicating data. In order to
avoid this, there is the need for an additional port activation mechanism. The
idea is to only transition Root and Designated ports to Forwarding if the lo-
cal node and the neighbor have the same topology view. This small handshake
protocol at most only requires the exchange of two messages between neighbors
so as to confirm the transition of ports to Forwarding. The details of the ad-
ditional protocol are still being defined in the standard body. For this reason
in the present work we implement an ideal mechanism for the evaluation in the
simulation platform. A Root or Designated port transitions to Forwarding if the
neighbor in that link has the same topology view than the local node. This check-
ing can easily be made in a simulation where information is available globally,
but a practical solution requires the exchange of messages mentioned.

5.2. SPB PROTOCOL OPERATION 91
A

.
T
u
rn

-o
n

B
ri

d
ge

/*
It

is
tr
ig
ge
re
d
at

ea
ch

n
od
e
at

n
et
w
or
k
st
ar
t-
u
p.

A
ll
n
od
es

ar
e
in
it
ia
ll
y
co
n
fi
gu
re
d

as
th
e
on

ly
de
vi
ce

in
th
e
n
et
w
or
k
*/

1.
C
le
ar

al
l
A
D
J[
n]

/*
A
t
ne
tw
or
k
st
ar
t-
up

,
ea
ch

no
de

is
on

ly
aw

ar
e
of

it
se
lf,

th
er
ef
or
e
th
e
lin

k-
st
at
e
da

ta
ba
se

co
n-

ta
in
in
g
ad

ja
ce
nc
ie
s
of

ot
he
r
no
de
s
is

em
pt
y
*/

2.
Se
t
al
l
po

rt
s
of

th
e
ow

n
tr
ee

to
D
es
ig
na

te
d

ro
le

an
d
D
is
ca
rd
in
g
st
at
e

/*
E
ac
h
no
de

is
th
e
R
oo
t
of

it
s
ow

n
tr
ee
;
he
nc
e
al
lp
or
ts

of
th
is
tr
ee

ar
e
co
nfi

gu
re
d
as

D
es
ig
na

te
d.

T
he

st
at
e
is

in
it
ia
liz
ed

to
D
is
ca
rd
in
g
w
ai
ti
ng

fo
r
a
fu
tu
re

co
nfi

rm
at
io
n
th
at

tr
an

si
ti
on

s
th
em

to
Fo

rw
ar
di
ng

*/
3.

Se
t
al
l
po

rt
s
of

th
e
th
e
ot
he
r
tr
ee
s
to

an
un

de
fin

ed
ro
le

an
d
D
is
ca
rd
in
g
st
at
e

/*
A
t
th
e
be
gi
nn

in
g,

th
e
no

de
s
ar
e
no

t
aw

ar
e
of

th
ei
r
po
si
ti
on

in
th
e
ot
he
r
tr
ee
s,

so
al
l
po
rt
s
ar
e

te
m
po
ra
ri
ly

as
si
gn
ed

to
an

un
de
fin

ed
ro
le

an
d
D
is
ca
rd
in
g
st
at
e
*/

4.
Se
nd

H
el
lo

m
es
sa
ge
s
to

al
l
po

rt
s

/*
T
ur
ni
ng

on
a
br
id
ge

re
su
lt
s
in

st
ar
ti
ng

th
e
ne
ig
hb
or

di
sc
ov
er
y
m
ec
ha

ni
sm

so
ne
ig
hb
or
s
be
co
m
e

aw
ar
e
of

th
e
ex
is
te
nc
e
of

su
ch

br
id
ge

*/

B
.
H
el
lo

m
es
sa
ge

fr
om

n
od

e
M

re
-

ce
iv
ed

in
b
ri
d
ge

B
/*

T
he

re
ce
pt
io
n
of

a
H
el
lo

m
es
sa
ge

fr
om

a
n
ei
gh
bo
r
co
n
fi
rm

s
th
e
co
n
n
ec
ti
vi
ty

be
tw
ee
n
th
e
lo
ca
l
n
od
e
an

d
th
e
n
ei
gh
bo
r
*/

1.
A
dd

B
-M

ad
ja
ce
nc
y
to

A
D
J[
B
]

/*
In

pr
ac
ti
ce
,
th
is

re
ce
pt
io
n
re
su
lts

in
th
e
ad
di
ti
on

of
th
e
co
nn

ec
ti
on

be
tw
ee
n
th
em

in
to

th
e

ad
ja
ce
nc
ie
s
of

th
e
lo
ca
l
no

de
(A

D
J[
B
])

*/
2.

In
cr
ea
se

se
q[
B
]

/*
A

ch
an

ge
in

th
e
lo
ca
l
ad
ja
ce
nc
ie
s
A
D
J[
B
]
im

pl
ie
s
an

in
cr
ea
se

in
th
e
co
rr
es
po
nd

in
g
se
-

qu
en
ce

nu
m
be
r
so

it
is

co
ns
id
er
ed

fr
es
h
in
fo
rm

at
io
n
w
he
n
re
ce
iv
ed

by
ot
he
r
no
de
s
*/

3.
Se

nd
A
D
J[
B
]t

o
al
lp

or
ts

/*
T
he

up
da
te
d
lo
ca
la

dj
ac
en
ci
es

lis
t
is

di
ss
em

in
at
ed

so
al
lo

th
er

no
de
s
re
al
iz
e
ab
ou

t
th
e
ne
w

co
nn

ec
ti
on

be
tw
ee
n
B

an
d
M

*/

92 CHAPTER 5. IEEE 802.1AQ SHORTEST PATH BRIDGING

C
.

L
S
P
[M

]
m
es
sa
ge

re
ce
iv
ed

in
b
ri
d
ge

B
/*

T
he

re
ce
pt
io
n
,
pr
oc
es
si
n
g
an

d
di
ss
em

in
at
io
n
of

an
L
S
P

ar
e
th
e
ac
ti
on

s
th
at

co
m
po
se

th
e
co
n
n
ec
ti
vi
ty

di
ss
em

in
at
io
n
*/

1.
if
(
se
qu

en
ce

of
L
SP

[M
]>

se
q[
M
])

/*
A

re
ce
iv
ed

L
SP

of
no

de
M

(L
SP

[M
])

w
it
h
a
hi
gh
er

se
qu
en
ce

th
an

th
e
st
or
ed

in
se
q[
M
]

re
pr
es
en
ts

fr
es
h
in
fo
rm

at
io
n
th
at

up
da
te
s
th
e
la
st

re
ce
iv
ed

an
d
he
nc
e
it

is
st
or
ed

in
th
e

lo
ca
l
co
py

of
th
e
ad
ja
ce
nc
y
of

M
(A

D
J[
M
])

*/
2.

A
D
J[
M
]=

L
SP

[M
]

3.
se
q[
M
]=

se
qu

en
ce

of
L
SP

[M
]

4.
C
om

pu
te
T
re
es
()

/*
A

ch
an

ge
in

th
e
lis
t
of

ad
ja
ce
nc
ie
s
m
ea
ns

a
ch
an

ge
in

th
e
ph
ys
ic
al

to
po
lo
gy
,
so

th
e

tr
ee
s
m
us
t
be

re
co
ns
tr
uc
te
d
to

m
at
ch

th
e
pa
th
s
to

th
e
ne
w
lin

ks
*/

5.
Se

nd
A
D
J[
M
]t

o
al
lp

or
ts

ex
ce
pt

p
/*

T
he

flo
od
in
g
of

th
is

L
SP

co
nt
in
ue
s
to

ot
he
r
no

de
s
*/

6.
if
(
se
qu

en
ce

of
L
SP

[M
]=

=
se
q[
M
])

/*
T
he

re
ce
pt
io
n
of

th
e
sa
m
e
se
qu
en
ce

nu
m
be
r
th
an

th
e
st
or
ed

in
di
ca
te
s
th
at

th
is

L
SP

ha
s
al
re
ad
y
be
en

re
ce
iv
ed

an
d
pr
oc
es
se
d
*/

7.
-

8.
if
(
se
qu

en
ce

of
L
SP

[M
]<

se
q[
M
])

/*
T
he

re
ce
pt
io
n
of

a
lo
w
er

se
qu
en
ce

nu
m
be
r
th
an

th
e
st
or
ed

re
al
ly
m
ea
ns

th
at

th
e
ne
ig
hb
or

th
at

fo
rw

ar
de
d
ha
s
no

t
up
da
te
d
in
fo
rm

at
io
n,

so
th
e
lo
ca
ln

od
e
se
nd

s
ba
ck

th
e
ow

n
ve
rs
io
n

of
th
is

L
SP

st
or
ed

in
A
D
J[
M
]
*/

9.
Se

nd
A
D
J[
M
]t

o
po

rt
p

D
.
F
ai
lu
re

d
et
ec
ti
on

in
p
or
t
p
of

b
ri
d
ge

B
/*

A
po
rt

fa
il
u
re

is
in
te
rp
re
te
d
as

a
lo
ss

of
co
n
n
ec
ti
vi
ty

be
tw
ee
n
th
e

n
od
es

th
at

co
n
n
ec
t
th
e
li
n
k
*/

1.
N
ei
gh

=
ne

ig
hb

or
co
nn

ec
te
d
to

B
th
ro
ug

h
po

rt
p

/*
Lo

ca
l
va
ri
ab
le

th
at

st
or
es

th
e
id
en
ti
fie
r
of

th
e
no
de

co
nn

ec
te
d
at

th
e
ot
he
r

si
de

of
th
e
fa
ile
d
po
rt

*/
2.

R
em

ov
e
ad

ja
ce
nc
y
B
-N

ei
gh

fr
om

A
D
J[
B
]

/*
A

po
rt

fa
ilu

re
is

in
te
rp
re
te
d
as

a
lo
ss

of
co
nn

ec
ti
vi
ty

be
tw
ee
n
no
de
s
B

an
d

N
ei
gh
.
T
hi
s
is

w
hy

th
e
lo
ca
l
ad
ja
ce
nc
y
lis
t
is

up
da
te
d
re
m
ov
in
g
th
e
B
-N

ei
gh

co
nn

ec
ti
on

an
d
th
e
se
qu
en
ce

nu
m
be
r
is

in
cr
em

en
te
d
*/

3.
In
cr
ea
se

se
q[
B
]

4.
C
om

pu
te
T
re
es
()

/*
A

ch
an

ge
in

th
e
lis
t
of

ad
ja
ce
nc
ie
s
m
ea
ns

a
ch
an

ge
in

th
e
ph
ys
ic
al

to
po
lo
gy
,

so
th
e
tr
ee
s
m
us
t
be

re
co
ns
tr
uc
te
d
to

m
at
ch

th
e
pa
th
s
to

th
e
to
po
lo
gy

w
it
ho
ut

th
e
fa
ile
d
lin

k
*/

5.
Se

nd
A
D
J[
B
]t

o
al
lp

or
ts

/*
T
he

ne
w

in
fo
rm

at
io
n

in
th
e
lo
ca
l
ad
ja
ce
nc
y
is

di
ss
em

in
at
ed

so
al
l
ot
he
r

no
de
s
re
al
iz
e
ab
ou

t
th
e
la
ck

of
co
nn

ec
ti
vi
ty

be
tw
ee
n
B

an
d
N
ei
gh

*/

5.2. SPB PROTOCOL OPERATION 93

E
.
C
om

p
u
te
T
re
es
()

/*
T
he

co
m
pu

ta
ti
on

of
tr
ee
s
is

tr
ig
ge
re
d

w
he
n

th
er
e
is

an
u
pd
at
e
in

th
e

da
ta
ba
se

of
ad
ja
ce
n
ci
es

*/
1.

R
un

D
ijs
kt
ra

fo
r
ea
ch

R
oo

t
no

de
/*

Si
nc
e
th
e
ob
je
ct
iv
e
is

to
cr
ea
te

on
e
tr
ee

ro
ot
ed

at
ea
ch

no
de
,
D
ij
ks
tr
a
is

ex
ec
ut
ed

as
m
an

y
ti
m
es

as
no

de
s.

E
ac
h
on

e
of

th
e
ex
ec
ut
io
ns

bu
ild

s
th
e
sh
or
te
st
-p
at
h
tr
ee

to
on

e
of

th
e
R
oo
ts

*/
2.

A
pp

ly
pa

th
-a
rr
ay

ti
e-
br
ea
ki
ng

in
eq
ua

l-
co
st

sh
or
te
st
-p
at
hs

/*
If

th
e
ca
lc
ul
at
io
n

of
D
ij
ks
tr
a
re
su
lts

in
m
ul
ti
pl
e
sh
or
te
st

pa
th
s,

th
e
pa
th
-a
rr
ay

ti
e-

br
ea
ki
ng

is
us
ed

to
se
le
ct

a
si
ng
le

pa
th

so
th
e
br
id
gi
ng

sy
m
m
et
ry

re
qu
ir
em

en
t
is

m
et

*/
3.

Se
le
ct

po
rt

ro
le
s

/*
O
nc
e
th
e
un

iq
ue

sh
or
te
st
-p
at
hs

to
ea
ch

R
oo
ts

ar
e
id
en
ti
fie
d,

po
rt

ro
le
s
ar
e
se
le
ct
ed

*/

F
ig
ur
e
5.
4:

P
se
ud

o-
co
de

of
th
e
SP

B
op

er
at
io
n

94 CHAPTER 5. IEEE 802.1AQ SHORTEST PATH BRIDGING

0 3 6
p2 p1 p3 p2

tf LSP[0]:0-3,0-4t1

t2

t3

L+

C
o

n
n

e
c
ti
v
it
y

D
is

s
e

m
in

a
ti
o
n

Local

Computation

X

L+

LSP[0]:0-3,0-4

LSP[2]: 2-5

L+

Figure 5.5: Example of a link failure recovery in SPB link-state protocol.

5.3 Failure recovery

Another event that triggers a change of topological database is the detection of
a link failure. If a node detects a failure in one of the ports the connection to
the neighbor becomes unavailable. The operation is shown in the event Failure
Detection of block D of figure 5.4. The node removes the corresponding adja-
cency from its own ADJ because the link is not available anymore and hence
its connections to the neighbors have changed. Since the adjacencies have been
updated, which means a change in the physical topology, the node recomputes
the trees so the paths match the new topology without the failed link. The new
information of B’s adjacencies needs to be distributed so other nodes also realize
about this change. The bridge detecting the failure disseminates its new ADJ
flooding an LSP.

Figure 5.5 shows an example where the link between B0 and B2 fails. B0
detects the failure at tf and realizes that its connection to B2 is not available. B0
then removes the 0-2 connection from its own ADJ[0] and the LSP is sent to all
the neighbors. Note this LSP only includes the connections [0-3,0-4] as B0 drops
0-2. The rest of nodes receive the flooded fresh LSP and consequently recompute
the trees now considering a physical topology without the 0-2 link. When this
LSP propagation reaches all network elements, every node already has the new
topology.

The recovery of a node failure does not differ much from the single link case
in terms of protocol operation. A node failure can be seen as a failure of each
one of the links connected to the failed node. Therefore each one of the neighbors
detects the failure and floods a new version of its LSP (as B0 and B2 do in
previous example). Eventually, all nodes in the network receive the new LSPs of
the affected nodes and configure the trees based on the new physical topology.

§ 6. Nature of the Tree Construction Problem

This chapter includes the study of the RSTP behavior when it constructs the
initial tree at network start-up. The objective is to comprehend the evolution of
the distributed operation in order to understand performance aspects such as the
time that the protocol takes to construct the tree. Therefore, this study focuses
more on analyzing the behavior of the protocol rather than the operation (which
is described in chapter 3).

To the best of our knowledge, observing the protocol behavior from this aspect
is a novel contribution. Most RSTP studies focus on performance evaluations
that analyze the global protocol performance in different scenarios. References
[27] to [29] present evaluations in small topologies. They use the OPNET [62]
simulations and validate the results with small test-beds. An interesting analysis
is included in [30], which focuses on the characterization of the processing delays
of real equipment in small test-beds. Depending on the device, delays between
1, 33ms and 12ms are observed.

The chapter is organized as follows. First, section 6.1 contains a comprehen-
sive behavior analysis describing the propagation effect of the tree construction.
Second, section 6.2 describes the derived theoretical lower bound for the con-
vergence time and its implications in the design of the protocol operation. And
finally, section 6.3 includes the performance analysis by means of simulation that
confirms the propagation-based behavior and further evaluates the protocol per-
formance.

6.1 Wave-fronts propagation effect

As described in section 3.3, the reception of a BPDU with a vector that updates
the local information leads to the reconfiguration of the tree (reselection of port
roles and port states) and the consequent dissemination of the updated informa-
tion (send BPDUs to neighbors). This sequence of procedures is repeated every
time a BPDU with a better vector is received at any bridge. Concretely at net-
work start-up, this operation occurs several times because every bridge initially
believes it is the Root and sends its own BPDUs. This results into many compar-
isons of received and stored vectors with different Root fields (like the case in the
example in section 3.3 where B4 receives from B0). There are also comparisons
between vectors of the same Root, but with different costs, or different Bridges,
or different ports. Overall, the situation is quite complex to analyze in detail.

95

96 CHAPTER 6. NATURE OF THE TREE CONSTRUCTION PROBLEM

0

4

2

3

6

1

5

(a) t0

0

4

2

5

3

6

1

(b) t1

0

4

2

5

3

6

1

(c) t2

0

4

2

5

3

6

1

(d) t3

Figure 6.1: Propagation of wave-fronts during the tree construction

0 3 6
p2 p1 p3 p2

1
p3 p2

r:c:b:p

b Better from Des

w Worse from Des

a Agreement

w

Designated Port

Root Port

Alternate Port

Discarding port
Forwarding port

t0
6:0:6:2

(p) 6:0:6:3

(p)

w w

w
3:0:3:1

(p) 3:0:3:3 (p)
b

b

b

0:0:0:2 (p)

0:1:3:3 (p)

0:2:6:3 (p)

0:1:3:1 (a
)

0:2:6:2 (a
)

0:3:1:2 (a
)

a

a

a

1:0:1:2
(p)

1:1:6:2
(p)

w

b

1:1:6:3 (a)

a

t1

t2

t3

t4

Figure 6.2: Diagram of exchanged BPDUs in a sub-set of nodes at network start-
up.

6.2. THEORETICAL BOUND OF THE CONVERGENCE TIME 97

However, what makes it simpler to observe and easier to understand is that a
vector with the Root of the lowest BridgeID (0 in our case) always updates any
other vector with another identifier as Root (0 is always lower than 2, 4, 27...).
This means that the BPDUs of the Root B0 always update, always reconfigure
the tree, and always get disseminated.

Furthermore, this local behavior can easily be seen in a graphical way if we
imagine this sequence of events considering that each node starts propagating a
wave announcing itself as Root. Figure 6.1 shows the wave-fronts started at each
bridge where the grey levels of the arrows indicate the different BridgeIDs (darker
is lower). Hence, the black arrows correspond to the Root B0 and the dark grey
to the Root B1 (note the rest of wave-fronts are all depicted with light grey for
simplicity reasons). The network snapshot at t0 represents the start-up instant
where all bridges are initialized as Root and send BPDUs. As the BPDUs of lower
Roots are received and processed, these always win the comparisons, update the
trees and make the wave-front advance. When two wave-fronts encounter, the
one with the lowest Root is considered better, beats the other and continues its
propagation while the defeated wave stops at that point. This comparison is
done whenever two wave-fronts are faced and the winner always gets through.
Therefore, the influence of a wave-front increases every hop as long as a coming
wave-front disseminates a tree about a smaller Root than the own. But the wave-
front diminishes when it contacts with a more ’powerful’ wave-front, this is, with
a smaller Root. Note that from a more technical perspective, a comparison of
wave-fronts represents a comparison of priority vectors. This is the case at t1
where B0 wins over B2-B3-B4, or B1 wins over B5-B6. Note that this is a
transient situation as there are still several sub-trees configured in the network.
As wave-fronts go forward (BPDUs get disseminated), observe how the black one
advances more and more until it reaches the entire network at t4. When the
messages originated at the definitive Root span all the network, the other wave-
fronts have already dissipated and the propagation of topological information is
completed. At this point all nodes are aware of the final Root, their distance to
it and therefore they store the right port roles.

The same wave-fronts evolution can be also observed with more detail in the
diagram of exchanged messages in figure 6.2. The arrows represent the BPDUs
transmitted (darker is lower) and note that only a sub-set of nodes is shown. See
how the black arrows representing the wave-front of the Root B0 span the entire
network while other wave-fronts are defeated as they encounter the black one
(B3 and B5 at t1, B1 at t2). Also observe that the last messages processed are
actually BPDUs with agreements terminating the handshake that are sent back
to the parent node to activate the Designated port (for example B5 at t4). Next
section describes in more detail how handshake operation evolves.

6.2 Theoretical bound of the convergence time

The main conclusion of the wave-fronts observation is that the algorithm termi-
nates when all messages starting at the Root reach the furthest bridge. Therefore,

98 CHAPTER 6. NATURE OF THE TREE CONSTRUCTION PROBLEM

the propagation through the longest tree branch determines the convergence time
of the algorithm. It is straightforward to derive an analytical characterization of
the RSTP convergence time in a cold start scenario:

CTRSTP = max(Lbr)× thop (6.1)

where Lbr is the branch length, thop is the hop delay.
This propagation time defines a theoretical bound of the convergence time.

The feasibility of this theoretical bound depends on the ability to detect that the
Root messages have fully propagated through the entire network. While this is
easy to see in the figure it is very difficult to identify in the normal distributed
operation. Nodes respond to received messages, and nothing is different in the
messages after complete propagation. Therefore, it is not easy to detect the com-
pletion of the tree to stop the algorithm as all nodes operate distributed with
minimal state and always waiting for the reception of a potential better message.
This permanent transient situation must conclude at some point in order to con-
sider the tree completely built and safely start forwarding data. Note that before
the Root information has been completely propagated there are some nodes that
have not yet received the Root wave-front and contain a tree configuration that
will eventually be updated. Forwarding data based on this transient configura-
tion can end up in forwarding loops resulting in broadcast storms as described in
section 2.1.

The original STP relies on timers that wait enough time until all messages
have been propagated (the recommended value in the standard is 30 seconds).
When this timer expires, the Root and Designated ports are set to Forwarding
and start transmitting data traffic. The drawback of this approach is that the
arbitrary value of the timers directly affects the recovery time. This value is
calculated very conservatively considering the worst case scenario assuming a
maximum propagation time to configure the values of the timers. This results
into waiting for 30 seconds before the port states turn to Forwarding and hence
data starts being transmitted.

On the contrary, RSTP uses the proposal-agreement handshake as a proactive
technique no improve the termination detection. This mechanism is based on
synchronization messages that are sent between a Designated port in a parent
bridge and the Root port, or Alternate, in the corresponding child as the wave-
front advances. The objective of the handshake is to allow for the transition to
Forwarding of the Designated port in the parent. Figure 6.3 shows a general
example where bridge A sends a BPDU marked as proposal in order to transition
its Designated port to Forwarding (step 1). Bridge B receives this BPDU in the
port p1 that also elects as new Root port (step 2). B blocks the Designated
ports (p2, p3) so the Root port p1 can safely transition to Forwarding. Since the
Designated ports are now Discarding, they start their own handshakes with the
corresponding neighbor sending BPDUs marked as proposals. In turn, B sends
back an agreement to A so it can transition its Designated port to Forwarding.
Finally in step 3, B eventually receives the agreements from its child neighbors
and also transitions the Designated ports to Forwarding.

6.2. THEORETICAL BOUND OF THE CONVERGENCE TIME 99

prop

A B
p1

p2

p3

(a) (step 1)

A B

agr

pro
p

prop p1

p2

p3

(b) (step 2)

A B

agr

ag
r

p1

p2

p3

(c) (step 3)

Figure 6.3: Local operation of the proposal-agreement handshake between direct
neighbors

p

p

p

0

4

2

5

3

6

1

x
xx

(a) t0

a

a
a

p

p

p

p

p

0

4

2

5

3

6

1

x

x

x
p
x

x

x

(b) t1

p

p

a

a

a

a

a

0

4

2

5

3

6

1

x

x

(c) t2

a

a

0

4

2

5

3

6

1

(d) t3

Figure 6.4: Evolution of proposal-agreement handshake in RSTP.

In order to understand how the local handshake affects the global network,
figure 6.4 shows the overall perspective with the handshakes that occur within
the propagation of the Root B0. At t0, a port that is selected as Designated
and Discarding state sends a BPDU that is seen as the handshake proposal. At
t1, these proposal BPDUs are received in the child nodes and they trigger the
selection of the receiving port as Root port. In this case, the Designated ports
of the receiving nodes are set to Discarding to safely transition the Root port to
Discarding. This Root port in turn sends back an agreement BPDU so the Desig-
nated port in the parent can also transition to Forwarding. Since the Designated
ports of the child nodes are Discarding, they start the corresponding handshakes
with their neighbors sending proposal messages again. This handshake is re-
peated in a hop-by-hop basis until reaching the end of the tree, where nodes with

100 CHAPTER 6. NATURE OF THE TREE CONSTRUCTION PROBLEM

no Designated ports only send up agreements (B5 and B6 at t2, and B1 in t3).
Relating to wave-fronts, the procedure can be easily understood if we consider
that the blocked ports are pushed down the tree at every handshake until Alter-
nate ports are found. This technique allows the nodes to start transmitting data
as the tree is being built and hence the convergence time becomes proportional
to the distance to propagate the wave-front of the Root node.

6.3 Performance evaluation of the initial tree construction

This section hence presents the performance evaluation of RSTP when creating
the tree from scratch at network startup. We have implemented the protocols in
the ns-3 network simulator [63][64] following the operations described in chapter
3.

We run the protocols in different network topologies. In all the experiments,
the Root is located in a given position and the rest of bridges are configured with
random BridgeIDs. This allows us to configure random branches that grow from a
known Root node. The time to transmit, propagate and process a BPDU depends
on several aspects such as transmission rates, propagation delays, implementation
of the BPDU processing unit, configuration of the bridge queues, etc. We take
as a reference the study in [30] that assumes a delay of 1.33ms per message.
The value of MaxAge is set to the number of nodes in the network, unless the
experiment details otherwise, in order to ensure the propagation of a full wave-
front. Only BPDU messages are simulated and no user traffic is modeled unless
otherwise stated.

The performance evaluation focuses on the time to construct the tree (Con-
vergence Time, CT) and the amount of information exchange required for such
action (Message Overhead, MO). CT is defined as the time until the last port
transitions to Forwarding state. We use the hop delay, thop, as the normalized
unit for CT. That is, a CT of 5 hops means that the protocol takes 5 times the
hop delay to converge. MO refers to the amount of messages that the nodes need
to exchange in order to recover the tree. MO is measured in both number of
messages and number of bytes.

6.3.1 Convergence time

In the first analysis we use the two-dimensional topologies shown in figure 6.5
(note that grid4 and grid8 refer to a two-dimensional mesh where the central
nodes have a degree of 4 and 8, respectively). For each grid size, we run as
many experiments as nodes and we locate the Root in a different location in
every execution. Note that this results into forcing the BridgeID equal to 0 in
one of the positions, while the rest of nodes are set with random identifiers. For
example, figure 6.5(c) and 6.5(d) show the cases of locating the Root in the corner
and the center of the grid, respectively.

Figure 6.8(a) shows the observed CT for different network sizes in the grid4
and grid8 topologies. The vertical axes indicate the CT normalized in hop counts

6.3. PERFORMANCE EVALUATION OF THE INITIAL TREE
CONSTRUCTION 101

(a) grid4 (b) grid8 (c) Root in corner
of grid4

(d) Root in center
of grid4

Figure 6.5: Two-dimensional mesh topologies of degrees 4 (grid4) and 8 (grid8)

... ...

Figure 6.6: Ring-based topology of increasing connectivity (or average node de-
gree).

(a) mesh-heavy (b) mesh-full (c) two-tier

Figure 6.7: Realistic structured topologies

on the left and in absolute millisecond time on the right. The lines indicate the
average CT values and the standard deviation is shown in the vertical lines at
each point. The initial conclusion that we can extract from the observed CT is
that RSTP is able to configure the tree after a few hop delay that translate into
less than 25ms. This represents a big improvement over the performance achieved
by the original STP. The CT of STP depends on the expiration of timers [65],
which results into a constant convergence time of 30 seconds if the recommended
timer values are used.

Another conclusion is that the convergence time depends on the size of the
network as it grows with the number of nodes. More concretely, the CT depends
on the distance between the Root and the furthest node. This is a direct con-
sequence of the wave-fronts based propagation explained in section 6.1. Since
RSTP terminates the tree configuration after the entire Root wave-front prop-
agation and handshake agreements, the CT grows with the network diameter.
Moreover, the wave-front of the Root determines the CT, hence locating this

102 CHAPTER 6. NATURE OF THE TREE CONSTRUCTION PROBLEM

 0

 5

 10

 15

 20

 0 20 40 60 80 100
0

5

10

15

20

25

C
T

 (
h

o
p

s)

C
T

 (
m

se
c)

Number of Nodes

grid-4
grid-8

(a) Two dimensional grid topologies of degree 4 and 8

 2

 4

 6

 8

 2 3 4 5 6 7 8 9 10

4

6

8

10

C
T

 (
h

o
p

s)

C
T

 (
m

se
c)

Average degree

N=10

N=20

N=30

N=50

(b) Ring-based topology of increasing the connectivity de-
gree

 0

 2

 4

 6

 8

 10

 12

 14

mesh-f. mesh-h. two-tier grid-8 grid4
0

4

8

12

16

C
T

 (
h

o
p

s)

C
T

 (
m

se
c)

(c) Grids, ring-based and structured topologies

Figure 6.8: CT of RSTP in a cold start scenario locating the Root in all possible
locations of different topologies

6.3. PERFORMANCE EVALUATION OF THE INITIAL TREE
CONSTRUCTION 103

node in a different location results in a different to construct the trees. If the
Root is in one corner, the wave-front needs to traverse the entire network until
the opposite corner. In the scenario with the Root in the center, the distance
that the wave-front needs to advance is shorter (from center to corner).

In the experiments with the grid topologies, we fix the node degree and we
vary the network size. In order to study the CT variability when varying the
node degree, we use a ring-based topology where additional links are randomly
introduced in order to increase the connectivity degree from an empty ring to a
full-connected network (see figure 6.6). We also vary the size of the base ring and
for each topology we run as many executions as nodes and locating the Root in a
different place at each run. Figure 6.8(b) plots the CT measurements for different
sizes of the ring-based topology (from 10 to 50 nodes) and varying the number of
added links. The horizontal axis specifies the average node degree as a measure
of connectivity and is computed as the number of links divided by the number of
nodes (i.e. the empty ring has a node degree of 2; in the full network it increases
to N-1, where N is the number of nodes). First, observe that the CT is higher
for larger networks (as also seen in the experiments using the grid topology).
Also note that for each size, an increase of the average node degree results into a
decrease of the CT. This also relates to the diameter dependence because a more
connected network has a smaller diameter. Actually, all sizes converge to a CT of
3 hops for a degree equal to the number of nodes (fully connected network). Note
however that the plot only shows degrees lower than 10. Observing the values
measured in milliseconds, the results confirm that in all cases the CT in a cold
start scenario remains below the 50ms bound.

In order to generalize the previous two studies varying the size and the degree
of the topologies, we evaluate the cold start performance in several more realis-
tic network topologies. A part from the simple grid networks, we use structured
topologies and shown in figure 6.7: the mesh-heavy that consists of a meshed core
with dual-homed edges; the mesh-full that extends the previous one until fully
connecting the core; and the two-tier that is composed by a smaller fully con-
nected core and two levels of dual-homed tiers. Further details on these topologies
can be found in [66]. Figure 6.8(c) shows the average CT and standard deviation
for the different topologies (the grids have 64 nodes; the meshes have 50 nodes;
and the two-tier has 56 nodes) and locating the Root in a different node at ev-
ery execution. As seen in previous experiments, the diameter dependence also
appears in the structured topologies (the columns are sorted based on each topol-
ogy diameter). In addition, these topologies are physically designed to maintain
the diameter regardless the network size, hence the CT does not grow with the
number of nodes. The variability in the meshed topologies is smaller than in the
grids because of the symmetry properties. Note that locating the Root in one
of the nodes the core is actually the same experiment just varying the rest of
BridgeIDs.

Generalizing all the results and assuming that the Root can be randomly
located at any network node, a top bound of the convergence time for a given
network topology is equal to the time required by the wave-front to traverse the
diameter of the topology. As studied in [67], common provider networks have

104 CHAPTER 6. NATURE OF THE TREE CONSTRUCTION PROBLEM

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40D
at

a
p

ac
k

et
s

re
ce

iv
ed

 (
%

)

Time (hops)

Figure 6.9: Traffic received by all nodes during cold-start

diameters between 4 and 6 hops, which result in sub-50ms convergence times as
well.

The convergence time can also be observed from the data traffic perspective.
In the following test we measure the amount of data packets that nodes receive
during a cold start. Note that this metric is related to the convergence time
because the longer the protocol takes to configure the active topology, the longer
is the period where data traffic is not received. In order to carry out these tests,
each node sends broadcast data packets of 1000 bytes every 10us. Note that
a node should receive one broadcast packet from each other device, hence the
percentage of packets received represents the level of active connectivity at that
instant. Plot in figure 6.9 shows the timeline of received packets in the grid4
topology of 64 nodes and setting the Root in one corner. The horizontal axis is
measured in hops and the vertical axis in percentage of received packets by all
nodes (100% represents 4032 messages). RSTP takes around 30 hops to reach
the maximum connectivity because the Root wave-front first needs to reach the
furthest nodes, and then this can start transmitting. This is why the 100% is
achieved at hop 30 when the data messages of the node in the opposite reach the
Root. The slope of the curve relates to the early stages where some nodes believe
in transient configurations and are temporarily connected to a subset of nodes
using a tree of a node that is not the final Root.

6.3.2 Message overhead

We now measure the message overhead (MO) due to the transmission of BPDUs
in the cold-start case. We use the same scenarios that we have described in the
convergence time study. Figure 6.10(a) shows the MO for the grid topologies
of varying size. The vertical axes indicate the number of messages, on the left,
and the transmitted Kilobytes, on the right. The overhead measurements are
presented in per-node metrics (MOnode, messages per node), instead of the total
amount, in order to easily compare networks of different sizes. The plot shows

6.3. PERFORMANCE EVALUATION OF THE INITIAL TREE
CONSTRUCTION 105

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

2

4

6

8

M
es

sa
g

es
 p

er
 n

o
d

e

K
B

 p
er

 n
o

d
e

Number of Nodes

grid4
grid8

(a) Two dimensional grid topologies of degree 4 and 8

 0

 25

 50

 75

 100

 125

 150

 2 3 4 5 6 7 8 9 10

0

2

4

6

8

M
es

sa
g

es
 p

er
 n

o
d

e

K
B

 p
er

 n
o

d
e

Average degree

N=10

N=20

N=30

N=50

(b) Ring-based topology of increasing the connectivity de-
gree

 0

 20

 40

 60

 80

 100

 120

grid4 mesh-h. two-tier mesh-f. grid8
0

2

4

6

M
es

sa
g

es
 p

er
 n

o
d

e

K
B

 p
er

 n
o

d
e

(c) Grids, ring-based and structured topologies

Figure 6.10: MOnode of RSTP in a cold start scenario locating the Root in all
possible locations of different topologies

106 CHAPTER 6. NATURE OF THE TREE CONSTRUCTION PROBLEM

 0

 4

 8

 12

 16

 0 10 20 30 40 50 60 70 80

N
u

m
b

er
 o

f
n

o
d

es

Messages per node (bin 10 mess)

Figure 6.11: Histogram of MOnode in a grid of 64 nodes locating the Root in the
corner

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

M
es

sa
g

es

Time in thops

Root

All

Figure 6.12: Timeline of BPDUs received by all nodes in a cold start scenario

that the MOnode grows with the number of nodes. In both grid4 and grid8 topolo-
gies, larger networks result in more messages per node transmitted, although the
relationship between MOnode and network size is not proportional. The reason is
that RSTP is based on the propagation of wave-fronts and hence it has a flooding
nature. The amount of messages required by flooding protocols is proportional
to the connectivity level of the topology, or the average node degree [32].

While the previous results represent the average values of MOnode accounting
all the executions, the following analysis go into more detail and observe one
of the runs with the grid4 of 64 nodes in order to understand how the message
are really distributed. Figure 6.11 shows a histogram of the number of messages
received per node in the execution locating the Root in one corner (i.e. the first
bin indicates that 1 node has received 10 messages or less). While the average
is 31 messages, we can see that the values have a high variability and are widely
spread. The reason is the occurrence of transient configurations before the Root
wave-front spans the entire grid. The nodes that receive more messages are
actually those located in the center of the grid because they see more passing
wave-fronts than those in the corners.

The same single execution with the Root in one corner of the grid4 of 64 nodes

6.3. PERFORMANCE EVALUATION OF THE INITIAL TREE
CONSTRUCTION 107

can also be observed distinguishing the origin of the different BPDUs. Figure 6.12
shows a timeline of received messages by all nodes. The x-axis represents hop
delays and the y-axis shows number of messages received during that period.
The white boxes represent the total amount of messages and the superposed grey
ones are the sub-set of messages that belong to the wave-front of the Root. First
observe how at the initial steps there is a high number of non-Root messages
because there are many wave-fronts still active. Also, note that as the time
passes, the wave-front of the Root beats other wave-fronts that are discarded
until, after 15 hop delays, the Root wave-front is entirely disseminated.

The proportionality of MOnode with the average degree can be easily observed
using the set of ring-based topologies in figure 6.6. Plot in figure 6.10(b) shows the
MOnode measurements for different ring sizes (from 10 to 50 nodes) and varying
the average node degree. Observe that the overhead grows with the degree in
all topology sizes. Although the lines are not completely straight, this results
show that the node degree is the dominant factor in the characterization of the
message overhead.

The relationship between the degree and the MOnode can also be observed in
the tests with the different topologies of figure 6.10(c). Note that in this case the
columns are sorted by degree. As previously mentioned, the degree might not be
the only factor that determines the average per node, but results show it has a
strong proportionality.

6.3.3 Triggers of tree calculations

The previous MO analysis has provided an evaluation of the overhead due to
transmitted messages. These include all BPDUs that are received by nodes: those
that update the state and trigger a tree reconfiguration, those that convey a worse
priority-vector and are just discarded, BPDUs informing about the agreement of
the RSTP handshake, etc. While MO is a measure of the practical overhead from
link capacity perspective, it cannot be assumed as a measure of node processing
overhead because not all received BPDUs result into a tree reconfiguration. The
BPDUs that include a priority vector better than the locally stored are the only
ones that really trigger a recalculation of ports roles and states. The metric that
measures such messages is the Triggers (TR) and it corresponds to the number
of messages that cause a recalculation. Note that this metric can be used to
evaluate the real impact on the required processing at each node as only those
triggering messages really require a reselection of port roles and port states.

We measure TR in the same scenarios used so far. Figure 6.13(a) shows the
TR in the grid4 and grid8 topologies. Note the vertical axis indicates number of
triggers per node. The behavior of TR is similar to what we have described in
MO: a higher connectivity degree results in more links and hence more messages
transmitted. This relationship can also be seen in figure 6.13(b) where the exper-
iments using ring topology of increasing node degree are shown. In this case the
TR appears linearly proportional to the average node degree. And finally, the
TR measured in the different topologies in the plot of figure 6.13(c) also shows a
dependence on the average node degree.

108 CHAPTER 6. NATURE OF THE TREE CONSTRUCTION PROBLEM

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

T
ri

g
g

er
s

p
er

 n
o

d
e

Number of Nodes

grid-4
grid-8

(a) Two dimensional grid topologies of degree 4 and 8

 0

 2

 4

 6

 8

 10

 2 3 4 5 6 7 8 9 10

T
ri

g
g

er
s

p
er

 n
o

d
e

Average degree

N=10

N=20

N=30

N=50

(b) Ring-based topology of increasing the connectivity de-
gree

 4

 5

 6

 7

 8

 9

 10

grid4 mesh-h. two-tier mesh-f. grid8

T
ri

g
g

er
s

p
er

 n
o

d
e

(c) Grids, ring-based and structured topologies

Figure 6.13: TRnode of RSTP in a cold start scenario locating the Root in all
possible locations of different topologies

6.3. PERFORMANCE EVALUATION OF THE INITIAL TREE
CONSTRUCTION 109

 0

 4

 8

 12

 16

grid4 mesh-h. two-tier mesh-f. grid8

T
R

/M
O

 (
%

)

Figure 6.14: TR/MO ratio in a cold-start scenario for different types of topologies

Since the triggers are a subset of the total amount of messages, it is interesting
to measure the variation of percentage of TR over MO for different topologies.
Figure 6.14 shows the percentage of triggers calculated as TR/MO. Observe that
for topologies with large degrees the percentage decreases. The proportion of TR
over the entire MO can be seen as a measure of how efficient the protocol overhead
is. Note that the triggers are the minimum messages required to configure the
trees (as they are messages that update state). Therefore, a high percentage of
TR/MO really means that MO is closer to the lower bound (TR). Contrarily, a
low percentage of TR means that for that particular topology the total amount
of messages required is further from the minimum.

§ 7. RSTP-Conf: Protocol Extension to Avoid
Count-to-Infinity in RSTP

The main inconvenient of RSTP is the low performance when recovering from
a Root failure because it suffers count-to-infinity. This effect results in BPDUs
looping around the network avoiding the protocol to converge and hence delaying
the recovery of the Root failure for tens of seconds. This chapter first provides a
comprehensive description of the consequences of count-to-infinity in RSTP. We
are not aware of any published study that provides a comprehensive explanation
that justifies the large recovery times experienced. We have done a deep study
of count-to-infinity scenarios by means of simulation and these have allowed us
to identify the particular conditions that lead to unexpected consequences that
delay the recovery for several seconds. Section 7.1 describes these hidden effects
of count-to-infinity and section 7.2 introduces some possible approaches to follow
in order to avoid such behavior.

Furthermore, the detailed study has allowed us to identify the reasons that
trigger the count-to-infinity effect and, in turn, has driven the design of RSTP-
Conf as the necessary extensions to RSTP in order to avoid it. RSTP-Conf
introduces a simple yet effective confirmation mechanism that avoids the sce-
nario where the looping BPDUs delay the Root failure recovery. Sections 7.3
and 7.4 describe the operational extensions that RSTP-Conf introduces. Finally,
section 7.5 contains the performance analysis that evaluates the impact of count-
to-infinity in RSTP and how effectively RSTP-Conf is able to avoid it.

7.1 Hidden effects of count-to-infinity

In the count-to-infinity example shown in chapter 3 the BPDUs start looping
around the only cycle that exists in the physical topology. As the messages are
transmitted bridge after bridge, the MessAge is incremented hop after hop, and
the counter reaches its maximum value of 20 hops after a few complete turns
around the loop. At this point, the BPDUs about the old Root are completely
removed and count-to-infinity terminates and the new Root finally constructs its
new tree. Nevertheless, more complex topologies with more than one physical
loop experience more complex behavior during the count-to-infinity that results
into worse consequences in terms of recovery time.

An example is shown in figure 7.1. Note that in this physical topology the Root
that fails is the outer node (B0) and that the remaining connections contain more
than one loop (two of them are loop A and loop B indicated in figure 7.1(a)). The

111

112
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

0 1

2

3

4

5

A B

(a) Network topology exam-
ple with two loops

0 1

2

3

X

4

5

1

2

3

4

5

1

2

3

4

5

Step 1 Step 2 Steps 1& 2

(b) Evolution of looping BPDUs

Figure 7.1: Looping BPDUs in a physical topology with several remaining loops
after the Root failure

arrows in 7.1(b) represent the BPDUs about the failed Root (B0) that are being
forwarded and cause the count-to-infinity effect. Right after the Root failure, the
behavior is the same as in the example with a single physical loop in previous
section. This is, BPDUs start looping around nodes B1-B2-B3. The difference
is that nodes located between loop A and loop B (B2 and B3) have additional
links where they also propagate the old information about B0. For example B2
at step 1 disseminates the BPDUs about B0 to B3 and to B4. Every time a
BPDU about the failed Root enters a loop, the messages start being transmitted
around the cycle. As shown in step 2, when the messages inside loop A reach B2
or B3, they are propagated into loop B again. Similarly, messages in loop B re-
enter into loop A. As shown in the last diagram with the steps 1 and 2 together,
the situation shows a complex and uncontrolled behavior as long as the looping
BPDUs are propagated back and forth between loops. The more messages are
propagated, the more loops are created and a more chaotic situation is reached.

7.1.1 Appearance of deadlocks

The scenario just described in figure 7.1 has a complex nature and it is evolution
is difficult to characterize. However, one might expect that the BPDUs about
the failed Root are removed after they have traversed 20 hops as it happens in
then single loop topology. Therefore, the time required to remove the count-to-
infinity should be equal to the propagation delay of 20 hops. Instead, exhaustive
analyses by means of simulation show that the recovery time is much larger: order
of several seconds when a single hop propagation delay is just a few milliseconds.

7.1. HIDDEN EFFECTS OF COUNT-TO-INFINITY 113

Analyzing the phenomenon in more detail we have observed that the BPDU
transmission completely stops in the middle of the reconfiguration. The crossing
of BPDUs with particular vector values results into the creation of a deadlock in
a link where two Root ports are elected. Since Root ports wait for the opposite
Designated to send refreshing BPDUs, a deadlock in this link arises. The silence in
both sides prevents the existence of BPDUs in this link and hence any possibility
to be reconfigured except after waiting long enough for BPDUs, when the timer
3xHelloTime expires and releases the deadlock. The timeout allows considering
the port state outdated and is being reset losing the information of the "failed"
Root. At this point the port is reconfigured to Designated role and the algorithm
continues normally. The count-to-infinity problem has not disappeared as other
ports in the network still have in their state the failed Root with a MessageAge
smaller than MaxAge indicating that it is valid. Hence the count-to-infinity
continues with the state information of these other ports at the current value
of the MessageAge. Several deadlocks might appear at different links until the
MessAge of the BPDUs reaches 20. When this happens, the BPDUs are finally
removed and the new tree is finally constructed. This effect results into a non-
continuous count-to-infinity due to the delay introduced by the deadlock.

An example of such situation is presented following. Figure 7.2 shows the
case of the network topology in figure 7.1 where two crossing BPDUs between
nodes B2 and B3 result into the deadlocked pair of ports. The diagram shows the
exchanged BPDUs between both neighbors and the tables on the sides indicate
the vectors stored in the bridge and in each port of both B2 and B3. Note
that only Root, Cost and Bridge fields are shown. First of all note that during
count-to-infinity the looping BPDUs disseminate a cost that is not corresponding
to the real physical topology. This is the reason why at t1, B2 and B3 receive
BPDUs from their parents announcing a cost of 5 to the Root. From the overall
perspective, it is clear that this cost is wrong. However, RSTP bridges operate
distributed and assume that the received information always represents the real
topology. Both B2 and B3 accept the received information, even if it is worse than
the locally stored, because it comes from the parent. This results in B2 selecting
p1 as Root port and disseminating the new cost through p2 (0:6:2). Similarly, B3
selects p2 as Root port and disseminates through p1 (0:6:3). These are the two
BPDUs that eventually get crossed and result in the deadlocked configuration.
Before this happens, at t2, B2 and B3 receive another BPDU from their parents
with a larger cost (0:6:4 and 0:6:3, respectively). These messages also update
because they come from the parent. Both nodes select the same Root port they
already had, but now the cost in the stored vectors has increased.

At t3, B2 and B3 receive the aforementioned crossed BPDUs. The diagrams in
figure 7.3 show the vector updates in B2 after processing this BPDU. As shown in
7.3(a), B2 receives the vector 0:6:3 in p2, and it updates the locally stored (0:7:2)
because the received contains a lower cost. When B2 reconfigures the tree, it has
to choose the Root port among p1, with 0:6:4, and p2, with 0:6:3 (as seen in figure
7.3(b)). The cost is the same in both port vectors, but p2 holds a lower Bridge
field (3<4). Hence B2 selects p2 as Root port and p1 as Designated (as seen in
figure 7.3(c)). Similarly, B3 selects p1 as Root port because the received vector

114
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

B2p1 p2

0:6:2

w

b

0:5:4

0:5:20:4:4 0:5:2

0:6:20:5:4 0:6:2

0:7:20:6:4 0:7:2

0:
5:

5

0:
6:

3

w

0:6:4

0:7:2

w

0:7:20:7:2 0:6:3

0:6
:5

0:
7:

3

b

w

w w
0:8:20:8:2 0:7:3

4

2 3
p2 p1

5

p2

p1

p1

p1

B3p1 p2

0:5:3 0:4:5

0:6:30:6:3 0:5:5

0:7:30:7:3 0:6:5

0:7:20:6:2 0:7:2

0:8:20:7:2 0:8:2

0:5:3t0

t1

t2

t3

t4

r:c:b
Designated Port

Root Portb Better

w Worse from Parent

r:c:b r:c:br:c:b

PPV BPV PPV

BZpX pY BPDU

Priority

Vectors

Figure 7.2: Diagram of exchanged BPDUs in a count-to-infinity scenario where
a deadlock appears between bridges B2 and B3.

0 7 2

B2

p2

p1

B3

B4

B
P
D
U

0
6
3

0 7 2

0 6 4

(a) Received BPDU has
a lower cost

0 7 2

B2

p2

p1

B3

B4

0 6 3

0 6 4

(b) p2 is the new Root
port because of the lower
Bridge field

0 7 2

B2

p2

p1

B3

B4

0 6 3

0 7 2

(c) All vectors are recon-
figured

Figure 7.3: Detail of B2 vectors update after processing one of the crossed BPDUs
received at t3

7.1. HIDDEN EFFECTS OF COUNT-TO-INFINITY 115

in p1, 0:6:2, is better than the vector in the p2, 0:6:5. Note that this results in
the election of two Root ports in both sides of the link. This configuration is not
possible because no tree can have such structure. The cause of this double Root
port selection is actually the reception of the BPDUs that increase the cost at t2.
This cost increase results in interpreting the initially crossed BPDUs as better
vectors in both sides of the link and the consequent double Root port selection.

Once the two Root ports have been selected, the rest of BPDUs received by B2
or B3 do not result into any port roles change. For example, the last two BPDUs
received at t4 update because they come from the parent, but they only result
into an increase of the cost seen by the nodes. In addition, there are more BPDUs
received in the Designated ports p1 of B2 and p2 of B3. These all convey a larger
cost due to the count-to-infinity behavior and hence they are always considered
worse, thus directly discarded, and do not trigger any tree configuration that
changes the port roles. Since the BPDUs always flow from the Designated port
of a parent to the Root or Alternate ports of a child, the configuration of this
link with a double Root port stops the propagation of the looping BPDUs at this
point. Each Root port actually assumes that there is a Designated port at the
opposite side that is going to send a refreshing BPDU, but this will not happen.
In addition, messages received in other ports of these two bridges do not break
the deadlock because the increasing cost because of count-to-infinity makes that
the deadlocked vectors are considered better. Therefore, a deadlock between the
two Root ports arises.

The absence of received BPDUs in the two Root ports eventually expires their
MessageAgeTimer timer that RSTP uses to detect a lack of received messages in
a port (3xHelloTime). B2 and B3 timeout the information stored in their Root
ports and both nodes reconfigure the tree. This results in the nodes continuing
the looping of messages if they have an Alternate port with a vector about the
failed Root. This new situation is like another count-to-infinity with a starting
value of MessAge closer to MaxAge (at the value where it stopped because of the
deadlock). This second phase might end up in another deadlock in some other
link and the MessageAgeTimer would be needed again to continue the count-to-
infinity until MessAge definitely reached MaxAge.

In conclusion, the occurrence of these deadlocks represents a temporary pause
in the process of reaching MaxAge. The use of a timer to detect the lack of
message reception results into a high increase of the recovery time and introduces
a timer dependence that translates into recovery times proportional to the timer
values (order of seconds).

7.1.2 Virtual Root creation

In the structure of the shortest-path tree constructed by RSTP, the Root ports
point upward to the Root node, the Designated ports point downward to the
leaves. In addition, BPDUs are sent from the Root of the tree toward the leaves,
hence a Designated port disseminates BPDUs. Therefore, the real meaning of a
node sending a BPDU through one of its Designated ports is that the Root node
is located somewhere behind the transmitter. First diagram of figure 7.4 shows

116
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

0 1

2

3

4

5

1

2

3

4

5

Cold Start Looping BPDUs

T
he

 R
oo

t i
s

be
hi

nd
 m

e

The Root is behind me

Crossed ‘The Root

is Behind me’

1

2

3

4

5

Virtual Root

0

Figure 7.4: Diagrams describing the creation of a virtual Root when a deadlock
appears in a count-to-infinity situation.

the initial network start-up case (cold start) where the BPDUs originated at the
Root node are propagated node after node. For example, B1 is telling B2 and
B3 that the Root is behind B1. B2 and B3 also tell B4 and B5, respectively,
that the Root is behind the first two.

When the count-to-infinity occurs after the Root failure, each looping BPDU
is still understood as a notification that the Root node is behind the transmitter.
The crossing of BPDUs implies that the two nodes involved in the deadlock
assume that the Root is behind the opposite neighbor (second diagram in figure
7.4). This is why both configure the Root ports pointing to each other. This
actually results into the creation of a virtual Root in the middle of the affected
link, as shown in last diagram in figure 7.4. This tree with a virtual Root remains
as the temporary topology if no further action is taken. All nodes assume that
the tree is stable, although it is rooted at the virtual Root, and operate normally
sending the refreshing BPDUs every HelloTime. All Root and Alternate ports
receive the periodical BPDUs except the two Root ports configured in the link
where the virtual Root arises. When the MessageAgeTimer of these ports expires,
nodes B2 and B3 clear the information about the virtual Root in their Root ports
and reconfigure the tree using information in other ports. The count-to-infinity
continues and a deadlock somewhere else might result in a different virtual Root
location.

7.2 Approaches to avoid count-to-infinity

RSTP takes the design decision to keep simplicity in the protocol operation at the
expenses of experiencing count-to-infinity after a Root failure. Note that, even
if the recovery might be delayed for several deadlocks, the protocol eventually
terminates the count-to-infinity effect and hence the recovery time is large but
finite. However, an outage that expands to several seconds cannot be considered
for current production networks. Therefore, one of the RSTP extensions required
is the avoidance of the count-to-infinity effect.

The cause of the count-to-infinity is essentially the use of old Root information
stored in the Alternate ports. This section describes different approaches in order

7.2. APPROACHES TO AVOID COUNT-TO-INFINITY 117

to limit the use of such information with the objective of avoiding the count-to-
infinity behavior.

Avoid the use of Alternate ports A simple way to elude the problem is
avoiding the use of the vectors stored in the Alternate ports when the tree is
recomputed. This modification would solve the count-to-infinity issue but it
would not allow a quick link failure recovery. As described in section 3.4, when an
RSTP node detects a failure on its Root port it immediately selects an Alternate
as new Root (using the Alternate vector as the new information to reach the
Root). If we avoid the use of the Alternate ports we miss this automatic recovery
capacity.

The critical issue is that the distributed nature of the spanning tree protocols
does not allow distinguishing between a link failure and a node failure. When a
node detects a failure on one of its ports, it does not even know if only the link
or the entire neighbor has failed. In extension, when the Root has failed there is
no other node that reliable knows the situation. Since nodes cannot distinguish
between different types of failures, the protocol must operate equally in all cases.
This leads into taking the design decision: (1) use the Alternate ports, allow a
quick link recovery, but experience count-to-infinity when the Root fails; or (2) do
not use Alternate ports, delay all failures recoveries, but avoid count-to-infinity.

Avoid the propagation of potential false information Another approach
to control the use of the Alternate ports is to limit the propagation of information
to avoid a possible count-to-infinity. This is the strategy adopted by the original
STP and it is a very conservative solution.

An STP bridge that detects a failure on its Root port initially operates as
RSTP and does select an Alternate as new Root port (so far, this would create
count-to-infinity). However, child nodes do not accept the disseminated and mis-
leading information because these messages are considered worse. The difference
with RSTP is that STP nodes discard all worse messages even if they come from
the parent. This operational detail avoids the propagation of the information
about the old Root stored in the Alternate port of the parent.

Since the BPDUs from the parent do not update, the child node eventually de-
tects a lack of received messages in that port, through expiration of MessageAge-
Timer, and realizes that the vector stored on this particular port cannot be used
because it has not been refreshed. The child then recomputes the tree excluding
the expired vector and selects new port roles. If the Root has really failed, the
Alternate ports in the child node have not been refreshed and the information
about the old Root has also been removed. If, however, the Root is alive the
refreshing messages are received in the Alternate ports and the child node can
use the vectors on them when it reconfigures the tree.

This approach successfully avoids the count-to-infinity behavior but it intro-
duces an unnecessary delay on the single link failure recoveries. Since the worse
information from the parents is not accepted, the recovery is not effective until
the nodes expire their vectors. The MessageAgeTimer used in STP for this ex-

118
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

piration has a default value of 20 seconds. Hence this is the minimum time that
an STP network takes to recover from any failure. Note that setting the timer
values needs the consideration of the worst-case scenario so these are usually
over-dimensioned.

Delay the use of information in Alternate ports Our proposed approach
to avoid count-to-infinity is to extend RSTP in order to make a safer utilization
of the information in the Alternate ports. Instead of just avoiding the use of Al-
ternate vectors as in the first approach, we implement a confirmation mechanism
that allows for the utilization of such vectors only if the Root node is still alive.
We refer to this extension of RSTP as RSTP-Conf.

RSTP-Conf is a reactive technique based on an exchange of messages. No
timers are involved so the delay occurred in failure recovery is only due to the pro-
cessing and propagation of such messages and not to possibly over-dimensioned
timers (as in the STP case in the previous approach). Next sections describe in
more detail the fundamentals and operation of the extended protocol.

7.3 Fundamentals of RSTP-Conf

The complexity of the problem is related to the distributed nature of the proto-
col. Bridges just detect port failures and hence they are not able to distinguish
between a failure of the link connecting that port or a failure of the entire neigh-
bor. This is why the protocol performs the same operation in front of any type
of failure and hence why count-to-infinity arises when the Root fails. In order to
solve the problem, RSTP-Conf introduces a mechanism to identify the failure of
the Root bridge.

The main challenge is that within the distributed nature of RSTP, nodes only
know who the Root is and in which direction it is located. A smart way to use
such information is to focus on the Root neighbors: the nodes that know for sure
that they are directly connected to the Root. The idea is to exploit this fact and
design a solution that distinguishes when the Root has failed and hence avoid the
count-to-infinity. The proposed approach accomplishes this objective by dividing
the problem in two sub-problems: (1) how to make a safe use of an Alternate
port; and (2) how to reliably detect that the Root has failed.

7.3.1 Safe utilization of Alternate ports

When a Root neighbor detects a failure on its direct connection to the Root
bridge, it realizes that this port failure might indicate the entire Root failure.
Figure 7.5(a) shows an example where the link between the Root B0 and the
neighborB4 fails. B4, instead of reconfiguring the tree and selecting the Alternate
port as new Root port, what would trigger a count-to-infinity, sends a message
asking whether the Root is still alive. This request eventually reaches the Root B0
and it replies affirmatively back to the neighbor B4 that initiated the query. Note
that the message asking for the Root’s availability cannot be answered by any

7.3. FUNDAMENTALS OF RSTP-CONF 119

Request (‘rd’ message) Confirmation (‘ra’ message)

4

3

6

0
5

2 1

X

(a) B4 sends request and
Root B0 replies with confir-
mation

4

3

6

0
5

2 1
X

(b) B2 sends request and
Root B0 replies with confir-
mation

4

3

6

0
5

2 1

X

(c) The requests messages
are flooded to ensure they
reach the Root

Figure 7.5: The Neighbor detecting the failure sends a message requesting for
Root availability

node because this might still believe in a Root that has possibly failed, and again
this would result into a count-to-infinity. Once this reply is received in B4, this
now knows for sure that the Root is still alive and hence it can use the information
in the Alternate port and make it the new Root port. With this procedure the
neighbor requests and receives a confirmation to use the information stored in
the Alternate port.

Failure detection by a Root neighbor without Alternate ports (as B2 in figure
7.5(b)) does not change from an operational perspective. The neighbor still sends
the request asking if the Root is available. In this case, the neighbor B2 is
asking for a confirmation to reconfigure the tree and arise as Root. It needs the
permission because such situation would lead to a count-to-infinity triggered by
the first child node with an Alternate port.

Observe that the neighbor sending the message asking for the Root availability
does not really know the location of the Root and hence it does not know in which
direction (outgoing port) it should send the message. The simplest way to solve
this issue is to flood such message and ensure that it arrives to the Root as long
as it is still available (see figure 7.5(c)).

7.3.2 Reliable detection of the Root failure

The previous example describes the situation where the Root is still alive and
replies to the neighbor that originally asked for confirmation. The case when the
Root has really failed needs to be treated differently because no one will actually
reply the request.

Figure 7.6 shows an example where the Root fails. In this case, as shown in
7.6(a), all the neighbors detect a failure on their connections to the Root and
they all flood an alarm message telling that they believe that the Root is dead.
As mentioned before, each neighbor is only aware of the failure of its connection
to the Root failure. In consequence, the reception of all the alarms in a network
node can be seen as a signal to notice that the Root has failed (see figure 7.6(b)).

120
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

Confirmation (‘ra’ message)

4

3

6

0
5

2 1

X

(a) All neighbors flood alarms

4

3

6

0
5

2 1

X !

(b) All nodes receive all the
alarms

Figure 7.6: The Root failure is detected across the network

In this technique, a neighbor really acts as a witness of the Root availability:
the Root can be reliably considered unavailable when all witnesses, or neighbors,
individually confirm that the Root has failed. When a node has received the
alarms from all neighbors, and realizes about the Root failure, it arises as potential
new Root (as in a cold-start scenario). A new Root is elected and the tree is
recovered. Note that with this mechanism, any network node can detect when
the Root has failed and hence it allows for a global tree reboot triggered within
a distributed framework.

7.3.3 Same solution for the two sub-problems

A particularity of the two previous mechanisms is that they can be implemented
using the same procedure. The message that a Root neighbor sends to the Root
bridge asking about its availability can be the same message that it uses as an
alarm to notify that it believes that the Root is dead. Therefore a single type
of message allows to (1) obtain a confirmation about Root’s availability and (2)
globally detect that the Root has failed and hence "reboot" the tree.

Note that from the neighbor’s perspective there is not any difference between
the two situations in figures 7.5 ant 7.6. The neighbor just floods a message
asking whether the Root is available or not. The difference is the consequence of
such message: it either receives (a) a confirmation from the Root in 7.5, or (b) the
alarm messages from the other neighbors in 7.6. From now on, the multi-purpose
messages issued by the Root neighbor are referred as ’rd’ messages (’Root dead’)
and the Root reply as ’ra’ messages (’Root alive’).

7.4 RSTP-Conf operation

In this section we detail the description of RSTP-Conf operation that extends
RSTP by introducing the necessary elements to implement the confirmation
mechanism. The base of the RSTP-Conf operation is the standardized RSTP,

7.4. RSTP-CONF OPERATION 121

hence most of the functionalities described in chapter 3 still apply. The following
description focuses on the differences that RSTP-Conf introduces. This is why
we re-use and extend the pseudo-code previously described for RSTP.

7.4.1 Confirmation variables

In order for the confirmation mechanism to operate properly, bridges need to be
aware of several aspects related to Root neighbors. All nodes must know how
many neighbors the Root has. The bridge variable numNeigh stores this value
(table 7.1 includes all additional variables). Note the Root is the only one that
really knows how many neighbors it has, hence it initially sets its own variable to
its number of ports (line 1 of the updated BecomeRootBridge procedure in block
E of the pseudo-code in figure 7.13). In the example topology, observe in figure
7.7(a) how the Root B0 initializes numNeigh to 3 because it has 3 ports that
connect to 3 neighbors.

A simple way to distribute the previous information is to include it in the
BPDU as the additional field numNeigh (table 7.2 shows the updated format of
the BPDU). This new field requires a small update in the event BPDU received
and the pseudo-code in block C.1 describes the operational changes introduced by
RSTP-Conf (the updates are included in lines 3 to 6). Observe in line 3 that the
numNeigh field in the received BPDU is stored in the local numNeigh variable.
In the example of 7.7(a), the Root B0 distributed a numNeigh equal to 3 through
the disseminated BPDUs. When B4 receives one of these BPDUs, figure 7.7(b),
it updates the local numNeigh variables to 3 (number of ports of the Root bridge
announced in the received BPDU).

Those nodes directly connected to the Root need to know they really are
Root neighbors. The bridge variable IamNeigh is a flag that stores this property
(as shown in table 7.1). As shown in line 2 of the BecomeRootBridge procedure
of block E and in the example of figure 7.13, this variable is initialized to false
because a Root node does not have any Root neighbor. Whether a bridge is
neighbor or not is checked during the processing of a received BPDU. As shown
in lines 4-5 of the BPDU Received event of block C.1, a node realizes that it is a
Root neighbor when it detects that its parent is the Root node. This is true if
the Bridge field stored in the vector of the Root port is the same as the Root field
of the bridge vector. In such case, IamNeigh is set to true. Otherwise, to false.
In the example of figure 7.7(b), B4 decides it is a Root neighbor (IamNeigh to
true) because the believed Root bridge in BPV (0) is the same as the Root field
in the PPV of the Root port (0).

Another variable stored by each node is an array that stores whether the ’rd’
messages of each neighbor has been received. This array is called rcvdFromNeigh
(see table 7.1) and stores the portID of the local node where the ’rd’ from a partic-
ular neighbor has been received (for example, nodeA storing rcvdFromNeigh[B] =
p means that the A has received the ’rd’ from B in port p). This array is cleared
in the initialization of a bridge when it becomes Root (line 3 in the procedure
BecomeRootBridge in block E) and every time a better BPDU is received (line
6 in the event BPDU Received of block C.1). In the first case, it is cleared be-

122
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

Table 7.1: Additional Bridge Variables

Name Description
numNeigh Stores the number of neighbors of the Root bridge. This informa-

tion is disseminated with the common BPDUs and it is used to
detect the reception of the alarms from all neighbors and hence
reboot the tree.

IamNeigh Boolean that indicates whether the local bridge is a direct neighbor
of the Root. A bridge needs to know whether it is a Root neigh-
bor or not because it performs differently in the event of failure
detection

rcvdFromNeigh [] Array that stores the ’rd’ messages received from neighbors. It
actually stores the portID of the port where the ’rd’ message has
been received so the ’ra’ message can be replied back

Table 7.2: Extended BPDU Frame Format
Name Description Bytes

E
th
.
en
ca
ps
.

SA
The BPDU encapsulation is the same than in RSTP,
hence the Ethernet MAC layer does not need to be
updated.

6
DA 6

Length/ Type 2
LLC 3

B
P
D
U

F
ie
ld
s

Protocol id. Protocol identification fields indicating that the
BPDU received corresponds to an RSTP-Conf
instance and it is a common BPDU

2
Version 1

Message Type 1

P
V

Root

The core operation of RSTP (calculation of the tree
shape by means of the priority vectors,
proposal-agreement handshake, or timers
configuration) is not changed in RSTP-Conf.

8
Cost 4
Bridge 8
Port 2

MessAge 2

F
la
gs

Role
1Prop.

Agreem.
MaxAge 2

HelloTime 2
ForwardDelay 2
numNeigh It contains the number of neighbors of the Root. The

Root bridge encodes its number of ports and the dis-
semination of BPDUs distributes this value to all the
other nodes

2

Frame Check Sequence 4

cause the bridge is Root and hence it knows it is alive. In the second case, the
reception of updated information from a Root node means that any confirmation
mechanism started is stopped because the node has received news from the Root,
hence it is still alive.

7.4. RSTP-CONF OPERATION 123

-

B0

p1 p2

p3

B2 B3

B4

B
P
D
U3 B

P
D
U

3

B
P
D
U

3

IamNeigh

numNeigh

rcvdFromNeigh

F

3

(a) Root B0 initialized as non-
Neighbor

-

B4

p1 p3

p2

B0 B3

B6

B
P
D
U

3

B
P
D
U

3

IamNeigh

numNeigh

rcvdFromNeigh

T

3

B
P
D
U

3

(b) B4 set to Root neighbor

Figure 7.7: Initialization and distribution of confirmation variables

7.4.2 Trigger of the confirmation mechanism

The confirmation mechanism is triggered when one of the neighbors detects a
failure on its Root port. This is the case of the neighbor B4 detecting the failure
of its Root port as seen in figure 7.8(a) (observe that this example covers the case
of a single link failure). Lines 2-5 in MessageAgeTimer Expiration event in block
D of figure 7.13 describe the operation performed by B4. As the common RSTP,
this neighbor removes the information in the failed port because it is not valid
(as shown in the node diagram of figure 7.9(a)).

The difference with RSTP is that before reconfiguring the tree, this neighbor
starts a flooding of a confirmation message (BPDU-Conf) asking whether the
Root is alive (figure 7.9(a)). Note that selecting the port roles now would result
in the Alternate becoming the new Root port. If the entire Root had failed, this
would trigger a count-to-infinity. The confirmation is triggered right before this
configuration in order to avoid it. As shown in the events and procedures diagram
in figure 7.12, the added confirmation functionality only lies in the operation trig-
gered by the Message Age expiration event right before the tree is reconfigured.
This is the point in the operation where the confirmation procedure is activated.
Also observe that if the failure is detected in a Designated or Alternate port, or
in a non-neighbor node, the protocol operates as in the original RSTP and the
confirmation mechanism is not triggered (lines 6-7 in block D).

Table 7.3 contains the fields included in the BPDU-Conf messages: the identi-
fier of the Root (Root), the identifier of the neighbor that initiates the mechanism

124
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

0

4

2

5

3

6

1

X

(a) Tree before recovery

0

4

2

5

3

6

1

X

(b) Tree after Recovery

Figure 7.8: Example of a single link failure recovery

-

B4
p1 p3

p2

B0 B3

B6

IamNeigh

numNeigh

rcvdFromNeigh

T

3

X

0

BPV

1 4 0

0 1 4 0

0 0 0 1
0 1 3 2

0 2 4 2

(a) Port failure detection and port vec-
tor removal (as common RSTP)

B4-p2

B4
p1 p3

p2

B0 B3

B6

IamNeigh

numNeigh

rcvdFromNeigh

T

3

X

0

BPV

1 4 0

0 1 4 1 0 1 3 2

0 2 4 2

B
P
D
U
-
C
o
n
f

0
4
rd

B
P
D
U
-
C
o
n
f

0
4
r d

(b) Trigger of the confirmation mecha-
nism

Figure 7.9: Confirmation mechanism triggered by the neighbor B4 when it detects
the failure in the Root port

(Neigh) and a flag that indicates the type of confirmation (Type, whether it is
an ’rd’ or an ’ra’). Note that from the bridge perspective, these BPDU-Conf
messages are just a BPDU that the LLC layer delivers to the STP instance of
the node. The differences between these and the common RSTP BPDUs are all
treated within the STP instance.

The propagation of the BPDU-Conf messages is shown in the diagram of
figures 7.10 and 7.11. In this example, B4 detects the failure at tf and floods the
confirmation messages including the Root, its own BridgeID as neighbor identifier,
and the type ’rd’ (0-4-rd). Note that the procedure of B4 at the instant tf is the

7.4. RSTP-CONF OPERATION 125

Table 7.3: BPDU-Conf Frame Format
Name Description Bytes

E
th
er
ne
t
en
ca
ps
ul
at
io
n

SA Management MAC address of the bridge. 6
DA Reserved address to indicate ’all bridges’

(01:80:C2:00:00:00). RSTP-Conf it is still broad-
cast protocol and messages are not sent to a
particular destination. BPDU-Confs are consumed
at the next bridge hop and only live in the link
they are produced. These frames never bypass a
bridge but instead the bridge consumes and reacts
to it producing a corresponding BPDU-Conf for the
following neighbors when needed.

6

Length/ Type Indicates total length of the frame 2
LLC Indicates the bridge client that processes the received

frame and delivers it to the STP client (DSAP:42;
SSAP:42; Cntrl:03).

3

B
P
D
U
-C

on
f
fie
ld
s

Protocol Identifier Protocol identification fields indicating that the
BPDU received corresponds to an RSTP-Conf
instance and it is a BPDU-Conf.

2
Version 1
Message Type 1
Root The identifier of the Root. This BPDU-Conf message

might ask for the Root availability (this one) or might
contain a reply from the Root (this one).

8

Neighbor The identifier of the neighbor that has initiated the
request for Root availability.

8

Type It indicates whether the BPDU-Conf is an ’rd’ message
(type 0) or an ’ra’ message (type 1).

1

one shown in figure 7.9.
All network peers eventually receive the ’rd’ messages issued by B4. Lines

3-12 of the event BPDU-Conf Received in block C.2 of figure 7.13 describe the
operation to process these messages. A node that receives one for the first time
(see the node diagram of B3 at t1 in figure 7.11(a)) updates the variable rcvd-
FromNeigh to store that the neighbor, included in the BPDU-Conf Neigh field,
believes that the Root, in the Root field, has failed. Note that the actual value
stored in rcvdFromNeigh is the port identifier where the ’rd’ is received because
the later ’ra’ reply will be forwarded to this port so as to reach the neighbor that
triggers the confirmation. Since B3 is not the Root, it continues the flooding of
the ’rd’ messages on its way to the Root.

When the Root receives such ’rd’ (line 9 in block C.2), it replies with a BPDU-
Conf of type ’ra’ indicating that the Root in the Root field confirms its availability
to the neighbor in the Neigh field. In the example, B0 receives the ’rd’ from B4 at
2 and it replies with 0-4-ra. This ’ra’ message is sent back to the original neighbor
that issued the ’rd’. Every intermediate node that receives this BPDU-Conf for-
wards it to the port leading to the given neighbor (stored in rcvdFromNeighbor)
and clears the corresponding confirmation variables (lines 14-15 of block C.2).
Observe in figure 7.11(b) how B3 at t3 forwards the ’ra’ received in p1 only to
p2 as the variable rcvdFromNeigh indicates.

The neighbor eventually receives the ’ra’ carrying the confirmation that the

126
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

t5

t0 t1

t2t3

t4

4 3

p1
p3 p2

0
p1 p2

0-4-rd

r-n-t Designated Port

Root Port
Alternate Port

Discarding port

Forwarding port

r:c:b:p

0-4-rd

0-4-ra
0-4-ra

0:2:4:3 (a)

BPDU-Conf

BPDU

X
p1

Figure 7.10: Exchanged Messages in the recovery of a single link failure

Root is alive (B4 at t4 in 7.10 and detailed in 7.11(c)). The neighbor interprets
the reception of this message as the final confirmation that the Root is alive and
hence it can proceed with the tree reconfiguration that was hold at tf . Since the
Root availability is confirmed, it is safe to select the Alternate port in B4 as the
new Root port. The confirmation mechanism is terminated at this point and the
tree recovery proceeds as the common RSTP with the dissemination of BPDUs
including the new information. In the example, B4 just sends an agreement back
to B3 and a BPDU with the new cost to B5.

Note that the delay introduced by the confirmation mechanism in the event
of a single link failure is one round-trip time between the Root and the Neighbor
through the new path. Although this value can vary depending on the physical
topology, highly connected networks with enough redundancy (specially around
the Root) only experience an additional delay of 4 (2+2) hop delays.

7.4. RSTP-CONF OPERATION 127

B4-p2

B3

p1 p2

p3

B0 B4

B5

rcvdFromNeigh

p4

B6

B
P
D
U
- C
o
n
f

0
4
rd

B
P
D
U
-C
o
n
f

0
4
rd

B
P
D
U
-C
o
n
f

0
4
rd

B
P
D
U
-C
o
n
f

0
4
rd

(a) B3 at t1

B4-p2

B3

p1 p2

p3

B0 B4

B5

rcvdFromNeigh

p4

B6

B
P
D
U
-C
o
n
f

0
4
ra

B
P
D
U
-C
o
n
f

0
4
ra

(b) B3 at t3

B
P
D
U
-C
o
n
f

0
4
ra

B4

p1 p3

p2

B0 B3

B6

X

0

BPV

1 4 0

0 1 4 1 0 1 3 2

0 2 4 2

B4

p1 p3

p2

B0 B3

B6

X

0

BPV

2 4 0

0 1 4 1 0 1 3 2

0 2 4 2

(c) B4 at t4

Figure 7.11: Detailed node diagrams in the recovery of a single link failure

128
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

C
o

n
fi
g

u
re

T
re

e

P
ro

c
e

s
s
 B

P
D

U

T
u

rn
-O

n

B
ri

d
g

e

H
e

ll
o

T
im

e

T
im

e
r

B
P

D
U

R
e

c
e

iv
e

d

in
 p

o
rt

 p

M
e

s
s
a

g
e

A
g

e

T
im

e
r

b
e

tt
e

r

B
P

D
U

w
o

rs
e

B
P

D
U

Y
e

s
In

v
a

li
d

M
e

s
s
A

g
e

e
q

u
a

l

C
o

m
p

a
re

v
e

c
to

rs

A
m

 I

R
o

o
t?

E
x
p

ir
e

P
o

rt
In

fo

B
e

c
o

m
e

R
o

o
tB

ri
d

g
e

N
o

S
e

n
d

B
P

D
U

s
ta

rt

expiration

e
x
p
ir

a
ti
o
n

start

P
o

rt
R

o
le

S
e

le
c
ti
o

n
s

P
o

rt
S

ta
te

T
ra

n
s
it
io

n
s

C
o

n
fi
rm

a
ti
o

n

M
e

c
h

a
n

is
m

ro
o

t
p

o
rt

 o
f

n
e

ig
h

b
o

r?

N
o

s
ta

rt
 r

e
q

u
e

s
t

R
e

p
ly

 f
ro

m

R
o

o
t

A
la

rm
s
 f

ro
m

 a
ll

n
e

ig
h

b
o

rs

Y
e

s

B
P

D
U

-C
o

n
f

R
e

c
e

iv
e

d
 i
n

p
o

rt
 p

S
e

n
d

B
P

D
U

C
o

n
f

F
ig
ur
e
7.
12
:
G
en
er
al

di
ag
ra
m

of
th
e
R
ST

P
-C

on
f
op

er
at
io
n
(R

ST
P
-C

on
f
up

da
te
s
in

bl
ac
k;

or
ig
in
al

R
ST

P
op

er
at
io
n
in

gr
ey
)

7.4. RSTP-CONF OPERATION 129

C
.1

B
P
D
U

R
ec
ei
ve
d
in

p
or
t
p

/*
T
he

on
ly

ch
an

ge
in

th
e
co
m
m
on

B
P
D
U

pr
oc
es
si
n
g
is

to
u
pd
at
e
th
e

n
ei
gh
bo
r
va
ri
ab
le
s
*/

8.
...

C
on

fig
ur
eT

re
e(
)

/*
P
re
vi
ou

s
in
st
ru
ct
io
ns

ar
e
th
e
sa
m
e
as

in
R
ST

P
*/

9.
nu

m
N
ei
gh

=
rc
vd

N
um

N
ei
gh

/*
T
he

nu
m
be
r
of

ne
ig
hb
or
s
is

di
st
ri
bu
te
d
by

th
e
B
P
D
U
s
fr
om

th
e
pr
op
er

R
oo
t
of

th
e

tr
ee

*/
10
.

if
(P

P
V
[b
]o

fR
oo

t
po

rt
=
=
B
P
V
(r
))

/*
C
he
ck
in
g
w
he
th
er

a
lo
ca
l
no

de
is

a
ne
ig
hb
or

of
th
e
tr
ee

is
st
ra
ig
ht
fo
rw

ar
d.

T
he

br
id
ge

is
ne
ig
hb
or

if
th
e
br
id
ge

fie
ld

in
th
e
P
P
V

of
th
e
R
oo
t
po
rt

is
th
e
sa
m
e
th
an

th
e

R
oo
t
fie
ld

of
th
e
B
P
V
.
In

ot
he
r
w
or
ds
,
if
th
e
pa
re
nt

br
id
ge

th
ro
ug
h
th
e
R
oo
t
no

de
is

th
e
be
lie
ve
d
R
oo
t,
th
en

th
e
br
id
ge

is
a
ne
ig
hb
or

*/

11
.

iA
m
N
ei
gh

=
tr
ue

12
.

el
se

13
.

iA
m
N
ei
gh

=
fa
ls
e

14
.

C
le
ar

rc
vd

Fr
om

N
ei
gh

[]
/*

T
he

en
tr
ie
s
in

th
e
ar
ra
y
th
at

m
an

ag
e
th
e
re
ce
iv
ed

’r
d’

is
cl
ea
re
d
be
ca
us
e
th
e
re
ce
p-

ti
on

of
a
be
tt
er

B
P
D
U

in
di
re
ct
ly

co
nfi

rm
s
th
at

th
e
R
oo
t
is

al
iv
e,

he
nc
e
an

y
’c
on

fir
m
a-

ti
on
’
m
ec
ha
ni
sm

tr
ig
ge
re
d
is

no
w
te
rm

in
at
ed

*/
15
.

if(
B
P
D
U

is
pr
op

os
al

)
...

/*
Fo

llo
w
in
g
in
st
ru
ct
io
ns

ar
e
th
e
sa
m
e
as

in
R
ST

P
*/

130
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP
C
.2

B
P
D
U
-C

on
f
R
ec
ei
ve
d
in

p
or
t
p

/*
It

is
tr
ig
ge
re
d
w
he
n
a
B
P
D
U
-C

on
f
is

de
li
ve
re
d
to

th
e
R
S
T
P
-

C
on

f
in
st
an

ce
by

th
e
L
L
C

in
fe
ri
or

*/
1.

ne
ig
h
=

N
ei
gh

fie
ld

in
th
e
re
ce
iv
ed

B
P
D
U
-C

on
f

/*
T
he
se

ar
e
te
m
po
ra
ry

lo
ca
l
va
ri
ab
le
s
th
at

st
or
e
th
e
N
ei
gh

an
d
T
yp
e

fie
ld
s
of

th
e
re
ce
iv
ed

m
es
sa
ge

*/
2.

ty
pe

=
T
yp

e
fie

ld
in

th
e
re
ce
iv
ed

B
P
D
U
-C

on
f

3.
if
(
ty
pe

is
’r
d’

)
/*

A
n
’r
d’

B
P
D
U
-C

on
fi
s
a
re
qu
es
t
fr
om

th
e
ne
ig
hb
or

to
th
e
R
oo
t
an

d
he
nc
e

m
us
t
be

flo
od
ed

*/
4.

if
(
rc
vd

Fr
om

N
ei
gh

[n
ei
gh

]i
s
em

pt
y
)

/*
A
n
’r
d’

m
es
sa
ge

fr
om

a
pa
rt
ic
ul
ar

ne
ig
hb
or

is
on

ly
pr
oc
es
se
d
th
e
fir
st

ti
m
e
it
is

re
ce
iv
ed

*/
5.

if
(
lo
ca
lb

ri
dg

e
is

no
t
R
oo

t
)

/*
N
on

-R
oo
t
br
id
ge
s
th
at

re
ce
iv
e
an

’r
d’
:
m
ar
k
th
e
po
rt

w
he
re

it
is

re
ce
iv
ed

is
st
or
ed

be
ca
us
e
a
la
te
r
’r
a’

m
us
t
be

fo
rw

ar
de
d
to

th
is

po
rt
.
A
nd

flo
od

th
e

m
es
sa
ge

so
it
fin

al
ly

re
ac
he
s
th
e
R
oo
t,
if
th
is

is
st
il
l
al
iv
e,

or
it
re
ac
he
s

th
e
re
st

of
no

de
s
so

th
ey

ca
n
re
bo
ot

th
e
tr
ee
,
if
th
e
R
oo
t
ha
s
fa
ile
d
*/

6.
rc
vd

Fr
om

N
ei
gh

[n
ei
gh

]=
p

7.
fo
r
al
lp

or
ts

p’
ex
ce
pt

p
8.

Se
nd

B
P
D
U
C
on

f
(p
’,
ne

ig
h,

’r
d’
)

9.
el
se

/*
W
he
n
th
e
al
iv
e
R
oo
t
br
id
ge

re
ce
iv
es

th
e
’r
d’

m
es
sa
ge
,
it
re
pl
ie
s
w
it
h
an

’r
a’
.
T
hi
s
m
es
sa
ge

is
fo
rw

ar
de
d
br
id
ge

by
br
id
ge

ba
ck

to
th
e
ne
ig
hb
or

th
at

in
it
ia
te
d
th
e
co
nfi

rm
at
io
n
m
ec
ha
ni
sm

*/
10
.

Se
nd

B
P
D
U
C
on

f
(p
,n

ei
gh

,’
ra
’)

11
.

if
(
’r
d’

re
ce
iv
ed

fr
om

al
ln

ei
gh

bo
rs

)
/*

If
th
e
R
oo
t
fa
ils

he
nc
e
no

on
e
is
su
es

th
e
’r
a’
,
al
l
no
de
s
ev
en
tu
al
ly

re
ce
iv
e
th
e
’r
d’

fr
om

al
l
ne
ig
bo
rs

as
a
si
gn
al

to
re
bo
ot

th
e
tr
ee
.
In

th
is

si
tu
at
io
n
ea
ch

no
de

ar
is
es

as
R
oo
t
as

in
a
co
ld

st
ar
t
sc
en
ar
io

*/
12
.

B
ec
om

eR
oo

tB
ri
dg

e(
)

13
.
if
(
ty
pe

is
’r
a’

)
/*

A
n
’r
a’

B
P
D
U
-C

on
f
is

a
re
pl
y
fr
om

th
e
R
oo
t
to

th
e
ne

ig
hb
or

an
d
he
nc
e

m
us
t
be

fo
rw

ar
de
d
to

it
*/

14
.

if
(n
ei
gh

is
di
ffe

re
nt

th
an

B
P
V
[b
])

/*
T
he

’r
a’

m
es
sa
ge

re
ce
iv
ed

in
a
no

n-
R
oo
t
br
id
ge

re
su
lts

in
to

a
Fo

rw
ar
di
ng

to
th
e
si
ng
le

po
rt

th
at

in
di
ca
te
s
th
e
ar
ra
y
rc
vd
Fr
om

N
ei
gh

(b
ec
au

se
it
is

th
e
po
rt

w
he
re

th
e
’r
d’

w
as

re
ce
iv
ed
).

*/
15
.

Se
nd

B
P
D
U
C
on

f
(r
cv
dF

ro
m
N
ei
gh

[n
ei
gh

],
ne

ig
h,

’r
a’
)

16
.

el
se

/*
T
he

’r
a’

m
es
sa
ge

th
at

re
ac
he
s
th
e
ne
ig
hb
or

th
at

or
ig
in
at
ed

it
re
pr
es
en
ts

th
e
co
nfi

rm
at
io
n
fr
om

th
e
R
oo
t
th
at

it
is

al
iv
e
an

d
he
nc
e
it
ca
n
us
e
th
e

in
fo
rm

at
io
n
in

th
e
A
lte

rn
at
e
po
rt
s.

T
he
re
fo
re

it
ca
n
sa
fe
ly

re
co
nfi

gu
re

th
e

tr
ee

an
d
re
-e
le
ct

R
oo
t
ro
le
s
ba
se
d
on

th
e
in
fo
rm

at
io
n
st
or
ed

in
an

y
po
rt

*/

17
.

C
on

fig
ur
eT

re
e(
)

18
.

C
le
ar

al
le

nt
ri
es

in
rc
vd

Fr
om

N
ei
gh

[]
/*

T
he

co
nfi

rm
at
io
n
m
ec
ha
ni
sm

is
te
rm

in
at
ed

in
th
os
e
no
de
s
th
at

re
ce
iv
ed

th
e
’r
a’

m
es
sa
ge

*/

7.4. RSTP-CONF OPERATION 131
D
.
M
es
sa
ge
A
ge
T
im

er
ex
p
ir
at
io
n
(o
r
p
hy

si
-

ca
l
fa
il
u
re

d
et
ec
ti
on

)
in

p
or
t
p

/*
T
he

ch
an

ge
in
tr
od
u
ce
d
by

R
S
T
P
-C

on
f
is

on
ly

to
di
st
in
gu
is
h
be
tw
ee
n

a
n
ei
gh
bo
r
lo
os
in
g
it
s
co
n
n
ec
ti
vi
ty

to
th
e
R
oo
t,
an

d
th
e
re
st

of
ca
se
s
*/

1.
E
xp

ir
eP

or
tI
nf
or
m
at
io
n(
p)

/*
T
he

in
fo
rm

at
io
n
st
or
ed

in
th
e
po
rt

is
no

t
va
lid

an
ym

or
e
an

d
he
nc
e
it

ca
nn

ot
be

tr
us
te
d.

R
ST

P
-C

on
f
in
tr
od
uc
es

th
e
ch
an

ge
s
in

th
e
ac
ti
on

s
th
at

fo
llo

w
th
is

po
rt

ex
pi
ra
ti
on

*/

2.
if
(
po

rt
p
is

R
oo

t
po

rt
&
&

Ia
m
N
ei
gh

is
tr
ue

)
/*

A
ne
ig
hb
or

th
at

lo
os
es

it
s
co
nn

ec
ti
vi
ty

to
th
e
R
oo
t
tr
ig
ge
rs

th
e
co
nfi

rm
at
io
n

m
ec
ha
ni
sm

:
m
ar
ks

it
se
lf
in

th
e
ar
ra
y
th
at

ac
co
un

ts
fo
r
th
e
ne
ig
hb
or
s
th
at

st
ar
te
d

th
e
pr
oc
ed
ur
e,
an

d
flo

od
s
th
e
’r
d’

m
es
sa
ge
s
as
ki
ng

fo
r
R
oo
t
av
ai
la
bi
lit
y.

T
hi
s

m
ig
ht

re
su
lt
in

(a
)
a
re
sp
on

se
fr
om

th
e
st
il
l
al
iv
e
R
oo
t,
or

(b
)
a
tr
ee

re
bo
ot

on
ce

al
l
’r
d’

fr
om

al
l
ne
ig
hb
or
s
ha
ve

be
en

re
ce
iv
ed

*/

3.
rc
vd

Fr
om

N
ei
gh

[B
P
V
[b
]]
=

p
4.

fo
r
al
lp

or
ts

p’
ex
ce
pt

5.
Se

nd
B
P
D
U
C
on

f(
p’
,B

P
V
(b
),
’r
d’
)

6.
el
se

/*
If

th
e
br
id
ge

de
te
ct
in
g
th
e
fa
ilu

re
is

no
t
a
ne
ig
hb
or
,
it
pr
oc
ee
ds

as
in

R
ST

P
an

d
di
re
ct
ly

re
co
nfi

gu
re
s
th
e
tr
ee

be
ca
us
e
of

th
e
ch
an

ge
in

th
e
po
rt

in
fo
rm

at
io
n.

N
ot
e
th
at

R
ST

P
-C

on
f
ac
tu
al
ly

de
la
ys

th
is

re
co
nfi

gu
ra
ti
on

un
ti
li
t
ha
s
re
ce
iv
ed

th
e

co
nfi

rm
at
io
n
fr
om

th
e
R
oo
t
*/

7.
C
on

fig
ur
eT

re
e(
)

E
.
B
ec
om

eR
oo

tB
ri
d
ge
()

/*
T
he

ch
an

ge
s
on

th
is

ro
u
ti
n
e
re
su
lt
in

th
e
in
it
ia
li
za
ti
on

of
th
e
co
n
-

fi
rm

at
io
n
va
ri
ab
le
s
*/

1.
nu

m
N
ei
gh

=
lo
ca
ln

um
be

r
of

po
rt
s

/*
In

R
ST

P
,
th
e
R
oo
t
is

th
e
on

ly
no

de
th
at

re
al
ly

kn
ow

s
ho
w
m
an

y
po
rt
s
it
ha
s

so
it
se
ts

th
is

va
lu
e
in

nu
m
N
ei
gh

(w
hi
ch

is
di
st
ri
bu
te
d
to

ot
he
r
no
de
s
w
it
hi
n

co
m
m
on

B
P
D
U
s)
.
A
ls
o,

th
e
R
oo
t
is

no
t
th
e
ne
ig
hb
or

of
an

y
R
oo
t
(h
en
ce

Ia
m
N
ei
gh

is
re
se
t)
.
F
in
al
ly
,
a
R
oo
t
cl
ea
rs

al
l
th
e
en
tr
ie
s
of

th
e
ar
ra
y

rc
vd
Fr
om

N
ei
gh

be
ca
us
e
th
e
R
oo
t,
it
se
lf,

is
al
iv
e
*/

2.
Ia
m
N
ei
gh

=
fa
ls
e

3.
C
le
ar

al
le

nt
ri
es

in
rc
vd

Fr
om

N
ei
gh

[]

4.
Se

tP
V
(B

P
V
,B

ri
dg

eI
D
,0

,B
ri
dg

eI
D
,0

)
...

/*
Fo

llo
w
in
g
in
st
ru
ct
io
ns

ar
e
th
e
sa
m
e
as

in
R
ST

P
*/

132
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

I.
2.

S
en

d
B
P
D
U
C
on

f
(p
or
t,

n
ei
gh

,
ty
p
e)

/*
T
he

in
fo
rm

at
io
n
en
co
de
d
in

th
e
B
P
D
U
C
on

f
re
pr
es
en
ts

a
re
qu
es
t/
re
pl
y
fr
om

/t
o
a
n
ei
gh
bo
r
th
at

tr
ig
ge
rs

th
e
co
n
fi
r-

m
at
io
n
m
ec
ha
n
is
m

*/
1.

Se
t
R
oo

t
fie

ld
of

th
e
B
P
D
U
C
on

f
eq
ua

lt
o
B
P
V
[r
]

/*
T
he

R
oo
t
fie
ld

of
th
e
B
P
D
U
-C

on
f
m
es
sa
ge

is
se
t
to

th
e
R
oo
t

be
lie
ve
d
by

th
e
br
id
ge

(B
P
V
[r
])
,
th
e
en
co
de
d
N
ei
gh

an
d
T
yp
e
fie
ld
s

en
co
de
d
in

th
e
m
es
sa
ge

ar
e
th
e
va
lu
e
pa
ss
ed

as
ar
gu
m
en
ts

be
ca
us
e

th
es
e
de
pe
nd

on
th
e
si
tu
at
io
n
w
he
re

th
is

pr
oc
ed
ur
e
is

ca
lle
d
fr
om

*/

2.
Se

t
N
ei
gh

fie
ld

of
th
e
B
P
D
U
C
on

f
eq
ua

lt
o
ar
gu

m
en
t
’n
ei
gh

’
3.

Se
t
ty
pe

fie
ld

of
th
e
B
P
D
U
C
on

f
eq
ua

lt
o
ar
gu

m
en
t
’t
yp

e’

4.
Se

nd
th
e
B
P
D
U
-C

on
f
to

po
rt

/*
O
nc
e
th
e
fie
ld
s
ar
e
fil
le
d,

th
e
B
P
D
U
C
on

f
is

se
nt

to
th
e
ou

tg
oi
ng

po
rt

in
di
ca
ti
ng

th
e
th
e
et
he
rn
et

en
ca
ps
ul
at
io
n
de
ta
ils

to
th
e
in
fe
ri
or

su
b-
la
ye
r
(L

L
C
)
*/

F
ig
ur
e
7.
13
:
P
se
ud

o-
co
de
s
of

th
e
R
ST

P
-C

on
f
op

er
at
io
n

7.4. RSTP-CONF OPERATION 133

4

3

6

0 5

2 1

3

2

Step 1
Flooding of all ‘rd’

Step 2
All arise as potential Root

Step 3
B1 is the new Root

‘rd’ from neighbor BXx
BPDU about Root BX

‘ra’ for neighbor BX
x

Designated Port
Root Port
Alternate Port Discarding link

Forwarding link
x

X

4

3

6

0 5

2 1

X

3

3

4

4

3
3

3

4

4

5

5 5

6

6

6

1
12

4

3

6

0 5

2 1

X

Figure 7.14: Sequence of steps of the confirmation mechanism to recover from a
Root failure

7.4.3 Tree reboot after the Root failure

The scenario where the Root bridge fails is different from the previous single link
example because (1) the neighbor will never get the ’ra’ message because there is
actually no Root that sends it, and (2) all neighbors flood their own ’rd’ each one
notifying that they believe that the Root is unavailable (step 1 in figure 7.14).

Figure 7.15 includes the node diagrams showing the evolution of B1 evolving
towards the reboot of the tree (B1 will actually be the new Root). First observe
that B1 does not directly notice that the Root fails at tf . B1 receives the ’rd’
messages of each one of the neighbors (figure 7.15(a)) and keeps track of the
alarms adding the information to the array rcvdFromNeigh.

All the network nodes eventually receive the ’rd’ messages issued by the
neighbors. Note that any node receives as many ’rd’ messages as the number
of neighbors of the Root. Since all nodes know the exact number of neighbors
(disseminated with the common BPDUs and set in line 3 of block C.1), it is
straightforward to implement a condition that is met when all ’rd’ have been
received (line 11). Receiving the ’rd’ messages from all neighbors implies that
the Root has really failed hence a node can propose itself as new Root (line 12).
Accordingly, B1 realizes there is no Root and arises itself as Root (figure 7.15(b)).

At this point, all network nodes consider that the old active topology is not
updated any more and hence they all arise as potential new Roots (step 2 in
figure 7.14). This results into a global reboot leading to a situation similar to a
cold-start. After all the exchange of BPDUs, a new node is elected as Root (B1
in step 3) and the tree is configured again.

Note that a Root failure recovery requires (1) the time to flood the ’rd’ mes-
sages plus (2) the time to disseminate the BPDUs of the new Root. In the worst
case where B1 is the furthest node from the old Root B0, the recovery time is
one round-trip delay.

134
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

B1

p1

p2

B0

B6

B3-p1

numNeigh

rcvdFromNeigh

3

0

BPV

3 1 0

B
P
D
U
-C
o
n
f

0
3
rd

B1
p1

p2

B0

B6

B3-p1

numNeigh

rcvdFromNeigh

3

0

BPV

3 1 0

B
P
D
U
-C
o
n
f

0
4
rd

B4-p1

B1
p1

p2

B0

B6

B3-p1

numNeigh

rcvdFromNeigh

3

0
BPV

3 1 0

B
P
D
U
-
C
o
n
f

0
2
rd

B3-p1 B2-p2

(a) B1 receives alarm from B3, B4 and B2

B1

p1

p2

B0

B6

-

numNeigh

rcvdFromNeigh

2

1

BPV

0 1 0

1
0
1
1

B
P
D
U

1
0
1
2

B
P
D
U

(b) B1 arises as Root because
all ’rd’ alarms have been re-
ceived

Figure 7.15: Root failure recovery from B1 perspective

7.5. PERFORMANCE EVALUATION 135

(a) grid4 (b) grid8 (c) Root in corner
of grid4

(d) Root in center
of grid4

Figure 7.16: Two-dimensional mesh topologies of degrees 4 (grid4) and 8 (grid8)

... ...

Figure 7.17: Ring-based topology of increasing connectivity (or average node
degree).

(a) mesh-heavy (b) mesh-full (c) two-tier

Figure 7.18: Realistic structured topologies

7.5 Performance evaluation

This section includes the performance evaluation of RSTP and RSTP-Conf under
different failure situations. As in previous evaluations, we run the protocols in
the different network topologies of figures 7.16, 7.17 and 7.18.

The Root is located in a given position and the rest of bridges are configured
with random BridgeIDs. We take as a reference for the time to transmit, propa-
gate and process a BPDU the study in [30] that assumes a delay of 1.33ms per
message. The value of MaxAge is set to the number of nodes in the network,
unless the experiment details otherwise, in order to ensure the propagation of a
full wave-front. Only BPDU messages are simulated and no user traffic is mod-
eled unless otherwise stated. The modeled failure detection mechanism is the
immediate physical failure detection where the affected ports directly realize that
the link has failed and notify the protocol instance.

The performance evaluation focuses on the time to construct the tree and the
amount of information exchange required for such action. Since the following

136
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

evaluation focuses on studying the protocol recovery in the event of failures,
we measure the Recovery Time (RT) as the time that the protocol takes to re-
construct the tree. Note that we use a different notation for the convergence time
in a recovery scenario (RT) than for the convergence time in a cold start (CT).
Although the concept of convergence also applies to the recovery phase, we find
RT more adequate and it allows easily distinguishing them. We still refer to the
message overhead as MO.

Each one of the following sections focuses on a different scenario in order to
evaluate different particularities of the protocols performance. Sections 7.5.1 and
7.5.2 provide the response of both protocols in front of Root failures so as to
evaluate (1) the consequences of count-to-infinity in RSTP and (2) how RSTP-
Conf avoids it. Finally, section 7.5.3 includes a broader perspective of the analysis
and shows the performance in the event of non-Root failures such as single links
or other nodes.

7.5.1 Characterization of count-to-infinity consequences in
RSTP

This analysis focuses on the evaluation of RSTP recovering from a Root failure.
Since it suffers count-to-infinity, this section actually evaluates the consequences
of this effect under different scenarios and different topologies. In each execution
we locate the Root in a different node, and we fail it.

7.5.1.1 Recovery time

The first tests use the ring-based topology of increasing connectivity degree. Plot
in figure 7.19 shows the measured RT. The left vertical axis measures the time in
seconds. Note that in this scenario for all topology sizes, RSTP takes the order of
tens of seconds to recover. The reason of this low performance is the appearance
of the count-to-infinity problem, as described in section 7.1, which vanishes after
the appearance of several deadlocks that stop the message transmission during
6 seconds (3xHelloTime). Observe the right y-axis of figure 7.19 is measured in
number of deadlocks that occur during the count-to-infinity (up to 19 in a 50
nodes network of degree 10).

The stopping of message transmission due to deadlocks can also be observed
if we further analyze a single execution. Figure 7.20(a) shows a timeline with the
transmitted BPDUs in a network of 20 nodes and degree 5. Note that each bin is
divided into the messages about the failed B0 (dark grey), the messages about the
new Root B1 (light grey) and the messages about the rest of nodes (white). First
observe that the appearance of deadlocks causes the not-continuous transmission
of messages. Each one of the high peaks in the timeline represents the different
rounds of the count-to-infinity until BPDUs are discarded because they reach the
MaxAge limit. The first bin, or round, represents the messages that are sent
right after the failure is detected and the count-to-infinity is triggered (figure
7.20(b) shows the detail). A total of 1843 BPDUs are transmitted until the first
deadlock temporarily stops the transmission. Most of these messages (1760) are

7.5. PERFORMANCE EVALUATION 137

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10

0

4

8

12

16

R
T

 (
se

c)

R
T

 (
d

ea
d

lo
ck

s)

Average degree

N=10

N=20

N=30

N=50

Figure 7.19: RT of RSTP in a Root failure scenario in the ring-based topologies

BPDUs about the failed Root and only a small amount (86) are BPDUs about
other nodes, including B1, that try to arise as Roots. These non-B0 messages
are transmitted during the early stages of this first round but they are quickly
"eaten" by the stale B0 BPDUs. This is why in all rounds the percentage of B0
messages over the total is very high.

The looping of all these BPDUs during each round leads to the deadlock in a
link where both sides assume that are Root ports and hence do not forward BP-
DUs. When this deadlock occurs, nodes remain in a transient but stable situation
with a virtual Root (see section 7.1). This results into periodical transmission
of BPDUs in those nodes that believe in the virtual Root (see the small bins
between the high message peaks in figure 7.20(a)).

The silence in both sides of the deadlocked link with the deadlock prevents
the existence of BPDUs in this link and hence any possibility to be reconfigured
except after waiting long enough for BPDUs, when the timer 3xHelloTime expires.
The timeout allows considering outdated the port state and is being reset losing
the information of the failed Root. At this point the port is reconfigured to
Designated and the algorithm continues normally but still under the count-to-
infinity effect because other ports in the network still have in their state the failed
Root with a MessAge smaller than MaxAge indicating that it is valid. Figure
7.21 shows a similar timeline but indicating the value of the MessAge field in
the transmitted BPDUs. Observe that the BPDUs about B0 (circles) reach a
MessAge of 7 in the first round. When the deadlock is released the count-to-
infinity continues with the state information of ports at their current value of the
MessAge. For example, the MessAge re-starts at 7 and reaches 11 in the second
round before a new deadlock occurs. This situation is repeated at every round
until MessAge of the different BPDUs reach MaxAge (20 in this execution). This
happens in the fifth round of messages at second 30 after the failure. Observe in
figure 7.21 how the MessAge of B0 BPDUs reach 20, and are definitely removed
hence eradicating the count-to-infinity effect. At this point, the BPDUs of several
nodes arising as potential Roots are exchanged creating a similar situation as in

138
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

 0

 5

 10

 15

 20

 25

fail 5 10 15 20 25 30 35 40

B
P

D
U

s
(x

1
0

0
)

Time (sec)

B0 B1 Rest

(a) Timelines of BPDUs about B0, B1, and the rest

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

B
P

D
U

s
(x

1
0

0
)

Time (hops)

B0 B1 Rest

(b) Detail of first deadlock

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10

B
P

D
U

s
(x

1
0

0
)

Time (hops)

B0 B1 Rest

(c) Detail of last deadlock

Figure 7.20: BPDU timelines of a Root failure recovery in a ring-based topology
with 20 nodes and degree 5

7.5. PERFORMANCE EVALUATION 139

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

M
e
ss

a
g

e
A

g
e

Time (sec)

B0

B1

Figure 7.21: MessAge field evolution in a Root failure recovery in a ring-based
topology with 20 nodes and degree 5.

Table 7.4: RT in seconds after a Root failure recovery in ring-based topologies
with an average degree of 10 and different MaxAge values

MaxAge
Size 10 20 30 50
N=10 12 31 52 93
N=20 14 38 61 108
N=30 - 39 64 111
N=50 - - 67 113

a cold start. This is shown in the last round (figure 7.20(c)) where the wave-front
of the new Root B1 ends up spanning the entire network winning the encounters
with wave-fronts started at other nodes.

The value of MaxAge drives the convergence time in the Root-failed scenario
due to the counting to infinity. This can be clearly observed in the plot of
figure 7.19 as large networks, with larger MaxAge, recover the failure after more
deadlocks. This dependence is confirmed fixing the network size and varying
the value of MaxAge. We have done the same experiments for all the previous
topology sizes and for each MaxAge. Table 7.4 shows the average RT for the
topologies with an average degree of 10 (note it corresponds to the last point on
the lines of figure 11). If MaxAge is really high it becomes the dominant factor
for the RT as it oscillates from 93-113 compared to N that varies from 10 to 50.

7.5.1.2 Message overhead

The count-to-infinity effect clearly affects the recovery time of the protocol after a
Root failure, but it also causes a significant increase of the message overhead. The
looping BPDUs are removed only after they reach a MessAge equal to MaxAge

140
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

 0

 1

 2

 3

 4

 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

M
es

sa
g

es
 p

er
 n

o
d

e
(x

1
0

0
0

)

K
B

 p
er

 n
o

d
e

Average degree

N=10

N=20

N=30

N=50

(a) MOnode

 0

 100

 200

 300

 400

 500

 2 3 4 5 6 7 8 9 10

T
ri

g
g

er
s

p
er

 n
o

d
e

Average degree

N=10

N=20

N=30

N=50

(b) TRnode

Figure 7.22: Message overhead of RSTP in a Root failure scenario in the ring-
based topologies

and this results into a large quantity of messages that are forwarded during all
rounds and deadlocks. The plot in figure 7.22(a) shows the MOnode measurements
for the ring-based topologies of varying connectivity degree. The amount of
messages transmitted clearly grows with the size of the network and with the
average node degree. The results clearly show that a count-to-infinity situation
results into a very large overhead (i.e. 2500% of the MOnode required for a cold-
start). The only alleviation is that these messages are really spread in time in
different rounds between deadlocks and hence the instant overhead on the nodes
is reduced.

The increase of the message overhead due to count-to-infinity not only affects
the capacity of the links. If we study the amount of triggers, shown in the
plot of figure 7.22(b), we can observe that each node receives a high quantity of

7.5. PERFORMANCE EVALUATION 141

 0

 25

 50

 75

 100

4 9 16 25 36 49 64 81 100

P
er

ce
n

ta
g

e

Nodes

Deadlocks 0 1 2 3 4

(a) RT

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100
0

10

20

30

40

50

60

M
es

sa
g

es
 p

er
 n

o
d

e
(x

1
0

0
)

K
B

 p
er

 n
o

d
e

Number of Nodes

grid4
grid8

(b) MOnode

Figure 7.23: Performance of RSTP in a Root failure scenario in the two-
dimensional grid topologies

messages that trigger a tree recalculation. This implies that during a count-to-
infinity the processing power of the nodes is affected by the need to recalculate
the tree every time a looping BPDU that updates is received. Also note that these
recomputations are useless because the messages are looping and the protocol is
just waiting for the MessAge to reach MaxAge and terminate the count-to-infinity
behavior.

7.5.1.3 Variability due to topological aspects

In order to evaluate the effect of the topology size we run experiments in the
grid4 topologies of different sizes and we keep the MaxAge constant to 20 (the
default value). Note that the maximum degree in the grid4 topology is less hence

142
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

20 hence the MaxAge does not limit the wave-front construction.
Figure 7.23(a) includes the RT evaluation of RSTP for different sizes of the

grid and locating, and failing, the Root in all possible locations. The bars indicate
the percentage of experiments experiencing different number of deadlocks for each
grid size. For example, in the grid of 9 nodes, 1 run did not experience any
deadlock (white), 1 deadlock occurred in 6 of the runs (lightest grey), and 2
deadlocks in 2 runs (grey). Observe that the amount of deadlocks required grows
with the size of the grid. However the main factor is the connectivity level: the
larger the network, the higher the average node degree (increasing from 2 to 3.6).
Note that in this case we are keeping MaxAge constant in all executions hence
in these experiments we can see the effect of other parameters such network size
or node degree. Observing the MOnode per node in figure 7.23(b) we can also
confirm that larger networks, that are slightly more connected, require a higher
amount of messages due to count-to-infinity.

The experiments involving the different topologies are shown in figure 7.24.
In this case we have also configured a constant MaxAge of 20 as it is the recom-
mended value by the standard and it is large enough for the tested topologies to
construct the entire wave-fronts in the cold start. The CT performance in figure
7.24(a) shows that the grid4 topology recovers in 3 deadlocks while all the rest do
it after 6 deadlocks. The reason is the low average degree of the grid4 topology
of 64 nodes (3.5) compared to the rest (from 4.4 to 6.5). However, observing the
MO for the different topologies in figure 7.24(b), we see that there is a correla-
tion between the amount of messages and the average degree. This confirms the
growing MO observed in the ring-based topologies of figure 7.22(a).

7.5.2 Avoiding count-to-infinity with RSTP-Conf

This section includes the simulation results of RSTP-Conf in the scenarios where
the Root fails. The objective is (1) to show that count-to-infinity does not appear
and (2) to characterize the performance of the protocol in terms of recovery
time and message overhead. Note that in this section we do not include the
evaluation of RSTP-Conf in a cold-start scenario, or network start-up, because
the protocol performs equally as RSTP. In not failure scenarios, the confirmation
is not triggered and hence there are no performance differences with the original
RSTP.

7.5.2.1 Node degree variation

In this analysis we focus on the evaluation of the protocol in a scenario where
RSTP suffers count-to-infinity so as to show that RSTP-Conf avoids the effect.
As we have already seen in the previous section, the node degree is one of the
important factors that determine the influence of count-to-infinity. Therefore
we first use the ring-based topologies of increasing connectivity for an easier
comparison.

As shown in figure 7.25(a), RSTP-Conf outperforms RSTP in terms of RT
because it does not suffer the delay due to count-to-infinity. Observe that in

7.5. PERFORMANCE EVALUATION 143

 0

 10

 20

 30

 40

grid-4. mesh-h. two-tier grid-8 mesh-f.
0

2

4

6

R
T

 (
se

co
n

d
s)

R
T

 (
d

ea
d

lo
ck

s)

(a) RT

 0

 200

 400

 600

 800

 1000

grid4 two-tier mesh-h. grid8 mesh-f.

M
es

sa
g

es
 p

er
 n

o
d

e

(b) MOnode

Figure 7.24: Performance of RSTP in a Root failure scenario in various topologies

this case the RT is measured in hop delays in the left axis and in milliseconds in
the right axis. While RSTP requires several deadlock delays to recover (tens of
seconds), RSTP-Conf is able to reduce the RT time to a few hop delays (order of
milliseconds). In addition, the RT for RSTP-Conf decreases with the redundancy
level because the diameter of the topology is smaller for higher connectivity. Since
the proposed protocol is based on a flooding technique, its recovery time actually
depends on the time to span the network and therefore on the topology diameter.

Figure 7.25(b) shows the message overhead (MOnode) over the connectivity
degree for the different topology sizes. Observe how the amount of messages
grows with the connectivity degree because in flood-based techniques the number
of messages is proportional to the number of links. However, the values obtained
in RSTP-Conf stay one order of magnitude below those in RSTP. The reason
for such difference is the existence of the count-to-infinity behavior in RSTP.

144
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

 0

 5

 10

 15

 20

 2 3 4 5 6 7 8 9 10

0

4

8

12

16

20

24

R
T

 (
h

o
p

s)

R
T

 (
m

se
c)

Average degree

N=10

N=20

N=20

N=50

(a) RT

 0

 50

 100

 150

 200

 250

 2 3 4 5 6 7 8 9 10

0

4

8

12

M
es

sa
g

es
 p

er
 n

o
d

e

K
B

 p
er

 n
o

d
e

Average degree

N=10

N=20

N=30

N=50

(b) MOnode

 0

 2

 4

 6

 8

 10

 2 3 4 5 6 7 8 9 10

T
ri

g
g

er
s

p
er

 n
o

d
e

Average degree

N=10

N=20

N=30

N=50

(c) TRnode

Figure 7.25: Performance of RSTP-Conf in the ring-based topologies

7.5. PERFORMANCE EVALUATION 145

 0

 100

 200

 300

 400

fail 1 2 3 4 5 6 7 8

B
P

D
U

s

Time (hops)

Conf

Rest

B1

Figure 7.26: Timeline of received BPDUs during a Root failure recovery with
RSTP-Conf

Nevertheless, the amount of messages transmitted by RSTP-Conf is not that
low because it forces a global reboot where the Root needs to be elected from
scratch. Since the count-to-infinity behavior does not occur, and hence there are
no BPDUs to be removed after the maximum number of hops, changing the value
of MaxAge does not effect in the performance of RSTP-Conf.

An additional observation is the amount of BPDU-Conf messages (’rd’ flood-
ings) required. The thin lines in the plot represent the number of these messages
for each degree. The ratio between the confirmation messages over the total
amount of BPDUs decreases for larger networks. For example in the topology
of 10 nodes the confirmation messages represent up to 51% of the total amount
of messages in some cases. Differently, in the network of 50 nodes this ratio
decreases to 33%.

The plot in figure 7.25(c) shows the average amount of triggers per node that
occur during the recovery. Although the Root recovery triggers an entire tree
reboot, the amount of tree recalculations per node remains low. As in the cold-
start case, the triggers slowly grow with the connectivity degree because of the
flooding nature of the protocol that makes it proportional to the number of links
in the topology.

A further analysis looks into a single experiment and observes the particu-
larities of the transmitted BPDUs. Figure 7.26 shows the time-line of the total
number of BPDUs in the topology with an average node degree of 4 (20 added
links). Note that the different colors represent different types of BPDUs: black
for BPDU-conf, grey for common BPDUs announcing B1 as Root, and white for
common BPDUs announcing other nodes as Root. Observe that right after the
failure (until hop 4) the BPDU-Conf messages originated in the neighbors are
flooded until these reach all nodes and trigger the tree reboot. At this point, a
behavior similar to a cold start occurs because each node starts their own wave-
front, but only the one from the new Root B1 remains and beats all the others
(last 5 hops). Observe the similarities with the timeline of BPDUs during a cold

146
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

0

10

20

30

40

R
T

 (
h

o
p

s)

R
T

 (
m

se
c)

Number of Nodes

root fails

cold start

(a) RT

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

0

1

2

3

M
es

sa
g

es
 p

er
 n

o
d

e

K
B

 p
er

 n
o

d
e

Number of Nodes

Total BPDUs

Cold-start

BPDU-Conf

(b) MOnode

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

T
ri

g
g

er
s

p
er

 n
o

d
e

Number of Nodes

Root Failure

Cold-start

(c) TRnode

Figure 7.27: Performance of RSTP-Conf in the grid topologies

7.5. PERFORMANCE EVALUATION 147

start in figure 6.12 in section 6.3 once the confirmation mechanism has triggered
the tree reboot.

7.5.2.2 Topology size variation

This second analysis presents the performance of RSTP-Conf in the two-dimensional
grid topologies in order to evaluate the effect of topology size while keeping the
node degree.

Plot in figure 7.27(a) shows the RT observed in the grid4 topologies (each
execution fails the Root in a different location). For all topology sizes, the RT in
RSTP-Conf remains in the order of milliseconds as it takes a several hop delays
to reconstruct the new tree. It grows with the network size because it depends
on the network diameter. This is due to the flooding nature of the mechanism:
a first flooding of the confirmation messages and a second one of each node that
arises as potential Root. Therefore, the total CT really depends on the location of
the new Root B1. For example, in the case of 100 nodes the diameter is 18 hops.
In the experiment where B0 and B1 are located in opposite corners the total
required CT is 36 (twice the diameter) because of the two floodings happening
one after the other. If the two nodes are located next to each other, B1’s flooding
to become Root happens together with the flooding of confirmation messages and
the total CT is reduced to 18 (one diameter). The plot also includes the cold-
start CT as a reference line to compare the emulated global reboot after the Root
failure and the initial construction of the tree. The two lines evolve similarly and
the only difference is the delay due to the confirmation mechanism that neighbors
initiate.

The MOnode performance of RSTP-Conf in the grid topologies is shown in the
plot of figure 7.27(b). Root recoveries in RSTP-Conf result in a similar scenario to
a cold-start, hence the performance is similar to it. The amount of transmitted
messages per node grows with the size because the topology is larger, which
means there are more potential Roots after the global reboot that result in more
wave-fronts that advance. The difference with the cold-start is that in the Root
failure recovery the Root neighbors first trigger the confirmation mechanism and
flood the ’rd’ messages. Nevertheless, these represent a small percentage of the
total BPDUs. For example, in the grid of 100 nodes the Root failure recovery
procedure transmits 10 BPDU-Conf messages per node of the total amount of
BPDUs (48).

In this experiments the messages that trigger a tree recalculation almost match
the triggers in a cold-start (as shown in plot of figure 7.27(c)). The reason is that
the metric TR does not account for the confirmation messages. Therefore a cold-
start and the tree reboot that occurs in a Root failure recovery in RSTP-Conf
result in a similar amount of tree reconfigurations.

7.5.2.3 Other topologies

In this last analysis of RSTP-Conf in the event of Root failures we present the
performance of the protocol in the different topologies included in figure 7.28. The

148
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

 0

 5

 10

 15

 20

mesh-f. mesh-h. two-tier grid-8 grid4
0

10

20

30

R
T

 (
h

o
p

s)

R
T

 (
m

se
c)

(a) RT

 0

 20

 40

 60

 80

 100

 120

 140

grid4 mesh-h. two-tier mesh-f. grid8
0

2

4

6

8

M
es

sa
g

es
 p

er
 n

o
d

e

K
B

 p
er

 n
o

d
e

(b) MOnode

 0

 2

 4

 6

 8

 10

grid4 mesh-h. two-tier mesh-f. grid8

T
ri

g
g

er
s

p
er

 n
o

d
e

(c) TRnode

Figure 7.28: Performance of RSTP-Conf in the various topologies

7.5. PERFORMANCE EVALUATION 149

 0

 20

 40

 60

 80

 100

tf tf+5 tf+10 tf+15 tf+20 tf+25 tf+30 tf+35D
at

a
p

ac
k

et
s

re
ce

iv
ed

 (
%

)

Time (hops)

Figure 7.29: Traffic received by all nodes during the Root failure recovery

plot in figure 7.28(a) shows the RT measured in hop delays and in milliseconds.
The different columns have been sorted from the smallest to the largest diame-
ter. This results confirm that Root recovery time in RSTP-Conf depends on the
network diameter because of the two floods that occur (originated at neighbors;
originated at the new Root) and that the difference with the initial cold-start is
the delay due to the confirmation mechanism. The message overhead is shown
in the plot of figure 7.28(b). In this case the columns have been sorted by the
average node degree, with the lowest value in the first column. These results also
confirm that the cold-start triggered by the alarms sent by neighbors is the main
factor. The amount of the initial BPDU-Confs also remains small in comparison
to the common BPDUs transmitted while the new tree is constructed. Finally,
figure 7.28(c) shows the messages that trigger a tree recalculation for the different
topologies (the columns are also sorted by degree). As in the previous scenarios,
the amount of triggers is similar to those in a cold-start and remains between 6
and 8% of the total amount of BPDUs transmitted.

7.5.2.4 Traffic outage

The last evaluation of the Root failure recovery with RSTP-Conf studies the
outage that data communications experience during the recovery process. The
failure of the Root results into the disconnection of some branches, hence the
loss of connectivity between some nodes. As in previous similar tests, we test
the connectivity level by configuring each node to send broadcast data packets of
1000 bytes every 10us. The percentage of packets received represents the level of
active connectivity at that instant.

Plot in figure 7.29 shows the time-line of received packets in the grid4 topology
of 64 nodes where the failing Root is located in one corner. The horizontal axis is
measured in hops (tf indicates time of failure) and the vertical axis in percentage
of received packets by all nodes (100% represents 4032 messages). RSTP-Conf
takes around 30 hops to recover the maximum connectivity level. This delay is
because (1) the propagation of the neighbor alarms, and (2) the dissemination

150
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

of the wave-front of the new Root. Note that after the recovery the maximum
connectivity does not reach 100% because the failed Root is neither sending nor
receiving data.

7.5.3 Performance in the event of non-Root failures

The analysis presented following aims at studying the performance of RSTP and
RSTP-Conf in non-Root failure situations. Although the Root failure is one of
the critical scenarios, specially in RSTP as it leads to a count-to-infinity, failures
of other devices such as non-Root nodes or single links are actually the most
common in realistic networks.

7.5.3.1 Link failures

For these tests we use the grid4 of size 100 and we locate the Root in one corner.
We first observe the protocols recovery in the event of all possible single link
failures. That is, we run as many experiments as links in the topology, and
we fail a different connection in each execution. In the grid of 100 nodes this
results into 180 different scenarios. Plots in figures 7.30(a) and 7.30(b) contain
the histograms for RT and MO obtained from the runs of all possible link failures
(note that we now measure the message overhead in the entire network). The
white bins refer to RSTP and the grey ones to RSTP-Conf. The most remarkable
observation is that 90% of the link failures result into an immediate recovery (RT
of 0 and MO below 10) in both protocols. This is either because the link did not
belong to the tree, 40% of the cases, or because an Alternate port becomes Root
port, the remaining 60%.

A few link failure cases require the protocols to exchange some more messages
and hence delay the recovery (10% of the link failures in RSTP and 9% in RSTP-
Conf). In these cases the protocols transmit from 10 to 100 BPDUs and the
convergence time spans from 3 to 10 hop delays. The closer to the Root the
failed link is located, the longer the recovery because the new topology needs to
be disseminated to the entire network.

In the scenarios described so far, both protocols provide the same performance
because they really operate equally. The only difference is observed when a link
connected to the Root fails and a confirmation procedure is triggered in RSTP-
Conf. This is why RSTP-Conf experiences a CT of 17 hop delays with 355
exchanged messages in approximately 1% of the link failures (actually, the two
links connected to the Root in the corner). Note that the additional 6 hop delays
really represent the delay introduced by the ’rd’ and ’ra’ propagations. Also
note that even if the confirmation is triggered, this situation does not result
into a global reboot because only one neighbor issues the ’rd’ messages. This
is a situation where RSTP outperforms RSTP-Conf because the confirmation
mechanism is triggered but it results in a false alarm that just delays the recovery.

7.5. PERFORMANCE EVALUATION 151

0.1%

1%

10%

100%

 0 2 4 6 8 10 12 14 16 18

Time in thops (bin 1 thop)

Root

Links

RSTP

RSTP CONF

(a) RT

0.1%

1%

10%

100%

0 20 40 60 80 100 360

Messages entire network (bin 10 mess)

Root

Links

RSTP

RSTP CONF

(b) MO (entire network)

Figure 7.30: Histograms of RT and MO recovering from all links possible failures
in the grid of 100 nodes and the Root in a corner

7.5.3.2 Node failures

The histograms in figures 7.31(a) and 7.31(b) show the protocols performance
when recovering from of all possible node failures. We use the same grid topology
as in the previous case but we fail a different node in each run (resulting in 100
different scenarios). Similarly to the link failures, both protocols immediately
recover from most of the failures (83% observe a RT of 0). However, the number
of messages is slightly higher and in general the immediate recoveries exchange
20 messages or less. There is also a set of failures, 16% in both protocols, that
result into a longer recovery: RT from 3 to 10 hop delays, and MO from 20 to
100 messages. Note that the recovery from non-Root node failure is quite similar
to the non-Root link failure, with more messages because a node failure really
represents a failure up to 4 links at the same time.

152
CHAPTER 7. RSTP-CONF: PROTOCOL EXTENSION TO AVOID

COUNT-TO-INFINITY IN RSTP

0.1%

1%

10%

100%

0 2 4 6 8 10 31 3 dead.

Time in thops (bin 1 thop)

Root

RSTP

RSTP CONF

(a) RT

0.1%

1%

10%

100%

0 20 40 60 80 100 4700 23000

Messages per network (bin 10 mess)

Root

RSTP

RSTP CONF

(b) MO (entire network)

Figure 7.31: Histograms of RT and MO, entire network, recovering from all node
failures in the grid of 100 nodes and the Root in a corner

Nevertheless, the difference in performance arises when the Root fails. RSTP
takes up to 3 deadlocks while RSTP with confirmation stays in the order of hop
delays (31). In terms of MO there is a difference of two orders of magnitude:
230000 for the RSTP and the count-to-infinity; and 4700 for the RSTP-Conf
triggering a global reboot. The Root failure represents the worst-case scenario in
both protocols. But the effect is much harmful in RSTP because there is no way
to stop the count-to-infinity situation.

§ 8. RSTP-SP: Shortest Path Bridging Keeping the
Distance-Vector Approach

The IEEE 802.1aq Shortest Path Bridging is the current step in the evolution of
the control protocols for Ethernet Bridging. The link-state protocol proposed by
IEEE represents a big change in the core of the bridge architecture as it substi-
tutes the, successful so far, distance-vector family of spanning tree protocols.

We however think that there is an alternative to provide optimal paths keeping
the original distance-vector protocols. From now on we refer to such extension
as RSTP-SP. The idea is to reuse the RSTP protocol introducing the necessary
changes to construct the multiple trees that deploy optimal paths. Since RSTP
is a distance-vector protocol that focuses on building a single tree, it makes sense
to extend its applicability in order to build several trees. However, it is not as
simple as executing the standardized RSTP for each tree. The framework with
several trees implies a revision of some aspects such as the symmetry challenge
also faced by the link-state SPB protocol. This chapter describes the implications
of extending RSTP to be used in a Shortest Path Bridging environment.

The chapter first describes the different aspects where protocol updates are
required: section 8.1 first discusses the changes due to the use of several tree
instances; the distance-vector solution to the symmetry challenge is addressed in
section 8.2; the changes required in the event of failure detection are described in
section 8.3; and section 8.4 elaborates on the Root failure consequences (count-
to-infinity) and details the implementation of the confirmation mechanism of
RSTP-Conf. Finally, section 8.5 evaluates the RSTP-SP protocol comparing it
to the IEEE proposal SPB.

8.1 Deployment of parallel instances

RSTP-SP is based on executing the extended RSTP as many times as trees to
construct. This is, in a network with N nodes, N trees are configured by N
instances of the single tree protocol. These instances are completely independent
and run at different levels. Each one of these tree instances has the Root in a
different node, hence each one of the instances of the single tree protocol starts
if a different node (the Root of that tree). In terms of message propagation, this
means that the BPDU wave-fronts generated at each node independently advance
in different planes and hence never encounter any other better wave-front that
removes them.

153

154
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

0

4

2

5

3

6

1

(a) Tree T0

0

4

2

5

3

6

1

(b) Tree T6

0

4

2

5

3

6

1

(c) Tree T2

0

4

2

5

3

6

1

(d) Tree T1

Figure 8.1: Propagation of wave-fronts started at B0-B2-B6-B1

Figure 8.1 shows some of these wave-fronts (actually those originated at B0,
B2, B1 and B6). Note that each one of the diagrams occurs at the same time
but at a different level. This allows all the wave-fronts to propagate the entire
network; hence each instance eventually configures in all nodes the tree that is
rooted at the bridge that originates such wave-front. The execution of different
protocol instances implies that bridges need to distinguish the management of
the different trees. This is why (1) the nodes keep one set of variables for each
tree (as described in section 8.1.1), and (2) the processing of the different events
also distinguish between different trees (section 8.1.2).

8.1.1 Per-tree variables

The use of parallel tree instances requires each tree to manage its own messages
and, in consequence, each node needs to store separated information per tree.
Tables 8.1 and 8.2 include the bridge and port variables used in RSTP-SP. Note
that these are the same that are described for RSTP in section 3.1. And the only
difference is that most of them are kept for each tree. In other words, and from
an implementation point of view, RSTP-SP stores arrays of the RSTP variables
where the array index is the tree identifier. Note that the the BridgeID and the
HelloTimeTimer are the only two variables that are not replicated per tree. The
former is shared among all trees because it is a unique identifier of the node and
hence does not change between different trees. The latter is a timer at bridge

8.1. DEPLOYMENT OF PARALLEL INSTANCES 155

Table 8.1: Bridge Variables

Name Description
BridgeID The unique bridge identifier is shared by all the tree instances.
Bridge Priority Vector
(BPV[r:c:pa:p])

Each tree has its own BPV. The only difference with the BPV
in RSTP is that the Path-array substitutes the Bridge field.

HelloTimeTimer The transmission of the refreshing BPDUs is controlled by a
central timer that is shared among all the trees. At timeout,
the Designated ports of each tree send their corresponding
BPDUs.

Table 8.2: Port Variables
Name Description
State Each tree stores en entire set of port variables. Note that all

these variables are used to manage the condition of the port
within the tree; hence a different group is stored and
managed separately by each tree. Within each corresponding
tree instance, each variable has the same role and operation
as in RSTP.

Role
Port Priority Vector
(PPV[r:c:pa:p])
MessAge
MessageAgeTimer
Proposal/Agreement

level that triggers the distribution of refreshing BPDUs in each one of the trees
at the same time.

Figure 8.2 shows a more detailed version of the previous example of the prop-
agating wave-fronts. It shows the already constructed tree instances T0, T6, T2
and T1. First observe that the same port has a different role and state in different
trees. For example, B3 has p1 as Root port in the tree instance T1, but it selects
p3 as Root port in T6.

The priority vectors, both BPV and PPVs, are also stored independently for
each tree. Figure 8.2 also includes the details of the vectors that node B0 stores for
each one of the tree instances. Since B0 is the Root of T0, it has only Designated
ports and all the vectors contain information about itself (e.g. [0:0:0:0] in the
BPV). Differently, observe in the other trees that B0 has Root and Alternate
ports that store information about the neighbor (for example p1 in T6 or p3 in
T2). As in RSTP, the vectors in RSTP-SP are used to select the port roles and
hence to decide the shape of the tree branches. The only difference is the third
element of the priority vector where the BridgeID field has been substituted by
the Path-array. Section 8.2 provides a more detailed description of this change
and how it is used.

8.1.2 Per-tree event processing

Since the trees are independent, the protocol operations interact with one tree
instance at a time. Each event that triggers a protocol operation (for example a
BPDU reception) applies to one of the tree instances and the operation executed
uses the variables of that particular tree.

156
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

0

4

2

6

3

5

1

p1

p2
p3

B0

p1 p2

p3

B4 B3

B2

0 0 [0] 0

0 0 [0] 2

0 0 [0] 3

0 0 [0] 1

(a) Tree T0

0

4

2

5

3

6

1

p1

p2

p3

B0

p1 p2

p3

B4 B3

B2

6 2 [6-3-0] 0

6 1 [6-3] 1

6 2 3

6 1 [6-4] 1

[6-3-0]

(b) Tree T6

0

4

2

5

3

6

1

p1

p2
p3

B0

p1 p2

p3

B4 B3

B2

2 1 [2-0] 0

2 1 [2-0] 2

2 0 1

2 1 [2-0] 1

[2]

(c) Tree T2

0

4

2

6

3

5

1

p1

p2

p3
B0

p1 p2

p3

B4 B3

B2

1 3 [1-6-2-0] 0

1 2 [1-5-3] 2

1 2 1

1 2 [1-5-4] 1

[1-6-2]

(d) Tree T1

Figure 8.2: The nodes store an independent set of variables for each tree instance

8.2. SELECTION OF SYMMETRICAL TREES 157

Most of the original RSTP procedures described in section 3.2 are kept the
same with the only difference that they are run applying to a particular tree in-
stance (as shown in table 8.3). First, the process of the BPDU received event is
only updated to distinguish between different tree instances. For example, when
a BPDU belonging to tree T is received, the priority vectors taken into account
are those belonging to instance T . Second, the MessageAgeTimer Expiration
event only applies to the single that has detected the lack of refreshing BPDU.
Third, the initialization of the trees in the procedure BecomeRootBridge stays
the same as in RSTP with the only difference that the operation is applied to the
tree instance where the node is Root (its own tree). At the beginning, the rest of
trees in that node are inactive so there is no initialization required assuming all
variables are cleared. Fourth, the recalculation of port roles (PortRoleSelection)
and port states (PortStateTransitions) when the one of the trees is being recon-
figured applies to only this tree. Fifth, the SendBPDU procedure also applies to
one of the tree instances at a time. This implies that the BPDU sent includes
the priority vector belonging to that particular tree. And finally, the auxiliary
subroutines that edit port variables also apply to one of the tree instances.

Table 8.4 shows those events that also do not change in operation but are
applied to all tree instances. First, the dissemination of refreshing messages
triggered by HelloTimeTimer expiration applies to all active trees. Therefore,
all Designated ports of all trees send periodical messages every HelloTime. And
second, the direct physical detection of a port failure results into a removal of
port information and the consequent tree reconfiguration in all trees. This means
that a port failure detection results into as many tree reconfigurations as trees.

8.2 Selection of symmetrical trees

The link-state protocol of SPB addresses the symmetry challenge applying the
path selection policy based on the path-array. The link-state approach can easily
compare multiple shortest paths and select the right one because each node is
aware of the entire physical topology and locally executes the path calculation.
The challenge for a distance-vector protocol like RSTP-SP is how to derive the
path-array in order to apply the same rule.

8.2.1 The path-array in the distance-vector environment

In distance-vector protocols, the topology distribution and the path calculations
are merged together in the same operation. That is, the paths are selected step
by step as the information is distributed. Therefore, in our case, the distribution
of BPDUs must be used to obtain the path-array. The solution is straightforward
because the BPDUs flow from the Root to the leaves following the tree branches.
Hence the BPDUs can keep track of the visited nodes and construct the path-
array step by step as they are propagated. By adding the path-array in the
BPDUs, nodes become aware of the entire paths to reach the Root and hence
they can make the right selection adding the same rule as SPB (sorting the path-
array and comparing item by item). Observe in figure 8.3 how in the BPDUs

158
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

Table 8.3: Events and procedures, with the same operation as in RSTP, that only
apply to one of the trees (passed as argument)

Event Description
BPDU about tree t received in
port p

Each BPDU only applies to the tree indicated in the
Root field of the priority vector. The processing of this
message hence only considers the information stored in
the local priority vectors, and reconfigures variables, of
such tree.

MessageAgeTimer of tree t ex-
piration in port p

Each port keeps a different timer for each tree. There-
fore, the expiration of a timer only applies to that tree.

Procedure Description
BecomeRootBridge(tree) A bridge can only become Root of one of the trees.

Actually, this procedure is only in the event Turn on
Bridge when at start-up each node is configured as the
Root of its tree.

PortRoleSelection(tree) The update of the port variables state only applies to
one tree at a time. This is, when the tree T is
reconfigured, the port variables of tree T are
reselected.

PortStateTransition(tree)
ExpirePortInformation (port,
tree)
SendBPDU(port, tree) The transmission of BPDUs is also managed indepen-

dently for each tree because the BPDU contains the
corresponding priority vector.

SetInactiveDesignatedPort
(port, mAge, tree) The auxiliary subroutines that edit the port variables

also apply to the particular tree that is passed as
argument.

SetDesignatedPort (port,
mAge, tree)
SetRootPort (port, tree)
SetAlternatePort (port, tree)
PortActivationHandshake
(port, type, action, tree)

Table 8.4: Events with the same operation as in RSTP that apply to all trees

Event Description
HelloTimeTimer expiration The refreshing of BPDUs is triggered from the bridge

perspective and it results in the periodical transmis-
sion of the BPDUs through the ports that are Desig-
nated in the different trees.

Physical Failure Detection in
port p

The direct physical detection of a port failure triggers
the removal of the port information and a reconfigu-
ration in all trees.

8.2. SELECTION OF SYMMETRICAL TREES 159

[0]

[0-2-5]

[0-2]

0

4

2

5

3

6

1

[0]

[0-3]

[0-3-6]

Figure 8.3: The BridgeID of the traversed bridge is appended t the path-array of
the BPDUs

originated by B0, hence to construct T0, the path-array filled is updated with
the traversed nodes hop after hop. This is how B1 receives the path-arrays 0-3-5
and 0-2-6, and finally selects the branch through B6 as the connection to the
Root.

Since the path-array is used to decide among different equal-cost paths, it is
stored in the priority vectors instead of the BridgeID field. Note that it is not
really a substitution as the BridgeID is actually the last element of the path-array.
The four fields of a priority vector hence become:

• The Root (r) indicates the BridgeID of the Root node and it is interpreted
as the identifier of the tree.

• The Cost (c) is the distance to this Root.

• The Path-array (pa) is the sequence of BridgeIDs in the path starting at the
Root (being the last element the BridgeID of node that owns the vector).

• And Port (p) stores the PortID of the port that owns this vector.

For an easier reference to the vector fields, from now on we refer to them with
the notation r:c:[pa]:p.

8.2.2 Changes in the protocol operation

The BPDUs record the path-array as they are propagated; therefore the frame
format needs to be extended in order to encode the additional path-array field.
Table 8.5 shows the contents of an RSTP-SP BPDU. In order to add the path-
array we require 8 bytes for each BridgeID in the path-array of the priority vector
and 2 bytes for a field including the path-array length (LengthPathArray). Adding
a variable size field in the BPDU message might result into an implementation
limitation because of too large frames. However, the path-vector is always a
shortest-path and the upper bound of its length is the network diameter. With

160
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

Table 8.5: RSTP-SP BPDU Frame Format
Name Description Bytes

E
th
.
en
ca
ps
. SA

The BPDU encapsulation is the same than in RSTP,
hence the Ethernet MAC layer does not need to be
updated.

6
DA 6

Length/Type 2
LLC 3

B
P
D
U

F
ie
ld
s

Protocol id. Protocol identification fields indicating that the
BPDU received corresponds to an RSTP-SP instance
and it is a common BPDU.

2
Version 1

Message Type 1
LengthPathArray The number of elements included in the path-array is

encoded in the message so the frame parsers correctly
interpret the field values.

2

P
ri
or
it
y
V
ec
to
r

Root The Root field is interpreted as the identifier of the
tree.

8

Cost The Cost field still contains the distance to the Root
of this tree.

4

Path-
array

Different BridgeIDs (each one 8 bytes) are encoded in
the third field of the priority vector.

8+8
+...

Port The Port field still contains the portID of the trans-
mitter port.

2

MessAge

The rest of parameters remain unchanged and keep
the same description and usage as in the original
RSTP.

2

F
la
gs

Role
1Prop.

Agreem.
MaxAge 2

HelloTime 2
ForwardDelay 2

Frame Check Sequence 4

a maximum MTU of 1500 bytes for Ethernet frames, the maximum length for
the path-vector (and for the network diameter) is 178 elements; long enough for
current provider networks [67].

Since the structure of the priority vector has changed, the tie-breaking mecha-
nism described for RSTP needs to be updated as well. The updated CompareVec-
tors() procedure shown in block K in figure 8.6 shows the new tie-breaking rule
used in RSTP-SP. First, the Root field is not used as the initial tie-breaking
checking. Instead, it represents the tree identification (i.e. the tree is identified
by the BridgeID of its Root). Note that within a tree instance there are only mes-
sages about that particular tree (there is only one wave-front). This means that
the vector comparisons are always between vectors of the same Root, and hence
comparing the Root fields would always result into jumping to the comparison
of the Cost as the second element. Second, if the costs are equal the path-array
is compared. The rules to decide if a path-array is better than another are the
same than those described fro SPB in section 5.1 (sort the identifiers and select
the array with lower values in the elements). The last tie-breaking step remains
the same comparing the port numbers.

8.2. SELECTION OF SYMMETRICAL TREES 161

0 3 6
p2 p1 p3 p2 1

p3 p2

r:c:[pa]:p b Better from Des
w Worse from Des
a Agreement

Designated Port
Root Port
Alternate PortDiscarding port

Forwarding port

t0
b

b

0:0:[0]:2

0:1:[0-3]:3a

a

a

t1

t2

t3

t4

0:2:[0-3-6]:3

0:1:[0-3]:1(a)

0:2:[0-3-6]:2(a)

5

b

0:3:[0-2-5-1]:1(a)

······················0:2:[0-2-5]:2

w

a0:3:[0-2-5-1]:2(a)
0:3:[0-3-6-1]:2(a)

a b

t5

p1 p2

Figure 8.4: Exchanged messages during the initial trees configuration with RSTP-
SP.

The diagrams already shown in figure 8.2 show the detailed configuration of
bridge and port variables of B0 in the four tree instances shown. First observe
how the priority vectors stored by B0 for the tree T0 (its own tree) contain
information about itself telling that B0 is the Root at cost 0. The path-array in
this case just contains B0 in the BPV and in the PPV of all Designated ports.
As in RSTP, the comparison of priority vectors still decides the port roles and
hence the tree structure. For example in T2, B0 selects p3 as Root port because
it has the lowest cost (0 received from B0). In this case the path-array is not
used in the selection of the port roles. Instead, in the tree T6, B0 receives a cost
of 1 both from B3 and B4. In this case the path-array needs to be used to decide
among the two possibilities. The path-array received by B3 (6-3) is considered
better than the one received from B4 (6-4) because , once sorted, 3<4. Similarly
in T1, B0 selects p3 as Root port because 2<3<4.

The effect of the new tie-breaking rule can also be seen in the diagram of
message exchanged shown in figure 8.4. This example relates to the wave-front
propagation and the creation of the different tree branches if the path-array is
used in the tie-breaking. Note that only two wave-fronts are shown in the diagram
for simplicity reasons (T0 and T1). Unlike RSTP, observe how T1 is not removed
by T0 when these encounter and both wave-fronts continue their propagation until
spanning the entire network. A particular difference with RSTP is the use of the
path-array in selecting the roles for example in B1 (see detailed node diagrams in
figure 8.5). At t3, B1 receives the BPDU about B0 0:2:[0-3-6]:3 and sets its p2 as
Root port and p1 as Designated. At t4, it receives on p1 the BPDU 0:2:[0-2-5]:3

162
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

B1

p1

p2

B4

B2

1 0 [1] 0

1 0 [1] 1

1 0 [1] 2

B
P
D
U

0
2
[0
-3
-6
]
3

B1

p1

p2

B4

B2

0 3 [0-3-6-1] 0

0 3 [0-3-6-1] 1

0 2 [0-3-6] 3B
P
D
U

B
P
D
U

(a) Time t3

B1

p1

p2

B4

B2

B1

p1

p2

B4

B2

0 3 [0-2-6-1] 0

0 2 [0-2-6] 1

0 2 [0-2-6-1] 3B
P
D
U

B
P
D
UB

P
D
U

0
2
[0
-
2
-6
]
1

0 3 [0-3-6-1] 1

0 3 [0-3-6-1] 0

0 2 [0-3-6] 3

(b) Time t4

Figure 8.5: B1 vectors configuration of tree T0 at t3 and t4 during the initial
trees configuration with RSTP-SP

8.2. SELECTION OF SYMMETRICAL TREES 163

from B5. The last received vector is first compared to the port vector 0:3:[0-3-6-
1]:2. The received cost is lower, hence the received is considered better. When
selecting the port roles, the best priority vector is the stored in p1 because its
path-array, 0-2-5, is better than p2’s path-array, 0-3-6. Therefore p1 is elected as
Root port. Note this step is different than in the RSTP because the path-array
is now being considered and it is concretely this Root port selection that allows
for symmetrical trees to be configured. While RSTP selects p2 of B1 as Root
port (because of the lower BridgeID), RSTP-SP chooses p1 (because of the better
path-array).

The convergence time of RSTP-SP in a cold start scenario is the same as in
RSTP because the wave-fronts of BPDUs are all propagated from each Root to the
furthest node. While in RSTP there is only one wave-front that fully propagates,
in RSTP-SP all of them reach the entire network. However, since this propagation
is done in parallel at the same time, the analytical characterization states that
CTRSTP−SP = CTRSTP (from section 6.2).

164
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH
F
.
C
on

fi
gu

re
T
re
e(
tr
ee
)

/*
T
he

u
pd
at
e
in

th
e
tr
ee

co
n
fi
gu
ra
ti
on

re
la
te
s
to

th
e
de
ac
ti
va
ti
on

of
a
tr
ee

w
he
n
th
e
n
od
e
w
ou

ld
ha
ve

de
ci
de
d
to

ar
is
e
as

R
oo
t
of

an
ot
he
r
tr
ee

*/
1.

Se
le
ct

th
e
R
oo

t
B
ri
dg

e
/*

Se
le
ct
in
g
th
e
R
oo
t
B
ri
dg
e
is

st
il
l
do
ne

lo
ok
in
g
fo
r
th
e
lo
w
es
t
B
ri
dg
eI
D

th
e
lo
ca
l

no
de

is
aw

ar
e
of
.
*/

2.
if
(
Im

th
e
R
oo

t
B
ri
dg

e
)

/*
A
ri
si
ng

as
R
oo
t
in

an
ot
he
r
tr
ee

is
no

t
po
ss
ib
le

an
d
he
nc
e
th
is

in
st
an

ce
is

de
ac
ti
va
te
d
an

d
th
e
co
st

in
th
e
po
rt

ve
ct
or
s
ar
e
se
t
to

in
fin

it
y
to

re
pr
es
en
t
a
la
ck

of
co
nn

ec
ti
vi
ty
.
*/

3.
D
ea
ct
iv
at
e
tr
ee

4.
Se

t
co
st

to
in
fin

it
y
in

al
lp

or
t
ve
ct
or
s

5.
P
or
tR

ol
es
Se

le
ct
io
n
()

/*
T
he

co
nfi

gu
ra
ti
on

of
th
e
tr
ee

(p
or
t
ro
le
s
an

d
st
at
es
)
is

do
ne

as
in

R
ST

P
.
If

in
fin

it
y
co
st
s
ar
e
se
t
to

th
e
po
rt
s,

th
es
e
ar
e
el
ec
te
d
as

D
es
ig
na

te
d
an

d
D
is
ca
rd
in
g
an

d
th
e
di
ss
em

in
at
ed

B
P
D
U
s
di
st
ri
bu
te

th
e
’n
o-
co
nn

ec
ti
vi
ty
’
si
gn
al
,
w
it
h
th
e
in
fin

it
y

co
st
s,

so
ot
he
r
no

de
s
al
so

de
ac
ti
va
te

th
e
tr
ee
.
*/

6.
P
or
tS
ta
te
T
ra
ns
it
io
n
()

7.
fo
r
ea
ch

po
rt

p
8.

Se
nd

B
P
D
U
(p
,t
re
e)

8.2. SELECTION OF SYMMETRICAL TREES 165

K
.
C
om

p
ar
eV

ec
to
rs

(A
,
B
)

/*
It

re
tu
rn
s
w
he
th
er

ve
ct
or

A
is

co
n
si
d-

er
ed

B
E
T
T
E
R
,
E
Q
U
A
L

or
W
O
R
S
E

th
an

B
ac
co
rd
in
g
to

th
e
ti
eb
re
ak

ru
le
s
*/

1.
if
(A

.c
os
t
<

B
.c
os
t)

||
/*

A
is

be
tt
er

th
an

B
if
it
ha
s
a
lo
w
er

co
st
,
*/

2.
(A

.c
os
t
=
=

B
.c
os
t
&
&

A
.p
at
h-
ar
ra
y
<

B
.p
at
h-
ar
ra
y)

||
/*

or
sa
m
e
co
st

an
d
a
lo
w
er

br
id
ge
,
*/

3.
(A

.c
os
t
=
=

B
.c
os
t
&
&

A
.p
at
h-
ar
ra
y
=
=

B
.p
at
h-
ar
ra
y
&
&

A
.p
or
t
<

B
.p
or
t
)

/*
or

sa
m
e
co
st
,
sa
m
e
br
id
ge

an
d
a
lo
w
er

po
rt

*/
4.

re
tu
rn

’B
E
T
T
E
R
’

5.
el
se

if
(A

.c
os
t
=
=

B
.c
os
t
&
&

A
.b
ri
dg

e
=
=

B
.b
ri
dg

e
&
&

A
.p
or
t
=
=

B
.p
or
t
)

/*
A

an
d
B

ar
e
E
Q
U
A
L
if
al
lfi

el
ds

ar
e
th
e
id
en
-

ti
ca
l
*/

6.
re
tu
rn

’E
Q
U
A
L
’

7.
el
se

/*
A

is
W
O
R
SE

th
an

B
if

no
ne

of
th
e
pr
ev
io
us

co
nd

it
io
ns

ar
e
m
et

*/
8.

re
tu
rn

’W
O
R
SE

’

F
ig
ur
e
8.
6:

P
se
ud

o-
co
de

of
th
e
up

da
te
d
op

er
at
io
n
in

R
ST

P
-S
P

166
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

0

4

2

5

3
6

1

0

4

2

5

3
6

1

X X

p1

p2
p2

p1

p4

0 2 5
p2 p1

3
p2 p4

r:c:[pa]:p

Designated Port

Root Port

Alternate Port

Discarding port
Forwarding port

tf

a

0:Inf:[-]:2

0:2:[0-3-5]:2 (a)0:2:[0-3-5]:1

a

t1

t2

t3

X

b Better from Des

wp Worse from Parent

a Agreement
wp

b
0:3:[0-3-5-1]:2 (a)

p1

Figure 8.7: Single Link Failure recovery in RSTP-SP

8.3 Failure recovery

When a node in RSTP-SP detects a failure in a port, it removes the port vector
and reconfigures all the trees to match the changed information in the vectors of
the failed port. The fact of using one tree routed at each node introduces a new
aspect to consider. In RSTP, the node with the lowest BridgeID is elected as
the unique Root of the tree. If this node fails, the protocol recovers choosing the
node with the second lowest BridgeID as new Root (note this would happen after
the count-to-infinity). However, in RSTP-SP each node is the Root of its own
tree and no other node can arise as Root of another’s tree. This relates to the
situation when a node detects a Root port failure in one of the trees and cannot
arise as new Root of that tree. In RSTP-SP, this node then considers that the
tree is inactive and notifies a no-connectivity situation to the rest (the updated
ConfigureTree procedure introduces this functionality in lines 2-4 in block F of
figure 8.6). This is simply done by sending BPDUs with an infinity cost. These
BPDUs are normally processed by the receiving nodes and are seen as common
BPDUs with a very large cost. Note that issuing the messages with infinity (or
very large) cost is an effective solution to disseminate the co-connectivity situation
without changing the process of BPDU processing.

Also observe that the concept of an infinity cost needs to be translated into a
practical number. The easiest way is to understand as infinity the maximum cost
value allowed by the Cost field in the BPDU frames. This field id 4-bytes long,

8.4. NODE FAILURES AND COUNT-TO-INFINITY 167

so the maximum value it can convey, and hence the practical representation of
infinity, is 232 − 1 (4294967295).

Figure 8.7 shows an example where the link between B0 and B2 fails. It
is important to note that the reconfiguration is executed for each tree instance.
This example relates to the recovery within the instance of the tree rooted at B0,
but similar actions occur in other trees. B2 detects the failure in port p1 and
since it has no Alternate ports, it deactivates the tree and sends a BPDU with
the infinity cost. This BPDU is received by B5, and considered better because
it comes from the parent (note the infinity cost is stored in p1 of B5). When B5
configures the port roles, it selects p2 as the new Root port, an old Alternate,
and p1 as Designated. B5 sends a BPDU with the new bridge cost back to B2
and an agreement to B3. Note that the infinite cost BPDU is not propagated
any more because the information in the Alternate port of B5 is used to recover
the tree. When B2 receives the BPDU from B5, it configures again activating
the tree of B0 through the Root port at p2. As in RSTP, the failure of a single
link is recovered almost immediately as soon as a node with an Alternate port is
found.

8.4 Node failures and count-to-infinity

A recovery from a node failure does not differ from RSTP in terms of protocol
operation and behavior. If a non-Root node fails, the recovery is as quick as in
the single link failure case. If instead the Root of a tree fails, a count-to-infinity
behavior is experienced within the tree instance of the failed Root. Unfortunately,
a node failing in this multiple tree framework always results into a Root failure in
one of the trees. This means that any node failure leads to (1) a count-to-infinity
situation in one of the trees and (2) a quick recovery in the rest.

Nevertheless, the particularity is that after a Root failure, this node does not
inject any more traffic into its own tree. If there is no communication, there
is no urgency to reconfigure the tree because communications from this node
cannot be established until the failed Root is repaired. Therefore the network
recovery is not really affected by the long convergence time because of to the
count-to-infinity in the dead tree. However, the network is really affected by this
behavior in terms of message overhead. The count-to-infinity within the dead tree
generates BPDUs that loop around and get stooped from time to time due to the
deadlocks occurred. These messages are sent from bridge to bridge and therefore
they reduce the processing power of the nodes and the available capacity of the
links.

An alternative is to implement the confirmation mechanism in RSTP-Conf
in order to completely avoid the count-to-infinity behavior. Since RSTP-SP ex-
ecutes a protocol instance for each tree, the required changes to implement the
confirmation functionality are basically those already described in section 7.4.
These mainly affect the management of the confirmation variables and the pro-
cessing of the confirmation BPDUs that are sent by the Root neighbor (’rd’)
and those replied by the Root itself (’ra’). From now on, we will refer to this

168
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

Table 8.6: Operational updates as described in RSTP-Conf to introduce the
confirmation mechanism in RSTP-SP
Additional Bridge Variables Description
numNeigh One set of these confirmation variables are stored for each

tree because the information that relates to the Root
neighbors is different for each instance.

IamNeigh
rcvdFromNeigh

Frame Formats Description
BPDU The field numNeighbors (2 bytes) is added to the RSTP-SP

BPDU.
BPDU-Conf The fields of the confirmation messages is the same as those

described for RSTP-Conf. In the multiple tree framework, the
field Root is used as the tree identifier to distinguish between
different Root confirmations.

Events Description
BPDU about tree t received in
port p

The updates of the confirmation variables are the same as in
RSTP-Conf. The confirmation variables updates are applied
to the tree instance indicated by the Root field in the priority
vector of the received BPDU.

BPDU-conf about tree t re-
ceived in port p

This process of this new event in RSTP-SP is the same as
described for RSTP-Conf with the only difference that it is
applied to the concrete tree instance indicated in the Root
field.

MessageAgeTimer of tree t ex-
piration in port p

The confirmation mechanism is triggered when a Root neigh-
bor detects a failure on its Root port. The changes are the
same as those described in RSTP-SP but considering that a
different tree instance is considered.

Procedures Description
BecomeRootBridge The initialization of the confirmation variables is added as

described for RSTP-Conf.
SendBPDU The procedures to encode the fields in the messages are

updated according to the corresponding frame formats.SendBPDUConf

extended version of the protocol as RSTP-SP-Conf. Note that the execution of
the confirmation mechanism is independent from the main RSTP-SP operation
and hence its activation is optional.

Table 8.6 lists the operational changes to introduce the confirmation mech-
anism in RSTP-SP. First, observe that the bridge variables to manage the con-
firmation procedure are the same as those in the single tree instance with the
only observation that each tree stores its own set (note that these are initialized
in the BecomeRootBridge). Second, the message formats are updated in order
to introduce the exchange of the necessary confirmation data: the numNeigh-
bors field is included in the common BPDU of table 8.5; and the BPDU-Conf
messages have the same structure as in RSTP-Conf. Also note that the corre-
sponding SendBPDU and SendBPDUConf procedures are updated to encode the
corresponding new fields. Third, the updates on the message processing are the

8.5. PERFORMANCE EVALUATION 169

same than those described for RSTP-Conf: the reception of a common BPDU
introduces the updates of the confirmation variables, and the processing of re-
ceived BPDU-Conf deals with the processing of the ’rd’ and ’ra’ messages. Note
that each message reception applies to one of the tree instances. And fourth, as
in RSTP-Conf the confirmation mechanism is triggered when a neighbor bridge
detects a failure on it Root port. The changes are the same as those described in
RSTP-SP but considering that a different tree instance is considered depending
on the MessageAgeTimer that expires.

The implementation of the confirmation mechanism certainly avoids the count-
to-infinity but it results into an increase of control messages exchanged in the
event of link failures. Note that in the scenario with one tree per node, the fail-
ure of a single link always represents the failure of a Root link at least in two of
the trees (those rooted in the nodes connected to the failed link). This means
that any link failure triggers the confirmation mechanism and hence the control
messages are flooded within these two trees. In the case of a node failure, the
confirmation mechanism is really effective because it is only triggered within the
dead tree and it totally avoids the count-to-infinity behavior. Therefore, there is
the need to understand which situation is globally less harmful to the network:
either (1) using the confirmation mechanism and trigger the process for every link
failure, or (2) not using it and survive the count-to-infinity effect within the dead
tree with no data traffic being forwarded. The particularities of this tradeoff are
studied in the evaluation provided in section 8.5.

8.5 Performance evaluation

This section includes the performance evaluation of the RSTP-SP protocol, as
well as a comparison with IEEE SPB, operating in different scenarios: cold-start,
link failure and node failure. We have implemented SPB, RSTP-SP and RSTP-
SP-Conf in the ns-3 network simulator following the protocol rules described in
chapter 5 and in previous sections of this chapter. As in previous analysis, the
modeled failure detection mechanism is the immediate physical failure detection;
only BPDU messages are simulated and no user traffic is modeled unless otherwise
stated; and we take as a reference for the BPDU processing and transmitting delay
the study in [30] that assumes a delay of 1.33ms per message.

We use the regular network topologies shown in figure 8.8 to capture the be-
havior of the protocols under different physical deployments: two-dimensional
grids of degree 4 (grid4) and degree 8 (grid8); and a more realistic structured
topology composed of a meshed core with dual-homed edges (mesh). The table
in the same figure includes additional topological characterization aspects of the
topologies: the number of nodes (Size), the number of links (Links), the result-
ing average node degree (Deg), and the network diameter (Diam). Nodes are
connected with point-to-point links at 10Gbps and with a propagation delay of
100us and a unitary cost is assumed in all links. In all tests, nodes are configured
with random BridgeIDs.

The performance evaluation focuses on the time to construct the trees (Con-

170
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

(a) grid4 (b) grid8 (c) mesh

Type

Size

Links

Deg

Diam

grid4

64

112

3.5

14

grid8

64

210

6.5

7

mesh

50

110

4.2

4

(d) Topological characterization

Figure 8.8: Topologies used in the performance evaluation of RSTP-SP

vergence Time, CT) and the amount of information exchange required for such
action (Message Overhead, MO). CT is defined as the time between the failure
and the last node reconfiguring the tree. We also measure CT in hop delays as a
normalized time unit. That is, a CT of 5 hops means that the protocol takes 5
times the hop delay to converge. MO refers to the amount of messages that the
nodes need to exchange in order to recover the tree. The number of messages
observed is used to evaluate the overhead in terms of (1) link capacity used and
(2) node processing power required.

8.5.1 Convergence time

In the first tests we use the two-dimensional grid of degree 4 and 64 nodes (grid4 in
8.8(a)). We evaluate the performance in the three scenarios: cold-start (network
start-up), link failure in the center of the grid, and node failure also in the center.
For each scenario we execute 100 simulations with different BridgeIDs. Figure
8.9 shows the average CT, with 95% confidence intervals, for each protocol and
scenario. In the cold-start case, all protocols perform equally because they are
all based on flooding information that starts at each node and spans the entire
network. This results into a CT depending on the topology diameter as it is the
longest path the flooding follows. In the event of a central link failure, RSTP-SP
and SPB also provide a similar performance because the messages that they issue
are propagated from the failure location to the furthest node, and hence it depends
on the diameter as well. The small difference is because SPB needs to propagate
the entire path, while RSTP-SP only needs to reconfigure the branches that are
affected by the failure. The larger CT observed in RSTP-SP-Conf is because of
the delay introduced by the confirmation mechanism. The last set of columns

8.5. PERFORMANCE EVALUATION 171

 0

 5

 10

 15

cold-start link-fail node-fail
0

5

10

15

20

T
im

e
(h

o
p

s)

T
im

e
(m

se
c)

RSTP-SP

RSTP-SP-Conf

SPB

Figure 8.9: Average CT (with 95% conf. inter.) in cold-start, central link failure,
and central node failure (100 executions with random BridgeIDs)

 0

 5

 10

 15

grid4 grid8 mesh
0

5

10

15

20

T
im

e
(h

o
p

s)

T
im

e
(m

se
c)

RSTP-SP

RSTP-SP-Conf

SPB

Figure 8.10: Average CT (with 25%-75% percentiles) failing all possible links in
different topologies.

in figure 8.9 shows the observed CT after the failure of a central node. First
note that the values for RSTP-SP do not consider the dead tree without traffic
(actually experiencing count-to-infinity). In this case the CT of both RSTP-SP
protocols is reduced because the largest distance between failure and furthest
nodes has decreased (an entire node has failed).

We have done an additional analysis to observe the behavior of the protocols
in other link failures and in other topologies. We use the grid4 topology, a two-
dimensional grid of degree 8 and 64 nodes (grid8), and a structured topology of
50 nodes with a meshed core with dual-homed edges (mesh). For each topology
we fail one link at each execution, and we do as many executions as links to
test all possible link locations. This results in 112-210-110 runs for the grid4,
grid8 and mesh topologies, respectively. Figure 8.10 shows the average CT with
the 25%-75% percentiles (top and bottom part of the vertical lines in each bar).
As previously stated, RSTP-SP and SPB perform similarly and RSTP-SP-Conf
introduces the confirmation delay. The values for all protocols are proportional

172
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

to the topology diameter. We have also done experiments with the previous
topologies and varying the size. They confirm that the CT in all protocols and
in all networks is related to the network diameter.

The convergence time can also be analyzed from the data traffic perspective.
In the following test we measure the amount of data packets that nodes receive
during the tree construction in the different scenarios. This metric is related to
the convergence time because the longer the protocol takes to configure the active
topology, the longer the period where data traffic is not received as the tree is not
active yet (ports are not yet in Forwarding state). Plot in figure 8.11(a) shows
the time-line of total received packets in the grid4 topology of 64 nodes. The
horizontal axis is measured in hops and the vertical axis in percentage of total
received packets. RSTP-SP provides the fastest configuration because the ports
are set to Forwarding as the wave-fronts advance (agreement of the handshake).
This is why after the CT of 15 hops the 100% of the traffic is already received.
Contrarily, in SPB it is not until the reception of the last LSP by the furthest
node (after a CT of 15 hops) that this last device does not effectively start sending
traffic. These packets are then received at the opposite edge after a propagation
of 14 hops (hence a 100% of receptions after 29 hops).

Figure 8.11(b) shows the received data packets during the recovery of a central
link failure in the same grid4 topology. First note that both RSTP-SP protocols,
with and without confirmation, are practically not affected by the failure be-
cause those paths that remain the same in the new topology continue to provide
connectivity. Particularly, RSTP-SP-Conf takes more time to provide full connec-
tivity because of the confirmation delay. On the contrary, SPB suffers a higher
outage because the new information issued during the reconfiguration creates
discordances between topology databases in different nodes. The communication
between nodes with different databases is temporary stopped in order to avoid
potential forwarding loops.

The outage experienced during the recovery from a node failure is shown in
figure 8.11(c). The performance of all the protocols is similar to the case of
the single link failure, in the sense that SPB experiences an important outage
and RSTP-SP protocols almost do not observe loss of connectivity. In the node
failure case both RSTP-SP solutions, with and without confirmation, have the
same performance because the confirmation mechanism is actually triggered in
the tree of the failed Root. Since this failed node does not inject more traffic, the
convergence time from the traffic perspective is not affected.

8.5.2 Message overhead

Figure 8.12(a) shows the average MO per node measured in the 64 nodes grid4
for the different scenarios. Observe the logarithmic scale on the vertical axis.
MO in a cold-start is similar in all protocols because all are based on flooding
of messages. The differences appear when we compare the protocols in the event
of failures: SPB clearly outperforms RSTP-SP protocol. The reason is that, for
example, in the link failure scenario SPB only floods the link-state updates of the
two nodes detecting the failure. Differently, RSTP-SP reconfigures many trees

8.5. PERFORMANCE EVALUATION 173

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35D
at

a
p

ac
k

et
s

re
ce

iv
ed

 (
%

)

Time (hops)

RSTP-SP

SPB

(a) Cold start

 0

 20

 40

 60

 80

 100

tf tf+5 tf+10 tf+15 tf+20 tf+25D
at

a
p

ac
k

et
s

re
ce

iv
ed

 (
%

)

Time (hops)

SPB

RSTP-SP

RSTP-SP-Conf

 99

 100

tf tf+15

(b) Link failure in the center of the grid

 0

 20

 40

 60

 80

 100

tf tf+5 tf+10 tf+15 tf+20 tf+25D
at

a
p

ac
k

et
s

re
ce

iv
ed

 (
%

)

Time (hops)

SPB

RSTP-SP

RSTP-SP-Conf

 95

 100

tf tf+15

(c) Node failure in the center of the grid

Figure 8.11: Data traffic received during the construction of the tree in different
scenarios in the grid4 topology of 64 nodes

174
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

 1

 10

 100

 1000

cold-start link-fail node-fail

B
P

D
U

s
p

er
 n

o
d

e

RSTP-SP

RSTP-SP-Conf

SPB

(a) Messages

 1

 10

 100

cold-start link-fail node-fail

K
il

o
b

y
te

s
p

er
 n

o
d

e

RSTP-SP

RSTP-SP-Conf

SPB

(b) Kilobytes

Figure 8.12: Average message overhead (measured in messages and kilobytes with
95% conf. inter.) in cold-start, central link failure, and central node failure (100
executions with random BridgeIDs).

where each one issues BPDUs to update the paths. Also note that in the link
failure scenarios the confirmation mechanism in RSTP-SP does not represent a
big difference because it only introduces delay (effect already seen evaluating the
CT).

A similar behavior is observed in the event of node failure in the third set
of columns in 8.12(a). In this case the reason of the high MO in RSTP-SP is
the count-to-infinity occurring in the tree of the failed Root. In addition, even
if RSTP-SP-Conf allows removing this effect, the messages transmitted are not
reduced to the level of SPB because these are mainly due to the reconfigurations
in the trees where a non-Root failure occurs (same order as in the link failure).
Figure 8.12(b) shows the message overhead in the same scenarios but measured in
kilobytes received per node. The obtained values are very similar to the measure-
ments in number of messages. Looking at the details, in the cold-start scenario
we can observe that SPB transmits a higher amount of kilobytes than RSTP-SP

8.5. PERFORMANCE EVALUATION 175

 5

 10

 15

 20

 25

 30

 35

 40

grid4 grid8 mesh

B
P

D
U

s
p

er
 n

o
d

e

RSTP-SP

RSTP-SP-Conf

SPB

Figure 8.13: Average MO (with 25%-75% percentiles) failing all possible links in
different topologies.

protocols. This implies that the average length of the messages received per node
during a cold-start is of 114 bytes for SPB and 85 bytes for RSTP-SP. This in-
crease is also observed in the failure situations but SPB still represents a smaller
message overhead that RSTP-SP. In conclusion, the difference between observing
the message overhead in number of messages or in kilobytes does not represent a
big change in performance.

As in the convergence time analysis, we have also measured MO for different
topologies and failing all possible links. Figure 8.13 shows the average MO per
node for topologies with different average node degree (3.5 for grid4, 6.2 for
grid8 and 4.2 for mesh). First, see that these tests confirm that SPB needs
fewer messages to recover. Second, also observe that the MO of all protocols
is proportional to the average node degree. The difference between RSTP-SP
and RSTP-SP-Conf is that the confirmation mechanism is based on flooding and
hence it results into more messages in more connected topologies.

The results discussed so far relate to the message overhead observed from
the network perspective. A further analysis of the MO performance is presented
following by observing the details of a single executions with random BridgeIDs.
Figure 8.14 shows the histograms of MOnode (i.e. amount of nodes that received
a concrete number of messages) in a cold-start. The RSTP-SP histogram in
figure 8.14(a) indicates that the distribution of messages received is spread. The
particularity is that nodes in the corner generally receive less messages, all under
788, than those in the center, above 817. This is because those in the center
process more messages belonging to transient configurations than those in the
corners. The histogram for SPB is shown in 8.14(b). In this case the distribution
is clearly multi-modal with three different blocks centered at 550, 630 and 820
messages. Each one of the clusters refers to the nodes with different number of
ports: 2 in the corners, 3 in the edge area, and 4 in the central area. The SPB
distribution is based on pure flooding, which results in one message received at
each port, and hence the more ports a node has the more messages it receives.

The same individual analysis of MOnode is done for the scenarios with a central

176
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

 0

 4

 8

 12

 16

 400 600 800 1000 1200 1400

A
m

o
u
n
t

o
f

N
o
d
es

Number of Messages

(a) RSTP-SP (avg: 947, std: 143, min/max: 552/1448)

 0

 4

 8

 12

 16

 400 600 800 1000 1200 1400

A
m

o
u
n
t

o
f

N
o
d
es

Number of Messages

(b) SPB (avg: 727, std: 93, min/max: 545/867)

Figure 8.14: Histograms of MO per node during a cold-start

link failure and a central node failure (the histograms are shown in figures 8.15 and
8.16, respectively). For the link failure situations, the distribution of messages
for RSTP-SP and RSTP-SP-Conf is quite similar where the majority of nodes
receive a small amount of BPDUs (figures 8.15(a) and 8.15(b)). This relates to
the locality effect of failure recoveries in distance-vector protocols because the
nodes closer to the failure need to reconfigure their paths while those that are
located away might not even realize the failure. The only small difference is
that RSTP-SP in average transmits a higher amount of messages because of the
confirmation mechanisms that are distributed (note that in this link failure case
these result into a false alarm and no reboot is triggered). As already pointed
out, SPB is more efficient in recovering from a single link failure. The two nodes
detecting the link failure disseminate their new adjacencies and the corresponding
LSPs are received by all other nodes. Observe in the histogram of figure 8.15(c)
how this results in the reception of only from 3 to 6 messages in each node.

The histograms in figure 8.16 show the MOnode measurements in the central
node failure case. First observe that in RSTP-SP, in 8.16(a), nodes receive a

8.5. PERFORMANCE EVALUATION 177

 0

 10

 20

 30

 0 20 40 60 80 100 120

A
m

o
u
n
t

o
f

N
o
d
es

Number of Messages

(a) RSTP-SP (avg: 24.9, std: 29.4, min/max: 0-113)

 0

 10

 20

 30

 0 20 40 60 80 100 120

A
m

o
u
n
t

o
f

N
o
d
es

Number of Messages

(b) RSTP-SP-Conf (avg: 31.8, std: 29.4, min/max: 0-
119)

 0

 4

 8

 12

 16

 20

 24

 0 2 4 6 8 10

A
m

o
u
n
t

o
f

N
o
d
es

Number of Messages

(c) SPB (avg: 4.8, std: 1.1, min/max: 3-6)

Figure 8.15: Histograms of MO per node during a central link failure

178
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

 0

 5

 10

 15

 20

 0 100 200 300 400 500

A
m

o
u
n
t

o
f

N
o
d
es

Number of Messages

(a) RSTP-SP (avg: 316.5, std: 82.7, min/max: 0-477)

 0

 5

 10

 15

 20

 0 25 50 75 100 125 150 175

A
m

o
u
n
t

o
f

N
o
d
es

Number of Messages

(b) RSTP-SP-Conf (avg: 69.1, std: 33.2, min/max: 0-
156)

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16 18

A
m

o
u
n
t

o
f

N
o
d
es

Number of Messages

(c) SPB (avg: 9.5, std: 2.4, min/max: 0-13)

Figure 8.16: Histograms of MO per node during a central node failure

8.5. PERFORMANCE EVALUATION 179

 1

 10

 100

 1000

cold-start link-fail node-fail

T
ri

g
g

er
s

p
er

 n
o

d
e

RSTP-SP

RSTP-SP-Conf

SPB

Figure 8.17: Average tree computation triggers in cold-start, central link failure,
and central node failure (100 executions with random BridgeIDs)

high amount of messages because of the count-to-infinity that is running in one
of the trees (the tree whose Root is the failed node). These messages are quiet
distributed among all nodes because once the count-to-infinity is triggered, the
looping of BPDUs affects the entire network. When running RSTP-SP-Conf, the
analysis of MOnode in the histogram of 8.16(b) confirms the absence of count-
to-infinity as less messages are transmitted. As in the link failure case, SPB
is more efficient in recovering from a node failure from the message overhead
perspective. As shown in the histogram of figure 8.16(c), all nodes receive from
5 to 13 messages. This is because all the neighbors of the failed node detect the
corresponding link failure and disseminate their new adjacencies.

A different comparison is to evaluate the protocols in the steady state once
the cold-start has finished and no failures have occurred. In this situation, all
protocols send refreshing messages to keep the topology alive: SPB nodes apply
a global refreshing and flood all their link-states; RSTP-SP nodes do it more
locally and just send BPDUs from parent to child in all ports of all trees. This
results into SPB transmitting the double of messages than RSTP-SP with and
without confirmation (216 and 112 respectively).

8.5.3 Tree recomputations

The columns of figure 8.17 indicate the number of messages that, among those
received, provide a topology update and hence trigger a tree recomputation. It
is important to distinguish between trigger messages and received messages that
are discarded because only the first ones require an important computation in the
node (electing roles in RSTP-SP or running Dijkstra in SPB). The percentage of
triggers over the total messages for SPB and both RSTP-SP protocols remains
similar around 30% in all cases. This indicates that the RSTP-SP protocols still
require a higher number of triggers than SPB.

Although the comparison of number of triggers can indicate an approximate
measure of the node processing complexity required, a further study that analyses

180
CHAPTER 8. RSTP-SP: SHORTEST PATH BRIDGING KEEPING THE

DISTANCE-VECTOR APPROACH

4 9 16 25 36 49 64

%
 o

f
N

o
d

e
s

Grid size

<25 25<50 50<75 75<

Figure 8.18: Percentage of nodes affected by a link failure recovery in RSTP-SP

complexity aspects of the two protocols is needed and left as future work. There
is indeed a big difference between a single tree recomputation in RSTP-SP (com-
parison of as many vectors as ports) and SPB (execution of as many Dijkstra’s as
trees, or nodes). Therefore, even if the difference in triggers between the proto-
cols is of one order of magnitude (SPB lower), this could turn over (SPB higher)
when analyzing the protocol complexity and measuring number of operations.

In relation to the messages that trigger a tree recomputation, we also analyze
the affectation of a central link failure in terms of trees that need to be recomputed
because the link failure really affects them. A particularity of the link-state
protocols is that any failure always leads to a flooding of a new physical topology,
which results into a recalculation of all trees in all nodes. On the other hand,
a distance-vector protocol only reconfigures the affected nodes and trees. This
can be observed in figure 8.18 showing the percentage of nodes that reconfigure
a certain amount of affected trees after a central link failure. For example, black
boxes indicate the percentage of nodes that are affected in more than 75% of the
trees (e.g. in a network of 4 nodes, half of them are affected in more than 3 trees).
Note that when the network size grows, the percentage of affected trees decreases
and the majority of the nodes only reconfigure less than 25% of the trees. Note
that SPB in this plot would always indicate 100% of affected trees in 100% of the
nodes.

§ 9. Conclusion

Network providers are really considering the migration of their transport networks
to Ethernet technology. This represents a new application for Ethernet and the
new identified requirements involve a revision of some operational aspects. On
this background, we were motivated to study the limitations that the spanning
tree protocols introduce into the path of Ethernet extension towards provider
networking. Clearly identifying these drawbacks has allowed us to design the
required RSTP extensions to (1) provide quick recovery times in all failure situa-
tions, (2) make use of all network links and hence take advantage of the available
redundancy, and (3) operate with shortest-path communication between all pair
of nodes.

An additional remark is that a fundamental requirement of the proposed so-
lution is that it had to lie in accordance with the Ethernet framework. This
means that keeping essential aspects such the broadcast operation, plug-n-play
property or backwards compatibility, is a must in any proposal in Ethernet net-
working. This requirement not only has driven the design of particular opera-
tional extensions but also has determined methodological aspects. This is why
we have focused our study in first clearly understanding the nature of the prob-
lem. Identifying the detailed particularities of the protocol operation that cause
the limitations has allowed for the design of the right extensions that solve such
problems but maintain the rest of properties.

The first contribution of the thesis is the analysis of the tree construction
included in chapter 6. The objective was to understand the operation and char-
acterize the convergence time of the protocol. Our contribution in this aspect
is that we have analyzed the protocol focusing on how it evolves step-by-step
rather than only observing performance values. Our contribution in this aspect
is that we have analyzed the protocol focusing on how information propagates
independently on what exact information (and hence solution) is propagated. In
this way, we study the nature of the problem instead of a particular solution. An
exhaustive analysis of the RSTP operation at network start-up has allowed iden-
tifying that the behavior of the protocol can be easily understood as the evolution
of propagating wave-fronts originated at each node. This simple characterization
has also allowed deriving a theoretical bound of the protocol convergence time
that depends on the length of the longest branch in the tree configured. Evalua-
tion results confirm this characterization and conclude that 50ms bound for the
convergence time for RSTP is theoretically possible. The exact time highly de-
pends on the physical topology underneath and more concretely on the network

181

182 CHAPTER 9. CONCLUSION

diameter. In addition, we have also analyzed the message overhead required by
the protocol and the results show that, since it is based on flooding of information,
it grows with the level of network connectivity (or the average node degree).

The main disadvantage of RSTP is that it experiences the count-to-infinity
problem when the Root of the tree fails (see section 3.5). Analyzing with detail
this phenomenon we have further identified that the looping BPDUs lead to the
creation of deadlocks in a link where the two neighbors believe that the Root is
in the opposite direction (as described in section 7.1). The occurrence of such
deadlocks requires a timer expiration before it is released, and this introduces
delays of tens of seconds when recovering from the Root failure. To the best of
our knowledge, while the count-to-infinity problem is known and studied in RSTP,
the identification of the deadlocks occurrence and the consequent recovery delay
is a novel contribution of our work.

A detailed study of the count-to-infinity behavior has allowed us to discern
that the main cause is the utilization of false information in the Alternate ports
once the Root has failed. For this reason in chapter 7 we have described RSTP-
Conf as an extension to RSTP that makes a safer use of this information. RSTP-
Conf is based on a confirmation mechanism that (1) checks the availability of the
Root before using an Alternate port, and (2) triggers a global network reboot in
case the Root really fails. The new protocol efficiently avoids the count-to-infinity
in Root failure scenarios and provides a recovery time bounded by one round-
trip delay. Moreover, it recovers as quick as the original RSTP in other failure
situations. The only drawback is that it triggers a false alarm confirmation when
a single Root link fails, which results in some more exchanged messages and a
slightly larger convergence time (but always at the order of hop delays).

In chapter 8 we have presented the description of RSTP-SP as the protocol
that extends RSTP in order to operate with optimal paths. The extensions are
based on (1) configuring one tree rooted at each node so all paths are optimal, and
(2) implementing the path-array in a distributed distance-vector environment in
order to ensure symmetrical path selections. We have compared RSTP-SP and
SPB, the last evolution of the IEEE standard that also deploys optimal paths but
based on a link-state approach, by means of simulation. Results show that RSTP-
SP and SPB perform similar in terms of convergence time but SPB experiences
a much larger outage during recoveries. In contrast, the RSTP-SP results into
higher message overheads compared to SPB. This is because link-state protocols
are based on computation while distance-vectors rely on message dissemination.
Even though this trade-off between the distance-vector RSTP-SP and the link-
state SPB, we have shown that a shortest-path solutions extending the current
spanning tree protocols is possible. As a global conclusion, we can state that
a global solution that introduces the extensions described for RSTP-Conf and
RSTP-SP is able to (1) provide quick recovery times in all failure situations, (2)
take advantage of the available redundancy, and (3) operate with shortest-path
communication between all pair of nodes.

9.1. OPEN ISSUES AND FUTURE GUIDELINES 183

9.1 Open issues and future guidelines

Although the presented study including the protocols descriptions and their per-
formance evaluation indicates that the addressed Ethernet limitations have been
resolved, a number of possibilities for further research remain open.

One of the improvements relates to the study of RSTP-SP and more con-
cretely to extend the performance evaluation with a complexity analysis. The
objective would be to evaluate the processing requirements at each node. The
evaluation in chapter 8 already provides an initial indication of this metric with
the observation of the amount of messages that result into a computation of trees
(referred as Triggers). In this case SPB requires less triggers than RSTP-SP in
most scenarios. However, a protocol complexity analysis that characterizes the
single tree computation, both in RSTP-SP and SPB, can be used to derive the
evaluation of the protocol complexity. Note that the number triggers multiplied
by, for example, the number of CPU instructions required per trigger provides
such evaluation. Actually, the comparison could turn around if we observe the
overall processing requirements because one trigger in RSTP-SP results into a
few vector comparisons while in SPB it leads to the execution of Dijkstra once
per tree. Several consequences of this study about the protocol complexity can
be obtained. First, a more powerful device is more expensive. And second, this
analysis could be used to evaluate the feasibility of a HW implementation of
the protocol: the simpler a single execution is, the easier the implementation.
The implementation of a protocol at software level represents an additional de-
lay as each message needs to first reach the client layer before it is processed.
A hardware implementation would reduce this bypassing delay until negligible.
Additionally, a software implementation signifies an increase of consumed energy
against the current necessity of greening the communication networks.

As seen in the evaluation of chapter 8, the main disadvantage of RSTP-SP
is that it produces a large message overhead. The main reason is that each
tree is actually managed by an independent instance of the single tree protocol.
However, the RSTP-SP operation can be optimized in several aspects in order
to improve this low performance. One idea to address this could be to share
information between different tree instances and reuse some fields in the BPDUs.
This might have an important impact especially in the contents of the path-array
as many different branches that reach one node are shared between the different
trees. Finding a way to re-use information can also have a direct impact on
reducing the amount of state information in the node.

Although the path-array in RSTP-SP is introduced to ensure the selection
of symmetrical branches across different trees, its functionality can be extended
into other aspects. Having the information of the entire path to the Root opens
the door to designing more detailed path-control capabilities in order to provide
advanced path-selection driven by different metrics. In the current description
the path-array only contains the identifiers of the nodes of the path traversed.
An immediate extension of the array is to transform it into a matrix structure
that contains additional information of each node such as security properties or
performance limitations. The use of this information to select the paths that

184 CHAPTER 9. CONCLUSION

create the tree branches introduces an important level of flexibility (for example
selecting the most secure or the less delayed branch).

Another enhancing that relates to the path-array is a detailed study of the
different policies that can be used to decide whether an array is better. As
described in chapter 5, in the current description of SPB and RSTP-SP the of
array is first sorted and then the elements are compared one to one. The array
that has an earlier lower element is considered better. With this policy, the
equal-cost paths (or arrays) that contain the lowest node identifiers will always
be elected. This might result in a higher number of branches traversing the
nodes with these lower identifiers, which might create bottlenecks around these
nodes. Therefore, a study about the impact of this sorting policy could provide
additional opportunities to improve the solution. This analysis should also lead
to the proposal of policies to compare different path-arrays in order to optimize
different network aspects. This analysis together with the extension of the array
into a matrix that includes additional information can lead to a more complete
and flexible framework to provide path control.

9.2 Lessons learned

In addition to the conclusion previously described we have drawn complementary
observations along the work of this thesis.

On the Ethernet Philosophy Ethernet has been a successful technology since
it first appeared in 1970s. It first won the battle of the LAN in front of other tech-
nologies such as Token Ring, Token Bus or FDDI; now it is a very well-positioned
candidate to also become the main transport technology in the MAN/WAN ar-
eas. Several aspects that comprise to the concept of Ethernet philosophy are the
real pillars behind its success.

From the strategic point of view, the high quality standardization effort is
the main strength of Ethernet technology. A quick standardization provides easy
interoperability between different vendor devices that leads to an increase of
number of Ethernet networks. This results into mass production of Ethernet
technology that reduces its price, and, by economic laws, increases the sales
again. All this also translates into an intense competition that leads to the
continual Ethernet innovation. And this feedback effect works because Ethernet
keeps growing; if just one step of the previous cycle is broken, Ethernet might
start experiencing failure.

From the operational point of view, the success of Ethernet can be explained
with concepts like backwards compatibility, plug-n-play or operational simplicity.
Operational details like the broadcast condition or the learning operation have
been present in Ethernet technology since the beginning and they have been kept
in all the steps of the evolution. Any proposal that improves the functionality of
Ethernet must consider each one of these aspects or otherwise it fails outside of
the Ethernet framework.

9.2. LESSONS LEARNED 185

Both the strategic and the operational perspectives are two issues to have
in mind when working with Ethernet evolutions and really understanding them
might mean the success or failure of a technology.

On path-selection paradigms An important observation identified with the
study in this thesis is the different aspects to evaluate when selecting between the
two main path-selection approaches (distance-vector and link-state). The opera-
tional differences between the two approaches have positioned them as successful
solutions for different type of technologies.

Link-state protocols such as IS-IS or OSPF handle most of the path-selection
solutions in intra-domain routing (routing within the area managed by the same
entity). Routers are intelligent but complex devices that need to make path
selections based on different criteria. The link-state protocols are hence the right
candidate to provide such flexibility thanks to the independent local computation
of paths. Differently, distance-vector protocols have traditionally fit network
solutions that required less flexibility but where operational simplicity was a
plus. This is the case of the spanning tree family in Ethernet networking or BGP
in inter-domain routing (routing between areas managed by different entities).

The different philosophies between the two approaches actually determine
their application in networks with different flexibility requirements. While both
types of protocols are distributed techniques, the differences in their internal op-
eration justify distinction. Link-state protocols operate in a distributed fashion
during the distribution of topology information among nodes. However, they
operate in a centralized fashion when making the path selections. Note that
it is not really centralized because all nodes compute the paths, but do it in-
dependently once they all have the entire topological information. This is why
properties of centralized techniques, such as flexibility in configuration, can be
obtained in a distributed framework. The disadvantage of this operation mode
is that the processing requirements are not really distributed because actually
each node needs to execute the entire computations to select the network paths.
Differently, distance-vector protocols operate in a distributed fashion in both the
distribution of topological information and the computation of paths. A com-
pletely distributed path selection makes more difficult to obtain the same level
of flexibility. Nevertheless, it actually allows to evenly distributing the compu-
tation required hence reducing node processing requirements. It is important
to note that the comparison in terms of computation requirements is a qualita-
tive observation and would require a detailed complexity analysis to justify such
hypothesis.

There is a compromise from the functional perspective that results in deciding
for one approach or the other. On one hand, in networks where flexibility in
configuration and performance optimization are strong requirements, the link-
state approach might be a good solution. On the other hand, in networks where
the issues such as robustness and simple management are the key evaluation
aspects, a distance-vector approach might be then the best candidate.

186 CHAPTER 9. CONCLUSION

On the use of the simulation Analytical models, simulations or test-beds
are different evaluation tools that provide different information about a system
and that should be used with different objectives. It is very well-known that
simulations are a computer-aided technique to provide an initial overview of the
performance of a system without the need to implement it in practice. In our
case, the evaluation of network protocols can be perfectly carried out with a
simulation platform.

A common sequence to use a simulation platform is: (1) load the input pa-
rameters; (2) execute the simulation; (3) observe the results. This workflow can
be very efficient with the use of automated scripts that execute different runs
with different parameters in order to, for example, do an exhaustive sensitivity
analysis. While it is trivial to understand that the simulations can be used as an
evaluation tool to obtain performance results, it is also important to consider the
simulation as a design tool. For example, observing in detail the output traces
of the simulator is very useful to understand the behavior of a protocol. Note
that these traces are user-configurable so they can contain the information that
is required for each particular analysis. Also, compared to the real system, an
advantage of the simulation is that it has access to all the information of all the
simulated modules. For example this can be used to identify a particular state of
the system and stop the simulation at that moment to obtain a complete snapshot
of that instant.

One of the main efforts during the work presented in this thesis has actually
been the use of the simulation platform as a design and evaluation tool. For
example, comprehending aspects of RSTP such as the wave-fronts propagation
or the deadlocks during a count-to-infinity have been possible because of detailed
analysis of the simulation traces.

Bibliography

[1] Cisco Systems. Cisco visual networking index: Forecast and methodology,
2008-2013. 2009.

[2] H. Schulze and K. Mochalski. Internet study 2008/2009. IPOQUE Report,
2009.

[3] A. Kasim. Delivering Carrier Ethernet. McGraw-Hill Education, 2007.

[4] R. Sofia. A survey of advanced ethernet forwarding approaches. Communi-
cations Surveys & Tutorials, IEEE, 11(1):92–115, 2009.

[5] G. Chiruvolu, A. Ge, D. Elie-Dit-Cosaque, M. Ali, and J. Rouyer. Issues and
approaches on extending Ethernet beyond LANs. Communications Maga-
zine, IEEE, 42(3):80–86, Mar 2004.

[6] M. Whalley and Mohan D. Metro ethernet networks: A technical overview.
MEF White Papers, 2004.

[7] IEEE. IEEE Std 802.3ah - Amendment Media Access Control Parameters,
Physical Layers and Management Parameters for Subscriber Access Net-
works. 2004.

[8] CableLabs. DOCSIS specifications. http://www.cablelabs.com/cablemodem/
specifications/specifications20.html, 2012.

[9] C. Xie, N. Ghani, Q. Liu, W. Shu, A. Gumaste, Y. Qiao, and M. Wu. Multi-
point ethernet over next-generation sonet/sdh. In Communications, 2009.
ICC’09. IEEE International Conference on, pages 1–6. IEEE, 2009.

[10] G. Kramer and G. Pesavento. Ethernet passive optical network (epon):
Building a next-generation optical access network. Communications maga-
zine, IEEE, 40(2):66–73, 2002.

[11] F. Davik, M. Yilmaz, S. Gjessing, and N. Uzun. Ieee 802.17 resilient packet
ring tutorial. Communications Magazine, IEEE, 42(3):112–118, 2004.

[12] IEEE. IEEE Standard for Local and metropolitan area networks Media Ac-
cess Control (MAC) Bridges. ANSI/IEEE Std 802.1D, 1998 Edition, pages
i–355, 1998.

187

188 BIBLIOGRAPHY

[13] IEEE. IEEE Standard for Local and metropolitan area networks Media
Access Control (MAC) Bridges. IEEE Std 802.1D-2004 (Revision of IEEE
Std 802.1D-1998), pages 1–269, 2004.

[14] A. Myers, E. Ng, and H. Zhang. Rethinking the service model: Scaling
ethernet to a million nodes. In Proc. HotNets. Citeseer, 2004.

[15] K. Elmeleegy, A.L. Cox, and TS Ng. Understanding and mitigating the
effects of count to infinity in ethernet networks. IEEE/ACM Transactions
on Networking (TON), 17(1):186–199, 2009.

[16] IEEE. IEEE standard for local and metropolitan area networks virtual
bridged local area networks. IEEE Std 802.1Q-2005 (Incorporates IEEE
Std 802.1Q1998, IEEE Std 802.1u-2001, IEEE Std 802.1v-2001, and IEEE
Std 802.1s-2002), pages 1–285, 2006.

[17] IEEE. IEEE 802.1aq Shortest Path Bridging (Draft 4.0). IEEE 802.1 docu-
ments, February 2012.

[18] C.E. Spurgeon. Ethernet: the definitive guide. O’Reilly & Associates, Inc.,
2000.

[19] R.M. Metcalfe and D.R. Boggs. Ethernet: Distributed packet switching for
local computer networks. Communications of the ACM, 19(7):395–404, 1976.

[20] N. Abramson. The aloha system: another alternative for computer commu-
nications. In Proceedings of the November 17-19, 1970, fall joint computer
conference, pages 281–285. ACM, 1970.

[21] F. Backes. Transparent bridges for interconnection of ieee 802 lans. Network,
IEEE, 2(1):5–9, 1988.

[22] R. Perlman. An algorithm for distributed computation of a spanningtree in
an extended LAN. SIGCOMM Comput. Commun. Rev., 15(4):44–53, 1985.

[23] M. Seaman. High Availability Spanning Tree. IEEE 802.1 documents
(/docs1996/n013.pdf), October 1996.

[24] M. Seaman. Speedy Tree Protocol. IEEE 802.1 documents
(/docs1999/speedy_tree_protocol_10.pdf), January 1999.

[25] M. Seaman. Truncating Tree Timing. IEEE 802.1 documents
(/docs1999/truncating_tree_timing_10.pdf), January 1999.

[26] M. Seaman. Loop Cutting in the Original and Rapid Spanning Tree Algo-
rithms. IEEE 802.1 documents (/docs1999/loop_cutting08.pdf), June 1999.

[27] E. Sfeir, S. Pasqualini, T. Schwabe, and A. Iselt. Performance evaluation of
ethernet resilience mechanisms. High Performance Switching and Routing,
2005. HPSR. 2005 Workshop on, pages 356–360, 12-14 May 2005.

BIBLIOGRAPHY 189

[28] L.S. Carmichael, N. Ghani, P.K. Rajan, K. O’Donoghue, and R. Hott. Char-
acterization and comparison of modern layer-2 Ethernet survivability pro-
tocols. System Theory, 2005. SSST ’05. Proceedings of the Thirty-Seventh
Southeastern Symposium on, pages 124–129, 20-22 March 2005.

[29] G. Prytz. Network recovery time measurements of RSTP in an ethernet ring
topology. Emerging Technologies and Factory Automation, 2007. ETFA.
IEEE Conference on, pages 1247–1253, 25-28 Sept. 2007.

[30] R. Pallos, J. Farkas, I. Moldován, and C. Lukovszki. Performance of rapid
spanning tree protocol in access and metro networks. In Access Networks
& Workshops, 2007. AccessNets’ 07. Second International Conference on,
pages 1–8. IEEE, 2007.

[31] S. McQuerry. Ccna self-study ccna preparation library. Recherche, 67:02,
2004.

[32] D. Bertsekas and R. Gallager. Data networks, 1992, 1992.

[33] R. Perlman. Interconnections: bridges, routers, switches, and internetwork-
ing protocols. Addison-Wesley Professional, 2000.

[34] J.L. Gross and J. Yellen. Handbook of graph theory. CRC, 2004.

[35] E.W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[36] H. Gredler and W. Goralski. The complete IS-IS routing protocol. Springer-
Verlag New York Inc, 2005.

[37] G.S. Malkin. RIP: an intra-domain routing protocol. Addison-Wesley Long-
man Publishing Co., Inc., 2000.

[38] A. Meddeb. Smart spanning tree bridging for metro ethernets. In Local
Computer Networks, 2008. LCN 2008. 33rd IEEE Conference on, pages 492–
499. IEEE, 2008.

[39] J. Qiu, G. Mohan, K.C. Chua, and Y. Liu. Local restoration with multiple
spanning trees in metro ethernet. In Optical Network Design and Modeling,
2008. ONDM 2008. International Conference on, pages 1–6. IEEE, 2008.

[40] M. Huynh, P. Mohapatra, and S. Goose. Cross-over spanning trees enhanc-
ing metro ethernet resilience and load balancing. In Broadband Communi-
cations, Networks and Systems, 2007. BROADNETS 2007. Fourth Interna-
tional Conference on, pages 251–260. IEEE, 2007.

[41] P.M.V. Nair, S.V.S. Nair, M.F. Marchetti, G. Chiruvolu, and M. Ali. Dis-
tributed Restoration Method for Metro Ethernet. Networking, International
Conference on Systems and International Conference on Mobile Communi-
cations and Learning Technologies, 2006. ICN/ICONS/MCL 2006. Interna-
tional Conference on, pages 94–94, 23-29 April 2006.

190 BIBLIOGRAPHY

[42] J. Farkas, C. Antal, L. Westberg, A. Paradisi, T.R. Tronco, and V. Garcia de
Oliveira. Fast Failure Handling in Ethernet Networks. Communications,
2006. ICC ’06. IEEE International Conference on, 2:841–846, June 2006.

[43] A. Meddeb. Ngl01-3: Multiple spanning tree generation and mapping algo-
rithms for carrier class ethernets. In Global Telecommunications Conference,
2006. GLOBECOM’06. IEEE, pages 1–5. IEEE, 2006.

[44] T. Cinkler, A. Kern, and I. Moldován. Optimized qos protection of ethernet
trees. In Design of Reliable Communication Networks, 2005.(DRCN 2005).
Proceedings. 5th International Workshop on, pages 8–pp. IEEE, 2005.

[45] J. Farkas, C. Antal, G. Tóth, and L. Westberg. Distributed resilient architec-
ture for ethernet networks. In Design of Reliable Communication Networks,
2005.(DRCN 2005). Proceedings. 5th International Workshop on, pages 8–
pp. IEEE, 2005.

[46] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh. Viking: a multi-spanning-
tree Ethernet architecture for metropolitan area and cluster networks. IN-
FOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, 4:2283–2294 vol.4, 7-11 March 2004.

[47] K. Lui, W. Lee, and K. Nahrstedt. STAR: a transparent spanning tree
bridge protocol with alternate routing. SIGCOMM Comput. Commun. Rev.,
32(3):33–46, 2002.

[48] R. Garcia, J. Duato, and J.J. Serrano. A new transparent bridge protocol for
LAN internetworking using topologies with active loops. Parallel Processing,
1998. Proceedings. 1998 International Conference on, pages 295–303, 10-14
Aug 1998.

[49] Y. Lin and M. Gerla. Brouter: the transparent bridge with shortest path in
interconnected LANs. Local Computer Networks, 1991. Proceedings., 16th
Conference on, pages 175–183, 14-17 Oct 1991.

[50] R. Garcia, J. Duato, and F. Silla. LSOM: A Link State protocol Over MAC
addresses for metropolitan backbones using Optical Ethernet switches. Net-
work Computing and Applications, 2003. NCA 2003. Second IEEE Interna-
tional Symposium on, pages 315–321, 16-18 April 2003.

[51] R. Perlman. Rbridges: transparent routing. INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and Communications
Societies, 2:1211–1218 vol.2, 7-11 March 2004.

[52] T.L. Rodeheffer, C.A. Thekkath, and D.C. Anderson. SmartBridge: A scal-
able bridge architecture. In SIGCOMM, pages 205–216, 2000.

[53] E.W. Dijkstra and C.S. Scholten. Termination detection for diffusing com-
putations. Information Processing Letters, 11(1):1–4, 1980.

BIBLIOGRAPHY 191

[54] C. Kim, M. Caesar, and J. Rexford. Floodless in seattle: a scalable ethernet
architecture for large enterprises. In ACM SIGCOMM Computer Commu-
nication Review, volume 38, pages 3–14. ACM, 2008.

[55] G. Ibáñez, B. De Schuymer, J. Naous, D. Rivera, E. Rojas, and J.A. Carral.
Implementation of arp-path low latency bridges in linux and openflow/netf-
pga. In High Performance Switching and Routing (HPSR), 2011 IEEE 12th
International Conference on, pages 30–35. IEEE, 2011.

[56] M.D. Schroeder, A.D. Birrell, M. Burrows, H. Murray, R.M. Needham, T.L.
Rodeheffer, E.H. Satterthwaite, and C.P. Thacker. Autonet: a high-speed,
self-configuring local area network using point-to-point links. Selected Areas
in Communications, IEEE Journal on, 9(8):1318–1335, Oct 1991.

[57] T.L. Rodeheffer and M. Schroeder. Automatic reconfiguration in Autonet.
SIGOPS Oper. Syst. Rev., 25(5):183–197, 1991.

[58] R. Casado, A. Bermudez, F.J. Quiles, J.L. Sanchez, and J. Duato. Perfor-
mance evaluation of dynamic reconfiguration in high-speed local area net-
works. High-Performance Computer Architecture, 2000. HPCA-6. Proceed-
ings. Sixth International Symposium on, pages 85–96, 2000.

[59] G. Ibáñez, A. García-Martínez, J.A. Carral, P.A. González, A. Azcorra,
and J.M. Arco. Hurp/hurba: Zero-configuration hierarchical up/down rout-
ing and bridging architecture for ethernet backbones and campus networks.
Computer Networks, 54(1):41–56, 2010.

[60] F. De Pellegrini, D. Starobinski, M.G. Karpovsky, and L.B. Levitin. Scalable
cycle-breaking algorithms for gigabit Ethernet backbones. INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Commu-
nications Societies, 4:2175–2184 vol.4, 7-11 March 2004.

[61] D. Starobinski, M. Karpovsky, and L.A. Zakrevski. Application of network
calculus to general topologies using turn-prohibition. IEEE/ACM Transac-
tions on Networking (TON), 11(3):411–421, 2003.

[62] OPNET. OPNET network simulator. http://www.opnet.com/, June 2012.

[63] ns3. ns3 network simulator. http://www.nsnam.org/, June 2012.

[64] E. Bonada, D. Cavic, and D. Sala. Implementation of a Layer-2 Bridge in
ns3 (poster). Proceedings of SIMUTools 2008, March 2008.

[65] E. Bonada and D. Sala. On the Theoretical Bounds of the Spanning Tree
Algorithm. Jornadas Telecom I+D, October 2008.

[66] J. Chiabaut. All pairs shortest paths performance measurements.
IEEE 802.1 documents (/docs2008/aq-chiabaut-all-pairs-shortest-path-0308-
v01.pdf), March 2008.

192 BIBLIOGRAPHY

[67] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with
rocketfuel. ACM SIGCOMM Computer Communication Review, 32(4):133–
145, 2002.

	Contents
	List of Figures
	List of Tables
	Introduction
	Extension of Ethernet into provider networks
	Limitations of Ethernet Bridging
	Problem statement and solution approach
	Thesis contributions
	Methodology
	Thesis outline

	General Background
	Ethernet Bridging
	Basics of Ethernet
	Original Ethernet
	Ethernet Bridges
	Loop avoidance
	IEEE 802.1 Spanning Tree Protocols

	Path selection
	Fundamentals of distance-vector protocols
	Fundamentals of link-state protocols
	Performance overview

	RSTP: Operation and Behavior
	Protocol elements
	Distributed port activation
	Port roles
	Priority vectors
	Additional variables
	Bridge Protocol Data Units (BPDU)

	Protocol operation: events and procedures
	Bridge events
	Port events
	Bridge procedures
	Port procedures
	Auxiliar sub-routines

	Initial configuration of the tree
	Initialization of bridges
	Processing of a received BPDU

	Failure detection and recovery
	Failure detection
	Link failure recovery

	Root failure consequences and count-to-infinity

	Review of Proposed Ethernet Bridging Control Protocols
	Framework and comparison overview
	MSTP-based extensions
	Routed solutions
	Turn prohibition

	IEEE 802.1aq Shortest Path Bridging
	The symmetry challenge
	SPB protocol operation
	Bridge and port variables
	Construction of the multiple trees

	Failure recovery

	Nature of the Tree Construction Problem
	Wave-fronts propagation effect
	Theoretical bound of the convergence time
	Performance evaluation of the initial tree construction
	Convergence time
	Message overhead
	Triggers of tree calculations

	RSTP-Conf: Protocol Extension to Avoid Count-to-Infinity in RSTP
	Hidden effects of count-to-infinity
	Appearance of deadlocks
	Virtual Root creation

	Approaches to avoid count-to-infinity
	Fundamentals of RSTP-Conf
	Safe utilization of Alternate ports
	Reliable detection of the Root failure
	Same solution for the two sub-problems

	RSTP-Conf operation
	Confirmation variables
	Trigger of the confirmation mechanism
	Tree reboot after the Root failure

	Performance evaluation
	Characterization of count-to-infinity consequences in RSTP
	Avoiding count-to-infinity with RSTP-Conf
	Performance in the event of non-Root failures

	RSTP-SP: Shortest Path Bridging Keeping the Distance-Vector Approach
	Deployment of parallel instances
	Per-tree variables
	Per-tree event processing

	Selection of symmetrical trees
	The path-array in the distance-vector environment
	Changes in the protocol operation

	Failure recovery
	Node failures and count-to-infinity
	Performance evaluation
	Convergence time
	Message overhead
	Tree recomputations

	Conclusion
	Open issues and future guidelines
	Lessons learned

	Bibliography

