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Abstract 

 

Neural activity in the brain exhibits complex oscillatory phenomena that can 

be compared with the ones observed in artificial network models of coupled 

oscillators. In particular, neuroimaging studies of brain activity during rest 

have reported slow spatiotemporally organized fluctuations and correlated 

band-limited power modulations. Simultaneously, theoretical works on the 

area of physics have reported similar dynamic behaviours using simple 

models of coupled oscillators with intermittent modular synchronization. 

In this work, for the first time, we use models of phase oscillators in 

networks inspired in the brain’s wiring architecture. Results show the 

spontaneous emergence of a dynamics similar to the one observed 

experimentally. In addition, this correspondence is quantitatively 

comparable to neuroimaging data, which is suggestive of general integrative 

processes underlying cognition. Furthermore, we propose that altered 

brain activity observed in some psychiatric diseases might originate from 

structural disconnections, which affect the cooperative behaviour of 

coupled cortical regions. 
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Resumen 

 

La actividad neuronal en el cerebro exhibe complejos fenómenos 

oscilatorios similares a los que se observan en modelos de redes artificiales 

con osciladores acoplados. Por un lado, estudios de neuroimagen sobre la 

actividad cerebral durante el reposo han demostrado la presencia de 

fluctuaciones lentas estructuradas y modulaciones de potencia a distintas  

frecuencias. Simultáneamente, se han publicado estudios teóricos en el 

ámbito de la física que muestran dinámicas similares usando osciladores 

acoplados con sincronización modular intermitente.  

En este trabajo, por primera vez, se usan modelos de osciladores de fase  en 

redes inspiradas en la arquitectura real del cerebro. Los resultados muestran 

la aparición espontánea de una dinámica similar a la observada 

experimentalmente. Además, esta correspondencia es comparable 

cuantitativamente con datos de neuroimagen, lo que sugiere procesos 

generales de integración subyacentes a la cognición. Por otra parte, se 

propone que la actividad cerebral alterada observada en algunas 

enfermedades psiquiátricas podría tener su origen en desconexiones 

estructurales que afectarían el comportamiento cooperativo de regiones 

corticales acopladas. 
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Preface 

 

How cognition unfolds from the physical structure of the brain is still one of 

the leading unresolved mysteries of science. For its complexity, this 

investigation has been progressively extended from the medical field to 

theoretical sciences such as physics and mathematics. In particular, the 

approach of the brain as a complex dynamical system, where multiple units, 

be they neurons or cortical areas, interact with each other in a cooperative 

manner to integrate and process information, has only recently begun to be 

explored. 

It is believed we are only now engaging in the era of Neuroscience. Constant 

innovation in neuroimaging techniques allows us to explore non-invasively 

brain structure and dynamics at increasingly higher spatial and temporal 

resolution. Every year, more than thirty thousand neuroscientists meet 

together to discuss and share the latest advances in Neuroscience at the 

Society for Neuroscience annual meeting. Furthermore, thanks to efficient 

publication mechanisms and to the immediate availability of literature in the 

internet, the cooperative work of neuroscientists from all over the world has 

increased exponentially. In the same way as neurons build cognition through 

cooperative processes, I expect the cumulative discoveries about the brain 

will lead, hopefully soon enough, to a complete understanding of the brain. 

This thesis focuses on ongoing activity of the brain at rest, i.e., under no 

stimulation and in absence of any physical or mental task. At first sight, it 

may seem uninteresting to explore this particular mental state in which no 

cognitive process is engaged. Indeed, to do and think nothing is hard to 

accomplish for the normal human being. Like most animals, when we are 

awake, even at rest, we are naturally driven toward activity. It seems like 

there is an intrinsic instability that impels us to move, to think, to survive. 

Remarkably, this instability has been detected in neuroimaging studies 

revealing a rich dynamics with multiple coexisting spatiotemporal patterns. 

In the Introduction of this thesis, we will start by reviewing the most 

important findings of resting-state activity, covering a range of 

neuroimaging modalities including fMRI, EEG and MEG (section I.I). These 
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functional studies are suggestive of an underlying network dynamics that is 

strongly shaped by white-matter connectivity. Therefore, in section I.II we 

focus on brain networks, both anatomical and functional. We explain how 

connections can be detected, how macroscopic networks can be built and 

which techniques are available to analyze them. In section I.III we review 

existing modelling studies, which, by means of reduced neural-mass models, 

simulate the dynamics of coupled cortical regions with brain-inspired 

connectivity and reproduce important features resting-state dynamics. 

Finally, in section I.V, we introduce the motivation for the work presented in 

this thesis. 

In chapter II, we introduce the Kuramoto model of coupled oscillators. We 

explain how cortical regions can be represented in an abstract way as phase 

oscillators and study the influence of parameters such as delays, coupling 

strength and frequency dispersion in the dynamics of coupled phase-

oscillators, when these are connected according to the macroscopic wiring 

architecture of the brain. 

To test if our theoretical predictions can explain resting state dynamics, we 

compare our modelling results with data obtained in neuroimaging studies 

from healthy subjects during rest. In chapter III, we match our results with 

BOLD fMRI functional connectivity, showing that slow hemodynamic 

fluctuations can originate from slow fluctuations in the synchrony degree of 

subsets of nodes. In order to explore the relationship with ongoing activity 

occurring at faster time scales revealed by electrophysiological studies, in 

chapter IV we compare our results with data recorded with MEG. We find 

that slow band-limited power fluctuations can be explained as well by 

fluctuations in the synchrony degree, making the link between fast and slow 

spontaneous dynamics. Finally, in chapter V we study the impact of a 

structural disconnection in the topological properties of resting-state 

functional networks. These results are suggestive of the mechanisms leading 

to functional alterations occurring in psychiatric diseases such as 

schizophrenia.  
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I - Introduction 

 

‘The world little knows how many thoughts and theories  

which have passed through the mind of a scientific investigator  

have been crushed in silence and secrecy by his own severe criticism  

and adverse examinations.’ 

Michael Faraday 

 

I.I - Brain activity during rest 

Someone who is awake but not performing any task, physical or mental, is 

said to be resting. In this state, unlike sleeping, the person is conscious and 

ready to respond promptly to any sort of external stimulation or cognitive 

requirement. One could say that the person is somehow in stand-by: 

although still and quiet, she is awake, ready to suddenly chase a fly that 

lightly lands on her arm, or to immediately turn her head towards the least 

disturbing sound. Notably, while the person is resting and the body is static, 

the brain instead seems to be actively engaged, exhibiting spatiotemporally 

organized fluctuations of neuronal activation. These resting-state 

fluctuations emerge spontaneously during quiet wakeful rest and vanish 

either when triggered by a task or when attention to the external 

environment fades and the person falls asleep (Larson-Prior et al., 2011).  

Several studies have speculated on the link between this resting brain 

activity and underlying high-order cognitive processes such as moral 

reasoning, self-consciousness, remembering past experiences or planning 

for the future (Saxe and Kanwisher, 2003, Wagner et al., 2005, Morcom and 

Fletcher, 2007, Buckner et al., 2008). However, findings of resting brain 

patterns in anesthetized monkeys (Vincent et al., 2007) and, more recently, 

in rats (Lu et al., 2012), make proof of a more primitive origin of resting 

brain activations (Figure 1). Evidence of coordinated brain activity during 

rest has been detected with a wide range of functional imaging modalities, 

including functional magnetic resonance imaging (fMRI) (Biswal et al., 1995), 

optical imaging (Arieli et al., 1996), positron-emission tomography (PET) 

(Raichle et al., 2001), electrophysiology (Laufs et al., 2003, Leopold et al., 
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2003) and, more recently, magnetoencephalography (de Pasquale et al., 

2010, Brookes et al., 2011b). This consistency across imaging techniques, 

which provide more or less direct measures of neuronal activation, makes 

proof of a robust intrinsic brain dynamics happening at multiple time-scales. 

  

Figure 1 - Comparison of the Default Mode Network (DMN) in rats, monkeys and humans. 
The regions composing the DMN exhibit correlated neuronal activations during rest. Adapted 
from Lu et al. (2012). 

Furthermore, explorations into the organization of resting-state activations 

across the brain have revealed the existence of temporally correlated 

activity across subsets of spatially segregated brain structures, defining the 

so-called Resting State Networks (RSNs). Most of these RSNs have been 

shown to greatly overlap with functional architectures present during goal-

directed activity, such as vision, language, executive processing, and other 

sensory and cognitive processes. On the other hand, one particular set of 

regions spatially distributed over the medial prefrontal, parietal, and 

posterior cingulate cortices has been found to exhibit correlated activations 

especially during rest, and therefore this specific RSN has been labelled as 

‘default-mode network’ (DMN). 

To investigate the origin of the co-activation patterns defining RSNs, several 

studies have inspected their relationship with the underlying map of long-

range axonal connections using imaging techniques that allow the detection 

of white matter pathways in the living brain (Sporns et al., 2000, 2002). 

Although a remarkable match has been found between the neuro-

anatomical network and resting-state functional connectivity patterns, 
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anatomical information alone does not uncover the dynamical mechanisms 

governing resting state activity in the temporal and frequency domains. 

Actually, since cortical regions are dynamical units (built of millions of highly 

interconnected excitatory and inhibitory neurons), we need to take into 

account the way these regions interact in the network to understand the 

origin of correlated fluctuations. At the regional level, in vivo 

electrophysiological recordings have shown that neural activity of large 

ensembles of neurons usually exhibits oscillations with a moderate level of 

synchrony. Following different reduction lines, a number of theoretical 

studies have attempted to describe most part of the population dynamics 

using only a few differential equations (Fitzhugh, 1961, Nagumo et al., 1962, 

Wilson and Cowan, 1972, Breakspear et al., 2003). These equations 

represent neural-mass models and are particularly useful for computational 

neuroscience, because they allow simulating the temporal dynamics of a 

large neuronal ensemble at low computational costs. When these dynamical 

units are embedded in the neuronatomic network, they interact with each 

other through excitatory-to-excitatory connections. Furthermore, if we 

consider axonal conduction speed to be finite, these long-range interactions 

are time-delayed, which, together with noise naturally present in the brain, 

introduce additional degrees of complexity to the system. To explore this 

complex network dynamics, computational models are valuable tools since 

they allow exploring the relationship between structural and functional 

connectivity not by simply comparing the corresponding spatial maps, but 

by considering the dynamics of interacting cortical regions. 

To understand the natural mechanisms permitting the exploratory dynamics 

observed in the wakeful resting state, one can look at the brain as a 

dynamical system. Indeed, the complex space-time structure of the brain’s 

wiring diagram, together with a myriad of biochemical processes, form a 

dynamical framework capable of holding an infinite number of mental states 

over which cognition unfolds (Tononi et al., 1994, Kelso, 2012). The 

existence of different input-dependent stable states in the brain has been 

evident since the first human electrophysiological recordings, which 

revealed that strong Alpha rhythms (8–13 Hz) were substituted by Beta 

rhythms (13-30Hz) when subjects opened their eyes (Berger, 1929). From 

the perspective of complex systems science, this phenomenon can be seen 

as a transition between two stable states, triggered by an external input. In 
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other words, while the eyes are closed we can imagine the brain finds a 

stable equilibrium in a regime in which Alpha oscillations emerge. Once the 

eyes are open, the incoming stimuli provoke a dynamical transition in phase 

space and another equilibrium point is found, in which Beta oscillations 

appear. Even before, in 1875, Richard Caton had already noticed that 

different brain states could be characterized by a particular electrical 

signature as noticed by Berger (1929): 

“Caton has already published experiments on the brains of dogs and apes in 

which bare unipolar electrodes were placed either on the cerebral cortex and 

the other on the surface of the skull. The currents were measured by a 

sensitive galvanometer. There were found distinct variations in current, 

which increased during sleep and with the onset of death strengthened, and 

after death became weaker and then completely disappeared. (Berger, 

1929)1. 

Despite referring to non-human species, Caton’s findings seem to be the 

first to describe different brain states (i.e. wakefulness and sleepiness) 

according to their electrophysiological signature. However, the genesis of 

these frequencies, as well as the transition between brain states, remains 

until today incompletely understood.  

Over the years, electrophysiological studies have identified characteristic 

brain rhythms ranging from 0.5 to 100Hz that appear and disappear 

according to the mental state in which the brain in engaged. Moreover, with 

the improvement of neuroimaging techniques, it became possible to map 

the sources of such rhythms across the brain, resulting in a temporal and a 

spatial pattern for each brain regime. Notably, consistency was found in the 

spatio-temporal signature of brain states across healthy humans. Although 

many brain states are only activated by means of stimulation, such as a 

sensory perception or a mental operation, other brain states, like resting 

and sleeping, occur spontaneously from intrinsic brain processes. Still, little 

is known about the physical mechanisms underlying the spatio-temporal 

patterns of different brain states and the dynamical transitions between 

them. 

                                                           
1
 Translated from German to English by Cohen, 1959. 
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Among all brain regimes, the resting state is particularly interesting from the 

perspective of dynamical systems because it exhibits not one, but several 

coexisting spatio-temporal patterns. These findings suggest that, during rest, 

the brain is routinely exploring different brain states, resulting in a 

multistable stationary regime. Deco et al. (2009) proposed that this 

spontaneous switching between brain states could be due to noisy 

transitions from one equilibrium point to another in the state space of the 

brain. Furthermore, they made a nice analogy to explain this behaviour: ‘the 

resting state is like a tennis player waiting for the service of his opponent. 

The player is not statically at rest, but rather actively moving making small 

jumps to the left and to the right, because in this way, when the fast ball is 

coming, he can rapidly react’. On receiving an external stimulus, the stability 

of the state involved in processing that input increases with respect to the 

others, allowing a rapid switch between brain states at the onset of a task. 

 

Figure 2 - Allegorical illustration of resting-state versus active-state. (a) During rest, the 
brain is in a multistable regime exploring different available mental states, like a tennis player 
who jumps from left to right while waiting for the service of his opponent. (b) In this way, 
upon receiving a stimulus, the brain can rapidly react and engage the regions in charge of 
processing the stimulus. 

While the real mechanisms underlying resting-state activity remain unclear, 

the better way to explore this intriguing dynamics is to combine existing 

concepts of theoretical physics and experimental electrophysiology with 

brain-inspired network structures and, by means of computational models, 

investigate the natural conditions under which such type of nonlinear 

complex dynamics could emerge. 

In this chapter, we will start by introducing the state of the art in resting-

state neuroimaging studies, including hemodynamic and electro-

physiological results, followed by the recent advances in brain connectivity 
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focusing on anatomical and functional brain networks, and a detailed 

description of existing models of resting-state activity. Finally, we explain 

the motivation and goals of the research undergone during my PhD studies.  

I.I.1– Resting-state hemodynamic fluctuations 

When unexpected results emerge from a scientific experimentation, history 

tells us that they should not be left unexamined. In the same way as Penzias 

and Wilson (1965) accidentally discovered cosmic background radiation 

while trying to eliminate all recognizable interference from their radio 

receiver (and later won the Nobel prize for it), Biswal and colleagues (1995) 

also found resting-state activity quite by accident. Actually, while they were 

trying to identify the brain regions that co-activated during bilateral finger 

tapping, they found that the areas involved in hand movement exhibited 

correlated activations not only during finger movement, but also during rest. 

Even after removing heart and respiratory frequencies and ensuring that the 

hands were immobilized, Biswal and colleagues found slow (<0.1Hz) 

fluctuations in the activation levels of the sensorimotor cortex that were 

strongly correlated even across hemispheres. This observation was 

particularly disturbing for current neuroimaging studies, which aimed to 

detect task-related (evoked) neuronal activations using the blood-oxygen-

level dependent (BOLD) contrast (Ogawa et al., 1990) with functional 

Magnetic Resonance Imaging (fMRI)1, since these studies rely on the 

comparison with a baseline activity. Studies using optical imaging in cat 

visual cortex verified that the variability of evoked responses resulted from 

the dynamics of ongoing activity (Arieli et al., 1996). Further complicating 

the story, a number of neuroimaging studies reported that some regions 

recurrently exhibited deactivations in task-related studies (Shulman et al., 

1997, Mazoyer et al., 2001). 

In order to take into account these unexplained task-independent functional 

activations that vanished during a task, it became necessary to define a 

baseline of brain activity (Gusnard et al., 2001). The implications of such a 

baseline for the understanding of brain function quickly became a new topic 

in neuroscience research. Raichle and colleagues (2001) measured the 

                                                           
1
 More details about functional neuroimaging techniques, including fMRI, EEG and 

MEG and, are provided in section I.II.2.a – Measuring brain function. 
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oxygen extraction fraction in the resting brain using PET and verified the 

physiological basis of resting-state BOLD fluctuations. Furthermore, they 

proposed that this baseline activity should be considered as a default mode 

of brain activity. Later, Greicius and colleagues (2003) performed the first 

resting-state connectivity analysis of the default mode and provided 

evidence for the existence of a cohesive default mode network (DMN). 

Regions within the DMN were found to exhibit correlated activation - or 

functional connectivity - during passive resting-state, and decrease activity 

during a task. For this reason, the DMN is called a task-negative RSN. Deeper 

explorations into resting-state dynamics revealed that other brain regions, 

independent from the DMN, exhibited correlated activations as well, with 

BOLD signal changes comparable with the signal changes found in task-

related experiments (Beckmann et al., 2005, Damoiseaux et al., 2006).  

 

Figure 3 - Consistent resting-state networks across healthy subjects detected with fMRI. 
Different resting patterns estimated from a group of 10 subjects corresponding to different 
spatial maps associated with low-frequency resting patterns using probabilistic independent 
component analysis. All functional images have been co-registered into a standard structural 
MRI template (MNI). Adapted from Beckmann et al. (2005). 

The mapping of such functional networks1 uncovered cortical systems that 

are usually involved in active cognitive processes, such as vision, language, 

                                                           
1
 In section I.II.b – Resting-state Functional Networks we describe in more detail 

how these networks can be defined. 
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movement, executive processing and other sensory and cognitive processes 

(Fox et al., 2005, Damoiseaux et al., 2006, De Luca et al., 2006). Unlike the 

DMN, these functional networks exhibit stronger functional connectivity 

when engaged in a task. The spontaneous and recurrent activation of such 

task-positive RSNs during rest appears to result from an intrinsic instability 

of the DMN.  

Over the last decade, the robustness of resting-state dynamics has been 

validated by consistency across healthy subjects and high-reproducibility 

across research groups. Recently, Biswal et al. (2010) assembled over 1400 

healthy resting-state fMRI data collected independently at 35 international 

centres and performed the biggest fMRI study of the healthy brain to date1. 

By analyzing these data with various different metrics, the authors 

demonstrated high reproducibility across datasets and individuals revealing 

a universal architecture of positive and negative functional connections, as 

well as consistent regions of inter-individual variability. This variability was 

essentially determined by the individual’s sex and age. Regarding age, 

previous studies had reported affected RSN integrity in advanced aging. In 

particular, Andrews-Hanna et al. (2007) compared long-range connectivity 

among 93 adults aged 18 to 93 years old and demonstrated that aging is 

characterized by significant reductions in the co-activation between two 

regions composing the DMN during rest (i.e. the posterior cingulate and the 

medial prefrontal cortex). Furthermore, this functional disconnection in 

advanced aging was associated with lower white matter integrity and poorer 

cognitive performance. These results indicate that cognitive decline in 

normal aging (free from Alzheimer's disease) arises from functional 

disruption in the coordination of large-scale brain systems that support 

cognition. Regarding the differences between males and females, Liu et al. 

(2009) had reported significant sex-related differences in the functional 

lateralization of resting brains in a study with 300 subjects (43% men). 

However, the study from Biswal et al. (2010) was more complete and 

reported sex-related differences in specific locations in the brain, 

supposedly related to phenotypic variations due to the sexual dimorphism in 

                                                           
1
 To encourage neuroscientists to explore brain functional networks, the dataset 

from the 1000 Functional Connectomes Project is freely available at: 
www.nitrc.org/projects/fcon_1000/. 



9 
 

genomic expression. Based on their findings, the authors suggest that an 

individual’s functional connectome could serve as a phenotype for genetic 

studies. 

I.I.2 - Electrophysiological signatures of resting-state activity 

Due to the very slow time-scale of resting-state fluctuations, functional MRI 

has been the most successful technique in detecting the spatial patterns of 

RSNs, in spite of its temporal resolution being in the order of a couple of 

seconds. However, the neurophysiological basis of resting-state dynamics 

occurring at faster time-scales and the nature of the coupling that binds 

cortical regions together cannot be accurately assessed using this technique. 

On the other hand, electrophysiology is at least three orders of magnitude 

better at tracking dynamic aspects of neural activity relevant for cognition 

and behaviour. If the spontaneous BOLD fluctuations are indeed a reflection 

of underlying neural activity, we may expect some components of 

electrophysiological signals to exhibit low-frequency spontaneous 

fluctuations with large-scale correlation patterns similar to those observed 

with resting-state fMRI. In this section, we report in chronological order 

some of the major experimental investigations of the electrophysiological 

counterpart of resting-state BOLD activity.  

To explore the relationship between BOLD signal and the underlying neural 

activity, Logothetis et al. (2001) performed simultaneous fMRI and intra-

cortical electrical recordings in anesthetized monkeys, showing that 

spontaneous fluctuations in local-field potentials (LFP) correlated positively 

with the local fMRI signal around the electrode. Although these results show 

unequivocally that a spatially localized increase in the BOLD contrast directly 

and monotonically reflects an increase in neural activity, the extension of 

these measurements to the whole brain or even to humans is highly 

restricted due to the invasiveness of intra-cortical recordings. The solution 

(in healthy humans) lies in placing electrodes at the scalp level and 

measuring the electroencephalographic (EEG) signals at the expense of 

spatial accuracy. 

To investigate the relation between BOLD signal fluctuations and electrical 

signals over the whole brain in resting humans, Laufs et al. (2003) recorded 

simultaneous fMRI and EEG in awake healthy subjects at rest with eyes 
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closed. After filtering EEG signals into distinct frequency bands, they 

compared the power fluctuations of each frequency band (or band-limited 

power (BLP), see Figure 4) with the BOLD time courses in each voxel in the 

brain.  

 

Figure 4 - Band-limited power fluctuations (BLP) at different frequency bands. BLPs (red) 
correspond to the envelope (or amplitude modulations) of oscillations filtered in a restricted 
frequency range (black). However, the frequency range (or carrier frequency) that best 
captures BOLD fluctuations remains under debate. 

They found that the power of 17-23Hz oscillations (in the Beta-band) was 

positively correlated with the hemodynamic fluctuations found in the 

posterior cingulate, the precuneus and the left and right temporo-parietal 

and dorsomedial prefrontal areas. As commented by the authors, these 

regions are similar to the ones identified by Greicius et al. (2003) as the 

DMN. In addition, other band-limited power fluctuations were found to be 

correlated with fMRI activations. For example, there was strong and 

widespread negative correlation of BOLD activity with alpha power (8–12 

Hz) in lateral frontal and parietal cortices that are known to support 

attentional processes. These findings suggest that fluctuations in BOLD 

signal at rest may at least in part reflect band-limited power fluctuations of 

neuronal activity happening at faster frequencies. 

For a deeper exploration of power fluctuations during rest, Leopold et al. 

(2003) used multiple electrodes to record neural activity at different 

locations of the visual cortex of awake monkeys. They observed that the 

power of the local field displayed fluctuations at many time-scales, with 

particularly large amplitudes at very low frequencies (<0.1 Hz). Furthermore, 
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they found that these fluctuations exhibited high coherence between 

distant electrode pairs (but still in the visual cortex), particularly for power 

fluctuations in the gamma-frequency range.  They proposed that such 

power fluctuations might make a significant contribution to the high 

amplitude fluctuations observed in the time course of resting state signals 

obtained with fMRI. 

Further developments in resting-state fMRI studies revealed the existence of 

robust RSNs characterized by particular temporal signals using independent 

component analysis (ICA) (Beckmann et al., 2005). To investigate if the 

temporal signals of each RSN could be related to EEG power fluctuations in a 

particular frequency band, Mantini and colleagues (2007) recorded 

simultaneous fMRI and EEG and, applying ICA to the BOLD signals identified 

six robust RSNs over a group of 15 healthy subjects. The temporal signal 

associated with each RSN (i.e. the corresponding temporal ICs) were then 

correlated with the EEG power variations of delta (δ), theta (θ), alpha (α), 

beta (β), and gamma (γ) rhythms. They found that each RSN was 

characterized by a specific electrophysiological signature that involved the 

combination of different brain rhythms. For example, in agreement with the 

results from Laufs et al. (2003) their findings indicate that the functional 

activation of the DMN correlates better with Beta-frequency EEG power (13-

30Hz). However, due to the low spatial resolution of EEG, investigations 

were limited to temporal signals and did not explore the correspondence 

between the cortical maps of EEG rhythms and the spatial maps of the RSNs 

detected with fMRI. 

Later, in a similar experimental set as the one from Logothetis et al. (2001), 

Shmuel and Leopold (2008) simultaneously recorded fMRI time-series and 

intra-cortical electrophysiological signals from 1 single recording site in the 

visual cortex of anesthetized monkeys. They demonstrated correlations 

between slow fluctuations in BOLD signals and concurrent neuronal activity, 

when the neural signal consisted of either the spiking rate of a small group 

of neurons or band-limited power fluctuations (especially in the gamma 

band potential). BOLD fluctuations in widespread areas in visual cortex of 

both hemispheres were significantly correlated with neuronal activity from 

the single recording site in the primary visual cortex. To the extent that their 

findings can be generalized to other cortical areas, these findings reinforce 
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the idea that fMRI-based functional connectivity between remote regions 

during rest can be linked to slow synchronized increases in neuronal 

activation levels happening at faster time-scales. 

The first resting-state study using intracranial electrophysiological 

recordings in humans was performed in 2008 by Nir and colleagues. They 

found slow (<0.1 Hz, following 1/f-like profiles) spontaneous fluctuations of 

neuronal activity with significant inter-hemispheric correlations as expected 

from fMRI results. These fluctuations were evident mainly in neuronal firing 

rates and in gamma (40–100 Hz) LFP power modulations. Furthermore, 

multiple intracranial recordings revealed clear selectivity for RSNs in the 

spontaneous gamma LFP power modulations (He et al., 2008, Miller et al., 

2009). These results point to slow spontaneous modulations in firing rate 

and gamma LFP as the likely correlates of spontaneous fMRI fluctuations in 

the human sensory cortex, in agreement with the results from Shmuel and 

Leopold (2008). 

Finally, a recent study by Scheeringa and colleagues (2011) investigated how 

the BOLD signal in humans performing a cognitive task is related to neuronal 

synchronization across different frequency bands. They simultaneously 

recorded EEG and BOLD while subjects engaged in a visual attention task 

known to induce sustained changes in neuronal synchronization across a 

wide range of frequencies. Trial-by-trial BOLD fluctuations correlated 

positively with trial-by-trial fluctuations in high-EEG gamma power (60–

80 Hz) and negatively with alpha and beta power. Gamma power on the one 

hand, and alpha and beta power on the other hand, independently 

contributed (in an anti-correlated manner) to explaining BOLD variance. 

These results indicate that the BOLD-gamma coupling observed in animals 

can be extrapolated to humans performing a task and that neuronal 

dynamics underlying high- and low-frequency synchronization contribute 

independently to the BOLD signal. 

I.I.3 - Detection of resting-state patterns using MEG 

Since the electrical currents occurring in the brain produce perpendicular 

magnetic fields, it is also possible to capture measures of neuronal 

activation during rest using magnetoencephalography (MEG). With a spatial 

resolution comparable to fMRI (i.e. a few mm) and a temporal resolution 
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equivalent to electrophysiological recordings (i.e. better than 1ms), MEG 

offers the best of both worlds in imaging brain function. 

It seems that the first study dedicated to investigate the neuronal correlates 

of resting BOLD signal using MEG was performed by Nikouline et al. (2001). 

The authors investigated inter-hemispheric phase synchrony and amplitude 

correlation of beta oscillations in a resting condition, revealing that beta 

oscillations in the left and right hemisphere exhibited transient synchronized 

activity and the index of synchronization was strongest when these 

oscillations had large amplitude. Importantly, they reported that the 

amplitude of spontaneous beta oscillations (which is equivalent to the band-

limited power in the β frequency) was also found to be correlated across 

hemispheres over long time intervals (>1s). The authors suggested that the 

low-frequency amplitude modulation of spontaneous rhythmic activity may 

be the source of correlations of low-frequency hemodynamic responses, 

generally interpreted as functional connectivity. This work appears to be the 

first demonstration of band-limited power correlations between the two 

hemispheres during rest. 

Almost a decade later, and following the electrophysiological studies 

suggesting that spontaneous BOLD fluctuations could be driven by slow 

amplitude modulations of neural oscillations, Liu et al. (2010) characterized 

the power modulations of spontaneous MEG rhythms recorded from human 

subjects during wakeful rest (with eyes open and eyes closed) and light 

sleep. Through spectral, correlation and coherence analyses, they found that 

resting-state MEG rhythms demonstrated ultraslow (< 0.1 Hz) spontaneous 

power modulations that synchronized over a large spatial distance, 

especially between bilaterally homologous regions in opposite hemispheres. 

Their observations suggest that coherent power modulations of 

spontaneous rhythmic activity (especially in the β-band) reflect the 

electrophysiological signature of the large-scale functional networks, in 

agreement with the results from Nikouline et al. (2001). A couple of months 

later, de Pasquale and colleagues (2010) used a seed-based method to 

characterize the MEG signatures of two well-characterized RSNs: the dorsal 

attention and the default mode networks. Taking into account the non-

stationarity of MEG activity, they found that the band-limited power of the 

RSN seeds were only synchronized for restricted periods in time, resulting in 
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a transient formation of RSNs. Their results indicate that RSNs manifest in 

MEG as synchronous modulations of band-limited power primarily within 

the theta, alpha, and beta bands, which correspond to rhythms slower than 

the γ-frequency oscillations generally associated with the electro-

physiological correlates of event-related BOLD responses. 

The first work to show that MEG can independently measure the spatial 

pattern of RSNs, in the same manner that has been demonstrated in fMRI, 

was recently performed by Brookes and colleagues (2011b).  

 

Figure 5 - Comparison of brain networks obtained using ICA independently on MEG and 
fMRI data. (A) DMN; (B) left lateral frontoparietal network; (C) right lateral frontoparietal 
network; (D) sensorimotor network; (E) medial parietal regions; (F) visual network; (G) frontal 
lobes including anterior cingulate cortex; (H) cerebellum. All networks were identified using 
β-band power fluctuations, except the DMN, which was detected using α-band power 
fluctuations. Adapted from Brookes et al. (2011b). 

As a first step, the MEG data was frequency filtered into bands of interest (δ, 

θ, α, β, and γ) and projected into source space using a beamformer spatial 

filter. Then, ICA was applied to the band-limited power fluctuations, 

resulting in RSNs with significant similarity to the RSNs derived 

independently using fMRI. Importantly, most resting-state networks were 

linked to β-band power fluctuations. This outcome confirms the neural basis 

of hemodynamic networks and demonstrates the potential of MEG as a tool 

for understanding the mechanisms that underlie RSNs.  

Furthermore, in a recent MEG study, Hipp et al. (2012) found that 

spontaneous oscillatory neuronal activity exhibited frequency-specific 
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spatial correlation structure in the human brain. Overall, they found that 

correlation of power across cortical regions was strongest in the alpha to 

beta frequency range (8–32 Hz) and correlation patterns depended on the 

underlying oscillation frequency. Global hubs resided in the medial temporal 

lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the 

alpha to beta frequency range (8–23 Hz) and in sensorimotor areas for 

higher frequencies (32–45 Hz). These data suggest that interactions in 

various large-scale cortical networks may be reflected in frequency-specific 

power envelope correlations (or BLP correlations). 

 

Figure 6 - Power envelope correlation. Illustration of spectrally resolved power envelopes for 
one exemplary carrier frequency f (that is, center frequency of the bandpass filter). The gray 
sinusoidal lines represent bandpass-filtered neuronal signals estimated at two source 
locations. The corresponding blue and red lines, the amplitude envelopes, quantify the 
evolution of the signal amplitude at a slower timescale. Adapted from Hipp et al. (2012). 

In summary, all electrophysiological and MEG works presented in the 

previous sections have aimed to investigate the neurophysiological 

counterpart of resting-state BOLD fluctuations with some similar 

conclusions. Overall, results show that resting-state fluctuations are driven 

by slow modulations of neural activity, which are manifested by transient 

increases in the amplitude (or power) of fast oscillations in a certain 

frequency range. The slow band-limited power (BLP) fluctuations can be 

captured by filtering the signal into frequency bands and subsequently 

computing the Hilbert transform to obtain the envelope of the oscillations in 

each frequency range. 
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Interestingly, BLP rhythms from different frequency bands lead to different 

spatial patterns of pairwise correlations, suggesting a complex interplay 

between multiple frequency bands (Mantini et al., 2007, de Pasquale et al., 

2010) which in turn may reflect different aspects of neuronal processing 

(Womelsdorf et al., 2007, Palva and Palva, 2012). Regarding the question 

whether there is a specific carrier frequency whose power modulations 

serve as the best candidate for the neuronal correlates of spontaneous fMRI 

fluctuations, there seem to be two potential frequency ranges in debate. On 

one side, the intra-cortical recordings performed by Leopold et al. (2003), 

Nir et al. (2008) and Shmuel and Leopold (2008) propose a direct 

relationship with gamma-frequency BLP, whereas the MEG studies from 

Nikouline et al. (2001), Liu et al. (2010) and Brookes et al. (2011) suggest the 

beta (and sometimes alpha) band BLP as the electro-physiological 

counterpart of spontaneous BOLD-fMRI fluctuations. Since each technique 

has intrinsic limitations, both scenarios from previous studies could coexist. 

Indeed, according to the results from Scheeringa et al. (2011), a negative 

correlation exists between the BLPs at high and low frequencies, indicating 

that the BOLD signal might be associated to interactions between these high 

(gamma) and low (alpha and beta) frequency bands. However, an accurate 

answer requires simultaneous recordings of both fMRI and electro-

physiological signals across the whole brain, which is unavailable in the 

present days. Alternatively, we can explore the mechanism at the genesis of 

these electrophysiological power fluctuations (or amplitude modulations) by 

means of computational models. In chapter IV – Predicting resting-state 

MEG band-limited power correlations with the Kuramoto model we provide 

a possible scenario for such findings. 

I.I.4 – Altered resting-state activity in disease 

Over the last decade, a large number of studies have reported altered 

resting brain activity in a wide range of mental illnesses. These results not 

only illustrate the importance of resting-state dynamics for an optimal 

cognitive function, but also provide insights to understand the intrinsic 

mechanisms leading to these diseases.    

Resting-state functional connectivity has been shown to decrease in patients 

with Alzheimer's disease (AD). It has been noted that the default mode 
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network is not as homogenous as in healthy brains and several 

fractionations of the DMN have been proposed. In early stages of the 

disease, results have shown decreased connectivity in patients versus 

controls in the posterior DMN, and increased connectivity in the anterior 

and ventral DMNs. However, as the AD disease progresses, connectivity 

within all systems eventually deteriorates (Greicius et al., 2004, Zhou et al., 

2010, Damoiseaux et al., 2012). Furthermore, Supekar et al. (2008a) 

characterized resting-state functional networks using graph theory and 

found that functional brain networks in AD showed loss of small-world 

properties, characterized by a significantly lower clustering coefficient, 

indicative of disrupted local connectivity. 

Regarding schizophrenia, Liang et al. (2006) reported widespread functional 

disconnectivity in schizophrenia with resting-state fMRI supporting the 

hypothesis that schizophrenia may arise from the disrupted functional 

integration of widespread brain areas. Further analysis of resting-state 

activity in schizophrenia using graph theory indicate a subtle randomization 

of functional networks, with decreased small-world properties, lower 

clustering coefficients and less high-degree hubs (Liu et al., 2008, Lynall et 

al., 2010, Bassett et al., 2012). 

Resting-state alterations have been found in many other mental illnesses 

including dementia (Buckner et al., 2000, Rombouts et al., 2009), autism 

(Cherkassky et al., 2006, Kennedy et al., 2006, Lai et al., 2010, Weng et al., 

2010, Cornew et al., 2011), mild cognitive impairment (Rombouts et al., 

2005), multiple sclerosis (Bonavita et al., 2011, Schoonheim et al., 2011, 

Faivre et al., 2012) and major depression (Greicius et al., 2007, Sheline et al., 

2009, Veer et al., 2010). However, the clinical use of resting-state 

connectivity requires consistency across studies before it can be used in a 

meaningful way at the single-patient level (Greicius, 2008, Fox and Greicius, 

2010) 

In some cases, resting-state connectivity was found to correlate with 

cognitive performance (i.e. in Lynall et al, 2010), which suggests that resting-

state correlations are closely related to the binding mechanisms that 

support the integration of segregated information in the brain.   
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‘The brain is a world consisting of a number of unexplored continents  

and great stretches of unknown territory.’ 

Santiago Ramón y Cajal 

 

I.II - Networks of the brain 

Our brain has a complex network organization allowing the functional 

integration of spatially segregated information in the nervous system 

(Tononi et al., 1992, 1994, Jirsa and Kelso, 2000, Sporns et al., 2000). 

Spatially distributed and functionally specialized brain areas are 

continuously communicating and co-operating to respond to cognitive 

demands, perceive sensory stimuli and generate coordinated movement. 

The communication between brain areas is made through axonal fibres that 

project from one area to the other, serving as the means of transport for the 

action potentials travelling in the brain. Since regions are spatially 

segregated, signals take a significant time to travel from one region to the 

other, resulting in time-delayed interactions. Although the neuronal 

mechanisms under which cortical regions communicate remains unclear, the 

space-time structure of the neuro-anatomical network is believed to serve 

as the structural substrate upon which coordinated functional integration 

occurs (Bressler and Tognoli, 2006, Jirsa and McIntosh, 2007, Ghosh et al., 

2008, Knock et al., 2009). 

Combining functional and structural imaging modalities has revealed that 

resting-state functional connectivity reflects, to some extent, the underlying 

structural connectivity (Damoiseaux and Greicius, 2009, Greicius et al., 2009, 

van den Heuvel et al., 2009, van den Heuvel and Hulshoff Pol, 2010). 

However, the bond between structural and functional connectivity is not 

straightforward: although structural connectivity is a good predictor of 

functional connectivity — i.e. if there is a direct anatomical connection, there 

is likely a functional connection — the opposite is not necessarily true. 

Robust functional connectivity has been observed in the absence of a direct 

anatomical link (Koch et al., 2002) and, as will be shown in section I.III - 

Large-scale models of resting-state dynamics, computational models of 

neural network dynamics are valuable tools to investigate this relationship.  



19 
 

 

Figure 7 - Exploring the structure-function relationship using computational models. 
Diagram illustrating how computational models can serve to explore the relationship 
between anatomical structural networks and resting functional networks. The dashed line (--) 
indicates the feedback of the model’s performance, that is necessary to tune the parameters 
of the model.    

In the next sections of this chapter, we describe in detail how these 

structural and functional brain networks are constructed and evaluated. In 

particular, we will explain how white matter tracts are detected, which 

criteria define a brain region, how statistical dependencies in hemodynamic 

signals can imply a functional connection and, finally, how these networks 

can be evaluated using graph theory.  

I.II.1 – Anatomical structural networks 

The brain’s anatomical connectivity, or connectome (Hagmann, 2005, 

Sporns et al., 2005), is defined as the map of neural connections in the brain. 

The human cerebral cortex alone is thought to contain at least 1010 neurons 

linked by 1014 synapses, defining a highly complex, multi-scale and hardly 

tractable network (Sporns, 2009). The only organism from which the full 

connectome is known in its entirety is the one millimeter-long worm 

C.elegans, but it took British researchers over a decade to complete the 

identification of its 300 neurons and 7,000 connections during the 1970s 

and 1980s. Since we are essentially interested in large-scale human brain 

patterns, we go beyond the cellular scale and focus essentially on the long-

range white matter pathways upon which large populations of neurons 

interact. These phylogenetically and ontogenetically determined large-scale 

connections are particularly important because they strongly constrain how 

brain regions communicate, defining the wiring diagram over which 

distributed cognitive processes unfold. 
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Historically, the mapping of white matter connections was performed post-

mortem by histological dissection and staining, by degeneration methods or 

by axonal tracing. These classical techniques, however, were time-

consuming and generally applied to restricted areas in the brain. In an 

attempt to assemble data from different white matter tracing studies of the 

macaque brain, Rolf Kötter (Kötter, 2004) created the online database for 

the “Collation of Connectivity on the Macaque brain” (CoCoMac 

www.cocomac.org), allowing for continuous updating and refinement of 

such anatomical connection maps. From this database, Kötter and Wanke 

(2005) derived a realistic connectivity map of one hemisphere of the 

primate brain, proposing a coarse parcellation of the primate cerebral 

cortex into 38 regions, which reflected broad and rather uncontroversial 

divisions. This connectivity map has been used in models of large-scale brain 

activity (Honey et al., 2007, Deco et al., 2009) revealing that the large-scale 

connectivity topology of cerebral cortex, together with time delays and in 

the presence of noise, defines a dynamic framework from which the resting 

patterns emerge. 

 

Figure 8 - The Macaque connectivity. The coupling weights     indicate the strength of 

connections (classified as weak (1), medium (2) or strong (3)) from region   to   (directed). 
The CoCoMac database, created by Rolf Kötter, represents the first attempt to obtain the 
anatomical connectivity map of the whole brain.  

Since the manual tracing of white matter pathways has not been performed 

from human brains, some works have tried to infer human anatomical 

networks from cortical thickness and gray matter volume measurements 

obtained with structural MRI. This approach relies on the fact that cortical 

thickness is strongly correlated between regions that are axonally connected 

(Lerch et al., 2006). Thus, a whole-brain anatomical network can be 

abstracted from human MRI data by compiling a matrix of correlations in 



21 
 

cortical thickness (or volume) between all pairs of brain regions across 

subjects and then applying a threshold to create a graph representing strong 

correlations as connections between regions (He et al., 2007, Bassett et al., 

2008, Chen et al., 2008). However, a direct proof that correlations of gray 

matter volume over the whole brain across subjects are indicative of axonal 

connectivity via white matter tracts has not been provided. 

In recent years, a revolution in connectomics (i.e. the science concerned 

with assembling and analyzing connectome data sets (Hagmann, 2005)) 

appeared hand-in-hand with the technological advancements in Diffusion 

MRI. This method allows for a non-invasive in vivo detection of white matter 

fibre pathways. Together with efficient computational tractography 

algorithms, this technique permits the rapid and almost automatic 

construction of comprehensive maps of brain connectivity. In the same line 

of the CoCoMac project but in a much larger scale, the Human Connectome 

Project (www.humanconnectomeproject.org) aims to provide an 

unparalleled compilation of neural connectivity data based on Diffusion MRI 

studies. Collectively, advances in human connectomics open up the 

possibility of studying how brain connections mediate brain function and 

hence behaviour. 

 
Figure 9 - White matter fibres detected in vivo using Diffusion MRI. Images from the gallery 
of the Connectome Project (by Randy Buckner). 

The first mappings of human whole-brain anatomical connectivity using 

Diffusion MRI tractography were performed almost simultaneously by 

Hagmann and colleagues (2007) and Iturria-Medina and colleagues (2007). 

Initially, in Hagmann et al. (2007), anatomical networks were composed by 

500 to 4000 nodes and were derived from the brains of 2 healthy subjects. 

At the same time, Iturria-Medina et al. (2007) analyzed anatomical 

connectivity at lower resolution, focusing on the connectivity between 71 
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gray matter structures, across 5 healthy subjects. A few months later, 

Iturria-Medina et al. (2008) extended the study to 20 healthy participants 

and divided gray matter into 90 cortical and subcortical regions according to 

a widely used neuroimaging parcellation template (the AAL template, see 

I.II.1.b - Brain parcellation). Briefly after, Hagmann et al. (2008)  proposed a 

low-resolution parcellation as well, this time dividing the cortex into 66 

regions. This anatomical network was used in the first large-scale model of 

human resting-state functional connectivity (Honey et al., 2009) (see section 

I.III - Large-scale models of resting-state dynamics). 

In the following sub-sections, we describe the physical and technical 

concepts behind Diffusion MRI and present different parcellation schemes 

used to label brain regions according to their function or anatomic 

properties. 

I.II.1.a - Diffusion tractography 

Diffusion MRI uses a specific MRI sequence that is sensitive to the direction 

of water diffusion in the body. If the water diffuses equally in all directions, 

it is termed isotropic diffusion. Conversely, if the water molecules diffuse in 

a medium with barriers, such as cell membranes, the diffusion is uneven and 

is termed anisotropic. Detecting white matter fibres using Diffusion MRI 

relies on the simple fact that water propagates along the orientation of the 

fibres because the myelin sheath provides a barrier perpendicular to the 

fibres. 

Diffusion Tensor Imaging (DTI) (Wedeen et al., 1995) is a diffusion MRI 

method that estimates the direction and strength of anisotropic diffusion in 

each voxel. In more detail, if most water molecules in one voxel move in the 

same direction, then the fractional anisotropy is ≈1, and it is considered that 

a fibre might be crossing that voxel in that direction. On the other hand, if 

the water molecules in a voxel move in all directions, then the fractional 

anisotropy is ≈0. Diffusion maps can be constructed by estimating the main 

direction and strength of anisotropic diffusion for each voxel.  

The detection of fibre tracts, or tractography, is a post-processing method 

estimates fibre trajectories by constructing three-dimensional curves of 

maximal diffusion coherence using computational algorithms. The main 
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limitation of DTI is that it assumes only one direction per voxel and is 

incapable of resolving fibre crossings (see Figure 10). Overcoming that 

limitation, Diffusion Spectrum imaging (DSI) explores the strength of 

anisotropy in all directions, allowing the crossing of multiple fibres in a single 

voxel (Wedeen et al., 2005). 

 
Figure 10 – Detection of fibre directions using DTI and DSI. DSI is able to detect crossing 
fibres in one voxel.  

I.II.1.b - Brain parcellation 

Prior to defining the connectome, it is necessary to divide gray matter at the 

desired scale according to specific strategies for anatomical or functional 

partitioning. Several brain parcellation templates are available in the 

literature, ranging from the canonical classification into lobes (i.e. frontal, 

parietal, temporal and occipital lobes) to as much as several thousand 

regions of interest. Once the parcellation scheme is defined, computational 

algorithms are used to count the number of fibre tracts detected between a 

pair of regions (See Figure 11).  

 
Figure 11 - Building a 3-D network model of the brain’s anatomical coupling architecture. 
The weight of each connection is derived from the number of fibre tracts detected between a 
pair of regions defined in a parcellation template. The spatial distance between regions adds 
an additional complexity level to the space-time structure of the neuro-anatomical network. 
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One of the first and most widely known parcellation schemes of the human 

cortex was performed by the German anatomist K. Brodmann (1909) using 

staining methods. Although the division was based solely on the 

cytoarchitectural organization of neurons, some of the 52 Brodmann areas 

have been later closely correlated to diverse cortical functions. However, 

parcellation methods defined based on the function rather than on the 

anatomy provide a better understanding of the distributed functional 

organization of the brain. If a population of neurons share certain 

distinguishing functional properties, such as being activated by the same 

category of stimuli or seem to be involved in similar cognitive tasks, 

different from the stimuli or tasks that activate neurons in the neighbouring 

areas, then these neurons are grouped in the same functional region.  

Previous to the work presented in this thesis, existing models of human 

resting-state functional connectivity (Alstott et al., 2009, Honey et al., 2009) 

have used a human connectome derived by Hagmann and colleagues using 

DSI (Hagmann et al., 2008). To obtain the connectome, first they segmented 

an average brain into white matter, cortex and deep cerebral nuclei using 

Freesurfer (surfer.nmr.mgh.harvard.edu). Secondly, gray matter was divided 

into 66 cortical regions (Figure 12) and then individually subdivided into 

small regions of interest (ROIs) resulting in 998 ROIs, each covering 1.5 cm2 

of the cortical surface. Two labelled meshes (one mesh with the 66 regions 

and another with the 998 ROIs) were created on the average brain and were 

registered onto the brain of individual participants using Freesurfer. A 

recent paper from the same group (Cammoun et al., 2012) propose a robust 

method for constructing normalized whole-brain structural connection 

matrices derived at different scales. In that work, the 998 cortical ROIs are 

regrouped iteratively into bigger ROIs, resulting in 5 scales of cortex 

parcellation into 66, 133, 241, 483 and 998 regions. This hierarchical 

parcellation can be used to explore network dynamics at different levels. 
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Figure 12 - Anatomical network with 66 cortical regions. Anatomical connectome derived by 
Hagmann et al. (2007) using DSI averaged over 5 healthy subjects. (Top-Left) Parcellation 
scheme dividing the cortex into 33 anatomically segregated regions in each hemisphere 
(adapted from Honey et al. (2008)). (Top-Middle) White matter tracts detected using DSI and 
tractography (adapted from Honey et al. (2007)). (Top-Right) Schematic representation of the 
anatomical network, where regions are represented by red spheres placed at their centre of 
gravity and the link’s thickness is proportional to the number of fibre tracts detected in each 
connection. (Bottom-Left) The coupling weights are proportional to the number of tracts 
detected. White colour means that no fibre connecting the two corresponding regions was 
detected. Weights were normalized so that        . (Bottom-Left) Distance between 

regions given as the average length of the fibres connecting a pair of regions. The list of brain 
regions and corresponding indexes is reported in Appendix A.I Table 4. 

Another well-known parcellation scheme was proposed by Tzourio-Mazoyer 

et al. (2002) with the intention of standardizing the anatomical labelling of 

brain regions in neuroimaging studies. This so-called Automated Anatomical 

Labelling (AAL) was performed on a brain template consisting on a high-

resolution structural MRI scan from a healthy male supplied by the Montreal 

Neurological Institute (MNI) (Collins et al., 1998). First, the brain was 

segmented in eight classes including gray matter, white matter, 

cerebrospinal fluid, fat, muscle/skin, skin, skull, and glial matter. 

Subsequently, gray matter was carefully divided into 90 cortical regions 



26 
 

delimited by sulci and arbitrary boundaries when necessary (45 in each 

hemisphere). In this template, several subcortical regions are included, such 

as the thalamus, basal ganglia and hippocampus. The AAL parcellation 

template is included in the Statistical Parametric Mapping (SPM) package 

(Friston et al., 1994) and is freely available to the neuroimaging community. 

To date, more than 2,000 research articles have used the AAL parcellation 

template (based on citation index), including studies of resting-state 

functional connectivity (Salvador et al., 2005, Achard et al., 2006, Achard 

and Bullmore, 2007, Liu et al., 2008, Supekar et al., 2008a, Lynall et al., 2010, 

Sanz-Arigita et al., 2010, Bassett et al., 2012, Braun et al., 2012). Moreover, 

the largest sample to date of healthy structural brain networks was derived 

by Gong et al. (2009a) from 80 young adults using DTI and the AAL 

parcellation. 

Formally, brain connectivity data can be represented in matrix format 

(Figure 13). A network with   cortical regions results in a matrix with   

columns and   rows, where each entry in the matrix        or    , 

corresponds to the weight of connectivity between region   and region  . 

This weight can represent any measure used to estimate the connectivity 

between two regions.  

 
Figure 13 - Anatomical network in the AAL parcellation scheme (90 regions). Connectome 
derived from DTI using the AAL template. (A) Schematic representation of the anatomical 
network. (B) The coupling weights are proportional to the number of tracts detected. 
       , white = no connection. (C) Distance between regions, given as the Euclidean 

distance between centres of gravity. The list of brain regions and corresponding indexes is 
reported in Appendix A.I Table 5. 

In the particular case of anatomical brain networks derived from Diffusion 

MRI, the connection strength     is scaled by the number of white matter 

tracts detected between two anatomically defined regions, which can range 

from 0 to as much as several thousand tracts per connection. This procedure 
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relies on the assumption that the number of tracts is an indicator of 

structural connectivity strength. 

I.II.2 – Dynamic Functional Networks 

The simultaneous activation of selected functionally specialized brain 

regions provides a framework for cooperative processing and integration in 

the brain.  The spatio-temporal properties of such functional networks (e.g. 

the evolving patterns of interacting brain areas) are an expression of 

cognitive function in real time. Unlike structural networks, functional 

networks are only active for a period in time, representing a transient brain 

state where different brain areas activate simultaneously, supposedly 

integrating segregated information (Tononi et al., 1994, Tononi et al., 1998, 

Bressler and Tognoli, 2006).  

 

Figure 14 - Properties of functional networks. A functional network is configured by the joint 
activation of a set of regions –or nodes- (spatial selectivity). The configuration changes at 
successive instants of time (temporal selectivity). Specific patterns of coordination occur 
between co-active brain areas (coordinate selectivity). Adapted from Bressler and Tognoli 
(2006). 

Evoked neuronal activations can be easily captured by comparing the data 

obtained while the task was being performed with baseline data sets. During 

rest, however, the definition of an activation paradigm becomes unfeasible. 

Still, even if no task-related process is triggering the co-activation of regions 

belonging to a certain functional network, it is possible to extract patterns of 

co-activation from the low-frequency fluctuations of neuronal activation 

appearing during rest. In this section, we start by providing a chronological 

overview over the existing methods to measure brain functional activation, 
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and then describe different approaches used to estimate neuronal 

interactions, or functional connectivity, during rest. 

I.II.2.a – Measuring functional activations  

While exploring the electric activity in the brains of rabbits and monkeys, 

Caton (1875) discovered that different motor and sensory tasks induced 

electrophysiological responses in distinct cortical regions. Although 

segregated functional specialization had already been suggested by neuro-

anatomical studies, his measurements were probably the first to localize 

functional responses in the brain. 

The identification and characterization of functional activation sites requires 

techniques that are sensitive to neural activity levels in the brain. For almost 

a century, brain activity was mainly detected using electrophysiological 

measurements, which consist in registering voltage fluctuations resulting 

from ionic current flows that occur when a large number of neighbouring 

neurons discharge simultaneously (Niedermeyer and Lopes da Silva, 1982). 

Electrophysiological recordings can be performed directly from the cortex of 

exposed brains either by placing electrodes over the cortical surface – a 

technique called Electrocorticography (ECoG) –, or to explore deeper brain 

structures, by introducing intra-cortical electrodes. Although these direct 

recordings permit the measurement of functional activation with high 

spatial and temporal precision, they are extremely invasive and can only be 

performed in humans under specific clinical conditions (i.e. for epileptic foci 

detection). Alternatively, electrophysiological measurements can be 

obtained by placing electrodes at the scalp level, using EEG. Apart from 

being non-invasive, EEG is easy to implement, can be carried around and is 

relatively cheap when compared to other functional imaging methods such 

as MEG and MRI scanners. However, it encounters other limitations on the 

measurement of localized functional activations. First, the detection of 

electric activity from deep sources using EEG scalp electrodes is difficult 

because voltage fields decrease with the square of distance and, in addition, 

are distorted by the skull and the scalp. Furthermore, the source-

reconstruction of electric sources detected by EEG poses an ill-solved 

problem with infinite solutions, and the activation sites can only be 

estimated with low spatial precision (in the order of a couple of 
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centimetres). Even so, the remarkable temporal resolution of EEG (around 1 

KHz, in the same way as all other electrophysiological techniques) makes it 

valuable tool to perform temporal and spectral analysis of brain activity 

under all types of mental conditions, including rest1.  

Based on Maxwell's equations, which stipulate that any electrical current 

produces an orthogonally oriented magnetic field, Cohen (1968) designed 

the magnetoencephalogram (MEG), a neuroimaging device capable of 

recording the magnetic fields produced by the cortical electrical currents. 

Since magnetic fields are less distorted by the skull and scalp than electric 

fields, MEG functional images have a better spatial resolution than EEG (in 

the order of a couple of millimetres). However, MEG detects only the 

tangential components of cortical activity (from the sulci), whereas scalp 

EEG measures the tangential and radial components capturing electric 

currents emerging from both sulci and gyri. Since the brain's magnetic field 

is considerably smaller than the ambient magnetic noise, the data 

acquisition must be performed in a magnetically shielded room and with 

highly sensitive magnetic sensors. Current MEG scanners use arrays of 

hundreds of superconducting quantum interference devices (SQUIDs), 

requiring cryogenic refrigeration, which are capable to detect neuro-

magnetic fields with high precision. In addition, MEG, like EEG, is capable of 

detecting electric variations as short as 1 millisecond, allowing the 

exploration of high-frequency oscillations which are unattainable using 

other functional imaging methods such as fMRI and PET2. 

Despite its low temporal resolution –around a couple of seconds-, functional 

MRI is probably the most widely used imaging technique to study brain 

function since the mid-90’s (Biswal et al., 1995, Friston et al., 1995, Buckner 

et al., 1996, Bullmore et al., 1996). fMRI is an indirect measure of neuronal 

activation because it measures the income of oxygenated haemoglobin (Hb) 

to a brain region (Logothetis et al., 2001). This oxygen is needed to build 

energy for ionic pumps responsible of resetting the (negative) resting 

                                                           
1
 Information regarding the characterization of resting-state activity using 

electrophysiology is provided in section I.I.2 - Electrophysiological signatures of 
resting-state activity. 
2
 Evidence of resting-state patterns detected with MEG is reported in section I.I.3 - 

Detection of resting-state patterns using MEG. 
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membrane potential of neurons after a discharge. With the increase of Hb, 

the fraction of deoxygenated haemoglobin (dHb) decreases. This difference 

leads to an improved MR signal (due to less distortion from paramagnetic 

dHB) that can be captured at the voxel level using the blood-oxygen-level-

dependent (BOLD) contrast (Ogawa et al., 1990). Unlike other functional 

contrast methods, the BOLD contrast consists in a specific MRI acquisition 

paradigm and does not require the injection of substances or radiation 

exposure. Furthermore, it allows the spatial mapping of event-related neural 

responses with high spatial resolution. During rest, the BOLD signal exhibits 

low-frequency fluctuations (<0.1Hz) that are independent from heartbeat 

and respiratory frequencies, suggesting the transient activation of neuronal 

ensembles1. 

Changes in neural activity (based on local changes in blood flow) can also be 

mapped using Positron Emission Tomography (PET) (Phelps et al., 1975, Ter-

Pogossian et al., 1975, Raichle, 1985). PET is a functional imaging technique 

that detects pairs of gamma rays emitted indirectly by a positron-emitting 

radionuclide, which is injected into the body on a biologically active 

molecule. Raichle et al. (2001) used PET images to measure the oxygen 

extraction fraction during rest and found the existence of an organized, 

baseline default mode of brain function that is suspended during specific 

goal-directed behaviours. However, since PET involves exposure to 

significant ionizing radiation, and due to the short half-lives of most 

positron-emitting radioisotopes, resting-state studies involving healthy 

volunteers are generally performed using fMRI.     

I.II.2.b – Functional Connectivity during rest 

To estimate functional interactions from resting-state fluctuations, several 

approaches can be undertaken, including correlation measures, ICA, PCA, 

mutual information, covariance and coherence analysis.  

The classic and most widely used method to infer the strength of 

interactions (or functional connectivity – FC) consists in estimating the linear 

(Pearson) correlation coefficient between temporal BOLD signals (Bandettini 
                                                           
1
 In section I.I.1– Resting-state hemodynamic fluctuations we describe how the 

BOLD signal is organized during rest.  
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et al., 1993, Biswal et al., 1995). If two regions activate (BOLD increase) and 

deactivate (BOLD decrease) at the same time, the correlation is high (≈1) 

meaning that there is a functional connection. The Pearson correlation 

coefficient between two series X and Y of size N is given by the following 

equation: 

     
    

 
              

         
                

   

 

Using correlation measures to investigate resting-state patterns, two levels 

of analysis are possible: 1) looking at the correlation between one specific 

region and the rest of the brain, i.e. seed-based correlation, or 2) exploring 

all possible functional connections by studying the correlation matrix. To 

perform an analysis at the seed level, prior information regarding the 

coordinates of the main activation sites of a certain RSN must be provided. 

After identifying the seeds belonging to an RSN, then maps of seed co-

activations can be built by overlapping the correlation maps of each seed 

(Fox et al., 2005). The brain regions that correlate with all the seeds from an 

RSN are identified as part of that RSN. 

Performing the correlation matrix between BOLD signals provides 

information regarding all pair correlations in the brain. Actually, each line in 

the matrix corresponds to a seed, and the entries in that line correspond to 

the correlation coefficient between the BOLD activation in that seed and all 

the remaining regions (columns). One advantage of computing correlation 

matrices is that they can be studied using graph theory, not only to evaluate 

the topological properties of functional networks, but also for the detection 

of functional modules and hubs. Investigating correlation matrices at the 

voxel level can be computationally costly so it is common to average the 

BOLD signals from voxels falling in the same cortical region (defined 

according to a certain parcellation scheme), and then analyse the 

correlation matrix at a much lower resolution (Honey et al., 2009). 

Moreover, wavelet analysis can be applied to the fMRI data to compute 

frequency-dependent correlation matrices. For example, this approach 

allows searching for the frequency range over which maximal differences 

are observed between healthy controls and subjects (Supekar et al., 2008a, 

Lynall et al., 2010, Bassett et al., 2012). Despite its usefulness for detecting 
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linear statistical dependencies, the correlation analysis has certain 

limitations. The most important relies on the fact that RSNs are not spatially 

independent and can overlap. In other words, the same cortical region can 

belong to more than one RSN at a time and therefore activates whenever 

one or another RSN is engaged. In this way, the activation pattern of that 

region turns out to be a sum of the activation patterns of each RSN it 

belongs, which cannot be captured using correlation measures.    

Recent studies propose the use of ICA to extract RSN spatial maps from 

coordinated BOLD fluctuations (Beckmann et al., 2005, Damoiseaux et al., 

2006, De Luca et al., 2006, Mantini et al., 2007, Beckmann, 2012). This 

method relies on the assumption that resting state activity is a mixed signal 

resulting from the additive combination of independent temporal signals, in 

the same way as a symphony is composed by different musical instruments 

in an orchestra. ICA is a particular case of blind source separation and the 

BOLD signal in each voxel               can be written as a 

composition of the different independent components                

with coefficients      in the following way: 

                                           

An important note to consider in ICA is that the number of independent 

components   is, in theory, equal to the number of sources   (i.e. number 

of voxels or number of cortical regions), since ICA cannot sort (nor scale) the 

source signals in correct order. However, reducing the number of sources 

(or dimensions) is possible by previously performing principal component 

analysis (PCA). PCA performs a linear mapping of the data to a lower 

dimensional space in such a way that the variance of the data in the low-

dimensional representation is maximized. In practice, it is obtained by 

computing the eigenvalue decomposition of the covariance matrix of the 

temporal signals. Then, the eigenvalues are sorted according to the 

proportion of variance they account for. Dimension reduction is possible by 

selecting the eigenvalues (i.e. principal components) that represent most of 

the variance.  

ICA is particularly rich because it allows mapping the areas in the brain that 

are contributing to each independent temporal signal, resulting in a 

characteristic spatial map for each IC corresponding to a functional network. 
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Beckmann et al. (2005) found that these networks exhibit high spatial 

consistency across subjects and closely resemble discrete cortical functional 

networks such as visual cortical areas or sensory-motor cortex, suggesting 

that each RSN can be linked to a particular low-frequency temporal 

signature (or IC). In 2006, De Luca and colleagues found 5 RSN patterns that 

were reproducible across different subjects, closely matching the functional 

networks recruited by specific types of cognitive processes. A few months 

later, Damoiseaux et al. (2006) identified 10 robust RSNs across healthy 

subjects with potential functional relevance, consisting of regions known to 

be involved in motor function, visual processing, executive functioning, 

auditory processing, memory, and the so-called default-mode network, each 

with BOLD signal changes up to 3%. Moreover, they report that each of 

these networks exhibits significant baseline dynamics, with percentage 

BOLD signal change comparable with the signal changes found in task-

related experiments. The extraction of RSNs from whole-brain resting-state 

BOLD signals using ICA is particularly important because it does not require 

any prior information regarding the expected location of RSNs. 

 

Figure 15 - Identification of an RSN using ICA. An independent temporal component 
       is extracted from the BOLD signals using ICA (green), and then mapped over the brain 
(top) by selecting the set of voxels   whose BOLD signals,        have stronger contributions 
from        as indicated by the coefficients     . The spectral properties of the IC waveform 

reveal a peak <0.1Hz. Adapted from Mantini et al. (2007).  
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Both correlation and IC analysis rely on the linear relationship between 

regions. Other nonlinear FC measures from information theory, such as 

mutual information, have been applied to resting-state data (Hartman et al., 

2011). Hlinka et al. (2011) defined FC matrices using both linear (Pearson 

correlation) and non-linear FC measures and evaluated the resulting 

networks using graph theory. Their results show that, at least from a graph-

theoretical perspective, the nonlinearity effects in resting-state activity are 

practically negligible when compared to the inter-subject variability of the 

graph measures and, on the group-average graph level, the nonlinearity 

effect is unnoticeable. In addition, Lynall et al. (2010) analyzed resting-state 

data using both mutual information and correlation measures at different 

wavelet scales, and found that correlation measures allowed a better 

distinction between healthy controls and schizophrenia patients. The linear 

dependency of resting-state BOLD time-series is probably linked to the slow 

time-scale inherent to fMRI (i.e. in the order of a couple of seconds), which 

does not allow the detection of fast time-delayed (or causal) interactions. 

Also for this fact, coherence analysis is not commonly applied in resting-

state fMRI data, since phase-lagged interactions between oscillatory signals, 

like those occurring at faster frequencies, are only detected at higher 

temporal resolution. 

I.II.3 – Characterizing complex networks using graph theory 

Brain networks, in the same way as biological, social, chemical, and Internet 

networks, are systems composed by a large number of complexly 

interconnected dynamical units. The first approach to capture the 

organizational properties of such systems is to model them as graphs whose 

nodes represent the dynamical units, and whose links stand for the 

interactions between them. A large number of measures have been defined 

in the field of graph theory to characterize the topology of such complex 

wiring architectures (Sporns et al., 2002, Boccaletti et al., 2006, Rubinov and 

Sporns, 2010). Moreover, with the availability of free Matlab libraries for 

graph analysis such as the Brain Connectivity Toolbox (www.brain-

connectivity-toolbox.net Rubinov and Sporns (2010)) and the MatlabBGL 

Toolbox (www.cs.purdue.edu/homes/dgleich Gleich (2007)) have allowed 

neuroscientists to efficiently implement the graph algorithms to explore and 

compare brain networks. 

http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/
http://www.cs.purdue.edu/homes/dgleich
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Here, we introduce some important graph theoretical measures that were 

used for the work presented in chapter V – Effect of structural 

disconnections on resting-state functional networks. Please note that we 

restrained ourselves to the properties of undirected binary graphs. An 

extension of the equations to weighted graphs is provided by Rubinov and 

Sporns (2010). Furthermore, we review a number of studies involving the 

characterization of both anatomical and functional brain networks, which 

provide fundamental insights into integrative aspects of brain function. 

Brain connectivity measures, both anatomical and functional, can be 

represented in the form of a matrix  , with each of the elements     

encoding the connection strength between two system elements   and  , 

  ,    . Since the connection strength may vary depending on the pair of 

regions considered, this matrix is generally weighted. However, to be 

studied using graph theory, the connectivity matrix   may be binarized into 

an adjacency matrix  , where       if a connection exists between 

regions   and  , or       otherwise. To binarize this matrix, one needs to 

define the minimum weight necessary to consider it as an actual link. The 

definition of this threshold has direct impacts on the density of connections 

(or sparsity) of the network, which may have non-negligible effects on the 

graph properties of the network (van Wijk et al., 2010, Bassett et al., 2012). 

 

Figure 16 - Thresholding weighted matrices into binary graphs. Thresholding functional 

connectivity (FC) matrices into graphs with distinct connection densities can result in graphs 

with different properties. 

Another crucial step on the definition of brain graphs is the size of the 

network, which is taken as the number of nodes. Since the brain can be 

parcellated at different scales (such as neurons, voxels or cortical regions) 

different graph properties may arise, and therefore the properties of brain 

networks must be taken in the light of the parcellation and the thresholding 
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technique employed. Still, two review studies on human brain graphs 

(Bassett and Bullmore, 2009, He and Evans, 2010) reported that some 

complex network properties are consistent over a range of spatial and time 

scales, and across modalities of neuroimaging data. Conserved principles 

include small worldness, high efficiency/low wiring cost, modularity and 

hubs, consistently found in brain networks obtained with structural MRI (He 

et al., 2007, Bassett et al., 2008, Chen et al., 2008), diffusion MRI (Hagmann 

et al., 2007, Iturria-Medina et al., 2008), fMRI (van den Heuvel et al., 2008, 

Ferrarini et al., 2009, Wang et al., 2009a), EEG (Micheloyannis et al., 2009, 

Rubinov et al., 2009), and MEG (Valencia et al., 2008, Stam et al., 2009). In 

addition, both structural and functional network metrics have been found to 

be heritable and to change with normal aging (Meunier et al., 2009, 

Micheloyannis et al., 2009). Furthermore, clinical studies principally in 

Alzheimer's disease and schizophrenia have identified abnormalities in the 

topological organization of resting-state functional networks in patients (Liu 

et al., 2008, Supekar et al., 2008a, Lynall et al., 2010). 

At the regional level, nodal characteristics can be measured by several 

metrics such as degree, path length, efficiency, and clustering coefficient, 

which can be used to sort nodes according to their role in the network. The 

node degree is defined as: 

       

 

   

  

The degree distribution is given as the probability distribution of node 

degrees over the whole network (Boccaletti et al., 2006) which provides 

information on the global organization of links over the network. 

Considering      as the probability of a node having a degree     , the 

cumulative degree distribution of the network (Barabasi and Albert, 1999) is 

given by: 

           

    

  

Sorting nodes in descending order of degree allows identifying the hubs of 

the network (i.e. nodes that have more connections). Hubs are generally 
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crucial elements for the integrity of the network. For example, if high-

degree hubs are removed from the network (also called a targeted attack), 

then the network may fractionate into two or more independent sub-

networks. Robustness measures have been defined to characterize the 

resilience of the network to attacks, both targeted and random. To estimate 

the robustness of a network, each time a node was removed from the 

network, the size of the largest connected component, s, is recalculated 

(using for example the corresponding function in the MatlabBGL Toolbox 

(Gleich, 2007)). Plotting the size   versus the number of nodes removed, 

    , the robustness parameter is defined as the area under this curve 

(Achard et al., 2006), normalized by         , so that the maximum 

robustness is 1. Networks that are more robust retain connectedness even 

when a large proportion of nodes have been eliminated. 

It seems that the most striking and widely studied property of brain 

networks is their small-world organization (Watts and Strogatz, 1998, Sporns 

and Zwi, 2004, Bassett and Bullmore, 2006, Sporns and Honey, 2006). To 

understand how the small-world index is calculated, we need previously to 

introduce the concepts of path length and clustering. 

 

Figure 17 – Illustration of the shortest path from node A to node B (green), and of a triangle 
(blue), where the neighbours of node C are also connected with each other. 

The path length consists on the average number of links (or paths) 

connecting every pair of nodes in the network. It can be calculated as: 

                
 (Rubinov and Sporns, 2010), where      is the 

shortest path (geodesic) between   and  . Note that       for all 

disconnected pairs    . The average shortest path length between all pairs 

of nodes in the network, is known as the characteristic path length of the 

network (Watts and Strogatz, 1998), and provides a measure of functional 

integration: 
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where     is the average distance between node   an all other nodes, 

representing the nodal path length. Considering that a network with a short 

characteristic path length will be more efficient in integrating information, 

Latora and Marchiori (2001) defined a measure of global efficiency  , as 

  
 

 
 

 

  

 

   

  

The efficiency   may be meaningfully computed on disconnected networks, 

because disconnected nodes are defined to have zero efficiency, while the 

path length   is infinite in such cases (Achard and Bullmore, 2007). 

The clustering coefficient provides information on how densely 

neighbouring nodes are connected. At the nodal level, if two neighbours of 

  are also connected between themselves, they form a triangle. Cn indicates 

the proportion between the number of triangles with a vertex in   and the 

total number of possible triangles if all neighbours of   would be directly 

connected with each other too. Computing the number of triangles of a 

node   as: 

   
 

 
          

 

       

  

the clustering coefficient of a graph C is defined in the following way: 

  
 

 
    

 

 

 

   

 
   

        
 

 

   

 

 

A graph is considered small-world if its average clustering coefficient   is 

significantly higher than for a comparable random graph   (See Figure 18 

for an illustration) but the mean shortest path length   is approximately the 
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same as in a comparable random graph (Watts and Strogatz, 1998, 

Humphries et al., 2006). 

 

Figure 18 - Small-world networks. Random rewiring procedure for interpolating between a 
regular ring lattice (left) and a random network (right), without altering the number of 
vertices or edges in the graph. Adapted from Watts and Strogatz (1998). 

Since the mean shortest path length can be estimated as the inverse of 

global efficiency, small-worldness    can be formulated in the two 

following ways (Achard and Bullmore, 2007, Humphries and Gurney, 2008): 

   
       

       
 

   

          
  

The more    is above 1, the more the graph is considered to be small-

world. The small-world architecture is particularly rich in complex brain 

networks because it supports both segregated modular specialization and 

distributed functional integration. In addition, it maximizes the efficiency of 

information transfer at a relatively low wiring cost. Notably, it seems to be a 

common self-organizing principle of complex natural systems, such as 

biological, chemical and even social networks (i.e. the famous “six degrees 

of separation” between living people). The importance of a small-world 

topology for an optimal cognitive performance is corroborated by reports of 

disrupted small-world properties in diseases such as schizophrenia (Liu et 

al., 2008, Lynall et al., 2010, Bassett et al., 2012), Alzheimer’s disease 

(Supekar et al., 2008a) and attention-deficit/hyperactivity disorder (ADHD) 

(Wang et al., 2009b). 
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A hierarchical network is defined so, if the nodes with larger degree (or 

hubs) are also poorly clustered, meaning that they are serving as a bridge 

between nodes poorly connected to each other. The hierarchy coefficient, 

 , is the (positive) exponent of the power-law relationship between the 

clustering   and the degree   of the nodes in the network such that       

(Ravasz and Barabasi, 2003, Bassett et al., 2008).  

 

Another important network metric is the modularity, which identifies 

modules of linked nodes that work together to achieve distinctive functions 

(Newman, 2006, Leicht and Newman, 2008). Connections are usually denser 

within modules than between them. Detecting and characterizing modules 

of the brain can allow us to identify groups of anatomically and/or 

functionally associated components that may subserve specific behavioural 

functions. For example in a model of resting-state dynamics, Deco et al. 

(2009) used a modularity algorithm to divide one hemisphere of the 

macaque anatomical network into 2 communities. Exploring the dynamics of 

the two modules independently, they found that each module exhibited a 

specific temporal pattern of synchronization, and notably, the 

synchronization level between the two modules was anti-correlated, which 

could be explained by stochastic resonance in a dynamical system with 

multistability. These results reinforce the idea that the topological 

organization of structural brain networks constrain and mould brain 

dynamics at multiple levels. 
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‘Occurrences in this domain are beyond the reach of exact prediction  

because of the variety of factors in operation,  

not because of any lack of order in nature.’ 

Albert Einstein, 1941 

 

I.III - Large-scale models of resting-state dynamics 

The dynamics unfolding from the interplay between brain areas, when these 

are embedded in the neuroanatomical network, has been attracting a 

growing body of research in computational neuroscience (Jirsa et al., 2010, 

Deco et al., 2011). Combining generative models of neuronal activity with 

realistic structural connectivity patterns has allowed exploring, through 

simulations, how large-scale interactions between neural systems can give 

rise to the spontaneous emergence of spatiotemporally organized 

fluctuations similar to the ones reported in resting-state neuroimaging 

studies.  

To investigate this dynamics at the whole-brain scale, it is useful to go 

beyond the microscopic activity of individual neurons and consider instead 

the mesoscopic behaviour of large ensembles of neurons, or neuronal 

populations (for a review see Deco et al. (2008)). Although simulations of 

detailed models at the cellular (and even sub-cellular) level are becoming 

computationally feasible (Markram, 2006, Izhikevich and Edelman, 2008), 

reduced neural-mass models, despite their low spatial resolution, allow a 

comprehensive study of the large-scale interactive dynamics with relatively 

low parametric complexity. This approach is motivated by neuroimaging 

observations that neurons within a densely connected neural ensemble tend 

to share the same physiological properties, exhibit dense reciprocal 

interconnectivity and show strong dynamical correlations. Neural-mass 

models can be extended to neural-field models, where the expected state of 

a neuronal population becomes a function of both time and position on the 

brain’s spatially continuous cortical sheet. However, for simplification, all 

the models described herein refer to isolated points in space (or point-

masses). 

Following different reduction lines, a number of studies have contributed for 

the understanding of resting-state dynamics using neural-mass models 
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coupled according to the brain’s anatomical architecture (Ghosh et al., 2008, 

Deco et al., 2009, Honey et al., 2009, Deco and Jirsa, 2012)(Hugues et al., in 

preparation). In the following, we describe the neural-mass models used in 

these works and describe how the simulated neural activity was 

transformed in a hemodynamic signal. Finally, we comment on the 

conclusions of the existing models, including the role of the main factors 

influencing functional connectivity during rest: couplings, delays and noise. 

Finally, we report the results of modelling studies that examined the 

dynamical consequences of structural lesions on resting-state activity. 

I.III.1– Modelling the dynamics of a cortical region 

I.III.1.a - Conductance-based biophysical model 

The first work to investigate the cooperative behaviour of neural systems 

coupled through a realistic anatomical wiring scheme was achieved by 

Honey and colleagues (2007). They used a biophysical neural-mass model 

introduced by Breakspear and colleagues (2003) together with the 

interregional anatomical connectivity of the macaque cortex (Kötter, 2004). 

Later, the same model was extended to incorporate human neuro-

anatomical connectivity and results were compared with resting-state fMRI 

functional connectivity from healthy humans (Honey et al., 2009). Finally, 

the same group used this model to study the dynamical impact of lesions in 

the brain (Honey and Sporns, 2008, Alstott et al., 2009), which we will 

describe in section I.III.4.  

The neural-mass dynamics in these works was derived from a conductance-

based model of neuronal dynamics (Morris and Lecar, 1981) extended for 

neural population activity (Larter et al., 1999). The coupling between neural 

masses (or cortical regions) was introduced via weak long-range excitatory-

to-excitatory connections, mimicking glutamate-induced synaptic currents 

(Breakspear et al., 2003, Breakspear et al., 2004). 

The main dynamical variable in that model is the mean membrane potential 

of pyramidal cells  , which is governed by the conductance of sodium (   ), 

potassium (  ) and calcium (   ) ions through voltage-gated channels, plus 

the passive conductance of ‘leaky’ ions (  ). The total current flow across 

pyramidal cell membranes is given by: 
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where      is the maximum conductance of each population of ions,      is 

the fraction of open ion channels (  for potassium ion channels), and      

is the Nernst potential for that ion species. All equations and parameters are 

non-dimensional and normalized to neural capacitance    . Each voltage-

gated channel opens when the membrane potential overcomes a given 

threshold,     . For a large population of ion channels,      assumes a 

Gaussian distribution (with variance     ) and hence, the fraction of open 

ion channels is given by the following (sigmoid-shaped) function: 

                
      

    
    

The fraction of open potassium channels   is defined differently because 

these channels ’relax’ from one state to another at an exponential rate. 

Therefore, W is governed by 

  

  
 

       

 
 

where   is a temperature scaling factor and is   the ‘relaxation’ time 

constant.  

To introduce synaptic interactions between neurons within the same neural 

ensemble, the average firing-rates of excitatory (    and inhibitory neurons 

(    is calculated and introduced as a feedback term subsequent to cell 

firing to represent neurotransmitter release. At the cell soma, the 

membrane potential triggers an action potential if it exceeds a threshold. 

Averaging this over the ensemble of neurons and assuming once again a 

Gaussian distribution, the cell firing rates can be obtained by the following 

equations: 
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where      are the maximum rates of firing of the excitatory and inhibitory 

neurons respectively. The firing of each population feeds back onto the 

ensemble and raises or lowers the membrane potential accordingly.  

Excitatory-to-inhibitory and inhibitory-to-excitatory connections are 

modelled as additional inputs to the flow of ions across the membrane 

channel, weighted by functional synaptic factors,     and     respectively. In 

addition, excitatory-to-excitatory connections are modelled with greater 

physiological detail: the mean firing rate    is assumed to lead to a 

proportional release of glutamate neurotransmitter across the synapse, 

which diffuses onto two classes of ligand-gated ion channels. On one side, 

AMPA receptors open additional sodium channels, increasing the net 

conductance of sodium flow. On the other, NMDA receptors open an 

additional population of voltage-gated calcium channels, increasing the 

maximum conductance of voltage-gated calcium channels. Incorporating 

these specifications, the membrane potential of excitatory ( ) and inhibitory 

( ) is given by: 

  

  
                            

                                

                        

  

  
                  

Where    corresponds to ‘nonspecific’ subcortical excitation with amplitude 

  modulated by a random noise component of amplitude   added to both 

populations with weights     and    .     scales the local excitatory-to-

excitatory synaptic strength and       denotes the number of NMDA 

receptors relative to that of AMPA receptors. 

These equations depict the behaviour of one population of densely 

interconnected excitatory and inhibitory neurons. To model the cooperative 

behaviour of   coupled neural-masses it is necessary to introduce long-

range excitatory projections between pyramidal cells. These long-range 

projections are modelled to target the same populations of NMDA and 

AMPA receptors targeted by the short-range excitatory projections. 
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Representing each node with an index       , the following equation 

describes the mean membrane potential of pyramidal cells at position   : 

      

  
                          

                                 

                                          

                                

                   

where    represents spatial averaging over neural-masses. Parameters 

were set to values that replicate realistic conductances. Using a regular 

connectivity these values had previously been reported to show complex, 

spontaneous activity, including intermittency, phase synchrony, and 

marginal stability (Breakspear et al., 2003, Breakspear et al., 2004).  

When computing the network dynamics using realistic anatomical 

connectivity from the macaque (Honey et al., 2007) or the human (Honey et 

al., 2009) brains, the inter-node coupling was set to a value at which 

synchronous dynamics is weakly stable, allowing spontaneous switching 

between synchronous epochs and desynchronous bursts. Since neither 

noise nor delays are introduced in the model, activity in the system arises 

purely from nonlinear instabilities due to the complex structural 

connectivity and the chaotic dynamics at the neural-mass level. Under this 

parameterization the neural interactions in the model occur at multiple 

time-scales and reflect spontaneously arising ’self-organizing’ patterns. In 

this configuration, the authors identify BOLD network activations, which 

favourably compare to resting-state functional connectivity. 

 

I.III.1.b - The FitzHugh-Nagumo model  

The neuro-anatomical architecture of the brain shapes not only the 

connectivity between regions, but also the distance over which these 

connections occur, defining in this way a space-time structure of couplings 

and delays, which is essentially constant over relatively short time scales. In 

order to explore the behaviour of neural-masses in this dynamic framework, 

Ghosh et al. (2008) studied the ongoing dynamics of FitzHugh-Nagumo units 
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(Fitzhugh, 1961, Nagumo et al., 1962) coupled according to anatomical 

connectivity of one hemisphere of the macaque brain (Kötter, 2004). 

Importantly, the interaction between regions was time-delayed, with delays 

proportional to the distance between regions1. 

The node model was implemented by defining two state variables,    and 

  , representing the membrane potential and the recovery potential 

correspondingly, for each node    A parameter   scales all connection 

strengths without altering the connection matrix     nor affecting the 

associated time delays     . The following differential equations describe 

the dynamics of the state variables, with corresponding additive noise    

and   : 

                     

 

   

                 

                      

The functions   and   are based on FitzHugh-Nagumo systems (Fitzhugh, 

1961, Nagumo et al., 1962) and are defined as follows: 

                  
  

 

 
   

                          

In absence of connectivity, the network nodes display damped oscillatory 

dynamics. Nodes were then coupled with brain-inspired connectivity and 

delays and the stability of the resulting dynamics was investigated as a 

function of finite signal transmission speeds and increasing coupling 

strengths2. For a restricted interval of velocities (5-20m/s) and for a 

sufficiently strong coupling, the system exhibits increased instability. At the 

                                                           
1
 Note that the space-time structure is only approximately estimated, since the 

locations of the regions were based on a standard human atlas (AAL), whilst the 
connections were derived from macaque brains. 
2
 For details on the parameter set, see Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa 

VK (2008) Noise during rest enables the exploration of the brain's dynamic 
repertoire. PLoS computational biology 4:e1000196.. 



47 
 

border of instability, and in the presence of noise, neural-masses display the 

emergence of oscillatory dynamics (at 10Hz) with fluctuating amplitude (see 

Figure 19). 

 
Figure 19 - Time series of coupled FitzHugh-Nagumo units at the border of instability with 
noise. Adapted from Ghosh et al., (2008). 

The network connectivity is found to shape the dynamic repertoire of the 

entire network, giving rise to slow fluctuations in the power of the 10Hz 

oscillations (i.e. fluctuations in band-limited power). To test for the 

emergence of ultra-slow oscillations, the BOLD signal was computed1, giving 

rise to rest-like fluctuations that were correlated across distant areas. 

Furthermore, simulated BOLD signals were found to exhibit correlations 

within the DMN as transmission velocities ranged between 5 and 10m/s, 

which falls in the interval of expected realistic speeds in myelinated axons. 

In addition to the results presented in their study, the authors have tested 

multiple oscillator types which are commonly used in neural-mass modelling 

including Hopf oscillators, Wilson-Cowan systems, FitzHugh-Nagumo 

systems, and finally mixed populations of coupled FitzHugh-Nagumo 

neurons (Assisi et al., 2005), all of which provided similar results. 

I.III.1.c - The Wilson-Cowan model 

Another important modelling study of large-scale resting-state dynamics 

was developed by Deco and colleagues (2009) using the same space-time 

                                                           
1
 See section I.III.2 - Transforming neuronal activity into BOLD signal. 
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structure as Ghosh et al. (2008), i.e.  the macaque's anatomical connectivity 

(CoCoMac; Kötter (2004)) and time delays derived from a human template. 

At the node level, the dynamics of a neural population was modelled using 

Wilson–Cowan units (Wilson and Cowan, 1972, 1973). Wilson and Cowan 

analyzed the collective properties of large ensembles of excitatory and 

inhibitory neurons using methods from statistical mechanics, based on the 

mean-field approach. They proposed that typical dynamics in a cortical 

region could be obtained by considering a population of excitatory neurons 

coupled with a population of inhibitory neurons. 

It consists on a set of differential equations that describe the time evolution 

of the mean level of activity of a neural population, using a nonlinear 

sigmoid function to represent the interactions between the populations. The 

activity of a pool of excitatory (pyramidal) neurons without external 

input,     , is given by the following equation: 

 
     

  
                

where   is the membrane time constant,       means that the activity 

decays in time if no stimulation is received, and the last term takes into 

account the recurrent excitatory stimulation from all the neurons in the 

same pool. The response function transforming the current into discharge 

rates is given by: 

     
 

            
  

Considering now the two populations of the Wilson-Cowan module are 

coupled together, one with only excitatory neurons,     , and another with 

only inhibitory neurons,     , the  dynamics of such module is given by the 

following 2 differential equations: 
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where    is a diffuse spontaneous background input, and    is additive 

independent Gaussian noise with mean value zero. The noise level is given 

by the variance     . 

 
Figure 20 – Schematic illustration of a Wilson-Cowan unit. The model consists in two pools, 
one representing a population of excitatory neurons and the other a population of inhibitory 
neurons that are coupled to each other. Adapted from Deco et al. (2012). 

To model the network dynamics at the macroscopic level,      Wilson-

Cowan modules, each representing a cortical region, were coupled 

according to the macaque’s neuro-anatomic connectivity, using the 

connectivity matrix    and the assumed delays    . The global dynamics is 

given by 

 
      

  
                  

 

   

                        

and 

 
      

  
                          

  regulates the global coupling strength and recurrent couplings wre set to 

         . In all simulations Deco et al. (2009) used    ,       , 

             ,      and      . 

Taking into account the bifurcation diagram of a single Wilson-Cowan 

module as a function of the parameters     and   , these 2 parameters 

were selected such that the node dynamics is at the border of a Hopf 

bifurcation, but still in a non-oscillatory low-activity state. The idea is that, 
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when modules are coupled (   ), they go spontaneously to an oscillatory 

state in the gamma-frequency band (40Hz). Notably, for the range of 

couplings, time delays, and noise parameters used in Deco et al. (2009), the 

coupled modules behave similarly to single isolated and noise-free Wilson-

Cowan oscillators. 

In a regime where neural-masses exhibit self-sustained oscillations in the 

gamma-frequency range, it was found that the system was organized into 2 

functional networks who competed to synchronize. For a certain level of 

noise, the synchronization level of the two networks was found to fluctuate 

slowly (0.1Hz) and in an anti-correlated way, in agreement with previous 

reports of anti-correlated functional networks during rest (Fox et al., 2005). 

I.III.1.d - Node model in asynchronous state 

The model of resting-state activity presented in this section was derived by 

Etienne Hugues, extending work done in (Mattia and Del Giudice, 2002). It 

has been used in the work presented in Chapter V. This model builds on the 

assumption that local neural networks are in a stable asynchronous state 

where no oscillations develop, and where small perturbations of the neural 

activity around this state are induced by internal and external fluctuations of 

the otherwise constant external stimulation.  

The evolution of the activity of a large population of spiking neurons can be 

described by the probability distribution of their internal variables (the 

membrane potential in the simplest case), which obeys the Fokker-Planck 

equation (Risken, 1989). An associated equation gives the neural population 

firing-rate. Under the hypothesis that the network has a stable 

asynchronous state, the steady solution of the Fokker-Planck equation is 

stable and therefore these equations can be linearized around this solution. 

In this case, the node dynamical model describes only the firing rate 

deviations of the neural mass around its asynchronous state. Decomposing 

the probability distribution using the infinite series of eigenmodes of the 

Fokker-Planck equation, we arrive to a linear dynamical equation for each of 

the coefficients of the series’ expansion plus an equation for the rate 

fluctuations. The solution of this infinite set of linear equations is controlled 

by the infinite set of eigenvalues              where       is an 

oscillation frequency and    is a damping timescale. Among these modes, 
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very few have a sufficiently large damping timescale so that they effectively 

contribute to the dynamics. Usually, one mode has a real eigenvalue which 

describes perturbations that simply decay exponentially in time, with a 

timescale   . As the model is intended to simulate the BOLD signal, the 

dynamics produced by the (fast) oscillatory perturbations will be filtered 

out. Therefore, the dynamics we are interested herein can be approximately 

described by the exponentially decaying perturbations responsible for the 

low-frequency part of the neuronal activity. Finally, for the local network  , 

the firing rate deviations       obey the following first order stochastic 

differential equation:  

  

   
  

         
 

  
                             

 

   

 

  is the global excitatory coupling level between nodes (   ).     and     

are the structural coupling strength and the conduction delay from region p 

to region n, specified by the structural connectivity (SC). As   has positive 

coefficients, the Perron-Frobenius theorem shows that this matrix has a real 

eigenvalue    such that all other eigenvalues are lower in modulus, and 

therefore have a lower real part.   is the noise level and the terms       are 

uncorrelated white Gaussian noises with zero mean and unit variance 

(           and           
              , where     is the Kronecker 

symbol and      denotes the Dirac delta function). This noise is not 

necessarily of external origin (i.e. stimulation noise) and can be generated 

internally: finite size networks have been shown to intrinsically induce noise 

in the dynamics (Mattia and Del Giudice, 2002). As equations are linear,   

only scales the level of the rate deviations. Given   , which is given by the 

internal state of local networks (      ms here), the dynamics depends 

only on one parameter:  . As long-distance connections are excitatory, the 

reverberated activity over the network can destabilize the damped local 

dynamics, and therefore the asynchronous states. For this reason,   must be 

bounded from above. For null delays, a classical stability analysis gives the 

stability condition:     (explaining why we have scaled down the coupling 

by    in the previous equation). When delays are finite, this remains a very 

good approximation.  
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Without noise, the dynamics of the firing rate deviations around an 

otherwise constant state would always tend to zero after some time, as long 

as the stability condition is verified. In the presence of noise, the model 

permanently produces ongoing fluctuations across the large-scale network 

by the excitatory reverberation of local activity on this recurrent network. 

Consequently, even if individual noises are independent, the SC makes the 

rate fluctuations not independent, explaining in principle the finding of 

large-scale structure in the brain fluctuations.  

To gain theoretical insight into the large-scale network dynamics, it is useful 

to consider the case of null delays. This case corresponds to the Ornstein-

Uhlenbeck process in N dimensions (Gardiner, 2004) but, what makes the 

dynamics interesting here is the complicated –or disordered- connectivity 

matrix  , which is the main ingredient in explaining the emergence of 

functional networks as will be shown below. In this case, and using the 

eigenvectors frame of  , the firing rate deviations can be written as 

              
 
    where      and      are the column vectors of the 

original and transformed rate perturbations, respectively.    is the  –th unit 

right eigenvector of the matrix  , associated  with the eigenvalue   . As the 

network has a three-dimensional representation,    represents a spatial 

map (Note that, when considering the case of non-symmetric connectivity 

matrices, pairs of complex conjugate eigenvalues appear and therefore both 

conjugate eigenvectors need to be used to define physically meaningful 

spatial maps). We sorted these eigenvalues in descending order of the real 

parts:                      (      denoting the real part of  ). Each 

transformed rate perturbation, or mode,       has temporal fluctuations 

described by the timescale          
       

  
   . From the ordering of 

the eigenvalues of  , we have             . Therefore, the global 

dynamics of the large-scale network is a superposition of these temporal 

modes, but with distinct spatial maps for each mode. In particular, the 

modes associated to the eigenvalues with the largest real parts have the 

largest timescales, and therefore are the slowest ones. Moreover, when the 

coupling   increases, all modes up to mode   (for which          

        ), get slower and the others get faster. The timescale of the first 

mode               increases faster than all the other timescales   , 



53 
 

with      and even diverges as   . If we add the fact that the variance 

of mode       is proportional to   , the fluctuations in the network 

dynamics will be dominated (in variance) by the slowest modes, and 

dominantly by      , leading to correlations in the low-frequency part of 

the neural activity. In particular, the BOLD signal, which can be seen in a first 

approximation as a low-pass filtering of the neural activity (Cabral et al., 

2011), will present spatial correlations. As a result, the mean of the 

correlation distribution of the BOLD correlation or FC matrix will shift 

towards positive values.  

Because of the finite axonal conduction velocity -in the range      m/s-, 

delays are in fact finite but shorter than    ms in humans. Delays 

theoretically introduce an infinite number of degrees of freedom but their 

practical effect on the dynamics depends on their magnitude. When the 

linear dynamical equations are written in the frequency domain, for a given 

frequency  , delays enter in terms              . Here, we are only 

interested in the BOLD signal generated by the neural activity. Because the 

model used to calculate the BOLD signal (see section I.III.2- Transforming 

neuronal activity into BOLD signal) first filters the neural activity with a low-

pass filter with approximate cut-off at        Hz (Cabral et al., 2011), and 

since            , the delays have a very small effect on the slow part of 

the neural activity which is responsible for the BOLD signal. Simulations with 

and without delays confirm, in the particular case of this model, the 

negligible effect of the delays. 

Simulations with the model generated slow BOLD signal fluctuations that 

revealed the underlying anatomical connectivity, correlating significantly 

with empirical functional connectivity. 

I.III.1.e – Attractor network of spiking neurons 

In a recent work, Deco and Jirsa (2012) propose a resting-state model with 

an increased degree of realism at the node level. Each node in the network 

was modelled as a biophysically realistic attractor network consisting of 

mutually interconnected populations of excitatory pyramidal neurons and 

inhibitory neurons. This type of attractor network of spiking neurons is a 

dynamical system with an intrinsic tendency to settle in stationary states – 

also called “attractors”- typically characterized by a stable pattern of firing 
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activity. Small perturbations due to external (or even internal) noise may 

provoke the destabilization of an attractor, inducing transitions between 

different stable attractors. 

Individual neurons were modelled as integrate-and-fire (IF) spiking neurons 

with excitatory (AMPA and NMDA) and inhibitory (GABA-A) synaptic 

receptor types. The dynamics of an IF neuron is described by its membrane 

potential     , defined as: 

  

     

  
                       

where        is the membrane leak conductance,    is the resting 

potential, and         is the incoming synaptic current. The membrane time 

constant is defined by           When the voltage across the 

membrane reaches the threshold     , the neuron generates a spike, which 

is then transmitted to other neurons, and then the membrane potential is 

instantaneously reset to        and maintained there for a refractory time 

    . The synaptic input         depends nonlinearly on 1) the excitatory 

currents received from other neurons, 2) the excitatory and inhibitory 

currents received through recurrent connectivity and 3) an external 

background input from 800 external neurons emitting uncorrelated Poisson 

spike trains (see Deco and Jirsa (2012) for details). 

Each of the 66 nodes in the macroscopic network of the brain contains 100 

excitatory pyramidal neurons and 100 inhibitory neurons, resulting in a total 

of 13200 neurons with nonlinear interactions. Integrating the full spiking 

model is too computationally expensive to allow the exploration of the 

parameter space to find the parametric conditions matching the 

experimental findings. Alternatively, performing a mean-field approximation 

reduces the number of integration variables for each neural population 

(Brunel and Wang, 2001) and allows determining the number of fixed points 

–or attractors- of the population firing rates in the parameter space (the so-

called “attractor landscape” Figure 21 Left). By manipulating the global 

coupling weight, it is found that the model optimally predicts empirical data 

(Figure 21 Right) when the brain network operates at the brink of a 

bifurcation that separates the stable equilibrium low activity state from the 
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multistable state region where many attractors corresponding to high 

activity in different brain areas coexist. 

 

Figure 21 – Comparing the model’s performance with the attractor landscape. (Left) Mean-
field analyses of the attractor landscape of the cortical spiking network as a function of the 
global inter-areal coupling weight. The dashed line plots the number of stable attractors, 
whereas the continued line shows the entropy of the attractors. (Right) Fit of simulated data 
with empirical functional connectivity, as a function of the global coupling weight. The best fit 
is achieved at the edge of the bifurcation (vertical line). Adapted from Deco and Jirsa (2012). 

The results from this work demonstrate that resting state networks in fMRI 

can result from structured noise fluctuations around the trivial low firing 

equilibrium state induced at the edge of a bifurcation by the presence of 

latent “ghost” multistable attractors corresponding to distinct foci of high 

firing activity in particular brain areas. 

I.III.2 - Transforming neuronal activity into BOLD signal 

To estimate BOLD signal changes associated with the simulated neural 

activity, all the previous models have used the Balloon-Windkessel 

hemodynamic model (Friston et al., 2003)1. This model specifies the 

neurovascular coupling of neural activity into blood perfusion changes. The 

BOLD signal is taken to be a static nonlinear function taking into account the 

normalized voxel content of deoxyhemoglobin, the normalized venous 

volume, the net oxygen extraction fraction by the capillary bed during 

                                                           
1
 In our works presented in chapters II, III and IV, the same model was implemented. 



56 
 

resting and the resting blood volume fraction. To estimate the BOLD-signal 

estimation we built on the assumption that the physical quantity whose 

variations underlie BOLD signal is the firing rate of the neuronal population 

     . In the model, the firing rate fluctuates around a fixed value and these 

fluctuations are given by a periodic function of the local node phase. We 

have made the simple choice of the sine function, that is       

            , with a fixed amplitude   =1.  

The neural activity at node  ,      , causes an increase in a vaso-dilatory 

signal    that is subject to auto-regulatory feedback. Inflow    responds in 

proportion to this signal with concomitant changes in blood volume    and 

deoxyhemoglobin content   . The equations relating these biophysical 

variables with the BOLD signal    are: 

      

  
                  

      

  
    

        

  
      

 
  

        

  
 

           
 
   

  
 

  

 
   

  
 

where    is the resting oxygen extraction fraction. The BOLD signal is taken 

as a static nonlinear function of volume and deoxyhemoglobin that 

comprises a volume-weighted sum of extra- and intravascular signals: 

                    
  

  
                   

where         is the resting blood volume fraction. The biophysical 

parameters were taken as in Friston et al. (2003). 
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I.III.3 - Conclusions from previous resting-state models 

At the macroscopic level, all models presented in this section have used a 

brain-inspired connectome and have found the emergence of slow BOLD 

fluctuations that correlate across spatially segregated brain areas. 

Moreover, all studies agree on the key role of the coupling matrix in shaping 

the spatial patterns of BOLD correlations. However, at the mesoscopic level, 

different reduction lines were followed to characterize the spontaneous 

dynamics of neural masses and their cooperative behaviour (See Table 1 for 

a comparison between models).  

Concerning the dynamical regime of neural populations, different 

assumptions were made regarding their intrinsic spontaneous behaviour. 

According to the literature in resting-state models, three major stationary 

regimes are possible for an isolated ensemble of neurons: a fixed-point 

attractor, a limit-cycle attractor or a chaotic attractor (see Figure 22). On the 

case the neural ensemble is in a stable asynchronous state, i.e. all neurons in 

the network fire irregularly, the dynamics can be described by a fixed-point 

attractor. In this case oscillations –if they exist- manifest only transiently as 

resonances in the network response (Mattia and Del Giudice, 2002). This 

type of dynamics was considered in the resting-state models of Ghosh et al. 

(2008), Deco and Jirsa (2012) and Hugues et al., (in preparation). On the 

other hand, if the neuronal populations in the network fire synchronously 

with rhythmic periodicity due to recurrent excitation and inhibition, then 

population exhibits self-sustained oscillations (Brunel, 2000, Borgers and 

Kopell, 2003, Brunel and Wang, 2003, Bartos et al., 2007) and the dynamics 

is described by a limit-cycle attractor. In the resting-state model of Deco et 

al. (2009), the Wilson-Cowan units were under this regime. Finally, if we 

consider that, due to nonlinear interactions between neurons, the local 

network exhibits intrinsic instabilities where nonperiodic intermittent 

oscillations occur (as in Honey et al. (2007, 2009)), then they instantiate a 

chaotic dynamics (Aihara et al., 1990). Although there is a qualitative 

difference between these three dynamical regimes, assuming different 

reduction lines permit to consider the neural-mass in any of these dynamical 

states during rest. 



58 
 

 

Figure 22 - Three possible dynamical regimes of a neural-mass. Adapted from  Aihara (2008). 

Due to fundamental differences in the models, noise and/or delays may -or 

not- play a fundamental role in resting-state dynamics. Indeed, as can be 

seen in Table 1: 

- In Honey et al. (2007, 2009) neither noise nor delays were considered. 

- In Ghosh et al. (2008) and Deco et el. (2009) both noise and delays play a 

fundamental role.  

- In Deco and Jirsa (2012) and in Hugues et al. (unpublished) only noise plays 

a fundamental role in the slow BOLD dynamics and delays can be neglected. 

Both delays and noise are naturally present in the brain. Time delays arise 

principally from finite axonal transmission speed and from synaptic and 

dendritic processes and are usually on the order of 10–100 ms. Neglecting 

time delays reduces significantly the cost of numerical computations. 

However, the question whether time delays need or not to be considered 

when studying BOLD signal fluctuations depends on the assumptions 

regarding the intrinsic neurophysiology of the mechanism that binds cortical 

regions together. If we consider that the neural populations have an 

oscillatory local dynamics with non-negligible delays compared to the 

oscillation period, and that the BOLD signal is generated by interactions 

between these fast oscillatory rhythms, neglecting the time delays does not 
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seem permissible (Ghosh et al., 2008). On the other hand, if we consider 

that neurons in a population fire asynchronously and neglect the oscillatory 

physiological signals, then time delays do not alter the slow dynamics of 

neural activity and may be neglected (Deco and Jirsa, 2012). However, it is 

important to note that delays may reduce the stability of the oscillatory 

network states (Jirsa and Ding, 2004, Jirsa, 2009). 

Regarding the role of noise, the question of whether or not it plays an 

essential role in resting-state dynamics depends again on the dynamics at 

the node level. From the experimental literature, it seems that the brain 

during rest wandering between different states, where different subsets of 

brain regions (RSNs) form temporary coalitions, which alternate in time. 

When the dynamics at the node level is non-chaotic (Ghosh et al., 2008, 

Deco et al., 2009, Deco and Jirsa, 2012) the dynamical transitions between 

stable states occur due to the presence of noise fluctuations. However, if 

there are intrinsic instabilities in the system, either due to nonlinear 

interactions in the local network (Honey et al. 2007, 2009) or generated by 

the complex spatial structure of the brain1, transitions between different 

stable states can occur in the absence of noise. In conclusion, we believe it is 

essentially a question whether there is an external source of noise or if the 

model by itself is capable of generating internal instability. 

  

                                                           
1
 In chapters II, III and IV we will show results where multistability occurs in a 

network of limit-cycle oscillators in the absence of external noise. 
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Table 1 – Comparison between previous models of resting-state activity
1
. 

                                                           
1
 In Table 3 (p.160) we complete this table with the results presented in this thesis. 
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I.III.4 – Modelling the impact of lesions 

The complex connectivity of the neuroanatomical connectome has been 

shown to play a fundamental role in the global integrative aspects of brain 

function. As a consequence, structural damage at the local level, as a result 

of stroke, traumatic brain injury, cancer or degenerative brain disease, can 

produce behavioural deficits not only through the disruption of neural 

circuits local to the lesion site, but also by disrupting information flow along 

larger-scale pathways or by unbalancing competitive inter-regional 

interactions. Therefore, to understand (or even predict) the effects of a 

cortical lesion, it is necessary to consider the lesion-induced changes in the 

dynamics at the macroscopic scale. Some modelling studies have studied 

the impact of lesions in functional connectivity during rest (Honey and 

Sporns, 2008, Alstott et al., 2009). In these works, lesions were simulated by 

removing nodes -or cortical areas- in the brain using the macaque (Honey 

and Sporns, 2008) or the human (Alstott et al., 2009) connectomes. Findings 

indicate that lesions produce specific patterns of altered functional 

connectivity among distant regions of cortex, often affecting both cortical 

hemispheres. These patterns are highly dependent on the location of the 

lesion in the network and its impact depends on the properties of the node 

(for example, its clustering coefficient).  
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I.IV – Motivation 

 “Any intelligent fool can make things bigger and more complex...  

 It takes a touch of genius - and a lot of courage – 

to move in the opposite direction.” 

Albert Einstein 

 

Over the years, neuroscience research has been centred on the systematic 

gathering of experimental data and tentative induction of the universal laws 

governing brain dynamics from empirical observations. This classical 

inductivist form of scientific method was first introduced by Sir Francis 

Bacon in 1620 (Bacon, 2010). However, the application of this so-called 

Baconian method to large complex systems, like the brain or the universe, 

has proven to be largely unfruitful due to contributions from countless 

unpredicted undergoing physical and chemical processes. 

Considering that scientific theories are abstract in nature and can only be 

tested rather than induced, Sir Karl Popper supported a form of scientific 

method based on making falsifiable predictions (Popper, 1934). For 

example, Newton anticipated the motion of planets in a concise set of 

mathematical equations that made precise predictions. Although Newton’s 

laws had major flaws and his equations failed to be the final answer, they 

are a beautiful example of a theory that makes strong falsifiable predictions, 

which can be further experimentally tested (Gamez, 2012).  

In the same way as Newton did not have access to the state of every 

molecule in every planet to predict their behaviour, it is probable that a high 

level of abstraction - beyond the behaviour of single neurons or realistic 

neural-mass models - is needed to understand the universal laws governing 

brain dynamics. Indeed, although the existing resting-state models largely 

reproduce features of macroscopic resting-state dynamics, they still 

generate complex and hardly interpretable simulated data, making it 

difficult to extract the pure mechanisms at the genesis of BOLD signal 

fluctuations. 

In this work, our main motivation was to go beyond existing resting-state 

models and explore an even higher level of abstraction. We tested if the 

interaction of cortical regions could be modelled as coupled oscillators, 
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using a mathematical equation derived by Kuramoto (1984) that applies to a 

wide range of coupled oscillatory systems in nature. Adopting a Popperian 

method, we expect our approach to lead to strong –though falsifiable- 

predictions that could guide future theoretical and experimental 

neuroscience research. 

In the following chapter, we explain in detail the Kuramoto model, its 

synchronization behaviour and its extension to time-delayed interactions. In 

chapters III and IV, we report our results when introducing neuroanatomical 

connectivity with realistic delays and compare with experimental resting-

state data (BOLD and MEG). Finally, in chapter V we study the outcome of 

disconnection effects in resting-state dynamics and compare with results 

from schizophrenia patients. In addition, in chapter V, we performed 

additional simulations with a more realistic neural-mass model and compare 

the results with the Kuramoto model. 
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II – Complex dynamics of coupled phase-oscillators 
 

‘Fools ignore complexity.  

Pragmatists suffer it.  

Some can avoid it.  

Geniuses remove it.’ 

Alan Perlis 

 

One of the most captivating cooperative phenomena occurring in nature is 

the spontaneous emergence of order from chaos through synchronization. 

The synchronous flashing of fireflies is a good illustration, but examples 

range from cardiac pacemaker cells to orbiting planets, from sleep cycles to 

coupled pendulums, and many other biological, chemical, physical or social 

systems in the universe (Pikovski et al., 2001, Strogatz, 2003). Spontaneous 

order is observed in galaxies, cells, ecosystems and human beings, who are 

capable of assembling themselves against the laws of thermodynamics 

dictating exactly the opposite: that nature should inevitably degenerate 

toward a state of disorder and greater entropy. Although the origin of this 

unifying force remains a mystery, the dynamics of oscillator systems is 

mathematically tractable in a simple, yet very insightful manner, using a 

differential equation derived by Yoshiki Kuramoto (1984). Importantly, the 

Kuramoto equation can be used in computer models to predict the 

collective behaviour of coupled oscillators. In this section, we describe the 

Kuramoto model in detail and depict the most important synchronization 

phenomena occurring from it. 

II.I – The concept of a phase oscillator 

An autonomous dynamical unit whose parameters evolve periodically in 

time, describing a stable periodic orbit, even after small perturbations occur, 

is called a limit-cycle oscillator. A periodic self-sustained oscillator can be 

described as a mathematical object by means of a single variable, the phase. 

This phase,  , parameterizes the motion along the cycle, and its evolution in 

time is given by: 
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where     is the natural (or intrinsic) frequency of the oscillator.  

Self-sustained rhythmic activity occurs frequently in nature, one the most 

striking examples of it happening in the brain. Indeed, as revealed by most 

electrophysiological experiments a myriad of coherent brain rhythms 

emerge naturally in the brain, closely linked to specific mental states. 

Furthermore, some self-sustained oscillations in the cortex are known to 

emerge from the interaction of large numbers of excitatory and inhibitory 

neurons (Brunel and Wang, 2003, Bartos et al., 2007). Interestingly, regular 

periodic firing has been observed even in cortical slices in vitro. Sanchez-

Vives and McCormick (2000) demonstrated that slices of ferret neocortex 

maintained in vitro generate a slow (< 1 Hz) rhythm when placed in a 

bathing medium that mimics the extracellular ionic composition in situ (see 

Figure 23). This slow oscillation results from a recurrent excitatory 

interaction between pyramidal neurons that is regulated by inhibitory 

networks. 

 
Figure 23 - Generation of a slow self-sustained oscillations in vivo and in vitro. (Left) 
Intracellular recording in the primary visual cortex of an anesthetized cat reveals a rhythmic 
sequence of depolarized and hyperpolarized membrane potentials. (Right) Simultaneous 
intracellular and extracellular recordings in ferret visual cortical slices maintained in vitro. The 
intracellular recording is from a layer 5 intrinsically bursting neuron. (Bottom) 
Autocorrelograms of the intracellular recordings show a marked periodicity of a few seconds. 
Adapted from Sanchez-Vives and McCormick (2000). 
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When engaged in rhythmic firing, the neural ensemble follows a closed 

periodic trajectory in phase space and therefore it can be considered as 

limit-cycle oscillator. This phase reduction approach provides a direct link 

between neural-mass models exhibiting self-sustained oscillations (as 

observed for example in Deco et al. (2009)) and a phase oscillator. 

Furthermore, Hoppensteadt and Izhikevich (1997) showed that weakly-

coupled Kuramoto oscillators and weakly-coupled Wilson–Cowan oscillators 

have similar interaction dynamics. However, the formal reduction from a 

Wilson–Cowan model to a phase oscillator implies disregarding the 

amplitudes of the oscillators and working only with their phases. Schuster 

and Wagner (1990) formally applied this reduction and reproduced 

observations of synchronization between cortical columns in the visual 

system, suggesting that cortical columns interact through phase 

modulations. 

 II.II - The Kuramoto model of coupled oscillators  

The reduction of neural-mass models to phase-oscillators restricts the 

neural ensemble dynamics to a single scalar measure, i.e. its phase. 

Although this may seem highly restrictive, Kuramoto (1984) showed that an 

ensemble of phase oscillators interacting through an appropriate functional 

form approximates the long-term behaviour of any ensemble of interacting 

oscillatory systems as long as the coupling is weak and the subsystems are 

nearly identical. In a network with   coupled oscillators (or nodes) and 

denoting by    the phase of node  , Kuramoto derived the following 

dynamical equation to predict the behaviour of node   taking into account 

the phase of all nodes in the network: 

   

  
                         

 

   

                      

   is the natural frequency of node   on its limit cycle when uncoupled. 

Natural frequencies are, in the original formulation of the model, distributed 

with a given probability density     .   scales the global coupling weight 

and     is the coupling strength from node   to node  . If we consider that 

each node in the network represents a cortical region and that this 

connection is mediated by neuroanatomical pathways, the coupling     can 
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be approximately obtained from the number white matter tracts detected 

with tractography connecting regions   and  . However, please note that 

some parcellation schemes1 divide the brain in regions with different size, 

assigning a different number of neurons to each node. Since the activity in 

the target region is sensitive to the number of incoming axons per neuron, it 

is important to consider this factor in the coupling weight    . This is 

achieved by dividing the total number of incoming white matter tracts by 

the relative size of the target region  , resulting in a non-symmetric 

connectivity matrix whenever the size of regions in the network is 

heterogeneous. 

Scaling the coupling strength by the number of white matter tracts relies on 

the assumption that there is a linear relationship between the latter and the 

efficiency of synaptic transmission. However, some diseases may provoke a 

disruption at the synaptic level and even if white matter tracts remain 

intact, the coupling strength is reduced. Furthermore, this reduction can 

occur either in a specific connection or at the global level, and for this 

reason, the coupling variables   and     are considered to encompass both 

axonal and synaptic mechanisms. 

Frequency dispersion and noise are both naturally present in the brain. To 

study the effects of stochasticity in the dynamics, it is possible to extend the 

Kuramoto model by adding a noise term       in equation (1).    

represents external noise received by the oscillators and expresses itself in 

terms of phase fluctuations. It is usually taken as uncorrelated Gaussian 

white noise with mean value zero             and variance   
  in radians. 

II.II – Synchronization and the Kuramoto Order Parameter 

According to the Kuramoto model, a system of   identical oscillators (i.e. 

          ) initialized with random phases,          , will tend in 

time to a fully synchronized state if the coupling is sufficiently strong (i.e. 

above a critical coupling    .  In order to characterize the collective 

dynamics of the whole population, Kuramoto (1984) derived an order 

                                                           
1
 See section I.II.1.b - Brain parcellation  
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parameter, which measures the phase of the oscillatory ensemble over 

time,  (t), as well as the phase uniformity among nodes, given by     : 

           
 

 
        

 

   

 

The degree of synchrony is given by modulus of the order parameter,     . 

If the whole system is too weakly coupled (i.e. below the critical coupling 

   , then all nodes in the network (initialized randomly) continue firing 

independently at their intrinsic frequency     and             . In this 

case, the system is in a stable asynchronous (or incoherent) state. When the 

coupling is higher than   ,             , and the oscillators become 

phase-locked. In this case, the phases of all nodes are coherent over time 

with                   . For sufficient synchrony, ϕ(t) describes the 

movement of the oscillator ensemble around the unit circle, and 
  

  
 is the 

collective frequency of the system. 

 
Figure 24 - Synchronization in the Kuramoto model. (Bottom plot) Order parameter R versus 
the coupling strength. (Top) Snapshots for couplings A,B,C and D of the phases of all nodes in 
the phase plane. Adapted from (Popovych et al., 2011)   

In the case of a fully connected network (all-to-all connectivity), this 

synchronization occurs almost simultaneously for all network nodes. 

However, if the network has a non-homogeneous connectivity structure, 
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meaning that some nodes are more coupled than others forming clusters of 

highly connected nodes (or modules), then, in the transient to 

synchronization, modular structures of synchronized nodes emerge in 

different time scales (see Figure 25), ordered in a hierarchical way (Arenas 

et al., 2006). 

 
Figure 25 - Synchronization reveals topological scales. (Top) Matlab interface programmed 
to perform simulations using the Kuramoto model. In a first step, an artificial binary network 
is constructed by defining an adjacency matrix    , where the user inserts the total number 

of nodes and the number of communities in each of the two topological levels. After setting 
the probability of connections in each level (light green pixels=connection; blue=no 
connection), the mean and standard deviation of natural frequencies (in proportion to the 
time step), and the simulation time (number of time steps), the user clicks the button 
“Compute Kuramoto Simulations” and the programs runs the Kuramoto model with the given 
parameters. (Bottom) Matrices indicating the instantaneous phase coherence, computed as 
                         , at different times (t=5;10;25;100) revealing the emergence 

of modular structures in hierarchical order over time. At t=100, the system reaches full 
synchrony as indicated by             . 

These results show that the network’s map of connections (Figure 25 - Top) 

expresses itself in the dynamical behaviour of the system (Figure 25 - 

Bottom). Groups of densely inter-connected regions, have a stronger 

tendency to be synchronized together, and, at an intermediate stage 

between incoherence and full synchrony (for example at t=10 in Figure 25), 

they form synchronized modules that oscillate coherently at a different 

phase of other modules. However, after a transient period, all oscillators 

inevitably synchronize.  
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Many networks in nature, like the brain, have a complex wiring 

architecture1, and their synchronization patterns have been closely linked to 

the underlying structure (Strogatz, 2001). In Honey and Sporns (2008), 

cortical interactions were modelled with the Kuramoto model. However, as 

no frustration was added to the system, after a transient period, all nodes 

synchronized together and therefore their study was restrained to the 

transient period towards full synchrony (as in Arenas et al., 2006).  

In the brain, stable large-scale synchronized states can occur for a period in 

time, such as during sleep or under anaesthesia. However, the wakeful state 

(and especially during rest) is characterized by a multiplicity of coexisting 

and more ephemeral rhythms. To obtain such a dynamical framework, 

heterogeneity and/or frustration parameters naturally present in the brain 

need to be considered in the coupling term. Several studies have shown that 

the introduction of frequency dispersion (Kuramoto, 1984, Acebron et al., 

2005, Popovych et al., 2005), phase shifts (Breakspear et al., 2010, 

Shanahan, 2010) and time-delays (Yeung and Strogatz, 1999, Earl and 

Strogatz, 2003, Montbrio et al., 2006), introduce intrinsic instabilities to the 

system. These instabilities occur because nodes are involved in competing 

interactions. In those cases, and under specific parametric conditions, the 

network may display multiple meta-stable equilibria (Strogatz, 2001).  

If the system is in a regime with more and less synchronized stable states, 

the order parameter      fluctuates in time. These fluctuations can be 

captured by the standard deviation of  (t),   , which indicates the level of 

metastability of the network (Shanahan, 2010). On the other hand, the 

mean,     is an index of the global synchronization level over time. 

II.III – Time delays in the Kuramoto model  

A crucial step toward neurobiological plausibility of coupled oscillators 

systems as models of macroscopic brain activity is the incorporation of time 

delay effects. Time delays between coupled cortical regions arise principally 

from finite axonal transmission speed and dependent on inter-areal distance 

and myelination level, as well as on synaptic and dendritic processes. The 

                                                           
1
 See section I.II.3 – Characterizing complex networks using graph theory. 
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original Kuramoto model can be extended in the following way to include 

time-delayed interactions: 

   

  
                             

 

   

   

The delay     between regions   and   can be estimated from the distance 

between nodes     by assuming a conduction velocity   such that: 

    
   

 
  

Under this condition, each oscillator interacts with the others in terms of the 

phase that they had at the time they sent a synchronizing signal. Whenever 

two oscillators   and   are in phase, i.e.            , if       and     is 

different from the oscillation period, the phase coherence is disrupted since 

                       .  

 
Figure 26 - Graphical representation of three interacting oscillators with delayed coupling. 
(Left) Set of 3 coupled phase oscillators, with delayed interactions Tnp, where the angle on the 
circle represents the phase on the limit cycle of self-sustained neuronal oscillations. (Bottom) 
Example of 3 time series obtained from sin(θn(t)). 

Time delays can substantially change the dynamical properties of coupled 

systems. In general, the dynamic behaviour becomes much richer and still 

surprising in the current knowledge. One might think that time delays tend 

to break coherence -or to make it difficult- in populations of interacting 

units, but this is not always the case (Pikovski et al., 2001). In the presence 

of delays, and under certain parametric conditions, stable synchronized 

states are still possible, but occur at reduced collective frequencies (Niebur 
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et al., 1991). Furthermore, as observed by Niebur et al. (1991), the systems 

decays to a state with the lowest possible common frequency,  , which 

obeys to the following equation: 

                      (1) 

Therefore, the frequency at which a system of   globally coupled oscillators 

is decreases as the coupling   and delays   increase, as shown in Figure 27 

(as a function of  ). 

 
Figure 27 - Frequency suppression as a function of time delay   for two coupled oscillators 
(diamonds), for a two-dimensional array of 16384 oscillators (crosses), and the prediction 
from Eq. (1) (line). The average frequency   is plotted as a fraction of the intrinsic frequency 
  . 

In addition, Kim et al. (1997) found that for a range of delays (uniform delays 

in their treatment), the system shows multistability between synchronized 

and desynchronized states. In the synchronized states, they found multiple 

states with different collective frequencies. The authors propose that this 

multistability presents a possible mechanism for information storage in the 

nervous system. Furthermore, Zanette (2000) found that, at a state of 

frequency synchronization (where all the oscillators have the same 

collective frequency), the distribution of phases over space is nontrivial but 

constant over time. These results indicate that a fully synchronized state in a 

system with time delays can have a Kuramoto order parameter     

because oscillators can be phase shifted from the others, but phase-locked 

at a collective frequency. In another study, Yeung and Strogatz (1999) found 

that, depending on   and  , bistability between synchronized and 

incoherent states can happen, as well as unsteady solutions with time-

dependent order parameters indicating non-Gaussian fluctuations in the 

synchrony degree.  
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All above-mentioned theoretical studies of coupled oscillators with time 

delays have focused in cases where the delay   is identical between all 

entities, with             . Since the complex 3-dimensional 

configuration of the neuroanatomical network contains connections of 

different lengths (see Figure 28), it is important to consider the case of 

heterogeneous delays. Although the lengths of the fibre tracts can be 

estimated with a millimetric accuracy (as in the connectome used in our 

work (Cabral et al., 2011)), the exact speed of transmission is unknown, and 

therefore the structure of delays cannot be inferred with precision. To 

consider the role of the conduction velocity in the dynamics, it is taken as a 

variable parameter in our simulations. 

 
Figure 28 - Histograms of the connection lengths from 3 distinct connectomes used in this 
work. (Left) In the connectome from the CoCoMac database, the lengths correspond to the 
3D Euclidean distances between the equivalent regions in the AAL human template. (Middle) 
In the connectome derived by Hagmann and colleagues, the length of the fibre tracts 
detected was computed. (Right) In the AAL connectome (provided by Prof. Kringelbach) the 
distances refer to the 3D Euclidean distances between the central coordinates of each region. 

The case of a distribution of delays has been recently addressed 

theoretically by Lee et al. (2009) on the dynamics of globally coupled phase 

oscillators, finding that delay heterogeneity induces increased complexity in 

the dynamics. According to their results, the critical coupling    (above 

which the system synchronizes) is a function of both the mean delay ( ) and 

the distribution of delays (in particular a gamma distribution of delays with 

exponent  ) (see Figure 29). When the delay distribution is sufficiently large 

compared to its mean (that is for small  ), the critical coupling       is 

found to be an increasing function (see Figure 29B with n=10). Even so, they 

considered all-to-all connectivity, whereas in the brain, the connectivity is 

sparse, with modular structures and highly heterogeneous, introducing an 

even higher degree of complexity to the system that remains unexplored 

(Jirsa, 2004).  
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Figure 29 – Effects of the delay distribution on the critical coupling. (A) Different shapes of 
delay distributions (gamma functions controlled by the parameter n). (B) Solid curves are 
plots of the critical value of    versus the mean delay T for different delay distributions. 
Adapted from Lee et al. (2009). 

Similar dynamical phenomena, including multistability, have been obtained 

in networks with constant phase-shifts between entities (Breakspear et al., 

2010, Shanahan, 2010). However, it is important to stress the difference 

between fixed phase shifts     and fixed time delays    . If we consider a 

constant delay     between two nodes, and the nodes are not fully 

synchronized, than the phase difference between the two nodes is variable 

over time. Therefore, the phase-shift provoked by time-delayed interactions 

is a function of      ,       and     and the approximation to a fixed term 

    is a highly abstract case, only comparable to time delays when the 

oscillators are phase-locked. 

II.IV – Kuramoto dynamics with brain-inspired connectivity 

The wiring diagram defined by the white matter pathways connecting brain 

areas is complex and the corresponding delays are highly heterogeneous. 

Consequently, theoretical predictions of the dynamics emerging from the 

Kuramoto model with brain-inspired connectivity can only be approximately 

guessed. In this and subsequent chapters, conclusions were essentially 

drawn from simulations and compared with existing theoretical literature 

where similar dynamic behaviours were observed with simplified 

connectivity structures. 

In Figure 30, we show two connectomes derived from (left) one hemisphere 

of the macaque brain (CoCoMac database (Kötter and Wanke, 2005)) and 

(right) the human brain (Hagmann et al., 2007, 2008).  
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Figure 30 - Structural connectivity of the macaque and the human cortex. (A) Graphical 
representation of the macaque (left) and the human (right) networks. (B) Coupling matrices, 
and (C) corresponding histograms. (D) Distance of existing connections, and (E) 
corresponding histograms. The human matrices are ordered in such a way that corresponding 
contra-lateral regions are symmetrically arranged with respect to the matrix centre. The 
white lines separate the two hemispheres. (F) Indexing of cortical regions: In (A) the regions 
are color-coded whereas in C and D the matrix entries n and p indicate the source or target 
region, correspondingly. 

In both cases, we have tried to rearrange the matrices according to modules 

with substantially denser connectivity inside specific node ensembles than 

with the complementary part of the network. However, even if some degree 
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of modularity can be found, modules can overlap, and multiple 

arrangements are possible. Furthermore, the distributions of couplings and 

distances shown in Figure 30B-C exhibit a large range of values (except for 

the coupling strengths of the macaque where they were only classified in 3 

levels). Importantly, this non-randomness of the connectivity matrices, 

together with the heterogeneity of couplings and delays, has consequences 

on the dynamics as we will demonstrate below. 

Unlike theoretical studies, here the couplings     and the distances     are 

given. Therefore, the model dynamics depends on the following parameters: 

the global coupling  , the conduction velocity V - or the mean delay   -, the 

individual frequencies    drawn from the frequency distribution    ) and 

the noise level       . Since exploring the whole parameter space takes a 

long time, we started by restraining to the        plane (as in Lee et al., 

2009), and considered homogeneous frequencies (in the gamma-band 

range) and no noise. The system of   Kuramoto equations with time delays 

was numerically integrated (Euler scheme, time-step 



t 0.1 ms). Due to 

delays, we had to start the simulations by specifying the phases for a 

sufficiently long interval, choosing to evaluate the phases as in a non-

interacting network. We always discard the first 20 s of simulations 

(=200000 time steps) to avoid dependence of the results on the initial 

conditions (in the following, always refer to the remaining simulated time). 

When exploring the        parameter space, we simulate the previous 

system for 300 s.  

As illustrated in Figure 31A (left), for the macaque network, the critical 

coupling above which the system synchronizes exhibits a very similar 

behavior to the one found theoretically by Lee et al. (2009). However, in the 

human case (Figure 31A (right)) the transition to synchrony is smoother. In 

the intermediate regime between incoherence and global synchrony (the 

area coloured in light blue in Figure 31A (right)) subsets of nodes -or 

clusters- particularly more coupled within the cluster than with the 

remaining network, tend to synchronize below the global critical coupling. 

However, due to competitive network interactions these partially 

synchronized states are unstable (or metastable). Consequently, in this 

region the metastability index is increased (Figure 31B). 
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Figure 31 - Global dynamics as a function of the mean delay and the global coupling for the 
macaque (left) and for the human networks (right). (A) Global level of synchrony measured 
as the mean of the order parameter,   . (B) Degree of metastability, as indicated by the 
standard deviation of R,   . Here we used a homogeneous frequency            and 
no noise. 

To understand better the network behaviour in the metastability region, we 

explore the dynamics in the frequency domain. In addition, we compare 

with a fully connected artificial network corresponding to the case studied 

by (Lee et al., 2009) with a delay distribution fitting the real one (gamma 

distribution with    ). In Figure 32B we plot the power spectrum 

(averaged across all oscillators) as a function of   for a fixed mean delay 

       ms).  

Starting from the macaque case (cocomac), we observe that, for low  , all 

nodes are oscillating at 40Hz (their natural frequency here). As the coupling 

increases until    we observe a frequency dispersion around 40Hz. At the 

border of synchrony, we observe the emergence of different frequency 

peaks, until, in the region of high synchrony a strong peak at a reduced 

collective frequency <10Hz emerges. 
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Figure 32. Dynamics in the frequency domain. (A) Mean Order Parameter in the parameter 
space for the macaque (top) and human network (bottom). (B) Power spectrum as a function 
of   for    =15 ms (    m/s) and         for: (top left) the macaque network; (top 
right) a fully connected network and with a distribution of delays fitted to a gamma function 
(with n=4); (bottom left) the human connectome; (bottom right) the human connectome 
with a Gaussian distribution of frequencies with mean=40Hz and std=5Hz.  

In the case of the artificial network with global connectivity, the transition 

between the incoherent regime (peak at 40Hz) and full synchrony (peak at a 

reduced collective frequency) is sharp (       ). In the case of the 

human matrix (bottom), the dynamics is more complex and clusters start to 

synchronize at very low levels of coupling. As the coupling increases, clusters 

progressively merge to form bigger clusters (with lower collective 

frequencies), finally merging into a single one. This may be due to the higher 

complexity of the SC and to the distribution of the coupling strengths, which 

is exponential-like. To study the effect of frequency heterogeneity among 

the nodes, we repeated the simulations choosing this time the node 

frequencies according to a Gaussian distribution      with mean 40Hz and 

standard deviation 5Hz. The same qualitative behaviour is observed, 

although the frequency peaks slightly change. This suggests that SC has a 

stronger impact on the observed dynamics than the frequency dispersion. 
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The fact that the collective frequency is suppressed as the coupling 

increases had already been observed by Niebur et al. (1991). Furthermore, 

the coexistence of multiple frequencies had been observed by Kim et al. 

(1997). Therefore, we believe the dynamics emerging from the brain 

connectome, despite its complexity, can be compared with previous 

theoretical studies from the Kuramoto literature. 

For a deeper exploration of the dynamics emerging with the human 

connectome in the frequency and temporal domains, we chose a working 

point in the region of high metastability (i.e.       ms and     ). In 

Figure 33 we show the activity at the node level (i.e. right hemisphere 

N=33). Furthermore, from the simulated neural activity, we have estimated 

the BOLD signal using the Balloon-Windkessel hemodynamic model (Friston 

et al., 2003)1. 

 
Figure 33 – Fast and slow dynamics at the node level (right hemisphere) in a regime with 
increased metastability. (Left) Power spectra of each node computed for the whole 
simulated time (i.e. 280 s). We observe that different frequencies engage different groups of 
nodes. Furthermore, the same node can be engaged in more than one frequency. (Middle-
Left) Plot of the simulated “neural activity” over 1 second. We observe that some regions 
switch intermittently between different frequencies, while others remain synchronized or 
desynchronized for longer periods. (Middle-Right) Simulated BOLD signal for a 100 s interval. 
We observe that some regions have stronger fluctuations than others, which reflects in the 

power of the BOLD signal (Right).       ms,     ,      Hz,         rad. 

                                                           
1
 See section I.III.2 - Transforming neuronal activity into BOLD signal for details. 
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As can be observed in Figure 33, the dynamics of identical gamma-band 

(40Hz here) oscillators coupled with brain-inspired connectivity and delays 

leads to the spontaneous emergence of a rich dynamics with multistability, 

cross-frequency interactions and slow BOLD signal fluctuations even in the 

absence of noise and frequency dispersion. Furthermore, it can be seen that 

some nodes exhibit more than one frequency peaks with equivalent 

strength (for example the superior parietal (rSP)). This means that the 

oscillators are intermittently engaged by two different clusters (which have 

different collective frequencies) who compete to synchronize. Notably, 

nodes involved in such competitive interactions are the ones with stronger 

fluctuations in the BOLD signal.   

The activity of two nodes that are entrained by the same cluster, will exhibit 

some degree of correlated activity. Therefore, we computed the covariance 

matrix of the activity at the 66 nodes and calculated the number of principal 

components necessary to explain 95% of the variance. These principal 

components indicate the number of modes in the network. As can be seen 

in Figure 34A, in the region of metastability, the activity is characterized by 

several (>5) modes. Furthermore, we plot the mean BOLD power (which 

indicates the degree of slow (<0.2Hz) fluctuations) in the        parameter 

space (Figure 34A), and observe that strong slow fluctuations occur mainly 

in the region of metastability.  

 

Figure 34 – Number of principal components (A) and BOLD power (B) of the simulated 
neural activity.   

Finally, we have investigated if the slow frequencies observed in the alpha 

and beta ranges could be explained by collective frequencies due to delayed 



82 
 

interactions, as predicted by Niebur et al. (1991). In this case, we used 

another connectome network (which we use again in chapters IV and V)1. As 

shown in Figure 35AB, we performed a synchrony analysis in the parameter 

space, and found a metastability region. Furthermore, to test the 

predictions of Niebur et al. (1991), at each point we calculated the 

frequency with the most power, by detecting the peak in the mean power 

spectrum averaged across all regions (Figure 35C). In Figure 35D, we plot the 

theoretical prediction from Niebur et al. (1991). We observe that, for every 

simulation where the mean degree of synchrony (Figure 35A) is above a 

threshold (here around 0.2), the peak frequency corresponds closely to the 

one predicted in the literature. 

 

Figure 35 – Prediction of collective frequency. Study of the mean synchrony (A) and the 
metastability (B) in the parameter space of couplings and delays. (C) Peak frequency of the 
mean power spectrum and (D) collective frequency predicted by Niebur et al. (1991). 
     Hz. 

Based on a number of experimental studies that reveal the existence of 

gamma-band oscillations across the brain, Basar-Eroglu et al. (1996) suggest, 

in a review study, the existence of a distributed system of gamma (40Hz) 

generators in the brain. Importantly, they suggest an interpretation on 

gamma rhythms as universal functional building blocks. In agreement with 

these predictions, our results show that gamma-band oscillators can serve 

as fundamental units to build a complex multi-frequency dynamics even in 

the absence of external stimulation or background noise. However, to 

validate these predictions, the model needs to be compared with 

experimental data from the brains of healthy subjects at rest, which we will 

do in the following chapters. 

  

                                                           
1 See A.III – DTI data collection and building of anatomical connectomes. 



83 
 

III – Predicting BOLD resting-state functional connectivity with 

coupled gamma-band oscillators. 

 

 

‘Pure mathematics is, in its way, the poetry of logical ideas.’ 

Albert Einstein 

 

 

 

III.I – Introduction 

During rest, the mammalian brain exhibits robust low-frequency fluctuations 

(<0.1 Hz) that are revealed using the fMRI BOLD contrast. The spatial 

patterns of such fluctuations suggest the existence of an organized dynamics 

emerging spontaneously from intrinsic brain processes1. This slow dynamics 

seems to be highly structured by anatomical connectivity but the 

mechanisms behind it and its relationship with neural activity, particularly in 

the gamma frequency range, remains largely unknown. 

To address these questions, we investigated if locally generated gamma-

band oscillations can induce correlations at the BOLD level using a large-

scale model of weakly coupled gamma-band oscillators linked together 

according to realistic brain connectivity2. A key ingredient of the model was 

a structural brain network derived empirically from white-matter tracing 

studies3. Each network node represents a neural population, assumed to 

oscillate spontaneously in the gamma frequency range. When these 

oscillatory units are integrated in the network, they are assumed to behave 

as weakly coupled oscillators. The time-delayed interaction between nodes 

                                                           
1
 See I.I - Brain activity during rest.                                                                                                       

2 Most of the results presented in this chapter are published in: 

Cabral J, Hugues E, Sporns O, Deco G (2011) Role of local network oscillations in 

resting-state functional connectivity. Neuroimage 57:130-139. 
3
 See I.II.1 – Anatomical structural networks. 
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is simulated using the Kuramoto model of phase oscillators, a biologically 

based model of coupled cyclic systems. For a realistic setting of axonal 

conduction speed, we show that time-delayed network interactions lead to 

the emergence of slow neural activity fluctuations, whose patterns correlate 

significantly with the empirically measured functional connectivity. The best 

agreement of the simulated FC with the empirically measured FC is found 

for a set of parameters where subsets of nodes (or clusters) tend to 

synchronize although the network is not globally synchronized. The 

simulated BOLD signal between nodes within the same cluster is found to be 

correlated, instantiating the empirically observed RSNs. Between clusters, 

patterns of positive and negative correlations are observed, as described in 

experimental studies. These results are robust with respect to a biologically 

plausible range of model parameters. The present model demonstrates how 

resting-state neural activity can originate from the interplay between the 

local neural dynamics and the large-scale anatomical network.  

III.II – Methods 

III.II.1 - Anatomical connectivity 

We used an anatomical connectome (AC) with 66 regions of the human 

brain (see Figure 36) obtained and described in Hagmann et al. (2008) and in 

Honey et al. (2009). Five high-resolution connectomes from healthy subjects 

were provided, with 998 regions of interest (ROIs) of same size covering the 

whole cortical surface.  Since tractography does not give fibre directionality, 

the connectivity matrix is symmetric at the ROI level. The AC was then 

averaged across subjects. To down-sample the AC to 66 regions of different 

size, the connection strength between two regions was calculated by 

summing all fibre tracts incoming to the target region, and dividing by its 

region-dependent number of ROIs, resulting in a non-symmetric down-

sampled connectivity matrix. This normalization by the number of ROIs —

that have approximately the same surface on the cortex and subsequently 

the same number of neurons— is required because neuronal activity is 

sensitive to the number of incoming fibres per neuron in the target region. 

As the dynamical model of one region already takes into account the effect 

of its internal connectivity, the connection of a region to itself was set to 0 in 

the connectivity matrix for the simulations (see Fig. 1B). The length     of 
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the fibres connecting the region   to the region   was calculated as the 

average length across all the fibres connecting them. 

 

Figure 36 - Structural connectivity of the Human Connectome. (A) 2-dimensional 
representation of the network structure (view from above), the nodes representing 
anatomical regions placed at their central coordinates. (B) Connection strength matrix where 
n is the source region and p is the target, ordered in a way such that corresponding contra-
lateral regions are symmetrically arranged with respect to the matrix centre, the anti-
diagonal revealing the existing connections between these contra-lateral regions. The white 
lines separate the two hemispheres. (C) Histogram of the strength of existing couplings. (D) 
Fiber length matrix of existing connections between nodes n and p. The lengths correspond 
to the average length of all the fibers connecting nodes n and p. (E) Histogram of the fiber 
lengths of existing couplings. (F)  Color-code and indices of cortical regions used in A, B & C. 

III.II.2 - Resting-state functional connectivity 

For the same five subjects, the correlation matrix of BOLD signals was 

provided at the ROI level. In more detail, the BOLD signal was acquired for a 

total of 20 min (TR=2 s), while the subjects were resting with eyes closed. A 

number of pre-processing steps were applied to the BOLD time series (see 

Honey et al. (2009) for details) including the regression of the global signal 

(Fox et al., 2005). Then, the correlation matrix was calculated to obtain the 

functional connectivity matrix (FC). The down-sampled FC between a pair of 

regions was obtained as the average of all interregional FC correlations at 

the ROI level.  
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III.II.3 - Network model of coupled oscillators 

In the model of resting-state activity from Deco et al. (2009), neural masses 

were modelled as Wilson–Cowan units that exhibited self-sustained 

oscillations1 in the gamma-frequency band. In this work, we achieve a higher 

level of abstraction by modelling cortical regions as simple phase oscillators 

with a natural frequency in the gamma-band. To model their cooperative 

behaviour in the network, we used the Kuramoto model with time delays2 

and noise, according the following expression: 

   

  
                             

 

   

                  

The delay     between node   and node   is calculated using     
   

 
 

   
   

   
. The connectivity matrix   and the delay matrix   are fixed in their 

structures: only their scaling can be varied with   and      respectively. 

         is the intrinsic frequency of node   on its limit cycle, and is 

drawn from a fixed Gaussian distribution      with mean    (        

here) and standard deviation   . The terms      , represent the noise 

received by the local networks and correspond to uncorrelated Gaussian 

white noise with zero mean (         ) and variance   
     

(                        
   ), where     is the Kronecker delta,      

is the Dirac delta function,    is in radians and   is a given timescale (    

s here). 

The present model depends on for main free parameters:          and   . 

After an extensive numerical exploration of this parameter space, we have 

found the main free parameters to be the mean delay     and the global 

coupling strength  , for which we have performed an exhaustive parametric 

study. For biological realism, we also considered the effect of    and   . 

However, due to their relatively small influence on the behaviour of the 

                                                           
1
 See I.III - Large-scale models of resting-state dynamics, subsection I.III.1.c - The 

Wilson-Cowan model. 
                                                   
2
 For a full description of the model see section II.III – Time delays in the Kuramoto 

model 
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network (in their respective plausible range) and due to the high cost of 

simulating the complete four-dimensional parameter space, we conducted 

only a partial parametric study. We investigated the influence of large values 

of    and    in the results across the         plane. In addition, we explored 

how these parameters influence the results for the chosen working point 

                   

Phases    were initialized randomly, as if cortical regions are completely 

desynchronized from each other. Due to delays, we had to specify the 

phases for a sufficiently long interval as in a non-interacting (and non-noisy) 

network. We always discarded the first 20 s of simulations to avoid the 

dependence of our results on initial conditions. In the following, we always 

refer to the remaining simulated time. When exploring the parameter space 

         we simulated the system’s dynamics for 300 s. For the chosen 

        pair we extended the simulation time to 1200 s (20 min) to compare 

with experimental FC. The system of   dynamical equations was numerically 

integrated with a time-step        ms using an Euler scheme adapted to 

noise (Platen, 1999). All calculations were performed using MATLAB 

(www.mathworks.com). 

III.II.4 - Characterizing the behaviour of the network 

At the global level, the synchronization behaviour of the network was 

evaluated by the order parameter     , which varies between 0 for a fully 

desynchronized - or incoherent - state to 1 for a fully synchronized state1. To 

evaluate the synchrony level within particular sets of nodes, or clusters, we 

calculated the order parameters       and      , where the sum is 

performed over nodes belonging to a cluster c.  

To understand why the BOLD signal is generally correlated for nodes inside 

the same cluster, we need to decompose the neural activity using the 

following identity: 

           
                               

                                                           
1
  See section II.III – Synchronization and the Kuramoto Order Parameter for more 

details. 

http://www.mathworks.com/
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where                    is the relative angle of the node inside its 

cluster, and we then took the imaginary part to recover      . When the 

cluster is synchronized, the more the absolute value of the first term tends 

towards 1, and the more the absolute value of the second tends towards 0. 

Therefore, when the cluster synchrony is sufficiently stable, the first term in 

the equation, which is common for all nodes inside the cluster as an intrinsic 

characteristic of the cluster, increases its value relatively to the second one, 

and the dynamics of different nodes inside the same cluster becomes 

correlated. 

III.II.5 - Simulated BOLD and functional connectivity 

To transform the simulated local neural activity to a hemodynamic signal 

like the BOLD, we used the Balloon-Windkessel hemodynamic model 

(Friston et al., 2003)1. For the neurovascular coupling we built on the 

assumption that the physical quantity whose variations underlie BOLD signal 

is the firing rate of the local neuronal population, which is the basic quantity 

associated to the phase model. In the model, the firing rate       of node   

fluctuates around a fixed value and these fluctuations are given by a 

periodic function (here the sine) of the local node phase, that is       

             . By definition of the phase oscillator model, these fluctuations 

have a fixed amplitude   . In the simulations, we have considered relatively 

small amplitude (    ), such that the Balloon-Windkessel model is linear 

and analogue to a linear filter (see Figure 37).  

As shown in Figure 37, the low-pass filtered (<0.35 Hz) dynamics is strongly 

correlated to the BOLD signal. Using a small amplitude   , we guarantee that 

our results depend only on the fluctuations generated by network 

interactions, and not on intrinsic non-linearities of the BOLD model. Note 

that, using more biophysical and/or neural mass models, a number of 

additional neurovascular couplings have been considered in the literature 

(Kilner et al., 2005; Rosa et al., 2010; Friston et al., 2010). However, in our 

model, local dynamics is described by a single variable (the firing rate) and 

therefore we have to rely on this variable. 

                                                           
1
  A detailed description of the model is provided in section I.III.2 - Transforming 

neuronal activity into BOLD signal. 
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Figure 37 - Characteristics of the BOLD signal from the Balloon-Windkessel model. (A) 

Amplitude of the linear filter in the Balloon-Windkessel model as a function of frequency. (B) 
Diagrams representing the minimum value (left) and the maximum value (right) of the blood 
flow as a function of the mean delay,      and the coupling strength,  . This was obtained 
considering      , i.e., simulated rates fluctuate between -1 and 1. The blood flow 
fluctuates 15% at most. This means that for the value of    we have chosen, the Balloon 
model is behaving essentially linearly, proving that the patterns we observe at the BOLD level 
come essentially from the network dynamics. (C) Comparison between the BOLD signal (solid 
line) and the corresponding low-pass filtered neural activity with a cut-off frequency of 
0.35Hz (dotted line). (D) Cross-correlation between the two signals; the peak around 1.6 s 
(correlation coefficient = 0.88) corresponds to the lag of the hemodynamic response.  

III.II.6 – Comparison with empirical results 

To compare the model results with the empirical FC, we low-pass filtered 

(<0.25 Hz) and down-sampled the simulated BOLD time series at 2 s to 

achieve the same resolution as in Honey et al. (2009). The low-pass filtering 

eliminates small and non-physiological high frequency components in the 

BOLD signal that can induce spurious correlations. Finally, the simulated FC 

was obtained after regressing the global signal (average over all regions) out 

of the regional BOLD time series (Fox et al., 2005, 2009), and by computing 

the correlation matrix. To compare the simulated and the empirical FCs, we 

calculated the Pearson correlation and the distance between the two 

matrices only for the structurally connected pairs (to increase the 

effectiveness of these measures). Later, for the chosen working point, we 
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used a seed approach and compared the two matrices row by row, 

calculating the Pearson correlation coefficient between rows, and the 

corresponding p-value. This gives the probability of getting a correlation as 

large as the observed one when the true correlation is zero. The correlation 

is significant when p<0.05. For clarity, all the methods used in this chapter 

are summarized in Figure 38. 

 

Figure 38 - Flowchart illustrating all the methods employed here to go from the empirical 
SC to the simulated FC. (Orange: experimental inputs, Green: simulated data, Blue: 
processes, Yellow: free parameters). 

III.III - Results  

III.III.1 - Structural connectivity 

We consider the network dynamics supported by the AC of the human brain 

(Hagmann et al., 2007, 2008). A geometrical view from above of the 

considered network is represented in Figure 36A. The connectivity strength 

matrix together with the fibre length matrix is shown in Figure 36B and C, 

respectively. For each region, the abbreviations corresponding to the indices 

are indicated in Figure 36F (see Appendix A.I Table 4 for the complete names 

of brain regions). The distribution of strength values decreases sharply 

(Figure 36F) and the fibre length distribution exhibits a bimodal shape 

(Figure 36E). Confirming previous observations about the small-world 

structure of brain networks (Bullmore and Sporns, 2009), the region 

reordering (done by hand) revealed a complex modular structure in the 

anatomical network. It specifically unveiled the presence of node clusters, 

which are much more connected inside than outside the cluster to which 

they belong. As we will demonstrate below, this non-randomness of 
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adjacency matrices together with fibre strength and length, have 

consequences on the dynamics. 

III.III.2 - Network dynamics 

The behaviour of the Kuramoto model has been described theoretically 

essentially as a function of the global coupling strength   (Acebrón et al., 

2005). For a large network (   ), there is a critical value of coupling,   ,  

above which the network exhibits a synchronization transition between an 

incoherent motion of the oscillators (if     ,    ) and synchrony (if 

    ,    ). In the following, the region below the critical coupling will 

be called the incoherent region. After a thorough numerical exploration of 

the 4-dimensional parameter space for the biologically plausible range of 

values for    and   , and taking into account the theoretical results about 

the behaviour of the Kuramoto model, we have found that the synchrony 

transition exhibits the highest sensitivity to the         plane. To understand 

the role of each parameter, we report here the exploration of this plane 

using                                .  

 

Figure 39 – Effects of noise    and frequency dispersion    on the global synchronization 

dynamics explored in the parameter space of delays coupling. 
                               . (A) Global level of synchrony measured as the mean of 

the order parameter       (B) Global level of metastability, given by the standard 
deviation    of       We observe that the dynamics at the global level is only slightly 
affected by the dispersion of intrinsic frequencies and noise.  

In Lee et al. (2009), the case of delay heterogeneity was addressed 

theoretically for an infinite network with homogeneous coupling. In that 
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case, delays are distributed according to a gamma probability function, and 

the critical coupling         was found to be an increasing function when 

the delay distribution was sufficiently large compared to its mean, meaning 

that synchrony requires higher coupling as the mean delay increases. 

Despite the high heterogeneity of the finite-size human SC when compared 

to the theoretical case studied in Lee et al. (2009), the transition towards 

synchrony draws a line of similar shape, but is smoother (see Figure 39 top). 

In more detail, for sufficiently small delays, the network synchronizes even 

for a very weak coupling. In the same way as in theoretical case, as the 

mean delay increases, synchrony fades away, and the network needs 

increasingly higher coupling to synchronize. As the heterogeneity of 

couplings and delays frustrate the stability of the system, we observe higher 

indexes of metastability in the system, which manifests itself in the standard 

deviation    of the order parameter       as shown in Figure 39B. For 

sufficiently large coupling but below full synchronization,      exhibits large 

fluctuations and the standard deviation    is the highest (as illustrated in 

Figure 40A middle collumn by the black line).  

 
Figure 40 – Network dynamics with increasing coupling (k = 2 (left), 18 (middle) and 60 
(right), with        ms. (A) Order parameter,      as a function of time for the whole 
network (black) and individual clusters,       (each color represents a subset of nodes . (B) 
Cluster phase       relative to the global network phase      as a function of time. (C) 
Snapshot of the phases at       ms (nodes have the color of the cluster to which they 
belong). Inside the circle and for each cluster, we represent the corresponding order 
parameter using a vector whose length is       and phase is      . As   increases, clusters 
go progressively from incoherence (left) to cluster synchrony (middle) until reaching global 
synchrony (right). 
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The most irregular dynamics is found in this intermediate regime, similarly 

to what has been found for a finite-size Kuramoto network with full 

connectivity and no delays (Popovych et al., 2005). Due to the 

heterogeneous connectivity of the SC, in this intermediate parametric 

region, subsets of nodes (or clusters) can exhibit a high level of synchrony 

while the global synchrony value is still low (see Figure 40 middle column). 

This represents an intermediate regime between incoherence and global 

synchronization. For this reason, the transition to synchrony was found to 

be less abrupt than for homogeneously or randomly coupled networks as 

predicted by theory. In this region, the nodes of a cluster are entrained by 

the global cluster ensemble but, due competitive interactions with other 

nodes and with their natural frequency, they still move independently in 

relation to the cluster phase,   . This affects the stability of partially 

synchronized states, explaining the temporal fluctuations of the cluster 

synchrony levels (see Figure 40 middle column). As the coupling increases, 

clusters progressively merge to form bigger clusters, finally merging into a 

single one (see Figure 40 right column). 

Even if cortical oscillations in the gamma-frequency band are observed 

across brain areas, usually there is some discrepancy in their peak 

frequency. For the gamma band considered here, we modelled the 

dispersion of frequencies around 60 Hz as a Gaussian distribution, such that 

          . Considering noise, we limited ourselves to the interval 

                so that noise-induced fluctuations are sufficiently weak 

not to perturb too strongly the dynamics. In their plausible range, both 

frequency dispersion and noise, considered either separately or 

simultaneously, were found to have a small effect on the dynamics. Indeed, 

the qualitative features of the stationary dynamics are preserved, such as 

the formation of clusters for sufficient mean delay and intermediate 

coupling. Moreover, the mean and the variarance of the order parameter 

behave very similarly to the case where               in the whole 

        plane (see Figure 39). Particularly, a region of high metastability with 

transient partially synchronized states is still present. The robustness of the 

dynamics to frequency dispersion or noise perturbations is due to the fact 

that nodes are still mainly attracted towards cluster ensembles or their 

natural individual attractor. Overall, these results show that the 

spatiotemporal organization of the network dynamics is quite robust, and 



94 
 

reinforce the importance of SC in the dynamical organization of the 

network. 

III.III.3 - Resting-state functional connectivity  

The fMRI BOLD signal is intrinsically a low-frequency signal due to the 

temporal scale of the hemodynamic response function. Similarly, the 

Balloon-Windkessel model of Friston et al. (2003), which estimates the BOLD 

signal from a given neural activity, gives a low-frequency BOLD signal. The 

model first calculates the blood flow using a low-pass filter up to 

approximately 0.5 Hz (see Figure 37A) before calculating the BOLD signal 

using a nonlinear model. The blood flow fluctuations are therefore 

proportional to the neural activity amplitude   . For the amplitude we have 

used in the simulations (    ), we have verified that the blood flow 

fluctuations remain relatively small (see Figure 37B), in such a way that the 

Balloon/Windkessel model behaves as a linear filter. Consequently, our 

results at the BOLD level are not linked to non-linearities of the BOLD model 

but emerge directly from neural activity. The low-pass filtered (<0.35Hz) 

simulated neural activity correlates strongly (cc=0.88) with the 

corresponding simulated BOLD signal, with a lag corresponding to the time-

to-peak of the correlation function (see Figure 37C–D). Therefore, finding 

correlations in the BOLD signal is similar to finding these correlations in the 

slow fluctuations of the neural activity. In the regions of the         plane 

where the network synchronizes or is fully incoherent, the dynamics is too 

regular and fast, and therefore the BOLD signal has a small amplitude and 

power. On the other hand, in the intermediate region, the irregularity of 

neural activity creates significant power at low frequency and consequently 

in the BOLD signal. 

To identify the region of the parameter space where the model best 

reproduces the empirical FC, we computed the Pearson correlation and the 

distance between the empirical and the simulated FC matrices (see Figure 

41A). Both indicators are complementary as each has its own limitations. In 

doing so, we only took into account the FC for directly connected pairs of 

regions since these were essentially the ones that varied substantially across 

the parameter space. The region of simultaneous large correlation and small 

distance corresponds to a sub-region of the incoherent region where 
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dynamical clusters of nodes appear. It coincides with a mean delay between 

9 and 14 milliseconds. For a given point in this region, the correlation matrix 

of neural activity clearly exhibits blocks of large positive correlation (see 

Figure 41 B left, where                   revealing the existence of 

synchronized clusters. When comparing with the BOLD correlation matrix 

(see Figure 41 B right) we see that the simulated BOLD signals are correlated 

within nodes in the same cluster.  

 
Figure 41 - Behavior of the simulated FC in the parameter space. (A) Pearson correlation 
(left) and mean squared error (right) between the empirical and the simulated FC in the 
whole parameter space considering only the connected pairs of regions. These results reveal 
an extended region (in red in the left plot) of large delay and intermediate coupling where 
the agreement is the best. (B) (left) Correlation matrix of the simulated neural activity and 
(right) correlation matrix of the corresponding BOLD signal for the selected working point 
                (black circle in A). (C) Correlation of the low-pass filtered signal (<0.35Hz) 
between a node and the cluster to which it belongs, for k=2 (left), 18 (middle) and 60 (right). 
As the cluster synchrony level increases, the slow dynamics of its nodes becomes correlated. 

Why is the agreement between simulated and empirical FC best in the 

region where metastable synchronized clusters form? The highest empirical 
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     corresponds mainly to pairs directly linked by      (Honey et al., 

2009). Therefore, we find the best agreement when the simulated    

reveals the   . In Figure 41C, we have plotted the correlation of the low-

pass filtered signal (<0.35Hz) of a node and the cluster to which it belongs. 

As   increases (from left to right), partially synchronized clusters form and 

the slow temporal components —and therefore the BOLD signals— of the 

nodes within a cluster become correlated. 

For the chosen working point, the FC obtained with small frequency 

dispersion and noise remains very stable to perturbations. To examine the 

influence of these parameters, we have looked at their separate effects by 

varying them continuously for the chosen working point (see Figure 42). In 

their respective biologically plausible range (  <5 Hz and      rad), the 

high correlation and low distance with the empirical FC is essentially 

maintained. 

 

Figure 42 - Robustness of model results with respect to (A) noise standard deviation    and 
(B) frequency distribution                     (*) Pearson correlation and (+) distance 

between the simulated and the empirical FC, for anatomically connected pairs of regions. In 
the biologically realistic range of frequency dispersion (   ≤ 5 Hz), and noise (   ≤ 3 rad), the 

performance of the model is only slightly changed.  

In the parametric region of best agreement with empirical FC, i.e. a sub-

region where synchronized clusters appear, we have selected the working 

point        ms and     . This corresponds to a transmission speed of 

6 m/s, which is in the physiologically realistic range of propagation velocities 

(around 5–20 m/s) for the adult primate brain according to Ghosh et al. 

(2008a). For increased biological realism, we added noise with         

rad. For this working point, a detailed comparison between the simulated 

and the empirical data is presented below. We present the SC, the empirical 
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FC and the simulated FC for three seeds in relation to all other nodes. Two 

of these seeds are known to be part of the Default-Mode Network (DMN), 

namely the right precuneus (Figure 43left) and the left posterior cingulate 

cortex (Figure 44A). In addition, we choose a seed from a distinct network, 

the left Cuneus (Figure 43right). We observe that the model predictions go 

beyond the SC and predict negative correlations as well. In Figure 44C, we 

can see that the correspondence between simulated and empirical seed 

correlation maps is significantly high for all seeds. Furthermore, as 

previously reported in Honey et al. (2009), FC is positively correlated with SC 

for directly connected node pairs.  

 

Figure 43 – Seed connectivity. Structural connectivity (top - SC) and comparison between the 
empirical functional connectivity (middle – FC emp) and the one predicted by the model 
(bottom – FC model), for two different seeds. Seed location indicated by a light blue star. 
               . 

Furthermore, the simulations predict many details of the empirical FC 

between DMN regions along the medial axis (Figure 44B middle horizontal 

bars). On the other hand, correlation maps of more distant seeds are less 

well-predicted (Figure 44B top and bottom horizontal bars). It is important 

to mention that, beyond the model quality —i.e. the way the dynamics at 

the local node level is modelled— results also depend crucially on the 

quality of the SC matrix. Some fibre tracts, for example long inter-

hemispheric connections between lateral cortices (see Figure 45), are likely 

missing due to the limited resolution of current imaging techniques 

(Hagmann et al., 2008). These missed pathways have direct repercussions 

on the model results. Also, the fact that empirical FC has smaller values than 

the simulated one is due in part to the effect of averaging while down-

sampling the high-resolution empirical FC. 
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Figure 44 - Comparison between SC, empirical and simulated FC at the seed level. (A) SC, 
empirical and simulated FC for the left Posterior Cingulate (red). (B) Pearson correlation 
between empirical and simulated FCs for each individual seed. This demonstrates that the 
model reproduces many details of the empirical FC.                . 

 

Figure 45 – Connectivity to the right hemisphere. Graphical representation (view from 
above) of the 998 ROIs (left) and the 66 anatomical regions (right), with all the 
connections with targets in the right hemisphere. It can be seen by visual inspection 
that very few inter-hemispherical connections were detected, even in the high 
resolution connectome. 

Regarding the patterns of correlations between nodes belonging to different 

clusters, it is difficult to infer analytically if two different clusters will lead to 

correlated or anti-correlated BOLD signals, since clusters seem to interact in 
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a non-trivial way (s previously shown in Figure 40 middle). However, a 

comparison between empirical and simulated correlations patterns can be 

done. In Figure 46, we checked if the model could reproduce anti-correlated 

networks as observed in Fox et al. (2005). Indeed, the posterior cingulate 

(PC) exhibits positive correlation (cc=0.5) with the superior frontal (SF), and 

negative correlation (cc=−0.3) with the lateral occipital cortex (LOCC) in the 

model. This result agrees with the empirical measures. In particular, these 

correlations can be seen directly in the simulated BOLD signal time series of 

the 3 seeds (Figure 46 bottom). 

 

Figure 46 - Correlation between different regions (<τ>,k) (11,18). (Top) Representation 
on the cortical surface of the empirical and the simulated FC map of the left posterior 
cingulate (PC). (Bottom) Simulated BOLD signal for 3 seeds (PC, light blue; SF, dark blue; and 
LOCC, orange). Both in the empirical and in the simulated data, the FC between PC and SF is 
positive, while their FC with LOCC is negative (results shown are from the left hemisphere). 

III.IV - Discussion 

In this chapter, we propose a large-scale neural network model to explain 

the origin of spatio-temporal patterns of slow fluctuations observed in the 

BOLD signal during rest. Several studies have found a counterpart for BOLD 

signals in the neural activity, in particular in the slow power fluctuations of 

the LFP in the gamma frequency range (Leopold et al., 2003; Shmuel and 

Leopold, 2008; Nir et al., 2008; Miller et al., 2009). Here, we investigate if 

local gamma activity alone can induce correlations at the BOLD level. In vivo 

electrophysiological studies have reported the existence of oscillations in 
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this frequency band and much experimental and theoretical evidence 

supports that gamma oscillations are generated at the level of local 

neuronal populations (Brunel and Wang, 2003; Bartos et al., 2007). In our 

model, we assume that each node spontaneously exhibits sustained gamma 

oscillatory activity. We have used here a simple model —the Kuramoto 

model with time delays— whose behaviour has been studied theoretically in 

simpler parameter settings (Kuramoto, 1984; Yeung and Strogatz, 1999; 

Acebrón et al., 2005). In the present study, BOLD fluctuations are found to 

correspond to a slow component of neural activity mainly related to the 

metastable synchronization of subsets of nodes.  

To constrain the model, we calculated the simulated FC for a range of 

parameters and compared it to the empirical one. After numerically 

exploring the parameter space, we have identified a range of parameters 

where the simulated FC best matches the empirical one. In a range 

delimited by an interval of coupling and realistic transmission delays, 

subsets of well-connected nodes exhibit fluctuations in their level of 

synchrony, while the global network is still in a globally incoherent regime. 

Across nodes within a cluster, the BOLD signal is correlated because the 

ensemble is driven in and out of synchrony simultaneously. This leads to a 

shared part of the dynamics between the nodes even if the cluster itself, as 

characterized by the behaviour of its order parameters, has non-stationary 

dynamics. We propose that these fluctuations are at the origin of the power 

found at very low frequencies, in particular in the frequency range 

characteristic of the BOLD signal. Therefore, in the model, the RSNs are 

instantiated in the metastability region by partially synchronized clusters. 

Between clusters, we also found patterns of positive and negative 

correlations that reproduced observed empirical patterns. Although the 

patterns of FC are largely dependent on the SC, as noticed in the empirical 

data (Honey et al., 2009; Bullmore and Sporns, 2009), they also emerge from 

the interplay of SC and local oscillatory dynamics. Beyond the role of the 

connectivity matrix, the delay matrix was also found to play a major role in 

preventing the full synchronization of the network. Actually, the network 

globally synchronizes when the mean delay is too small, even when 

biologically plausible dispersion of intrinsic frequencies and noise level are 

considered. Moreover, the region of best agreement with empirical FC was 

obtained when the mean delay was above a certain bound (about 9 ms 
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here). All these results were found to be robust to the dispersion of intrinsic 

frequencies and to noise, both important sources of variability. The 

agreement of the model results with the empirical data depends not only on 

the type of dynamics and on the precise mathematical model that we have 

considered at the local level, but also on the quality of the SC. Although the 

empirical FC is related to the actual brain dynamics, errors in the 

measurement of SC can obscure actual contributions of SC to FC. For 

example, very few inter-hemispherical connections were detected between 

regions outside the cortical midline. Actually, the detection of structural 

connections when tracking small fibres perpendicular to major fascicles and 

across the corpus callosum is still difficult with diffusion MRI and 

tractography. These missing connections may be responsible for the lower 

agreement between empirical and simulated FC when the seed is not placed 

in or near to medial cortical regions. Other brain regions not captured in the 

structural scans (e.g. the thalamus) might also have an important role in 

shaping FC. Still, despite methodological limitations and using only cortical 

SC, we have been able to identify a number of important features of the 

empirical FC. Previous modelling studies have investigated the brain's neural 

dynamics during rest and the relationship between SC and FC in this 

behavioural state, using similar large-scale networks but with more 

biologically detailed models for the node dynamics. In these cases, all 

conclusions were based on numerical simulations, and no analytic link to a 

theoretical understanding of the network dynamics in simple parameter 

settings (as shown here) was possible. In Ghosh et al. (2008a, 2008b) and 

Knock et al. (2009), using the CoCoMac database of the macaque's 

anatomical brain connectivity (Kötter and Wanke, 2005), a down-sampled 

human SC and a two-dimensional reduced model for the node dynamics 

including damped alpha oscillations at the local level, slow fluctuations were 

believed to be induced by noise. This noise led to excursions of neural 

activity in the vicinity of the stable equilibrium state of the brain network, 

inducing patterns of alpha waves across the brain network. In Honey et al. 

(2009), using the high-resolution human SC and a neural mass model at the 

local level, a similar performance in the comparison with empirical FC as 

with our model was obtained, but no theoretical explanation for the nature 

of slow fluctuations was presented. In Deco et al. (2009), Wilson–Cowan 

units were used at the local level with the CoCoMac connectivity, and the 
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model exhibited similar self-sustained oscillatory behaviour as described 

here. The network was divided a priori into two node communities using a 

modularity algorithm. What was found was that the synchrony levels of 

these communities fluctuated in an anti-correlated way under the influence 

of noise, reproducing experimental observations (Fox et al., 2005). Without 

the availability of empirical FC for the macaque, the results from the latter 

model could not be directly compared with experimental data. Therefore, 

the goal of the present study was to address all these questions in more 

detail, using the same dynamical scenario. In the model of Honey et al. 

(2009), the chaotic node model did not allow for a good understanding of 

the origin of the global dynamics. In the other models, either damped 

oscillations (Ghosh et al., 2008a, 2008b; Knock et al., 2009) or sustained 

oscillations like here (Deco et al., 2009) were hypothesized at the local level 

and, even if the dynamics might be mainly linear in the first case, the 

dynamics was intrinsically nonlinear in the latter. However, in all cases, 

connectivity, delays and noise were found to be important to reproduce 

features of the empirical FC, and among them RSNs. For the present model, 

we find that noise is not necessary to create slow resting-state fluctuations. 

However, this result does not contradict the results in Deco et al. (2009) as 

noise was found to play a role in the interaction between clusters, a 

question that does not overlap with our study. 

This study suggests several lines of future research. Although the situation 

considered here remains too complicated for an analytical treatment, our 

results predict that the network dynamical behaviour we have described 

could be the origin of fluctuation patterns observed in the BOLD signal 

during rest. These results emphasize the need for a deeper understanding of 

the dynamics of phase oscillator networks for complex networks, such as 

those encountered in the brain. Beyond understanding cluster formation 

and the emergence of correlations in the slow node dynamics inside 

clusters, the way these clusters interact and how correlations or anti-

correlations emerge between clusters remain unknown. Addressing these 

questions in future research may help comprehend the organization of 

neural dynamics at the macroscopic level. 

Previous models of resting-state activity have considered quite different 

models of neural masses at the node level. Despite their differences, all 



103 
 

have shown a degree of agreement with experimental data. This suggests an 

important role of SC in the generation of FC. As an example, the DMN is 

known to represent a densely connected sub-network within the cortex 

(Hagmann et al., 2008; Honey et al., 2009). However, as we show here, the 

simulated FC is a priori the product of the interplay between SC and the 

local dynamics. Therefore, improving human connectome data will definitely 

bring progress to this research field.  

In this chapter, we have mainly focused on correlations of slow BOLD signal 

fluctuations. However, recent electrophysiological findings have found that 

RSNs could be independently revealed by MEG band-limited power 

fluctuations (Brookes et al., 2011). In the next chapter, we explore if our 

model is able to explain this behaviour, in order to obtain a better 

understanding of the relationship between spontaneous activity observed in 

slow and fast neural activity and the mechanism that binds cortical regions 

together during rest. 
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IV – Predicting resting-state MEG band-limited power 

correlations with the Kuramoto model 
 

“The scientist is not a person who gives the right answers;  

He is the one who asks the right questions.”  

Claude Lévi-Strauss 

 

IV.I – Introduction 

The majority of studies of resting brain activity have used fMRI to measure 

temporal correlations between BOLD signals from different brain areas. 

Although there is a global consensus that BOLD temporal correlations imply 

that brain areas are functionally connected, the BOLD contrast is a measure 

related to blood flow and is limited by poor temporal resolution due to the 

protracted hemodynamic response1. For this reason, the electrodynamic 

mechanisms that mediate resting-state correlations cannot be accurately 

elucidated using this technique. Magnetoencephalographic experiments 

have detected functional connectivity between segregated cortical regions 

during rest, when considering the slow band-limited power (BLP) 

fluctuations (or envelopes) of neural oscillations (Nikouline et al., 2001, Liu 

et al., 2010, Brookes et al., 2011, Hipp et al., 2012)2. In general, these results 

indicate that functional connectivity in BOLD responses is intimately related 

to neural oscillations, and exclude the hypothesis where it would be the 

BOLD signals, on their slow time scale, that interact with each other across 

areas leading to resting-state fluctuations. However, the mechanism at the 

genesis of these electrophysiological amplitude modulations, or BLPs, and 

the link to the hemodynamic fluctuations detected in fMRI remains 

unknown. 

In particular, the study from Brookes et al. (2011) using MEG has found that 

segregated cortical areas exhibit correlated BLP only in a specific range of 

                                                           
1
  See section I.I.1– Resting-state hemodynamic fluctuations for more details. 

2
 See section I.I.3 - Detection of resting-state patterns using MEG for a 

comprehensive compilation of experimental studies. 
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carrier frequencies. As seen in Figure 47, they found that significant 

correlations within seeds of the DMN only appear when considering the BLP 

of frequencies between 10 and 30 Hz, with a peak around 18Hz (in the low-

beta frequency band). These results suggest an underlying binding 

mechanism that modulates the power of 10-30Hz oscillations in a correlated 

way across regions from the same RSN. Furthermore, applying ICA to the 

BLP fluctuations, revealed sub-networks that closely matched the RSNs 

identified in BOLD studies, in a consistent way across subjects (see Figure 5 

in section I.I.2 - Electrophysiological signatures of resting-state activity). 

According to their results, the temporal signature of the DMN was most 

prominent in alpha-band power fluctuations, and the remaining RSNs were 

found with beta-band carrier frequencies. 

 

Figure 47 – Frequency specificity of long-range correlations using MEG band-limited power 
fluctuations. (A) The parietal and prefrontal cortices exhibit significant correlations in the BLP 
from 10 to 30Hz, while the BLP at other frequencies is not correlated. (B) DMN. (B, i) Anterior 
cingulate, inferior parietal lobules (B, iv) Connectivity between right inferior parietal lobule 
and the right primary visual cortex. Adapted from Brookes et al. (2011). 

In the previous chapter, BOLD signal fluctuations were generated by 

fluctuations in the synchrony degree, where partially synchronized states 

emerged periodically, and were naturally disrupted due to competitive 

mechanisms between multiple stable states (Cabral et al., 2011). In the 

present chapter, we use the same Kuramoto model of weakly coupled 

oscillators with brain-inspired couplings and delays, to show that instability 

in the degree of synchrony not only explains BOLD signal fluctuations, but 

also induces band-limited power fluctuations. In particular, when a cluster 

of regions becomes temporarily synchronized, this occurs at a reduced 
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collective frequency, and therefore the power at this frequency increases 

simultaneously for all nodes belonging to the cluster. Under realistic 

parametric conditions, these cluster frequencies fall in the alpha- and beta-

bands. Moreover, the BLP fluctuations are found to define functional 

networks that are similar to the ones extracted from real resting-state MEG 

recordings.  

The work presented in this chapter is the first to propose a unified theory 

encompassing both BOLD fluctuations and BLP modulations of 

electrophysiological signals to explain the physiology of resting-state 

spatiotemporal patterns at the macroscopic level. 

IV.II Methods 

IV.II.1 – MEG data collection and analysis 

Ten normal healthy participants underwent an eyes-closed resting state 

MEG scan lasting five minutes1. The MEG signal was frequency filtered into 

15 bands of interest (each 4Hz wide, between 0 and 60Hz) and subsequently 

projected into 90 intracranial sources, each one placed at the centre of 

gravity of the brain areas from the AAL parcellation scheme (Tzourio-

Mazoyer et al., 2002) (see Figure 48 A). According to previous experimental 

(Liu et al., 2010, Brookes et al., 2011a, Brookes et al., 2011b) resting-state 

functional connectivity in MEG data was found to be best captured by 

considering the slow amplitude fluctuations of the time series at each 

location. This is found by estimating the absolute value of the oscillatory 

signal, computed via the Hilbert transform, which captures the 

instantaneous power of the signal (see Figure 48 B for an illustration. 

Furthermore, the oscillatory amplitude envelope was temporally down-

sampled by dividing the envelope into equal windows of length 1 s and 

calculating the mean envelope value for each window (which effectively 

low-pass filters the envelope signal). For each frequency, the pair-wise 

90x90 correlation matrix was estimated, giving a total of 15 correlation 

matrices for each subject. The correlation matrices were averaged across 

the 10 subjects to give a single set of 15 correlation matrices. 

                                                           
1
 A full description of these methods is provided in the Appendix section A.2 - MEG 

Data Collection and Analysis. 
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Figure 48 - MEG data collection and analysis. (A) The signals detected by the MEG sensors 
(yellow) were beamformed into 90 sources (red) representing functionally distinct cortical 
and subcortical regions defined according to the AAL parcellation template. (B) Resting-state 
MEG signal from one cortical region in 3 frequency bands (black) and the corresponding 
amplitude (or power) envelopes (red). (C) Functional connectivity strength – taken as the 
mean of all pairwise envelope correlations - as a function of the carrier frequency (centre 
frequency ±2Hz) from which the envelopes are extracted. The functional connectivity attains 
a maximum when the power of 16 to 20 Hz oscillations is considered. 

To take into account artefact correlations generated by intrinsic properties 

of either the MEG scanner or the source-projection algorithm, the same 

correlation matrices were computed, but this time with an empty-scanner 

dataset with additive subject-matched uncorrelated coloured noise. 

 IV.II.2 – Anatomical connectome 

For our simulations, we used a brain-inspired coupling architecture, in the 

same way as in previous chapters. In this case, the DTIs of the brains of 21 

healthy subjects were acquired and the corresponding connectomes at the 

voxel level were built using a tractography algorithm1. Subsequently, brain 

                                                           
1
 See the Appendix section A.3 – DTI data collection and building of anatomical 

connectomes for details. 



109 
 

areas were defined using the AAL parcellation template, and the number of 

fibre tracts detected connecting each pair of regions was taken as an index 

of the coupling strength, resulting in a coupling matrix   for each subject. 

Matrices were averaged across subjects, resulting in a single group-

representative coupling matrix. The distances between the 90 AAL regions 

were taken as the Euclidean distance between the corresponding centres of 

gravity. 

 

Figure 49 - Building the model’s coupling architecture. The coupling strength between 
regions was derived from the average number of fibers detected with tractography 
connecting any pair of regions defined in the AAL template. The distance was computed as 
the 3-D Euclidean distance between centers of gravity. 

IV.II.3 - Model of weakly coupled oscillators  

To simulate the dynamical interaction of cortical regions in the brain’s large-

scale anatomical network, we have used the previously described Kuramoto 

model (Kuramoto, 1984, Acebron et al., 2005) taking into account the 

interaction delays1 (Yeung and Strogatz, 1999). The Kuramoto model has 

been used to simulate synchronization phenomena in a wide variety of fields 

including biological systems (Pikovsky et al., 2001, Strogatz, 2003) and has 

only recently been applied to macroscopic brain dynamics (Cabral et al., 

2011). The dynamics emerging from weakly coupled gamma-band oscillators 

when coupled with complex topology, like the brain, has revealed complex 

synchronization behavior such as multistability and metastable cluster 

synchrony (Cabral et al, 2011).   

In order to find the parametric conditions under which multistability in this 

new connectome occurs, we performed simulations for 300 s for a range of 

global coupling strengths k  and mean delays    . In the previous chapter, 

the synchronization dynamics was found to show the highest sensitivity to 

                                                           
1
 See section II.III – Time delays in the Kuramoto model. 
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these two parameters. Phases were initialized randomly, and simulations 

were run in a non-interacting way for a sufficiently long interval (due to 

delays). The first 20 s of simulations were discarded to avoid any 

dependency on initial conditions and we always refer to the remaining 

simulated time in the following. Once the optimal set of parameters was 

chosen, we simulated the model for 1200 s (20 minutes) to compare with 

experimental data. The system of 



N dynamical equations was numerically 

integrated with a time-step       ms using an Euler scheme. All 

calculations were performed using MATLAB (www.mathworks.com). 

At the global level, the network synchrony was evaluated by the Kuramoto 

order parameter      (see section II.II – Synchronization and the Kuramoto 

Order Parameter). 

IV.II. 4 - Comparing simulations with experimental results 

The simulated neural activity at each region, taken as           . To 

compare with the experimental MEG data,    was band-pass filtered into 15 

frequency bands (between 0 and 60Hz, each 4Hz wide). Furthermore, in the 

same way as we did in the experimental MEG data, the Hilbert envelope was 

computed and was temporally down-sampled using a 1 s sliding window. For 

each frequency, the pair-wise correlation matrix was estimated, giving a 

total of 15 frequency-specific correlation matrices. 

IV.III – Results 

IV.III.1 - MEG Functional Connectivity 

The set correlation matrices computed from the envelope fluctuations at 

each of the 15 frequency bands is plotted in Figure 50. Notably, as observed 

in Figure 48C, the overall functional connectivity (i.e. the mean of all pair 

correlations) is stronger when 8-20Hz carrier frequencies are considered, 

with a peak around 14-18Hz. These BLP correlations are significant and are 

independent of artifact correlations (Figure 48C red). Performing a visual 

inspection to the correlation matrices in Figure 50, we can see that the 

functional connectivity between some node pairs varies as a function of the 

carrier frequency, where          exhibits a peak for             . 
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Figure 50 – Band-specific functional connectivity. Correlation matrices of band-limited 
power fluctuations obtained at 15 non-overlapping frequency bands (between 0 and 60Hz, 
each 4Hz wide). 

In order to explore the behavior of power fluctuations over time, we plot in 

Figure 51 the average of all 90 envelopes in three distinct frequency bands. 

By computing the average over all nodes we are able to explore the 

dynamics at the global level, but further explorations should be performed 

at the level of individual RSNs. We observe that the power of 16-20Hz 

oscillations fluctuates strongly in time, and in a non-Gaussian manner, 

suggesting multistability. Although the likelihood plot indicates more 

stability at low power (indicating that the brain spends more time with low 

power in this frequency band), high-power states occur with significant 

likelihood. Moreover, the power fluctuates slowly, in a time-scale 

comparable to the BOLD fluctuations (i.e <0.1Hz). So far, the origin of these 

band-limited power fluctuations remains unclear. In the gamma-band 

(Figure 51 bottom) however, the average power fluctuates around its mean, 

indicating a stable regime in this frequency band.   
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Figure 51 – Power fluctuations in 3 frequency bands from one subject with eyes closed 
during rest. (Left) Mean of all 90 envelopes obtained from the MEG signals from subject 1 of 
the 0-4Hz, 16-20Hz and 36-40Hz oscillations. Increases in the power indicate that the 
amplitude of the corresponding oscillations is increased in the brain. (Right) Plots of the 
likelihood of the power at each of the frequency bands shown in the left. A single stable state 
with only noisy fluctuations around its mean generally exhibit a bell-shaped distribution, 
whereas multistable regimes exhibit more complex or multimodal distributions.       

IV.III.2 - Simulated network dynamics 

To explore the mechanisms underlying the complex dynamics observed in 

MEG data, we built a model of large-scale brain dynamics considering the 

coupling architecture of the neuroanatomical network. At the individual 

level, brain regions were assumed to maintain self-sustained oscillations in 

the gamma frequency band. To minimize the number of parameters we 

assumed pure 40Hz oscillations. The interacting behavior of oscillatory brain 

regions was simulated by the Kuramoto model of weakly coupled oscillators 

with time delays for sufficient time to be in a stationary regime. As shown in 

Figure 52, the model optimally predicts MEG functional connectivity for a 

range of parameters where the oscillators exhibit relatively low levels of 

synchrony but the degree of metastability is high. This is found for average 

delays between 10 to 20ms (corresponding to transmission speeds between 

3 to 6 m/s) and for coupling strengths sufficiently weak to avoid full 

synchrony but strong enough to engage metastable partially synchronized 

states. Notably, this corresponds to the same dynamical regime where the 

best agreement with BOLD functionally connectivity was found in our 

previous work (Breakspear et al., 2010, Cabral et al., 2011).  
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Figure 52 - Synchronization dynamics and model’s performance in the         parameter 
space. (a) Mean synchrony degree (1=full synchrony; 0=incoherence) as a function of the 
coupling strength and the mean delay (after a transient period of 100s with a time step of 
0.1ms). The system exhibits a high degree of synchrony when the delays are small (tau<4ms). 
For larger delays, synchrony is possible with an increased coupling strength. (b) The 
metastability index indicates how the synchrony degree fluctuates in time. These fluctuations 
are stronger in the region between incoherence and full synchrony, indicating a multistable 
regime. (c) For each set of parameters, the 15 simulated correlation matrices were 
concatenated, and the values reported correspond to the Pearson’s correlation between the 
real and simulated correlation matrices. The black dashed circle indicates a broad region of 
parameters where the model optimally predicts real MEG functional connectivity. The white 
vertical lines highlight the set of parameters considered in Figure 53, corresponding to a 
mean delay of 15 ms (i.e. a speed of 3.7 m/s). 

IV.III.3 - Frequency specificity and power modulations 

In the intermediate regime between incoherence and full synchrony, the 

synchrony degree fluctuates in time, these fluctuations being captured by 

the metastability index (Shanahan, 2010). For high metastability, multiple 

partially synchronized states alternate in time with periods of incoherence. 

Remarkably, during periods of increased cluster synchrony, the nodes 

involved start oscillating at a reduced collective frequency, as has been 

described for systems of coupled oscillators with time delays (Niebur et al., 

1991). This reduced collective frequency depends parametrically on the 

natural frequency of the oscillators, on the mean coupling strength, on the 

mean delay and on the number of nodes involved. Therefore, due to the 

heterogeneity of the anatomical connectome, when different subsets of 

nodes synchronize, they will have different collective frequencies, resulting 

in a rich power spectrum with multiple peaks. In Figure 53 we show the 

average power spectrum of the system (in each line), for increasing coupling 

strengths using a fixed mean delay of 15ms. For null coupling,    , all 

nodes behave independently and oscillate at their own intrinsic frequency, 
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i.e. 40Hz. Conversely, for     , all oscillators are synchronized at a global 

reduced frequency (here, around 4Hz). Using 40Hz oscillators and 

biologically plausible delays (i.e. 15ms here), strong peaks between 10 to 

20Hz emerge in the metastability region (      . 

 

Figure 53 - Power spectrum as a function of the coupling strength. Left – Each line 
corresponds to the average power spectrum of all the nodes in the network. Starting from 
the bottom, at k=0, all the nodes oscillate at their natural frequency 40Hz, and therefore, the 
mean power spectrum reveals a single peak at 40Hz. When k>0, the oscillators interact with 
each other, distorting the pure 40Hz oscillations and broadening the spectrum of frequencies 
of the system. Due to the heterogeneity of the connectome, some groups of nodes (sub-
networks, or clusters) are more strongly coupled than others. Therefore some clusters are 
able to synchronize at weaker global coupling. Since the delays force the synchrony to occur 
at a reduced collective frequency, when a sub-network starts synchronizing, a new frequency 
peak appears.  

While synchrony among a group of nodes is maintained, the power of the 

corresponding collective frequency is kept high. However, if the 

synchronized state is only stable for some periods in time and is naturally 

disrupted by competitive states, then the power of the reduced frequency 

fluctuates accordingly. In this way, the degree of synchrony of the cluster 

      modulates the power of its reduced collective frequency 
   

  
 . 

To get a better picture of the dynamics occurring in the network, we plot in 

Figure 54 the synchrony degree of the whole network over time (top) and 

the corresponding power between 10 to 20Hz (middle), for different levels 

of coupling  . As expected, for weak couplings (A), the system is in an 

incoherent state, with low synchrony degree. As all oscillators are essentially 

driven by their own intrinsic frequency (i.e. 40Hz), the power between 10-

20Hz is low. As the coupling increases, we observe the sporadic emergence 

of metastable synchronized states that emerge spontaneously from 
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incoherence, last for some seconds, and then disappear again (B). While 

synchronized, and due to delays, the nodes in the cluster are phase-locked 

at a reduced collective frequency (here between 10-20Hz). When the 

synchrony fades away, the power in this frequency vanishes, and oscillators 

are driven again by their intrinsic frequency at 40Hz. Furthermore, under 

fine-tuned parametric conditions, the 10-20Hz power fluctuates slowly, with 

a time scale similar to the one detected by the BOLD signal (i.e. around 

0.1Hz). 

 

Figure 54 - Meta-stable synchronized states induce slow fluctuations in the power between 
10 to 20Hz. (A-C) Top – Plots of the synchrony degree measured at each instant of time 
(black) and smoothed with a 1s sliding window (red). Increasing the coupling strength (from A 
to C), the synchrony degree rises from nearly 0 (total incoherence) towards 1 (full synchrony). 
The dash-dotted lines indicate the instants of time where higher (green) and lower (blue) 
synchrony degree was detected. Middle – Average power between 10-20Hz at each instant 
of time (black) and smoothed with a 1s-sliding window (red). In the region of higher 
metastability (B) the smoothed degree of synchrony correlates more than 90% with the 
smoothed power fluctuations showing that the fluctuations in the power are originated by 
slow fluctuations in the synchrony degree. Bottom – Phase-plots illustrating the phases of all 
nodes (*) at a given instant of time. Green phase plots were captured at an instant of higher 
synchrony (corresponding to the green dashed lines), and blue phase-plots correspond to the 
most desynchronized state. In (B), synchronized and desynchronized states alternate in time.  
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To further explore the origin of these band-limited power (BLP) fluctuations, 

we have computed the correlation between the order parameter and the 

BLP in two frequency ranges. As can be seen in the plots in Figure 55 ADH, 

the order parameter      correlates strongly with the amplitude 

modulations of 10-20Hz oscillations (cc=0.55). Furthermore, this correlation 

increases significantly if      is low-pass filtered <1Hz (cc=0.86). 

 

Figure 55 – Relationship between the order parameter and band-limited power fluctuations 
(for    = 15ms;  =2.8). (A) The synchrony degree of the system of 90 coupled oscillators 
(blue) and low-pass filtered at cut-off frequency of 1Hz (red). (B-C) Probability distribution of 
the synchrony degree at 2 different time scales: fast (B) and low-pass filtered below 1Hz (C). 
The bi-stability of the synchrony degree is most clearly detected in the slow component of 
the signal. (D-F) Instantaneous power of the system in the 10-20Hz (D) and 35-45Hz (F) 
frequency ranges over time. (E-G) Probability distribution of the power in the 10-20Hz (H) 
and 35-45Hz (I) frequency ranges. While the power at lower frequencies is characterized by a 
bimodal distribution -which is indicative of a bi-stable regime-, the power at higher 
frequencies is mainly Gaussian. (H) Correlation between the synchrony degree and the 10-
20Hz (left) and 35-45Hz (right) power fluctuations. The 10-20Hz power fluctuations are highly 
correlated with the synchrony degree, particularly when this one is filtered below 1Hz. A-H 
correspond to a simulation time of 1200 s, where the fist 100s were discarded.  

It seems that only long enough periods of synchrony result in collective 

frequency decays, which subsequently induce metastability. Consequently, 

the non-Gaussian regime of the order parameter is much more clearly seen 

when fast fluctuations are filtered out (see the histograms in Figure 55B and 

C). On the other hand, as can be observed in Figure 55F-G, the power 

around the oscillators’ natural frequency (40Hz ±5Hz to allow for small 

perturbations in the limit cycle) remains high, with only relatively small 

amplitude perturbations. One explanation for this fact is that, even when 
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the oscillators are entrained by the collective behavior of the cluster, they 

still oscillate in relation to it, being constantly driven by their own limit-cycle 

dynamics1. Even so, these 35-45Hz amplitude fluctuations exhibit small 

negative correlation with the order parameter (Figure 55H). In other words, 

in periods of high synchrony, the amplitude of 40Hz oscillations is slightly 

decreased. 

The stability of synchronized states is highly sensitive to the coupling 

strength. Increasing only slightly the coupling (from to       to       in 

our case) increases the stability of synchronized states, and these can last 

for long periods of more than ten seconds (See Figure 56). 

 

Figure 56 – The stability of synchronized states (right peak in the likelihood plot) increases 

with the coupling   (here for    = 15ms;  =2.9). 

From experimental studies, we know that the envelopes of alpha- and beta- 

band oscillations can be correlated across regions belonging to the same 

RSNs (Brookes et al., 2011). However, the phase relationship of these 

oscillations remains unclear. In order to reproduce a regime in which the 

envelopes are correlated in phase only in a certain frequency band, but 

where the underlying oscillations are uncorrelated, the coupling needs to be 

sufficiently weak so that the incoherent state is more stable than the 

synchronized one (as in Figure 55C, where the likelihood of the more 

synchronized state (right) is lower than the likelihood of the incoherent 

state (left)). In this case, oscillations are only periodically in phase, but 

envelopes are correlated over the whole time. 

                                                           
1
 An analogy for this type of stable dynamical state where one oscillator is 

simultaneously entrained by its individual frequency and the system’s frequency is 
the earth in the solar system. We can imagine the earth as an oscillatory entity, 
which rotates about its axis at approximately one cycle per day, and additionally, 
performs a yearlong revolution around the sun.    



118 
 

As can be seen in Figure 57A, the 16-20Hz envelopes of the left and right 

superior parietal are highly correlated. However, for other frequency bands, 

this correlation decreases significantly, showing that the connectivity is 

frequency specific (see Figure 57B black). In fact, since the optimal 

frequency depends on parameters of the model, it can be tuned in order to 

match the frequency at which the MEG signals of these two cortical regions 

are optimally correlated (Figure 57B gray). As can be observed in Figure 57C, 

the 16-20Hz oscillations of the two regions are only phase-locked for some 

periods in time, during which the amplitude increases, resulting in 

correlated envelopes. 

 

Figure 57 - Power fluctuations and phase synchronization between the left and right 
Parietal cortices. (A) Simulated         band-pass filtered between 16 to 20Hz. (B) 
Functional connectivity of the two seeds as a function of the carrier frequency          

obtained from simulations (black) and from real MEG data (grey). The correlation peaks for a 
carrier frequency between 16 to 20Hz. Gamma-band oscillations (>30Hz) of these 2 seeds do 
not exhibit correlated power fluctuations. (C) Zoom into a 4 seconds period of the band-pass 
filtered oscillations (16-20Hz) shown in (A), at the time where a high amplitude peak occurs. 
When the two signals are in phase, their amplitudes increase simultaneously. Conversely, 
low-amplitude oscillations are not synchronized. The simulations shown here correspond the 
working point <τ> = 15ms and k=2.7. 

IV.III.4 - Comparison with MEG functional Connectivity  

The parameter choice was constricted by 3 factors: good agreement with 

the 15 MEG functional connectivity matrices (overall correlation >0.35), 

stronger functional connectivity in the power of 16-20Hz oscillations and 

overall low degree of synchrony (R<0.3) to avoid correlated oscillations. For 

the set of parameters where these constraints were satisfied, we chose 
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arbitrarily a mean delay of 15 ms and tuned the coupling to be sufficiently 

strong to engage only sporadic synchronized states, as shown in Figure 55 

(     ). For this working point simulations were reran for 1200s.  

The correlation between real and simulated functional connectivity for all 

possible FC pairs in the 15 frequency bands -corresponding to 60,075 pairs- 

was at cc=0.39 (p-value<10-20) (see Figure 58A). Note that this is a low-

resolution (90 regions only) and simplified model (i.e. equal oscillators, no 

noise) for which quite low correlation values are expected, as long as they 

are significant. Figure 58B shows the correlation between real and predicted 

values for each of the 15 frequency bands (4,005 FC pairs each). The model’s 

prediction is significant for all frequency bands (p-value < 10-20). In addition, 

stronger functional connectivity was found in power modulations around 

16-20Hz (Figure 58B), showing a similar frequency specificity as the real 

MEG signals shown in Figure 48C. 

 
Figure 58 - Simulated functional connectivity and comparison with empirical MEG data. (A) 
Plot showing the empirical and simulated functional connectivity values for all possible 
         values. (B) Correlation between real and predicted FC matrices obtained at each of 

the 15 frequency bands. (C)  Functional connectivity strength – taken as the mean of all 
pairwise envelope correlations - as a function of the carrier frequency (centre frequency 
±2Hz) from which the envelopes are extracted. The functional connectivity attains a 
maximum when the power of 16 to 20 Hz oscillations is considered. 

On a seed by seed basis, the model was able to predict seed functional maps 

with correlations up to 0.9. In Figure 59 we report the connectivity 

(anatomical and functional, empirical and simulated) for 2 representative 

seeds, at 3 frequency bands: 4 to 8Hz, 16 to 20Hz and 40 to 44Hz. It can 

easily be observed by visual inspection, that the correlations emerging in the 

16-20Hz FC (blue) can be quite surprisingly predicted by the model. 

Moreover, the connectivity map of the left Frontal Superior Medial area 

(Figure 59A) shows a different pattern of connectivity from the left Cuneus 

(Figure 59B). Indeed, the correlation between these 2 seeds is quite low, 
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which reveals that they belong to different sub-networks, each with a 

particular synchronization pattern. 

 
Figure 59 – Seed-based connectivity maps at multiple levels. The connectivity of the Frontal 
Superior Medial area (A) and the left Cuneus (B) with all other regions in the brain (rows). 
(Left) The black horizontal bars in the first column indicate the structural connectivity 
(proportional to the number of white matter tracts detected) between the seed and all other 
regions in the brain. All subsequent columns correspond to functional connectivity, measured 
as the correlation between 4-8Hz (green), 16-20Hz (blue) and 40-44Hz (brown) fluctuations. 
At high frequencies, the FC in the model derives mainly from directly connected pairs SC. 
However, especially in the 16-20Hz band, the FC increases almost globally, and nodes that are 
not directly connected exhibit strong correlated amplitude modulations.  
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For each seed, we observe that the FC with disconnected regions is notably 

increased when 16-20Hz fluctuations are considered, which shows that this 

reduced frequency allows for long-range functional connectivity in the brain. 

To plot the envelopes at the node level, we chose 2 pairs of contra-lateral 

seeds: the left and right superior motor area and the left and right anterior 

cingulate. We filtered the simulated time-series in the 12-16Hz frequency 

band and observe that the power fluctuates in a correlated way across 

contra-lateral regions (Figure 60). Furthermore, as observed in the previous 

figure, w can see that there are different modes of amplitude fluctuations in 

the network, as indicated by the different amplitude modulations of the 

superior motor areas and the anterior cingulate areas. 

 
Figure 60 - BLP correlations across pairs of contra-lateral regions. (Left) Simulated time-
series filtered in the 12-16Hz frequency band and corresponding power envelopes (in black). 
(Right) Correlation between envelopes showing that pairs of contra-lateral regions are 
correlated (i.e. left and right superior motor area and the left and right anterior cingulate), 
but the BLP of the superior motor areas is not correlated with the BLP at the anterior 
cingulate. Scale of the correlation matrix: [0 1].  

In order to take into account the artifact correlations generated by the 

source-projection algorithm, we have compared our results with real and 

null MEG data. The high correlations appearing in the null MEG data (Figure 

61A) were found to be independent of the carrier frequency (as shown 

previously in Figure 48C, red) and occurred essentially between spatially 

neighbour regions. In general, these neighbour regions, for being also 

structurally connected, exhibit some degree of real functional connectivity, 

and therefore artefact correlations cannot be simply subtracted from the 

real MEG signal from resting subjects. Alternatively, we evaluated the 
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performance of the model in reproducing long-range correlations appearing 

in real MEG data, by comparing our results with both real and null MEG 

data, considering only the connections between distant pairs, for which the 

artefact correlations were small (                  ). As seen in Figure 

61B and C, the model predicts real long-range functional connections that 

are inexistent in the null MEG data. 

 

Figure 61 – Comparison with null MEG data obtained with an empty scanner. (A) FC matrix 
of simulated null MEG data. Due to intrinsic limitations of the source-projection algorithm, 
neighbour regions exhibit strong correlated activity. Due to the strong local connectivity of 
the brain connectome, most of these short-range correlations are also present in real and 
simulated MEG data. However, to test if the model predicts the long-range correlations 
existing in real MEG signals (independent from artefacts), we compare our model results with 
real (B) and null (C) MEG data by considering only the connections between distant pairs, for 
which the artefact correlations were smaller than cc=0.2. 

IV.IV – Discussion 

In this chapter, we explored if our simple model of weakly coupled 

oscillators could predict the spatiotemporal patterns of band-limited power 

fluctuations observed resting-state MEG. In general, our results reproduce 

important features of resting-state MEG activity, both in the temporal and 

spatial domains. On one side, the simulated neural activity exhibits 

multistability and band-limited power fluctuations emerge, in the same way 

as observed experimentally. In particular, using identical 40Hz oscillators, we 

observe strong fluctuations in the power in the 10-20Hz frequency range. 

Furthermore, the spatial patterns drawn by correlations between BLP 

fluctuations are significantly similar to the ones found in resting-state MEG 

data across subjects. 

These results go in agreement with previous MEG studies that found resting-

state functional connectivity, similar to BOLD signal correlations, using the 

band-limited power fluctuations of fast oscillations (de Pasquale et al., 2010; 
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Brookes et al., 2011). In particular, long-range FC was found to be related to 

simultaneous increases in the power of alpha- and beta-band oscillations 

between distant areas in the brain. However, by the simple empirical 

analysis of electrophysiological data it has been difficult to uncover the 

physiological mechanisms leading to this temporary frequency 

synchronization (or coherence) between brain areas. Therefore, the 

employment of brain-inspired computational models, like the one proposed 

here, can help to explore origin of these periodic coherent states.  

Our simulation results suggest that the binding between cortical areas, 

expressed through temporary coherence, emerges due to metastable 

synchronized states. In other words, when the coupling is only sufficiently 

strong, some groups of regions (or clusters) tend to synchronize together. 

When this happens, all nodes involved are engaged at a reduced collective 

frequency and their power in the corresponding band increases 

simultaneously. However, due to competitive interactions with the rest of 

the network, this coherent state is unstable, leading to the spontaneous 

disruption of synchrony after some time. When synchronization fades away, 

all nodes in the cluster disengage from the collective frequency, and 

therefore the BLP around this frequency decreases simultaneously for all 

nodes in the cluster. Since the engagement and disengagement of cluster 

synchronization occurs periodically, this leads to correlated fluctuations in 

the BLP around the cluster frequency for all nodes in belonging to the same 

cluster. Furthermore, due to the complex connectivity structure of the brain, 

the same node may be engaged in an alternated way in different clusters. 

Due to the heterogeneity of couplings and delays, the collective frequency 

of each cluster is different, since it depends directly on the number of nodes 

and the mean delay of the cluster, as predicted by  Niebur et al. (1991)1. 

Although a similar behavior had been observed in a theoretical study of 

weakly coupled oscillators with uniform time delays (Kim et al., 1997), this is 

the first time this type of dynamics is reported with brain-inspired 

connectivity and realistic delays.   

Despite its simplicity, the Kuramoto model has proven to be a helpful tool to 

study synchronization phenomena in neural systems (Breakspear et al., 

                                                           
1
 See section II.III – Time delays in the Kuramoto model. 
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2010). One of the main assumptions made when applying the Kuramoto 

model to large-scale brain dynamics is that individual cortical regions exhibit 

self-sustained oscillations in the gamma-frequency band. This assumption is 

supported by theoretical and experimental studies, who found that 

ensembles of densely connected excitatory and inhibitory neurons are 

capable of engaging in a limit-cycle with a natural frequency in the gamma-

range (Brunel and Wang, 2003; Bartos et al., 2007). Furthermore, 

electrophysiological recordings suggest the existence of a distributed system 

of gamma-band generators in the brain (Basar-Eroglu et al., 1996), and they 

have been suggested as universal functional building blocks in the brain. 

According to our model, when gamma-band oscillators are coupled in the 

macroscopic space-time structure of the brain connectome and there is no 

external (or even internal/mental) stimulation, strong frequency peaks 

appear at lower frequencies. These results suggest that the strong rhythms 

appearing in the brain below the gamma-frequency range originate from 

distributed network interactions in contrast with theories that suggest the 

existence of local alpha- or beta-band generators at the neuronal level. In 

addition, these results do not contradict the role of the cortico-thalamic 

loop in generating alpha rhythms (which is actually included in the AAL 

connectome). Instead, we suggest that several loops (or sub-networks) 

coexist in the brain, and their frequency is tuned by their length (or mean 

delay*number of nodes). 

According to our model results, during rest, different sub-networks compete 

to synchronize at reduced collective frequencies. Interpreting the results 

from the perspective of information processing in the brain, we can imagine 

that under stimulation, the synchronization of one sub-network is 

enhanced, and the corresponding sub-units become phase locked 

(coherent). This goes in agreement with current theories of long-range 

communication through coherence in the brain (Fries, 2005).  

Our results can be related to a recent modelling study by Freyer et al. 

(2011), who proposed a mechanism for alpha-power modulations during 

rest using a biophysical model with simpler cortico-thalamic connectivity 

and time-delayed interactions. Although our model is more abstract at the 

node level, we believe some similarities can be detected, since there was a 

significant delay between the cortex and the thalamus, and intermittent 
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increases in alpha power (10Hz) could be related to sporadic synchrony 

between the thalamus and the cortical layer.  

We would like to note the fact that, in the current implementation of the 

model, all cortical regions have identical natural frequencies at 40Hz. 

However, gamma band activity in the brain has a broader spectrum (35-

100Hz). Based on theoretical studies with frequency dispersion (but in 

simpler networks though) and in our results presented in section II.IV – 

Kuramoto dynamics with brain-inspired connectivity (Figure 32), we believe 

that the same dynamical behavior would emerge, but with different (and 

possibly more) collective frequencies emerging. Furthermore, due to the 

model’s sensitivity to delays, using fiber lengths instead of the Euclidean 

distances between centers of gravity could improve the model’s prediction 

of real data in the frequency and temporal domains. 

Finally, we provide testable predictions for future experimental studies.  

Based on our results, we expect that two regions exhibiting correlated BLPs 

in resting-state MEG data should be phase-locked during periods of 

increased power in the alpha- and/or beta- bands. These predictions suggest 

new analytical approaches for resting-state MEG studies. This theoretical 

scenario brings a new light into the mechanisms leading to functional 

connectivity between distant regions. 
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V – Effects of a structural disconnection on resting-state 

functional networks 

 

‘Men ought to know that from the brain and from the brain only,  

arise our pleasures, joy, laughter and jests,  

as well as our sorrows, pains, grieves, and tears.’ 

Hippocrates 

 

 

 

V.I – Introduction 

Growing evidence from experimental and theoretical studies indicates that 

the spatial patterns observed in brain activity during rest are shaped by the 

underlying anatomical structure (Skudlarski et al., 2008, Bullmore and 

Sporns, 2009, Jirsa et al., 2010). The availability of whole-brain maps of 

anatomical connections (Kötter, 2004, Sporns et al., 2005, Hagmann et al., 

2008) together with computational models of the brain’s large-scale neural 

dynamics have shed light on the relationship between anatomical and 

functional connectivity (Honey et al., 2007, Ghosh et al., 2008, Deco et al., 

2009, Honey et al., 2009, Cabral et al., 2011). Importantly, they can be used 

to predict the effects of structural lesions on brain dynamics (Honey and 

Sporns, 2008, Alstott et al., 2009), which is beyond reach on the 

experimental side, making models a unique tool for the comprehension of 

brain diseases resulting from structural alterations.  

In this chapter, we focus on the effects of brain-wide structural 

disconnections on the topological properties of resting-state functional 

networks. Both anatomical and functional networks have been widely 

studied by means of graph theory (Bullmore and Sporns, 2009, Rubinov and 

Sporns, 2010). The application of graph theoretical measures to functional 

networks derived from BOLD fMRI signals registered during rest has shown 

clinical relevance. Indeed, this procedure has revealed significant alterations 
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in the resting-state patterns of patients with neuropathologies such as 

schizophrenia (Liu et al., 2008, Lynall et al., 2010, Bassett et al., 2012)  and 

Alzheimer’s coupling strength  disease (Supekar et al., 2008b), among 

others. 

To simulate disconnection effects, we model the ongoing brain activity and 

manipulate the coupling weights between cortical regions. Brain activity was 

simulated using two different models at the local level: the Kuramoto model 

with time delays, where nodes exhibit intrinsic oscillatory behaviour in the 

gamma-band1, and a simplified model of neural dynamics where nodes are 

in a stable asynchronous state derived by Hugues et al. (in preparation)2. In 

both models, the coupling weights scale the long-distance excitatory 

strength between brain areas encompassing simultaneously the number of 

white matter fibre tracts detected using DTI/DSI tractography and the 

excitatory synaptic weights. On a first stage, we simulate a widespread 

disconnection by decreasing the coupling at a global level. Then, we explore 

the effects of local disconnections by removing links in a random fashion. 

From the simulated ongoing brain activity, we estimated the hemodynamic 

response and inferred functional connectivity by computing the Pearson 

correlation between BOLD signals. Subsequently, simulated functional 

networks were characterized using graph theory (for a reliable comparison 

with an experimental work we followed the methodology from Lynall et al. 

(2010)). We started by studying how the topological organization of 

simulated functional networks depends on the global coupling strength. We 

found that, for a range of global coupling levels, the simulated functional 

networks have graph properties that correspond to the ones reported in 

healthy people (Lynall et al., 2010). By decreasing the coupling strength, the 

resulting functional networks display significant topological alterations and, 

at an extreme degree of disconnection, exhibit random network properties.  

                                                           
1
 The results presented in this chapter using the Kuramoto model are published in:  

Cabral J, Kringelbach ML, Deco G (2012b) Functional graph alterations in 
schizophrenia: a result from a global anatomical decoupling? Pharmacopsychiatry In 
press. 
2
 The results using the model from Hugues et al. (in prep.) are published in:  

Cabral J, Hugues E, Kringelbach ML, Deco G (2012a) Modeling disconnection effects 
on resting-state functional connectivity. NeuroImage (In press). 
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As a disease long-time hypothesized to be related with disconnection 

effects, we have compared our results with experimental measures from 

schizophrenia patients (Lynall et al., 2010, Bassett et al., 2012). We found 

that the reorganization of resting-state functional networks observed 

between healthy volunteers and people with schizophrenia could be 

explained by a weak       structural disconnection. Overall, these results 

support the hypothesis that the functional network alterations underlying 

schizophrenia are caused by a disconnection (encompassing putative 

local/global axonal/synaptic mechanisms), in agreement with current 

theories of schizophrenia (Wernicke, 1906, Friston and Frith, 1995, Bullmore 

et al., 1997, Winterer and Weinberger, 2004, Stephan et al., 2006, Skudlarski 

et al., 2010, Zalesky et al., 2011). Taken beyond the schizophrenia disorder, 

our results could provide a new light towards the understanding of altered 

resting-state functional connectivity occurring in other mental illnesses 

characterized by disconnection. 

V.II – Methods 

V.II.1 - Anatomical networks 

In order to be general and since the results can be influenced by the 

parcellation scheme (Zalesky et al., 2010, Bassett et al., 2011), in this work 

we used two distinct structural networks (see Figure 62), one with N=90 

brain regions defined using the AAL template (Tzourio-Mazoyer et al. 

(Tzourio-Mazoyer et al., 2002), and another with N=66 brain regions derived 

by Hagmann and colleagues (2007). In both networks, the connectivity 

strength Cnp between regions n and p was assumed to be proportional to the 

number of fibres incoming to region n  and the size of that region (as in 

Cabral et al. (2011)).  

The anatomical brain network with 90 regions was constructed using 

diffusion tensor imaging (DTI) from the brains of 21 healthy participants (see 

A.3 – DTI data collection and building of anatomical connectomes and Cabral 

et al. (2012b) for details). Following the methodology from Gong et al. 

(2009b), for each subject a 90x90 weighted network was constructed. 

Networks were then averaged across subjects resulting in a reliable 

representation of the anatomical organization of cerebral cortex. For this 

network, the distance Dnp between a pair of regions was taken as the 
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Euclidean distance between the corresponding centres of gravity in the AAL 

template. 

The network with 66 regions - previously used in resting-state 

computational models in Honey et al. (2009) and Cabral et al. (2011) - was 

derived from diffusion spectrum imaging (DSI) by Hagmann and colleagues 

(2007) according to the Freesurfer parcellation scheme 

(surfer.nmr.mgh.harvard.edu (Desikan et al., 2006)) and averaged over 5 

healthy subjects. In this case, the distance Dnp between two regions was 

given as the average length of the fibres detected connecting these two 

regions. 

The anatomical connectivity (AC) in both parcellation schemes, AC90 and 

AC66, is given by the matrices C and D (see Figure 62 B-C). 

 

Figure 62 - Large-scale healthy anatomical connectomes used in the model. Top: 90 brain 

areas (including subcortical regions). Bottom: 66 cortical regions (Hagmann et al. (2007)). (A) 

Spatial representation of the anatomical connectome. Red spheres represent individual 

regions (or nodes in the network) and links are proportional to the coupling strength given in 

(B). (B) Connections weights are proportional to the number of fibres detected. (C) Distance 

between regions (in mm), given as (top) the Euclidean distance between centres of gravity 

and (bottom) the average length of the fibres connecting a pair of regions. The list of brain 

regions and corresponding indexes is reported in A.1 Table 4 and Table 5. 
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V.II.2 - Neural Dynamics Model 

Spontaneous brain activity was simulated using two different neural-mass 

models. On a first approach, the dynamics of each node, representing a 

brain region, was modelled in a reduced way as a phase oscillator    with 

homogeneous intrinsic frequency            in the gamma range 

(here        Hz). We used the Kuramoto model with time delays (here 

        ms) to simulate network interactions (previously described and 

used in chapters II to IV), with the AC90 and studied the effects of a 

widespread disconnection by manipulating the parameter   in the following 

equation: 

Oscillatory model: 

   

  
                             

 

   

  

In order to allow for an analytical prediction of the effects of a structural 

disconnection, we used as well a simplified model of neural dynamics where 

the neural-mass is assumed to be in a stable asynchronous state. In this 

case, fluctuations occur due to correlated noise perturbations (see I.III.1.d - 

A simplified model of neural dynamics for details and Hugues et al. (in 

preparation)). The firing rate of each region obeys to the following equation: 

Non-oscillatory model:  

  

   
  

         
 

  
                     

 

   

 

The coupling   is normalized by the first eigenvalue    of the coupling matrix 

 , such that the dynamics for        is in a stable asynchronous state (at 

least for the case of null delays). With this model, we used both the AC90 and 

the AC66 and studied the effects of both global and local disconnections on 

the macroscopic properties of functional networks, by manipulating either 

the global coupling   or the coupling matrix    . 
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Equations were numerically integrated using the Euler method with a time-

step of 0.1 ms. For every set of parameters considered, we simulated the 

system for 1200 s (20 min). All calculations were performed using Matlab®.  

V.II.3 - Simulating Disconnection 

In the model, local neural networks are connected with each other 

according to the weight matrix  , with          . In general, 

disconnection implies that some or all of these weights decrease in 

comparison to the healthy case where     , meaning that the 

disconnected weight matrix    has coefficients    
      

 .  

As a first implementation of disconnection, all weights decrease in equal 

proportion, which is done by decreasing the global coupling strength  , and 

      , where      ).  

In a second implementation (and only with the non-oscillatory model), we 

have chosen to remove links randomly from the original structural matrix 

  90, a method called random pruning. To simulate the progression of a 

disconnection disease, we generated a sequence of pruned matrices 

  
 
     

 
     

 
 from the original one, where at each step a fixed number 

of links was removed randomly. The corresponding weight matrix writes 

  
 

    
 

, where the original prefactor   is kept unchanged. Choosing to 

remove 1% of the total possible links of the AAL matrix (that is           

   links), which has about 39% of the possible links, a sequence of M=39 

pruned matrices was generated. 

V.II.4 - Simulated BOLD signal and Functional Connectivity 

The BOLD signal for each region was estimated from the neural population 

activity using the Balloon-Windkessel hemodynamic model proposed by 

Friston and colleagues (Friston et al., 2000, 2003)1. We focused our 

investigation on low frequency (0.06–0.125Hz) fluctuations of the BOLD 

signal, which have previously been shown to be particularly sensitive to 

disease-related alterations in schizophrenia (Lynall et al., 2010, Bassett et 

al., 2012). Simulated BOLD signals were band-pass filtered in that frequency 

                                                           
1
 See section I.III.2 - Transforming neuronal activity into BOLD signal for details. 
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window (0.06Hz-0.125Hz) and finally down-sampled at 2 s to have the same 

temporal resolution as the MR scanner. 

To evaluate functional connectivity (FC) we computed the Pearson 

correlation of band-passed simulated BOLD signals in different brain areas. 

This measure is widely employed to derive resting-state functional networks 

from fMRI signals (Biswal et al., 1995, Fox and Raichle, 2007) and provides a 

simple characterization of temporal interactions between brain regions. 

Moreover, comparing with measures from information theory (more 

precisely the mutual information) which unravels all types of nonlinear 

interactions, it has recently been shown that correlation captures most of 

the interaction, and is a very good tool to study the functional connectivity 

graphs (Hartman et al., 2011, Hlinka et al., 2011). The resulting correlation 

matrix -or FC matrix- can be then studied using graph theory (Achard et al., 

2006, Lynall et al., 2010, Rubinov and Sporns, 2010, Bassett et al., 2012). 

Note that, only to compare the simulated      matrix with the empirical 

one, the global signal was regressed out (see section V.II.5 - Empirical 

Functional Connectivity).  

To obtain a measure of global integration (GI), we applied principal 

component (PC) analysis to the simulated BOLD covariance matrix and 

calculated the ratio of the first eigenvalue    to the sum of all the others 

(Tononi et al., 1994, Friston, 1996): 

        

 

   

   

V.II.5 - Empirical Functional Connectivity 

The model of weakly coupled oscillators has already been shown in previous 

chapters to reproduce with good agreement healthy resting-state functional 

connectivity. However, the non-oscillatory model needs to be validated. To 

do so, we evaluated the model’s performance in reproducing healthy 

resting-state functional connectivity by comparing the simulated functional 

networks with an empirically derived FC matrix previously used to validate 

the models from Honey et al. (2009) and Cabral et al. (2011). This empirical 

FC matrix was constructed in the parcellation scheme from Hagmann et al. 
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(2007) (66 regions) from the resting brain activity of 5 healthy subjects with 

eyes closed -the same subjects from which the corresponding AC66 was 

obtained. It consists on the correlation matrix of the mean BOLD signal in 

each of the 66 regions. Before computing the correlation, the BOLD signal 

was pre-processed for artefact removal including global signal regression 

(see Honey et al. (2009) for details). Simulated and empirical FC66 matrices 

were compared using Pearson correlation.  

V.II.6 - Building graphs from functional networks  

The set of synthetic functional networks generated with the use of the 

computational model was characterized using graph theory. To evaluate 

functional networks by means of graph theory, the FC matrix needs be 

binarized into an adjacency matrix (Aij) where correlations above a certain 

threshold are set to 1 and 0 otherwise. The definition of thresholds depends 

on either one wishes to create equi-sparse graphs (ensuring a fixed 

percentage of edges) or equi-threshold graphs (ensuring a minimum 

correlation value to define an edge, resulting in a variable number of edges) 

(Bassett et al., 2012). Since the employed graph-theoretical measures are 

known to depend on the graph’s connection density (Bassett et al., 2008, 

van Wijk et al., 2010, Bassett et al., 2012) all our measures refer to equi-

sparse graphs defined over a fixed range of connection densities to 

overcome this dependency. In more detail, from each FC matrix, 14 graphs 

were constructed with connection densities ranging from 37 to 50% (1% 

increment) in the same way as in Lynall and colleagues (2010). Moreover, 

our networks have 90 and 66 nodes, whereas the experimental results refer 

to only 72 nodes -a subgroup of the 90 regions defined in the AAL scheme-. 

To overcome the complex dependency of the measures on the number of 

nodes (Fornito et al., 2010, van Wijk et al., 2010) and on the parcellation 

scheme (Wang et al. 2009a), we have selected the exact same 72 nodes 

from the AAL template when analysing the 90x90 functional networks 

obtained from simulations and discarded the remaining 18 nodes (see 

Appendix A.1 Table 5 for the list of regions discarded). We also report the 

results using the AC66 to investigate the impact of a different number of 

nodes in the results. 
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The various graph measures were estimated for graphs obtained at densities 

in the range 37-50%, with the exception only for degree distribution 

parameters, which were only estimated for graphs with 37% density. 

Measures were averaged across the cost range, providing global measures 

of the topology of each FC matrix. In addition, the same thresholding 

technique was applied to 100 random graphs with the same range of 

connection costs to compare with the simulation results. 

Finally, the coupling matrices C90 of the 21 healthy subjects were 

characterized using graph theory, and binary graphs were obtained by 

thresholding the coupling matrix as          . 

V.II.7 - Graph theoretical measures 

The graph theoretical measures employed were evaluated using the Brain 

Connectivity Toolbox (Rubinov and Sporns, 2010) and the MatlabBGL 

Toolbox (Gleich, 2006). 

For all simulated FC matrices, we first estimated well-known graph 

measures such as efficiency, clustering and small-worldness. The efficiency 

is the inverse of the mean shortest path length, i.e. the average number of 

links (paths) necessary to connect any pair of regions (Latora and Marchiori, 

2001). The average clustering indicates the probability of two regions 

connected to a third one being also connected to each other, forming 

triangles. Small-worldness depends directly on the two previous measures 

and evaluates if high efficiency coexists with high clustering, when 

compared to an equivalent random graph (Watts and Strogatz, 1998, 

Humphries et al., 2006)1. 

We also estimated the hierarchy coefficient  , which is taken as the 

(positive) exponent of the power-law relationship between the clustering    

and the degree    of the nodes in the network such that          (Ravasz 

and Barabasi, 2003, Bassett et al., 2008).   was estimated using the least-

squares nonlinear fitting function from Matlab®. The higher the hierarchy 

coefficient, the more network hubs -defined so for having a large number of 

                                                           
1
 See section I.II.3 – Characterizing complex networks using graph theory for more 

details. 
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connections- have low clustering, meaning that they are more connected to 

nodes poorly connected to each other. 

In addition, we calculated robustness measures, which indicate the graph’s 

resilience to the removal of nodes. When a node is removed either 

randomly (random attack) or in descending degree (targeted attack), the 

graph can fragment into independent sub-graphs. To estimate the 

robustness of a graph, each time a node was removed, we recalculated the 

size of the largest connected component, s. Plotting the size   versus the 

number of nodes removed,     , the robustness parameter is defined as the 

area under this curve (Achard et al., 2006). Networks that are more robust 

retain a larger connected component even when a large proportion of nodes 

have been eliminated. To take into account the size of the network, we 

normalized this value by         , so that the maximum robustness is 1. 

Finally, we evaluated the degree distribution of graphs obtained at 37% 

connection density. This distribution gives the probability of node degrees 

(Boccaletti et al., 2006), where the node degree is simply defined as the 

number of edges connecting a node. For each simulation, we determined 

the variance of the degree distribution and, in addition, the degree 

distribution was fitted to a gamma distribution                  , which 

was found to be the best fit for experimental results (Bassett et al., 2008, 

Lynall et al., 2010). The power exponent,  , and the lower exponential 

degree cut-off,   , were estimated using the least-squares nonlinear fitting 

function from Matlab®. 

V.III - Results  

V.III.1 – Topological properties of the anatomical network 

In this subsection, we analyzed the topological properties of the anatomical 

connectome      (as in Cabral et al. (2012b)). The 21 anatomical networks 

obtained from healthy participants 21 healthy (11 males and 10 females, 

age: 22–45 years) have an average connection density of 32%. Each 

connection (link) is composed by around 208 fibres. However, between 

some pairs of brain regions, up to 3000 fibres have been detected (see the 

histogram in Figure 63C). From the degree distribution shown in Figure 63D, 
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we can see that each region is connected to an average of 25 other regions 

and this distribution is quite homogeneous (bell-shaped). 

 

Figure 63 – Properties of the anatomical brain network (90 regions). (A) Representation of 

the network in the AAL parcellation (B) Histogram of the number of fibres per pairwise 

connection and (C) node degree histogram both averaged across participants. 

In addition, the anatomic networks were characterized by means of graph 

theory (See Table 2). Anatomic networks were found to be “small-world” 

(small-worldness  ), which means that networks are not only efficient 

(short average path length) but also highly clustered when compared with 

an equivalent random graph. In addition, the networks have a positive 

hierarchy, meaning that high degree nodes –or hubs- are the less clustered 

and vice versa. Furthermore, networks were found to be robust to either 

random or targeted attack (   ), maintaining strong connectedness as 

nodes are removed either randomly or by descending node degree. 

Table 2 – Properties of the anatomical network (mean±1 standard deviation across 21 
subjects). 

Connection density (%) : 32.7 ± 4.6 Small-worldness : 1.96 ± 0.20 
# Fibres/connection : 208 ± 17 Hierarchy : 0.139 ±  0.016 

Global efficiency : 0.65± 0.03 Robustness  (random ) : 0.993 ± 0.008 

Average clustering : 0.64 ± 0.02 Robustness (targeted) : 0.9244 ± 0.02 

 

V.III.2 - Simulated functional connectivity 

In general, we have found that the properties of functional networks 

generated with both oscillatory and non-oscillatory models depend largely 

on the underlying structural coupling. First, using intact healthy ACs we 

studied how parameters such as correlation strength, global integration and 

similarity with the underlying AC vary as a function of the global coupling 
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strength   for both models. We remind that   uniformly scales all the 

connection weights     between brain regions defined by the neuro-

anatomical network. 

As we have seen in previous chapters, the dynamics of Kuramoto oscillators 

varies as a function of the coupling strength. As observed in Figure 64A, for 

weak couplings, the phases are almost completely desynchronized, and the 

order parameter is close to zero. As the coupling increases, regions become 

more and more synchronized with each other. In the region between 

incoherence and synchrony (      ), the metastability index is 

increased (Figure 64B), indicating that the network is in a non-stationary 

regime, where the order parameter fluctuates in time due to meta-stable 

synchronized clusters. 

 
Figure 64 - Dynamics of coupled oscillators as a function of the coupling strength k. (A) The 
mean synchrony degree varies from desynchrony (<R>≈0) to full synchrony (<R>≈1). In (B) the 
standard deviation of the order parameter indicates the metastability of the system is higher 
in the intermediate region between desynchrony and synchrony. (C) The variance of the first 
PC also increases with the coupling strength, meaning that the BOLD signals become more 
globally integrated. (D) The functional connectivity strength, measured as the average 
correlation between simulated BOLD signals, increases together with the global integration. 
(E) The correlation between the anatomical and the functional connectivity is increased in the 
metastability region. 

As described in Cabral et al. (2011) and in the previous chapters II-IV, the 

metastability is important in oscillators’ models to generate low frequency 
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fluctuations in brain activity. However, above a certain coupling value (i.e. 

    ) the neuronal oscillations become too synchronized and the 

metastability index is brought down to zero. In that case, slow fluctuations 

disappear. This explains why, above this critical coupling value, equi-sparse 

functional networks become less globally integrated and less globally 

correlated (Figure 64C-D). Furthermore, we report the correlation between 

anatomical connectivity (AC) and simulated BOLD functional connectivity 

(FC). As expected, it is in the region of metastability that the functional 

networks are shaped by the underlying anatomical structure (Figure 64E). 

Regarding the non-oscillatory model (Figure 65), we report the properties of 

functional networks obtained with the AC66 and the AC90, i.e. FC66 and FC90. 

Furthermore, we have removed from the FC90 the 18 regions discarded in 

Lynall et al. (2011)1 resulting in a functional network with 72 regions, FC72. 

For low couplings (     ) we found that the simulated BOLD signals are 

weakly correlated (Figure 65A) because there is no dominant mode in the 

neural activity, as seen by the global integration measure (Figure 65B).  

 

Figure 65 - Dependency of functional connectivity (FC) on k simulated with the non-
oscillatory model. (A) Mean correlation of simulated BOLD signals. (B) Global integration of 
the BOLD covariance matrix. (C) Correlation between the FC and the underlying AC. In plots 
A-C we report the values for FC66, FC72 and FC90. (D) Correlation between empirical and 
simulated FC66. The values reported are averaged over 10 runs of 1200s (error bars = ±1 
standard deviation). (E) Example of simulated FC matrices, obtained with increasing coupling 
strengths k. 

                                                           
1
 see Appendix A.1 Table 5 for the list of regions discarded. 
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As the coupling strength increases, and due to the progressive emergence of 

a dominant mode, positive correlations build up and the FC matrix becomes 

increasingly shaped by the underlying SC (Figure 65C). Above a sufficient 

coupling, more and more regions that are not structurally connected 

become also correlated: the correlation with the empirical FC keeps 

increasing (Figure 65D), while the correlation between SC and FC decreases 

(Figure 65C). However, in the proximity of the critical coupling the dynamics 

becomes too globally integrated (             )(see Figure 65B). Note 

that the properties of simulated FC obtained with both ACs are found to 

depend similarly on the coupling strength parameter. The variance in the 

results (error bars) is due to the additive noise in the non-oscillatory model 

and due to the finite duration of the simulated time series (1200 s here).  

V.III.3 - Graph properties of simulated functional connectivity 

In this section, we analyze the simulated functional networks using a 

number of measures from graph theory. As we will show in the following, 

the topological organization of synthetic functional networks appears to 

vary with the coupling strength in a continuous fashion, independently of 

the model or the AC considered. 

In Figure 66, we report the results obtained with the oscillatory model. We 

observe that some measures from graph theory, namely the average 

clustering, the small-worldness and the variance of the degree distribution 

were found to decrease as the coupling weights became weaker, while 

others such as the hierarchy, the global efficiency and the robustness 

increased as the regions became more disconnected. These alterations 

mean that, when the connectivity between brain regions is deficient, the 

emergent patterns of functional connectivity tend to be slightly randomized, 

with less clustered structure and fewer low- and high-degree nodes. This 

happens because, when the coupling is weak, the spontaneous dynamics 

tends towards an incoherent regime where the phases of all oscillators are 

out of synchrony. Consequently, the BOLD fluctuations are uncorrelated and 

the resulting functional networks share properties of random networks. 
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Figure 66 – Graph properties of functional networks obtained with the Kuramoto model. 
Graph-theoretical measures for        (above that value networks become too 
correlated, with consequent loss of realism). The measures vary as a function of  : solid lines 
show the fit to fourth order polynomial functions. For reference, the measures reported 
experimentally for resting-state functional graphs from healthy controls and schizophrenia 
patients (Lynall et al., 2011) are indicated as green dashed lines and red dot-dashed lines, 
correspondingly. The blue arrows indicate the decrease or increase of the respective graph-
theoretical measurements as the coupling is decreased, emulating the passage from health to 
schizophrenia. 

As the coupling weights are increased in the model, the organizational 

properties of the resulting synthetic networks evolve towards values 

characteristic of functional networks from healthy brains (reported as green 

dashed horizontal lines). The simulated graphs exhibit higher small-

worldness, the clustering coefficient increases and the degree distribution is 

wider with higher probability of high degree hubs. Interestingly, the 

organizational properties of functional graphs from people with 

schizophrenia (red dashed horizontal lines) are generally found in-between 

graphs from healthy people and random graphs, suggesting a subtle 

randomization of functional networks in schizophrenia. 
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Regarding the non-oscillatory model, similar qualitative results were 

obtained. As can be observed in Figure 67, when the coupling value is too 

small (     ), the small-world index is close to 1 (Figure 67B), the average 

clustering coefficient is low (Figure 67D) and the degree distribution is 

narrow (Figure 67I) and bell-shaped (Figure 67G-H and J (left)), typical of a 

random graph. Because of having less high-degree hubs, random graphs are 

more robust to attacks, because these can maintain connectedness even 

after the removal of a large number of nodes (Figure 67E-F). On the other 

hand, a higher hierarchy in random graphs indicates that nodes with higher 

clustering are the ones with lesser degree (Figure 67C). As the coupling 

increases from 0.5 to 0.95 the functional networks reorganize and most of 

the metrics evolve towards values characteristic of healthy human FC 

(reported in blue) (Lynall et al., 2010). Namely the clustering coefficient and 

the small-world index increase, the hierarchy decreases and the degree 

distribution becomes wider (Figure 67I and J(right)). 

 

Figure 67 – Graph properties of functional networks obtained with the non-oscillatory 
model. (A-I) Topological properties of functional networks obtained with increasing  . For 
comparison we indicate the values reported for healthy controls (blue) and schizophrenia 
patients (red) in the work from Lynall et al. (2010). Shaded bands indicate the confidence 
interval of 1 STD. In addition, measures of equivalent random networks are reported (grey). 
As the coupling is decreased (from right to left), simulated functional networks become 
randomized. (J) Example of degree distributions obtained with increasing coupling k. Error 
bars indicate the confidence interval of 1STD across 10 simulation runs. 
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In addition, functional networks become less robust to the removal of 

nodes, especially high-degree ones (Figure 67E-F). Remarkably, we find that 

healthy human FC graph properties can be approximately obtained when 

the coupling is in the range           . 

V.III.4 - Effects of localized disconnections 

Using only the non-oscillatory model, we considered an additional 

disconnection scheme where links were randomly removed from the 

anatomical network while the absolute coupling strength   remained fixed 

(see Methods V.II.3 - Simulating Disconnection). We started using a fixed 

coupling value of           , with which we obtained approximate 

healthy human FC graph properties.  

  
Figure 68 - Effects of pruning links in the anatomical connectivity (AC) on the properties of 
emergent FC obtained with fixed coupling (k=0.87). (A) The mean correlation and the global 
integration of BOLD signals decrease as links are removed from the anatomical connectivity. 
(B) First eigenvalue of the pruned matrices as links are removed from the AC matrix. (C) 
Graph theoretical properties of simulated FC90 obtained with increasingly pruned AC 
matrices. Pruning consisted on successively removing 1% of the possible links in a random 
fashion. 
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As illustrated in Figure 68AC, we found that successive pruning induces 

monotonic changes in the properties of emergent FCs, in the same way as 

decreasing the global coupling. Furthermore, calculating the leading 

eigenvalue     
 

 of the pruned matrices   
 

 we found that it decreases as 

pruning progresses (see Figure 68B). Therefore, keeping the absolute global 

coupling level    constant is equivalent to have decrease the global coupling 

since   
 

        
 

   ) (see Figure 69 and Appendix A.IV for a theoretical 

demonstration). In conclusion, pruning the matrix is equivalent to decrease 

the global coupling, and graph properties change then in the same direction 

as for the previous disconnection scheme.  

 

Figure 69 - Graph theoretical results of FCs obtained from the sequence of pruned 
anatomical matrices as a function of k and comparison with the results obtained with the 
intact matrix (FC72). In contrast with Figure 68, where we plot the properties as a function of 
the percentage of removed links, here we plot as a function of the equivalent coupling  , 
which, for a fixed absolute coupling, decreases with the pruning sequence, in the same way 
as the first eigenvalue of the pruned matrices. In this case, the pruning increases from right to 
left, so that the black dot at k=0.87 corresponds to the intact matrix. This figure shows that 
the properties of FCs obtained with increasingly pruned anatomical matrices are very similar 
to those obtained when the global coupling is decreased. 
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More generally, as theoretically demonstrated in Appendix A.IV, for any 

conceivable disconnection, the leading (positive) eigenvalue of a 

connectivity matrix decreases, at least when this matrix is symmetric. This 

generalization includes even the case of removed nodes (as done by Alstott 

et al. (2009) to simulate lesions), where removing a node is equivalent in the 

model to remove all connections to that node. Here, we found numerically 

the same behaviour for non-symmetric connectivity matrices. In conclusion, 

with the present model, any disconnection leads to the same resting-state 

functional graph alterations reported here for a decrease of the global 

coupling. 

Importantly, we found that when the AC is only partially pruned (up to 15% 

of removed links), it is possible to recover the graph properties of healthy 

functional networks by increasing the global coupling strength such that 

  
 

    
 

        (See Figure 70). Only when the underlying AC is further 

disconnected (>15% of removed links), then the few remaining links are not 

sufficient to shape the resulting FC with graph properties characteristic of 

humans, and remain random even at high global coupling (Figure 70 red). 

 
Figure 70 - Comparison between the FCs simulated for a range of coupling values with 
different pruned matrices (5%, 15%, 25%, 35%) and the intact ones. This figure shows that 
the static topology of the anatomical matrix is quite robust to pruning (up to 15 % at least -
where 39% is the maximum), since the graph properties of simulated FCs vary with the 
coupling in a similar way to the intact matrices. Note that the coupling k here is the relative 
one defined in the text (divided in the equations by the first eigenvalue of each anatomical 
matrix). 
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V.III.5 - Simulated functional networks in schizophrenia 

In this section, we analyze our results in light of the schizophrenia literature, 

mainly focusing on a recent study from Lynall and colleagues (2010) who 

reported altered resting-state functional networks in people with 

schizophrenia in terms of graph theory. In the work from Lynall and 

colleagues (2010) the graph measures explored herein were found to 

expose significant differences between functional networks from healthy 

controls and patients with schizophrenia. Notably, they found that 

functional networks from people with schizophrenia were more efficient, 

less small-world, more hierarchical, less clustered, more robust, and with 

more homogeneous regional degrees (i.e narrower degree distribution) than 

healthy functional networks.  

In the present work, we hypothesize that disrupted functional networks in 

schizophrenia are related to a widespread decrease in the long-range 

excitatory strength between brain regions, i.e the coupling parameter   in 

the model. This decreased coupling could be caused by a pathological 

disconnection, in agreement with current pathophysiological theories of 

schizophrenia (Stephan et al., 2006). On one side, the disconnection could 

be due to a decrease in white matter connectivity (Wernicke, 1906), 

supported by a number of studies reporting lower fractional anisotropy (Lim 

et al., 1999, Mitelman et al., 2006, Skudlarski et al., 2010), less axonal fibres 

interconnecting gray-matter regions (Zalesky et al., 2011) and myelin-

related dysfunction (Davis et al., 2003) in patients with schizophrenia. Even 

so, the hypothesis of anatomical disconnection in schizophrenia still needs 

further validation (see for example van den Heuvel et al. (2010)). 

Alternatively, the decoupling in the model could still be interpreted as 

related to a damage occurring at the synaptic level, associated to a deficient 

modulation of synaptic plasticity (Friston, 1998, Stephan et al., 2006) and/or 

possibly related to reports of dopaminergic (Winterer and Weinberger, 

2004, Winterer, 2006), cholinergic (Winterer, 2010, Mobascher et al., 2011), 

or glutamatergic (Coyle et al., 2003) malfunction in schizophrenia. 

Importantly, the mechanisms leading to a decreased coupling strength are 

not necessarily exclusive and could coexist (Stephan et al., 2006). 
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In order to compare our graph theoretical results in a statistical way with 

the ones from Lynall et al. (2010), we started by defining two groups of 

coupling strengths (with 30 values each), one representative of healthy 

controls, KH, and another of patients with schizophrenia, KS. We have chosen 

to define these values based on the global integration of BOLD signals1, 

which was found in Lynall et al. (2010) to be significantly reduced in people 

with schizophrenia (GIS=32.6±11%) compared to healthy volunteers 

(GIH=43.1±8.4%). Based on these measures, we defined a set of 30 values 

taken from a Gaussian distribution g(GIH) with mean= 43.1 and 8.4% 

standard deviation and 30 values taken from another distribution g(GIS) with 

mean= 32.6 and 11% standard deviation (see Figure 71A for an illustration). 

Then, we extrapolated the coupling strengths necessary in the model (here, 

the non-oscillatory model) to match each of the expected GI values. We 

obtain in this way two groups of coupling strengths with 30 values each 

(KH=0.85±0.01STD and KS=0.81±0.02STD), statistically representative of the 

healthy controls and the patients with schizophrenia in terms of global 

integration of BOLD signals. Subsequently we ran simulations using these 

coupling values and analyzed the resulting functional networks using graph 

theory.  

In a first step, we analyzed the sensitivity to fragmentation of functional 

graphs obtained at KH and KS. Basset and colleagues (2012) found that equi-

threshold graphs built from resting-state functional networks from healthy 

controls lose connectedness at lower costs than the ones from 

schizophrenia patients. To evaluate if the same phenomenon occurs in our 

simulated networks we calculated the size of the largest connected 

component as a function of the graph density, with densities ranging from 0 

to 100% (with 1% increment). We did it using the complete simulated set of 

90 regions (same as used in Basset et al. (2012)) Remarkably, the same type 

of tendency was observed in simulated functional graphs (see Figure 71B 

left). Moreover, above 27% cost, all simulated graphs exhibited full 

connectedness, so at the costs used for graph theory (37-50%) all graphs are 

fully connected.  

                                                           
1
 See the Methods subsection V.II.4 - Simulated BOLD signal and Functional 

Connectivity for details. 
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Figure 71 - Properties of simulated functional networks at the group level. (A) Definition of 
coupling values KH and KS representative of healthy controls and schizophrenia patients, 
based on the global integration values reported experimentally for the two groups, GIH and 
GIS. Using a fitting function, we searched which coupling values would give the same GI 
distributions, resulting in two distributions of couplings KH (0.85±0.01STD) and KS 
(0.81±0.02STD). (B) Fragmentation of simulated functional networks. Networks simulated 
with KS were found to be more connected at lower densities when comparing equi-sparse 
graphs (left). However, comparing equi-threshold graphs, they fragmented at lower 
thresholds than networks obtained with KH. (C) Graph theoretical metrics of simulated FC 
matrices (black +) together with experimental values in health (blue: mean±std) and 
schizophrenia (red mean±std) reported in Lynall at al. (2010). (D-E) Pooled degree probability 
density (D) and cumulative degree distribution (E) for the two populations obtained with KH 
(blue) and KS (red). (F) Percentage of variance accounted for by the first 10 principal 
components of the simulated BOLD signal. 
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In addition, we also estimated the sensitivity to fragmentation using equi-

threshold graphs, where functional connections were considered as a link 

only when the correlation was above a certain threshold, ranging from 0 to 

1 (0.01 increment) (see Figure 71B right). In this case, functional graphs from 

schizophrenia patients fragment at lower thresholds. This illustrates the fact 

that fragmentation, as well as other graph measures, depend largely on the 

thresholding technique. For the following analysis, we show the results 

using exactly the same thresholding method from Lynall and colleagues 

(2010) for a reliable comparison, 

The graph metrics obtained for each population (KH and KS) are shown in 

Figure 71C (black +) in comparison with the equivalent experimental results 

(blue and red error bars). Notably, all the changes in the metrics followed 

the same tendency as reported experimentally. Namely, as can be observed 

in Figure 71C the functional graphs obtained at lower coupling (KS) were 

more efficient, less clustered, more hierarchical, less small-world and more 

robust to both random and targeted attack than the functional graphs 

obtained with around 5% higher coupling (KH). In addition, in the group with 

lower coupling the degree distributions had a smaller variance and fitted to 

gamma distributions with higher power exponent and smaller degree cut-off 

(Figure 71C-D). Functional graphs obtained at higher couplings, on the 

contrary, exhibit a degree distribution with a larger variance, which reflects 

in higher probability of both high and low degree nodes, as observed also by 

a less steep cumulative degree distribution (Figure 71E). Finally, the 

percentage of variance accounted for by the first PC was significantly 

reduced at lower couplings, as expected, but no significant difference was 

found in the remaining PCs (Figure 71F). Although most of the metrics were 

found to be in the same range as the ones reported experimentally (error 

bars in Figure 71C), some of the metrics, such as the robustness to targeted 

attack and the hierarchy in the healthy population, were consistently 

different from experiments. 

These results show a tight relationship between the global integration of 

BOLD signals and graph theoretical properties of functional networks. 

Moreover, they corroborate our hypothesis that the functional network 

alterations observed in schizophrenia could result from a decrease in the 

coupling strength between cortical regions, which scales the global 
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integration of BOLD signals and consequently the properties of emergent 

functional networks. Please note that a homogeneous reduction in the 

coupling strength affects functional connectivity in a heterogeneous fashion. 

Again, we remind that this pathological disconnection could be originated 

either from disruption of axonal connectivity or by malfunction at the 

synaptic level, unifying current theories of schizophrenia. 

V.IV - Discussion  

In the present work, we used a modelling approach to investigate the role of 

structural connectivity in shaping functional networks as measured with 

fMRI during rest. Structural connectivity is ensured by brain mechanisms 

involved in long-range signal transmission in the brain, including axonal 

connectivity (dependent on the number, density and coherence of axon 

fibres) and synaptic mechanisms (e.g. neurotransmission and plasticity). As 

shown here, a disruption of these mechanisms, at either a global or a local 

level (such as occurring in certain brain pathologies), can have dramatic 

impacts on the resulting functional networks. 

Large-scale neural models of brain dynamics are promising tools to explore 

the non-trivial relationship between anatomical and functional brain 

connectivity. In particular, these models allow investigating the role of 

different factors (here, the long-range excitation) in the BOLD signal 

dynamics, the resulting functional networks and their topological properties. 

Furthermore, investigating the impact of such factors in the AC-FC 

relationship helps understanding the mechanisms underlying healthy 

resting-state activity and its breakdown in disease. In general, our results 

show that resting-state functional networks depend largely on the structural 

coupling strength. The fact that these results are independent of the 

dynamics at the node level reinforces the role of the structural connectivity 

(which includes the global coupling) in shaping resting-state functional 

networks. Indeed, we expect that similar results could be reproduced with 

virtually any model of macroscopic brain dynamics with brain-inspired 

structural connectivity (as the ones described in section I.III - Large-scale 

models of resting-state dynamics). For that reason, the use of a simplified 

model of neural dynamics, with non-oscillatory behaviour at the node level, 
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is a good approach to solve analytically the effects of a structural 

disconnection on the network dynamics. 

 First, results obtained with both models show that stronger structural 

coupling (until a certain critical level) generates more globally correlated 

and globally integrated BOLD signals. In the Kuramoto model, this is due to 

increased synchronization across segregated regions, whereas in the non-

oscillatory model this is due to the increased excitatory reverberation across 

the large-scale network, which increases the timescale and the relative 

variance of the slowest dynamical mode, in a faster way than for the other 

modes. Using a healthy anatomical connectome, we found an optimal 

structural coupling strength for which the simulated functional networks 

have graph-theoretical properties very similar to those of resting-state 

functional networks in healthy brains. Namely, simulated functional graphs 

exhibit small-world properties, characterized by high clustering and 

relatively high efficiency, low hierarchical organization, and a high 

probability of both high- and low-degree nodes, as indicated by the degree 

distribution parameters. Because of having more hub regions, the 

robustness to attacks is decreased. As the coupling is reduced, emergent 

functional graphs become successively more random and, in the case of an 

extreme disruption of the structural coupling (i.e. >50% of coupling 

decrease) the simulated functional networks share properties of random 

networks.  

To study disconnection effects, we have first considered a uniform decrease 

in the structural connectivity strength. Nevertheless, pathological 

disconnections may happen only between specific brain regions and 

therefore affect distinct functional systems depending on the location of the 

disruption. To take into account the effects of local disconnections in our 

study, we have also considered pair-wise disconnections occurring in a 

random and non-uniform way (only with the non-oscillatory model though). 

As links are randomly removed from the anatomical connectome and the 

absolute coupling is kept constant, we find that the simulated functional 

networks reorganize in the same way as if the (relative) structural coupling 

was decreased. We provide a theoretical demonstration to explain why this 

is actually the case. For symmetric connectivity, we found that any type of 

disconnection, including the case where nodes are eliminated from the 
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network, would decrease the leading positive eigenvalue of the matrix. 

Therefore, the absolute coupling appears lower, generalizing our results for 

such type of connectivity. Moreover, we found that, when the AC is only 

partially pruned, it is possible to recover the graph properties of healthy 

functional networks by increasing the global coupling strength. Only when 

the underlying AC is further disconnected, then it is no more possible to 

obtain FC graph properties characteristic of humans, even at high coupling 

levels, 

V.IV.1 - Disrupted functional networks in schizophrenia 

In general, schizophrenia disease is thought to be linked to a pathological 

dysconnection, supported by mounting evidence of disrupted interregional 

functional interactions (detected with fMRI). However, the 

pathophysiological origin of this dysconnection remains under debate. 

Possible explanations rely mainly on the neural structures involved in signal 

transmission, i.e. axons and synapses. Importantly, in our model the 

coupling parameter,  , encompasses both mechanisms and therefore can be 

interpreted in the light of both theories of schizophrenia.  

Results show that disrupted structural connectivity –or disconnection- 

occurring at either a global or a local level, is indeed a strong candidate to 

explain the alterations reported in functional brain networks of people with 

schizophrenia during rest. Actually, with a uniform decrease of only 5% in 

the coupling -or a removal of about the same proportion of existing links-, 

we found a very good quantitative agreement with the functional network 

reorganization observed in schizophrenia, characterized by a decrease in 

small-worldness and clustering and an increase in hierarchy, efficiency, 

robustness, degree homogeneity. 

Knowing from existing experimental studies (Lynall et al., 2010, Bassett et 

al., 2012) that the BOLD signals from schizophrenia patients are significantly 

less globally integrated than the ones from healthy controls, we have 

defined a range of coupling values that originate, through the model, 

simulated BOLD signals with statistically similar values of global integration 

found in disease and healthy states. We found that less globally integrated 

simulated BOLD signals give rise to simulated functional networks with 

properties matching the ones characteristic of the schizophrenia disease. 
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Our results propose a general scenario for the schizophrenia disease, 

unifying structural (e.g. axonal and/or synaptic mechanisms), dynamical (e.g. 

BOLD signal integration) and functional connectivity studies (e.g. graph 

properties of functional networks) in schizophrenia. 

V.IV.2 - Relationship between structural coupling strength and cognitive 

performance 

The role of the topological organization of functional networks on the 

performance of cognitive integration has long been speculated (Sporns et 

al., 2004). For example, a small-world topology of functional networks is 

thought to support both modular and distributed processing dynamics 

(Sporns et al., 2002, Bassett and Bullmore, 2006), leading to optimal 

information processing in the brain. In addition, Lynall and colleagues (2010) 

found a strong link between a number of graph theoretical measures of 

functional networks and a verbal fluency score (indicative of cognitive 

performance).  

Here we propose that the functional network (dis)organization leading to 

cognitive impairment can be directly linked to a disruption of the underlying 

structural connectivity (again axonal or synaptic). This hypothesis is 

corroborated by a number of studies that have reported a link between 

structural connectivity and behavioural/emotional symptoms in 

schizophrenia (Hoptman et al., 2004, Skelly et al., 2008, Stephan et al., 2009, 

Skudlarski et al., 2010). With the present model, we show the direct 

relationship between graph measures of functional networks (previously 

related to cognitive performance) and the underlying structural connectivity 

(linked as well to cognitive performance). These results reinforce the idea 

that a stronger structural coupling between cortical regions is necessary to 

obtain a better integration of BOLD signals and consequently, on optimal 

organization of functional networks, hypothetically leading to an increased 

cognitive performance. Note that a widespread decrease in the structural 

coupling between brain regions results in a heterogeneous decrease in 

interregional regional functional connectivity. Therefore, the relationship 

proposed herein between lower structural coupling and decreased cognitive 

performance should be seen as independent from functional connectivity 

strength. Indeed, the relationship between functional connectivity strength 
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and cognitive performance seems to be more complex. A recent study from 

Hawellek and colleagues (2011) has found that interregional functional 

connectivity within the default mode network increased (rather than 

decreased) with the decline of cognitive performance in multiple sclerosis. 

However since the global signal was regressed out in the pre-processing of 

BOLD signals -which complicates the interpretation of BOLD signal 

correlations (Murphy et al., 2009)-, it is premature to draw conclusions 

based on this result.  

V.IV.3 - Relation to other modelling studies 

Since the last few years, several large-scale models of the brain activity have 

studied how the resting FC could be derived from the AC and a local node 

neural mass model. Following several reduction lines, local node models 

have included a biophysical model (Honey et al., 2007, 2009; Alstott et al., 

2009), the FitzHugh-Nagumo model (Ghosh et al., 2008), the Wilson-Cowan 

model (Deco et al., 2009) and the Kuramoto model (Cabral et al., 2011). 

Here, we have used the Kuramoto model and, in addition, we have used a 

model derived on the framework of the Fokker-Planck equation, which is 

able to describe the full network dynamics, taking into account the effect of 

noise. Under the hypothesis that the local dynamics is asynchronous and 

that deviations from this dynamical state are small, this simplified linear 

model provides a good description of the dynamics, with the advantage that 

the linearity of the model can be used for a theoretical understanding of the 

behaviour of the large-scale model and of the resulting FC. Such an 

understanding is much more involved in the other models, which are 

nonlinear. Moreover, the performance of this model in predicting empirical 

FC is very similar to the one of other models and there is still no clear 

demonstrated advantage to use a nonlinear local model to predict the 

resting FC. 

Other modelling studies have studied the impact of lesions in functional 

connectivity during rest (Honey and Sporns, 2008, Alstott et al., 2009). 

Although lesions were simulated by removing nodes or cortical areas in the 

brain, it can be seen as a particular type of disconnection, where all links to 

a certain node (or area) are removed. One of the main findings was that FC 

alterations could be widespread even when the lesion is local. Moreover, FC 
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changes were found to be very dependent on the brain regions affected by 

the lesion (Alstott et al., 2009). Although a study of the spatial alterations in 

FC is beyond the scope of the present study, the present model sheds a new 

light on these results. In our model, the slowest modes are responsible for 

the low-frequency correlations, in particularly the slowest one. When we 

consider the case of a global disconnection, we do not change the 

connectivity matrix, and in that case, the smooth FC changes are mainly due 

to the change in relative variance of the first (slowest) mode, which reflects 

spatially in its spatial map. When we consider a local disconnection (or a 

lesion), the connectivity matrix changes and the spatial maps also change: 

therefore, FC changes non-locally, crucially and non-trivially depending on 

the lesion site, in the same way eigenvectors depend non-trivially on the 

underlying matrix. 

V.IV.4 - Limitations and further studies 

Although computational models serve to test existing theories and to make 

predictions, results must be interpreted in light of the model limitations. 

First, we used averaged anatomical connectomes. Although averaging helps 

eliminating spurious connections detected by the tracking algorithm and 

therefore provide a robust and reliable version of the human connectome, 

the variability across subjects in those terms is neglected. In figure 4 we 

define variability across subjects by means of the structural coupling k, 

which is proposed to be one (but not the only) source of variability across 

subjects. Furthermore, the anatomical connectomes refer to healthy 

participants and disconnection effects were modelled by inducing uniform 

or heterogeneous alterations in the SC. We believe our model results would 

benefit if simulations were ran using anatomical connectomes from people 

with disconnection-related pathologies. Due to the increasing availability of 

anatomical connectomes in health and disease (e.g. from the Human 

Connectome Project www.humanconnectomeproject.org) such studies 

should be implemented in the future. In addition, the use of low-resolution 

parcellation templates (e.g. 66 and 90 regions) limits our model to 

reproduce only large-scale patterns of BOLD activity. Using connectomes 

with higher spatial resolution would allow a more comprehensive study 

regarding smaller substructures of the brain’s network.  Even so, in general 

http://www.humanconnectomeproject.org/
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term, the characteristics of functional networks explored herein were found 

to vary with the structural coupling in a consistent way, with disregard to 

the parcellation schemes used (90 and 66 regions). Note that the graph 

measures reported by Lynall and colleagues (2010) and reproduced in this 

work can only be qualitatively compared because functional networks were 

derived in a similar way and the same thresholding technique was applied. 

For example, in a recent study from Yu et al. (2011) functional networks 

derived using independent component analysis exhibited higher (rather 

than lower) clustering coefficients and path lengths in schizophrenia. 

Therefore, we find it necessary to establish standardized methods for 

analyzing brain networks by means of graph theory, to allow a direct 

comparison of these measures across studies. In addition, it should be noted 

that the randomization effects observed not only in the model but also in 

experiments depend largely on the thresholding technique. In fact, to avoid 

comparing graphs with different densities, fixed cost values were 

established to build graphs, which forces then lower correlation thresholds 

and subsequently a decrease in correlation significance. 

Using EEG signals, Rubinov and colleagues (2009) have reported an increase 

of FC in schizophrenia. However, since the present study was limited to the 

study of FC derived from BOLD signal correlations, the apparent 

contradiction with a BOLD FC decrease is hard to evaluate in the light of the 

current model. 

Finally, it is important to have in mind that experimental results are also 

subject to methodological limitations due to limited sample sizes and 

artefacts introduced by the imaging techniques. For example, the mean FC 

strength reported in the experiments (Lynall et al., 2010) was consistently 

higher than in simulations. This correlation shift to higher positive values 

could be induced by some remaining global artefacts in the BOLD signal (like 

those due to heartbeat and respiration) since no pre-processing step was 

performed with the intention of eliminating them. 
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V – General discussion 

 

‘A fact is a simple statement that everyone believes. 

 It is innocent, unless found guilty.  

A hypothesis is a novel suggestion that no one wants to believe.  

It is guilty, until found effective.  

Edward Teller 

 

The focus of the work presented herein was to investigate if the complex 

spatiotemporal patterns observed in brain activity during rest could be 

explained by an underlying network dynamics. To this aim, we have used the 

Kuramoto model of coupled oscillators with brain-inspired connectivity and 

delays, and compared our results with fMRI and MEG data. Although this 

approach relies on arguable assumptions and implies a high degree of 

abstraction, the fact is that the dynamics emerging from this simple model 

could predict many features of resting-state activity. Here, we want to 

highlight the implications of using the Kuramoto model and discuss its value 

in comparison with other (more realistic) resting-state models. In addition, 

we comment on the dynamical regime that enabled the model to reproduce 

the experimental observations, and argue on the biological plausibility of 

such behaviour.  

The Kuramoto model of coupled oscillators is one of the most abstract and 

fundamental models used to investigate phase interactions in oscillatory 

networks in nature (Pikovski et al., 2001, Strogatz, 2003). However, its 

application to model the interaction between brain areas requires the 

consideration that isolated brain areas behave intrinsically as oscillatory 

units. Theoretically, it has been shown that a large ensemble of densely 

coupled excitatory an inhibitory neurons can exhibit periodic synchronized 

firing leading to limit-cycle oscillations at different frequency bands (Brunel 

and Wang, 2003). Furthermore, electrophysiological recordings have 

revealed locally coherent oscillations in all cortical areas (Buzsaki and 

Draguhn, 2004). In this work, we assumed that uncoupled neural masses are 

in this dynamical regime during rest and display a natural frequency in the 

gamma-frequency range. The main reason for which we chose this 

dynamical regime -and subsequently to use the Kuramoto model- consists in 



158 
 

the fact that, in a previous resting-state model from our group, Deco et al. 

(2009) had found the spontaneous emergence of correlated slow (<0.1Hz) 

fluctuations when brain areas -modelled as Wilson-Cowan units- exhibited 

self-sustained oscillations in the gamma-frequency range1. On the other 

hand, other resting-state models have assumed different dynamical regimes 

at the node level (i.e. asynchronous fixed points or chaotic oscillations)2 and 

obtained similar qualitative results (see Table 3). However, also these 

neural-mass models (and even the model of spiking neurons from Deco and 

Jirsa (2012)) are immense simplifications of the real mechanisms occurring 

in cortical areas. Actually, there is a never-ending degree of complexity in 

the brain as we reduce the level of abstraction (going even beyond layered 

cortical microcircuitry (Markram, 2006) or the specific position of ion-

channels in the dendritic trees (Izhikevich and Edelman, 2008)). Generally, 

the desired degree of physiological detail in a network depends on the 

scientific questions posed. Here, we have been interested primarily in the 

macroscopic network dynamics of resting-state activity, and not in any 

molecular or pharmacological influences occurring at the neuron level. 

Neural-mass models such as the FizHugh-Nagumo or the Wilson-Cowan 

proved sufficient in a large number of modelling studies of this kind. 

However, they are generally implemented in simpler connectivity structures 

that allow pinpointing specific mechanisms underlying precise cognitive 

processes. When such neural-mass models are embedded in the space-time 

structure of the brain, a significant fit is obtained with resting-state fMRI 

recordings. However, the dynamics emerging from simulations is complex 

and the induction of the hidden mechanisms leading to correlated BOLD 

signal fluctuations is again an ill-posed problem (Ghosh et al., 2008). 

Therefore, we believe it is justified to introduce an even higher degree of 

abstraction to investigate these mechanisms. Using the Kuramoto model, 

the neural-mass dynamics is reduced to a single variable –the phase-. In this 

way, the exploration is restrained to the time-delayed phase interactions 

between connected cortical regions. The advantage of this reduction is that 

the dynamics of the Kuramoto model has been widely studied in the fields 

of physics and mathematics, and therefore the results can be interpreted in 

the light of the existing literature. 

                                                           
1
 See section I.III.1.c - The Wilson-Cowan model. 

2
See section  I.III - Large-scale models of resting-state dynamics. 
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Table 3 - Comparison between models of BOLD resting-state activity. 
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Most theoretical studies on the Kuramoto model have focused on studying 

and solving analytically the stability conditions of simple network structures. 

The extension of the Kuramoto model to heterogeneous time-delayed 

interactions with complex small-world connectivity like the brain has never 

been addressed theoretically. At the first sight, results from simulations in 

the metastability region seem chaotic. Yet, it was clearly in this parametric 

region that we obtained the best fit with both BOLD and MEG data. By 

comparing with theoretical predictions, we were able to make falsifiable 

predictions such as: Does the order parameter fluctuate in time? Are there 

groups of nodes synchronizing only transiently? Is there frequency 

suppression when synchrony occurs? Using this Popperian method, we 

explored exhaustively the chaotic-like dynamics emerging in the region of 

best agreement with brain data. Finally, we were able to extract a dynamical 

scenario that explains both BOLD and BLP fluctuations as a synchronization 

phenomenon. In this scenario, different subsets of connected regions have 

an intrinsic tendency to synchronize intermittently. Due to delays, these 

subsets of nodes are only able to synchronize at a reduced collective 

frequency. This collective frequency depends on 1) the mean delay between 

regions, 2) the number of regions engaged1 and 3) the natural frequency of 

the oscillators (Niebur, 1991). While the cluster is synchronized, the power 

in this frequency is increased. However, if the coupling is sufficiently weak, 

this synchronized state is unstable and is naturally disrupted due to 

competitive mechanisms between nodes. When synchrony fades away, 

nodes disengage from the cluster ensemble and their power at the reduced 

frequency disappears. In this way, all nodes involved in the cluster dynamics 

will have correlated BLP when the carrier frequency coincides with the 

cluster frequency. Furthermore, these fluctuations can be tuned to the time 

scale of BOLD fluctuations by manipulating the global coupling strength 

between regions, which determines the duration (i.e. the dwell time) of 

metastable synchronized sates. Although this theoretical scenario explains 

how local gamma-band oscillators can give rise to correlated frequency 

specific band-limited power fluctuation, how far is this scenario plausible in 

the brain? Even if the reduction of cortical regions to phase-oscillators is an 

immense simplification of macroscopic brain dynamics, the Kuramoto model 

                                                           
1
 Note that the number of regions is multiplied by the mean delay, which is 

indicative of the size of the whole loop. 
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has proven to predict successfully to interaction of several oscillator systems 

in nature. One of the main limitations of the Kuramoto model is that it 

disregards amplitude interactions. In a recent study, Daffertshofer and van 

Wijk (2011) compared the phase synchronization patterns of interconnected 

Wilson-Cowan models vis-a-vis Kuramoto networks of phase oscillators 

finding that the functional connectivity of interconnected Wilson-Cowan 

models explicitly depends on the generating oscillators' amplitudes. In 

consequence, they conclude that a proper inference of structure from 

function requires more than a sole focus on phase synchronization. 

However, as we explain in the Motivation, the main goal of our work was to 

make a falsifiable prediction. In that direction, we have used identical 

oscillators with equal natural frequency and equal amplitude, focusing only 

on phase interactions. In no part of this work do we claim that the whole 

brain dynamics can be explained by the phase only (or by only one type of 

frequency generator). Instead, what we show is that the phase alone can 

already give rise to complicated phenomena, which can only be understood 

in these simplified conditions. From this point, increased realism can be 

added (such as a dispersion of frequencies at the node level or different 

amplitudes) and the results should be analyzed in the light of the results 

found herein. We expect that the inclusion of increased realism in the model 

will probably maintain some of the qualitative results presented in this 

thesis, but it will certainly make the underlying equations more complex and 

change their interpretation. Importantly, it would be necessary to verify if 

the phenomenon of metastable reduced collective frequencies is observed 

with reduced neural-mass models such as the FitzHugh-Nagumo or the 

Wilson-Cowan. In this way, we expect that our results will help 

understanding the complex dynamics emerging from (more realistic) neural-

mass models.  

In this model, we observe a key role of delays. On one side, they introduce a 

phase frustration that impedes the full synchronization of the network at 

low coupling. On the other, they play a role in determining the carrier 

frequency. Therefore, and although the power fluctuations are slow, this 

scenario defends an important role of delays in shaping resting-state 

dynamics on multiple time-scales. 
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Regarding the relationship between our results and BOLD signal 

fluctuations, a study by (Kilner et al., 2005) has compared hemodynamic 

changes with the spectral profile of ongoing EEG activity. Their analysis 

suggests that ‘functional activation' -as indexed by increases in 

hemodynamic signals- is associated with a loss of power in lower EEG 

frequencies, relative to higher frequencies. In this heuristic, activation 

causes an acceleration of temporal dynamics (more spikes per second) 

leading to increased energy dissipation (and therefore an increase in local 

oxygen consumption). Importantly, our results can be interpreted in the 

light of this theoretical scenario since we have found a significant negative 

correlation between the slow fluctuations in the power at low and high 

frequencies. In other words, during metastable synchronized states, there is 

increased order in the system (as indicated by the order parameter) and the 

frequency is low. Based on the heuristic above, this could correspond to a 

state with less energy dissipation. When the cluster synchrony is disrupted, 

the power of individual units (at higher frequency) slightly increases (see 

Figure 55 on p.116). Since higher frequencies imply more spikes per second, 

the energy consumption would increase, leading to increased BOLD signal. 

This scenario goes in agreement with observations that BOLD signal 

correlates negatively with the expression of alpha and beta power and 

positively with the expression of higher frequencies (Scheeringa et al., 

2011). Furthermore, it suggests that activation may correspond to an 

acceleration of dynamics, subserving more rapid computations. This sort of 

activation can manifest with no overall change in power but a change in the 

frequencies at which power is expressed (Kilner et al., 2005). In these terms, 

the signal is expressed through frequency modulation (FM) instead of 

amplitude modulation (AM) (see Figure 72 for an illustration). 

 

Figure 72 - A signal may be carried by an AM or FM wave (source: Wikipedia). The FM signal 
can be filtered into distinct carrier frequencies, giving rise to more than one signal. 

http://upload.wikimedia.org/wikipedia/commons/a/a4/Amfm3-en-de.gif
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In our model, if we consider the signal at all frequency bands (i.e. not 

frequency filtered), the amplitude (or total power) of the raw signal is 

constant since              . In that case, the network dynamics is 

expressed through FM (see Figure 73 left). Only when we filter the signal 

(and therefore eliminate the signal components in other frequencies) do we 

observe amplitude modulations (see Figure 73 middle and left). 

 

Figure 73 – Network dynamics expressed through FM or AM. (Left) Simulated         for 
coupled cortical regions in the metastability region (AAL connectome,     ,   3, 
           ). (Middle) Simulated signal filtered above 30Hz. (Right) Simulated signal 
filtered below 30Hz. We observe that network interactions are expressed through FM in the 
raw signal, and expressed through AM when the signal is filtered in a frequency range. 

Furthermore, since the total power is constant, if we separate the signal into 

two frequency bands (above and below a certain frequency threshold) we 

observe that the amplitude modulations are anti-correlated. However, since 

different frequencies can coexist in the system (due to different cluster 

frequencies) if we band-pass the signals into several frequency bands, we 
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can separate the network dynamics of different frequency specific sub-

networks. 

These results provide a theoretical scenario for the frequency interactions 

observed in brain activity. Again, we remind that this is only a very abstract 

case of N=90 identical gamma-band oscillators, without noise. However, we 

believe that the similarities with what is observed in the brain should not be 

disregarded. So far, apart from theoretical predictions of local pace-maker 

generators in the brain, no explicit fundamental mechanism has been 

suggested to explain the spontaneous emergence of these complex 

dynamics from the physical structure of the brain. 

Finally, we found a crucial role for the coupling strength in shaping the 

network dynamics observed in brain activity during rest. On one side, the 

emergence of metastability in the system occurs for a specific range of 

couplings and delays. In addition, in agreement with the predictions from 

Niebur et al. (1991), the collective frequency of metastable synchronized 

clusters  is found to be inversely correlated with the coupling (i.e., the 

higher the coupling, the lower the frequency). Furthermore, we have found 

that, as the coupling is decreased, the correlation of BOLD signals is 

decreased and the corresponding functional networks are less globally 

integrated, less clustered and less small-world. These results go in 

agreement with previous findings in patients with schizophrenia, a disease 

long time hypothesized to be a disconnection syndrome. 

Taken overall, our results reinforce the importance of the structural 

connectivity (including coupling strength, wiring topology and delays), in the 

dynamics of resting-state activity. In addition, we show that a rich complex 

dynamics with multistability can emergence in the absence of noise and 

frequency dispersion. We believe that the results presented in this thesis 

should serve as the grounds for further investigations in both large-scale 

brain models and theoretical studies of the Kuramoto model. 
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VI – Conclusion 
 

 

‘Joy in looking and comprehending is nature's most beautiful gift.’ 

 Albert Einstein 

 

In this thesis, we have explored the complex dynamics emerging from 

Kuramoto oscillators with time delayed interactions when these are coupled 

with brain inspired connectivity and delays. The main purpose of this work 

was to investigate if the simple Kuramoto could provide insights about the 

network dynamics observed in brain activity during rest. We started by 

finding a good agreement with BOLD functional connectivity, in the same 

way as previously demonstrated with more realistic neural-mass models. In 

addition, due to the simple nature of the model, and based on previous 

theoretical literature on the Kuramoto model, we were capable of depicting 

the fundamental mechanisms at the genesis of correlated slow fluctuations. 

With the availability of resting-state MEG data, we further explored if the 

Kuramoto could explain the frequency specificity of band-limited power 

fluctuations observed at faster temporal scales. Notably, we have found 

that, in the same dynamical regime where BOLD patterns emerged (i.e. in 

the region of metastability) our results could explain MEG results with 

remarkable accuracy. Based on these results, we provide a new theoretical 

scenario to explain resting state activity at multiple temporal scales. A 

promising future endeavour would certainly be to extend the investigations 

to evoked neural activity.  

To conclude, we expect that the theoretical/computational explanations and 

predictions of resting-state neuroimaging data that we have presented in 

this thesis complement and extend our current understanding of resting-

state activity. Indeed, we believe that this study reflects the timely necessity 

to turn from the existing neural-mass models to more basic and 

phenomenological models in order to advance our understanding of the 

network dynamics underlying brain activity during rest.  
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Appendix 

 

A.I – List of regions in different brain parcellation schemes 

Table 4 - Names and abbreviations of the brain regions considered in the human 
connectome from Hagmann et al. (2008) (in alphabetical order). 

Abbreviation Brain region 

BSTS Bank of the superior temporal sulcus 

CAC Caudal anterior cingulate cortex 

CMF Caudal middle frontal cortex 

CUN Cuneus 

ENT Entorhinal cortex 

FP Frontal pole 

FUS Fusiform gyrus 

IP Inferior parietal cortex 

ISTC Isthmus of the cingulate cortex 

IT Inferior temporal cortex 

LING Lingual gyrus 

LOCC Lateral occipital cortex 

LOF Lateral orbitofrontal cortex 

MOF Medial orbitofrontal cortex 

MT Middle temporal cortex 

PARC Paracentral lobule 

PARH Parahippocampal cortex 

PC Posterior cingulate cortex 

PCAL Pericalcarine cortex 

PCUN Precuneus 

POPE Pars opercularis 

PORB Pars orbitalis 

PREC Precentral gyrus 

PSTC Postcentral gyrus 

PTRI Pars triangularis 

RAC Rostral anterior cingulate cortex 

RMF Rostral middle frontal cortex 

SF Superior frontal cortex 

SMAR Supramarginal gyrus 

SP Superior parietal cortex 

ST Superior temporal cortex 

TP Temporal pole 

TT Transverse temporal cortex. 
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Table 5 - List of Brain regions considered in the human connectome according to the AAL 
parcellation. The regions discarded in the graph theoretical analysis in the same way as in 
Lynall et al. (2010) are indicated in bold. 

Brain region Left Right 

Precentral 1 90 
Frontal Sup 2 89 

Front Sup Orb 3 88 

Front Mid 4 87 

Front Mid Orb 5 86 

Front Inf Ope 6 85 

Front Inf Tri 7 84 

Front Inf Orb 8 83 

Rolandic Oper 9 82 

Supp Motor Ar 10 81 

Olfactory 11 80 

Front Sup Med 12 79 

Front Med Orb 13 78 

Rectus 14 77 

Insula 15 76 

Cingulum Ant 16 75 

Cingulum Mid 17 74 

Cingulum Post 18 73 

Hippocampus 19 72 

ParaHippocamp 20 71 

Amygdala 21 70 

Calcarine 22 69 

Cuneus 23 68 

Lingual 24 67 

Occipital Sup 25 66 

Occipital Mid 26 65 

Occipital Inf 27 64 

Fusiform 28 63 

Postcentral 29 62 

Parietal Sup 30 61 

Parietal Inf 31 60 

SupraMarginal 32 59 

Angular 33 58 

Precuneus 34 57 

Paracentr Lob 35 56 

Caudate 36 55 

Putamen 37 54 

Pallidum 38 53 

Thalamus 39 52 

Heschl 40 51 

Temporal Sup 41 50 

Temporal Pole Sup 42 49 

Temporal Mid 43 48 

Tempral Pole Mid 44 47 

Temporal Inf 45 46 

  



169 
 

A.II - MEG Data Collection and Analysis 

This collection of data was performed by Prof. Morten Kringelbach, Morten 

Joensson and Hamid Mohseni at the CFIN/MindLab, Aarhus Univ., Aarhus, 

Denmark and the Department of Psychiatry, University of Oxford, United 

Kingdom. 

The analysis was performed by Henry Luckhoo and Mark Woolrich at the 

Oxford Centre for Human Brain Activity, University of Oxford, United 

Kingdom. 

Ten normal healthy participants underwent an eyes-closed resting state 

scan lasting five minutes. MEG data were gathered on an Elekta Neuromag 

(Elekta Neuromag Oy, Helsinki, Finland). Data were collected on 102 

magnetometers and 102 pairs of orthogonal radial gradiometers at a 

sampling frequency of 1000Hz. Head localization was achieved using four 

head position indicator (HPI) coils which were periodically/continuously 

energised allowing the head to be localised within the scanner helmet. Each 

subject’s head shape was recorded using a Pohemus Isotrack system. 

Structural MRIs were gathered on a [insert details for structurals]. 

Signal space separation (implemented using MaxFilterTM) was applied to 

each data set to reduce any sources of interference from outside the 

scanner helmet. SSS projects the MEG data onto a basis set of spherical 

harmonics. Harmonics corresponding to sources originating from within the 

helmet are preserved whilst interfering sources from outside the helmet are 

rejected. 

The MEG data was then epoched into 5s segments. Epochs with abnormally 

high variance, relative to all the epochs, were discarded. Channels which 

exhibit high variance relative to all the channels after removal of bad epochs 

were also discarded. The epoched MEG data was then concatenated into a 

resting state single trial. 

Each dataset was co-registered to a standard (MNI) space by registering the 

subject’s structural MRI to their head shape (as measured by the Polhemus 

Isotrack). A single homogenous shell forward model was then estimated 

using the subject’s head shape. Both co-registration and estimation of the 

forward model were done using SPM8 (FIL, UCL). 
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The data were then band-pass filtered into 15 frequency bands (each 4Hz 

wide, between 0 and 60Hz). An LCMV beamformer(Van Veen et al., 1997, 

Robinson and Vrba, 1998) was used to reconstruct the activity at 90 

locations defined by the AAL parcellation(Tzourio-Mazoyer et al., 2002). The 

beamformer is an adaptive spatial filter that uses the forward model to 

design a set of weights which reconstruct neural activity in a specific region 

whilst suppressing activity from all other locations. The source space data 

was constructed using only the planar gradiometers (done to avoid any 

issues with fusing multiple sensor type after SSS). The data covariance 

matrix, C, was regularised according to Creg = C + μI where μ equals 4 times 

the minimum eigenvalue of the unregularised data covariance matrix 

(Brookes et al., 2011b), C. Regularisation acts to spatially smooth the 

beamformed data and increase temporal signal to noise ratio. 

The beamformer outputs 90 time series for each of the 15 frequency bands 

of interest. However, it has been shown that functional connectivity in MEG 

data is best measured by considering the oscillatory amplitude envelope of 

the time series at each location (Liu et al., 2010, Brookes et al., 2011a, 

Brookes et al., 2011b). This is found by estimating the absolute value of the 

analytic signal, computed via the Hilbert transform. The oscillatory 

amplitude envelope is equivalent to the instantaneous power of the signal. 

Resting state functional connectivity has been found to be linked to 

correlations in the low frequency power fluctuations in oscillatory power 

between regions (Mantini et al., 2007, Liu et al., 2010, Brookes et al., 2011a, 

Brookes et al., 2011b). Therefore, the oscillatory amplitude envelope is 

temporally down-sampled by dividing the envelope into equal windows of 

length 1 s and calculating the mean envelope value for each window; this 

effectively low-pass filters the envelope signal. For each frequency, the pair-

wise correlation matrix was estimated, giving a total of 15 correlation 

matrices for each subject. The correlation matrices were averaged across 

the 10 subjects to give a single set of 15 correlation matrices. 
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A.III – DTI data collection and building of anatomical connectomes 

This collection of data and analysis was performed by Prof. Morten 

Kringelbach at the Department of Psychiatry, University of Oxford, United 

Kingdom. 

We extracted the structural brain networks using diffusion tensor imaging 

(DTI) from the brains of 21 healthy, normal participants (11 males and 10 

females, age: 22 – 45 years) using a modified version of already published 

methods (Gong et al., 2009b). All scans were performed on the same Philips 

Achieva 1.5 Tesla Magnet. Diffusion MRI was acquired by using a single-shot 

echo planar imaging-based sequence with coverage of the whole brain; 

repetition time (TR), 9390 ms; echo time (TE), 65 ms. DTI images utilised 32 

optimal nonlinear diffusion weighting directions (b = 1200 s/mm2) and 2 

non-diffusion weighted volumes; reconstructed matrix=128x128x45; 

reconstructed voxel size 2.0mm x 2.0mm x 2.0mm. We also acquired T1-

weighted structural images with a three-dimensional ‘FLASH’ sequence 

(TR=12 ms, TE=5.6 ms, flip angle=19˚, with elliptical sampling of k-space, 

giving a voxel size of 1x1x1mm in 5.05 minutes). 

The extraction of weighted brain networks used a three steps process 

consisting of 1) brain parcellation, 2) interregional connectivity analysis and 

3) extraction of weighted network. In the following we briefly outline the 

details involved in each step. 

A.III.1 - Brain parcellation 

We used the automated anatomical labeling (AAL) template to parcellate 

the entire brain into 90 cortical and subcortical regions (45 for each 

hemisphere), where each region represents a node of the brain network 

(Tzourio-Mazoyer et al., 2002). For each participant, we conducted the 

parcellation in the diffusion MRI native space.  

We used the Flirt tool (FMRIB, Oxford) (Jenkinson et al., 2002) to linearly 

coregister the b0 image in diffusion MRI space to the T1-weighted structural 

image. The transformed T1-weighted image was then mapped to the T1 

template of ICBM152 in MNI space (Collins et al., 1994). The resulting 

transformation was inversed and further applied to warp the AAL mask from 
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MNI space to the diffusion MRI native space, where interpolation using 

nearest-neighbour method ensured that the discrete labeling values were 

preserved.  

A.III.2 - Analysis of interregional connectivity  

We used the Fdt toolbox in FSL (www.fmrib.ox.ac.uk/fsl/, FMRIB, Oxford) to 

carry out the various stages of processing of the diffusion MRI. The initial 

preprocessing involved co-registering the diffusion-weighted images to a 

reference volume using an affine transformation for the correction of head 

motion as well as eddy current induced image distortion. Following this 

preprocessing, we estimated the local probability distribution of fibre 

direction at each voxel (Behrens et al., 2003). We then used the probtrackx 

algorithm allowing for automatic estimation of two fibre directions within 

each voxel, which can significantly improve the tracking sensitivity of non-

dominant fiber populations in the human brain (Behrens et al., 2007). 

We estimated the connectivity probability by applying probabilistic 

tractography using a sampling of 5000 streamline fibres per voxel. The 

connectivity probability from the seed voxel i to another voxel j was defined 

by the number of fibres passing through voxel j divided by the total number 

of fibres sampled from voxel i (Behrens et al., 2007). This was then extended 

from the voxel level to the level of each region, i.e. in a seed brain region 

consisting of n voxels, 5000*n fibres were sampled. The connectivity 

probability from the seed region to a given region is the number of fibres 

passing through a given region divided by 5000*n.  

In our study, the seed regions selected for each of the parcellated brain 

region and the connectivity probability to each of the other 89 regions was 

calculated. It should be noted, however, that because of the dependence of 

tractography on the seeding location, the probability from i to j is not 

necessarily equivalent to that from j to i. However, these two probabilities 

are highly correlated across the brain for all subjects (the least Pearson r = 

0.70, p < 10-50). We therefore defined the undirectional connectivity 

probability Pij between region i and j by averaging these two probabilities. 

We implemented the calculation of regional connectivity probability using 

in-house Perl scripts. 
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A.III.3 - The weighted network 

We constructed a weighted network/graph by defining a distance/weight 

associated with each edge. Similar to previous studies, we took the high 

connectivity probability between brain regions to be short distances in a 

graph. Specifically, we computed Wij=1-Pij as the distance/weight between 

brain region i and j, as used in previous literature (Achard and Bullmore, 

2007). It is important to note that the distance/weight here does not 

correspond to the physical length of the white matter pathway linking the 

brain regions, nor to the physical distance between brain regions in the real 

spatial space. For each subject, a 90x90 symmetric weighted cortical 

network/graph W was constructed, representing the anatomical 

organization of cerebral cortex. 
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A.IV - Demonstration that the leading (positive) eigenvalue of a symmetric 

connectivity matrix decreases with disconnection. 

This demonstration was performed by Dr. Etienne Hugues, Center of Brain 

and Cognition, Universitat Pompeu Fabra, Barcelona, Spain. 

Let’s consider 2 any symmetric connectivity matrices:   and a disconnected 

version of it   . For their coefficients, we have           . Their leading 

and positive eigenvalues are    and    , respectively. We want to prove that 
      . 

From the Perron-Frobenius theorem, we know that    and     are positive 

and the greatest eigenvalues in modulus for   and   , respectively. We also 

know that the respective first (right) eigenvectors    and    , when 

conveniently normalized (and with unit norm:             ) have all 

their components positive:       and       . 

Let’s define a new matrix       . From the definition of   and   , this 

matrix has positive coefficients:      . The following identity  

   
      

     
  

can be rewritten 

   
      

 
    

where, from the positivity of the coefficients of  and of the components of 

   , the vector   has also positive components. Taking the squared norm of 

this equality, we get 

    
  

     
         

       , 

where the first term in the right hand side has been simplified because of 

the unit norm of    . From the positivity of     and of the components of     

and  , the second term is positive. The third one is also positive. Then, we 

have     
        .  

For a symmetric matrix, it is known that               for any vector  . 

In our case, and because of the unit norm of    , this implies that 
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     . Combining the two preceding inequalities, we finally get the 

result:       . 

A.IV.1 - Case of a lesion 

In this case, some nodes could be eliminated from the network. Although 

link removal and node removal seem quite different manipulations of 

connectivity matrices, the last one can be seen as a particular case of the 

first. Indeed, from the model point of view, removing nodes is the same as 

considering the same initial nodes but cutting all the links between these 

nodes and the other ones (replacing the nodes’ lines and columns by null 

values in the connectivity matrix), and just look at the network part made of 

the remaining nodes. In matrix terms, for a node ordering in which the   

nodes of the lesion are placed at the end for simplicity, starting from the 

connectivity matrix  , the lesioned one    writes (in block matrices) 

     
  

  
 , 

where the second block matrix has   lines and columns.    is a particular 

case of a disconnected matrix as defined above. Its eigenvalues are trivially 

the ones of   , plus   times the eigenvalue . Therefore, we have       
  

and, from the above result,   
    , showing that, after lesion, the leading 

eigenvalue of the connectivity matrix entering the dynamical model (  ) has 

decreased compared to the original one. 

A.IV.2 - Consequences for the present model  

In this study, to simulate the disconnection effects of a disease, we consider 

a fixed absolute coupling      , where these quantities refer to the healthy 

case. Therefore, for a disconnected matrix   , the equivalent coupling    

we consider verifies 
  

  
 

  

  
 . Taking into account the previous results, we 

get      
  
 

  
   . In other words, this means that, in the model, 

disconnection is equivalent to a decrease in the coupling strength. 
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AAL Automated Anatomical Labelling 
AC Anatomical Connectivity 
AD Alzheimer's disease 
AM Amplitude Modulation 
AMPA α-amino-3-hydroxy-5-methyl-4-isoazoleproprionic acid 
BLP Band-Limited Power 
BOLD Blood-Oxygen-Level Dependent 
cc Correlation Coefficient 
CoCoMac Collation of Connectivity on the Macaque brain 
DMN Default-Mode Network 
DSI Diffusion Spectrum imaging 
DTI Diffusion Tensor Imaging 
ECoG Electrocorticography 
EEG Electroencephalography/Electroencephalogram 
FC Functional Connectivity  
FM Frequency Modulation 
fMRI Functional Magnetic Resonance Imaging 
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IC Independent Component 
ICA Independent Component Analysis 
LFP Local-Field Potential 
MEG Magnetoencephalography/Magnetoencephalogram 
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PCA Principal Component Analysis 
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PhD Doctor of Philosophy 
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