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SUMMARY 

Real-world problems, especially those that involve natural systems, are complex 

and composed of many non-deterministic components having non-linear coupling. The 

conventional approaches based on analytical techniques for understanding and predicting 

the behaviour of such systems can prove to be very difficult and inflexible in order to cope 

with the intricacy and the complexity of the real-world system. It turns out that in dealing 

with such systems, one has to face a high degree of uncertainty and tolerate imprecision. 

Classical system models based on numerical analysis, crisp logic or binary logic have 

characteristics of precision and categoricity and classified as hard computing approach. In 

contrast soft computing approaches like probabilistic reasoning, fuzzy logic, artificial 

neural nets etc have characteristics of approximation and dispositionality. Although in hard 

computing, imprecision and uncertainty are undesirable properties, in soft computing the 

tolerance for imprecision and uncertainty is exploited to achieve tractability, lower cost of 

computation, effective communication and high Machine Intelligence Quotient (MIQ). 

Until recently, uncertainty, regardless of its nature or source has been treated using 

probability theory concepts. However, uncertainties associated with real-world systems are 

not limited to randomness. Uncertainties in the natural system models may originate from 

randomness or from imprecision due to lack of information. Imprecise, vague, or 

incomplete information may better be represented by other soft computing approaches, 

such as fuzzy set theory, possibility theory, belief functions, etc. New approaches which 

allow utilization of probability theory in combination with other approaches should be 

investigated. It can provide more holistic framework to treat different kind of uncertainties 

and insight into the level of confidence in model estimates.  

Proposed thesis has tried to explore use of different soft computing approaches to 

handle uncertainty in environmental risk management. The work has been divided into 

three parts consisting five papers.  

In the first part of this thesis two uncertainty propagation methods have been 

investigated. The first methodology is generalized fuzzy α-cut based on the concept of 

transformation method. A case study of uncertainty analysis of pollutant transport in in the 
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subsurface using 2-D transport model has been used to show the utility of this approach. 

Results are compared with commonly used probabilistic method and normal Fuzzy alpha-

cut technique. This approach shows superiority over conventional methods of uncertainty 

modelling. A Second method is proposed to manage uncertainty and variability together in 

risk models. The new hybrid approach combining probabilistic and fuzzy set theory is 

called Fuzzy Latin Hypercube Sampling (FLHS). The noncognitive uncertainty such as 

physical randomness, statistical uncertainty due to limited information, etc can be described 

by its own probability density function (PDF); whereas the cognitive uncertainty such as 

estimation error etc can be described by the membership function for its fuzziness and 

confidence interval by α-cuts. An important property of this theory is its ability to merge 

inexact generated data of LHS approach to increase the quality of information. The FLHS 

technique ensures that the entire range of each variable is sampled with proper 

incorporation of uncertainty and variability. A fuzzified statistical summary of the model 

results will produce indices of sensitivity and uncertainty that relate the effects of 

heterogeneity and uncertainty of input variables to model predictions. The feasibility of the 

method is validated to analyze total variance in the calculation of incremental lifetime risks 

due to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) for the residents 

living in the surroundings of a municipal solid waste incinerator (MSWI) in Basque 

Country, Spain.  

The second part of this thesis deals with the use of artificial intelligence technique 

for generating environmental indices. Two papers have been published in this area. The 

first paper focused on the development of a Hazzard Index (HI) using persistence, 

bioaccumulation and toxicity properties of a large number of organic and inorganic 

pollutants. For deriving this index, Self-Organizing Maps (SOM) has been used which 

provided a hazard ranking for each compound. Subsequently, an Integral Risk Index was 

developed taking into account the HI and the concentrations of all pollutants in soil samples 

collected in the target area. Finally, a risk map was elaborated by representing the spatial 

distribution of the Integral Risk Index with a Geographic Information System (GIS). The 

results were used to generate an integrated risk map in the industrial chemical / 

petrochemical area of Tarragona. The results of this study show that the usefulness of soft 

computing approaches to support the environmental decision making processes concerning 
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environmental pollutants. The second paper is an improvement of the first work. The first 

work used SOM weight to rank contaminants using their characteristics of persistence, 

bioaccumulation, and toxicity in order to obtain the HI. It doesn’t consider uncertainty 

associated with contaminants characteristic values. So in this study a hybrid method of 

probabilistic SOM is used to calculate Integrated Risk Index. New approach called Neuro-

Probabilistic HI was developed by combining SOM and Monte-Carlo analysis. This new 

index seems to be an adequate tool to be taken into account in risk assessment processes. In 

both papers, feasibility of the methods has been validated by applying it to the 

chemical/petrochemical industrial area of Tarragona (Catalonia, Spain). 

 The third part of this thesis deals with decision-making framework for 

environmental risk management. A new integrated decision-making framework is 

proposed. Multi-component environmental risk management in uncertain environment has 

been addressed. The fuzzy risk-analysis model is proposed to comprehensively evaluate all 

risks associated with contaminated systems resulting from more than one toxic chemical. In 

this study, an integrated fuzzy relation analysis (IFRA) model is proposed for risk 

assessment involving multiple criteria. The model is an integrated view on uncertainty 

techniques based on multi-valued mappings, fuzzy relations and fuzzy analytical 

hierarchical process. Integration of system simulation and risk analysis using fuzzy 

approach allowed to incorporate system modelling uncertainty and subjective risk criteria. 

This model is demonstrated for a multi-components groundwater contamination problem. 

Results reflect uncertainties presented as fuzzy number for different modelling inputs 

obtained from fuzzy system simulation. Integrated risk can be calculated at different 

membership level which is useful for comprehensively evaluating risks within an uncertain 

system containing many factors with complicated relationships. It has been shown that a 

broad integration of fuzzy system simulation and fuzzy risk analysis is possible. 
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RESUMEN 

Los problemas del mundo real, especialmente aquellos que implican sistemas 

naturales, son complejos y se componen  de muchos componentes indeterminados, que 

muestran en muchos casos una relación no lineal.  Los modelos convencionales basados en 

técnicas analíticas que se utilizan actualmente para conocer y predecir el comportamiento 

de dichos sistemas pueden ser muy complicados e inflexibles cuando se quiere hacer frente 

a la imprecisión y la complejidad del sistema en un mundo real. El tratamiento de dichos 

sistemas, supone el enfrentarse a  un elevado nivel de incertidumbre así como considerar la 

imprecisión. Los modelos clásicos basados en análisis numéricos, lógica de valores exactos 

o binarios, se caracterizan por su precisión y categorización y son clasificados como una 

aproximación  al  hard computing. Por el contrario, el soft computing  tal como la lógica de 

razonamiento probabilístico, las redes neuronales artificiales, etc., tienen la característica de 

aproximación y disponibilidad. Aunque en la hard computing, la imprecisión y la 

incertidumbre son propiedades no deseadas, en el soft computing la tolerancia en la 

imprecisión y la incerteza se aprovechan para alcanzar tratabilidad, bajos costes de 

computación, una comunicación efectiva y un elevado Machine Intelligence Quotient 

(MIQ). Hasta hace poco, la incertidumbre, a pesar de su naturaleza o fuente, ha sido tratada 

usando conceptos teóricos de probabilidad. Sin embargo, las  incertidumbres asociadas con 

los sistemas del mundo real no se deben tan sólo al azar. Las incertidumbres en los modelos 

de sistemas naturales pueden deberse a la aleatoriedad o bien a la  imprecisión debida  a 

una falta de información. La información imprecisa, vaga o incompleta puede ser mejor 

presentarla a través de otros enfoques de Soft-computing, tal como un conjunto de teorías 

difusas, teoría de posibilidad, belief functions etc. Es preciso investigar nuevos 

acercamientos que permitan la utilización de la teoría de probabilidad en combinación con 

otras aproximaciones.  Ello podría aportar un nuevo marco más integral para tratar 

diferentes tipos de incertidumbres y poder conocer los niveles de confidencia  en los 

modelos estimados.  

La tesis propuesta intenta explorar el uso de las diferentes aproximaciones en la 

informática blanda para manipular la incertidumbre en la gestión del riesgo 
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medioambiental. El trabajo se ha dividido en tres secciones que forman parte de cinco 

artículos. 

En la primera parte de esta tesis, se han  investigado dos métodos de propagación de 

la incertidumbre. El primer método es el generalizado α-cut fuzzy o difusa, el cual está  

basada en el método de transformación. Para demostrar la utilidad de esta aproximación, se 

ha utilizado un caso de estudio de análisis de incertidumbre en el transporte de la 

contaminación en suelo, para el cual se utilizó el modelo de transporte 2-D. Los resultados 

obtenidos mediante la utilización de la técnica fuzzy alpha-cut fueron comparados con los 

obtenidos por métodos clásicos  probabilísticos. Esta  aproximación muestra una 

superioridad frente a los métodos convencionales de modelación de la incertidumbre. La 

segunda metodología propuesta trabaja conjuntamente la variabilidad y la incertidumbre en 

los modelos de evaluación de riesgo. Para ello, se ha elaborado una nueva aproximación 

híbrida denominada Fuzzy Latin Hypercube Sampling (FLHS), que combina los conjuntos 

de la teoría de probabilidad con la teoría de los conjuntos difusos. La incertidumbre no 

cognitiva como la aletoriedad física y la incertidumbre estadística debida a la información 

limitada, etc., pueden describirse mediante su función de densidad de probabilidad (PDF); 

mientras que la incertidumbre cognitiva tal como es el caso de la estimación del error, etc., 

puede ser descrita mediante la función  de pertenencia  para  los  conjuntos difuso, y los 

intervalos de confianza de los α-cuts. Una propiedad importante de esta teoría es su 

capacidad para fusionarse entre si los diferentes datos inexactos generados de la 

aproximación LHS, lo que supone la obtención de una mayor calidad de la información. La 

técnica FLHS nos asegura una apropiada incorporación de la variabilidad y la  

incertidumbre en el  registro de cada variable.  El resumen estadístico fuzzificado de los 

resultados del modelo generan índices de sensitividad e incertidumbre que relacionan los 

efectos de la heterogeneidad e incertidumbre de las variables de entrada con las 

predicciones de los modelos. La viabilidad del método se llevó a cabo mediante la 

aplicación de un caso a estudio donde se analizó la varianza total en la cálculo del 

incremento del  riesgo sobre el tiempo de vida de los habitantes que habitan en los 

alrededores de una incineradora de residuos  sólidos urbanos en Tarragona, España, debido 

a las emisiones de dioxinas y furanos (PCDD/Fs). 
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La segunda parte de la tesis consistió en la utilización de las técnicas de la 

inteligencia artificial para la generación de índices medioambientales. Se realizaron dos 

artículos en esta área. En el primer artículo se desarrolló un Índice de Peligrosidad  a partir 

de los valores de persistencia, bioacumulación y toxicidad de un elevado número de 

contaminantes orgánicos e inorgánicos. Para su elaboración, se utilizaron los Mapas de 

Auto-Organizativos  (SOM), que proporcionaron un ranking de peligrosidad para cada 

compuesto.  A continuación, se elaboró un Índice de Riesgo Integral teniendo en cuenta el 

Índice de peligrosidad y las concentraciones de cada uno de los contaminantes en las 

muestras de suelo recogidas en la zona  de estudio. Finalmente, se elaboró un mapa  de la 

distribución espacial del Índice de Riesgo Integral mediante la representación en un 

Sistema de Información Geográfico (SIG). Los resultados obtenidos fueron aplicados para 

la generación de un mapa de peligrosidad integral en el área industrial 

químico/petroquímico de Tarragona. Los resultados de este estudio muestran  la utilidad de 

la aplicación del soft computing en el proceso de la toma de decisiones  medioambientales 

relacionadas con la contaminación ambiental. El segundo artículo es una implementación 

del primer trabajo. En el  primer artículo el ranking de peligrosidad (o Índice de 

peligrosidad, HI)) de los diferentes contaminantes se obtenía a partir del valor del índice  

que generaba el SOM en función de sus características de persistencia, bioacumulación y 

toxicidad. Dicho Índice no consideraba la incertidumbre asociada con los valores de las 

variables  de los contaminantes. Por ello,  en este estudio, se creó un método híbrido de los 

Mapas Auto-organizativos con los métodos probabilísticos, obteniéndose de esta forma un 

Índice de Riesgo Integrado. Mediante la combinación de SOM y el análisis de Monte-Carlo 

se desarrolló  una nueva aproximación llamada Índice de Peligrosidad Neuro-

Probabilística. Este nuevo índice es  una herramienta adecuada para ser utilizada en los 

procesos de análisis. En ambos artículos, la viabilidad de los métodos han sido validados a 

través de su aplicación en el área de la industria química y petroquímica de Tarragona 

(Cataluña, España). 

El tercer apartado de esta tesis está enfocado en la elaboración de una estructura 

metodológica de un sistema de ayuda en la toma de decisiones para la gestión del riesgo 

medioambiental. Se propone un nuevo marco de integración para la toma de decisiones. El 

modelo propuesto se ha elaborado para  gestión de riesgos medioambientales y propone la 
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integración del riesgo producido por múltiples-contaminantes, considerando a su vez  un 

medioambiente incierto. El modelo de análisis de riesgo fuzzy elaborado tiene como 

objetivo la evaluación de todos los riesgos asociados a los sistemas contaminados por más 

de un contaminante tóxico.  En este estudio, se presenta  un modelo integrado de análisis de 

fuzzy (IFRA) para la evaluación del riesgo cuyo resultado depende de múltiples criterios. 

El modelo es una visión integrada de  las técnicas de incertidumbre basadas en  diseños de 

valoraciones múltiples, relaciones fuzzy  y procesos analíticos jerárquicos inciertos. La 

integración de la simulación del sistema y el análisis del riesgo utilizando aproximaciones 

inciertas permitieron incorporar la incertidumbre procedente del modelo junto con la 

incertidumbre procedente de la subjetividad de los  criterios. El modelo se ha aplicado a un 

problema de contaminación de las aguas subterráneas por varios compuestos químicos. Los 

resultados del modelo muestran la incertidumbre en forma de números fuzzy o difusos de 

los diferentes parámetros de entrada al modelo obtenido tras la simulación del sistema 

incierto. El riesgo integrado puede calcularse a diferentes niveles de pertenencia lo cual es 

útil para la evaluación compreniva de los riesgos dentro de un sistema incierto que contiene 

muchos factores de riesgo con relaciones complicadas entre ellos. Se ha demostrado que  es 

posible crear una  amplia integración entre la simulación de un sistema incierto y de un 

análisis de riesgo incierto.  
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CHAPTER 1 

INTRODUCTION AND SCOPE OF THE THESIS 

1.1 Introduction 

Recent emphasis on the preventative and precautionary approaches to environment 

risk management denotes a shift towards attempts to manage risks to the environment. 

Preventative approaches concentrate on eliminating waste and pollution at the source. 

Approaches based on the Precautionary Principle are more demanding and require the 

adoption of control measures before harm is proven. The latter has been adopted by the 

European Union as a guiding principle(EU, 2000). It is used when information suggests 

cause and effect but cannot prove it, or when possible consequences are so undesirable that 

"business as usual" cannot be chanced. Justification is on grounds of complexity (inability 

to unambiguously identify all cause-effect pathways) or uncertainty.  

Managing risk means finding ways to reduce, mitigate, or simply learning to live 

with risks. How this is done depends often on acceptability of the risk. The acceptability 

can be decided by regulators or public. Regulator criteria of acceptability are driven by 

scientific evidences or public perceptions. The public considers some risks unacceptable 

and society is prepared to pay a high cost to avoid such risks. Some of the main factors 

affecting social perception towards risk are credibility of risk assessment process and 

communication of risk. However at the end of regulators, it’s all about a well informed 

decision making process. Basic criteria for "good" decision making are efficiency, 

effectiveness and equity. A further criterion specific to environmental decision making is 

flexibility. In the context of environmental risk management, efficiency can be interpreted 

as good process (rather than economic efficiency), and effectiveness as good outcomes. 

Ideally, if outcomes can be predicted with reasonable certainty, then good process should 

lead to good outcomes. In practice, the concept of a "good" decision depends on a 

combination of good process and good outcomes, and, according to the circumstances, 

different weights may be given to different aspects. In environmental situations, long lead 
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time between action and outcome means that deducing effect from cause is not always 

possible; a decision maker must rely on judgment. Improving decision making therefore 

requires looking for ways of improving the quality of the judgment of the decision maker. 

Environment Risk Assessment (ERA) models very often rely on the evaluation of 

risks for human and the environment. This evaluation is carried out with the help of 

models, which simulate the transfer of pollutants from a source to a vulnerable target, for 

different scenarios of exposure. Currently, there is a trend in risk analysis away from single 

summary estimates of risk in favour of more comprehensive risk characterisation based on 

a probabilistic or possibilistic estimate of risk. The range of risks spanned by these 

estimates encompasses both uncertainty in the factors affecting risk, as well as variability in 

exposure or susceptibility within the population of interest. For example body weight, 

which is pertinent to a number of health risks, varies considerably among individuals even 

of the same age and sex, but is subject to little uncertainty. On the other hand, levels of 

exposure to dietary risk factors such as food contaminants can be both highly variable and 

highly uncertain. Most risk factors will be subject to varying degrees of both variability and 

uncertainty and the assessment of risk requires consideration of all of the possible factors 

that may influence risk. 

1.2 Problem definition 

A key issue in the ERA is uncertainty due to various reasons. First of all ERA 

models are confronted with inherent uncertainty and lack of knowledge that the disciplinary 

sciences face. Secondly, ERA models have to deal with a variety of types and sources of 

uncertainty that have to be structured and combined in one-way or another. The data needs 

for characterizing parametric uncertainties are often substantial, and not necessarily 

available. And finally, ERA models are prone to accumulation of uncertainties, because of 

their ambition to cover the whole cause-effect chain of environment problem.  

A typology of uncertainties would help to differentiate between different types and 

sources of uncertainty and to communicate uncertainties in a more constructive manner. 

For example, uncertainty regarding model parameters may have essentially two origins. It 

may arise from randomness due to natural variability resulting from heterogeneity of 

population or the fluctuations of a quantity in time. Or it may be caused by imprecision due 
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to a lack of information resulting. In risk assessment, uncertainty issue is struggling with 

typological problems; no distinction is traditionally made between these two types of 

uncertainty, both being represented by means of a single probability distribution. So, 

uncertainty in risk assessment models is generally addressed within a purely probabilistic 

framework. This approach comes down to assuming that knowledge regarding model 

parameters is always of random nature (variability). Such knowledge is represented by 

single probability distributions typically propagated through the risk model using the 

Monte-Carlo technique. Even if this approach is well-known, the difficulty is to avoid an 

arbitrary choice of the shape of probability distributions assigned to model parameters. 

Indeed in the context of risk assessment related to pollutant exposure, knowledge of some 

parameters is often imprecise or incomplete. The selection of parameter values of 

environmental models is based as much as possible on the data collected at the time of on-

site investigations (phase of diagnosis). However, due to time and financial constraints, 

information regarding model parameters is often incomplete and imprecise. The use of 

single probability distribution to represent this type of knowledge becomes subjective and 

partly arbitrary, and it is more natural to use intervals. 

However, the available information is often richer than an interval but less rich than 

a probability distribution. In practice, while information regarding variability is best 

conveyed using probability distributions, information regarding imprecision is more 

faithfully conveyed using probability families encoded either by p-boxes (lower & upper 

cumulative distribution functions) or by possibility distributions (also called fuzzy 

intervals) or yet by random intervals using the belief functions of Dempster-Shafer.  

Despite the usefulness of these methods in uncertainty analysis, it has not been 

adopted by environmental risk modellers. One of the reasons is lack of integrated 

framework to use simulation results from these methods in risk management model. For 

example, it is often a problem to use fuzzy results (which are in form of membership 

function) in crisp-set based risk management model. Problem becomes more complicated 

when it is multi-contaminants multiple risk criteria problem. This complication has 

discouraged the risk assessment communality to use fuzzy approach in environmental risk 

management.   
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Finally computational cost is also a major problem in many methods. The number 

of model runs can sometimes be very large, i.e., of the order of many thousands, resulting 

in substantial computational demands. Thus, the costs associated with uncertainty analysis 

may sometimes be prohibitively high, necessitating a simplification of model simulations 

(inadequate sample size) and/or the use of simpler models.   

1.3 Scope and Objectives  

This thesis deals with uncertainty in environmental risk models with an aim to 

improve the practice of characterising uncertainty in environmental risk assessment. The 

assumptions for this work are (i) possibility of making a well-found decision improves if, 

apart from decision-relevant knowledge, also uncertainty that may be relevant to the 

decision is carefully addressed in the information on which this is based, (ii) the risk 

assessment information often suffers from incompleteness and lack of clarity with regard to 

uncertainty about health risk and (iii) lack of general framework integrating uncertainty 

assessment and comprehensive risk assessment. 

The aim of this thesis is: 

``the development of computationally efficient alternative methods for uncertainty 

propagation that are applicable to different environmental risk models, and the 

development of auxiliary tools that facilitate easy use of these methods.''  

The primary objective of this thesis is to investigate uncertainty representability and 

the development of computationally efficient methods for uncertainty propagation. This is 

addressed from the perspective of (a) computational requirements of the methods, (b) 

applicability of the methods to a wide range of models, and (c) ease of use of the methods.  

The specific objectives of desertation are: 

• Propose practical representation methods according to available information 

regarding model parameters by using possibility, probability and random sets. 

• To develop a general framework for environmental risk management 

propagating uncertainty and variability through risk model.  
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• These alternative methods are tested on simplified real cases, with a view to 

provide useful inputs for the decision-making process. 

These objectives are accomplished via the development of the Fuzzy Hypercube 

Sampling Method (FHSM) to address issue of parametric variability and uncertainty in 

models and its evaluation for a range of multi-media risk assessment models. Development 

of new ranking methods using artificial intelligence methods has been studied to facilitate 

better decision processes. Self-Organizing Maps (SOM) is used to create ranking system 

(Hazard Index) for a number of different inorganic and organic pollutants. Further an 

improvement over previous method has been done by incorporating uncertainty in the 

ranking process and a new ranking method is developed called neuroprobabilistic Hazard 

Index. Integrated Fuzzy Relation Analysis (IFRA) has been developed as a generic 

multicriteria decision model incorporating the fuzzy inputs and propagating the uncertainty 

in risk assessment model. Furthermore, the IFRA is coupled with fuzzy simulation model 

to develop a general framework for Integrated Environmental Risk Assessment (IERA), in 

order to further improve the uncertainty management in environmental risk management 

practice.  

1.4 Outline of the Thesis 

This thesis has been divided into four sections. 

First section of this thesis gives an introduction to to the subject and cover 

introduction and background knowledge on the subject mater. This section includes two 

chapters. Chapter 1, which is current chapter provides a general introduction to the 

problem, objectives of this thesis and it’s outline. 

Chapter 2 reviews previous studies on uncertainty propagation in environmental 

models and different methods used for uncertainty modeling. It also gives background 

information on fuzzy set and related theories. Review of these efforts provides bases for 

proposing practical modeling tools for uncertainty modeling in environmental models. 

Particularly, the existing techniques tackling uncertainties in simulation and risk 

assessment, such as fuzzy-set and stochastic methods, are examined with their advantages 

and disadvantages being analysed.  
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Second section of this thesis deals with uncertainty propagation methods and 

includes two chapters on it. Chapter 3 provides comparison of stochastic and fuzzy 

approaches of uncertainty propagation. A new methodology based on generalized fuzzy α-

cut principal and concept of transformation method shows superiority over conventional 

methods of uncertainty modelling. A case study of uncertainty analysis of pollutant 

transport in ground using 2-D transport model has been used to show the utility of this 

approach. Results are compared with commonly used probabilistic method and normal 

Fuzzy alpha-cut technique. The second method proposed to address the issue of combined 

uncertainty and variability in risk models. A hybrid approach called Fuzzy Latin 

Hypercube Sampling (FLHS) has been proposed which incorporates cognitive and 

noncognitive uncertainties present in risk models. The feasibility of the method is validated 

with a real case study of municipal solid waste incinerator (MSWI), to analyze total 

variance in the calculation of incremental lifetime risks due to polychlorinated dibenzo-p-

dioxins and dibenzofurans (PCDD/F) for the residents living in the surroundings of MSWI. 

Third Section of this thesis consists two chapters dealing with uncertainty 

management in environmental indices. The fourth chapter is focused on the development of 

an integral risk map of the chemical/petrochemical industrial area using Self-Organizing 

Maps (SOM). The first step was the creation of a ranking system (Hazard Index) for a 

number of different inorganic and organic pollutants applying Self-Organizing Maps 

(SOM) to persistence, bioaccumulation and toxicity properties of the chemicals. 

Subsequently, an Integral Risk Index was developed taking into account the Hazard Index 

and the concentrations of all pollutants in soil samples collected in the target area. Finally, a 

risk map was elaborated by representing the spatial distribution of the Integral Risk Index 

with a Geographic Information System (GIS). The results of this study show that the 

usefulness of soft computing approaches to help in the environmental decision making 

processes concerning environmental pollutants. The chapter 5 deals with an improvement 

over previous work described in chapter four. In the previous work SOM weight is used to 

rank contaminants using their characteristics of persistence, bioaccumulation, and toxicity 

in order to obtain the Hazard Index (HI). It doesn’t consider uncertainty associated with 

contaminants characteristic values. So in this study a hybrid method of probabilistic SOM 

is used to calculate Integrated Risk Index. New approach called Neuro-Probabilistic HI was 
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developed by combining SOM and Monte-Carlo analysis. This new index seems to be an 

adequate tool to be taken into account in risk assessment processes. In both papers, 

feasibility of the methods has been validated by applying it to the chemical/petrochemical 

industrial area of Tarragona (Catalonia, Spain). 

Finally section four of this thesis deals with decision-making framework for 

environmental risk management. In chapter 6, a new integrated decision-making 

framework is proposed. Multi-component environmental risk management in uncertain 

environment has been addressed. The fuzzy risk-analysis model is proposed to 

comprehensively evaluate all risks associated with contaminated systems resulting from 

more than one toxic chemical. In this study, an integrated fuzzy relation analysis (IFRA) 

model is proposed for risk assessment involving multiple criteria. The model is an 

integrated view on uncertainty techniques based on multi-valued mappings, fuzzy relations 

and fuzzy analytical hierarchical process. Integration of system simulation and risk analysis 

using fuzzy approach allowed incorporating system modelling uncertainty and subjective 

risk criteria. The model is demonstrated for a multi-components groundwater 

contamination problem. Results reflect uncertainties presented as fuzzy number for 

different modelling inputs obtained from fuzzy system simulation. Integrated risk can be 

calculated at different membership level which is useful for comprehensively evaluating 

risks within an uncertain system containing many factors with complicated relationship. It 

has been shown that a broad integration of fuzzy system simulation and fuzzy risk analysis 

is possible. 

Finally, chapter 7 presents conclusions of this research dissertation. Future 

directions of uncertainty analysis and integrated risk assessment studies and their 

applications within a general European context are put forward.  
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C h a p t e r  2  

BACKGROUND 

“The very heart of risk assessment is the responsibility to use whatever information is at 

hand or can be generated to produce an estimate, a range, a probability distribution- 

whatever best expresses the present state of knowledge about the effects of some hazard in 

some specific setting. To ignore the uncertainty in any process is almost sure to leave 

critical parts of the process incompletely examined and hence to increase the probability of 

generating a risk estimate that is incorrect, incomplete, or misleading” (Council., 1994).  

2.1 Environmental Risk Analysis 

There are many situations today in which we may need to assess possible risk to 

human health or damage to the environment. This is an issue for government, industry, 

those involved in environment protection or management, and others. The concept of risk 

can be clarified by exploring its essential components. For many risks, including those 

affecting people, plants, animals, materials and the environment, three conditions must be 

met before a risk can occur. First, there must be a source of risk (i.e., a hazard). Second, 

there must be an exposure process in which people, animals, plants or materials may be 

brought into contact with the hazard. Third, there must be a process in which the exposure 

produces adverse effects. These effects may result from exposure to contaminated source.  

It essentially seeks to determine the risk of a contaminant source causing harm or pollution 

via a given pathway at an identified receptor and whether or not the risk is acceptable (EA, 

2001). Lerner et al. (2000) states that a full risk assessment combines the probabilities of 

(a) possible source term, i.e. types, quantities and frequencies of pollutant inputs, (b) 

attenuation along the groundwater pathway, with (c) the effects on a receptor. A link 

between the source→pathway→receptor is known as a “pollutant linkage” but each of 

these elements can exist independently(El-Ghonemy et al., 2005). However, all three 

elements of the linkage must be present for a risk to exist. Fig. 2.1 shows a simple 

source→pathway→receptor where arrows depict different pathways. 
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Figure 2.1: Environment Risk Analysis Scenario. 

These processes, hazard, exposure, and effect define a risk in the sense that they 

determine the level and possibility of consequences. Human’s perception of risks involves 

an additional process to evaluate whether the severity, importance, or inequity of the effects 

is sufficient to be of concern. Therefore, the risk assessment involves considering the 

likelihood and consequence of an adverse effect. The term ‘risk analysis’ is employed in its 

broadest sense to include risk assessment, risk management and risk communication. Risk 

assessment involves identifying sources of potential harm, assessing the likelihood that 

harm will occur and the consequences if harm does occur. Risk management evaluates 

which risks identified in the risk assessment process require management and selects and 

implements the plans or actions that are required to ensure that those risks are controlled. In 

other words, risk management is defined as ‘the overall process of risk evaluation, risk 

treatment and decision making to manage potential adverse impacts’. Risk communication 

involves an interactive dialogue between stakeholders and risk assessors and risk managers 

which actively informs the other processes. Prerequisite of effective environment risk 

management is efficient and comprehensive risk analysis and effective communication to 

stakeholders.  
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Essential in risk assessment is the development and use of models for predicting the 

fate and effect of various environmental pollutants (Nilsen & Aven, 2003). However, 

various risk assessment models has been developed. Risk Assessment models are 

frameworks to organize and structure various strands of environment issues. Most 

frameworks are computer simulation models that describe a specific problem and the cross-

linkages and interaction with other problems in specifying cause-effect relationships. This 

causal description can be done in qualitative sense, through conceptual models, and in a 

quantitative sense, through different environmental risk models. The latter group is by far 

the most widely used, and is to reduce the complicated systems into mathematical models. 

It can be distinguished according to the dominating modelling paradigm in optimization 

models and system-based simulation models, both deterministic and stochastic. 

Risk management involves identifying suitable and practicable measures to ensure 

that risks remain acceptable. When developing measures against chemical pollution, it is 

necessary to perform a targeted assessment of the environmental risks that the chemicals 

may produce on human health or the ecosystem. Environmental risk assessment is 

performed according to four methods. First, researchers assess whether the chemical 

compound being assessed causes any damage to humans or living organisms, and if so 

what kind of harmful effect it has. Second, researchers investigate what degree of effect is 

caused following exposure to specific amounts of the chemical compound, in order to 

quantify the strength of the harmful effect. As a chemical compound causes different 

harmful effects in different species, it is necessary to assess the effect in various organisms. 

While the most targeted method of assessing the impact on humans would be to analyze 

actual cases where human health has been damaged, the key objective is to prevent damage 

to human health before it occurs, so the impact on humans is only assessed after animal 

experiments. Third, researchers calculate the degree of exposure to the chemical in humans 

and organisms. The most common method involves estimates based on measurements of 

environmental concentrations. If the research is to look at preventing damage to human 

health before any pollution has occurred, researchers assess the degree of exposure using 

forecasts from mathematical models. Finally, the results of the strength of the harmful 

effect and the degree of exposure are combined and an environmental risk assessment is 

made. 
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2.2 Uncertainty in Environment Risk Models 

Uncertainty is a key issue in Environmental Risk Modelling because of two reasons. 

First Environment models cover a wide variety of uncertainties that originates from a range 

of different types and sources. And secondly, because ERA models intend to capture and 

entire set of cause-effect relations involved in a specific problem, they are prone to 

accumulate uncertainties. For example health risk assessment studies often consider 

aggregate exposure and cumulative risk calculation. Accumulated uncertainty in the final 

result can produce a misleading assessment. Studies in risk analysis have shown that 

consideration of different source of uncertainty may be crucial for reliable results. 

Uncertainty and ignorance associated with assessments and predictions on which to base 

policies make the communication even more difficult (van der Sluijs, 2007). Frey & Zhao, 

(2004) suggested that the characterization and quantification of uncertainty and variability 

in health risk assessment are important to prevent erroneous inferences in multimedia 

modelling and exposure assessment, which may lead to major environmental policy 

implications. Risk modelling techniques for environmental risk assessment are fairly well 

established, however, data to support risk assessment is still a major problem often leading 

to questionable risk assessment results. Selecting appropriate data sources and modelling 

uncertainty helps to improve risk assessment results and can help to make more informed 

decisions. Risk assessments need to be able to capture existing data with varying 

uncertainties for risk analysis(Wilcox, 2001). 

Several different classifications of uncertainty have been suggested depending on 

type and origins of uncertainties(Alefeld, 1983; Haimes, 1998; van Asselt & Rotmans, 

2002; Walker et al., 2003). In the next section we will provide a brief discussion on 

uncertainty classification. 

2.2.1 Types and Origins of Uncertainty  

A typology of uncertainties would help to differentiate between different types and 

origins of uncertainty and to communicate uncertainties in a more constructive manner. 

However there is not one overall typology that satisfactorily covers all sorts of 

uncertainties, but that there are many typologies that have been proposed in the literature. 

Van Asselt (2000) after extensive screening of the scholarly literature has proposed a 

typology based on the highest level of aggregation. This typology distinguishes between 
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the following two sources of uncertainty: Variability and Lack of knowledge. Variability is 

an attribute of reality. Due to variability, reality inhibits inherent uncertainty and 

unpredictability. Different sources of variability can be distinguished, i.e.: inherent 

randomness of nature, value diversity, human behaviour, societal randomness, and 

technological surprises. Variability as defined by the above sources goes beyond 

established seasonality. As such, it contributes to lack of knowledge, because due to 

variability perfect, certain knowledge is anyhow unattainable. Variability can thus be 

considered as a source of uncertainty due to lack of knowledge(van Asselt, 2000; van 

Asselt & Rotmans, 2002). 

Lack of knowledge partly results out of variability, but knowledge with regard to 

deterministic processes can also be incomplete and uncertain. There are different degrees of 

lack of knowledge. A continuum can be described that ranges from: inexactness, lack of 

observations/measurements, practically immeasurable, conflicting evidence, ignorance, to 

indeterminacy. The first three degrees of lack of knowledge (i.e., inexactness, lack of 

measurements and practically immeasurable) are also referred to as unreliability 

(Funtowicz & Ravetz, 1990). The latter three degrees of uncertainty are also referred to as 

structural or systematic uncertainty (Morgan & Henrion, 1990). Anderson & Hattis (1999) 

have also identified two typologies. They called “lack of knowledge” as “uncertainty” and 

they defined it as Uncertainty represents partial ignorance or the lack of perfect knowledge 

on the part of the analyst where as Variability represents diversity or heterogeneity in a 

population (people or events) that is irreducible by additional measurements. Variability is 

the heterogeneity between individual members of a population of some type, and is 

typically characterized through a frequency distribution. It is possible to interpret variability 

as uncertainty under certain conditions, since both can be addressed in terms of 

“frequency” distributions(Raul & Pedro, 2005). 

However, the implications of the differences in uncertainty and variability are 

relevant in decision making. For example, the knowledge of the frequency distribution for 

variability can guide the identification of significant subpopulations which merit more 

focused study. In contrast, the knowledge of uncertainty can aid in determining areas where 

additional research or alternative measurement techniques are needed to reduce uncertainty. 
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Funtowicz & Ravetz (1990) distinguish three types of uncertainty in system 

modelling: technical, methodological and epistemological uncertainties. Technical 

uncertainties arise from the quality of appropriateness of the data used to describe the 

system, from aggregation (temporal and spatial) and simplification as well as from lack of 

data and approximation. Methodological uncertainties arise from lack of knowledge and 

refer to questions as: what analytical tools and methods are appropriate? How to model 

causal relationships in view of incomplete understanding of the processes? What is and 

adequate frame to structure what we know and what is uncertain? How to interpret the 

uncertainties? And finally epistemological uncertainties concern the conception of a 

phenomenon. This type of uncertainty arises from structural uncertainty and variability. 

One useful taxonomy for uncertainty based on (Clark & Brinkley, 2001) 

distinguishes at least five types of uncertainty that can be applied to environmental risk 

analysis. These include: epistemic, descriptive, cognitive, entropic and Intrinsic. Epistemic 

uncertainty originates from limited knowledge, its acquisition and validation. Examples of 

epistemic uncertainty include limited sample size, measurement error (systematic or 

random), sampling error, ambiguous or contested data, unreliable data, use of surrogate 

data (e.g. extrapolation from animal models to humans), ignorance of ignorance that gives 

rise to unexpected findings or surprise. Environmental Risk assessment is evidence-based 

assessment, primarily using information that is derived from scientific research. 

Consequently, epistemic uncertainty is a major component of uncertainty in risk 

assessments (Clark & Brinkley, 2001). The principal forms of descriptive uncertainty 

include vagueness, ambiguity, under specificity, contextual and undecidability. Qualitative 

risk assessments can be particularly susceptible to linguistic uncertainty. For example the 

word ‘low’ may be ambiguously applied to likelihood of harm, magnitude of a harmful 

outcome and to the overall estimate of risk. Furthermore, the word ‘low’ may be poorly 

defined both in meaning (vagueness) and coverage (underspecificity). Cognitive 

uncertainty can take several forms, including bias, variability in risk perception, uncertainty 

due to limitations of our senses (contributing to measurement error) and as unreliability. 

Cognitive unreliability can be viewed as guesswork, speculation, wishful thinking, 

arbitrariness, debate, or changeability (Kahneman, 2003). 
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Entropic uncertainty  is associated with the complex nature of dynamic systems that 

exist far from thermodynamic equilibrium (Nicolis & Prigogine, 1989), such as a cell, an 

organism, the ecosystem, an organisation or physical systems (e.g. the weather). 

Complexity is typically coupled to incomplete knowledge (epistemic uncertainty) where 

there is an inability to establish the complete causal pathway. Therefore, additional 

knowledge of the system can reduce the degree of uncertainty. However, complex systems 

are characterised by non-linear dynamics that may display sensitive dependence on initial 

conditions. Consequently, a deterministic system can have unpredictable outcomes because 

the initial conditions cannot be perfectly specified. Complexity is listed as one of the four 

central challenges in formulating the European Union (EU) approach to precautionary risk 

regulation (Renn et al., 2003). 

Intrinsic uncertainty is due to the inherent randomness, variability or indeterminacy 

of a thing, quality or process. Randomness can arise from spatial variation, temporal 

fluctuations, manufacturing variation, genetic difference. Variability arises from the 

observed or predicted variation of responses to an identical stimulus among the individual 

targets within a relevant population such as humans, animals, plants, micro-organisms, 

landscapes, etc. Indeterminacy results "from a genuine stochastic relationship between 

cause and effect(s), apparently noncausal or noncyclical random events, or badly 

understood nonlinear, chaotic relationships" (Klinke & Renn, 2002). A critical feature of 

intrinsic uncertainty is that it cannot be reduced by more effort such as more data or more 

accurate data. In risk management, safety factors and other protective measures are used to 

cover this type of uncertainty. 

All five types of uncertainty may be encountered in a risk analysis context. To 

encompass this broader application, uncertainty can be defined as ‘imperfect ability to 

assign a character state to a thing or process; a form or source of doubt’.  

Where: ‘imperfect’ refers to qualities such as incomplete, inaccurate, imprecise, 

inexact, insufficient, error, vague, ambiguous, under-specified, changeable, contradictory or 

inconsistent; ‘ability’ refers to capacities such as knowledge, description or understanding; 

‘assign’ refers to attributes such as truthfulness or correctness; ‘character state’ may include 

properties such as time, number, occurrences, dimensions, scale, location, magnitude, 
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quality, nature, or causality; ‘thing’ may include a person, object, property or system; and 

‘process’ may include operations such as assessment, calculation, estimation, evaluation, 

judgement, or decision. 

For practical point of view, in this thesis, uncertainty have been categorised into two 

broad classes: parametric uncertainty and model uncertainty.  Parametric uncertainty covers 

all kind of uncertainties associated with model input parameters where as uncertainty 

associated with model choice comes under model uncertainty. Mathematical models are 

necessarily simplified representations of the phenomena being studied and a key aspect of 

the modelling process is the judicious choice of model assumptions. The optimal 

mechanistic model will provide the greatest simplifications while providing an adequately 

accurate representation of the processes affecting the phenomena of interest. Hence, the 

structure of mathematical models employed to represent natural systems is often a key 

source of uncertainty. In addition to the significant approximations often inherent in 

modelling, sometimes competing models may be available. Furthermore, the limited spatial 

or temporal resolution (e.g., numerical grid cell size) of many models is also a type of 

approximation that introduces uncertainty into model results. Sources of model 

uncertainties in environmental models can be from model structure, model details, spatial 

and temporal resolution and boundaries conditions (Isukapalli, 1999). 

The parametric uncertainty has been classified on the basis of its source and nature. 

Sources of parameter uncertainty are measurement errors, sampling errors, variability, and 

the use of surrogate data (Moschandreas & Karuchit, 2005). Measurement errors refer to 

random (imprecision) or systematic errors (bias), while sampling errors are errors from 

small sample size and/or misrepresentative samples. Heterogeneity in environmental and 

exposure-related data includes seasonal variation, spatial variation, and variation of human 

activity patterns by age, gender, and geographic location, leading to variability errors. 

Surrogate data refer to errors from the use of substitute data. Van Asselt and Rotmans 

(2002) and Walker et al. (2003) classified uncertainty based on its nature. They called it 

Epistemic uncertainty/imprecision, and Stochastic uncertainty/natural variability. 

Epistemic uncertainty which results from incomplete knowledge about the system under 

study, is reducible by additional studies (e.g. further research and data collection). 

Stochastic uncertainty which stems from variability of the underlying stochastic process is 
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non-reducible for a given system and under specific management scenario. Natural 

variability has also been termed (basic) variability, randomly uncertainty, objective 

uncertainty, inherent variability, (basic) randomness, and type-I uncertainty. Terms for 

epistemic uncertainty are systematic uncertainty, subjective uncertainty, lack-of-knowledge 

or limited-knowledge uncertainty, ignorance, specification error, prediction error, and type-

II uncertainty (Haimes, 1998; Merz & Thieken, 2005; Moschandreas & Karuchit, 2005; 

Refsgaard et al., 2007; Rotmans & van Asselt, 2001; van Asselt & Rotmans, 2002). In this 

paper, the term uncertainty is used to denote epistemic, variability to denote stochastic 

uncertainty, and total variance or simply variance to denote total uncertainty and variability 

in the outcome. 

2.3 Approaches for Representation of Uncertainty  

In the past, the needs of science and classical mechanics forced the development of 

analytical models, to describe the relation of a small number of variables without taking 

into account the uncertainty. The development of statistical mechanics and the lack of 

computational power forced the development of statistical and probabilistic approaches 

which became useful for a wide variety of disciplines including environmental modelling. 

Analytical models can be used for problems that have been described by noted 

mathematician Warren Weaver as “organized simplicity”; statistical models are useful for 

problems of disorganized complexity(Shannon & Weaver, 1949). However, these two 

types of problems represent only the extremes of all the possible situations, but nonlinear 

problems with a large number of correlated variables lie between the extremes and are 

described by Weaver as organized complexity as cited by (Klir & Yuan, 1995). Later 

various approaches for representing uncertainty have been developed (Isukapalli, 1999; 

Schulz & Huwe, 1999). Klir (1994) has presented a nice overview of uncertainty 

representation in the context of different domains of applicability. Among them, 

probabilistic approaches (e.g. Monte Carlo Simulation) are quite common and have been 

commonly used in the treatment and processing of uncertainty for solution of system 

modeling (Schuhmacher et al., 2001). When it was recognized that probability theory is 

capable of representing only one of the several distinct types of uncertainty, new theories 

for treating uncertainty emerged. One of the milestones in the evolution of these new 
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uncertainty theories is the seminal paper by Lofti A. Zadeh (1965). He proposed a new 

mathematical tool in his paper and called this new mathematical tool “fuzzy sets.” He 

proposed the concept of fuzzy algorithms in 1968 (Zadeh, 1968), and together with 

Bellman, proposed a new approach for decision-making in fuzzy environments in 1970 

(Bellman & Zadeh, 1970). Fuzzy set theory has been recently applied in various fields 

including environmental modelling for uncertainty quantification (Cho et al., 2002; Hanss, 

2002; Isukapalli, 1999; Kentel & Aral, 2004; Kumar, 2005; Mauris et al., 2001).  

Some of the widely used uncertainty representation approaches used in 

environmental modelling includes probabilistic analysis, interval mathematics, fuzzy set 

theory. These approaches are presented in the following sections. 

2.3.1 Probabilistic Analysis 

Probabilistic analysis is the most widely used method for characterizing uncertainty 

in physical systems, especially when estimates of the probability distributions of uncertain 

parameters are available. This approach can describe uncertainty arising from stochastic 

disturbances, variability conditions, and risk considerations. Uncertainty is characterised by 

the probability associated with events. The probability of an event can be interpreted in 

terms of frequency of occurrence which can be defined as the ratio of the number of 

favourable events to the total number of events. In this approach, the uncertainties 

associated with model inputs are described by probability distributions, and the objective is 

to estimate the output probability distributions.  

There are a number of text books that describe the concepts and application of 

probabilistic analysis in detail. Feller (1950) presents excellent introductory material for 

probabilistic analysis, and Papoulis (1991) presents an excellent description on probability 

and random variables from a mathematical view point. Additionally Gardiner (1983) 

presents the applications of probabilistic analysis in modelling. This section attempts to 

merely summarize some basic information on probability and its use in environmental 

modelling. 

Hamed (1999) analyzed the probabilistic sensitivity of public health risk assessment 

from contaminated soil. Moore et al. (1999) conducted a probabilistic risk assessment of 

the effects of methylmercury and Polychlorinated Biphenyls (PCBs) on mink and 
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kingfishers along East Fork Popular Creek, Oak Ridge, Tennessee, USA. Lahkim & Garcia 

(1999) conducted stochastic modelling of exposure and risk in a contaminated 

heterogeneous aquifer based on Monte Carlo uncertainty analysis. Loll & Moldrup (2000) 

carried out stochastic analyses for field-scale pesticide leaching risk due to the influence by 

spatial variability in physical and biochemical parameters. Hope (2000) undertook an 

ecological risk assessment through the generation of probabilistic spatially-explicit 

individual and population exposure estimates. Bonomo et al. (2000) estimated the target 

cleanup levels for the site of a former gas plant in northern Italy and compared the results 

from deterministic and probabilistic methods. In their study, probabilistic methods were 

used to provide fundamental information to define the cleanup strategies. Schuhmacher et 

al. (2001) used Monte-Carlo simulation techniques in the risk assessment study of 

municipal waste incinerator. Ma (2002) has used stochastic modelling for multimedia risk 

assessment for a site with contaminated groundwater. Lester et al. (2007) and Ma (2002) 

have a good review on site-specific applications of Probabilistic Health Risk Assessment. 

Classically all sort of uncertainty have been modelled through simple probabilistic 

approaches (e.g. Monte Carlo analysis). However recently second order Monte Carlo or 2D 

Monte Carlo has been used to separate variability and epistemic uncertainty (Simon, 1999). 

This technique requires knowledge of parameter values and their statistical distribution 

from which a formal mathematical description of uncertainty must be developed. However, 

site investigation is generally not detailed enough to determine values for some of the 

parameters and their distribution pattern, and sufficient data may not be collected for 

calibrating a model (Kentel & Aral, 2005). These approaches suffer from an obvious lack 

of precision and specific site-characterization, making difficult to determine how much 

error is introduced into the result due to assumptions and prediction. 

2.3.2 Interval Analysis  

Representing possible value in interval is empirical way of representing uncertainty 

in measured values(Moore, 1979). Interval mathematics is used to address data uncertainty 

that arises (a) due to imprecise measurements, and (b) due to the existence of several 

alternative methods, techniques, or theories to estimate model parameters. Interval analysis 

can be used to propagate these uncertain values through calculations. The rules of interval 

arithmetic permit us to compute rigorous bounds on all the elementary mathematical 
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operations(Moore, 1979). For example interval analysis may be used to represent interval 

estimates of likelihood and impact resulting in an overall interval estimate if risk using the 

product rule for interval numbers. The basics of interval mathematics are fairly obvious, 

although still it is an active area of research in computer science because of its profound 

implications for handling round-off error (Alefeld, 1983). Even in uncertainty analysis, in 

many cases, it may not be possible to obtain the probabilities of different values of 

imprecision in data; in some cases only error bounds can be obtained. This is especially 

true in case of conflicting theories for the estimation of model parameters, in the sense that 

“probabilities” cannot be assigned to the validity of one theory over another. In such cases, 

interval mathematics can be used for uncertainty estimation, as this method does not 

require information about the type of uncertainty in the parameters (Alefeld, 1983; 

Broadwater, 1994). Although it’s vastly simpler than probabilistic analysis, it can be a little 

trickier to use in complex modelling scenarios(Moore, 1979). 

2.3.3 Fuzzy Set Theory  

Fuzzy set theory replaces the two-valued set-membership function with a real-

valued function; that is to say, membership is treated as a possibility or as a degree of 

truthfulness. Likewise, one assigns a real value to assertions as an indication of their degree 

of truthfulness. Membership functions define the degree of participation of an observable 

element in the set. Fuzzy numbers are the fuzzy set defined on the set of real numbers and 

have special significance. They represent the intuitive concept of approximate numbers, 

such as “around, close to, approximately etc”. The fuzzy set that contains all fuzzy 

numbers with a membership of ]1,0[∈α  and above is called the a-cut of the membership 

function (Abebe et al., 2000) (Figure. 2.2). So the α-cut represents the degree of sensitivity 

of the system to the behavior under observation. Fuzzy α-cut technique is based on the 

extension principle (Zadeh, 1965), which implies that functional relationships can be 

extended to involve fuzzy arguments. It can be used to map the dependent variable as a 

fuzzy set. In simple arithmetic operations, this principle can be analytically used. However, 

in most practical modeling applications involving complex structural relationships (e.g. 

partial differential equations), analytical applications of the extension principle is difficult. 

Therefore, interval arithmetic can be used to carry out the analysis (Abebe et al., 2000). 
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Arithmetic on fuzzy numbers can be defined in terms of arithmetic operations on their α-

cuts (on closed intervals). 

This principle is generalized as: a membership level 1] [0,   (x)µ
iP = is assigned to all 

elements x (i.e. the elements belong to the set to a certain degree) (Hanss, 2002; Klir & 

Yuan, 1995). A Gausian fuzzy number, subdivided into intervals is depicted in Figure 2.2. 

The core of the set is defined as the subset for which 1  µ p~ = . The support is the subset for 

which p~µ > 0 (also known as the input vertex). The α-cut is a generalized support: the 

subset for which p~µ ≥ α, with 0 < α ≤ 1. The α-sublevel technique (Hanss, 2002) consists 

of subdividing the membership range of a fuzzy number into α-sublevels at membership 

levels µ j = j/m, for j = 0, 1, ...m (Figure 2.2). This allows numerically representing the 

fuzzy number by a set of m + 1 interval [aj, bj].  

In fuzzy simulation, for each α-level of the parameter, the model is run to determine 

the minimum and maximum possible values of the output. This information is then directly 

used to construct the corresponding membership function of the output which is used as a 

measure of uncertainty.  

 

Figure 2.2: Implementation of the ith uncertain parameter as a fuzzy number 
ip~  decomposed into 

intervals (αααα-cuts). 

There have been considerably less studies using fuzzy theory approach in 

environmental applications in past. However lately various applications of fuzzy theory 

have been reported. (Dahab et al., 1994) proposed a rule-based fuzzy-set approach to risk 

analysis of nitrate-contaminated groundwater by introducing fuzzy sets into a rule-based 

system for nitrate risk-regulation enforcement. Lee et al. (1995) developed a fuzzy-set 
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approach to assess nitrate risk for groundwater contamination. This method can be used when a 

frequency-based estimation is not available; then fuzzy-set analysis is used to reflect the 

uncertainty associated risk model processes. Ganoulis et al. (1995) proposed a fuzzy arithmetic 

for ecological risk management. The methodology consists of fuzzy logic-based calculus 

combined with ecological modeling. The output variables of the model, such as pollutant 

concentrations, dissolved oxygen, and biomass were calculated directly as fuzzy numbers. 

Krause et al. (1997) integrated fuzzy logic into the Zwich Hazard analysis method, which is 

a logic tool to catalogue hazards and to represent corresponding risks by classifications of 

frequency and consequence of an undesired event in a risk matrix format. Donald & Ross 

(1996) presented a similarity measure approach based on fuzzy sets and fuzzy logic for the 

risk management of hazardous waste sites. In this approach, the so-called similarity 

measure was given between two fuzzy sets and their corresponding membership functions. 

Ghomshei & Meech (2000) introduced some thoughts on fuzzy sets and demonstrated the 

application of fuzzy logic in environmental risk assessment. Abebe et al. (2000) have presented 

a nice comparison of fuzzy and Monte Carlo analysis in groundwater modelling. More recently 

Li et al. (2006) presented an integrated fuzzy-set approach for evaluating environmental risks 

associated with hydrocarbon-contaminated sites through incorporation of a multiphase multi-

component modeling system within a general risk assessment framework. 

2.3.4 Hybrid Approaches 

From a practical viewpoint, it is rare to encounter only one type of uncertainty. Pure 

variability would mean that all relations and their parameters which describe the random 

process are exactly known. Pure epistemic uncertainty would mean that a deterministic 

process is considered, but the relevant information cannot be obtained (e.g. due to the 

inability to measure the relevant parameters) (Merz & Thieken, 2005). For example, given 

a parameter X with total variance Vx, it would be straightforward to partition the variance 

into uncertainty and variability components, where α is the uncertainty component and (1- 

α) attributable to variability (Figure2.3). Notwithstanding, there also can be an intermediate 

vague region in which uncertainty and variability commingle. So sometime it is difficult to 

separate and in that case it needs special handling to measure both uncertainty and 

variability together. 
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Figure 2.3:  Separating uncertainty and variability 

Several approaches to uncertainty analysis in environmental risk analysis have been 

developed. However, all these methods have been developed to handle either variability or 

uncertainty of the process parameters or they club them together without valid distinction in 

analysis. Today’s challenge is utilization of different approaches in combination to exploit 

their respective features. Despite the obvious distinction among different type of 

uncertainty and need of different treatment, it has not been commonly practices(Spencer et 

al., 2001). Mathematicians in statistics and probability claimed that probability is sufficient 

to characterize uncertainty and any problem that fuzzy theory can solve can be solved 

equally well or better by probability theory. Numerous studies on the discussion of 

probability versus possibility (fuzziness) are provided in the special issue of the IEEE 

Transactions on Fuzzy Systems (Vol. 2, No. 2, 1994) and in some other publication. 

Comparisons of probability theory with fuzzy theory, what kind of uncertainties they treat, 

general definitions of probability theory, and fuzzy set theory concepts in the context of 

uncertainty modelling are provided in many references(Dubois & Prade, 1993; Klir, 1995; 

Zadeh, 1995). Lately scientists have started accepting that fuzzy set theory and probability 

theory are complementary, and they deal with different types of uncertainties” (Spencer et 

al., 2001). Fundamental procedures to allow combined utilization of fuzzy set theory and 

probability theory to treat uncertainties have been proposed and developed since the 

emergence of fuzzy set theory. The concept Fuzzy Probability was introduced by Zadeh 

(Zadeh, 1984). Recently, a number of authors have suggested adopting other approaches in 
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the data limited situation. Refsgaard et al. (2007) reported: ‘The test theory of classical 

statistics permits the testing of a sample for randomness. If the sample does not exhibit the 

property of randomness, other uncertainty models such as, e.g. fuzzy randomness must be 

adopted’. Previously, Möller et al. (2002) presented the idea of Fuzzy Randomness and 

formalized the concept of random variable and uncertain variable. According to Möller et 

al. (2002), Objective uncertainty in the form of observed/measured data is modeled as 

randomness, whereas subjective uncertainty (e.g., due to a lack of trustworthiness or 

imprecision of measurement results, of distribution parameters, of environmental 

conditions, or of the data sources), is described as fuzziness. Fuzzy randomness or fuzzy 

probability simultaneously describes objective and subjective information as a fuzzy set of 

possible probabilistic models over some range of imprecision (Möller et al., 2002). This 

hybrid model combines, but not mixes objectivity and subjectivity, which are separately 

visible at any time. It may be understood as an imprecise probabilistic model, which allows 

for simultaneously considering all possible probability models that are relevant to 

describing the problem (Möller et al., 2002). Few recent efforts have been made to use 

“hybrid models” in environmental applications. Kentel & Aral (2005) introduced 2D Fuzzy 

Monte Carlo and applied it in the area of health risk assessment. 2D Fuzzy Monte Carlo 

and Fuzzy Randomness have been classified as hybrid approach mixing the concept of 

probability and fuzzy set theory. Li et al. (2007) have presented an integrated fuzzy-

stochastic modelling approach for risk assessment of groundwater. 

There are other approaches for uncertainty representation has also been mentioned 

in literature like classical set theory, rough set theory, many version of fuzzy set theory 

(e.g. possibility theory, type 2 fuzzy set etc). Uncertainty is expressed by sets of mutually 

exclusive alternatives in situations where one alternative is desired. This includes 

diagnostic, predictive and retrodictive uncertainties (Kitts, 1978). Here, the uncertainty 

arises from the nonspecificity inherent in each set. Large sets result in less specific 

predictions, retrodictions, etc., than smaller sets. Full specificity is obtained only when one 

alternative is possible. Rough set theory is proposed by Pawlak (1991). A rough set is an 

imprecise representation of a crisp set in terms of two subsets, a lower approximation and 

upper approximation. Further, the approximations could themselves be imprecise or fuzzy. 

However these approaches are not very common in environmental application.  
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2.4 Uncertainty in Risk Assessment: Trends and Future Hopes 

 
There is an increasing demand in society for knowledge of risks and risk issues, 

including reactions to risks and how to communicate risk. Concerns within the field include 

theoretical and empirical research and practical applications across a wide range of areas. A 

rather fascinating feature of the heterogeneous field of risk communication is that is 

excludes no one. Today it is commonly accepted that risk management should be more 

holistic activity involving a better uncertainty propagation approach (Oxley and others 

2004; Kumar and Schuhmacher, 2005; Refsgaard, Van der Sluijs et al. 2007). The 

uncertainty assessment is not just something to be added after the completion of the 

modelling work. Instead uncertainty should be seen as a red thread throughout the 

modelling study starting from the very beginning, where the identification and 

characterisation of all uncertainty sources should be performed (Refsgaard, Van der Sluijs 

et al. 2007).  
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C h a p t e r  3  

FUZZY SIMULATION MODELING AND UNCERTAINTY ANALYSIS FOR 

ENVIRONMENTAL RISK ASSESSMENT USING TRANSFORMATION 

METHOD 

Abstract 
 

With the changing world, there is a great change in risk perception. The present 

trend from heavy point-source pollution to reduced and scattered contaminant release 

makes environmental risk analysis a difficult task. With the current environmental 

legislation, concentration of pollutant has been reduced, pollutant specific signals are 

difficult to extract but tentacles of dragon has spread many fold which multiplying the 

overall contamination risk. Old simulation techniques and approaches are no more/less 

useful and its becoming difficult to impossible to predict environmental risk with old 

assumption. In this paper, the transformation method has been used for simulation and 

analysis of environmental system. Transformation method is a special implementation of 

fuzzy arithmetic based on α-cut principle that avoids the well-known effect of 

overestimation which usually arise from use of interval computation for fuzzy arithmetic. It 

has been extended to do sensitivity analysis of uncertain model parameters. This method 

has been applied to two unsaturated flow problems, one-dimensional solute transport 

equation for horizontal water and contaminant flow; and two-dimensional equation for 

unsaturated flow over a complex geometry. Where possible, the results from the 

transformation method have been compared against other popular methods to determine the 

accuracy of the method.  

Keywords: Environmental risk, transformation method, transport model, uncertainty 

analysis, fuzzy α-cut. 

3.1 Introduction 

Mechanistic modelling of physical systems is often complicated due to the presence 

of uncertainties. Commonly environmental models are calibrated to field data to 
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demonstrate their ability to reproduce contaminant behaviour at site. However, solute 

transport modelling presents a big uncertainty due to the lack of reliable field data. On the 

other hand, specific field situations cannot be extrapolated over larger distances, even in the 

same site (Sauty, 1980). 

Fuzzy set is a mathematical theory for the representation of uncertainty (Zadeh, 

1968, 1988). Given a degree of uncertainty in the parameters, fuzzy set theory makes 

possible to evaluate the uncertainty in the results thereby avoiding the difficulties 

associated with stochastic analysis, since this method does not require knowledge of 

probability distribution functions. 

Fuzzy set approach has been applied recently in various fields, including decision 

making, control and modelling (Abebe et al., 2000). However, the application of standard 

fuzzy arithmetic turns out to be very problematic. Normally, the calculated results of the 

problem do not only reflect the natural uncertainties, which are directly induced by the 

uncertainties in the model parameters, they also show some additional, artificial 

uncertainties generated by the solution procedure itself (Hanss, 2002). 

The fuzzy α-cut analysis is based on fuzzy logic and fuzzy set theory which is 

widely used in representing uncertain knowledge. Uncertain model parameters can be 

treated as fuzzy numbers that can be manipulated by specially designed operators. But this 

approach has also been treating independent and strictly dependent variable together. It 

results in overestimation effect arises from evaluating the arithmetical expression for unreal 

combination of elements of support of the fuzzy numbers (Hanss & Willner, 1999). 

In this paper, fuzzy transformation method has been studied for the practical use in 

environmental risk analysis. Transformation method is special implementation of fuzzy 

arithmetic based on α-cut principle that avoids the well-known effect of overestimation 

which usually arises from use of interval computation for fuzzy arithmetic. The 

methodology has been applied to two unsaturated flow problems, one-dimensional 

Richards’ equation and solute transport equation for horizontal water and contaminant 

flow; and two-dimensional Richard’s equation for unsaturated flow over a complex 

geometry. The results will be compared with the results obtained with analytical method of 
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Fuzzy α-cut and Monte-Carlo simulation. In the end, some conclusions are drawn and 

recommendations are made for future research. 

3.2 Fuzzy Set Theory 

3.2.1 Fuzzy Sets and Numbers 

Fuzzy set theory replaces the two-valued set-membership function with a real-

valued function, that is, membership is treated as a probability, or as a degree of 

truthfulness. Likewise one assigns a real value to assertions as an indication of their degree 

of truthfulness. This principle is generalised as(Hanss & Willner, 1999; Koivo, 2001): a 

membership level µA(x) ∈  [0, 1] is assigned to all elements x, i.e. the elements belong to 

the set to a certain degree. The core of the set is defined as the subset for which µA = 1. The 

support is the subset for which µA > 0 (also known as the input vertex). The α-cut is a 

generalised support: the subset for which µA ≥ α, with 0 < α ≤ 1. A fuzzy number is a fuzzy 

set with some specific properties(Koivo, 2001): the set is convex and normal, the 

membership function is piecewise continuous and the core consists of a single element. A 

fuzzy number’s membership function can be of arbitrary shape, either derived from 

(limited) experimental data or expert knowledge of the model parameters. Figure 3.1 shows 

two well-established types: a membership function with a Gaussian and a triangular shape. 

The triangular shape is widely used for reasons of simplicity: when the exact parameter 

distribution is not known, it doesn’t make sense to assign a more complex-shaped function. 

The membership functions are possibilistic distribution functions that denote if an input is 

possible (µA = 1), impossible (µA = 0) or something in between. The α-sublevel technique 

(Hanss & Willner, 1999) consists of subdividing the membership range of a fuzzy number 

into α-sublevels at membership levels µ j = j/m, for j = 0, 1, ...m. This allows to numerically 

represent the fuzzy number by a set of m + 1 intervals [a
(j)

, b
(j)

]. Figure 3.2 shows a 

triangular fuzzy number, subdivided into intervals using m = 5. 
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Figure 3.1: Fuzzy numbers with Gaussian (left) and triangular (right) membership function 

 

Figure 3.2: The αααα-cut technique to numerically represent a fuzzy number 

3.2.2 Fuzzy Alpha-Cut (FAC) technique 

An alpha cut is the degree of sensitivity of the system to the behaviour under 

observation. At some point, as the information value diminishes, one no longer want to be 

"bothered" by the data. In many systems, due to the inherent limitations of the mechanisms 

of observation, the information becomes suspect below a certain level of reliability. 

Fuzzy alpha-cut technique is based on the extension principle, which implies that 

functional relationships can be extended to involve fuzzy arguments and can be used to 

map the dependent variable as a fuzzy set. In simple arithmetic operations, this principle 

can be used analytically. However, in most practical modeling applications, relationships 

involve complex structures (e.g. partial differential equations) that make analytical 
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application of the principle difficult. Therefore, interval arithmetic can be used to carry out 

the analysis (Abebe et al., 2000). 

Membership functions define the degree of participation of an observable element 

in the set, not the desirability or the value of the information. The membership function is 

cut horizontally at a finite number of α-levels between 0 and 1. For each α-level of the 

parameter, the model is run to determine the minimum and maximum possible values of the 

output. This information is then directly used to construct the corresponding membership 

function of the output which is used as a measure of uncertainty. If the output is monotonic 

with respect to the dependent fuzzy variable/s, the process is rather simple since only two 

simulations will be enough for each α-level (one for each boundary). Otherwise, 

optimization routines have to be carried out to determine the minimum and maximum 

values of the output for each α-level. 

3.2.3 Transformation Method (TM) 

The TM presented by Hanss, (2002) uses a fuzzy alpha-cut approach based on 

interval arithmetic. The uncertain response reconstructed from a set of deterministic 

responses, combining the extrema of each interval in every possible way unlike the FAC 

technique where only a particular level of membership (α-level) values for uncertain 

parameters are used for simulation. The reduced TM used in the present study will be next 

explained. 

Given an arithmetic function f that depends on n uncertain parameters x1, x2, ..., xn, 

represented as fuzzy numbers, the function output q = f(x1, x2, ..., xn) is also a fuzzy 

number. Using the α-level technique, each input parameter is decomposed into a set Pi of m 

+ 1 intervals )( j
iX  , j = 0, 1, ...,m  where 

},...,,{ )()1()0( m
iiii XXXP =            (1) 

with [ ])()()( , j
i

j
i

j
i baX =   ,  ,)()( j

i
j

i ba ≤   i = 1,2,...,n,  j = 0,1,2,...,m.                              (2)             

where )( j
ia  and )( j

ib denote the lower and upper bound of the interval at the membership 

level µ j .  
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Instead of applying interval arithmetic like FAC method, intervals are now 

transformed into arrays )(ˆ j
iX  of the following form: 

















=

−

444444 8444444 76
pairs

j
i

j
i

j
i

j
i

j
i

j
i

j
i

i

X

12

)()()()()()()( ,,...,,,,ˆ βαβαβα            (4) 

with  ,,...,

12

)()()(

















=

−

48476
pairs

j
i

j
i

j
i

i

aaα        
















=

−

48476
pairs

j
i

j
i

j
i

i

bb

12

)()()( ,...,β            (5) 

The evaluation of function f is now carried out by evaluating the expression 

separately at each of the positions of the arrays using the conventional arithmetic. The 

result obtained is deterministic in decomposed and transformed form which can be 

retransformed to get fuzzy valued result using recursive approximation.  

 3.3 Fuzzy Modeling of environmental problems 

3.3.1 Fuzzy Modeling 

Basic principal of fuzzy modeling is based on Zadeh’s extension principle (Zadeh, 

1968). If all input parameters in a mathematical model are known, also the dependent 

variables are defined with crisp values and if we assume that the input parameters are 

imprecise and represented by fuzzy numbers, the resulting outputs of the model will also be 

fuzzy numbers characterised by their membership functions.  

 

3.3.1.1 Simulation using Transformation method 

Consider fuzzy numbers nA
~

,...,A
~

,A
~

21  are the set of n input parameters defined on 

the real line R and suppose ix , where n., . 1,2,.  i = denotes the element of iA
~ . Now if  y is the 

output of the system which depends on n inputs nxxx ,...,, 21  by the mapping 

),...,,( 21 nxxxfy = ,  the n input parameters are modelled as fuzzy numbers with a 

membership function  µA(x) of arbitrary shape. Then the solution to the fuzzy number B
~ in 

y can be obtained by the following steps using transformation method. 
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1. Using the α-sublevel technique, discretise the range of membership [0,1] into a 

finite number of values. So an input parameter iA
~

 can be decomposed into a set of 

m+1 intervals 
)( j

iX ,  m,...1,0j = . The value of discretisation term, m depends on 

the degree of accuracy needed in approximation. 

2. For each membership level j, find the corresponding intervals for A
~  in 

n  ,. .  ,.2 1,  i ,xi = .  These are the supports of the jα -cuts of NAAA
~,...,~,~

21 .  So if  

[ ])()( , j
i

j
i ba  is the end points interval of i

th input parameter and for j
th level of 

membership denoted by  )( j
iX  then set  },...,,{~ )()1()0( m

iiii XXXA = . When ai is equal to 

bi , the interval reduce to a point i.e. at α-level 1. 

Now instead of applying standard interval arithmetic to the interval )( j
iX  , they are 

transformed into arrays using a kind of full factorial at each level. That what makes it 

Transformation method. Hanss (2002) has proposed two form of transformation methods, 

one general transformation method and other reduced transformation method. These two 

methods differ in degree of discretization of particular interval. In this study reduced 

transformation has been used.  

Reduced Transformation method 

3. The intervals are transformed into arrays )(ˆ j
iX  of the following forms: 
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elements
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i

n
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12

)()()( ,...
−

=β                                                                                (7) 

where )( j
ia  and )( j

ib  denote the lower and upper bound of the interval at the membership 

level µ j for the ith uncertain parameter. For each interval level, these arrays combine the 

interval extrema )( j
ia  and )( j

ib  in every possible way. 

 

4. Simulation is carried out by evaluating the expression separately at each of the 

positions of the arrays using the conventional arithmetic for crisp numbers. Thus, if 

the output  B
~

of the system can be expressed in its decomposed and transformed 
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form by the arrays 
)(ˆ j

iB , mj ,...,1,0=  the kth element 
)( j

i
k b  of the array 

)(ˆ j
iB  is then 

given by 

           
)( j

i
k b   = 

( ))()(
2

)(
1 ˆ,...,ˆ,ˆ j

n
kjkjk
xxxf

                                                                                      (8) 

           where  
)(

1ˆ
jk x denotes the kth element of the array 

)(ˆ j
iX .  

5. Finally, the fuzzy-valued result B
~

of the problem can be achieved in its decomposed 

form 

           [ ])()()( ,~ jjj
baB =  , mj ,...,1,0=                                                                                        (9) 

by retransforming the arrays 
)(ˆ j

iB  using recursive formulae  

( ))()1()( ˆ,min jkj

k

j bba +=
, ,1,...,1,0 −= mj                                                                         (10) 

           
( ))()1()( ˆ,min jkj

k

j bbb +=
, ,1,...,1,0 −= mj                                                                         (11) 

          
( ) ( ) )()()()( ˆminˆmin mjk

k

jk

k

m bbba ===
.                                                                             (12) 

3.4 Case Study 

3.4.1 Problem Definition 

A hypothetical problem has been developed to illustrate integrated fuzzy modelling 

and risk analysis approach. The study site contains a leaking underground gasoline storage 

tank and about 600 m away from the tank area, there is a deep bore well used for rural 

drinking water supply. The recent groundwater monitoring data indicate high 

concentrations of several chemical stemming from petroleum products. A Schematic 

diagram of the solute transport has been shown in Figure 3.3. 
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Figure 3.3: Schematic diagram for solute transport 

One-Dimension Solute transport 

One-dimensional solute movement in a steady uniform flow with a step input 

concentration C0 at x = 0 and a reflection boundary condition at x = lx was used. A 

numerical model consisting of 40x30 nodal grids with a uniform grid spacing of 50 m in 

both directions was used to simulate the numerical solution given by 
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 Two-dimensional Solute Transport 

A two-dimensional solute transport, with a continuous point source of pollution in a 

uniform flow field was studied. For this purpose, numerical solution for contaminant 

transport model for saturated pores media has been used. Such solution generally requires 

extreme simplifications, but the results can be used for approximate solutions. They are 

also very useful to illustrate the sensitivity of different parameters in overall uncertainty.  

For this case study a finite-difference numerical solution (Dou et al., 1997) has been used 

for fuzzy simulation. 

Zero concentration boundary 

Zero concentration boundary 
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boundary 

Zero 
Dispersive 

flux 
boundary 

Pollution source 

Direction of Flow 

500 m 

Drinking 
water well 

UNIVERSITAT ROVIRA I VIRGILI 
SOFT COMPUTING APPROACES TO UNCERTAINTY PROPAGATION IN ENVIRONMENTAL RISK MANGEMENT 
Vikas Kumar 
ISBN:978-84-691-8848-4/DL:T-1270-2008 



 40 

                                                                   
byx

tM
C

y

V
C

y

V

C
x

V
C

x

V

y

V
2

x

V
2C

x

V

x

V
tCC

j,in

1j,i2

Tn

1j,i2

T

n

j,1i2

Ln

j,i2

T

2

Ln

j,1i2

Ln

j,i

1n

j,i

ε∆∆

∆

∆

α

∆

α

∆

α

∆∆

α

∆

α

∆∆

α
∆

+



++

+












++−








++=

+−

+−
+

  (14) 

where n

jiC , is the concentration of dissolved chemical (mg/L ), V is seepage velocity in the x 

direction (m/day), αL and αT  are the longitudinal and transverse dispersion coefficients (m), 

respectively, b is thickness of aquifer (m), ε is effective porosity, ∆t is time increment 

(day),  ∆x and ∆y are grid spacing in x and y direction respectively (m). 

A numerical model consisting of 40x30 nodal grid with a uniform grid spacing of 

50 m in both direction was used to simulate the two-dimension solute transport using the 

equation (14). Zero concentration boundaries were placed at the left, upper and lower 

model boundaries with a constant source placed at 750 m the top boundary. 

Characteristics of the uncertain parameters and other data used in the simulation are 

shown in Table 1 and Table 2 respectively. 

Table 3.1: Triangular fuzzy numbers 

for uncertain  parameters 

Table 3.2: Other crisp input data 

use in simulation 

 

 
Low 

 

Medium  

 

High  

 

V(m/day) 0.3 0.6 1.0 

αL (m) 100 200 300 

αT (m) 20 40 60 

 

Parameters Value 

Thickness of flow, b 50 m 

Source strength, M 120 kg/day 

Effective porosity, p 0.17 

Grid distance (∆x) 50 m 

Grid distance (∆y) 50 m 

Time increment 1 day 

 

The membership functions for input parameters that were used for the fuzzy 

techniques are shown on Figure 3.4.  
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Figure 3. 4: Membership functions of input parameters for 2D solute transport (a) seepage velocity 

(V), (b) logitudinal dispersivity(ααααL), (c) transverse dispersivity(ααααT) 

3.5 Results and Discussion  

Generally in a deterministic model, the model parameters have lot of associated 

uncertainty. The input data cannot be determined precisely because the state of knowledge 

is not perfect or near perfect. Assessment of the parameters can be based on expert 

judgement and sometime expressed as linguistic terms. The crisp set is unable to express 

this sort of uncertain data which can be best expressed by fuzzy numbers.  

In this study, fuzzy transformation method has been used to show usability of fuzzy 

simulation technique. One-dimensional and two-dimensional transport equation has been 

used for the example case study.  

The results of the simulations are shown in Figures 5 and 6 for 1-D and 2-D solute 

transport respectively. In these figures, the lower and upper bound of different membership 

levels of fuzzy number, i.e. 0.0, 0.3, 0.5 and 0.8 of α-cuts respectively has been mapped. 

For both 1-D and 2-D transport equations,  concentration graphs are showing clear 

narrowing of width of the concentration membership function (upper bound minus lower 

bound) which converge to one line at 1 α-cut. Our results have been compared with other 

fuzzy methods reported by (Dou et al., 1997). The width of the concentration membership 

function obtained from Transformation method is narrower than other comparable fuzzy 

methods like vertex method in the same case study. The difference in the concentration 

output is mainly due to interaction of the concentration variable in space and time 

dimensions in Equations (13) and (14). Neglecting this dependency of input variables 
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resulted in overestimation of the imprecision of solute concentration. A detailed discussion 

of the effect of fuzzy number dependence can be found in (Dou et al., 1995).  

 

Figure 3. 5: Comparison of solute concentration outputs of 1-D solute transport at different αααα-levels 

obtained from Fuzzy Transformation method 

 

Figure 3.6: Comparison of solute concentration outputs of 2-D solute transport at different αααα-levels 

obtained from Fuzzy Transformation method 
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Figure 3.7: Upper(a) and lower(b) bound (0-level cut) solute plum(mg/ l) obtained from 2-D solute 

transport simulation using TM  method 

 
Figure 3.8: 1-level cut solute plum(mg/ l) obtained from 2-D solute transport simulation using TM 

method 

 

Figure 3.7 and 3.8 present the lower and upper bounds at zero-level cut and one-

level cut respectively of the plume concentration after 1000 days calculated using 

Transformation method. A detailed study of contour maps show that extent of plumes are 

quite imprecise which is because of imprecise input parameters. Shape of plumes for upper 

is narrower than lower bounds which has more ellipsoidal shape.  
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For comparative study the classical Monte-Carlo Simulation (MCS) was carried 

out. Comparative measures of uncertainty were devised for comparison of these methods. 

For point wise analysis, the probability density function (for the MCS technique) and the 

membership function (for the Fuzzy techniques) of the output (concentration) were 

analysed at a given point (600 m from the pollution point source). Similarly to evaluate the 

spatial distribution of uncertainty, the ratio of the standard deviation to the mean 

concentration of the solute at each grid cell in case of MCS has been compared with the 

ratio of the 0.1-level support to the value of the concentration for which the membership 

function is equal to 1 in case of FAC technique and overall influence in case of TM. The 

results of different methods and effect of different parameters on overall uncertainty using 

TM are shown in Table 3 and Table 4 respectively. 

Table 3.3: Over all 

uncertainty Of 

different methods 

 Table 3.4: Effect of 

uncertainty of different 

parameters on overall 
uncertainty(TM) 

 

Methods Uncertainty 

MCS 0.1073 

FAC 0.0917 

TM 0.0907 

 

 

Parameters 
% 

Uncertainty 

V 0.4526 

αL 0.1425 

αT 0.4049 

 

Figure 3.9 shows the normalized probability distribution function (PDF) of the 

concentration obtained from the MCS and the fuzzy number representing the concentration 

obtained from the TM in the same set of axes. The width of the output membership 

function is the indication of the sensitivity of the model to uncertain parameters.  

In Figure 3.10, the cumulative distribution function (CDF) and the normalized-

integrated fuzzy number are plotted. All three methods has shown comparable results, 

however there is clear indication of more consistency in case of TM and FAC.  
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Figure 3.9: Normalized PDF and Fuzzy membership function of the output at the selected point of 

analysis             

 

Figure 3. 10: CDF and normalized-integrated membership function 
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The output from fuzzy methods agreed well with that from the Monte Carlo method 

(Figure 3.9 & 3.10), however there is obvious lack of consistency in case of MCS. The 

other drawback of the Monte-Carlo approach for the present application is its time-

consuming character. For the field application, generally a large size of grid simulation has 

been used. In the present case, decent or rather small grid of 40x30 size has been used. For 

satisfactory smoothness and accuracy of the results, 500 model runs has been chosen. 

Simulation has been done for 1000 days of time, which further give a loop of 1000 steps. 

So the total run of the model is 40x30x500x1000 (60 millions). Mathematical equation for 

this model is finite-difference equation for 2-D solute transport, which is rather simple 

among other numerical methods (Dou et al., 1997). A desktop computer with P4 3.0 GHz 

processor and 1 GB RAM with MATLAB compiler use to take approximately 24-30 hrs of 

time to complete this simulation. That too is possible after optimization of program. 

Otherwise a basic computer programme (a common way used by scientists not genius in 

programming) can easily crash due to lack of memory.  Fuzzy arithmetic approach using 

transformation method for three fuzzy input variables and 10 α-levels of membership need 

88 model runs only. Beside that, it is quite difficult in case of Monte-Carlo simulation to 

select concentration limits for each node of grid and for 1000 days of time, which 

invariably differ over time. Other approach could be to use a common limit for all grid 

nodes but it will introduce more uncertainty in the model. 

With regard to standard fuzzy methods, the serious drawback is the uncertainty of 

result for the same problem. Results of standard fuzzy arithmetic method depends on the 

form of solution procedure applied (Hanss, 2002). Also there is widening of the fuzzy value 

set which is due to multi-occurrence of variables in function expression. TM is not 

dependent on solution procedure and can also prevent widening of the fuzzy value set. This 

method was first shown in vertex method (Dong & Shah, 1987) which also used the 

interval analysis but that was only suitable for uniform solution space. However TM can be 

applied for both uniform and non-uniform solution space. In case of FAC technique, it 

requires less model runs compare to TM but it has been reported to overestimate 

uncertainty value due to dependencies among uncertain variables. FAC seriously lack the 

detail analysis of uncertainty, like sensitivity of different uncertain parameters, uncertainty 
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at different membership levels. Also for non-monotonic problems, it lacks a clear 

procedure. 

3.6 Conclusion 

Fuzzy Transformation method has been analysed and its ability to predict system 

with uncertain parameters has been shown. Test cases from environmental domain have 

been considered in order to show its applicability in environmental engineering in general 

and environmental risk analysis in particular. One and tow-dimensional solute transport 

processes has been modelled using Fuzzy Transformation method which have some 

uncertain parameters. Based on the structure of the explicit finite-difference equation for 

solute transport, the transformation method has been applied to solve the fuzzy equation at 

each node and each time step.  Compare to the vertex method which has been reported to 

overestimate the uncertainty, TM has given comparable or better results and has sorted out 

the problem of overestimation due to dependencies among uncertain variables at different 

nodes.  

We can safely conclude that fuzzy transformation method presents a strong 

alternative to the probabilistic and general fuzzy approach. A faster and accurate result in 

case of monotonic function and near proper result in case of non-monotonic can be 

achieved. The transformation method holds the potential to be an effective tool for 

modelling and analysis of Environmental Risk. 
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C h a p t e r  4  

PARTITIONING TOTAL VARIANCE IN RISK ASSESSMENT: APPLICATION 

TO A MUNICIPAL SOLID WASTE INCINERATOR 

Abstract 
Comprehensive health risk assessment based on aggregate exposure and cumulative 

risk calculations requires a better understanding of exposure variables and uncertainty 

associated with them. Although there are many sources of uncertainty in system models, 

two basic kinds of parametric uncertainty are fundamentally different from each other: 

natural/stochastic and epistemic uncertainty. However, conventional methods such as 

standard Monte Carlo sampling (MCS), which assumes vagueness as random property, 

may not be suitable for this type of uncertainty analysis. An improved systematic 

uncertainty and variability analysis can provide insight into the level of confidence in 

model estimates, and it can aid in assessing how various possible model estimates should 

be weighed. The main goal of the present study was to introduce, Fuzzy Latin Hypercube 

Sampling (FLHS), a hybrid approach for incorporating epistemic and stochastic 

uncertainties separately. An important property of this technique is its ability to merge 

inexact generated data of the LHS approach to increase the quality of information. The 

FLHS technique ensures that the entire range of each variable is sampled with proper 

incorporation of uncertainty and variability. A fuzzified statistical summary of the model 

results produces a detailed sensitivity analysis, which relates the effects of variability and 

uncertainty of input variables to model predictions. The feasibility of the method has been 

tested with a case study, analyzing total variance in the calculation of incremental lifetime 

risks due to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) for the 

residents living in the surroundings of a municipal solid waste incinerator (MSWI) in the 

Basque Country, Spain.  

Keywords: Uncertainty; Variability; Fuzzy set; Latin Hypercube sampling; Municipal solid 

waste incinerator; Health risks 

UNIVERSITAT ROVIRA I VIRGILI 
SOFT COMPUTING APPROACES TO UNCERTAINTY PROPAGATION IN ENVIRONMENTAL RISK MANGEMENT 
Vikas Kumar 
ISBN:978-84-691-8848-4/DL:T-1270-2008 



 50 

4.1 Introduction 

Recent health risk assessment studies often consider aggregate exposure and 

cumulative risk calculation. Accumulated uncertainty in the final result can produce a 

misleading assessment if it is not incorporated adequately. Studies in risk analysis have 

shown that consideration of different sources of uncertainty may be crucial for reliable 

results. Uncertainty and ignorance associated with assessments and predictions on which to 

base policies make the communication even more difficult (van der Sluijs, 2007). The 

characterization and quantification of uncertainty and variability in health risk assessment 

are important to prevent erroneous inferences in multimedia modeling and exposure 

assessment, which may lead to major environmental policy implications (Frey & Zhao, 

2004).  

Several different classifications of uncertainty have been suggested (Alefeld, 1983; 

Haimes, 1998; van Asselt & Rotmans, 2002; Walker et al., 2003). However, for the 

objectives of the current study, only parametric uncertainty has been considered. The 

parametric uncertainty has been classified on the basis of its source and nature. Sources of 

parameter uncertainty are measurement errors, sampling errors, variability, and the use of 

surrogate data (Moschandreas & Karuchit, 2005). Measurement errors refer to random 

(imprecision) or systematic errors (bias), while sampling errors are errors from small 

sample size and/or misrepresentative samples. Heterogeneity in environmental and 

exposure-related data includes seasonal variation, spatial variation, and variation of human 

activity patterns by age, gender, and geographic location, leading to variability errors. 

Surrogate data refer to errors from the use of substitute data. Van Asselt and Rotmans, 

(2002) and (Walker et al., 2003) classified uncertainty based on its nature. They called it 

Epistemic uncertainty/imprecision, and Stochastic uncertainty/natural variability. 

Epistemic uncertainty which results from incomplete knowledge about the system under 

study, is reducible by additional studies (e.g. further research and data collection). 

Stochastic uncertainty which stems from variability of the underlying stochastic process is 

non-reducible for a given system and under specific management scenario. Natural 

variability has also been termed (basic) variability, randomly uncertainty, objective 

uncertainty, inherent variability, (basic) randomness, and type-I uncertainty. Terms for 

epistemic uncertainty are systematic uncertainty, subjective uncertainty, lack-of-knowledge 
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or limited-knowledge uncertainty, ignorance, specification error, prediction error, and type-

II uncertainty (Haimes, 1998; Merz & Thieken, 2005; Moschandreas & Karuchit, 2005; 

Refsgaard et al., 2007; Rotmans & van Asselt, 2001; van Asselt & Rotmans, 2002). In this 

paper, the term uncertainty is used to denote epistemic, variability to denote stochastic 

uncertainty, and total variance or simply variance to denote total uncertainty and variability 

in the outcome. 

In spite of this obvious distinction, uncertainty and variability have been used as 

synonym. Some of the reasons are the blurred knowledge about uncertainty and variability 

and the lack of commonly agreed guidelines on uncertainty characterization and 

appropriate methodology. Consequently, in uncertainty estimation both type of uncertainty 

are clubbed together and treated as random event, though epistemic uncertainty is not 

random in nature. The purpose of uncertainty analysis is to provide decision makers with a 

complete spectrum of information concerning the assessment and its quality. It also gives 

some scope to improve predictive results (Rotmans & Asselt, 2005). When the uncertainty 

in the risk estimate is unacceptable for decision-making, additional data are acquired for the 

major uncertainty contributing model components. This process is repeated until the level 

of residual uncertainty is acceptable. For this we need to identify uncertainty components 

which are reducible. Further, separate measurements can provide us relevant information to 

the risk management decision (Spencer et al., 2001). 

From a practical viewpoint, it is rare to encounter only one type of uncertainty. Pure 

variability would mean that all relations and their parameters which describe the random 

process are exactly known. Pure epistemic uncertainty would mean that a deterministic 

process is considered, but the relevant information cannot be obtained (e.g. due to the 

inability to measure the relevant parameters) (Merz & Thieken, 2005). For example, given 

a parameter X with total variance Vx, it would be straightforward to partition the variance 

into uncertainty and variability components, where α is the uncertainty component and (1- 

α) attributable to variability (Figure 4.1). There also can be an intermediate vague region in 

which uncertainty and variability commingle. So sometime it is difficult to separate and in 

that case it needs special handling to measure both uncertainty and variability together. 
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Figure 4.1: Separating uncertainty and variability 

Several approaches to uncertainty analysis in environmental risk analysis have been 

developed (Isukapalli, 1999; Schulz & Huwe, 1999). Among them, probabilistic 

approaches (e.g. Monte Carlo Simulation) are quite common and have been commonly 

used in the treatment and processing of uncertainty for solution of system modelling 

(Schuhmacher et al., 2001). Another prominent approach based on fuzzy set theory (e.g. 

fuzzy alpha-cut analysis) has been recently applied in various fields including 

environmental modelling for uncertainty quantification (Cho et al., 2002; Hanss, 2002; 

Isukapalli, 1999; Kentel & Aral, 2004; Kumar, 2005; Mauris et al., 2001). However this 

model has been branded as too conservative and basically applied in pure epistemic 

condition (Mauris et al., 2001). However, all these methods have been developed to handle 

either variability or uncertainty of the process parameters or they club them together 

without valid distinction in analysis. Few recent efforts have been made to treat them 

separately. One common approach used in this field is 2D Monte Carlo Analysis, which 

classifies epistemic uncertainty as second order uncertainty (Simon, 1999). This technique 

requires knowledge of parameter values and their statistical distribution from which a 

formal mathematical description of uncertainty must be developed. However, site 

investigation is generally not detailed enough to determine values for some of the 

parameters and their distribution pattern, and sufficient data may not be collected for 

calibrating a model (Kentel and Aral, 2005). These approaches suffer from an obvious lack 

of precision and specific site-characterization, making difficult to determine how much 

error is introduced into the result due to assumptions and prediction. Recently, a number of 

authors have suggested adopting other approaches in the data limited situation. (Refsgaard 
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et al., 2007) reported: ‘The test theory of classical statistics permits the testing of a sample 

for randomness. If the sample does not exhibit the property of randomness, other 

uncertainty models such as, e.g. fuzzy randomness must be adopted’. Previously, (Möller et 

al., 2002) presented the idea of Fuzzy Randomness and formalized the concept of random 

variable and uncertain variable. (Kentel & Aral, 2005) introduced 2D Fuzzy Monte Carlo 

and applied it in the area of health risk assessment. 2D Fuzzy Monte Carlo and Fuzzy 

Randomness have been classified as hybrid approach mixing the concept of probability and 

fuzzy set theory. The present study aims to continue this area of research and introduces a 

new hybrid approach, Fuzzy Latin Hypercube Sampling (FLHS), for uncertainty and 

variability analysis. It need less computational effort and allows incorporating parameters 

correlation. Further we present a way to apply sensitivity analysis in fuzzy-stochastic 

modeling paradigm. The feasibility of the method has been validated analyzing total 

variance in the calculation of incremental lifetime risks due to polychlorinated dibenzo-p-

dioxins and dibenzofurans (PCDD/Fs) for the residents living in the surroundings of a 

municipal solid waste incinerator (MSWI) in the Basque Country, Spain. 

4.2 Background 

4.2.1 Fuzzy sets and numbers 

Fuzzy set theory replaces the two-valued set-membership function with a real-

valued function; that is to say, membership is treated as a possibility or as a degree of 

truthfulness. Likewise, one assigns a real value to assertions as an indication of their degree 

of truthfulness. Membership functions define the degree of participation of an observable 

element in the set. Fuzzy numbers are the fuzzy set defined on the set of real numbers and 

have special significance. They represent the intuitive concept of approximate numbers, 

such as “around, close to, approximately etc”. The fuzzy set that contains all fuzzy 

numbers with a membership of ]1,0[∈α  and above is called the a-cut of the membership 

function (Abebe et al., 2000) (Figure 4.2). So the α-cut represents the degree of sensitivity 

of the system to the behavior under observation. Fuzzy α-cut technique is based on the 

extension principle (Zadeh, 1965), which implies that functional relationships can be 

extended to involve fuzzy arguments. It can be used to map the dependent variable as a 

fuzzy set. In simple arithmetic operations, this principle can be analytically used. However, 
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in most practical modeling applications involving complex structural relationships (e.g. 

partial differential equations), analytical applications of the extension principle is difficult. 

Therefore, interval arithmetic can be used to carry out the analysis (Abebe et al., 2000). 

Arithmetic on fuzzy numbers can be defined in terms of arithmetic operations on their α-

cuts (on closed intervals). 

 

Figure 4.2: Implementation of the ith uncertain parameter as a fuzzy number ip~  decomposed into 

intervals (αααα-cuts) 

This principle is generalized as: a membership level µA(x) ∈  [0, 1] is assigned to all 

elements x (i.e. the elements belong to the set to a certain degree) (Hanss, 2002; Klir & 

Yuan, 1995). The core of the set is defined as the subset for which µA = 1. The support is 

the subset for which µA > 0 (also known as the input vertex). The α-cut is a generalized 

support: the subset for which µA ≥ α, with 0 < α ≤ 1. The α-sublevel technique (Hanss, 

2002) consists of subdividing the membership range of a fuzzy number into α-sublevels at 

membership levels µ j = j/m, for j = 0, 1, ...m (Fig. 2). This allows numerically representing 

the fuzzy number by a set of m + 1 interval [aj, bj]. A triangular fuzzy number, subdivided 

into intervals using m = 5, is depicted in Figure 4.2. 

In fuzzy simulation, for each α-level of the parameter, the model is run to determine 

the minimum and maximum possible values of the output. This information is then directly 

used to construct the corresponding membership function of the output which is used as a 

measure of uncertainty.  

4.2.2 Latin Hypercube Sampling (LHS) 

The LHS technique proposed by (McKay et al., 1979) is a type of stratified Monte 

Carlo sampling, where the range of each of the K variables included in the uncertainty 

analysis kXXX ,..., 21 is divided into N intervals in such a way that the probability of the 
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variable falling in any of the intervals is N/1 . One value is selected at random from each 

interval. The N values obtained for the first variable 1X are randomly paired with 

the N values of the second variable 2X . These pairs are furthermore randomly combined 

with the sampled values of the third variable, and so on. It finally results in 

N combinations of k  variables. This set of k-tuples is the Latin hypercube sample that is 

used for successive execution of model runs. When using LHS, the variable space is 

sampled with relatively few samples and the number of samples recommended in the 

literature span from 4*K/3 ((Iman & Helton, 1985), to 2*K ((McKay, 1992), to much 

larger ((Pebesma & Heuvelink, 1999).  

4.3 Method 

4.3.1 Concept: Fuzzy Latin Hypercube Sampling technique 

In this study, the Fuzzy Latin Hypercube Sampling (FLHS) technique is proposed. 

This technique uses a combination of probability and possibility theory to include 

imprecise probabilistic information in risk analysis model. It allows the characterization of 

both uncertainty and variability in one or more input variables. Parameters can be 

uncertain, variable, or uncertain-variable. The variability in the random variables of the 

model is treated using probability density functions (PDFs), while the uncertainty 

associated with them is treated using fuzzy membership functions for the parameters of 

these random variables. Thus, means and standard deviations of these PDFs are modeled as 

fuzzy numbers. This modeling structure gives a generalized framework for uncertainty 

analysis. All three uncertainty cases can be represented by a single definition. In the case of 

only uncertain parameters, standard deviation can be zero, whereas in the case of only 

variable parameters membership function (MF) can represent the highest degree of 

certainty (i.e. 1  (x) =µ ). Generally, membership functions used are triangular and 

trapezoidal. One important difference between triangular membership function and 

triangular PDF is that the area below the PDF is equal to the unity. The support of the 

membership function provides all possible values for the variable, and any number outside 

the support is not possible according to fuzzy set definition. The base of the probability 

density function covers all the values, which have positive probabilities. Our purpose was 

not to provide an alternative approach to 2D MCA, which treated imprecise probability or 
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second order uncertainty, but to use FLHS for the same purpose although with a different 

concept. FLHS is treating uncertainty and variability in the parameters separately using 

hybrid fuzzy probability set theory. For a detailed discussion on Fuzzy probability, the 

readers can refer to the seminal paper of (Zadeh, 1984). This framework of uncertainty 

analysis encourages the modelers for detailed uncertainty characterization, and at the same 

time gives enough space to carry out modeling task in case of insufficient information on 

parameters distribution. If the available information is sufficient for detailed 

characterization of uncertainty and variability, the method can provide a detailed analysis 

of uncertainty and variability contribution in the final result. However, in all cases the 

method can give insight into uncertainty and variability contribution of different parameters 

in the final result, which would help modeler/decision maker to collect more data or to 

improve observation of major parameters in order to improve results. The readers may also 

refer to (Guyonnet et al., 2003) for a brief discussion of the same topic.  

Since our main goal was neither to convert probability density functions into 

membership functions, nor to utilize one in place of another, no direct numerical 

comparisons for the calculated risk estimates are provided. Some researchers have 

attempted to compare fuzzy and stochastic simulation results but they have adopted 

different measures for their comparison. Guyonnet et al. (2003) have proposed possibility 

and necessity measures at different α-cut levels to be compared with percentile value at 

corresponding probability level. However (Abebe et al., 2000) have used the ratio of the 

0.1-level support to the value of for which the membership function is equal to 1 from 

fuzzy α-cut simulation to be compared with a measure of derived from ratio of the standard 

deviation to the mean value from Monte Carlo simulation. Kentel and Aral, (2004) have 

used overlapped membership function and the bar chart of the normalized frequency 

distribution to compare the results. Clearly these differences are due to inherent differences 

in the definition, meaning and treatment of the uncertainty as utilized in each method. 

Further research is needed to define the comparison criteria and then one should attempt to 

provide such a comparison We here provide computational framework for the FLHS and 

the interpretation of the information generated from the proposed method. 
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4.3.2 Modeling procedure 

There is no clearly agreed upon definition of Fuzzy probabilistic modeling. 

However, three components are nearly always at the heart of all risk modeling: 1) 

variability/uncertainty characterization (use of probability distributions or fuzzy 

distribution/membership function to describe and represent uncertainty), 2) propagation of 

uncertainty through sampling (statistical, fuzzy etc) of the input parameter distributions and 

multiple model runs, and 3) presentation of model outputs (again as probability 

distributions or fuzzy distribution) (Crowe, 2002). The FLHS implementation has been also 

restricted to this basic framework of risk modeling except the two tiered propagation of 

variability and uncertainty in the model simulation. Nevertheless, a comparison should not 

be drawn with other classical methods.  

4.3.2.1 Characterization of uncertain variables 

Given an arithmetic function f that depends on n uncertain parameters X1, X2, ..., 

Xn, represented as fuzzy numbers, the function output q = f(X1, X2, ..., Xn) is also a fuzzy 

number. Using the α-level technique, each input parameter is decomposed into a set iP  of 

1k +  intervals )( j
iX  , j = 0, 1,..., k  where 
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level jµ  for the ith uncertain parameter. Instead of applying interval arithmetic like fuzzy α 

-cut (FAC) method (Abebe et al., 2000), now all parameters are transformed into an array 

using combinatorial combination taking each end of the interval one at a time for each  

parameters and at each membership level separately. A similar transformation has been 

used by Hanss, (2002). Purpose of this transformation is to evaluate the target function for 

each possible combinations arising from discretisation of uncertain parameters. These 
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The evaluation of function f is now carried out by evaluating the expression 

separately at each of the positions of the arrays using the conventional arithmetic. The 

obtained result is a deterministic multi-valued decomposed interval, which can be 

retransformed to get a fuzzy valued result using recursive approximation (Zimmermann 

1991).  

4.3.2.2 Characterization of random variables 

Characterization of random variables has been done using Latin hypercube 

sampling (LHS). LHS selects N different values from each of n variables  Xn,,X ,X 21 … in 

the following manner. The range of each variable is divided into N non-overlapping 

intervals on the basis of equal probability. One value from each interval is randomly 

selected with respect to the probability density in the interval. The N values thus obtained 

for 1X  are paired in a random manner (equally likely combinations) with the N values 

of 2X . These N pairs are combined in a random manner with the N values of 3X  to form N 

triplets, and so on until  N n-tuplets are formed. These N n-tuplets are the same as the N n -

dimensional input vectors described in the previous paragraph. It is convenient to think on 

this sample (or any random sample of sizeN) as forming an (N n) matrix of input where the 

i
th row contains specific values of each of the n input variables to be used on the ith

 run of 

the computer model.  

4.3.2.3 Fuzzy-stochastic measures 

Taking the clue from fuzzy probability function proposed by Kato et al. (1999) 

when the mean and standard deviation are fuzzy number, we here propose a fuzzy version 

of stochastic measures. Using the heuristic of this method together with interval analysis 

and vertex method, the fuzzy cumulative distribution function (FCDF) and fuzzy linear 

correlation coefficient (FLCC) for fuzzy random variables can be calculated. This 

procedure, for a fuzzy-stochastic variable X
~

 that has a normal distribution with fuzzy 

mean m~ , and fuzzy standard deviationσ~ , is next summarized:  
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4.3.2.3.1 Fuzzy CDF 

For standardized normal variables, the Cumulative Distribution Function (CDF) 

),m;x(F 2σ can be defined as: 

)
mx

(),m;x(F 2

σ
Φσ

−
=             (5) 

Here F is an arithmetic function with three uncertain parameters. Suppose ix~  is the 

realization of fuzzy-stochastic variable X
~

 (which in this case are derived from output of 

FLHS simulation run of target model) and m~ , σ~  are the fuzzy mean and fuzzy standard 

deviation of fuzzy-stochastic variable X
~

. So all three parameters are fuzzy-random 

variables which can be decomposed (as in equation 2) using the α-level technique, into a set 
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where  l  and  u denote the lower and upper bound of the interval at the membership level 

jµ . 

Now all three parameters are transformed into an array using similar combinatorial 

combination as used in equation 3. The resultant array will have 8 combinations at each 

membership level. So for α-cut level j , the vertex of )(xΦ can be calculated as: 
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The fuzzy-valued result )x~(F
~

of the CDF can be achieved in its decomposed form: 
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= , mj ,...,1,0=                                                  (11) 

by retransforming the arrays )x~(F
~

 using recursive formulae (Zimmermann 1991) 

( )87654321
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( )87654321

)j(

ui F,F,F,F,F,F,F,Fmax)x~(F
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= , ,1,...,1,0 −= mj                    (13)  

 

4.3.2.3.2  Sensitivity analysis measures 

The sensitivity contribution of the model parameters to the model output can be 

quantified by various measures (Janssen et al., 1992). Many of these measures are based on 

regression and correlation analyses and commonly used for stochastic model analysis. They 

are applied to the original parameter and output values or to their rank-transformed values 

in case of a monotonic nonlinear relation. Given that some of these measures lead to similar 

results in identifying the sensitive parameters (Manache, 2001), only the linear correlation 

coefficient (LCC) are considered in this study. However other similar measures like the 

standardized regression coefficient (SRC), the semipartial correlation coefficient (SPC) can 

be derived in similar fashion. 

 Fuzzy Linear Correlation Coefficient (FLHS) 

Given a sample of n-independent pairs of observations (x1, y1); (x2, y2);… ;(xn; yn), 

the sample correlation coefficient rxy between x and y is calculated as 

yx
xy

)y,xcov(
r

σσ ×
=  (14) 

Clearly xyr  is an arithmetic function with three parameters. Here all three 

parameters may not be fuzzy-random variables. Let us assume that Xi represents input 

parameters which may be fuzzy, fuzzy-stochastic or stochastic variable and y denotes the 

out of target model, so in this case it will be output of FLHS simulation which will be 

fuzzy-stochastic variable provided any of input parameter is fuzzy combined with other 

stochastic variable or fuzzy-stochastic variable. Similar to Fuzzy CDF derivation, 

parameters are decomposed using the α-level technique, into a set of 1k + intervals and 
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then transformed as in equation 3. Depending on type of Xi it can have 4 to 8 functional 

combination of  xyr  from which xyr~  can be derived using recursive formulae. 

Similarly the fuzzy standardized regression coefficient (FSRC), the fuzzy 

semipartial correlation coefficient (FSPC), and other sensitivity measure for fuzzy-

stochastic variables can also be calculated. Selection of estimators depends on the problem 

and objective of the study.  For example Regression based estimator can yield results that 

may be statistically insignificant or counter intuitive (Neter et al., 1996). 

4.4 Case Study 

Recently, a new MSWI which treats around 250,000 tones per year of domestic 

wastes started its regular operations in the Basque Country (North of Spain). The facility is 

placed at 3 km from a metropolitan area with a population around a million of inhabitants. 

In order to estimate the impact of the new MSWI on the environment and the population 

living in the neighborhood, fate and transport models were applied to estimate PCDD/F 

concentrations in different compartments. In turn, these concentrations were used to 

estimate the exposure of the local population and to assess human health risks. The 

methodology is summarized in four main steps: 

1) Definition of the area of study. Receptor sites were the nearest villages, in some 

of which agricultural activities are important. 

2) Fate and transport model. PCDD/F concentrations were estimated in different 

compartments (soil, plants, meat and milk) using a multi-compartmental model.  

3) Human exposure model. Inhalation of air and resuspended dust, dermal 

absorption, and ingestion of soil and local foods (vegetables, meat and milk) were the 

exposure pathways considered. 

4) Risk characterization. Together with exposure results, safety PCDD/F 

benchmarks were used to evaluate the carcinogenic and non-carcinogenic risks (Katsumata 

and Kastenberg, 1997; Van Leeuwen et al., 2000). 
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Information about the equations used in the multi-compartmental model, the 

exposure model, and the characterization of the health risk model for this case study can be 

found in the Annex I. 

4.4.1 Estimation of parameters uncertainty 

The first step of uncertainty and variability analysis is the uncertainty 

characterization. Once all available information has been collected and evaluated, 

appropriate probability density functions and membership functions can be specified for 

variable and uncertain parameters, respectively. Estimations are based on site specific data, 

previously reported values, as well as some basic assumptions (Schuhmacher et al., 2001). 

Parameters are characterized as crisp, random/variable, uncertain/fuzzy, and uncertain-

variable/fuzzy-random. Crisp variables do not contain any uncertainty. Thus, they are 

represented by a single value. Variability associated with random variables is represented 

by probability density functions. Uncertainty associated with fuzzy variables is represented 

by membership functions, whereas uncertainty-variability of fuzzy-random variables is 

represented by fuzzy-probability density functions. As an example, sample data set is 

provided in Table 1. A detailed list of characterized input parameters used in the multi-

compartmental model is given in Annex II. 

4.4.2 Simulation and propagation of uncertainty 

After characterizing the uncertainty and/or variability associated with each input 

parameters, the FLHS technique is used to propagate these uncertainty. The total variance 

in the result can then be estimated. This propagation results in a fuzzy probability 

distribution functions for the estimated risk. Even though the Latin Hypercube Sampling 

needs lesser sample size compared to normal Monte-Carlo, a higher sample size (1000) has 

been used to validate the results from previous work of(Schuhmacher et al., 2001). Further 

11 levels (0-0.1-1 α-cuts) of fuzzy discretisation have been used which have further been 

discretised into lower and upper bounds. Under consideration of the fuzzy randomness of 

the uncertain input values, the obtained result values were also fuzzy random variables. 
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Table 4. 1:Sample data sets uncertainty characterization 

Parameters Definition Units 
Uncertainty 

Type 
Distribution /Value* Note

TD Total time period of deposition year Uncertain Tri(30, 40, 60) 1 

May 
Average annual moisture (rainfall, 

snowfall) 
cm/yr variable 

Min: 100.04; Mean: 111.74; Max: 
128.93 Std: 11.06 

2 

Vd Dry deposition velocitya cm/sec
Uncertain 
&Variable 

UniTri([4.98E-03 2.73E-02 7.41E-
02], [6.22E-03 7.18E-02 1.235E-

01]) 
3 

BD  Bulk density g/cm3 Variable Uni(0.93-1.84) 4 
1.Expected life time of MSWI could be 30-60 years. 2Extracted from 10 years data of the area (1994-2004). 3Depends on 

the size of the air particles. 4From Hoffman and Baes (1979) 
* Tri = Triangular, Uni = Uniform, UniTri = Uniform Triangular (represent variability and uncertainty respectively). 
a Detailed calculation is provided in Annex II (Table 2). 
 

FLHS simulation produces two PDFs/CDFs (i.e., one for upper and one for lower 

bound) for each α-cut level. For the triangular membership function used in this case study, 

the lower and the upper bound at α-cut 1.0 are the same. Thus, a total of 21 risk 

PDFs/CDFs were generated with 11 levels of fuzzy discretisation. These discrete 

distributions were used to generate fuzzy risks values corresponding to each percentile. To 

represent the results, box plots were used. The simplicity of the box plot makes it ideal as a 

means of comparing many samples simultaneously. It was used to compare distributions at 

different possibilities level. Box plots of the individual α-cut levels were lined up side by 

side on a common scale, and the various attributes of the results compared at a glance. 

Obvious differences were immediately apparent. Data which will not lend itself to standard 

analysis can be identified. In the current case study, the box plots have been used to show 

the 5th, 25th, 50th, 75th, and 95th, percentiles of model outcome, in this case PCDD/F 

concentrations or risk due to exposure to PCDD/Fs. It has been drawn separately for lower 

and upper membership functions. 

The box length gives an indication of the sample variability, while the line across 

the box shows where the sample is centered. The length of the notch (along the box, not its 

depth into the box) is a "robust estimate of uncertainty about the median". The notches 

should be interpreted as a rough indication of the magnitude of a significant difference. The 

position of the box in its whiskers and the position of the line in the box also indicate 

whether the sample is symmetric or skewed, either to the right or left. For a symmetric 

distribution, long whiskers, relative to the box length, can betray a heavy tailed population 

and short whiskers, a short tailed population. The commonly accepted method among 
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statisticians for drawing the whiskers is 1.5 times the interquartile range (IQR). Any data 

value larger than that should be marked as an outlier.  

The membership function of mean and standard deviation of different results has 

also been plotted to represent uncertainty associated with the result. Further sensitivity 

analysis to calculate relative contribution of different uncertain parameters to the total 

uncertainty has been also done. This is useful to handle reducible source of uncertainty in 

parameters.  

4.5 Results and discussion 

The output of FLHS simulation is fuzzy probabilistic distributions, which can be 

represented in various forms (multi-plot of PDF/CDFs over different α-cuts). Several forms 

of information can be extracted from the results. In the present case study, results have been 

shown according to the conventional way used by risk modeler community. The frequency 

distribution has been plotted at three levels of uncertainty, lower α-0, α-1 and upper α-0, 

which basically represent min-mode-max pattern in triangular membership function (MF). 

The box plots have been plotted for all 11 α-cut levels at lower and upper uncertainty 

levels. Further minimum, mode and maximum values for respective triangular MFs have 

been shown for mean and standard deviation to represent possibilistic uncertainty 

distribution of fuzzy variability. Sensitivity analysis is presented in Tables and pie-charts.  

Analysis has been broken down at each step of modeling exercise involving compartmental 

sub-models from air deposition models and exposure models. 

4.5.1 Results from multi-compartmental model 

A fuzzified statistical summary of PCDD/F concentrations in different media 

obtained from the multi-compartmental model is shown in Table 2. Large uncertainty in the 

output has been observed on the current characterization of input parameters. The 

distribution of PCDD/F concentrations in soil due to air deposition of the MSWI emission 

is depicted in Figure 4.3. The distributions at different α-cut levels show a different 

behavior. The most possible value (α-cut 1) shows a normal distribution, whereas the 

minimum value (lower α-cut 0) is displaying a negative skewness, and the maximum value 

(upper α-cut 0) is displaying a positive skewness. In turn, the box plots at 11 α-cut levels 

(Figure 4.4) show a high variability across different possibility levels (α-cut levels). Since 
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the notches in the box plot do not overlap, it can be concluded with 95% confidence that 

the true medians differ. Sensitivity analysis shows how much each uncertain parameter 

contributes to the overall uncertainty of the prediction. Major contributors to uncertainty in 

soil deposition are soil loss constant (ks) (55%), dry deposition velocity (Vd) (30%), and 

volumetric washout ratio for particulates (Wp) (14%) (Figure 4.5). Surprisingly, the 

concentration of PCDD/Fs in air (Cair) is not a major source of uncertainty, which 

emphasizes the need to collect more site specific data. The approximated membership 

function of the fuzzy expected value of PCDD/F in soil concentrations is also depicted in 

Figure 4.5. 

Similar analysis of PCDD/F concentrating in milk exhibits distributions at different 

α-levels (Figure 4.6). In this case, all three uncertainty levels exhibited a positive skweness. 

However, the most possible value (α- cut 1) has shown a similar distribution pattern to 

lower α-cut 0 (minimum value), which can further be confirmed from box plots (Figure 

4.7). It can be interpreted as the PCDD/F concentrations in milk would likely be at a lower 

side of estimation than to the max-value. There are a large number of outliers across all the 

possibility levels. However, those are mostly mild outliers as they hardly go beyond 3rd 

Interquartile ranges (3IQRs). At the upper lowest possibility level (upper α-cut 0) of the 

PCDD/F concentrations in milk, there are some extreme outliers which explain the high 

uncertainty toward max-value side of the α result. Sensitivity analysis shows fraction of wet 

deposition (Fw) (33%), plant surface loss coefficient (kp) (23%), particle deposition 

velocity (Vd) (22%), and volumetric washout ratio for particulates (Wp) (11%) as major 

contributors towards uncertainty (Table 3). However PCDD/F concentrations in air (Cair), 

the total time period of deposition (TD) are not a major source of uncertainty (Table 3). The 

approximated membership function of the fuzzy expected value of PCDD/F concentrations 

in milk is shown in Figure 4.8. The most expected value of PCDD/F concentrations in milk 

denotes closeness to minimum possibility level, which can be interpreted as ‘expected 

value of PCDD/F concentrations in milk would be low to moderate, or it has low possibility 

of getting maximum value’. 

UNIVERSITAT ROVIRA I VIRGILI 
SOFT COMPUTING APPROACES TO UNCERTAINTY PROPAGATION IN ENVIRONMENTAL RISK MANGEMENT 
Vikas Kumar 
ISBN:978-84-691-8848-4/DL:T-1270-2008 



 66 

 

Figure 4. 3: Distribution of PCDD/F concentrations in soil at three uncertainty levels (upper α-cut 0, 

α-cut 1;  and lower α-cut 0) 

 

Figure 4. 4: Box plot of PCDD/F concentrations in soil at lower level of membership (lower α-cut 

levels) 
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Figure 4. 5 (a) Membership Function of PCDD/F concentrations in soil and (b) sensitivity chart of 

uncertain parameters used in calculating PCDD/Fs concentration in soils 

 

Figure 4. 6: Distribution of PCDD/F concentrations in milk with at three uncertainty levels (Upper α-

cut 0, α-cut 1, and Lower α-cut 0) 

Parameters Fraction 
contribution of 
total uncertainty 

Vd 0.3035 
Cair 0.00007 
Wp 0.1464 
TD 0.00003 
ks 0.55 

(b) 
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Figure 4.7: Box plot of PCDD/F concentrations in milk at upper level of membership (upper α-cut 

level) 

 

Figure 4.8: Membership Function of PCDD/F concentrations in milk 

Table 4.2: Mean and standard deviation of PCDD/Fs concentration in different media obtained from 

air deposition model with three levels of uncertainty (lower α-cut 0, α-cut 1, and upper α-cut 0) 

Media Mean concentration 
[min     mode     max] 

Uncertainty (Triangular Std) 
 [min       mode     max] 

Soil [1.01, 1.98, 54.7]* E-12 [0.28, 0.48, 23.6] * E-12 
Meat [0.2, 0.9, 109.2] * E-8 [0.12, 0.53, 33.72] * E-8 
Milk [0.3, 1.2, 90.85] * E-8 [0.2, 0.6, 25.9] * E-8 
Fruits [0.3, 0.9, 20.1] * E-10 [0.12, 0.23, 37.18] * E-10 

Vegetables [0.2, 0.4, 10.0] * E-10 [0.01, 0.12, 1.86] * E-10 
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Table 4.3: Sensitivity analysis for diet intake 

 

 

 

 

4.5.2 Results from exposure models 

A fuzzified statistical summary of exposure to PCDD/Fs by the population living in 

the vicinity of the MSWI is presented in Table 4.4. The distribution of exposure due to air 

inhalation with three level of uncertainty band is depicted in Figure 4.9. It is a positively 

skewed extreme value normal distribution with higher variability toward max-value. The 

distribution of total exposure to PCDD/Fs to the population through different media is 

shown in Figure 4.10, which are positively skewed at all three levels of uncertainty. 

Estimated mean and standard deviation has been also shown for most possible distribution 

(i.e. for α-cut 1). Detailed possibilistic-probabilistic analysis can be done from box plots of 

lower and upper α-cut levels. Since most of the notches in the boxes do not overlap, we can 

conclude with 95% confidence that the true medians differ across different possibility 

levels. Further analysis of whiskers show how distribution has been skewed at different 

possibility levels. It also shows the mild and extreme outliers present across the possibility 

levels. For example, outliers present at lower α-cut 0.8 or upper α-cut 0 are quite notable. 

From these data, it can be interpreted that there is less likelihood of getting these maximum 

risk value and result decision should not be based on these values. Outliers can be the result 

of conceptualization or modelling error so at least a detail validity analysis should be 

performed before considering it for risk decision. This information is particularly important 

comparing with classical worst case risk analysis method which doesn’t give information 

on likelihood of decision variable. 

 

 

Parameters Fraction contribution 
of total uncertainty 

Vd 0.224 
Cair  1.6E-11 
Wp, 0.1078 
TD 2.8E-13 
ks 0.0627 
Fw 0.3311 
kp 0.2364 

SIR 0.0379 
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Table 4.4: Mean and standard deviation of PCDD/Fs intake through different exposure media with 

three levels of uncertainty (lower α-cut 0, α-cut 1, and upper α-cut 0) 

Exposure Media Mean exposure 

[min,    mode ,  max] 

Uncertainty (Triangular Std) 

[min    mode    max] 

Food ingestion [0.3,  0.8, 130.5] *E-12 [0.3,  0.9, 129.2] *E-12 
Air inhalation [0.22,  0.29, 0.34] *E-13 [0.07,  0.09, 0.1]* E-13 
Dermal absorption [0.0,  0.2,  10.77]* E-16 [0.0,  0.07, 4.79]* E-16 
Soil ingestion [2.0,  3.6, 205.2]* E-20 [0.9, 1.6, 111.7] * E-20 
Resuspended 
particles inhalation 

[0.4,  0.66, 24.17] *E-32 [0.17,  0.25, 12.46] *E-32 

 

 

Figure 4.9:Distribution of air inhalation with uncertainty band 

Table 4.5: Non-carcinogenic risk: Mean, standard deviation, and 10th, 50th, 90th percentiles with 

three levels of uncertainty (lower α-cut 0, α-cut 1, and upper α-cut 0) 

 Direct Risk 

[min, mode , max] 

Diet Risk 

[min,  mode , max] 

Total Risk 

[min,  mode , max] 

Mean [1.1  1.5  1.8]*E-5 [0.2  3.4  69]*E-3 [0.21  3.41  69.02]*E-3 
SDa [4.1  5.5  6.4]*E-6 [1.2  1.7  31]*E-4 [1.2  1.72  31.2]*E-4 

10th  [0.5  0.6  0.8]*E-5 [0.0  0.3  6.5]*E-3 [0.01 0.36 6.58]*E-3 
50th [0.8  1.1  1.3]*E-5 [0.1  1.9  3.9]*E-3 [0.11  1.91  3.91]*E-3 

Pe
rc

en
til

es
 

90th  [1.7  2.2  2.6]*E-5 [0.4  6.6  13.8]*E-3 [0.42  6.62  13.83]*E-3 
a
 SD = standard deviation 
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Figure 4.10: Distribution of total doses at three uncertainty levels (upper α-cut 0, α-cut 1; and lower 

α-cut 0) 

Sensitivity analysis (Figure 4.11 b) shows that 99% risk is from exposure to 

PCDD/F contaminated diets source. Less that 1% of the total PCDD/F exposure is due to 

the direct MSWI emissions, which can also be validated from previous results in this area 

(Schuhmacher et al., 2001). The tolerable average intake levels of PCDD/Fs established by 

the WHO are between 1 and 4 pg WHO-TEQ/kg/day for lifetime exposure (Schuhmacher 

et al., 2001). Closer examination of box plots (Figure 4.12) reveals that excluding the 

extreme outliers, most values lie within 1 pg WHO-TEQ/kg/day limit. Also, the total 

exposure value at 50th percentile (below 0.1 pg WHO-TEQ/kg//day) and 90th percentile 

(below 0.2 pg WHO-TEQ/kg//day) are far below to the tolerable limit. Consequently, it can 

be concluded that in the current case study the MSWI would not mean a substantial risk to 

the population living in the area under potential influence of the emissions of the facility. 

4.5.3 Risk evaluation 

The non-carcinogenic and carcinogenic risks from direct, indirect (food source), and 

total exposure are shown in Tables 5 and 6, respectively. The results show the mean, 

standard deviation, 10th percentile, the central tendency of risk (50th percentile), and the 

reasonable maximum exposure (RME) (90th percentiles). All this statistical measures have 

been calculated at three levels of uncertainty: minimum value (lower α-cut 0), most 

possible value (α-cut 1), and maximum value (upper α-cut 0). It can be seen that the median 
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(50th percentile) of non-carcinogenic risk due to PCDD/Fs for the population living in the 

surroundings of the MSWI is in the range of 0.0001 – 0.004 and most likely risk would be 

0.002 (Table 4.5). The results also reveal that the uncertainty of the risk estimated, as 

defined by the ratio of the 90th to 10th percentile (Schuhmacher et al., 2001) is in the range 

of 0.06 – 1383, and the most likely value would be 18.4 (Table 4.5).  

 

 

Figure 4.11: (a) Membership Function of total exposure to PCDD/Fs and (b) sensitivity analysis for 

total exposure 

 

Figure 4.12: Box plot of total exposure for lower and upper level of membership (lower and upper α-

cut levels) 

With respect to the total carcinogenic risk, the median increment in individual 

lifetime is in the range of (3.2 – 1148)×10-7
, and the most likely value would be 5.53 ×  10-

7 (Table 4.6). Similarly, the uncertainty of the risk estimated is in the range of 0.16 – 9642, 

being the most probable value 44.84 (Table 4.6). From the obtained results, it can be 

concluded that according to the WHO recommendations neither the emissions from the 

(a) (b) 
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MSWI (direct exposure), nor the indirect exposure (diet) to PCDD/Fs would mean any 

additional risk for the health of the general population living in the vicinity of the MSWI 

during its life time.  

Table 4.6: Carcinogenic risk: Mean, standard deviation, and 10th, 50th, 90th percentiles with three 

levels of uncertainty (lower α-cut 0, α-cut 1, and upper α-cut 0) 

 Direct Risk 

[min, mode , max] 

Diet Risk 

[min,  mode , max] 

Total Risk 

[min,  mode , max] 

Mean [1.9  2.5  3.0]*E-10 [0.3  5.5  114.8]*E-8 [0.32  5.53  114.81]*E-8 
SDa [1.5  2.1  2.4]*E-10 [0.4  7.8  16.9]*E-9 [0.50  7.82  17.01]*E-9 

10th  [0.3  0.4  0.4]*E-10 [0.03  0.3  5.1]*E-8 [0.03 0.31 5.11]*E-8 

50th [1.5  2.1  2.4]*E-10 [0.1  2.7  56.5]*E-8 [0.12  2.82  56.52]8E-8 

P
er

ce
n

ti
le

s 

90th  [4.0  5.3  6.2]*E-10 [0.7  13.8  289.1]*E-8 [0.80  13.90  289.26]*E-8 

4.6 Conclusions 

In the current case study, only parametric uncertainty consisting of natural 

variability and epistemic uncertainty has been analyzed. However, the proposed 

methodology (FLHS) can be used to evaluate other uncertainty components (e.g. model 

uncertainty and scenario uncertainty). FLHS technique can encompass uncertainty in the 

inventory, in fate and transport processes, and in exposure pathways to potential receptors. 

The outputs of these models are also fuzzy probability distributions that, if correctly 

constructed, represent an expected or “all possible estimates” of the risk and the uncertainty 

associated with that estimate, conditioned on the model assumptions. As other probabilistic 

models which generally include probabilistically based sensitivity and uncertainty analyses, 

FLHS can also give sensitivity measures that can be used in uncertainty reduction and 

measurement of the value of uncertainty reduction. However, in contrast to classical 

probabilistic sensitivity measures which failed to separate uncertainty and variability, 

FLHS can do it effectively. In summary, FLHS clearly separates controllable and 

uncontrollable uncertainty associated with models, which helps the models /and decision 

makers to identify the priority area in order to improve the results.  

Further validation is needed to test the degree of satisfaction of compliance 

guideline. For example different risk compliance guidelines have been developed to 

compare results from stochastic simulation; similar guidelines should be developed to give 

general uncertainty estimates in accordance with U-V classification. Guyonnet et al. (2003) 
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has proposed possibility and necessity measures to test the degree of satisfaction of the 

compliance guideline. However it still needs to be tested and adopted by different 

regulatory bodies before used by modeler community.  

It also offers new research direction to modeler community to further improve the 

uncertainty analysis approach. In environment risk analysis, an immediate need is to 

develop more uniform guidelines to characterize uncertainty and variability associated with 

different environmental models.  In this study, no attempt has been made to compare FLHS 

with other evolving techniques in this area considering fundamental differences in 

assumption of defining uncertainty and variability. Comparison of the FLHS results is not 

straight forward. However, FLHS results can be compared with other similar modeling 

paradigm like 2D Monte-Carlo, or even second order fuzzy simulation. Notwithstanding, as 

all these emerging modeling techniques, it needs further research, and then an adequate 

comparison can be performed. Also further research performed in order to develop decision 

analysis models, which directly use U-V outcomes in decision making process and improve 

risk estimation, will enhance the framework. 

Software Availability 

A toolbox for Matlab has been developed for use in health risk assessment. It is still 

in beta version and very specialized for health risk assessment. However, in due time a 

generalized version will be released. It can be made available upon specific request. 
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ANNEX I: RISK CHARACTERIZATION MODEL 

Table 4.7: Compartmental concentrations 

COMPARTMENTAL CONCENTRATIONS 
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Cs: concentration of contaminant in soil (µg/g); Dp: 
yearly dry deposition rate (g/m2 year); Dv: yearly 
wet deposition rate (g/m2 year); LDIF: 
atmospheric diffusion flux  (g/m2 year); ks: soil 
loss constant (yr-1); TD:  time period over which 
deposition occurs (yr); Zs:  soil mixing depth 
(cm); BD: bulk density (g/cm3); Vd: dry 
deposition velocity (cm/sec); Cpa: particle bound 
concentration of contaminant (µg /m3); Cair: 
concentration of contaminant in air (µg /m3); 
May: average annual moisture (cm/yr); Kt: gas 
phase mass transfer coefficient (cm/s); Cva: 
vapor phase air concentration of contaminant 
(µg/m3); Da: diffusion coefficient of contaminant 
in air (cm2/s); ρs:  solids particle density (g/cm3); 
θsw: volumetric soil water content (ml/cm3); 
Cpd:  concentration in plant due to particle 
deposition (µg/g); Fw: fraction of wet deposition 
that adheres to plant surfaces (unitless); Kp:  
plant  surface loss coefficient (yr –1); Tp: time of 
plant's exposure to deposition (yr); Yp: yield or 
standing crop biomass (kg/m2); Cpr: 
concentration plant due to root uptake (µg/g); Br:  
soil to plant bioconcentration factor (g soil/g 
plant); Cbeef: concentration in beef (mg/kg); Fi: 
fraction of plant grown on contaminated soil and 
eaten by the animal (unitless); Qp: quantity of 
plant eaten by the animal (kg plant/d); Cp= Cpd 
+ Cpr (µg/g);  Qs: quantity of soil eaten by the 
animal (kg soil/d); Babeef: biotransfer factor for 
beef (d/kg);  Cmilk: concentration in milk 
(mg/kg); Bamilk: biotransfer factor for milk 
(d/kg). s: quantity of soil eaten by the animal (kg 
soil/d); Babeef: biotransfer factor for beef (d/kg); 
Cmilk: concentration in milk (mg/kg); Bamilk: 
concentration in milk (mg/kg); Bamilk: biotransfer 
factor for milk (d/kg)  
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Table 4.8: Exposure model 

EXPOSURE MODEL 

Air inhalation 

 
Inhalation of resuspended dust 

 
where:  

 

Dermal absorption 

 
Ingestion of soil 

 
Ingestion of contaminated food 

 

ADDinh: inhalation of air average daily dose (mg/kg 
day); Cair: PCDD/F air concentrations g I-TEQ/m3; 
IR: inhalation rate (m3/day); AFIi: adsorption factor 
for inhalation; EF: exposure frequency (day/year); 
BW: body weight (kg); ADDres: inhalation of 
resuspended dust average daily dose (mg/kg day); 
Cres: concentration in resuspended dust (µg/m3); 
RET: fraction retained in the lung (unitless); Cpa: 
particle concentration in air (µg/m3); Fres: fraction of 
resuspended soil in particle concentration (unitless); 
Cs: soil concentration (µg/g); ADDd: dermal 
absorption daily dose (mg/kg day); AF: adherence 
factor (mg/cm2); SA: exposed skin surface (m2/day); 
ABSd: dermal absorption factor (unitless); ADDs 
ingestion average daily dose (mg/kg day); CRs: soil 
consumption rate (mg/day); AFIg: gastrointestinasl 
absorption factor (unitless); ADDf: food ingestion 
average daily dose (mg/kg day); CFi: concentration 
in  “i” food (µg/g): CRF: consumption rate of each 
“i” food type (g/day); Fi; fraction of food each “i” 
food type produced in the contaminated area 
(unitless). 

 

Table 4.9: Health risk characterization model 

HEALTH RISK CHARACTERIZATION 

No carcinogenic risk  

 

Carcinogenic risk 

 

 

ADD: average daily dose (mg/kg day); HQ: 
Hazard quotient (unitless); RfD: reference 
dose (mg/kg day); ER: excess cancer risk 
(unitless); ED: exposure duration (yr); SF: 
slope factor (mg/kg day)-1; AT: average 
lifetime (yr). 
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ANNEX II 

Table 4.10:General parameters of multi-compartmental model 

Parameter Symbol Units Uncertainty Type Distribution /Value Comments/References 

Total time of deposition TD yr Uncertain Tri(30, 40, 60) 
Expected life time of MSWI was assumed to be 

30-60 years 

Soil mixing depth Zs cm Variable Uni(10-20) (US EPA, 1998) 

Average annual moisture 
(rainfall, snowfall) 

May cm/yr Variable 
Min: 100.04; Mean: 111.74; Max: 128.93 

Std: 11.06 
Extracted from 10 years data of the area (1994-

2004) (Ministerio de Medio Ambiente) 

Bulk density  BD g/cm3 Variable Uni(0.93-1.84) (Hoffman and Baes, 1979) 

Volumetric soil water 
content   θsw ml/cm3 Variable Uni(0.03-0.40) (Hoffman and Baes, 1979) 

Solids particle density  ρs g/cm3 Variable Uniform(2.6-2.7) (Hillel, 1980; Blake and Hartge, 1996) 

Yield crop biomass  of plant 
group (vegetables/fruits) 

Yp kg/m2 Variable  Uni(0.24-0.31) (Belcher and Travis, 1989; Shor et al., 1982) 

Quantity of plant eaten by 
the animal  

Qpi  kg/day Variable 
Dairy Cattle: Uni(2.6-11); Beef cattle: 

Uni(0.47-8.8) 

Derived from data of seven types of grains, two 
types of forage and two types of silage for 
beef and dairy cattle 

 (US EPA , 1997) 

Soil consumption rate 
(animal) 

Qs kg/day Variable 
Dairy Cattle: Uni(0.1367-2.64); Beef 

cattle: Uni(0.13-1.17) 

(US EPA, 1997) 

(1-18% of dry matter intake) 

Time of plant's exposure to 
deposition per harvest  

Tp yr Variable  Uni(0.0822- 0.1644) (Belcher and Travis, 1989) 

Dry deposition velocity* Vd cm/sec 
Uncertain 

&Variable 
UniTri([4.98E-03 2.73E-02 7.41E-02], 

[6.22E-03 7.18E-02 1.235E-01]) 
Depends on the size of the air particles. 

Estimation is shown in Table 2 

* Separate calculation has been provided in next table 
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Calculation of deposition velocity 
The emissions were modeled in three size classes of particles. 

Table 4.11:Particle size distribution and velocity estimation 

 

 

 

 

Table 4.12:Contaminant Specific parameters (in this case PCDD/Fs) 

Parameters Symbol Units 
Uncertainty 

Type 
Value/Distribution Comments 

Contaminant air concentration  Cair mg/m3 
Uncertain & 

Variable 
Tri([2.10E-10, 9.27E-11, 3.50E-10], 

[1.05e-13, 1.05e-12, 1.05e-10]) 
Derived from routine sampling in 

the area (10 samples) 

Water partition coefficient  Kow  Variable (4.62E+06, 0.73) Caltox database 

Fraction of food produced in the 
contaminated area 

Fi unitless Variable Uni(0.01 0.1) 
The consumption of food 

produced in contaminated area 
was assumed to be 1-10%. 

Diffusion coefficient of contaminant in 
air  

Da cm2/s Variable Normal(4.2E-1, 0.08) Caltox database 

Fraction of wet deposition that adheres 
to plant surfaces 

Fw unitless Uncertain [0.5 0.6 0.7]  (US (EPA, 1998))  

Soil loss constant Ks yr-1 
Uncertain 

&Variable 
Uni([0.76 0.81 0.90], [0.03 0.07 0.11]) 

Calculated using formula in (EPA, 
1998) 

Volumetric washout ratio for 
particulates 

Wp unitless Uncertain  [1.00E+2 1.05E+2 1.1E+2] (US (EPA, 1998)) 

Plant surface loss coefficient Kp unitless Uncertain [14.0 18.0 21.0] (US (EPA, 1998)) 

Particles Size AbsoluteVelocity (cm/sec) Particle Percentage (%) Estimated Velocity (cm/sec) 

< 2 µm 7.11E-03 70.0- 87.5 4.98E-03-6.22E-03 
< 2-1000 µm 2.87E-01 9.5- 25.0 2.73E-02-7.18E-02 
>1000 µm 2.47 3.0-5.0 7.41E-02-1.235E-01 
[2 500 1000] [7.11E-03 2.87E-01 2.47]  Tri_Uni([4.98E-03 2.73E-02 7.41E-02], [6.22E-03 7.18E-02 1.235E-01]) 
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Table 4.13: Input Parameters for exposure model 

Parameters Symbol Units Uncertainty Type Value/Distribution Observation 

Lognormal(67.52 ± 12.22) (Arija et al., 1996) 
Body weight  BW Kg Uncertain &Variable 

Lognormal(77.1 ± 13.5) (Smith, 1994) 

Lognormal(20 ± 2) (Shin et al., 1998) 
Inhalation Rate IR m3/day Uncertain &Variable 

Uniform(5.05-17.76) (Finley, 1994a) 

Fraction retained in the lung RET unitless Uncertain Tri( 45 60 70) (Nessel et al., 1991) 

Absorption factor for inhalation AFIi unitless Uncertain 100 (Nessel et al., 1991) 

Lognormal(3.44 ± 0.8) (LaGrega et al., 1994) 
Soil ingestion rate (human) CRs mg/day Uncertain &Variable 

Tri 25 (0.1- 50) (Lagoy, 1987) 

Consumption rate of vegetables CRFveg g/day Variable Lognormal (99 ± 80) (Arija et al., 1996) 

Consumption rate of fruit CRFfruit g/day Variable Lognormal (236 ± 174) (Arija et al., 1996) 

Consumption rate of milk CRFmilf g/day Variable Lognormal (226 ± 177) (Arija et al., 1996) 

Consumption rate of beef CRFbeef g/day Variable Lognormal (180 ± 84) (Arija et al., 1996) 

Gastrointestinal absorption factor AFIg unitless Uncertain Tri(40 60 100) (Nessel et al., 1991) 

Exposed skin surface area (Adult 
surface area: head, hands, forearms, 
lower legs) 

SA m2/day Uncertain Tri(0.20 0.53 0.58) ( US EPA, 1992) 

Adherence Factor AF mg/cm2 Uncertain Tri (0.52 71 0.9) (Finley, 1994b) 

Dermal absorption factor ABSd unitless Uncertain Tri (0.001 0.003 0.03) 
(Katsumata and Kastenberg, 

1997) 

Exposure Frequency EF day/yr Variable Tri 345 (180-365) (Smith, 1994) 
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Table 4.14: Specific chemical parameters (PCDD/Fs) for risk evaluation 

Parameters Symbol Units Uncertainty Type Value/Distribution Observation 

Average Lifetime AT yr Variable Lognormal (75 ± 5) (Frey, 1993) 

Exposure duration (adult resident) ED yr Variable Lognormal (11.4 ± 13.7) (Israeli, 1992) 

Tolerable Daily Intake TDI mg/kg day Variable Uniform (1E-9 - 4E-9) (van Leeuwen et al., 2000) 

Slope Factor SF (mg/kg day)-1 Variable Uniform (34000-56000) 
(Katsumata and Kastenberg, 

1997) 
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CHAPTER 5 

DEFINITION AND GIS-BASED CHARACTERIZATION OF AN INTEGRAL 

RISK INDEX APPLIED TO A CHEMICAL/PETROCHEMICAL AREA 

Abstract 
 

A risk map of the chemical/petrochemical industrial area of Tarragona (Catalonia, 

Spain) was designed following a 2-stage procedure. The first step was the creation of a 

ranking system (Hazard Index) for a number of different inorganic and organic pollutants: 

heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), 

polychlorinated biphenyls (PCBs) and polychlorinated aromatic hydrocarbons (PAHs) by 

applying Self-Organizing Maps (SOM) to persistence, bioaccumulation and toxicity 

properties of the chemicals. PCBs seemed to be the most hazardous compounds, while the 

light PAHs showed the minimum values. Subsequently, an Integral Risk Index was 

developed taking into account the Hazard Index and the concentrations of all pollutants in 

soil samples collected in the assessed area of Tarragona. Finally, a risk map was elaborated 

by representing the spatial distribution of the Integral Risk Index with a Geographic 

Information System (GIS). The results of the present study show that the development of 

an integral risk map can be useful to help in making-decision processes concerning 

environmental pollutants. 

 

Keywords: Environmental pollutants; Risk map; Hazard Index; Self-organizing maps; 

Geographic Information System; Tarragona (Catalonia, Spain) 
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5.1 Introduction 

The assessment of health risks due to exposure to environmental pollutants has been 

usually focused on analyzing the impact of a single compound over groups of population. 

However, people are rarely exposed to individual substances, but to a notable variety of 

chemicals (Haddad et al., 2001). In recent years, new efforts have been made in order to 

take into account the possible adverse health effects of an exposure to pollutant mixtures, 

rather than to single chemicals (Cizmas et al., 2004; Jonker et al., 2004; Monosson, 2005; 

Pohl et al., 2003; Wilbur et al., 2004). One of the main fields has been the development of 

ranking and scoring systems to prioritize substances (Lerche et al., 2004; Lerche & 

Sorensen, 2003; Swanson & Socha, 1997). These new methodologies are aimed to 

establish an order of importance of different chemicals depending on individual 

characteristics, such as human and ecological effects. The US Environmental Protection 

Agency (US EPA) and the European Union have been working in PBT Profiler (US EPA, 

2004) and EU Risk Ranking Method (Hansen et al., 1999), respectively, as methods to rank 

substances. Often, ranking systems have been based on 3 basic characteristics to 

quantitatively assign a score to each substance: Persistence, Bioaccumulation and Toxicity, 

commonly known as PBT (Knekta et al., 2004). Thus, the US EPA developed the Waste 

Minimization Prioritization Tool (WMPT) (US EPA, 1997b), where a single score is 

calculated in terms of those three categories (Pennington & Bare, 2001). In turn, Snyder et 

al. (2000) described a Chemical Scoring and Ranking Assessment Model (SCRAM), which 

was developed according to the same PBT categories. In this latter tool, uncertainty related 

to lack of knowledge was incorporated as an additional element in order to allow 

assessment of those chemicals for which data are limited (Mitchell et al., 2002).  

The basic aim to create new risk assessment methodologies is to help in the 

making-decision processes. Therefore, these techniques must be easily understandable and 

usable by all the stakeholders (scientists, politicians, general public, etc.). Recent advances 

in the computational field have increased not only the capacity and robustness of data 

treatment. A notable improvement has been also made to get quickly comprehensible 

results. Kohonen Self-Organizing Maps (SOM) have become a largely used methodology 

to classify large amounts of data (Nadal et al., 2004a; Park et al., 2004). Originally 
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developed by Kohonen (1982), this is an unsupervised artificial neural network (ANN). It 

is considered a future step in comparison to the classic statistical tools. SOM, which is 

based on data mining, allow to deal very efficiently with uncorrelated and heterogeneous 

data (Brosse et al., 2001). SOM, as well as other ANN techniques, have been successfully 

applied to characterize environmental pollution in particular areas (Dan et al., 2002; Nadal 

et al., 2004c; Olcese & Toselli, 2004; Shang et al., 2004). Likewise, the Kohonen’s map 

has been successfully applied for ranking in environmental assessment (Tran et al., 2003). 

On the other hand, Geographic Information Systems (GIS) are very powerful tools not only 

to design maps of a specific territory, but also to explore data in order to simulate present 

and future stages. In environmental sciences, GIS have been widely used to analyze a huge 

variety of land characteristics, and to solve problems related to human activities (Blanco & 

Cooper, 2004; Carlon et al., 2001; Elbir, 2004; Facchinelli et al., 2001; Nam et al., 2003; 

Thums & Farago, 2001).  

Since approximately 30 years ago, one of the largest chemical/petrochemical 

complexes in Southern Europe is located in Tarragona County (Catalonia, Spain). A big oil 

refinery is placed in the zone, together with a number of important chemical and 

petrochemical industries. In response to the concern of the local population to these 

facilities, in recent years we initiated a wide survey focused on determining the current 

levels of various inorganic and organic pollutants in the area (Nadal et al., 2004b, 2004c; 

Schuhmacher et al., 2004). The purpose of the present study was double. Firstly, to develop 

a SOM-based Integral Risk Index to assess the global pollution of a potentially polluted 

area. Secondly, to elaborate a risk map of the chemical/petrochemical area of Tarragona by 

applying a GIS-characterization of the Index. 

5.2 Materials and methods 

5.2.1 Artificial neural networks 

Artificial neural networks (ANN) are systems of elementary computing units that 

model the information-processing abilities of biological neural networks (Cross et al., 1995; 

Gagne & Blaise, 1997; Hernandez-Borges et al., 2004). They are capable of learning from 

examples and are often implemented as a computer program. These biologically-inspired 
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methods of computing are thought to be the next major advancement in the computing 

industry. With the advances in biological research and better understanding of the natural 

thinking mechanism, many models have been proposed based on different mechanisms of 

neuron system. One of the major capabilities of the human brain is its self-organizing 

capacity. According to this, a self-organizing neural network system called SOM was 

proposed by Kohonen (1982). Since then, SOM has been intensively used as a tool for 

visualization and classification of data. 

5.2.2 Integral risk index 

The Integral Risk Index was obtained by the following equation: 

 

(1) 

 

5.2.2.1 Hazard Index 

The Hazard Index (HI) was a slight modification of the WMPT developed by the 

US EPA (Pennington & Bare, 2001). The HI shows the relative hazard of a compound 

respect to the rest. It is based on 3 independent categories: 

a) Persistence: given by half-lives in air, water, soil and sediments (Mackay et al., 

2000). 

b) Bioaccumulation: given by the Bioconcentration Factor logarithm (log BCF). The 

BCF was obtained from octanol-water constant (Kow) by EPI software BCFWin 

(Meylan, 1999). 

c) Toxicity: given by the non-carcinogenic effects (Reference Dose, RfD), through 

inhalation, dermal absorption and ingestion, as well as the carcinogenic effects 

(Slope Factor, SF), through inhalation, dermal absorption and ingestion. Toxicity 

data were obtained from the Risk Assessment Information System (RAIS, 2005) . 

In the present study, the HI was calculated by a set of different organic and 

inorganic pollutants. The analyzed heavy metals were arsenic (As), cadmium (Cd), 

chromium (Cr), mercury (Hg), manganese (Mn), lead (Pb), and vanadium (V). In turn, 10 

PCDD/F homologues (corresponding to 2,3,7,8-substituted congeners), 7 PCBs (28, 52, 

                Σ (Hazard Index  ×  Pollutant Concentration) 
Integral Risk Index  =  
                                                             No. Pollutants 
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101, 118, 153, 138, and 180), and 16 PAHs were included as organic contaminants. 

Therefore, a matrix consisting on 41 pollutants and 11 parameters was elaborated. 

To normalize the criteria, a SOM was applied to all data. Kohonen’s map becomes 

really interesting to establish similarities among a huge number of different chemicals by 

using a single picture. Moreover, SOM was also used as a further normalization system in 

order to avoid extreme values for each variable. Once the results of the SOM were 

obtained, they were grouped by PBT categories. Subsequently, the following weighting 

was applied to each category:  a) Persistence received a weight of 3, b) Bioaccumulation 

was also given a weight of 3, and c) Toxicity weight was 4, divided into 2 for each, non-

carcinogenic and carcinogenic toxic effects. The HI was calculated as the single addition of 

the weighted values. In its totality, unlike WMPT whose score ranged 3-9, the HI could 

have a value between 0 and 10. 

5.2.2.2 Pollutant Concentrations 

Soil samples were collected in several locations around the chemical/petrochemical 

industrial area of Tarragona (Catalonia, Spain) (Figure 5.1). Levels of all pollutants were 

determined and the results were recently reported. Sampling and analysis methodology 

were described elsewhere (Nadal et al., 2004b, 2004c; Schuhmacher et al., 2004). In brief, 

24 soil samples were collected in 4 different areas (chemical, petrochemical and residential 

zones, as well as unpolluted areas), and dried at room temperature. Heavy metals were 

determined through digestion with nitric acid and analyzed by inductively coupled mass 

spectrometry (ICP-MS) (Nadal et al., 2004c). After extraction and clean-up, the chlorinated 

compounds (PCDD/Fs and PCBs) were determined by high-resolution gas 

chromatography/high-resolution mass spectrometry (HRGC/HRMS), following US EPA 

method 1625 (Schuhmacher et al., 2004). Finally, PAH levels were determined by gas 

chromatography (GC-FID) (Nadal et al., 2004b). 

The concentration of each individual compound/congener was properly normalized, 

according to the following equation: 

  

(2) 
minmax

min

XX

XX
X norm

−

−
=
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where Xnorm is the normalized concentration, X is the individual amount of a 

compound for each sample, Xmin is the lowest value of the range, and Xmax is the maximum. 

If unpolluted areas are also sampled, Xmin should ideally correspond to blank samples. 

Figure 5.1: Sampling points in the area of study 

5.2.3 GIS mapping 

Spatial distribution of the concentration of all groups of pollutants, as well as the 

Integral Risk Index, were mapped out with MiraMon 5.0 GIS software. This tool was 

developed by the “Centre de Recerca Ecològica i Aplicacions Forestals” (CREAF, 

Barcelona, Spain). It has been widely used in environmental sciences research (Pons, 2000; 

Serra et al., 2003). Inverse distance weighted was carried out in order to interpolate geo-

referenced data. This method is based on assuming that each input point has a local 

Sampling point 

Chemical zone 

Petrochem. area 

Urban/Residential 

MEDITERRANEAN 
SEA 
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influence that diminishes with the distance (Panagopoulos et al., in press). In the present 

study, the Risk Map was overlapped with a spatial distribution of soil uses. The main 

objective was to point out the most impacted areas, not only because of high risk levels, but 

also due to the closeness to agricultural and/or inhabited areas.  

Figure 5.2: Kohonen self-organizing map (SOM) obtained in PBT (Persistence, Bioaccumulation and 

Toxicity) values of the pollutants under study1 

5.3  Results and discussion 

5.3.1 Hazard Index 

The application of self-organizing algorithm to PBT data of all pollutants is 

depicted in Figure 5.2. The map structure was based on a rectangular grid with 96 hexagons 

(12 x 8). The learning phase was broken down with 10,000 steps, and the tuning phase 

consisted on 10,000 additional steps. All chemicals were spread over the 96-units grid, 

                                                 
1 Abbreviations: Naph: naphthalene; Acen: acenaphthene; Fluor: fluorene; Fluthn: fluoranthene; Anthr: anthracene; Acnthy: 
acenaphthylene; Bghiper: benzo[g,h,i]perylene; Chrys: chrysene; Bkflu: benzo[k]fluoranthene; Ind-pyr: indeno[1,2,3-cd]pyrene; Baanth: 
benzo[a]anthracene; Bbflu: benzo[b]fluoranthene; Bap: benzo[a]pyrene; Dbzaha: dibenzo[a,h]anthracene. 
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according to similarities of persistence, bioaccumulation and toxicity. Five main clusters 

were formed: 1) PCDD/F homologues appeared in the lowest part of the grid, 2) PCBs 

were grouped in the right, 3) heavy PAHs appeared in the middle part of the map, 4) light 

PAHs were grouped in the left high-corner, and finally, 5) heavy metals were grouped in 

the right high-corner.  

Figure 5.3: Component planes (c-planes) of the SOM results for all pollutants under study 

Data treatment with SOM was also used for “correlation hunting”. This is to say; to 

compare the influence of each variable over input data. To illustrate it, component planes 

(c-planes) are depicted in Figure 5.3. C-planes represent the normalized PBT value of each 

virtual unit of the map. This value ranged between 0 and 1. The individual score for the 

PBT variables of all pollutants is summarized in Table 5.1. In turn, the resulting Hazard 

Indexes are numerically shown in Table 5.2. 

Half-life in air Half-life in soil 

Half-life in water Half-life in sediments 

Log BCF 

Dermal RfD 

Inhalation RfD 

Oral RfD 

Dermal SF 

Inhalation SF 

Oral SF 
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Table 5. 1Individual score1 of all variables for each pollutant after SOM application  

Chemicals 
log BCF2 
 

Dermal 
RfD3 

Inhalatio
n RfD 

Oral 
RfD 

Dermal 
SF4 

Inhalatio
n SF 

Oral 
SF 

Half-life 
air 

Half-life 
water 

Half-life 
soil 

Half-life 
sediments 

            
Arsenic 1.47E-04 9.10E-01 9.40E-02 9.30E-01 2.20E-01 5.50E-01 2.20E-01 6.00E-01 1.00E+00 1.00E+00 1.00E+00 
Cadmium 1.47E-04 9.10E-01 9.40E-02 9.30E-01 2.20E-01 5.50E-01 2.20E-01 6.00E-01 1.00E+00 1.00E+00 1.00E+00 
Chromium (III) 1.81E-02 6.00E-01 1.30E-01 5.80E-01 8.60E-03 6.30E-02 8.30E-03 5.90E-01 9.80E-01 9.90E-01 1.00E+00 
Chromium (VI)  7.77E-04 7.60E-01 6.90E-01 7.30E-01 5.30E-02 4.00E-01 5.20E-02 6.00E-01 1.00E+00 1.00E+00 1.00E+00 
Lead and compounds  4.11E-02 9.30E-02 2.80E-01 7.40E-02 2.30E-02 3.30E-02 2.30E-02 6.00E-01 9.80E-01 9.90E-01 1.00E+00 
Manganese  1.24E-02 6.30E-01 8.80E-01 6.00E-01 1.70E-02 2.40E-01 1.70E-02 6.10E-01 1.00E+00 1.00E+00 1.00E+00 
Mercury 5.43E-02 8.60E-01 1.10E-02 7.00E-01 2.80E-02 6.80E-02 2.70E-02 5.80E-01 9.40E-01 9.70E-01 1.00E+00 
Vanadium 5.43E-02 8.60E-01 1.10E-02 7.00E-01 2.80E-02 6.80E-02 2.70E-02 5.80E-01 9.40E-01 9.70E-01 1.00E+00 
            
Acenaphthene  4.05E-01 5.20E-01 1.10E-01 6.50E-01 3.30E-06 2.60E-06 2.80E-06 1.80E-01 1.80E-01 3.00E-01 4.50E-01 
Acenaphthylene  4.70E-01 4.30E-02 7.50E-03 5.50E-02 1.80E-02 6.00E-03 6.50E-03 2.20E-01 2.20E-01 3.70E-01 5.50E-01 
Anthracene  4.42E-01 4.60E-01 4.40E-02 5.80E-01 2.00E-04 1.60E-04 1.70E-04 2.20E-01 2.20E-01 3.60E-01 5.40E-01 
Benzo[a]anthracene  7.25E-01 6.40E-07 1.50E-05 5.20E-07 5.40E-01 4.80E-01 5.10E-01 4.10E-01 4.10E-01 6.80E-01 1.00E+00 
Benzo[a]pyrene  7.72E-01 1.10E-09 2.10E-09 3.80E-04 6.40E-01 5.50E-01 5.80E-01 4.10E-01 3.80E-01 6.70E-01 1.00E+00 
Benzo[b]fluoranthene  7.25E-01 6.40E-07 1.50E-05 5.20E-07 5.40E-01 4.80E-01 5.10E-01 4.10E-01 4.10E-01 6.80E-01 1.00E+00 
Benzo[g,h,i]perylene  6.93E-01 7.10E-03 2.00E-04 9.00E-03 1.70E-01 1.30E-01 1.50E-01 3.60E-01 3.60E-01 6.00E-01 9.00E-01 
Benzo[k]fluoranthene  7.33E-01 1.20E-05 1.50E-05 1.40E-05 4.90E-01 4.10E-01 4.30E-01 4.00E-01 4.00E-01 6.70E-01 1.00E+00 
Chrysene  7.18E-01 5.60E-04 4.20E-04 5.60E-04 3.50E-01 3.00E-01 3.20E-01 4.00E-01 4.00E-01 6.70E-01 9.90E-01 
Dibenzo[a,h]anthracene  7.72E-01 1.10E-09 2.10E-09 3.80E-04 6.40E-01 5.50E-01 5.80E-01 4.10E-01 3.80E-01 6.70E-01 1.00E+00 
Fluoranthene  4.75E-01 6.00E-01 2.50E-03 7.00E-01 7.90E-05 1.80E-04 7.50E-05 3.80E-01 4.30E-01 6.40E-01 9.10E-01 
Fluorene  4.05E-01 5.20E-01 1.10E-01 6.50E-01 3.30E-06 2.60E-06 2.80E-06 1.80E-01 1.80E-01 3.00E-01 4.50E-01 
Indeno[1,2,3-cd]pyrene  7.54E-01 1.50E-07 2.60E-07 1.90E-07 5.80E-01 4.80E-01 5.00E-01 4.00E-01 3.90E-01 6.70E-01 1.00E+00 
Naphthalene  3.62E-01 5.30E-01 2.50E-01 6.70E-01 1.10E-06 5.00E-07 5.40E-07 1.20E-01 1.20E-01 2.00E-01 3.10E-01 
Phenanthrene  4.70E-01 4.30E-02 7.50E-03 5.50E-02 1.80E-02 6.00E-03 6.50E-03 2.20E-01 2.20E-01 3.70E-01 5.50E-01 

                                                 
1 Score is unitless. Range: 0-1; 
2 BCF: Bioconcentration Factor 
3 RfD: Reference Dose 
4 SF: Slope Factor 
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Pyrene  4.75E-01 6.00E-01 2.50E-03 7.00E-01 7.90E-05 1.80E-04 7.50E-05 3.80E-01 4.30E-01 6.40E-01 9.10E-01 
            
TCDD 8.24E-01 4.20E-18 6.90E-16 5.40E-18 9.60E-01 9.50E-01 9.50E-01 4.80E-01 2.10E-01 6.70E-01 1.00E+00 
PeCDD 7.85E-01 3.20E-17 1.00E-13 2.70E-17 9.40E-01 9.40E-01 9.40E-01 5.20E-01 2.20E-01 6.70E-01 1.00E+00 
HxCDD 5.71E-01 1.10E-13 1.10E-09 1.10E-13 8.50E-01 8.50E-01 8.50E-01 6.00E-01 2.60E-01 9.50E-01 1.00E+00 
HpCDD  5.71E-01 1.10E-13 1.10E-09 1.10E-13 8.50E-01 8.50E-01 8.50E-01 6.00E-01 2.60E-01 9.50E-01 1.00E+00 
OCDD  5.26E-01 6.10E-12 3.30E-09 5.80E-12 7.40E-01 7.40E-01 7.40E-01 6.10E-01 5.90E-01 1.00E+00 1.00E+00 
TCDF 7.78E-01 7.10E-06 4.80E-07 9.60E-06 7.30E-01 2.00E-01 2.10E-01 3.90E-01 2.80E-01 6.60E-01 9.80E-01 
PeCDF  8.29E-01 3.10E-15 6.30E-15 4.20E-15 9.10E-01 9.00E-01 9.10E-01 4.90E-01 2.20E-01 6.70E-01 1.00E+00 
HxCDF  7.16E-01 6.50E-16 6.80E-12 2.70E-17 9.10E-01 9.00E-01 9.00E-01 5.80E-01 2.60E-01 7.00E-01 1.00E+00 
HpCDF  6.71E-01 1.40E-12 5.10E-09 1.00E-12 8.60E-01 8.50E-01 8.50E-01 5.80E-01 3.30E-01 7.30E-01 1.00E+00 
OCDF  5.26E-01 6.10E-12 3.30E-09 5.80E-12 7.40E-01 7.40E-01 7.40E-01 6.10E-01 5.90E-01 1.00E+00 1.00E+00 
            
PCB-28 7.63E-01 3.80E-05 5.40E-03 3.10E-05 4.90E-01 4.90E-01 4.90E-01 6.00E-01 7.60E-01 9.30E-01 1.00E+00 
PCB-52 8.87E-01 5.90E-06 6.80E-04 5.70E-06 5.00E-01 5.10E-01 5.10E-01 8.20E-01 9.70E-01 1.00E+00 1.00E+00 
PCB-101 9.06E-01 1.20E-05 3.20E-04 1.10E-05 5.00E-01 5.00E-01 5.00E-01 8.60E-01 9.90E-01 1.00E+00 1.00E+00 
PCB-118 9.06E-01 1.20E-05 3.20E-04 1.10E-05 5.00E-01 5.00E-01 5.00E-01 8.60E-01 9.90E-01 1.00E+00 1.00E+00 
PCB-153 8.68E-01 4.00E-04 2.90E-03 3.80E-04 4.90E-01 4.90E-01 5.00E-01 9.30E-01 1.00E+00 1.00E+00 1.00E+00 
PCB-138 8.68E-01 4.00E-04 2.90E-03 3.80E-04 4.90E-01 4.90E-01 5.00E-01 9.30E-01 1.00E+00 1.00E+00 1.00E+00 
PCB-180 7.60E-01 7.10E-03 4.80E-02 6.80E-03 4.60E-01 4.70E-01 4.70E-01 9.30E-01 1.00E+00 1.00E+00 1.00E+00 
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Table 5.2: Persistence, Bioaccumulation and Toxicity (PBT) scores and Hazard Index (HI) for all 

pollutants, ordered according to the HI value 

 
Persistence 

(0-3) 

Bioaccumulation 

(0-3) 

Toxicity 

(0-4) HAZARD INDEX 

     
PCB-101 2.888 2.719 1.000 6.61 
PCB-118 2.888 2.719 1.000 6.61 
PCB-153 2.948 2.603 0.989 6.54 
PCB-138 2.948 2.603 0.989 6.54 
PCB-52 2.843 2.660 1.014 6.52 
PCB-180 2.948 2.279 0.975 6.20 
TCDD 1.770 2.472 1.907 6.15 
PeCDF 1.785 2.488 1.813 6.09 
PeCDD 1.808 2.354 1.880 6.04 
HxCDF 1.905 2.149 1.807 5.86 
PCB-28 2.468 2.288 0.984 5.74 
HpCDF  1.980 2.014 1.707 5.70 
HxCDD 2.108 1.713 1.700 5.52 
HpCDD 2.108 1.713 1.700 5.52 
OCDD  2.400 1.578 1.480 5.46 
OCDF  2.400 1.578 1.480 5.46 
Benzo[a]pyrene  1.845 2.317 1.180 5.34 
Dibenzo[a,h]anthracene  1.845 2.317 1.180 5.34 
Indeno[1,2,3-cd]pyrene  1.845 2.261 1.040 5.15 
Benzo[a]anthracene  1.875 2.176 1.020 5.07 
Benzo[b]fluoranthene  1.875 2.176 1.020 5.07 
Benzo[k]fluoranthene  1.853 2.198 0.887 4.94 
TCDF  1.733 2.334 0.760 4.83 
Arsenic  2.700 0.000 1.949 4.65 
Cadmium  2.700 0.000 1.949 4.65 
Chrysene  1.845 2.155 0.648 4.65 
Chromium (VI)  2.700 0.002 1.790 4.49 
Manganese  2.708 0.037 1.589 4.33 
Fluoranthene  1.770 1.426 0.869 4.06 
Pyrene  1.770 1.426 0.869 4.06 
Benzo[g,h,i]perylene  1.665 2.080 0.311 4.06 
Mercury 2.618 0.163 1.129 3.91 
Vanadium  2.618 0.163 1.129 3.91 
Chromium (III)  2.670 0.054 0.927 3.65 
Lead and compounds  2.678 0.123 0.351 3.15 
Anthracene  1.005 1.325 0.723 3.05 
Acenaphthene  0.833 1.216 0.853 2.90 
Fluorene  0.833 1.216 0.853 2.90 
Naphthalene  0.563 1.086 0.967 2.62 
Acenaphthylene  1.020 1.409 0.091 2.52 
Phenanthrene  1.020 1.409 0.091 2.52 
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According to the Hazard Index, PCBs were the most hazardous pollutants, with 

values ranging from 5.74 to 6.61. Although toxicity values were lower than those 

corresponding to PCDD/Fs, they are more persistent in the environment and bioaccumulate 

more easily in the body. Only the lightest PCB, PCB-28, presented a relatively lower 

Hazard Index, appearing in the position 12 of the list. This is basically due to the fact that it 

has a lower persistence than those more weighted compounds in the aqueous and 

atmospheric compartments. Sinkkonen and Paasivirta (2000) suggested PCB-28 half-lives 

of 72 and 1450 hr in air and water, respectively. This fact contrasted with values of 

persistence above 1500 and 3000 hr, respectively, for PCB-52 and heavier congeners. 

PCBs were followed by PCDD/F homologues, which appeared inversely ordered according 

to their chlorination degree. PCDD/Fs showed Hazard Indexes between 5.46 and 6.15, with 

a level of toxicity ranging 1.5-1.9, over a global of 4. Some authors have noted that non-

carcinogenic effects of PCDD/Fs may be more important than cancer hazards (Greene et 

al., 2003). Although a tolerable daily intake (TDI) for PCDD/Fs has been established in the 

range 1-4 pg TEQ/kg body weight (Van Leeuwen et al., 2000), no differentiation for the 

TDI has been carried out according to PCDD/F congeners and/or homologues. 

Consequently, since the US EPA has not recommended the derivation of a reference dose 

for these compounds yet (US EPA, 2000), non-carcinogenic toxicity was considered as 

zero. Since 2,3,7,8-TCDD is considered the most toxic congener, a toxic equivalency factor 

(TEF) of 1 is associated to it (Van den Berg et al., 2000). Specially high carcinogenic slope 

factors have been established for 2,3,7,8-TCDD, with values of  3·105, 1.16·105 and 1.5·105 

kg·day/mg for dermal, inhalation and oral exposure, respectively (RAIS, 2005). Since a 

TEF of 1 has been assigned to 1,2,3,7,8-PeCDD by WHO (Van den Berg et al., 2000), this 

congener may be considered so toxic as 2,3,7,8-TCDD. However, the Toxicity Value of 

PeCDDs in the Hazard Index was slightly lower because slope factors for 1,2,3,7,8-PeCDD 

have not been modified yet. Therefore, TCDD and PeCDD homologues did not appear in 

the same cell, but in contiguous units. Slope factors for 1,2,3,7,8-PeCDD and 1,2,3,7,8-

PeCDF have been identified to be one-half of that for 2,3,7,8-TCDD (RAIS, 2005). Among 

PCDD/F homologues, TCDF presented a relatively low value, basically due to their 

characteristics of relatively low persistence and toxicity.  

UNIVERSITAT ROVIRA I VIRGILI 
SOFT COMPUTING APPROACES TO UNCERTAINTY PROPAGATION IN ENVIRONMENTAL RISK MANGEMENT 
Vikas Kumar 
ISBN:978-84-691-8848-4/DL:T-1270-2008 



 99 

With regard to PAHs, the carcinogenic compounds presented the highest value. 

Benzo(a)pyrene and dibenzo(ah)anthracene are considered the most toxic PAHs, according 

to toxic equivalency factors associated to them. Nisbet and LaGoy (1992) established a 

value of 1 and 1.1 benzo(a)pyrene equivalents (B[a]P-eq) for benzo(a)pyrene and 

dibenzo(ah)anthracene, respectively. In the present study, both pollutants presented a 

Hazard Index of 5.34. Indeno(123-cd)pyrene, with a toxicity of 0.1 B[a]P-eq, accounted for 

a hazardous level of 5.15. Some of the remaining 16 PAHs appeared jointly with heavy 

metals, whereas the lightest hydrocarbons (i.e., naphthalene, acenaphthylene) seemed to be 

the less hazardous compounds. In spite of their high half-lives in all the environmental 

compartments, inorganic pollutants showed a low Hazard Index, mainly because of their 

extremely low bioaccumulation factors. Among these pollutants, As, Cd and Cr6+ were the 

most dangerous. In fact, these elements seemed to be even more toxic and persistent than 

PCDD/Fs. However, bioaccumulation was negligible. It must be taken into account that 

EPIWin software cannot derive a bioaccumulation factor for inorganic chemicals. 

Consequently, an extremely low value of 0.5 is supposed for all heavy metals. Although it 

is known that elements can bioaccumulate differently, a large uncertainty still remains 

around the establishment of reliable values of accumulation in the human body, based on a 

common base. 

5.3.2 Case study 

In 2002, a large environmental program was started near the petrochemical area of 

Tarragona. The levels of PCDD/Fs, PCBs, PAHs and 7 heavy metals were determined in 

several soil samples. The organic pollutants presented a very similar profile: the highest 

levels were found in soils collected in the chemical and the residential areas. These were 

followed, by far, by samples corresponding to the petrochemical zone, whose 

concentrations were only slightly higher than those of the unpolluted sampling sites. 

Differences between the most concentrated (chemical and residential areas) and the less 

impacted (petrochemical and unpolluted zone) were significant for PCDD/Fs and PCBs. 

However, for PAHs, they did not reach the level of statistical significance. With regard to 

heavy metals, industrial levels were also higher than those found in samples corresponding 

to urban and unpolluted areas. 
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Figure 5. 4: Spatial distribution of the levels of various pollutants in soil samples collected in the 

industrial area of Tarragona, Spain 

Geospatial analysis of data was developed in order to establish a possible common 

pattern of pollution according to the levels of contaminants. The spatial distribution of the 

concentrations in soils of PCDD/Fs, PCBs, PAHs, as well as two groups of heavy metals 

(Pb and Cr, and Hg and Cd) is depicted in Figure 5.4. Resulting maps for PAHs, PCBs and 

a) PAHs b) PCDD/Fs c) PCBs 

d) Pb + Cr e) Hg + Cd 
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Pb were similar. Two different “hot spots” were identified: 1) in the south-western corner 

of the chemical area, basically due to the fact that predominant wind blows from north, 

pollutants released to air by industries are deposited here, and 2) in Tarragona downtown, 

where traffic is known to be a major source of pollution, specially of PAHs and Pb. In turn, 

although levels of Hg and Cd were relatively high in the urban area, it was observed that 

the most impacted area by these elements was the western part of the chemical pole. The 

reason could be due to the presence of an important chlor-alkali plant in this zone. 

Likewise, the georeferenced map for PCDD/Fs suggested that this source might be a 

potential source of PCDD/Fs. Notable levels of PCDD/Fs were also found in a sampling 

point located in the northern area of the chemical pole, which is adjacent to a residential 

suburb. It has been suggested that uncontrolled waste could have been previously dumped 

in this specific location (Schuhmacher et al., 2004). 

A GIS-characterization based on the Integral Risk Index in the industrial area of 

Tarragona was carried out. According to equation 1, the Integral Risk Index corresponding 

to each sampling point was calculated. Since concentration profiles were similar for all 

pollutants, the resulting pattern was expected. The chemical and residential areas showed 

the highest Risk Index, with values of 1.49 ± 0.62 and 1.01 ± 0.52, respectively. 

Statistically significant lower levels of risk (p < 0.01) were observed in the petrochemical 

and unpolluted zones (0.44 ± 0.72 and 0.20 ± 0.59, respectively). The risk map of the 

industrial area of Tarragona, considered as the spatial distribution of the Integral Risk 

Index, is depicted in Figure 5.5. Three “hot spots” were identified, with pollution levels 

remarkably higher than the mean of contamination of the region. A large area comprising 

the SW and W corners of the chemical area were the most impacted zone, with a risk value 

up to 2.33. This relative high risk area might be due to the concentration of highly 

hazardous compounds, such as PCBs and PCDD/Fs, together with other chemicals (i.e., 

PAHs, Pb and V). However, special attention should be paid to the other “hot spots”, 

because they belong to inhabited areas. Northern part of the southern pole presented higher 

levels of PCDD/Fs, while pollution in Tarragona downtown was due to a mixture of 

different chemicals (PCBs, Pb and PAHs, mainly). Since this tool is oriented to help 
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making-decision stakeholders, and human health is the main aspect to be protected in risk 

management policies, polluted residential areas should be specially taken into account.  

Figure 5.5: Risk map of the chemical/petrochemical area of Tarragona, Spain 

In spite of the above, the GIS-based Integral Risk Index is only a relative way to 

show the risk of a particular area. In these terms, a maximum Risk Index was calculated on 

the basis of maximum allowed concentrations of different pollutants in soils according to 

the Catalan and Spanish legislations (BOE, 2005; Busquet, 1997). Thus, considering the 

Petrochemical Chemical Residential/Urban 

  0.1  2.3 Risk 
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soil quality guidelines of several heavy metals (As, Cd, Cr, Hg, and Pb), PAHs, and PCBs, 

the Maximum Integral Risk Index would be around 130 (Table 5.3). It is again 

corroborated that, although some specific zones of the chemical and residential areas of 

Tarragona could present a relative higher risk than others, the current environmental 

pollution does not pose, in principle, a significant risk for the population living in the 

vicinity of the chemical/petrochemical area. 

Table 5.3: Maximum allowed concentrations (mg/kg) of heavy metalsa, PAHsb and PCBsb according 

to the Catalan and Spanish legislations 

Arsenic 30 Pyrene 6 
Cadmium 3.50 Chrysene 20 
Chromium 200 Benzo(a)anthracene 0.20 
Mercury 10 Benzo(k)fluoranthene 2 

Lead 300 Benzo(b)fluoranthene 0.2 
Naphthalene 1 Benzo(a)pyrene 0.02 
Acenapthene 6 Indeno(123-cd)pyrene 0.3 

Fluorene 5 Dibenzo(ah)anthracene 0.03 
Anthracene 45  PCB 0.01 

Fluoranthene 8   

    

Maximum Integral Risk Index 130.8 

 

Risk communication and risk management can be defined as two subsequent stages 

of the health risk assessment process, consisting on 4 steps: hazard identification, dose-

response analysis, exposure assessment, and risk characterization (Goldstein, 2005; NRC, 

1993). These two further stages are more related to risk perception of public and political 

authorities, and they involve not only scientists, but also all other stakeholders (politicians, 

general public, technicians…). In recent years, different approaches such as Decision 

Support Systems, have been developed in order to give real alternatives to help the 

members who take part in the ultimate process of making-decision (Gheorghe & Vamanu, 

2004; Pojana et al., 2003). Therefore, the development of friendly-visualize tools to help 

the making-decision stakeholders has been proved to be important. We think that the role 

of the scientist must emphasize other aspects of risk analysis, such as risk communication 

and management. Considering this, in the present study the Integral Risk Index has been 

defined and presented as a new methodology to carry out integral risk assessments due to 

chemical mixtures. The GIS-characterization of this Index might be a first approach to 
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present diverse data of environmental pollution, which could make easier the making-

decision process. Anyhow, further studies should be focused on applying this technique to 

other presumably polluted areas and/or enlarge the number of chemicals to be incorporated. 

Moreover, uncertainty related to data knowledge of the pollutants and the land scenarios 

should be added as an additional measure to check the validity of the Integral Risk Index. 
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CHAPTER 6 

APPLICABILITY OF A NEURO-PROBABILISTIC INTEGRAL RISK INDEX 

FOR THE ENVIRONMENTAL MANAGEMENT OF POLLUTED AREAS: A 

CASE-STUDY 

Abstract 

Recently, we developed a GIS-integrated Integral Risk Index (IRI) to assess human 

health risks in areas with presence of environmental pollutants. Contaminants were 

previously ranked by applying a Self-Organizing Map (SOM) to their characteristics of 

persistence, bioaccumulation, and toxicity in order to obtain the Hazard Index (HI). In the 

present study, the original IRI was substantially improved by allowing the entrance of 

probabilistic data. A Neuro-Probabilistic HI was developed by combining SOM and 

Monte-Carlo analysis. In general terms, the deterministic and probabilistic HIs followed a 

similar pattern: polychlorinated biphenyls (PCBs) and light polycyclic aromatic 

hydrocarbons (PAHs) were the pollutants showing the highest and lowest values of HI, 

respectively. However, the bioaccumulation value of heavy metals notably increased after 

considering a probability density function to explain the bioaccumulation factor. To check 

its applicability, a case-study was investigated. The probabilistic integral risk was 

calculated in the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain), 

where an environmental program is being carried out since 2002. The risk change between 

2002 and 2005 was evaluated on the basis of probabilistic data of the levels of various 

pollutants in soils. The results indicated that the risk of the chemicals under study did not 

follow an homogeneous tendency. However, the current levels of pollution do not mean a 

relevant source of health risks for the local population. Moreover, the Neuro-Probabilistic 

HI seems to be an adequate tool to be taken into account in risk assessment processes. 

Key Words: Probabilistic self-organizing maps; Monte-Carlo; Hazard Index; integral risk; 

Tarragona (Catalonia, Spain) 
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6.1 Introduction 

Chemicals are present in the environment mainly as a result of human activities 

(industries, traffic, agriculture…) or the release from natural sources. Humans may be 

potentially exposed to an important amount of hazardous substances. In the last decade, 

several methodologies of chemicals prioritization have been studied and/or started to be 

used by national agencies, international organizations, and private companies. For instance, 

the European Risk Ranking Method (EURAM) and the Chemicals Hazard Evaluation for 

Management Strategies (CHEMS) have been developed by the European Union and the US 

EPA, respectively.(Hansen et al., 1999; Swanson et al., 1997) Their ultimate aim is not 

only to screen or to rank sets of chemicals, but also to help in the decision-making process 

through human health risk assessment. In addition, because of the need to assess global 

pollution, instead of considering individual components the importance of developing 

multicomponent risk indexes has increased in recent years. 

A common criterion about the best mathematical approach to be used in the 

construction of rankings has not been established yet. In recent years, based on the capacity 

to predict and to classify information, Artificial Neural Networs (ANNs) have become a 

very useful tool to manage large databases.(Wang et al., 2004) Moreover, when combined 

to Geographic Information Systems (GIS), ANN can help to identify patterns from 

remotely sensed data.(Shatkin & Qian, 2004) Among the different kinds of ANNs, 

Kohonen’s Self-Organizing Maps (SOM) are one of the most used. In environmental 

studies, they have been commonly used to characterize pollution of specific areas and 

forecast future situations.(Ferré-Huguet et al., 2006; Tran et al., 2003) On the other hand, 

most methodologies to prioritize chemicals are based on Persistence, Bioaccumulation and 

Toxicity (PBT) characteristics of the substances.(Bodar et al., 2002; Carlsen & Walker, 

2003; Mekenyan et al., 2005; Moss et al., 2001) In 2005, we developed a SOM-based 

integral risk index on the basis of PBT characteristics of a set of 41 inorganic and organic 

pollutants.  The applicability was examined in a case-study.(Nadal et al., 2006) 

Since 1980s, it has been observed that the variability and uncertainty are becoming 

critical in the 4-steps process of human health risk assessment. The uncertainty stems from 
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partial ignorance or lack of perfect knowledge,  while variability explains the heterogeneity 

inherit to the population.(Matthies et al., 2004; US EPA, 2001) Consequently, risk 

assessment must be performed from a probabilistic point of view, rather than by 

considering deterministic aspects. Among the probabilistic tools, in order to include the 

above aspects the use of Monte-Carlo analysis has been increasing in recent 

years.(Binkowitz & Wartenberg, 2001; Burmaster & Anderson, 1994; Lester et al., 2007; 

Nadal et al., 2004d; Öberg & Bergbäck, 2005; Price et al., 1996; Sander et al., 2006; Sanga 

et al., 2001; Sharma et al., 2005; Smith, 1994) This method has the advantage of allowing 

the analyst to account for relationships between input variables and to provide the 

flexibility to investigate the effects of different modeling assumptions.(US EPA, 1997a)  

Since risk assessment tools must include aspects of probability, the previously 

developed index risk(Nadal et al., 2006) was implemented by including Monte-Carlo 

analysis. In the present study, Monte-Carlo and SOM were integrated in order to create a 

neuro-probabilistic risk index by applying Probabilistic Artificial Neural Networks. 

Specifically, a Probabilistic SOM (PRSOM) was applied by varying the SOM 

mathematical algorithm to allow the entrance of probability density functions (PDFs) 

instead of point values.(Anouar et al., 1998; Saraceno et al., 2006; Wu & Chow, 2005) On 

the other hand, the applicability of the index was investigated in a case-study: the 

chemical/petrochemical industrial zone of Tarragona (Catalonia, Spain), where a wide 

environmental monitoring program is currently being carried out.  

6.2 Methods 

6.2.1 Hazard Index 

The construction of the Hazard Index (HI) was previously described.(Nadal et al., 

2006) In general terms, it stands on 3 variables: human toxicity (differentiating cancer and 

non-cancer effects), bioaccumulation potential, and persistence (PBT). Other 

methodologies, such as the Waste Minimization Prioritization Tool (WMPT) developed by 

the US EPA(Pennington & Bare, 2001; US EPA, 1998) are based on the same parameters. 

However, while the same weight is given by the WMPT for the 3 variables, the weighting 

is slightly different in the HI. Thus, while persistence and bioaccumulation scores can 
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account for up to 3 each, toxicity can reach the value of 4. In addition, in the present study 

HI was constructed using a probabilistic approach. It is acknowledged that risk assessment 

factors can mostly be described by lognormal distributions.(Haas, 1997; Slob & Pieters, 

1998; Swartout et al., 1998) In the current study, the following parameters were used: 

a) Persistence: Half-lives in air, water, soil and sediments. The original values were 

obtained from Mackay et al.(2000) According to Webster et al.(Webster et al., 

2005) the persistence of the chemicals can be classified into 10 classes depending 

on their mean half-life. For each one of these 10 classes, a range of half-lives is also 

given. The extreme values of this range can be taken as the minimum and 

maximum half-lives. Thus, a chemical is included in that specific persistence class. 

Considering the mean, maximum and minimum values, a triangular distribution 

could be constructed. Finally, the triangular distribution was approximated to a 

lognormal distribution. The corresponding standard deviation was calculated on the 

basis of the following expression: 

18

bcacabcba
.Dev.St

222 −−−++
=  

where a, b and c are the minimum, maximum and mean values, 

respectively.(Fiorito, 2006)  

b) Bioaccumulation: Bioconcentration factor logarithm (log BCF). The mean BCF 

was obtained from the octanol-water constant (Kow) by applying EPI software 

BCFWin.(Meylan, 1999) The standard deviation of the lognormal distribution 

corresponding to each chemical was calculated by setting a coefficient of variance 

(CV) of 0.58.(Lessmann et al., 2005) The CV is the ratio of the standard deviation 

and the mean of a given property. 

c) Toxicity: Non-cancer and cancer properties were separately considered. Non-

carcinogenic effects were assessed by means of the Reference Dose (RfD), while 

carcinogenic effects were evaluated with the Slope Factor (SF). The values 

corresponding to 3 pathways (ingestion, inhalation and dermal absorption) were 

used. All these parameters were obtained from the Risk Assessment Information 

System website.(RAIS, 2006) Because of the difficulty to obtain reliable 
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probabilistic data, a conservative value of CV=0.9 was considered.(Lessmann, 

2002) This is really arbitrary and reflects a high degree of uncertainty. However, 

this value has been used for determined environmental parameters in probabilistic 

exposure assessment in order to cover a range of two orders of magnitude.(Matthies 

et al., 2004)  

In the present study, the HI was calculated for a set of 41 chemicals: arsenic plus 

various heavy metals (Cd, Cr-VI, Cr-III, Pb, Mn, Hg and V), 10 polychlorinated dibenzo-p-

dioxins and furans (PCDD/F) homologues, 7 PCBs (environmental markers; numbers 28, 

52, 101, 118, 153, 138 and 180) and, finally, 16 US EPA priority PAHs. The Monte-Carlo 

distributions of the 11 PBT parameters are summarized in Table I.  

A PRSOM was applied to the PBT data. The original SOM algorithm was modified 

to accept probabilistic instead of deterministic data. In our previous study,(Nadal et al., 

2006) the SOM algorithm was modified to get an internal normalized weight vector as an 

ordered index of pollutant. In the SOM process, the weight initialization is a random 

process, and the final outcome of weight vector always depends on initial weight, although 

it is run over many times. To improve the quality of the index, SOM and Monte-Carlo 

techniques were converted into a Probabilistic SOM. 

The SOM criteria were the same as those of our previous study.(Nadal et al., 2006) 

The map structure was based on a rectangular grid with 96 (12 x 8) hexagons. Likewise, the 

learning and tuning phases consisted on 10,000 steps. The resulting Kohonen’s map 

indicates the position of the 41 chemicals, which are spread over the grid according to PBT 

affinities. Complementarily, 2 component planes (or c-planes) are obtained. The first c-

plane shows the normalized (0-1) mean values, whereas the second one illustrates the 

standard deviations. The position of each pollutant in the grid is the same in the map and 

the c-planes. Consequently, the mean and standard deviation of the HI corresponding to 

each of the 41 pollutants may be easily obtained. Subsequently, these values were 

introduced into the Crystall Ball software, where the lognormal PDFs of the 11 PBT 

parameters were constructed. The following weightings, derived from a slight modification 

of the US EPA WMPT,(Pennington & Bare, 2001; US EPA, 1998) were then applied to the 

whole probabilistic parameters: 3 to each persistence and bioaccumulation, and 2 to each 
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non-carcinogenic and carcinogenic toxicities. The minimum and maximum values of the 

HI were 0 and 10, respectively. 

In recent years, an important scientific effort has been made to assess the exposure 

of pollutant mixtures. One of the most important difficulties is the study of potential 

interactions (synergism or antagonism) when the effects following an exposure to various 

chemicals are assessed. In fact, the impact of mixtures has been found to be substantially 

more severe than the linear addition of the impacts of each of these substances only.(Dietz 

& van der Straaten, 1992) In the present study, a number of inorganic (heavy metals) and 

organic (PCDD/Fs, PAHs, and PCBs) pollutants were included. PCDD/Fs and PCBs have 

similar PBT characteristics. Currently, the toxic impact of the different congeners of both 

pollutants is estimated/given in TEQ (Toxic Equivalents), and the concentrations of 

PCDD/Fs and PCBs are generally given as a linear sum of the individual TEQ of each 

group of chemicals. Moreover, since some PAHs show a toxicity mechanism similar to the 

chlorinated compounds, a PAH TEF-based approach, similar to that of PCDD/Fs, has also 

been developed. Consequently, a linear aggregation was considered as a good approach for 

the assessment of a mixtures of the pollutants here analyzed. 
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Table 6.1: Original values (mean ± standard deviation) of the 11 PBT parameters for the 41 assessed pollutants (Monte-Carlo distributions) 

 BCF HL-air HL-water HL-soil HL-sedim 
As 3.16E+00 ± 1.83E+00 5.50E+02 ± 1.45E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
Cd 3.16E+00 ± 1.83E+00 5.50E+02 ± 1.45E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
Cr-III 3.16E+00 ± 1.83E+00 5.50E+02 ± 1.45E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
Cr-VI 3.16E+00 ± 1.83E+00 5.50E+02 ± 1.45E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
Pb 3.16E+00 ± 1.83E+00 5.50E+02 ± 1.45E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
Mn 3.16E+00 ± 1.83E+00 5.50E+02 ± 1.45E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
Hg 3.16E+00 ± 1.83E+00 5.50E+02 ± 1.45E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
V 3.16E+00 ± 1.83E+00 5.50E+02 ± 1.45E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
Acenaphthene  2.08E+02 ± 1.21E+02 5.50E+01 ± 1.45E+01 5.50E+02 ± 1.45E+02 5.50E+03 ± 1.45E+03 1.70E+04 ± 4.14E+03 
Acenaphthylene  2.16E+02 ± 1.25E+02 5.50E+01 ± 1.45E+01 5.50E+02 ± 1.45E+02 5.50E+03 ± 1.45E+03 1.70E+04 ± 4.14E+03 
Anthracene  5.33E+02 ± 3.09E+02 5.50E+01 ± 1.45E+01 5.50E+02 ± 1.45E+02 5.50E+03 ± 1.45E+03 1.70E+04 ± 4.14E+03 
Benz[a]anthracene  5.44E+03 ± 3.15E+03 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
Benzo[a]pyrene  1.05E+04 ± 6.07E+03 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
Benzo[b]fluoranthene  5.63E+03 ± 3.27E+03 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
Benzo[g,h,i]perylene  2.54E+04 ± 1.47E+04 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
Benzo[k]fluoranthene  1.01E+04 ± 5.86E+03 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
Chrysene  5.94E+03 ± 3.44E+03 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
Dibenz[a,h]anthracene  2.17E+04 ± 1.26E+04 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
Fluoranthene  1.88E+03 ± 1.09E+03 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
Fluorene  3.30E+02 ± 1.91E+02 5.50E+01 ± 1.45E+01 5.50E+02 ± 1.45E+02 5.50E+03 ± 1.45E+03 1.70E+04 ± 4.14E+03 
Indeno[1,2,3-cd]pyrene  2.86E+04 ± 1.66E+04 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
Naphthalene  6.93E+01 ± 4.02E+01 1.70E+01 ± 4.00E+00 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 5.50E+03 ± 1.45E+03 
Phenanthrene  5.42E+02 ± 3.15E+02 5.50E+01 ± 1.45E+01 5.50E+02 ± 1.45E+02 5.50E+03 ± 1.45E+03 1.70E+04 ± 4.14E+03 
Pyrene  1.14E+03 ± 6.62E+02 1.70E+02 ± 4.14E+01 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
TCDD 4.25E+04 ± 2.46E+04 1.70E+02 ± 4.14E+01 5.50E+02 ± 1.45E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
PeCDD 1.42E+04 ± 8.21E+03 5.50E+02 ± 1.45E+02 5.50E+02 ± 1.45E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
HxCDD 1.43E+03 ± 8.27E+02 5.50E+02 ± 1.45E+02 1.70E+03 ± 4.14E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
HpCDD 1.47E+03 ± 8.50E+02 5.50E+02 ± 1.45E+02 1.70E+03 ± 4.14E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
OCDD 1.47E+03 ± 8.50E+02 5.50E+02 ± 1.45E+02 5.50E+03 ± 1.45E+03 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
TCDF 1.40E+04 ± 8.11E+03 1.70E+02 ± 4.14E+01 5.50E+02 ± 1.45E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
PeCDF  2.37E+04 ± 1.37E+04 5.50E+02 ± 1.45E+02 5.50E+02 ± 1.45E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
HxCDF 1.03E+04 ± 5.98E+03 5.50E+02 ± 1.45E+02 5.50E+02 ± 1.45E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
HpCDF 3.55E+03 ± 2.06E+03 5.50E+02 ± 1.45E+02 1.70E+03 ± 4.14E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 
OCDF 4.15E+02 ± 2.41E+02 5.50E+02 ± 1.45E+02 5.50E+03 ± 1.45E+03 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
PCB-28 1.77E+04 ± 1.03E+04 5.50E+02 ± 1.45E+02 1.70E+04 ± 4.14E+03 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
PCB-52 4.07E+04 ± 2.36E+04 1.70E+03 ± 4.14E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
PCB-101 1.43E+05 ± 8.31E+04 1.70E+03 ± 4.14E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
PCB-118 1.84E+05 ± 1.07E+05 1.70E+03 ± 4.14E+02 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
PCB-153 6.72E+04 ± 3.90E+04 5.50E+03 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
PCB-138 2.53E+04 ± 1.47E+04 5.50E+03 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
PCB-180 4.92E+03 ± 2.85E+03 5.50E+03 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 5.50E+04 ± 1.45E+04 
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Table 6.1 (cont.):Original values (mean ± standard deviation) of the 11 PBT parameters for the 41 assessed pollutants (Monte-Carlo distributions) 

Der-RfD Inh-RfD Oral-RfD Der-SF Inh-SF Oral-SF 
8.13E+03 ± 7.32E+03 1.17E+00 ± 1.05E+00 3.33E+03 ± 3.00E+03 3.66E+00 ± 3.29E+00 1.51E+01 ± 1.36E+01 1.50E+00 ± 1.35E+00 
1.00E+05 ± 9.00E+04 1.17E+00 ± 1.05E+00 1.00E+03 ± 9.00E+02 2.35E-05 ± 2.12E-05 6.30E+00 ± 5.67E+00 7.30E-06 ± 6.57E-06 
1.33E+02 ± 1.20E+02 1.17E+00 ± 1.05E+00 6.67E-01 ± 6.00E-01 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
1.67E+04 ± 1.50E+04 3.50E+04 ± 3.15E+04 3.33E+02 ± 3.00E+02 2.35E-05 ± 2.12E-05 4.20E+01 ± 3.78E+01 7.30E-06 ± 6.57E-06 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
1.79E+02 ± 1.61E+02 6.99E+04 ± 6.29E+04 7.14E+00 ± 6.43E+00 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
4.76E+04 ± 4.29E+04 1.17E+00 ± 1.05E+00 3.33E+03 ± 3.00E+03 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
1.43E+04 ± 1.29E+04 1.17E+00 ± 1.05E+00 1.43E+02 ± 1.29E+02 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
5.38E+01 ± 4.84E+01 1.17E+00 ± 1.05E+00 1.67E+01 ± 1.50E+01 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
4.39E+00 ± 3.95E+00 1.17E+00 ± 1.05E+00 3.33E+00 ± 3.00E+00 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E+00 ± 2.12E+00 3.08E-01 ± 2.77E-01 7.30E-01 ± 6.57E-01 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E+01 ± 2.12E+01 3.08E+00 ± 2.77E+00 7.30E+00 ± 6.57E+00 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E+00 ± 2.12E+00 3.08E-01 ± 2.77E-01 7.30E-01 ± 6.57E-01 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E-01 ± 2.12E-01 3.08E-02 ± 2.77E-02 7.30E-02 ± 6.57E-02 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E-02 ± 2.12E-02 3.08E-03 ± 2.77E-03 7.30E-03 ± 6.57E-03 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E+01 ± 2.12E+01 3.08E+00 ± 2.77E+00 7.30E+00 ± 6.57E+00 
8.06E+01 ± 7.26E+01 1.17E+00 ± 1.05E+00 2.50E+01 ± 2.25E+01 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
5.00E+01 ± 4.50E+01 1.17E+00 ± 1.05E+00 2.50E+01 ± 2.25E+01 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E+00 ± 2.12E+00 3.08E-01 ± 2.77E-01 7.30E-01 ± 6.57E-01 
6.25E+01 ± 5.63E+01 1.17E+03 ± 1.05E+03 5.00E+01 ± 4.50E+01 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
1.08E+02 ± 9.68E+01 1.17E+00 ± 1.05E+00 3.33E+01 ± 3.00E+01 2.35E-05 ± 2.12E-05 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 3.00E+05 ± 2.70E+05 1.16E+05 ± 1.04E+05 1.50E+05 ± 1.35E+05 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 1.50E+05 ± 1.35E+05 5.78E+04 ± 5.20E+04 7.50E+04 ± 6.75E+04 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 3.00E+04 ± 2.70E+04 1.16E+04 ± 1.04E+04 1.50E+04 ± 1.35E+04 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 3.00E+03 ± 2.70E+03 1.16E+03 ± 1.04E+03 1.50E+03 ± 1.35E+03 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 3.00E+02 ± 2.70E+02 1.16E+02 ± 1.04E+02 1.50E+02 ± 1.35E+02 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 3.00E+04 ± 2.70E+04 3.08E-06 ± 2.77E-06 7.30E-06 ± 6.57E-06 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 1.50E+04 ± 1.35E+04 5.78E+03 ± 5.20E+03 7.50E+03 ± 6.75E+03 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 3.00E+04 ± 2.70E+04 1.16E+04 ± 1.04E+04 1.50E+04 ± 1.35E+04 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 3.00E+03 ± 2.70E+03 1.16E+03 ± 1.04E+03 1.50E+03 ± 1.35E+03 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 3.00E+02 ± 2.70E+02 1.16E+02 ± 1.04E+02 1.50E+02 ± 1.35E+02 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.22E+00 ± 2.00E+00 2.00E+00 ± 1.80E+00 2.00E+00 ± 1.80E+00 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.22E+00 ± 2.00E+00 2.00E+00 ± 1.80E+00 2.00E+00 ± 1.80E+00 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.22E+00 ± 2.00E+00 2.00E+00 ± 1.80E+00 2.00E+00 ± 1.80E+00 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.22E+00 ± 2.00E+00 2.00E+00 ± 1.80E+00 2.00E+00 ± 1.80E+00 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.22E+00 ± 2.00E+00 2.00E+00 ± 1.80E+00 2.00E+00 ± 1.80E+00 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.22E+00 ± 2.00E+00 2.00E+00 ± 1.80E+00 2.00E+00 ± 1.80E+00 
4.39E-03 ± 3.95E-03 1.17E+00 ± 1.05E+00 6.67E-04 ± 6.00E-04 2.22E+00 ± 2.00E+00 2.00E+00 ± 1.80E+00 2.00E+00 ± 1.80E+00 
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Table 6.2: Concentration of the 41 organic and inorganic pollutants in soils of Tarragona, in the 2002 and 2005 surveys 

  2002   2005 

 Chemical Petrochemical Urban/Resid. Unpolluted  Chemical Petrochemical Urban/Resid. Unpolluted 

As 5.79 ± 0.74 5.17 ± 1.83 4.15 ± 1.66 5.30 ± 1.42  6.24 ± 4.10 6.51 ± 2.64 3.82 ± 2.2 4.23 ± 1.82 
Cd 0.25 ± 0.1 0.17 ± 0.08 0.19 ± 0.07 0.15 ± 0.05  0.16 ± 0.08 0.21 ± 0.06 0.14 ± 0.09 0.11 ± 0.03 
Cr-III 13.25 ± 2.33 9.42 ± 3.08 8.5 ± 2.7 1.43 ± 0.33  14.58 ± 6.58 13.8 ± 5.75 11.4 ± 3.75 9.9 ± 3.17 
Cr-VI 2.65 ± 0.47 1.88 ± 0.62 1.7 ± 0.5 7.17 ± 0.07  2.92 ± 1.32 2.75 ± 5.75 2.28 ± 0.75 1.98 ± 0.63 
Pb 46.5 ± 36.5 24.6 ± 17.7 66.1 ± 49.2 14.6 ± 3.1  22.2 ± 13.0 37.8 ± 18.5 42.0 ± 34.9 18.3 ± 7.0 
Mn 228.1 ± 77.5 194.7 ± 65.1 191.5 ± 71.8 188.9 ± 13.2  259.3 ± 116.6 268.9 ± 92.0 195.8 ± 67.7 234.8 ± 61.8 
Hg 0.12 ± 0.09 0.04 ± 0.02 0.08 ± 0.07 0.04 ± 0.02  0.05 ± 0.07 0.04 ± 0.03 0.06 ± 0.07 0.02 ± 0.02 
V 23.2 ± 6.6 14.8 ± 4.0 13.6 ± 3.3 12.2 ± 2.5  25.5 ± 11.4 22.7 ± 7.50 23.5 ± 8.5 18.8 ± 7.1 
Acenaphthene  1.3 ± 0.8 1.0 ± 1.0 4.8 ± 3.9 1.0 ± 1.0  1.3 ± 0.9 2.0 ± 1.4 1.9 ± 2.3 1.4 ± 0.9 
Acenaphthylene  14 ± 12 12.3 ± 8.7 23 ± 19 4.2 ± 3.7  6.0 ± 10.5 0.5 ± 0.5 3.0 ± 2.3 1.5 ± 1.0 
Anthracene  51 ± 90 3.1 ± 4.5 17 ± 27 1.0 ± 1.0  11.4 ± 28.4 7.5 ± 9.4 7.5 ± 9.2 2.4 ± 1.8 
Benz[a]anthracene  137 ± 256 11.5 ± 9.4 68 ± 73 1.9 ± 2.4  65.3 ± 180.1 19.3 ± 17.6 27.3 ± 41.8 7.8 ± 13.6 
Benzo[a]pyrene  100 ± 130 18 ± 14 56 ± 77 22 ± 24  55.7 ± 144.4 22.5 ± 21.3 35.2 ± 47.7 10.4 ± 18.8 
Benzo[b]fluoranthene  9 ± 16 2.9 ± 4.0 2.4 ± 2.6 2.3 ± 1.5  145.9 ± 405.1 27.9 ± 24.1 49.8 ± 67.5 12.2 ± 17.4 
Benzo[g,h,i]perylene  41 ± 39 17 ± 12 40 ± 35 50 ± 85  31.3 ± 68.2 15.7 ± 12.8 31.3 ± 37.7 6.3 ± 9.8 
Benzo[k]fluoranthene  9.0 ± 9.5 13 ± 17 47 ± 41 1.2 ± 0.4  51.8 ± 143 11.0 ± 10.1 19.2 ± 26.2 5.0 ± 8.0 
Chrysene  120 ± 200 14 ± 15 68 ± 73 3.7 ± 5.4  113.3 ± 317.4 21.8 ± 20.5 34 ± 40.9 8.2 ± 12.2 
Dibenz[a,h]anthracene  6 ± 13 1.8 ± 1.6 21 ± 25 1.0 ± 1.0  10.7 ± 26.5 4.0 ± 3.0 6.3 ± 8.0 2.2 ± 2.4 
Fluoranthene  180 ± 292 21 ± 15 97 ± 115 5.6 ± 3.5  73.7 ± 177.3 44.0 ± 47.1 69.2 ± 87 40.8 ± 39.6 
Fluorene  23 ± 49 2.1 ± 1.5 13 ± 21 1.1 ± 0.2  1.1 ± 0.4 0.5 ± 0.5 0.5 ± 0.5 0.5 ± 0.5 
Indeno[1,2,3-cd]pyrene  16 ± 20 9 ± 14 60 ± 72 5.3 ± 7.6  33.4 ± 81.6 13.3 ± 10.4 35.2 ± 47 7.1 ± 12.3 
Naphthalene  5 ± 10 3.7 ± 3.6 8.3 ± 9.5 1.0 ± 1.0  24.4 ± 19.5 16.6 ± 4.6 21.2 ± 9.4 15.5 ± 11.9 
Phenanthrene  131 ± 269 16 ± 16 114 ± 101 7.9 ± 6.3  19.9 ± 21.5 33.9 ± 41.7 37.8 ± 38.4 82.1 ± 138.5 
Pyrene  159 ± 268 20 ± 23 96 ± 125 2.5 ± 3.0  140.5 ± 376.2 39.8 ± 43.2 58 ± 74.7 37.6 ± 39.4 
TCDD 3.72 ± 1.95 1.48 ± 1.37 3.70 ± 3.83 0.57 ± 0.72  na na na na 
PeCDD 4.37 ± 3.78 1.62 ± 1.71 3.60 ± 3.42 0.60 ± 0.61  na na na na 
HxCDD 10.05 ± 8.05 2.32 ± 2.21 8.15 ± 5.12 0.89 ± 0.55  na na na na 
HpCDD 32.63 ± 28.46 5.32 ± 3.95 34.10 ± 22.95 1.95 ± 1.34  na na na na 
OCDD 127.6 ± 134.7 28.5 ± 22.34 155.9 ± 123 6.85 ± 5.25  na na na na 
TCDF 21.25 ± 25.35 5.20 ± 5.47 8.98 ± 8.71 1.67 ± 0.87  na na na na 
PeCDF  14.15 ± 14.86 3.37 ± 3.93 8.40 ± 6.64 1.24 ± 0.69  na na na na 
HxCDF 26.64 ± 29.40 4.62 ± 4.65 14.88 ± 14.13 1.46 ± 0.55  na na na na 
HpCDF 25.91 ± 20.68 2.97 ± 2.27 10.59 ± 9.85 0.90 ± 0.34  na na na na 
OCDF 93.16 ± 115.8 4.74 ± 3.03 10.87 ± 8.65 1.41 ± 1.00  na na na na 
PCB-28 43 ± 9 41 ± 37 28 ± 19 8 ± 6  67 ± 84 59 ± 50 48 ± 41 19 ± 19 
PCB-52 463 ± 1102 46 ± 42 231 ± 341 13 ± 8  56 ± 62 204 ± 309 35 ± 39 19 ± 19 
PCB-101 1436 ± 2544 167 ± 113 1074 ± 1556 75 ± 58  295 ± 328 752 ± 1334 216 ± 179 47 ± 64 
PCB-118 949 ± 1733 164 ± 97 716 ± 1029 54 ± 49  195 ± 237 1081 ± 1933 197 ± 276 44 ± 27 
PCB-153 2660 ± 2348 477 ± 340 2266 ± 3659 144 ± 84  1193 ± 1252 922 ± 1285 1148 ± 1057 216 ± 250 
PCB-138 3036 ± 3032 564 ± 414 3098 ± 5425 196 ± 114  941 ± 1011 1115 ± 1704 845 ± 713 146 ± 128 
PCB-180 3452 ± 3005 505 ± 373 2930 ± 4793 169 ± 83   1886 ± 2125 540 ± 864 1946 ± 2247 275 ± 358 

na: not analyzed. Units: heavy metals = µg/g dry weight; PAHs = ng/g dry weight; PCDD/F homologues and PCB congeners = ng/kg dry weight.
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Table 6.3: Values (mean ± standard deviation) of the 11 PTB parameters for the 41 assessed pollutants (SOM distributions) 

 BCF HL-air HL-water HL-soil HL-sedim 
As 0.07 ± 0.18 0.26 ± 0.34 0.86 ± 0.34 0.90 ± 0.24 1.00 ± 0.03 
Cd 0.07 ± 0.18 0.33 ± 0.29 0.86 ± 0.34 0.90 ± 0.24 1.00 ± 0.03 
Cr-III 0.06 ± 0.19 0.36 ± 0.37 0.83 ± 0.34 0.88 ± 0.24 1.00 ± 0.01 
Cr-VI 0.07 ± 0.20 0.30 ± 0.36 0.84 ± 0.35 0.95 ± 0.13 1.00 ± 0.01 
Pb 0.06 ± 0.19 0.36 ± 0.37 0.83 ± 0.34 0.88 ± 0.24 1.00 ± 0.01 
Mn 0.07 ± 0.20 0.29 ± 0.37 0.80 ± 0.37 0.95 ± 0.15 1.00 ± 0.01 
Hg 0.07 ± 0.18 0.26 ± 0.34 0.86 ± 0.34 0.90 ± 0.24 1.00 ± 0.03 
V 0.06 ± 0.19 0.33 ± 0.34 0.86 ± 0.34 0.90 ± 0.23 1.00 ± 0.02 
Acenaphthene  0.08 ± 0.18 0.23 ± 0.33 0.14 ± 0.34 0.20 ± 0.32 0.36 ± 0.27 
Acenaphthylene  0.08 ± 0.18 0.23 ± 0.33 0.14 ± 0.34 0.20 ± 0.32 0.36 ± 0.27 
Anthracene  0.08 ± 0.18 0.23 ± 0.33 0.14 ± 0.34 0.20 ± 0.32 0.36 ± 0.27 
Benz[a]anthracene  0.08 ± 0.19 0.30 ± 0.39 0.08 ± 0.15 0.36 ± 0.18 0.99 ± 0.02 
Benzo[a]pyrene  0.09 ± 0.18 0.29 ± 0.36 0.13 ± 0.26 0.37 ± 0.23 0.98 ± 0.04 
Benzo[b]fluoranthene  0.08 ± 0.19 0.30 ± 0.39 0.08 ± 0.15 0.36 ± 0.18 0.99 ± 0.02 
Benzo[g,h,i]perylene  0.12 ± 0.19 0.31 ± 0.39 0.12 ± 0.24 0.36 ± 0.17 1.00 ± 0.01 
Benzo[k]fluoranthene  0.09 ± 0.18 0.29 ± 0.36 0.13 ± 0.26 0.37 ± 0.23 0.98 ± 0.04 
Chrysene  0.08 ± 0.19 0.30 ± 0.39 0.08 ± 0.15 0.36 ± 0.18 0.99 ± 0.02 
Dibenz[a,h]anthracene  0.12 ± 0.19 0.31 ± 0.39 0.12 ± 0.24 0.36 ± 0.17 1.00 ± 0.01 
Fluoranthene  0.07 ± 0.19 0.30 ± 0.39 0.09 ± 0.13 0.37 ± 0.25 0.91 ± 0.14 
Fluorene  0.08 ± 0.18 0.23 ± 0.33 0.14 ± 0.34 0.20 ± 0.32 0.36 ± 0.27 
Indeno[1,2,3-cd]pyrene  0.12 ± 0.19 0.31 ± 0.39 0.12 ± 0.24 0.36 ± 0.17 1.00 ± 0.01 
Naphthalene  0.09 ± 0.23 0.28 ± 0.40 0.14 ± 0.33 0.19 ± 0.33 0.29 ± 0.29 
Phenanthrene  0.08 ± 0.18 0.23 ± 0.33 0.14 ± 0.34 0.20 ± 0.32 0.36 ± 0.27 
Pyrene  0.07 ± 0.19 0.30 ± 0.39 0.09 ± 0.13 0.37 ± 0.25 0.91 ± 0.14 
TCDD 0.20 ± 0.18 0.31 ± 0.39 0.15 ± 0.34 0.39 ± 0.25 1.00 ± 0.02 
PeCDD 0.17 ± 0.18 0.32 ± 0.38 0.15 ± 0.34 0.39 ± 0.25 1.00 ± 0.01 
HxCDD 0.06 ± 0.19 0.35 ± 0.38 0.16 ± 0.31 0.92 ± 0.13 1.00 ± 0.01 
HpCDD 0.06 ± 0.19 0.35 ± 0.38 0.17 ± 0.29 0.95 ± 0.09 1.00 ± 0.01 
OCDD 0.06 ± 0.18 0.35 ± 0.38 0.15 ± 0.18 0.94 ± 0.16 0.97 ± 0.11 
TCDF 0.12 ± 0.18 0.29 ± 0.35 0.15 ± 0.34 0.39 ± 0.25 1.00 ± 0.02 
PeCDF  0.12 ± 0.18 0.29 ± 0.35 0.15 ± 0.34 0.39 ± 0.25 1.00 ± 0.02 
HxCDF 0.12 ± 0.18 0.29 ± 0.34 0.15 ± 0.34 0.39 ± 0.25 1.00 ± 0.02 
HpCDF 0.07 ± 0.19 0.30 ± 0.39 0.09 ± 0.13 0.37 ± 0.25 0.91 ± 0.14 
OCDF 0.06 ± 0.18 0.35 ± 0.38 0.15 ± 0.18 0.94 ± 0.16 0.97 ± 0.11 
PCB-28 0.24 ± 0.20 0.38 ± 0.37 0.34 ± 0.18 0.88 ± 0.31 0.91 ± 0.24 
PCB-52 0.14 ± 0.18 0.46 ± 0.33 0.74 ± 0.31 0.88 ± 0.24 0.99 ± 0.03 
PCB-101 0.73 ± 0.25 0.60 ± 0.33 0.86 ± 0.34 0.86 ± 0.34 0.88 ± 0.31 
PCB-118 0.73 ± 0.25 0.60 ± 0.33 0.86 ± 0.34 0.86 ± 0.34 0.88 ± 0.31 
PCB-153 0.25 ± 0.16 0.92 ± 0.11 0.86 ± 0.34 0.89 ± 0.27 0.97 ± 0.12 
PCB-138 0.14 ± 0.16 0.85 ± 0.15 0.86 ± 0.34 0.90 ± 0.25 0.99 ± 0.08 
PCB-180 0.14 ± 0.16 0.85 ± 0.15 0.86 ± 0.34 0.90 ± 0.25 0.99 ± 0.08 
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Table 6.3 (cont.): Values (mean ± standard deviation) of the 11 PTB parameters for the 41 assessed pollutants (SOM distributions) 

Der-RfD Inh-RfD Oral-RfD Der-SF Inh-SF Oral-SF 
0.40 ± 0.26 0.14 ± 0.33 0.80 ± 0.29 0.03 ± 0.10 0.03 ± 0.10 0.03 ± 0.10 
0.47 ± 0.30 0.32 ± 0.34 0.35 ± 0.27 0.10 ± 0.25 0.10 ± 0.25 0.10 ± 0.25 
0.20 ± 0.31 0.33 ± 0.36 0.17 ± 0.33 0.13 ± 0.32 0.13 ± 0.33 0.13 ± 0.33 
0.26 ± 0.31 0.27 ± 0.35 0.27 ± 0.36 0.12 ± 0.30 0.12 ± 0.30 0.12 ± 0.30 
0.20 ± 0.31 0.33 ± 0.36 0.17 ± 0.33 0.13 ± 0.32 0.13 ± 0.33 0.13 ± 0.33 
0.21 ± 0.33 0.31 ± 0.41 0.24 ± 0.40 0.13 ± 0.32 0.13 ± 0.32 0.13 ± 0.32 
0.40 ± 0.26 0.14 ± 0.33 0.80 ± 0.29 0.03 ± 0.10 0.03 ± 0.10 0.03 ± 0.10 
0.29 ± 0.29 0.34 ± 0.32 0.22 ± 0.31 0.12 ± 0.30 0.12 ± 0.31 0.12 ± 0.31 
0.13 ± 0.34 0.13 ± 0.32 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.34 0.13 ± 0.32 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.34 0.13 ± 0.32 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.33 0.12 ± 0.30 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.33 0.08 ± 0.23 0.13 ± 0.33 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.33 0.12 ± 0.30 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.33 0.07 ± 0.19 0.13 ± 0.33 0.14 ± 0.33 0.14 ± 0.34 0.14 ± 0.34 
0.13 ± 0.33 0.08 ± 0.23 0.13 ± 0.33 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.33 0.12 ± 0.30 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.33 0.07 ± 0.19 0.13 ± 0.33 0.14 ± 0.33 0.14 ± 0.34 0.14 ± 0.34 
0.14 ± 0.33 0.13 ± 0.34 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.34 0.13 ± 0.32 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.33 0.07 ± 0.19 0.13 ± 0.33 0.14 ± 0.33 0.14 ± 0.34 0.14 ± 0.34 
0.13 ± 0.34 0.14 ± 0.34 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.34 0.13 ± 0.32 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.14 ± 0.33 0.13 ± 0.34 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.09 ± 0.22 0.13 ± 0.34 0.02 ± 0.09 0.86 ± 0.11 0.86 ± 0.11 0.86 ± 0.11 
0.07 ± 0.18 0.13 ± 0.33 0.04 ± 0.12 0.68 ± 0.15 0.68 ± 0.15 0.68 ± 0.15 
0.13 ± 0.33 0.13 ± 0.34 0.13 ± 0.33 0.20 ± 0.32 0.19 ± 0.32 0.20 ± 0.32 
0.13 ± 0.33 0.13 ± 0.33 0.13 ± 0.34 0.16 ± 0.33 0.16 ± 0.33 0.16 ± 0.33 
0.13 ± 0.33 0.13 ± 0.34 0.13 ± 0.34 0.14 ± 0.33 0.14 ± 0.33 0.14 ± 0.33 
0.11 ± 0.29 0.07 ± 0.19 0.12 ± 0.32 0.18 ± 0.32 0.16 ± 0.33 0.16 ± 0.33 
0.11 ± 0.29 0.07 ± 0.19 0.12 ± 0.32 0.18 ± 0.32 0.16 ± 0.33 0.16 ± 0.33 
0.09 ± 0.23 0.10 ± 0.27 0.11 ± 0.29 0.24 ± 0.30 0.22 ± 0.31 0.22 ± 0.31 
0.14 ± 0.33 0.13 ± 0.34 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.33 0.13 ± 0.34 0.13 ± 0.34 0.14 ± 0.33 0.14 ± 0.33 0.14 ± 0.33 
0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.14 ± 0.33 0.22 ± 0.35 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.34 0.13 ± 0.33 0.13 ± 0.33 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.13 ± 0.34 0.13 ± 0.33 0.13 ± 0.33 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.14 ± 0.34 0.24 ± 0.35 0.14 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 0.13 ± 0.34 
0.17 ± 0.33 0.31 ± 0.37 0.15 ± 0.33 0.13 ± 0.33 0.13 ± 0.33 0.13 ± 0.33 
0.17 ± 0.33 0.31 ± 0.37 0.15 ± 0.33 0.13 ± 0.33 0.13 ± 0.33 0.13 ± 0.33 
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6.2.2 Integral Risk Index 

 The Integral Risk Index (IRI) was calculated using the following equation: 

 

 

 

The parameter number of pollutants allows to compare two or various zones, 

independently on the number of contaminants assessed. Moreover, the pollutant 

concentration must be normalized to be comparable.  

In the previous study, the IRI of the chemical/petrochemical area of Tarragona was 

calculated and mapped out.(Nadal et al., 2006) Calculations were based on the 

concentrations of various inorganic and organic pollutants found in soils in 2002.(Nadal et 

al., 2004b, 2004c; Schuhmacher et al., 2004) In 2005, a 5-years environmental surveillance 

program was started in order to evaluate the temporal trends of the pollutant levels in the 

environment surrounding the same area of Tarragona. In the first survey, 27 soil samples 

were obtained in 4 different zones: chemical, petrochemical, urban, and unpolluted.(Nadal 

et al., 2007) The results corresponding to 2002 and 2005 surveys are summarized in Table 

6.2. Lognormal distributions were constructed using the mean and standard deviation 

values corresponding to the 4 sampling areas for each of the surveys. In the present study, 

the IRI of the baseline study (2002) was again calculated from a probabilistic point of view. 

Moreover, the results of the 2005 study were used to assess the change of risk after 3 years.  

6.3 Results And Discussion 

6.3.1 Hazard Index 

The resulting Kohonen’s map after applying SOM to the 11 PBT parameters is 

depicted in Figure 6.1. The chemicals were grouped according to their similarities in 

persistence, bioaccumulation, and toxicity. Arsenic and heavy metals, and PCBs were 

located in the upper-left and upper-right sides of the grid, respectively. PCDD/F 

homologues appeared on the right of the map. In turn, the high molecular weight PAHs 

                                         Σ (Hazard Index x Pollutant Concentration in Soil) 
Integral Risk Index =  
                                                              Number of Pollutants 
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were found in the middle of the grid, while the most volatile PAHs were located in the 

lower-left corner. In turn, the component planes (c-planes) associated to the obtained map 

is shown in Figure 6.2. The c-planes represent the normalized values (0-1) of the mean and 

standard deviation for each parameter in a map. The position of each pollutant is the same 

in both, the Kohonen’s map and the c-planes. The PDF of each parameter is then elaborated 

using the cell value occupied by the chemicals. This probabilistic value of the HI 

corresponding to each pollutant, extracted from the c-planes, is numerically summarized in 

Table III. The HI of the 41 evaluated chemicals, grouped in pollutant classes, as well as the 

percentages of persistence, bioaccumulation, and toxicity, are shown in Table 6.4. In 

addition, the HI in a descendent order is also depicted in Figure 6.3.  

Figure 6.1: Self-organizing map obtained after applying the Probabilistic SOM 
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Figure 6. 2: C-planes of mean and standard deviation values for the 11 PBT parameters 
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Table 6.4: Hazard Index (HI) of the 41 pollutants under study 

 Mean St. Dev.. Median 90
th 

perc.  Persistence Bioaccum. Toxicity 

As 3.46 0.53 3.39 4.09  2.27 0.22 0.96 
Cd 3.48 0.76 3.36 4.30  2.32 0.20 0.95 
Cr-III 3.23 0.88 3.07 4.11  2.31 0.19 0.72 
Cr-VI 3.30 0.96 3.13 4.18  2.31 0.20 0.78 
Pb 3.21 0.77 3.07 4.07  2.31 0.19 0.72 
Mn 3.25 0.91 3.07 4.16  2.28 0.21 0.76 
Hg 3.45 0.56 3.38 4.11  2.27 0.22 0.96 
V 3.29 0.85 3.14 4.15  2.32 0.18 0.80 
Acenaphthene  1.48 0.90 1.29 2.39  0.70 0.24 0.53 
Acenaphthylene  1.47 0.87 1.27 2.36  0.70 0.24 0.53 
Anthracene  1.46 0.84 1.27 2.35  0.70 0.24 0.53 
Benz[a]anthracene  2.06 0.86 1.86 2.86  1.29 0.24 0.52 
Benzo[a]pyrene  2.09 0.81 1.89 2.94  1.32 0.28 0.50 
Benzo[b]fluoranthene  2.06 0.86 1.86 2.86  1.29 0.24 0.52 
Benzo[g,h,i]perylene  2.19 0.86 1.99 3.06  1.34 0.35 0.49 
Benzo[k]fluoranthene  2.11 0.78 1.91 2.96  1.32 0.28 0.50 
Chrysene  2.06 0.85 1.86 2.84  1.29 0.24 0.52 
Dibenz[a,h]anthracene  2.20 0.88 1.99 3.10  1.34 0.35 0.49 
Fluoranthene  2.00 0.80 1.82 2.81  1.25 0.20 0.54 
Fluorene  1.47 0.89 1.27 2.40  0.70 0.24 0.53 
Indeno[1,2,3-cd]pyrene  2.18 0.84 1.98 3.07  1.34 0.35 0.49 
Naphthalene  1.45 0.92 1.23 2.39  0.67 0.26 0.53 
Phenanthrene  1.49 0.90 1.28 2.42  0.70 0.24 0.53 
Pyrene  2.00 0.96 1.80 2.82  1.25 0.20 0.54 
TCDD 3.88 0.76 3.72 4.75  1.38 0.61 1.88 
PeCDD 3.43 0.76 3.27 4.30  1.39 0.51 1.53 
HxCDD 2.66 0.88 2.47 3.47  1.82 0.18 0.65 
HpCDD 2.61 0.91 2.41 3.41  1.85 0.17 0.58 
OCDD 2.54 0.86 2.36 3.33  1.81 0.17 0.55 
TCDF 2.27 0.84 2.08 3.15  1.37 0.37 0.54 
PeCDF  2.28 0.83 2.09 3.22  1.37 0.37 0.54 
HxCDF 2.40 0.83 2.23 3.30  1.37 0.37 0.66 
HpCDF 2.00 0.83 1.82 2.82  1.25 0.20 0.54 
OCDF 2.53 0.80 2.34 3.30  1.81 0.17 0.55 
PCB-28 3.12 0.91 2.94 4.19  1.88 0.72 0.53 
PCB-52 3.32 0.87 3.15 4.29  2.30 0.42 0.60 
PCB-101 5.10 1.06 4.96 6.42  2.39 2.18 0.53 
PCB-118 3.33 0.86 3.16 4.29  2.39 2.18 0.53 
PCB-153 4.08 0.80 3.95 5.05  2.73 0.74 0.60 
PCB-138 3.80 0.80 3.66 4.72  2.70 0.43 0.68 
PCB-180 3.80 0.81 3.65 4.72  2.70 0.43 0.68 
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Figure 6.3: Hazard Index of the assessed pollutants ordered following a descendent order and proportion of the PBT variables
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In general terms, PCBs were the pollutants showing the highest hazard. In 

comparison to the remaining chemicals, PCBs were the most persistent in the environment. 

Among them, it is important to note the high HI values of PCBs 101 and 118, basically due 

to their high bioaccumulation factors (1.43·105 and 1.84·105, respectively). In contrast, 

PCB-28 showed a relatively low HI, which could be due to its low half-lives in air and 

water.(Sinkkonen & Paasivirta, 2000) In addition to PCBs, TCDD also presented a high HI 

(3.88), being the fourth in the list. In spite of the relatively lower environmental persistence 

of this dioxin homologue, TCDD seemed to be much more toxic than PCBs. In fact, TCDD 

and PeCDD were the only chemicals with a mean toxicity factor higher than 1 (1.88 and 

1.53, respectively), which is almost exclusively due to their high carcinogenic slope factors. 

Although it has been noted that non-carcinogenic effects of PCDD/Fs could be even more 

important than its potential carcinogenicity,(Greene et al., 2003) no reference dose has been 

defined by the US EPA yet.(2000) Because of their high half-lives, heavy metals showed a 

relatively high value of HI. Inorganic elements are essentially non-degradable in the 

environment. Therefore, they show a very high persistence in environmental 

compartments.(Mackay et al., 2001) On the other hand, there are important difficulties to 

obtain reliable data of heavy metals bioaccumulation and bioconcentration in the scientific 

literature.(Floyd, 2006; McGeer et al., 2003) As a first approach, bioaccumulation factor 

was extracted from the Kow. Bearing in mind that a Kow cannot be established for 

inorganic elements and their salts, the bioaccumulation factor in the HI was quite low. 

Despite the difference was tiny, inorganic elements were divided into two groups in the list 

of chemicals, according to their toxicity: 1) Cd, As and Hg, and 2) Cr, V, Mn and Pb. 

The HI associated to the group of PCDD/Fs ranged from 2.00 to 3.88. Dioxins 

(PCDDs) seemed to be slightly more hazardous than furans (PCDFs). With the exception 

of HpCDF, they followed a characteristic tendency: the HI of PCDDs inversely increased 

with the chlorination degree of the homologue, whereas the most substituted PCDF 

homologues presented a lower HI. Among the pollutants assessed, PAHs presented the 

lowest HI value. The 7 PAHs considered as probable human carcinogens by the US EPA 

were listed first. In recent years, benzo[a,h]anthracene has been catalogued as one of the 

most toxic PAHs according to the toxic equivalency factors (TEF) associated to them.(Law 
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et al., 2002; Nisbet & LaGoy, 1992) Finally, the most volatile PAHs were those presenting 

the lowest PBT values. Naphthalene was the PAH with a lowest value of HI. In spite of the 

fact that a dermal RfD has been established, naphthalene is a compound with a very low 

bioaccumulation potential and a low capacity to persist in the environment. 

In our previous investigation, the HI for the same pollutants was calculated using 

point-values.(Nadal et al., 2006) In general terms, in the deterministic HI the chemicals 

followed a similar pattern to that observed in the probabilistic development. PCBs and light 

PAHs were the substances showing the highest and lowest HI values, respectively. 

However, inorganic elements presented a relatively low HI in contrast to some organic 

pollutants such as PCDD/Fs and heavy PAHs. In that study,(Nadal et al., 2006)  the 

bioaccumulation factor for the elements was almost negligible. Nevertheless, in the current 

study, the probabilistic value of bioaccumulation for these inorganic elements increased. 

Thus, the introduction of probabilistic data instead of deterministic data, allowed to 

minimize the error linked to the impossibility of obtaining bioconcentration factors for 

heavy metals. 

A sensitivity analysis of the Hazard Index was executed to study the idoneity of the 

weightings given to the PBT parameters (Figure 6.4). As expected, the BCF showed the 

highest contribution to variance (28%). The half-lives in air, water, soil and sediments 

accounted approximately for 43%. However, it should be noted the special low contribution 

of the half-live in sediments. Most of the analyzed pollutants show a very high level of 

persistence in sediments, which means they are the most important sink of pollution in the 

environment. Finally, the sum of RfD and SF (indicators of non-carcinogenic and 

carcinogenic risks, respectively) accounted for 29%. These percentages of contribution to 

the variance indicated a good equilibrium among the PBT parameters here considered. 

6.3.2 A case-study: The industrial complex of Tarragona (Catalonia, Spain) 

In 2002, a wide environmental program was started in the chemical/petrochemical 

area of Tarragona. The levels of several organic (PCDD/Fs, PCBs and PAHs) and 

inorganic pollutants were determined in soil and vegetation samples. Three years later, a 5-

years surveillance campaign was started in order to assess the temporal trend of the same 
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pollutants in the close environment. The scope of the first part of the 2005 study included 

the determination of heavy metals, PCBs and PAHs in soils. Four zones (chemical, 

petrochemical, residential, and unpolluted) were sampled in order to evaluate not only 

temporal trends, but also spatial variations. Although in the 2005 survey no significant 

differences were noted for the levels of most pollutants with respect to the concentrations 

found in the 2002 survey, all they did not follow the same tendency. 
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Figure 6.4: Sensitivity analysis of the Hazard Index  

From the probabilistic data of both the HI and the soil concentrations of each one of 

the analyzed substances, the IRI equation was applied to establish the risk generalized 

change in the 4 zones under evaluation. The PDFs corresponding to the IRI of each area, 

for the 2002 and 2005 surveys are depicted in Figure 6.5. The temporal trends of risk are 

shown in Figure 6.6. In the 2005 study, PCDD/Fs were not analyzed. Therefore, the risk of 

both surveys is not fully comparable. However, the Integral Risk Index in 2002 was also 

calculated taking into account only the 31 chemical substances analyzed in 2005. The 

exclusion of the 10 PCDD/F homologues did not mean a notable variation of the risk. The 

risk was lower in the chemical and residential zones, while it was higher in the unpolluted 

area. Between 2002 and 2005, an important decrease of the risk was observed in the 

chemical and urban/residential areas, whereas the risk in the petrochemical zone increased 
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(Fig.6). This finding is due to the notable decrease in the levels of PCBs and PAHs in soils 

close to chemical industries, and in the downtown of various cities.(Nadal et al., 2007) On 

the other hand, heavy metals did not follow a homogeneous tendency, which can be noted 

by the fact that the concentration of some elements raised, whereas that of the others 

decreased. If only the 2005 IRI is taken into account, it can be observed that the integrated 

risks in the chemical, petrochemical, and urban/residential areas were very similar (1.00, 

1.01 and 0.86, respectively). In addition, these values were 2-fold higher than the risk in the 

zone considered as unpolluted (0.41). However, these risk levels can be only considered 

from a comparative point of view. Thus, the maximum risk according to the maximum 

recommended concentration of heavy metals, PCBs and PAHs in soils given by various 

public administrations(Busquet, 1997; Moss et al., 2001) was 130. It indicates that the current 

risks in Tarragona derived from the emissions of the anthropogenic activities in the area, 

are very low. Moreover, the mixture of chemical pollutants does not mean a significant 

source of health hazard for the local population. 
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Figure 6.5: Probability density functions of the IRI for 4 areas of Tarragona in 2002 and 2005 
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Figure 6. 6: Temporal variation of the Integral Risk Index in 4 areas of Tarragona between 2002 and 

2005 

6.4 Conclusions and Future Trends 

The Neuro-Probabilistic IRI and the associated HI may be useful tools for the 

environmental decision-making process. This methodology can be highly valuable when 

allowing the settle-down of new chemical and petrochemical companies, as well as other 

potentially polluting activities in areas with a strong industrial activity. Moreover, the 

inclusion of probabilistic aspects makes it to become suitable for human health risk 

assessment. 

In the future, the reliability of the PBT data of all the analyzed substances should be 

checked. The probabilistic density function associated to them will have to be more 

precisely determined by adapting continuously updated information regarding the 

parameters here used. Other probabilistic aspects, which take place in the process, such as 

considering non-deterministic values of the toxicity equivalency factors (TEF) of PCDD/Fs 

and PCBs,(Finley et al., 2003) could be also added. Finally, it would be of great importance 

to use other complementary analysis techniques. In recent years, the implantation of 

Geographic Information Systems (GIS) has considerably increased.(Lovett et al., 1997; 

Mayer & Greenberg, 2005; Thayer et al., 2003; Verter & Kara, 2001) In our previous 

study, the IRI was integrated in a GIS in order to create risk maps. However, given the 
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importance of including probability aspects, the possibility to design probabilistic, instead 

of deterministic, risk maps(Saisana et al., 2004) should be investigated. 
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CHAPTER 7  

INTEGRATED FUZZY FRAMEWORK TO INCORPORATE UNCERTAINTY 

IN RISK MANAGEMENT 

Abstract 

Risk assessment is a complicated systematic process with large inherited 

uncertainties from system components and process methodologies. Integrated risk 

assessment of multi-components contamination problem makes the assessment more 

difficult and full uncertainty. Fuzzy approach widely applicable is useful for handling 

uncertainty of all kinds no matter what its nature or source. With the growing trend of fuzzy 

modelling and simulation of environmental problem, there is a need to develop a risk 

analysis approach which can use the fuzzy number output for characterization of risk. This 

study has been done to fulfil these needs. Integration of fuzzy system simulation and fuzzy 

relation analysis allowed incorporating system modelling uncertainty and subjective risk 

criteria. In this study, an integrated fuzzy relation analysis (IFRA) model is proposed for 

risk assessment involving multiple criteria. The model is an integrated view on uncertainty 

techniques based on multi-valued mappings, fuzzy relations and fuzzy analytical 

hierarchical process. The results obtained from fuzzy system simulation can be used in risk 

characterisation without aggregation which enables to propagate uncertainty in risk 

management model. Integration of fuzzy system simulation and fuzzy relation analysis 

allowed incorporating system modelling uncertainty and subjective risk criteria. The 

integrated risk can be calculated at different membership level which is useful for 

comprehensively evaluating risk within an uncertain system containing many factors with 

complicated relationship. It has been shown that uncertainty can be propagated in complete 

risk management chain through a broad integration of fuzzy system simulation and fuzzy 

risk analysis is possible.  
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Keywords: Fuzzy modelling; risk analysis; Fuzzy relation analysis; fuzzy analytical 

hierarchical process.  

7.1.  Introduction 

The focus and position of risk characterisation within risk assessment has changed 

over the last decades. Originally risk characterisation was viewed as serving as an 

intermediary summary phase between risk assessment and risk management, with the 

purpose of describing the nature, magnitude of risks and associated uncertainty (NRC, 

1983). Today, risk characterisation on human health risks is the integration of the first three 

steps in the risk assessment process, namely hazard identification, dose-response 

assessment and exposure assessment (Yassy et al., 2001). Further, the increased recognition 

of the need to protect both man and the environment responds to the perceived need for an 

integrated and holistic approach to risk assessment (EC, 2003). It is also considered as an 

integral part of the entire decision-making process and it may reflect analysis and 

deliberation by all interested parties (NRC, 1996). There has also been lot of development 

in risk assessment towards a greater emphasis on estimating and describing not just the 

magnitude and nature of risks but also providing improved descriptions and estimates of 

associated uncertainties (Williams & Paustenbach, 2002). Today it is commonly accepted 

that risk management should be more holistic activity involving a better uncertainty 

propagation approach (Kumar, 2005; Oxley et al., 2004; Refsgaard et al., 2007). The 

uncertainty assessment is not just something to be added after the completion of the 

modelling work. Instead uncertainty should be seen as a red thread throughout the 

modelling study starting from the very beginning, where the identification and 

characterisation of all uncertainty sources should be performed (Refsgaard et al., 2007). To 

provide a risk characterisation within reasonable uncertainties, detailed site–specific 

information forming the basis for hazard identification (agents causing adverse effects), 

dose – response assessments and exposure assessments is usually needed. Data gaps and 

uncertainties (important factors in characterising the risk) may, however, in many cases be 

approached by ‘extrapolation’ of knowledge from one area to another, unless specific 

research can be directed to solving such problems through. Several approaches to 
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uncertainty analysis for systems modelling have been developed (Nilsen & Aven, 2003). 

However probabilistic uncertainty assessment approach has been most preferred approach 

due to various reasons (Schuhmacher et al., 2001). It may be the interpretation of Risk 

definition as probability or likelihood of possible contamination and magnitude or 

seriousness of consequences or strong basis of classical statistics etc give more confidence 

in probabilistic approach. However, when applied to diverse problems, probability theory 

often retains a fundamental assumption about the subject area involved. Specifically, it 

assumes that there exists a historical run for the observations of events. Also lack of data or 

imperfect knowledge about the processes may frustrate rigorous probabilistic studies 

(Kumar, 2005). Another problem with the probability theory is its law of excluded middle 

[P(A∪Ac) = 1] and contradiction [P(A∩Ac) = 0] (Ac is complement of A).  

In recent years, use of fuzzy set approach in environmental application has 

significantly increased (Abebe et al., 2000; Kumar, 2005; Lauzon & Lence, 2008; Li et al., 

2006). For example fuzzy approach is often used as modelling framework in uncertain 

scenario. For various reason sometime fuzzy approach has been cited as better approach to 

do uncertainty analysis (Abebe et al., 2000; Dou et al., 1997; Ferson, 2002; Kumar, 2005; 

Lauzon & Lence, 2008; Li et al., 2007). So many authors have classified uncertainty 

analysis into two broad categories: probabilistic and possiblistic (or fuzzy)(Blair et al., 

2001; Destouni, 1992; Li et al., 2007). However advance studies using fuzzy approach in 

the environmental risk assessment is still limited. In comparison, many applications to 

other areas have been reported. In spite of its usefulness in uncertainty analysis, it has not 

been adopted by environmental risk modellers. One of the reasons is the lack of integrated 

framework to use fuzzy simulation results in risk management model. It is often a problem 

to use fuzzy results (which are in form of membership function) in crisp-set based risk 

management model. The problem becomes more complicated when the risk is produced by 

multi-contaminants and different factors can affect the level of risk. This complication has 

discouraged the risk assessment communality to use fuzzy approach in environmental risk 

management.   
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In this study, an integrated fuzzy relation analysis (IFRA) model is proposed for the 

environmental risk assessment involving multiple criteria. The objective is the integration 

of system simulation and risk analysis using fuzzy approach which allows incorporation of 

system modelling uncertainty and subjective risk criteria. In the first part of this paper, the 

methodology of the proposed Integrated Fuzzy framework has been explained. In the part 

II, the methodology has been applied to a case study of contaminated soil. 

7.2 Integrated Risk Assessment 

There is currently a general agreement that risk assessment is best addressed in four 

stages(EC, 2003), where risk characterisation represents the final integration of the first 

three steps in the risk assessment process, namely hazard identification, effects assessment 

and exposure assessment (Figure 1). Hazard is a qualitative term expressing the potential of 

an environmental agent to harm the health of individuals or populations if the exposure 

level is high enough and/or if other conditions apply (Yassy et al., 2001). The extent of 

exposure of receptors to contaminants is one of the fundamental input requirements to any 

risk characterisation. However there are different units used e.g. concentration, activity 

concentration or dose/dose rate. Since most effects information describes effects as a 

function of dose or dose rate, there are strong reasons to quantify exposure primarily as 

dose rates. It is, however, possible to back–calculate effects benchmarks from dose rate to 

concentration using dose conversion factors and dosimetric models (USDOE, 2002). 

Concentration is also an easier concept to understand than dose, and therefore easier to 

explain to some stakeholders during the screening phase. Ideally, risk characterisation 

should produce a quantitative estimate of the risk in exposed population or estimates of the 

potential risk under different plausible exposure scenarios. However it is difficult to 

provide quantitative description of the exposure. Exposure and effect assessment is a 

complicated process of different factors which makes risk analysis a function of 

contaminant concentration and various risk factors. This clearly makes risk analysis a 

decision analysis problem where the risk characterisation stage attempts to make sense of 

the available information on exposure and effects and to describe what it means (Williams 

& Paustenbach, 2002).  
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Since the framework presented in Figure 7.1 is a general representation of a 

complex and varied group of assessments, the sequence may differ among specific 

assessments or among groups of stressors. For example, sometimes analysis of exposure 

and effects may be combined with integration of results (i.e. risk characterisation). In other 

risk assessment schemes, risk characterisation is based on an exposure assessment, which is 

compared to benchmarks or compliance levels (i.e. effects analysis is not an integral part of 

the risk assessment)(EC, 2003). Integrating effects analysis will have the advantage that it 

is easier to ensure that there is sufficient correspondence between the estimated effects 

profile and the assessment endpoints of concern.  

 
Figure 7.1: A generalised risk assessment framework 

In general, there are large similarities between human risk assessment and ERA, 

since the basic framework adopted in ERA is a direct development from the risk 

assessment framework originally developed for assessing human health risks (NRC, 1983). 

Integration of human health and ecological risk assessment is therefore both desirable and 

feasible. Integration of human health and ecological risk assessment can be done by 

bottom-up and top-down approaches(Suter, 2004). The bottom-up approach begins with 

transport, fate and exposure mechanism (physical chemical properties, distribution 

pathways, contaminant concentration in different media, bioaccumulation, back ground 

Hazard identification 

Exposure assessment Effect assessment 

Risk characterisation 

Problem 
formulation 

Analysis 

Risk decision 

UNIVERSITAT ROVIRA I VIRGILI 
SOFT COMPUTING APPROACES TO UNCERTAINTY PROPAGATION IN ENVIRONMENTAL RISK MANGEMENT 
Vikas Kumar 
ISBN:978-84-691-8848-4/DL:T-1270-2008 



 

 142 

concentration etc) that could be considered as common data needs during problem 

formulation for both human and ecological risk assessment. The top-down approach in 

contrast begins with the premise that humans reside in ecosystems, and the changes in the 

environment imply changes in human health and welfare. Ideally integration should 

proceed from both directions. However in practice higher value is placed on human life and 

health risk assessment becomes central objective of risk decision analysis with ecological 

risk as one of the risk factor(Suter, 2004).  

Risk assessments are typically carried out on single substances. Real exposure 

situations, however, are often more complex with mixtures of contaminants. The most 

common approach to address multiple exposures is to treat the contribution of each 

contaminant as additive. The concept of concentration addition is assumed to be valid for 

contaminants with the same site of action and/or for contaminants with the same mode of 

action. However, if contaminants have dissimilar action mechanisms and/or different sites 

of action, independent action of the contaminants is expected. Several methods have been 

proposed to aggregate the toxicity of multi-contaminants mixtures ranging from non-polar 

narcotics (general mode of action) to TCDD-equivalents (specific mode of action)(Suter et 

al., 2003). The most common approach to assess toxicity of mixtures when interaction is 

known is the Toxicity Unit (TU) approach. TU is given by the sum of the quotients of the 

effect of each contaminant in the binary mix and alone (i.e. TU = 

∑EC50_mix/EC50_alone). Thus, a TU of 1 indicates additive interaction whereas a TU>1 

is less than additive (antagonistic) and a TU<1 greater than additive (synergistic)(Gallego 

et al., 2007). Given that the toxicity is additive, the total risk of the mixture can also be 

assessed as the sum of Risk Quotients (RQs) of each of the contaminants. RQs can be 

calculated either based on concentrations or on doses, and represents thereby a 

concentration ratio or dose ratio. Within the European framework for new and existing 

chemicals (EC, 2003), Predicted Environmental Concentrations (PEC) are compared to 

Predicted No Effect Concentrations (PNEC) to give a variety of ratios (i.e. RQ = 

PEC/PNEC) for the different environmental compartments considered. The quotient 

method is widely recognised and easy to use and communicate, which makes it a useful 

tool in screening and lower tier assessments. However, in higher tier assessments a lot of 
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information is lost when deriving deterministic point estimates of exposure and effects. For 

example, a RQ of 5 may be inferred as a much larger risk than a RQ of 2; however, the RQ 

value does not quantify the incidence and severity of the adverse effects. Thus, to interpret 

these concentrations or dose ratios there is a need to calibrate against effects induced. 

Furthermore, the estimated RQ is influenced by the uncertainties connected with exposure 

and effects analyses. This means that a high RQ calculated from uncertain data may 

constitute no larger a risk than a low RQ calculated from more precise data.  

7.3 Fuzzy framework of Integrated Risk Assessment 

The application of fuzzy sets theory in decision-making problems was become 

possible when Bellman & Zadeh (1970) and a few years later Zimmermann (1978) 

introduced fuzzy sets into the field of multiple-criteria analysis. They cleared the way for a 

new family of methods to deal with problems that had been inaccessible to and unsolvable 

with standard techniques. More advanced issues in this area incorporates decision-making 

with interactive and interdependent criteria (Carlsson & Fuller, 1996; Holz & Mosler, 

1994; Korvin & Kleyle, 1999), selection of aggregation operators (Calvo et al., 2002; 

Yager & Kacprzyk, 1997) etc. Risk assessment is not a classical case of decision making 

process. It involves complex analytical process, so a single decision making method will 

not be sufficient to cover the whole risk assessment process. Taking clue from decision 

theory (Neufville, 1990), risk decision can be defined as a process of evaluation with three 

steps:  i) Problem formulation, ii) risk analysis iii) risk decision (Figure 7.1). 

7.4 Proposed Integrated Fuzzy Risk Assessment (IFRA) Framework  

The Proposed integrated approach to risk management in uncertain scenario 

includes three components based on fuzzy approach: system modelling and simulation, 

weight assessment, and risk decision-making (Figure 7.2). In general, modelling results 

could provide predict concentrations of pollutants and they serve as the bases for further 

health risk assessment. Integration of exposure and effect into an estimate of risk can be 

achieved via probabilistic methods or possibility methods. The flow from expert 

assessment to system modelling is a typical research methodology for many environmental 
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subjects and is embedded in this conceptual framework. Here modelling includes the 

development of different fate and transport models for predicting concentration of 

contaminants in different media and the development of decision analysis tools for risk 

decision-making, based on field data, scenario assessment, and system modelling results. 

The conceptual framework represents a holistic and multidisciplinary approach to 

environmental risk management, and the three components comprise a work flow for a risk 

assessment process. 

 

 
Figure 7.2: General framework of Integrated Fuzzy Relation Analysis Method (FAHP = Fuzzy 

Analytical Hierarchical Process, TM = Transformation method and IFRA = Integrated Fuzzy 

Relation Analysis). 

7.4.1 Fuzzy System modelling and simulation  

Basic principal of fuzzy modelling is based on Zadeh’s extension principle (Zadeh, 

1968). If all input parameters in a mathematical model are known, also the dependent 

variables are defined with crisp values and if we assume that the input parameters are 

imprecise and represented by fuzzy numbers, the resulting outputs of the model will also be 

       Weight Assessment 

Of Risk criteria 

Fuzzy Risk Analysis 

Integrated Risk Value 

Contaminated Site 

Site Characterization 

Selection of Risk Criteria System Modeling  

Sensitivity Analysis 

TM

MM 

IFRA 

FAHP 

UNIVERSITAT ROVIRA I VIRGILI 
SOFT COMPUTING APPROACES TO UNCERTAINTY PROPAGATION IN ENVIRONMENTAL RISK MANGEMENT 
Vikas Kumar 
ISBN:978-84-691-8848-4/DL:T-1270-2008 



 

 145 

fuzzy numbers characterised by their membership functions. In this paper Transformation 

Method (TM) introduced by Hanss (2002) is used. The simulation using TM used in the 

present study will be next explained. Hanss (2002) has proposed two forms of 

transformation methods, one general transformation method and other reduced 

transformation method. These two methods differ in degree of discretisation of particular 

interval. 

Consider fuzzy numbers nA
~

,...,A
~

,A
~

21  are the set of n input parameters defined on 

the real line R and suppose ix , where n., . 1,2,.  i = denotes the element of iA
~ . Now if  y is the 

output of the system which depends on n inputs nxxx ,...,, 21  by the mapping 

)x,...,x,x(fy n21= ,  the n input parameters are modelled as fuzzy numbers with a 

membership function  µA(x) of arbitrary shape. Then the solution to the fuzzy number B
~ in 

y can be obtained by the following steps using transformation method. 

6. Using the α-sublevel technique, discretise the range of membership [0,1] into a 

finite number of values. So an input parameter iA
~

 can be decomposed into a set of 

m+1 intervals 
)( j

iX ,  m,...1,0j = . The value of discretisation term, m depends on 

the degree of accuracy needed in approximation. 

7. For each membership level j, find the corresponding intervals for A
~  in 

n  ,. .  ,.2 1,  i ,xi = .  These are the supports of the jα -cuts of NAAA
~,...,~,~

21 .  So if  

[ ])()( , j
i

j
i ba  is the end points interval of i

th input parameter and for j
th level of 

membership denoted by  )( j
iX  then set  },...,,{~ )()1()0( m

iiii XXXA = . When ai is equal to 

bi , the interval reduce to a point i.e. at α-level 1. 

Now instead of applying standard interval arithmetic to the interval )( j
iX , they are 

transformed into arrays using combinatorial operation at each α-level.  
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8. The intervals are transformed into arrays 
)(ˆ j

iX  of the following forms: 

( )
444444 3444444 21

pairs

j
i

j
i

j
i

j
i

j
i

j
i

j
i

i

X

12

)()()()()()()( ,,...,,,,ˆ
−

= βαβαβα

                                                                    (1) 

with

( )
43421

elements

j
i

j
i

j
i

n

aa

12

)()()( ,...
−

=α

,

( )
43421

elements

j
i

j
i

j
i

n

bb

12

)()()( ,...
−

=β

                                                                     (2)  

where 
)( j

ia  and 
)( j

ib  denote the lower and upper bound of the interval at the 

membership level µj for the ith uncertain parameter. For each interval level, these 

arrays combine the interval extrema 
)( j

ia  and 
)( j

ib  in every possible way. 

9. Simulation is carried out by evaluating the expression separately at each of the 

positions of the arrays using the conventional arithmetic for crisp numbers. Thus, if 

the output  B
~ of the system can be expressed in its decomposed and transformed 

form by the arrays )(ˆ j
iB , mj ,...,1,0=  the kth element )( j

i
k b  of the array )(ˆ j

iB  is then 

given by 

)( j
i

k b  = ( ))()(
2

)(
1 ˆ,...,ˆ,ˆ j

n
kjkjk
xxxf                                                                                       (3) 

where  )(
1ˆ

jk x denotes the kth element of the array )j(

iX̂ .            

10. Finally, the fuzzy-valued result B
~ of the problem can be achieved in its decomposed 

form   

[ ])()()( ,~ jjj
baB =  , mj ,...,1,0=                                                                                        (4)         

by retransforming the arrays )(ˆ j
iB  using recursive formulae 

 ( ))()1()( ˆ,min jkj

k

j bba += , ,1,...,1,0 −= mj                                                             (5)             

( ))j(k)1j(

k

)j(
b̂,bmaxb

+= , ,1,...,1,0 −= mj                                      (6) 

           and  

           ( ) ( ) )m()j(k

k

)j(k

k

)m(
bb̂maxb̂mina === .                                       (7) 

7.4.2 Weight Assessment of risk criteria 

 General weight (Wi) for each pollutant has to be decided according to the relative 

risk of the pollutants based on different health and ecological risk criteria (EPA, 2005; 
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Kumar et al., 2006). The weight has been assigned using Fuzzy Analytical Hierarchical 

Process (FAHP) proposed by Korvin & Kleyle (1999). FAHP is a systematic approach to 

multi-criteria decision-making in uncertain environment which involves ranking several 

alternatives according to their weights. The hierarchical pair-wise comparison is employed 

to induce the relative weights of alternatives through pair-wise comparison. By means of 

hierarchy, the importance of the alternatives according to the objective can be viewed. 

Numerical values in the Decision Matrices (DMs) are fuzzy numbers reflecting uncertainty 

in the judgement-making process. In applications it is often convenient to work with 

Triangular Fuzzy Numbers (TFNs) because of their computational simplicity (Giachetti & 

Young, 1997), and they are useful in promoting representation and information processing 

in a fuzzy environment. The steps involve in FAHP are quite similar to AHP and have been 

described next. 

1. Arrange the information, (i.e., goal, criteria, and alternatives) into a 

hierarchical model. In this case the goal is risk weight, criteria are risk factors 

and alternatives are different contaminants. 

2. Use pair-wise assessment to determine the relative importance of each 

criterion and each alternative. Values are provided as TFNs in the form of a 

triplet (l, m, u) representing lower, modal, and upper bound of relative 

importance. Pair-wise assessment specifies which element (criterion or 

alternative) is more important, preferable, or likely, with respect to its parent 

node (the goal or the selected criterion). 

3. Using triangular fuzzy numbers with the pair-wise comparisons made, the 

fuzzy comparison matrix m nij  )(x  X
~

×= is constructed. Fuzzy mathematical 

process that generates relative ratios of measurement, to measure the relative 

weight from the pair-wise assessments. 

The pair-wise comparisons are described by values taken from a pre-defined set of 

ratio scale values. The ratio comparison between the relative preference of elements 

indexed i and j on a criterion can be modelled through a fuzzy scale value associated with a 

degree of fuzziness. Then an element of  ,X
~

 xij (i.e., a comparison of the ith risk factor with 
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the jth risk factors with respect to a specific criterion) is a fuzzy number defined as xij = (lij, 

mij, uij), where lij, mij and uij, are the lower bound, modal, and upper bound, values for xij, 

respectively. By using the fuzzy synthetic extent analysis (Cheng, 1999), the value of fuzzy 

synthetic extent with respect to the ith
 criterion (i = 1,2, ..., n) that represents the overall 

performance (in this case risk) of the j
th
 (j=1,2,…m) decision attribute (in this case 

contaminant) can be determined by 

∑∏

∑

= =

== n

1i

m

1j

ij

m

1j

ij

i

x

x

S      (8) 

To obtain the estimates for the sets of weight values under each criterion, it is 

necessary to consider a principle of comparison for fuzzy numbers(Cheng, 1999). For 

example, for two fuzzy numbers 
1X

~
 and

2X
~

, the degree of possibility of Y
~

X
~

≥ is defined 

as: 

[ ]))y(),x(min(sup)X
~

X
~

(V
21 X

~
X
~

yx
21 µµ

≥

=≥ ,                                  (9) 

where sup represents supremum (i.e., the least upper bound of a set) and when a 

pair (x,y) exists such that yx ≥ and 1)y()x(
21 X

~
X
~ == µµ it follows that 

1)X
~

X
~

(V 21 =≥ and 0)X
~

X
~

(V 12 =≥ . Since X
~

and Y
~

are convex fuzzy numbers defined 

by the TFNs ),,(
111

uml and ),,(
222

uml respectively, it follows that  

1)X
~

X
~

(V 21 =≥  ;
21

mm ≥                                                (10) 

),d()X
~

X
~

(hgt)X
~

X
~

(V 2112 µ=∩=≥                                      (11) 

Where hgt is the height of fuzzy numbers on the intersection of X
~

& Y
~

; d is the cross 

over point’s abscissa between the 
X
~µ & 

Y
~µ as shown in Figure 3. 









−−−

−

=

0

)lm()um(

ul

)d( 1122

21

µ              
.otherwise

;ul 21 ≤
                           (12) 
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The degree of possibility for a convex fuzzy number can be obtained from the use 

equation 11. The degree of possibility for a fuzzy number greater than other fuzzy numbers 

can be obtained by obtained by max-min operation(Dubois & Prade, 1987). Suppose there 

are n risk criteria and m pollutants and wj represents weight of jth pollutants aggregated 

over all risk criteria. Then wj can be given by: 

))ik&n,..2,1k/X
~

X
~

(Vmin(w kij ≠=≥=  m,...,2,1j =                         (13) 

And the weight vector is given by: 

)w,...,w,w(W m21=                                                    (14) 

 

Figure 7.3: Comparison of two fuzzy numbers X
~

and Y
~

 

Different risk criteria are used to weigh the possible threats of contaminants. These 

may include risks to population exposed, physical stability of contaminant, chemical 

characteristics of contaminant, threat to environment, management considerations etc. The 

criteria whereby acceptability will be judged will obviously depend on the circumstances, 

and objective of the assessment. The actual set of factors to be considered in any particular 

case might be fairly simple or highly complex. Even in simple situations, a decision will 

not necessarily be made on the basis of quantitative criteria. Each criterion can be ranked as 

TFNs on a numeric scale giving lower, modal and upper bound of rank which can be 

further used in FAHP weight assessment. 

7.4.3 Integrated Fuzzy Relation Analysis Method  

 For the purpose of quantifying uncertainty more effectively and integrating the risk 

assessment process with system modelling in a fuzzy environment, Integrated Fuzzy 

µ

 

Y
~

         X
~

            
 

0           l2              m2  l1   d     u2 m1                u1 

)d(µ  
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Relation Analysis (IFRA) has been proposed. The concept of fuzzy relation was first 

applied to medical diagnosis by (Zadeh, 1968). In a very general setting, the process of 

fuzzy relation analysis can be conveniently described by pointing out relationships between 

a collection of pattern features and their class membership vectors. This analysis is useful 

for multifactorial evaluation and risk assessment under imprecision and uncertainty 

(Pedrycz, 1990). The axiomatic framework of fuzzy set operation provides a natural setting 

for constructing multiattribute value functions in order to sort a set of potential actions and 

make an effective assessment. IFRA method is a generalization and refinement of the 

interval based methods such as IPFRA proposed by Huang et al. (1999).  In IFRA the 

bounds vary according to the level of confidence one has in the estimation. One can think 

of a fuzzy number as a nested stack of intervals, each at a different level of presumption or 

possibility which ranges from zero to one and risk assessment can be performed at each 

level of possibility. 

IFRA method for risk analysis will be explained in the context of multi-

contaminants problem in the groundwater. A general framework has been presented in 

figure 2. Assuming that chronic daily intake and average human life expectancy are 

constant, the relationship between the risk and the pollutant concentration can be expressed 

as follows: 

∑ ×=
i ii KCI

,                                                           (15) 

Where: 

I = Integrated Health Risk; 

Ci = Concentration of pollutant i in the groundwater (mg/L); 

Ki = Constant for the pollutant i  (mg/L)-1. 

Thus, the IFRA modeling computation can be initiated by first defining set U for 

pollutants and set V for risk levels as follows:  

U = { ui | ∀ i }                                                          (16) 

Vi = { vil | ∀ l }                                                         (17) 

where ui represents membership grade of pollutant i in  the multifactorial space and 

vil is the criterion for pollutant i at risk level l. Criteria for pollutant at different risk level are 
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concentration range which reflects the expected health hazard at that level. This is generally 

a policy matter and decided by different regulatory agency. 

The ui value can be regarded as a weighting coefficient for pollutant i which can be 

calculated as follows:  

iii ĉwu ×=                                                                     (18) 

where wi is general weighting coefficient for pollutant i, which can be calculated 

using some multi-attribute decision-aiding model.  Here a general weight for each pollutant 

has been decided according to the relative risk of the pollutants based on different health 

and ecological risk criteria. This weight was assigned with Fuzzy Analytic Hierarchy 

Process (FAHP).  

And 
iĈ is normalized concentration of pollutant i. Normalization (scale to [0, 1]) 

need to be done to remove the weightage of numeric value during calculation of weighting 

coefficient. 

 Pollutants concentration is the output of fuzzy simulation which is a fuzzy number 

(as explained in section 7.4.1). So with n pollutant under consideration, the pollutants 

concentration can be represented as fuzzy number discretised over k α-levels which can be 

decomposed into a set as follows: 

}k,...,2,1,0j;n,...,2,1ic{C
~

ij === ±                                           (19) 

where ±
ijc  denote the lower and upper bound of the i

th
 pollutant concentration at the 

membership level µ j. 

And normalized concentration Ĉ  can be represented as: 

}k,...,2,1,0j;n,...,2,1iĉ{Ĉ ij === ±                                           (20) 

Similarly here ±
ijĉ  denote the lower and upper bound of the interval at the membership 

level µ j for the ith
 pollutant. 

So following the fuzzy arithmetic principle (Zadeh, 1968), ui can be calculated as fuzzy 

set: 
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}k,...,2,1,0j;n,...,2,1iu{U
~

ij === ±                                            (21) 

Now to evaluate imprecise concentration value of each pollutant versus different risk 

level, fuzzy relation analysis will be used. A fuzzy subset of C × V, which is a binary 

fuzzy relation from C
~

 to V, can be characterized through the following membership 

function:  

[ ]1,0VC
~

:R
~

→×                                                          (22) 

Thus, we have fuzzy relation matrix:  

{ }m,...2,1l;k,...,1,0j;n,...,1irR
~

ij

)l( ====                                    (23) 

where ±
ij

)l( r  is the lower-upper bound of membership grade at membership level µ j of 

pollutant i versus risk level l, which is a function of pollutant concentration and risk level 

criteria. 

The membership grade of fuzzy relation at each membership level µ j between given ±
ijc  

for fuzzy number C
~

and vil at risk level l can be calculated as follows: 

Case 1: when l,iij1l,i vcv ≤≤ ±
− : 

l,j,i),vv/()vc(r 1l,il,i1l,iijij

)l( ∀−−= −−
++                                         (24) 

l,j,i),vv/()vc(r 1l,il,i1l,iijij

)l( ∀−−= −−
−−                                             (25) 

Case 2: when l,iij1l,i vcv ≤≤ +
−  and 1ilij vc −

− ≤  

l,j,i),vv/()vc(r 1l,il,i1l,iijij

)l( ∀−−= −−
++                                             (26) 

,l,j,i,0rij

)l( ∀=−                                                                     (27) 

Case 3: when 1l,iijl,i vcv +
± ≤≤ : 

l,j,i),vv/()cv(r l,i1l,iij1l,iij

)l( ∀−−= +
−

+
+                                                      (28) 

l,j,i),vv/()cv(r l,i1l,iij1l,iij

)l( ∀−−= +
+

+
−                                             (29) 

Case 4: when 1l,iij vc −
± ≤  or 1l,iij vc +

± ≥ : 

l,j,i,0rij

)l( ∀=±                                                                     (30) 
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Case 5: when l,iij vc ≤−  or l,iij vc ≥+ : 

l,j,i,1rij

)l( ∀=+                                                                   (31) 

l,j,i)},vv/()cv(),vv/()vc{(Minr l,i1l,iij1l,i1l,il,i1l,iijij

)l( ∀−−−−= +
+

+−−
−−                 (32) 

Now we have got R
~

andU
~

, from these values the integrated risk level I
~

can be 

determined as follows: 

R
~

U
~

I
~

o=                                                             (33) 

where o  cab be a max-min or max-* composition (Zimmermann, 1991). 

Let }k,...,1,0j|b{I
~

j == ±                                                 (34) 

where ±
jb  is integrated risk at membership level µ j. 

For the max-min composition, integrated risk at membership level µ j we have:  

),...r,umin(),r,umax{min()ru(b j2

)l(

j2j1

)l(

j1ij

)l(

ij

n

1i
j

±±±±±±

=

± =∧∨=      

m,...,2,1l)},r,umin(, nj

)l(

nj =±±                                (35) 

And for the max-* composition, we have: 

),...ru(),rumax{()ru(b j2

)l(

j2j1

)l(

j1ij

)l(

ij

n

1i
j

±±±±±±

=

± ∗∗=∧∨=  

m,...,2,1l)},ru(, nj

)l(

nj =∗ ±±                                 (36) 

Thus integrated risk of a system containing several pollutants can be obtained which 

also integrate different risk criteria in the model. The weightage coefficient calculated 

from different risk criteria gives a degree of relevance for different pollutant. Fuzzy max-

* operation also comply with standard toxicological norm to integrate worst risk scenario.  

7.5 Case Study 

A hypothetical problem is developed to illustrate integrated fuzzy modelling and 

risk analysis approach. The study site contains a leaking underground gasoline storage tank. 

About 600 m away from the tank area, there is a deep bore well used for rural drinking 

water supply. The recent groundwater monitoring data indicate high concentrations of 

several chemical stemming from petroleum products. The main contaminants in leaked 

UNIVERSITAT ROVIRA I VIRGILI 
SOFT COMPUTING APPROACES TO UNCERTAINTY PROPAGATION IN ENVIRONMENTAL RISK MANGEMENT 
Vikas Kumar 
ISBN:978-84-691-8848-4/DL:T-1270-2008 



 

 154 

petroleum products are benzene, toluene, ethyl-benzene and xylenes (BTEX). All these 

compounds are acutely toxic and have noticeable adverse health effects at high 

concentrations. The BTEX can enter the human body through ingestion of contaminated 

crops, inhalation of vapour from the soil, intake of contaminated drinking water, and skin 

exposure. Drinking and bathing in water containing these contaminants can put one at risk 

of exposure. Since BTEX can evaporate out of water, one can also be exposed by inhaling 

the vapours that come from drinking water.  

 7.5.1 Modelling and Simulation of Contaminant transport 

A multi-phase and multi-component transport problem, with a continuous point 

source of pollution in a porous media with uniform flow field has been modelled. For this 

purpose, a finite element generated numerical solution has been used. Such solution 

generally requires extreme simplifications, but the results can be used for approximate 

solutions. They are also very useful to illustrate the sensitivity of different parameters in 

overall uncertainty.  

A numerical model consisting of 40x30 nodal grids with a uniform grid spacing of 

50 m in both directions was used to simulate the two-dimension solute transport using the 

following equation (Dou et al., 1997).  

         (36)                                                          
byx
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where 
n

jiC , is the concentration of dissolved chemical (mg/L ), V is seepage velocity in the 

x direction (m/day), αL and αT  are the longitudinal and transverse dispersion coefficients 

(m), respectively, b is thickness of aquifer (m), ε is effective porosity, ∆t is time 

increment (day),  ∆x and ∆y are grid spacing in x and y direction respectively (m). 

Zero concentration boundaries were placed at the left, upper and lower model 

boundaries with a constant source placed at 500 m from the surface and 750 m from the left 
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boundary. Sample data the contaminated water is collected from 600 m from the pollution 

point source on the longitudinal section. 

For the simulation of numerical model, fuzzy transformation method (Hanss, 2002) 

has been used (discussed in section 7.4.1). 

Characteristics of the uncertain parameters and other data used in the simulation are 

shown in Table 7.3 and Table 7.4, respectively. 

Table 7.1: Triangular fuzzy numbers for 

uncertain  parameters 

Table 7.2: Other crisp input data use 

in simulation 

 

 
Low 

 

Medium  

 

High  

 

V(m/day) 0.3 0.6 1.0 

αL (m) 100 200 300 

αT (m) 20 40 60 

 

Parameters Value 

Thickness of flow, b 50 m 

Source strength, M 120 kg/day 

Effective porosity, p 0.17 

Grid distance (∆x) 50 m 

Grid distance (∆y) 50 m 

Time increment 1 day 

 

The result of the fuzzy simulation (shown in Figure 7.4 and 7.5) along with other 

system components has been used for risk assessment using IFRA.  

7.5.2 Weight Assessment using (FAHP) 

Five Risk criteria are used to weigh the possible threats of contaminants as listed in 

table 7.3 (adopted from EPA, 2005). The relative importance of different criteria is 

assigned using the intensity of importance. Importance is ranked on a scale of one to five. 

The score 1 represents equal importance, 2 weak importance, 3 good importance, 4 strong 

importance and 5 very strong importance.  It is difficult to map qualitative preferences to 

point estimates, and hence a degree of uncertainty is associated with some or all pair-wise 

comparison values in an FAHP problem. Using triangular fuzzy numbers with the pair-wise 

comparisons made, the fuzzy comparison matrix mnij )x(X ×=  has been constructed. Where 

element of 
ij

xX ,  is a fuzzy number defined as ),,(
ijijijij

umlx = , where
ijij

um , , and 
ij

l  are the 

modal, upper bound, and lower bound values for 
ij

x  respectively. Pair-wise comparision 
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between different risk criteria has been shown in table 7.4. In this case study, only the 

judgements between criteria obtained for the main objective are demonstrated. 

Subsequently, the judgements between different contaminants (represent Decision 

Attributes (DAs)) over different Risk criteria are dealt with in an identical manner. In Table 

7.6-A &B, pair-wise comparison between contaminants over the risk criteria A and B has 

been shown. Similarly it has been constructed for other risk criteria. 

Table 7.3: Risk factors and decision component 

 Factor Decision components 

A Population exposed Population size, proximity to contaminants, likelihood of exposure 

B Stability Mobility of contaminant, site structure, and effectiveness of any institutional or 
physical controls. 

C Contaminant 
characteristics 

Toxicity and volume. 

D Threat to a significant 
environment 

Endangered species or their critical habitats, sensitive environmental areas. 

E Management Criteria Remediation technologies, cost function, environmental justice, state 
involvement, Brownfield/economic redevelopment. 

 

Table 7.4: Pair-wise comparison between Risk Factors (shown in table 7.1) constructed based on the 

expert opinion 

 A B C D E 
A (1,1,1) (1,1,1) (2,3,5) (2,3,5) (1,2.25,5) 
B (1,1,1) (1,1,1) (2,3,5) (2,3,5) (1,2.25,5) 
C (0.2,0.33,0.5) (0.2,0.33,0.5) (1,1,1) (1,1,1) (0.5,0.75,1) 
D (0.2,0.33,0.5) (0.2,0.33,0.5) (1,1,1) (1,1,1) (0.5,0.75,1) 
E (0.2,0.44,1) (0.2,0.44,1) (1,1.33,2) (1,1.33,2) (1,1,1) 

 

Table 7.5: Sum of rows and columns based on different criteria 

 Row Sums Column Sums 
A (7,10.25,17) (2.6,3.11,4) 
B (7,10.25,17) (2.6,3.11,4) 
C (2.9, 3.42,4) (7,9.33,14) 
D (2.9,3.42,4) (7,9.33,14) 
E (3.4,4.56,7) (4,7,13) 
Sum of columns sums (23.2,31.89,49) 
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Table 7.6: Pair-wise comparison between contaminants over the risk criteria A and B 

 

The ratio comparison between the relative preference of elements indexed i  and j  

on a criterion can be modelled through a fuzzy scale value associated with a degree of 

fuzziness.  

The first stage of the weight evaluation process is the aggregation of 
ijij

ml , and 
ij

u  

values present in the pair-wise comparison matrix for the judgements between criteria 

(shown in table 7.5). Following the fuzzy synthetic extent concept explained in Cheng 

(1999), the evaluation with respect to the five criteria in terms of the 1-5 scale can be 

illustrated as follow. 

The associated 
i

S values can be calculated using equation 8 which have been shown 

below: 

);302.0,143.0,069.0()
23.2

1
,

31.89

1
,

49

1
7).((3.4,4.56,S

);172.0,107.0,059.0()
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To obtain the estimates for the sets of weight values under each criterion Euations 9-12 

have been used. 

;1)(
21

=≥ SSV  ;1)(
31

=≥ SSV  ;1)(
41

=≥ SSV  ;1)(
51

=≥ SSV  

A    B T E X 
B (1,1,1) (1,1,1) (1,1,1) (1,1,1) 
T (1,1,1) (1,1,1) (1,1,1) (1,1,1) 
E (1,1,1) (1,1,1) (1,1,1) (1,1,1) 
X (1,1,1) (1,1,1) (1,1,1) (1,1,1) 

B B T E X 
B (1,1,1) (1,2.5,4) (2,3,5) (2,3,5) 
T (1,0.4,0.25) (1,1,1) (1,2,3) (1,2,3) 
E (0.5,0.33,0.2) (0.5,0.33,0.2) (1,1,1) (1,1,1) 
X (1,0.5,0.33) (1,0.5,0.33) (1,1,1) (1,1,1) 
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;1)(
12

=≥ SSV  ;1)(
32

=≥ SSV  ;1)(
42

=≥ SSV  ;1)(
52

=≥ SSV  

;121.0)(
13

=≥ SSV  ;121.0)(
23

=≥ SSV  ;121.0)(
43

=≥ SSV  ;743.0)(
53

=≥ SSV  

;121.0)(
14

=≥ SSV  ;121.0)(
24

=≥ SSV  ;121.0)(
34

=≥ SSV  ;743.0)(
54

=≥ SSV  

;471.0)(
15

=≥ SSV  ;471.0)(
25

=≥ SSV  ;1)(
35

=≥ SSV  ;1)(
45

=≥ SSV  

The final weight vector is obtained by equation 12. Weight and source strength of 

different BTEX compounds has been shown in Table 7.8. Weighting coefficient ui of each 

pollutant is based on Table 7.8. Risk level criteria for all compounds under study has been 

shown in Table 7.9 which has been adapted for this case study on the basis of EPA’s 

recommendation of Maximum Contaminant Level (MCL) for drinking water and 

documentation for Immediately Dangerous to Life or Health Concentrations (IDLHs) 

(Chau, 2005, Falta et al., 2005, EPA, 2006). Fuzzy subset V has been built based on Table 

7.9 and in consultation of expert which denotes the different risk level of pollutants. The 

membership grade of fuzzy relation between given ±
ijc  at membership level µ j for fuzzy 

number C
~

and risk level j can be calculated according to conditions set in equations 24-34. 

And finally the integrated risk level has been determined using equation 35 (equation 36 

can also be used).  

Table 7.7: The sets of weight values for all fuzzy comparison matrices and the final results obtained 

 Weight values for DAs 
DA B T E X 

Criteria Weight  

C1 0.25 0.25 0.25 0.25 0.369 
C2 0.53075 0.34118 0.06403 0.06403 0.369 
C3 0.39669 0.22676 0.3185 0.058055 0.045 
C4 0.044739 0.19782 0.36254 0.3949 0.045 
C5 0.13388 0.21973 0.3232 0.3232 0.173 
Final Results 0.331 0.275 0.202 0.192 1.000 

 

Table 7.8: General weight and source strength of each contaminant 

Pollutant Weight Source Strength 
(kg/day) 

Benzene 0.331 13.2 
Toluene 0.275 31.2 
Ethyl Benzene 0.202 13.2 
Xylene (o,m,p) 0.192 62.4 

 

UNIVERSITAT ROVIRA I VIRGILI 
SOFT COMPUTING APPROACES TO UNCERTAINTY PROPAGATION IN ENVIRONMENTAL RISK MANGEMENT 
Vikas Kumar 
ISBN:978-84-691-8848-4/DL:T-1270-2008 



 

 159 

Table 7.9: Risk level criteria for all compounds under study (amount in mg/L) 

Risk level Benzene Toluene Ethyl Benzene Xylene(o,m,p) 
Low 0-0.005 0-1 0-0.7 0-10 
Moderate 0.005-0.05 1-5 0.7-3 10-20 
Moderately High 0.05-1 5-50 3-30 20-100 
High 1-50 50-250 30-150 100-400 
Very High 50-500 250-500 150-800 400-900 
Deadly >500 >500 >800 >900 

7.6 Results and Discussion 

Problem of environmental risk is more conceptual rather technical (Christakos, 

2003). Common risk assessment process starts with reducing the complicated systems into 

mathematical models with a conceptual system understanding. The model parameters have 

lot of associated uncertainty because the state of knowledge is not perfect or near perfect. 

Assessment of the parameters can be based on expert judgement and sometime expressed 

as linguistic terms. Crisp set and crisp set based risk assessment frameworks are unable to 

express different sort of uncertain.  Fuzzy logic has been successful in providing coherent 

framework for uncertainty modelling. In this study, fuzzy technique has been used to 

provide an integrated modelling and risk assessment framework. The fuzzy transformation 

method has been used for system modelling. A finite element generated numerical solution 

for multicomponent transport problem, with a continuous point source of pollution in a 

porous media with uniform flow field has been used for predicting pollutants concentration 

in groundwater. Some of the result of the simulations has been shown in Figure 7.4 and 7.5. 

Figure 7.4 shows membership plot of concentration of different pollutants after 5 years of 

time period in a well near residencial area. 
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Figure 7.4: Concentration of different pollutants obtained from Fuzzy system simulation. 

Figure 7.5 is showing the concentration of solute at different time interval obtained 

from system simulation for 1000 days time interval. The lower and upper bound of 

different membership level of fuzzy number, i.e. 0.0, 0.3, 0.5, and 0.8 of α-cuts 

respectively has been mapped. Concentration graphs are showing clear narrowing of width 

of the concentration membership function (upper bound minus lower bound) which 

converges to one line at 1 α-cut. Result has been compared with other fuzzy methods 

reported by Dou, et al. (1997) in another paper by Kumar and Schuhmacher (2005) 

(Chapter 3 of this thesis). The width of the concentration membership function obtained 

from Transformation method is narrower than other comparable fuzzy methods like vertex 

method in the same case study. The difference in the concentration output is mainly due to 

interaction of the concentration variable in space and time dimensions. Neglecting this 

dependency of input variables result in overestimation of the imprecision of solute 

concentration. A detailed discussion of the effect of fuzzy number dependence can be 

found in Dou et al. (1995).  
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Figure 7.5:Comparison of solute concentration outputs of solute transport at different αααα-levels 

obtained from Fuzzy Transformation method 

The application of the Fuzzy Analytic Hierarchy Process (FAHP) method has been 

used for weight assessment of risk criteria. The FAHP provides a productive framework in 

dealing with complexity by means of a structured hierarchy and in moving from point 

assessment to environmental-policy evaluation. Apart from exposre parameters, there are 

many risk criteria are evaluated and integrated in this weight assessment steps. The 

important consequences of the choice outcome may confer a level of uncertainty on the 

decision maker, in the form of doubt, procrastination etc. This is one reason for the 

utilisation of FAHP, with its allowance for imprecision in the judgements made.  

From the above steps we obtained fuzzy value of hazard (concentration of BTEX 

compounds) and weight of risk criteria. We have also estimated risk standards in term of 

different risk level for the pollutants. Now it needs to be evaluated in logical manner to 

produce integrated risk. It also needs to quantify uncertainty more effectively from fuzzy 

output of hazard analysis (quantitative uncertainty) and subjective uncertainty of risk 

standards (subjective uncertainty). Fuzzy Relation Analysis has been used to provide a 

systematic framework and effective quantification of uncertainty in integrated risk analysis. 

UNIVERSITAT ROVIRA I VIRGILI 
SOFT COMPUTING APPROACES TO UNCERTAINTY PROPAGATION IN ENVIRONMENTAL RISK MANGEMENT 
Vikas Kumar 
ISBN:978-84-691-8848-4/DL:T-1270-2008 



 

 162 

The result of integrated risk analysis at different membership degree has been 

shown in Table 10. Degree of membership can be interpreted as confidence level. 

Uncertainty with the risk prediction is decreasing as level of confidence is increasing. 

Integrated risk at α-level 0 is ‘Low to Moderately High’ which become narrower at α-level 

0.5 as ‘Low to Moderate’  which further narrowed to become ‘Moderate to moderately 

high’ at α-level 0.8 and ‘Moderate’ at α-level 1.0. Average risk perception at this 

contaminated site can be quantified as ‘Moderate’. The fuzzy membership of Risk 

perception in a given context, should be taken as proportional to how similar (in terms of 

risk) given site risk is (or will be) to some pre-determined prototypical "risk" in the 

environmental context. Result at different membership level can be interpreted on 

confidence scale which can be different in different situation. Decision maker have choice 

to see risk perception at different possiblistic level.  

Here we would might go beyond this and suggest an alternate criterion, that the 

fuzzy membership be proportional to the ‘utility’ for an appropriately defined  

decision maker in that context of using different terms for Risk to describe  

contamination problem (this, for example, would allow us to weigh costs of inappropriate 

usage of the term). This proposed subjective description makes a lot of sense at 

management level. 

Table 7.10: Integrated Risk at different membership levels 

Membership level Integrated Risk 
0 Low to Moderately High 
0.1 Low to Moderately High 
0.2 Low to Moderately High 
0.3 Low to Moderately High 
0.4 Low to Moderate 
0.5 Low to Moderate 
0.6 Low to Moderate 
0.7 Low to Moderate 
0.8 Moderate to Moderately High 
0.9 Moderate to Moderately High 
1.0 Moderate 
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Advantages of using the IFRA for environmental risk analysis include:  

• It is an integrated approach which incorporates effects of different pollutants 

and different risk criteria within a general framework;  

• It can explicitly consider and propagate uncertainties; 

• The IFRA can provide a general analysis framework for effectively 

modelling different kind of uncertainties encountered in risk analysis process; 

• It enables the synthesis of quantitative information into qualitative output 

which is more easily understandable to decision makers and regulators; 

• Its modular form is scalable and easily programmable for computer 

applications and can become a comprehensive risk analysis tool. 

The application presented in this paper is a simplified demonstration of the 

approach. A comprehensive application would require a major effort, including the 

collaboration of several experts in the various disciplines of knowledge. It still needs to be 

tested for real case study. One possible limitation of the proposed method may be sensitive 

to the selection of aggregation operators at different stage of the process (simulation, 

weight assessment or Fuzzy relation analysis). Different operators can be used for different 

segments of the model. One possible problem of wrong aggregation operators could be 

exaggeration and eclipsing. Exaggeration occurs when all parameters have relatively low 

membership value and the aggregated outcome is unacceptably high. Eclipsing is the 

opposite phenomenon, where one or more of the parameter is of relatively high value, yet 

the aggregated value comes out as unacceptably low. Also in the proposed framework the 

sensitivity analysis should be extended to examine the effects of input scenario and 

aggregation operators as well. A comprehensive sensitivity analysis will depend on the 

actual values of the specific case at hand. As the case study presented here is a simplified 

example, applying such a sensitivity analysis here would be of little value. 

UNIVERSITAT ROVIRA I VIRGILI 
SOFT COMPUTING APPROACES TO UNCERTAINTY PROPAGATION IN ENVIRONMENTAL RISK MANGEMENT 
Vikas Kumar 
ISBN:978-84-691-8848-4/DL:T-1270-2008 



 

 164 

7.7 Conclusion 

Common risk assessment approaches based on probabilistic tools such as Monte 

Carlo are analogous to assessments based on fuzzy logic, however these two methods differ 

significantly both in approach and interpretation of results. One key advantage of fuzzy 

logic over Monte Carlo methods is the ability to confront linguistic variables (low, 

moderate, high, very high). With Monte Carlo methods, we must often force continuous 

distributions to fit linguistic variables for probabilistic assessments. Fuzzy arithmetic 

combines outcomes from different sets in a way that is analogous to but different from 

Monte Carlo methods. 

 The proposed IFRA approach presents a new model to integrated risk assessment 

which contributes to the area of environmental risk assessment under uncertainty. 

Integration of system simulation and risk analysis using fuzzy approach allowed 

incorporating system modelling uncertainty and subjective and inexact risk criteria. It is 

useful for comprehensively evaluating risks within a system containing many factors with 

complicated interrelationships. It can incorporate effects of different pollutants and 

different remediation techniques within a general framework. Also, the method can 

effectively reflect uncertainties presented as inexact intervals for a number of modelling 

inputs. Decisions on activities, practices or interventions that involve contamination of the 

environment may be informed through the technical assessment procedures but will also be 

influenced by many other factors, including stakeholder views, which often involve trade-

offs. Fuzzy Analytical Hierarchical Process makes it possible to trade-offs between 

different risk factors and incorporates uncertainty of qualitative decisions. All these factors 

become integrated in the judgement of acceptability, which – in turn – guides decision-

making. A key feature of such decision-making is that the process should be open and 

transparent, and that all factors considered should be clearly defined such that there is a 

basis for judgement on the acceptability of the decision. 
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CHAPTER 8  

GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

The term soft computing describes an array of emerging techniques such as fuzzy 

logic, probabilistic reasoning, neural networks, and genetic algorithms. All these techniques 

are essentially heuristic, which provide rational, reasoned out solutions for complex real-

world problems. In this study, different soft computing approaches to uncertainty 

propagation in environmental risk management models have been investigated. The thesis 

maninly focused on contaminant risk however methods developed can be equily applicable 

to other area of environment risk. Uncertainty propogation methods are generic and can be 

used in any system modelling application. Practicability of methods has been shown with 

application to some real case studies. A brief summary of the work under taken in this 

study are given as follows: 

In the first section of this thesis gives a general introduction and background 

knowledge on the subject mater. Chapter 2 reviews previous studies on uncertainty 

propagation in environmental models and different methods used for uncertainty 

modelling. It also gives background information on fuzzy set and related theories. Review 

of these efforts provides bases for proposing practical modelling tools for uncertainty 

modelling in environmental models. Particularly, the existing techniques tackling 

uncertainties in simulation and risk assessment, such as fuzzy-set and stochastic methods, 

are examined with their advantages and disadvantages being analysed.  

Section two deals with uncertainty propagation methods and consists of two studies. 

The first study provides comparison of stochastic and fuzzy approaches of uncertainty 

propagation. A new methodology based on generalized fuzzy α-cut principal and concept 

of transformation method shows superiority over conventional methods of uncertainty 

modelling. Transformation method is a special implementation of fuzzy arithmetic based 

on α-cut principle that avoids the well-known effect of overestimation which usually arises 
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from use of interval computation for fuzzy arithmetic. This method has been extended to do 

sensitivity analysis of uncertain model parameters. A case study of uncertainty analysis of 

pollutant transport in ground using 2-D transport model has been used to show the utility of 

this approach. Results are compared with commonly used probabilistic method and normal 

Fuzzy alpha-cut technique. Based on the structure of the explicit finite-difference equation 

for solute transport, the transformation method has been applied to solve the fuzzy equation 

at each node and each time step.  Compared to the vertex method which has been reported 

to overestimate the uncertainty, this method has given comparable or better results and has 

sorted out the problem of overestimation due to dependencies among uncertain variables at 

different nodes.  

In the second study, a new hybrid-method has been proposed, which allow 

combined utilization of probabilistic (Latin Hypercube Sampling) and non-probabilistic 

(fuzzy set theory) approaches for treating model parameter uncertainties in the system 

model. This method called Fuzzy Latin Hypercube Sampling (FLHS) technique allows the 

characterization of both uncertainty and variability of one or more input variables. The 

variability in the random variables of the model is treated using probability density 

functions (PDFs), while the uncertainty associated with them is treated using fuzzy 

membership functions for the parameters of these random variables. Thus, means and 

standard deviations of these PDFs are modelled as fuzzy numbers. This modelling structure 

gives a generalized framework for uncertainty analysis. This framework of uncertainty 

analysis encourages the modellers for detailed uncertainty characterization, and at the same 

time gives enough space to carry out modelling task in case of insufficient information on 

parameters distribution. If the available information is sufficient for detailed 

characterization of uncertainty and variability, the method can provide a detailed analysis 

of uncertainty and variability contribution in the final result. However, in all cases the 

method can give insight into uncertainty and variability contribution of different parameters 

of the final result, which would help modeller/decision maker to collect more data or to 

improve observation of major parameters in order to improve results. The feasibility of the 

method has been validated analyzing total variance in the calculation of incremental 

lifetime risks due to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) for 
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the residents living in the surroundings of a municipal solid waste incinerator (MSWI) in 

the Basque Country, Spain. The multi-compartmental model and the exposure models are 

used to do human health risk assessment. Parameters such as ingestion rate, contaminant 

concentration, exposure frequency and duration, body weight, averaging time, and cancer 

slope factor are used to estimate the added risk. Traditionally, health risk is calculated 

characterizing these parameters by either deterministic values or probability density 

functions.  

The third part of thesis consisting two chapters deals with uncertainty management 

in environmental indices. The first paper focused on the development of an integral risk 

map of the chemical/petrochemical industrial area using Self-Organizing Maps (SOM). The 

first step was the creation of a ranking system (Hazard Index) for a number of different 

inorganic and organic pollutants applying Self-Organizing Maps (SOM) to persistence, 

bioaccumulation and toxicity properties of the chemicals. Subsequently, an Integral Risk 

Index was developed taking into account the Hazard Index and the concentrations of all 

pollutants in soil samples collected in the target area. Finally, a risk map was elaborated by 

representing the spatial distribution of the Integral Risk Index with a Geographic 

Information System (GIS). The results of this study show the utility of soft computing 

approaches to in environmental decision making processes relating to pollutants. The 

second paper is an improvement over first work. The first work used SOM weight to rank 

contaminants using their characteristics of persistence, bioaccumulation, and toxicity in 

order to obtain the Hazard Index (HI). It doesn’t consider uncertainty associated with 

contaminants characteristic values. So in this study a hybrid method of probabilistic SOM 

is used to calculate Integrated Risk Index. A new approach called Neuro-Probabilistic HI 

was developed by combining SOM and Monte-Carlo analysis. This new index seems to be 

an adequate tool to be taken into account in risk assessment processes. In both papers, 

feasibility of the methods has been validated by applying it to the chemical/petrochemical 

industrial area of Tarragona (Catalonia, Spain). 

The last part of thesis provides a general framework for integrated risk assessment 

in uncertain situation. In this study, an integrated fuzzy relation analysis (IFRA) model is 
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proposed for risk assessment involving multiple criteria. This model offers an integrated 

view on uncertainty techniques based on multi-valued mappings, fuzzy relations and fuzzy 

analytical hierarchical process. Integration of fuzzy system simulation and fuzzy relation 

analysis allowed incorporating system modelling uncertainty and subjective risk criteria. 

Results obtained from fuzzy system simulation can be used in risk characterisation without 

aggregation which enables to propagate uncertainty in risk management model. Integrated 

risk can be calculated at different membership level which is useful for comprehensively 

evaluating risk within an uncertain system containing many factors with complicated 

relationship. Decisions on activities, practices or interventions that involve contamination 

of the environment may be informed through the technical assessment procedures but will 

also be influenced by many other factors, including stakeholder views, which often involve 

trade-offs. Fuzzy Analytical Hierarchical process makes it possible to trade-offs between 

different risk factors and incorporates uncertainty of qualitative decisions. All these factors 

become integrated in the judgement of acceptability, which – in turn – guides decision-

making. A key feature of such decision-making is that the process should be open and 

transparent, and that all factors considered should be clearly defined such that there is a 

basis for judgement on the acceptability of the decision. IFRA is useful for comprehensively 

evaluating risks within a system containing many factors with complicated 

interrelationships. It can incorporate effects of different pollutants and different remediation 

techniques within a general framework. Also, the method can effectively reflect 

uncertainties presented as inexact intervals for a number of modelling inputs. It has been 

shown that uncertainty can be propagated in a complete risk management chain through a 

broad integration of fuzzy system simulation and fuzzy risk analysis is possible. 

This dissertation research presents a distinguished contribution over traditional 

methods of uncertainty propagation in risk management by 

• Effective quantification of system uncertainties using improved fuzzy logic 

and hybrid stochastic-fuzzy techniques. 
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• Use of Artificial Neural Network (ANN) & Probabilistic-ANN to develop 

hazard index which can be useful tools for environmental monitoring and 

decision making process.  

• Integrated framework of multi-components risk analysis with explicit 

uncertainty propagation in the whole process of risk analysis. 

The proposed methods could significantly advance methodologies of risk analysis 

and assessment by effectively addressing critical issues of uncertainty propagation problem. 

Thus, useful decision analysis tools based on the proposed methods can be developed for 

resolving different environmental risk management problems. 

 

Recommendation and Future Works 

 
Even though great improvements within the methods of risk assessment have been 

made during the last decades, the uncertainties in the results are still high, e.g. due to data 

problems in all parts of risk analysis. These uncertaities will never be reduced compltetely. 

Hence, an objective environmental risk may exist but will never be exactly quantified. 

However environmental risk assessment approaches differ concerning the degree of 

accuracy they are able to achieve. Thus, it is a question which degree of uncertainty in risk 

assessment one is willining to accept with respect to the objective of the study. The choice 

of an appropriate uncertainty analysis approach is hence a trade-off between accuracy & 

effort. In any case the reproach of feigned accuracy should be countered by documenting 

and if possible quantifying the different type of uncertainties within the risk assessment 

results. Thereby, the request for a transparent documentation of the uncertainties of risk 

assessment can be satisfied.  

Uncertainty classification and different uncertainty representations offer new 

research direction to modeler community to further improve the uncertainty analysis 

approach. In environment risk analysis, an immediate need is to develop a proper 

methodology (or set of methodlogies for different situations) and guideline to characterize 

uncertainty and variability associated with different environmental models. Fuzzy 
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representation of uncertainty needs further validation to test the degree of satisfaction of 

compliance guideline. For example different risk compliance guidelines have been 

developed to compare results from stochastic simulation; similar guidelines should be 

developed to give general uncertainty estimates in accordance with U-V classification. 

Recently few researchers have proposed different fuzzy measures (e.g. possibility and 

necessity measures) to test the degree of satisfaction of the compliance guideline. However 

it still needs to be tested and adopted by different regulatory bodies before being used by 

modeler community. In the recent past, many methodologies have been proposed to model 

second order uncertainty. However, all these emerging modeling techniques are based on 

different assumption of defining uncertainty and variability. Comparison of these 

techniques is not straight forward. It needs further research, and then an adequate 

comparison can be performed. In this study, no attempt has been made to compare FLHS 

with other evolving techniques but in future if proper comparision measures will be 

develepoed, it can be possible to make a comparision. Also further research performed in 

order to develop decision analysis models, which directly use U-V outcomes in decision 

making process and improve risk estimation, will enhance the framework. 

In future works, IFRA can be augmented with other algorithms. One promising 

technique can be pareto-genetic algorithm. This direction will point us toward handling 

environmental risk management with optimisation routine. It has the property of presenting 

the user with a set of solution to choose from rather than a single solution thus facilitating 

more informed choices. 
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