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Diseño de biosensores explorando 
cambios conformacionales en 

biomoléculas 
 

Resumen: 
 

El presente estudio utiliza dos moléculas diferentes como elementos de bio-

reconocimiento. En el primer caso, un biosensor basado en proteínas fue desarrollado 

utilizando la proteína periplasmica de unión a maltosa (MBP = maltose-binding protein). 

La habilidad para manipular racionalmente la función de una proteína también ofrece la 

posibilidad de crear nuevas proteínas con valor biotecnológico. Nuestro diseño proteico 

ha sido usado para evaluar cambios alostéricos en proteínas. Este estudio evalúa un 

simple cambio conformacional el cual puede ser usado como el principio transductivo  

para un biosensor. Diferentes estrategias de transducción usando fluorescencia y 

electroquímica en eventos de reconocimiento entre la proteínas periplasmicas de unión y 

el ligando, han sido previamente reportadas.  Esta investigación inicia con el estudio de 

los cambios conformacionales de MBP, continuando con el desarrollo de un biosensor 

electroquímico para maltosa. La señal de cuatro diferentes mutantes (K46C-MBP-MT, 

N282C MBP-MT, Q72C-MBP-MT; y K25C-MBP-MT) fue evaluada usando voltimetría 

de onda cuadrada. La posibilidad de usar este tipo de transducción mecánica (distancia) 

para la configuración de biosensores y la respectiva especificidad analítica es discutida.  

 

La segunda parte de este trabajo incluye el método SELEX (systematic evolution of 

ligands by exponential enrichment) y aptameros como moléculas de bioreconocimiento. 
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Como resultado de el método SELEX, podemos obtener secuencias de oligonucleótidos 

(aptameros) con propiedades de reconocimiento similares a los anticuerpos. Estos 

elementos sintéticos, tienen un importante papel en el reconocimiento molecular por su 

capacidad de unión específica a la molécula blanco. Un nuevo mecanismo en el paso de 

separación ha sido realizado, y denominado “SELEX-Soluble”. Este nuevo método  

SELEX usa la hibridización como mecanismo de separación para dividir los 

oligonucleótidos de DNA que no se unen y los que se unen a la molécula blanco. El 

procedimiento de hibridización y su uso como mecanismo de separación en el método 

SELEX ha sido evaluado a través de  estudios de fluorescencia. Este estudio también 

explora la incorporación de un aptamero como elemento de reconocimiento en un 

biosensor. Tres diferentes mecanismos de transducción has sido evaluados: fluorescencia, 

electroquímica y resonancia de plasmon superficial (SPR).  En los tres casos una 

excelente señal fue reportada.  

 

En conclusión, esta investigación ha evaluado la transferencia de una biosensor de 

fluorescencia a un biosensor electroquímico, utilizando la proteína periplásmica de unión 

a maltosa como elemento de bioreconocimiento. De otro lado, un nuevo método SELEX 

ha sido desarrollado. Sin embargo, futuras mejoras son requeridas para optimizar el 

método.  Como resultado del método SELEX realizado un nuevo aptamero que reconoce 

específicamente avidina ha sido seleccionado y tres diferentes sistemas de transducción 

ha sido empleados para construir tres diferentes biosensores (fluorescencia, 

electroquímica y SPR).  

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN OF BIOSENSOR EXPLOITING CONFORMATIONAL CHANGES IN BIOMOLECULES 
Frank Jeyson Hernández 
ISBN:978-84-691-9479-9/DL:T-21-2009



 16

 
 
 

Design of biosensors by exploiting 
conformational changes in biomolecules 

 
 

Abstract: 
 

The present study exploits two different molecules as biorecognition elements for 

biosensing. In the first case, a protein biosensor was performed using maltose-binding 

protein (MBP). The ability to manipulate protein function rationally also offers the 

possibility of creating new proteins of biotechnological value. Our design has been used 

to test the understanding of allosteric transitions in proteins.  Here we examined a simple 

conformational change that can represent the biorecognition principle for a reagentless 

biosensor. Previously, modular strategies for transducing ligand-binding events into 

fluorescent and electrochemical responses have been reported.  Starting with a study of 

the conformational changes of MBP this research will further develop electrochemical 

maltose biosensors. The responses of four individual mutations (K46C-MBP-MT, N282C 

MBP-MT, Q72C-MBP-MT; and K25C-MBP-MT) were evaluated using square wave 

voltammetry. The possibility of using this type of transduction mechanism for sensor 

configurations and analyte specificity is discussed. 
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The second part of this work involves SELEX (systematic evolution of ligands by 

exponential enrichment) and aptamers as biorecognition molecules.  As a result of the 

SELEX method, we can obtain oligonucleotide sequences (aptamers) with recognition 

properties similar to antibodies. These synthetic elements play an important role in 

molecular recognition because of their capability for specifically binding of a target 

molecule. A new approach for the separation step has been performed, termed Soluble-

SELEX. This new SELEX method uses hybridization as partitioning mechanism for 

separating the bound and unbound DNA members from the target-molecule.  

Hybridization procedure has been evaluated by fluorescence studies as partitioning 

mechanism for SELEX method.  Herein, we exploited the incorporation of an aptamer for 

biosensing detection of a specific target molecule.   Three different transduction methods 

such as fluorescence, electrochemistry and surface plasmon resonance (SPR) were 

evaluated. In all three cases, the biosensing procedure was successful. 

 

In conclusion, this research has evaluated the translation of a fluorescent biosensor into 

an electrochemical biosensor using maltose-binding protein as biorecognition element. 

On the other hand, a new SELEX method has been developed. However, future 

improvements are required in order to optimize the method. As result of SELEX a new 

avidin-aptamer was selected and three different transduction systems were employed to 

construct fluorescent, surface Plasmon resonance and electrochemical biosensors.  
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CHAPTER 1 
 

 Critical Points in Biosensor Development  

 
 

1.1 Introduction: Biosensors: history and definition 

Although the canaries used in coal mines could qualify as the first biosensors, the area of 

biosensors research started in the year 1962 with the development of enzyme electrodes 

by L.C. Clark. Since then, scientists from the fields of physics, chemistry, biochemistry, 

molecular biology and material science have contributed to this multidisciplinary field 

developing more reliable and robust biosensing devices for applications in the fields of 

medical/clinical analysis (1,2), veterinary (3), agriculture (4), food quality (5), 

environmental analysis (6), and bioterrorism prevention (7). As per definition of the 

IUPAC: A chemical sensor is a device that transforms chemical information, ranging 

from the concentration of a specific sample component to total composition analysis, into 

an analytically useful signal. Chemical sensors usually contain two basic components 

connected in series: a chemical (molecular) recognition system (receptor) and a 
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physicochemical transducer. Biosensors are chemical sensors in which the recognition 

system utilizes a biochemical mechanism (8).  

Biosensing takes advantage of the biorecognition elements such as whole-cells, cell 

organelles, tissues, enzymes, antibodies, nucleic acids and proteins (8). The fast 

developments in molecular biology and biomolecular engineering expand the list of 

possible biological and semisynthetic biorecognition elements with great speed. The 

biological recognition event needs to be transformed into a measurable signal in 

conjunction with a physicochemical transduction mechanism. Both elements, the high 

specificity of the biomolecules and the sensitivity of the transducer mechanism 

(electrochemical, optical, electrical, piezoelectric, thermal and magnetic) (9), make 

possible to recognize and quantify specific molecules in a complex solution. The 

advances in transduction are closely linked to the accelerated technological 

breakthroughs related to electronics, informatics, data mining, and computer 

technologies. Signal transduction and data analysis research, oriented to lowering the cost 

and portability of biosensor analysis, are areas of high activity in electrical and electronic 

engineering, and analytical chemistry and lead in accelerated pace to more reliable and 

easy to use biosensors. The coupling between the biorecognition molecule and the 

transducer is often a critical step in biosensor development and can be performed by 

membrane entrapment, physical adsorption, matrix entrapment, or covalent binding 

among others. It is important to maintain the biorecognition capacity during such 

procedures while at the same time guarantee the robustness and reproducibility of the 

sensor.  
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In this thesis, the work is concentrated on the affinity biosensors based on receptor 

proteins (periplasmic binding proteins) and aptamers, whose interaction with the analytes 

is transduced electrochemically. It also explores the possibility of taking advantage of 

molecular biology to create generically biorecognition elements that can readily 

transduce their biomolecular interactions in electrochemical signals.  

The introduction presents a general overview of the field with emphasis on the 

implications of the state of the art in each area to this work. 

 

1.2. Biosensor classification: 

From the definition of biosensors, they can be classified either by their biological 

recognition element or their signal transduction mechanism. However, additional 

biosensor features could be analyzed. For example, the immobilization method of the 

biological element or the operational mode (simple measurement, multi-measurement, 

short or long term), can be another alternative for the classification of biosensor devices.  

 

1.2.1. Biosensors according to the biorecognition element: 

In this case, the biosensors are classified according to the nature (molecules, whole-cells, 

etc.) or function (affinity or catalysis) of the biorecognition element. Isolation and/or 

purification are required in order to obtain the best performance of the sensor. Several 

molecules or whole cells can be used as biorecognition elements and the most relevant 

are discussed below: 
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1. 2.1.1 Enzymatic biosensors:   

This class of biosensors employs enzymes as biocatalysts. Enzymes react with the analyte 

or the substrate producing a detectable signal through this biorecognition process (10). 

The most famous practical device for determination of blood glucose content is an 

enzymatic biosensor and it was developed by Yellow Springs Instruments in the early 

1970s (11). 

 

1.2.1.2 Immunosensors: 

Immunosensors are based on the antibody-antigen interaction and the transduction of the 

biorecognition event into a physical signal. The design and preparation of an optimum 

interface between the biological element and the detector material is the key part for this 

kind of sensors (12). 

 

1.2.1.3 Whole-Cells or organelles based biosensors: 

Whole-cell bacterial biosensors are bacteria engineered to recognize a specific analyte. 

The signal-transduction is performed by the production of an easily quantifiable marker 

protein. In most cases, an existing regulatory system in the bacterial cell is exploited to 

drive expression of a specific reporter gene, such as bacterial green fluorescent protein, 

beta-galactosidase and others (13) 

 

1.2.1.4 DNA based biosensors: 

DNA biosensors are commonly employed to detect specific sequences of DNA. They can 

reach high levels of selectivity and affinity based on the hybridization between a DNA 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN OF BIOSENSOR EXPLOITING CONFORMATIONAL CHANGES IN BIOMOLECULES 
Frank Jeyson Hernández 
ISBN:978-84-691-9479-9/DL:T-21-2009



 22

target and its complementary probe, which is present either in solution or on a solid 

support (14). Homogeneous assays allowing the determination of DNA sequences have 

been developed. These systems can be based on optical (15, 16) or electrochemical (17, 

18) detection. 

 

1.2.1.5 Protein based biosensors: 

Protein-based sensors require that the proteins undergo conformational changes upon 

ligand binding. Then, the signal-transduction can be monitored quantitatively. 

Fluorescence detection (19, 20) and/or electrochemical measurements (21) have been 

reported. Thus, to develop compact, light weight, portable sensors considerable attention 

has been focused on this kind of recognition molecules for biosensor development. 

 
 
1.2.1.6 Aptamer based biosensors: 

Aptamers can be defined as in vitro selected functional oligonucleotides that bind a 

specific target molecule. Due to their inherent selectivity, affinity, and their advantages 

over traditional recognition elements, they represent an interesting alternative for 

biosensing. Aptamers are small in size in comparison to other biorecognition molecules 

such as antibodies, protein and enzymes. This allows efficient immobilization at high 

density. Therefore, production, miniaturization, integration, and automation of biosensors 

can be accomplished more easily with aptamers than with antibodies (22). As for the 

protein-based biosensors, the significant conformational change of most aptamers upon 

target binding offers great flexibility in the design of biosensors.  
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1.2.2 Biosensors according to the transduction method 

 

1.2.2.1 Optical biosensors 

Several optical properties,  such as light absorption, fluorescence, 

bio/chemiluminescence, reflectance, Raman scattering, and refractive index have been 

exploited as transduction mechanisms for biosensor development (9).  However, surface 

plasmon resonance (SPR) has recently been used as the basis for the optical signal 

transduction for the biosensor development. 

Surface plasmon resonance: The binding of soluble target-molecules to the surface-

immobilized ligands changes the refractive index of the medium near the surface. This 

change can be monitored in real time to measure accurately the amount of bound analyte, 

its affinity for the receptor and the association and dissociation kinetics of the interaction. 

An extremely wide range of molecules can be analyzed, from targets with low-molecular-

weight to complex molecules and even whole cells, with interaction affinities from 

millimolar to picomolar concentrations. Advantages of SPR technique involve real time 

detection and reproducible measurements for the binding reactions of chemical 

compounds. This feature allows kinetic evaluation of affinity interactions, typically 

between antibodies and antigens. A variety of optical immunosensors have been 

configured using direct and indirect formats with and without optical labels. The main 

drawback of optical measurements is the high cost of the apparatus. (23).  

1.2.2.2 Electrochemical biosensors  

The biochemical signals can be used to generate a current/charge or may change 

conductivity between two electrodes. The corresponding transduction device can be 
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described as potentiometric, amperometric, conductometric/impedimetric. A briefly 

description of these three signal-transduction mechanisms will be discussed.  

 

1.2.2.2.1 Potentiometric 

As per definition of the IUPAC: Potentiometric measurements involve the determination 

of the potential difference between either an indicator and a reference electrode or two 

reference electrodes separated by a permselective membrane, when there is no 

significant current  flowing between them. The transducer may be an ion-selective 

electrode (ISE), which is an electrochemical sensor based on thin films or selective 

membranes as recognition elements.  

The main advantage of such devices is the wide concentration range for which ions can 

be detected, generally between 10-6 to 10-1 mol/l. Their continuous measurement 

capability is also an interesting possibility for environmental applications. The apparatus 

is inexpensive, portable, and it is well suited for in situ measurements. The main 

disadvantage is that the limit of detection for some environmental samples can be high 

(10-5 mol/l or 1 ppm) and the selectivity can be poor. 

 

1.2.2.2.2 Amperometric 

As per definition of the IUPAC: Amperometry is based on the measurement of the 

current resulting from the electrochemical oxidation or reduction of an electroactive 

species. It is usually performed by maintaining a constant potential at a Pt-, Au- or C-

based working electrode or an array of electrodes with respect to a reference electrode, 

which may also serve as the auxiliary electrode, if currents are low (10-9 -to 10-6 A). The 
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resulting current is directly correlated to the bulk concentration of the electroactive 

species or its production or consumption rate within the adjacent biocatalytic layer. As 

biocatalytic reaction rates are often chosen to be first-order dependent on the bulk 

analyte concentration, such steady-state currents are usually proportional to the bulk 

analyte concentration. 

This signal-transduction mechanism is frequently used for enzymatic and catalytic 

biosensors. The main advantage of this class of transducer is the low cost, therefore 

disposable electrodes are often used with this technique. The high degree of 

reproducibility that is possible for these (one time use) electrodes eliminates the 

cumbersome requirement for repeated calibration. The type of instrument used for these 

measurements is also very easy to obtain and can be inexpensive and compact, this 

allowing for the possibility of in-situ measurements. Limitations for this signal-

transduction mechanism include the potential interferences to the response if several 

electroactive compounds can generate false current values. These effects have been 

eliminated for clinical applications through the use of selective membranes, which 

carefully control the molecular weight or the charge of compounds that have access to the 

electrode. 

 

1.2.2.2.3 Conductimetric / impedimetric 

The measured parameter for this signal-transduction mechanism is the electrical 

conductance/resistance of the solution. The large applicability of conductimetric 

detection is due to the observation that almost all enzymatic reactions involve either 

consumption or a production of charged species, and therefore lead to change in the ionic 
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composition of the enzymatic membrane. The electric field is generated using a 

sinusoidal voltage (AC) which helps in minimizing undesirable effects such as Faradic 

processes, double layer charging and concentration polarization (24). 

The primary advantage of this technique is the use of inexpensive, reproducible and 

disposable sensors. The main disadvantage is that the ionic species produced must 

significantly change the total ionic strength to obtain a reliable measurement. This 

requirement increases the detection limit to unacceptable levels and results in potential 

interferences from variability in the ionic strength of the sample. 

 

1.3 Biorecognition process 

Binding studies between two biomolecules are important in order to understand the 

molecular recognition process (25). Molecular recognition can be defined as the 

capability of a biomolecule to interact specifically with a particular target molecule 

although a huge variety of different but structurally similar competitor molecules are 

present (26). In nature, the binding between two bio-molecules is often accompanied by 

large conformational changes which are essential for cell function (27–30). Recognition 

processes are governed by the interplay of non-covalent interactions of comparable 

strengths such as ionic binding, van der Waals interactions, formation of hydrogen bonds 

and hydrophobicity. The non-covalent interactions between the residues of the 

biomolecules lead to the formation of a complex where the two biomolecules form a 

mutual interface consisting of one or more patches on their surfaces. In addition, long-

range electrostatic interactions are believed to pre-orient the molecules so that the 

probability of a contact of the interface patches upon a collision of the molecules is 
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increased (31, 32). The simultaneous presence of different types of interactions and the 

fact that the associated energy scales do not separate leads to a complicated interplay 

among them. Therefore a detailed description of recognition processes poses a 

challenging problem. An understanding of the principles of molecular recognition 

processes is not only important from a scientific point of view but also for 

biotechnological and biomedical applications. The knowledge of these principles is a 

necessary input for the design of synthetic elements with molecular recognition ability to 

interact in a biological environment, with different kinds of molecules such as tissue, 

whole cells, molecular targets, etc. (33). An important feature of the molecular 

recognition processes is the phenomenon of selectivity, which is basically the ability of 

biomolecules to bind to each other in the presence of competing molecules. The 

selectivity of biomolecular recognition is thus only achieved if a large number of 

functional groups of the two molecules contribute co-operatively to a sufficient number 

of corresponding non-covalent bonds. This principle is often called complementarity in 

the literature (34). Thus, selectivity is a genuinely cooperative effect. 

 

1.4 Integrated biosensor development 

The development of standard biosensors is based on two steps: a) selection of a biological 

element with high level of affinity and selectivity for the target, and b) the adaptation of 

this biorecognition molecule to a desired signal-transduction mechanism.  

Because each molecule presents different properties, the  integration process has to be 

carried out for every single molecule used as biorecognition molecule for biosensing. In 

addition, the optimization procedure is required. All these factors become important 
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because there is not yet a generical method for the development of biosensors. In order to 

find a biomolecule for generic biosensing one requierment has to be fulfilled; that is, a 

integrated signal-transduction function (e.g. conformational changes) and the pocket or 

recognition site have to be connected and work together afer the recognition step. If the 

reporter function is intrinsic to the biomolecule, additional modifications or assembly of 

several macromolecular components are not required.  

 

Some researchers have tried, with more or less success, to introduce generic biosensors as 

an alternative to the conventional biosensing production. Hellinga´s group has been 

reported that a superfamily of proteins called periplasmic binding proteins (PBPs) could 

be used as generic biorecognition molecules (35). The modification of the loops or 

recognition pocket offers the posibility to recognize different targets using the same 

scafold protein. By this engineering process, the wild recognition site can be transformed 

into a new pocket for a diferent target by the change of aminoacid that confirms that 

recognition region (12 to 16 aminoacids). In addition, PBPs have another interesting 

caracteristic, that is the conformational change after the target recognition. Through the 

allosteric changes two differnt forms of the protein were identified: a) open; without 

target and b) closed; after target recognition. This conformational change can be useful 

for the desingning of generic biosensors. Although PBPs has been proven to be very 

flexible, a realistic generic biosensor can not be yet developed using these biomolecules. 

The principal reason is in relation with the limitation of targets that can be recognized by 

the loops transformation of PBPs. Only a couple of examples have been recognized as 

non-natural targets, which provides a clear evidence of this limitation. More specifically, 
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rational desing used for the pocket recognition site, which emulated the combinatorial 

chemistry process, is not a garantee for the success.  

On the other hand, anticalins have been reported as interesting generic biomolecules by 

Skerra group. (36). They are single chain peptides with around 180 amino acids full 

lenghth, with a rigid structure based on B-barrel as central element. This B-barrel scafold 

supports 4 loops that form the pocket or recognition site on the biomolecule. The loops 

are formed by 16 amino acid residues that can be replaced in order to recognize non-

natural targets. The anticalins were described as a new class of engineered ligand-binding 

proteins. Therefore, the wide flexibility of anticalins for different kind of targets (size, 

nature, charge, etc) confirms their roll as important alternatives for antibodies. Similar 

affinity as for the monoclonal antibodies has been recorded as well. In fact, anticalins as 

generic recognition molecules offer an attractive alternative for clinical and medical 

applications. They have been proven to have potential applications as recognition 

molecules. However, the rigid scafold structure limits the possibility of an intrisical 

tranduction mechanism. In this sense, the use of anticalins as recognition molecules for 

generic biosensors is limited. Only mass deposition biosensors (SPR, QCM) can be 

obtained basd on these type of biomolecules. 

For the last two decades, other interisting biomolecules involved in biosesing have been 

the nucleic acids (DNA and RNA). Nucleic acids can be selected by SELEX (systematic 

evolution by exponential enrichment) to raise sequences with high affinity and selectivity 

for a specific target. These oligonucleotide sequences, referred to as “aptamers” have 

been evidenced attractive properties for biosensing. A wide range of targets with different 

features can be recognized by aptamers. Theoretically, there is no target limitation for 
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aptamers, which suggests that they constitute the most generic molecule for 

biorecognition in nature. Several transduction mechanisms based on aptamers have been 

reported, such as electrochemistry (37, 38), fluorescence (39), SPR (40), QCM (41), 

atomic force microscopy (AFM) (42) and others. Therefore, some aptamers have shown 

conformational changes after the recognition process in different transduction 

mechanisms. In addition, structural studies for aptamers were performed using NMR and 

the results have reveled important structures such as G-quadruplex. Here, the presence of 

conformational changes works as intrinsic signal-transduction mechanism after the target 

recognition. These allosteric movements are used for the design of “turn on” or “turn off” 

biosensor systems. In other words, aptamers could be the best candidate for generic 

biosensing because of their intrinsic signal-transduction mechanism and the unlimited 

flexibility for target recognition. However, SELEX is not a guaranteed process for an 

aptamer with intrinsic transduction mechanism; it could only ensure affinity as the 

parameter of selection. In this sense, if the development of aptamers with intrinsic 

transduction mechanism (conformational changes) could be induced, SELEX could be 

considered an approach that can offer a solution for the generic biosensor development.  

 

An interesting approach called “aptamer switch probe” (ASP) has been reported a couple 

of months ago (43). The method can be described by selecting 3 elements for the 

strategy: an aptamer, a small oligonucleotide sequence complementary to part of the 

aptamer, and a PEG linker, which binds the two previous elements. As reporter 

mechanism, a fluorophore and a quencher were selected. Both where attached at the 

extreme of the complementary region of the aptamer and oligonucleotide. In the absence 
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of target the complementary sequences are close enough to block the fluorophore signal 

by the quencher. After addition of the target, the biorecognition process performed by the 

aptamer induces a conformational change in the ASP, which “switches on” the 

fluorescent signal. The method could be used for any aptamer, suggesting an alternative 

for generic biosensor development.  

 

In this thesis, we proposed to study conformational changes as the generic transduction 

mechanism in biomolecules. Taking advantage of the previous studies reported about 

PBPs, more specifically, the research performed by Benson group about maltose binding 

protein (MBP) based biosensors, MBP transduction mechanism was chosen as the 

platform for checking the conformational changes that offers MBP for biosensor design. 

The transfer of a “turn on” fluorescent biosensor into a “turn off” electrochemical 

biosensor was performed and the possibility to select conformational changes in 

biomolecules as intrinsic transduction mechanism for generic biosensor development was 

also evidenced.  

After the selection of conformational changes as generic transduction mechanism for 

biosensors, aptamers were chosen as the generic biomolecules, which offers a wider 

range of target recognition. Then, a design of SELEX with some variant, in order to 

induced intrinsic transduction by conformational changes was studied. A new SELEX 

library was constructed to induce a conformational change in aptamers after the 

recognition process. A 102-mer single DNA was designed with 22 and 29 nucleotides 

primer flanking sequences at the 3′ and 5′ ends respectively, an arbitrary complementary 

sequence of 12 nucleotides (hairpin region, 6 nucleotides in each extreme following by 
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the primer regions) and a randomized 49 nucleotide internal sequence (See Figure 1). In 

addition, two primer sequences were designed according with the library template.  

 

 

Figure 1. Design and prediction of the SELEX library. The prediction was performed by 

mfold software.  
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We have included the hairpin region in the library before the starting point of SELEX 

method. As result of this new library, an increase in the affinity and conformation change 

will be expected. Therefore, if a member of the library binds the target, the binding 

energy is expected to be higher than the hairpin energy formation and it would constitute 

a requirement for the binding event. The free energy (ΔG) necessary to open up the 

hairpin region has to be higher than the calculated (mfold) energy of -15.19 kJ/mol (-3.63 

kcal/mol). Thus, after a binding event with a higher energy, the hairpin structure will 

collapse and will induce conformational changes In conclusion; the principle of generic 

biosensing will be studied using two different molecules. MBP will be used in order to 

prove that conformational changes can be a generic transduction mechanism in 

biomolecules. On the other hand, aptamers will be used as generic recognition molecules 

that can be involved in biosensor development. The intrinsic transduction mechanism will 

be induced in aptamer selection by the breakdown of a hairpin structure that will work as 

an inducer of the conformational changes.  

To prove the generic biosensor development principle, different detector system such as 

electrochemical, fluorescence and SRP platforms will be adapted to the biomolecule 

properties. 
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CHAPTER 2 
 

Towards Direct Electrochemical Detection 
of Maltose-Dependent Conformational 
Changes of Maltose Binding Protein  

 
 

2.1 Abstract 

Protein design is an emerging tool for testing general theories of protein structure and 

function. The ability to manipulate protein sequences rationally offers the possibility of 

also manipulating protein function and therefore of creating new proteins of 

biotechnological value.  In this work, protein design has been used to produce biosensors 

based on the understanding of allosteric transitions in proteins.  A simple conformational 

change has been exploited as a biorecognition principle for a reagentless biosensor. 

Modular strategies for transducing ligand-binding events into fluorescent and 

electrochemical responses have been reported.  In this thesis, electrochemical maltose 

biosensors based on mutants of the maltose binding protein (MBP) are developed. A 
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rutheniumII complex (RuII), which is covalently attached to MBP, serves as an 

electrochemical reporter of MBP conformational changes. Biosensors were made through 

direct attachment of RuII complex modified MBP to gold electrode surfaces. The 

responses of four individual mutants were evaluated (K46C-MBP-MT, N282C MBP-MT, 

Q72C-MBP-MT; and K25C-MBP-MT) using square wave voltammetry. A maltose-

dependent change in Faradic current (3%, 25%, 0.9% and 3.2% respectively) and 

capacitance was observed.  It is therefore demonstrated that biosensors using generically 

this family of bacterial periplasmic binding proteins (bPBP) can be made lending 

themselves to facile biorecognition element preparation and low cost electrochemical 

transduction. 

 

2.2 Introduction 

Biosensors are compact analytical devices that incorporate a biological or biologically-

derived sensing element that is either integrated within or intimately associated with a 

physicochemical transducer. The common aim of biosensor development is to produce 

either discrete or continuous digital electronic signals that are proportional selective to a 

single analyte concentration (1). The development of most biosensors involves the 

identification of naturally occurring macromolecules that provide the desired analyte 

specificity (typically an enzyme or antibody). Once identified, a suitable signal 

transduction and detection methodology needs to be adapted to the macromolecule in 

question (2). This is especially true for affinity biosensors, since catalytic biosensors 

usually are based on the detection of a ubiquitous reaction product. Although 

cumbersome, effective affinity biosensors have been developed in this way but each 

device is unique and requires substantial development time since transduction of 

conformational changes is not straightforward and needs to be adapted to the 

biorecognition molecule. To overcome this limitation, new approaches are being 

developed in which protein engineering is used to adapt the signal-transduction properties 
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of biological molecules to the detector instrumentation and the transduction chemistry of 

the configuration, rather than adapting instruments and chemistry to the unique 

requirements of each natural molecule (3). This is achieved by integrating functional 

groups that provide a simple signal-transduction mechanism between the detector and the 

protein. Protein engineering has been used to construct fluorescent (4) and 

electrochemical (5) sensors based on the maltose binding protein that is known to 

undergo significant conformational changes upon maltose binding. The aim of this work 

is to further examine the adaptation of fluorescent semiconducting nanoparticle-based 

biosensors for maltose to electrochemically transduced maltose biosensors.  

 

Three types of changes illustrate the remarkable degree of functional control displayed by 

some proteins and therefore the properties that can be taken advantage of for transducible 

biorecognition. First, structurally dissimilar ‘‘allosteric’’ ligands can influence the 

activity of one another. Such allosteric interactions are responsible for controlling most 

metabolic and cellular signal transduction pathways. Therefore, allosteric transitions play 

a central role in regulating cellular physiology (6). Secondly, some proteins bind their 

ligands following a sigmoidal saturation behavior, which results in a transition between 

fully bound and ligand-free forms over a relatively short concentration range. This allows 

exquisite control over ligand loading, as illustrated by the efficient transport of oxygen by 

hemoglobin between tissues with high partial oxygen pressure to metabolically-active, 

oxygen-starved tissues (6).   

Finally, some proteins are capable of transmitting conformational changes across 

membranes to different cellular compartments. For instance, the binding of a hormone to 

a receptor at one side of a membrane results in a change of receptor activity at the other 

side (7). Previously, it has been demonstrated how a protein design strategy can be 

derived from simple structural principles to introduce a heterotropically cooperative 

interaction between ligand binding at one site and activity at another site (in this case, the 

fluorescence of a fluorophore) in a monomeric protein, Escherichia coli maltose-binding 

protein (8). The spatial separation of the two sites allows modular engineering at such 
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linkages to create biosensor platforms that can be adapted for fluorescence (8, 9) and 

electrochemical detection (5, 8) of the ligand. 

 

2.3 Review of related literature  

The bacterial periplasmic binding proteins (bPBP) are representative members of a 

widely distributed protein superfamily (10). These bacterial receptors mediate chemotaxis 

and solute uptake (10, 11).  bPBP and a wide variety of ligands have been identified, 

including carbohydrates, amino acids, anions, metal ions, dipeptides and oligopeptides 

(10). Additionally, the bPBP fold has been identified in domains of eukaryotic receptors 

such as GluR2, and DNA repressors (e.g. LacI) (10, 11). Sequence diversity within the 

superfamily is moderate, but the general structural fold is conserved (8). bPBP consist of 

two domains connected by a hinge region, with a ligand-binding site located at the 

interface between the two domains, which can adopt two different conformations (12) 

((Figure 1d): a ligand-free open form and a ligand-bound closed form, which interconvert 

through a relatively large bending motion around the hinge. Two structural subclasses 

have been recognized in the bPBP family, which differ in the polypeptide distribution 

between the two domains (13). Over 100 PBP structures have been crystallographically 

determined from a wide variety of sources (e.g. E. coli, thermophilic bacteria, and 

eukaryotes) (8). 

 

The remarkable adaptability of this superfamily is likely to have arisen from positioning 

of the binding site at the domain-domain interface to produce a large ligand-mediated 

conformational change. When bound to the protein, ligands are in an environment that 

resembles a protein interior. The binding site environment is made up of residues from 
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the domain surface. In the absence of ligand, these binding site residues are exposed to 

solvent, leaving hydrogen bonding residues stabilized by water. This conformational 

switch provides the adaptability necessary to rationally evolve ligand binding sites.  

Furthermore, the ligand-mediated conformational change allows conformational changes 

to be coupled to additional functions. Protein engineers have taken advantage of the 

intrinsic properties of this protein fold to engineer biosensors, allosteric control elements, 

biologically active receptors, and enzymes (8).    

Ligand-mediated structural changes have been exploited to construct reagentless optical 

(figure 1a) and electrochemical (figure 1b) biosensors. Environmentally-sensitive thiol-

reactive organic reporter groups provide the readout signal (figure 1c and 1e) that links 

conformational changes with the detection element. Surface cysteine mutations provide 

the attachment strategy for thiol reactive reporting groups. All successful signaling 

attachment must have differential association of the organic reporting group and the 

protein. Most of these ligand-dependent associations stem from crevices that open and 

close in concert with the global conformational change (14).  

Protein engineering also allows the equilibrium between the open and closed states to be 

altered. Less bulky binding pocket mutations have been shown to weaken the maltose 

affinity of MBP (4). Bulky allosteric pocket mutations (e.g. Trp) strengthen the maltose 

affinity of MBP (15). Additionally, bulky non-natural amino acids can be added to these 

allosteric sites to strengthen the maltose affinity of MBP to 1·109 M-1. Therefore, 

allosterically positioned reporter groups not only report the conformational changes, but 

also affect the intrinsic equilibrium between the open and closed states (4, 16). 

Differential interactions between self assembled monolayer immobilized bPBP and the 
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monolayer surface also alter the open-closed bPBP equilibrium. In the case of the 

electrochemical assemblies, the open state is favored, consistent with the designed 

geometry of the assembly. If immobilized bPBP-surface interaction is weak, there should 

be no effect on ligand binding (17). Recently, maltose biosensors that use MBP attached 

to CdSe (18) and ZnS coated CdSe nanoparticles (19) were reported that show minimal 

perturbation of the MBP open-closed equilibrium.  

 

The direct integration of the signal-transduction into the protein fulfils an important 

design parameter and provides a facile method for biosensor development. Once 

appropriate modification sites have been chosen and optimized, the synthesis and 

attachment of sensing element(s) to the protein should be straightforward and biosensors 

should be effortlessly produced. In this respect, the simplest system is to site selectively 

attach the reporter molecule to the protein, producing a unimolecular (reagentless) 

element. The synthetic method should be adaptable to generate a panel of biosensors 

selective for different analytes. To design a modular protein-engineering system for 

biosensor development, one of two strategies can be adopted. The first strategy is to find 

a protein with the appropriate specificity and introduce a signal-transduction system. 

Alternatively, a protein with a particularly well-behaved intrinsic signal-transduction 

function can be identified and an appropriate binding site can be engineered into the 

protein. This work uses the first strategy, where the signal transduction mechanism of 

MBP (chemotaxis) has been reengineered to provide an electrochemical response.  
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Figure 1.   The use of MBP as biorecognition molecule for biosensing. The 
biorecognition of maltose by electrochemical a) and fluorescent b) transduction 
platforms. d) The advantage of the mediated hinge-binding motions as intrinsic 
transduction mechanism offers the possibility of generic transduction mechanism.  c) 
Electrochemical “turn off” and e) fluorescent “turn on” signals have been recorded.  A 
redox reporter group is covalently attached to a cysteine, such that it is positioned 
between the electrode and MBP surfaces (gold electrode or CdSe nanoparticles). In the 
absence of maltose, the open conformation permits strong electronic coupling between 
the electrode surface and the reporter group (Figure d, colorful), whereas in the closed 
form (figure d, shadow), this interaction is weakened.  
 

The ultimate goal of these systems is to simplify the detection scheme and manipulate 

protein structure at the genetic level. Extensive genetic manipulation of the protein 

structure can be performed and rapidly produce the protein due to recombinant DNA 

technology.  

 

 

 

a)                                                    b)                 
 
 
 
 
 
 
 
c)                          d)                                       e) 
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2.4 Hypothesis 

The present study will test if the fluorescence response of RuII-modified MBP attached to 

CdSe nanoparticles can be translated to an electrochemical response through square wave 

voltammetry (SWV) using RuII-modified MBP directly adsorbed to bare gold electrodes. 

While the maltose-dependent signal in CdSe fluorescence is a “turn-on” response, the 

Faradic electrochemical response to maltose is expected to be “turn-off”. 

 

The adsorption of G174C-MBP-MT on electrode by modifying the gold surface with a 

self-assembled monolayer of hydroxyl- and NiII-nitrilotriacetate-terminated headgroups 

has been reported [5]. Here, direct adsorption of RuII modified N282C-MPB-MT, K25C-

MBP-MT, K45C-MBP-MT and Q72C-MBP-MT on bare gold electrodes will be 

evaluated.  Previous detection methods have relied on AC voltammetry [5, 24]. However, 

square wave voltammetry requires less expensive electronics than AC voltammetry. 

 

2.5 Objectives 

The principal goal of this work is to develop a reagentless electrochemical biosensor 

using maltose-binding protein (MBP) directly adsorbed to bare gold electrodes and SWV 

as a detection method. To achieve this objective the following partial objectives will be 

fulfilled. The MBP-MT plasmids will be expressed in E. coli, the COOH-terminus (near 

the hinge-region) of MBP will be tethered to the electrode through a 33-mer fusion 

domain, referred to as MBP-MT and RuII (1,10-phenanthroline-5-

maleimide)(NH3)4][(PF6)]2 complex will be attached specifically to a mutant surface 

cysteine on the  amino-terminal  domain  of  MBP,  using  reported  protein  modification  
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Figure 2. Four different mutations sites where cysteine is used to attach RuII complex on 
the MBP-MT surface in order to study the effect of reporter location on transduction 
efficiency. 
 

chemistry [18]. This arrangement is designed to orient the maltose-binding site toward 

the bulk solution, and link the maltose-mediated conformational changes to the MBP-

electrode interface (Figure 2). Alterations in electronic coupling between the RuII reporter 

group and the electrode will allow maltose binding to be measured electrochemically. 

 

2.6 Experimental Methods 

2.6.1 Protein Expression 

The MBP-MT plasmids were transformed into BL21-DE3 E. coli competent cells. The 

transformed cells were grown on LB/ampicillin plates, incubated overnight at 37oC. A 

single colony was selected from these plates and inoculated into a 50 mL LB (with 
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ampicillin) culture.  The 50 mL culture was grown overnight and placed in 1 L of LB 

media. The 1 L culture was grown to optical density of 0.4-0.5. Subsequently, the inducer 

(IPTG) was added (1 mM) to the cell culture and incubated for four hours. Cells from the 

1 L culture were harvested by centrifugation and stored at -80oC.  

 
 
2.6.2 Protein Purification 

The cells were lysed using a French pressure cell. The lysate was treated with 

polyethyleneimine (10%) (w/v), chilled on ice for 10 minutes, and the lysed cells were 

removed by centrifugation. The supernatant was loaded on an amylose column (New 

England Biolabs) that was equilibrated with 20 mM Tris and 200 mM NaCl (pH 7.5). 

The protein was washed with the equilibration buffer and eluted with elution buffer that 

contained 10 mM maltose. Protein-containing fractions were dialyzed exhaustively 

against the equilibration buffer to remove the maltose. 

 

 2.6.3 Additional Biosensor Reagents 

[RuII(1,10-phenanthroline-5-maleimide)(NH3)4][(PF6)]2 has been synthesized as 

previously reported [18]. Four surface cysteine mutant MBP-MTs were generated 

previously K25C, K46C, Q72C, and N282C-MBP-MT (18, 20). 

  

2.6.4 Attachment of the ruthenium complex to MBP-MT 

Attachment of the RuII complex to mutant MBP-MTs was performed as previously 

reported (18). Briefly, a surface cysteine mutant MBP-MT in 20 mM 3-(N-

morpholino)propanesulfonic acid (MOPS) buffer (pH= 7.5) was treated with 5 mM DTT, 

10 mM EDTA, and 1 mM 1,10-phenanthroline overnight at 4°C. The complex was 

purified by gel filtration chromatography (10-DG, Pharmacia). The resulting solution was 
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incubated immediately with 100 µM CdCl2 at room temperature for 30 minutes. 

[RuII(1,10-phenanthroline-5-maleimide)(NH3)4][(PF6)]2 (1.0 equivalents, 10 mM stock in 

acetonitrile was added to the Cd2+ ion- protected protein solution and reacted for two 

hours. The ruthenated protein sample was quenched with 100 µM 2-mercaptoethanol and 

purified by gel filtration chromatography. The Cd2+ ions were removed by treatment with 

0.1 mM EDTA and 0.1 mM 1,10-phenanthroline at 4°C for 2-24 hours, followed by 

purification with gel filtration chromatography. The resulting proteins were analyzed by 

absorbance spectrophotometry monitoring the ratio of the RuII complex 490 nm and the 

protein 280 nm (Figure 3). Only one RuII complex can be linked to the protein surface. 

The protein labeled percentage can be estimated using the absorbance values of both, 

protein and RuII complex (1:1 ratio). Subsequently the MALDI-TOF mass determination 

(Figure 4) was carried out, as previously reported (19).  

 

2.6.5 Attachment of the MBP-MT-Ru to gold electrodes 

Gold ball electrodes were produced by the method of Creager (21). Gold wire (0.25 mm 

diameter) was threaded through a pulled glass capillary and flame annealed. The gold 

ball-capillary junction was sealed with non-conducting epoxy. The gold ball electrode 

was immersed in 2 mL of supporting electrolyte solution (0.2 M sodium phosphate, pH 

7.5, 100 mM KCl). After the addition of 0.5 mL protein solution (10µM), incubation 

proceeded under stirring, for 20 minutes. During this process, the metallothionine domain 

(MT) attached the RuII-MBP-MT to the gold surface. 
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Figure 3. Optical properties of MBP-MT ruthenium attached. The protein and RuII 

complex concentrations were evaluated by absorbance at 280 nm and 490 nm 
respectively. The percentage of protein labeling can be estimated in relation with both 
values. Experimental conditions have been described previously.   
 
 

 

Figure 4. MALDI-TOF mass determination. Masses of N282C-MBP-MT (red) and  
N282C-MBP-MT modified with  [RuII(1,10-phenanthroline-5-maleimide)(NH3)4][(PF6)]2 
(blue) were analyzed. The MALDI determined [M+H]+ masses were 44159 ± 5 m/z for 
N282C-MBP-MT samples and 44621 ± 15 m/z for N282C-MBP-MT-Ru complex 
samples.  The masses were consistent with the theoretical calculation of 44161m/z and 
44605m/z for N282C-MBP-MT and N282C-MBP-MT-Ru respectively. 
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2.6.6 Electrochemical measurements 

Electrochemical experiments using a three-electrode one-compartment cell were 

conducted using a potentiostat (CH Instruments, Model 812A). The electrochemical 

measurements were conducted using an Ag/AgCl reference electrode and a platinum-

counter electrode (Cypress systems: 66-EE008 and 66-EE011, respectively). The 

potential range of cyclic voltammetry was between 0.0 and 0.6 V (vs. Ag/AgCl) with a 

scan rate of 50 mV/s.  Square wave voltammograms (SWV) were registered in the 

potential interval 0.0 – 0.6 V (vs. Ag/AgCl), under the following conditions: potential 

increment, 1 mV; potential amplitude, 10 mV; pulse frequency, 15 Hz which was 

optimized in relation with the peak definition. SWV currents of RuII complex modified 

MBP-MTs were subtracted from unmodified MBP-MT SWVs and linear interpolations 

between +100 and +550 mV vs. Ag/AgCl were used to enhance Faradic current in order to 

calculate the correlated current (Fig. 6).  
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2.7 Results and discussion 

The cyclic voltammogram of gold electrode in 0.1 mM [RuII(1,10-phenanthroline-5-

maleimide)(NH3)4][(PF6)]2 shows anodic and cathodic peaks located at 383 and 296 mV 

(vs. Ag/AgCl), respectively. The formal potential (E°) is 340 mV (vs. Ag/AgCl) which is 

in agreement with the literature value for this complex (22). The peak separation of 120 

mV is indicative of a quasi-reversible one-electron heterogeneous electron transfer 

process (Figure 5). Cyclic voltammetry experiments were performed on the Ru-MBP-MT 

system. Only a weak Faradic response was observed suggesting minimal Ru-MBP-MT 

loading on the gold electrode surface. Square wave voltammetry did show a significant 

Faradic response and was used to characterize the Ru-MBP-MT system in this report.  

The amplitude and increment of potential used in this study were reported previously [23] 

and were not optimized, although the frequency was optimized in relation to the peak 

definition.    

Four different mutations of maltose binding protein were evaluated in this work. Each 

mutation has shown different electrochemical response using SWV. This technique has 

been found to be useful for the electrochemical analyses of diffusionless systems (23) 

and, in this report, for studies of conformational changes of a protein adsorbed to a solid 

surface. When the protein is adsorbed, the current response of the Faradic 

electrochemical signal should depend on the distance of the electrochemical label from 

the surface, while the peak potential should be directly correlated to the electrochemical 

label reduction potential. 
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Figure 5. Cyclic voltammogram of [RuII(1,10-phenanthroline-5-maleimide) 
(NH3)4][(PF6)]2 complex 1 mM in supporting electrolyte solution (0.2 M sodium 
phosphate, pH 7.5, 100 mM KCl). The CV potential range was performed between 0.0 
and 0.6 V (vs. Ag/AgCl) with a scan rate of 50 mV/s. 
 

The individual mutations (K46C-MBP-MT, N282C MBP-MT, Q72C-MBP-MT, and 

K25C-MBP-MT) are depicted in figure 2. These mutants were used to modify gold 

electrodes as described in the experimental section. SWV experiments were performed 

with two types of modified electrodes: MBP-MT with (sample) and without (control) the 

RuII complex. For each type of electrode, SWV was recorded before and after the 

addition of 10 µM maltose, which was determined previously to be a saturating 

concentration. The following observations can be made for each mutant: 

 

N282C- MBP-MT: A significant decrease in the signal of 25 % (16.3 nA) was obtained 

with N282C-MBP-MT modified with RuII complex after the addition of maltose (Figure 

6A). The unruthenated MBP-MT did not show a significant Faradic signal at 340mV. In 
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the present study N282C-MBP-MT has shown the best electrochemical response, 

however the system could be optimized to eliminate any capacitance effect in the signal. 

In this case, a good electro-to-electrode reproducibility was determined (normalized data) 

as evidenced by the low standard deviation of 3.1% (n = 3). 

 

K25C- MBP-MT:  The surface cysteine mutant K25C- MBP-MT had the most robust 

maltose-dependent Faradic current change. A clean Faradic signal change of 1.1 nA was 

observed upon the addition of saturating maltose (Figure 6B). The control in this case, 

did not exhibit any significant changes upon maltose addition. The analysis of absolute 

current has confirmed a maltose-mediated change of 3.2%, corresponding to Faradic 

current.  There was an acceptable electrode-to-electrode reproducibility (normalized data) 

as evidenced by the standard deviation of 9.2% (n = 3). 

 

Q72C-MBP-MT: The electrochemical response for Q72C-MBP-MT mutation has shown 

a significant Faradic response (figure 6C), but an insignificant maltose dependent change 

of signal. It should be noted that the peak potential for the Faradic response is shifted by 

~ 30-50 mV to a more negative potential. Negative shifts in reduction potential can be 

interpreted as indicative of a more hydrophobic environment and suggest that the RuII 

modified Q72C-MBP-MT may be denatured on the electrode surface. In presence of 

maltose, a current change of 0.6 nA was recorded, corresponding to 0.9% decrease. This 

change was at the lower level of detectability. On the other hand, after the addition of 

maltose, the control has reported higher values than expected. The analysis of normalized 

data has not shown the presence of a small maltose-dependent Faradic current change. 
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Reproducibility was not determined because only one of three electrodes showed a 

measurable signal.  Additional experiments should be performed in order to determine 

the reproducibility in this case. 

K46C- MBP-MT: The electrochemical response of MBP-MT-RuII has shown a significant 

capacitance effect. After the addition of maltose, a 5.2% decrease (9 nA) in signal was 

observed (figure 6D). On the other hand, the decrease in the signal for the control MBP-

MT in presence of maltose was 3% (1.7 nA). Current normalization between ruthenium-

modified and unmodified protein electrodes made possible to appreciate more clearly the 

Faradic current maltose response. The maltose-mediated response with the normalized 

current showed a 1.25% decrease. This decreased normalized current response is 

proposed as a Faradic current dominated response. An acceptable reproducibility was 

obtained (normalized data) as evidenced by the standard deviation of 9.8% (n = 3). 

 

 

Figure 6. Square wave voltammograms of RuII modified MBP-MTs  (A, N282C; B, 
K25C; C, Q72C; D, K46C) adsorbed to the Au electrode: –m) initial scan before maltose 
addition; +m) after maltose addition (10 μM, final). Baseline corrected current 
calculation outlined in the experimental section. 
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Maltose titration studies were also performed. Amperometric titration data using SWV 

showed discernible response even to small variations of maltose concentration (Figure 

7A). The corresponding titration curve has shown progressive decrease of current as a 

function of maltose concentrations (Figure 7B), which is in accordance with the literature 

(18). The binding affinity based interactions between maltose and MBP-MT will be 

evaluated. In figure 8A) the peak current, I, is plotted as a function of the bulk 

concentration co. Under this conditions the dissociation constant (KD = 44 nM) was 

obtained from the curve fitting (Figure 8B) using the Langmuir isotherm (19). 

 

θ = KAco/(1 + KAco)    (1) 

 

Where, θ is the fractional coverage defined as Γ/Γm (Γm is the Ru-MBP-MT maximum 

coverage), co is the bulk maltose concentration, and KA is the affinity constant. The 

coverage Γ of binding maltose is inversely proportional to the current I. In this case eq. 1 

can be expressed as: 

 

I = Im(KD + co)/co    (2) 

 

Where Im is the maximum current of Ru-MBP-MT on bare gold electrode and KD is the 

dissociation constant. KD = 1/KA. 
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Figure 7. Maltose-dependent changes in baseline corrected current observed from RuII-
modified N282C MBP-MT adsorbed Au working electrodes. A) representative corrected 
voltammograms (bare Au, black; RuII-modified N282C MBP-MT, red; RuII-modified 
N282C MBP-MT with 1 μM maltose, green). B) Mean fraction saturation of integrated 
current response with standard deviations shown in error bars (line, tight binding model 
fit to this data).  
 

 

Figure 8. Maltose titration: A) Amperometric titration data using SWV was able to 
detect small variations of maltose concentration. The corresponding titration curve has 
shown progressive decrease of current as a function of maltose concentrations. B) 
Maltose-dependent change current, which was fit to the Langmuir isotherm to derive KD 
= 44 nM. 
 

The selectivity of the sensor was studied by SWV using as baseline, for this experiment, 

the signal recorded after the immobilization of MBP-MT-Ru on gold surface electrode. 

After the addition of different sugars (lactose, glucose and maltose respectively) a SWV 

was obtained (Figure 9). The MBP biosensor showed better selectivity for maltose 
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(66.8%) when compared to other substrates (insignificant signal for lactose and 7.1% for 

glucose). This finding confirmed the substrate selectivity of MBP-based electrochemical 

biosensor. 

 

Figure 9.  The selectivity of the sensor was obtained by SWV. The baseline for this 
experiment was the signal recorded after the immobilization of MBP-MT-Ru (blue) on 
gold surface electrode. After the addition of each sugar (lactose; pink, glucose; green and 
maltose; red respectively) the signal decrease was analyzed. The selectivity for maltose is 
66.8% in comparison with other substrates (insignificant signal for lactose and 7.1% for 
glucose)  
 

These findings are significant, in that a maltose-dependent electrochemical response with 

square wave voltammetry was observed. Previous detection methods have relied on AC 

voltammetry (5, 24). Square wave voltammetry requires less expensive electronics than 

AC voltammetry. This analytical advance stems from, purposely, improved electron 

transport between the RuII complex and the gold electrode provided by the metallothionin 

domain attachment chemistry.  
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2.8 Conclusion 

Four different RuII complex attachment sites on the MBP-MT surface Reported in the 

present work were surveyed using SWV.  Each position has shown a different 

electrochemical signal according to the distance dependence effect, wherein, the 

conformational change was involved after the biorecognition process. More specifically, 

K46C-MBP-MT showed only a maltose-dependent capacitive effect, while, Q72C-MBP-

MT showed a defined square wave voltammetry peak with no maltose-dependent 

changes. K25C-MBP-MT showed only a maltose-dependent Faradic contribution (1.1 

nA). N282C-MBP-MT showed a significant maltose-dependent signal (16.3 nA) that had 

a combined capacitive and Faradic contribution. Therefore, Ru-N282C-MBP-MT 

represents the best system for maltose biosensing with the electrochemical detection 

system employed. In addition, the direct adsorption of RuII modified MBP-MT on bare 

gold electrodes was tested with satisfactory results. This suggests that the coupling 

between the modified proteins and gold electrode surface is a successful method for 

electrochemical detection. The previous results suggest that N282C mutant has shown the 

best electrochemical signal, due to its reporter group location and the dynamic interaction 

between the reporter and the gold electrode surface. For the other cases, several factors 

such as distance, charge, hydrophobic conditions, could be responsible of a decrease in 

the signal.   

The conformational changes involved in MPB-MT have been evaluated by SWV 

technique. The results suggest that SWV could be an attractive alternative for biosensing 

compared to the more complicated and expensive techniques such as ac voltammetry (5). 
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The apparent disassociation constant (KD) reported by these studies, have shown a 

significant value of 44 nM, which represents an important improvement in affinity (10-15  

fold increase) in comparison with previous electrochemical (5) and fluorescence (26)  

MBP biosensors.  Previously, the surface of the gold electrodes used to be covered by a 

monolayer (linker), which increased the capacitance effect. In contrast, in our approach, 

the direct absorption of MBP-MT over the surface electrode reduces the capacitance 

effect and the Faradic current can be recorded without interferences.  

 

The maltose selectivity and the non-specific interaction for two additional targets have 

been studied. The signal at saturated condition of maltose has shown a significant signal 

of 68% of the total maximum signal. The evaluation of non-specific targets has reveled a 

7% of the total signal for glucose and an insignificant signal for lactose. The non-specific 

signal for glucose could be explained by the fact that glucose is the monomer of maltose, 

thus some partial signal could be expected.  

 

In summary, this work provides a high affinity maltose-dependent biosensor for studying 

the allosteric mechanism of maltose binding protein adsorbed to gold surfaces using 

electrochemical techniques. The results suggest that conformational changes represent a 

successful intrinsic transduction mechanism for biomolecules. In addition, this type of 

intrinsic transduction could be applied to the design and development of generic 

biosensors. 
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 CHAPTER 3 
 

Selection of transduction-incorporating 
avidin-aptamer by a novel partitioning 
mechanism termed “Soluble-SELEX”  

 

3.1 Abstract 

SELEX (Systematic Evolution of Ligands by EXponential enrichment) has proven to be a 

useful tool in finding nucleotide sequences with high affinity for a specific target 

molecule from a random synthetic library with around 1015 members of certain length (20 

to 80 nucleotides) (1-2). SELEX can be performed inexpensively in vitro with only 

routine equipment of a molecular biology laboratory and for these reasons it has been 

gaining acceptance as a tool for the isolation of biorecognition elements of intracellular 

and extracellular targets (1). The method involves three principal steps: interaction 

between a mixture of candidates and the target molecule, partitioning of the mixture 

candidates with high and low affinity for the target molecule, and amplification of the 

bound members. One of the critical steps in SELEX method is the partitioning, i.e. the 
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separation of unbound and bound oligonucleotides to the target molecule. The selection 

of an appropriate separation method has been the subject of the work of several 

researchers in the recent years (3-7). Separation methods in use include nitrocellulose 

membrane filtration (8), affinity surfaces (9), affinity tags (10), column matrices (11), gel 

electrophoresis (12), centrifugation (13), surface plasmon resonance (14), flow cytometry 

(15), and capillary electrophoresis (16). Limitations still exist for most of the methods 

used and are of two types. Primarily, the library interacts with the immobilization matrix 

used for facile target separation or with the separation media (for example membranes) 

leading to a certain degree of non specific selection. Secondly, most separation methods 

are limited by the size of the target in case the target is not immobilized, for example 

small (a few Da) targets are difficult to be selected against. On the other hand, when 

aptamers are used for biosensing it is not always guaranteed that the immobilized form of 

the aptamer will still provide recognition. The problem is more severe that in the case of 

immobilization of antibodies because aptamers are relatively short nucleotide sequences 

that can lose their capacity to induce a 3-D structural change when derivatised. A similar 

failure can easily result when aptamers are modified with a fluorescent or redox label to 

facilitate transduction. For this reason it is important to obtain aptamers that incorporate 

the transduction and immobilization chemistries as much as possible already during 

selection.   

For these reasons herein, a new approach for the separation step has been invented, 

termed Soluble-SELEX. This new SELEX method uses hybridization as partitioning 

mechanism for separating the bound and unbound DNA members from the target-

molecule. The hybridization procedure has been evaluated by fluorescence studies as 
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partitioning mechanism for SELEX method. Furthermore, a primary structure has been 

incorporated into the library design that allows the facile transduction and immobilization 

of the resulting aptamer candidates, namely a hairpin-like structure with an interaction 

potential of about -15,2 kJ/mol. It is hypothesized that by introducing this restriction in 

the primary structure of the aptamer, all members selected for recognition will be 

inducing a breaking of the hairpin-like structure that will at the same time serve for 

facilitating a non-interfering immobilization site and facile transduction.   

Herein, we developed an avidin-aptamer using this new partitioning mechanism termed 

“Soluble-SELEX” starting with a library that incorporates a hairpin-like primary structure 

and we characterized the obtained biorecognition elements using fluorescence, 

electrochemistry and surface plasmon resonance methods. To do so, we develop the new 

SELEX method.  

 

3.2 Introduction 

 

SELEX (Systematic Evolution of Ligands by EXponential enrichment) can be defined as 

a combinatorial oligonucleotide chemistry tool that has been proven to be an important 

technology for the production of synthetic molecules with biorecognition properties 

termed “aptamers”. Etymologically, the term aptamer is derived from the Latin ‘‘aptus’’ 

meaning “to fit” (9) and from the Greek ‘‘meros’’ which means particle. The SELEX 

method consists in the screening of a large member library down to a single target 

molecule (1, 9). A wide variety of molecular targets with different features such as 

inorganic compounds, small organic molecules, nucleotides and derivates, cofactors, 
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amino acids, carbohydrates, antibiotics, peptides and proteins, and complex structures 

have been previously described (17). Nucleic acids offer an extraordinary alternative as 

biorecognition molecules (RNA/DNA). Millions of possible conformers, structures and 

interactions of the library members to the target molecule are involved in SELEX 

technology. In addition, the possibility of nucleic acids amplification by PCR and the 

synthesis of complex libraries with about 1015 different molecules convert SELEX in an 

attractive technology for biosensing, diagnosis, drug discovery, biotechnology and 

pharmaceutical research. 

 

3.2.1 SELEX principle 

Since its first description by Gold (1) and Ellington (9) in 1990, SELEX technology has 

become an important tool for in vitro selection of oligonucleotides with recognition 

properties, so called aptamers. The SELEX method has proven to be a useful platform for 

selecting a large number of aptamers with a wide variety of targets, including simple 

ions, small molecules, proteins, organelles, viruses and whole cells (18–21). Scheme 1 

shows the standard SELEX procedure. Wherein, several steps are involved such as: a) 

design of the library, b) interaction between a mixture of candidates to the target 

molecule, c) partitioning of the mixture candidates with high and low affinity for the 

target molecule, d) amplification of the bound members and e) cloning and sequencing. 

One of the critical steps in SELEX method is the separation of unbound and bound 

nucleic acid to the target molecule. 
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Scheme 1. SELEX (systematic evolution of ligands by exponential enrichment). a) 
design of the library, b) interaction between a mixture of candidates to the target 
molecule, c) partitioning of the mixture candidates with high and low affinity for the 
target molecule, d) amplification of the bound members and e) the last step involves 
cloning and sequencing. 
 

Target

     Primer F           Random (n)            Primer R   

Library

Interaction between library 
members to target molecule Partition of unbound and 

bound members to target 
molecule 

Library amplification 
by PCR 

Library design a)

b) 

c) 

d) 

Last Round 

Cloning and 
Sequencing 

e) 
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3.2.1.1 Target molecule 

There are several reports in the literature about aptamers with high-affinity against over 

150 different targets (29) including targets with different features such as inorganic 

components, small organic molecules, nucleotides and derivates, cofactors, amino acids, 

carbohydrates, antibiotics, peptides and proteins, and complex structures have been 

classified (17, see table 1). The previous information confirms the versatility and 

universal application of SELEX technology for a wide range of molecules. Aptamers are 

usually developed for therapeutic applications, for example, have been approved for the 

treatment of wet age-related macular degeneration (30-31).  
 

Target Size (Da) Partitioning method Affinity (KD) Ref.  

Ig E 150.000,0 Nitrocellulose filter 10 nM (37) 

Thrombin 36.000 Affinity Column 37 nM (38) 

Streptavidin 60.000,0 Affinity surface (MB) 85 nM (39) 

Zn2+ 65,41 Affinity Column 1,2 nM (40) 

ATP 573,1 Affinity Column 6 µM (41) 

Cyanocobalamin 1.355,39 Affinity Column 88 nM (42) 

A/Panama influenza virus  NA* Titer plate 0,18 nM (43) 

gap polyprotein from HIV-1 161.772,0 Affinity Tag 0,2 nM (44) 

Integration host factor (IHF) 11,354,0 Gel electrophoresis 0,5 nM (45) 

Prohead RNA of bacteriophage ∅29 NA* Centrifugation NR** (46) 

Avidin 60.000 Soluble-SELEX 1.3 nM  

Ig E 150.000,0 SPR 134 nM (47) 

NF-kB p50 protein 50.000,0 Flow cytometry NR (48) 

HIV reverse transcriptase 51.330,0 Capillary electrophoresis 0.18 nM (49) 

* Not applicable, ** Not reported. 
Table 1. List of several aptamer target-molecules and different separation methods. 
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3.2.1.2 Design of the oligonucleotide library  

The SELEX method starts with the library design. Up to 1015 random sequences are 

synthesized by solid phase nucleic acid synthesis. Each member of the library contains a 

randomized internal region (20 to 80 nucleotides) that is flanked by two primer regions at 

the 3′ and 5′ ends. In addition, two primer sequences are designed according to the library 

template, that are used as primer-binding sites for PCR amplification (17) of the library 

and subsequent selected sub populations. In this work of particular interest are library 

designs that incorporate generic features that permit immobilization and transduction. 

Approaches to this effect have been reported in the literature. One such effort involves 

the incorporation of complementary regions that immobilize the library members on the 

surface of magnetic beads (35). Other reports involve the post selection modifications for 

generic transduction in biosensor development (36). 

 

3.2.1.3 Interaction between library members and target molecule  

The main goal in this step is to obtain library members with high-affinity to target-

molecule. Two categories of interaction methods have been reported (25). First involves a 

supporting matrix during the interaction (e.g., affinity tags, column matrices) on which 

the target is immobilized and the second one involves a soluble, matrix-free interaction 

(e.g. capillary electrophoresis). Herein, the target is exposed directly to millions of library 

members with a specific incubation period.  
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3.2.1.4 Partitioning 

After an incubation period, the partitioning step has the objective to separate library 

members that are unbound and bound to the target molecule. This step is crucial in the 

success of the SELEX method and several strategies have been developed such as: 

nitrocellulose membrane filtration (8), affinity surfaces (9), affinity tags (10), column 

matrices (11), gel electrophoresis (12), centrifugation (13), surface plasmon resonance 

(14), flow cytometry (15), and capillary electrophoresis (16) It is difficult to evaluate 

their effectiveness, because the optimum partitioning strategy depends on the features of 

the target and the expected outcome of the SELEX (if for example pharmaceutical or 

analytical purposes). For the purposes of this work it is important to examine the methods 

that involve matrix-free partitioning, especially as they are related to their adaptability to 

recognize small molecules as targets. Such methods include capillary electrophoresis, 

filtration, gel electrophoresis, centrifugation. Table 2, summarizes the characteristics of 

these methods. As it can be seen, currently there is no method that generically could be 

suited for partitioning when small molecules are used as targets. Capillary electrophoresis 

(CE) is probably a real advance in SELEX technology (26, 27) however, partitioning is 

based on size and charge parameters, and thus small molecules are not the best target 

candidates for this system. 

 

3.2.1.5 Amplification 

In the first round of SELEX, a large amount of non-specific interactions is expected, 

because only a small population of the library members (around 1015) can be bound to the 

target molecule. In this sense, the primer regions that flank the library member are used  
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Method Separation principle Limitations Ref. 

Capillary electrophoresis Size and charge Small molecules (50) 

Nitrocellulose filter Size Non-specific interactions, small 

molecules, and decrease of variability 

(1) 

Gel electrophoresis Size and charge Non-specific interactions and small 

molecules 

(45) 

Centrifugation Sedimentation Non-specific interactions, small 

molecules, and decrease of variability 

(46) 

Soluble-SELEX Hybridization No available for nucleic acids as targets  

Table 2. Soluble methods for SELEX and their limitations.  

 

in order to enrich the library by PCR technique. In addition, the primers can be modified 

for functionalizing purposes (e.g. biotin-primer), which provides special features to the 

library. In the case of DNA libraries of interest here, a simple PCR step is sufficient for 

member population enrichment. For RNA libraries, the process of enrichment involves 

reverse transcription PCR (RT-PCR) which produces complementary DNA (cDNA) and 

finally, a standard PCR to increase the library population.  

 

3.2.1.6 Conditioning 

Conditioning is the preparation of the library after amplification by different mechanisms, 

for application in the target interaction step. It has to be performed after the library 

amplification and before the starting point of the new round of SELEX. For DNA 

libraries, the PCR product double-stranded DNA has to be separated into single-stranded 

DNA. Several strategies using the streptavidin/biotin system have been reported. The 
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modification with biotin of the unwanted strand and the separation of ssDNA by 

molecular weight using gel electrophoresis has been successfully performed (32). 

Another option is to allow the biotinylated strand to bind to streptavidin surfaces (plates 

or magnetic beads). Then, the strand separation is carried out by breaking the hydrogen 

bonds in alkaline conditions allowing the unmodified strand (wanted) to be recovered in 

the supernatant (33). Other strategies, such as asymmetric PCR can also be used where 

one of the primers is in excess in order to amplify mostly the wanted strand. For RNA, 

the conditioning procedure consists of the in vivo transcription of DNA template by T7 

RNA polymerase. 

 

3.2.1.7 Cloning and Sequencing 

After several rounds of SELEX (6 to 12) the process is completed by cloning and 

sequencing procedures (17). When the affinity of the enriched library can no longer 

increase it is the starting point for cloning. The number of library members in the last 

round can not be estimated. Therefore, the variation in this number involves parameters 

such as: nature of the target, target concentration, type of SELEX method. The number of 

library members after a complete SELEX method can be expected to be from 1 to 

1.000.000 (34). The main goal of the cloning procedure is to split up the pool of library 

members into single members. The final pool of library members is cloned into a 

bacterial vector and individual colonies with single-members are obtained (17). Then, the 

extraction of the plasmid is performed for the sequencing method that produces the 

sequence that offers high-affinity against the target molecule. All the isolated sequences 
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(usually 20 to 50) are analyzed to find consensus motifs between them. The consensus 

motifs derived from this selection process will become the aptamer-candidates.    

 

3.2.1.8 Analysis of consensus sequences  

Bioinformatic tools are necessary for the analysis of the sequences obtained by SELEX. 

In order to find the consensus sequence, the alignment of all sequences is a requirement 

to complete the SELEX method. Bioinformatics programs like CLUSTAL W are 

frequently used for the alignment performance. The analysis of the alignment data is 

based on the concordance between different sequences and some specific motif 

sequences that differ by the position of single nucleotides. Using this type of analysis, the 

consensus sequences can be identified and at the same time, groups based on homology 

can be observed. When performing a complete SELEX method, the expected positive 

outcome is the consensus sequences between different library members. In addition, the 

consensus sequence obtained will be the candidate-aptamer that will be synthesized for 

the aptamer characterization. 

 

3.3 Hypothesis 

The idea of a SELEX method, wherein the interaction between nucleic acid-ligand and 

target molecule is carried out in the absence of surfaces or matrices, will be successful 

enough to avoid the non-specific interaction. Herein, a new approach for separation step 

is proposed, termed “Soluble-SELEX”. This new SELEX method uses hybridization as 

partitioning mechanism for separating the bound and unbound DNA members to the 

target-molecule. In this new method, beads that are used to provide the library ssDNA 
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members used for target interaction, are kept and used again to hybridize back all 

members that do not interact strongly enough with the target. The target-bound members 

are used directly for PCR while the non bound members are easily separated since they 

are hybridized to the magnetic beads containing the complimentary part of the library. 

This “Soluble-SELEX” and its hybridization procedure will be evaluated by fluorescence 

studies as the partitioning mechanism for SELEX method. 

Furthermore it is hypothesized in this work that the incorporation of a primary structure 

motif in the library (namely a -15.19 kJ/mol  hairpin-like structure ) will provide a 

generic modulation of aptamer structure upon target recognition that leads to an off-

mechanism of detection (separation of the hairpin members).  

 

 

3.4 Objectives  

The principal goal of this work is to develop a new SELEX method that avoids the non-

specific interaction of surfaces or matrices. This new method termed, “Soluble-SELEX” 

will be used hybridization as the partitioning mechanism and the interaction between 

library members and target will be carried out in solution (matrix-free method).   

In addition, the design of the library has an arbitrary “hairpin region” that will be an 

inducer of conformational changes in the library members that bind the target molecule. 

Hairpin-like structure will provide an intrinsic transduction mechanism for the selected 

aptamers.  
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3.5 Experimental Methods 

3.5.1 Design of the SELEX Library: 

The method starts with the library design. A 102-mer single DNA was designed with 22 

and 29 nucleotides primer flanking sequences at the 3′ and 5′ ends respectively, an 

arbitrary complementary sequence of 12 nucleotides (hairpin region, 6 nucleotides in 

each extreme following by the primer regions) and a randomized 49 nucleotide internal 

sequence In addition, two primer sequences were designed according with the library 

template. The primer sequence at the 3′ end was biotinylated for preparation of the 

single-stranded DNA library. 

 

Library:  Blue; primer region, red; hairpin and black; random region (Figure 1). 

5´- GAC AGG GCT CAC AAG CTA ACC AAC C (AGCT) (AGCT) (AGCT) 
(AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) 
(AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) 
(AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) 
(AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) 
(AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) (AGCT) 
(AGCT) G GTT GGC AGC GAT CGT CTT GAA TCT – 3´ 

 

Primer forward (biotynalated):   

5´- AGA TTC AAG ACG ATC GCT G -3´ 

Primer reverse:      

5’- GAC AGG GCT CAC AAG CTA A -3´ 
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Figure 1. Design and prediction of the SELEX library. The prediction was performed by 
mfold software.  

 

3.5.2 Soluble-SELEX method: 

The strategy of Soluble-SELEX with hybridization as partitioning mechanism is 

described in 6 different steps (Fig. 2): a) The candidate mixture is amplified by PCR of 

the initial library. Then, the coupling between streptavidin magnetic-beads and 

biotinylated PCR product is carried out. b) Separation of single-stranded DNA (ssDNA) 

is required. Sodium hydroxide (NaOH) has been used to increase the ionic strength and 

the consequent separation between ssDNA and biotinylated ssDNA bound to magnetic-

beads. After the magnetic recovery of ssDNA-magnetic-beads, the candidate mixture 

(ssDNA) is obtained by extraction of the supernatant. In addition, the ssDNA magnetic-

beads are washed and kept in buffer for the hybridization step. c) After a precipitation 

step of the supernatant, the candidate mixture (ssDNA) was concentrated in water before 
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incubation with the target-molecule. d) The hybridization as partitioning mechanism is 

performed by coupling between ssDNA magnetic-beads and ssDNA with low affinity for 

the target molecule. e) The hybridized DNA is magnetically recovered followed by the 

supernatant extraction that contains ssDNA with high affinity to the target -molecule. f) 

The next step is the amplification by PCR after the target denaturation using high 

temperature (95ºC).   

 

3.5.2.1 Evolution monitoring of the Soluble-SELEX method.  

In order to develop the Soluble-SELEX, the resulting evolution from each round was 

quantified by fluorescence as has been previously described (18).  The detection was 

carried out by Oligreen. This probe has been designed with high specificity for single-

stranded DNA.   

Reagents:  Quant-iT™ OliGreen® ssDNA reagent (Oligreen), solution in DMSO  20X 

TE (25 mL of 200 mM Tris-HCl, 20 mM EDTA, pH 7.5) and  Ultra pure Water. TE 

buffer was used for the preparation of Oligreen, oligonucleotide and ssDNA diluted 

solutions. Because Oligreen is an extremely sensitive detection reagent for ssDNA, it is 

imperative that the TE solution used be free of contaminating nucleic acids.  The 

Oligreen working solution was prepared with a 200-fold dilution of the Oligreen reagent 

using the 20X TE buffer. 
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Fig 2. Soluble-SELEX method: a) coupling between PCR product and Mag-Beads, 
b) Separation of ssDNA, c) target  bound and unbound ssDNA, d) hybridization 
between complementary  ssDNA attached on Mag-Beads and ssDNA in solution, e) 
magnetic partitioning of target bound and unbound ssDNA, f) PCR with previous 
denaturation of the target. 
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Sample preparation: For every round of Soluble-SELEX, 5μL of solution C (Figure 2, E) 

were taken for evolution measurements. The samples were diluted in 45μL of ultra pure 

water and then 50μL of Oligreen working solution was added to the quartz cuvette. All 

measurements were performed using a Cary Eclipse Fluorescence spectrophotometer 

with the following parameters: excitation 480nm, emission 520nm and a scanning range 

from 450 to 600nm. 

3.5.2.2 Cloning  

TOPO TA Cloning® kit has been selected in order to perform the cloning procedure of 

Soluble-SELEX. TOPO Cloning provides a highly efficient, and one-step cloning 

strategy ("TOPO® Cloning") for the direct insertion of Taq polymerase-amplified PCR 

products into a plasmid vector.  No  ligase,  post-PCR  procedures,  or   PCR   primers 

containing specific sequences are required. 

The plasmid vector pCR2.1-TOPO is supplied linearized with: 

a) Single 3´-thymidine (T) overhangs for TA Cloning®  

b) Topoisomerase I covalently bound to the vector (referred to as "activated" vector) 

Taq polymerase has a non template-dependent terminal transferase activity that adds a 

single deoxyadenosine (A) to the 3´ ends of PCR products. The linearized vector supplied 

in this kit has single, overhanging 3´ deoxythymidine (T) residues. This allows PCR 

inserts to ligate efficiently with the vector. Topoisomerase I from Vaccinia virus binds to 

duplex DNA at specific sites and cleaves the phosphodiester backbone after 5′-CCCTT in 

one strand (Shuman, 1991). The energy from the broken phosphodiester backbone is 
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conserved by formation of a covalent bond between the 3′ phosphate of the cleaved 

strand and a tyrosyl residue (Tyr-274) of topoisomerase I. The phospho-tyrosyl bond 

between the DNA and enzyme can subsequently be attacked by the 5′ hydroxyl of the 

original cleaved strand, reversing the reaction and releasing topoisomerase (Shuman, 

1994). In order to complete the procedure, additional steps have been carried out. 

3.5.2.2.1 Bacteria Transformation: 

After cloning TOPO reaction, the transformation of E. coli competent cell was performed 

by the addition of 2 μL of the TOPO® cloning reaction into a vial of E. coli. The reaction 

was mixed gently and incubated on ice for 5 to 30 minutes. Heat-shocking step (30 

seconds at 42ºC without shaking) is required before immediately transferring the tubes to 

ice.  

3.5.2.2.2 Inoculation on media-LB agar plates:  

a) Add 25 grams of LB powder and 15 grams of agar to 1 L of distilled water. 

Autoclave and allow the LB agar solution to cool until it can be safely handled. 

Add ampicillin and kanamycin (50 µg/mL). Pour the LB agar solution containing 

antibiotics into Petri dishes and cover. Let stand overnight to harden and dry.  

b) Warm selective plates at 37°C for 30 minutes.  

c) Spread 40 μL of 40 mg/mL X-gal on each LB ampicillin and kanamycin plate and 

incubate at 37°C until ready for use. 

d) Add 250 μL of room temperature S.O.C. medium to the transformed cells  

e) Cap the tube tightly and shake the tube horizontally (200 rpm) at 37°C for one 

hour. 

f) Spread 10-50 μL of transformed cells solution on a pre-warmed selective plate. 
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g) Incubate plates at 37°C overnight. 

h) After the observation of white (library member insertion) and light blue colonies 

(no insertion), the selection of singles colonies was performed. 

  

3.5.2.2.3 Inoculation of single colonies in LB liquid media. 

A small part of a white colony was carefully harvested and cultured in a tube with 10 mL 

LB medium containing 50 μg/mL ampicillin and 50 μg/mL kanamycin for 12 hour at 

37ºC. This step was repeated for at least 30 colonies. The bacterial growth has been 

evaluated by the pellet formation in the LB media.  

3.5.2.2.4 Plasmid extraction 

The plasmid extraction procedure was performed by PureLink™ Quick Plasmid 

Miniprep Kit. The cells were lysed using an alkaline/SDS procedure. The lysate was then 

applied to a silica membrane column that selectively binds plasmid DNA. Contaminants 

were removed with wash buffers. The plasmid DNA was eluted in TE Buffer and is 

suitable for all routine downstream applications. The PureLink™ Quick Plasmid 

Miniprep Kit was used with a centrifuge method. The complete procedure is described 

below: 

a) Pellet 1 to 5 mL of an overnight culture (1–2 x 109 E. coli in LB medium). 
Thoroughly remove all medium from the cell pellet. 

 
b) Completely resuspend the pellet in 250 μL resuspension buffer (R3) with RNase 

A. No cell clumps should remain. 
 

c) Add 250 μL lysis buffer (L7) to cells. Mix gently by inverting the capped tube 5 
times. Do not vortex. 
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d) Incubate the tube for 5 minutes at room temperature. Do not exceed 5 minutes. 
 

e) Add 350 μL Precipitation Buffer (N4). Mix immediately by inverting the tube 
until the solution is homogeneous. For large pellets shake more vigorously. Do 
not vortex. 

 
f) Centrifuge the mixture at ~12,000 x g for 10 minutes at room temperature using a 

microcentrifuge to clarify the lysate from lysis debris. 
 

g) Load the supernatant from step f) onto a spin column. 

h) Centrifuge at ~12,000 x g for 1 minute. Discard the flow-through and place the 

column back into the wash tube. 

i) Add 700 μL wash buffer (W9) with ethanol to the column. 
 
j) Centrifuge the column at ~12,000 x g for 1 minute. Discard the flow-through and 

place the column back into the wash tube. 
 

k) Centrifuge the column at ~12,000 x g for 1 minute to remove any residual Wash 
Buffer (W9). Discard the wash tube with the flow-through. 

 
l) Place the spin column in a clean 1.5 mL recovery tube. 

 
m) Add 75 μL of preheated TE Buffer (TE) to the center of the column. 

 
n) Incubate the column for 1 minute at room temperature. 

 
o) Centrifuge at ~12,000 x g for 2 minutes. 

 
p) The recovery tube contains your purified plasmid DNA. Discard the column. 

 

q) Store the DNA at -20°C or use DNA for the desired downstream application. 

3.5.2.2.5 Plasmid analysis by PCR 

Before starting with the sequencing method, a simple confirmation of the purification of 

the plasmid was carried out by standard PCR. Using the commercial M13 primers the 

PCR was performed. Then, the band (around 300 bp) that corresponds to the specific 

plasmid segment was observed by gel electrophoresis. 
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3.5.2.3 Sequencing 

Sequencing data was obtained by capillary electrophoresis in a Beckman Coulter CEQ 

8000 device. The sample preparation was performed using 0.5 μL of purified plasmid 

solution and genomelab™ dye terminator cycle sequencing with quick start kit- Beckman 

coulter. The list of reagents and complete procedure are described below: 

Reagents: Dye Terminator Master Mix, pUC18 Control Template (0.25 μg/μL), M13 

Sequencing Primer (1.6 pmol/μL or 1.6 μM) Glycogen (20 mg/mL).  

PCR reaction: 

a) Heat the template (purified plasmid) at 96°C for 1 minute.  

b) Cool to room temperature.  

c) Sequencing reaction was prepared as follows: 0.5 μL template, 2 μL of M13 primer, 8 

μL master mix and 20 μL ultrapure water. 

d) PCR thermal cycling program: denaturation 96°C for 20 sec, annealing 50°C for 20 

sec and extension at 60°C for 4 min. For 30 cycles followed by holding at 4°C. 

 

Ethanol precipitation: Precipitation in Individual Tubes 
 
e) Prepare a labeled, sterile 0.5 mL tube for each sample. 

f) Prepare fresh Stop Solution/Glycogen mixture as follows (per sequencing reaction): 2 

μL of 3M Sodium Acetate (pH 5.2), 2 μL of 100 mM Na2-EDTA (pH 8.0) and 1 μL 

of 20 mg/mL of glycogen (supplied with the kit). To each of the labeled tubes, add 5 

μL of the Stop Solution/Glycogen mixture. 

g) Transfer the sequencing reaction to the appropriately labeled 0.5 mL tube and mix 

thoroughly. 
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h) Add 60 μL cold 95% (v/v) ethanol/dH2O from -20°C freezer and mix thoroughly. 

Immediately centrifuge at 14,000 rpm at 4°C for 15 minutes. Carefully remove the 

supernatant with a micropipette (the pellet should be visible). Note: For multiple 

samples, always add the cold ethanol/dH2O immediately before centrifugation. 

i) Rinse the pellet 2 times with 200 μL 70% (v/v) ethanol/ dH2O from -20°C freezer. 

For each rinse, centrifuge immediately at 14,000 rpm at 4°C for a minimum of 2 

minutes. After centrifugation carefully remove all of the supernatant with a 

micropipette. 

j) Dry for 30 minutes in the dark. 

k) Resuspend the sample in 40 μL of the Sample Loading Solution and charge in 

capillary electrophoresis machine. 

l)  

3.5.2.4 Alignment and analysis of sequence: 

Sequencing data was analysed by ClustalW2 and T-Coffee. ClustalW2 is a general tool 

for multiple sequence alignment programs for DNA. It calculates the best match for the 

selected sequences (one clone), and the primer regions that are used in the library. After 

the identification of the random sequence (49n) for each clone by Clustal program, T-

Coffee was used for the multiple sequence alignment of multiple clones sequencing data. 

Both tools allow the identification of the consensus sequence present in different clones. 

According to the alignment data, the synthesis of several aptamer candidates was 

performed by VBC Biotech services (Austria). 

3.5.2.5 Evaluation of aptamer-candidates 
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The evaluation of aptamer candidates was performed by a BIAcore 3000. In order to 

analyse all the candidates, the target (Avidin) was immobilized on the BIAcore chip 

surface (CM5) and the binding affinity of the aptamer candidates was evaluated. Then, 

the best aptamer candidate was modified with a thiol-group at 5´ and immobilized on the 

BIAcore chip (Au surface). A titration with different concentration of the target was 

evaluated in order to obtain the dissociation constant KD. The reagents and complete 

procedure is described below: 

Reagents: TBS-T (1 L deionized water. 0.05 M Tris, 0.138 M NaCl, 0.0027 M KCl, pH 

8.0, 25ºC, 0.05% Tween 20), EDC: (1-Ethyl-3-(dimethylaminopropyl)cabodiimide HCL) 

0.2 M, NHS: (N-Hydroxysuccinimide) 0.05 M, 10 mM sodium acetate pH 4.4, 

Ethanolamine (1 M, pH 8.5), KPO4 1M, avidin 1 mg/mL (100 µL), CM5 sensor chip and 

Au sensor chip (BIAcore, GE Healthcare, Sweden). 

CM5 chip Procedure: 

a) Add a mixture of 50 μL of each EDC and NHS to the Au side of a CM5 chip mix.  

b) Incubate for 20 minutes.  

c) Wash chip with buffer.  

d) Add 100 μL of 1 mg/mL avidin to the chip.  

e) Incubate for 30 minutes. 

f) Wash chip with buffer. 

g) Add 50 μL of 1M ethanolamine for blocking.  

h) Wash chip with buffer. 

i) Add 35 μL of 50 nM candidate aptamer to the avidin-modified chip. 

Au Chip Procedure: 
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j) To the Au side of a CM5 chip add 50 μL of 2 μM candidate-aptamer, dissolved in 

KPO4 1M.  

k) Incubate for 20 minutes.  

l) Wash chip with buffer.  

m) Add 35 μL of avidin (target) from100 to 1000 pM. 

 

3.5.2.6 Thermodynamics by BIAcore T100: 

The SPR assays were performed according to the same coupling method as described 

previously. Using a BIAcore T100 instrument, the H18hp avidin-aptamer was modified 

with a thiol group at 5´ end, in order to bind the surface of the Au sensor chip (BIAcore). 

The H18hp avidin-aptamer was immobilized to 500 RU in flow cell by thiol coupling in 

binding buffer KPO4 (pH 3.4) at a flow rate of 15 µL/min at 25°C for 5 min by the 

INJECT program (BIAcore). The running buffer (TBT-t) was passed through flow cells 

of the sensor chip for 1 min at the KINJECT program (BIAcore). The data was obtained 

by subtracting the signals for H18hp avidin-aptamer on the Au sensor chip (flow cell 2) 

from the signal for Au sensor chip unmodified (flow cell 1), thereby showing the net 

interaction between aptamer and target molecule (Figure 7). To regenerate the sensor 

chip, bound materials were completely removed by injecting 20 µL of 0.05 M NaOH at a 

flow rate of 15 µL/min. Close-fitting curves to the sensograms were calculated by global 

fitting curves (1:1 Langmuir binding) generated using BIAcore T100 evaluation software. 
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3.6 Results and discussion 

 
3.6.1 SELEX 

This new SELEX method uses hybridization as partitioning mechanism for separating 

the bound and unbound DNA members to the target-molecule. The hybridization 

procedure has been evaluated by fluorescence. First of all, a measurement of the 

hybridization recovery by streptavidin magnetic beads at three different times (15, 30, 

45 min) was performed (Fig 3) in order to determine the optimum incubation time for 

this step. After coupling of dsDNA-biotinylated with streptavidin magnetic beads 

(Figure 1a), the elution of ssDNA by NaOH was carried out .The facile magnetic-

bead separation allows the extraction of the supernant. The supernatant analysis by 

Oligreen permits the ssDNA concentration determination(Fig. 3b). Subsequently,the 

hybridization between the biotinylated-ssDNA attached on the magnetic bead surface 

from the previous step and the ssDNA in solution was carried out for 15min (Fig 3c), 

30min (Fig 3d) and 45 min (Fig. 3e) in order to determine the incubation time that is 

sufficient for this step. After the magnetic separation, the supernatant is evaluated and 

insignificant difference between 30 and 45 minutes is observed. The previous 

experiment confirms the usefullness of the hybridization using magnetic-bead for the 

extraction of ssDNA in solution, and 30 minutes was chosen as the optimal separation 

time.  

In order to prove that hybridization can be used as the partitioning mechanisn for 

SELEX , a hybridization experiment was performed using SELEX conditions. Figure 

4 shows the hybridization after a simulated SELEX round.  
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Figure 3. Hybridization analysis by fluorescence (Oligreen dye). Streptavidin-
magnetic bead was attached to biotinylated dsDNA, then the supernatant (dsDNA) 
has been evaluated (a). After elution of ssDNA (NaOH) the sample was collected and 
analysed (b). Then, the hybridization was carried out at different times 15 min (c), 30 
min (d) and 45 min (e). negative control (f). Conditions as described in the text. 
 
 

Figure 4. Hybridization analysis by fluorescence (Oligreen dye). Streptavidin-
magnetic bead was attached to biotinylated dsDNA, then the supernatant (dsDNA) 
has been evaluated (a). After elution of ssDNA (NaOH) the sample was collected and 
analysed (b). Finally, after hybridization (ssDNA magnetic-beads and ssDNA 
solution) the supernatant has been collected and evaluated (c). Negative control (d). 
Conditions as described in the text. 
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Following the same methodology as before (Figure 3) we proceeded with the 

evaluation of dsDNA (Fig. 4a) and ssDNA extraction (Figure 4b). The hybridization 

between modified magnetic bead and ssDNA was carried out after precipitation of 

DNA (simulation of SELEX). Finally, the evaluation of the supernatant after 

magnetic separation was performed (Fig. 4c). The last step in proving that the 

hybridization could be incorporated in SELEX method would be to do a complete 

round of SELEX and analyse the result. Figure 5 shows the DNA band as a result of 

amplification from different dilutions of the sample after the first round of SELEX . 

 

Figure 5. Electrophoresis of the first round of “Soluble-SELEX” using hybridization 
as partitioning machanism. Three PCRs where carried out for three diferent dilutions 
of the first round SELEX product. M: DNA marker; the band that correspond to 100 
base pairs (bp) is highlighted. 1/1: 1 μL of undiluted sample as template for PCR, 
1/50 1μL of 50 times diluted sample, 1/100 1/50 1 μL of 100 times diluted sample 
and C, negative control for PCR. 
 

To validate the approach, 12 rounds of Soluble-SELEX were performed against the 

target PSA (0.01 mg/mL). No evolution was observed for the original target. After the 

analysis of SELEX samples, it was found by ELISA that some avidin (0.03 μg/mL) 

was leaking out from the magnetic beads. This avidin was present at all times in the 
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SELEX process and working as a non-specific target. Evolution studies were 

performed then against avidin employing fluorescence spectroscopy (Figure 6) as 

reported previously (18). After performing the analysis of the results, it was 

confirmed that SELEX method evolved against avidin instead of the original target 

PSA even when the PSA was three orders of magnitude more concentrated. Currently 

we have  no explanation for this observation. However, it has to be noted that there 

are no reports in the literature about aptamers for PSA and parallel experiments in our 

laboratory (M. Svobodova, C. Ozalp and C. O’Sullivan: unpublished results) using 

“traditional” SELEX partition methods have failed to yield a PSA aptamer. Although 

a non-specific aptamer was obtained with the first “Soluble-SELEX”, the objective of 

this study was to prove the concept that the soluble SELEX partition method is valid. 

In this sense, the target is not as important. Still, it is desirable for the “Soluble-

SELEX”  to be improved in order to avoid the non-specific selection against the  

immobilisation chemicals of the bead. Preliminary experiments (results not shown) 

have demonstrated that if non-specific silanol magnetic beads (-OH) are used for 

removal of the non-bound ssDNA, no evolution is seen. Therefore, the improvement 

can be afforded by modulating the time of contact of the library with the beads and all 

steps where streptavidin might have leaked from the surface. In order to isolate an 

aptamer (even against avidin) cloning and sequencing procedures were completed 

using standard methods as described in the methodology section. Sequence 

alignments are necessary to compare the random region of the library members. The 

sequence analysis was performed by internet bioinformatic software CLUSTAL W 

(http://tcoffee.vital-it.ch/cgi-bin/Tcoffee/tcoffee_cgi/index.cgi)). Based on the 
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alignment data some of these sequences (12 out of 20) shared common motifs (Figure 

7a). Random regions with some motif sequences, but different in some single 

nucleotide positions were observed. 

Figure 6. Evolution of “Soluble-SELEX” by the binding of DNA library members. 
Twelve rounds of “Soluble-SELEX” were analyzed using the fluorescent dye oligreen. 
ssDNA pool from each round were evaluted by incubation with the target (sample) and 
incubation without target (control). Afther 30 minutes of incubation, the separation was 
carried out by hybridization with the complementary sequence immobilized on magnetic 
beads. Each sample was amplified by PCR and the DNA concentration was determined 
by oligreen dye (fluorescence measurement). No binding was observed from 0 to 8 
rounds. Round 9 has shown a progressive increase until round 12, when the target was 
present in solution ,whereas no evolution in binding was observed in the control (no 
target). 

 
The sequences were divided in 2 groups, A and B, in order to increase the sequence 

homology (Figure 7b). After the alignment process, 6 sequences were selected as 

candidate aptamers and their predicted structures (Figure 8) were carried out by mfold 

program http://mfold.bioinfo.rpi.edu/cgi-bin/dna-form1.cgi. In addition, the sequences 

were synthesized and their KD values were determined using SPR in a Biacore 3000 

(Figure 9). One of those sequences 5’-CCAACCGCAATTGTAGTTGA 

CTCAACATAGTACCGGACTCGGCTAATAGACCTGGGGTTGG-3’ (H18-hp) has 
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Figure 7. Aligments by bioinformatic software T-Coffee. a) all members, b) subgroup 1 
and c) subgroup 2. The primer regions are located at the extrems of the sequence 
aligment and the consensus motifs are located in the middle of the sequence. 

 

shown a representative KD value of 1.3 nM to avidin (Fig 10). In order to assess the 

performance of the method,  the sequence and the affinity constant of this aptamer were 

compared with two streptavidin aptamers that have been reported previously (19-20). The 

sequence comparison has shown several conserved regions among the aptamers. On the 

other hand, the dissociation constants (KD) for the three aptamers have been determinated 

to be of the same order of magnitude (Table 3). This suggests that soluble-SELEX is a 

method that can raise aptamers with similar results as the standard SELEX. 

 
Aptamer Origin KD value [nM] 

DNA H18-(Soluble-SELEX) 1.3 
RNA S1 (Srisawat and Engelke) 70 
RNA S19 (Tahiri and co-workers) 7 

 
Table 3. Comparison between Soluble-SELEX and two additional aptamers 
performed by standard SELEX. 
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Figure 8. Prediction of secondary structure of the six candidate aptamers by mfold 
program. 
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Figure 9. BIAcore binding curves for 500 nM of six candidate aptamer. Resonance units 
(R.U.) are a measure for the number of candidate aptamer molecules retained by the 
target (avidin) immobilized on the sensor chip. Conditions as described in the text. 
 
 

 
Figure 10. High-affinity interaction between immobilized H18-aptamer and avidin. 
Resonance units (R.U.) are a measure for the number of target molecules (avidin) 
retained by H18-immobilized aptamer on the sensor chip. Four different avidin 
concentrations were analyzed (100 pM to 1000 pM) and a significant value of 1.3 nM 
was reported using a Langmuir fitting model (with mass transfer, as determined by 
Biaevaluation 2.0 procedures, black lines)  
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3.6.2 Candidate-aptamer evaluation 

In order to characterize the candidate aptamers that were obtain by Soluble-SELEX, SPR 

was perfomed in the Biacore 3000 instrument. 

 
 
3.6.2.1 Surface Plasmon Resonance (SPR) 

After the KD determination for H18-avidin aptamer (Figure 10), its selectivity was 

studied by SPR. The baseline for this experiment is the signal recorded after the 

immobilization of H18-avidin aptamer (modified with a thiol group at 3´) on gold 

Biacore chip. After the addition of two non-specific proteins (BSA and PSA) the plasmon 

resonance was recorded for each case (Figure 11). The signal recorded after the addition 

of non-specific targets was insignificant. In contrast, in the presence of the specific-

target, the results have shown an important binding effect between aptamer and the 

target. These results suggest the high selectivity of H18-aptamer on biacore platform. In 

addition, the biosensor reproducibility was checked by measuring four replica at three 

different concentrations each (0, 10 and 30 nM). All errors were below 4% (SD: 1.8%), 

which verified the robustness of our H18-avidin aptamer based biosensor system. The 

regeneration protocol consists of an efficient flushing step with a 50μM of NaOH and 

TBS-T as running buffer (Figure 12). 

 

3.6.2.2 Thermodynamic information by Surface Plasmon Resonance Analysis 

The interactions between avidin and anti-avidin aptamer H18hp were characterized by 

SPR analysis at different temperatures. A direct measurement of binding thermodynamic 

parameters are possible with isothermal titration calorimetry. Measuring the temperature 
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dependence of affinity constants by SPR analysis has been used as an alternative method 

for determining thermodynamics of binding between biomolecules (51).  

 

 
Figure 11. Evaluation of specificity of H18-avidin aptamer by SPR: 10 nM of avidin as 
specific target and 10 nM of PSA and BSA as non-specific targets were passed over the 
H18-avidin aptamer immobilised on the BIAcore chip sensor. PSA and BSA proteins 
showed no significant change in the H18-avidin aptamer interaction process whereas 
avidin binding was greatly enhanced, yielding a response 97 RU above the H18-aptamer 
interaction. 
 
 
The thermodynamic parameters of the interaction between H18hp avidin-aptamer and 

avidin were determined by measuring the temperature dependence of the ratio of its 

kinetic association and dissociation rate constants. Surface plasmon resonance analysis 

was used to measure the rate constants at temperatures ranging from 10 to 35ºC. Five 

different target concentrations (10 to 50 nM) were analyzed in order to determine each 

KD value at each temperature. After the kinetic analysis, thermodynamic data, such as 

free energy ΔGº (-46 kJ/mol), enthalpy ΔHº (-12 kJ/mol) and entropy ΔSº 110 

[J(K*mol)] were obtained (See table 4).The functional binding activity of two molecules 

 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN OF BIOSENSOR EXPLOITING CONFORMATIONAL CHANGES IN BIOMOLECULES 
Frank Jeyson Hernández 
ISBN:978-84-691-9479-9/DL:T-21-2009



 93

 

Figure 12. Studies of stability and reproducibility of H18hp avidin-aptamer by BIAcore 
(T100) technology. Three different concentrations of avidin were used (0, red; 10, green; 
and 30, blue at nM range). Four repeated measurements at each concentration were 
performed. Conditions as described in the text. 
 

can be described by the kinetic rate constants and equilibrium constants. In addition, the 

binding interaction can be estimated from the thermodynamic parameters as well. The 

changes in enthalpy (ΔHº) and entropy (ΔSº) are related to the free energy of binding 

(ΔGº) and the equilibrium association constant (Kº) in the van´t Hoff equation[eq. 1] (52) 

 

ΔGº = ─ RT ln1/KD = RT lnKD    [eq. 1] 

where, ΔGº is the standars free energy change 
R is the universal gas constant 
T is the absolute temperature (K) 
KD is the equilibrium dissociation constant, 

Substituting in the expression 

ΔGº = ΔHº - T ΔSº 
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and rearranging gives: 

lnKD = ΔHº/RT - ΔSº/R 

where, ΔHº  is the standard enthalpy change and ΔSº  is the standard entropy change. 
 

If the enthalpy change ΔH does not vary with temperature, the van’t Hoff plot of ln K 

versus 1/T results in a straight line of slope -ΔH/R. However, for  ΔS values 

corresponding to the binding of biomolecules very often a significant change in 

temperature is reported. As a result,heat capacity change, ΔCp, different from zero can be 

expected (53). In such cases, the plot of ln KD agains 1/T is not linear, and the 

relationship becomes [eq. 2]:  

 

        RT lnKD = ΔHºT� - T ΔSº T� + ΔCºp (T – T0) - T ΔCºp ln (T/To) 

 

where, ΔCºp is the heat capacity change under standard conditions and T0 is the reference 

temperature (25ºC = 298.15 K for standard conditions) 

 

Table 4. Thermodynamic parameters of the interaction between H18hp avidin-aptamer 
and its target 

Parameter Name 

Parameter 

Value 

Standard 

Error 

ΔH° [kJ/mol] -12 1.8

ΔS° [J/(K*mol)] 110 5.9

TΔS° [kJ/mol] 34 1.8

ΔG° [kJ/mol] -46 0.013

ΔCp° [kJ/(K*mol)] -4 0.35

[eq. 2] 
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Importantly, the value of ΔGº = -46 kJ M-1 +/- 0.013 for the H18hp avidin-aptamer 

obtained by these experiments has been compared with the antigen-antibody interaction 

that was characterized by BIAcore technology and the thermodynamical data was 

evaluated. The ΔGº value obtained in those studies was -49 kJ/mol (53). This result 

suggests that H18hp –avidin aptamer has a similar thermodynamical behaviour as the 

antigen-antibody interaction. The analysis of the van´t Hoff plot (Figure 13) shows a non-

linear slope, suggesting that the enthalpy change ΔHº varys with the temperature. The 

heat capacity change ΔCp  in our case has been reported with a value of (-4 kJ/(K mol) 

which  is in agreement with the non-linear behaviour of the van´t Hoff plot.  

. Single dissociation constants (KD) at each temperature were calculated by global fitting 

of five concentrations of avidin (10 to 50nM) over a constant density aptamer surface 

(Figure 14). A 1:1 Langmuire fitting was used for each temperature with χ2 values below 

5. A reliable data for KD has been assumed by a χ2 value less than 10 in literature.  

 

Figure 13. van´t Hoff plot of H18hp avidin-aptamer at 10, 20, 25 and 35ºC. The plot 
shows the effect of temperature in the enthalpy change ΔHº according to a non-linear 
behaviour.  
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Figure 14. High-resolution kinetic analysis of the binding of avidin to H18hp avidin-
aptamer surface using BIAcore T100. Red lines show biosensor data collected at 10, 20, 
25 and 35ºC. Five different concentrations (10 to 50 nM) were tested. Significant KD 
values in the range of nM were reported using a Langmuir isotherm fitting model. 
(black lines). 
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 3.7 Conclusions  

 

In summary, the hybridization procedure has been evaluated as partitioning mechanism 

that can be incorporated into SELEX method. “Soluble-SELEX has been optimized and a 

complete SELEX round was performed and confirmed by gel electrophoresis (Figure 3). 

After 12 successful rounds of SELEX, the evolution against the original target (PSA) was 

evaluated with negative results. However, after the analysis of SELEX samples by 

ELISA, we found out that some leaking of avidin from the magnetic beads was present at 

all times in the SELEX process. After the evolution studies against avidin, the results 

have shown a significant evolution of the library to avidin. Cloning and sequencing were 

carried out successfully in order to complete the SELEX method. After the alignment, 

several consensus sequences have been found and the structures of 6 candidate aptamers 

have been predicted. Therefore, the synthesis of the sequences has been ordered. The 

binding studies performed by BIAcore have shown an important binding effect for some 

of the 6 avidin candidate-aptamers. H18hp-aptamer has revealed the best binding signal 

according to the preliminary screening results (binding interaction with the immobilized 

target). In addition, affinity studies were performed in order to obtain the KD for H18hp-

aptamer. A significant KD value of 1.3 nM was recorded. Moreover, the KD value was 

compared with the aptamers reported in the literature against avidin, Srisawat and 

Engelke (KD = 70 nM) and Tahiri and co-workers (KD = 7 nM). Here we concluded that 

“Soluble-SELEX” is a method that can raise aptamers with similar results as the standard 

SELEX technology. In order to avoid the SELEX selection against avidin as non-specific 

target, two strategies can be performed. a) To use magnetic beads with a different 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN OF BIOSENSOR EXPLOITING CONFORMATIONAL CHANGES IN BIOMOLECULES 
Frank Jeyson Hernández 
ISBN:978-84-691-9479-9/DL:T-21-2009



 98

immobilization system for the library such as NHS/EDC conjugation chemistry by 

coupling amino-labeled library to carboxyl Ted magnetic beads or b) After the analysis of 

the “Soluble-SELEX” samples, it was realized that some steps in the previous procedure 

have to be carried out more carefully. For example, the leaking of avidin usually occurs 

when the magnetic beads with the complementary sequences are kept at 4ºC (store 

conditions). In this case, several washing steps have to be performed in order to eliminate 

the avidin present in the solution by magnetic separation. 

Collectively, the selectivity and robustness of the biosensor was reported. The selectivity 

results showed that H18hp avidin-aptamer has a high selectivity against avidin and 

insignificant recognition properties for BSA and PSA as non-specific targets. The H18hp 

avidin-aptamer biosensor based on surface plasmon resonance was performed in order to 

confirm the stability, reproducibility and reusable properties of the aptamer. Figure 12 

shows the stability and the capability of the aptamer for regeneration. These results 

suggest the presence of one of the most interesting features of the aptamers versus 

antibodies, namely the regeneration and reusable capabilities. 

On the other hand, kinetic and thermodynamic studies were performed. Thermodynamic 

parameters can be calculated by SPR technique using the van’t Hoff equation (52), which 

correlated the kinetics (KD), temperature and free energy. In our case, the temperature 

dependence of the interaction between H18-avidin aptamer and avidin was evaluated. As 

result, the determination of the binding free energy of -46 kJ/mol was reported. This 

thermodynamic value was calculated at temperature ranging from 10 to 35ºC.  

The kinetic data was obtained by five different concentrations of the target (10 to 50 nM) 

for each temperature analysis. The kinetic information is plotted as depicted in Figure 14, 
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where the values of KD at 10ºC (13.9 nM), 20ºC (9.64 nM), 25ºC (9.32 nM) and 35ºC 

(14.9 nM) were reported. After the kinetic analysis, additional thermodynamic data, such 

as enthalpy ΔHº (-12 kJ/mol), entropy ΔSº (110 [J/ (K*mol)]) and ΔCp° (-4 [kJ/ 

(K*mol)]) were obtained. In addition, van´t Hoff plot shows a non-linear tendency which 

is correlated with the temperature dependence. The enthalpy ΔHº at 25ºC shows the best 

free energy of binding, this value being in accordance with the selection conditions of the 

aptamers by SELEX. According with our previous free energy calculation for the hairpin 

structure (-15.19 kJ/mol), the binding free energy of H18-avidin aptamer is three times 

higher (-46 kJ/mol). The previous results suggest that only library members with a free 

energy higher than -15.19 kJ/mol were selected. In this case, the hairpin library design 

could be involved in this selecting process. However, future analyses have to be carried 

out in order to confirm this hypothesis.  

On the other hand, the hairpin design and free energy calculation (-15.19kJ/mol) were 

based on the most recent and complete report of thermodynamic studies of L-

argininamide aptamer (54), wherein, a binding free energy value of  -21.3 kJ/mol was 

reported. The difference between these two binding free energy values could not be 

explained only by the hairpin structure function. The nature of the target can be an 

important factor for the thermodynamic analysis. In our case, the target is a protein with a 

molecular weight of 60.000 Daltons (Da) and L-argininamide has 246 Da as molecular 

weight. Herein, we hypothesized that more interaction points between aptamer and target 

(hydrogen binding, hydrophobic, electrostatic interaction etc) could produce a variation 

in the temperature dependence. In thermodynamic terms, we suggest that the enthalpy 

change ΔHº could vary according to the target molecule features (i.e. size). In this sense, 
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the binding free energy could be expected to be higher for avidin than L-argininamide. 

This hypothesis could be supported by the antibody thermodynamic information 

previously reported. Wherein, by SPR technique a value of -49 kJ/mol was reported for 

Hen Egg Lysozyme (HEL), a protein target with a molecular weight of 14.388 Da.  

However, the most interesting feature of the hairpin structure as inducer of 

conformational changes has to be evaluated by the construction of at least two different 

biosensor platforms with “on” and “off” mechanisms (see Chapter 4).  

 

In conclusion, a new method termed “Soluble-SELEX” has been developed. However, a 

different setup has to be designed in order to avoid the non-specific selection. With some 

minor modifications, “Soluble-SELEX” could constitute an effective tool for raising 

aptamers. The method is not optimized but the principle of hybridization as partitioning 

mechanism in SELEX has been proven. The H18-avidin-aptamer developed by “Soluble-

SELEX” method has shown a significant specificity (KD = 1.3nM) and selectivity. The 

robustness of the system evaluated by SRP and high levels of reproducibility and stability 

has been reported.  

The thermodynamic analysis of the interaction between H18-avidin aptamer and avidin 

has revealed a high binding free energy (-46 kJ/mol). This high value is similar to an 

antigen-antibody interaction previously reported (-49 kJ/mol). In order to evaluate the 

effect of the hairpin structure as a mechanism for selecting high binding free energy 

library members, a complete SELEX process has to be carried out for a small target or a 

longer hairpin region for a big target.  
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 CHAPTER 4 
 

H18-avidin aptamer based biosensors 
 

4.1  Abstract 

One important step in developing a biosensing system that exploits aptamers as 

biorecognition elements is to establish effective methods capable of transducing a 

binding event into an easily recordable signal. Strategies have been developed for 

transducing aptamer–target interactions into fluorescence, electrochemical, mechanical, 

piezoelectric, or surface plasmon resonance signals. Within these methods, fluorescence 

signaling is very desirable because of the convenience of detection, the diversity of 

measurement methods, and the availability of a large selection of fluorophores and 

quenchers for nucleic acid modification (25). Herein, we exploited the incorporation of 

H18hp avidin-aptamer to a fluorescent platform. H18hp avidin-aptamer has been 

modified with a fluorophore (FAM at 5´ end) and a quencher (BHQ at 3´ end). The 

titration results showed a “turn off” biosensor mechanism with a relevant specific signal 

of 91.2% corresponding to avidin and a lower value of 23.9% as non-specific signal 

against BSA. In order to complete the H18hp avidin-aptamer, electrochemical 
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transduction was performed as well. The electrochemical H18hp-avidin aptamer-based 

biosensor for rapid and label-free detection of avidin was developed. The 5'-thiol-

functionalized end of the H18hp avidin-aptamer sequence was immobilized on a gold 

electrode, and the 3'-ferrocene (Fc)-functionalized end as the redox reporter group. Upon 

binding of avidin, the aptamer switches conformation from an open unfolded state to a 

closed conformation, resulting in a well-defined “turn on mechanism” that increased 

electron-transfer efficiency between Fc and the gold surface electrode. The 

electrochemical response, which was measured by square wave voltammetry, reaches 

saturation within 300 nM avidin; a specific signal of 337 nanoamperes (nA) was 

recorded. In contrast, BSA as non-specific signal at the same concentration has reported 

only 76 nA, these results suggesting the high affinity and selectivity of H18hp avidin 

aptamer. In conclusion, a H18-aptamer-based biosensor for the detection of avidin was 

developed using two different transduction methods such as fluorescence, and 

electrochemistry. In both platforms, the biosensing procedure was successful. The 

intrinsic transduction mechanism present in H18-aptamer, observed by the “turn off” and 

“turn on” mechanism for fluorescence and electrochemistry platform respectively, 

suggests that the hairpin structure can be an important element to induce conformational 

changes in aptamers.  
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4.2  Introduction 

“Aptamers are artificial nucleic acid ligands that can be generated against amino acids, 

drugs, proteins, and other molecules. They are isolated from complex libraries of 

synthetic nucleic acid by an iterative process of adsorption, recovery and 

reamplification. They have potential applications in analytical devices, including 

biosensors, and as therapeutic agents”. Willian James. 

Aptamers are synthetic nucleic acids that bind different kind of targets (1) such as 

inorganic compounds, small organic molecules, nucleotides and derivates, cofactors, 

amino acids, carbohydrates, antibiotics, peptides and proteins, complex structures and 

other molecules (2). The range in size from approximately 6 to 40 kDa and secondary (3) 

and tertiary (4) structures have been reported. The natural composition of aptamers 

includes RNA and single-stranded DNA molecules. However, sequences with non-

natural nucleotides or combination of nucleic acids have been exploited. Aptamers are 

selected by SELEX method (See chapter 3). “Aptamer” is derived from the latin word 

“aptus” (meaning “to fit”) (5) and the Greek suffix “mer” which means particle (6). 

Aptamers bind to their targets with KD typically in the low nanomolar range and can 

distinguish enantiomers of small molecules or minor sequence variants of 

macromolecules with frequently several orders of magnitude KD ratio (1). In addition, 

aptamers have the capacity to distinguish target molecules from minimal structural 

differences, such as the existence of a methyl or hydroxyl group in the target molecule 

(7). In most medical applications, high affinity and specific molecular recognition are 

achieved by antibodies, but there are some limitations, especially in their production, 

which requires animal or cell lines (8). In contrast with antibodies, in vitro selected 
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aptamers are reproducibly synthesized by conventional methods in short time and easily 

modified using chemical methods to improve their stability or addition of reporter groups 

to increase their applicability. Aptamers have been widely used in different research areas 

and they are involved in applications based on biorecognition events, including 

diagnostic (9), therapeutics (10) and biosensing (11). 

Aptamers are a new class of biorecognition elements that can be an alternative to 

antibodies. For comparison, Table 1 summarizes the advantages and disadvantages of 

aptamers versus antibodies. 

Table1. Comparison between antibodies and aptamers. 

Antibodies Aptamers 
Limitations against target representing 
constituents of the body and toxic 
substances 

Toxins as well as molecules that do not 
elicit good immune response can be used 
to generate high affinity aptamers 

Kinetic parameters of Ab-Ag interactions 
can not be changed on demand 

Kinetic parameters such as on/off rates can 
be changed on demand 

Antibodies have limited shelf life and are 
sensitive to temperature and may undergo 
denaturation 

Denatured aptamers can be regenerated 
within minutes, aptamers are stable to long 
term storage and can be transported at 
ambient temperature 

Identification of antibodies that recognize 
targets under conditions other than 
physiological is not feasible 

Selection conditions can be manipulated to 
obtain aptamers with properties desirable 
for in vitro assay e.g. non-physiological 
buffer/T 

Antibodies often suffer from batch to batch 
variation 

Aptamers are produced by chemical 
synthesis resulting in little or no batch to 
batch variation 

Requires the use of animals Aptamers are identified through an in vitro 
process not requiring animals 

Labeling of antibodies can cause loss in 
affinity 

Reporter molecules can be attached to 
aptamers at precise locations not involved 
in binding 

 

The comparison in Table 1 suggests that aptamers have superior features, according with 

their binding capability to the target molecules, with relatively high affinity and 
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specificity, are generally small, easy to produce (not animal or cells) and modified. In 

addition, the reproducibility between different batches and their reusable activity 

classifies aptamers as an important option for generic biosensor development.  

 

4.1.1 Biosensing 

Certain applications demand analyte detection within a real time evaluation or at least 

very fast time period. To achieve rapid detection, sensors based on molecular recognition 

and that are coupled to transducers have been developed. For biosensing, aptamers offer 

an interesting alternative as biorecognition elements, with a multitude of advantages over 

the common molecules used for the recognition event, such as antibodies and enzymes 

(12). One of the common limitations of immunosensors is their poor capacity to 

regenerate the antibody surface. In contrast, several advantages are apparent in aptamer-

based sensors. The ability to regenerate the immobilized aptamer surface would be their 

most attractive advantage (9). In this sense, reusable and reproducible sensors can be 

developed, because as nucleic acids, aptamers could be subjected to repeated cycles of 

denaturation and renaturation. Moreover, aptamers can be modified with a wide range of 

reporter groups and incorporated in different kinds of detection methods (6). Potyrailo et 

al (13) designed a biosensor that offered a one-step direct detection of the analyte. A 

DNA aptamer, specific for human thrombin, was used to detect the binding of the target 

protein by evanescent wave-induce fluorescence anisotropy. The aptamer was labeled at 

the 5´end with fluorescein and its 3´end was modified with an alkyl amine linked to a 

glass surface. The assay was completed in 10 min, and 5 nM of protein could be detected 

in an addressed volume of 5 nL. Lee and Walt (14) detected thrombin by displacement of 
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fluoresceinated thrombin from DNA aptamers linked to silica microspheres in a fiber-

optic biosensor system. The aptamer beads selectively bound to the target, and could be 

reused with no sensitivity change. Moreover, aptamers without modifications could be 

useful for analytical methods such as surface plasmon resonance (SPR). This interesting 

alternative has been exploited by BIAcore system and several target molecules have been 

reported (15-17). An interesting area for aptamers constitutes the sensors based on 

electrochemical detection (18, 19). As polyanionic compounds, aptamers are an attractive 

biorecognition element for sensing the changes in conductance in the presence or absence 

of the target molecule binding. Electrochemical biosensing based on aptamers offers a 

great potential in the area of molecular sensing (6).   

A recent class of fluorogenic probes termed “molecular beacons” has been introduced for 

the homogeneous detection of nucleic acid sequences. Molecular beacons are simple 

hairpin-loop probes, in which a fluorophore is linked to the 5´ or 3´ end of an aptamer 

and a quencher to another end (9). The nucleic acid sequence in the loop of the molecular 

beacon is designed to be complementary to the target of interest. When ligands bind, the 

conformational changes of the aptamer removes the quencher from the fluorophore, 

resulting in an easy detected signal (20). In summary, biosensors are dependent on the 

power of a molecular recognition element. Therefore, it seems logical to explore the use 

of aptamers as recognition molecule. In other words, the emerging capabilities of 

aptamers offer a great opportunity to be classified as the most interesting biorecognition 

element for diagnosis, therapy and, in the future, for biosensing.  
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4.3 Experimental Methods 

4.3.1 Fluorescence experiment:  

4.3.1.1 Synthesis of the oligonucleotide:  

The synthesis of the H18-hp 5’- CCA ACC GCA ATT GTA GTT GAC TCA ACA TAG 

TAC CGG ACT CGG CTA ATA GAC CTG GGG TTG G-3’ – (61n), labeled  at 5´ end 

with FAM (fluorophore) and  3´ end with black hole quencher (BHQ) was performed by 

VBC Biotech services (Austria). 

 

4.3.1.2 Reagents:  

Avidin, bovine serum albumin (BSA), TBS-T (1 L deionized water. 0.05 M Tris, 0.138 

M NaCl, 0.0027 M KCl, pH 8.0, 25ºC, 0.05% Tween 20), potassium chloride and sodium 

chloride were obtained from Sigma-Aldrich.  

 

4.3.1.3 Measurement of fluorescence spectra:  

Fluorescence spectra were measured on a Cary Eclipse Fluorescence spectrophotometer 

equipped with a programmable temperature control unit. The follow parameters were set 

up for all the measurements: excitation 480nm, emission 520nm and a scanning range 

from 450 to 600nm. 

 

4.3.2 Electrochemical experiments: 

4.3.2.1 Synthesis of the oligonucleotide:  

The synthesis of the H18-hp 5’- CCA ACC GCA ATT GTA GTT GAC TCA ACA TAG 

TAC CGG ACT CGG CTA ATA GAC CTG GGG TTG G-3’ – (61n), labeled  at 5´ end 
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with thiol group (SH) and  3´ end with a ferrocene (electrochemical reporter group) was 

performed by BIOSYNTHESIS company (United States). 

 

4.3.2.2 Reagents:  

Gold electrode CHI101 (2 mm diameter) from CH Instruments, Inc, potassium phosphate 

(KPO4) at pH 3.4, avidin, BSA, PSA, TBS-T buffer were obtained from Sigma – Aldrich. 

 

4.3.2.3 Modification of gold electrode:  

The gold electrode surface was cleaned by exposing it to warm piranha solution for 20 

minutes. Then, the electrodes surface was prepared by mechanical polishing and 

electrochemical cleaning with sulfuric acid.  The aptamers immobilization was carried 

out by 100 μL of 2 μM of H18hp modified avidin-aptamer (5´ Thiol and 3´ Ferrocene) in 

1 M KPO4 buffer solution at pH 3.4. The gold electrode surface was incubated in the 

aptamers solution overnight at room temperature. The unmodified spaces in the electrode 

were blocked with 2-mercaptoethanol using 50 μL of 0.1 M solution in KPO4 buffer for 

20 minutes. All electrochemical measurements were performed in TBS-t buffer.  

 

4.3.3.4 Electrochemical measurement:  

Electrochemical experiments using a three-electrode configuration in a one-compartment 

cell were conducted using a potentiostat/galvanostal PGSTAT 12 Autolab (Ecochemie – 

Netherlands). The electrochemical measurements were performed using an Ag/AgCl 

reference electrode and a platinum-counter electrode. The electrochemical cell was filled 

with 2 mL TBS-t buffer and several additions of avidin and BSA were injected. After 
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each injection (avidin- BSA), the solution was shacked by magnetic stirring. Square wave 

voltammetry (SWV) was registered in the potential interval -0.1 – 0.4 V, under the 

following conditions: potential increment, 1 mV; potential amplitude, 20 mV; pulse 

frequency, 25 Hz was optimized in relation with the peak definition. 
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4.4  Results and discussion 

 

4.4.1 Aptamer characterization 

The first aptamer characterization was performed by determination of the the KD for H18-

avidin aptamer with a significant value of 1.3 nM (chapter 3, Figure 10). Additionally, 

the selectivity of the sensor was studied by SPR as well. After the addition of two non-

specific proteins (BSA and PSA) the plasmon resonance was recorded for each case 

(chapter 3, Figure 11). The signal recorded after the addition of non-specific targets was 

insignificant. In contrast, in the presence of the specific-target, the results showed an 

important binding effect between aptamer and the target. These results suggest the high 

selectivity of H18-aptamer on BIAcore platform. In order to complete the H18hp avidin-

aptamer characterization, two different studies have been perfomed: fluorescence and 

electrochemistry. 

 

4.4.1.1 Fluorescence 

The H18-aptamer has been selected for the fluorescence studies. By attaching a 

fluorophore (5´FAM) and a quencher (3´Black Hole) to H18hp avidin-aptamer with high 

affinity for a target protein, we have combined the high sensitivity given by the 

fluorescence signals with the specificity of binding of the DNA aptamer to the target 

protein. We examined the effect of the salt, target, buffer and water on the modified 

aptamer. Figure 1 shows the signal of fluorescence-quenching assay for each detection 

case.  
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Figure 1. Optimization of the H18hp avidin-aptamer (500 nM solution) fluorescence 
signal at two different conditions: avidin effect in water-Tris solution, before (1a) and 
after (1b) avidin addition; and avidin effect in TBS-t buffer solution, before (2a) and after 
(2b) avidin.  
 

Water (10 mM Tris at pH 8.8) and TBS-t (0.05 M Tris, 0.138 M NaCl, 0.0027 M KCl, 

pH 8.0, 25ºC, 0.05% Tween 20) were tested to select the optimal conditions for the H18-

avidin-aptamer characterization. All measurements were carried out with 500 nM of 

aptamer concentration. After the addition of the target (500 nM – avidin), both signals 

were recorded. In water (Tris 10 mM, pH 8.8), a significant change of 50.9% (quenching) 

in the fluorescence signal was observed. For TBS-T buffer solution, the change after 

target addition was only of 12.8% (quenching). These preliminary fluorescence studies 

showed that water (Tris pH 8.8) gives the best signal using H18-aptamer. Therefore, the 

system has been characterized as a “turn off” mechanism (signal decreasing in the 

presence of target). Several dilutions of the buffer (TBS-T) were carried out (1/2, 1/4, 1/8 

and 1/16) and the H18-aptamer concentration for all solutions was 500 nM (Figure 2). 
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The results have revealed that the 1/8 dilution shows an insignificant change compared to 

the 1/16 dilution. According to previous data, if salt is a requirement to perform an 

experiment, the 1/8 dilution of TBS-T will be used. This could be the case for the 

electrochemical experiments where the salt works as supporting electrolyte.  

 

 

Figure 2. Evaluation of buffer TBS-T dilution in the fluorescence-quenching signal. 
Fluorescence signal for several dilutions of TBS-t. Conditions as described in the text. 
 

H18hp avidin-aptamer titration studies were performed in order to understand the target-

dependent system. Fluorescence titration data using the signal of fluorescence-quenching 

shows significant variations for avidin concentration (Figure 3). The fluorescence 

quenching technique shows high sensitivity, allowing for small variations in the avidin 

concentration to be detected. 
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Figure 3. Avidin-dependent changes in fluorescence-quenching of H18-aptamer. a) 
Titration signal of BSA as non-specific target (23.9%). b) Titration of avidin with an 
important change of fluorescence-quenching of 91.2%. 
 

The above titration curves show progressive decrease of fluorescence as a function of 

avidin concentrations. In addition, the same experiment was performed for BSA, which 

works as non-specific target. The titration was performed in a range from 100 to 5000 

nM. The results show a specific quenching signal of 91.2% for avidin (Figure 3A) and 

23.9% of quenching for BSA as non-specific target (Figure 3B). In addition, the detection 

limit of the fluorescent biosensor was calculated (320 nM). Previous results confirm the 

selectivity of H18-avidin aptamer according with BIAcore experiments (chapter 3, Figure 

9). The increase of the non-specific fluorescence signal could be due to the salt 

concentration of both avidin and BSA solutions. However, figure 3 reveals a significant 

difference between specific and non-specific target. For a more detailed analysis of the 

effect of salt in H18-aptamer, additional experiments were carried out. 

 

Evaluation of salt effect: the main conformational changes of the oligonucleotides depend 

on the sequence, ionic environment and hydrophilic conditions (22). Several ions play an 

important role for the study of allosteric changes in aptamer structure. K+ ion has been 
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reported as inducer of G-quadruplex structure (21, 23) and could be used as a preliminary 

tool for recognizing a G-quadruplex structure in aptamer sequences. Herein, the effect of 

potassium chloride (KCl) that works as structural G-quadruplex inducer and sodium 

chloride (NaCl), which can induce allosteric changes at high concentrations, were studied 

by the fluorescence-quenching of H18-aptamer. Figure 4 shows two important aspects in 

the characterization of H18-aptamer: A) the effect of KCl is relevant at low 

concentrations (0.05 to 10 mM) in comparison with NaCl that only produce significant 

conformational changes at high concentrations. These results suggest the existence of a 

G-quadruplex structure involved in the aptamer sequence. However, additional 

experiments, such as nuclear magnetic resonance (NMR), have to be performed in order 

to confirm the structure of the aptamer. B) Similar quenching effect at high 

concentrations for both ions was observed (50 to 500 mM) which means that at high salt 

concentrations the effect of specific ions cannot be observed. In addition, these allosteric 

changes induced by the increase of ionic strength may explain the increase of the non-

specific signal for BSA (Figure 3b) observed for the fluorescence measurements. 

 

4.4.1.2 Electrochemistry 

Herein, we report an electrochemical detection method based on ferrocene-modified 

aptamer (5´end Thiol and 3´end ferrocene). This approach has revealed that using 

ferrocene it is possible to detect avidin with high affinity and selectivity. The interaction 

between the ferrocene-modified aptamer against avidin and BSA has been studied by 

square wave voltammetry (SWV) technique. This technique has been found to be useful 

for studies of conformational changes of biomolecules adsorbed to a solid surface (25). 
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Figure 4. Effect of KCl and NaCl on H18 avidin-aptamer. A titration from 0.05 to 500 
mM of salt concentration was performed. Conditions as described in the text. 
 

 

When the ferrocene-aptamer is immobilized on the gold surface, the current response of 

the Faradic electrochemical signal should depend on the distance of the ferrocene from 

the surface, while the peak potential should be directly correlated to the ferrocene 

oxidation potential. The ferrocene-aptamer has been exposed to several additions of 

avidin and BSA. As result, an anodic peak was observed corresponding to the oxidation 

of ferrocene on the electrode surface. In the presence of avidin, a proportional correlation 

between concentration and current was observed as specific signal (Figure 5a) with a 

detection limit value of 21nM.  
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Figure 5. Ferrocene-aptamer caracterization by SWV. a) Avidin titration from 50 to 300 
nM concentration as the specific signal. B) BSA titration in the same conditions as for 
avidin. BSA  represents the negative control. C) Plot of the triplicate measuments for 
avidin and BSA addition. D) Plot of the the substraction of the non-specific signal (BSA) 
from avidin. Conditions as described in the text. 
 

 

According to the previous results, a “turn-on” mechanism has been revealed on this 

electrochemical platform. In contrast, after the addition of BSA, an insignificant signal 

was recorded as non-specific signal (Figure 5b). The results obtained are in agreement 

with the literature, where the same strategy was performed for the electrochemical 

characterization of thrombin aptamer (24).  
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4.5   Conclusion 
 

In summary, two biosensors based on H18hp avidin-aptamer have been developed 

successfully by two different transduction mechanisms such as fluorescence, and 

electrochemistry. 

The fluorescence biosensor was optimized and the best measurement conditions were 

selected (water + 10 mM Tris at pH 8.8). After the addition of target molecule, a 

quenching effect was observed, this approach working as a “turn-off” mechanism for the 

fluorescence biosensor. Then, the titrations against avidin as specific target molecule and 

BSA as non-specific target were carried out. It was found that the 91.2% of the signal 

corresponds to specific signal and the 23.9% was correlated with non-specific signal 

(Figure 3). In addition, the salt effect for H18hp avidin-aptamer by K+ and Na+ ions was 

evaluated. The K+ ion has the capability to interact as G-quadruplex inducer, in contrast 

with Na+ that can only induce allosteric changes at high concentrations. After the 

characterization of these two ions by H18hp avidin-aptamer based on fluorescence, it can 

be suggested that the effect of the K+ has shown a significant effect at low concentrations 

(0.05 to 10 mM) compared to Na+ ion that only induced significant conformational 

changes at high concentrations. These results suggest the existence of a G-quadruplex 

structure involved in the H18hp avidin-aptamer sequence. However, additional structural 

experiments by NMR or crystallography have to be carried out in order to confirm the 

presence of a G-quadruplex structure in the aptamer sequence. 

 

The H18hp avidin-aptamer biosensor based on electrochemistry has been evaluated and 

successful information has been recorded. After the addition of avidin, a proportional 
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increment of current in correlation with concentration was observed as specific signal. 

The previous results suggest a “turn-on” mechanism for the electrochemical biosensor. 

The titration experiments for avidin (specific signal) and BSA (non-specific) have shown 

a relevant difference between specific and non-specific molecules (Figure 5). In the case 

of avidin, after the addition of 300 nM concentration, 337 nA (nanoamperes) were 

recorded. In contrast, after the addition of BSA at the same concentration, 76 nA were 

obtained (close to the base line). According with this result, 22.5% of non- specific signal 

was observed. Similar results have been reported by fluorescence biosensor as well. 

H18hp avidin-aptamer has been characterized by two diferent platforms: fluorescence 

and  electrochemisty. Relevant information such as quencing, current density, detection 

limits have been reported. The successful strategy in the design and development of both 

biosensors confirms the properties of the H18-avidin aptamer conformational changes . 

These results suggest that the haipin structure becomes an attractive element to induce 

conformational changes in aptamer. 

In conclusion, studies of the conformational changes were performed to understand their 

behaviour in biosensig. Moreover, the designs of the hairpin structure suggest an 

significant inducer system for conformational changes in aptamers. These allosteric 

changes can be useful as intrinsic transduction mechanism for generic biosensor 

development. On the other hand, the aptamer properties, such as in vitro biorecognition 

of a wide range of targets and easy production convert this biomolecule in the most 

promising and attractive element for generic biosensing.  
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 CHAPTER 5 
 

Overall conclusions and future 
perspectives 

 

 

The main objective of this study was to evaluate the conformational changes as intrinsic 

transduction mechanism and aptamers as biorecognition molecules for generic biosensor 

development. Diverse transduction platforms have been used in order to exploit the 

binding and unbinding of target-ligands by the biorecognition molecules in a biosensor 

setup. Well-defined structural allosteric changes between two stable conformations (open 

and closed) of such constructs can serve as a viable signal transduction mechanism for 

generic biosensing, which should be facilitated by rational design to improve the affinity, 

selectivity, reproducibility and stability of these sensor devices. 

 

This work contains two parts: (i) Maltose-binding protein based biosensor and (ii) 

SELEX and aptamer based biosensors.  

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN OF BIOSENSOR EXPLOITING CONFORMATIONAL CHANGES IN BIOMOLECULES 
Frank Jeyson Hernández 
ISBN:978-84-691-9479-9/DL:T-21-2009



 122

The first part of this thesis was focused on the translation of a fluorescence biosensor into 

an electrochemical biosensor using maltose-binding protein as biorecognition element. 

As a result, conformational changes feature was selected as intrinsic transduction 

mechanism for the design and construction of generic biosensing approaches. Moreover, 

a maltose-biosensor with acceptable affinity and selectivity has been reported.  

 

 On the other hand, a new SELEX method termed “Soluble-SELEX” has been developed. 

However, future improvements are required in order to optimize this method. The 

important aspect however, is that the principle of the hybridization as partitioning 

mechanism for SELEX has been proven. In addition, as result of “Soluble-SELEX”, a 

new avidin-aptamer has been selected and three different transduction mechanisms were 

employed to construct surface plasmon resonance (SPR) fluorescence, and 

electrochemical biosensors. In all cases, successful signals were recorded with high 

affinity and selectivity. Moreover, the fluorescence and electrochemical biosensors have 

reported a significant detection limit values of 320 and 21 nM, respectively and 

significant thermodynamic information was obtained using SPR technique.  

 

As final conclusion, this work reports an alternative for generic biosensor development. 

Wherein, conformational changes have been evaluated as intrinsic transduction 

mechanism for biosensing. Therefore, H18-avidin aptamer has shown affinity properties 

in the low nM range (KD = 1.3 nM) and a binding free energy (-46 kJ/mol) three times 

higher than the hairpin structure calculation (-15.19 kJ/mol). These results suggest that 

the haipin structure becomes an attractive element to induce conformational changes in 
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aptamer. The development of several aptamers by the same methodogy it is prerequisite 

in order to prove the real applications of these improvements in biosensing and SELEX 

fields.  

 

The future perspectives in generic biosensor development, would be addressed to the 

identification of the aptamer scaffold structure that involves conformational changes and 

its stabilization. The stabilization process could be performed by the incorporation of 

non-natural nucleic acids such as LNA (Locked Nucleic Acids) which have been reported 

as protectors for enzyme degradation and stabilized agents. In this sense, the libray 

design for SELEX method will be carried out as follows: a) primer region that flanked 

the library members for PCR amplification, b) an arbitrary scaffold where the intrinsic 

transduction mechanism will be incorporated and c) the random sequence in order to 

identified the target. This ambitious plan will be able to obtain molecules by SELEX with 

similar biorecognition properties as periplasmic binding proteins (PBPs) or anticalins, 

however the limitations about production or intrinsic transduction mechanism  will be 

overcome. 
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