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Summary 

 

 

During the last decade, several methods of colour removal from wastewaters 

containing dyestuffs have been found effective and potentially applicable for scaling up. A 

particular approach to reduce operation expenses and/or enhance dye removal rates is 

the inclusion of activated carbon (AC) and its beneficial features in the decolourisation 

process. The review on the role of AC in aqueous dye removal processes demonstrates 

that most physico-chemical and biological dye removal techniques could be successfully 

improved by the involvement of AC in the operation, showing a big versatility of its main 

role in dye degradation. Although it generally has a high affinity to adsorb dyes, AC 

adsorption is by far not the only mechanism that contributes to higher colour removal 

rates. The role of AC in dye wastewater treatments varies with the applied method: it acts 

as a simple dye adsorber in AC-amended coagulation, membrane filtration and single 

adsorption processes; it can catalyse the generation of strong oxidant hydroxyl radicals in 

electrochemical and advanced oxidation processes; moreover, AC enhances biomass 

activity in biological decolourisation and acts as a redox mediator during anaerobic azo 

dye reduction. As the experimental results show, the reductive azo bond cleavage and 

dye removal can be significantly accelerated by involving AC in the bioreactor. The 

continuous experiments were run in packed-bed-type reactors containing the AC with an 

immobilised anaerobic mixed culture. In an upflow packed-bed reactor (UPBR), high azo 

dye Acid Orange 7 conversion rates were achieved during very short space times (τ) up to 

99% in 2.0 min, that corresponds to extremely short hydraulic residence time (HRT) of 

about 5.4 min. By testing other support materials –graphite and alumina– in UPBRs, it 

was cleared that both electron conductivity and specific surface area of AC with functional 

groups contribute to higher reduction rates. Although UPBR with the biological activated 

carbon (BAC) seemed to be very effective for azo reduction, development of the reactor 

system became necessary in order to both avoid microbial clogging in the reactor and 

provide more reproducible data to make kinetic modeling of azo dye decolourisation 

possible. The application of special stirring in the carbon bed resulted in both more 

representative results and an increase of Acid Orange 7 bioconversion up to 96% in a τ of 

0.5 min (HRT of 1.4 min), compared to the unstirred reactor system. First-order, 

autocatalytic and Michaelis–Menten models were all found to give good fittings to 

experimental points of dye conversion at lower inlet dye concentration. Expanding the 

Michaelis–Menten kinetics by a substrate inhibition factor resulted in a model giving good 

fitting to experimental points, independently on the initial colourant concentration. After the 

establishment of upflow stirred packed-bed reactor (USPBR) system together with a 

decolourisation kinetic model involving both heterogeneous catalysis and biological 
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degradation, the anaerobic biodegradability of several commercially important colourants 

was investigated. Decolourisation with very high reduction rates took place in the case of 

azo dyes tested: at least 80% of conversion was achieved for these pollutants at a τ of 2.0 

min or higher (HRT ≥ 1.8 min). The reaction products of the more biodegradable dyes 

possessed autocatalytic properties. AC high capacity for these dyes was found not to be 

the crucial promoter of reduction. On the other hand, results from voltammetric 

experiments showed that anaerobic biodegradability of an azo dye can be predicted by its 

reduction potential value in the continuous USPBR system, independently from the azo 

colourant type and complexity. The biomass was found to be sensitive to some operating 

factors that require appropriate control and limitation in order to ensure an efficient 

bioreduction process. Although the USPBR system provided a powerful biological removal 

of azo dyes compared with the results of the literature, further increase in decolourisation 

rates might be expected by tailoring the AC catalyst. Several bioreactors were prepared 

with ACs having different textural properties and various surface chemistries. The kinetic 

model proposed previously described well the anaerobic and catalytic azo reduction for all 

the ACs tested. Best dye removals were ensured by the AC having the highest surface 

area: conversion values above 88% were achieved in the case of both azo dyes Orange II 

and Reactive Black 5 at a τ of 0.23 min or higher (HRT ≥ 0.30 min). The decolourisation 

rates were found to be significantly influenced by the textural properties of AC and 

moderately affected by its surface chemistry. The results confirmed the catalytic effects of 

carbonyl/quinone sites on the AC and, in addition, delocalised π-electrons seemed to play 

a role in the catalytic reduction in the absence of surface oxygen groups. On the whole, 

the innovative USPBR-BAC system seems to be an attractive alternative for economically 

improving textile/dye wastewater technologies. 
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Resumen 

 

 

En la última década se han presentado varios métodos nuevos para la eliminación del 

color de las aguas residuales conteniendo colorantes, que se han mostrado efectivos y 

potencialmente escalables. Un enfoque novedoso para reducir gastos de operación y/o 

incrementar las velocidades de eliminación de colorante consiste en la inclusión de 

carbón activo (AC) en el proceso de decoloración. La revisión del rol del AC en los 

procesos de eliminación de colorante en medio acuoso muestra que la mayoría de las 

técnicas existentes de eliminación de colorantes, físico-químicas y biológicas, pueden ser 

muy mejoradas por la inclusión del AC en la operación, mostrando el AC, además, roles 

diferentes y una gran versatilidad en la degradación de colorantes. Aunque los ACs 

tienen generalmente una alta afinidad para adsorber colorantes, la adsorción no es, ni 

mucho menos, el único mecanismo que contribuye a las altas velocidades de eliminación 

de color observadas. El rol del AC en los tratamientos de aguas residuales con colorantes 

varía con el método aplicado: actúa como un simple adsorbedor de colorantes en los 

procesos de coagulación elevada, filtración con membranas y procesos de adsorción 

simple; puede catalizar la generación de radicales hidroxilo, oxidantes fuertes, en 

procesos electroquímicos y de oxidación avanzada; y además, el AC mejora la actividad 

de la biomasa en la decoloración biológica y actúa como un mediador redox en la 

reducción anaeróbica de colorantes azoicos. Como muestran los resultados 

experimentales, la ruptura reductiva del enlace azoico y la consecuente remoción del 

colorante puede ser significativamente acelerada incorporando AC en el reactor. Se 

realizaron experimentos en reactores continuos de lecho empacado conteniendo el AC 

con un cultivo anaeróbico inmovilizado. En un reactor de lecho empacado de flujo 

ascendente (UPBR) se obtuvieron altas velocidades de conversión del colorante azoico 

Acid Orange 7 a tiempos espaciales (τ) muy cortos (más del 99% en 2.0 min) que 

corresponde a tiempos de residencia hidráulicos (HRT) extremadamente cortos de 5.4 

min. La prueba de otros materiales de soporte diferentes del AC, como el grafito y la 

alúmina, evidenció que tanto la conductividad electrónica como el área superficial 

específica del AC con grupos funcionales contribuyen a las mayores velocidades de 

reducción. Aunque el sistema de reacción UPBR con carbón activo soportando un 

sistema biológico anaeróbico (BAC) pareció ser muy efectivo para la reducción de 

colorantes azoicos, fue necesario proceder al desarrollo de este sistema reactivo con el 

fin de mejorar su funcionamiento y, así, evitar la obstrucción microbiana del reactor y, 

también, proveer datos reproducibles con los que hacer posible el modelado cinético de 

la decoloración de colorantes azoicos. La aplicación de agitación especial en el lecho de 

carbón produjo resultados más representativos y un incremento de la bioconversión de 
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Acid Orange 7 hasta el 96% en un τ de 0.5 min (HRT de 1.4 min), comparado con el 

sistema reactivo no agitado. Los resultados experimentales de la conversión de colorante 

a bajas concentraciones de entrada de colorante se ajustaron a modelos de primer orden, 

autocatalítico y Michaelis–Menten. La expansión de las cinéticas de Michaelis–Menten 

con un factor de inhibición de sustrato produjo un modelo que se ajusta bien a los 

resultados experimentales, independientemente de la concentración inicial del colorante. 

Una vez establecido el sistema reactivo agitado de lecho empacado y flujo ascendente 

(USPBR) junto con el modelo cinético de decoloración que implica catálisis heterogénea y 

degradación biológica, se investigó la biodegradabilidad anaeróbica de varios colorantes 

comercialmente importantes. Se obtuvieron muy altas velocidades de reducción con 

todos los colorantes azoicos ensayados: un mínimo de 80% de conversión se obtuvo con 

estos contaminantes a τ de 2.0 min o mayores (HRT ≥ 1.8 min). Los productos de 

reacción de los colorantes más biodegradables mostraron propiedades autocatalíticas. La 

alta capacidad adsorbente del AC para estos colorantes no resultó ser el promotor crucial 

para la reducción. Por otra parte, los resultados de experimentos voltamétricos mostraron 

que la biodegradabilidad anaeróbica de un colorante azoico en un sistema continuo 

USPBR puede ser predecida por su potencial de reducción, independientemente del tipo 

de colorante azoico y de su complejidad. Se encontró que la biomasa es sensible a 

algunos factores de operación que requieren un control y limitación apropiados para 

asegurar un eficiente proceso de bioreducción. Aunque el sistema USPBR proveyó un 

poderoso instrumento para la eliminación biológica de colorantes azoicos en comparación 

con los resultados de la literatura, pudieron aún esperarse mayores incrementos en las 

velocidades de decoloración por nuevos ACs, preparados para esta aplicación. Se 

operaron varios bioreactores con ACs que tenían diferentes propiedades texturales y 

varias superficies químicas. El modelo cinético propuesto previamente describió bien la 

reducción azoica catalítica y anaeróbica para todos los ACs probados. La mayor 

eliminación de colorantes se obtuvo con los ACs con la mayor área superficial: valores de 

conversión superiores al 88% se obtuvieron con los colorantes Orange II y Reactive Black 

5 a un τ de 0.23 min o mayores (HRT ≥ 0.30 min). Las velocidades de decoloración 

fueron significativamente influenciadas por las propiedades texturales del AC y 

moderadamente afectadas por su química superficial. Los resultados confirmaron los 

efectos catalíticos de los sitios activos carbonil/quinona sobre el AC y, además, los π-

electrones deslocalizados parecieron representar un rol en la reducción catalítica en 

ausencia de grupos oxigeno en la superficie. Finalmente, en conjunto, el sistema 

innovativo USPBR-BAC parece ser una alternativa atractiva para la mejora económica de 

las tecnologías de tratamiento de aguas residuales textiles y de colorantes. 
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Összefoglalás 

 

 

Az elmúlt évtizedben számos hatékony és ipari alkalmazásra bevezethetı módszert 

dolgoztak ki festékanyagok szennyvizekbıl való eltávolítására. Egy különleges megoldás 

a mőveleti költségek csökkentésére és/vagy a színtelenítési hatásfok növelésére a 

szennyvíztisztító folyamat aktív szénnel és annak elınyös tulajdonságaival történı 

elısegítése. Az irodalmi áttekintés az aktív szén festékszennyvizek tisztításában való 

szerepérıl rámutat, hogy a legtöbb fizikai-kémiai es biológiai színtelenítési technika aktív 

szén segítségével javítható, amely a festékeltávolításban való funkcióját illetıen igen nagy 

változatosságot mutat. Bár az aktív szén affinitása festékanyagok adszorpciójára 

többnyire nagy, ez közel sem az egyetlen mechanizmus, ami a hatékonyabb 

festékeltávolítást eredményezi. Az aktív szén szerepe festékszennyvizek kezelésében az 

alkalmazott tisztítási módszertıl függ: egyszerő adszorberként mőködik koagulációs, 

membránszőrési és hagyományos adszorpciós folyamatokban; katalizálhatja az erısen 

oxidáns hidroxil-gyökök generálását elektrokémiai és az ún. nagyhatékonyságú oxidációs 

folyamatokban; ezenkívül, biológiai színtelenítésben növeli a biomassza aktivitását és 

redox közvetítıként funkcionál azofestékek anaerob redukciójában. A kísérleti 

eredmények megmutatták, hogy az azo-kötés reduktív hasadása és a biológiai 

festékeltávolítás jelentısen felgyorsíthatóak az aktív szenet is tartalmazó 

bioreaktorokban. A kísérletek folytonos, az aktív szenet és a rajta rögzített vegyes 

anaerob kultúrát tartalmazó töltött ágyas reaktorokban valósultak meg. Függıleges 

átfolyású töltött ágyas reaktorban (UPBR) jelentıs Acid Orange 7 azofesték-konverziót 

(99%) sikerült elérni nagyon rövid, katalizátorra vonatkoztatott tartózkodási idı (τ) alatt 

(2.0 perc), ami rendkívül rövid hidraulikus tartózkodási idınek (HRT) felelt meg (5.4 perc). 

Az aktív szén mellett egyéb töltetek (grafit és alumínium-oxid) is tesztelésre kerültek, s az 

eredmények azt mutatták, hogy mind az aktív szén elektromos vezetıképessége, mind a 

fajlagos felülete a funkciós csoportokkal hozzájárultak a hatékonyabb redukcióhoz. Bár az 

UPBR az aktív szénnel és biomasszával együtt rendkívül eredményesnek bizonyult az 

azo-kötés redukcióját illetıen, a reaktor további fejlesztése vált szükségessé mind a 

mikrobiológiai eltömıdés elkerülése végett, mind –a kinetikai modellezéshez 

elengedhetetlen– reprodukálhatóbb mérések céljából. A speciális keverés alkalmazása a 

széntöltetben a reprezentatívabb mérési eredmények mellett jelentıs Acid Orange 7 

biokonverzió-növekedéshez vezetett (96% festékredukció τ = 0.5 perc és HRT = 1.4 perc 

alatt) a keverésmentes reaktorhoz képest. Az elsırendő, autokatalitikus és Michaelis–

Menten modellek egyaránt jól illeszkedtek a festékkonverzió mért pontjaihoz kisebb 

kiindulási festékkoncentráció esetén. A szubsztrát-gátlási tényezıvel kibıvített Michaelis–

Menten kinetika a kiindulási koncentrációtól függetlenül a mérési pontokhoz jól illeszthetı 
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modellt eredményezett. A függıleges átfolyású kevert töltött ágyas reaktor (USPBR), 

valamint a színtelenítési folyamatot leíró, heterogén katalízist és biológiai lebontást 

egyszerre magában foglaló kinetikai modell létesítése után számos, a különbözı 

iparágakban gyakran elıforduló festékanyag anaerob (biológiai) lebonthatósága került 

vizsgálatra. Az összes azofesték esetében a színtelenítés nagy redukciós hatásfokkal 

ment végbe: τ ≥ 2.0 perc alatt (HRT ≥ 1.8 perc) a festékek legalább 80%-a lebomlott. A 

biológiailag könnyebben lebontható festékek reduktív bomlástermékei autokatalitikus 

tulajdonságokkal rendelkeztek. Az aktív szén festékekre vonatkozó nagy (adszorpciós) 

felvevıképessége nem a döntıen befolyásoló tényezı volt a redukcióban. Ezzel szemben 

a voltammetriás mérések kimutatták, hogy az azofestékek anaerob lebonthatósága, a 

redukciós potenciáljuk ismeretében, az azofesték típusától es összetettségétıl függetlenül 

elıre meghatározhatóak a folytonos USPBR rendszerben. A biomassza komoly 

érzékenységet mutatott néhány mőveleti paraméterre, melyek a hatékony redukciós 

folyamat érdekében megfelelı szabályozást és korlátozást kívánnak. Bár az USPBR –az 

irodalom eredményeivel összevetve– egy erıteljes biológiai azofesték-eltávolítási 

megoldást nyújtott, a színtelenítési hatásfok további növelésére lehetett számítani az aktív 

szén katalizátor megfelelı módosításával. Számos bioreaktor került tesztelésre a 

struktúrájában és kémiájában eltérı aktív szén töltettel. A korábban javasolt kinetikai 

modell az összes szén töltet esetében jól illeszkedett a katalitikus azo-redukció mért 

pontjaihoz. A leghatékonyabb festékeltávolítás a legnagyobb felszínő aktív szén esetében 

ment végbe: mindkét azofesték (Orange II és Reactive Black 5) legalább 88%-ban 

redukálódott nem egészen τ ≥ 0.23 perc alatt (HRT ≥ 0.30 perc). A színtelenítési 

hatásfokot lényegesen meghatározták az aktív szén szerkezeti tulajdonságai és 

mérsékelten befolyásolta annak felszíni kémiája. Az eredmények igazolták az aktív 

szenen található karbonil- es kinoncsoportok katalitikus hatását, valamint a delokalizált π-

elektronok katalitikus redukcióban való szerepét a felszíni oxigéncsoportok hiányában. 

Összességében elmondható, hogy az innovatív USPBR a ’biológiai’ aktív szénnel vonzó 

alternatívának tőnik a textilipari/festékes szennyvizek kezelésének költséghatékony 

fejlesztésére. 
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1 
Introduction 

 

 

 

Dyes make the world more beautiful through coloured substances. Nowadays, as 

reported in the so-called Colour Index (C.I.) managed by the Society of Dyers and 

Colourists and the American Association of Textile Chemists and Colourists, about 10,000 

different dyes are produced. Textile industry is one of those industries that intensively use 

colourants. Unfortunately, it simultaneously consumes large amounts of water in the 

manufacturing process and discharge great amounts of effluents with synthetic dyes to 

the environment causing public concern and legislation problems. Azo dyes, being the 

largest and most versatile class of dyes, are considered to be serious health-risk factors. 

Apart from the aesthetic deterioration of water bodies, many azo colourants and their 

breakdown products are toxic or even mutagenic. So far, the efficient and low-cost 

treatment of these hazardous effluents at industrial sites has remained unsolved. 

 

 The most physicochemical dye removal techniques appear to face the facts of 

technical and economical limitations. However, microbial decolourisation of dyes is one of 

the most attractive technologies considering its economic, environmentally suitable and 

methodologically relatively simple features. One possible strategy for efficient 

biomineralisation of azo compounds is a sequential anaerobic–aerobic process that can 

provide complex removal of azo colourants by reduction together with their degradation 

products, aromatic amines by oxidation. The bottleneck of this combined method is the 

anaerobic azo bond cleavage, so by having an efficient first step in azo dye 

decolourisation, the more complete sequential treatment can be carried out. The most 

serious drawback of azo dye reduction by bacteria is the slowness of the process. To 

overcome this problem, by using redox mediators during the reduction, anaerobic 

biodecolourisation can be enhanced resulting in much higher dye removal rates. Certain 

electron mediators, such as quinone-like compounds, can greatly accelerate azo dye 

reduction in homogeneous reactions. However, immobilisation of the redox mediator in 

the bioreactor is indispensable to ensure lower process costs. Promising results have 

been obtained to enhance anaerobic azo dye removal by the use of activated carbon       

–containing surface quinonic structures– as a solid electron mediator in the bioreactor 

(Van der Zee et al., 2003). 
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In different catalytic reactions, activated carbons (ACs) 

have been mainly used as supports, but their use as catalysts 

on their own is growing quickly, even in dye removal 

processes. According to the literature, the addition of AC into a 

biological system treating dye or textile wastewaters presents 

a positive contribution to pollutant removal. A rather new 

approach for AC-amended microbial decolourisation is to 

consider AC as a catalyst. Since AC furthermore plays a role 

in obtaining high concentrations of active microorganisms in 

the bioreactor, the logical way is to operate with high GAC 

apparent volume/reactor volume ratios. To our knowledge, 

packed-bed-type reactors using biological activated carbon 

system (Figure 1.1) have never been applied for anaerobic 

and catalytic azo dye decolourisation by other authors. 

  Figure 1.1 . USPBR. 

 

AIMS OF THE THESIS 

Considering the amount of azo dye wastewaters mainly originated from the textile 

industry, it is clear that continuous systems have to be designed for treating these 

effluents. The main objective of this Ph.D. work was to develop a novel and efficient 

biological treatment for the decolourisation of azo dyes in a continuous reactor system, 

both at soft conditions and at extremely short hydraulic residence times (minutes) that are 

indispensable for ensuring an effective and economic process on industrial scale. The 

specific aims were related to different chapters of the thesis: to review the current 

developments in textile/dye wastewater treatments, focusing on activated carbon-

enhanced decolourisation techniques (Chapter 2 ); to evaluate the significant role of AC in 

the anaerobic bioreduction of an azo dye in upflow packed-bed reactor system using 

different support materials (Chapter 3 ); to investigate the effects of appropriate stirring of 

biological activated carbon in the upflow stirred packed-bed reactor (USPBR) on azo dye 

decolourisation rate and to propose a model for anaerobic azo dye reduction (Chapter 4 ); 

to test different azo dyes with different molecular structures and chemical properties, to 

compare their decolourisation rates and determine the crucial factors of their 

biodegradability in USPBR; to examine the influence of different operation/feed 

parameters (e.g., temperature, pH, dye concentration) on biological dye removal rates 

(Chapter 5 ); to determine the crucial factors of AC textural and chemical properties in the 

catalytic azo dye reduction by using modified ACs with diverse pore structures and 

surface chemistries in USPBR (Chapter 6 ); and, to conclude the general findings of the 

thesis and to make suggestions for further investigations (Chapter 7 ). 
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2 
Role of activated carbon in catalytic and non-

catalytic aqueous dye removal processes: a review 

 

 

 

Abstract 

During the last decade, several methods of colour removal from textile wastewaters have 
been found effective and potentially applicable for scaling up. However, most of them still 
face cost problems, demanding their further developments. The widespread applicability 
of activated carbon (AC) in water and wastewater treatment, both as adsorbent and 
catalyst support, or even as a catalyst itself, predicted its contribution to enhanced dye 
removal rates in AC-amended decolourisation strategies. Certain features of AC always 
play a part in the combined treatment, irrespectively of the applied method, such as its 
strong propensity to adsorb dyes and its (normally) high surface area; others contribute to 
colour removal specifically, depending on the treatment method, such as AC’s ability to 
conduct electrons, to support impregnated elements/bacteria on its surface or to catalyse 
dye degradation on its own. By tailoring the textural and surface chemical properties of 
AC, dye wastewater remediation can be optimised for the applied treatment method. The 
review demonstrates that most physico-chemical and biological dye removal techniques 
can be successfully improved by the involvement of AC in the operation, showing a big 
versatility of its main role in dye degradation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
<Submitted as: Mezohegyi G, van der Zee FP, Font J, Bengoa C, Stuber F, Fortuny A, 
Fabregat A. (2010). Carbon.> 
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1. Introduction 

 
Textile industry is one of those industries that consume large amounts of water in the 

manufacturing process and, at the same time, release great amounts of effluents with 

synthetic dyes into the environment causing public concern and legislation problems. It is 

estimated that about 40–65 L of textile effluent is generated per kg of cloth produced 

(Manu and Chaudhari, 2002). These dyes may cause serious problems of environmental 

pollution due to both their visibility –even at very low concentration– and recalcitrance, 

giving undesirable colour to the water, reducing sunlight penetration, resisting 

photochemical and biological attack. Moreover, many dyes and their degradation products 

have been associated with toxicity and/or mutagenicity (Weisburger, 2002). Hitherto, 

relevant factories have shown deficiencies of efficiently treating these effluents on 

industrial scale, particularly at higher dye concentrations and at lower energy 

consumptions. 

 

Up to date, several physico-chemical and biological methods have been found and 

compared to treat dye/textile wastewaters (Slokar and Le Marechal, 1998; Robinson et al., 

2001; Forgacs et al., 2004; Dos Santos et al., 2007; Hai et al., 2007), each having its own 

advantages and drawbacks. The literature indicates that nowadays, those dye removal 

techniques and investigations are dominant which can meet the requirements of stricter 

and stricter environmental regulations, i.e., the green(er) and clean(er) technologies, 

offering minimal (or no) secondary waste streams, less (or no) use of chemicals, less 

hazardous effluents and both higher dye decolourisation and mineralisation efficiencies. 

However, in general, cleaner dye wastewater treatment methods imply higher 

energy/operation costs. Significant reduction of expenses and/or enhancement of dye 

removal can be achieved e.g., by the use of hybrid treatments (Hai et al., 2007). 

 

A particular approach for hybrid decolourisation methods is the inclusion of activated 

carbon (AC) and its beneficial features in the physical, chemical or biological process. In 

textile and dye wastewater treatment, the role of AC used to be limited to dye adsorption 

(Choy et al., 1999; Kannan and Sundaram, 2001; Namasivayam and Kavitha, 2002; Malik, 

2003). AC is probably the most versatile adsorbent because of its large surface area, 

polymodal porous structure, high adsorption capacity and variable surface chemical 

composition (Bansal and Goyal, 2005). Although the cost of AC is still considerable, it can 

be significantly reduced by using different solid wastes for AC preparation, e.g., 

agricultural residues (Kannan and Sundaram, 2001; Namasivayam and Kavitha, 2002; 

Kavitha and Namasivayam, 2007; Demirbas, 2009) or waste tyres (Mui et al., 2004). AC 

adsorption of dyes can be discussed as individual treatment but it takes place as an 

accompanying mechanism in all the developed dye/textile wastewater treatments 

involving AC either as a porous high-surface support material or a catalyst. In different
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catalytic reactions, ACs have been mainly used as supports, but their use as catalysts on 

their own –especially due to their surface oxygen groups– is growing quickly (Radovic and 

Rodríguez-Reinoso, 1997; Rodríguez-Reinoso, 1998; Figueiredo and Pereira, 2009), even 

in dye removal processes. What furthermore makes ACs attractive to facilitate (textile) 

wastewater treatment is the possibility of tailoring their physical and/or chemical properties 

in order to optimise their performance. 

 

The aim of this review is to summarise the results of AC-amended textile/dye 

wastewater treatment processes, highlighting the diverse roles of AC in decolourisation 

techniques. The article includes three main sections, i.e., dye removal by single AC 

adsorption (Section 2), by AC-enhanced physico-chemical processes (Section 3) and by 

AC-amended biological degradation (Section 4). 

 

 

2. AC adsorption of dyes 

 
Activated carbons (ACs) are excellent adsorbents of countless pollutants. Their 

industrial applications in liquid phase involve the adsorptive removal of colour, odour, 

taste and other undesirable organic and inorganic material from drinking water and the 

treatment of industrial wastewaters. Due to its unique molecular structure, AC has an 

extremely high affinity for many classes of dyes (Table 2.1). Numerous physico-chemical 

factors affect dye adsorption, including the interaction between the adsorbate and 

adsorbent, AC surface area and pore structure, AC surface chemistry, effect of other 

components, characteristics of the dye molecule, AC particle size, pH, temperature, 

contact time etc. This section does not make an attempt to summarise the hundreds of 

studies on dye adsorption by AC but instead tries to give a general insight into most of the 

key issues. 

 

2.1. Dye adsorption isotherms 

 

The adsorption isotherms are the basic requirements in the design of adsorption 

processes. The isotherm indicates how the adsorbate molecules distribute between the 

liquid and solid phase when the adsorption reaches the equilibrium state. In most studies 

related to dye adsorption by AC, two well-known isotherms predominate. The Langmuir 

isotherm assumes monolayer sorption at homogeneous sites of the AC surface without 

any interaction among the adsorbed molecules which possess equal sorption activation 

energies. The Langmuir equation can be given as (Eq. 1): 
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=             (1) 

where QE is the dye equilibrium concentration on the AC phase (mg gAC
–1), QM is the 

maximum amount of dye corresponding to complete monolayer coverage on the carbon 

surface (mg gAC
–1), CE is the equilibrium concentration in the liquid phase (mg L–1) and KL 

is the Langmuir constant (L mg–1). The Freundlich isotherm, on the other hand, presumes 

heterogeneous surface energies in which the energy term varies as a function of the 

surface coverage, and can be used for nonideal sorption processes. It is expressed by the 

following equation (Eq. 2): 

nCKQ 1/
EFE =             (2) 

where QE is the amount of dye adsorbed onto the AC (mg gAC
–1), CE is the equilibrium 

concentration in the liquid phase (mg L–1), KF is the Freundlich constant indicating the dye 

adsorption capacity and n index shows the adsorption intensity. For example, Acid Yellow 

36 adsorption onto ACs prepared from sawdust and rise husk (Malik, 2003) and 

Methylene Blue adsorption onto various –commercial and indigenously prepared– 

activated carbons (Kannan and Sundaram, 2001) fitted well with both isotherms. Some 

less common isotherms have been also discussed to describe the AC adsorption of dyes, 

such as the Redlich-Peterson isotherm (incorporating the features of the Langmuir and 

Freundlich isotherms), providing the best correlation for the sorption of acid (Choy et al., 

1999) and basic dyes (El Qada et al., 2008). 

 

2.2. Dye adsorption kinetics 

 

In general, the mechanism of dye adsorption onto AC involves the following steps: (1) 

migration of dye from the bulk solution to the AC surface; (2) diffusion of dye through the 

boundary layer to the AC surface; (3) adsorption of dye at an active site on the AC 

surface; and (4) intra-particle diffusion of dye into the interior pores of the AC particle 

(Kannan and Sundaram, 2001). The rate of dye adsorption can be determined by the use 

of adsorption kinetic models. Among several kinetic approaches (Kavitha and 

Namasivayam, 2007; Mall et al., 2005), the second-order model was generally found to 

give very good correlations with the experimental data of dye adsorption onto AC. The 

model corresponds to the equation (Eq. 3): 

tkQ

tkQ
Q

E

2
E

1 +
=             (3) 

where Q represents the dye concentration in the solid phase (mg gAC
–1), QE is the 

corresponding value at equilibrium (mg gAC
–1), t is the contact time and k is the adsorption 
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rate constant. For instance, Kavitha and Namasivayam (2007) tested an activated coir pith 

carbon prepared from coconut husk to remove Methylene Blue and used different kinetic 

models such as Lagergren first-order, second-order, intra-particle diffusion and Bangham 

models to fit the experimental data. The calculated correlations were the closest to unity in 

case of the second-order model, confirming the chemisorption of the colourant onto the 

AC particles. The same kinetic model was proposed for the AC adsorption of numerous 

colourants, such as Congo Red (Namasivayam and Kavitha, 2002), Reactive Red 241 

(Órfão et al., 2006), Acid Red 97, Acid Orange 61, Acid Brown 425 (Gómez et al., 2007) 

or Acid Orange 7 (Mezohegyi et al., 2007). The fast adsorption mechanism by 

mesoporous AC prepared from coconut coir dust followed a pseudo-second-order kinetics 

with a significant contribution of intra-particle diffusion in case of Methylene Blue and 

Remazol Yellow dyes (Macedo et al., 2006). Apart from second-order kinetics, other 

models for AC adsorption of dyes have been occasionally reported such as the simple 

first-order model (Kannan and Sundaram, 2001; Malik, 2003) or the dual resistance 

modified Matthews-Weber model (Walker and Weatherley, 1999a). 

 

2.3. Effect of pH 

 

The solution pH plays a major role in the dye adsorption process. Its effect can be 

described on the basis of the influence of pH on the point of zero charge (pHPZC): AC acts 

as a positively charged surface in the dye solution for pH < pHPZC and as a negatively 

charged surface for pH > pHPZC. Consequently, a colourant with cationic characteristics 

has higher affinity for AC adsorption when pH > pHPZC and, on the contrary, anionic dyes 

rather tend to be adsorbed onto AC when pH < pHPZC (Órfão et al., 2006). E.g., El Qada et 

al. (2008) showed that the maximum adsorption capacity of AC (pHPZC: 6.3) for the basic 

dye Methylene Blue was nearly doubled by increasing the pH from 4 to 11. The lower 

adsorption of this dye at acidic pH (<pHPZC) was not solely due to the presence of excess 

H+ ions competing with the dye cation for the adsorption sites, but also to the electrostatic 

repulsion between the cationic dye and protonated AC surface. On the other hand, anionic 

Congo Red was preferably adsorbed onto activated coir pith carbon at acidic pH while its 

removal efficiency was slightly decreased when the pH was changed from 2 to 4 

(Namasivayam and Kavitha, 2002). However, significant dye adsorption still occurred at 

higher pH, suggesting the operative presence of chemisorption. Similar behaviour was 

observed during the adsorption of anionic Acid Yellow 36 when increasing the pH from 3 

to 9 resulted in a ca. 40% drop of the AC adsorption capacity on average (Malik, 2003). 

Calorimetric studies confirmed that the dye–AC interaction forces are correlated with the 

pH of the solution and the increase of pH promoted an endothermic process for the 

anionic Remazol Yellow and an exothermic process for the cationic Methylene Blue 

(Macedo et al., 2006). 
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2.4. Effect of AC surface chemical characteristics 

 

Certain physical and chemical properties of the AC may strongly influence dye 

adsorption, and one of the most determining factors among them is the surface chemistry 

of the carbon. E.g., Al-Degs et al. (2000) evaluated the adsorption of some anionic 

reactive dyes on a commercial AC and attributed its high adsorption capacity to its net 

positive surface charge. By modifying the specific properties of AC, it is possible to 

enhance its effectiveness for contaminant uptakes from aqueous solutions (Yin et al., 

2007). Some researches have focused on this issue and one of the key target has 

become the modification of the surface chemistry of ACs (Figueiredo et al., 1999; 

Berenguer et al., 2009). Tailoring the carbon surface chemical groups can lead to 

significant changes in dye adsorption performance. In the works of Pereira et al. (2003), 

Faria et al. (2004) and Órfão et al. (2006), several ACs were modified by different acid 

and thermal treatments for the adsorption of different classes of dyes, without inducing 

any major changes in the AC textural properties. In case of all anionic (reactive, direct and 

acid) dyes tested, a similar behaviour was observed, following an improvement of the 

adsorption capacity by increasing the basicity of the AC sample. On the other hand, for 

cationic (basic) dyes (Pereira et al., 2003; Faria et al., 2004), the acid oxygen-containing 

surface groups originating from HNO3-treatment had a positive effect on adsorption, but 

the thermally treated samples still presented good performances, indicating the existence 

of two parallel adsorption mechanisms. The first involves electrostatic interactions 

between the basic dye and the negatively charged carbon surface groups, while the 

second suggests dispersive interactions between the dye molecule and the graphene 

layers. Otherwise, the basic AC sample obtained by thermal treatment under H2 flow at 

700°C was found to be the best material for adsorpt ion of most of the dyes tested. Some 

other studies, however, reported dissimilar results referred to basic dye adsorption. For 

example, a moderate decrease in Methylene Blue (Wang et al., 2005; Wang and Zhu, 

2007) and Crystal Violet (Wang and Zhu, 2007) uptake was observed after treating the AC 

with HNO3. 

 

2.5. Effect of AC textural characteristics 

 

Aside from the surface chemistry, textural properties of AC play an important role. Most 

commercially available ACs are predominantly microporous, making them especially 

suitable for the adsorption of smaller pollutants. As the fraction of mesopores is increased, 

the obtained ACs are expected to be more efficient adsorbents of larger molecules 

(Macedo et al., 2006). One possible method to enlarge the porosity of ACs is CO2 

gasification, e.g., with the help of previously impregnated cobalt, catalysing the formation 

of mesopores (Pereira et al., 2004). It is evident that if the AC pore size is crucial in dye 

adsorption, then the molecular size of the colourant is likewise decisive. Tamai et al. 
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(1999) investigated the adsorption of several acid, direct and basic dyes onto both 

mesoporous and microporous AC fibers in terms of the size of dye molecules and AC 

pore size. High amounts of sterically small-sized acid and basic dyes were adsorbed on 

both carbons. Among acid dyes, Acid Blue 74 and Acid Orange 10 with smaller molecular 

weights did not only perform better adsorption than Acid Blue 9 and Acid Orange 51 with 

relatively large molecular structures but were also adsorbed in higher amounts on the 

microporous fiber than on the mesoporous one, indicating the additional importance of 

specific surface area of AC in dye adsorption. On the other hand, large direct dyes were 

not only adsorbed to a much higher extent on the mesoporous AC than on the 

microporous AC but also the amounts of direct dyes adsorbed on mesoporous carbon 

decreased in the order of Direct Yellow 50, Direct Black 19, Direct Yellow 11, being the 

same order as of the one large dimension of these dyes. Lorenc-Grabowksa and 

Gryglewicz (2007) showed that the adsorption capacity of the diazo dye Congo Red 

increased with both the mesopore volume and the share of mesopores to the total pore 

volume. The so-called ordered mesoporous carbons (OMCs) may also be ideal model 

materials for studying dye adsorption on mesopores due to their periodic pore symmetry, 

large pore volume, high specific surface area, centralised mesopore distribution and 

tuneable pore diameter. When a microporous carbon and OMCs with varying pore size 

were simultaneously tested to remove Methylene Blue and Neutral Red from solution, the 

OMCs showed at least doubled dye adsorption affinities compared to the microporous 

carbon (Yuan et al., 2007). 

 

2.6. Regeneration of AC 

 

Although AC is an excellent material to adsorb higher amounts of dye pollutants, using 

it for adsorption as an individual treatment is not cost-effective and the exhausted carbon 

needs to be either disposed or regenerated, generating extra expenses. AC regeneration, 

normally, is not only cheaper than replacement but, in addition, a more environmentally 

friendly solution in general. Conventional methods for AC recovery have included thermal, 

biological and solvent regeneration (Cooney et al., 1983; Aktaş and Çeçen, 2007). In latter 

case, the choice of appropriate solvent is essential, that may depend on both the AC and 

colourant characteristics. E.g., desorption of the basic dye Malachite Green from an AC 

packed column was nearly complete using acetone (Gupta et al., 1997) and commercial 

ACs with the adsorbed azo dye Direct Red 79 were effectively regenerated by liquid water 

at high pressure and temperature (Salvador and Jiménez, 1999). Certain surfactants have 

the advantages of being both efficient under mild operation conditions and relatively 

innocuous from environmental point of view. The so-called surfactant enhanced carbon 

regeneration showed that anionic surfactants performed significantly better than a cationic 

one during the desorption of anionic dyes Eosin (Purkait et al., 2005) and Congo Red 

(Purkait et al., 2007). Also some advanced regeneration techniques removing colourants 
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from AC have been reported, such as wet oxidative regeneration (Shende and Mahajani, 

2002), microwave irradiation (Quan et al., 2004), electrochemical regeneration (Han et al., 

2008) or regeneration with dielectric barrier discharge plasma (Qu et al., 2009). In 

general, however, these techniques are costly, can result in significant changes in the 

textural/chemical characteristics of the AC, may cause considerable carbon loss and are 

probably much more efficient when using them as complex AC-enhanced dye wastewater 

treatments involving in situ regeneration of the carbon, instead of being separated and 

subsequently treated. 

 

 

3. AC-amended physico-chemical dye removal processes 

 
Besides adsorption, physico-chemical dye removal techniques include coagulation, 

membrane filtration, electrochemical degradation and advanced oxidation processes 

(AOPs). Despite that most of these methods have been shown promising and highly 

efficient, these technologies generally appear to face several limitations since they are 

financially and often also methodologically demanding. To make them undoubtedly 

attractive, their further improvement is required. As it is presented in the following, 

physical and chemical dye wastewater treatments can be successfully enhanced by 

incorporating AC. 

 

3.1. AC-amended coagulation of dyes 

 

Chemical coagulation by the use of inorganic coagulants such as aluminium sulphate, 

ferrous sulphate or ferric chloride, used to be a feasible way of removing colour from dye 

wastewater (Chu, 2001; Kim et al., 2004; Golob et al., 2005). Its main advantage is the 

removal of dye molecules themselves without their decomposition leading to even more 

potentially harmful and toxic aromatic compounds (Golob et al., 2005). However, the 

drawback of producing a huge amount of chemical sludge has pushed this method into 

the background and improvements of dye coagulation processes have become 

necessary. Better strategies have been reported for dye removal, such as the reuse of the 

produced sludge (Chu et al., 2001), combined electrocoagulation process (Daneshvar et 

al., 2006) or AC-amended coagulation (Sanghi and Bhattacharya, 2003). In the latter 

study, polyaluminium chloride as coagulant was added to different dye solutions (Direct 

Orange, Eriochrome Black T and Malachite Green) previously treated with powdered 

activated carbon (PAC). The role of coagulant was dual; not only to remove the colour but 

also to flocculate the suspended PAC remaining in the solution after adsorption. Although 

significant enhancement of dye removal after the addition of a very small dose of 

coagulant was observed only in case of Eriochrome Black T, the formed sludge settled 
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much faster than PAC alone and could be effectively reused. It is possible to use AC 

adsorption indirectly, as a post-treatment of coagulation to ensure better process 

performance. The azo dyes Reactive Red 45 and Reactive Green 8 were treated by the 

two-step, aluminium chloride coagulation/PAC adsorption method resulting in less 

coagulant consumption and lower sludge volume compared to dye removal by coagulation 

only (Papić et al., 2004). During the treatment of Reactive Orange 16 and Reactive Black 

5, coagulation by aluminium chloride followed by PAC adsorption was found to be more 

efficient than the reverse adsorption/coagulation method in terms of overall dye removal 

and chemical requirement (Lee et al., 2006a). 

 

3.2. AC-amended membrane filtration of dyes 

 

Pressure-driven membrane processes have been found suitable for the treatment of 

dye wastewaters from the textile industry (Xu et al., 1999; Marcucci et al., 2001; 

Chakraborty et al., 2003). Among microfiltration (MF), ultrafiltration (UF), nanofiltration 

(NF) and reverse osmosis (RO), NF was considered as probably the most adequate 

membrane process to separate dyes from textile effluents effectively (Xu et al., 1999; 

Chakraborty et al., 2003). Although NF does not reach the retention behaviour of RO, it 

works under less demanding conditions implying cost reduction (Marcucci et al., 2001). 

Lately, the use of low-pressure membrane processes (MF, UF) have received greater 

attention in dye removal processes which demand considerably lower operational costs 

than NF (Lee et al., 2006b) but, on the other hand, require intensification or combination 

with another process in order to ensure an appropriate permeate quality. One possibility to 

enhance the MF/UF process for dye removal is their integration with the dye adsorption 

ability of ACs. Banat and Al-Bastaki (2004) studied the separation of Methylene Blue from 

aqueous solutions where the dye feed containing either GAC or PAC was introduced to 

the UF membrane module. The UF process alone was not able to reject the colourant but, 

on the contrary, 85% of dye removal was achieved in the combined process with the PAC 

performing better than GAC. Microfiltration of the reactive dye Ostazin Red HB by a 

submerged membrane was not effective on its own but the addition of very low dose of 

PAC to dye wastewater resulted in a nearly complete colour removal, although retention 

of the pollutant decreased with 50% after a few hours of operation (Jirankova et al., 2007). 

In a hybrid coagulation–adsorption–membrane process, the submerged microfiltration 

membrane alone was not sufficient to reject Reactive Black 5 and Reactive Orange 16, 

and significant membrane fouling occurred (Lee et al., 2006b). However, the filtration 

performance after alum coagulation and PAC adsorption pre-treatments was very high, 

both concerning dye retention and micro-flocks/carbon particles separation, while only a 

little decline in the permeate flux was observed for the entire hours of experimental run. 

An efficacious development among combined membrane processes is the membrane 

bioreactor, nowadays widely used for municipal and industrial wastewater treatment, 
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which can be enhanced by the addition of AC (Park et al., 1999; Hai et al., 2008). During 

the removal of azo dye Acid Orange II by a submerged MF membrane fungi reactor, PAC 

addition resulted not only in the improvement of permeate quality but also in stable 

decolourisation and enzymatic activity for a period of 1 month, confirming the occurrence 

of simultaneous adsorption and biodegradation of the dye (Hai et al., 2008). 

 

3.3. AC-amended electrochemical treatment of dyes 

 

Electrochemical oxidation uses electrons as the main reagent, requires a little or even 

no chemical reagent and is a clean and effective wastewater treatment method (Yi et al., 

2008) that has been successfully applied for dyeing wastewater treatment as well, with a 

wide variety of electrodes (anodes) tested, e.g., iron (Ling and Peng, 1994), conductive 

diamond (Cañizares et al., 2006) or Pt/Ti (Vlyssides et al., 1999). Although the method is 

quite environmentally friendly, its drawback –apart from electricity cost– is that side-

reactions (e.g., electrolysis of water) may compete with the destruction of contaminant 

(Wang et al., 2005). Improvement of electrochemical dye degradation can be reached by 

the use of porous electrodes such as ACs, reducing both the energy requirement of 

electrolysis and side-effects, enhancing the surface area of electrode and regulating the 

electric current density. For example, Jia et al. (1999) reported the efficient treatment of 

several simulated wastewaters with dyes of reactive, acid, direct, cationic and vat groups, 

and real wastewaters containing vat, reactive or direct dyes or their mixtures using 

activated carbon fiber (ACF) electrodes; nearly all the wastewaters were decolourised for 

more than 90% with COD removals within about 40-80%. Similarly, Shen et al. (2001) 

tested the mineralisation of 29 colourants of different classes and confirmed the feasibility 

of ACF electrolytic process, with colour removals above 85% and TOC removals ranged 

between 30 and 70%. 

 

Depending on the method and the electrode configuration, AC may be used both as a 

cathode or anode in the electrochemical treatment. E.g., the anthraquinone dye Alizarin 

Red S was successfully oxidised using an AC fiber felt as anode with considerable colour 

(> 95%) and COD (> 76%) removals within 60 min of electrolysis (Yi et al., 2008; Yi and 

Chen, 2008). The ACF anode compared with a simple carbon fiber anode worked much 

better in terms of colour removal, probably due to both the high specific surface area of 

ACF and its capability of promoting the electro-generation of the strong oxidising agent 

hydroxyl radical (·OH) from the oxidation of H2O on the anode surface (Yi and Chen, 

2008). The results confirmed the three-step mechanism of the electrochemical treatment, 

i.e., (1) dye adsorption onto the ACF surface, (2) electrolytic degradation of the adsorbed 

colourant and (3) in situ regeneration of the ACF. Larger specific surface area and higher 

mesopore percentage of the ACF anode lead to more effective electrochemical dye 

removal (Yi et al., 2008). 

UNIVERSITAT ROVIRA I VIRGILI 
CATALYTIC AZO DYE REDUCTION IN ADVANCED ANAEROBIC BIOREACTORS 
Gergö Mezöhegyi 
ISBN:978-693-7672-0/DL:T-1751-2010 



ROLE OF ACTIVATED CARBON IN DYE REMOVAL PROCESSES 

29 

The electrooxidation of dyes can also be indirect based on the electrogeneration of 

H2O2 from the two-electron reduction of O2 on the cathode, that is especially 

advantageous in the case of combined methods. Wang et al. (2005) studied the 

mineralisation of the azo dye Acid Red 14 by an electro-Fenton reaction based on the 

H2O2 production on ACF felt cathode. During the Fenton reaction, ·OH radicals are 

generated from H2O2 in the presence of catalytic amounts of ferrous ions (section 3.4.2). 

For comparative purposes, both ACF cathode and graphite cathode were tested in the 

absence of Fe2+. Although similar decolourisation rates were achieved by these two 

cathode materials, the mineralisation ability of ACF felt was much higher than of graphite, 

due to both the large surface area of ACF and the different ability of peroxide 

electrogeneration of these two cathodes. On the other hand, the electro-Fenton process 

resulted in better TOC reduction than the single H2O2 electrogeneration or the simple 

anodic oxidation that could be ascribed to the existence of fast homogeneous reaction of 

organics with the great amounts of ·OH generated. Same azo dye degradation was 

investigated in the so-called photoelectro-Fenton process, i.e. the UV-enhanced variant of 

electro-Fenton treatment, that yielded significantly more TOC removal than the UV-free 

electro-Fenton oxidation (Wang et al., 2008). 

 

Apart from using ACs as electrodes, electrochemical dye removal can be improved by 

using the so-called three-dimensional electrode system, involving AC granules as particle 

electrodes between the cathode and anode. Koparal et al. (2002) used an activated 

carbon-perlite mixture placed inside a bipolar trickle reactor for the ‘electroadsorption’ of 

textile dye Acilan Blau, considering AC rather as dye adsorbent than particle electrode. 

The removal of Acid Orange 7 using the three-dimensional electrode reactor was found to 

be mainly dependent on the oxidation by the active substances (e.g., ·OH) produced both 

on ACF electrodes and GAC microelectrodes (Xu et al., 2008; Zhao et al., 2010). This 

method has been reported effective, both as posttreatment for colour and COD removal in 

a combined ferrous coagulation-electrooxidation process (Xiong et al., 2001) and as 

pretreatment prior to the biological process (Zhao et al., 2010). It has to be noticed that 

the surface chemistry of the AC can be altered by the electrochemical treatment, 

depending on the applied electrochemical variables (Berenguer et al., 2009). Apart from 

electrochemical oxidation, GAC as particle cathode can enhance the current efficiency of 

internal electrolysis during azo dye reduction by zero-valent iron treatment (Liu et al., 

2007). 

 

3.4. AC-amended advanced oxidation processes for dye removal 

 

Advanced oxidation processes (AOPs) are characterised by a common feature: the 

capability of exploiting high reactive oxidising agents such as ·OH radicals to completely 

destroy the majority of organic pollutants present in wastewaters (Andreozzi et al., 1999; 
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Gogate and Pandit, 2004). Hydroxyl radicals with their high oxidation potential (E0 =    

2.33 V) can be produced by numerous different methods and most of these have been 

found applicable for dye wastewater treatments. Moreover, enhanced dye removal has 

been reported using AC as catalyst in various processes involving oxidation by ·OH  

(Table 2.2). Techniques such as electrochemical treatments, generating ·OH radicals 

contingently and secondarily, are discussed elsewhere (section 3.3). 

 

3.4.1. Wet oxidation of dyes 

 

Catalytic wet oxidation (CWO) is a known process for oxidative treatment of industrial 

wastewaters. It proceeds under relatively mild conditions (125–220 ºC, 5–50 bar) in the 

presence of an adequate catalyst (Garcia et al., 2005). The enhanced solubility of oxygen 

in aqueous solutions at elevated temperatures and pressures provides a strong driving 

force to oxidation of contaminants by active oxygen species such as hydroxyl radicals 

(Levec and Pintar, 2007). Wet oxidation of different toxic contaminants can be catalysed 

by AC (Santiago et al., 2005; Stüber et al., 2005; Suarez-Ojeda et al., 2005) and CWO of 

textile dyes using AC as catalyst is considered a promising technology as well. E.g., 

Santos et al. (2007) studied the abatement of synthetic dyes Orange G, Brilliant Green 

and Methylene Blue by means of the CWO method in a fixed-bed reactor with AC as 

catalyst. All colourants with high initial concentrations were almost completely 

decolourised, and TOCs were moderately removed at a hydraulic residence time (HRT) of 

15 min. Although the strong oxidation conditions promote certain changes in AC textural 

and surface chemical properties, the catalyst kept its activity and stability for at least 200 h 

of continuous operation at a weight lost of less than 5%. CWO with AC-supported copper 

catalyst promoted significantly better TOC removal from real dyeing and printing 

wastewater than the identical treatment without a catalyst, and moderately better oxidation 

than the treatment with either homogeneous (copper nitrate solution) catalyst or 

aluminium-supported copper catalyst, although Cu itself (immobilised on AC) seemed to 

have a little effect on the catalytic activity (Hu et al., 1999). A newer class of advanced 

materials for catalytic applications is the nanostructured carbon (Serp et al., 2003) with a 

broad range of potential applications, e.g., as support for preparing heterogeneous 

catalysts for liquid-phase reactions. Garcia et al. (2005) tested a platinum catalyst with a 

multi-walled carbon nanotube (MWNT) support activated by nitric acid oxidation for the 

catalytic oxidation of textile azo dyes and a real textile effluent. While decolourisation of 

the dyes by wet oxidation at a temperature of 150 ºC and 6.9 bar of oxygen partial 

pressure was very poor in the absence of catalyst, each azo dye was almost completely 

decolourised in the CWO process catalysed by Pt/MWNT. The treatment of real 

wastewater under the same conditions showed that the same catalyst could significantly 

improve both colour and TOC removal efficiencies. Other nanocarbons such as carbon 

nanofibers (CNFs), impregnated with copper after their acidic activation, have been 
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furthermore reported to improve both TOC and colour removal from washing textile 

industrial wastewater (Rodríguez et al., 2008) and from mono,-di- and triazo dye solutions 

(Rodríguez et al., 2009) in the CWO process. 

 

3.4.2. Wet peroxide oxidation of dyes 

 

A couple of studies have shown that oxidation of different organic compounds by the 

environmentally friendly H2O2 can be enhanced by AC (Lücking et al., 1998; Huang et al., 

2003; Georgi and Kopinke, 2005). The peroxide (E0 = 1.78 V) can be activated on the AC 

surface involving the formation of free oxidising species such as the hydroxyl radical (Eqs. 

(4) and (5)): 

AC + H2O2 → AC+ + OH– + ·OH         (4) 

AC+ + H2O2 → AC + HO2
· + H+         (5) 

where AC functions as an electron transfer catalyst and AC and AC+ symbolizes the 

oxidised and reduced catalyst states, respectively (Georgi and Kopinke, 2005; Kimura and 

Miyamoto, 1994). High colour removal efficiencies were reported in a combined catalytic 

peroxide oxidation/catalytic wet air oxidation system treating the dyes Direct Blue 71 and 

Direct Black 19 (Lin and Lai, 1999). Parameters such as the amount of GAC or the 

concentration of V2O5 catalyst showed significant effects on the decolourisation while the 

presence of peroxide as additional oxidant was found unnecessary at an air supply of       

3 L min–1, possibly due to either the high dye removal rates even without peroxide or the 

(partial) H2O2 decomposition under the applied conditions. A recent study proved that 

decolourisation of dye solutions by oxidation with H2O2 in the presence of AC is strongly 

influenced by the carbon surface chemistry (Santos et al., 2009). While non-catalytic 

reaction without AC was inefficient in case of most dyes from several groups, the 

combination of AC with H2O2 could significantly enhance the oxidation process due to the 

catalytic decomposition of H2O2 into free radicals. Latter findings were explained by the 

involvement of the free electrons on the graphene basal planes of AC as active centres for 

the catalytic reaction. 

 

Another method for peroxide activation is the Fenton reaction in which ferrous ions as 

catalysts react with hydrogen peroxide in acidic medium, producing hydroxyl radicals   

(Eq. 6): 

Fe2+ + H2O2 → HO· + OH– + Fe3+        (6) 

Although the Fenton process has been demonstrated effective in decolourising dye 

wastewaters (Kuo, 1992; Solozhenko, 1995; Shueh et al., 2005), it has the disadvantage 

of producing effluents with generally higher Fe ion concentrations than the European 

Union directives allow to release into the environment (2 mg L–1). By immobilising Fe ions 
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Table 2.2 (I) . Selected results of physico-chemical dye oxidation studies with AC-
catalysed decolourisation. 
oxidation 
process 

 
 

system 
characteristicsa 

 
 AC catalytic role  AC characteristicsb 

SBET: 893.7; SMIC/SBET: 0.749 
SBET: 1053; SMIC/SBET: 0.720 
SBET: 1374; SMIC/SBET: 0.572 

electrochemical  cont.; A: ACF felt; C: 
stainless steel sheet; V: 
110; HRT: ~46.8 

 ·OH generation by H2O 
oxidation 

 

 

SBET: 1682; SMIC/SBET: 0.200 

electrochemical  batch; A: RuO2/Ti; C: 
ACF felt; V: 500 

 

electro–Fenton  batch; A: RuO2/Ti; C: 
ACF felt; Fe2+ (c: 1); 
V:500 

 

·OH generation from 
H2O2 produced on the 
cathode 

 

 

SBET: 1237 

electrochemical  batch; A: viscose-based 
ACF felt; C: stainless 
steel sheet; V: 50 

 ·OH generation by H2O 
oxidation 

 

 

SBET: ~1000 

batch; A: stainless steel 
plate; C: ACF 
 
 

 

 

SBET: 764.1 electrochemical  

batch; A: stainless steel 
plate; C: ACF; PE: GAC; 
V: 500 

 
 
 

·OH generation from 
H2O2 produced on the 
cathode 

 

 

ACF (SBET: 764.1) + GAC     
(cc: 100; SBET: 910.7) 

wet oxidation  batch; p: 6.9; T: 150;    
V: 75 

 ·OH generation from 
O2-saturated H2O at 
elevated p and T 

 Pt-imp. MWNT; cc: ~10.7;  
SBET: ~175 

wet oxidation  cont. fixed-bed reactor; 
p: 16; T: 160; HRT: 15 

 

 

 

 ·OH generation from 
O2-saturated H2O at 
elevated p and T 

 GAC (Ind. React FE0160A);    
d: 800–1000; ccv: ~0.32;    
SBET: 745 

wet oxidation  batch; p: 8.7; T: 140;    
V: 75 

 

 

 ·OH generation from 
O2-saturated H2O at 
elevated p and T 

 Cu-imp. CNF; d×l: 20–50 ×   
50–100; SBET: 188 

GAC (Norit GAC 1240 PLUS); 
d: 100–300; cc: ~2.2; SBET: 972; 
pHPZC: 7.9; CO: 995 

GAC mod: HNO3; d: 100–300; 
cc: ~2.2; SBET: 909; pHPZC: 3.0; 
CO: 2920 

peroxide 
oxidation 

 batch; H2O2 (c: 1500);  
V: 600 

 ·OH generation from 
peroxide 

 

GAC mod: HNO3/heat under 
H2; d: 100–300; cc: ~2.2; SBET: 
946; pHPZC: 9.8; CO: 575 
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Table 2.2 (II) . Selected results of physico-chemical dye oxidation studies with AC-
catalysed decolourisation. 

resultsd wastewater 
characteristicsc 

 
 with AC without AC 

reference 

XCOL: ~0.63 (λ: 507) 
XCOL: ~0.70 (λ: 507) 
XCOL: ~0.75 (λ: 507) 

SW: Alizarin Red S   
(c: 200); pH: ~6.5 

 

XCOL: ~0.82 (λ: 507) 

– Yi et al. (2008) 

XTOC: 0.50 (6 h) – SW: Acid Red 14      
(c: 200); pH: 3.0 

 

 
XCOL: ~1.00 (1.5 h); 
XTOC: 0.70 (6 h) 

XCOL: ~1.00 (1.5 h) 
XTOC: 0.40 (6 h) 
[C: graphite] 

Wang et al. 
(2005) 

SW: Alizarin Red S   
(c: 700); pH: 7.0 

 XCOL: ~0.98 (1 h) 
XCOD: 0.765 (1 h) 

XCOL: ~0.50 (1 h) 
[A: carbon fiber] 

Yi and Chen 
(2008) 

SW: Acid Orange 7   
(c: 300); pH: 3.0 

 XCOL > 0.96 (10×1 h) 
XTOC: 0.574 (10×1 h) 

XTOC: 0.460 (10×1 h) 
[C: graphite] 
XTOC: 0.413 (10×1 h) 
[C: stainless steel] 

SW: Acid Orange 7   
(c: 300); pH: 3.0 

 XCOL > 0.99 (3 h) 
XTOC: 0.719 (3 h) 

– 

Xu et al. (2008) 

SW: Solophenyl Green 
BLE (c: 2000) 

 XCOL: 0.995 (2 h) 
XTOC: 0.212 (2 h) 

XCOL: 0.0 (2 h) 

SW: Chromotrop 2R 
(c: 2000) 

 XCOL: 1.00 (2 h) 
XTOC: 0.635 (2 h) 

XCOL: 0.0 (2 h) 

SW: Erionyl Red B    
(c: 2000) 

 XCOL: 0.995 (2 h) 
XTOC: 0.781 (2 h) 

XCOL: 0.280 (2 h) 

Garcia et al. 
(2005) 

SW: Orange G          
(c: 1000) 

 XCOL: ~1.00 
XTOC: ~0.40 

SW: Brilliant Green   
(c: 1000) 

 XCOL: ~1.00 
XTOC: ~0.55 

SW: Methylene Blue 
(c: 1000) 

 XCOL: ~1.00 
XTOC: ~0.55 

XCOL , XTOC: ~0.0 
[glass spheres] 

Santos et al. 
(2007) 

SW: Acid Orange 7   
(c: 1000) 

 XCOL: 0.996 (3 h) 
XTOC: 0.241 (3 h) 

XCOL: 0.241 (3 h) 
XTOC: 0.120 (3 h) 

SW: Eriochrome Blue 
Black (c: 1000) 

 XCOL: 1.00 (3 h) 
XTOC: 0.500 (3 h) 

XCOL: 0.973 (3 h) 
XTOC: 0.041 (3 h) 

SW: Direct Blue 71   
(c: 1000) 

 XCOL: 1.00 (3 h) 
XTOC: 0.068 (3 h) 

XCOL: 0.582 (3 h) 
XTOC: 0.010 (3 h) 

SW: Reactive Black 5 
(c: 1000) 

 XCOL: 1.00 (3 h) 
XTOC: 0.250 (3 h) 

XCOL: 0.340 (3 h) 
XTOC: 0.186 (3 h) 

Rodríguez et al. 
(2008) 

k: 6.2×10-3 
 

 
k: 5.4×10-3 

SW: Reactive Red 241 
(c: 50); pH: 3.0 

 

k: 8.7×10-3 

 

 

k: 4.2×10-4 Santos et al. 
(2009) 
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Table 2.2 (I) . Selected results of physico-chemical dye oxidation studies with AC-
catalysed decolourisation. (cont.) 
oxidation 
process 

 
 

system 
characteristicsa 

 
 AC catalytic role  AC characteristicsb 

batch; H2O2 (c: ~1.14); 
V: ~1000 

  

 

GAC (F400, Calgon); d: 425–
600; cc: 2; SBET: 800–900 

peroxide 
oxidation 

 

batch; H2O2 (c: ~114);  
V: ~1000 

  GAC (F400, Calgon); d: 425–
600; cc: 4; SBET: 800–900 

batch; H2O2 (c: ~1.14); 
V: ~1000 

  Fe-imp. GAC (~3.7%); d:    
425–600; cc: 2 

Fenton  

batch; H2O2 (c: ~114);  
V: ~1000 

 

·OH generation from 
peroxide 

 Fe-imp. GAC (~3.7%); d:    
425–600; cc: 4 

peroxide 
oxidation 

   

 

o: olive stone; d < 200; cc: 0.2; 
SBET: 691 

Fenton  

batch; H2O2 (c: 6);        
V: 200 

 

·OH generation from 
peroxide 

 Fe-imp. GAC (~7.0%); d < 200; 
cc: 0.2 

   

 

  
 

 
 

   

GAC (Norit GAC 1240 PLUS); 
d: 100–300; cc: 0.5; SBET: 972; 
pHPZC: 9.7 
 
 
 
 

   

  
 

 

  
 

 

GAC mod: HNO3; d: 100–300; 
cc: 0.5; SBET: 909; pHPZC: 2.7 

   

   

ozonation 

 

batch; qG: 285; qO: 2.15; 
V: 600 

 

·OH generation from 
O3

 

 

GAC mod: HNO3/heat under 
H2; d: 100–300; cc: 0.5; SBET: 
972; pHPZC: 10.8 
 
 
 
 

ozonation  batch; qG: 4000; qO: 0.5; 
V: 2000 

 ·OH generation from 
O3

 

 GAC; d: ~5000; cc: 5; SBET: 893 

      GAC; d: ~5000; cc: 50; SBET: 
893 

   

   

   

   

GAC (Norit GAC 1240 PLUS); 
d: 100–300; cc: 0.5; SBET: 909 

 
 
 
 

   

   

   

ozonation 

 

batch; qG: 150; qO: 7.5; 
V: 700 

 

·OH generation from 
O3

 

 

GAC/cerium oxide composite 
(Ce-O: ~45%); d: 100–300;    
cc: 0.5; SBET: 583 

 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
CATALYTIC AZO DYE REDUCTION IN ADVANCED ANAEROBIC BIOREACTORS 
Gergö Mezöhegyi 
ISBN:978-693-7672-0/DL:T-1751-2010 



ROLE OF ACTIVATED CARBON IN DYE REMOVAL PROCESSES 

35 

Table 2.2 (II) . Selected results of physico-chemical dye oxidation studies with AC-
catalysed decolourisation. (cont.) 

resultsd wastewater 
characteristicsc 

 
 with AC without AC 

reference 

SW: Acid Black 24    
(c: 120); pH: 2.0 

 XCOL: 0.74 (3 h) XCOL: 0.59 (3 h) 

TW; pH: 1.9  XCOL: 0.60 (3 h) 
 

XCOL: 0.12 (3 h) 

SW: Acid Black 24    
(c: 120); pH: 2.0 

 XCOL: 0.78 (3 h) 
 

XCOL: 0.59 (3 h) 

TW; pH: 1.9  XCOL: 0.62 (3 h) 
 

XCOL: 0.12 (3 h) 

Fan et al. (2006) 

XCOL: 0.98 (20 h) 
 

SW: Orange II           
(c: 35); pH: 3.0 

 

XCOL: 0.98 (4 h) 
 

XCOL: 0.036 (20 h) Ramirez et al. 
(2007) 

SW: Acid Blue 113   
(c: 100) 

 k: 0.470 
XTOC: ~0.59 (1.5 h) 

k: 0.412 
XTOC: ~0.35 (1.5 h) 

SW: H. Reactive Red 
241 (c: 100) 

 k: 0.330 
XTOC: ~0.63 (1.5 h) 

k: 0.326 
XTOC: ~0.50 (1.5 h) 

SW: Basic Red 14    
(c: 100) 

 k: 0.532 
XTOC: ~0.54 (1.5 h) 

k: 0.470 
XTOC: ~0.15 (1.5 h) 

SW: Acid Blue 113   
(c: 100) 

 k: 0.462 k: 0.412 

SW: H. Reactive Red 
241 (c: 100) 

 k: 0.325 k: 0.326 

SW: Basic Red 14    
(c: 100) 

 k: 0.456 k: 0.470 

SW: Acid Blue 113   
(c: 100) 

 k: 0.413 k: 0.412 

SW: H. Reactive Red 
241 (c: 100) 

 k: 0.337 k: 0.326 

SW: Basic Red 14    
(c: 100) 

 k: 0.520 k: 0.470 

Faria et al. (2005) 

 XCOL: ~0.95 (1 h) 
XCOD: ~0.40 (1 h) 

TW; COD: 484 

 XCOL: ~0.98 (1 h) 
XCOD: ~0.77 (1 h) 

XCOL: ~0.94 (1 h) 
XCOD: ~0.29 (1 h) 

Lin and Lai (2000) 

SW: Acid Blue 113   
(c: 50); pH: 5.8 

 XTOC: ~0.87 (2 h) XCOL: ~0.97 (5 min) 
XTOC: ~0.87 (2 h) 

SW: Reactive Yellow 3 
(c: 50); pH: 5.8 

 XTOC: ~0.81 (2 h) XCOL: ~0.88 (5 min) 
XTOC: ~0.73 (2 h) 

SW: Reactive Blue 5 
(c: 50); pH: 5.6 

 XTOC: ~0.79 (2 h) XCOL: ~0.98 (5 min) 
XTOC: ~0.64 (2 h) 

TW (bio-treated);  
TOC: 150; pH: 9.3 

 XTOC: ~0.40 (2 h) XTOC: ~0.27 (2 h) 

SW: Acid Blue 113   
(c: 50); pH: 5.8 

 XTOC: ~0.98 (2 h) XCOL: ~0.97 (5 min) 
XTOC: ~0.87 (2 h) 

SW: Reactive Yellow 3 
(c: 50); pH: 5.8 

 XTOC: ~0.97 (2 h) XCOL: ~0.88 (5 min) 
XTOC: ~0.73 (2 h) 

SW: Reactive Blue 5 
(c: 50); pH: 5.6 

 XTOC: ~1.00 (2 h) XCOL: ~0.98 (5 min) 
XTOC: ~0.64 (2 h) 

TW (bio-treated);  
TOC: 150; pH: 9.3 

 XTOC: ~0.35 (2 h) XTOC: ~0.27 (2 h) 

Faria et al. 
(2009a) 
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Table 2.2 (I) . Selected results of physico-chemical dye oxidation studies with AC-
catalysed decolourisation. (cont.) 
oxidation 
process 

 
 

system 
characteristicsa 

 
 AC catalytic role  AC characteristicsb 

photochemical  batch; UV, H2O2 (c: 12, 
without GAC; c: 9, with 
GAC); V: ~5000 

 ·OH generation from 
peroxide 

 GAC (Prolab); d: 840–1680;  
cc: 8 

   PAC (Norit C GRAN); cc: 0.2; 
SBET: 1400 

   PAC (Norit GAC 1240 PLUS); 
cc: 0.2; SBET: 1000 

   PAC (Norit ROX 0.8); cc: 0.2; 
SBET: 1100 

   PAC (ROX 0.8) mod: H2O2;   
cc: 0.2; SBET: 908 

   PAC (ROX 0.8) mod: HNO3;  
cc: 0.2; SBET: 893 

photocatalytic 

 

batch; UV, TiO2 (cPC: 1); 
V: 800 

 

sensitization of 
photocatalytic ·OH 
generation 

 PAC (ROX 0.8) mod: 
HNO3/heat under H2; cc: 0.2; 
SBET: 987 

   
   

photocatalytic 

 

batch; UV, TiO2 (cPC: 1); 
V: 800 

 

sensitization of 
photocatalytic ·OH 
generation 
 

 

 

 

GAC (Norit C GRAN); d: 100–
300; cc: 0.2; SBET: 1400 

   

   
TiO2-imp. ACF; SBET: 434.9;  
TC: 600 

 
 

   

photocatalytic 

 

batch; UV, TiO2 (cPC: 2); 
V: ~250 

 

sensitization of 
photocatalytic ·OH 
generation 

 
TiO2-imp. ACF; SBET: 555.1;  
TC: 800 

aAbbreviations: cont., continuous; A, anode; C, cathode; V, volume of wastewater treated, mL; 
HRT, hydraulic residence time, min; c, concentration, mM; PE, particle electrode; p: oxygen partial 
pressure, bar; T, temperature, °C; q G, ozone–gas mixture flow rate, cm3 min–1; qO, ozone mass flow 
rate, mg min–1; UV, ultraviolet irradiation; cPC, photocatalyst concentration, g L–1. bAbbreviations: 
SBET, BET surface area, m2 g–1; SMIC/SBET, microporous surface area/BET surface area ratio; cc, 
carbon concentration in the liquid phase, g L–1; imp., impregnated; MWNT, multi-walled carbon 
nanotube; d, AC particle size, µm; ccv, carbon concentration in the fixed-bed volume, g mL–1; CNF, 
carbon nanofiber; d×l, diameter×length, nm×nm; pHPZC, point of zero charge; CO, amount of CO-
emitting groups on AC surface, µmol g–1; mod, modified; o, origin; TC, calcination temperature, °C. 
 

 

(or Fe oxides) on an appropriate support, the problem noted may be overcome. E.g., Fan 

et al. (2006) compared removal efficiencies of the azo dye Acid Black 24 in several 

treatment processes such as GAC (only adsorption), H2O2 (noncatalytic oxidation), 

GAC/H2O2 (catalytic oxidation with GAC) and FeGAC/H2O2 (catalytic oxidation with iron 

oxide-coated GAC). Among all, FeGAC/H2O2 provided the best dye removals, suggesting 

a synergic effect between AC and iron catalysis. The solution pH strongly affected the 

removal efficiency sequence of the processes tested and treatments with H2O2 were more 
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Table 2.2 (II) . Selected results of physico-chemical dye oxidation studies with AC-
catalysed decolourisation. (cont.) 

resultsd wastewater 
characteristicsc 

 
 with AC without AC 

reference 

SW: H. Everzol Black 
GSP (c: 36); pH: 7 
 

 k: 0.29 (20 min, λ: 596) 
kTOC: 0.019 (45 min) 

k: 0.20 (20 min, λ: 596) 
kTOC: 0.011 (45 min) 

Ince et al. (2002) 

 k: 0.0475 k: 0.0243 Silva and Faria 
(2003) 

 k: 0.0382 
 

 k: 0.0457 
 

 k: 0.0435 

 
 k: 0.0245 

 

SW: Solophenyl Green 
BLE (c: 40–50 ADA) 
 

 k: 0.0389 
 
 

  

SW: Solophenyl Green 
BLE (c: 41–50 ADA) 

 k: 0.048 k: 0.042 (9 min) [UV] 
k: 0.024 (9 min) [UV/TiO2] 

Silva et al. (2006) 

SW: Erionyl Red B    
(c: 41–50 ADA) 

 k: 0.063 k: 0.030 (9 min) [UV] 
k: 0.059 (9 min) [UV/TiO2] 

 

SW: Chromotrope 2R 
(c: 41–50 ADA) 

 k: 0.034 k: 0.024 (9 min) [UV] 
k: 0.023 (9 min) [UV/TiO2] 

 

SW: Methyl Orange  
(c: 120) 

 k: 0.379 k: 0.253 (1st cycle, 30 min) 
[UV/TiO2] 

Shi et al. (2008) 

SW: Acid Fuchsine   
(c: 120) 

 k: 0.251 k: 0.164 (1st cycle, 30 min) 
[UV/TiO2] 

 

SW: Methyl Orange  
(c: 120) 

 k: 0.355 k: 0.253 (1st cycle, 30 min) 
[UV/TiO2] 

 

SW: Acid Fuchsine   
(c: 120) 

 k: 0.143 k: 0.164 (1st cycle, 30 min) 
[UV/TiO2] 

 

cAbbreviations: SW, simulated wastewater; c, inlet concentration, mg L–1; TW, textile wastewater; 
H, hydrolysed; COD, chemical oxygen demand, mg L–1; TOC, total organic carbon, mg L–1; ADA, 
after dark adsorption. dAbbreviations: XCOL, colour removal; λ, wavelength of colour analysis, nm; 
XTOC, total organic carbon removal; XCOD, chemical oxygen demand removal; k, first-order 
decolourisation rate constant, min–1; kTOC, first-order TOC removal rate constant, min–1. 
 

 

effective under acidic conditions. In case of a real dye wastewater, the decolourisation by 

GAC/H2O2 and FeGAC/H2O2 methods was about six times higher than by single H2O2 

oxidation. In a heterogeneous Fenton-like reaction for azo dye Orange II decolourisation 

using iron-impregnated AC catalyst as peroxide activator, the catalytic activity of Fe/AC 

surpassed the activity of AC support itself (Ramirez et al., 2007). However, an important 

limitation of this catalyst was the iron loss from the support. This problem can be avoided 

either by preparing other types of carbon supports such as carbon aerogels in which iron 

is within the aerogel structure (Ramirez et al., 2007) or, alternatively, by tailoring the AC to 
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meet the demands of the catalytic reaction considered and using it as a catalyst on its 

own (Santos et al., 2009). 

 

3.4.3. Ozonation of dyes 

 

Ozone is a more powerful oxidising agent (E0 = 2.07 V) than other well-known oxidants 

such as H2O2. It is capable of oxidising a vast range of organic pollutants in industrial 

wastewaters, such as wastewaters from the textile industry (Lin and Lin, 1993). Single 

ozonation, however, rarely leads to total mineralisation. The oxidation can be strongly 

enhanced in terms of ozone consumption efficiency, operation time and mineralisation 

rate by homogeneous or heterogeneous catalysis (Legube and Leitner, 1999). Apart from 

the most common catalysts such as metal oxides or supported metal oxides (Legube and 

Leitner, 1999; Kasprzyk-Hordern et al., 2003), AC was suggested as an attractive 

alternative, accelerating the transformation of O3 into ·OH radicals in aqueous phase (Jans 

and Hoigné, 1998). In general, catalytic ozonation with AC is strongly influenced by its 

textural and surface chemical features and favoured by ACs with large surface areas and 

high basicity (Faria et al., 2005; Sánchez-Polo et al., 2005; Faria et al., 2006). It has to be 

noted that even in liquid phase, ozone may oxidise the AC surface to a certain extent, 

resulting in both the introduction of oxygenated electron-withdrawing groups and the 

decrease of catalytic activity (Faria et al., 2006). 

 

Most of the studies suggesting AC catalysis during the ozonation of a dye wastewater 

showed that ozone alone is strong enough to decolourise the colourants and that AC 

plays merely a role in COD/TOC removal enhancement. E.g., Lin and Lai (2000) 

investigated the ozone oxidation of a textile wastewater in a fluidised or fixed GAC bed 

reactor. While the amount of GAC had a relatively little effect on wastewater colour 

removal, COD reduction was considerably enhanced by adding more GAC into the reactor 

up to a maximum amount. The non-catalytic ozonation of Acid Blue 113, Reactive Red 

241 and Basic Red 14 quickly decolourised all the dye solutions but no satisfactory TOC 

removals were achieved (Faria et al., 2005). However, AC-amended ozonation not only 

increased decolourisation but also mineralisation of the organic matter, the latter showing 

a close relationship with the basicity of the AC sample. Gül et al. (2007) ozonised the azo 

dyes Reactive Red 194 and reactive Yellow 145 in aqueous solutions and reached double 

TOC removal efficiencies in the presence of GAC. The authors showed that although the 

formation of hydroxyl radicals took place on the GAC surface, the main oxidative reactions 

proceeded in the bulk of the solution. The positive contribution of AC to dye removal 

efficiencies during ozonation was furthermore evidenced by an optimisation study for the 

removal of Bomaplex Red CR-L textile dye, by using the so-called Taguchi method. The 

study investigated the effects of HCO3
– ions, temperature, ozone–air flow rate, dye 

concentration, AC amount, H2O2 concentration, pH and treatment time on decolourisation 
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(Oguz et al., 2006). The most important parameter affecting the dye removal was the 

amount of AC (with maximum value as optimal). The HCO3
– ions have a negative effect 

on decolourisation in the catalytic ozonation process, probably due to their scavenging 

effect on the ·OH radicals (Kasprzyk-Hordern et al., 2003; Oguz et al., 2006; Oguz and 

Keskinler, 2008). Under continuous operation of AC-enhanced ozonation, the reactor 

configuration (e.g., distribution of the gas bubbles) can affect not only the colour and TOC 

removal rates from dye solutions/textile wastewaters but other cost-sensitive parameters 

such as the ozone requirement (Soares et al., 2007). 

 

Further improvements in dye mineralisation can be achieved when the catalytic 

ozonation runs with the use of an advanced catalyst, e.g. when AC is combined with a 

metal (or metal oxide) catalyst. Faria et al. (2009a) studied the catalytic ozonation of dyes 

Acid Blue 113, Reactive Yellow 3, Reactive Blue 5 and textile effluents by AC, cerium 

oxide and ceria-AC composite as catalyst materials. Compared to single ozonation, no 

major improvements were observed in colour removal rates by the catalysed processes. 

On the other hand, mineralisation of the dye solutions was enhanced by using the 

catalysts. The metal oxide performed better than AC alone, while the composite showed a 

synergic effect between them, leading to the best catalyst performance among all. 

However, during real textile wastewater treatment, O3/AC provided better TOC reduction 

than ozonation with either cerium oxide or composite catalyst. This behaviour was 

attributed to the scavenging effect of bicarbonate and carbonate ions in the effluent 

(Kasprzyk-Hordern et al., 2003; Oguz et al., 2006; Oguz and Keskinler, 2008) that 

somehow was less significant in case of single AC catalysis. Another study of these 

authors (Faria et al., 2009b) examined the effect of AC impregnation by manganese, 

cobalt or cerium on the removal of diazo dye Acid Blue 113 by catalytic ozonation. As it 

could be expected, the catalytic treatments resulted in an increase, particularly of dye 

mineralisation, compared to single ozonation. Although the best results were obtained by 

the catalyst containing cerium, the major part of the catalytic effect observed with the 

supported metal oxides must have been attributed to the AC support. From the studies 

above it can be concluded that AC can be an effective choice as catalyst on its own for 

the catalytic ozonation of real (textile) wastewaters. 

 

3.4.4. Photochemical and photocatalytic removal of dyes 

 

In recent years, photochemical processes based on ultraviolet (UV) radiation have 

been progressively developed for the removal of hazardous organic compounds due to 

their efficient, environmentally- and relatively cost-friendly nature. The role of UV in 

advanced oxidation processes is the formation of hydroxyl radicals when used in 

combination with a strong oxidising agent such as hydrogen peroxide (Eq. 7): 

H2O2 + hν → 2 ·OH           (7) 
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The UV/H2O2 treatment was suitable for dye removal from wastewater (Shu et al., 1994; 

Ince and Gönenç, 1997). During the UV/H2O2 photochemical treatment of the textile 

reactive dye Eversol Black-GSP, both decolourisation and TOC reduction was enhanced 

by GAC addition (Ince et al., 2002). Although this increment was ascribed solely to GAC 

adsorption, it is probably also due to the AC-catalysed peroxide decomposition producing 

additional ·OH radicals (section 3.4.2). 

 

Heterogeneous photocatalysis has received an increasing attention as it is carried out 

under ambient conditions, does not require expensive oxidants or additives and the 

catalysts are generally inexpensive, chemically stable and non-toxic (Herrmann, 2005). 

The process is initiated upon UV irradiation of the photocatalyst with the formation of 

electron/hole pairs (e–/h+), which can migrate rapidly to the surface and initiate redox 

reactions with suitable substrates. Oxygen over the catalyst acts as electron acceptor to 

form superoxide radicals while adsorbed OH– groups and H2O molecules are available as 

electron donors to yield the hydroxyl radical (Silva and Faria, 2003): 

CAT + hν → e– + h+ (8) 

CAT(e–) + (O2)ads → CAT + O2
·– (9) 

CAT(h+) + (H2O)ads → CAT + H+ + ·OH (10) 

CAT(h+) + (OH–)ads → CAT + ·OH (11) 

The degradation of colourants by semiconductor-assisted photocatalytic processes has 

been thoroughly investigated (Tanaka et al., 2000; Lachheb et al., 2002; Konstantinou and 

Albanis, 2004; Behnajady et al., 2006; Bizani et al., 2006). Most of these studies 

demonstrate efficient colour and TOC removal. Nevertheless, the addition of AC into the 

catalyst-suspended aqueous dye solution can have remarkable effect on pollutant 

removal. For instance, Silva and Faria (2003) conducted a study with photochemical and 

photocatalytic degradation of the triazo dye Solophenyl Green BLE in aqueous solution by 

UV irradiation. The photocatalysis was carried out by using both commercial titanium 

dioxide and mixtures of TiO2 with different ACs suspended in the solution. Although single 

UV treatment performed the best at lower dye concentrations, photocatalytic 

decolourisation was more efficient for solutions with higher dye content. The presence of 

AC enhanced the photoefficiency of TiO2 catalyst over the entire range of dye 

concentrations studied, and best performances took place in case of ACs with some 

electron availability (ACs with basic or slightly acid surfaces). This supports the hypothesis 

that AC acts as a photosensitiser, injecting an electron in the conduction band of TiO2 and 

triggering the photocatalytic formation of ·OH radical. During the photooxidation of azo 

dyes Solophenyl Green BLE, Erionyl Red B and Chromotrope 2R, the powerful 

decolourisation efficiency of AC-amended photocatalytic treatment by suspended TiO2 

(and GAC) was furthermore confirmed by the evaluation of both mineralisation degrees 
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and initial quantum yields (Silva et al., 2006). Although a direct relationship between the 

structure characteristics of azo dyes and their photodegradation could not be established, 

it might be interesting to check a possible correlation between the electrochemical 

characteristics of dyes and their decolourisation rates. 

 

The problem of possible catalyst leaching and their recovery from the suspended 

solutions urged researchers to investigate photocatalyst immobilisation. Wang et al. 

(2007) prepared nanocrystalline TiO2/AC composite catalysts by a modified sol-gel 

method for the photocatalytic degradation of monoazo Chromotrope 2R dye. The 

composite exhibited higher activities than TiO2 alone and photocatalytic decolourisation 

was more efficient than photolytic degradation. Enhanced dye removals by photocatalysis 

were also reported with TiO2-impregnated AC (Subramani et al., 2007), TiO2 immobilised 

on ACF (Shi et al., 2008) and even with both TiO2 and AC being immobilised on a support 

material such as silicone rubber film (Gao and Liu, 2005) or silica beads (Follansbee       

et al., 2008). Apart from the popular titanium dioxide, zinc oxide has been found a suitable 

alternative for photocatalytic decolourisation processes, indicating the synergism with AC 

e.g. in the form of ZnO/AC composites (Byrappa et al., 2006; Sobana and Swaminathan, 

2007). By doping another semiconductor on the surface of the photocatalyst, it is possible 

to further improve its photocatalytic efficiency due to the increased charge separation and 

extended photo-responding range. Sun et al. (2009) showed that the photocatalytic 

decolourisation rate of the azo dye Congo Red was higher with (WO3-TiO2)/AC catalyst 

than with TiO2/AC. On the other hand, AC-amended photocatalysis can be enhanced by 

developing the carbon material itself. Both (activated) carbon nanotubes with unique 

electronic properties (Yu et al., 2005) and ordered mesoporous carbon with periodic pore 

structure (Park et al., 2008) have been reported to facilitate the photocatalytic activity of 

TiO2 in dye degradation more efficiently than AC. Recently, some combined photocatalytic 

dye treatment systems presented powerful decolourisation potentials such as the 

microwave-enhanced photodegradation using TiO2/AC composite catalyst (He et al., 

2009) or the electro-photocatalytic oxidation using TiO2 immobilised on ACF anode (Hou 

et al., 2009). However, the possibly significant additional costs of operation were not 

evaluated. 

 

3.4.5. Miscellaneous dye removal processes 

 

Lately, some individual AC-enhanced oxidation treatments for dye degradation have 

been published which could not be clearly classified into any of the previously discussed 

advanced oxidation techniques. This section includes these methods such as oxidation by 

non-thermal plasma or by irradiation. 
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In a study by Zhang et al. (2007a), a gas-liquid series electrical discharge reactor was 

applied for the degradation of Methyl Orange in the presence of different GACs. The pulse 

discharge alone ensured fast decolourisation with the non-thermal plasma produced that 

could generate various reactive agents such as radicals (·O, ·OH) or molecular species 

(H2O2, O3). However, dye degradation could be further increased and COD could be 

removed effectively by the combination of pulse discharge and GAC, the latter promoting 

the decomposition of molecular oxidising agents into hydroxyl radicals. The study of 

Zhang et al. (2007b) was based on the fact that AC, aside from being an excellent 

adsorbent, can strongly absorb microwave energy, resulting in the fast chemical oxidation 

of pollutants on the AC surface. The results indicated that decolourisation of the Congo 

Red dye solution proceeded much faster by PAC-enhanced microwave irradiation than by 

single AC adsorption or microwave treatment and, in addition, the combined system 

provided very efficient TOC removals, probably due to the only minor formation of 

intermediate products. However, catalytic activity of PAC simultaneously decreased with 

its cyclic reuse because of its synchronous oxidation with the colourant. Microwave 

irradiation, on the other hand, may also be applied for dye degradation indirectly. Yang    

et al. (2009) investigated the azo dye Acid Orange 7 degradation in an oxidation process 

using sulphate free radical (SO4
·–) (E0 = 2.6 V), produced from the decomposition of 

persulphate anion (S2O8
2–) by microwave activation, in the absence or presence of AC. 

Although persulphate anion is a strong oxidising agent itself (E0 = 2.01 V), it reacts only 

very slowly at ambient temperatures. In the control experiments, no colour removal was 

observed when only microwave irradiation or persulphate were applied. In contrast, their 

simultaneous application led to rapid and complete decolourisation. The oxidation could 

be enhanced by the addition of AC, mainly due to its catalytic role under microwave 

treatment (Zhang et al., 2007b). 

 

 

4. AC-amended biological dye removal processes 

 
Microbial decolourisation and degradation of dyes is one of the oldest but probably the 

most cost-effective among all methods for colour removal from wastewaters. Moreover, it 

is an environmentally friendly process that does not require hazardous or aggressive 

chemicals. Some excellent reviews have been published reporting the variety of aspects 

in microbial dye degradation (Banat et al., 1996; Stolz, 2001; Pearce et al., 2003; Fu and 

Viraraghavan, 2001). As it is well-documented in the literature, the addition of AC into a 

biological system treating dye or textile wastewaters presents a positive contribution to 

pollutant removal (Table 2.3). These studies may be grouped according to the main role of 

AC considered: whether the process enhancement is rather due to higher biomass activity 

(biofilm on AC surface) and dye adsorption or to AC catalysis. 
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4.1. AC-supported microbial degradation of dyes 

 

Several studies have examined the enhancement of biological dye wastewater 

treatment by AC. The predominant conclusion was that the synergy is due to the 

simultaneous occurrence of well-developed biomass on the AC support, carbon 

adsorption and biodegradation. Most traditional biological systems decolourising dyes with 

the assistance of AC operated with an aerobic activated sludge (Shaul et al., 1983; 

Specchia and Gianetto, 1984). Dye degradation is strongly dependent on the biomass 

concentration and its overload in the biological activated carbon (BAC) can inhibit the 

biological activity near to the AC surface, resulting in colour removal decrease (Márquez 

and Costa, 1996; Mezohegyi et al., 2008). From a technological point of view, GAC is a 

better choice than PAC considering its stability and retention in the bioreactor. Some 

sequential batch reactor (SBR) treatments showed that the removal efficiencies of 

colourants having minimal adsorption affinity for the carbon used such as disperse 

(Sirianuntapiboon and Srisornsak, 2007) or direct dyes (Sirianuntapiboon et al., 2007; 

Sirianuntapiboon and Sansak, 2008) increased through the addition of GAC into the SBR 

system, hence GAC acted mainly as a media for biofilm. Although it is not practical to 

work with pure cultures since mixed ones are effective for dye biodegradation and 

mineralisation as well (Pearce et al., 2003), a couple of studies evidenced that the use of 

AC in combination with a specific microorganism in the BAC system outperformed the 

conventional biotreatment of dyes (Walker and Weatherley, 1999b; Zhang and Yu, 2000). 

The biological dye degradation in BAC systems has often been described with models 

based on Monod kinetics (Mezohegyi et al., 2008; Walker and Weatherley, 1997; Costa 

and Márquez, 1998; Lin and Leu, 2008). 

 

Commercial dyes are not uniformly susceptible to microbial attack in aerobic treatment 

because of their unique and stable chemical structures. Nevertheless, azo dyes                

–representing the largest class of dyes– can be decolourised by the reduction of the azo 

bond(s) in anaerobic bioreactors (Delée et al., 1998) and can be mineralised completely 

by a sequential anaerobic–aerobic treatment (Van der Zee and Villaverde, 2005). So far, 

using BAC for azo dye removal under anaerobic conditions has not been so widespread. 

E.g., Kuai et al. (1998) carried out a sequential anaerobic/aerobic process of a textile 

wastewater containing soluble acid and metal-complex azo colourants and used GAC in 

the UASB (upflow anaerobic sludge blanket) reactor in order to protect the top-layer 

granular sludge from toxicants. The combined GAC-amended UASB/aerobic activated 

sludge treatment showed a stable performance with a COD and colour removal of 98 and 

95%, respectively. Since AC plays a role in obtaining high concentrations of active 

microorganisms in the bioreactor, the logical way is to operate with high GAC apparent 

volume/reactor volume ratios. Effective biodecolourisation of the azo dye Acid Orange 7 

has been reported under reductive environment in some packed-bed-like reactor 

configurations with immobilised mixed cultures on GAC such as packed-bed with BAC 
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(Ong et al., 2008a), SBR filled with BAC (Ong et al., 2008b) or combined GAC-packed 

column/SBR (Ong et al., 2005a). Moreover, GAC inoculated with single species of 

Bacillus OY1-2 was able to reduce the azo dye Red B in a packed reactor under anoxic 

conditions (Li et al., 2004). 

 

4.2. AC-catalysed bioreduction of azo dyes 

 

The anaerobic reduction of several azo colourants usually proceeds rather slowly 

making the process insufficient from practical aspects. Bacterial azo reduction is generally 

considered as a non-specific reduction process that can be helped by redox mediators, 

shuttling electrons from bacteria to the azo dyes (Keck et al., 1997). Therefore, the use of 

such agents is a logical strategy for accelerating anaerobic decolourisation. Quinone-like 

compounds have been reported to catalyse the decolourisation of azo dyes (Van der Zee 

et al., 2001; Rau et al., 2002; Van der Zee and Cervantes, 2009). However, continuous 

dosing of the redox mediator results additional process costs. This problem can be 

avoided by immobilising the electron mediator in the bioreactor. For this purpose, AC was 

considered as it can be retained in the reactor for prolonged time and it generally contains 

carbonyl/quinone sites on its surface. 

 

The first study considering AC as catalytic redox mediator in an advanced reduction 

process (ARP) was reported by Van der Zee et al. (2003) treating the hydrolysed azo dye 

Reactive Red 2 in a lab-scale UASB reactor and using volatile fatty acids as electron 

donors. Mixing of AC with the granular sludge greatly improved both the dye removal and 

the formation of its reduction product aniline, giving evidence of AC’s catalytic behaviour. 

Moreover, batch experiments with azo dye Acid Orange 7 proved that chemical reduction 

of the dye was accelerated by AC addition. These results suggested that AC could accept 

electrons from the microbial oxidation of organic acids and transfer the reducting 

equivalents to the azo dye, thereby accelerating the process. Recently, some studies 

examined the different aspects of AC-catalysed ARPs of azo dyes. Mezohegyi et al. 

(2007) investigated the anaerobic reduction of Acid Orange 7 in different reactor systems, 

in the presence of solid electron mediators. Batch experiments with graphite, incorporated 

with the sludge, showed that electron-mediating capability of the solid particles contributed 

to higher decolourisation rates. The use of AC in a continuous upflow packed-bed 

bioreactor (UPBR) resulted in rather fast dye conversion, up to 99% in 2 min of space time 

(~5.4 min of HRT). The continuous reactor with AC was found to be more effective than 

the identical reactor working with graphite, proving the importance of AC’s beneficial 

surface properties in biological azo reduction. Compared to the UPBR, an improvement in 

Acid Orange 7 conversion was achieved by using a novel-type upflow stirred packed-bed 

reactor (USPBR) containing BAC (Mezohegyi et al., 2008). The USPBR provided more 

reproducible data to make kinetic modeling of azo dye bioreduction possible and the 
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experimental points of dye conversion fitted well to Michaelis–Menten kinetics, 

independently from the inlet dye concentration. The electrochemical characteristics of the 

azo dyes were a key factor in ARPs: the bioreducibility of azo colourants could be 

predicted by their reduction potential values in the catalytic USPBR system, independently 

of the azo dye type, complexity and adsorption affinity (Mezohegyi et al., 2009). As for the 

AC characteristics, the biological removal of azo dyes Orange II and Reactive Black 5 in 

USPBRs was significantly affected by the AC textural properties and the reduction rate 

constants were proportional to the AC surface area (Mezohegyi et al., 2010). Variation of 

the AC surface chemistry seemed to have less effect on dye conversion rates, even 

though the hypothesis of AC catalysis by the carbonyl/quinonic sites in the ARP was 

confirmed. Nevertheless, an other mechanism influenced the catalytic decolourisation too, 

particularly in the absence of significant densities of surface oxygen-containing groups, 

whereas not the quinonic groups but rather the delocalised π-electrons were involved in 

the reduction (Mezohegyi et al., 2010). González-Gutiérrez et al. (2009) proposed 

pathways for the anaerobic degradation of azo dye Reactive Red 272 in a fixed-bed 

reactor containing BAC and, similarly, considered AC besides extracellular enzymes or 

coenzymes to transfer electrons by means of its quinonic groups. 

 

 

5. Conclusions 

 
Activated carbon plays an important role in both physico-chemical and biological dye 

decolourisation techniques. Although it generally has a high affinity to adsorb dyes, AC 

adsorption is by far not the only mechanism that contributes to higher dye removal rates in 

the hybrid processes. Most of the colour-reducing methods having been reported in the 

literature could be auspiciously combined with the beneficial properties of AC, resulting in 

a synergetic increase in dye removal and, in many cases also, mineralisation efficiencies. 

The advantageous roles of AC or advanced (activated) carbon materials in advanced dye 

oxidation processes (generally, catalysing the formation of ·OH radicals) and in advanced 

(azo) dye reduction methods (transferring electrons) make these treatments attractive 

choices for economically improving textile/dye wastewater technologies. 
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3 
Effective anaerobic decolorization of azo dye Acid 

Orange 7 in continuous upflow packed-bed reactor 

using biological activated carbon system 

 

 

 

Abstract 

The anaerobic reduction of azo dye Acid Orange 7 (AO7) was investigated in a 
continuous upflow packed-bed reactor (UPBR) containing biological activated carbon 
(BAC). Preliminary batch experiments using graphite proved the catalytic effect of using a 
solid electron mediator in the reactor. Before the start of continuous experiments, AO7 
adsorption studies were done to control adsorption effects on initial decolorization rates. In 
a continuous UPBR-BAC system, high azo dye conversion rates were achieved during 
very short space times (τ) up to 99% in 2.0 min. In order to know which are the crucial and 
most influencing properties of BAC in AO7 reduction, other materials –graphite and 
alumina– with different properties were also tested in UPBRs. The results show that both 
electron-mediating capability and specific surface area of activated carbon contribute to 
higher reduction rates. Compared to other continuous and biological processes treating 
azo dyes, UPBR-BAC seems to be a very effective and promising system for anaerobic 
azo dye degradation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<Published as: Mezohegyi G, Kolodkin A, Castro UI, Bengoa C, Stuber F, Font J, 
Fabregat A, Fortuny A. (2007). Industrial & Engineering Chemistry Research 46(21): 
6788–6792.> 

UNIVERSITAT ROVIRA I VIRGILI 
CATALYTIC AZO DYE REDUCTION IN ADVANCED ANAEROBIC BIOREACTORS 
Gergö Mezöhegyi 
ISBN:978-693-7672-0/DL:T-1751-2010 



CHAPTER 3 

50 

1. Introduction  

 
Azo dyes are chemical substances commonly used in textile, pharmaceutical, and food 

industries and characterized by the N═N bond. Their production is more than 1 million 

tons per year in the world, and during dying processes, about 40% of this huge amount of 

azo dyes ends up in wastewaters. In addition, about 40–65 L of textile effluent is 

generated per kg of cloth produced (Manu and Chaudhari, 2002). There is no adequate 

process to treat these wastewaters at high concentrations and at soft conditions on the 

industrial scale for the time being, and the release of these compounds into the 

environment presents serious problems of pollution related to both aesthetic reasons and 

their toxicity. 

 

Several methods have been found to treat azo dye wastewaters (Forgacs et al., 2004). 

Removal techniques for dyes include coagulation, advanced oxidation processes, 

membrane processes, and adsorption. These physical and chemical treatments are 

effective for color removal but use more energy and chemicals than biological processes 

(Ong et al., 2005b) and, in addition, some of them produce large amounts of secondary 

waste solids or streams that require further treatment or disposal (Georgiou et al., 2005). 

Among all of the existing techniques, the most economic and environmentally friendly are 

biological treatments. Because of the fact that azo dyes are artificial compounds and 

especially designed to be resistant in the natural environment, their biological degradation 

has serious obstacles. Investigations of the biodegradability of water-soluble azo dyes by 

an activated sludge process have indicated that, in most cases, these dyes could not be 

degraded under aerobic conditions. On the other hand, azo reduction can be relatively 

easily achieved under anaerobic conditions (Beydilli et al., 2005). Moreover, most of the 

products created by breaking of the N═N bond could be successfully degraded under 

aerobic conditions. These suggest a sequential anaerobic–aerobic process as the 

reasonable scheme of treating wastewaters containing azo dyes (Kalyuzhnyi and Sklyar, 

2000). The bottleneck of this process is the anaerobic reduction, so by having an efficient 

first step in azo dye degradation, the more complete sequential treatment can be carried 

out. 

 

The only, but serious, disadvantage of the anaerobic biological techniques is the need 

for long hydraulic residence times. Several studies indicate that reduction of many azo 

dyes is a relatively slow process (Brás et al., 2005; Kapdan et al., 2003; Manu and 

Chaudhari, 2003; Méndez-Paz et al., 2005a,b; Rajaguru et al., 2000; Sponza and Işik, 

2002). However, by using an appropriate catalyst during the reduction, anaerobic 

biodegradation could be speeded up, resulting in much higher efficiency. In different 

experimental systems, redox mediators, like quinones and flavine-based compounds, 

have been demonstrated to accelerate azo dye reduction (Cervantes et al., 2001; Dos
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Santos et al., 2005; Field and Brady, 2003; Rau et al., 2002; Van der Zee et al., 2001). 

These electron mediators shuttle reducing equivalents from an electron-donating 

cosubstrate to the azo linkage. Although the effective redox mediator dosage levels are 

low, continuous dosing implies continuous expenses. Therefore, it is desirable to 

immobilize the redox mediator in the bioreactor. For this purpose, activated carbon (AC) 

was considered (Figure 3.1) since it is known to contain surface quinonic structures    

(Van der Zee et al., 2003). Despite these facts, only a very few studies have been done 

using activated carbon as a catalyst for azo dye biodegradation (Van der Zee et al., 2003; 

Pasukphun and Vinitnantharat, 2003; Walker and Weatherley, 1999). 
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Figure 3.1 . Role of activated carbon in anaerobic azo dye degradation. 

Considering the amount of azo dye wastewaters mainly originated from the textile 

industry, it is clear that continuous systems have to be designed for treating these 

effluents. The main objective of this study was to investigate the anaerobic decolorization 

of azo dye Acid Orange 7 (Figure 3.2) using a continuous upflow packed-bed reactor 

(UPBR) filled with biological activated carbon (BAC). This system was compared with 

UPBRs using different support materials such as graphite or alumina to evaluate the 

significant role of activated carbon in anaerobic degradation of Acid Orange 7 (AO7). 
 
 
2. Materials and methods 
 
2.1. Chemicals 
 

Azo dye Orange II (C.I. Acid Orange 7) Sodium Salt (dye content 99%, Sigma, ref. 

O8126) was selected as a model compound since, on the one hand, this azo dye is 

representative of a large class of azo dyes used commercially and, on the other hand, 

quantitative determination of one of its anaerobic degradation products, sulfanilic acid, is 

relatively easy. Sulfanilic acid (SA) was supplied by Sigma (min. 99%, ref. S5263). 
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Sodium acetate (99%, Aldrich, ref. 11019-1) was used as the carbon source for sludge 

and also as the source of reductive equivalents for azo dye reduction. Acetic acid (99.8%, 

Aldrich, ref. 10908-8) was used for batch experiments as the continuous carbon source 

and also as a pH controller. Alumina (Norton S.A., ref. 6275) with granule size of 25–50 

mesh (0.3–0.7 mm), graphite flakes (Aldrich, particles of 75+ mesh, ref. 33246-1), and 

activated carbon (Merck, granules of 2.5 mm, ref. 1.02518.1000) were used as support 

materials for biodegradation. Activated carbon was crushed, and granules of 25–50 mesh 

size were separated, washed with distilled water, dried at 104 °C for 15 h, and stored 

under normal conditions until use. Carborundum granules (Carlo Erba Reagents, ref. 

434766) were used as inert diluent for the activated carbon catalyst. The basal media 

contained the following compounds (mg L–1): MnSO4·H2O (0.155), CuSO4·5H2O (0.285), 

ZnSO4·7H2O (0.46), CoCl2·6H2O (0.26), (NH4)6Mo7O24 (0.285), MgSO4·7H2O (15.2), CaCl2 

(13.48), FeCl3·6H2O (29.06), NH4Cl (190.9), KH2PO4 (8.5), Na2HPO4·2H2O (33.4), and 

K2HPO4 (21.75). 

 

NaO3S NH2 + NH2

OH

+ 4H+ + 4e-NaO3S N N

OH

Acid Orange 7 Sulfanilic Acid 1-Amino-2-Naphthol

 

Figure 3.2 . Anaerobic degradation of Acid Orange 7. 

 
 
2.2. Batch experiment 
 

For batch experiments, a stirred-tank reactor was used with a useful volume of 1.2 L 

maintained at a constant temperature of 35 °C. The mixed culture of anaerobic sludge 

was obtained by partial digestion of aerobic sludge under anaerobic conditions. The 

reactor was agitated by a magnetic stirrer only for 20 s/per experiment –to avoid 

destruction of biofilm on the catalyst surface– immediately after changing 300 mL of 

decolorized dye solution for a fresh one. Acetic acid (4.0% v/v) was continuously fed not 

just to keep the acetate level nearly constant in the batch but also to help keep the pH 

level between 6.7 and 7.2. Anaerobic conditions were maintained by continuous bubbling 

of helium into the reactor. The redox potential was continuously monitored. 

 

The batch contained 20 g of graphite as an electron-conducting catalyst. In fact, the 

reason of using graphite instead of activated carbon was that graphite has no adsorption 

properties; thus, dye degradation in the batch reactor could be clearly followed. In the 

case of AC, which can easily adsorb a higher amount of azo dyes, it is more difficult to 
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examine adsorption and catalytic effects separately since adsorption is not constant and 

depends both on azo dye concentration in the liquid phase and on contact time. 

 

The objective of the batch experiment was to compare Acid Orange 7 anaerobic 

degradation in traditional and discontinuous biological systems –operating with high 

contact times– with a batch containing a solid electron mediator. 

 
 
2.3. Continuous experiments 
 

Figure 3.3 shows schematically our continuous system. The upflow packed-bed reactor 

has a diameter of 15 mm with a useful volume of 9 mL. It is filled with the mixture of 10 g 

of carborundum granules –its inert property was previously tested, and carborundum did 

not show any positive effect on decolorization rates– and 1 g of activated carbon with the 

size of 25–50 mesh. To prevent washing out of AC, two filters were placed into the top 

and bottom of the reactor. The UPBR was working at a constant temperature of 35 °C. 

The entering feed was 100 mg L–1 Acid Orange 7 solution containing 200 mg L–1 of 

sodium acetate as substrate and the basal media with microelements. The flow rate of the 

feed was varied between 25 and 70 mL h–1. The pH of the outlet solution varied between 

6.8 and 7.2. The anaerobic condition in the feeding bottle (5 L) was maintained by both 

cooling of the solution (at 5 °C) and bubbling of h elium. The redox potential was 

continuously monitored and remained below –500 mV (referred to Ag+/AgCl electrode). 
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Figure 3.3 . Continuous and anaerobic upflow packed-bed reactor setup. 

To prepare the biological system, anaerobic sludge was filtered by a filter with a pore 

size of 20–25 µm to only have single cells and spores. This filtrate was pumped through 

the activated carbon for a week. During this period, the biofilm was immobilized on the AC 

surface, resulting in the so-called biological activated carbon. Then the biofilm was 

adapted to AO7 by continuous flowing of the dye solution containing both the basal media 

and the carbon source through the reactor. To maintain the same culture of sludge, every 
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new reactor was set by using the outlet of an already operated reactor as the inlet to the 

new one. 

 

In order to know what are the crucial and most influencing properties of the BAC 

system in AO7 reduction, different materials –graphite and alumina– with different 

conducting and surface properties were also tested in UPBRs. These reactors were set up 

in the same way as the one with AC. 

 

 
2.4. Adsorption experiments 
 

Before starting experiments in UPBRs, all reactors with activated carbon, graphite, and 

alumina were saturated with azo dye to avoid the influence of initial dye adsorption during 

the initial period of operation. To know exactly the sorption capacities of these materials 

and the time of saturation needed, adsorption experiments were done. Nine bottles, each 

of them containing 100 mg of activated carbon, were filled with 100 mL of AO7 solution in 

different initial concentrations between 150 and 600 mg L–1. Adsorption was allowed to 

run for 16 days, and then samples were taken. For alumina, graphite, and AC, dye 

adsorption was also examined as a function of time. Bottles containing 100 mg of either 

alumina or graphite or AC and 100 mL of AO7 solution with an initial concentration of 400 

mg L–1 were left for 16 days, and during that period, samples were taken 10 times. All 

solutions were slowly stirred for 30 s each day. The pH of the solutions was always 

adjusted to be between 7.0 and 7.5. 

 

 
2.5. Analytical methods 
 

Acid Orange 7, sulfanilic acid, and acetate were measured by high-performance liquid 

chromatography (HPLC) on a C18 Hypersil ODS column in a gradient of methanol–water 

mobile phase with a flow rate of 1 mL min–1. AO7 was determined on 487 nm (at a 

retention time (RT) = 17.55 min), sulfanilic acid was determined on 252 nm (RT = 2.18 

min) and acetate was determined on 210 nm (RT = 3.68 min). 1-Amino-2-naphthol 

(1A2N), the other product generated during the anaerobic degradation of AO7, was not 

determined because of its partial precipitation. 
 
 
3. Results and discussion 

 

3.1. Adsorption kinetics 
 

In the cases of alumina and graphite, Acid Orange 7 adsorption was found to be almost 

zero. On the contrary, activated carbon showed a strong adsorption capacity for AO7. Azo 
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dye adsorption as a function of time is shown in Figure 3.4. Adsorption fits very well to a 

second-order kinetic model (Órfão et al., 2006) (eq. 1), 

AE

A
2

E

1 tQK

tQK
Q

⋅⋅+
⋅⋅

=            (1) 

where Q (mg gAC
–1) represents the AO7 concentration in the solid phase, QE (mg gAC

–1) is 

the corresponding value at equilibrium, tA (days) is the contact time, and K                    

(gAC mg–1 day–1) is the adsorption rate constant. Values of Q can be obtained from (eq. 2), 

( )
AC

A0A

m

VCC
Q

⋅−
=            (2) 

where CA (mg L–1) is the AO7 concentration in the solution, C0A (mg L–1) is the initial dye 

concentration, V (L) is the volume of solution, and mAC (g) is the mass of activated carbon. 

After linearization of eq. 1, QE and K values were found to be 340 mg gAC
–1 and            

2.59 × 10–3 gAC mg–1 day–1, respectively. 

 

 
3.2. Equilibrium adsorption isotherm 
 

The sorption process is well-described by the Langmuir isotherm (Figure 3.5). 

According to the model (eq. 3), 

EL

ELL
E 1 CK

CKQ
Q

⋅+
⋅⋅

=            (3) 

where the variables QE (mg gAC
–1) and CE (mg L–1) are the azo dye equilibrium 

concentrations in the solid and liquid phases, QL (mg gAC
–1) is the maximum adsorbance 

capacity according to the Langmuir model, and KL (L mg–1) is the Langmuir-constant; a 

maximum adsorption of 339 mg gAC
–1 with a KL value of 0.242 L mg–1 was found by using 

the linearized form of eq. 3. Before the start of continuous experiments, more than 6 times 

this amount of dye was pumped through the reactors to ensure avoidance of initial 

adsorption effects on outlet dye concentration. 
 

 

3.3. Batch experiment 

 

Initial concentrations of Acid Orange 7, sulfanilic acid, and acetate in the batch reactor 

were 48, 41.5, and 110 mg L–1, respectively. The pH of the solution at the start was 6.8 

and at the end was 6.7. Figure 3.6 shows AO7 conversion vs time. When using graphite in 

the batch, after 20 h, azo dye degradation was about 88%. In our previous study, 
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operating with the same initial parameters but having no catalyst in the reactor, no 

decolorization was observed during the first 24 h (data not shown). This means that using 

graphite together with anaerobic sludge results in a significant increase of color removal. 

Moreover, in different traditional and discontinuous biological systems –using different 

initial dye concentrations– high Acid Orange 7 conversion (> 90%) has generally required 

longer contact times (Table 3.1). Although it is difficult to compare decolorization 

efficiencies of these systems to ours since wastewater characteristics could be rather 

different, considering the required contact times, it also implies that using a solid electron 

mediator in the bioreactor can speed up AO7 degradation. 

 

0

100

200

300

400

0 5 10 15 20

tA (days)

Q
 (m

g 
g

A
C

-1
)

 
Figure 3.4 . Acid Orange 7 adsorption on activated carbon predicted by a second-order 

kinetic model (line). 
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Figure 3.5 . Acid Orange 7 equilibrium adsorption on activated carbon predicted by 

Langmuir isotherm (line). 
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In earlier studies, it was found that 1-amino-2-naphthol (1A2N) is a redox mediator that 

plays a significant role in the transport of electrons to the dye, thus giving to the whole 

process an autocatalytic nature (Méndez-Paz et al., 2003; Van der Zee et al., 2000). For 

this, a second-order kinetic model –supposing autocatalysis– was proposed by Van der 

Zee et al. (2000) in which X varies as a function of time according to (eq. 4), 

( )
( ) 021021

102

exp

1

cktkctkk

kck
X

⋅+⋅+⋅⋅⋅
+⋅−

=         (4) 

where X is the dye conversion, c0 (mmol L–1) is the initial azo dye concentration, t (h) is 

the elapsed time, and k1 (h
–1) and k2 (L mmol–1 h–1) are the first-order and second-order 

kinetic constants, respectively. As Figure 3.6 shows, the model fits very well the 

experimental points. Significant deviations from the model can only be observed in the 

period of first 4 h of decolorization, which can be explained by having a certain 

concentration of 1A2N in the batch at initial conditions and, also, having higher redox 

potential values at the start because of the initial mixing of fresh and decolorized solution. 
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Figure 3.6 . Acid Orange 7 conversion in batch reactor using graphite as solid electron-

mediator catalyst. Line shows the fitting to second-order autocatalytic model. 

 

3.4. Continuous experiments 

 

In the case of continuous packed-bed reactors working with catalysts, it is better to 

examine conversion values as a function of space time rather than of hydraulic residence 

time, since the crucial factor in these reactions is the amount of catalyst rather than the 

reactor volume. Space time (τ, min) is defined by (eq. 5), 
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ρF

m

⋅
=τ

V

C              (5) 

where mC (g) is the mass of catalyst in the reactor, FV (mL min–1) is the volumetric flow 

rate of azo dye solution, and ρ (g mL–1) is the density of the solution. 

 

AC is not just a redox mediator having the ability to conduct electrons; it also has 

important functional groups on its surface. To test the importance of all these properties in 

azo dye decolorization, graphite, which is an electron conductor having no specific surface 

properties, and alumina, having neither functional groups on its surface nor conductive 

properties, were also used in a UPBR to compare them with the BAC system. Results are 

shown in Figure 3.7. Using alumina in the anaerobic reactor did not result in high values of 

AO7 conversion, even at high space time. Only 33% of decolorization was achieved at a 

space time of 15.8 min, which cannot be considered as an effective treatment. A UPBR 

working with graphite showed much higher decolorization rates than that in the case of 

alumina. 77% of AO7 conversion was achieved at a τ of 9.7 min. The difference in 

efficiencies of these two systems suggests that the conductive property of the support 

material strongly affects azo dye decolorization. 

 

On the other hand, Figure 3.7 also shows that the BAC system definitely gave higher 

azo dye conversions than the UPBR with graphite. This can be explained by the different 

structural and adsorption properties of these two materials. While graphite has a structure 

that consists of only aromatic rings with delocalized electrons –causing its electron-

mediating property– and has no adsorption capability for AO7, the activated carbon 

structure contains both aromatic rings and surface functional groups. These specific 

quinonic groups are capable of transporting electrons by the way of keto–enol 

tautomerism that results in a more efficient reducing equivalent transfer compared with 

that of the delocalized electron system. In addition, in the case of AC, the strong 

adsorption capacity of AO7 and its high concentration on the carbon surface also help the 

electron transport from the electron donor acetate to the azo linkage. 

 

In UPBR-BAC, almost complete decolorization was achieved at short space time. AO7 

conversion was about 95% at 1.6 min, and 2.0 min of τ resulted in 99% of decolorization. 

These values of space time correspond to extremely short hydraulic residence times of 

about 4.4 min and 5.4 min (with packed-bed porosity of 0.3), respectively. By comparing 

these with hydraulic residence times applied in other continuous biological systems using 

similar initial dye concentrations (Table 3.1), it seems that UPBR-BAC requires one of the 

shortest times needed to achieve almost complete decolorization of AO7. 
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Figure 3.7 . Acid Orange 7 conversion in continuous UPBR using different support 

materials: (�) activated carbon, (�) graphite, and (�) alumina. 
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Figure 3.8 . Ratio between destroyed Acid Orange 7 and produced sulfanilic acid in 

different reactor systems: (�) batch with graphite, (�) UPBR with alumina,                   

(�) UPBR with graphite, and (�) UPBR with BAC. 

 

3.5. AO7–SA ratio 

 

As was shown in Figure 3.2, during the anaerobic degradation of Acid Orange 7, 

sulfanilic acid (SA) and 1-amino-2-naphthol are produced. To confirm the proposed 

reaction and check if only the azo bond was broken in the dye molecule or whether there 

were subsequent reactions, SA concentration in the outlet was also determined.       
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Figure 3.8 shows sulfanilic acid concentrations as a function of degraded AO7. It can be 

seen that the amount of produced SA is proportional to the amount of decolorized azo dye 

in the ratio of 1:1 –independent of the reactor system– giving evidence that the proposed 

reaction takes place. In addition, sulfanilic acid adsorption on the support materials or its 

possible consumption by microorganisms as a carbon source can be neglected. 

 
 
4. Conclusions 

 
To the best of our knowledge, a continuous upflow packed-bed reactor with biological 

activated carbon was applied, for the first time, for anaerobic azo dye decolorization. High 

conversion rates of Acid Orange 7 were achieved at very short space times, 

corresponding to extremely short hydraulic residence times. Different support materials 

were also used to determine the crucial roles of BAC in azo dye reduction. The results 

show that both electron conductivity and specific carbon surface with functional groups 

contribute to higher reduction rates. Compared to other continuous and biological 

processes treating azo dyes, UPBR with BAC seems to be one of the most effective and 

promising systems for anaerobic azo dye degradation. 
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4 
Novel bioreactor design for decolourisation of azo 

dye effluents 

 

 

 

Abstract 

The anaerobic decolourisation of azo dye Acid Orange 7 (AO7) was studied in a 
continuous upflow stirred packed-bed reactor (USPBR) filled with biological activated 
carbon (BAC). Special stirring of BAC and different biodegradation models were 
investigated. The application of appropriate stirring in the carbon bed resulted in an 
increase of azo dye bioconversion up to 96% in 0.5 min, compared to unstirred reactor 
system with ensuring high dye degradation rates at very short space times. In addition, 
USPBR provided much more reproducible data to make kinetic modeling of AO7 
biodegradation. First-order, autocatalytic and Michaelis–Menten models were found to 
describe the decolourisation process rather well at lower initial dye concentration. AO7 
showed significant inhibition effect to biomass beyond inlet dye concentrations of 300    
mg L–1. Expanding Michaelis–Menten kinetics by a substrate inhibition factor resulted in a 
model giving good fitting to experimental points, independently on the initial colourant 
concentration. Processing at very low hydraulic residence time together with higher initial 
dye concentration resulted in toxicity to bacteria. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<Published as: Mezohegyi G, Bengoa C, Stuber F, Font J, Fabregat A, Fortuny A. (2008). 
Chemical Engineering Journal 143(1–3): 293–298.> 
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1. Introduction 

 
Azo colourants make up the largest and most versatile class of dyes with more than 

2000 different azo dyes being currently used (Stolz, 2001). A typical drawback of azo dye 

colouration –mainly occured in textile industry– is that large amounts of the dyestuff are 

directly spilt to wastewater. These chemicals and their degradation products may cause 

serious problems of environmental pollution and, in addition, the increased demand for 

textile products have made textile industry one of the main sources of severe 

environmental problems worldwide (Vandevivere et al., 1998). Relevant factories have 

deficiencies of treating efficiently these effluents on industrial scale, particularly at higher 

dye concentrations and at lower energy consumptions. 

 

Up to now, several methods have been found to treat azo dye wastewaters (Slokar and 

Marechal, 1998; Robinson et al., 2001; Forgacs et al., 2004). However, among the diverse 

colour removal techniques, biological methods seem to be the most economic and 

environmental friendly. Many reviews are available on microbiological decolourisation of 

dyes and azo dyes (Stolz, 2001; Pearce et al., 2003; Banat et al., 1996; Delée et al., 

1998; Van der Zee and Villaverde, 2005). While latter ones can be reduced to the 

corresponding amines by bacteria under anaerobic conditions, they are difficult to 

completely breakdown aerobically (Nigam et al., 1996). On the other hand, the anaerobic 

breakdown products of azo dyes are more susceptible to biodegradation under aerobic 

conditions rather than under anaerobic conditions. Complete treatment and efficient 

biomineralisation process can, thus, be obtained by a sequential anaerobic–aerobic 

process (Delée et al., 1998). 

 

These sequential reactor studies have shown that a generally high extent of colour 

removal can be obtained (Lourenço et al., 2001) and several of them furthermore provide 

evidence for removal of aromatic amines (O’Neill et al., 2000a; Rajaguru et al., 2000). 

However, anaerobic reduction of many azo dyes can be considered as a relatively slow 

process (Nigam et al., 1996; O’Neill et al., 2000; Rajaguru et al., 2000; Supaka et al., 

2004) that is, practically the only, but serious disadvantage of biological azo dye 

decolourisation. To overcome this problem, by using redox mediators during the 

reduction, anaerobic biodegradation can be enhanced resulting in much higher removal 

rates. During last years, evidences have been accumulated that quinoid compounds and 

humic substances can play important roles as redox mediators in anaerobic reduction 

processes such as biotransformation of azo dyes, polyhalogenated pollutants and 

nitroaromatics  (Field et al., 2000). Among quinones, mostly applied compounds in azo 

dye degradation as catalytic mediators have been anthraquinone-2,6-disulfonate 

(Cervantes et al., 2001; Van der Zee et al., 2001; Rau et al., 2002; Dos Santos et al., 

2004) and anthraquinone-2-sulfonate (Rau et al., 2002; Dos Santos et al., 2004), both 

resulting highly efficient azo dye decolourisation. However, homogeneous reaction
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requires continuous dosing of the redox mediator resulting additional process costs. This 

problem can be avoided by immobilizing the electron mediator in the bioreactor. Aside 

from immobilized anthraquinone (Guo et al., 2007), activated carbon as a possible solid 

redox mediator containing surface quinonic structures, was reported to be enable to 

accelerate azo dye reduction (Van der Zee  et al., 2003; Mezohegyi et al., 2007). 

 

The role of activated carbon as catalyst is diverse in different reactions, related to 

oxidation, combination and decomposition but not to reduction (Stüber et al., 2005). 

Research for dye wastewater treatments by BAC system under anaerobic conditions have 

not been so widespread either. Upflow anaerobic sludge blanket reactors have been the 

most commonly used high-rate anaerobic systems that could be used for treatment of dye 

wastes (O’Neill et al., 2000b). To our knowledge, packed-bed-type reactors using 

biological activated carbon system have never been applied for anaerobic azo dye 

decolourisation by other authors. 

 

In our previous study (Mezohegyi et al., 2007) the results cleared the efficiency of using 

a solid electron mediator in both continuous upflow packed-bed reactors (UPBR) and 

discontinuous reactors during anaerobic Acid Orange 7 (AO7) reduction. Moreover, 

evidences were given that in UPBR with BAC system, the electron conductivity of the 

active carbon and its specific surface with both functional groups and the carbon’s strong 

adsorption capacity for Acid Orange 7, contribute together to higher azo dye 

decolourisation rates. Recent study similarly concerns with testing the anaerobic 

biodegradation of azo dye AO7 in packed-bed reactors containing biological activated 

carbon. Differences in goals of present study were to develop UPBR reactors (USPBR) to 

both have more effective treatment and make kinetic modeling possible; to investigate the 

effect of stirring of BAC; and, to develop a possible model to describe anaerobic azo dye 

biodegradation in USPBR–BAC system. 

 

 

2. Materials and methods 

 
2.1. Chemicals 

 

Azo dye Orange II (C.I. Acid Orange 7) sodium salt (dye content 99%, Sigma, ref. 

O8126), an acid dye widely used in textile processes, was selected as model azo 

colourant. Sulfanilic acid, one of the anaerobic degradation products of Acid Orange 7 

was supplied by Sigma (min. 99%, ref. S5263). Sodium acetate (99%, Aldrich, ref.   

11019-1) was used as co-substrate being both the carbon source for sludge and electron 

donor for azo reduction. Activated carbon (Merck, granules of 2.5 mm, ref. 1.02518.1000) 

was used as catalytic support material in upflow stirred packed-bed reactors. Activated 

carbon was crushed and granules of 25–50 mesh size were separated, washed with 
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distilled water, dried at 104 °C for 15 h and store d under normal conditions. Carborundum 

granules (Carlo Erba Reagents, ref. 434766) were used as inert diluent for activated 

carbon. The basal media contained the following compounds (mg L–1): MnSO4·H2O 

(0.155), CuSO4·5H2O (0.285), ZnSO4·7H2O (0.46), CoCl2·6H2O (0.26), (NH4)6Mo7O24 

(0.285), MgSO4·7H2O (15.2), CaCl2 (13.48), FeCl3·6H2O (29.06), NH4Cl (190.9), KH2PO4 

(8.5), Na2HPO4·2H2O (33.4), K2HPO4 (21.75). 

 

2.2. Upflow stirred packed-bed reactor setup 

 

Figure 4.1 shows schematically the continuous and anaerobic experimental system. 

The upflow stirred packed-bed reactor has a diameter of 15 mm with a volume of 10 mL. It 

is filled with the mixture of 10 g of carborundum granules as inert and 1 g of activated 

carbon with size of 25–50 mesh. The reasons of using an inert diluent for activated carbon 

are that on the one hand, it is required to test unit amount of catalyst, and on the other 

hand, because of technological reasons, since the stirring system in USPBR requires a 

minimal bed volume of about 10 mL while 1 g of AC has only about 3 mL of apparent 

volume. The packed-bed porosity is about 0.3. Two filters were placed into the top and 

bottom of the reactor to prevent washing out of AC. The temperature was kept constant at 

35 °C. The entering feed was 100 mg L –1 Acid Orange 7 solution containing 200 mg L–1 

sodium acetate and the basal media with microelements. The flow rate of the feed was 

varied between 25 and 350 mL h–1 and was ensured by a micro pump (Bio-chem Valve 

Inc., ref. 120SP2420-4TV). The pH of the outlet solution varied between 6.7 and 7.4 and 

was measured by a Crison lab pH-meter with a Slimtrode pH electrode (Hamilton, ref. 

238150). The anaerobic condition in the feeding bottle (5 L) was maintained by both 

cooling of the solution (at 5 °C) and bubbling of h elium. The establishment of low 

oxidation–reduction potentials (≤ –400 mV) for the system, under anaerobic conditions, is 

necessary for high colour removal rates (Lourenço et al., 2001). The redox potential was 

continuously monitored (measured where the outlet immediately left the USPBR) and 

remained below –500 mV (referred to Ag+/AgCl electrode). The reactor was built together 

with a stirring system that makes possible to apply a very fine and slow agitation              

(1 revolution per hour) in the biological activated carbon bed. 

 

2.3. Biological activated carbon system 

 

To prepare the biological system, anaerobic sludge with mixed culture was filtered by a 

microfilter with a pore size of 20–25 µm to only have single cells and spores. This filtrate 

was pumped through the activated carbon for a week. During this period the biofilm was 

immobilized on AC surface resulting in the so-called biological activated carbon. Then the 

biofilm was adapted to AO7 by continuous flowing of the dye solution containing both the 

basal media and carbon source through the reactor. To maintain the same culture of 
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sludge, every new reactor was set by using the outlet of an already operated reactor as 

the inlet to the new one. 

 

The use of mixed culture instead of a specific strain is reasonable. The large number of 

azo dyes that can be reduced by many different bacteria indicates that azo dye reduction 

is a non-specific reaction. So far, no strain has been reported being able to decolourise a 

wide range of azo dyes. Therefore, the use of specific strains on anaerobic biodegradation 

does not make much sense in treating textile wastewaters, which are composed of 

several kinds of dyes. 

 

2.4. Analytical methods 

 

Acid Orange 7, sulfanilic acid and acetate were measured by HPLC on a C18 Hypersil 

ODS column in a gradient of methanol–water mobile phase with a flow rate of 1 mL min–1. 

AO7 was determined at 487 nm, sulfanilic acid at 252 nm and acetate at 210 nm. 

Sulfanilic acid generation is not represented in results, the only reason of measuring that 

was to check if the AO7 degradation/sulfanilic acid production ratio was appropriate and 

the colourant and by-products were not used as a carbon source. The other product 

generated during the anaerobic degradation of AO7, 1-amino-2-naphthol (1A2N), was not 

determined due to its partial precipitation. 

 

 

3. Results and discussion 

 
3.1. Stirring of BAC in packed-bed reactor 

 

3.1.1. Agitation effects on biomass 

 

The reason of testing this novel-type reactor is complex. Uncontrolled BAC may lead to an 

overproduction in biomass that may result head losses because of clogging phenomena 

and high bacteria levels in the effluent may also be observed (Scholz and Martin, 1997). 

On the other hand, higher density of biomass in the bed pores can inhibit biodegradation 

near to the activated carbon surface. It was found that after a certain process time, the 

pressure loss in USPBR was significantly less than in UPBR, meaning that the stirred 

reactor contained less amount of biomass than the simple packed-bed reactor, supposing 

no significant activated carbon wash-out. Thus, the stirred packed-bed holds less 

resistance to the flow and slow agitation of BAC together with continuous flow of dye 

solution through the bed can help removing the ’superfluous’ amount of biomass from the 

reactor. Moreover, agitation can help keeping a nearly constant amount of biomass in the 
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packed-bed and, also helps eliminating isolated layers of microorganisms, thus, 

enhancing the performance of the activated carbon. 
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Figure 4.1 . Anaerobic upflow stirred packed-bed reactor setup. 

 

3.1.2. Periodical stirring 

 

Continuous packed-bed reactors working with catalysts –supposing that the amount of 

catalyst is rather decisive in the reaction than the reactor volume– can be better 

characterized by space time than by hydraulic residence time. In upflow packed-bed 

reactors used in our previous study (Mezohegyi et al., 2007), slow but monotonous 

decreasing of dye conversion values was observed over the time. This can be explained 

by the isolation of metabolically active organisms from the activated carbon surface by 

continuous expansion of biofilm around the catalyst. To avoid this problem, appropriate 

stirring of BAC was applied in the packed-bed reactor. 

 

The effect of slow agitation was examined in two identical USPBRs. Figure 4.2 shows 

AO7 conversions and referred space times in function of time on stream. During the first 

30 days, both reactors were saturated with azo dye to avoid the influence of initial dye 

adsorption during the initial period of operation. Stirring was first applied on day 39 and 38 

in USPBR-1 and USPBR-2, respectively, and was stopped after 1 day of operation. It can 

be clearly seen that azo dye conversion increased by applying 24-hour long stirring in 

both reactors. USPBR-1 worked with space times of 0.47–0.56 min (105–125 mL h–1) and 

USPBR-2 with space times of 0.39–0.72 min (85–155 mL h–1). In case of USPBR-1, 

stirring resulted 10% increase of AO7 conversion at a space time of 0.54 min (110 mL h–1) 

while 55% of increase at space time of 0.40 min (150 mL h–1) was observed in USPBR-2. 

When stirring was stopped, conversion started decreasing in both reactors, thus, 

confirming the positive effect of slow agitation of BAC on decolourisation rates. However, 

before application of stirring, different conversions of AO7 were found at same space time 
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in the two reactors. This can be explained by having different concentrations of biomass in 

them. It is very difficult to control biomass growth in the BAC bed. On the other hand, after 

stirring, similar dye conversions were observed at same space time in both reactors (e.g., 

90–95% at a space time of 0.5 min). According to these, an optimal amount of biomass 

exists that can be mostly ensured by using agitation in the biological activated carbon. 
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Figure 4.2 . Effect of stirring in BAC in the packed-bed reactors: (�) AO7 conversion (X); 

(�) space time (τ); dotted line represents the start of 24-hour agitation period. 

 

3.1.3. Continuous stirring 

 

Since decolourisation rates slowly decreased by time in UPBRs and, in addition, the 

microbial concentration may vary depending on both the lifetime of the reactor and the 

applied flow rate of azo dye solution, it was not possible to examine process kinetics in 

unstirred reactor accurately. In USPBR-3 –identical as USPBR-1 and USPBR-2– AO7 

decolourisation was tested at a certain space time of 0.5 min (HRT of 1.4 min calculated 

from the reactor hold-up). Results are shown on Figure 4.3. During long time of 

continuous operation, no significant change in dye conversion was observed. Moreover, 

nearly the same conversions (90–96%) were achieved than in case of the other two 

stirred reactors at same space time. These suggest that USPBR gives more 

representative results for AO7 degradation than UPBR and, in addition, stirred reactor 

could provide more exact data for kinetic modeling. 

 

3.2. Modeling AO7 anaerobic biodegradation in USPBR 

 

3.2.1. Determination of reaction rate 

 

The mole balance for the packed-bed reactor is given by (eq. 1): 
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where FAO7 (mmol min–1) is the molar flow of azo dye solution, mC (g) is the mass of 

catalyst in the reactor, r'AO7 (mmol min–1 g–1) is the rate of the reaction, cAO7 (mmol L–1) is 

the dye concentration, FV (L min–1) is the volumetric flow, τ (min) is the space time and ρ 

(g L–1) is the density of solution. If the flow rate of azo dye solution is kept constant and 

the density difference between the dye solution and water is neglected, the reaction rate 

rAO7 (mmol min–1 L–1) will finally be (eq. 2): 
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Figure 4.3 . Effect of continuous stirring in BAC in USPBR-3: (�) Acid Orange 7 

conversion (X); (�) space time (τ). 

 

3.2.2. Kinetic models 

 

To make kinetic modeling possible, a new reactor, USPBR-4, was built since in the 

former ones solely high AO7 conversion values were found even at maximum flow rates 

of the system (up to 350 mL h–1). The reactor USPBR-4 contained 250 mg of activated 

carbon. More than one kinetic model was found to describe rather well Acid Orange 7 

anaerobic biodegradation in the upflow stirred packed-bed reactor (Figure 4.4), namely, 

first-order model, Michaelis–Menten (MM) model and a second-order autocatalytic model 

(Van der Zee et al., 2000). Table 4.1 shows the kinetic parameters encountered for these 

models. The simple first-order model fits well the experimental points (Figure 4.4a). 

According to the standard deviations associated to the model fits (Table 4.1) although, 

there are no significant differences among them, the autocatalytic model was found to be 

the most appropriate to describe AO7 biodegradation (Figure 4.4b). This can be explained 

by the autocatalytic nature of 1-amino-2-naphthol (Van der Zee et al., 2000; Méndez-Paz     
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et al., 2003), being one of the anaerobic degradation products of Acid Orange 7. On the 

other hand, Michaelis–Menten model is also expected to describe AO7 biodecolourisation 

since it is a biological process and, also, the amount of consumed acetate by bacteria –

providing the electrons to azo reduction– is directly proportional to dye conversion. 

Indeed, MM kinetics seems to be applicable for modeling Acid Orange 7 degradation in 

our reactor system (Figure 4.4c). According to the very good fitting of all the models, the 

reaction rate predicted by all then should be similar. This is accomplished when 

comparing the first-order and autocatalytic model, since the first-order constants are 

similar and the second part of the autocatalytic model gives relatively small values 

because of the second-power function of the small dye concentration used. The reaction 

rates of the first-order and MM model are similar as well, since the first-order constants 

are similar and the Michaelis-constant is rather big relatively to the outlet dye 

concentrations, thus MM reduces to first-order model in this case. 

Table 4.1 . Kinetic data of models used for anaerobic AO7 degradation in USPBR-4. 

Model type Model equation Kinetic constants S.D.a 

First-order 
AO7AO7 ckr ⋅−=  k = 10.1 min–1 0.048 

k1 = 10.8 min–1 0.047 Autocatalytic ( )AO70AO72AO71AO7 ccckckr −⋅⋅−⋅−=  

k2 = 1.05 L mmol–1 min–1  

k1 = 10.8 mmol L–1 min–1 0.054 Michaelis–Menten 

AO72

AO71
AO7 ck

ck
r

+
⋅−=  

k2 = 0.94 mmol L–1  

k1 = 11.7 mmol L–1 min–1 0.048 

k2 = 1.15 mmol L–1  

ki = 4.38 mmol L–1  

k1' = 6.18 mmol L–1 min–1 0.056b 

k2' = 0.55 mmol L–1  

Michaelis–Menten 
with substrate inhib. )/k(cck

ck
r

i
2
AO7AO72

AO71
AO7 ++

⋅−=  

ki' = 0.09 mmol L–1  

aStandard deviation associated to the model fitting: ( ) ( )1nXXS.D. /
2MOD

−∑ −= where n is the 

number of experimental points. bStandard deviation associated to k' values calculated from 
experimental points involving both initial dye concentrations of 0.286 and 0.857 mmol L–1 (100 and 
300 mg L–1, respectively). 

 

Many azo dyes may have strong adsorption affinity to activated carbons depending on 

the surface chemistry of the carbon (Pereira et al., 2003). It can be interesting to mention 

that the so-called Langmuir-Hinshelwood equation –describing the rate law for surface 

catalysed reactions where the overall reaction rate is proportional to the surface coverage 

of the substrate over the catalyst– is analogous with the MM model and differences only 

are between the kinetic constants. Hereby, the former equation may also be used to 

describe our system suggesting that strong adsorption capacity of the carbon for AO7 can 

play an important role during this complex biological decolourisation process. 
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Figure 4.4 . Kinetic modeling of Acid Orange 7 anaerobic biodegradation in USPBR-4: line 

shows the fitting to (a) first-order kinetic model, (b) autocatalytic model and (c)   

Michaelis–Menten model. 

 

3.3. Substrate inhibition and toxicity effects 

 

50 days after measuring experimental points in USPBR-4, the reproducibility of the 

reactor system was checked by measuring AO7 conversions again, at certain space 

times. The previously determined Michaelis–Menten model fitted still well the newly 

measured points. After that, the inlet dye concentration was increased from 100 mg L–1 to 

300 mg L–1 to check if higher AO7 concentrations may have inhibition or toxicity effects to 
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the biomass. Figure 4.5 shows that the MM model set before shows significant deviation 

from experimental points at initial concentration of 300 mg L–1. This suggests that AO7 

possesses concentration-dependent inhibition effects for bacteria in the reactor. For this, 

MM model was expanded by an inhibition factor and this model with 3 kinetic constants 

describes well the degradation process, independently on the initial dye concentrations 

(Figure 4.5). The substrate inhibition was found to be significant since the value of the 

constant ratio ki/k2 is less than 10. Table 4.1 also shows the standard deviation value 

associated to experimental points involving both initial dye concentrations of 100 and 300 

mg L–1. However, the recalculated kinetic constants –including both inlet concentrations– 

differ from the former ones. This can be explained by having not only inhibition but also 

toxicity effects to the biomass at higher inlet dye concentrations. Indeed, using very high 

flow rate in USPBR-4 at 300 mg L–1 of initial dye concentration resulted toxicity, i.e., the 

redox potential was increased from –485 mV up to –180 mV in 3 h after changing the flow 

of dye solution from 150 to 260 mL h–1. Then, to avoid the irreversible deactivation of 

microbes, the flow was set back to 55 mL h–1 and, in addition, after 2 days the initial AO7 

concentration was changed back to 100 mg L–1. After 5 more days, the redox potential 

decreased back to –486 mV and AO7 conversion nearly returned to the value as it was 

before the toxicity to biomass (Figure 4.5). 
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Figure 4.5 . Substrate inhibition and toxicity effects during Acid Orange 7 decolourisation 

in USPBR-4: (�) shows repeated experimental points with initial AO7 concentration of 

100 mg L–1; (�) shows experimental points with initial AO7 concentration of 300 mg L–1; 

(�) shows AO7 conversion, 1 day after biomass toxicity; (�) shows AO7 conversion, 6 

days after biomass toxicity; dotted line represents the Michaelis–Menten model supposing 

no substrate inhibition at initial AO7 concentration of 300 mg L–1; continuous lines show 

the fitting to expanded Michaelis–Menten model with inhibition factor at initial AO7 

concentrations of 100 and 300 mg L–1. 
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It is worth to mention that sulfanilic acid is a toxic product of anaerobic reduction of 

AO7 –even more toxic than the initial azo dye itself– such as many aromatic amines, 

originating from the anaerobic degradation of several azo dyes. Recent study only focuses 

on the reduction of an azo dye as being the first step of a sequential process. The 

following step of the complete treatment is to remove the (often) toxic anaerobic 

degradation products that can be done either by aerobic biodegradation or 

chemical/physical oxidation processes. 

 

+ 8H+ + 8e–
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Acetate

CH3COO– + 2H2O  +  H+2CO2 + 8H+ + 8e–
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Figure 4.6 . Theoretical consumption of acetate for Acid Orange 7 reduction. 
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Figure 4.7 . The change of pH of the outlet solution at different acetate consumptions in 

USPBR-3 (�) and USPBR-4 (�). 

 

3.4. Acetate consumption 

 

Azo dye decolourisation should linearly increase with the consumption of acetate by 

bacteria. Theoretically, 0.5 mol of acetate is needed for 1 mol AO7 to decolourise    

(Figure 4.6) that means an acetate consumption:AO7 reduction molar ratio of 0.5. In 

USPBR-3, working with dye solution flow rate of about 120 mL h–1 (space time of 0.5 min), 
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this ratio was found to be higher than the expected one. Probably, acetate consumption 

was overestimated since 200 mg L–1 of sodium-acetate concentration was supposed to be 

in the feeding bottle. However, this concentration could be lower by time since anaerobes 

could consume acetate. Some analysis of the feed solution supported this fact and 

acetate was found to be totally consumed in 5–6 days in the bottle. To confirm the 

proposed electron transfer (Figure 4.6) both in USPBR-3 and USPBR-4, the pH of the 

outlets were measured. Figure 4.7 clearly shows that higher acetate consumptions 

resulted higher pH values, thus, suggesting the consumption of H+ during the oxidation of 

the electron donor. 

 

 

4. Conclusions 

 
To the best of our knowledge, a continuous upflow stirred packed-bed reactor with 

biological activated carbon was applied for the first time for anaerobic azo dye 

decolourisation. The application of special stirring in the carbon bed resulted in an 

increase of Acid Orange 7 bioconversion compared to unstirred reactor system with 

ensuring high dye degradation rates at very short space times/hydraulic residence times. 

Moreover, USPBR provided much more reproducible data to make kinetic modeling of 

AO7 biodegradation possible. First-order, autocatalytic and Michaelis–Menten models 

were all found to give good fittings to experimental points of dye conversion at lower inlet 

dye concentration. On the other hand, AO7 showed significant inhibition effects to the 

biomass at higher initial concentration and, also, processing at very low hydraulic 

residence times together with high initial dye concentration resulted in toxicity to bacteria. 

It can be assumed that a general model, describing the anaerobic biodegradation of 

diverse azo dyes in USPBR-BAC system, will be made up of the combination of dye 

inhibition and possible autocatalytic effects together with Michaelis–Menten kinetics. 
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5 
Advanced bioreduction of commercially important 

azo dyes: Modeling and correlation with 

electrochemical characteristics 

 

 

 

Abstract 

The anaerobic biodegradability of some commercially important colorants was 
investigated in upflow stirred packed-bed reactors (USPBR) containing biological 
activated carbon (BAC) system. Decolorization with very high reduction rates took place in 
the case of azo dyes. At least 80% of conversion was achieved for these dyes at a space 

time (τ) of 2.0 min or higher corresponding to a residence time of about 1.8 min at the 
most. On the contrary, nonazo xanthene dye was not converted in the anaerobic 
bioreactor system. A simple model was proposed to predict azo dye decolorization 
involving both heterogeneous catalysis and biological degradation. Adsorption studies for 
the dyes revealed that their adsorption affinity to activated carbon is not the key factor in 
the reduction process. Results from voltammetric experiments show that a correlation 
exists between electrochemical characteristic and anaerobic biodegradability of different 
azo dyes in the continuous USPBR-BAC catalytic system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<Published as: Mezohegyi G, Fabregat A, Font J, Bengoa C, Stuber F, Fortuny A. (2009). 
Industrial & Engineering Chemistry Research 48(15): 7054–7059.> 
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1. Introduction 

 
Wastewaters containing azo colorants –making up the largest class of dyes– are 

released into the environment by many diverse sources such as textile, food, 

pharmaceutical, paper, and cosmetic industries. Their discharge into the hydrosphere 

presents a significant source of pollution due to both their visibility –even at very low 

concentration– and  recalcitrance (Hastie et al., 2006), giving undesirable color to the 

water, reducing sunlight penetration, resisting photochemical and biological attack, and, 

also, with many dyes and their degradation products, being toxic or even mutagenic    

(Van der Zee and Villaverde, 2005). So far, the efficient and low-cost treatment of these 

hazardous effluents at industrial sites has been doubtful. 

 

The most physicochemical dye-removal techniques (adsorption, electrochemical 

degradation, advanced oxidation processes, photocatalytic oxidation, etc.) appear to face 

several limitations since they are financially and often also methodologically demanding 

(Eichlerová et al., 2005). Alternatively, bioremediation-based solutions for azo dye 

transformation (Van der Zee and Villaverde, 2005; Banat et al., 1996; Stolz, 2001) have 

considerable interest since they are both economic and environmentally suitable. One 

possible strategy for efficient biomineralization of these azo compounds is a sequential 

anaerobic–aerobic process (Delée et al., 1998) that can provide complex removal of azo 

colorants by reduction together with their degradation products, aromatic amines by 

oxidation (O’Neill et al., 2000a). 

 

However, the unspecific anaerobic reduction of many azo dyes usually proceeds rather 

slowly. Several studies have been conducted investigating anaerobic dye decolorization 

and providing rather low azo degradation rates for practical aspects. As for the bacterial 

azo reduction, the most generally accepted hypothesis is that it is a nonspecific reduction 

process through a redox mediator that shuttles electrons from bacteria to the azo dye 

(Keck et al., 1997). Therefore, the use of agents that help transferring the electrons from a 

donor to the azo bond is the logical way to accelerate the anaerobic biodegradation. 

Quinone-like compounds have been reported to catalyze different reduction processes 

such as denitrification (Aranda-Tamaura et al., 2007), biotransformation of nitroaromatics 

(Field et al., 2000), and decolorization of azo dyes (Van der Zee et al., 2001; Rau et al., 

2002; Dos Santos et al., 2003). However, the immobilization of the redox mediator in the 

bioreactor still represents a challenge. Promising results have been obtained to enhance 

anaerobic azo dye degradation by the use of activated carbon as a solid electron mediator 

in the bioreactor (Van der Zee et al., 2003; Mezohegyi et al., 2007,2008). 

 

During the anaerobic azo dye reduction in continuous systems, several parameters 

may have an influence on the decolorization rate such as biomass composition, chemistry 

of dyes, operating parameters (residence time, temperature, redox potential, and system
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of contact), and feed properties (pH, dye concentration, and chemical oxygen demand 

(COD)). Most of these parameters can be optimized in order to reach appropriate process 

efficiency. However, chemical properties of all colorants are specific, and the degradation 

rate in the bioreactors can vary with each of the compounds. This means that common 

trends have to be determined that give valuable information about the biodegradability of 

different azo dyes. Some studies investigated the effect of chemical structures of azo dyes 

on their biodegradation under aerobic (Suzuki et al., 2001) and anaerobic conditions 

(Hsueh and Chen, 2008) based on the variation of substituents on the aromatic ring and 

concluded the important role of electrochemical characteristics of dye molecules in their 

decolorization. Moreover, correlation was reported between the reduction potentials and 

both the times of maximum decolorization of sulfonated azo dyes by yeast (Zille et al., 

2004) and the anaerobic degradation rates of similar-structured and Acid Yellow-type azo 

dyes in batch tests (Guo et al., 2006). However, comparison of biodegradation kinetics of 

diverse azo compounds in continuous and catalytic reactor system on a wide redox 

potential scale, to our knowledge, has not yet been reported. Cyclic voltammetry can be 

an appropriate tool for determining reduction potential values of azo colorants (Zille et al., 

2004; Guo et al., 2006; Guaratini et al., 2001; Chandra et al., 2008). 

 

In a previous study of the authors (Mezohegyi et al., 2008), a novel-type anaerobic 

bioreactor was developed for azo dye reduction that provided highly efficient 

decolorization of Acid Orange 7 at lower initial dye concentration. The aim of recent study 

was to set evidence for the goodness of the upflow stirred packed-bed reactor (USPBR) 

by testing several commercially important dyes and, also, to propose a simple method for 

predicting anaerobic biodegradability of azo dyes in the continuous and catalytic USPBR 

system. Degradation rates of the colorants with process modeling were discussed, and 

correlations between reduction capability and electrochemical characteristics of the dyes 

were demonstrated. 

 

The current and important role of the selected dyes (Figure 5.1) at industrial scale is 

worth mentioning. Considering both the volume generated and the effluent composition, 

textile industry wastewater is rated as the most polluting among all industrial sectors. The 

two acid azo dyes Orange II (OII) and Acid Red 88 (AR88) and the diazo dye Reactive 

Black 5 (RB5) are widely used at the textile sites, and various treatments of wastewaters 

containing these colorants have been thoroughly investigated. The use of synthetic dyes 

in the food industry is unambiguous since they are cheaper, more stable, more available, 

and have a greater coloring range and intensity than natural dyes (Prado and Godoy, 

2002). Thus, Tartrazine (E102) and Sunset Yellow FCF (SY) are present in thousands of 

foods and drugs. However, despite the Food Standards Agency’s recent call for a ban on 

the use of certain artificial azo colorants (including SY and E102) in food products causing 

hyperactivity in children (Food Standards Agency, 2008), they are still in use and large 

amounts of these compounds end up in wastewaters as well. Orange G (OG) is used in 

many staining formulations. As one important representative of xanthene dyes, 
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Rhodamine 6G (R6G) is famous for its good stability as dye laser material. Although it is 

not an azo dye, its contingent anaerobic decolorization was also tested for demonstration 

purposes. 
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Figure 5.1 . Chemical structures of the dyes investigated. 

 

2. Materials and methods 

 
2.1. Chemicals 

 

Azo dyes Orange II sodium salt (dye content 93%, Sigma, ref. O8126), Orange G 

(97%, Sigma-Aldrich, ref. O1625), Sunset Yellow FCF (96%, Aldrich, ref. 465224), Acid 

Red 88 (75%, Sigma-Aldrich, ref. 195227), Tartrazine (85%, Manuel Vilaseca, S.A.), 

Reactive Black 5 (55%, Sigma-Aldrich, ref. 306452), and nonazo Rhodamine 6G (95%, 

Sigma, ref. R4127) were selected as model dyes. Sodium acetate (99%, Aldrich, ref. 

11019-1) was used as cosubstrate, being both the carbon source for microorganisms and 

the electron donor for azo reduction. Activated carbon (Merck, 2.5 mm granules, ref. 

1.02518.1000) for the biological carbon bed was previously crushed and granules of     

25–50 mesh size (0.7–0.3 mm) were separated, washed with distilled water, dried at    
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104 °C for 15 h, and stored at room conditions unti l use. The basal media contained 

several compounds (mg L−1): MnSO4·H2O (0.155), CuSO4·5H2O (0.285), ZnSO4·7H2O 

(0.46), CoCl2·6H2O (0.26), (NH4)6Mo7O24 (0.285), MgSO4·7H2O (15.2), CaCl2 (13.48), 

FeCl3·6H2O (29.06), NH4Cl (190.9), KH2PO4 (8.5), Na2HPO4·2H2O (33.4), and K2HPO4 

(21.75). 

 

2.2. Feed and bioreactor system 

 

The USPBR system and operating parameters used in this study were similar to those 

described in a former study of the authors (Mezohegyi et al., 2008). The reduction of dyes 

was tested in two identical reactors, both containing 1 g of activated carbon with the 

immobilized microorganisms originated from a nonspecific anaerobic mixed culture 

(Mezohegyi et al., 2007). The reactors had a diameter of 15 mm with a useful volume of 

~2 mL. The packed-bed porosity was ~0.3. Two filters, placed into the top and bottom of 

the reactor, prevented washing out of the carbon. The temperature was kept constant at 

35 °C. The entering dye concentration was 100 mg L –1 in the case of each dye. The feed 

also contained 200 mg L–1 of sodium acetate and the basal media with microelements. 

The flow rate of the feed was varied between 25 and 250 mL h–1 and was ensured by a 

micropump (Biochem Valve Inc., ref. 120SP2420-4TV). The anaerobic condition in the 

feeding bottle (5 L) was maintained by both cooling of the solution (at 5 °C) and bubbling 

of helium. The redox potential was continuously monitored and remained below –500 mV 

(referred to Ag+/AgCl electrode). Agitation of the biomass was applied for 1 h/day, and 

sampling was done immediately after or during this period. 

 

Preparing the dye solution of Acid Red 88 (AR88) resulted in difficulties since it partly 

precipitated with several microelements, making the set of its initial concentration difficult. 

To have 100 mg L–1 of initial AR88 concentration, the solution had to be prepared with 230 

mg L–1 azo dye, which was then separated from precipitation before use. In order to 

simulate dye-bath effluents from dyeing processes with azo reactive dyes, hydrolysis of 

the dye Reactive Black 5 (RB5H) was accomplished by dissolving it in distilled water, 

adjusting the pH to 12.0 with  1 M NaOH, boiling for 2 h, cooling the solution down, setting 

the pH to 7.0 with 1M/0.1 M HCl, and adjusting the necessary volume of prepared stock 

solution with distilled water. 

 

2.3. Adsorption experiments 

 

Before starting experiments in USPBRs, the activated carbon bed was saturated with 

the azo dyes at 100 mg L–1 concentration to avoid the influence of initial dye adsorption 

during the initial period of operation. Adsorption kinetic experiments were run to evaluate 

the sorption affinities of colorants onto the activated carbon surface. One bottle for each 

dye, containing 100 mg of activated carbon, was filled with 100 mL of a 500 mg L–1 dye 
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solution. Adsorption took place for 15 days, and during this period, samples were taken 

each second day. The solutions were smartly stirred for a few seconds each day. To avoid 

a certain increase of basicity during the experiment, pH of the solutions was always 

adjusted with 0.1 M HCl to be between 7.2 and 7.8. 

 

2.4. Voltammetric experiments 

 

Cyclic voltammetry measurements were performed on a PC-controlled PGSTAT12 

potentiostat (Autolab) with an in-built frequency response analyzer FRA2 module using a 

standard three-electrode configuration (reference electrode, Ag/AgCl(sat); counterelectrode, 

Pt-wire; working electrode, φ = 1 mm gold disk). Before experiments, the working 

electrode was polished with 0.5 µm alumina slurry followed by sonication in Milli-Q water. 

Between experiments with the different dyes, the electrode was washed with acetone and 

water. The supporting electrolyte was 80 mM H2SO4. The concentrations of dye samples 

were 100 mg L–1. Before the measurements, dye solutions were saturated by N2 for 1 min. 

Cyclic voltammograms were carried out in the potential range of  0.1 to –0.5 V at a scan 

rate of 0.1 V s–1. 

 

2.5. Analytical methods 

 

All dyes, acetate, and the monoazo reduction product of RB5H (RB5HM) were 

measured by high-performance liquid chromatography (HPLC) on a C18 Hypersil ODS 

column. For azo dyes and acetate, a gradient of methanol–water (M/W) mobile phase was 

applied (M/W solvent ratios (%) were 0:100 for acetate; 45:55 for RB5H; 60:40 for OG, 

SY, and E102; 70:30 for OII; and 80:20 for AR88), whereas Rhodamine 6G was detected 

using a buffered (CH3COONa/CH3COOH, pH 4.0) acetonitrile–water mobile phase (80:20) 

with a flow rate of 1 mL min–1. Acetate was determined at 210 nm, and RB5HM was 

determined at 530 nm. The applied wavelengths for the colorants are given in Figure 5.1. 

 

 

3. Results and discussion 

 
3.1. Adsorption kinetics of dyes 

 

The data obtained from dye adsorption experiments is summarized in Table 5.1. In the 

cases of all dyes, adsorption was found to fit very well to a second-order kinetic model 

(Mezohegyi et al., 2007) (eq. 1): 

tQk

tQk
Q

⋅⋅+
⋅⋅

=
E

2
E

1
            (1) 
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where Q (mg gAC
–1) represents the dye concentration in the solid phase, QE (mg gAC

–1) is 

the corresponding value at equilibrium, t (days) is the contact time, and k (gAC mg–1 day–1) 

is the adsorption rate constant. Values of Q can be calculated from (eq. 2): 

( )
AC

A0A

m

VCC
Q

⋅−
=            (2) 

where CA (mg L–1) is the dye concentration in solution at a time t, C0A (mg L–1) is the initial 

dye concentration, V (L) is the volume of solution, and mAC (g) is the mass of activated 

carbon. C0A was chosen to be quite high (500 mg L–1) at which concentration the 

adsorption equilibria of OII (the smallest dye in this study) is nearly equal to its maximum 

adsorption affinity to the Merck carbon (Mezohegyi et al., 2007). The equilibrium 

adsorption capacity of activated carbon at this C0A value can be evaluated by using this 

simple kinetic model. 

 

All dyes showed high adsorption affinity onto the carbon surface. A nonsignificant linear 

correlation can be found between maximum adsorption values and the inverse values of 

molar masses; the smaller dye molecules generally promote a higher adsorption rate. This 

can be reasonable because of the porous structure of activated carbon. On the other 

hand, weakness of the correlation was expected because of the existence of other factors 

influencing dye adsorption onto the same carbon, such as the chemical structure of dyes. 

 

Table 5.1 . Adsorption, biodecolorization kinetic, and electrochemical data of dyes used in 
this study. 

dye 
M 

(mg mmol–1) 
QE 

(mg gAC
–1) 

104 k 
(gAC mg–1 d–1) 

k1 
(mmol gAC

–1 min–1) 
k2 

(mmol L–1) 
ER 

(mV) 

OII 350 369 10.5 2.46 0.88 –194 

OG 452 327 13.6 1.05 0.90 –256 

SY 452 302 14.8 1.35 0.91 –248 

E102 534 211 19.0 0.91 0.85 –339 

AR88 400 383   6.7 2.63 0.90 –175 

RB5H 648 110 62.6 3.51 0.96 –44 

R6G 479 188   9.8 n.r.a n.r.a  n.p.b 
aNo reduction was observed. bNo reduction peak was found in the negative potential range. 

 

3.2. Reduction of (azo) dyes 

 

Dye reduction in the upflow stirred packed-bed reactor with biological activated carbon 

(USPBR-BAC) system can be described by a model (Mezohegyi et al., 2008) involving 

both heterogeneous catalysis and biological decolorization with Michaelis–Menten-like 

kinetics (eq. 3): 
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DYE2

DYE1DYE

ck
ck

dρ

dc
+
⋅−=

τ⋅
           (3) 

where cDYE (mmol L–1) is the dye concentration, τ (min gAC g–1) is the space time, ρ (g L–1) 

is the density of solution, and k1 (mmol gAC
–1 min–1) and k2 (mmol L–1) are the kinetic 

parameters. Using space time with the expanded units (including the mass of activated 

carbon) gives more information about the reactor. As Figure 5.2(a–f) shows, all azo dyes 

were highly degraded at short space times and the model fits well the experimental points. 

Dye conversion values above 80% were achieved in the case of each azo dye at a τ of 

2.0 min or higher, corresponding to a hydraulic residence time of about 1.8 min at the 

most (calculated from the reactor holdup). 

 

Appropriate agitation in the biological activated carbon bed has a positive effect on azo 

dye conversion rate since it helps both controlling the amount of biomass in the packed 

bed and eliminating isolated layers of microorganisms, thus enhancing the performance of 

the activated carbon (Mezohegyi et al., 2008). On the other hand, the effect of dye 

conversion drop after agitation stop is probably due to mass transfer limitations. Beside 

OII, AR88 conversion showed the most significant deviations from model when sampling 

was accidentally done out of the 1-h-long agitation period (Figure 5.2e). At a constant flow 

of 77 mL h–1 (τ = 0.78 min), Acid Red conversion dropped by 35%; only 12 hours after that 

the stirring was interrupted. According to these, reduction of the two dyes mentioned 

depends stronger on the reactor system than of the other colorants. Considering this, the 

autocatalytic nature of 1-amino-2-naphthol (Van der Zee et al., 2000) (1A2N), one of the 

reduction products of both AO7 and AR88, may be relevant. When agitation in the packed 

bed is eliminated, 1A2N either may get stucked there by adsorption or may be partially 

degraded, resulting in loss of its autocatalytic ability. However, this hypothesis could not 

be confirmed because of aminonaphthol partial precipitation and its autoxidation in the 

outlet. 

 

During the reduction of diazo RB5H, a colored monoazo product is formed (RB5HM) 

that finally is partly reduced. The decolorization of the diazo dye can be modeled easily 

(Figure 5.2f) using eq. 3. On the other hand, the two sequential reductions can be 

considered as a series reaction, and the outlet concentration of RB5HM depends on the 

first azo bond reduction rate as well. The second reduction rate can be given as eq. 4: 

RB5HM4

RB5HM3

DYE2

DYE1RB5HM

ck

ck

ck

ck

dρ

dc

+
⋅

−
+
⋅

=
τ⋅

         (4) 

where cRB5HM (mmol L–1) is the monoazo product concentration, cDYE (mmol L–1) is the 

actual diazo (RB5H) concentration, τ (min) is the space time, and k values  (k1,3: mmol 

gAC
–1 min–1; k2,4: mmol L–1) are the referred kinetic constants. Equation 4 can be easily 
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solved numerically using e.g., the Euler method. The best model fit for RB5HM reduction 

(Figure 5.2f) supposes significantly –over 10-fold– smaller rate constant for the second 

reduction (k3 = 0.24 mmol gAC
–1 min–1) than for the first one (k1 = 3.51 mmol gAC

–1 min–1), 

implying quite poor RB5HM decolorization rates. Otherwise, the model (eq. 4) fits the 

experimental points well and may be applied to describe the second azo reduction in other 

diazo dyes. 

 

The problem of quantitative determination of RB5HM has to be noticed. Since this 

monoazo compound probably does not exist at the market, its calibration has to be done –

together with the final reduction compound– according to the referred HPLC peak areas. 

Since the final aminonaphthol derivative partially precipitates, the outlet concentration of 

RB5HM can be underestimated. To preclude this error, RB5HM concentration was 

determined by using the Solver function of Microsoft Excel. When searching for the kinetic 

constants of the model (k3, k4), an auxiliary constant was introduced to the equation 

system that was equal to the RB5HM concentration/peak area ratio (that is, in fact, always 

a constant value when analyzing in the applied concentration interval). Thus, the best 

model fit finally gave both the kinetic constants of biodegradation and the real outlet 

concentration values of the monoazo compound. 

 

Table 5.1 shows the kinetic parameters of azo dye biodecolorization encountered for 

the model. According to k1 kinetic constants, the mostly biodegradable azo dye is the 

reactive (and hydrolyzed) RB5H. Since this dye presented the poorest adsorption rate 

onto the activated carbon among all colorants, it can be concluded that the adsorption 

affinity of dyes is not the decisive factor in biodecolorization. It is interesting to mention 

that the reduction products of the more biodegradable dyes (RB5H, AR88, and AO7) 

possess autocatalytic properties (Van der Zee et al., 2000; Wang et al., 2008). The 

Michaelis–Menten constant (k2) is an indicator of the affinity that the biomass has for the 

cosubstrate (acetate) and was found practically to be the same in each case of dye 

reduction (0.90 ± 0.06 mmol L–1). This means that similar biomass culture was obtained in 

both upflow stirred packed-bed reactors since the same electron donor was used in each 

process and the reactors operated under the same conditions (pH, T). 

 

Nonazo dye Rhodamine could not be degraded in the anaerobic bioreactor         

(Figure 5.3). In 80 h of feeding the 100 mg L–1 dye solution to the USPBR at a constant 

flow rate of 24 mL h–1, the apparent conversion dropped under 10% accompanied by the 

monotone decrease of the redox potential. The falling trend of apparent conversion can be 

approached exponentially and if calculating the curve improper integral, the activated 

carbon adsorption capacity for this dye is roughly given, confirming Rhodamine’s 

nonbiodegradable characteristic in anaerobic environment. 
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Figure 5.2 . Kinetic modeling of azo dye anaerobic biodecolorization in USPBR: (a)    

Orange II, (b) Orange G, (c) Sunset Yellow FCF, (d) Tartrazine, (e) Acid Red 88, and (f) 

hydrolyzed Reactive Black 5; (�) shows azo dye conversion (X); (�) shows conversion 

values of AR88 when sampling was done out of the agitation period; (�) shows outlet 

concentration values of the monoazo degradation product of RB5H (RB5HM); lines 

represent the fitting to the model (eq. 3); thin line (f) shows RB5HM reduction evaluated by 

the series reaction model (eq. 4). 
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Figure 5.3 . Disapparence of Rhodamine in the anaerobic USPBR: (�) apparent dye 

conversion (XAPP); (�) redox potential (ER); line represents an exponential 

approach to apparent conversion decrease. 

 

3.3. Role of redox characteristics in bioreduction 

 

Cyclic voltammetric responses of each azo dye are presented in Figure 5.4. As 

expected, reduction peaks occured at negative potentials, between 0 and –400 mV. One 

reduction peak was found for each monoazo dye, and two peaks were found in the case 

of the diazo reactive dye. Table 5.1 shows the potential values at which the azo dyes were 

reduced. According to these, the first azo bond in Reactive Black requires mild anaerobic 

conditions for reduction, while Tartrazine is only able to biodegrade in the strict absence of 

oxygen. The more negative the reduction potential of the azo dye is, the more difficult it is 

to anaerobically biodecolorize it. This hypothesis is confirmed when plotting the azo dye 

decolorization constants (k1) in function of reduction potentials (Figure 5.5). The correlation 

can be fitted to a straight line in the given potential interval. The reduction potential of 

RB5HM (–257 mV) predicts its significantly higher degradation rate than the calculated 

value (0.24 mmol gAC
–1 min–1), although this prediction does not take into account that this 

is not the initial compound to be reduced but an intermediate of a series reduction. In the 

case of nonazo R6G, no reduction peak was found in the negative potential range, thus 

confirming again its resistance to bioreduction, in the conditions tested. 

 

3.4. Biomass sensitivity 

 

The efficacy of the USPBR-BAC system referred to azo dye anaerobic decolorization 

has been proved, and according to the rate constants achieved, one of the most 

problematic disadvantages of biological azo degradation, i.e., the slowness of the 

process, was eliminated. However, there are factors that will always limit the biomass 

efficiency in azo reduction, independently from bioreactor types. Parameters such as 
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temperature, pH of solution, and dye concentration can have important impacts on dye 

conversion rates, depending on the culture tolerance. Orange II was selected as model 

azo dye to test some of these variables. As Table 5.2 shows, biomass activity (i.e., azo 

dye reduction) strongly depends on several operating factors. The mixed culture thrives 

under mesophilic conditions and is adapted to the process temperature (35 °C). The 

biomass mostly tolerates neutral pH, and a slight change into acidic or basic environment 

(pH 7.0 ± 1.5) already causes a significant decrease in dye conversion. Acetate, a 

cosubstrate widely used as an electron source in decolorization processes (Van der Zee 

and Villaverde, 2005), did not show any inhibition effects to microorganisms, even at 

higher concentrations. On the other hand, at an inlet acetate concentration of 20 mg L–1, 

all the carbon source was consumed and was found to be insufficient to provide the 

necessary amount of protons and electrons for higher azo dye reduction rates. The dye 

concentration, as it was reported in earlier works (Van der Zee and Villaverde, 2005; 

Mezohegyi et al., 2008), also affects the biodecolorization process. Higher dye conversion 

at the applied hydraulic residence time (0.4 min, calculated from the reactor holdup) can 

be ensured only at lower initial concentrations, whereas higher inlet colorant 

concentrations inhibit microbial activity. On the other hand, operating with higher dye 

concentrations and/or high flow rates may cause not only inhibition but also toxicity to the 

biomass (Mezohegyi et al., 2008). 

 

Table 5.2 . Microbial sensitivity for temperature, inlet pH, acetate 
concentration, and dye concentration at a τ of 0.50 ± 0.02 min. 

operation factor dye conversion 

25         0.66 

30         0.75 
35         0.84 

temperature (°C) 

40         0.83 
5.5         0.66 
6.0         0.83 
6.5         0.77 
7.0         0.75 
7.5         0.72 
8.0         0.67 

pH 

8.5         0.46 
20         0.19 
50         0.77 
100         0.78 
200         0.80 

acetate concentration (mg L–1) 

500         0.78 
50         0.88 
100         0.79 
200         0.70 
300         0.60 
400         0.52 

dye concentration (mg L–1) 

500         0.14 
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Figure 5.4 . Cyclic voltammograms of azo dyes in 80 mM H2SO4 at 0.1 V/s scan rate: (a) 

Orange II, (b) Orange G, (c) Sunset Yellow FCF, (d) Tartrazine, (e) Acid Red 88, 

and (f) hydrolyzed Reactive Black 5. 
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Figure 5.5 . Correlation between kinetic constants (k1) and the reduction potentials 

of azo dyes. 

 

 

4. Conclusions 

 
Anaerobic decolorization of some commercially important dyestuffs was investigated in 

upflow stirred packed-bed reactors with biological activated carbon system. Reduction of 

the nonazo xanthene dye Rhodamine did not take place even at very low flow rates. On 

the contrary, all mono- and diazo dyes were efficiently reduced and their decolorization 

was successfully predicted by a simple model involving both heterogeneous catalysis by 

activated carbon and biological degradation. Activated carbon high capacity for these 

dyes was found not to be the crucial promoter of reduction. The electrochemical 

characteristic of  azo dyes, however, was found to be a key factor in their decolorization. A 

linear correlation was found between the kinetic constants of the model and the reduction 

potentials of the dyes. According to these results, anaerobic biodegradability of an azo 

dye can be predicted by its reduction potential value in this continuous reactor system, 

independently from the azo colorant type and complexity. The biomass was found to be 

sensitive to some operating factors that require appropriate control and limitation in order 

to ensure an efficient biodecolorization process. 
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6 
Tailored activated carbons as catalysts in 

biodecolourisation of textile azo dyes 

 

 

 

Abstract 

Anaerobic reduction of two textile azo dyes (Orange II and Reactive Black 5) was 
investigated in upflow stirred packed-bed reactors (USPBRs) with biological activated 
carbon (BAC) system. The bioreactors were prepared with tailored activated carbons 
(ACs) having different textural properties and various surface chemistries. A kinetic model 
proposed previously was able to describe the catalytic azo reduction in all cases. 
Decolourisation with very high reduction rates took place in the case of each AC. Best dye 
removals were ensured by the AC having the highest surface area: conversion values 
above 88% were achieved in the case of both azo dyes at a space time of 0.23 min or 
higher, corresponding to a very short hydraulic residence time of about 0.30 min at the 
most. The decolourisation rates were found to be significantly influenced by the textural 
properties of AC and moderately affected by its surface chemistry. The results confirmed 
the catalytic effects of carbonyl/quinone sites and, in addition, delocalized π-electrons 
seemed to play a role in the catalytic reduction in the absence of surface oxygen groups. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<Published as: Mezohegyi G, Gonçalves F, Órfão JJM, Fabregat A, Fortuny A, Font J, 
Bengoa C, Stuber F. (2010). Applied Catalysis B: Environmental  94: 179–185.> 
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1. Introduction  

 
Textile industry is one of those industries that consume large amounts of water in the 

manufacturing process (Lin and Chen, 1997) and, also, discharge great amounts of 

effluents with synthetic dyes to the environment causing public concern and legislation 

problems. Azo dyes, that make up the majority (60–70%) of the dyes applied in textile 

processing industries (Van der Zee et al., 2001) are considered to be serious health-risk 

factors. Apart from the aesthetic deterioration of water bodies, many azo colourants and 

their breakdown products are toxic to aquatic life (Chung and Stevens, 1993) and can 

cause harmful effects to humans (Weisburger, 2002; Oliveira et al., 2007). Several 

physico-chemical and biological methods for dye removal from wastewater have been 

investigated (Forgacs et al., 2004; Robinson et al., 2001; Van der Zee and Villaverde, 

2005; Vandevivere et al., 1998) and seems that each technique faces the facts of 

technical and economical limitations (Van der Zee and Villaverde, 2005). However, 

microbial decolourisation of dyes (Van der Zee and Villaverde, 2005; Banat et al., 1996; 

Pearce et al., 2003; Stolz, 2001) is one of the most attractive technologies considering its 

economic, environmentally suitable and methodologically relatively simple features. 

 

Azo dyes are xenobiotic compounds and due to their electron withdrawing nature, they 

tend to persist under aerobic environment (Knackmuss, 1996). However, under anaerobic 

conditions, decolourisation is achieved while the aromatic amines produced from such azo 

cleavage can be removed aerobically (Işık and Sponza, 2006). These predicted the 

efficacy of an anaerobic–aerobic reactor sequence for complete azo dye treatment      

(Işık and Sponza, 2006; O’Neill et al., 2000b). The most serious drawback of azo dye 

reduction by bacteria used to be the slowness of the process. A few study have cleared 

that certain electron mediators such as quinone-like compounds can greatly accelerate 

decolourisation rates in homogeneous reactions (Van der Zee and Villaverde, 2005;     

Dos Santos et al., 2004; Rau et al., 2002). On the other hand, heterogeneously catalyzed 

azo bioreduction by a solid redox mediator such as activated carbon (AC), has been 

reported to be a very promising process (Van der Zee et al., 2003; Mezohegyi et al., 2007, 

2008,2009). 

 

In catalysis, ACs have been mainly used as support, but their use as catalysts on their 

own is growing quickly (Figueiredo and Pereira, 2009; Radovic and Rodríguez-Reinoso, 

1997; Fortuny et al., 1998; Rivera-Utrilla and Sánchez-Polo, 2002; Suarez-Ojeda et al., 

2005). One of the advantages of ACs is the possibility of tailoring their physical and/or 

chemical properties in order to optimise their performance for specific applications 

(Pereira et al., 2004). This means that both their pore structure and surface chemistry can 

be varied (Pereira et al., 2004; Figueiredo et al., 1999; Pereira et al., 1999) to meet the 

demands of the catalytic reaction considered. In textile and dye wastewater treatments, 

the role of activated carbon has been often limited to dye adsorption. If AC is considered 
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as a catalyst in biological azo dye decolourisation, its specific modification may increase 

dye removal rates. In the present study, several activated carbons with modified pore 

structures or surface chemistries were applied for the first time in anaerobic upflow stirred 

packed-bed reactors (Mezohegyi et al., 2008) for azo dye reduction, and the effects of AC 

texture and surface chemical group variation on decolourisation rates were discussed. 

 

 

2. Experimental 

 
2.1. Preparation of activated carbons 

 

2.1.1. Activated carbons with different textural properties 

 

The initial material selected (sample AC0) was the commercial activated carbon Norit 

Rox 0.8, which was supplied in the form of cylindrical pellets of 0.8 mm diameter and 5 

mm length. The activated carbons with larger porosities were obtained by CO2 gasification 

of sample AC0 previously impregnated with 3.5% of cobalt. The role of cobalt was to 

catalyze the gasification of carbon, thereby promoting the formation of mesopores 

(Pereira et al., 2004). The impregnation was carried out by mixing the previously vacuum-

degassed sample AC0 with an aqueous solution of Co(NO3)2·6H2O. The resulting 

suspension was shaken for 2 h. Then the sample was washed with distilled water and 

dried at 100 °C overnight in an oven. 

 

The gasification experiments were carried out in a tubular vertical reactor under the 

following experimental conditions: heating from room temperature to 900 °C at                

10 °C min –1 under a flow of 100 cm3 min–1 of N2; at 900 °C the gas was changed to CO 2 

maintaining the flow rate and the sample was gasified during 40 min (ACT1) or 120 min 

(ACT2) and finally cooled down to room temperature under a flow of 100 cm3 min–1 of N2. 

These carbons were subsequently washed with a 2 M HCl-solution to remove cobalt, 

followed by washing with distilled water until reaching neutral pH and dried in the oven at 

100 °C. To make comparison with the starting carbon  possible, AC0 was also heated up to 

900 °C and was kept at this temperature for 40 min under a flow of 100 cm3 min–1 of N2 

(ACT0) to ensure similar surface chemistry to the gasificated samples. Since the quinonic 

surface groups are supposed to play an important role during anaerobic 

biodecolourisation of azo dyes by biological activated carbon, and a significant amount of 

these groups were removed by the heat treatment, a slight oxidation was applied for 

samples ACT0, ACT1 and ACT2. These carbons were heated up to 425 °C at 10 °C m in–1 

under a flow of 75 cm3 min–1 of N2; when the given temperature was reached, air was 

added to the gas flow to have 5% (v/v) of O2; this gaseous mixture was passed for 4 h. 

When cooling started, the gas was set back only to N2. After cooling to room temperature, 

UNIVERSITAT ROVIRA I VIRGILI 
CATALYTIC AZO DYE REDUCTION IN ADVANCED ANAEROBIC BIOREACTORS 
Gergö Mezöhegyi 
ISBN:978-693-7672-0/DL:T-1751-2010 



CHAPTER 5______________________________________________________________________________ 

94 

all the carbon samples were crushed and granules of 25–50 mesh size (0.7–0.3 mm) 

were separated and stored under normal conditions. 

 

2.1.2. Activated carbons with different surface chemistries 

 

The treatments outlined below were carried out in order to obtain materials with 

different surface chemistries, while maintaining the original textural properties as far as 

possible.  

 

Liquid-phase oxidation of AC0 with HNO3 was performed using a 250 cm3 Soxhlet 

extraction apparatus. Initially, 400 cm3 of 5 M HNO3 were introduced into a 500 cm3 Pyrex 

round bottom flask and heated to boiling temperature with a heating mantle. The Soxhlet 

with a certain amount of activated carbon was connected to the boiling flask and to the 

condenser. The reflux was stopped after 6 h. The AC was then washed with distilled water 

to neutral pH and dried in an air convection oven at 100 °C for 24 h (sample AC 1). 

 

Sequentially, the sample AC1 was altered by thermal treatments; the starting material 

had to present a large amount of surface groups that were to be removed in different 

amounts (and types) by applying different temperatures. In every case, 3 g of sample AC1 

were placed into a fused silica tubular reactor. The heating was done under a flow of N2 at 

100 cm3 min–1 and the heating rate was 10 °C min –1. The carbon samples were heated up 

to 400 °C (AC 2), 600 °C (AC 3), 750 °C (AC 4) and 1100 °C (AC 5). AC5 was kept at 1100 °C 

for 1 h. Posteriorly, one additional sample was prepared from AC0 by heating it up to    

750 °C under a flow of N 2 at 100 cm3 min–1 and heating rate of 10 °C min –1 (AC02). After 

cooling to room temperature under the same atmosphere, all the carbon samples were 

crushed and granules of 25–50 mesh size (0.3–0.7 mm) were separated and stored under 

normal conditions. 

 

2.2. Characterization of activated carbons 

 

2.2.1. Textural characterization 

 

The textural characterization of the materials was principally important in the case of 

pore size-modified activated carbons, but it was also checked if there had been notable 

textural changes after the surface chemistry modifications, including the thermal 

treatments. This characterization was based on the N2 adsorption isotherms, determined 

at 77 K with a Coulter Omnisorp 100 CX gas adsorption analyser. The micropore volume 

(Vµ) and the non-microporous surface area (S≠µ) were calculated by the t-method, using 

the standard isotherms for carbon materials proposed by Rodriguez-Reinoso et al. (1987). 

The BET surface areas (SBET) of the samples were also calculated for comparison 

purposes. 

UNIVERSITAT ROVIRA I VIRGILI 
CATALYTIC AZO DYE REDUCTION IN ADVANCED ANAEROBIC BIOREACTORS 
Gergö Mezöhegyi 
ISBN:978-693-7672-0/DL:T-1751-2010 



TAILORED ACTIVATED CARBONS IN BIODECOLOURISATION OF AZO DYES 

95 

2.2.2. Surface chemistry characterization 

 

The temperature-programmed desorption (TPD) profiles of the samples were obtained 

in an Altamira AMI-200 characterization unit, working with a U-shaped tubular 

microreactor, placed inside an electrical furnace. The flow of the helium carrier gas was 

25 cm3 min–1, the temperature was programmed to linearly rise up to 1100 °C at a heating 

rate of 5 °C min –1. The amounts of CO and CO2 desorbed from the carbon samples     

(100 mg) were determined by an Ametek Dymaxion mass spectrometer. The relative 

molecular masses monitored for all samples were 2 (H2), 16 (O), 18 (H2O), 28 (CO) and 

44 (CO2). 

 

The determination of pHPZC (point of zero charge) of the samples was similarly carried 

out as reported by Órfão et al. (2006): 20 cm3 of 0.01 M NaCl solution was placed in a 

closed Erlenmayer flask. The pH was adjusted to a value between 2 and 10 by adding 

HCl 0.1 M or NaOH 0.1 M solutions. Then, 0.05 g of each sample was added and the final 

pH measured after 48 h under agitation at room temperature. The pHPZC is the point 

where the curve pHfinal vs. pHinitial crosses the line pHinitial = pHfinal. Blank tests without 

carbon were also made in order to eliminate the influence of CO2 from air on pH. 

 

2.3. Chemicals 

 

Azo dyes Orange II sodium salt (dye content 93%, Sigma, ref. O8126) and Reactive 

Black 5 (55%, Sigma–Aldrich, ref. 306452) were selected as model textile dyes. In order 

to simulate dye-bath effluents from dyeing processes with azo reactive dyes, hydrolysis of 

Reactive Black (RB5H) was accomplished by: dissolving it in distilled water, adjusting the 

pH to 12.0 with 1 M NaOH, boiling for 2 h, cooling the solution down, setting the pH to 7.0 

with 1 M/0.1 M HCl and adjusting the necessary volume of prepared stock solution with 

distilled water. Sodium acetate (99%, Aldrich, ref. 11019-1) was used as co-substrate 

being both the carbon source for microorganisms and electron donor for azo reduction. 

The basal media contains several compounds (mg L−1): MnSO4·H2O (0.155), CuSO4·5H2O 

(0.285), ZnSO4·7H2O (0.46), CoCl2·6H2O (0.26), (NH4)6Mo7O24 (0.285), MgSO4·7H2O 

(15.2), CaCl2 (13.48), FeCl3·6H2O (29.06), NH4Cl (190.9), KH2PO4 (8.5), Na2HPO4·2H2O 

(33.4), and K2HPO4 (21.75). 

 

2.4. Feed and bioreactor system 

 

The upflow stirred packed-bed reactor (USPBR) system and operating parameters 

used in this study were similar to those described in a former study of the authors 

(Mezohegyi et al., 2008). The reduction of dyes was tested in reactors containing 1 g of 

activated carbon with the immobilized microorganisms (Figure 6.1) originated from a non-

specific anaerobic mixed culture (Mezohegyi et al., 2007). The reactor had a diameter of 
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15 mm with a useful volume of about 2 cm3. The packed-bed porosity was about 0.3. Two 

filters, placed into the top and bottom of the reactor, prevented washing out of the carbon. 

The temperature was kept constant at 35 °C. The ent ering concentration of dyes was 100 

mg L–1. The feed also contained 200 mg L–1 of sodium acetate and the basal media with 

microelements. The flow rate of the feed was varied between 25 and 250 mL h–1 and was 

ensured by a micro pump (Bio-chem Valve Inc., ref. 120SP2420-4TV). The anaerobic 

condition in the feeding bottle (5 L) was maintained by both cooling of the solution          

(at 5 °C) and bubbling of helium. The redox potenti al was continuously monitored and 

remained below –500 mV (referred to a combined Pt//Ag/AgCl redox electrode). Agitation 

of the biomass was applied for 1 hour/day and sampling was done immediately after or 

during this period. Before starting experiments in USPBRs, the activated carbon bed was 

saturated with the azo dyes at 100 mg L–1 concentration to avoid the influence of initial 

dye adsorption during the initial period of operation. 

 

2.5. Analytical methods 

 

Both dyes and the monoazo reduction product of RB5H (RB5HM) were measured by 

HPLC on a C18 Hypersil ODS column. A gradient of methanol–water (M:W) mobile phase 

was applied (M:W solvent ratios (%) were: 45:55 for RB5H and 70:30 for OII). OII, RB5H 

and RB5HM were determined at 487, 597 and 530 nm, respectively. 

 

 

3. Results and discussion 

 
3.1. Characterization of activated carbons 

 

3.1.1. Textural characterization 

 

Figure 6.2 shows the N2 adsorption isotherms for the activated carbon samples after 

textural (Figure 6.2a) and surface chemistry modification (Figure 6.2b). The shape of the 

isotherms denotes the presence of micropores but mainly the mesopores in the carbon 

samples. The textural modification of AC resulted in the enhancement of the porosity. 

Evidently, the longer time of gasification was applied, the higher burn-off values were 

reached (28% and 50% for ACT1 and ACT2, respectively). Some calculated data confirms 

these observations and shows that the gasification time correlates to several textural 

factors (Table 6.1). On the other hand, surface chemistry modification by acid and 

consecutive thermal treatment of AC0 did not cause significant textural changes, only a 

very slight reduction of microporosity was observed while the meso- and macroporosity 

remained intact; thus a possible variation in biodecolourisation rates with these carbons 

would be solely due to their different surface chemistries. 
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Figure 6.1 . Activated carbon surface without (a) and with (b) biofilm (ESEM). 
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Figure 6.2 . N2 adsorption isotherms at 77 K for activated carbons with different textural 

properties (a) and surface chemistries (b). 

 

3.1.2. Surface chemistry characterization 

 

The surface oxygen groups on carbon materials decompose upon heating by releasing 

CO and CO2 at different temperatures. A CO2 peak results from carboxylic acids at low 

temperatures, or lactones at higher temperatures; carboxylic anhydrides originate both a 

CO and a CO2 peak; phenols, ethers, and carbonyls/quinones originate CO peaks 

(Figueiredo et al., 1999). Figure 6.3 shows the TPD spectra of the Norit Rox activated 

carbon before (AC0) and after the textural modifications. Because of their preparation 

method, none of these carbon samples (ACT0, ACT1 and ACT2) contains significant amount 

of surface groups emitting CO2 (Figure 6.3a), its rate of generation was less than 0.03   
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µmol s–1 g–1 in each case. The amount of CO-emitting groups is obviously higher by the 

increase of the activated carbon surface area (Figure 6.3b), but the specific CO-releasing 

groups density was found to be similar for ACT0, ACT1 and ACT2 (1.00, 1.04 and 1.08   

µmol m–2, respectively). According to both the CO- and CO2-spectra, the textural 

modification (followed by slight oxidation) was carried out by varying mainly the textural 

characteristics but not the surface chemistries of the carbon samples (ACT0, ACT1 and 

ACT2). 
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Figure 6.3 . TPD spectra of activated carbons with different textural properties: 

(a) CO2 and (b) CO evolution. 

Figure 6.4 shows the TPD spectra of AC0 and the samples with modified surface 

chemistries (AC1–AC5; AC02). It can be seen that the nitric acid treatment (AC1) increased 

the amount of surface groups, which is evidenced by the increase of CO2 (Figure 6.4a) 
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and CO (Figure 6.4b) released. Both the spectra show well the effect of thermal 

treatments on sample AC1; the higher temperature was applied, the more amount of 

surface groups were removed. In case of thermal treatment at 1100 °C (AC 5), no 

significant amount of surface groups remained on the carbon. Table 6.2 shows the total 

amounts of CO and CO2 released, obtained by integration of the areas under the TPD 

peaks, the ratio CO/CO2 and the point of zero charge of the samples with different surface 

chemistries. A good correlation was found between the BET surface areas and the 

evolved amounts of CO and CO2 in the case of texture-modified samples, as mentioned 

before. 

 

Table 6.1 . Textural data of selected activated carbons used in this study. 

Carbon aSBET (m2 g–1) bVµ (cm3 g–1) cS≠µ (m2 g–1) 

        AC0 1055  0.415  90  

        AC1 1004  0.409  75  

        AC5 977  0.401  76  

        ACT0 1027  0.417  71  

        ACT1 1097  0.444  74  

        ACT2 1336  0.534  113  

aBET surface area. bMicroporous volume. cNon-microporous surface area. 

 

Table 6.2 . Surface chemistry data of activated carbon samples. 

sample CO2 (µmol g–1) CO (µmol g–1) CO/CO2 pHPZC 

     AC0   144  911  6.3         8.3 

     ACT0   62  1023  16.5         n.m. 

     ACT1   68  1136  16.7         n.m. 

     ACT2   94  1448  15.4         n.m. 

     AC1   628  2041  3.2         4.5 

     AC2   181  1808  10.0         7.3 

     AC3   51  1481  29.0         7.6 

     AC4   35  888  25.4         8.1 

     AC5 n.d.  106         –         8.6 

     AC02 n.d.  498         –         n.m. 

n.m., not measured; n.d., not detectable. 

 

In order to determine the amount of individual surface groups, the deconvolution of the 

CO- and CO2-spectra was carried out for all carbon samples, according to the numerical 

calculations described by Figueiredo et al. (2007). A multiple gaussian function was used 

for fitting each of the TPD spectra, taking the position of the peak center as initial estimate 

(Figure 6.5). The numerical calculations were based on a non-linear routine which 
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minimized the square of the deviations, using the Simplex method to perform the 

iterations. Table 6.3 gives the deconvolution data of the main peaks obtained, where TM is 

the temperature of the peak maximum and A is the integrated peak area. According to the 

individual peak data, only the sample AC1 contains significant amount of CO2-releasing 

(acid and anhydride) groups on its surface, together with presenting the smallest CO:CO2 

ratio among all the carbon samples. The CO-emitting groups on each ACs are present in 

higher amounts and among them, carbonyl/quinone sites can be considered as the most 

significant ones. 
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Figure 6.4 . TPD spectra of activated carbons with different surface chemistries: 

(a) CO2 and (b) CO evolution. 
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The pHPZC values are consistent with the CO and CO2 evolutions (Table 6.2). The 

HNO3-treatment originated a large amount of oxygen-containing surface groups having 

mainly acid characteristics (sample AC1). After thermal treatments at high temperatures 

(>700 °C), practically only CO-releasing groups rem ained on the carbon surface, which 

have neutral or basic properties. However, the basic characteristics associated with 

activated carbons submitted to thermal treatments are mainly associated with the 

electron-rich oxygen-free sites located on the carbon basal planes (Lewis basicity). 

Although pHPZC is considered to have serious significance in the adsorption of dyes onto 

activated carbons (Faria et al., 2004), probably it is not the crucial factor in the present 

biological reduction process, which is rather dependent on electrochemical characteristics 

of the system (Mezohegyi et al., 2009). 
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Figure 6.5 . Deconvolution of TPD spectra: example for (a) CO2 and 

(b) CO evolution (AC0). 
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3.2. Reduction of azo dyes 

 

3.2.1. Modeling 

 

The efficacy of the anaerobic upflow stirred packed-bed reactor with biological 

activated carbon system for mono- and diazo reduction was proved in an earlier study of 

the authors (Mezohegyi et al., 2009). The degradation model involving both 

heterogeneous catalysis and biological decolourisation with Michaelis–Menten-like 

kinetics can be given as: 

DYE2

DYE1DYE

ck
ck

dρ

dc
+
⋅−=

τ⋅
           (1) 

where cDYE (mmol L–1) is the dye concentration, τ (min gAC g–1) is the space time, ρ (g L–1) 

is the density of solution, and k1 (mmol gAC
–1 min–1) and k2 (mmol L–1) are the kinetic 

parameters. In case of a diazo colourant (RB5H), the material balance equation for the 

monoazo reduction product is: 

RB5HM4

RB5HM3

DYE2

DYE1RB5HM

ck

ck

ck

ck

dρ

dc

+
⋅

−
+
⋅

=
τ⋅

         (2) 

where cRB5HM (mmol L–1) is the monoazo product concentration and k values (k3: mmol 

gAC
–1 min–1 and k4: mmol L–1) are the referred kinetic constants. Eq. (2) can be easily 

solved numerically using for instance the Euler method. 

 

3.2.2. Catalytic reduction by ACs with different textural properties 

 

Figure 6.6 shows an example (AC0) that the kinetic models Eqs. (1) and (2) fit the 

experimental points of azo bioreduction well, irrespectively of the activated carbon used in 

the bioreactor. According to the k1 kinetic constants achieved for the carbons having 

different textural properties (Figure 6.7), the original sample AC0 presented the smallest 

decolourisation rates while ACT2 with the highest surface area resulted the best azo dye 

removal. Although the USPBRs with each carbon appeared to be a very effective 

treatment system, ACT2 worked extremely well: conversion values above 88% were 

achieved in case of both azo dyes at a τ of 0.23 min or higher corresponding to a very 

short hydraulic residence time of about 0.30 min at the most (calculated from the reactor 

hold-up). To the author’s knowledge, so far, no better removal rates of azo dyes Orange II 

and Reactive Black 5 have been reported in anaerobic bioreactors. The Michaelis–Menten 

constant (k2) was found to be similar in the case of both dyes reduction and of all activated 

carbons (0.90–0.95 mmol L–1). 
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Figure 6.6 . Example of kinetic modeling of azo anaerobic biodecolourisation in USPBR 

(AC0); lines show the model fitting to experimental points. 

When plotting k1 constants against the amount of quinonic groups [COQ] on the 

referred activated carbon’s surface (Figure 6.7), two important conclusions can be done. 

On the one hand, the dye reduction rate is proportional to the activated carbon surface 

area. This is evidenced when considering the data of ACT0, ACT1 and ACT2, which have 

similar specific surface chemistries (referred to the [COQ]/SBET ratios), since the amount of 

CO released is directly proportional to the BET surface area. On the other hand, the 

increase of the amount of CO-releasing groups –mostly, quinonic groups– on the 

activated carbon surface results higher decolourisation rates, at least, in the given range 

of [COQ]. The samples AC0 and ACT0 have similar textural properties with nearly the same 

BET surface areas. However, they slightly differ in surface chemistries and ACT0, 

possessing a denser quinonic surface structure, gave significantly better reduction rates 
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than AC0 for both azo colourants. This confirms the hypothesis of quinonic catalysis in 

anaerobic azo dye reduction. 
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Figure 6.7 . Correlation between catalytic azo reduction and surface quinonic densities of 

activated carbons with different textural properties. 

 

3.2.3. Catalytic reduction by ACs with different surface chemistries 

 

Comparing to textural modification, variation of the carbon surface groups (AC1–AC5 

and AC02) seems to have less effect on dye reduction (Figure 6.8). Although different 

surface chemistries were obtained on AC1, AC2, and AC3, they did not present significant 

differences in azo dye reduction rates, probably due to their similar high carbonyl/quinonic 

groups surface densities (890–1140 µmol gAC
–1). It is interesting to note that once the 

carbon surface chemistry is different, then the accessibility of the dye molecules to the 

pores and their interaction with the activated carbon surface are expected to be different 

as well, which may have a certain influence on the dye reduction. On the other hand, the 

decrease of quinonic groups down to smaller amounts (~600 µmol gAC
–1) implied reduction 

of the catalytic activity of activated carbon. This means that a [COQ] interval exists where 

quinonic catalysis of azo reduction occurs. Besides the present anaerobic azo reduction 

process, carbonyl/quinonic groups on AC surface has also been reported as the decisive 

sites in different applications such as in the oxidative dehydrogenation of ethylbenzene 

(Pereira et al., 1999; Maciá-Agulló et al., 2005) or in electrical double layer capacitors 

(Bleda-Martínez et al., 2005). The k2 constants were found to be between 0.90–0.94  

mmol L–1 for all carbons. 

 

The sample AC5 presented the highest azo dye reduction rates and this performance 

needs some explanation. Dye adsorption studies for the activated carbon samples    
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(AC1–AC5) were previously done (data not shown) and no significant difference among 

adsorption capacities of these ACs was found. This confirms the importance of another 

factor in the reduction process. The thermal treatment at 1100 °C (sample AC 5) resulted 

only a minimal amount of carbonyl groups on the carbon surface. The density of the 

delocalized π-electrons on the graphene sheets increases upon the removal of the 

electronegative surface oxygen groups and hence the electrical conductivity increases 

(Pantea et al., 2001). Therefore AC5 should have a higher conductivity than the samples 

AC1–AC4 and AC5 is probably the only sample where the π-electrons extensively 

participate in the reduction process. Considering all the activated carbon samples with 

different surface chemistries, their performance in dye decolourisation is probably related 

to two different reaction mechanisms occuring in the presence/absence of surface oxygen 

groups: one involves the delocalized π-electrons (AC5 and AC02) and the other the surface 

quinonic functionalities (AC1 to AC4). The double mechanism is better surmised when 

looking the reduction trend of Orange II than of the more biodegradable Reactive Black. 
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Figure 6.8 . Correlation between catalytic azo reduction and surface quinonic densities of 

activated carbons with different surface chemistries. 

It is interesting to mention that in case of each activated carbon, the hydrolysed 

reactive dye presented better biodegradability than Orange II. This result is reasonable if 

considering the electrochemical characteristic of these two dyes. An earlier work of the 

authors (Mezohegyi et al., 2009) stated that the key factor of azo reduction was not the 

activated carbon high adsorption capacity for different dyes but the reduction potential 

value of the colourants. According to these values, the first azo bond reduction in RB5H 

takes place easier than the anaerobic decolourisation of the monoazo OII, irrespectively of 

the bioreactor system or the type of activated carbon used as a catalyst. 
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4. Conclusions 

 
Anaerobic decolourisation of two commercially important textile azo dyes was studied 

in terms of activated carbon modification in upflow stirred packed-bed reactors containing 

biological activated carbon system. Carbons with different textural properties and various 

surface chemistries were prepared in order to examine their possible influence on azo dye 

reduction rates. Characterization of the carbon samples proved that the texturally modified 

ACs did not differ significantly in surface chemistries and, inversely, surface chemistry 

modification of ACs by acid- and thermal treatments took place with no significant textural 

changes. The proposed kinetic model described well the anaerobic catalytic azo reduction 

for all the activated carbons tested. The azo dye decolourisation rate constants were 

found to be proportional to the activated carbon surface area. Although variation of the AC 

surface chemistry seems to have less effect on dye removal rates than the textural 

properties, the hypothesis of catalysis by carbonyl/quinone sites in the anaerobic dye 

reduction process was confirmed. An other mechanism plays an important role in the 

catalytic decolourisation, particularly in the absence of significant densities of surface 

oxygen-containing groups, when not the quinonic groups but rather the delocalized π-

electrons are involved in the reduction. Although the USPBR appears to be a very 

effective system for biological azo dye treatment with all the activated carbons studied, its 

performance can be further enhanced by appropriate tailoring of the textural and surface 

chemistry properties of the catalyst. 
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7 
General conclusions and future works 

 

 

 

During the last decade, dye removal techniques were notably progressed by the 

involvement of AC in the operation. Most of the colour-reducing methods could be 

successfully combined with the beneficial properties of AC that resulted not only in a 

synergetic increase of decolourisation but, generally, in higher dye mineralisation rates as 

well. The use of AC as a catalyst in different chemical dye oxidation processes made clear 

that these treatments have a great potential for economically improving textile/dye 

wastewater technologies. On the other hand, recently, a new and promising approach 

have emerged for AC-amended azo dye decolourisation. The so-called advanced 

(bio)reduction processes (ARPs) seem very effective for colour removal and are 

incomparably more economic than the (advanced) oxidation treatments. 

 

The experimental part of this thesis simultaneously focused both on the investigation of 

the mechanisms and crucial factors in AC-catalysed reduction of azo dyes and on the 

development of a high rate anaerobic reactor system in what the catalytic reaction was 

realised. The whole results proved that the novel continuous upflow stirred packed-bed 

reactor (USPBR) with the biological activated carbon (BAC) is a powerful treatment 

system for azo decolourisation. The reduction mechanism can be described as: (1) azo 

dye adsorption onto the AC surface; (2) azo bond split by electrons and H+ produced from 

an external carbon source by anaerobic bacteria; and (3) desorption of the generated 

aromatic amines from the AC surface. Apart from the basic operation parameters (e.g., 

feed properties, redox potential of the anaerobic environment, temperature), the most 

important factors strictly determining the reaction rates were the active biomass 

concentration in the reactor, the electrochemical characteristics of the treated colourant 

and the chemical and textural properties of AC. 

 

The role of AC in the azo reduction is multiple: besides it has a high adsorption 

capacity for azo dyes and offers a high surface for biofilm, it acts as a redox catalyst 

transferring electrons from the cosubstrate (carbon source for microorganisms) to the azo 

linkage. Although the thesis evidenced that appropriate modification of the AC catalyst 

can result in dye reduction enhancement, further increase in pollutant removal may be 

achieved by the use of advanced carbon materials in the bioreactor, e.g., carbon 
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nanotubes, ordered mesoporous carbons or certain xerogels. However, the differences in 

the costs of these supports and in the reduction rates that they can provide, should be 

preliminarily analysed. Alternatively, azo dye reduction may be enhanced by impregnating 

the AC with appropriate (catalytic) metals but, in this case, both the microbial tolerance for 

these elements and their possible leaching from the AC surface have to be considered. 

 

Although the use of AC in a biological treatment is not a recent issue, its use as a 

catalyst in microbial wastewater purification is a novel approach. This complex process 

involves both heterogeneous catalysis and biological conversion of the pollutant. As the 

results of the thesis showed, it is possible to establish a kinetic model to describe this type 

of advanced contaminant removal. Since the presence of AC in the bioreactor is more 

determinative than the reactor volume regarding the reduction rates, the reaction can be 

better described by the inclusion of space time in the kinetic model than of hydraulic 

residence time. The results furthermore suggested that including information about the 

pollutant concentration and AC properties (e.g., mass of carbon, AC surface area) in the 

kinetic model can significantly help to make the comparison of different bioreactor 

systems and/or pollutant reduction rates possible. Apart from azo dye decolourisation, the 

USPBR-BAC system has the potential to treat other water contaminants in different 

reduction processes such as dechlorination, denitrification or the reduction of 

nitroaromatic compounds. 

 

The results of the thesis, in addition, propose future trends for textile azo dye 

production. It has to be considered that most of the colourants produced on the market 

should fulfil two basic requirements: on the one hand, their fixation rate during the textile 

dying process has to be high enough to avoid huge dye losses into the effluent; for 

instance, 10–50% of the reactive dyes end up in wastewater during the colouration of 

cellulose fibres (Easton, 1995); on the other hand, they should be efficiently removable 

from the wastewater. Considering ARPs and according to the results, the azo dyes should 

be manufactured with less negative reduction potentials in order to ensure their 

efficacious (biological) decolourisation. 

 

It has to be noted that the biological reduction can only ensure the azo bond cleavage 

and is not effective in the removal of anaerobic reduction products that require further 

(oxidative) treatment. The application of a sequential anaerobic–aerobic process is 

indispensable to perform a complete removal of azo dye pollutants. Because of both the 

remarkable cost-efficiency of the advanced biological reduction and the oxidability of the 

produced aromatic amines, anaerobic decolourisation with a subsequent biological or 

chemical oxidation is certainly a more economic method for azo dye removal than single 

oxidation treatments. 
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