
Universitat Rovira i Virgili
Facultat de Lletres

Departament de Filologies Romàniques

Communication in
Membrane Systems with

Symbol Objects

PhD Dissertation

Artiom Alhazov

Supervisors:

Prof. Rudolf Freund
Faculty of Informatics

Vienna University of Technology, Austria

Prof. Yurii Rogozhin
Institute of Mathematics and Computer Science

Academy of Sciences of Moldova

Tarragona, Spain, 2006

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

0.1. ABSTRACT 3

0.1 Abstract

This thesis deals with membrane systems with symbol objects as a theoretical
framework of distributed parallel multiset processing systems.

A halting computation can accept, generate or process a number, a vector
or a word, so the system globally defines (by the results of all its computa-
tions) a set of numbers or a set of vectors or a set of words, (i.e., a language),
or a function. The ability of these systems to solve particular problems is
investigated, as well as their computational power, e.g., the language fami-
lies defined by different classes of these systems are compared to the classi-
cal ones, i.e., regular, context-free, languages generated by extended tabled
0L systems, languages generated by matrix grammars without appearance
checking, recursively enumerable languages, etc. Special attention is paid to
communication of objects between the regions and to the ways of cooperation
between the objects.

An attempt to formalize the membrane systems is made, and a software
tool is constructed for the non-distributed cooperative variant, the configura-
tion browser, i.e., a simulator, where the user chooses the next configuration
among the possible ones and can go back. Different distributed models are
considered. In the evolution–communication model rewriting-like rules are
separated from transport rules. Proton pumping systems are a variant of
the evolution–communication systems with a restricted way of cooperation.
A special membrane computing model is a purely communicative one: the
objects are moved together through a membrane.

Determinism is a special property of computational systems; the question
of whether this restriction reduces the computational power is addressed. The
results on proton pumping systems can be carried over to the systems with bi-
stable catalysts. Some particular examples of membrane systems applications
are solving NP-complete problems in polynomial time, and solving the sorting
problem.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4

Acknowledgements

I would like to thank my family for making this work possible and for their
precious support, in particular, my parents for sharing their academic expe-
rience. I would like to express my gratitude to all my co-authors for their
ideas, efforts and time spent on producing and describing results we have ob-
tained. I thank Chişinău, Tarragona and Vienna for a working environment,
and computer technology to facilitate my research in Theoretical Computer
Science.

The author1,2 is very much indebted to Dr. Gheorghe Păun for research
experience and writing skills. Many thanks are addressed to the scientific
advisers, Dr. Yurii Rogozhin, who brought me to the field of theoretical
computer science, and Dr. Rudolf Freund, who made it possible my visit
to Vienna to be extremely fruitful, for their expertise and patience, not to
mention the proofreading of this work.

A special acknowledgment is due to Prof. Carlos Mart́ın-Vide for en-
couraging the author’s efforts, to the management of IMI for their assistance
throughout my PhD program, and to the present and former members and
visitors of GRLMC and IMI, as well as the entire membrane systems commu-
nity, for their moral support and some long scientific discussions, as well as
for not letting me concentrate on science too much. Best regards to Dragoş
Sburlan, Matteo Cavaliere and Leonor Becerra-Bonache, who have invited
me to their defense.

I cannot forget the professors and colleagues of the State University of
Moldova and of my School, as they have contributed a lot to my mathematical
education, and helped me become a better person.

This work was possible thanks to the financial support of research
grant 2001CAJAL-BURV4, as well as projects TIC2002-04220-C03-02 and
TIC2003-09319-C03-01 from Rovira i Virgili University.

1Research Group on Mathematical Linguistics (GRLMC)
Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
E-mail: artiome.alhazov@estudiants.urv.cat

2Institute of Mathematics and Computer Science (IMI)
Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD 2028, Moldova
E-mail: artiom@math.md

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

Contents

0.1 Abstract . 3
Contents . 5

1 Introduction 9
1.1 About Membrane Computing 9
1.2 About the Topic of This Thesis 10
1.3 About the Structure of This Thesis 11

2 Prerequisites 13
2.1 Basic Prerequisites . 13

2.1.1 Set Theory and Algebra 13
2.1.2 Languages . 14

2.2 Grammar Prerequisites . 15
2.2.1 Grammars . 15
2.2.2 Programmed Grammars 16
2.2.3 Matrix Grammars . 18
2.2.4 Lindenmayer Systems 18

2.3 Automata and Machines Prerequisites 19
2.3.1 Finite Automata and Transducers. PDAs 19
2.3.2 Turing Machines. LBAs 20
2.3.3 Counter Automata . 21
2.3.4 Conflicting Counters 22
2.3.5 Partially Blind Counter Automata 23
2.3.6 Register Machines . 23

3 Introduction to P Systems 27
3.1 P Systems Prerequisites . 27

3.1.1 Basic Definitions . 27
3.1.2 Transitional P Systems 28

5

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6 CONTENTS

3.1.3 Basic Variants and Additional Features 29
3.1.4 Formal Description . 30
3.1.5 Purely Communicative Systems 30
3.1.6 Evolution–Communication P Systems 31
3.1.7 Tissue P Systems . 31
3.1.8 Further Models . 32

3.2 Computing with P Systems 32
3.2.1 Generating . 33
3.2.2 Accepting . 33
3.2.3 Processing . 33
3.2.4 Deciding . 34

3.3 Properties . 34
3.3.1 Decidability, Completeness, Universality 34
3.3.2 Determinism and Confluence 35
3.3.3 Uniform, Semi-uniform Families 36

3.4 Maximal Parallelism. Simulator 37
3.4.1 Introduction . 38
3.4.2 Maximally Parallel Multiset Rewriting 39
3.4.3 Vector Representation. Simplex 41
3.4.4 Solutions. Maximality. Optimization 42
3.4.5 Summary . 44

4 Evolution–Communication 45
4.1 Introduction . 45
4.2 Definitions . 47
4.3 Universality . 48

4.3.1 Symport / Antiport of Weight One 48
4.3.2 Symport of Weight Two 51

4.4 EC P Automata: Accepting Languages 52
4.5 Infinite Environment . 55
4.6 Time-Freeness . 56
4.7 Determinism . 58

4.7.1 Symport / Antiport of Weight One 58
4.7.2 Symport of Weight One 61

4.8 Proton Pumping . 62
4.9 One Proton . 64

4.9.1 Symport / Antiport of Weight One 64
4.9.2 Symport of Weight Two 68

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

CONTENTS 7

4.10 Concluding Remarks . 72

5 Symport / Antiport of Small Weight 75
5.1 Introduction . 75
5.2 Definitions . 76

5.2.1 P Systems with Symport / Antiport Rules 76
5.2.2 Tissue P Systems with Symport / Antiport Rules . . . 79

5.3 Descriptional Complexity: A Survey 81
5.3.1 Rules Involving More Than Two Objects 81
5.3.2 Minimal Cooperation 82

5.4 Three Membranes . 84
5.4.1 Symport / Antiport of Weight One 85
5.4.2 Symport of Weight Two 91

5.5 Two Cells . 99
5.5.1 Symport / Antiport of Weight One 99
5.5.2 Symport of Weight Two 105

5.6 Two Membranes . 108
5.6.1 Symport / Antiport of Weight One 109
5.6.2 Symport of Weight Two 115

5.7 One Membrane . 123
5.7.1 Upper Bound . 124
5.7.2 Lower Bound . 124

5.8 Symport of Weight Three . 126
5.9 Concluding Remarks . 127

6 Small Number of Objects 129
6.1 Introduction . 129
6.2 Definitions . 131
6.3 Membrane Case . 131

6.3.1 At Least Three Symbols 131
6.3.2 At Least Two Symbols and at Least Two Membranes . 139
6.3.3 One Membrane . 141
6.3.4 One Symbol . 143
6.3.5 Summary . 145

6.4 Tissue Case . 146
6.4.1 One Symbol . 147
6.4.2 At Least Two Symbols and at Least Two Cells 149
6.4.3 One Cell . 162

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

8 CONTENTS

6.4.4 Summary and Open Questions 166
6.5 Concluding Remarks . 168

7 Applications 169
7.1 Sorting . 169

7.1.1 Introduction . 169
7.1.2 Sorting Networks . 172
7.1.3 Sorting Definitions and Notations 172
7.1.4 Weak Sorting . 175
7.1.5 Evolution–Communication Systems 175
7.1.6 Summary . 177

7.2 Solving NP-Complete Problems 178
7.2.1 Symport / Antiport and Membrane Division 179
7.2.2 Solving SAT . 180
7.2.3 Summary . 183

7.3 From Protons to Bi-stable Catalysts 184

8 Conclusions and Open Problems 187
8.1 List of Key Notations . 187
8.2 List of Results . 188
8.3 List of Conclusions, Open Problems and Research Directions . 191

8.3.1 Multiset Rewriting . 191
8.3.2 EC P Systems . 192
8.3.3 Protons and Bi-stable Catalysts 192
8.3.4 Symport / Antiport of Small Weight 193
8.3.5 Symport / Antiport with a Small Alphabet 194
8.3.6 Solving Particular Problems 195

List of Figures . 197
List of Tables . 199
Bibliography . 201
. 218

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

Chapter 1

Introduction

1.1 About Membrane Computing

Membrane systems, also called P systems, are a framework of distributed
parallel computing models, inspired by some basic features of biological
membranes. In membrane systems, objects are placed in regions, defined
by a membrane structure, and are evolving by means of “reaction rules”,
associated with regions or with membranes. The rules are applied non-
deterministically, and (in most models) in a maximally parallel manner (no
rules are applicable to the remaining objects). Objects can also pass through
membranes. Many other features are considered. These notions are used to
define the transitions between the configurations of the membrane system,
and its evolution is used to define the computation.

Three ways of computing were studied: computing functions (data pro-
cessing), generating and accepting sets (of strings, numbers or vectors). Many
different classes of P systems have been investigated, and most of them turned
out to be computationally complete with respect to the Turing-Church thesis
(i.e., equal in power to Turing machines).

It is quite convenient for a researcher in the domain that a comprehensive
bibliography of membrane computing (over 600 titles) can be found on the
P systems web page, [205]. There one can also find many articles available
for download, including pre-print versions and preliminary proceedings of
the meetings, see Table 1.1 (journal articles are sometimes made available
online by the publisher, for the subscribed users). The list of author’s articles
and links to full articles, abstracts and/or publisher pages can be found at

9

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

10 CHAPTER 1. INTRODUCTION

http://www.geocities.com/aartiom/pub aa.html

Meeting First time References
Workshop on 2000 [54], [144], [174],
Membrane Computing [27], [146], [86]
Brainstorming Week on 2003 [63], [167],
Membrane Computing [108]
Brainstorming Workshop on 2004
Uncertainty in Membrane Computing
ESF Exploratory Workshop 2005 [103]
on Cellular Computing
(Complexity Aspects)
Workshop on Theory and 2005 [70]
Application of P Systems

Table 1.1: Membrane Computing Meetings (downloadable from [205])

1.2 About the Topic of This Thesis

This thesis presents studies and a survey of P systems with communicative
rules associated to membranes, i.e., evolution–communication P systems,
proton pumping P systems and symport / antiport P systems.

The questions considered include (but are not limited to):

• What restrictions can be placed on a model/variant such that it is still
computationally complete?

• What is the computational power of a given computing model with
certain restrictions (e.g., when maximally parallel object cooperation
is not enough for the computational completeness)?

• Can particular problems be solved in a polynomial number of steps by
some model with certain restrictions (or what is the time complexity of
some problem depending on the features and restrictions of the model)?

The most typical restrictions are

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

1.3. ABOUT THE STRUCTURE OF THIS THESIS 11

• restricting the descriptional complexity (e.g., the number of membranes
or the number of objects);

• restricting the way of object interaction (e.g., the number of objects
involved in a rule, or the way in which they are involved);

• distinguishing a subset of objects with restricted features (e.g., cata-
lysts, bi-stable catalysts, protons);

• considering P systems with some property (e.g., determinism, conflu-
ence, ultimate confluence, always halting).

The methods typically used are comparison with (e.g., simulation of)
known computational devices (finite automata, context-free grammars, reg-
ulated grammars, register machines, 0L systems, grammar systems, other
classes of P systems).

1.3 About the Structure of This Thesis

Chapter 1 briefly talks about membrane computing in general, and about
the topic of this thesis and its structure in particular. Chapter 2 introduces
the relevant background information in Computability (Grammars and Au-
tomata Theory). Chapter 3 presents preliminaries of P systems: P systems
description, computing with P systems, and the important properties of some
P systems. The author’s reflections on this are also given. Finally, an at-
tempt to relate the notion of maximal parallelism to a well-studied problem
of multi-criterial optimization is stated.

In Chapter 4 the evolution–communication model is formally introduced,
and the obtained results are listed. Both generating and accepting cases are
investigated, as well as a few restrictions, such as determinism and time-
freeness. A special variant is introduced, called proton pumping P systems,
and the corresponding (somewhat surprising) results are presented.

In Chapter 5 we introduce P systems having only symport / antiport
rules, stating the studies of the power of rules moving a small number of
objects between regions. The history of the research and the latest results
are presented, both on cell-like P systems and tissue P systems.

Chapter 6 considers the same model as Chapter 5, but gives answers to
the question of what can be computed by symport / antiport P systems with

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

12 CHAPTER 1. INTRODUCTION

a small alphabet of objects. Again, both cell-like P systems and tissue P
systems are considered.

Chapter 7 dwells upon some applications of P systems. An application
of evolution–communication P systems in the Sorting Theory is presented in
Section 7.1, an application of symport / antiport P systems with membrane
division in Complexity Theory is presented in Section 7.2, and an application
of proton pumping P systems in Multiset Rewriting Theory is presented in
Section 7.3 by relating protons to bi-stable catalysts.

Chapter 8 outlines the results reflected in this thesis and makes a number
of remarks, as well as some interesting open questions.

All results presented in Chapters 4, 5, 6, 7 are original results obtained
by the author himself or in cooperation with some co-authors.1

The last section of Chapter 3 is based on article [4]. Chapter 4 is based
on articles [5], [10], [7], [11] and [6]. Chapter 5 is based on articles [24], [31],
[22], [30] and [21]. Chapter 6 is based on articles [13], [16], [17] and [15].
Chapter 7 is based on articles [32], [33], [9] and [6].

This thesis is intended to give a complete picture of investigations in mem-
brane systems related to communication (rules of moving objects assigned to
membranes).

1For some results (e.g., Theorem 4.4.1) a new proof was constructed, considering the
studies of the field after the first proof. Some other results (e.g., Theorem 4.4.2) are
previously unpublished, and are made for obtaining a complete picture.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

Chapter 2

Prerequisites

This chapter includes a summary of Set Theory, Algebra, Formal Language
Theory and Theoretical Computer Science topics related to membrane sys-
tems and to this thesis in particular.

2.1 Basic Prerequisites

2.1.1 Set Theory and Algebra

Let N be the set of natural numbers (non-negative integers). An (m-
dimensional) vector (of non-negative integers) is an m-tuple ~v = (a1, · · · , am)
= (ai)1≤i≤m. It can be given as v : {1, · · · , m} → N.

Consider a finite set V . A (finite) multiset over V is a mapping M :
V → N. For a ∈ V , the number M(a) is called the multiplicity of a in M .
If V is finite, ordered and fixed, then the set V o of multisets over V (also
denoted as NV) is isomorphic to the set N|V | of |V |-dimensional vectors of
natural numbers (a multiset M over V = {a1, · · · , ak} can be represented by
a vector (M(a1), · · · , M(ak)) ∈ Nk).

Usually, in this thesis (and in P system area), multisets are represented
by strings, e.g., M can be represented by w =

∏k
i=1(ai

M(ai)) (or by any
permutation of w since the order of the symbols is not important): the
multiplicity M(a) of each symbol a is represented by the number |w|a of
occurrences of the symbol a in w.

A multiset-rewriting system is defined as a tuple G = (V, R, w) where V is
the alphabet, R is a finite set of rules of the form r : u → v, u ∈ V +, v ∈ V ∗,

13

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

14 CHAPTER 2. PREREQUISITES

r is called the label of the rule, and w ∈ V ∗ is the initial configuration.
The label uniquely identifies the rule and the set of all labels is denoted by
Lab(R).

A graph (directed, without loops) is a construct G = (V, U), where V is a
(finite) set of vertices (also called nodes) and U ⊆ V × V − {(x, x) | x ∈ V }
are called edges. An edge e = (x, y) is said to be from x to y. The edge e is
also called adjacent to x and to y, and x and y are called incident.

A subgraph GA = (A ⊆ V, U ′ ⊆ U) of a graph G = (V, U) is called
generated by A if U ′ = U ∩ A × A. A graph is called complete if any two
(different) nodes are incident.

By 2M we will denote the powerset (the set of all subsets) of M .

A semigroup (M, ∗) is a set M on which a binary operation (a function
∗ : M ×M → M) is introduced, which is associative (x ∗ (y ∗ z) = (x ∗ y) ∗ z
∀x, y, z ∈ M).

A monoid (M, ∗) is a semigroup with a neutral element (∃e ∈ M : x ∗ e =
e ∗ x = x ∀x ∈ M).

A group (M, ∗) is a monoid, where any x ∈ M has a symmetrical element
y ∈ M (x ∗ y = y ∗ x = e)

A semigroup, monoid or a group is called abelian (commutative) if the
operation is commutative (x ∗ y = y ∗ x ∀x, y ∈ M)

A monoid (M, ∗) is generated by V by the operation ∗ if it is the smallest
monoid containing V .

A monoid (M, ∗) generated by V is free if every element of M can be
represented as a product of a finite number of elements of V in a unique way.

2.1.2 Languages

An alphabet is a finite non-empty set of abstract symbols.

For an alphabet V the universal language V ∗ is a set of all strings of
symbols of V . Notice that V ∗ is a free monoid, generated from V by the
concatenation operation. (The neutral element of this monoid is the empty
string, denoted by λ.) The set V ∗ − {λ} of non-empty strings over V is
denoted by V +.

A formal language L is a subset of a universal language.

The number of occurrences of a given symbol a ∈ V in x ∈ V ∗ is denoted
by |x|a. The number of occurrences of symbols from U ⊆ V in x ∈ V ∗ is
|x|U =

∑
a∈U |x|a. The length of a string x ∈ V ∗ is |x| = |x|V .

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

2.2. GRAMMAR PREREQUISITES 15

The length set of a language L is N(L) = {|x| | x ∈ L}. For a family of
languages F ⊆ 2V ∗

, NF stands for the family of length sets of languages
in F .

For k ≥ 1, by NkF we denote the family of length sets of such languages
L ∈ F that n ≥ k for every n ∈ N(L).

The Parikh vector of a string x ∈ V ∗ with respect to the (ordered) alpha-
bet V = {ai | 1 ≤ i ≤ n} is ΨV (x) = (|x|ai

)1≤i≤n.

The Parikh mapping associated with V is the function ΨV : 2V ∗ → 2N|V |

defined by ΨV (L) = {ΨV (x) | x ∈ L}.
If F ⊆ 2V ∗

(F is a family of languages), then by PsF we denote the
family of Parikh images of languages in F .

If we call the words, differing only in the order of symbols, equivalent, then
the equivalence classes can be described by the number of occurrences of each
symbol, i.e., by their Parikh set, and vice-versa. The order of symbols in this
case is irrelevant, so the operation (concatenation of string representatives,
or union of multisets, or addition of vectors) is commutative. This is why
the set of equivalence classes is called a commutative monoid, generated from
the alphabet, and its subsets are called commutative languages.

Given a word w ∈ V ∗, we denote by Sub(w) the set {y ∈ V ∗ | w = xyz}
of all subwords of w, and by alph(w) the set {a ∈ V | |w|a > 0} of symbols
that appear in w.

2.2 Grammar Prerequisites

The rewriting systems are string-processing systems, evolving according to
the rewriting rules, replacing a substring of the processed string by another
string.

2.2.1 Grammars

A grammar is a device (with a finite description) generating a language.

A Chomsky grammar is a quadruple G = (N, T, S, P), where N and T
are disjoint alphabets, S ∈ N , P ⊂fin V ∗NV ∗× V ∗, where V = N ∪ T . The
elements of a grammar are called the non-terminal alphabet, the terminal
alphabet, the axiom (or start symbol), and the set of productions, respectively.
The rules (u, v) ∈ P are written as u → v.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

16 CHAPTER 2. PREREQUISITES

For x, y ∈ V ∗ we write x ⇒ y (x directly derives y) if ∃x′, x′′ ∈ V ∗,∃(u →
v) ∈ P : x = x′ux′′, y = x′vx′′. The relation ⇒∗ (derives in 0 or more steps) is
defined as the reflexive transitive closure of ⇒. SF (G) = {w ∈ V ∗ | S ⇒∗ w}
is the set of sentential forms generated by G. The language generated by
G is denoted by L(G) = SF (G) ∩ T ∗. We denote the family of all finite
languages by FIN .

The Chomsky grammars are classified in the following way:

• arbitrary(type 0): |u|N ≥ 1 for each (u → v) ∈ P

• length-increasing (monotone): |u| ≤ |v| (and |u|N ≥ 1)

• context-sensitive (type 1): for each (u → v) ∈ P −{S → λ} there exist
u′, u′′ ∈ V ∗, x ∈ V + and A ∈ N such that u = u′Au′′, v = u′xu′′

AND ALSO if (S → λ) ∈ P , then |v|S = 0 for all (u → v) ∈ P

• context-free (type 2): u ∈ N for all (u → v) ∈ P

• linear: u ∈ N and |v|N ≤ 1 for all (u → v) ∈ P

• right-linear: u ∈ N and v ∈ T ∗ ∪ T ∗N for all (u → v) ∈ P

• regular (type 3): u ∈ N and v ∈ T ∪TN for all (u → v) ∈ P−{S → λ}
AND ALSO if (S → λ) ∈ P , then |v|S = 0 for all u → v in P

The families of languages, generated by the classes of grammars above,
are RE, MON , CS, CF , LIN , RLIN , REG and their relationships are as
follows (FIN stands for finite languages):

FIN (REG = RLIN (LIN (CF (CS = MON (RE.

The Dyck language over Tm =
⋃

1≤i≤m{[i ,] i} is the context-free language
generated by G = ({S}, Tm, S, {S → λ, S → SS}∪{S → [iS]i | 1 ≤ i ≤ m}),
a language of all strings of nested parentheses of m kinds.

2.2.2 Programmed Grammars

Let us recall a class of regulated grammars - the programmed grammars.
These grammars have been used to prove a number of results on the
evolution–communication P systems.1

1So-called graph-controlled grammars have certain advantages over programmed gram-
mars, but we introduce programmed grammars, in particular, for historical reasons.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

2.2. GRAMMAR PREREQUISITES 17

Definition 2.2.1 A programmed grammar (with appearance checking) is a
system G = (N, T, S, R), where N is a finite set of non-terminal symbols, T
is a finite set of terminal symbols (N ∩ T = ∅), S ∈ N is the start symbol
and R is a finite set of triples of the form

(r : α → β, σ(r), ϕ(r)), (2.1)

where r is a label of a rewriting rule α → β, Lab(R) = {r | (r : α →
β, σ(r), ϕ(r))} is the set of labels of rules in R and σ, ϕ : Lab(R) −→ 2Lab(R);
σ(r), ϕ(r) are called the success field and the failure field of r, respectively.

Definition 2.2.2 The language generated by a programmed grammar.
Let (r : α → β, σ(r), ϕ(r)) ∈ R. We say that w′ is derived from w in
one step by applying or skipping the rule with label r (w ⇒r w′) if either
w = xαy, w′ = xβy or w = w′, α /∈ Sub(w). In the derivation, pairs
of label and word are considered: (r, w) ⇒ (r′, w′) if w ⇒r w′ and either
α ∈ Sub(w) and r′ ∈ σ(r), or α /∈ Sub(w) and r′ ∈ ϕ(r). In other words, if
α is present in the sentential form, then the rule is used and the next rule to
be applied is chosen from those with label in σ(r), otherwise, the sentential
form remains unchanged and we choose the next rule from the rules labelled
by some element of ϕ(r). Let ⇒∗ be a reflexive and transitive closure of ⇒.
The language generated by a programmed grammar G is L(G) = {x ∈ T ∗ |
(r, S) ⇒∗ (r′, w′), w′ ⇒r′ x}.

Remark 2.2.1 In this definition it is natural to have w′ ⇒r′ x rather than
(r′, w′) ⇒ (r′′, x), because we need not to have the next rule after we have
obtained the terminal string. If w′ = uAv, u, v ∈ T ∗, A ∈ N , (r′ : A →
y, σ(r′), ϕ(r′)) ∈ R, and (r, S) ⇒∗ (r′, w′), then we say that x = uyv belongs
to the language L(G), even if σ(r′) = ∅. This definition is family-equivalent
to the one with (r′, w′) ⇒ (r′′, x), because for any such grammar we could
add a dummy rule (r : S → S, ∅, ∅) to R, and add r to the success and failure
fields of all terminal rules without changing the language. An advantage of
this fact is taken in the universality proofs.

If ϕ(r) = ∅ for each r ∈ Lab(P), then the grammar is said to be without
appearance checking. If σ(r) = ϕ(r) for each r ∈ Lab(P), then the grammar
is said to be with unconditional transfer: in such grammars the next rule
is chosen, irrespective of whether the current rule can be effectively used or
not).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

18 CHAPTER 2. PREREQUISITES

Note 2.2.1 From now on by programmed grammars we will assume pro-
grammed grammars with appearance checking with context-free rules, i.e.,
|α| = 1 in (2.1).

Remark 2.2.2 In the universality proofs simulating the programmed gram-
mars with appearance checking, pairs 〈S = w1, p0〉, · · · ,
〈wm, pm−1〉, 〈wm+1 = x, pm〉 are considered for derivation (p1, S = w1) ⇒
· · · ⇒ (pm, wm), wm ⇒pm wm+1 = x. Here, the rule is chosen during the step
when it is applied/skipped, rather than one step before. p0 is a new symbol -
a starting point of the control sequence.

Lemma 2.2.1 The class of programmed grammars with appearance checking
generates exactly the family of recursively enumerable languages.

For the proof, see Theorem 1.2.5 in [78].

2.2.3 Matrix Grammars

In many universality proofs of P systems matrix grammars with appearance
checking in the binary normal form are used. Such a grammar is a construct
G = (N, T, S, P, F), with N = {S, #}∪N1∪N2 (these three sets are mutually
disjoint, the elements of N1 are the “control non-terminals”, the elements
of N2 are the “literal non-terminals”), and with the matrices from P in
one of the following forms: (S → XinitAinit) (unique), (X → Y, A → x),
(X → Y,A → #), (X → λ, A → x), where Xinit, X, Y ∈ N1, Ainit, A ∈ N2

and x ∈ (N2 ∪ T)∗, |x| ≤ 2. F is the set of the rules that can be used
in appearance-checking mode (skipped only if not applicable), and this set
consists of exactly all the rules producing #.

In matrix grammars without appearance checking, the rules of the third
form are not allowed, and F = ∅. Matrix grammars with appearance checking
generate RE, while the family of languages generated by matrix grammars
without appearance checking is denoted by MAT .

2.2.4 Lindenmayer Systems

A 0L (interactionless Lindenmayer) system is a triple G = (V, w, P), where V
is an alphabet, w ∈ V ∗ is an axiom and P is a finite set of rules, associating
to every a ∈ V at least one rule a → v, v ∈ V ∗. We can also represent

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

2.3. AUTOMATA AND MACHINES PREREQUISITES 19

productions P as a mapping p : V → FIN − {∅}. For x = a1 · · · an ∈
V ∗, y ∈ V ∗ we write x ⇒ y (x directly derives y) if y ∈ p(a1) · · · p(an). The
relation ⇒∗ (derives in 0 or more steps) is defined as the reflexive transitive
closure of ⇒. The generated language is L(G) = {x ∈ V ∗ | w ⇒∗ x}

G is called deterministic if |p(a)| = 1 for all a ∈ V .

A tabled 0L system is such a system G = (V, w, P1, · · · , Pn) that every
(V, w, Pi) is a 0L system; the production sets Pi are called tables; x ⇒ y if
and only if x = a1 · · · an ⇒ y and y ∈ pi(a1) · · · pi(an) for some i. A T0L
system is called deterministic if |pi(a)| = 1 for all a ∈ V for every table Pi.

A Lindenmayer system is called extended if a terminal subset T ⊆ V
is distinguished and L(G) = {x ∈ T ∗ | w ⇒ x}. Then we write G =
(V, T, w, P1, · · · , Pn).

The families of ((E)xtended)((D)eterministic)((T)abled)0L systems are
denoted by (E)(D)(T)0L, respectively.

Lemma 2.2.2 (Normal Form) For each L ∈ ET0L there is an extended
tabled Lindenmayer system G = (V, T, P1, P2, w0) with two tables generating
L such that the terminals are only trivially rewritten, i.e., for any a ∈ T , if
(a → α) ∈ P1 ∪ P2 then α = a.

2.3 Automata and Machines Prerequisites

2.3.1 Finite Automata and Transducers. PDAs

Automata are analyzing machines, or recognizers. A (non-deterministic)
finite automaton is a quintuple A = (Q, T, s0, F, δ), where Q and T are
disjoint alphabets, s0 ∈ Q and F ⊆ Q are the initial state and the set of
final states, respectively, and δ : Q× T → 2Q is the transition function. The
automaton is called deterministic if |δ(s, a) ≤ 1| for all s ∈ Q, a ∈ T .

The transition function is extended to δ′ : Q × T ∗ → 2Q as follows:
δ′(s, λ) = {s} for all s ∈ Q; δ′(s, aw) =

⋃
t∈δ(s,a) δ′(t, w) for all s ∈ Q, a ∈

T,w ∈ T ∗. The language, recognized by a finite automaton A is L(A) =
{w ∈ T ∗ | δ′(s0, w) ∈ F}. The power of finite automata is not decreased if
we restrict them to be deterministic. The power is not increased if we allow
λ-transitions, i.e., if δ is defined on Q × (T ∪ {λ}), or when the input is
scanned in a two-way manner, without changing its symbols.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

20 CHAPTER 2. PREREQUISITES

A finite transducer (a finite automaton with output) is a tuple R =
(Q, T, V, s0, F, δ), where Q, T , s0, F are like in a finite automaton, V is the
output alphabet and δ : Q× (T ∪ {λ}) → 2Q×(V ∪{λ}).

The transition function is then extended to δ′ : Q × T ∗ → 2Q×V ∗
. The

output M(x) of M on the input x is {y ∈ V ∗ | (s, y) ∈ δ′(s0, x) ∩ F ×
V ∗ for some s}. The image of a language L ⊆ T ∗ under a transduction is
L′ = M(L) = {M(x) | x ∈ L}.

A pushdown automaton is a finite automaton, equipped with a pushdown
- a last-in-first-out type storage.

2.3.2 Turing Machines. LBAs

A Turing machine is a tuple M = (Q, V, T,B, s0, F, δ), where Q, V are the
set of states and the alphabet, T ⊆ V is the input alphabet, B ∈ V − T is
the blank symbol, s0 ∈ Q is the initial state, F ⊆ Q is the set of final states,
D = {L, N, R} and δ : (Q− F)× V → 2Q×V×D is the transition function. If
(t, b, d) ∈ δ(s, a) for s, t ∈ Q, a, b ∈ V and d ∈ D, then the machine, being in
state s, rewrites the symbol a into b, does not move the head if d = N , moves
the head to the left if d = L or to the right if d = R, and passes to state
t. The machine M is called deterministic if |δ(s, a)| ≤ 1 for all s ∈ Q − F ,
a ∈ V .

A configuration of a Turing machine is a string vsw, where s ∈ Q and
v ∈ V ∗ −BV ∗, w ∈ V ∗ − V ∗B. A direct transition is defined as follows:

Let vsw be the current configuration, let wB = aw′ and Bv = v′c,2 also
let (t, b, d) ∈ δ(s, a). For d = L, d = N and d = R, the resulting string then
is v′tcbw′, v′ctbw′, and v′cbtw′, respectively. Finally, eliminate symbols B at
the ends of the string to obtain the configuration representing the result of
the transition. Again, ⇒∗ (transition in 0 or more steps) is defined as the
reflexive transitive closure of ⇒.

The language recognized by a Turing machine M is L(M) = {w ∈ T ∗ |
s0w ⇒∗ xsy ∈ V ∗FV ∗}. A Turing machine can be also viewed as a generative
device, if it starts with the fixed configuration s0, or a function computing
device.

A linearly bounded automaton is a Turing machine restricted to the use
of working space linearly bounded with respect to the length of the input.

2i.e., a is the first symbol of wB and w′ is the rest of wB; c is the last symbol of v and
v′ is the rest of Bv.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

2.3. AUTOMATA AND MACHINES PREREQUISITES 21

Formally, there exist non-negative integers a and b such that for any config-
uration represented by xsy such that s0w ⇒∗ xsy we have |xy| ≤ a|w|+ b.

2.3.3 Counter Automata

A counter is as a memory storage able to hold (unbounded) non-negative
integer values, that can be incremented, decremented or tested for zero (a
counter is called empty if its value is zero). 3

For the moment, let us consider the case of accepting vectors correspond-
ing to the initial values of the input counters. A counter automaton is a
tuple M = (d,Q, q0, qf , P), where

• d is the number of counters (we will use the notation D = {1, · · · , d});

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• qf ∈ Q is the final state;

• P is a finite set of instructions.

The instructions are of the forms (qi → ql, kγ), with qi, qj ∈ Q, qi 6= qf ,
k ∈ D, γ ∈ {+,−, = 0} (changing the state from qi to ql and applying
operation γ to counter k). The operations are increment (add one to the value
of the counter), decrement (subtract one from the value of the counter) and
zero-test (test whether the value of the counter is zero or not), respectively.
If an empty counter is decremented or a non-empty counter is tested for
zero, then the computation is blocked. One can also speak about the Stop
instruction of the counter automaton, assigned to the final state qf .

A transition of the counter automaton consists in updating/checking the
value of a counter according to an instruction of one of the types described
above and by changing the current state to another one. The computation
starts in state q0 with all counters equal to zero, except the input ones. A

3From the grammar viewpoint, the notion of a counter (counter automaton) is very
similar to that of a pushdown with one symbol (an automaton with multiple one-symbol
pushdowns).

Alternatively, a counter (counter machine) is a blank tape with an end marker, infinite
in one direction (a non-writing Turing machine with a finite, one way input tape and a
number of counters).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

22 CHAPTER 2. PREREQUISITES

computation accepts a vector of initial values of the input counters if it halts
in state qf (without loss of generality we may assume that in this case the
input counters are empty).

Again without loss of generality (unless a deterministic case is considered)
we may assume that the input counters are the first m counters, that they are
never incremented, and the zero-test is only done, and for all input counters,
at the end of the computation.

To generalize the behavior of counter automata from accepting vectors
to accepting words, the input counters are replaced by an input tape. Such
devices (denoted by (d, T, q0, qf , P), where T is the alphabet of the input
tape) additionally use instructions of the form (qi → ql, read(a)), a ∈ T .

It is worth mentioning that counter automata can be used as generative
devices, starting from empty counters, the result being the vector of values
of the output counters when the automaton halts in state qf (without loss of
generality we may assume that other counters are empty).

Again, without loss of generality we may assume that the output counters
are never decremented or zero-tested.

Generalizing also the generating from vectors to words is done in a sim-
ilar way: replacing the output counters by an output tape, and let devices
(d, T, q0, qf , P), where T is the alphabet of the output tape, additionally use
instructions of the form (qi → ql, write(a)).

One can consider both input and output, but we do not go here into
details. The result we will use is that counter automata are computationally
complete, and only two counters are needed (besides the counters or tape for
input or output). This closely relates to the register machines, described in
Subsection 2.3.6.

2.3.4 Conflicting Counters

A special variant of counter automata uses a set C of pairs {i, j} with i, j ∈
Q and i 6= j. As a part of the semantics of the counter automaton with
conflicting counters M = (d,Q, q0, qf , P, C), the automaton stops without
yielding a result whenever it reaches a configuration where, for any pair of
conflicting counters, both are non-empty.

Given an arbitrary counter automaton, we can easily construct an equiv-
alent counter automaton with conflicting counters: For every counter i which
shall also be tested for zero, we add a conflicting counter ı̄; then we replace
all “test for zero” instructions (l → l′, i = 0) by the sequence of instruc-

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

2.3. AUTOMATA AND MACHINES PREREQUISITES 23

tions (l → l′′, ı̄+), (l′′ → l′, ı̄−). Thus, in counter automata with conflicting
counters we only use “increment” instructions and “decrement” instructions,
whereas the “test for zero” instructions are replaced by the special conflicting
counters semantics.

2.3.5 Partially Blind Counter Automata

Another special variant of counter automata called a partially blind counter
automaton, see [102], is a restricted type of counter automata which has a fi-
nite number (say, m) of counters which can be incremented and decremented,
but cannot be tested for zero. If there is an attempt to decrement a zero
counter, the system aborts and does not accept.4

We will consider the case of accepting vectors (the first k counters are
input counters). The device (also called a partially blind multicounter ma-
chine) starts with all counters except the input ones set to zero. The input
tuple is accepted if the system reaches a halting state and all the counters
are zero.

For notational convenience, we will denote the family of sets of tuples of
natural numbers accepted by some PBCA as aPBLIND and the family of
sets of tuples of natural numbers accepted by PBCAs with m counters as
aPBLIND(m).

One can also consider a partially blind counter automaton as a gener-
ator of vectors of non-negative integers, see [121], by distinguishing output
counters (such device is also called a partially blind multicounter generator).

We will denote the family of sets of tuples of natural numbers generated
by some PBCA as PBLIND and the family of sets of tuples of natural
numbers generated by PBCAs with m counters as PBLIND(m).

2.3.6 Register Machines

An n-register machine is a construct M = (n, P, l0, lh) where:

• n is the number of registers;

4There is a strong similarity between partially blind counter automata and matrix
grammars without appearance checking. In fact, PsMAT = PBLIND = aPBLIND,
see also [84] and [120].

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

24 CHAPTER 2. PREREQUISITES

• P is a set of labelled instructions of the form l : (op(i), l′, l′′), where
op(i) is an operation on register i of M ; symbols l, l′, l′′ belong to the
set of labels associated in a one-to-one manner with instructions of P ;

• l0 is the initial label;

• lh is the final label.

The instructions allowed by an n-register machine are:

• l : (A(i), l′, l′′) – ADD instruction, add one to the contents of register i
and proceed to instruction l′ or to instruction l′′ (l = l′′ for the deter-
ministic variant, the instruction can then be written as l : (A(i), l′));

• l : (S(i), l′, l′′) – SUB instruction, jump to register l′′ if the register i
is null; otherwise subtract one from register i and jump to instruction
labelled l′ (these two cases are often called zero-test and decrement).

• lh : halt – finish the computation. This is a unique instruction with
label h.

If a register machine M = (n, P, l0, lh), starting from the instruction la-
belled l0 with all registers being empty, stops by halting with value nj in
every register j, 1 ≤ j ≤ k and the contents of registers k + 1, · · · , n being
empty, then it generates a vector (n1, · · · , nk) ∈ Nk. Any recursively enu-
merable set of vectors of non-negative integers can be generated by a register
machine.

A register machine M = (n, P, l0, lh) accepts a vector (n1, · · · , nk) ∈ Nk

if and only if, starting from the instruction labelled i, with register j having
value nj for 1 ≤ j ≤ k, and the contents of registers k+1, · · · , n being empty,
the machine stops by the halt instruction with all registers being empty.

Lemma 2.3.1 For any partial recursive function f : Nα → Nβ there exists
a deterministic (max{α, β} + 2)–register machine M computing f in such
a way that, when starting with (n1, · · · , nα) ∈ Nα in registers 1 to α, M
has computed f(n1, · · ·nα) = (r1, · · · rβ) if it halts in the final label h with
registers 1 to β containing r1 to rβ (and with all other registers being empty);
if the final label cannot be reached, f(n1, · · · , nα) remains undefined.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

2.3. AUTOMATA AND MACHINES PREREQUISITES 25

It is also known that, using α+β+2 registers instead of max{α, β}+2, one
can additionally require, without restricting the generality, that only ADD
instructions are associated to the β output registers, only SUB instructions
are associated to the α input registers, and the α + 2 registers (input ones
and the working ones), are empty at the end of the computation.

As a corollary of this lemma, deterministic (α + 2)-register machines
can accept all recursively enumerable sets of α-dimensional vectors of non-
negative integers, while non-deterministic (β + 2)-register machines can gen-
erate all recursively enumerable sets of β-dimensional vectors of non-negative
integers.

One can generalize the output of register machines from vectors to words
by replacing the output registers by an output tape. To work with this tape,
the writing instructions (l : write(a), l′, l′′) may be used. Register machines
can generate/accept all recursively enumerable languages, and two registers
in addition to an output/input tape are sufficient. We skip the aspect of
accepting languages and related determinism issues.

You can see that the definitions of register machines and counter au-
tomata are quite similar, the formalisms are equivalent. However, it is some-
times more convenient to use one notion or the other one, depending on the
following considerations:

Determinism. The register machines only make the “choice” during
ADD instruction, and this is a choice between two alternatives (there is
determinism if the alternatives are the same). This is more complicated
for the counter automata. They make choice between different instructions
starting from the same state.5 Determinism is more clear for the register
machines (accepting or computing functions).

Choices. To simulate the register machines, the choice of the next in-
struction (ADD case) should be explicitly implemented, while for the counter
automata this corresponds to a simple selection of the instruction. Choices
are more automatic for the counter automata.

Halting. The register machines halt when no operation is applicable.
This is only possible, by definition, in the final state. The counter machines
halt in the final state. One can either eliminate the cases when the counter
machine inevitably blocks by constructing a complete automaton (using a

5There is determinism, e.g., if there are at most two instructions assigned to every
state, and moreover, if they are two, then they must be a decrement and a zero-test of the
same counter. In general, it is undecidable whether a counter automaton is deterministic
or not.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

26 CHAPTER 2. PREREQUISITES

non-final sink state), or to check, when no operation is applicable, whether
the state is actually final. Halting is easier to check for the register machines.

Cases. A simulation of register machines consists of two cases, and ADD
is usually6 much easier than SUB because it is non-cooperative and because
its two subcases are equivalent. A simulation of counter automata typically
consists of three cases, increment is usually simpler than decrement, which,
in its turn, is usually simpler than zero-test. It is easier to analyze the
counter automata constructions, because the complicated SUB instruction is
syntactically split in decrement and zero-test.

6But not always, see, e.g., Theorem 5.6.2.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

Chapter 3

Introduction to P Systems

3.1 P Systems Prerequisites

Membrane systems (also called P systems) were originally introduced by
Gheorghe Păun in 1998 as a framework of formal computational models
inspired by the structure and the functioning of living cells.

3.1.1 Basic Definitions

A membrane is a separator of the regions, here - the inside and the out-
side. The regions contain objects and may allow different reactions to hap-
pen. Membranes permit certain objects to pass through, and also serve as
a communication channels between the regions. These notions outline the
framework of P systems.

The aim of P systems is not to model the processes of biological cells,
but rather to study the computational aspect of different features of mem-
branes. To do this, only a few of basic principles are considered in a rather
abstract way.1

A membrane structure is a system of membranes, say {li | 1 ≤ i ≤ m}
with ≺: a transitive (li ≺ lj, lj ≺ lk ⇒ li ≺ lk) and anti-reflexive(¬li ≺ li)
(strict) partial order relation “inside”. Moreover, the skin membrane ls must
exist: li ≺ ls, 1 ≤ i ≤ m, i 6= s.

1A number of articles on modelling biological (and not only biological) processes have
recently appeared, see. e.g., [71]. However, we will not speak about this direction in the
present work.

27

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

28 CHAPTER 3. INTRODUCTION TO P SYSTEMS

An elementary membrane is a membrane lj: ¬li ≺ lj, 1 ≤ i ≤ m. The
child membrane of a (non-elementary) membrane lk is any membrane li ≺ lj,
such that no membrane lj is between them (¬∃lj: li ≺ lj ≺ lk). Membranes
delimit regions: we will call the environment r0 the outside region of the skin
membrane. Every membrane li defines a region ri inside it and outside its
children membranes.

The membrane structure can be represented by an Euler-Venn diagram,
or by a (directed, with unordered descendants) rooted tree, where the nodes
are the regions: the root is the environment, its only descendant is the skin
region; the edges are the membranes: the in-edge of a node is a mem-
brane surrounding that region, and the out-edges of a node are the chil-
dren membranes (typically, the structure is simplified by taking the skin
as the root). The membrane structure can also be represented by a string
of matching parenthesis (looking like one-dimensional Euler-Venn diagram),
which would be any string w ∈ Dm (the Dyck language with m kinds of
brackets), such that w /∈ DmDm (the skin membrane exists) and |w|a = 1
for every a ∈ Tm =

⋃
1≤i≤m{[i ,] i} (as you will see later, for P systems

with dynamic membrane structure the last condition is dropped). A string
· · · [i · · · [j · · ·]j · · ·] i · · · represents the structure where membrane lj is
inside membrane li.

3.1.2 Transitional P Systems

Each region contains a multiset of objects, represented by symbols from the
alphabet, say O. Each region ri contains a set of (evolution) rules of the
form u → v, u ∈ O+, v ∈ (O × Tar)∗, where Tar = {here, out} ∪ {inj | 1 ≤
j ≤ m}}. The string u represents a multiset of objects, consumed by the
reaction, and the string v represents a multiset of objects produced, together
with their target indications, written as subscripts (target indication here
is typically omitted). The objects with subscript out are sent out through
membrane li and the objects with subscript inj have to immediately be sent
inside membrane lj. For a rule having targets inj to be applicable, lj must
be a child membrane of li.

The transition from a configuration of a P system to the next one consists
in a non-deterministic and maximally parallel application of the rules in all
the regions. This means that the rules are assigned to objects in a non-
deterministic way and no rule is applicable to the remaining objects (the
objects are exhausted by the rules). Thus, “some maximal” multiset of rules

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

3.1. P SYSTEMS PREREQUISITES 29

from each region is chosen to be applied, the assigned multiset of objects is
removed from the system and the resulting multisets of objects are added
to the system and the objects with targets are moved to the corresponding
regions.

A configuration of a P system is called halting, if no rules are applicable
in any region. A computation is a sequence of transitions; it is called halting
if it reaches a halting configuration.

3.1.3 Basic Variants and Additional Features

So far, a general definition was given, allowing evolution rules with full co-
operation. An evolution rule u → v is called non-cooperative if |u| = 1.

• P systems with catalysts. In this variant, a subset of objects C ⊆ O
is distinguished, called catalysts. The only rules allowed are of type
a → v, a ∈ O − C, v ∈ (O − C)∗ (non-cooperative, without catalysts)
and of type ca → cv, c ∈ C, a ∈ O−C, v ∈ (O−C)∗ (catalytic). The
catalysts are neither created nor destroyed, they neither evolve nor go
through membranes, and they only participate in the catalytic rules.

• P systems with m-stable catalysts. The evolution rules containing cat-
alysts are in the form cia → cjv where c ∈ C and 1 ≤ i, j ≤ m, where
i, j are states associated with c. Sometimes one defines an m-stable
catalysts as a set {ci | 1 ≤ i ≤ m} of all its states.

• P systems with mobile catalysts. This is an extension of the catalytic
variant by permitting catalysts to move between regions. In this case
the catalytic rules are of the form ca → ctarv where tar ∈ {here, out}∪
{inj | 1 ≤ j ≤ m}.

• P systems with i/o communication. The target indications are now
{here, out, in}, the indication in meaning “into any inner membrane”.

• The (strong) priority relation among the rules. A partial order relation
is defined on the set of rules of each region. A rule is only applicable if
no rule of a higher priority is applied in the same step.

• The weak priority relation among the rules. A partial order relation is
defined on the set of rules of each region. A rule is only applicable if
no more rules of a higher priority could be applied instead.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

30 CHAPTER 3. INTRODUCTION TO P SYSTEMS

• P systems with promoters/inhibitors. In the case of promoters, the
rules (reactions) are possible only in the presence of certain symbols
which can evolve simultaneously with symbols whose evolution they
support. On the contrary, inhibitors forbid certain rules (reactions).
We denote these features by considering the rules of the form: u → v|a
or u → v|¬a.

• Controlling membrane permeability. The membrane can be dissolved:
the objects of a region corresponding to a dissolved membrane remain
in the region surrounding it (corresponding to the parent membrane).
Formally this is represented as u → vδ: after the rule evolving u into v
is applied, the membrane is dissolved. The skin is never dissolved. The
membrane can be made impermeable (no objects can pass through it)
by a rule u → vτ (details are skipped, see [163]).

The computational power of transitional P systems is studied with respect
to number of membranes and the features used.

3.1.4 Formal Description

From now on, instead of “membrane li” and “region ri”, we will simply use
the index. Also, when speaking of objects in membrane i, objects in region
i are assumed.

We now describe a P system by a construct Π = (O, µ, w1, · · · , wm, R1,
· · · , Rm), where O is the alphabet - the set of objects, µ is the (expression
describing the) membrane structure, consisting of m membranes, wi are the
strings representing multisets of objects in regions i : 1 ≤ i ≤ m, Ri are the
sets of evolution rules in regions i : 1 ≤ i ≤ m.

In a system with a static membrane structure (µ is fixed) the configuration
can be described by a vector C ′ = (w′

i)0≤i≤m of (strings describing the)
multisets of objects in all the regions (i = 0 corresponds to the environment).
Then the halting computation is just a finite sequence of vectors of multisets.
If the membrane structure is dynamic, then its description must also be
included in the configuration.

3.1.5 Purely Communicative Systems

The computation can be made only by moving objects between the regions.
The most studied model of such P systems is called P systems with symport /

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

3.1. P SYSTEMS PREREQUISITES 31

antiport rules. The communicative rules are now assigned to membranes and
govern the object transport through them, as opposed to evolution rules,
assigned to regions, describing the reactions of objects.

There are two types of rules considered: symport rules of types (x, out)
and (x, in), x, y ∈ O+ (meaning that the multiset x simultaneously exits
the membrane or that the multiset x simultaneously enters the membrane)
and antiport rules of type (y, out; z, in), y, x ∈ O+ (y exits and z enters the
membrane at the same time).

It is necessary to mention that the work of these systems is defined to
take place in the infinite environment (a subset E ⊆ O is specified) and
the environment (initially empty in the definition of transitional P systems)
contains an infinite supply of objects from E. The computational power of
the purely communicative P systems is studied with respect to the number
m of membranes and the bounds p, q on the weights of symport / antiport
rules (|x| ≤ p, max(|y|, |z|) ≤ q for all symport and antiport rules), as well
as the size of the alphabet.

A formal definition is given in Chapter 5.

3.1.6 Evolution–Communication P Systems

This variant combines symport / antiport rules associated to membranes
with evolution rules associated to the regions. However, the evolution rules
are typically non-cooperative and without targets, and the environment is
typically empty in the beginning of the computation.

One of the extensions considered is to allow target indications in the
evolution rules; the other one is to allow the environment to initially contain
an infinite supply of objects (for example, of one kind). One of the restricted
variants considered is proton pumping P systems: a subset of objects called
protons is specified, they are neither created nor destroyed by evolution rules,
while some proton participates in every symport / antiport rule. By analogy,
a proton can be called a “catalyst of communication”.

A formal definition is given in Chapter 4.

3.1.7 Tissue P Systems

In so-called tissue P systems, the membranes are replaced by channels, con-
necting regions (except a unique region called the environment, regions are
called cells) in a graph, not necessarily a tree.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

32 CHAPTER 3. INTRODUCTION TO P SYSTEMS

For instance, a meaning of a symport / antiport rule x/y associated to
channel (i, j) is that the multiset represented by x is moved from region i
to region j, while the multiset represented by y is moved from region j to
region i. (x, y ∈ O+ in the antiport case; one of them is λ in the symport
case.)

Moreover, it is typically assumed that the rules associated to the same
channel are not applied in parallel.

A formal definition is given in Chapter 5.

3.1.8 Further Models

Many variants have been introduced in the literature. Below a short summary
of some of them is given.

By structure of objects: instead of symbol objects from a finite set,
one can consider objects with structure (strings, arrays, etc.) with various
rules (rewriting, rewriting with replication, splicing, etc.).

By membrane operations: certain additional operations can be used,
like membrane creation, membrane division, etc. In so-called active mem-
branes a polarization is associated to each membrane.

By limited parallelism: in tissue P systems, at most one rule per
channel can be applied at any computation step; in active membranes at
most one rule per membrane (except evolution rules without targets) can be
applied at any computation step; some variants (like sequential P systems,
k-sequential P systems, P systems with minimal parallelism, etc.) do not
assume maximally parallel use of (some) rules.

By additional control: variants of P systems have been introduced
with various regulations of the computations, e.g. energy.

Since the scope of this thesis is restricted to P systems with symport /
antiport of objects, none of the above will be discussed here in detail, except
division of an elementary membrane [h a]h → [h b]h[h c]h, where h ∈ H
(the set of membrane labels, no longer uniquely identifying membranes), and
a, b ∈ O.

3.2 Computing with P Systems

Finally we discuss why the application of rules of a P system is called com-
putation and what can be understood by its result.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

3.2. COMPUTING WITH P SYSTEMS 33

3.2.1 Generating

The output region i0 is specified in the definition of a P system. The output
alphabet T ⊆ O can be specified, and then the objects of the result from
O − T are ignored. (If T is omitted in the definition of a P system, it can
be typically assumed to be the set of all objects, except those that can never
appear in the output region in a halting configuration).

Languages (external output): the result of a (halting) computation
is a string of objects sent to the environment (the order of the objects, sent
out of the system at the same time, is arbitrary). The language generated
by a P system Π (by means of all halting computations) is denoted by L(Π).

Vector sets or number sets: multiplicities of objects or their total
number are counted in a designated region (can also be the environment).
Then it is said that a P system Π generates a vector set Ps(Π) or a number
set N(Π), respectively. In principle, one can speak about more than one
output region (distributed output).

3.2.2 Accepting

The input region i0 is specified in the definition of a P system. The input
alphabet Σ ⊆ O is typically specified.

Accepting P systems: before it starts, a P system receives a vector
of input objects in the input region. A vector/number is accepted if the
system eventually halts. It is then said that a P system Π accepts a vector
set Psa(Π) or a number set Na(Π), respectively.

Distributed input: in some variants, the input is placed in more than
one region of the P system. This is especially useful if the input needs to be
represented by just one symbol.

P automata (initial mode): the input word is given to the P system
in the environment, symbol by symbol (i-th symbol can be used in step i).
A word is accepted by a P system if it uses each input symbol immediately
after it is available, and eventually halts. The language accepted by a P
automaton Π is denoted by AI(Π).

3.2.3 Processing

One can consider P systems with both input and output.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

34 CHAPTER 3. INTRODUCTION TO P SYSTEMS

3.2.4 Deciding

This is a particular case of processing. Typically one requires that the system
halts on every input, ejecting the answer, i.e., either one copy of a special
object yes, or one copy of a special object no into the environment. Usually
one also requires that the answer is sent into the environment in the last step
of the computation.

3.3 Properties

3.3.1 Decidability, Completeness, Universality

A reader interested in a more detailed discussion of this topic is referred to,
e.g., [79].

Consider a family F of computing devices. A property P of devices can
be defined as a subset of F (we say that a device D ∈ F satisfies property P
if and only if P ∈ D).

A property P is called decidable if and only if its characteristic function
is computable (and it is called undecidable otherwise). When we say that a
computing device is given, it is understood that its description is given.

Probably, the most interesting property of computing devices (assuming
that the possible input is included in the description) is halting. Let us
restrict the discussion to the devices producing result if and only they halt
(halting is the same as producing result).

In case of generative devices, this corresponds to non-emptiness. In case
of accepting devices, non-emptiness corresponds to halting on some input.
In case of processing devices, it is often desired to halt on every input (this
relates to computing total functions or accepting recursive sets).

We will say that a family of devices that generate/accept a set of numbers
(vectors, words) is computationally complete if it generates NRE (PsRE,
RE). The halting problem is undecidable for any computationally complete
family of devices (the devices are said to be unpredictable).

A computational device D with input (there are also definitions for gen-
erative devices, but we will not go into more details here) is called universal
(with respect to a family F ′ of computational devices) if D can simulate the
behavior of any device D′ ∈ F ′, given as input (in some encoding). Slightly
more formally, this implies that there exist a (“simple”) encoding function e
and a (“simple”) decoding function d such that the decoding d of the result

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

3.3. PROPERTIES 35

of D, given as input the encoding e of a description of D′ will be the same
as the result of D′.

Sometimes, the family F ′ is not specified: we say that D is universal
(or devices of F 3 D are universal), understanding that D is universal with
respect to some computationally complete family of devices.

It is generally believed that computational completeness implies univer-
sality; it is often said that some class of P systems is universal when, in
fact, its computational completeness has been proved. Conversely, most of
universality proofs for P systems are by establishing the computational com-
pleteness of the corresponding class.

3.3.2 Determinism and Confluence

For a rewriting system RS, we write C ⇒ C ′ if the system allows a direct
transition from an instantaneous description C to an instantaneous descrip-
tion C ′ (C ′ is then called a next instantaneous description of C). The relation
⇒∗ is a reflexive and transitive closure of ⇒. For any rewriting system, we
use the word configuration to mean any instantaneous description reachable
from the starting one.

Definition 3.3.1 A configuration of a rewriting system is called halting if
no rules of the system can be applied to it.

In this work we will only talk about rewriting systems, producing the
result at halting.

Definition 3.3.2 A rewriting system is called deterministic if for every ac-
cessible non-halting configuration C the next configuration is unique.

Definition 3.3.3 A rewriting system is called confluent if, for every starting
configuration C0 one of the following holds: either all the computations are
non-halting, or there exists a configuration Ch, such that all the computations
halt in Ch.

Notice that, if starting at some configuration C all the computations halt,
then there exists m ≥ 0, such that all the computations starting from C halt
in at most m steps.

We will now introduce a weaker definition of the confluence of systems,
with the computations “unavoidably leading” to the same result, but not
necessarily in a bounded number of steps.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

36 CHAPTER 3. INTRODUCTION TO P SYSTEMS

Definition 3.3.4 A rewriting system is ultimately confluent if either a) no
computations halt or b) there exists such a halting configuration Ch, that for
any configuration C we have C ⇒∗ Ch.

This property implies two facts: if a halting computation exists, then

1. the halting configuration is unique (Ch),

2. Ch is reachable from any configuration.

From now on we will only consider rewriting systems producing the result
at halting. Let us consider the graph of all reachable configurations (the arc
from configuration C to configuration C ′ means that C can derive C ′ in
one step). The graph may be infinite. A node is called final if it has the
out-degree 0.

A system is deterministic if all nodes have the out-degree of at most one
(hence, there is at most one final node). A system is confluent if either there
are no final nodes, or the final node is unique, and in that case the graph
is finite and does not contain cycles. An ultimately confluent system may
contain cycles, but either all nodes are non-final, or there is a final node
reachable from any configuration.
Example: Consider a rewriting system with the initial configuration S and
the rewriting rules:

S → SA, A → λ, S → a.

Note that the system is not deterministic, and one can choose to apply
the first rule an unbounded number of times, but from any configuration
it is possible to arrive to the halting one Ch = a by erasing all symbols A
by means of the second rule (this is equally true no matter if the system is
sequential, concurrent, or maximally parallel).

3.3.3 Uniform, Semi-uniform Families

A reader interested in a more detailed discussion of this topic is referred to,
e.g., [152] and [176].

Consider some problem (let us formalize it as computing a function) P :
X → Y . For instance, Y = {yes, no} when one speaks about a decisional
problem. We will denote particular inputs by A(n) ∈ X, and their size by n.

A family F of P systems is called uniform (semi-uniform) if there is a
function u : N → F (u : X → F), computable in polynomial time, that

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

3.4. MAXIMAL PARALLELISM. SIMULATOR 37

maps numbers (problem inputs) to P systems (it is then understood that the
family F is given together with the function u).

A problem P is said to be solvable by a semi-uniform family F if u(A(n))
halts and produces the result, corresponding to P (A(n)), for any input A(n).

A problem P is said to be solvable by a uniform family F if, taking as
input the (polynomially computable) encoding of A(n), P system u(n) halts
and produces the result, corresponding to P (A(n)), for any input A(n).

For decisional problems and P systems with external output, one requires
that the corresponding P system sends one object, yes or no in the environ-
ment (sometimes one also requires the result is sent in the last step of the
computation). In the general case, P (A(n)) should be obtained by applying
a decoding function (computable in polynomial time) to the result of the
computation of the corresponding P system.

The difference between uniform and semi-uniform solutions is that in the
first case the problem input is encoded only in objects, while in the latter
case it can be encoded in objects, membranes and rules.

Finally, one speaks about solving decisional problems by P systems in
polynomial (or linear, etc.) time (i.e., number of steps). It is an open problem
for all classes of P systems to constructively prove (or to disprove) that all
decision problems solvable in polynomial time by a semi-uniform families of
P systems are also solvable in polynomial time by a uniform family of P
systems.

All time complexity measures in this subsection are understood as with
respect to the size n of the problem input.

3.4 Maximal Parallelism. Simulator

The original aim of the research reported in this section was to produce
a software tool to let a researcher (not necessarily in membrane comput-
ing) observe the evolution of maximally parallel multiset-rewriting systems
of a general form, with permitting and forbidding contexts, browsing the
configuration space by following transitions like following hyperlinks in the
World-Wide Web.

The relationships of maximally parallel multiset-rewriting systems with
other systems are investigated, such as Petri nets, different kinds of P sys-
tems, Lindenmayer systems, grammar systems, regulated grammars. The
notion of maximal parallelism is expressed using linear programming – a

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

38 CHAPTER 3. INTRODUCTION TO P SYSTEMS

branch of optimization theory. The last sentence is the main reason to in-
clude this research in the thesis.

3.4.1 Introduction

There are numerous examples of simulators for deterministic and non-
deterministic rewriting systems that are sequential or parallel. In this section
we will focus on the non-deterministic parallel ones. Recall that in the pro-
cess of the evolution, the system non-deterministically branches (chooses the
next configuration among the possible ones).

The need for writing yet another simulator appeared because most of
the simulators of P systems with symbol objects (i.e., of maximally parallel
distributive multiset-rewriting systems) either simulate just the determinis-
tic/confluent systems or resolve the non-determinism in a random way, see
[38, 41, 43, 69, 74, 75, 199]. Clearly, for checking the theorems proved by
construction of a system (by testing the examples), it is desired that either
all branches of the needed number of steps of the evolution are explored, or
one branch is selected by the user from the list of all possible branches at
each step. Since the size of the solutions for the first approach may be too
big to be studied without further tools, we focus on the latter one.

Thus, the main problem is to compute the set of all possible transitions
given the rewriting system with the current configuration. The meaning of
the word “browsing” in the title is analogous to its meaning in the World-
Wide Web: following the transitions (hyperlinks) between the configurations
(pages, documents), optionally remembering the path (history) to be able to
come back.

As it was mentioned earlier, we need a method to compute the set of all
possible transitions (configurations after 1 step), as a kernel for the configu-
ration browser.

The systems we are considering are the maximally parallel multiset-
rewriting systems with promoters/inhibitors. They can be viewed as the
Petri nets with inhibitor arcs, with two differences: promoter arcs are added
and the parallelism is maximal, in a way similar to the one described in Sub-
section 3.1.2. Notice that the maximality of parallelism can be avoided by
adding rules a → a for all a ∈ V .

The maximally parallel multiset-rewriting can also be viewed as non-
distributive variant of cooperative P systems with promoters/inhibitors. En-
coding “being in a region i” in object a as, e.g., ai, one obtains the (non-

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

3.4. MAXIMAL PARALLELISM. SIMULATOR 39

distributive) transitional P systems. Using the same idea, P systems with
symport / antiport are reduced to the cooperative multiset-rewriting sys-
tems.2 The behavior of P systems with active membranes can be simulated
by encoding the polarization of each membrane in one object, which acts
as a 3-stable catalyst for the communication rules and a promoter for the
evolution rules.

If we restrict the rules to be non-cooperative (context-free, |u| = 1), then
we obtain a generalization of 0L systems; one can easily use promoters to
simulate the behaviour of ET0L systems, modulo the order of the symbols.
A similar reasoning would establish a link between our systems and grammar
systems, except in this case the control symbol is a (multi-stable) catalyst,
not a promoter. The same is true for simulating the behaviour of sequential
systems, for example of some grammars with regulated rewriting. One can
find links with other rewriting systems.

The software can be used as a simulator for the systems, a debugger for
the theorems proved in a constructive way, a browser of the configurations,
a tool for the researcher, or a toy for a student. It was used as an engine of
the simulator of P systems with symport / antiport by Vladimir Rogozhin,
to check the theorems in [138] and [24]. It was also used for checking some
constructions in [16].

3.4.2 Maximally Parallel Multiset Rewriting

Without restricting the generality, we can assume that the alphabet is or-
dered: V = {a1, · · · , ak}.

A multiset-rewriting system is defined as a tuple G = (V, R, w), where
V is the alphabet, R is a finite set of rules of the form r : u → v, where
u ∈ V +, v ∈ V ∗, r is called the label of the rule and w ∈ V ∗ is the initial
configuration. The label uniquely defines the rule and the set of all labels
is denoted by Lab(R). A multiset of rules from R can be represented by a
word over Lab(R). Without restricting the generality, we can assume that
the rule set is ordered: R = {r1 : u1 → v1, · · · , rm : um → vm}.

2It deserves some attention that the objects E present in the environment in infi-
nite multiplicities (let us denote the set of all objects by O) are not represented in con-
figurations (that are finite), except their copies that are inside the system. Instead, a
rule (ux, out; vy, in) assigned to the skin membrane (with label 1), where u, v ∈ E∗ and
x, y ∈ (O − E)∗, is converted to a cooperative rewriting rule h1(ux)h0(y) → h0(x)h1(vy),
where hi are region-encoding morphisms: hi(a) = ai, a ∈ O for 0 ≤ i ≤ 1.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

40 CHAPTER 3. INTRODUCTION TO P SYSTEMS

We now proceed to defining the parallel evolution step. It is said that ρ =∏m
j=1 rj

m(j) ∈ Lab(R)∗ is applicable to the configuration w =
∏k

i=1(ai
M(ai))

if
∑m

j=1 |uj|ai
∗ m(j) ≤ M(ai) for every ai ∈ V , i.e., there are enough ob-

jects in the configuration to perform all the rules in ρ with a corresponding
multiplicity. The result of applying ρ on w is

w′ = δ(w, ρ) =
k∏

i=1

(ai
M(ai)+

∑m
j=1(|vj |ai−|uj |ai)m(j)).

In words, w′ was obtained from w by removing uj for m(j) times for all
rules rj, and then inserting vj for m(j) times for all rules rj. In other words,
symbols from uj were independently replaced by those from vj, multiple
times.

Notice that w′ consists of the symbols that did not react and of the
symbols from the right-hand sides of the rules from R. The multiset of rules
represented by ρ is maximal if it is applicable, and no rule rk ∈ R can be
applied to the remaining symbols in the same step, i.e., for any rk ∈ R there
is some

ai ∈ V with M(ai)−
m∑

j=1

|uj|ai
m(j) < |uk|ai

.

The evolution of the system is non-deterministic: it evolves (in one step)
from w by any maximal applicable multiset of rules to the corresponding
configuration w′, denoted by w ⇒ρ w′. The superscript ρ may be omitted,
and ⇒∗ is the reflexive and transitive closure of ⇒. For the rewriting system
G = (V, R, w), we define the set of sentential forms SF (G) as {x ∈ V ∗ |
w ⇒∗ x}, and we denote by SFn(G) the set of configurations that can be
obtained from w in exactly n steps.

Example 1. Let us consider the grammar G = ({S, A,B,C}, {p : SA →
SAB, q : AB → ABC}, SAA), as well as the following derivations with
respect to it:

SAA ⇒p SAAB ⇒pq SAABBC

SAABBC ⇒pq SAABBBCC ⇒pq SAABBBBCCC ⇒···

SAABBC ⇒pq SAABBBCC ⇒qq SAABBBCCCC ⇒···

SAABBC ⇒qq SAABBCCC ⇒pq SAABBBCCCC ⇒···

SAABBC ⇒qq SAABBCCC ⇒qq SAABBCCCCC ⇒··· .

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

3.4. MAXIMAL PARALLELISM. SIMULATOR 41

Hence, SF0(G) = {SAA}, SF1(G) = {SAAB}, SFn+2(G) = {SA2B2+n−k

C1+n+k | 0 ≤ k ≤ n}, and at any step except the first two either both p and
q are applied once, or q is applied twice.

Finally, to increase the power of these systems, let us add promoters and
inhibitors to the system, see [52] (called in the regulated rewriting theory
permitting and forbidding contexts, respectively, see [78]). The general form
of the rules is extended to r : u → v|p,¬q. The behavior of the system is
defined as in the usual case, except for a given configuration w, instead of
the whole set R of rules only the set of “active” (promoted and not inhibited)
rules is considered. The rule r is promoted if |w|a ≥ |p|a for all a ∈ V . The
rule r is inhibited if |w|a ≥ |q|a for all a ∈ alph(q). A rule p without the
inhibitor (q = λ) is never inhibited. A rule without the promoter (p = λ) is
promoted by the definition.

3.4.3 Vector Representation. Simplex

In the simulator of the maximally parallel multiset-rewriting systems, the
multisets were represented by vectors. A multiset M over V = {a1, · · · , ak}
can be represented by a vector (M(a1), · · · , M(ak)) ∈ Nk.

Example 2. The rewriting system

G = ({S, A,B,C}, {p : SA → SAB, q : AB → ABC}, SAABBC)

with SAABBC ⇒pq SAABBBCC, SAABBC ⇒qq SAABBCCC can be
written in space N4 as

V = (4, R, (1, 2, 2, 1)),

R = {p : (1, 1, 0, 0) → (1, 1, 1, 0), q : (0, 1, 1, 0) → (0, 1, 1, 1)},

with (1, 2, 2, 1) ⇒pq (1, 2, 3, 2), (1, 2, 2, 1) ⇒qq (1, 2, 2, 3).
A simplex is a part of a finitely dimensional space, which is a set of

solutions of a system of linear equations and inequalities, i.e., any intersection
of a finite number of hyperplanes and semi-spaces.

All multisets of applicable rules form a simplex.

Example 3. For applying px1qx2 to a in p : (1, 1, 0, 0) → b, q : (0, 1, 1, 0) → c,
a = (1, 2, 2, 1), where b, c ∈ N4, we obtain the following conditions (x1 ≥

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

42 CHAPTER 3. INTRODUCTION TO P SYSTEMS

-

6

x1

x2

@
@

@
@

@
@

@
@

@
@

@@

f
f
v

f
v



x1 ≤ 1
x1 + x2 ≤ 2

x2 ≤ 2
0 ≤ 1
x1 → max

x2 → max

Figure 3.1: Multi-criterial problem

0, x2 ≥ 0 are assumed): 
x1 ≤ 1
x1 + x2 ≤ 2

x2 ≤ 2
0 ≤ 1

3.4.4 Solutions. Maximality. Optimization

The resulting strategies are the integer efficient (Pareto–optimal) solutions
of the multi-criterial problem in Figure 3.1.

We now present a recursive approach. We start with the first rule (r = 1)

• Calculate the maximal possible applicable multiplicity xr

(1 in the example).

• For all numbers from xr downto 0

– calculate the remaining objects
(in the example for x1 = 1, (0, 1, 2, 1) remains);

– proceed with the next rule (if r < m);

– otherwise, check the maximality
(no more rules applicable to the remaining objects).
If so, then display.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

3.4. MAXIMAL PARALLELISM. SIMULATOR 43

Because all space of applicable solutions is searched, the search should be
done in a way as efficient as possible. Here is one idea in this respect: Divide
and Conquer – Independent Symbols. The steps to follow are the next ones:

• select applicable rules
(having enough objects, promoted and not inhibited);

• consider the dependency graph, whose nodes are the symbols, with two
nodes connected if the corresponding symbols are in the left-hand side
of the same applicable rule;

• consider the components of connectedness
(maximal connected subgraphs). They correspond to the independent
parts of the problem;

• solve each subproblem separately: the solution vector set is the direct
sum of the vector sets of the subproblems.

x = b∧4.
w = a∧2 b∧2.

s : b → b|/.
r : b → a|/,
q : a → b|/,
p : a → a|/,
Open Input

a∧4.
b∧2.
a∧2.
b.
a.

Back a b

unspecified
p∧2
p q
q∧2

Next

q∧2 r∧2
q∧2 r s
q∧2 s∧2

Evolve

Figure 3.2: Simulator. The main interface

Figure 3.2 shows what the program interface looks like. It displays the
current configuration w and the next configuration x in the bottom-right
corner. Above it, the system rules are displayed. The button Open allows
to load another system from a file. The button Input allows to manually
enter the current configuration. Above these buttons, the history (list of

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

44 CHAPTER 3. INTRODUCTION TO P SYSTEMS

previous configurations) is displayed, and the last item is now selected. The
button Back allows to return to the selected configuration.

In the middle-top part one can see the tabs corresponding to the inde-
pendent sub-systems, and the first one is now selected. In the center, the
list of choices of evolution is shown, for the symbols corresponding to the
selected tab. The button Next allows to go to the next tab. The list of
the maximal multisets of rules applicable to w is shown in the right part.
Notice that making a choice for some sub-system acts as a filter for that
list. Once some multiset is selected in the list on the right, the simulator
re-computes x. The button Evolve allows to add w to the history, make x
the current configuration and re-compute the independent sub-problems and
the maximal multisets of applicable rules.

3.4.5 Summary

In this section we described ideas behind the construction of a simulator for
non-deterministic parallel rewriting systems, namely, for maximally parallel
multiset-rewriting systems with context.

The applications of such a simulator are mentioned, the systems simu-
lated are related to other parallel rewriting systems, such as Petri nets, tran-
sitional P systems, P systems with symport / antiport, P systems with active
membranes, Lindenmayer systems, grammar systems, regulated grammars.

An optimization of the algorithm of computing the set of possible tran-
sitions has been done before, for certain parallel rewriting systems with re-
stricted forms of cooperation. It remains an open question how to compute
the set of maximal multisets of rules applicable for a given configuration in
a more efficient way in the general case. An interesting question would be to
study the problem in case of general cooperation of a small degree.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

Chapter 4

Evolution–Communication

Evolution–communication P systems (abbreviated in what follows as EC P
systems) are a variant of P systems allowing both rewriting rules and sym-
port / antiport rules, thus having separated the rewriting and the communi-
cation.

4.1 Introduction

The original variant studied was with non-cooperative rules and symport /
antiport of weight one.

In [59] it has been proved by simulating programmed grammars with
unconditional transfer that three membranes are sufficient to generate any
Turing computable set of natural numbers, or two membranes, if one catalyst
is present and catalytic rules are also allowed, while EC P systems with
two membranes and non-cooperative rules generate at least Parikh sets of
programmed grammars without appearance checking.

In [5], by simulating programmed grammars, these results have been im-
proved: two membranes are sufficient to generate any Turing computable set
of vectors of natural numbers. Also, EC P automata were introduced and
was proved that 2-membrane EC P automata with a promoter at the level
of evolution rules can accept all recursively enumerable languages. Finally,
it was shown that extending the system by letting the environment contain
an infinite supply of objects of one type (and ignoring this object in the re-
sult) is enough to generate all Turing computable set of vectors of natural
numbers by P systems with rules of just two types: a → bc and (b, out; c, in),

45

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

46 CHAPTER 4. EVOLUTION–COMMUNICATION

a, b, c ∈ O.
In [134] EC P systems with symport of weight two instead of antiport of

weight one are studied, obtaining similar results, i.e., generating any Turing
computable set of natural numbers by EC P systems with two membranes,
by simulating matrix grammars. Moreover, an extension of the model to
allow the evolution rules to have the target indications was introduced.

In [11] a restriction of EC P systems called proton pumping P systems is
introduced: protons do not appear in evolution rules, but participate in all
communication rules. It has been shown, again by simulating programmed
grammars, that any Turing computable set of vectors of natural numbers can
be generated by a proton pumping P system with three membranes. Also, if
only one kind of proton is used and proton pumping rules have either strong or
weak priority over evolution rules, then proton pumping P systems with three
membranes generate at least Parikh sets of ET0L languages. It has then been
suggested by Francesco Bernardini that one can show by simulating register
machines that proton pumping P systems (with non-cooperative rewriting
rules and symport / antiport rules of weight one) with three membranes and
four kinds of protons are universal, but he never published his proof.

In [7] the deterministic EC P systems were studied, showing, by sim-
ulating register machines, that for any Turing computable set of vectors of
natural numbers there exist two deterministic EC P systems with three mem-
branes, accepting it, the first one having non-cooperative evolution rules and
symport / antiport rules of weight 1, the second one having non-cooperative
evolution rules and symport rules of weight at most 2.

In [61] the idea from [65] is followed, no longer assuming the rules are
executed in one step, but considering a property of P systems to give the
result independent on the time assigned to the rules, calling it time-freeness.
It was shown by simulating programmed grammars that EC P systems with
two membranes and non-cooperative evolution rules with targets and sym-
port / antiport rules of weight one generate at least Parikh images of lan-
guages generated by programmed grammars without appearance checking,
while time-free EC P systems with three membranes and non-cooperative
evolution rules with targets and symport / antiport rules of weight one can
generate any Turing computable set of vectors of natural numbers, and re-
placing antiport rules of weight one by symport rules of weight two yields
the same result.

In [10] the results above were improved by simulating register machines:
for any Turing computable set of vectors of natural numbers time-free EC

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.2. DEFINITIONS 47

P systems with two membranes and non-cooperative evolution rules without
targets and symport / antiport rules of weight one generate any Turing com-
putable set of vectors of natural numbers. Replacing antiport rules of weight
one by symport rules of weight two yields the same result. Moreover, al-
lowing evolution rules with targets or relaxing the time-free condition yields
systems able to generate any recursively enumerable language.

Finally, in [6] some results on time-free proton pumping P systems were
obtained. Time-free P systems with two membranes and four protons and
symport / antiport rules of weight one generate any Turing computable set
of vectors of natural numbers. Time-free P systems with two membranes and
four protons and symport rules of weight at most two generate any Turing-
computable set of vectors of natural numbers. Moreover, allowing evolution
rules with targets or relaxing the time-free condition yields systems able to
generate any recursively enumerable language.

It is even more surprising that one proton is already sufficient for non-
time-free P systems with two membranes and either symport / antiport of
weight one, or symport of weight two to generate any recursively enumerable
language.

4.2 Definitions

Let us recall the formal definition of EC P systems:

Definition 4.2.1 An evolution–communication P system of degree m ≥ 1 is
defined as

Π = (O, µ, w1, · · · , wm, R1, · · · , Rm, R′
1, · · · , R′

m, i0),

where O is the alphabet of objects, µ is a membrane structure with m re-
gions, labelled with 1, · · · , m, and i0 ∈ {0, · · · , m} is the output region (the
environment if i0 = 0). Every region i ∈ {1, · · · , m} has

• wi ∈ O∗ – a string representing a multiset of objects from O;

• Ri – a finite set of evolution rules over O of the form u → v, for
u ∈ O+ and v ∈ O∗ (hence without target indications associated with
the objects from v);

• R′
i – a finite set of symport / antiport rules over O, of the forms

(u, in), (v, out), (v, out; u, in), for u, v ∈ O+.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

48 CHAPTER 4. EVOLUTION–COMMUNICATION

The evolution rules of the form u → v mean to replace u by v, in the
region this rule is associated to. These rules change the objects without
moving them to a different region, as opposed to the communication rules,
moving the objects without changing them. The symport / antiport rules are
associated to membranes, rather than to regions. Rule (u, in) means to bring
u inside the membrane, rule (v, out) means to take v out of the membrane,
and rule (v, out; u, in) means to bring u inside the membrane in exchange for
v, which is taken out of the membrane (both u in the external region and v
in the internal region must be present for the rule to be applicable, and both
are used by the rule if it is applied). Both evolution and communication rules
are applied in parallel.

The notation NOPm(α, tar, symi, antij) (PsOPm(α, symi, antij), LOPm

(α, symi, antij)), for α ∈ {ncoo, coo} ∪ {catk | k ≥ 0}, is used for the family
of natural number sets (the family of natural number vector sets, the family
of languages) generated by EC P systems with at most m membranes, using
symport rules of weight at most i, antiport rules of weight at most j, and
cooperative evolution rules (coo), non-cooperative rules (ncoo), or catalytic
rules with at most k catalysts (catk) with targets (if evolution rules have no
targets, tar is omitted).

4.3 Universality

We recall that every recursively enumerable language can be generated by a
register machine with 2 registers and an output tape.

4.3.1 Symport / Antiport of Weight One

Theorem 4.3.1 LOP2(ncoo, sym1, anti1) = RE.

Proof. We only prove the inclusion ⊇. Consider an arbitrary recur-
sively enumerable language L ⊆ T ∗. Then there is a register machine
M = (2, T, l0, lh, I) generating L, and let I− = {l | l : (S(i), l′, l′′) ∈ I}.

We will construct a P system Π simulating M in such a way that the
value of register i is represented by the multiplicity of the object ai in the
skin region. The proton Di will be used to decrement the value of register i,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.3. UNIVERSALITY 49

while Ei will be used to check if the register i is null.

Π = (O, µ = [1 [2]2]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = T ∪ {ai | 1 ≤ i ≤ 2} ∪ {lj | l ∈ I−, 1 ≤ j ≤ 4}
∪ {#1, #2} ∪ I ∪ {Di, Ei | 1 ≤ i ≤ 2},

w1 = l0D1D2Z1Z2#1, w2 = λ,

and the set of the rules is the following:
For each instruction l : (A(i), l′, l′′) ∈ I,

• l → ail
′, l → ail

′′ ∈ R1.

For each instruction l : (write(a), l′, l′′) ∈ I we have the rules

• l → al′, l → al′′ ∈ R1.

• (a, out) ∈ R′
1.

For each instruction l : (S(i), l′, l′′) ∈ I,

• (l, in) ∈ R′
2,

(decrement)

• l → l4 ∈ R2,

• (l4, out; Di, in), (Di, out; ai, in), (Di, out; #1, in) ∈ R′
2,

• l4 → l′ ∈ R1,

(zero test)

• l → l1, l2 → l3 ∈ R2,

• (Ei, in; l1, out), (Ei, out; ai, in), (Ei, out; l2, in), (l3, out) ∈ R′
2,

• l1 → l2 ∈ R1, l2 → #2, l3 → l′′ ∈ R1.

Finally, we also have the rules

• #1 → #1 ∈ R2,

• #2 → #2 ∈ R1.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

50 CHAPTER 4. EVOLUTION–COMMUNICATION

l�
��

-l4

Di
�

���@
@

@R -l′

@
@@Rai
�
��

�
�
��

#1
@

@@R i

l�
��

-l1

Ei
�

���@
@

@R -l2
-#2

i

�
�
��

ai
@
@R

PPPPPPq

�
�

��
-l3A

AU -l′′

Figure 4.1: Using (ncoo, sym1, anti1) decrement: left, zero-test: right

l�
��

-l4
DiA

A
A
AU

A
A
A
AU -l′

ai
�
��

�
�
��

�
���

�*

#1
����

��* i

l�
��

-l1
EiA

A
A
AU

A
A
A
AU -l2

-#2
i

ai
�
��

�
�
��

�
�

�
�3

�
�
�
�
��

-l3B
B
BBN -l′′

Figure 4.2: Using (ncoo, sym2) decrement: left, zero-test: right

The system constructed in that way simulates the corresponding register ma-
chine. The increment instructions are simulated in one step: the instruction
symbol changes to a symbol corresponding to the next instruction and a
symbol corresponding to the register being incremented.

Decrement: l comes to region 2, changes to l4 and returns to region 1,
bringing Di to region 2, and then changes to l′. The “duty” of Di is to
decrement register i by returning to region 1 and removing one copy of ai

from region 1. If register i is null, then Di exchanges with #1 and the
computation never halts (if decrement is possible, Di can still exchange with
#1, but this case is not productive).

Zero-test: after l has come to region 2, it changes to l1 and returns to
region 1, bringing Ei to region 2, and then changes to l2. The “duty” of Ei

is to check that register i is null by waiting for l2. If register i is not null,
then Ei will immediately exchange with ai and then l2 will change to #2, so
the computation will never halt (if Ei waits for l2, l2 can still change to #2,
but this case is not productive).

The decrement and zero-test are illustrated in Figure 4.1. 2

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.3. UNIVERSALITY 51

4.3.2 Symport of Weight Two

Theorem 4.3.2 LOP2(ncoo, sym2) = RE.

Proof. This is a “dual” theorem: the simulation of a register machine is
done in exactly the same way, except that the protons that were in region 1
are now in region 2, and vice-versa.

Π = (O, µ = [1 [2]2]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = T ∪ {ai | 1 ≤ i ≤ 2} ∪ {lj | l ∈ I−, 1 ≤ j ≤ 4}
∪ {#1, #2} ∪ I ∪ {Di, Ei | 1 ≤ i ≤ 2},

w1 = l0#1, w2 = D1D2Z1Z2,

and the set of the rules is the following:
For each instruction l : (A(i), l′, l′′) ∈ I,

• l → ail
′, l → ail

′′ ∈ R1.

For each instruction l : (write(a), l′, l′′) ∈ I we have the rules

• l → al′, l → al′′ ∈ R1,

• (ai, out) ∈ R′
1.

For each instruction l : (S(i), l′, l′′) ∈ I,

• (l, in) ∈ R′
2,

(decrement)

• l → l4 ∈ R2,

• (l4Di, out), (aiDi, in), (#1Di, in) ∈ R′
2,

• l4 → l′ ∈ R1,

(zero test)

• l → l1, l2 → l3 ∈ R2

• (l1Ei, out), (aiEi, in), (l2Ei, in), (l3, out) ∈ R′
2,

• l1 → l2 ∈ R1, l2 → #2, l3 → l′′ ∈ R1.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

52 CHAPTER 4. EVOLUTION–COMMUNICATION

Finally, we also have the rules

• #1 → #1 ∈ R2,

• #2 → #2 ∈ R1.

The system constructed above simulates the corresponding register machine.
The increment instructions are simulated in one step: the instruction symbol
changes to a symbol corresponding to the next instruction and a symbol
corresponding to the register being incremented.

Decrement: l comes to region 2, changes to l4 and returns to region 1 with
Di, and then changes to l′. The “duty” of Di is to decrement register i by
returning to region 2 and removing one copy of ai from region 1. If register
i is null, then Di exchanges with #1 and the computation never halts (if
decrement is possible, Di can still exchange with #1, but this case is not
productive).

Zero-test: after l has come to region 2, it changes to l1 and returns to
region 1 with Ei, and then changes to l2. The “duty” of Ei is to check
that register i is null by waiting for l2. If register i is not null, then Ei

will immediately exchange with ai and then l2 will change to #2, so the
computation will never halt (if Ei waits for l2, l2 can still change to #2, but
this case is not productive). Figure 4.2 illustrates decrementing and zero-test.

2

4.4 EC P Automata: Accepting Languages

We are now going to prove that EC P automata accept all recursively enu-
merable languages with the help of promoters at the level of evolution rules.

Let us consider a language L ∈ V ∗, V = {c1, · · · , ck}. Every word w =
cm1 · · · cm|w| ∈ L corresponds to the number valk+1(w), which is the value of
m1 · · ·m|w| in base k + 1 (a number, whose digits are the subscripts mi of
letters cmi

of w). If L ∈ RE, then valk+1(L) ∈ NRE, hence the following
holds.

Lemma 4.4.1 Let L ∈ V ∗ and L′ = {avalk+1(w) | w ∈ L} for a given symbol
a. If L ∈ RE, then L′ is a one-letter RE language.

Theorem 4.4.1 AIOP2(p1ncoo, sym1, anti1) = RE.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.4. EC P AUTOMATA: ACCEPTING LANGUAGES 53

Proof. Let us consider a language L ∈ V ∗, V = {c1, · · · , ck}. Let us define
L′ as in lemma above, and let M be a register machine which generates L′.

We construct the EC P automaton

Π1 = (O ∪O′, V, µ, w1w
′
1, w2w

′
2, R1 ∪Q1, R2 ∪Q2, Q

′
1, R

′
2 ∪Q′

2),

where O, w1, w2, R1, R2, R′
2 are as in the proof of Theorem 4.3.1, and

O′ = V ∪ {b, b′, d, e, e′, g, g′, I},
µ = [1 [2]2]1,

w′
1 = I, w′

2 = g,

Q1 = {ci → bie|e, ci → bie′g′|e, ci → #, b → bk+1|e}
∪ {e → f ′, b → b′|e′ , a → a, I → e, I → g′},

Q2 = {b′ → d, d → d, g → g},
Q′

1 = {(ci, in) | ci ∈ V },
Q′

2 = {(b′, in), (d, out; a, in), (g, out; g′, in)}.

The system Π1 has all the elements and all the rules of the system Π in
the previous theorem, except the rule (a, out) is no longer assigned to the
skin membrane. This part of Π1 simulates the register machine M of L′

in the way described in Theorem 4.3.1, except the terminal symbols do not
leave the system. The other objects used are: the alphabet {ci | 1 ≤ i ≤ k}
of the input language, I is the initializer, b is used for calculating a unary
representation of the input word, b′ transports this number to the inner
membrane, and d stores it. Objects e and e′ control the processing of the
input (they are used as promoters), g and g′ are used to make sure that the
computation is blocked if the input word is not decoded correctly.

Suppose Π1 is processing the input w. Rules 4 and 1 from Q1 enforce cal-
culation of valk+1(w), performing multiplication and addition, respectively.
Rule 2 from Q1 does the last addition. Rule 3 from Q1 blocks the compu-
tation if the rule 2 from Q1 was applied before the last input letter. Rule 5
from Q1 erases e in the outer region, rule 6 from Q1 stops the computation of
v = valk+1(w), rule 7 from Q1 keeps the terminals a busy. The initializer I
makes a guess and either produces e by rule 8 from Q1 to process the input,
or g′ by rule 9 from Q1 to examine the case of the empty word. If it produces
e and the word is empty, then the system never halts because of the rule 3
from Q2 (g cannot escape by rule 3 from Q′

2 because neither rule 2 nor rule

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

54 CHAPTER 4. EVOLUTION–COMMUNICATION

9 from Q1 were applied to produce g′). If I produces g′ and the word is not
empty, then there is no promoter e for the rules 1, 2 from Q1, and the input
symbol will block the computation by rule 3 from Q1.

In region 2, rule 1 of Q2 transforms (b′)v into dv; rule 2 of Q2 keeps d’s
busy, and rule 3 of Q2 requires that g is brought into the outer region by rule
3 of Q′

2 when (and only if) the value v is calculated correctly.

Rule 1 of Q′
1 brings the symbols of the input string into region 1. rule 1

of Q′
2 transports (b′)v into the region 2; rule 2 of Q′

2 is used for decrementing
multiplicities of d in region 2 and of a in region 1, and the decrementation is
used for comparing the numbers.

We will now proceed to a more detailed explanation of why this construc-
tion works. At first, we discuss the computation of v. In case of the empty
word, v = 0 as described in the work of the initializer. Assume |w| > 0.
Let vj = valk+1(cm1 · · · cmj

). Then vj+1 = vj(k + 1) + mj+1, j < |w|. Two
“wrong” things can possibly happen in simulation: if rule 2 of Q1 is applied
not for the last symbol of w, then the computation will be blocked by rule
3 of Q1; also if rule 2 of Q1 is never applied, then g′ will never appear, and
rule 3 of Q2 will block the computation. These cases produce no results.

After all the input is successfully converted to v objects b, the symbols e′

and g′ appear. The first one promotes bv to (b′)v by rule 6 of Q1, the latter
removes g from the inner region by rule 3 of Q′

2. Then, (b′)v come to the
inner region by rule 1 of Q′

2 and transform into dv by rule 1 of Q2.

Also, the derivation of M is simulated, producing some number x of
objects a in the outer region. The terminal configuration can be achieved for
any (and only for such) v, that x = v can be produced (without blocking).
The comparison is done by rule 2 of Q′

2. If the numbers are not equal, then
either rule 7 of Q1 or rule 2 of Q2 produces an endless computation.

This way, Π1 accepts the language L(G) and the theorem statement fol-
lows immediately by Lemma 2.2.1. 2

The following “dual” result, not published anywhere, is not so surprising:
antiport rules can be replaced by cooperative symport rules.

Theorem 4.4.2 AIOP2(p1ncoo, sym2) = RE.

Proof. Let us again consider a language L ∈ V ∗, V = {c1, · · · , ck}, define
L′ as in lemma above, and let M be a register machine which generates L′.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.5. INFINITE ENVIRONMENT 55

We construct the EC P automaton

Π2 = (O ∪O′, V, µ, w1w
′
1, w2, R1 ∪Q1, R2, Q

′
1, R

′
2 ∪Q′

2),

where O, w1, w2, R1, R2, R′
2 are as in the proof of Theorem 4.3.2, and

O′ = V ∪ {b, b′, e, e′, g, g′, I},
µ = [1 [2]2]1,

w′
1 = Ig,

Q1 = {ci → bie|e, ci → bie′g′|e, ci → #, b → bk+1|e}
∪ {e → f ′, b → b′|e′ , a → a, I → e, I → g′}
∪ {b′ → b′, g → g},

Q′
1 = {(ci, in) | ci ∈ V },

Q′
2 = {(b′a, in), (gg′, in)}.

The system Π2 has all the elements and all the rules of the system Π
in Theorem 4.3.2, except the rule (a, out) is no longer assigned to the skin
membrane. The computation of M is done like in Theorem 4.3.2, except a
stays in the skin. The encoding of the input in unary is done exactly like
in the previous theorem, but objects b′ do not automatically move to the
inner region and do not change into objects d. Instead of comparing the
multiplicities of objects a and d, we directly compare the multiplicities of
objects a and b′, that otherwise “wait to be compared” (see rules a → a and
b′ → b′), by moving them to region 2. The system can halt if and only if the
multiplicities coincide, and all objects a and b′ are removed from the skin
region.

This way, Π2 accepts the language L(G) and the theorem statement fol-
lows immediately by Lemma 2.2.1. 2

4.5 Infinite Environment

Let us now extend the alphabet of an EC P system by a distinguished object
which we call “water”; water is present in the environment in an unbounded
quantity, and can be brought inside the skin membrane in exchange for the
output (in the non-extended model, all communications with the environ-
ment were limited to outputting the result). This simple change allows us

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

56 CHAPTER 4. EVOLUTION–COMMUNICATION

to obtain universality without using symport rules of weight one and with
binary evolution rules, that is, rules of the form a → bc. We denote the
corresponding families of languages by E1OPm(ncoo2, symi, antij), with the
obvious meaning (E1 stands for extending the alphabet by one object).

Theorem 4.5.1 LE1OP2(ncoo2, anti1) = RE,
LE1OP2(ncoo2, sym=2) = RE.

Proof. (sketch) Let us denote water symbol by $. We will use the con-
struction from Theorem 4.3.1 to prove the first statement, and the one from
Theorem 4.3.2 to prove the latter statement. Notice that both constructions
all evolution rules have either 1 or 2 symbols in the right-hand side. Replace
all rules a → b by a → b$, all rules (a, in) by ($, out; a, in) or by (a$, in)
and all rules (a, out) by (a, out; $, in) or by (a$, out) (take the first case of
each or clause for the first claim, the second case of each or clause of the
second claim). Finally, make sure there is enough water for the computation
(namely, for simulating symport rules of weight 1) in all regions.

Notice that the only such rules that act across membrane 2 in theorems
4.3.1 and 4.3.2 are (l, in), (l3, out) that happen at most once per direction in
simulation of a SUB instruction, however, renaming rules take place in both
regions every time a SUB instruction is simulated, so it is already sufficient
to add one object $ to every region.

The only symport rules of weight 1 acting across membrane 1 in theorems
4.3.1 and 4.3.2 are (ai, out). This is fine for the antiport model (since we
assume that the environment has an unbounded supply of water), while for
the pure symport model we could add to the alphabet O symbols l1 associated
to ADD instructions l, and replace rules l → ail

′, l → ail
′′ from R1 by rules

l → l1$, l1 → ail
′, l1 → ail

′′, which proves the theorem. 2

4.6 Time-Freeness

Given a time-mapping

e : R1 ∪R2 ∪ · · · ∪Rm ∪R′
1 ∪R′

2 ∪ · · · ∪R′
m −→ N

and an EC P system Π as defined above, it is possible to construct a timed
EC P system Π(e) as (O, µ, w1, w2, . . . , wm, R1, . . . , Rm, R′

1, . . . , R
′
m, i0, e)

working in the following way.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.6. TIME-FREENESS 57

We suppose the existence of an external and global clock that ticks at
uniform intervals of time. At each time in the regions of the system we have
together rules (both evolution and transport) in execution and rules not in
execution. At each time all the evolution and transport rules that can be
applied (started) in each region, have to be applied. If a rule r ∈ Ri, R

′
i, 1 ≤

i ≤ m, is applied, then all objects that can be processed by the rule have
to evolve by this rule (a rule is applied in a maximally parallel manner as
standard in P system area).

As usual, the rules from Ri are applied to objects in region i and the
rules from R′

i govern the communication of objects through membrane i.
There is no difference between evolution rules and communication rules: they
are chosen and applied in the non-deterministic maximally parallel manner.
When an evolution rule or a transport rule r is started at time j, its execution
terminates at time j + e(r). If two rules are started in the same time unit,
then possible conflicts for using the copies of objects are solved assigning
the objects in a non-deterministic way (again, in the way usually defined in
P system area). Notice that when the execution of a rule r is started, the
occurrences of objects used by this rule are not anymore available for other
rules during the entire execution of r.

The computation stops when no rule can be applied in any region and
there are no rules in execution: in this case the system has reached a halting
configuration. The output of a halting computation is the vector of numbers
representing the multiplicities of object presents in the output region in the
halting configuration. (If i0 = 0, then also the sequence of objects sent
outside can be considered as the result; in this case, if some objects arrive
into the environment simultaneously, then every permutation is considered.)
Collecting all the vectors obtained, for any possible halting computation, we
get the set of vectors of natural numbers generated by the system. (If we
collect the sequences of objects, then we obtain a language.)

An EC P system Π = (O, µ, w1, w2, . . . , wm, R1, . . . , Rm, R′
1, . . . , R

′
m, i0)

is time-free if and only if every system in the set

{Π(e) | e : R −→ N}

(where R = R1 ∪R2 ∪ · · · ∪Rm ∪R′
1 ∪R′

2 ∪ · · · ∪R′
m) produces the same set

of vectors of natural numbers (or the same language).
Because there is no ambiguity, in this case the set of vectors of natural

number generated by a time-free EC P system Π is indicated by Ps(Π) (the

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

58 CHAPTER 4. EVOLUTION–COMMUNICATION

corresponding language generated is denoted by L(Π)). We use the notation
fPsOPm(ncoo, symi, antij) to denote the family of sets of vectors of natural
numbers generated by time-free EC P systems with at most m membranes (as
usually, m = ∗ if such a number is unbounded), non-cooperative evolution
rules, symport rules of weight at most i, and antiport rules of weight at
most j. If languages are generated, then we replace Ps by L in the notation.

Notice that P systems constructed in theorems 4.3.1 and 4.3.2 are actually
time-free (in the sense of generating PsRE).

Corollary 4.6.1 fPsOP2(ncoo, sym1, anti1) = fPsOP2(ncoo, sym2) =
PsRE.

In the time-free systems, we have no way of controlling the order in which
objects a ∈ T exit the system, and the order cannot be enforced because
nothing else should be sent into the environment except the result. However,
sending objects a directly to the environment using targets by the rules
producing them will yield a similar result for the time-free EC P systems
with targets.

Corollary 4.6.2 fLOP2(ncoo, tar, sym1, anti1) = fLOP2(ncoo, tar, sym2)
= RE.

4.7 Determinism

4.7.1 Symport / Antiport of Weight One

Theorem 4.7.1 DNaOP3(ncoo, sym1, anti1) = NRE.

Proof. Given a set M ∈ NRE, consider a deterministic register machine
G = (m, einit, ehalt, P) with m registers, initial label einit, halting label ehalt,
instruction set P , and set Lab(P) of labels, accepting M . We construct the
following P system (object ai represents the the value of the i-th register
of G).

Π = (O, µ = [
1

[
2

[
3

]
3

]
2

]
1
, w1 = λ, w2 = einit, w3 = λ,

R1, R2, R3, R
′
1 = ∅, R′

2, R
′
3, 2),

O = {e, e0, e1, e2, e3, e4, e5, e6 | e ∈ Lab(P)}
∪ {ar | 1 ≤ r ≤ m} ∪ {s1, s2, s3, q},

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.7. DETERMINISM 59

R1 = {s1 → s2} ∪ {ar → λ | 1 ≤ r ≤ m}
∪ {e3 → e4 | e : (S(r), f, g) ∈ P},

R2 = {s3 → λ} ∪ {e → arf | e : (A(r), f) ∈ P}
∪ {e → s1e0, e0 → e1, e1 → e2, e2 → e3, e4 → e5q, e5 → e6, e6 → g

| e : (S(r), f, g) ∈ P},
R3 = {s2 → s3, q → λ} ∪ {e3 → f | e : (S(r), f, g) ∈ P},
R′

2 = {(s1, out), (ar, out; s2, in)}
∪ {(e3, out; s2, in), (e4, in) | e : (S(r), f, g) ∈ P},

R′
3 = {(s2, in), (s3, out; q, in)} ∪ {(f, out) | e : (S(r), f, g) ∈ P}
∪ {(s3, out; e3, in) | e : (S(r), f, g) ∈ P}.

The P system above recognizes a number N if and only if the computation,
starting with aN

1 (the input register of G is the first one) placed in region 2,
halts. Below are the simulations of individual instructions.

Instruction e : (A(r), f) is simulated in the following way:

[1 [2 ew[3]3]2]1 ⇒ [1 [2 arfw[3]3]2]1.

The object e (corresponding to the instruction label) simply evolves into arf ,
thus changing instruction label from e to f and adding one to the counter r.

Simulation of instruction e : (S(r), f, g) (in case register r is non-zero):

[1 [2 earw[3]3]2]1 ⇒ [1 [2 s1e0arw[3]3]2]1
⇒ [1 s1[2 e1arw[3]3]2]1 ⇒ [1 s2[2 e2arw[3]3]2]1
⇒ [1 ar[2 s2e3w[3]3]2]1 ⇒ [1 [2 e3w[3 s2]3]2]1
⇒ [1 [2 e3w[3 s3]3]2]1 ⇒ [1 [2 s3w[3 e3]3]2]1
⇒ [1 [2 w[3 f]3]2]1 ⇒ [1 [2 fw[3]3]2]1.

The object e (corresponding to the instruction label) evolves into e0 (changing
in 3 steps into e3) and s1, which goes in region 1, then changes into s2, and
then returns in region 2 in exchange for ar (which is then erased). Then, s2

travels into region 3, changes to s3 and returns to region 2 (where it is then
erased) in exchange for e3. Finally, e3, being in region 3, changes into f and
return in region 2, finishing the simulation of the instruction.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

60 CHAPTER 4. EVOLUTION–COMMUNICATION

Instruction e : (S(r), f, g) (in case register r is zero) is simulated as fol-
lows:

[
1

[
2

ew[
3

]
3

]
2

]
1
⇒ [

1
[
2

s1e0rw[
3

]
3

]
2

]
1
⇒ [

1
s1[2 e1w[

3
]
3

]
2

]
1

⇒ [1 s2[2 e2w[3]3]2]1 ⇒ [1 s2[2 e3w[3]3]2]1 ⇒ [1 e3[2 s2w[3]3]2]1
⇒ [1 e4[2 w[3 s2]3]2]1 ⇒ [1 [2 e4w[3 s3]3]2]1
⇒ [1 [2 e5qw[3 s3]3]2]1 ⇒ [1 [2 e6ws3[3 q]3]2]1 ⇒ [1 [2 gw[3]3]2]1.

(Note that |w|ar = 0.) Like in the previous case, the object e evolves into e0

(changing in 3 steps into e3) and s1, which goes in region 1, and then changes
into s2. Now there is no object ar in region 2 to bring s2 to region 2, so s2

remains in region 3 until the next step, when it is exchanged with e3. Then
s2 travels to region 3 and changes into s3. Now, e3, being in region 1, changes
into e4, returns to region 2, where it evolves into e5 (changing it two steps
into g) and q, which exchanges with s3 and then both q and s3 are erased.

These two cases are graphically represented in Figure 4.3. 2

3
2

1

e
ar

-
s1

�� e0

��
s1

- e1

- s2

- e2
- e3

�
�

��
ar

- λ
B
B
BBN s2

@R s2
- s3

��
s3

H
HHHj e3

- λ
- f ��

f

3
2

1

e -
s1

�� e0

��
s1

- e1

- s2

- e2
- e3

@
@R s2
�
��
e3

- e4

@R s2

@R e4
- e5
@R q

- e6

@R q- s3
��* s3

- g
- λ
- λ

Figure 4.3: Deterministic P systems with (ncoo, sym1, anti1). Decrement
(top) and zero-test (bottom).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.7. DETERMINISM 61

4.7.2 Symport of Weight One

In the next theorem, symport of weight two is used instead of antiport of
weight one, leading to one more universality result.

Theorem 4.7.2 DNaOP3(ncoo, sym2) = NRE.

Proof. Given a set M ∈ NRE, consider a deterministic register machine
G = (m, einit, ehalt, P) as above, accepting M . We construct the following P
system:

Π = (O, µ = [1 [2 [3]3]2]1, w1 = λ, w2 = einit, w3 = λ,

R1, R2, R3, R
′
1 = ∅, R′

2, R
′
3, 2),

O = {e, e0, e1, e2, e3, e4, e5, e6 | e ∈ Lab(P)}
∪ {ar | 1 ≤ r ≤ m} ∪ {s1, s2, s3, q},

R1 = {q → λ, s2 → λ} ∪ {e0 → e1 | e : (S(r), f, g) ∈ P}
∪ {ar → λ | 1 ≤ r ≤ m},

R2 = {s1 → s2} ∪ {e → s1e0, e1 → e2q, e2 → e3, e3 → f

| e : (S(r), f, g) ∈ P}
∪ {e → arf | e : (A(r), f) ∈ P},

R3 = {s2 → λ} ∪ {e0 → g | e : (S(r), f, g) ∈ P},
R′

2 = {(qs2, out)} ∪ {(e0ar, out), (e1, in) | e : (A(r), f) ∈ P},
R′

3 = {(s2e0, in), (g, out) | e : (S(r), f, g) ∈ P)}.

3
2

1

e
ar

- e0
@R s1

�
��
ar

�
��
e0

- s2

- λ
- e1

@R e1
- q
A
AU e2

�

�
��
q

�
��
s2

- e3
- f

- λ
- λ

3
2

1

e - e0
@R s1

- s2
A
AU e0

A
AU s2

- g
- λ

��
g

Figure 4.4: Deterministic P systems with (ncoo, sym2). Decrement (left) and
zero-test (right).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

62 CHAPTER 4. EVOLUTION–COMMUNICATION

The P system above recognizes a number N if and only if the computation,
starting with aN

1 (the first register is the input one of G) placed in region 2,
halts. Below is the simulation of the instructions of G.

Instruction e : (A(r), f) is simulated like in the previous theorem:

[1 [2 ew[3]3]2]1 ⇒ [1 [2 Rfw[3]3]2]1.

Instruction e : (S(r), f, g) is simulated in the following way: The object
e evolves in e0 (used to subtract) and s1 (which changes into s2, the helper).

[1 [2 earw[3]3]2]1 ⇒ [1 [2 s1e0arw[3]3]2]1
⇒ [1 e0ar[2 s2w[3]3]2]1 ⇒ [1 e1[2 s2w[3]3]2]1
⇒ [1 [2 e1s2w[3]3]2]1 ⇒ [1 [2 e2qs2w[3]3]2]1
⇒ [1 qs2[2 e3w[3]3]2]1 ⇒ [1 [2 fw[3]3]2]1.

If ar is present in region 2, then (one copy of) ar goes to region 1 (where it
is erased) together with e0, which changes into e1, returns to region 2, and
then evolves into e2 (which changes into f in two steps) and q, which exists
to region 1 together with s2, where both q and s2 are erased.

[1 [2 ew[3]3]2]1 ⇒ [1 [2 s1e0w[3]3]2]1 ⇒ [1 [2 s2e0w[3]3]2]1
⇒ [1 [2 w[3 s2e0]3]2]1 ⇒ [1 [2 w[3 g]3]2]1 ⇒ [1 [2 gw[3]3]2]1.

(Note that |w|ar = 0.) If ar is not present in region 2, then e0 waits for s2,
they both come to region 3, where s2 is erased, while e0 changes to g and
returns to region 2, finishing the simulation of the instruction.

These two cases are graphically represented in Figure 4.4. 2

4.8 Proton Pumping

Definition 4.8.1 A proton pumping P system of degree m ≥ 1 is defined as

Π = (O, P, µ, w1, · · · , wm, R1, · · · , Rm, R′
1, · · · , R′

m, i0), (4.1)

where
(O, µ, w0, w1, · · · , wm, R1, · · · , Rm, R′

1 · · · , R′
m, i0)

is an evolution–communication P system, P ⊆ O is the set of protons, and
all rules are of the following forms:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.8. PROTON PUMPING 63

• u → v, where u ∈ (O − P)+, v ∈ (O − P)∗ (evolution rule, does not
involve protons).

• (a, out) or (a, in), where a ∈ O (uniport rule),

• (x, out) or (x, in), where x ∈ O+, |x|P = 1 (proton pumping symport
rule),

• (x, out; y, in), where x, y ∈ O+ and |xy|P = 1 (proton pumping antiport
rule).

Thus, proton pumping P systems are a restricted variant of EC P systems.
We use the following notations

XProP k
m(ncoo, tar, symi, antij)

to denote the family of languages (X = L), vector sets (X = Ps) or number
sets (X = N) generated by proton pumping P systems with at most m
membranes, k different types of protons (i.e., k is the cardinality of the set
P), using symport rules of weight at most i, antiport rules of weight at most j,
and non-cooperative evolution rules with targets. If targets are not allowed,
then tar is removed from the notation (like any other unused feature). If one
of the numbers m,k, i, j is unbounded, we write ∗ instead).

Once again we recall theorems 4.3.1 and 4.3.2 proving the computational
completeness of EC P systems. Looking into the proofs, one can easily see
that the constructed P systems are actually proton pumping P systems with
four protons, namely {Di, Ei | 1 ≤ i ≤ 2}.

Corollary 4.8.1 LProP 4
2 (ncoo, sym2, anti1) = LProP 4

2 (noo, sym2) = RE.

In the proofs of the preceding theorems the output symbols are generated
in the right order; however, generating languages by these constructions is
not time-free because the different execution times of the rules sending output
symbols to the environment might lead to changing the order of symbols in
the output word.

Corollary 4.8.2 fPsProP 4
2 (ncoo, sym2, anti1) = fPsProP 4

2 (noo, sym2) =
PsRE.

Nevertheless, if target indications are allowed, then, replacing rules l →
al′ ∈ R1, l → al′′ ∈ R1, (a, out) ∈ R′

1 for a ∈ T by l → aoutl
′ ∈ R1,

l → aoutl
′′ ∈ R1, one obtains time-free P systems generating RE.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

64 CHAPTER 4. EVOLUTION–COMMUNICATION

Corollary 4.8.3 fLProP 4
2 (ncoo, tar, sym1, anti1) = RE,

fLProP 4
2 (ncoo, tar, sym2) = RE.

4.9 One Proton

We will now show that if time-freeness is not required, then even one proton
is enough for computational completeness, again with only two membranes.

4.9.1 Symport / Antiport of Weight One

Theorem 4.9.1 LProP 1
2 (ncoo, sym1, anti1) = RE.

Proof. We only prove the inclusion ⊆. Consider an arbitrary recur-
sively enumerable language L ⊆ T ∗. Then there is a register machine
M = (2, T, l0, lh, I) generating L.

We will construct a P system Π simulating M in such a way that the value
of register i is represented by the multiplicity of the object ai in region i.
The proton p will be used to decrement/zero test the value of the working
registers.

Π = (O,P, µ = [1 [2]2]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = T ∪ {ai, a
′
i | 1 ≤ i ≤ 2} ∪ {lj | l ∈ I, 1 ≤ j ≤ 9} ∪ I ∪ P

∪ {#, I2,4, I1,3, I0,2} ∪ {Ij | 0 ≤ j ≤ 2} ∪ {Oj | 0 ≤ j ≤ 5},
P = {p}, w1 = pI1, w2 = o0l0,

and the set of the rules is the following:

Rules related to special objects which “wait” for a certain time and then
must exchange with the proton (or else the trap symbol will be introduced):

• I2,4 → I1,3, I1,3 → I0,2 ∈ R2,

• (I0,2, out) ∈ R′
2,

• I0,2 → I0I2 ∈ R1,

• Ij+1 → Ij ∈ R1, 0 ≤ j ≤ 1,

• (p, out; I0, in) ∈ R′
2,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.9. ONE PROTON 65

Instruction Decrement a1 Zero-test a1

Step Region 1 Region 2 Region 1 Region 2
1 a1I1p lO0 I1p lO0

2 a1I0O0 l1I2,4O5O3O1p I0O0 l6I1,3O4O1p
3 a1p l2I1,3O4O2O0I0 p l7I0,2O3O0I0

4 a1O0 l3I0,2O3O1p I0,2O0 l8O2p
5 I0,2p a1l4O2O0 I2I0 l9O1p
6 I2I0O0 a1l5O1p I1p l′′O0I0

7 I1p a1l
′O0I0 Next instr. Next instr.

Instruction Decrement a2 Zero-test a2

Step Region 1 Region 2 Region 1 Region 2
1 I1p a2lO0 I1p lO0

2 I0O0 a2l1I0,2O3p I0O0 l6I1,3O4O2p
3 I0,2p a2l2O2I0 p l7I0,2O3O1I0

4 a2I2I0 l3O1p I0,2p l8O2O0

5 a2I1p l′O0I0 I2I0O0 l9O1p
6 Next instr. Next instr. I1p l′′O0I0

Table 4.1: Proton pumping by antiport. Register operations.

• O0 → λ, I0 → #, # → # ∈ R1,

• Oj+1 → Oj ∈ R2, 0 ≤ j ≤ 4,

• (O0, out; p, in) ∈ R′
2,

• I0 → λ, O0 → #, # → # ∈ R2.

Rules of interaction of the proton and register symbols:

• (p, out; a1, in), (a2, out; p, in) ∈ R′
2,

For each instruction l : (A(i), l′, l′′) ∈ I,

• l → a′il1O3O1I0,2 ∈ R2,

• lj → lj+1 ∈ R2, 1 ≤ j ≤ 2,

• l3 → l′, l3 → l′′ ∈ R2.

The output instructions l : (write(a), l′, l′′) ∈ I are simulated exactly as the
addition instructions above, replacing a′i by a.

The register symbols ai in region i and the output symbols a in the
environment are produced by the rules

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

66 CHAPTER 4. EVOLUTION–COMMUNICATION

Instruction Increment ai/write a

Region 1 2
1 I1p lO0

2 I0O0 l1(a′i or a)I0,2O3O1p
3 I0,2p l2O2O0I0

4 I2I0O0 l3O1p
5 I1p (l′ or l′′)O0I0s

Instruction a i=1 i=2 Terminate
Region 0 1 1 2 1 2
1 pI1 lhO0

2 O0I0 p
3 a a′m+1 am+2 p I0

4 a am+1 am+2 p
5 am+1 am+2 Halt Halt

Table 4.2: Proton pumping by antiport. Miscellaneous

• a′2 → a2 ∈ R2,

• (a′1, out), (a, out) ∈ R′
2, a ∈ T ,

• a′1 → a1 ∈ R1,

• (a, out) ∈ R′
1, a ∈ T .

For each instruction l : (S(1), l′, l′′) ∈ I,
(decrement)

• l → l1O1O3O5I2,4 ∈ R2,

• lj → lj+1 ∈ R2, 1 ≤ j ≤ 4,

• l5 → l′ ∈ R2.

(zero test)

• l → l6O1O4I1,3 ∈ R2,

• lj → lj+1 ∈ R2, 6 ≤ j ≤ 8,

• l9 → l′′ ∈ R2.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.9. ONE PROTON 67

For each instruction l : (S(2), l′, l′′) ∈ I,
(decrement)

• l → l1O3I0,2 ∈ R2,

• lj → lj+1 ∈ R2, 1 ≤ j ≤ 2,

• l3 → l′ ∈ R2.

(zero test)

• l → l6O2O4I1,3 ∈ R2,

• lj → lj+1 ∈ R2, 6 ≤ j ≤ 8,

• l9 → l′′ ∈ R2.

For terminating the computation we have

• lh → λ ∈ R2.

The simulation is illustrated by the tables below. Notice that every time an
antiport rule is possible it must be executed, otherwise one of the objects O0,
I0 will change to #, leading to an infinite computation.

The intuitive idea behind this construction is to create a “predefined
scenario” for the proton; if the system tries to decrement a null register
or the system zero-tests a non-null register, then the proton ends up in a
“wrong” region and cannot follow the “scenario” anymore. We now list the
scenarios for the proton, for different instructions:

• Decrement register 1: p exchanges with O0, then with I0, then with
O0, then with a1, then with O0, and finally with I0.

• Zero-test register 1: p exchanges with O0, then with I0, then with O0,
then waits one step because there is no a1, and finally with I0.

• Decrement register 2: p exchanges with O0, then with I0, then with a2,
and finally I0.

• Zero-test register 2: p exchanges with O0, then with I0, then waits one
step because there is no a2, then with O0, and finally I0.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

68 CHAPTER 4. EVOLUTION–COMMUNICATION

• Increment any register or output a symbol: p exchanges with O0, then
with I0, then with O0, and finally I0.

Notice that the first two steps of the simulation are always the same. This is
needed to “keep the proton busy” while the object associated to the instruc-
tion creates the rest of the scenario. The scenario is created by producing
objects O0 in region 2 and objects I0 in region 1, with corresponding delays.

When the output register is incremented, the corresponding symbol is
sent to the environment, contributing to the result. At the end of the correct
simulation, object lh is erased, registers 1 and 2 are null, so no objects are
present in region 2, while region 1 only contains p. 2

4.9.2 Symport of Weight Two

Theorem 4.9.2 fPsProP 4
2 (ncoo, sym2) = PsRE.

Proof. This is a “dual” theorem: the simulation of a register machine is
done in exactly the same way, except that the proton that was in region 1
is now in region 2, and vice-versa, and except that the halting is slightly
modified such that the proton stays in region 1.

Π = (O,P, µ = [1 [2]2]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = T ∪ {ai, a
′
i | 1 ≤ i ≤ 2} ∪ {lj | l ∈ I, 1 ≤ j ≤ 9} ∪ I ∪ P

∪ {#, I2,4, I1,3, I0,2} ∪ {Ij | 0 ≤ j ≤ 2} ∪ {Oj | 0 ≤ j ≤ 5},
P = {p}, w1 = I1, w2 = po0l0,

and the set of the rules is the following:

Rules related to special objects which “wait” for a certain time and then
must exchange with the proton (or else the trap symbol will be introduced):

• I2,4 → I1,3, I1,3 → I0,2 ∈ R2,

• (I0,2, out) ∈ R′
2,

• I0,2 → I0I2 ∈ R1,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.9. ONE PROTON 69

Instruction Decrement a1 Zero-test a1

Step Region 1 Region 2 Region 1 Region 2
1 a1I1 lO0p I1 lO0p
2 a1I0O0p l1I2,4O5O3O1 I0O0p l6I1,3O4O1

3 a1 l2I1,3O4O2O0I0p l7I0,2O3O0I0p
4 a1O0p l3I0,2O3O1 I0,2O0p l8O2

5 I0,2 a1l4O2O0p I2I0p l9O1

6 I2I0O0p a1l5O1 I1 l′′O0I0p
7 I1 a1l

′O0I0p Next instr. Next instr.

Table 4.3: Proton pumping by symport. Register 1.

Instruction Decrement a2 Zero-test a2

Step Region 1 Region 2 Region 1 Region 2
1 I1 a2lO0p I1 lO0p
2 I0O0p a2l1I0,2O3 I0O0p l6I1,3O4O2

3 I0,2 a2l2O2I0p l7I0,2O3O1I0p
4 a2I2I0p l3O1 I0,2 l8O2O0p
5 a2I1 l′O0I0p I2I0O0p l9O1

6 Next instr. Next instr. I1 l′′O0I0p

Table 4.4: Proton pumping by symport. Register 2.

• Ij+1 → Ij ∈ R1, 0 ≤ j ≤ 1,

• (pI0, in) ∈ R′
2,

• O0 → λ, I0 → #, # → # ∈ R1,

• Oj+1 → Oj ∈ R2, 0 ≤ j ≤ 4,

• (pO0, out) ∈ R′
2,

• I0 → λ, O0 → #, # → # ∈ R2.

Rules of interaction of the proton and register symbols:

• (pa1, in), (pa2, out) ∈ R′
2,

For each instruction l : (A(i), l′, l′′) ∈ I,

• l → a′il1O3O1I0,2 ∈ R2,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

70 CHAPTER 4. EVOLUTION–COMMUNICATION

Instruction Increment ai/write a

Region 1 2
1 I1 lO0p
2 I0O0p l1(a′i or a)I0,2O3O1

3 I0,2 l2O2O0I0p
4 I2I0O0p l3O1

5 I1 l′/l′′ O0I0p

Table 4.5: Proton pumping by symport. Miscellaneous 1.

Instruction a i=1 i=2 Terminate
Region 0 1 1 2 1 2
1 I1 lhO0p
2 O0I0p O1

3 a2 I0O0p
4 a a1 a2 O0p
5 a1 a2 p

Table 4.6: Proton pumping by symport. Miscellaneous 2.

• lj → lj+1 ∈ R2, 1 ≤ j ≤ 2,

• l3 → l′, l3 → l′′ ∈ R2.

The output instructions l : (write(a), l′, l′′) ∈ I are simulated exactly as the
addition instructions above, replacing a′i by a.

The register symbols ai in region i and the output symbols a in the
environment are produced by the rules

• a′2 → a2 ∈ R2,

• (a′1, out), (a, out) ∈ R′
2, a ∈ T ,

• a′1 → a1 ∈ R1,

• (a, out) ∈ R′
1, a ∈ T .

For each instruction l : (S(1), l′, l′′) ∈ I,
(decrement)

• l → l1O1O3O5I2,4 ∈ R2,

• lj → lj+1 ∈ R2, 1 ≤ j ≤ 4,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.9. ONE PROTON 71

• l5 → l′ ∈ R2.

(zero test)

• l → l6O1O4I1,3 ∈ R2,

• lj → lj+1 ∈ R2, 6 ≤ j ≤ 8,

• l9 → l′′ ∈ R2.

For each instruction l : (S(2), l′, l′′) ∈ I,
(decrement)

• l → l1O3I0,2 ∈ R2,

• lj → lj+1 ∈ R2, 1 ≤ j ≤ 2,

• l3 → l′ ∈ R2.

(zero test)

• l → l6O2O4I1,3 ∈ R2,

• lj → lj+1 ∈ R2, 6 ≤ j ≤ 8,

• l9 → l′′ ∈ R2.

For terminating the computation we have

• lh → O1 ∈ R2.

The simulation is illustrated by the tables below. Notice that every time an
antiport rule is possible it must be executed, otherwise one of the objects O0,
I0 will change to #, leading to an infinite computation.

Like in the previous proof, to arrive at a halting configuration, the proton
must follow the “predefined scenario” created by instruction objects. If the
system tries to decrement a null register or the system zero-tests a non-null
register, then the proton ends up in a “wrong” region and cannot follow the
“scenario”. We now list the scenarios for the proton, for different instructions.

• Decrement a1: p accompanies O0, then I0, then O0, then a1, then O0,
and finally I0.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

72 CHAPTER 4. EVOLUTION–COMMUNICATION

• Zero-test a1: p accompanies O0, then I0, then O0, then waits one step
because there is no a1, and finally goes with I0.

• Decrement a2: p moves O0, then I0, then a2, and finally I0.

• Zero-test a2: p accompanies O0, then I0, then waits one step because
there is no a2, then goes with O0, and finally with I0.

• Increment any register or output a symbol: p accompanies O0, then I0,
then O0, and finally I0.

• Halt: p accompanies O0, then I0, and finally O0.

Again, the first two steps are the same, to “keep the proton busy” while
the object associated to the instruction creates the rest of the scenario. The
scenario is created by producing objects O0 in region 2 and objects I0 in
region 1, with corresponding delays.

When the output register is incremented, the corresponding symbol is
sent to the environment, contributing to the result. At the end of the correct
simulation, object lh changes to O0 in 3 steps, moving p to region 1. Since
registers 1 and 2 are null, no objects are present in region 2, while region 1
only contains p. 2

Consider either of the theorems above. Remove the rules (a, out), a ∈ T
from R′

1 and R′
2. The output of the system is now internal: when it halts,

one can consider objects a ∈ T , in the elementary membrane as a result (no
other objects will be there). Let the superscript int stand for systems with
internal output and let subscript ne mean that no rule uses the environment
and the skin membrane.

Corollary 4.9.1 PsProP 1,int
2,ne (ncoo, sym1, anti1) = PsRE

PsProP 1,int
2,ne (ncoo, sym2) = PsRE.

4.10 Concluding Remarks

We have studied proton pumping P systems, a variant of P systems which is
both biologically motivated and mathematically elegant. Since every object
only carries a finite amount of information, the cooperation of objects (i.e.,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

4.10. CONCLUDING REMARKS 73

the exchange of information) is crucial to obtain any non-trivial computa-
tional device. Here, the cooperation is reduced to the minimum: objects can
only cooperate directly with protons, by moving together to another region.

Nevertheless, this is enough to obtain computationally complete systems,
even with low parameters like rewriting objects in two regions and commu-
nicating them across one membrane using just one proton.

Yet another point worth mentioning is that the constructions in the proofs
have a low number of cooperative rules: four for both one-proton construc-
tions and |I+|+ 2|I−|+ 6 (where I+ is the number of ADD instructions and
I− is the number of SUB instructions in the simulated register machine) for
both time-free constructions.

The one-proton results obtained here are optimal for P systems with
external output in terms of number of membranes and protons, under the
assumption that the skin membrane is only used to output the result: with
only one membrane (i.e., output membrane) or with zero protons the behav-
ior of the system is non-cooperative. However, there still are some challenging
open problems:

• Is rewriting in both regions necessary for completeness (most of the con-
structions in evolution–communication P systems and proton pumping
P systems heavily rely on rewriting in all regions)?

• What is the generative power of proton pumping P systems with one
membrane and internal output?

• What about restricted proton pumping P systems, where the only uni-
port rules allowed are uniport rules of protons (i.e., protons appear in
no evolution rules but in all communication rules)?

• Are four protons necessary for time-free computational completeness?

The proofs presented in this chapter are based on articles [5], [10], [7],
[11] and [6]; some results are first proved in this thesis.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

74 CHAPTER 4. EVOLUTION–COMMUNICATION

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

Chapter 5

Symport / Antiport of Small
Weight

In this chapter, we first give a historical overview of the most important
results obtained in the area of P systems and tissue P systems with symport /
antiport rules, especially with respect to the development of computational
completeness results improving descriptional complexity parameters as the
number of membranes and cells, respectively, and the weight of the rules.
Then we present the last original results.

5.1 Introduction

P systems with symport / antiport rules, i.e., P systems with pure communi-
cation rules assigned to membranes, first were introduced in [156]; symport
rules move objects across a membrane together in one direction, whereas an-
tiport rules move objects across a membrane in opposite directions. These
operations are very powerful, i.e., P systems with symport / antiport rules
have universal computational power with only one membrane, e.g., see [92],
[101], [95].

After establishing the necessary definitions, we first give a historical
overview of the most important results obtained in the area of P systems
and tissue P systems with symport / antiport rules and review the devel-
opment of computational completeness results improving descriptional com-
plexity parameters, especially concerning the number of membranes and cells,
respectively, and the weight of the rules as well as the number of objects.

75

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

76 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

We consider two classes of P systems with minimal cooperation, i.e., P
systems with symport / antiport rules of weight one and P systems with sym-
port rules of weight two. We present the following results: P systems with
minimal cooperation are computationally complete with three membranes,
while tissue P systems with minimal cooperation are computationally com-
plete with two cells, even in a deterministic way.

Moreover, P systems with minimal cooperation are computationally com-
plete with only two membranes modulo some initial segment: In P systems
with symport / antiport rules of weight one, only three superfluous objects
remain in the output membrane at the end of a halting computation, whereas
in P systems with symport rules of weight two six additional objects remain.
For both variants, in [22] it has been shown that two membranes are enough
to obtain computational completeness modulo a terminal alphabet; following
[21], we now show that the use of a terminal alphabet can be avoided for the
price of superfluous objects remaining in the output membrane at the end
of a halting computation. So far we were not able to completely avoid these
additional objects, hence, it remains as an interesting question how to reduce
their number.

Then we show another construction from [21]: P systems with only one
membrane and symport rules of weight three can generate any recursively
enumerable language with only seven additional symbols remaining in the
skin membrane at the end of a halting computation, which improves the
result of [100] where thirteen superfluous symbols remained.

5.2 Definitions

We recall from the Formal Language Theory that

NkRE = {k + M | M ∈ NRE} , where k + M = {k + n | n ∈ M} .

5.2.1 P Systems with Symport / Antiport Rules

A P system with symport / antiport rules is a construct

Π = (O,E, µ, w1, · · · , wk, R1, · · · , Rk, i0)

where:

1. O is a finite alphabet of symbols called objects ;

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.2. DEFINITIONS 77

2. µ is a membrane structure consisting of k membranes that are labelled
in a one-to-one manner by 1, 2, . . . , k;

3. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset of objects associated
with the region i (delimited by membrane i);

4. E ⊆ O is the set of objects that appear in the environment in an infinite
number of copies;

5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport / antiport rules
associated with membrane i; these rules are of the forms (x, in) and
(y, out) (symport rules) and (y, out; x, in) (antiport rules), respec-
tively, where x, y ∈ O+;

6. i0 is the label of an elementary membrane of µ that identifies the cor-
responding output region.

A P system with symport / antiport rules is defined as a computational
device consisting of a set of k hierarchically nested membranes that identify k
distinct regions (the membrane structure µ), where to each membrane i there
are assigned a multiset of objects wi and a finite set of symport / antiport
rules Ri, 1 ≤ i ≤ k. A rule (x, in) ∈ Ri permits the objects specified by x to
be moved into region i from the immediately outer region. Notice that for P
systems with symport rules the rules in the skin membrane of the form (x, in),
where x ∈ E∗, are forbidden. A rule (x, out) ∈ Ri permits the multiset x to
be moved from region i into the outer region. A rule (y, out; x, in) permits
the multisets y and x, which are situated in region i and the outer region of
i, respectively, to be exchanged. It is clear that a rule can be applied if and
only if the multisets involved by this rule are present in the corresponding
regions. The weight of a symport rule (x, in) or (x, out) is given by |x| , while
the weight of an antiport rule (y, out; x, in) is given by max{|x|, |y|}.

As usual, a computation in a P system with symport / antiport rules
is obtained by applying the rules in a non-deterministic maximally parallel
manner. Specifically, in this variant, a computation is restricted to moving
objects through membranes, since symport / antiport rules do not allow the
system to modify the objects placed inside the regions. Initially, each region
i contains the corresponding finite multiset wi, whereas the environment
contains only objects from E that appear in infinitely many copies.

A computation is successful if starting from the initial configuration, the
P system reaches a configuration where no rule can be applied anymore.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

78 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

The result of a successful computation is a natural number that is obtained
by counting all objects (only the terminal objects as it done in [22], if in
addition we specify a subset of O as the set of terminal symbols) present in
region i0. Given a P system Π, the set of natural numbers computed in this
way by Π is denoted by N(Π). If the multiplicity of each (terminal) object
is counted separately, then a vector of natural numbers is obtained, denoted
by Ps(Π), see [163].

By
NOnPm(syms, antit)

we denote the family of sets of natural numbers (non-negative integers) that
are generated by a P system with symport / antiport rules having at most
n > 0 objects in O, at least m > 0 membranes, symport rules of size at most
s ≥ 0, and antiport rules of size at most t ≥ 0. By

NkOnPm(syms, antit)

we denote the corresponding families of recursively enumerable sets of natural
numbers without initial segment {0, 1, . . . , k − 1}. If we replace numbers by
vectors, then in the notations above N is replaced by Ps. When any of the
parameters m, n, s, t is not bounded, it is replaced by ∗; if the number of
objects n is unbounded, we also may just omit n. If s = 0, then we may even
omit syms; if t = 0, then we may even omit antit.

It may happen that P system with symport / antiport (symport) rules
can simulate deterministic register machines (i.e., register machines where
in each ADD instruction q1 : (A (r) , q2, q3) the labels q2 and q3 are equal)
in a deterministic way, i.e., from each configuration of the P system we can
derive at most one other configuration. Then, when considering these P
systems as accepting devices (the input from a set in PsRE is put as an
additional multiset into some specified membrane of the P system), we can
get deterministic accepting P systems; the corresponding families of recur-
sively enumerable sets of natural numbers then are denoted in the same way
as before, adding the prefix D and the subscript a to N or to Ps; e.g., from
the results proved in [96] and [88] we immediately obtain

PsRE = DPsaOP1(anti2).

Sometimes, the results we recall use the intersection with a terminal al-
phabet, in that way avoiding superfluous symbols to be counted as a result

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.2. DEFINITIONS 79

of a halting computation. In that case, we add the suffix T at the end of the
corresponding notation.

5.2.2 Tissue P Systems with Symport / Antiport
Rules

The inspiration for tissue P systems comes from two sides. From one hand,
P systems previously introduced may be viewed as transformations of la-
bels associated to nodes of a tree. Therefore, it is natural to consider same
transformations on a graph. From the other hand, they may be obtained by
following the same reflections as for P systems, but starting from a tissue of
cells and no more from a single cell.

Tissue P systems were first considered by Gh. Păun and T. Yokomori
in [171] and [172], and then in [140]. They have reacher possibilities and
the advantages of new topology have to be investigated. Tissue P systems
with symport / antiport were first considered in [163] where several results
having different values of parameters (graph size, maximal size of connected
component, weight of symport and antiport rules) are presented.

Tissue-like P systems with channel states were investigated in [97]. Here
we deal with the following type of systems (omitting the channel states):

A tissue P system (of degree m ≥ 1) with symport / antiport rules is a
construct

Π =
(
m, O,E,w1, · · · , wm, ch,

(
R(i,j)

)
(i,j)∈ch

)
where

• m is the number of cells,

• O is the alphabet of objects,

• E ⊆ O is the set of objects that appear in the environment in an
unbounded number,

• w1, . . . , wm are strings over O representing the initial multiset of objects
present in the cells of the system (it is assumed that the m cells are
labelled with 1, 2, . . . ,m),

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

80 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

• ch ⊆ {(i, j) | i, j ∈ {0, 1, 2, . . . ,m} , (i, j) 6= (0, 0)} is the set of links
(channels) between cells (these were called synapses in [97]; 0 indi-
cates the environment), R(i,j) is a finite set of symport / antiport rules
associated with the channel (i, j) ∈ ch.

A symport / antiport rule of the form y/λ, λ/x or y/x, respectively,
x, y ∈ O+, from R(i,j) for the ordered pair (i, j) of cells means moving the
objects specified by y from cell i (from the environment, if i = 0) to cell j,
at the same time moving the objects specified by x in the opposite direction.
For short, we shall also speak of a tissue P system only when dealing with a
tissue P system with symport / antiport rules as defined above.

The computation starts with the multisets specified by w1, . . . , wm in the
m cells; in each time unit, a rule is used on each channel for which a rule can
be used (if no rule is applicable for a channel, then no object passes over it).
Therefore, the use of rules is sequential at the level of each channel, but it
is parallel at the level of the system: all channels which can use a rule must
do it (the system is synchronously evolving). The computation is successful
if and only if it halts.

The result of a halting computation is the number described by the mul-
tiplicity of objects present in cell 1 (or in the first k cells) in the halting
configuration. The set of all (vectors of) natural numbers computed in this
way by the system Π is denoted by N(Π) (Ps(Π)). The family of sets N(Π)
(Ps(Π)) of (vectors of) natural numbers computed as above by systems with
at most n > 0 symbols and m > 0 cells as well as with symport rules of
weight s ≥ 0 and antiport rules of weight t ≥ 0 is denoted by

NOnt
′Pm(syms, antit) (PsOnt

′Pm(syms, antit)).

When any of the parameters m, n, s, t is not bounded, it is replaced by ∗.
In [97], only channels (i, j) with i 6= j are allowed, and, moreover, for any

i, j only one channel out of {(i, j) , (j, i)} is allowed, i.e., between two cells
(or one cell and the environment) only one channel is allowed (this technical
detail may influence considerably the computational power). The family of
sets N(Π) (Ps(Π)) of (vectors of) natural numbers computed as above by
systems with at most n > 0 symbols and m > 0 cells as well as with symport
rules of weight s ≥ 0 and antiport rules of weight t ≥ 0 is denoted by

NOntPm(syms, antit) (PsOntPm(syms, antit)).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.3. DESCRIPTIONAL COMPLEXITY: A SURVEY 81

5.3 Descriptional Complexity: A Survey

In this section we review the development of computational completeness
results with respect to descriptional complexity parameters, especially con-
cerning the number of membranes and cells, respectively, and the weight of
the rules as well as the number of objects.

5.3.1 Rules Involving More Than Two Objects

We first recall results where rules involving more than two objects are used.
As it was shown in [156], two membranes are enough for getting computa-
tional completeness when rules involving at most four objects, moving up to
two objects in each direction, are used, i.e.,

NRE = NOP2(sym2, anti2).

Using antiport. The result stated above was independently improved in
[92], [101], and [95] - one membrane is enough:

NRE = NOP1(sym1, anti2).

In fact, only one symport rule is needed; this can be avoided for the price of
one additional object in the output region:

N1RE = N1OP1(anti2).

It is worth mentioning that the only antiport rules used are those exchanging
one object by two objects.

Using symport. The history of P systems with symport only is longer.
In [141] the results

NRE = NOP2(sym5) = NOP3(sym4) = NOP5(sym3)

are proved, whereas in [100]

N13RE = N13OP1(sym3)

is shown; the additional symbols can be avoided if a second membrane is
used:

NRE = NOP2(sym3).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

82 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

In this chapter we present the result from [21]: we can bound the number
of additional symbols by 7:

N7RE = N7OP1(sym3).

Determinism. It is known that deterministic P systems with one mem-
brane using only antiport rules of weight at most 2 (actually, only the rules
exchanging one object for two objects are needed, see [96], [55]) or using only
symport rules of weight at most 3 (see [96]) can accept all sets of vectors of
natural numbers (in fact, this is only proved for sets of numbers, but the
extension to sets of vectors is straightforward), i.e.,

PsRE = DPsaOP1(anti2) = DPsaOP1(sym3).

5.3.2 Minimal Cooperation

Already in [156] it was shown that

NRE = NOP5(sym2, anti1),

i.e., five membranes are already enough when only rules involving two ob-
jects are used. However, both types of rules involving two objects are used:
symport rules moving up to two objects in the same direction, and antiport
rules moving two objects in different directions.

Minimal cooperation by antiport. We now consider P systems where
symport rules move only one object and antiport rules move only two ob-
jects across the a membrane in different directions. The first proof of the
computational completeness of such P systems can be found in [45]:

NRE = NOP9(sym1, anti1),

i.e., these P systems have nine membranes. This first result was improved by
reducing the number of membranes to six [131], five [47], and four [99, 138],
and finally in [200] it was shown that

N5RE = N5OP3(sym1, anti1),

i.e., three membranes are sufficient to generate all recursively enumerable
sets of numbers (with five additional objects in the output membrane).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.3. DESCRIPTIONAL COMPLEXITY: A SURVEY 83

In [24], a stronger result was shown where the output membrane did not
contain superfluous symbols:

PsRE = PsOP3(sym1, anti1),

In [22] it was shown that even two membranes are enough to obtain compu-
tational completeness, yet only modulo a terminal alphabet:

PsRE = PsOP2(sym1, anti1)T ,

In this chapter we will show the result from [21]: we can bound the number
of additional symbols by 3:

N3RE = N3OP2(sym1, anti1).

Minimal cooperation by symport. We now consider P systems moving
only one or two objects by a symport rule; these systems were shown to be
computationally complete with four membranes in [101]:

NRE = NOP4(sym2).

In [24], this result was improved down to three membranes even for vectors
of natural numbers:

PsRE = PsOP3(sym2).

Moreover, in [22] it was also shown that even two membranes are enough to
obtain computational completeness (modulo a terminal alphabet):

PsRE = PsOP2(sym2)T

In this chapter we will show the result from [21]: the number of additional
objects in the output region can be bound by six:

N6RE = N6OP2(sym2)

The tissue case. If we do not restrict the graph of communication to be
a tree, certain advantages appear. It was shown in [203] that

NRE = NOtP3(sym1, anti1),

i.e., three cells are enough when using symport / antiport rules of weight
one. This result was improved in [31] to two cells, again without additional

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

84 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

objects in the output cell, and an equivalent result holds if antiport rules of
weight one are replaced by symport rules of weight two:

PsRE = PsOtP2(sym1, anti1) = PsOtP2(sym2).

Moreover, it was shown in the same article that accepting can be done de-
terministically:

PsRE = DPsaOtP2(sym1, anti1) = DPsaOtP2(sym2).

A nice aspect of the proof is that it not only holds true for P systems with
channels operating sequentially (as it is usually defined for tissue P systems),
but also for P systems with channels operating in a maximally parallel way
(like in standard P systems, generalizing the region communication structure
of P systems to the arbitrary graph structure of tissue P systems).

Below computational completeness. In [31], it was also shown that

NOP1(sym1, anti1) ∪NOtP1(sym1, anti1) ⊆ NFIN.

Together with the counterpart results for symport systems,

NOP1(sym2) ∪NOtP1(sym2) ⊆ NFIN

obtained in [100], this is enough to state the optimality of the computational
completeness results for the two-membrane/ two-cell systems.

The most interesting open questions remaining in the cases considered
so far concern the possibility to reduce the number of extra objects in the
output region in some of the results stated above.

5.4 Three Membranes

Two classes of symport / antiport P systems with three membranes and
with minimal cooperation, namely P systems with symport / antiport rules
of size one and P systems with symport rules of size two are computationally
complete: they generate all recursively enumerable sets of vectors of non-
negative integers. The result of computation is obtained in the elementary
membrane.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.4. THREE MEMBRANES 85

5.4.1 Symport / Antiport of Weight One

Theorem 5.4.1 NOP3(sym1, anti1) = NRE.

Proof. We prove this result in the following way. We shall simulate a
non-deterministic counter automaton M = (d,Q, q0, qf , P) which starts with
empty counters. We also suppose that all instructions from P are labelled in a
one-to-one manner with {1, · · · , n} = I. Denote by I+ (I+ ⊆ I) a set of labels
of “increment” instructions, by I− (I− ⊆ I) a set of labels of “decrement”
instructions and I=0 (I=0 ⊆ I) is a set of labels of “zero test” instructions.
We also define a set C associated to the counters: C = {ck | 1 ≤ k ≤ d}.

We construct a P system Π with the following membrane structure:

[1 [2 [3]3]2]1

The functioning of this system may be split in three stages:

1. Preparation of the system for the computation.

2. The simulation of instructions of the counter automaton.

3. Terminating the computation.

We code the counter automaton as follows. At each moment (after stage
one) region 1 holds the current state of the automaton, represented by a
symbol qi ∈ Q, region 2 keeps the value of all counters, represented by the
number of occurrences of symbols ck ∈ C. We simulate the instructions of
the counter automaton and we use for this simulation the symbols ck ∈ C,
aj, bj, dj, ej, j ∈ I. During the first stage we bring from the environment
an arbitrary number of symbols bj into region 3, symbols dj into region 2
and symbols ck into region 1. We suppose that we have enough symbols in
the corresponding membranes to perform the computation. We also use the
following idea: we bring from the environment symbols ck into region 1 all
time during the computation. This process may be stopped only if all stages
finish correctly. Otherwise, the computation will never stop.

We split our proof in several parts which depend on the logical separation
of the behavior of the system. We will present rules and initial symbols for
each part, but we remark that the system that we present is the union of all
these parts.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

86 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

We construct the P system Π as follows:

Π = (O,E, [1 [2 [3]3]2]1, w1, w2, w3, R1, R2, R3, 3),

O = E ∪ {fj | j ∈ I} ∪ {mi | 1 ≤ i ≤ 5}
∪ {l7, l8, g1, g2, g3, Ia, I1, I2, I3, Ic, Ob, O2, i, t, #0, #1, #2},

E = {aj, bj, dj, ej | j ∈ I} ∪ {ck | ck ∈ C}
∪ {qi | qi ∈ Q} ∪ {li | 1 ≤ i ≤ 6},

w1 = I1I2I3O2g2il7l8#1#2,

w2 = Ictm1m2#0,

w3 = IaObg1g3m3m4m5

∏
j∈I

fj,

Ri = Ri,s ∪Ri,r ∪Ri,f ∪Ri,a, 1 ≤ i ≤ 3.

The rules are given by phases: START (stage 1), RUN (stage 2), FIN (stage
3) and AUX.

AUX.

R1,a = {1a1 : (Ic, in), 1a2 : (I1, in)} ∪ {1a3 : (Ic, out; ck, in) | ck ∈ C}
∪ {1a4 : (I1, out; bj, in) | j ∈ I} ∪ {1a5 : (I1, out; dj, in) | j ∈ I=0}
∪ {1a6 : (#0, in), 1a7 : (#0, out)},

R2,a = {2a1 : (Ob, out), 2a2 : (Ia, in), 2a3 : (I2, in)}
∪ {2a4 : (bj, out; Ob, in) | j ∈ I−} ∪ {2a5 : (Ia, out; aj, in) | j ∈ I+}
∪ {2a6 : (I2, out; bj, in) | j ∈ I} ∪ {2a7 : (I2, out; dj, in) | j ∈ I=0},

R3,a = {3a1 : (O2, out), 3a2 : (I3, in), 3a3 : (I3, out; c1, in)}
∪ {3a4 : (x, out; O2, in) | x ∈ {I1, I2, g2, l1, l2, l3, l7}}
∪ {3a5 : (aj, out; O2, in) | j ∈ I}
∪ {3a6 : (#i, in), 3a7 : (#i, out) | 1 ≤ i ≤ 2}.

Symbols Ia, I1, I2, I3, Ic bring symbols inside some membrane and return.
Symbols O1, Ob take symbols outside some membrane and return. Symbols
#0, #1, #2 check for “invalid” computation.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.4. THREE MEMBRANES 87

bj1dj2bj3dj4 I1I2#1 →1a4,2a3 dj2bj3dj4I1 #1bj1 I2 →1a2,2a6

dj2bj3dj4 I1I2#1 bj1 →1a5,2a3,3s1 bj3dj4I1 #1dj2 I2 bj1 →1a2,2a7

bj3dj4 I1I2#1 dj2 bj1 →1a4,2a3 · · ·

Figure 5.1: Bringing objects bj, dj.

START.

R1,s = {1s1 : (g3, out; q0, in)},
R2,s = {2s1 : (I2, out; #1, in), 2s2 : (t, out; I1, in), 2s3 : (I2, out; t, in)}

∪ {2s4 : (g1, out; g2, in), 2s5 : (Ic, out; g1, in), 2s6 : (g3, out; i, in)},
R3,s = {3s1 : (bj, in) | j ∈ I} ∪ {3s2 : (g1, out; I1, in)}

∪ {3s3 : (g3, out; g2, in), 3s4 : (I1, out; I2, in)}
∪ {3s5 : (Ob, out; I1, in), 3s6 : (Ia, out; i, in)}.

Symbols I1, I2 bring from environment “sufficiently many” symbols dj in re-
gion 2 and a “correct number of” symbols bj in region 3 for the computation
(rules 1a4,2a3,1a2,2a6,1a5,3s1,2a7). We illustrate this process by Fig-
ure 5.1.

The figures in this paper describe different stages of evolution of the
P system given in the corresponding theorem. For simplicity, we focus on
explaining a particular stage and omit the objects that do not participate
in the evolution at that time. Each rectangle represents a membrane, each
variable represents a copy of object in a corresponding membrane (symbols
outside of the rectangle are in the environment). In each step, the symbols
that will evolve (will be moved) are written in boldface. The labels of the
applied rules are written above the → symbol.

Notice that I2 cannot be idle, as it immediately leads to infinite compu-
tation (rules 2s1,3a6,3a7), so dj and bj in region 1 must be moved to region
2 by I2 (rules 2a6 and 2a7).

At some point, I1 stops bringing symbols dj,bj. I1 and I2 are removed
from their “pumping” positions, Ic is placed in region 1, where it can “pump”
symbols ck into the skin membrane, and q0 is brought into region 1 to start

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

88 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

ck1ck2q0 I1I2g2i tIc g1g3IaOb →2s2,2a3 ck1ck2q0 tg2i I1I2Ic g1g3IaOb

→2s3,3s2 ck1ck2q0 I2g2i tg1Ic I1g3IaOb →2a3,2s4

ck1ck2q0 g1i I2tg2Ic I1g3IaOb →2s5,3s4,3s3 ck1ck2q0 Ici I1tg3g1 I2g2IaOb

→1a3,2s6,3s5 Icq0ck2 ck1g3 tg1iOb I1I2g2Ia →1a1,1s1,2a1,3s6

g3ck2 Icck1q0Ob tg1Ia I1I2g2i → · · ·

Figure 5.2: Ending of the initialization (stage 1).

the simulation of the register machine. In the meantime Ia reaches region 2
and Ob reaches region 1. Notice that both (g1, out; I1, in) and (Ob, out; I1, in)
from R3,s are applied, in either order (Figure 5.2).

RUN.

R1,r = {1r1 : (qi, out; aj, in), 1r2 : (bj, out; ql, in)

| (j : qi → ql, kγ) ∈ P, γ ∈ {+,−, = 0}}
∪ {1r3 : (dj, out; ej, in) | (j : qi → ql, k = 0) ∈ P},

R2,r = {2r1 : (bj, out; ck, in) | (j : qi → ql, k+) ∈ P}}
∪ {2r2 : (ck, out; aj, in) | (j : qi → ql, k−) ∈ P}
∪ {2r3 : (dj, out; aj, in), 2r4 : (ck, out; ej, in),

2r5 : (bj, out; ej, in) | (j : qi → ql, k = 0) ∈ P},
R3,r = {3r1 : (bj, out; aj, in) | (j : qi → ql, k+) ∈ P}

∪ {3r2 : (bj, out; aj, in) | (j : qi → ql, k−) ∈ P}
∪ {3r3 : (fj, out; aj, in), 3r4 : (bj, out; fj, in)

| (j : qi → ql, k = 0) ∈ P}.

While Ic is bringing symbols ck into the skin membrane (rules 1a1,1a3),
instructions (j : qi → ql, kγ), γ ∈ {+,−, = 0} of the register machine are
simulated.

“Increment” instruction: see Figure 5.3.
“Decrement” instruction: see Figure 5.4.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.4. THREE MEMBRANES 89

ajql qick Ia bj →1r1 qiql ajck Ia bj →2a5 qiql Iack aj bj →2a2,3r1

qiql ck Iabj aj →2r1 qiql bj Iack aj →1r2 qibj ql Iack aj

Figure 5.3: qi replaced by ql, ck moved into region 2.

ajql qiOb ck bj →1r1 qiql ajOb ck bj →2r2 qiql ckOb aj bj →3r1

qiql ckOb bj aj →2a4 qiql ckbj Ob aj →2a1,1r2 qibj qlckOb aj

Figure 5.4: qi replaced by ql, ck removed from region 2.

Checking for zero. qi replaced by ql if there is no ck in region 2 (Fig-
ure 5.5), otherwise ej exchanges with ck and bj remains in region 2 (Fig-
ure 5.6).

ajejql qi dj fjbj →1r1 ejqiql aj dj fjbj →2r3 ejqiql dj aj fjbj →1r3,3r3

djqiql ej fj ajbj →3r4 djqiql ej bj ajfj →2r5 djqiql bj ej ajfj →1r2

djqibj ql ej ajfj

Figure 5.5: “Zero test” instruction. There is no ck in region 2.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

90 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

ajejql qi ckdj fjbj →1r1 ejqiql aj ckdj fjbj →2r3 ejqiql dj ckaj fjbj

→1r3,3r3 djqiql ej ckfj ajbj →2r4,3r4 djqiql ck ejbj ajfj

Figure 5.6: “Zero test” instruction. There is ck in region 2.

FIN.

R1,f = {1f1 : (m1, out; l1, in), 1f2 : (#1, out; m1, in)}
∪ {1f3 : (m2, out; l2, in), 1f4 : (m3, out; l3, in), 1f5 : (m4, out; l4, in)}
∪ {1f6 : (l4, out; l5, in), 1f7 : (m5, out; l6, in)},

R2,f = {2f1 : (m1, out; qf , in), 2f2 : (qf , out; l7, in), 2f3 : (m2, out; l1, in)}
∪ {2f4 : (m3, out; O2, in), 2f5 : (m4, out; I3, in), 2f6 : (I3, out; l2, in)}
∪ {2f7 : (m5, out; l8, in), 2f8 : (l8, out; Ic, in), 2f9 : (c1, out; l6, in)}
∪ {2fa : (l6, out; #2, in), 2fb : (l3, in), 2fc : (#0, out, l5, in)}
∪ {2fd : (l3, out, l5, in)},

R3,f = {3f1 : (m3, out; l7, in), 3f2 : (m4, out; l1, in), 3f3 : (m5, out; l2, in)}
∪ {3f4 : (bj, out; l3, in) | j ∈ I}.

If a successful computation of the register machine is correctly simulated,
then qf will appear in region 1. #1 is removed from region 1, and a chain
reaction is started, during which symbols li move inside the membrane struc-
ture, and symbols mi move outside the membrane structure (Figure 5.7).

Now O2 will pump outside the elementary membrane any symbol which
stays there, except c1 (rules 3a1, 3a4, 3a5). m4 will exchange with I3 (rule
2f5), and the latter will pump symbols c1 into the elementary membrane
(rules 3a2, 3a3), and eventually exchange with l2 (rule 2f6).

Object m3 comes to the environment in exchange for l3 (rule 1f4), which
goes to membrane 2 (rule 2fb), and stays there if there is no object bj in
the elementary membrane (otherwise l3 will exchange with bj by rule 3f4).
Object m4 comes to the environment in exchange for l4 (rule 1f5), which
brings l5 in the skin. l5 then exchanges with l3 by rule 2fd. Notice that
presence of bj in region 3 will force l5 to move #0 in region 1 (rule 2fc),

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.4. THREE MEMBRANES 91

l1l1l2 qf l7O2I3#1 m1m2 m3m4 →2f1 l1l1l2 m1l7O2I3#1 qfm2 m3m4

→1f1,2f2 m1l1l2 l1qfO2I3#1 l7m2 m3m4 →1f2,2f3,3f1

#1l1l2 m2qfO2m1I3 m3l1 l7m4 →1f1,1f3,2f4,3f2

#1m1m2 l2qfm3l1I3 O2m4 l7l1 .

Figure 5.7: Beginning of the termination (stage 3).

leading to an infinite computation (rules 1a6, 1a7), as l3 will be situated in
region 3.

Finally (after I3 returns to region 1 and l2 comes in region 2 by rule 2f6),
l2 moves m5 into region 2 (rule 3f3), and the latter exchanges with l8 (rule
2f7) and then with l6 (rule 1f7). At some point l8 moves Ic into region 2 (rule
2f8), to finish pumping objects ck. As for l6 in membrane 1, it guarantees
that no more objects c1 remain in membrane 2 (otherwise it moves #2 in
membrane 2 (rules 2f9, 2fa), leading to an infinite computation (rule 3a6,

3a7)).
If the computation halts, then the elementary membrane will only contain

objects c1, in the multiplicity of the value of the first register of the register
machine. Conversely, any computation of the register machine allows a cor-
rect simulation (from the construction). Thus, the class of P systems with
symport and antiport of weight 1 generate exactly all recursively enumerable
sets of non-negative integers. 2

5.4.2 Symport of Weight Two

A “dual” class of systems OP (sym1, anti1) is the class OP (sym2) where two
objects are moved across the membrane in the same direction rather than in
the opposite ones. We now prove a similar result for the other class.

Theorem 5.4.2 NOP3(sym2) = NRE.

Proof. As in the proof of Theorem 1 we simulate a non-deterministic
counter automaton M = (d,Q, q0, qf , P) which starts with empty counters.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

92 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

Again we suppose that all instructions from P are labelled in a one-to-one
manner with {1, . . . , n} = I, and I+ (I+ ⊆ I) is a set of labels of “increment”
instructions, I− (I− ⊆ I) is a set of labels of “decrement” instructions, and
I=0 (I=0 ⊆ I) is a set of labels of “zero test” instructions. A set C is associated
to the counters: C = {ck | 1 ≤ k ≤ d}.

We construct the P system Π2 as follows:

Π2 = (O,E, [1 [2 [3]3]2]1, w1, w2, w3, R1, R2, R3, 3),

O = E ∪ {dj, ej | j ∈ I} ∪ {ti | 0 ≤ i ≤ 10}
∪ {g1, g3, Ia, I1, I2, Ic, Ob, m1, m2, s1, s2, l1, l2, #1, #2}
∪ {qi | qi ∈ Q},

E = {aj, bj | j ∈ I} ∪ {ck | ck ∈ C} ∪ {li | 3 ≤ i ≤ 8} ∪ {g2},
w1 = t0t1t2t3t4I1I2Ial1l2#1

∏
j∈I

ej

∏
qi∈Q

qi,

w2 = t5t6t7t8t9t10Icg3s1m2#2

∏
j∈I

dj,

w3 = g1Obs2m1,

Ri = Ri,s ∪Ri,r ∪Ri,m ∪Ri,c ∪Ri,f ∪Ri,a, 1 ≤ i ≤ 3.

The functioning of this system may be split in three stages like it is done
in Theorem 5.4.1.

We code the counter automaton as follows. At each moment (after stage
one) the environment holds the current state of the automaton, represented
by a symbol qi ∈ Q, the membrane 2 holds the value of all counters, rep-
resented by the number of occurrences of symbols ck ∈ C. We simulate
the instructions of the counter automaton and we use for this simulation
the symbols ck ∈ C, aj, bj, dj, ej, j ∈ I. During the first stage we bring
from environment in the membrane 3 an arbitrary number of symbols bj.
We suppose that we have enough symbols bj in membrane 3 to perform the
computation. We also use the following idea: we bring from environment
to membrane 1 the symbols ck all time during the computation. This pro-
cess may be stopped only if all stages completed correctly. Otherwise, the
computation will never stop.

We split our proof in several parts which depend on the logical separation
of the behavior of the system. We will present rules and initial symbols for
each part, but we remark that the system that we present is the union of all
these parts.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.4. THREE MEMBRANES 93

The rules Ri are given by phases: START (stage 1); RUN (stage 2);
MOVE, CLEANUP and FIN (stage 3), and AUX.

AUX.

R1,a = {1a1 : (Ic, out), 1a2 : (I1, out)} ∪ {1a3 : (Icck, in) | ck ∈ C}
∪ {1a4 : (I1bj, in) | j ∈ I} ∪ {1a5 : (#2, in), 1a6 : (#2, out)},

R2,a = {2a1 : (Ob, in), 2a2 : (Ia, out), 2a3 : (I2, out)}
∪ {2a4 : (Obbj, out) | j ∈ I+} ∪ {2a5 : (Iaaj, in) | j ∈ I−}
∪ {2a6 : (I2bj, in) | j ∈ I},

R3,a = {3a1 : (#1, in), 3a2 : (#1, out)}
∪ {3a3 : (si, in), 3a4 : (si, out) | 1 ≤ i ≤ 2}.

Symbol I1 brings symbols bj inside membrane 1 and returns to the envi-
ronment. Symbol Ic brings symbols ck inside membrane 1 and returns to the
environment. Symbol I2 brings symbols bj inside membrane 2 and returns to
membrane 1. Symbol Ia brings symbols aj inside membrane 2 and returns to
membrane 1. Symbol Ob takes symbols bj outside membrane 2 and returns.
Symbols #1, #2 check for “invalid” computations. Symbols s1, s2 remember
whether the derivation step is even or odd.

START.

R1,s = {1s1 : (g1t2, out), 1s2 : (t2g2, in), 1s3 : (g3q0, out)},
R2,s = {2s1 : (t0I2, in), 2s2 : (I2#1, in), 2s3 : (I1t1, in)}

∪ {2s4 : (g1Ic, out), 2s5 : (g2t3, in), 2s6 : (t3g3, out)},
R3,s = {3s1 : (bj, in) | j ∈ I} ∪ {3s2 : (I2t1, in), 3s3 : (I1t7, in)}

∪ {3s4 : (t7g1, out), 3s5 : (g2t10, in), 3s6 : (t10Ob, out)}.

Symbols I1, I2 bring from environment a “correct number of” symbols bj in
region 3 for the computation (rules 1a2, 1a4, 2a6, 2a3, 3s1) (see Fig-
ure 5.8). Notice that I2 cannot be idle, as it immediately leads to infinite
computation (rules 2s2, 3a1, 3a2), so bj in region 1 must be moved by I2

by rule 2a6.
At some point, I1 stops bringing symbols bj. I1 and I2 are removed from

their “pumping” positions, Ic is placed in region 1, where it can “pump”
symbols ck into the skin membrane, and q0 is brought into the environment
to start the simulation of the register machine. In the meantime Ob reaches
region 2 (Figure 5.9).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

94 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

bj1bj2bj3 t0I1I2#1 →1a2,2s1 bj1bj2bj3I1 #1 t0I2 →1a4,2a3

bj1bj2 bj3I1I2#1 t0 →1a2,2a6 bj1bj2I1 #1 bj3I2t0 →1a4,2a3,3s1

bj1 bj2I1I2#1 t0 bj3 →1a2,2a6 bj1I1 #1 bj2I2t0 bj3 →· · ·

Figure 5.8: Bringing objects bj.

g2ck1ck2ck3 I1I2bjt1t2t3q0 t7Icg3t10 g1Ob →2a6,2s3

g2ck1ck2ck3 t2t3q0 I1I2bjt1t7Icg3t10 g1Ob →3s3,3s2,3s1

g2ck1ck2ck3 t2t3q0 Icg3t10 I1I2bjt1t7g1Ob →3s4

g2ck1ck2ck3 t2t3q0 t7g1Icg3t10 I1I2bjt1Ob →2s4

g2ck1ck2ck3 g1Ict2t3q0 t7g3t10 I1I2bjt1Ob →1a1,1s1

g1ck1ck2ck3Ict2g2 t3q0 t7g3t10 I1I2bjt1Ob →1a3,1s2

g1ck1ck2 Icck3t2g2t3q0 t7g3t10 I1I2bjt1Ob →2s5,1a1

g1ck1ck2Ic ck3t2q0 t7t3g3g2t10 I1I2bjt1Ob →2s6,3s5,1a3

g1ck1 t3ck2ck3Ict2g3q0 t7 g2I1I2bjt1t10Ob →1s3,1a1,3s5

g1g3ck3q0Ic t3ck2ck3t2 t7t10Ob g2I1I2bjt1 → · · ·

Figure 5.9: End of the initialization (stage 1).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.4. THREE MEMBRANES 95

qiaj ckql djOb bj →1r1 qiajckql djOb bj →2r1 qiql ajckdjOb bj →3r1

qiql ckOb ajdjbj →3r2 qiql djbjckOb aj →2a4 bjObqiql djck aj

→2a1,1r2 bjql qi Obdjck aj

Figure 5.10: qi replaced by ql, ck moved into region 2.

qiaj Iaql djck bj →1r1 qiajIaql djck bj →2a5 qiql ajIadjck bj →3r1,2a2

Iaqiql ck ajdjbj →3r2 Iaqiql djbjck aj →2r2 bjckIaqiql dj aj →1r2

bjql ckIaqi dj aj

Figure 5.11: qi replaced by ql, ck removed from region 2.

RUN.

R1,r = {1r1 : (qiaj, in), 1r2 : (bjql, out)

| (j : qi → ql, kγ) ∈ P, γ ∈ {+,−, = 0}}
R2,r = {2r1 : (ajck, in) | (j : qi → ql, k+) ∈ P}

∪ {2r2 : (bjck, out) | (j : qi → ql, k−) ∈ P}
∪ {2r3 : (ajej, in), 2r4 : (ejck, out),

2r5 : (ejbj, out) | (j : qi → ql, k = 0) ∈ P},
R3,r = {3r1 : (ajdj, in), 3r2 : (djbj, out)

| (j : qi → ql, kγ) ∈ P, γ ∈ {+,−, = 0}}.

While Ic is bringing symbols ck into the skin membrane (rules 1a1, 1a3),
instructions (j : qi → ql, kγ), γ ∈ {+,−, = 0} of the register machine are
simulated.

“Increment” instruction: see Figure 5.10.
“Decrement” instruction: see Figure 5.11.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

96 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

qiaj ejql dj bj →1r1 qiajejql dj bj →2r3 qiql ajejdj bj →3r1

qiql ej ajdjbj →3r2 qiql djbjej aj →2r5 bjejqiql dj aj →1r2

bjql ejqi dj aj

Figure 5.12: “Zero test” instruction. There is no ck in region 2.

qiaj ejql djck bj →1r1 qiajejql djck bj →2r3 qiql ajejdjck bj →3r1,2r4

qiqlejck ajdjbj →3r2 qiqlejck djbj aj

Figure 5.13: “Zero test” instruction. There is ck in region 2.

Checking for zero. qi replaced by ql if there is no ck in region 2 (Fig-
ure 5.12), otherwise ej comes in region 1 with ck and bj remains in region 2
(Figure 5.13).

MOVE.

R1,m = {1m1 : (qf l3, in), 1m2 : (m1t4, out), 1m3 : (t4l4, in)},
R2,m = {2m1 : (l3l1, in), 2m2 : (m1t6, out), 2m3 : (t6l2, in)}

∪ {2m4 : (l2#2, out)},
R3,m = {3m1 : (l1c1, in), 3m2 : (l1, out), 3m3 : (l3t5, in)}

∪ {3m4 : (t5m1, out), 3m5 : (l2t8, in)} ∪ {3m6 : (l2bj, out) | j ∈ I}.

If a successful computation of the register machine is correctly simulated,
then qf will appear in region 1. A chain reaction is started, during which
symbols li move inside the membrane structure, and symbols mi move out-
side the membrane structure. Notice that qf brings l3 into region 1 (rule
1m1), then l3 brings l1 into region 2 (rule 2m1), then l1 moves objects c1

from region 2 into region 3 by rules 3m1 and 3m2. Also, the system verifies
that no objects bj are present in the inner region (otherwise l2 would bring

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.4. THREE MEMBRANES 97

l4qf l3 t4l1l2 t5t6t8c1c1 m1 →1m1 l4 qf l3l1t4l2 t5t6t8c1c1 m1 →2m1

l4 t4l2 l3t5t6t8l1c1c1 m1 →3m1,3m3 l4 t4l2 t6t8c1 l1c1l3t5m1 →3m2,3m4

l4 t4l2 t5m1t6t8l1c1 c1l3 →2m2,3m1 l4 m1t4t6l2 t5t8 l1c1c1l3

→1m2,2m3,3m2 m1t4l4 t6l2t5t8l1 c1c1l3 →1m3,3m5 m1 t4l4 t6t5l1 l2t8c1c1l3

Figure 5.14: Beginning of the termination (stage 3).

#2 in region 1 (rules 3m6, 2m4) and it immediately leads to infinite com-
putation (rules 1a5,1a6)) and moves l4 into the skin membrane, as shown
below (Figure 5.14).

CLEANUP.

R1,c = {1c1 : (l4s1, out), 1c2 : (s1l5, in), 1c3 : (m2#1, out)}
∪ {1c4 : (l5s2, out), 1c5 : (s2l7, in), 1c6 : (l6s2, in)},

R2,c = {2c1 : (l4, in), 2c2 : (l4s1, out), 2c3 : (l5t9, in)}
∪ {2c4 : (t9m2, out), 2c5 : (l5s2, out)},
∪ {2c6 : (l4x, out) | x ∈ {t5, t7, t10} ∪ {dj | j ∈ I}},

R3,c = {3c1 : (l5, in), 3c2 : (l5s2, out)}
∪ {3c3 : (l5x, out) | x ∈ {I1, I2, g2, t8, l3} ∪ {aj | j ∈ I}}.

Objects dj, j ∈ I and t5, t7, t10 are removed from region 2, and then
objects aj, j ∈ I and I1, I2, g2, t8, l3 are removed from the inner region. Notice
that l4 only “meets” s1 (and l5 only “meets” s2) after the corresponding
cleanup is completed. Really, it is easily to see that object l4 will be in region
2 after odd steps of computation. Symbol s1 after odd steps of computation
will be located in region 3 (rules 3a3,3a4). Thus we cannot apply rule 2c2

and can apply rule 2c6 only, until all symbols t5, t7, t10 and dj, j ∈ I will
be removed to region 1. After that symbol l4 waits one step and together
with symbol s1 moves to region 1 and finally to the environment (rules 2c2

and 1c1).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

98 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

l7l8 l6 t1l2 →2f1 l7l8 l6 t1l2 →3f1 l7l8 l6t1l2 →3f2 l7l8 l6t1 l2 →2f2

l7l8 l6t1 l2 →1f1 l6t1l7l8 l2 →1f2 l6l8 t1l7 l2 →2f3 l6l8 t1 l7 l2 →3f3

l6l8 t1 l7l2 →3f4 l6l8 t1 l7l2 →2f4 l6l8 l7l2t1 →1f3 l7t8l6l8 t1 →1f4

l7l6 l2l8t1

Figure 5.15: End of the termination.

So l4 will be in the environment after even steps of computation and
object l5 will appear in region 3 after odd steps of computation (rules 1c2,
2c3 and 3c1). Notice that symbol s2 can appear in region 3 after even steps
of computation (rules 3a4,3a3). Thus we cannot apply rule 3c2 and can
apply rule 3c3 only, until all symbols I1, I2, g2, t8, l3 and aj, j ∈ I will be
removed to region 2. After that object l5 moves to the environment together
with symbol s2 (rules 3c2,2c5,1c4) and object l6 is brought in region 1 (rule
1c6). At that moment in membrane 3 among symbols c1 there are only two
“undesirable” symbols: t1 and l2.

FIN.

R1,f = {1f1 : (l6t1, out), 1f2 : (t1l7, in), 1f3 : (l7l2, out), 1f4 : (l2l8, in)},
R2,f = {2f1 : (l6, in), 2f2 : (l6t1, out), 2f3 : (l7, in)}

∪ {2f4 : (l7l2, out), 2f5 : (l8Ic, in)},
R3,f = {3f1 : (l6, in), 3f2 : (l6t1, out), 3f3 : (l7, in), 3f4 : (l7l2, out)}.

Objects t1 and l2 are removed from the inner region, as shown below (Fig-
ure 5.15), and then l8 moves Ic from region 1 into region 2 (rule 2f5) so that
the computation can halt.

If the computation halts, then the elementary membrane will only contain
objects c1, in the multiplicity of the value of the first register of the regis-
ter machine. Conversely, any computation of the register machine allows
a correct simulation (from the construction). Thus, the class of P systems
with symport of weight 2 generates exactly all recursively enumerable sets of
non-negative integers. 2

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.5. TWO CELLS 99

Final Remarks Both constructions can be easily modified to show
PsOP3(sym1, anti1) = PsRE and PsOP3(sym2) = PsRE by moving all
output symbols ck to the elementary membrane, as it is done for symbol c1.
In the proof of Theorem 5.4.1 we simply change rule 3a3: (I3, out; c1, in) by
rules 3a3: (I3, out; ck, in) for all ck ∈ C and in the proof of Theorem 5.4.2
change rule 3m1: (l1c1, in) by rules 3m1: (l1ck, in) for all ck ∈ C.

The questions what is the exact characterizations of families of numbers
computed by minimal symport / antiport (symport) P systems rules with
one and two membranes is still open.

Program check P systems in both theorems were tested by Vladimir Ro-
gozhin using a modification of the simulator described in Section 3.4.

5.5 Two Cells

We consider tissue P systems with symport / antiport with minimal coop-
eration, i.e., when only two objects may interact. We show that two cells
are enough in order to generate all recursively enumerable sets of numbers.
Moreover, constructed systems simulate register machines and have purely
deterministic behavior.

In this section, we consider both variants (symport / antiport of weight
one and symport of weight at most two) and we show that in both cases
we can construct systems defined on a graph with three nodes, i.e., two
cells, that simulate any (non-)deterministic register machine. Moreover, in
the deterministic case, obtained systems are also deterministic and only one
evolution is possible at any time. Therefore, if the computation stops, then
we are sure that the corresponding register machine stops on the provided
input. Moreover, we use a very small amount of symbols present in an infinite
number of copies in the environment.

5.5.1 Symport / Antiport of Weight One

Lemma 5.5.1 For any deterministic register machine M and for any input
In there is a tissue P system with symport / antiport of degree 2 having
symport and antiport rules of weight 1, which simulates M on this input and
produces the same result.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

100 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

Proof. We consider an arbitrary deterministic register machine M =
(k,Q, q0, qf) and we construct a tissue P system with symport / antiport
that will simulate this machine on the input In. We consider a more general
problem: we shall simulate M on any initial configuration (q0, N1, · · · , Nk).

We assume, by commodity, that we may have objects initially present
in a finite number of copies in the environment and we denote this multiset
by w0. We shall show later that this assumption is not necessary.

We define the system as follows.

Π = (2, O, E, w0, w1, w2, {(1, 0), (1, 2), (2, 0)}, R(1,0), R(1,2), R(2,0), 2),

O = Q ∪R ∪ {A+
pq | p : (A(A), q) ∈ Q}

∪ {p′, p′′, Q−
pqs, Q

0
pqs | p : (S(A), q, s) ∈ Q},

E = R = {A | 1 ≤ A ≤ k}.

We consider the following underlying graph G: /.-,()*+0
w0

3

��
��
��
�

1

==
==

==
=

/.-,()*+2w2
2

/.-,()*+1 w1

Below we give in tables rules and objects of our system. In fact, each wi,
0 ≤ i ≤ 2 as well as R is the union of corresponding cells in all tables.

Rule numbers follow the following convention: the second number is the
number of the channel where the rule is located, the first number indicates
which instruction is simulated using this rule (1 for incrementing, 2 for decre-
menting, 3 for stop and 0 for common parts) and the third is the number in
group.

Encoding of initial configuration of M (1 ≤ j ≤ k):

Region Object(s)

2. r
Nj

j , q0

Common rules and objects (q ∈ Q, A ∈ R, p ∈ Q− {q0}):

Region Object(s)
0. A∞

1. p

Channel Rules
(2, 0) 0.3.1 : λ/q

For any rule p : (A(A), q) ∈ Q we have following rules and objects:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.5. TWO CELLS 101

Region Object(s)
1. A+

pq

Channel Rules
(1, 0) 1.1.1 : q/A+

pq

(1, 2) 1.2.1 : A+
pq/p

(2, 0) 1.3.1 : A+
pq/A

For any rule p : (S(A), q, s) ∈ Q we have following rules and objects:

Region Object(s)
0. p′′

1. p′, Q′
pqs, Q

0
pqs

Channel Rules

(1, 0) 2.1.1 : Q′
pqs/p′ 2.1.2 : p′′/λ

2.1.3 : Q0
pqs/Q′

pqs 2.1.4 : s/Q0
pqs

(1, 2) 2.2.1 : p′/p 2.2.2 : Q0
pqs/p′′

2.2.3 : q/Q′
pqs 2.2.4 : λ/Q0

pqs

(2, 0) 2.3.1 : p′/p′′ 2.3.2 : A/Q′
pqs

Rules and objects associated to the STOP instruction:

Channel Rules
(1, 2) 3.2.1 : λ/qf

We organize system Π as follows. Region 2 contains the current configu-
ration of machine M . Region 1 contains one copy of objects that correspond
to each state. In the same region, there are additional symbols used for the
simulation of the decrementing operation and which are present in one copy.
Region 0 (the environment) contains symbols rj, 1 ≤ j ≤ k which are used
to increment registers. These symbols are present in an infinite number of
copies.

Each configuration (p, n1, . . . , nk) of machine M is encoded as follows.
Cell 2 contains objects rj of the multiplicity nj, 1 ≤ j ≤ k as well as the
object p. It is easy to observe that the initial configuration of Π corresponds
to an encoding of the initial configuration of M .

Now we shall discuss the simulation of instructions of M .

Incrementing Suppose M is in configuration (p, n1, . . . , nk) and that there
is a rule p : (A(A),q) in P (A = rj). Suppose that the value of A is n
(nj = n). This corresponds to the following configuration of Π (see below)
where we indicate only symbols that we effectively use.

/.-,()*+0
A∞

��
��
��
�

==
==

==
=

/.-,()*+2
An

p
/.-,()*+1

A+
pq

q

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

102 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

Now we present the evolution of the system in this case.
The symbol p in the second region that encodes the current state of M

triggers the application of rule 1.2.1 and it exchanges with A+
pq which comes

to the second region.
After that, the last symbol brings an object A to region 2, which corre-

sponds to an incrementing of register A. Further, symbol A+
pq goes to region 1

and brings from there to region 0 the new state q. After that, symbol q moves
to region 2. This configuration is shown below.

/.-,()*+0
A∞

��
��
��
�

==
==

==
=

/.-,()*+2
An+1

q
/.-,()*+1

A+
pq

p

The last configuration differs from the first one by the following. In
region 2, there is one more copy of object A and the object p was replaced
by the object q. All other symbols remained on their places and the symbol
p was moved to region 1 which contains as before one copy of each state of
the register machine that is not current. This corresponds to the following
configuration of M : (q, n1, . . . , nj + 1, . . . , nk), i.e.,, we have simulated the
corresponding instruction of M .

Decrementing Suppose M is in configuration (p, n1, . . . , nk) and that
there is a rule p : (S(A),q, s) in P (A = rj). Suppose that the value of
A is n (nj = n). This corresponds to the following configuration of Π (see
below) where we indicate only symbols that we effectively use.

/.-,()*+0
p′′,A∞

��
��
��
�

==
==

==
=

/.-,()*+2
An

p
/.-,()*+1

p′

q, s
Q0

pqs, Q
′
pqs

The idea of the decrementing is very simple. First we duplicate the signal
that the current state is p (p′ and p′′). After that, these signals are propagated
and if they may be synchronized, then this means that the value of the
corresponding register is zero. In the other case, the corresponding register
is decremented and the synchronization is no more possible.

Now we shall give more details on the evolution of the system. The
symbol p in the second region that encodes the current state of M triggers
the application of rule 2.2.1 and it exchanges with p′ which comes to the

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.5. TWO CELLS 103

second region. After that, the last symbol goes to region 0 bringing at the
same time the symbol p′′ in region 2. During next step, symbol p′ exchanges
with Q′

pqs and symbol p′′ exchanges with Q0
pqs. The obtained configuration

is shown below.

/.-,()*+0
Q′

pqs, A∞

��
��
��
�

==
==

==
=

/.-,()*+2
An

Q0
pqs

/.-,()*+1
p, q, s
p′, p′′

Now there are two cases, n > 0 and n = 0, and the system behaves
differently in each case.

CASE A: n > 0

First, suppose that n > 0. In this case, Q′
pqs goes to region 2 and brings

a symbol A to region 0, hence decrementing the register. At the same time
symbol p′′ returns to the environment. Finally, the symbol Q′

pqs brings the
symbol q to region 2 (see configuration below).

/.-,()*+0
p′, A∞

��
��
��
�

==
==

==
=

/.-,()*+2
An−1

q
/.-,()*+1

p, s
p′

Q′
pqs, Q

0
pqs

We can see that the obtained configuration differs from the first one by
the following. In region 2, there is one copy of object A less and the object
p was replaced by the object q. All other symbols remained in their places
and the symbol p was moved to region 1 which contains as before one copy
of each state of the register machine that is not current. This corresponds
to the following configuration of M : (q, n1, . . . , nj − 1, . . . , nk), i.e.,, we have
simulated the corresponding instruction of M .

CASE B: n = 0

Now suppose that n = 0. In this case, Q′
pqs remains in region 0 for one

more step. After that, it exchanges with Q0
pqs which returns to region 1.

After that Q0
pqs brings in region 0 the symbol s which moves after that to

region 2 (see configuration below). We remark that the first exchange takes
place only if the value of register A is equal to zero, otherwise rule 2.3.2 is
applied and the exchange above cannot happen.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

104 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

/.-,()*+0
p′′, A∞

��
��
��
�

==
==

==
=

/.-,()*+2s /.-,()*+1

p, q
p′

Q′
pqs,Q

0
pqs

We can see that the obtained configuration differs from the first one by
the following. In region 2, the object p was replaced by the object s. All
other symbols remained on their places and the symbol p was moved to re-
gion 1 which contains as before one copy of each state of the register machine
that is not current. This corresponds to the following configuration of M :
(s, n1, . . . , nj−1, 0, nj+1, . . . , nk), i.e., we have simulated the corresponding in-
struction of M .

Stop If the system is in halting state qf , then rule 3.2.1 moves the symbol
qf to region 1. Since region 2 contain only symbols corresponding to the
value of the output register, the system cannot evolve any more and the
computation stops.

Remarks It is clear that we simulate the behaviour of M . Indeed, we
simulate an instruction of M and all additional symbols return to their places
what permits to simulate the next instruction of M . Moreover, this permits
to reconstruct easily a computation in M from a successful computation in
Π. For this it is enough to look for configurations which have a state symbol
p in region 2. We stop the computation when rule 3.2.1 is used and symbol qf

goes to region 1. In this case, region 2 contains the result of the computation.
We remark that the assumption that w0 = p′′ for all decrementing in-

structions p : (S(A), q, s) is not necessary. Indeed, we may initially place p′′

in region 1. 2

Theorem 5.5.1 NOtP2(sym1, anti1) = NRE.

Proof. It is easy to observe that the system of previous lemma may
simulate a non-deterministic register machine. Indeed, in order to simulate
a rule p : (A(A), q, s) of such machine, we use the same rules and objects
as for rule p : (A(A), q). We only need to add a rule 1.1.1′ : s/A+

pq to the
channel (1, 0). 2

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.5. TWO CELLS 105

5.5.2 Symport of Weight Two

Lemma 5.5.2 For any deterministic register machine M and for any input
In there is a tissue P system with symport / antiport of degree 2 having only
symport rules of weight at most 2, which simulates M on this input and
produces the same result.

Proof. As in previous case we consider an arbitrary deterministic register
machine M = (k, Q, q0, qf) and we construct a tissue P system with sym-
port / antiport that will simulate this machine on any initial configuration
(q0, N1, . . . , Nk).

We assume, by commodity, that we may have objects initially present
in a finite number of copies in the environment and we denote this multiset
by w0. We shall show later that this assumption is not necessary. Let m
be the number of instructions of M and m1 the number of incrementing
instructions. Let n = m + 5(m−m1 − 1) + m1 = 6m− 4m1 − 5.

We define the system as follows.

Π = (2, O, E, w0, w1, w2, {(1, 0), (1, 2), (2, 0)}, R(1,0), R(1,2), R(2,0), 2),

O = Q ∪ {Xq | q ∈ Q} ∪ {A+
pq | p : (A(A), q) ∈ Q} ∪ {Y,E,EY , E ′, S, V }

∪ {p′, p′′, p0, Zpqs, Z
′
pqs, Dpqs, D

′
pqs, Xpqs, Xp0 | p : (S(A), q, s) ∈ Q}

∪ {Ej, E
′
j | 1 ≤ j ≤ n} ∪R,

E = R = {A | 1 ≤ A ≤ k}.

We consider the following underlying graph G: /.-,()*+0
w0

3

��
��
��
�

1

==
==

==
=

/.-,()*+2w2
2

/.-,()*+1 w1

Below we give in tables rules and objects of our system. In fact, each wi,
0 ≤ i ≤ 2, as well as R is the union of corresponding cells in all tables.

Rule numbers follow the following convention: the second number is the
number of the channel where the rule is located, the first number indicates
which instruction is simulated using this rule (1 for incrementing, 2 for decre-
menting, 3 for stop and 0 for common part) and the third is the number in
group.

Encoding of initial configuration of M (1 ≤ j ≤ k):

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

106 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

Region Object(s)

2. r
Nj

j , q0

Common rules and objects (q ∈ Q, A ∈ R, p ∈ Q− {q0}):

Region Object(s)
0. A∞, Y

1. p

Channel Rules

(1, 0) 0.1.1 : A/λ

(2, 0) 0.3.1 : λ/qY 0.3.2 : Y/λ

For any rule p : (A(A), q) ∈ Q we have following rules and objects:

Region Object(s)
2. A+

pq

Channel Rules
(1, 0) 1.1.1 : λ/A+

pqq

(1, 2) 1.2.1 : λ/pA+
pq

(2, 0) 1.3.1 : A+
pqA/λ

For any rule p : (S(A), q, s) ∈ Q we have following rules and objects:

Region Object(s)
0. p′′, Dpqs,

D′′
pqs, Z

′
pqs

1. p0, D′
pqs,

Zpqs

2. p′

Channel Rules

(1, 0) 2.1.1 : p′p0/lambda 2.1.2 : λ/p′′p0

2.1.3 : DpqsD
′
pqs/λ 2.1.4 : D′′

pqsq/λ

2.1.5 : λ/ZpqsZ
′
pqs 2.1.6 : Z ′

pqss/λ

(1, 2) 2.2.1 : λ/pp′ 2.2.2 : λ/DpqsA
2.2.3 : p′′Zpqsλ 2.2.4 : λ/D′

pqsZpqs

2.2.5 : λ/D′′
pqsV 2.2.6 : V λ

(2, 0) 2.3.1 : λ/p′Dpqs 2.3.2 : λ/D′
pqsD

′′
pqs

2.3.3 : DpqsZpqs/λ 2.3.4 : p′′/λ

Below we give rules and objects associated to the STOP instruction (1 ≤
i ≤ n, 1 ≤ j ≤ n + 1):

Region Object(s)
0. E′

j , E
′

1. Ej , EY

2. E, S,
Xpqs, Xpqs,

Xp0 , Xp0 , Xq

Channel Rules

(1, 0) 3.1.1 : EEY /λ 3.1.2 : λ/EY Y
3.1.3 : SE1/λ 3.1.4 : E′

iEi+1/λ
3.1.5 : Xqq/λ 3.1.6 : XpqsZpqs/λ

3.1.7 : Xp0p0/λ

(1, 2) 3.2.1 : λ/qfE 3.2.2 : λ/E′S
3.2.3 : λ/Eiai 3.2.4 : λ/E′

iV
3.2.5 : λ/En+1E

(2, 0) 3.3.1 : λ/EE′ 3.3.2 : λ/EjE
′
j

3.3.3 : V En+1/λ

We organize system Π as in Lemma 5.5.1. Region 2 contains the current

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.5. TWO CELLS 107

configuration of machine M . All regions contain additional symbols used for
the simulation of M .

The simulation of M is similar to Lemma 5.5.1. The incrementing of a
register is done directly using the symbol A+

pq. The decrementing operation
based on same ideas as for Lemma 5.5.1. More exactly, the signal that
the system has to perform the decrementing operation is duplicated (p′ and
p′′) and one symbol tries to decrement the corresponding register, while the
other one is delayed in order to make the zero check. The key point consists
in the fact that if the register is non-empty, then rules 2.2.2 and 2.2.3 are
applied simultaneously and symbols Dpqs and Zpqs cannot meet in region 2.
Contrarily, if the corresponding register is empty, then these symbols meet
in region 2 permitting the simulation of the corresponding branch.

The key difference from the previous lemma consists in the termination
procedure. Since the system contains a lot of additional symbols, in partic-
ular in region 2, this region must be cleaned at the end of the computation
avoiding at the same time possible conflicts with other rules. This is done
in several stages. More precisely, the main problem is to move symbols p′

from region 2 to region 1. In order to solve this, it is sufficient to disable the
group of rules 2.1.1. This might be done in several stages.

1. Move symbol Y to region 1 (thus disabling rule 0.3.1).

2. Move all state symbols (q) to region 0 (disabling rule 2.1.6).

3. Move symbols Z ′
pqs to region 1 (disabling rule 2.1.5).

4. Move symbols Zpqs to region 0 (disabling rule 2.2.3).

5. Move symbols p′′ to region 1 (disabling rule 2.1.2).

6. Move symbols p0 to region 0 (disabling rule 2.1.1).

7. Finally move symbols p′ to region 1.

Rules 3.2.1, 3.1.1 and 3.1.2 permit to realize the first stage. Rules 3.3.2,
3.2.3, 3.2.4 and 3.1.4 permit to move symbols ai from region 2 to region 1 one
after another. Now the main idea is to use existing rules from the decrement-
ing phase and a special enumeration of symbols in a way that will permit to
accomplish all stages. First symbols Xq are processed. After being moved
to region 1 these symbols move together with corresponding states q to the

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

108 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

environment. Since the symbol Y is no more present, symbols q will remain
there.

Next, symbols Xpqs are processed. These symbols are present in two
copies. When the first copy arrives in region 1, it moves the corresponding
symbol Zpqs to region 0. After that, symbol Zpqs brings symbol Z ′

pqs to region
1 (rule 2.1.5). Now, the second copy of Xpqs will definitively move symbols
Zpqs to region 0, hence realising stages 3 and 4.

In a similar way, symbols Xp0 permit to move symbols p′′ to region 1 and
symbols p0 to region 0.

Finally, all remaining symbols from region 2 are transferred to region 1
or 0.

Remarks Following same arguments like in Lemma 5.5.1 it is clear that
we simulate the behaviour of M .

Now we shall show that the assumption that w0 is not empty is not
necessary. Indeed, it is enough to place initially all symbols si that are in
w0, except E ′, in region 2. In the same region |w0| − 1 symbols U shall be
placed. After that, rules (2, siU, 0) shall be added. It is clear that during
the first step all symbols si will move to the environment. The remaining
symbol E ′ shall be placed in region 1, as well as a copy of the symbol U . A
similar rule (1, E ′U, 0) will move E ′ to the environment at the first step of
the computation. Finally, in order to avoid a possible application of rules
2.2.5 and 3.2.4, the symbol V shall be initially placed in region 1. 2

Theorem 5.5.2 NOtP2(sym2) = NRE.

Proof. It is easy to observe that the system of previous lemma may
simulate a non-deterministic register machine. Indeed, in order to simulate
a rule p : (A(A), q, s) of such machine, we use the same rules and objects
as for rule p : (A(A), q). We only need to add a rule 1.1.1′ : λ/A+

pqs to the
channel (1, 0). 2

5.6 Two Membranes

Like in the tissue case, it is possible to reduce the number of membranes to
two and still obtain computational completeness. However, the price to pay
is a few additional objects in the elementary membrane.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.6. TWO MEMBRANES 109

5.6.1 Symport / Antiport of Weight One

We now show that two membranes are enough to obtain computational com-
pleteness with symport / antiport rules of minimal size 1 with only three
additional objects remaining in halting computations.

Theorem 5.6.1 N3OP2(sym1, anti1) = N3RE.

Proof. We simulate a counter automaton M = (d,Q, q0, qf , P) which
starts with empty counters. We also suppose that all instructions from P
are labelled in a one-to-one manner with elements of {1, . . . , n} = I; I is
the disjoint union of {n} as well as I+, I−, and I=0 where by I+, I−, and
I=0 we denote the set of labels for the “increment”, “decrement”, and “test
for zero” instructions, respectively. Additionally we suppose, without loss
of generality, that on the first counter of the counter automaton M only
“increment” instructions - of the form (qi → ql, 1+) - are operating.

We construct the P system Π1 as follows:

Π1 = (O,E, [
1

[
2

]
2

]
1
, w1, w2, E, R1, R2, 2),

O = E ∪ {Ic, q
′
0, F1, F2, F3, F4, F5, #1, #2, bj, b

′
j | j ∈ I},

E = Q ∪ {aj, a
′
j, a

′′
j | j ∈ I} ∪ C ∪ {F2, F3, F4, F5},

w1 = q′0Ic#1#1#2#2,

w2 = F1F1F1

∏
j∈I

bj

∏
j∈I

b′j,

Ri = Ri,s ∪Ri,r ∪Ri,f , 1 ≤ i ≤ 2.

The functioning of this system may be split into two stages:

1. simulating the instructions of the counter automaton.

2. terminating the computation.

We code the counter automaton as follows:
Region 1 will hold the current state of the automaton, represented by a

symbol qi ∈ Q; region 2 will hold the value of all counters, represented by
the number of occurrences of symbols ck ∈ C, k ∈ D, where D = {1, ..., d}.
We also use the following idea realized by the phase “ START” below: from

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

110 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

the environment, we bring symbols ck into region 1 all the time during the
computation. This process may only be stopped if all stages finish correctly;
otherwise, the computation will never stop.

We split our proof into several parts that depend on the logical separation
of the behavior of the system. We will present the rules and the initial
symbols for each part, but we remark that the system we present is the
union of all these parts. The rules Ri are given by three phases:

1. START (stage 1);

2. RUN (stage 1);

3. END (stage 2).

The parts of the computations illustrated in the following describe dif-
ferent stages of the evolution of the P system given in the corresponding
theorem. For simplicity, we focus on explaining a particular stage and omit
the objects that do not participate in the evolution at that time. Each rect-
angle represents a membrane, each variable represents a copy of an object
in a corresponding membrane (symbols outside of the outermost rectangle
are found in the environment). In each step, the symbols that will evolve
(will be moved) are written in boldface. The labels of the applied rules are
written above the symbol ⇒.

1. START.

R1,s = {1s1 : (Ic, in), 1s2 : (Ic, out; ck, in), 1s3 : (ck, out) | ck ∈ C}
∪ {1s4 : (q′0, out; q0, in)},

R2,s = ∅.

Symbol Ic brings one symbol ck from the environment into region 1 (rules
1s1, 1s2), where it may be used immediately during the simulation of the
“ increment” instruction and then moved to region 2. Otherwise symbol ck

returns to the environment (rule 1s3). Rule 1s4 is used for synchronizing
the appearance of the symbols ck and qi in region 1.

We illustrate the beginning of the computation as follows:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.6. TWO MEMBRANES 111

ck1q0ajck2 q′0Ic bj ⇒1s2,1s4 Icq
′
0ajck2 q0ck1 bj ⇒1s1,1s3,1r1

q′0q0ck1ck2 ajIc bj ⇒1s2,2r1 q′0q0ck1Ic ck2bj aj · · ·

2. RUN.

R1,r = {1r1 : (qi, out; aj, in) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−, = 0}}
∪ {1r2 : (bj, out; a′j, in), 1r3 : (aj, out; bj, in),

1r4 : (#1, out; bj, in) | j ∈ I}
∪ {1r5 : (a′j, out; a′′j , in) | j ∈ I+ ∪ I−} ∪ {1r6 : (#1, out; #1, in)}
∪ {1r7 : (b′j, out; a′′j , in), 1r8 : (a′j, out; b′j, in),

1r9 : (#1, out; b′j, in) | j ∈ I=0}
∪ {1r10 : (a′′j , out, ql, in) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−, = 0}}
∪ {1r11 : (bj, out), 1r12 : (b′j, out) | j ∈ I},

R2,r = {2r1 : (bj, out; aj, in) | j ∈ I}
∪ {2r2 : (aj, out; ck, in) | (j : qi → ql, k+) ∈ P}
∪ {2r3 : (a′j, in) | j ∈ I+}
∪ {2r4 : (a′j, out; bj, in) | j ∈ I+ ∪ I−}
∪ {2r5 : (aj, out) | j ∈ I− ∪ I=0}
∪ {2r6 : (ck, out; a′j, in) | (j : qi → ql, kγ) ∈ P, γ ∈ {−, = 0}}
∪ {2r7 : (b′j, out; bj, in), 2r8 : (b′j, in) | j ∈ I=0}
∪ {2r9 : (aj, out; #2, in) | j ∈ I+} ∪ {2r10 : (#2, out; #2, in)}.

“ Increment” instruction:

aja
′
ja

′′
j ql qick#1#1 bj ⇒1r1 a′ja

′′
j qiql ajck#1#1 bj ⇒2r1

a′ja
′′
j qiql bjck#1#1 aj ⇒1r2,2r2 bja

′′
j qiql aja

′
j#1#1 ck

Now there are two possibilities: we may either apply
a) rule 1r5 or
b) rule 2r3.

It is easy to see that case a) leads to an infinite computation:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

112 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

bja
′′
j qiql aja

′
j#1#1 ck ⇒1r5,1r3

aja
′
jqiql bja

′′
j #1#1 ck ⇒1r2,1r10 ajbjqia

′′
j a′jql#1#1 ck

After that rule 1r4 will eventually be applied, object #1 will be moved to
the environment and then applying rule 1r6 leads to an infinite computation.

Now let us consider case b):

bja
′′
j qiql aja

′
j#1#1 ck ⇒1r3,2r3 aja

′′
j qiql bj#1#1 a′jck

We cannot apply rule 1r2 as this leads to an infinite computation (see
above). Hence, rule 2r4 has to be applied:

aja
′′
j qiql bj#1#1 a′jck ⇒2r4 aja

′′
j qiql a′j#1#1 bjck ⇒1r5

aja
′
jqiql a′′j #1#1 bjck ⇒1r10 aja

′
ja

′′
j qi ql#1#1 bjck

In that way, qi is replaced by ql and ck is moved from region 1 into region 2.

“ Decrement” instruction:

aja
′
ja

′′
j ql qi#1#1 bjck ⇒1r1 a′ja

′′
j qiql aj#1#1 bjck ⇒2r1

a′ja
′′
j qiql bj#1#1 ajck ⇒1r2,2r5 bja

′′
j qiql aja

′
j#1#1 ck ⇒1r3,2r6

aja
′′
j qiql bjck#1#1 a′j ⇒2r4 aja

′′
j qiql a′jck#1#1 bj ⇒1r5

aja
′
jqiql a′′j ck#1#1 bj ⇒1r10 aja

′
ja

′′
j qi qlck#1#1 bj

In the way described above, qi is replaced by ql and ck is removed from
region 2 to region 1.

“ Test for zero” instruction:
qi is replaced by ql if there is no ck in region 2, otherwise a′j in region 1

exchanges with ck in region 2 and the computation will never stop.

(i) There is no ck in region 2:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.6. TWO MEMBRANES 113

aja
′
ja

′′
j ql qi#1#1 bjb

′
j ⇒1r1 a′ja

′′
j qiql aj#1#1 bjb

′
j ⇒2r1

a′ja
′′
j qiql bj#1#1 ajb

′
j

Now there are two possibilities: we apply either
a) rule 2r7 or
b) rule 1r2.

It is easy to see that case a) leads to an infinite computation:

a′ja
′′
j qiql bj#1#1 ajb

′
j ⇒2r7,2r5 a′ja

′′
j qiql ajb

′
j#1#1 bj ⇒2r1,2r8

a′ja
′′
j qiql bj#1#1 ajb

′
j ⇒2r7,2r5 · · · ⇒2r1,2r8

a′ja
′′
j qiql bj#1#1 ajb

′
j ⇒1r2,2r5

bja
′′
j qiql aja

′
j#1#1 b′j ⇒1r3 aja

′′
j qiql bja

′
j#1#1 b′j

Again there are two possibilities: we can apply either
c) rule 1r2 or
d) rule 2r7.

Case c) leads to an infinite computation (rules 1r4 and 1r6).

Now let us consider case d):

aja
′′
j qiql bja

′
j#1#1 b′

j ⇒2r7 aja
′′
j qiql b′

ja
′
j#1#1 bj ⇒1r7

ajb
′
jqiql a′′j a

′
j#1#1 bj ⇒1r8,1r10 aja

′
ja

′′
j qi qlb

′
j#1#1 bj

There are two possibilities: we can apply either
e) rule 1r7 or
f) rule 2r8.

Case e) leads to infinite computation (rules 1r9 and 1r6).

In case f), the object b′j comes back to region 2.

(ii) There is some ck in region 2:

Consider again case d):

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

114 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

aja
′′
j qiql bja

′
j#1#1 b′

jck ⇒2r7,2r6 aja
′′
j qiql b′

jck#1#1 a′jbj ⇒1r7

ajb
′
jqiql a′′j ck#1#1 a′jbj ⇒1r9,1r10 aja

′′
j #1qi qlb

′
jck#1 a′jbj

Now the application of rule 1r6 leads to an infinite computation.

Finally, let us notice that applying the rules 1r11 and 1r12 during the
phase RUN leads to infinite computation. Hence, we model correctly the
“test for zero” instruction.

3. END.

R1,f = {1f1 : (F1, out; F2, in), 1f2 : (F2, out; F3, in),

1f3 : (F3, out; F4, in), 1f4 : (F4, out; F5, in),

R2,f = {2f1 : (F1, out; qf , in), 2f2 : (qf , out; Ic, in),

2f3 : (qf , out; #1, in), 2f4 : (qf , out; #2, in), 2f5 : (F5, out),

2f6 : (bj, out; F5, in), 2f7 : (b′j, out; F5, in)}.

We illustrate the end of computations as follows:

F2F3F4F5Icck1ck2 qf#1#1#2#2 F1F1F1bj1b
′
j2

⇒2f1,1s1

F2F3F4F5ck1ck2 Ic#1#1#2#2F1 qfF1F1bj1b
′
j2

⇒2f3,1s2,1f1

F2F3F4F5Icck2F1 F2ck1#1#2#2qf #1F1F1bj1b
′
j2

⇒1s1,1s4,1f2,2f1

F2F3F4F5ck1ck2F1 F3Ic#1#2#2F1 qf#1F1bj1b
′
j2

⇒1s2,1f1,1f3,2f3

F2F3F4F5ck1IcF1F1 F2F4ck2#2#2qf #1#1F1bj1b
′
j2

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.6. TWO MEMBRANES 115

⇒1s1,1s4,1f2,1f4,2f1

F2F3F4F5ck1ck2F1F1 F3F5Ic#2#2F1 qf#1#1bj1b
′
j2

Notice that now rule 2f2 will be applied eventually, as otherwise the ap-
plication of rule 2f4 will lead to an infinite computation (rule 2r10). Hence,
we continue as follows:

F2F3F4F5ck1ck2F1F1 F3F5Ic#2#2F1 qf#1#1bj1b
′
j2

⇒1f1,1f3,2f2,2f6

F2F3F4F5ck1ck2F1F1F1 F2F4#2#2bj1qf Ic#1#1F5b
′
j2

⇒1f2,1f4,1r11,2f5

F2F3F4F5ck1ck2F1F1F1bj1 F3F5F5#2#2qf Ic#1#1b
′
j2

We continue in this manner until all objects bj, b
′
j, j ∈ I from the el-

ementary membrane 2 have been moved to the environment. Notice that
the result in the elementary membrane 2 (multiset ct

1) cannot be changed
during phase END, as object Ic now is situated in the elementary membrane
and cannot bring symbols c1 from the environment. Recall that the counter
automaton can only increment the first counter c1, so all other computations
of P system Π1 cannot change the number of symbols c1 in the elementary
membrane. Thus, at the end of a terminating computation, in the elemen-
tary membrane there are the result (multiset ct

1) and only the three additional
objects Ic, #1, #1. 2

5.6.2 Symport of Weight Two

A “dual” class of systems with minimal cooperation is the class where two
objects are moved across the membrane in the same direction rather than
in the opposite ones. We now prove a similar result for this class using six
additional symbols.

Theorem 5.6.2 N6OP2(sym2) = N6RE.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

116 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

Proof. As in the proof of Theorem 5.6.1 we simulate a counter automa-
ton M = (d,Q, q0, qf , P) that starts with empty counters. Again we suppose
that all instructions from P are labelled in a one-to-one manner with ele-
ments of {1, . . . , n} = I and that I is the disjoint union of {n} as well as
I+, I−, and I=0 where by I+, I−, and I=0 we denote the set of labels for
the “increment”, “decrement”, and “test for zero” instructions, respectively.
Moreover, we define I ′ = {1, 2, . . . , n + 4}, Qk = {qi,k}, 1 ≤ k ≤ 5, i ∈ K,
K = {0, 1, . . . , f}, and C = {ci | 1 ≤ i ≤ d}.

We construct the P system Π2 as follows:

Π2 = (O, [
1

[
2

]
2

]
1
, w1, w2, E, R1, R2, 2),

O = {#0, #1, #2, $1, $2, $3, â, b̂, Ic} ∪ {ak | 1 ≤ k ≤ 5} ∪Q ∪
⋃

1≤k≤5

Qk

∪ C ∪ {aj, a
′
j, ǎj, âj, bj, dj, d

′
j, d

′′
j | j ∈ I} ∪ {et, ht | t ∈ I ′}

E = {a1, a3, a5, #0} ∪ {aj, a
′
j | j ∈ I} ∪ {ht | t ∈ I ′} ∪Q ∪Q2 ∪Q4 ∪ C,

w1 = #1âb̂a2a4$3

∏
j∈I

(ǎjd
′
jd

′′
j)

∏
t∈I′

et

∏
i∈K

(q̂iqi,1qi,3qi,5)

w2 = #2$
n+1
1 $2

∏
j∈I

(âjbjdj),

Ri = Ri,s ∪Ri,r ∪Ri,f , i ∈ {1, 2}.

The functioning of this system again may be split into two stages:

1. simulating the instructions of the counter automaton;

2. terminating the computation.

We code the counter automaton as in Theorem 5.6.1 above: region 1 will
hold the current state of the automaton, represented by a symbol qi ∈ Q;
region 2 will hold the value of all counters, represented by the number of
occurrences of symbols ck ∈ C, k ∈ D, where D = {1, ..., d}. We also use
the following idea (called “Circle”) realized by phase “START” below: from
the environment, we bring symbols ck into region 1 all the time during the
computation. This process may only be stopped if all stages finish correctly;
otherwise, the computation will never stop.

We split our proof into several parts that depend on the logical separation
of the behavior of the system. We will present the rules and the initial

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.6. TWO MEMBRANES 117

symbols for each part, but we remark that the system that we present is the
union of all these parts.

The rules Ri again are given by three phases:

START (stage 1); RUN (stage 1); END (stage 2).

1. START.

R1,s = {1s1 : (Ic, out), 1s2 : (Icck, in), 1s3 : (ck, out) | k ∈ D},
R2,s = ∅.

Symbol Ic brings one symbol c ∈ C from the environment into region 1
(rules 1s1, 1s2) where it may be used immediately during the simulation
of an “increment” instruction and moved to region 2. Otherwise symbol c
returns to the environment (rule 1s3).

2. RUN.

R1,r = {1r1 : (qiq̂i, out) | i ∈ K}
∪ {1r2 : (aj q̂i, in) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−, = 0}, k ∈ D}
∪ {1r3 : (aj â, out) | j ∈ I+ ∪ I−} ∪ {1r4 : (aj b̂, out) | j ∈ I=0}
∪ {1r5 : (#2, out), 1r6 : (#2, in)} ∪ {1r7 : (bj ǎj, out) | j ∈ I}
∪ {1r8 : (bj#1, out) | j ∈ I} ∪ {1r9 : (âj#1, out) | j ∈ I}
∪ {1r10 : (#0#1, in), 1r11 : (#0b̂, in)} ∪ {1r12 : (a′jbj, in) | j ∈ I}
∪ {1r13 : (âa1, in), 1r14 : (a1a2, out), 1r15 : (a2a3, in)}
∪ {1r16 : (a3a4, out), 1r17 : (a4a5, in), 1r18 : (a5, out)}
∪ {1r19 : (a′jql,1, out) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−, = 0}, k ∈ D}
∪ {1r20 : (qi,1qi,2, in), 1r21 : (qi,2qi,3, out), 1r22 : (qi,3qi,4, in) | i ∈ K}
∪ {1r23 : (qi,4qi,5, out), 1r24 : (qi,5qi, in) | i ∈ K}
∪ {1r25 : (dj â, out), 1r26 : (dj#0, in) | j ∈ I+ ∪ I−}
∪ {1r27 : (dj ǎj, in) | j ∈ I} ∪ {1r28 : (dj#1, out) | j ∈ I+ ∪ I−}
∪ {1r29 : (djd

′
j, out) | j ∈ I=0} ∪ {1r30 : (d′j b̂, in) | j ∈ I=0},

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

118 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

R2,r = {2r1 : (aj ǎj, in) | j ∈ I} ∪ {2r2 : (bj ǎj, out) | j ∈ I}
∪ {2r3 : (ajck, out) | (j : qi → ql, kγ) ∈ P, γ ∈ {−, = 0}, k ∈ D}
∪ {2r4 : (aj#2, out) | j ∈ I−} ∪ {2r5 : (aj âj, out) | j ∈ I+}
∪ {2r6 : (#0, in), 2r7 : (#0, out)}
∪ {2r8 : (ckâj, in) | (j : qi → ql, k+) ∈ P, k ∈ D}
∪ {2r9 : (a′jbj, in) | j ∈ I} ∪ {2r10 : (a′jdj, out) | j ∈ I}
∪ {2r11 : (dja5, in) | j ∈ I+ ∪ I−} ∪ {2r12 : (a5, out)}
∪ {2r13 : (djd

′′
j , in) | j ∈ I=0} ∪ {2r14 : (ajd

′′
j , out) | j ∈ I=0}.

“Increment” instruction:

ajc Icqiq̂iǎj â bj âj ⇒1r1,1s1 qiq̂iajIcc ǎj â bj âj ⇒1r2,1s2

qi Iccq̂iaj ǎj â bj âj , where c ∈ C

Now there are two variants of computations (depending on the application
of rule 2r1 or rule 1r3). It is easy to see that the application of rule 1r3

leads to an infinite computation (by “Circle”). Consider applying rule 2r1:

qick Iccq̂iajǎjâ bj âj ⇒2r1,1s1,1s3

qiIcckc q̂iâ bjǎjajâj ⇒2r2,2r5,1s2

qic Icckq̂iâbj ǎjaj âj

Notice that object âj cannot be idle, as the application of the rules
1r9, 1r10, 2r6, 2r7 leads to an infinite computation. Hence, rule 2r8 will
be applied and object ck will be moved to region 2 (thus, we increase the
number of objects ck in region 2 by one and model the increment instruction
of the counter automaton). In an analogous way, object bj cannot be idle,
as applying rules 1r8, 1r10, 2r6, 2r7 leads to an infinite computation. Thus,
rule 2r1 cannot be applied and rule 1r7 will eventually be applied.

ca′ja1a3a5 Icckq̂iâbjǎjajâja2a4ql,1

Icca
′
jbjǎjajâa1a3a5 q̂ia2a4ql,1 âjck ⇒1r12,1r13,1s2

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.6. TWO MEMBRANES 119

ǎjaja3a5 Iccq̂iâa1a2a4ql,1a
′
jbj âjck

Notice that applying rule 1r19 leads to an infinite computation, as object
bj cannot be idle. Thus, rule 2r9 will eventually be applied.

ǎjaja3a5ql,2ql,4 Iccq̂iâa1a2a4ql,1a
′
jbjql,3ql,5 dj âjck

⇒2r9,1r14,1s1,1s3

Iccǎjaja1a2a3a5ql,2ql,4 q̂iâa4ql,1ql,3ql,5 dja
′
jbj âjck

⇒2r10,1r15,1s2

ǎjaja1a5ql,2ql,4 Iccq̂ia2a3a4âdja
′
jql,1ql,3ql,5 bj âjck

⇒1r19,1r25,1r16,1s1,1s3

Iccajǎjdjâa1a3a4a5a
′
jql,1ql,2ql,4 q̂ia2ql,3ql,5 bj âjck

⇒1r27,1r13,1r17,1r20,1s2

aja3a
′
jql,4 Iccq̂iâa1a2a4ǎjdja5ql,1ql,2ql,3ql,5 bj âjck

Now we can apply the rules 1r25, 1r18 or 2r11. It is easy to see that
applying rule 1r25 leads to an infinite computation (rules 1r26, 2r6, 2r7),
which is true for rule 1r18, too (rules 1r28, 1r10, 2r6, 2r7). Hence, now
consider applying rule 2r11.

aja3a
′
jql,4ql Iccq̂lq̂iâa1a2a4ǎjdja5ql,1ql,2ql,3ql,5 bj âjck

⇒2r11,1r21,1r14,1s1,1s3

Iccaja1a2a3a
′
jql,2ql,3ql,4ql q̂lq̂iâa4ǎjql,1ql,5 dja5bj âjck

⇒2r12,1r15,1r22,1s2

aja1a
′
jql,2ql Iccq̂lq̂iâa2a3a4a5ǎjql,1ql,3ql,4ql,5 djbj âjck

⇒1r16,1r18,1r23,1s1,1s3

Iccaja1a3a4a5a
′
jql,2ql,4ql,5ql q̂lq̂iâa2ǎjql,1ql,3 djbj âjck

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

120 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

⇒1r17,1r24,1s2

aja1a3a
′
jql,2ql,4 Iccqlq̂lq̂iâa2a4a5ǎjql,1ql,3ql,5 djbj âjck

⇒1r1,1r18,1s1,1s3

Iccaja1a3a5a
′
jql,2ql,4qlq̂l q̂iâa2a4ǎjql,1ql,3ql,5 djbj âjck

Thus, we begin a new circle of modelling.

“Decrement” instruction.
If there is an object ck in region 2, we obtain the following computation:

aj qiq̂iǎj â bjck#2 ⇒1r1 qiq̂iaj ǎj â bjck#2 ⇒1r2

qi q̂iaj ǎj â bjck#2

Now there are two variants of computations (depending on the application
of rule 2r1 or rule 1r3). It is easy to see that the application of rule 1r3 leads
to an infinite computation (by “Circle”). Now consider applying rule 2r1:

qi q̂iajǎjâ bjck#2 ⇒2r1 qi q̂iâ bjǎjajck#2 ⇒2r2,2r3

qi q̂ibj ǎj âajck #2

Thus, object ck is moved from region 2 to region 1 (thus, we decrease
the number of objects ck in region 2 by one and model the “decrement”
instruction of the counter automaton).

The case when there is no object ck in region 2 leads to an infinite compu-
tation (rules 2r4, 1r5, 1r6), hence, again we correctly model the “decrement”
instruction. The further behavior of the system is the same as in the case of
modelling the “increment” instruction.

“Test for zero” instruction:
qi is replaced by ql if there is no ck in region 2 (case a)), otherwise the

computation will never stop (case b)).

Case a):

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.6. TWO MEMBRANES 121

aj qiq̂iǎj b̂d
′
jd

′′
j bjdj#2 ⇒1r1 qiq̂iaj ǎj b̂d

′
jd

′′
j bjdj#2 ⇒1r2

qi q̂iaj ǎj b̂d
′
jd

′′
j bjdj#2

Now there are two variants of computations (depending on the application
of rule 2r1 or rule 1r4). It is easy to see that the application of rule 1r4

leads to an infinite computation (by “Circle”). Consider the application of
rule 2r1:

qiql,2ql,4qla
′
j q̂iajǎjql,1ql,3ql,5b̂d

′
jd

′′
j bjdj#2 ⇒2r1

qiql,2ql,4qla
′
j q̂iql,1ql,3ql,5b̂d

′
jd

′′
j ajǎjbjdj#2 ⇒2r2

qiql,2ql,4qla
′
j q̂iǎjbjql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2 ⇒1r7

qiql,2ql,4qlǎjbja
′
j q̂iql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2 ⇒1r12

qiql,2ql,4qlǎj q̂ibja
′
jql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2

Again there are two variants of computations, depending on the appli-
cation of rule 1r19 or rule 2r9. Notice that applying rule 1r19 leads to an
infinite computation, as object bj cannot be idle (rules 1r8, 1r10, 2r6, 2r7).
Hence, we only consider the case of applying rule 2r9:

qiql,2ql,4qlǎj q̂ibja
′
jql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2 ⇒2r9

qiql,2ql,4qlǎj q̂iql,1ql,3ql,5b̂d
′
jd

′′
j ajbja

′
jdj#2 ⇒2r10

qiql,2ql,4qlǎj q̂ia
′
jql,1ql,3ql,5b̂djd

′
jd

′′
j ajbj#2

Now there are two variants of computations, depending on the application
of rule 2r13 and 1r29. It is easy to see that applying rule 2r14 leads to
an infinite computation (rules 2r14, 1r4, 1r11, 2r6, 2r7). Hence, consider
applying rule 1r29:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

122 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

qiql,2ql,4qlǎj q̂ia
′
jql,1ql,3ql,5b̂djd

′
jd
′′
j ajbj#2 ⇒1r29,1r19

qia
′
jql,1ql,2ql,4qlǎjdjd

′
j q̂iql,3ql,5b̂d

′′
j ajbj#2 ⇒1r20,1r27

qia
′
jql,4qld

′
j q̂iql,1ql,2ql,3ql,5b̂ǎjdjd

′′
j ajbj#2 ⇒1r21,2r13

qia
′
jql,2ql,3ql,4qld

′
j q̂iql,1ql,5b̂ǎj djd

′′
j ajbj#2 ⇒1r22,2r14

qia
′
jql,2qld

′
j q̂iql,1ql,3ql,4ql,5d

′′
jajb̂ǎj djbj#2 ⇒1r4,1r23

qia
′
jql,2ql,4ql,5qlajb̂d′

j q̂iql,1ql,3d
′′
j ǎj djbj#2 ⇒1r24,1r30

qia
′
jql,2ql,4aj q̂iql,1ql,3ql,5qlb̂d

′
jd

′′
j ǎj djbj#2

Thus, qi is replaced by ql in region 1.

Case b):

aj qiq̂iǎj b̂ ckbjdj#2 ⇒1r1 qiq̂iaj ǎj b̂ ckbjdj#2 ⇒1r2

qi q̂iaj ǎj b̂ ckbjdj#2

Again there are two variants of computations (depending on the applica-
tion of rule 2r1 or rule 1r4). It is easy to see that the application of rule 1r4

leads to infinite computation (by “Circle”). Consider applying rule 2r1:

qi q̂iajǎjb̂ ckbjdj#2 ⇒2r1 qi q̂ib̂ ckajǎjbjdj#2 ⇒2r2,2r3

qi q̂iǎjbjckaj b̂ dj#2

There are two variants of computations, depending on the application of
rule 2r1 or rule 1r4. Notice that they both lead to infinite computations. In-
deed, if rule 2r1 will be applied, then rules 1r8, 1r10, 2r6, 2r7 will be applied
(applying rules 2r6, 2r7 leads to an infinite computation). If rule 1r4 will

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.7. ONE MEMBRANE 123

be applied, it again leads to an infinite computation (rules 1r11, 2r6, 2r7).
Thus, we correctly model a “test for zero” instruction.

3. END.

R1,f = {1f1 : ($1ǎj, out) | j ∈ I}
∪ {1f2 : ($2e1, out), 1f3 : ($1$3, out)}
∪ {1f4 : (etht, in) | t ∈ I ′}
∪ {1f5 : (htet+1, out) | 1 ≤ t ≤ n + 3}

R2,f = {2f1 : (qf , in), 2f2 : (qf$1, out), 2f3 : (qf$2, out)}
∪ {2f4 : ($1â, in), 2f5 : ($1#1, in), 2f6 : ($1Ic, in)}
∪ {2f7 : (hn+4, in)}
∪ {2f8 : (hn+4âj, out) | j ∈ I}
∪ {2f9 : (hn+4bj, out) | j ∈ I}
∪ {2f10 : (hn+4dj, out) | j ∈ I}

At first, all objects ǎj will be moved to the environment and the objects
â, #1, Ic to region 2 (thus, we stop without continuing the loop) and after
that all objects âj, bj, dj will be moved from region 2 to region 1. Hence,
in region 2 now there are only the objects c1 (representing the result of the
computation) and the six additional objects #1, #2, â, Ic, qf , hn+4. 2

Both constructions from Theorem 5.6.1 and Theorem 5.6.2 can easily be
modified to show that

PsOP2(sym1, anti1)T = PsRE and

PsOP2(sym2)T = PsRE,

i.e., the results proved in Theorem 5.6.1 and Theorem 5.6.2 can be extended
from sets of natural numbers to sets of vectors of natural numbers.

5.7 One Membrane

In this section we show that systems with symport / antiport of weight
one having only one membrane/cell are not very powerful. A similar result
concerning systems with symport of weight two may be found in [100].

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

124 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

5.7.1 Upper Bound

Theorem 5.7.1 NOP1(sym1, anti1) ∪NOtP1(sym1, anti1) ⊆ NFIN .

Proof. Consider an arbitrary P system Π with one membrane and
symport / antiport rules of weight 1, Π = (O,E, [1]1, w, R). Consider
also an arbitrary halting computation, ending in some configuration C with
w1 ∈ (O − E)∗ and we ∈ E∗ in membrane 1 and w0 ∈ (O − E)∗ in the
environment. We are claiming that |w1|+ |we| ≤ |w|.

We shall prove this assertion by contradiction. Let us assume the con-
trary. Since the number of objects in the membrane can only increase by
symport rules, some rule p0 : (s0, in) had to be applied at some step (by
definition s0 ∈ O−E). This implies that s0 has been brought to the environ-
ment. We can assume that rules pi : (si, out; si−1, in), 1 ≤ i < n have been
applied (n ≥ 0), si ∈ O − E, 1 ≤ i ≤ n. Suppose also that n is maximal (sn

was not brought to the environment by antiport with another object from
O − E). Thus R contains either a rule p : (sn, out), or p′ : (sn, out, a, in),
a ∈ O.

Now let us examine the final configuration. If s0 is in w1, then p0 can be
applied, hence the configuration is not final. Therefore s0 is in w0. For all
1 ≤ i ≤ n, given si−1 in w0, if si is in w1, then pi can be applied, hence the
configuration is not final. Consequently, si is in w0 as well. By induction, we
obtain that sn is in w0. However, this implies that either p ∈ R and p can be
applied, or some p′ ∈ R and p′ can be applied, therefore the configuration is
not final. This implies that any computation where number of objects inside
the membrane is increased cannot halt. Therefore, Π can only generate
numbers not exceeding |w|. The statement of the theorem follows directly
from here. 2

5.7.2 Lower Bound

At any step of the computation, each copy of object can be in one of the
two possible regions: in region 1 or in the environment. This is a kind of
“1-bit memory”, and the only way this memory can influence the following
computation is by a cooperative transport rule: moving this object to the
other region together with moving another object in the same or opposite
direction. Therefore, it is expected that the number set generated by such

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.7. ONE MEMBRANE 125

P systems is “continuous”, i.e., the distance between any two neighboring
numbers is bounded.

More formally, let us use the following notion: the segments (finite seg-
ments of arithmetic progression with difference k) are defined as SEGk =
{{n + ki | 0 ≤ i ≤ m} | n, m ≥ 0} ∪ {∅}. For instance, SEG1 is the class of
all finite sets of consecutive numbers, while SEG2 is the class of all finite sets
of consecutive even numbers and all finite sets of consecutive odd numbers.

Example 5.7.1 ∅ ∈ NOP1(sym1, anti1) ∩NOP1(sym2).

Consider a P system Π0 = (O = {b}, E = ∅, µ = [1]1, w1 = b, R =
{(b, in), (b, out)}, i0 = 1). There is one possible computation: object b oscil-
lates between region 1 and the environment, so the set of results of the halting
computations is empty. This system only uses symport rules of weight 1, so
it belongs to both OP1(sym1, anti1) and OP1(sym2).

Example 5.7.2 NOP1(sym1, anti1) ⊇ SEG1.

Fix the numbers m, n ≥ 0. Consider a P system Π1 = (O = {a, b}, E =
{a}, µ = [1]1, w1 = anbm, R = {(b, out), (b, out; a, in)}, i0 = 1). Any compu-
tation of Π1 halts in at most 1 step: every object b exit region 1, in exchange
for either an object a or for nothing.

This is why the computation halts, with region 1 containing n copies of
object a initially present there, and some number i of copies of a that were
brought inside. Notice that 0 ≤ i ≤ m, and every number is possible. Thus,
N(Π1) = {n+i | 0 ≤ i ≤ m}. Since m, n were chosen arbitrary, together with
the previous example we obtain the result we claim: SEG1 can be generated.

Example 5.7.3 NOP1(sym2) ⊇ SEG1 ∪ SEG2.

Fix the numbers m, n ≥ 0. Consider P systems Π2 = (O = {a, b}, E =
∅, µ = [1]1, w1 = an+mbm, R = {(b, out), (ab, out)}, i0 = 1), Π3 = (O =
{a, b}, E = ∅, µ = [1]1, w1 = an+2mb2m, R = {(bb, out), (ab, out)}, i0 = 1).
Any computation of Π2 halts in at most 1 step: every object b exit region 1,
together with either an object a or for nothing.

This is why the computation halts, with region 1 containing n+m copies
of object a initially present there, except some number j of copies of a that
were taken outside. Notice that 0 ≤ j ≤ m, and every number is possible.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

126 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

Substituting j = m − i, 0 ≤ i ≤ m, we obtain (n + m) − (m − i) = n + i.
Thus, N(Π2) = {n + i | 0 ≤ i ≤ m}.

System Π3 has a similar behavior, except there are 2m objects b initially
present in region 1, and some number 2i of them leave region 1 in pairs,
0 ≤ i ≤ m, while each of the others comes into the environment together
with an object a. The number of objects a remaining in the system is (n +
2m)− (2m− 2i) = 2i. Therefore, N(Π3) = {n + 2i | 0 ≤ i ≤ m}.

In this way, SEG1 ∪ SEG2 can be generated by systems Π2 and Π3 for
all possible numbers m, n, together with Π0.

5.8 Symport of Weight Three

We first improve the result N13OP1(sym3) = N13RE from [100]. For the
proof, we use the variant of counter machines with conflicting counters and
implement the semantics that if two conflicting counters are non-empty at
the same time, then the computation is blocked without producing a result.

Theorem 5.8.1 N7OP1(sym3) = N7RE.

Proof. Let L be an arbitrary set from N7RE and consider a counter
automaton M = (d,Q, q0, qf , P, C) with conflicting counters generating L−7
(= {n− 7 | n ∈ L}); C is a finite set of pair sets of conflicting counters {i, ı̄} .
We construct a P system simulating M :

Π = (O,E, [1]1, w1, R1, 1),
O = {xi | 1 ≤ i ≤ 6} ∪Q ∪ {(p, j) | p ∈ P, 1 ≤ j ≤ 6}

∪ {ai, Ai | i ∈ C} ∪ {#, b, d} ,
E = {ai, Ai | i ∈ C} ∪ {x2, x3, #}

∪ Q ∪ {(p, j) | p ∈ P, j ∈ {2, 4, 5, 6}}
w1 = l0dx1x4x5x6

∏
p∈P (p, 1) (p, 3) b.

The following rules allow us to simulate the counter automaton M :
The rules (daiaı̄, out) implement the special semantics of conflicting coun-

ters {i, ı̄} with leading to an infinite computation by applying the rules
(d#, out) and (d#, in).

The simulation of the instructions of M is initiated by also sending out x1

in the first step; the rules (x1x2x3, in) as well as (x2x4x5, out) and (x3x6, out)

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

5.9. CONCLUDING REMARKS 127

then allow us to send out the specific signal variables x4, x5, and x6 which
are needed to guide the sequence of rules to be applied.

The instruction p : (l → l′, i−) is simulated by the sequence of rules

(l(p, 1)x1, out),
((p, 1)x4(p, 2), in),
((p, 2)(p, 3)ai, out), ((p, 2)(p, 3)d, out),
((p, 3)x5(p, 4), in),
((p, 4)(p, 5), out),
((p, 5)x6l

′, in).

In case that no symbol ai is present (which corresponds to the fact that
counter i is empty), the rule ((p, 2)(p, 3)d, out) leads to an infinite computa-
tion by applying the rules (d#, out) and (d#, in). Otherwise, decrementing
is successfully accomplished by applying the rule ((p, 2)(p, 3)ai, out).

The instruction p : (l → l′, i+) is simulated by the sequence of rules

(l(p, 1)x1, out),
((p, 1)x4(p, 2), in),
((p, 2)(p, 3)Ai, out),
((p, 3)x5l

′, in),
(Aix6ai, in).

The symbol Ai is sent out to take exactly one symbol ai in.
A simulation of M by Π terminates with sending out the symbols from

{(p, 1) , (p, 3) | p ∈ P} ∪ {Ai | i ∈ C} which were used during the simulation
of the instructions of M as soon as the halting label lh of M appears:

(lhbx, out), x ∈ {(p, 1) , (p, 3) | p ∈ P} ∪ {Ai | i ∈ C},
(lhb, in).

If the system halts, the objects inside correspond with the contents of the
output registers, and the extra symbols are lh, d, b, x1, x4, x5, x6, i.e., seven in
total. 2

5.9 Concluding Remarks

We now finish our overview with repeating (some of) the best known results
of computational completeness. Results (5.1) were obtained in [96] and [55],
while result (5.2) was obtained in [92], [101], [95]. The other proofs, obtained
in [24], [31], [22], [30] and [21], are presented in this chapter.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

128 CHAPTER 5. SYMPORT / ANTIPORT OF SMALL WEIGHT

One membrane

PsRE = DPsaOP1(anti2) = DPsaOP1(sym3), (5.1)

N1RE = N1OP1(anti2), (5.2)

N7RE = N7OP1(sym3). (5.3)

P systems - minimal cooperation

PsRE = PsOP2(sym1, anti1)T = PsOP2(sym2)T , (5.4)

N3RE = N3OP2(sym1, anti1), (5.5)

N6RE = N6OP2(sym2). (5.6)

Tissue P systems - minimal cooperation

PsRE = DPsaOtP2(sym1, anti1) = DPsaOtP2(sym2), (5.7)

PsRE = PsOtP2(sym1, anti1) = PsOtP2(sym2). (5.8)

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

Chapter 6

Small Number of Objects

6.1 Introduction

P systems. A quite surprising result was presented in [165]: using sym-
port / antiport rules of unbounded weight, P systems with four membranes
are computationally complete even when the alphabet contains only three
symbols:

NRE = NO3P4(sym∗, anti∗).

Then it has been shown in [13] that

NRE = NO5P1(sym∗, anti∗),

i.e., for P systems with one membrane, even five objects are enough for
getting computational completeness.

The original result was improved in [16]; in sum, the actual computational
completeness results for P systems can be found there:

NRE = NOnPm(sym∗, anti∗) = NaOnPm(sym∗, anti∗)
for (n, m) ∈ {(5, 1) , (4, 2) , (3, 3) , (2, 4)} .

The results mentioned above are presented as part of a general picture
(“complexity carpet”), including results for generating/ accepting/ comput-
ing functions on vectors of specified dimensions.

Below computational completeness. The same article ([16]) presents
undecidability results for the families

NO2P3(sym∗, anti∗), NO3P2(sym∗, anti∗), NO4P1(sym∗, anti∗),
NaO2P3(sym∗, anti∗), NaO3P2(sym∗, anti∗), NaO4P1(sym∗, anti∗);

129

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

130 CHAPTER 6. SMALL NUMBER OF OBJECTS

moreover, it was shown that

NO1P2(sym∗, anti∗) ∩NO2P1(sym∗, anti∗) ⊇ NREG;
NaO3P1(sym∗, anti∗) ∩NaO2P2(sym∗, anti∗) ⊇ NREG;
NO1P1(sym∗, anti∗) = NFIN ;
NaO2P1(sym∗, anti∗) ⊇ NFIN.

The last result has been improved in [121]; in the same article one also
presents some results on one-symbol P systems:

NaO2P1(sym∗, anti∗)) NREG;
NaO1P5m+3(sym∗, anti∗)) aPBLIND(m);
NO1P5m+3(sym∗, anti∗) ⊇ PBLIND(m).

The last two results have been improved in the final version of [121]:
instead of 5m + 3 membranes, 2m + 3 membranes are enough to simulate
partially blind counter automata (acceptors or generators).

Several questions are still open; the most interesting one is to determine
the computational power of P systems with one symbol (we conjecture that
they are not computationally complete, even if we can use an unbounded
number of membranes and symport / antiport rules of unbounded weight).

Tissue P Systems. The question concerning systems with only one object
has been answered in a positive way in [94] for tissue P systems:

NRE = NO1tP7(sym∗, anti∗) = NO1t
′P6(sym∗, anti∗).

In [17] the “complexity carpet” for tissue P systems was completed:

NRE = NOntPm(sym∗, anti∗)
for (n, m) ∈ {(4, 2) , (2, 3) , (1, 7)} ,

but
NREG = NO∗tP1(sym∗, anti∗) = NO2tP1(sym∗, anti∗)

and
NFIN = NO1tP1(sym∗, anti∗) = NO1t

′P1(sym∗, anti∗).

Using two channels between a cell and the environment, one cell can
sometimes be saved, and one-cell systems become computationally complete:

NRE = NOnt
′Pm(sym∗, anti∗)

for (n, m) ∈ {(5, 1) , (3, 2) , (2, 3) , (1, 6)} .

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.2. DEFINITIONS 131

6.2 Definitions

The definitions of P systems and tissue P systems with symport / antiport
rules were given in the previous chapter.

In the notations

XOnPm(sym∗, anti∗), XOntPm(sym∗, anti∗)

for X ∈ {N, Ps, Na, Psa}, we will omit (sym∗, anti∗) for conciseness. More-
over, in case we restrict the vectors to k-dimensional ones, we will replace
Ps by Ps(k). We should also mention that we allow the input or output of
the system to be distributed (represented by symbols in different regions).

Yet another deviation from the standard notations in this chapter is the
following: whenever the set E of environment symbols is omitted, E = O,
the set of all symbols, is assumed.

Throughout this chapter we will use the notation of symport / antiport
rules for tissue P systems, also in the case of P systems (as if there was
a channel (i, parent(i)) for each membrane i; parent(i) stands for the re-
gion immediately outside region i): we will write u/v ∈ Ri instead of
(u, out; v, in) ∈ Ri. Similarly, u/λ stands for (u, out) and λ/v stands for
(v, in). We will do it here mainly for conciseness (in Chapter 5 we used a
different notation, in particular, in order not to denote symport like a degen-
erate case of antiport).

6.3 Membrane Case

We now establish our results for P systems with symport / antiport rules
and small numbers of membranes and symbols. The main constructions
show that a P system with symport / antiport rules and m ≥ 1 mem-
branes as well as s ≥ 2 symbols can simulate a register machine with
max {m (s− 2) , (m− 1) (s− 1)} registers. For example, in that way we im-
prove the result NRE = NO3P4 as established in [165] to NRE = NO3P3 =
NO2P4.

6.3.1 At Least Three Symbols

It was already shown in [13] that any d-register machine can be simulated
by a P system in one membrane using d + 2 symbols. In this subsection,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

132 CHAPTER 6. SMALL NUMBER OF OBJECTS

following [16] we generalize this result: P systems with m membranes and
s ≥ 3 symbols can simulate m(s− 2)-register machines:

Theorem 6.3.1 Any mn-register machine can be simulated by a P system
with 2 + n symbols and m membranes.

Proof. Let us consider a register machine M = (d,R, l1, lhalt) with d = mn
registers. No matter what the goal of M is (generating / accepting vectors of
natural numbers, computing functions), we can construct the P system (of
degree m)

Π = (O, µ, w1, · · · , wm, R1, · · · , Rm),
O = {p, q} ∪ {aj | 1 ≤ j ≤ n} ,
µ = [1 [2]2 · · · [m]m]1,
w1 = w0

∏n
j=1 a

rj

j ,

wi =
∏n

j=1 a
rj+(i−1)n

j , 2 ≤ i ≤ m,

that simulates the actions of M as follows. The symbols p and q are needed
for encoding the instructions of M ; q also has the function of a trap symbol,
i.e., in case of the wrong choice for a rule to be applied we take in so many
symbols q that we can never again rid of them and therefore get “trapped” in
an infinite loop. Throughout the computation, the value of register j+(i−1)n
is represented by the multiplicity of symbol aj in region i. In the generating
case, w1 = w0 and wi = λ for 2 ≤ i ≤ m; in the accepting case and in the case
of computing functions, the numbers of symbols aj as defined above specify
the input.

An important part of the proof is to define a suitable encoding c : N → N
(a strictly monotone linear function) for the instructions of the register ma-
chine: As we will use at most 6 different subsequent labels for each instruc-
tion, without loss of generality we assume the labels of M to be positive
integers such that the labels assigned to ADD and SUB instructions have
the values 6i− 5 for 1 ≤ i < t, as well as l0 = 1 and lhalt = 6 (t− 1) + 1, for
some t ≥ 1.

For the operations assigned to a label l and working on register r, we will
use specific encodings by the symbols p and q which allow us to distinguish
between the operations ADD, SUBTRACT, and ZERO TEST. As we have
d registers, this yields 3d multisets for specifying operations. The number
of symbols p and q in these operation multisets is taken in such a way that

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.3. MEMBRANE CASE 133

the number of symbols p always exceeds the number of symbols q. Finally,
the number of symbols q can never be split into two parts that could be
interpreted as belonging to two operation multisets.

Hence, the range for the number of symbols q is taken as the interval
[3d + 1, 6d] and the range for the number of symbols p is taken as the interval
[6d + 1, 9d + 1] . Thus, with h = 12d + 1 we define the following operation
multisets:

ADD: α+(r) = q3d+rph−(3d+r), 1 ≤ r ≤ d,
SUBTRACT: α−(r) = q4d+rph−(4d+r), 1 ≤ r ≤ d,
ZEROTEST: α0(r) = q5d+rph−(5d+r), 1 ≤ r ≤ d.

The encoding c : N → N which shall encode the instruction l of M to be
simulated as pc(l) also has to obey to the following conditions:

• For any i, j with 1 ≤ i, j ≤ 6t − 5, c (i) + c (j) > c (6t− 4) , i.e., the
sum of the codes of two instruction labels has to be larger than the
largest code we will ever use for the given M , hence, if we do not use
the maximal number of symbols p as interpretation of a code for an
instruction (label), then the remaining rest of symbols p cannot be
misinterpreted as the code for another instruction label.

• The distance g between any two codes c (i) and c (i + 1) has to be larger
than any of the multiplicities of the symbol p which appear besides
codes in the rules defined above.

As we shall see in the construction of the rules below, we may take

g = 2h = 24d + 2.

In sum, for a function c fulfilling all the conditions stated above we can
take

c (x) = g(x + 6t− 4) for x ≥ 0.

For example, with this function, for arbitrary i, j ≥ 1 we get

c (i)+c (j) = g(i+6t−4)+g(j+6t−4) > g(6t−4+6t−4) =

c (6t− 4) .

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

134 CHAPTER 6. SMALL NUMBER OF OBJECTS

Moreover, for l1 = 1 we therefore obtain

c (l1) = g (6t− 3) = (24d + 2) (6t− 3)

as well as

w0 = pc(l1) = p(24d+2)(6t−3).

Finally, we have to find a number f which is so large that after getting f
symbols we inevitably enter an infinite loop with the rule

qf/q3f ;

as we shall justify below, we can take

f = c (lhalt + 1) = 2g(6t− 4).

Equipped with this coding function and the constants defined above we
are now able to define the following set of symport / antiport rules assigned
to the membranes for simulating the actions of the given register machine M :

R1 =
{
pc(l1)/pc(l2)as, p

c(l1)/pc(l3)as |
l1 : (A(s), l2, l3) ∈ R, 1 ≤ s ≤ n}

∪ {pc(l1)/pc(l1+1)α+(s + (s′ − 1)n)as, p
c(l1+1)/pc(l1+2),

pc(l1+2)/pc(l1+3), pc(l1+3)α+(s + (s′ − 1)n)/pc(l2)

pc(l1+3)α+(s + (s′ − 1)n)/pc(l3) |
l1 : (A(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

∪
{
pc(l1)as/p

c(l2), pc(l1)/pc(l1+1)α0(s),
pc(l1+1)/pc(l1+2), α0(s)as/q

3f ,
pc(l1+2)α0(s)/pc(l3) | l1 : (S(s), l2, l3) ∈ R, 1 ≤ s ≤ n

}
∪ {pc(l1)/pc(l1+1)α−(s + (s′ − 1)n), pc(l1+1)/pc(l1+2),

pc(l1+2)/pc(l1+3), pc(l1+3)α−(s + (s′ − 1)n)as/p
c(l2),

pc(l1)/pc(l1+4)α0(s + (s′ − 1)n), pc(l1+4)/pc(l1+5),
pc(l1+5)α0(s + (s′ − 1)n)/pc(l3),
α−(s + (s′ − 1)n)/q3f |
l1 : (S(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

∪
{
pc(lhalt)/λ, ph/q3f , qf/q3f

}
as well as for 2 ≤ s′ ≤ m

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.3. MEMBRANE CASE 135

Rs′ = {λ/α+(s + (s′ − 1)n)as, α+(s + (s′ − 1)n)/λ |
l1 : (A(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

∪ {as/α−(s + (s′ − 1)n), α−(s + (s′ − 1)n)/λ,
as/α0(s + (s′ − 1)n) |
l1 : (S(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

The correct work of the rules can be described as follows:

1. Throughout the whole computation in Π, it is directed by the code
pc(l) for some l ≤ 6t− 5; in order to guarantee the correct sequence of
encoded rules the trap is activated in case of a wrong choice, which in
any case guarantees an infinite loop with the symbols q by the “trap
rule”

qf/q3f .

The minimal number of superfluous symbols p to start the trap is h
and causes the application of the rule ph/q3f .

2. For each ADD instruction l1 : (A(s), l2, l3) of M , i.e., for incrementing
register s for 1 ≤ s ≤ n, we use the following rules in R1:

pc(l1)/pc(l2)as, and

pc(l1)/pc(l3)as.

In that way, the ADD instruction l1 : (A(s), l2, l3) of M for one of the
first n registers is simulated in only one step: the number of symbols
p representing the instruction of M labelled by l1 is replaced by the
number of symbols p representing the instruction of M labelled by l2
or l3, respectively, in the same moment also incrementing the number
of symbols as. Whenever a wrong number of symbols p is taken, the
remaining symbols cannot be used by another rule than the “trap rule”
ph/q3f , which in the succeeding computation steps inevitably leads to
the repeated application of the rule qf/q3f thus flooding the skin mem-
brane with more and more symbols q.
On the other hand, incrementing register s + (s′ − 1)n, for 1 ≤ s ≤ n,
2 ≤ s′ ≤ m, i.e., registers n + 1 to nm is accomplished by the rules

pc(l1)/pc(l1+1)α+(s + (s′ − 1)n)as,

pc(l1+1)/pc(l1+2)

pc(l1+2)/pc(l1+3),

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

136 CHAPTER 6. SMALL NUMBER OF OBJECTS

pc(l1+3)α+(s + (s′ − 1)n)/pc(l2)

pc(l1+3)α+(s + (s′ − 1)n)/pc(l3)

in R1 as well as by the rules

λ/α+(s + (s′ − 1)n)as,

α+(s + (s′ − 1)n)/λ in Rs′

Hence, adding one to the contents of registers n + 1 to nm now needs
four steps: the number of symbols p representing the instruction of M
labelled by l1 is replaced by pc(l1+1) together with 3d + s + (s′ − 1)n
additional symbols q, h−(3d+s+(s′−1)n) symbols p and the symbol as.
In the second step, pc(l1+1) is exchanged with pc(l1+2), while at the same
time the additional 3d+s+(s′−1)n symbols q and h−(3d+s+(s′−1)n)
symbols p are introduced together with as in membrane s′. In the
third step, the c(l1 + 2) symbols p in the skin membrane are exchanged
with c(l1 + 2) symbols p from the environment, whereas the additional
3d + s + (s′− 1)n symbols q and h− (3d + s + (s′− 1)n) symbols p pass
out from membrane r. Finally, in the fourth step, these latter symbols
together with pc(l1+3) in the skin membrane are replaced by the number
of symbols p representing the next instruction of M labelled by l2 or
l3, respectively.

3. For simulating the decrementing step of a SUB instruction l1 :
(S(s), l2, l3) from R we introduce the following rules:

pc(l1)as/p
c(l2)

for decrementing the contents of register s, for 1 ≤ s ≤ n, represented
by the symbols as in the skin membrane.
In that way, the decrementing step of the SUB instruction l1 :
(S(s), l2, l3) of M now is also simulated in one step: together with
pc(l1) we send out one symbol as and take in pc(l2), which encodes the
label of the instruction that has to be executed after the successful
decrementing of register s, for 1 ≤ s ≤ n.
For decrementing the registers s+ (s′−1)n, for 1 ≤ s ≤ n, 2 ≤ s′ ≤ m,
we need the following rules:

pc(l1)/pc(l1+1)α−(s + (s′ − 1)n),

pc(l1+1)/pc(l1+2)

pc(l1+2)/pc(l1+3),

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.3. MEMBRANE CASE 137

pc(l1+3)α−(s + (s′ − 1)n)as/p
c(l2) in R1

as well as

as/α−(s + (s′ − 1)n),

α−(s + (s′ − 1)n)/λ in Rr.

In this case, the SUB instruction is simulated in four steps: pc(l1) is
replaced by pc(l1+1) together with the “operation multiset” α−(s+(s′−
1)n), i.e., q4d+rph−(4d+r), r = s + (s′ − 1)n, for 1 ≤ s ≤ n, 2 ≤ s′ ≤ m.
While in the next two steps, two intermediate exchanges of symbols
p with the environment take place, the symbol as is exchanged with
α−(s + (s′ − 1)n) in membrane r, that, in the third step, goes out
again to the skin membrane, where it can now together with pc(l1+3)

be exchanged with pc(l2), i.e., the representation of the next instruction
of M.
Again we notice that if we do not choose the correct rule, then the trap
is activated by the rule ph/q3f , especially if no symbol as is present in
membrane r, then we have to apply the “trap rule” α−(s+(s′−1)n)/q3f .

4. For simulating the zero test, i.e., the case where we check the contents
of register r to be zero, of a SUB instruction l1 : (S(s), l2, l3) from R
for registers 1 to n we take the following rules:

pc(l1)/pc(l1+1)α0(s),

pc(l1+1)/pc(l1+2), and

pc(l1+2)α0(s)/pc(l3) in R1.

If the rule α0(s)as/q
3f from R1 can be applied, then in the next step

we cannot apply pc(l1+2)α0(s)/pc(l3) from R1, hence, only a rule using
less than c(l1 + 2) symbols p can be used together with the “trap rule”
ph/q3f .

For simulating the zero test, i.e., the case where we check the contents
of register r to be zero, of a SUB instruction l1 : (S(s), l2, l3) from R
for registers n + 1 to nm we now take the following rules:

pc(l1)/pc(l1+4)α0(s + (s′ − 1)n),

pc(l1+4)/pc(l1+5), and

pc(l1+5)α0(s + (s′ − 1)n)/pc(l3) in R1.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

138 CHAPTER 6. SMALL NUMBER OF OBJECTS

If the rule as/α0(s+(s′−1)n) from Rr can be applied, then in the next
step we cannot apply pc(l1+5)α0(s+(s′−1)n)/pc(l3) from R1, hence, only
a rule using less than c(l1 + 5) symbols p can be used together with the
“trap rule” ph/q3f .

5. The number of symbols p never exceeds c (lhalt) = 2g(6t− 4) as long as
the simulation of instructions from R works correctly. By definition,
f = c (lhalt + 1) = 2g(6t − 4), hence, there will be at least three times
more symbols q in region 1 than symbols p in the system after having
applied a “trap rule”, thus introducing 3f symbols q. As by any rule
in R1, the number of symbols p coming in is less than double the
number sent out, the total number of symbols p in the system, in one
computation step, can at most be doubled in total, too. As every rule
that removes some symbols q from region 1 involves at least as many
symbols p as symbols q, the “trap rule” qf/q3f guarantees that in the
succeeding steps this relation will still hold true, no matter how the
present symbols p and q are interpreted for rules in Π. Therefore, if as
soon as a “trap rule” has been applied, then the number of objects q
will grow and the system will never halt.

6. Finally, for the halt label lhalt = 6t− 5 we only take the rule

pc(lhalt)/λ,

hence, the work of Π will stop exactly when the work of M stops (pro-
vided the trap has not been activated due to a wrong non-deterministic
choice during the computation).

From the explanations given above we conclude that Π halts if and only
if M halts, and moreover, the final configuration of Π represents the final
contents of the registers in M. These observations conclude the proof. 2

As already proved in [13], when using P systems with only one membrane,
at most five objects are needed to obtain computational completeness:

Corollary 6.3.1 NO5P1 = NaO5P1 = NRE.

Moreover, from Theorem 6.3.1 we can also conclude that P systems with
two membranes are computationally complete with only four objects:

Corollary 6.3.2 NO4P2 = NaO4P2 = NRE.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.3. MEMBRANE CASE 139

6.3.2 At Least Two Symbols and at Least Two Mem-
branes

On the other hand, for s, m ≥ 2, we can show that P systems with s symbols
and m membranes can simulate (s− 1)(m− 1)-register machines:

Theorem 6.3.2 Any mn-register machine can be simulated by a P system
with n + 1 symbols and m + 1 membranes, with n, m ≥ 1.

Proof. Consider a register machine M = (d,R, l0, lhalt) with d = mn registers.
We construct the P system

Π = (O, µ, w1, · · · , wm+1, R1, · · · , Rm+1),
O = {p} ∪ {aj | 1 ≤ j ≤ n},
µ = [1 [2]2 · · · [m+1]m+1]1,
w1 = w0,

wi+1 =
∏n

j=1 a
rj+(i−1)n

j , 1 ≤ i ≤ m,

that simulates the actions of M as follows. The contents of register j+(i−1)n
is represented by the multiplicity of symbols aj in region i + 1, whereas the
symbol p is needed for encoding the instructions of M ; this time, too many
copies of a1 in the skin membrane have the function of trap symbols.

Again, an important part of the proof is to define a suitable encoding
c : N → N for the instructions of the register machine, and at most 6 different
subsequent labels will be used for each instruction, hence, without loss of
generality we assume the labels of M to be positive integers such that the
labels assigned to ADD and SUB instructions have the values 6i − 5 for
1 ≤ i < t, as well as l0 = 1 and lhalt = 6 (t− 1) + 1, for some t ≥ 1.

Since one copy of as will be used for addition/subtraction, now the op-
eration multisets will be encoded by even numbers of object a1, i.e., we take
h = 2 (12d + 1) = 24d + 2 and define the following operation multisets:

ADD: α+(r) = a1
6d+2rph−(6d+2r), 1 ≤ r ≤ d,

SUBTRACT: α−(r) = a1
8d+2rph−(8d+2r), 1 ≤ r ≤ d,

ZEROTEST: α0(r) = a1
10d+2rph−(10d+2r), 1 ≤ r ≤ d.

In a similar way as before, we now take

g = 2h = 48d + 4

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

140 CHAPTER 6. SMALL NUMBER OF OBJECTS

and define the function c by

c (x) = g(x + 6t− 4) for x ≥ 0.

For l1 = 1 we therefore obtain

c (l1) = g (6t− 3) = (48d + 4) (6t− 3)

as well as

w0 = pc(l1) = p(48d+4)(6t−3).

Finally, for f we again take

f = c (lhalt + 1) = 2g(6t− 4)

which is so large that after getting f symbols we inevitably enter an infinite
loop with the rule

a1
f/a1

3f .

Equipped with this coding function and the constants defined above we
are now able to define the following set of symport / antiport rules assigned
to the membranes for simulating the actions of the given register machine M :

R1 = {pc(l1)/pc(l1+1)α+(s + (s′ − 1)n)as, p
c(l1+1)/pc(l1+2),

pc(l1+2)/pc(l1+3), pc(l1+3)α+(s + (s′ − 1)n)/pc(l2),
pc(l1+3)α+(s + (s′ − 1)n)/pc(l3) |
l1 : (A(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}

∪ {pc(l1)/pc(l1+1)α−(s + (s′ − 1)n), pc(l1+1)/pc(l1+2),
pc(l1+2)/pc(l1+3), pc(l1+3)α−(s + (s′ − 1)n)as/p

c(l2),
α−(s + (s′ − 1)n)/a1

3f ,
pc(l1)/pc(l1+4)α0(s + (s′ − 1)n), pc(l1+4)/pc(l1+5),
pc(l1+5)α0(s + (s′ − 1)n)/pc(l3) |
l1 : (S(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}

∪
{
pc(lhalt)/λ, ph/a1

3f , a1
f/a1

3f
}

and for 1 ≤ r ≤ m,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.3. MEMBRANE CASE 141

Rr+1 = {λ/α+(s + (s′ − 1)n)ar, α+(s + (s′ − 1)n)/λ |
l1 : (A(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}

∪ {as/α−(s + (s′ − 1)n), α−(s + (s′ − 1)n)/λ,
as/α0(s + (s′ − 1)n) |
l1 : (S(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}.

The operations ADD, SUBTRACT, and ZERO TEST now are carried
out for all registers r as in the preceding proof for the registers r > n. Hence,
we do not repeat all the arguments of the preceding proof, but stress the
following important differences:

We now take advantage that the operation multisets additionally satisfy
the property that now the number of symbols p can never be split into two
parts that could be interpreted as belonging to two operation multisets; this
guarantees that during a correct simulation, inside an elementary membrane
at most one operation can be executed - and if it is the wrong one (i.e., we
do not use all symbols p, but instead use more symbols a1 from the amount
representing the contents of a register), then we return a number of symbols
p which is too small to allow the correct rule to be applied from R1, instead
the “trap rule” ph/a1

3f will be applied. 2

From the result proved above we can immediately conclude the following,
thus also improving the result from [165] where NO3P4 = NRE was proved:
we can reduce the number of membranes from four to three when using only
three objects or the number of symbols from three to two when using four
membranes.

Corollary 6.3.3 NRE = NO3P3 = NaO3P3 = NO2P4 = NaO2P4.

6.3.3 One Membrane

The following characterization of NFIN by P systems with only one mem-
brane and only one symbol corresponds with the similar characterization by
tissue P systems with only one cell and only one symbol as established in [17].

Example 6.3.1 NO1P1 = NFIN.

Consider an arbitrary non-empty set M ∈ NFIN . Then we construct a
P system Π = ({a}, [1]1, w1, R1) where w1 = am with m = max (M) + 1 and
R1 = {am/aj | j ∈ M}.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

142 CHAPTER 6. SMALL NUMBER OF OBJECTS

Clearly, j < m for any j ∈ M , so the computation finishes in one step
generating the elements of M as the corresponding number of symbols a in
the skin membrane.

The special case of generating the empty set can be done by the following
trivial P system: Π = ({a}, [1]1, a, {a/a}). A computation in this system
will never halt.

The inclusion NFIN ⊇ NO1P1 can easily be argued (like in [17]) as
follows:

Consider a P system Π = ({a}, [1]1, w1, R1).
Let m = min {j | j/i ∈ R1 for some i}. Then a rule from R1 can be ap-

plied as long as region 1 contains at least m objects. Therefore, N(Π) ⊆ {j |
j < m}; hence, N(Π) ∈ NFIN .

Let us recall another relatively simple construction for tissue P systems
from [17] that also shows a corresponding result for the membrane case.

Example 6.3.2 NO2P1 ⊇ NREG.
We will use the fact that for any regular set M of non-negative integers

there exist finite sets of numbers M0, M1 and a number k such that M =
M0∪{i+jk | i ∈ M1, j ∈ N} (this follows, e.g., from the shape of the minimal
finite automaton accepting the unary language with length set M).

We now construct a P system Π = ({a, p}, [1]1, w1, R1) where w1 = pp
and R1 = {pp/ai | i ∈ M0} ∪ {pp/pa, pa/pak+1} ∪ {pa/ai | i ∈ M1}, which
generates Mas the number of symbols a in the skin membrane in halting
computations.

Initially, there are no objects a in region 1, so the system “chooses” be-
tween generating an element of M0 in one step or exchanging pp by pa. In
the latter case, there is only one copy of p in the system. After an arbitrary
number j of applications of the rule pa/pak+1 a rule exchanging pa by ai

for some i ∈ M1 is eventually applied, generating jk + i symbols a. Hence,
N(Π) = M0 ∪ {i + jk | i ∈ M1, j ∈ N} = M .

We will now show two simple constructions to illustrate the accepting
power of P systems with one membrane.

Example 6.3.3 {ki | i ∈ N} ∈ NaO1P1 for any k ∈ N.
The set of numbers divisible by a fixed number k (represented by the mul-

tiplicity of the object a in the initial configuration) can be accepted by the

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.3. MEMBRANE CASE 143

P system Π = ({a}, [1]1, w1, {ak/λ, a/a}); w1 is the input of the P system
in the initial configuration. The rule ak/λ sends objects out in groups of k,
while the rule a/a “keeps busy” all objects not used by the other one. Hence,
the system halts if and only if a multiple of k symbols a has been sent out in
several steps finally not using the antiport rule a/a anymore.

Example 6.3.4 NFIN ⊆ NaO2P1.
Any finite set M of natural numbers (represented by the multiplicity of

the object a in the initial configuration) can be accepted by the P system
Π = ({a, p}, [1]1, pw1, {a/a, p/p} ∪ {pan/λ | n ∈ M}); w1 is the input of the
P system in the initial configuration as the number of symbols a in the skin
membrane representing the corresponding element from M. The rule pan/λ
can send out p together with a “correct” number of objects a, while the rules
a/a and p/p (in the case of w1 = λ)“keep busy” all other objects.

Example 6.3.3 illustrates that even P systems with one membrane and
one object can accept some infinite sets (as opposed to the generating case,
where we exactly get all finite sets). Example 6.3.4 shows that when using
two objects it is already possible to accept all finite sets.

6.3.4 One Symbol

If only one symbol is available, then so far we do not know whether compu-
tational completeness can be obtained even when not bounding the number
of membranes (in contrast to tissue P systems which have been shown to be
computationally complete with at most seven cells, see [94]). Yet at least
we can generate any regular set of natural numbers in only two membranes
(remember that with only one membrane we have got a characterization of
NFIN, see Example 6.3.1).

Example 6.3.5 NO1P2 ⊇ NREG.
Any finite set can be generated without using the second membrane (see

Example 6.3.1), so we proceed with infinite sets. Let M ∈ NREG−NFIN ,
then there exist finite sets M0, M1 with M1 6= ∅ and a number k > 0 such
that M = M0 ∪ {i + jk | i ∈ M1, j ∈ N}.

Let m be the smallest number in M such that m > max (M0 ∪M1 ∪ {2k});
moreover, let m′ = m + 2k (thus, m′ ∈ M). Then we consider the P system
constructed as follows:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

144 CHAPTER 6. SMALL NUMBER OF OBJECTS

Π = ({a}, [1 [2]2]1, a
m′

, λ, R1, R2) where

R1 = {am′
/ai | i ∈ M0} ∪ {am′

/am, am/am+k} ∪ {am/ai | i ∈ M1},
R2 = λ/a,

We assume the result of a halting computation to be collected in the second
membrane, and we claim N(Π) = M :

N(Π) ⊇ M :

The elements of M0 are generated in one step, while the rest of M can be
generated by

[1 am′
[2]2]1 ⇒ [1 am[2]2]1 => [1 am+k[2]2]1 ⇒j−1

[1 am+k[2 a(j−1)k]2]1 ⇒ [1 ai[2 ajk]2]1 ⇒ [1 [2 ai+jk]2]1
or by

[1 am′
[2]2]1 ⇒ [1 am[2]2]1 ⇒ [1 ai[2]2]1 ⇒ [1 [2 ai]2]1.

N(Π) ⊆ M :

What other derivations can we get different from those described above?

– If all m′ symbols enter membrane 2, m′ ∈ M .

– If all m symbols enter membrane 2 (possibly after some additions of
k), m + jk ∈ M (by the definition of m, m ∈ M and, moreover, it can be
prolongued by multiples of k).

– If during the first step m copies of the symbol a are used instead of m′

(and 2k fall inside), then the system generates some number 2k + (i + jk) or
2k + (m + jk); all these numbers belong to M , too.

Nothing else can happen, because m + k < m′ and max(M0 ∪ M1) < m
and because all symbols not used by R1 fall into region 2.

Just recently, the computational power of P systems with symport /
antiport rules and small numbers of symbols and membranes has also been
investigated in [121]. There the authors show that P systems with symport /
antiport rules with one symbol and three membranes or with two symbols
and one membrane can accept the non-semilinear set L = {2n | n ≥ 0}.
Moreover, they prove that for any k ≥ 1, the class of sets of k-tuples of non-
negative integers accepted by partially blind (multi-)counter machines is a
proper subclass of the class of sets of k-tuples accepted by P systems with
symport / antiport rules with one object and multiple membranes. Similarly,
the class of sets of k-tuples of non-negative integers generated by partially
blind counter machines is shown to be a subclass (but is not known to be
proper) of the class of sets of k-tuples generated by P systems with one object
and multiple membranes.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.3. MEMBRANE CASE 145

Yet the interesting question whether or not P systems with one symbol
are universal still remains open.

6.3.5 Summary

From the main theorems (Theorem 6.3.1 and Theorem 6.3.2) of this sec-
tion showing that P systems with symport / antiport rules and m ≥ 1
membranes as well as s ≥ 2 symbols can simulate a register machine with
max {m (s− 2) , (m− 1) (s− 1)} registers we infer the following general re-
sults:

Theorem 6.3.3 NOsPm = NaOsPm = NRE, for m ≥ 1, s ≥ 2, m + s ≥ 6.

We conjecture that these results establishing the computational complete-
ness bounds are optimal.

As the halting problem for d-register machines is undecidable for d ≥ 2,
from Theorems 6.3.1 and 6.3.2 we also obtain the following result:

Theorem 6.3.4 The halting problem for P systems with symport/ antiport
rules and s ≥ 2 symbols as well as m ≥ 1 membranes such that m + s ≥ 5 is
undecidable.

As 1-register machines can generate/ accept all regular number sets, we
obtain the following:

Theorem 6.3.5 NO3P1 ∩NO2P2 ∩NaO3P1 ∩NaO2P2 ⊇ NREG.

The main results established in this paper now can be summarized in the
following table:

In the table depicted above, the class of P systems indicated by

A generates exactly NFIN ;

B generates at least NREG;

C accepts strictly more than NREG ([121], final version) and generates
at least NREG;

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

146 CHAPTER 6. SMALL NUMBER OF OBJECTS

Membranes
|O| 1 2 3 4 5 m
1 A B B B C D

2 C 1 2 (U) 3 4 m− 1

3 1 2 (U) 4 6 8 2m− 2

4 2 (U) 4 6 9 12 3m− 3

5 3 6 9 12 16 4m− 4
6 4 8 12 16 20 5m− 5
s s− 2 2s− 4 3s− 6 4s− 8 5s− 10 max{m (s− 2) ,

(m− 1) (s− 1)}

Table 6.1: Classes OsPm

D can simulate any partially blind counter automaton ([121]);

d can simulate any d-register machine.

A box around a number indicates a known computational complete-
ness bound, (U) indicates a known unpredictability bound, and a num-
ber in boldface shows the diagonal where Theorem 6.3.2 and Theo-
rem 6.3.1 provide the same result (because in that case m (s− 2) equals
(m− 1) (s− 1)); the numbers above this diagonal are taken from The-
orem 6.3.2, while the numbers below the diagonal are taken from The-
orem 6.3.1.

Based on these simulation results, we now could discuss in more detail
how many symbols s and membranes m at most are needed to accept or
generate recursively enumerable sets of vectors of natural numbers or com-
pute functions Nk→ Nl (e.g., recursively enumerable sets of d-dimensional
vectors, d ≥ 1, can be generated / accepted by P systems with symport /
antiport rules using at most d + 4 symbols in one membrane, see also [13]).
Yet as all these results are direct consequences of the corresponding compu-
tational power of the simulated register machines, we do not follow this line
any further.

6.4 Tissue Case

We consider tissue P systems with symport / antiport rules and investigate
their computational power when using only a (very) small number of symbols

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 147

and cells. Even when using only one symbol, we need at most six (seven
when allowing only one channel between a cell and the environment) cells to
generate any recursively enumerable set of natural numbers. On the other
hand, with only one cell we can only generate regular sets when using one
channel with the environment, whereas one cell with two channels between
the cell and the environment obtains computational completeness with at
most five symbols. Between these extreme cases of one symbol and one
cell, respectively, there seems to be a trade-off between the number of cells
and the number of symbols, e.g., for the case of tissue P systems with two
channels between a cell and the environment we show that computational
completeness can be obtained with two cells and three symbols as well as
with three cells and two symbols, respectively. Moreover, we also show that
some variants of tissue P systems characterize the families of finite or regular
sets of natural numbers.

6.4.1 One Symbol

In [94] it was shown that one symbol is enough for obtaining computational
completeness when using at least seven cells:

Theorem 6.4.1 NRE = NO1tPn for all n ≥ 7.

Omitting the condition that for any i, j only one channel out of
{(i, j) , (j, i)} is allowed, at least one cell can be saved (i.e., the one used
as the trap, see [94]):

Theorem 6.4.2 NRE = NO1t
′Pn for all n ≥ 6.

If we use a single symbol in only one cell, we exactly get the finite sets:

Example 6.4.1 To each non-empty finite set L of natural numbers we can
construct the tissue P system Π =

(
1, {a} , w1, {(1, 0)} , R(1,0)

)
where w1 = am

with m = max {i | ai ∈ L} + 1 and R(1,0) = {am/aj | aj ∈ L}. Obviously,
N (Π) = L.

For the special case of generating the empty set, we can take the following
trivial tissue P system Π = (1, {a} , a, {(1, 0)} , {a/a}). A computation in
this system will never halt.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

148 CHAPTER 6. SMALL NUMBER OF OBJECTS

Example 6.4.2 Let Π =
(
1, {a} , am, {(0, 1) , (1, 0)} , R(0,1), R(1,0)

)
be a tis-

sue P system with arbitrary sets of symport / antiport rules R(0,1) and R(1,0).
If R(0,1) ∪R(1,0) is empty, then obviously N (Π) = {m} . Otherwise, let

n = min
{
j | j/i ∈ R(1,0) or i/j ∈ R(0,1) for some i

}
.

Then a computation in Π can never halt as long as there are at least n objects
in the cell. Therefore, N (Π) ⊆ {j | j < n}; hence, N (Π) ∈ NFIN .

The proof of the following theorem directly follows from the preceding
examples:

Theorem 6.4.3 NFIN = NO1tP1 = NO1t
′P1.

Proof. In Example 6.4.1, we have shown that NFIN ⊆ NO1tP1, already by
definition, we have the inclusion NO1tP1 ⊆ NO1t

′P1, and in Example 6.4.2,
the inclusion NO1t

′P1 ⊆ NFIN has been proved. Altogether, these inclu-
sions prove the statement of the theorem.

If we use two symbols, we can already generate infinite sets:

Example 6.4.3 Consider the tissue P system
Π =

(
2, {a} , λ, a, {(2, 0) , (2, 1)} , R(2,0), R(2,1)

)
with R(2,0) = {a1/a2} and R(2,1) = {a1/λ, a2/λ}. The second cell can provide
the first one with an arbitrary number of symbols a as long as its contents
is not taken as a whole to cell 1 by one of the rules from R(2,1). Either the
computation stops by immediately using the rule a1/λ from R(2,1) in the first
step or by using a2/λ from R(2,1) in one of the succeeding steps. Obviously,
N (Π) = N− {0} .

If we allow at least three cells or else two channels between a cell and the
environment, then at least all regular sets can be generated:

Example 6.4.4 Let G = ({Xi | 1 ≤ i ≤ n} , {a} , P, X1) be a regular gram-
mar with productions of the form Xi → aXj and exactly one production of
the form Xn → λ (any regular set over a one-letter alphabet can be gener-
ated by such a regular grammar); moreover, let L (G) denote the language
generated by G.

First consider the tissue P system

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 149

Π′ =
(
2, {a} , λ, a2, {(0, 2) , (2, 0) , (2, 1)} , R(0,2), R(2,0), R(2,1)

)
with R(0,2) = {a2n+2/a} , R(2,0) = {a2i/a2j+1 | Xi → aXj ∈ P}∪{a2n/λ}, and
R(2,1) = {a/λ}. Each non-terminal symbol Xi from N is encoded by 2i copies
of a; in that way, the rules in R(2,0) can simulate the productions from P in
an obvious way; in each computation step in Π, also one symbol a passes from
the second cell to the first one by the rule a/λ from R(2,1). The “trap rule”
a2n+2/a from R(0,2) guarantees that the simulation works correctly, because
if the simulating rule from R(2,0) together with the rule from R(2,1) does not
exhaust the whole contents of the second cell, then the rule from R(0,2) will
be applicable in this computation step and in all succeeding ones thus keeping
the system from halting. Hence, we conclude N (Π′) = Ps (L (G)) .

Instead of using the second channel we can also use a third cell instead
for providing the trapping facility:

For the tissue P system

Π =
(
3, {a} , λ, a2, λ, ch,R(2,0), R(2,1), R(2,3), R(3,0)

)
where ch = {(2, 0) , (2, 1) , (2, 3) , (3, 0)}
with R(2,0) = {a2i/a2j+1 | Xi → aXj ∈ P}∪{a2n/λ}, R(2,1) = R(2,3) = {a/λ},
and R(3,0) = {a/a} we obviously obtain N (Π) = N (Π′) = Ps (L (G)).

6.4.2 At Least Two Symbols and at Least Two Cells

As we are going to prove in this subsection, there seems to be a trade-
off between the number of cells and the number of symbols: as our main
result, we show that in the case of allowing two channels between a cell
and the environment (we can restrict ourselves to only one channel between
cells) computational completeness can be obtained with two cells and three
symbols as well as with three cells and two symbols, respectively. We first
show that when allowing only two symbols we need at most three cells for
obtaining computational completeness, even for the case of only one channel
between two cells as well as between a cell and the environment:

Theorem 6.4.4 NRE = NO2tP3 = NO2t
′P3, i.e.,

NRE = NOntPm = NOnt
′Pm for all n ≥ 2 and m ≥ 3.

Proof. We only have to prove NRE ⊆ NO2tP3.
Let us consider a register machine M = (3, R, l0, lh) with three registers

generating L ∈ NRE; we now construct the tissue P system (of degree 3)

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

150 CHAPTER 6. SMALL NUMBER OF OBJECTS

Π =
(

3, {a1, p} , {a1} , w1, λ, λ, ch, (R (i, j))(i,j)∈ch

)
,

ch = {(1, 0) , (1, 2) , (2, 0) , (2, 3) , (3, 0) , (3, 1)}

which simulates the actions of M in such a way that Π halts if and only if
M halts, thereby representing the final contents of register 1 of M by the
corresponding multisets of symbols a1 in the first cell (and no other symbols
contained there). Throughout the computation, cell i of Π represents the
contents of register i by the corresponding number of symbols a1, whereas
specific numbers of the symbols p represent the instructions to be simulated;
moreover, p also has the function of a trap symbol, i.e., in case of the wrong
choice for a rule to be applied we take in so many symbols p that we can
never again rid of them and therefore get “trapped” in an infinite loop in
cell 2.

An important part of the proof is to define a suitable encoding c for the
instructions of the register machine: Without loss of generality we assume
the labels of M to be positive integers such that the labels assigned to ADD
and SUB instructions have the values di + 1 for 0 ≤ i < t, as well as l0 = 1
and lh = d (t− 1) + 1, for some t ≥ 1 and some constant d > 1 which allows
us to have d consecutive codes for each instruction. As we shall see, in this
proof it suffices to take d = 7.

We now define the encoding c on non-negative integers in such a way that
c : N → N is a linear function that has to obey to the following additional
conditions:

• For any i, j with 1 ≤ i, j < dt, c (i) + c (j) > c (dt) , i.e., the sum of the
codes of two instruction labels has to be larger than the largest code
c (lh) (observe that by assumption we have lh = d (t− 1) + 1 < dt for
d > 1) we will ever use for the given M .

• The distance g between any two codes c (i) and c (i + 1) has to be large
enough to allow one copy of the symbol p to be used for appearance
checking as well as to allow specific numbers between 2 and g − 1 of
copies of p to detect an incorrect application of rules. As we shall see
in the construction of the rules below we use at most two copies of p
in that way, hence, we take

g = 3.

A function c fulfilling all the conditions stated above then, for example, is

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 151

c (x) = gx + gdt = 3x + 21t for x ≥ 0.

With l0 = 1 we therefore obtain

c (l0) = 21t + 3 and w1 = pc(l0) = p21t+3.

Finally, we have to find a number f which is so large that after the
introduction of f symbols we inevitably enter an infinite loop with the rule
p2/pf ; as we shall see below, the sum of all copies of the symbol p that
may leave the “trap” cell 2 in any computation step is bounded by 2 +
c (d (t− 1) + 1) < c (dt) , hence, we may take

f = 2c (dt) .

Equipped with this coding function c and the constants defined above
we are now able to define the following sets of symport / antiport rules for
simulating the actions of the given register machine M :

R(1,0) =
{
pc(l1)/pc(l2)a1, p

c(l1)/pc(l3)a1 | l1 : (A(1), l2, l3) ∈ R
}

∪
{
pc(l1)/pc(l1+1)a1, p

c(l1+2)/pc(l2), pc(l1+2)/pc(l3) |
l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}}

∪
{
pc(l1)/pc(l1+1)+1, pc(l1+2)/pc(l1+3), pc(l1+4)/pc(l3),

pc(l1)/pc(l1+5), pc(l1+6)/pc(l2) |
l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}}

∪
{
pc(lh)/λ

}
,

R(1,2) =
{
pc(l1+1)a1/λ | l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}

}
∪

{
pc(l1+1)+1/λ, pc(l1+3)/λ, pc(l1+5)/λ |

l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}}
∪ {p2/λ} ,

R(2,0) =
{
pa1/p

f , p2/pf
}

,

R(2,3) =
{
pc(l1+1)/λ | l1 : (A(2), l2, l3) ∈ R

}{
pc(l1+1)a1/λ | l1 : (A(3), l2, l3) ∈ R

}
∪

{
pc(l1+1)/λ, pc(l1+3)+1/λ, pc(l1+5)a1/λ |

l1 : (S(2), l2, l3) ∈ R}
∪

{
pc(l1+1)+1/λ, pc(l1+3)/λ, pc(l1+5)/λ |

l1 : (S(3), l2, l3) ∈ R}
∪ {λ/p2} ,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

152 CHAPTER 6. SMALL NUMBER OF OBJECTS

R(3,0) =
{
pc(l1+1)/pc(l1+2) | l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}

}
∪

{
pc(l1+1)/pc(l1+2), pc(l1+3)+1/pc(l1+4),

pc(l1+5)a1/p
c(l1+6), l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}}

∪ {pa1/p
2} ,

R(3,1) =
{
pc(l1+2)/λ | l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}

}
∪

{
pc(l1+2)/λ, pc(l1+4)/λ, pc(l1+6)/λ |

l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}} .
The correct work of the rules in Π can be described as follows:

1. Throughout the whole computation in Π, it is directed by the code pc(l)

for some l ≤ lh; in order to guarantee the correct sequence of encoded
rules, superfluous symbols p in case of a wrong choice guarantee an
infinite loop with the symbols p by the “trap rule”

p2/pf

in R(2,0); the channel between cell 2 and the environment is only used
to bring in f symbols p which guarantees that after the application of
such a rule the number of symbols p will be increased in every further
step, hence, the computation will never stop.

As we shall elaborate in the following, finally cell 2 will be activated to
work as a “trap” in the way described before whenever the wrong rule
is chosen and superfluous copies of p remain to be used for “trapping”
the whole system.

2. Each ADD instruction l1 : (A(1), l2, l3) of M is directly simulated by
the rules

pc(l1)/pc(l2)a1 and

pc(l1)/pc(l3)a1

in R(1,0) in one step. The ADD instructions l1 : (A(r), l2, l3) of M,
r ∈ {2, 3} , are simulated in six steps in such a way that the new copy
of symbol a1 is transported to the corresponding cell r and, moreover,
in cell 3 the code c (l1) is exchanged with the code c (l1 + 1) in order to
guarantee that when returning to cell 1 a different code arrives which
does not allow for misusing a symbol a1 representing the contents of
register 1 in cell 1 to start a new cycle with the original code. For
example, the simulation of an ADD instruction l1 : (A(2), l2, l3) is ac-
complished by applying the following sequence of rules:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 153

pc(l1)/pc(l1+1)a1 from R(1,0),

pc(l1+1)a1/λ from R(1,2),

pc(l1+1)/λ from R(2,3),

pc(l1+1)/pc(l1+2) from R(3,0),

pc(l1+2)/λ from R(3,1),

pc(l1+2)/pc(l2) or pc(l1+2)/pc(l3) from R(1,0).

If we do not choose one of the correct rules, then an infinite loop finally
will be entered by the rule p2/pf :

• If in cell 1 a rule with the environment, i.e., from R(1,0), is used
which is not correct, the remaining copies of p have to use the rule
p2/λ from R(1,2), as the coding function has been chosen in such a
way that instead of the correct rule for a label l only rules for labels
l′ < l could be chosen, whereas on the other hand, the number
of symbols p is not large enough for allowing the remaining rest
being interpreted as the code of another instruction label. Then
in the next step cell 2 will be overflowed by the application of the
rule p2/pf .

• If a rule from R(1,2) is used which is not correct, then the remaining
copies of p in cell 1 will only allow p2/λ from R(1,2) to be applied
in the next step leading to the same consequences as described
before.

• If in cell 2 a rule from R(2,3) is used which is not correct, then the
remaining copies of p will enforce the application of the “trapping
rule” p2/pf .

• If in cell 3 a rule from R(3,0) or R(3,1) is used which is not correct,
then the remaining copies of p will enforce the application of the
rule λ/p2 from R(2,3), which then will cause unbounded growth of
the number of symbols p in cell 2.

3. For simulating the decrementing step of a SUB instruction l1 :
(S(r), l2, l3) from R we send the code pc(l1+5) to the corresponding cell r,
where a correct continuation is only possible if this cell contains at least
one symbol a1. For example, decrementing register 2 is accomplished
by applying the following sequence of six rules:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

154 CHAPTER 6. SMALL NUMBER OF OBJECTS

pc(l1)/pc(l1+5) from R(1,0),

pc(l1+5)/λ from R(1,2),

pc(l1+1)a1/λ from R(2,3),

pc(l1+5)a1/p
c(l1+6) from R(3,0),

pc(l1+6)/λ from R(3,1),

pc(l1+6)/pc(l2) from R(1,0).

Again we notice that if at some moment we do not choose the correct
rule, then finally we will enter an infinite loop overflowing cell 2 with
copies of the symbol p.

4. For simulating the zero test, i.e., the case where the contents of register
r is zero, of a SUB instruction l1 : (S(r), l2, l3) from R we send the code
pc(l1+1) together with one additional copy of the symbol p to cell r. In
case our choice was wrong, i.e., register r is not empty, this additional
symbol p for r = 2 will cause the application of the rule pa1/p

f from
R(2,0), which will immediately lead to an infinite computation in cell 2,
or for r = 3 the application of the rule pa1/p

2 from R (3, 0) will enforce
the application of the rule λ/p2 from R(2,3) in the next step, which then
will cause unbounded growth of the number of symbols p in cell 2. If
our choice was correct, i.e., register r is empty, then in cell 3, the code
pc(l1+1) is exchanged with the code pc(l1+2), which is exchanged with
pc(l1+3) in cell 1. This code pc(l1+3) then captures the additional symbol
p left back in cell r, and in cell 3 this additional symbol p goes out
together with code pc(l1+3), instead, code pc(l1+4) continues and in cell
1 allows for replacing it with pc(l2). For example, for testing register 3
for zero we take the following rules:

pc(l1)/pc(l1+1)+1 from R(1,0),

pc(l1+1)+1/λ from R(1,2),

pc(l1+1)+1/λ from R(2,3),

pc(l1+1)/pc(l1+2) from R(3,0),

pc(l1+2)/λ from R(3,1),

pc(l1+2)/pc(l1+3) from R(1,0),

pc(l1+3)/λ from R(1,2),

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 155

pc(l1+3)/λ from R(2,3),

pc(l1+3)+1/pc(l1+4) from R(3,0),

pc(l1+4)/λ from R(3,1),

pc(l1+4)/pc(l3) from R(1,0).

Once again we notice that if at some moment we do not choose the cor-
rect rule, then this will cause a non-halting computation by overflowing
cell 2 with copies of symbol p.

5. Finally, for the halt label lh we take the rule

pc(lh)/λ,

hence, the work of Π will stop exactly when the work of M stops
(provided the system has not become overflowed by symbols p due to
a wrong non-deterministic choice during the computation).

From the explanations given above we conclude that Π halts if and only
if M halts, and moreover, the final configuration of Π represents the final
contents of the registers in M. These observations conclude the proof.

When the number of objects is increased to three, we need only two cells
provided we have two channels between a cell and the environment:

Theorem 6.4.5 NRE = NO3t
′P2, i.e.,

NRE = NOnt
′Pm for all n ≥ 3 and m ≥ 2.

Proof. We only prove NRE ⊆ NO3t
′P2.

As in the previous proof, we consider a register machine M = (3, R, l0, lh)
with three registers generating L ∈ NRE; we now construct the tissue P
system (of degree 2)

Π =
(

2, {a1, a2, p} , {a1} , w1, λ, ch,
(
R(i,j)

)
(i,j)∈ch

)
,

ch = {(0, 1) , (0, 2) , (1, 0) , (1, 2) , (2, 0)} ,

which simulates the actions of M in such a way that throughout the com-
putation, specific numbers of the symbols p represent the instructions to be
simulated, the number of symbols a1 in cell 1 of Π represents the contents of
register 1 by the corresponding number of symbols a1 and the new symbol

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

156 CHAPTER 6. SMALL NUMBER OF OBJECTS

a2 represents the contents of registers 2 and 3 by the corresponding number
of symbols a2 in cells 1 and 2, respectively.

We shall use a similar encoding c as in the previous proof; as only five
consecutive labels for each instruction of M are needed, it suffices to take
d = 5; moreover, we only need one copy of p for the zero tests and two copies
for detecting wrong applications of rules, therefore we take g = 3. Thus, we
now use the function c with

c (x) = gx + gdt = 3x + 15t for x ≥ 0.

With l0 = 1 we therefore obtain

c (l0) = 15t + 3 and w1 = pc(l0) = p15t+3.

If something goes wrong, the additional channels R(0,1) and R(0,2) allow
for “trapping” the system by introducing f copies of p; for f we now take
3c (dt) .

For simulating the actions of the given register machine M , we define the
following sets of symport / antiport rules:

R(0,1) =
{
pf/p2, pf/pa2

}
,

R(0,2) =
{
pf/p2, pf/pa2

}
,

R(1,0) =
{
pc(l1)/pc(l2)a1, p

c(l1)/pc(l3)a1 | l1 : (A(1), l2, l3) ∈ R
}

∪
{
pc(l1)/pc(l2)a2, p

c(l1)/pc(l3)a2 | l1 : (A(2), l2, l3) ∈ R
}

∪
{
pc(l1)/pc(l1+1)a2, p

c(l1+2)/pc(l2), pc(l1+2)/pc(l3) |
l1 : (A(3), l2, l3) ∈ R}

∪
{
pc(l1)a2/p

c(l2), pc(l1)/pc(l1+1)+1, pc(l1+1)/pc(l1+2),
pc(l1+2)+1/pc(l3) | l1 : (S(2), l2, l3) ∈ R}

∪
{
pc(l1+1)/pc(l2), pc(l1+4)/pc(l3) |

l1 : (S(3), l2, l3) ∈ R}
∪

{
pc(lh)/λ

}
,

R(1,2) =
{
pc(l1+1)a2/λ, λ/pc(l1+2) | l1 : (A(3), l2, l3) ∈ R

}
∪

{
pc(l1)/λ, λ/pc(l1+1)/λ, pc(l1+4)/λ |

l1 : (S(3), l2, l3) ∈ R} ,

R(2,0) =
{
pc(l1+1)/pc(l1+2) | l1 : (A(3), l2, l3) ∈ R

}
∪

{
pc(l1)a2/p

c(l1+1), pc(l1)/pc(l1+2)+1, pc(l1+2)/pc(l1+3),
pc(l1+3)+1/pc(l1+4) | l1 : (S(3), l2, l3) ∈ R} .

The simulation of the instructions of M by Π now works as follows:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 157

1. Each ADD instruction l1 : (A(i), l2, l3) of M , 1 ≤ i ≤ 2, is directly
simulated by the rules

pc(l1)/pc(l2)ai or pc(l1)/pc(l3)ai

from R(1,0) in one step. As the first register is never decremented, these
are the only rules involving the symbol a1.

2. Each ADD instruction l1 : (A(3), l2, l3) of M is simulated by the fol-
lowing sequence of rules:

pc(l1)/pc(l1+1)a2 from R(1,0),

pc(l1+1)a2/λ from R(1,2),

pc(l1+1)/pc(l1+2) from R(2,0),

λ/pc(l1+2) from R(1,2),

pc(l1+2)/pc(l2) or pc(l1+2)/pc(l3)from R(1,0).

3. For simulating the decrementing step of a SUB instruction l1 :
(S(2), l2, l3) from R we simply use the rule pc(l1)a2/p

c(l2) from R(1,0).

4. For simulating the decrementing step of a SUB instruction l1 :
(S(3), l2, l3) from R we have to use the following sequence of rules:

pc(l1)/λ from R(1,2),

pc(l1)a2/p
c(l1+1) from R(2,0),

λ/pc(l1+1) from R(1,2),

pc(l1+1)/pc(l2) from R(1,0).

5. For simulating the zero test, i.e., the case where the contents of register
2 is zero, of a SUB instruction l1 : (S(2), l2, l3) from R we use the rules

pc(l1)/pc(l1+1)+1,

pc(l1+1)/pc(l1+2), and

pc(l1+2)+1/pc(l3) from R(1,0).

The first rule introduces an additional copy of p which in the succeeding
step can be used for appearance checking; in the failure case, i.e., if at
least one copy of a2 is present in cell 1, then the rule pf/pa2 from
R(0,1) has to be used thus “trapping” the whole system. Otherwise,
this additional copy of p is eliminated in the third step by the rule
pc(l1+2)+1/pc(l3).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

158 CHAPTER 6. SMALL NUMBER OF OBJECTS

6. For simulating the zero test for register 3 in a SUB instruction l1 :
(S(3), l2, l3) from R we have to use the following sequence of rules:

pc(l1)/λ from R(1,2),

pc(l1)/pc(l1+2)+1 from R(2,0),

pc(l1+2)/pc(l1+3) from R(2,0),

pc(l1+3)+1/pc(l1+4) from R(2,0),

λ/pc(l1+4) from R(1,2),

pc(l1+4)/pc(l3) from R(1,0).

In the failure case, i.e., if at least one copy of a2 is present in cell 2,
then the rule pf/pa2 from R(0,2) has to be used thus “trapping” the
whole system.

7. Finally, for the halt label lh we take the rule pc(lh)/λ from R(1,0); hence,
the work of Π will stop exactly when the work of M stops (provided
none of the trap rules from R(0,1) has been applied due to a wrong
non-deterministic choice during the computation).

As one can easily see, Π halts if and only if M halts, and moreover, in
the final configuration of Π cell 1 represents the final contents of register 1 in
M. If at some moment we do not use the correct rule, then an infinite loop
will be entered by applying one of the rules from the sets R(0,i), i ∈ {1, 2} .
These observations conclude the proof.

For the case of only one channel between a cell and the environment, it
remains to investigate how many symbols we need for obtaining computa-
tional completeness with only two cells; as the following theorem shows, four
symbols are already sufficient:

Theorem 6.4.6 NRE = NO4tP2, i.e.,
NRE = NOntPm for all n ≥ 4 and m ≥ 2.

Proof. We only have to prove NRE ⊆ NO4tP2. Again we start from a
register machine M = (3, R, l0, lh) with three registers generating L ∈ NRE.
The main ideas for the construction of the tissue P system with two cells and
four symbols

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 159

Π =
(

2, {a1, a2, p, q} , w1, q, ch,
(
R(i,j)

)
(i,j)∈ch

)
,

ch = {(1, 0) , (1, 2) , (2, 0)} ,

generating L are the following ones:
The contents of register 1 is stored as the number of symbols a1 in the

first cell, whereas the numbers of symbols a2 represent the contents of register
2 and register 3, respectively. The fourth symbol q is only used as a trap
symbol. We start with one symbol q already being present in cell 2. Checking
for the appearance of a symbol a2 in cell 1 or cell 2 involves one symbol p
which in the presence of a symbol a2 allows for transporting this symbol q
from cell 2 to cell 1, where it will cause an infinite computation by the rule
q/q ∈ R(1,0).

The instructions again are encoded by a suitable function c : N → N;
as we use one symbol p for appearance checking, we need (at least) two
symbols p for detecting a wrong application of rules (which will cause the
introduction of a trap symbol q in one of the two cells, thus guaranteeing
the derivation never to halt), hence, the distance between two codes c (i) and
c (i + 1) has to be at least 3. As we shall see from the construction given
below, we have (at most) five consecutive codes for each of the ADD and
SUB instructions, which, without loss of generality, we assume to have the
labels 5i + 1 for 0 ≤ i < t − 1, as well as l0 = 1 and lh = 5 (t− 1) + 1, for
some t > 1. Moreover, as in the proofs of the preceding theorems, for any i, j
with 1 ≤ i, j < 5t, we demand c (i) + c (j) > c (5t) . Hence, in this proof we
take

c (x) = 3x + 15t for x ≥ 0.

With l0 = 1 we therefore obtain c (l0) = 15t + 3 and w1 = bc(l0) = b15t+3.
The rules in the channels between the two cells and the environment as

well as in the channel from cell 1 to cell 2 now are defined as follows:
R(1,0) =

{
pc(lh)/λ

}
∪ {p2/q, q/q}

∪
{
pc(l1)/pc(l2)a1, p

c(l1)/pc(l3)a1 | l1 : (A(1), l2, l3) ∈ R
}

∪
{
pc(l1)/pc(l2)a2, p

c(l1)/pc(l3)a2 | l1 : (A(2), l2, l3) ∈ R
}

∪
{
pc(l1+1)/pc(l2), pc(l1+1)/pc(l3) | l1 : (A(3), l2, l3) ∈ R

}
∪

{
pc(l1)a2/p

c(l2), pc(l1)/pc(l1+1)+1, pc(l1+1)/pc(l1+2),
pc(l1+2)+1/pc(l3) | l1 : (S(2), l2, l3) ∈ R

}
∪

{
pc(l1+1)/pc(l2), pc(l1+4)/pc(l3) | l1 : (S(3), l2, l3) ∈ R

}
,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

160 CHAPTER 6. SMALL NUMBER OF OBJECTS

R(1,2) = {λ/p2q, λ/pqa2, p
2/q, pa2/q}

∪
{
pc(l1)/λ, λ/pc(l1+1) | l1 : (A(3), l2, l3) ∈ R

}{
pc(l1)/λ, λ/pc(l1+1), λ/pc(l1+4) |

l1 : (S(3), l2, l3) ∈ R}
R(2,0) = {p2/q, q2/q2}

∪
{
pc(l1)/pc(l1+1)a2 | l1 : (A(3), l2, l3) ∈ R

}
∪

{
pc(l1)a2/p

c(l1+1), pc(l1)/pc(l1+2)+1, pc(l1+2)/pc(l1+3),
pc(l1+3)+1/pc(l1+4) | l1 : (S(3), l2, l3) ∈ R

}
.

We now describe how the rules in Π correctly simulate the actions of M :

1. Throughout the whole computation in Π, the application of rules is
directed by the code pc(l) for some l ≤ lh; in order to guarantee the
correct sequence of encoded rules, superfluous symbols p in case of
a wrong choice guarantee an infinite loop with the trap symbol q by
the “trap rules” q/q in R(1,0) and q2/q2 in R(2,0). Whereas the rules
p2/q in R(1,0) and R(2,0) can take an additional trap symbol from the
environment, cell 1 has to take the trap symbol q from cell 2 if either
superfluous symbols p remain when cell 1 uses a wrong rule in R(1,0) or
if a symbol a2 is present in cell 1 when register 2 is tested for zero. In a
similar way, cell 2 sends its initial copy of q to cell 1 if it uses a wrong
rule from R(2,0) or if a symbol a2 is present in cell 2 when register 3 is
tested for zero.

2. Each ADD instruction l1 : (A(1), l2, l3) of M is directly simulated by
the rules

pc(l1)/pc(l2)a1 or pc(l1)/pc(l3)a1

in R(1,0) in one step. As the first register is never decremented, these
are the only rules involving the symbol a1.

3. Each ADD instruction l1 : (A(2), l2, l3) of M is directly simulated by
the rules

pc(l1)/pc(l2)a2 or pc(l1)/pc(l3)a2

in R(1,0) in one step.

4. Each ADD instruction l1 : (A(3), l2, l3) of M is simulated by the se-
quence of rules

pc(l1)/λ in R(1,2),

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 161

pc(l1)/pc(l1+1)a2 in R(2,0),

λ/pc(l1+1) in R(1,2), and

pc(l1+1)/pc(l2) or pc(l1+1)/pc(l3) in R(1,0).

5. For simulating the decrementing step of a SUB instruction l1 :
(S(2), l2, l3) from R we simply use the rule pc(l1)a2/p

c(l2) in R(1,0).

6. For simulating the zero test, i.e., the case where the contents of register
2 is zero, of a SUB instruction l1 : (S(2), l2, l3) from R we use the rule
pc(l1)/pc(l1+1)+1 in R(1,0). In the next step, we use the rule pc(l1+1)/pc(l1+2)

in R(1,0), whereas the additional symbol p is using for the zero test: if a
symbol a2 is present in cell 1, then this one additional copy of p together
with one copy of a2 exchanges with the trap symbol q by the rule pa2/q
in R(1,2). Only if no symbol a2 is present, the additional copy of p will
be erased by using the rule pc(l1+2)+1/pc(l3) in R(1,0), which ends the
successful simulation of the zero test.

7. For simulating the SUB instruction l1 : (S(3), l2, l3) from R we send the
code pc(l1) to cell 2. There we either simulate a decrementing step by us-
ing the rule pc(l1)a2/p

c(l1+1) in R(2,0) (then followed by the rule λ/pc(l1+1)

in R(1,2) and the rule pc(l1+1)/pc(l2) in R(1,0)) or the zero test by using the
sequence of rules pc(l1)/pc(l1+2)+1, pc(l1+2)/pc(l1+3), and pc(l1+3)+1/pc(l1+4)

in R(2,0). The additional copy of p after the application of the first
rule of this sequence again is used for checking for the presence of a
symbol a2, now in cell 2. Only if no symbol a2 is present, the sim-
ulation of the zero test successfully continues with the application of
the rule λ/pc(l1+4) in R(1,2) and ends with the application of the rule
pc(l1+4)/pc(l3) in R(1,0). On the other hand, the zero test fails if the ad-
ditional copy of p together with a symbol a2 can take the trap symbol
q to cell 1 by the rule λ/pqa2 in R(1,2).

8. Finally, for the halt label lh we take the rule pc(lh)/λ from R(1,0); hence,
the work of Π will stop exactly when the work of M stops and the
computation in M has been correctly simulated by Π. On the other
hand, if during the simulation of the computation in M by Π some
error has occurred, this inevitably has led to the introduction of a trap
symbol q in cell 1 or a second copy of the trap symbol q in cell 2, which
in both cases prevents Π from halting. Thus, we conclude N (Π) = L.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

162 CHAPTER 6. SMALL NUMBER OF OBJECTS

2

6.4.3 One Cell

In this section we investigate the remaining variant of using only one cell, in
which case it turns out that the definition of the tissue P system is essential,
i.e., computational completeness can only be obtained with two channels
between the cell and the environment, whereas we can only generate regular
sets when using only one channel between the cell and the environment.

The proof of the following completeness result can be obtained following
the construction given in [13] for P systems:

Theorem 6.4.7 NRE = NOnt
′P1 for all n ≥ 5.

Proof. We only have to prove NRE ⊆ NO5t
′P1. Let us consider a register

machine M = (3, R, l0, lh) with three registers generating L ∈ NRE; the
main ideas for the construction of the tissue P system with one cell (and two
channels between the cell and the environment) and five symbols

Π =
(
1, {a1, a2, a3, p, q} , w1, {(0, 1) , (1, 0)} , R(0,1), R(1,0)

)
generating L are the following ones:

The symbols a1, a2, and a3 represent the three registers; the symbols p
and q are needed for encoding the instructions of M ; q also has the function
of a trap symbol, i.e., in case of the wrong choice for a rule to be applied we
take in so many symbols q that we can never again rid of them and therefore
get “trapped” in an infinite loop.

The (labels of the) instructions of the register machine M will be encoded
as suitable numbers of the symbol p. Moreover, we will use a combination
of small numbers of symbols p and q to be able to selectively check for the
appearance of a2 and a3, i.e., for testing register 2/ register 3 for zero we take
pq2 and p2q, respectively.

The instructions again are encoded by a suitable function c : N → N; as
we use one or two symbols p for appearance checking, we need (at least) three
symbols p for detecting a wrong application of rules (which will cause the
introduction of trap symbols q in the cells, thus guaranteeing the derivation
never to halt), hence, the distance between two codes c (i) and c (i + 1) has to

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 163

be at least 5. As we shall see from the construction given below, we have (at
most) three consecutive codes for each of the ADD and SUB instructions,
which, without loss of generality, we assume to have the labels 3i + 1 for
0 ≤ i < t−1, as well as l0 = 1 and lh = 3 (t− 1)+1, for some t > 1. Moreover,
as in the proofs of the preceding theorems, for any i, j with 1 ≤ i, j < 3t, we
demand c (i) + c (j) > c (3t) . Hence, in this proof we take

c (x) = 5x + 15t for x ≥ 0.

With l0 = 1 we therefore obtain c (l0) = 15t + 5 and w1 = pc(l0) = p15t+5.
Finally, we have to find a number f which is so large that after the

introduction of f symbols q we inevitably enter an infinite loop with the rule
q2f/qf in R(0,1); as at most two symbols q are used for encoding the zero
tests, we can take f = 3.

The rules in the two channels between the cell and the environment now
are defined as follows:

R(1,0) =
{
pc(lh)/λ

}
∪

{
pc(l1)/pc(l2)ai, p

c(l1)/pc(l3)ai |
l1 : (A(i), l2, l3) ∈ R, 1 ≤ i ≤ 3}

∪
{
pc(l1)ak/p

c(l2), pc(l1)/pc(l1+1)pk−1q3−k,
pc(l1+1)/pc(l1+2), pc(l1+2)pk−1q3−k/pc(l3) |
l1 : (S(k), l2, l3) ∈ R, 2 ≤ k ≤ 3} ,

R(0,1) = {q6/q3, q6/p3, q6/pq2a2, q
6/p2qa3} .

We now describe how the rules in Π correctly simulate the actions of M :

1. Throughout the whole computation in Π, the application of rules is
directed by the code pc(l) for some l ≤ lh, and the corresponding rules
in R(1,0) should guarantee the correct sequence of encoded rules. The
rules in R(0,1) are only applied if something goes wrong, i.e., either
superfluous symbols p in case of a wrong choice of the rule from R(1,0)

cause the application of the rule q6/p3 from R(0,1) or the failure of the
zero test causes the application of the rule q6/pq2a2 or q6/p2qa3 in case
a2 or a3 is present. The rule q6/q3 in R(0,1) guarantees that as soon as
six trap symbols q have been introduced by some rule in R(0,1), then
we can never get rid of them again, their number steadily increases,
because at most two of them can leave through channel (1, 0) using a
rule pc(l1+2)pk−1q3−k/pc(l3).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

164 CHAPTER 6. SMALL NUMBER OF OBJECTS

2. Each ADD instruction l1 : (A(i), l2, l3) of M is directly simulated by
the rules

pc(l1)/pc(l2)ai or pc(l1)/pc(l3)ai

in R(1,0) in one step. As the first register is never decremented, these
are the only rules involving the symbol a1.

3. For simulating the decrementing step of a SUB instruction l1 :
(S(k), l2, l3) from R we simply use the rule pc(l1)ak/p

c(l2) in R(1,0),
2 ≤ k ≤ 3.

4. For simulating the zero test, i.e., the case where the contents of register
k is zero, of a SUB instruction l1 : (S(k), l2, l3) from R, 2 ≤ k ≤
3, we first use the rule pc(l1)/pc(l1+1)pk−1q3−k in R(1,0). In the next
step, we use the rule pc(l1+1)/pc(l1+2) in R(1,0), whereas the additional
symbols pk−1q3−k are used for the zero test: if a symbol ak is present
in the cell, then pk−1q3−k together with one copy of ak introduces the
deadly number of six trap symbols q by the rule q6/pk−1q3−kak. Only
if no symbol ak is present, pk−1q3−k will be erased by using the rule
pc(l1+2)pk−1q3−k/pc(l3) in R(1,0), which ends the successful simulation of
the zero test.

5. Finally, for the halt label lh we take the rule pc(lh)/λ from R(1,0); hence,
the work of Π will stop exactly when the work of M stops (provided
none of the trap rules from R(0,1) has been applied due to a wrong
non-deterministic choice during the computation).

From the explanations given above we conclude that Π halts if and only
if M halts, and moreover, the final configuration of Π represents the final
contents of the registers in M. These observations conclude the proof.

Remark 6.4.1 We should like to mention that the preceding theorem imme-
diately implies NRE = NO5tP2, yet Theorem 6.4.6 has already provided us
with the better result NRE = NO4tP2, i.e., we need at most four symbols for
obtaining computational completeness with two cells.

As it has already been proved in Theorem 6.4.3,

NFIN = NO1tP1 = NO1t
′P1.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 165

The following result shows that with only one cell and one channel be-
tween the single cell and the environment exactly the regular sets can be
generated:

Theorem 6.4.8 NREG = NOntP1 for all n ≥ 2.

Proof. We first prove NREG ⊆ NO2tP1 thereby using the fact that for any
regular set M of non-negative integers there exist finite sets of numbers M0,
M1 and a number k such that M = M0 ∪ {i + jk | i ∈ M1, j ∈ N} (this
follows, e.g., from the shape of the minimal finite automaton accepting the
unary language with length set M).

We now construct a tissue P system Π = (1, {a, p}, pp, {(1, 0)} , R(1,0))
where R(1,0) = {pp/ai | i ∈ M0}∪{pp/pa, pa/pak+1}∪{a/ai | i ∈ M1}, which
generates M as the number of symbols a in the cell in halting computations.

Initially, there are no objects a in the cell, so the system “chooses” be-
tween generating an element of M0 in one step or exchanging pp by pa. In
the latter case, there is only one copy of p in the system. After an arbitrary
number j of applications of the rule pa/pak+1 a rule exchanging pa by ai

for some i ∈ M1 is eventually applied, generating jk + i symbols a. Hence,
N(Π) = M0 ∪ {i + jk | i ∈ M1, j ∈ N} = M .

We now show that even with more than two symbols we cannot generate
more than regular sets with one-cell tissue P systems using only one channel
between the cell and the environment (in contrast to the case where we allow
two channels, see Theorem 6.4.7). As is well known from [109], NREG =
PsMAT λ (1) (i.e., NREG equals the family of sets of natural numbers that
can be generated by matrix grammars without appearance checking over a
one-letter alphabet). Hence, it remains to show that NOntP1 ⊆ PsMAT λ (1)
(which can be done in a quite similar way as in the proof of Lemma 2 in [14]):

Consider the tissue P system

Π =
(
1, {a1, ..., an} , w1, {(1, 0)} , R(1,0)

)
.

A set M representing the reachable configurations, i.e., the possible mul-
tisets contained in the single cell during any computation in the tissue P
system can easily be generated by a matrix grammar without appearance
checking:

Let h : {a1, ..., an} → {ā1, ..., ān} be the renaming morphism defined by
h (ai) = āi for 1 ≤ i ≤ n. Moreover, for any production p, in a matrix let

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

166 CHAPTER 6. SMALL NUMBER OF OBJECTS

(p,)k denote the sequence of k times repeating the production p; for k = 0
this just stands for the empty string (not contributing to the matrix). Then
a matrix grammar generating the reachable configurations of Π (a reachable
configuration is obtained as some string representing the multiset of objects
in the cell) can be defined as follows:

G = (N, T, S, M) ,
N = {S, X, Y } ∪ {ā1, . . . , ān} ,
T = {a1, . . . , an} ,
M = {[S → Xh (w1)] , [X → Y] , [Y → λ]}

∪
{[

(ā1 → λ,)k1 . . . (ān → λ,)kn X → Xā1
m1 . . . ān

mn

]
|

a1
k1 . . . an

kn/a1
m1 . . . an

mn ∈ R(1,0)}
∪ {[Y → Y, āi → ai] | 1 ≤ i ≤ n} .

Moreover, the set K of strings representing the multisets to which a rule
from R(1,0) can be applied is regular (e.g., think of a non-deterministic finite

automaton guessing the rule ak1
1 ...akn

n /am1
1 ...amn

n ∈ R(1,0) and then checking
the number of symbols ai in the underlying string to be at least ki for all i,
1 ≤ i ≤ n; we leave the details of this construction to the reader). Hence, the
complement Kc of K is regular, too. Then the Parikh set of the projection
of M ∩ Kc onto {a1}∗ is exactly N (Π) ; due to the closure properties of
the family of languages generated by matrix grammars without appearance
checking, N (Π) therefore is in PsMAT λ (1), i.e., N (Π) ∈ NREG.

6.4.4 Summary and Open Questions

In sum, for tissue P systems with only one channel between two cells and
between a cell and the environment we could show the results listed in Ta-
ble 6.2 and for tissue P systems with two channels between a cell and the
environment we could show the results listed in Table 6.3. In both tables,
NFIN, NREG, and NRE indicate the equality with the corresponding fam-
ily NOmtPn and NOmt′Pn, respectively; A indicates that the corresponding
family includes at least NREG, and B indicates that the corresponding fam-
ily strictly includes NFIN .

The main open question concerns a characterization of the sets of natural
numbers in NO2tP2 and NO2tP3. Further, it would be interesting to find the
minimal number l such that NO1tPl contains all recursively enumerable sets
of natural numbers, whereas the families NO1tPj with j < l do not fulfill
this condition. Finally, it remains to find characterizations of the sets of

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

6.4. TISSUE CASE 167

Table 6.2: Families NOntPm

symbols
4 NREG NRE NRE NRE NRE NRE NRE
3 NREG NRE NRE NRE NRE NRE NRE
2 NREG A A NRE NRE NRE NRE
1 NFIN B A A A A NRE

1 2 3 4 5 6 7 cells

natural numbers in those families NO1tPj that do not contain all recursively
enumerable sets of natural numbers.

Table 6.3: Families NOnt
′Pm

symbols
5 NRE NRE NRE NRE NRE NRE
4 A NRE NRE NRE NRE NRE
3 A NRE NRE NRE NRE NRE
2 A A NRE NRE NRE NRE
1 NFIN A A A A NRE

1 2 3 4 5 6 cells

The most interesting open problems for the families NOnt
′Pm are to find

the minimal number k as well as the minimal number l such that NOkt
′P1

and NO1t
′Pl, respectively, contain all recursively enumerable sets of natural

numbers, whereas the families NOit
′P1 and NO1t

′Pj with i < k and j <
l, respectively, do not fulfill this condition. Moreover, it remains to find
characterizations of the sets of natural numbers in those families NOnt

′Pm

that do not contain all recursively enumerable sets of natural numbers.

Some of the proofs elaborated in this paper (e.g., the proof of Theo-
rem 6.4.7) can easily be modified in order to show that the corresponding
tissue P systems can also accept any set from NRE by just enlarging the sys-
tem by rules for simulating SUB instructions on the first register. A thorough
investigation of the descriptional complexity of tissue P systems for accept-
ing NRE or generating / accepting even sets of vectors of natural numbers
or for computing functions Nm → Nn as partially done for P systems in [16]
remains for future research.

Related open problems concern the families NOmPn of sets of natural

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

168 CHAPTER 6. SMALL NUMBER OF OBJECTS

numbers generated by P systems with symport / antiport rules as well as
n symbols and m membranes. The first result proving computational com-
pleteness for P systems with three symbols and four membranes was obtained
in [165] and continued in [13], where P systems with five symbols in only one
membrane were shown to be computationally complete. A thorough investi-
gation of the families NOmPn can be found in [16]. The main open problem
in the case of P systems is the question whether one symbol is sufficient to
obtain computational completeness as was shown for the case of tissue P
systems in [94].

6.5 Concluding Remarks

The complete descriptional complexity results are summarized in Table 6.1
for P systems and in Tables 6.2, 6.3 for tissue P systems.

We now finish our overview with repeating (some of) the best known
results of computational completeness. Both completeness results for one-
symbol systems (shown in boldface) are obtained in [94], while the other
completeness proofs, obtained in [13], [16], [17] and [15], were presented in
this chapter.

P systems

NRE = NOnPm(sym∗, anti∗)
for (n, m) ∈ {(5, 1) , (4, 2) , (3, 3) , (2, 4)} .

Tissue P systems

NRE = NOntPm(sym∗, anti∗)
for (n, m) ∈ {(4, 2) , (2, 3) , (1,7)} .

NRE = NOnt
′Pm(sym∗, anti∗)

for (n, m) ∈ {(5, 1) , (3, 2) , (2, 3) , (1,6)} .

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

Chapter 7

Applications

The results that will be presented in this chapter are based on articles [32],
[33], [9] and [6].

7.1 Sorting

7.1.1 Introduction

The main topic of this chapter is application of P systems for sorting prob-
lems, i.e., constructing sorting algorithms for various variants of P systems.
Traditional studies of sorting assume a constant time for comparing two
numbers and compute the time complexity with respect to the number of
components of a vector to be sorted. Here we assume the number of com-
ponents to be a fixed number k, and study various algorithms with distinct
generative features based on different models of P systems, and their time
complexity with respect to the maximal number, or to their sum. Massively
parallel computations that can be realized within the framework of P sys-
tems offer a premise to major improvements of the classical integer sorting
problems. Despite this important characteristic we will see that, depending
on the model used, the massive parallelism feature cannot be always used,
and so, some results will have the complexity “comparable” with the classi-
cal integer sorting algorithms. Still, computing an (ordered) word from an
(unordered) multiset can be a goal not only for computer science but also,
at least, for bio-synthesis (separating mixed objects according to some char-
acteristics). Here, we will pass from ranking algorithms that, starting with

169

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

170 CHAPTER 7. APPLICATIONS

numbers represented as multisets, produce symbols in an order, to effective
sorting algorithms.

P systems with symbol objects turn out to be a convenient framework
to describe computations based on molecular interaction. Many different
variants of such P systems turn out to be computationally universal and so
the reason for studying algorithms that make use of their massive parallelism
is fulfilled.

The sorting problem is an important problem in computer science. For it,
many, both sequential and parallel, algorithms were developed but the time
complexity remains at least O(n log(n)) for the sequential case and O(log2n)
for the parallel case.

Studying sorting within P system framework is also a challenging task
not only because it can produce better results (in some respect) than in
the classical sequential case, but also, because we can compute an (ordered)
string from an (unordered) multiset of objects. Moreover, one can remark
that in the case of cooperative rules (in P systems with symbol-objects and
rewriting-like rules) the order of symbols in the left/right hand side of a
production does not count. So, we deal with two “types of unorder” and still
can compute an “order”.

On of the first approaches of sorting with P systems was done in [42]
by considering a bead sort algorithm. There, the sorting procedure was
constructed on a tissue P system with symport / antiport rules such that
the objects were considered beads and the membranes were considered rods.
The idea of the algorithm was that beads start to slide in the membrane
structure to their appropriate places. The time complexity for this case was
linear, which constitute an improvement of the classical sequential sorting
algorithm. However, the payoff for this approach was that it requires a
number of membranes proportional to m×k, where m is the maximal number
from the vector that we would like to sort, and k is the dimension of the
vector.

Another study on this topic was done in [66], where the P systems with
inhibitors/promoters and symport / antiport rules were used to develop com-
parators and then to organize them in a sorting network. As in the previous
case, the input data was placed in different membranes and the computation
starts operating on already dissociated elements. Also, the result was not ob-
tained in a halting configuration but in a stable one, meaning that there are
still rules applicable, but their application does not change the string/object
contents of the membranes, nor the membrane structure itself. The time

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

7.1. SORTING 171

complexity for algorithms presented was also linear with respect to the num-
ber of components. The number of membranes used in the computation was
also proportional to the number of components.

In [32] other methods and algorithms for the sorting problem are proposed
by considering many variants of P systems. The feature shared by many
algorithms presented is that the input components will be placed in an initial
input membrane and the computation will dissociate this input according to
the relation order between the multiplicities of components. In this way,
we will interpret the sorting as the order of elimination of the objects. The
idea behind many algorithms presented will be to consume objects from all
components at once and, when one component is exhausted, to trigger a
signal meaning that we find the next component that must be eliminated. In
other algorithms we developed a comparator, using very weak “ingredients”,
which can be used practically in any sorting network design. For most of the
algorithms the time complexity will be also linear, while for the others it will
depend on the biggest multiplicity.

Finally, a sorting algorithm based on existing ranking algorithm was pro-
posed in [189].

The chapter is structured in three main parts corresponding to the type
of problems that is solved: the strong sorting, the weak sorting and the
ranking. All these concepts will be defined in the Sorting section where we
will discuss basic definitions. The P system models considered in the paper
are introduced in P system preliminaries section where a brief introduction
to the framework is made. The last section is dedicated to conclusions and
open problems regarding these issues.

We can remark that proving universality by using matrix or programmed
grammars, register machines or other constructions (as they are known in
literature), usually involves non-deterministic approaches as well as the use
of a “trap symbol” which will guarantee that the system will work forever
in the “bad” cases. As opposed, a practical problem solved by an algorithm
must be a deterministic process and this is because we would like to receive
the answer of the problem in a well defined time. Moreover, usually we would
like that the system will stop (or reach an equilibrium state) after finishing
the computation. These issues combined with the fact that in a multiset we
do not have an order give a hint on the difficulty of the sorting problems.
However, we presented the results above in order to give a rough overview of
the P systems framework and of their applicability to solving problems.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

172 CHAPTER 7. APPLICATIONS

7.1.2 Sorting Networks

One parallel model for studying integer sorting problems is based on the
comparison network, where more comparison operations can be executed at
the same time. This characteristics offer the possibility to construct such
networks which sorts k values in sublinear time.

A comparison network is built of wires and comparators. A comparator
is a device that have two inputs X and Y , and computes the function

(X ′, Y ′) =
(

min(X, Y), max(X, Y)
)
.

The sorting network consists of input wires, output wires and compara-
tors. In a comparison network wires are responsible for passing information
from one comparator to another one. Essentially, such a network contains
just comparators, linked together with wires. To some extent, we can con-
sider that input wires and output wires are also nodes (like comparators),
but they do not compute anything, just store a value.

Formally, a comparison network is a directed acyclic graph where the
nodes are comparators, input nodes, or output nodes, and the directed arcs
are wires.

A sorting network is a comparison network which produces as output a
monotone sequence for any input sequence. The running time of a compari-
son network is the time elapsed from the initialization of the input nodes to
the time when the values reach the output nodes.

7.1.3 Sorting Definitions and Notations

Let V = {i | 1 ≤ i ≤ k} be an alphabet. A word over V is denoted by

w =
∏m

j=1
aj = a1a2 · · · am,

m ∈ N, where aj ∈ V for each 1 ≤ j ≤ m. Here, the symbol of product
represents the concatenation.

Example 7.1.1 w = 23 9 157.

The reason why we denote the alphabet symbols by underlined numbers
is that in this way we can distinguish the symbols and also have the implicit
order associated with natural numbers.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

7.1. SORTING 173

Let also ord : V → {1, · · · , k} be a bijective function such that i = ord(i),
1 ≤ i ≤ k. Then ij = ord(aj) is an ordinal number of the j-th letter of w
and aj = ij.

Let v =
∏k

j=1 j be the “alphabet word”, made by concatenating elements
of the alphabet V in alphabetical order.

Since in the multiset processing we represent multisets by strings, we will
need a few formal language definitions and notations.

Let w =
∏m

j=1 aj be a string. We denote by

Perm(w) = {
∏m

j=1
aij | 1 ≤ ij ≤ m, 1 ≤ j ≤ m; ij 6= il, 1 ≤ j, l ≤ m}

the set of permutations of string w, i.e., the set of all strings that can be
obtained from w by changing the order of symbols. We denote by

SSub(w) = {
∏l

j=1
aij | 1 ≤ ij−1 < ij ≤ m, 2 ≤ j ≤ l; 0 ≤ l ≤ m}

the set of scattered subwords of w, i.e., the set of all strings that can be
obtained from w by deleting some (0 or more, possibly all) of its symbols,
and concatenating the remaining ones, preserving the order.

For example, the permutations of the alphabet word v are the strings hav-
ing exactly one occurrence of each letter of V , in arbitrary order. Also, the
scattered subwords of v are the strings consisting of some of the letters of V ,
in alphabetic order.

Now, let us go back to the initial scope of the paper – the sorting. Accord-
ing to the classical definitions of what integer sorting means we can give an
“equivalent” definition adapted to the P systems. In this framework we can
sort only the numbers represented by the multiplicities of the objects but not
considering the corresponding objects, or we can consider both characteris-
tics. According to this distinction we can define:

Definition 7.1.1 Let v =
∏k

j=1 j be the alphabet word. The word

w =
∏k

j=1
aj ∈ Perm(v), k = card(V) ∈ N+,

where aj ∈ V such that M(aj) ≤ M(aj+1), for each 1 ≤ j ≤ k − 1, is called
the ranking string of the multiset M.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

174 CHAPTER 7. APPLICATIONS

Definition 7.1.2 The word

w =
∏k

j=1
jM(aj)

is called weak sorting string of the multiset M if
∏k

j=1 aj is the ranking string
of M . Also, M ′ : V → N defined as M ′(j) = M(aj) is the weak sorting
multiset of M .

Remark 7.1.1 This definition stands for the case when we are interested in
sorting the multiplicities of the objects and not having to look at the corre-
sponding objects. In other words we sort only “properties” and not “objects
and properties”. Practically, the symbols from the initial multiset are consid-
ered to be in a complete relation order, and, after performing the computation
we will obtain as the result these objects sorted according to the relation order
and having multiplicities sorted.

Definition 7.1.3 The word

w =
∏k

j=1
a

M(aj)
j

is called strong sorting string of M if
∏k

j=1 aj is the ranking string of M .

Remark 7.1.2 In this case, we are interested to have as the output of com-
putation the objects with the same associated multiplicities, present in a string
in the increasing order of their multiplicities.

Example 7.1.2 For the alphabet V = {1, 2, 3} and the multiset M =
{(1, 20), (2, 10), (3, 30)}, we have:

• ranking string : 2 1 3

• weak sorting string : 110 220 330

• strong sorting string : 210 120 330

We will typically consider the starting configuration of the sorting P sys-
tem depending only on the number k = Card(V) of components, taking as
the input the multiset

{(j, nj) | 1 ≤ j ≤ k}
over V ⊂ O, placed in a specific region, where O is the system’s alphabet.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

7.1. SORTING 175

7.1.4 Weak Sorting

The weak sorting is an algorithm which processes a multiset M and gives
as a result a word w =

∏k
j=1 jM(aj) such that

∏k
j=1 aj is the ranking string

of M . A weaker definition could be given: the multiset M ′ corresponding
to w can be considered as the result (M ′(j) = M(aj), that is, the objects’
multiplicities are ordered) because the order of numbers is represented by the
order of the corresponding objects in the alphabet. In the case of equality of
some numbers there is no need to make a decision whether “ = ” is “ ≤ ” or
“ ≥ ”; the result is the same. A typical strategy for the weak sorting would
be a sorting network i.e. a parallel or sequential usage of compare-swap-if-
needed operator

(n, n′) → (min(n, n′), max(n, n′)).

The weak sorting is typically easier than the strong sorting.

7.1.5 Evolution–Communication Systems

The idea of the next algorithm is very similar to that of the previous para-
graph (a parallel simulation of odd-even sorting network). However, the
model of the P system is quite different. We now have no target indica-
tions in the evolution rules (the result stays in the same regions), and we
have communication rules (that do not change objects, just move them).
These two types of rules are executed in a maximally parallel manner. In
the following construction, we will only have non-cooperative evolution rules,
symport of weight 1 and antiport of weight 1.

The weak priority can exist between the evolution rules of the same region,
between the communication rules of the same membrane, and between the
rules of the two classes, where the corresponding membrane is the external
bound of the corresponding region.

Example 7.1.3 Let B4 = b4, D4 = d4, i.e., there b4 and d4 are used
as synonyms of B4 and D4. The initial configuration is the following:
[1 [2 an1bn2cn3dn4]2]1
The rules are defined by the tables below.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

176 CHAPTER 7. APPLICATIONS

Region 1 Region 2 i ∈ Step
a → a0, b → b′,
c → c0, d → d′ 1
(a0, out), b′ → b0,
(c0, out), d′ → d0 2

a0 → a1, c0 → c1 b0 → b1, d0 → d1 3
(ai, in; bi, out) >
{(ai, in), bi → ai}, {1, 3} 4,12
(ci, in; di, out) >
{(ci, in), di → ci} {1, 3}

bi → Ai+1, di → Ci+1 ai → Bi+1, ci → Di+1 {1, 3} 5,13

Region 1 Region 2 i ∈ Step
(Ai, in), (Bi, out),
(Ci, in), (Di, out) {2} 6

Bi → bi, Di → di Ai → ai, Ci → ci {2} 7
di → d′i (bi, in; ci, out) >

{(bi, in), ci → bi}, {2} 8
ai → a′i {2}

a′i → Ai+1, bi → Ci+1 ci → Bi+1, d′i → Di+1 {2} 9
(Ai, out), (Bi, in),
(Ci, out), (Di, in) {1} 10

Ai → ai, Ci → ci+1 Bi → bi, Di → di {1} 11
A4 → a4, C4 → c4 (B4, out), (D4, out) 14

Region 1 Step
a4 → a, b4 → b5, c4 → c5, d4 → d5 15
(a, out), b5 → b, c5 → c6, d5 → d6 16
(b, out), c6 → c, d6 → d7 17
(c, out), d7 → d 18
(d, out) 19

Here, the rules written in the same row of the table are executed in the
same step, and the table also indicates the actual step when these rules can
be applied. Below is the computation

[
1

[
2

an1bn2cn3dn4]
2

]
1
⇒ [

1
[
2

an1
0 b′n2cn3

0 d′n4]2]1 ⇒
[1 an1

0 cn3
0 [

2
bn2
0 dn4

0]2]1 ⇒ [1 an1
1 cn3

1 [2 bn2
1 dn4

1]2]1 ⇒
[1 b

n′
1

1 d
n′

3
1 [2 a

n′
2

1 c
n′

4
1]2]1 ⇒ [1 A

n′
1

2 C
n′

3
2 [2 B

n′
2

2 D
n′

4
2]2]1 ⇒

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

7.1. SORTING 177

[1 B
n′

2
2 D

n′
4

2 [2 A
n′

1
2 C

n′
3

2]2]1 ⇒ [1 b
n′

2
2 d

n′
4

2 [2 a
n′

1
2 c

n′
3

2]2]1 ⇒
[1 c

n′′
2

2 d′2
n′′

4 [2 a′2
n′′

1 b
n′′

3
2]2]1 ⇒ [1 B

n′′
2

3 D
n′′

4
3 [2 A

n′′
1

3 C
n′′

3
3]2]1 ⇒

[1 A
n′′

1
3 C

n′′
3

3 [2 B
n′′

2
3 D

n′′
4

3]2]1 ⇒ [1 a
n′′

1
3 c

n′′
3

3 [2 b
n′′

2
3 d

n′′
4

3]2]1 ⇒
[1 b

n′′′
1

3 d
n′′′

3
3 [2 a

n′′′
2

3 c
n′′′

4
3]2]1 ⇒ [1 A

n′′′
1

4 C
n′′′

3
4 [2 B

n′′′
2

4 D
n′′′

4
4]2]1 ⇒

[1 a
n′′′

1
4 B

n′′′
2

4 c
n′′′

3
4 D

n′′′
4

4 [2]2]1 ⇒ [1 b
n′′′

2
5 c

n′′′
3

5 d
n′′′

4
5 [2]2]1a

n′′′
1 ⇒

[1 c
n′′′

3
6 d

n′′′
4

6 [2]2]1a
n′′′

1
4 bn′′′

2 ⇒ [1 d
n′′′

4
7 [2]2]1a

n′′′
1 bn′′′

2 cn′′′
3 ⇒

[1 [2]2]1a
n′′′

1 bn′′′
2 cn′′′

3 dn′′′
4 .

The objects are divided in two classes: {j ∈ V | j ≡ 0(mod 2)} and
{j ∈ V | j ≡ 1(mod 2)}. These classes are stored in different membranes,
so the compare-swap-if-needed operator sorting A, B to A′, B′ is made of
an antiport rule (A, out; B, in), having a weak priority over a symport rule
(A, out) and over a rewriting rule B → A, after which A is renamed to B, B
is renamed to A, both types of objects cross the membrane and then B → B′,
A → A′. A comparison operator is executed in 4 steps.

In this example, the following sorting network (ni)1≤i≤4 ⇒ (n′′′i)1≤i≤4 was
simulated.

n1

n2

n3

n4

n′′′1
n′′′2
n′′′3
n′′′4

��@@

��@@
��@@

��@@

��@@

(n1, n2) → (n′1, n
′
2), (n3, n4) → (n′3, n

′
4),

n′′1 = n′1, (n′2, n
′
3) → (n′′2, n

′′
3), n′′4 = n′4,

(n′′1, n
′′
2) → (n′′′1 , n′′′2), (n′′3, n

′′
4) → (n′′′3 , n′′′4),

that can be represented like the picture to
the left.

The general case of sorting k numbers is done in a similar way. The depth
of the sorting network should be k − ((k + 1)mod 2).

7.1.6 Summary

We have studied the possibility to solve the sorting problem in the P system
framework by considering the main variants of membrane devices. The in-
teresting result concerning this topic is that starting with objects that does
not have any order and being mixed together in what formally we call a
multiset, we constructed the order by computing. We studied in this way
many membrane system models which behave in a slightly different ways
when they address the same problem. The common feature shared by many
algorithms presented is that we sort by “carving” (consuming objects iter-
atively, one symbol from all the components at once) and signaling when a

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

178 CHAPTER 7. APPLICATIONS

modification occurs in the system (usually we trigger a signal when a certain
component was eliminated). Other ideas were to use the classical approaches
of sorting by using a comparator. This comparator was implemented using
only input/output operations and catalytic rules. The device presented can
be adapted to work in many algorithms that are comparison-based.

Sorting problems are among the most important problems in computer
science theory. Beside them there are a lot of other problems which are
waiting to be solved in the framework of P systems. The reason is that we
can obtain better results in time complexity than the classical algorithms by
using the massive parallelism feature of the P systems. We believe that some
techniques (the comparison method in the case of movable catalysts and non-
cooperative rules, the synchronization methods used in the comparison based
algorithms) developed in the paper can be also used to construct systems
that solve such kind of problems. The improvements of current algorithms
(by reducing the number of membranes when this is the case, reducing the
number of catalysts and so on) are also left open. Yet another interesting
research topic is designing dynamic sorting (universal for arbitrary number
of components) P systems.

7.2 Solving NP-Complete Problems

We present an O(n) + O(log m)-time solution of SAT with n variables and m
clauses by a uniform family of deterministic P systems with communication
rules (antiport-2/1 and antiport-1/2) and membrane division rules (without
polarization) and unstructured environment. Nothing is sent to the envi-
ronment except yes or no, in one copy. We can even start with the empty
environment if we also use symport-1 rules.

This section is a continuation of studies of [166], where membrane division
rules were added to (tissue) P systems with symport and antiport, to solve
SAT in a uniform way. Here we improve the results from [166] in the following:

• Tissue P system is replaced by a (“usual”) P system with tree-like
structure;

• The P system gives the result in time which depends on the number of
clauses logarithmically, not linearly;

• The computation is now deterministic, not just confluent;

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

7.2. SOLVING NP-COMPLETE PROBLEMS 179

• The cardinality of the environment alphabet E is only 1.

• Only antiport-2/1 and antiport-1/2 are used, while the construction
from [166] used symport-1, and antiports 1/2, 2/1, 3/2.

• Nothing is sent into environment except the result, just like P systems
with active membranes ([164]).

• Paying the price of additionally using symport-1 we no longer need to
bring any objects from the environment.

The determinism can be reached due to the massive parallelism (what could
happen in either order should happen simultaneously) and the system does
not need resources (supply of objects) from the environment because the
number of objects can grow via membrane division.

7.2.1 Symport / Antiport and Membrane Division

A P system with symport / antiport and membrane division is defined as
a tuple Π = (O,E, µ, w1, · · · , wm, R1, · · · , Rm, R, i0), where O is a finite
set of objects, E ⊆ O is a set of objects present in the environment in the
unbounded quantities, µ is a membrane structure with m regions. wi, 1 ≤ i ≤
m are the strings representing initial multisets of each region i. Ri, 1 ≤ i ≤ m
are the rules associated to each membrane i. The communicative rules are
of one of the following forms: (u, in), (v, out), (u, out; v, in), u, v ∈ O+ (the
first two forms are called symport, while the latter is called antiport). The
membrane division rules are of the form [

h
a]

h
→ [

h
b]

h
[
h

c]
h
.

The rules are applied non-deterministically, in a maximally parallel man-
ner. The system is deterministic if there is only one computation possible
(for any reachable configurations, all configurations reachable in one step are
indistinguishable). Notice that this property does not imply that there is
only one rule applicable for every object because different copies of the same
object are indistinguishable, and so are different membranes with the same
label and contents.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

180 CHAPTER 7. APPLICATIONS

7.2.2 Solving SAT

The problem is defined as follows: given a boolean formula

γ = C1 ∧ · · · ∧ Cm, where

Ci = yi,1 ∨ · · · ∨ yi,ki
, 1 ≤ i ≤ m,

yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}, 1 ≤ i ≤ m, 1 ≤ j ≤ ki

find whether γ has a solution.
We define M as Ceil(log2 m) (= min{j ∈ N | 2j ≥ m}), this is a number,

logarithmic with respect to the number of clauses, which will be needed for
defining the system below (notice that 2M < 2m). Look at the set S defined
below (this is a set of objects that we will need in the environment in a
sufficient number of copies to perform the clause evaluation in all membranes
in parallel). Notice that |S| = 6n + 2n + (M + 1)n + 2M + M + 1 = n(M +
9) + 2M + M + 1 = O(nM) + O(m). We also define N as Ceil(log2 |S|)
(= min{j ∈ N | 2j ≥ |S|}), this is a number, logarithmic with respect to |S|
(notice that 2N < 2|S| = O(nM) + O(m)).

We define T as 6n+2N +2M +3 (the time we claim is enough to produce
object yes in the skin membrane if and only if γ is satisfiable). The instance
of a problem is encoded in the alphabet Σ = {si,j, s

′
i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

by objects si,j if clause j contains xi, and s′i,j if clause j contains ¬xi. We
construct the following P system

Π = (O, E = {$}, µ, w0, w1, w2, w3, w4, R0, R1, R2, R3, R4, R),

O = {$, f, d, a1, yes, no} ∪ {ei | 0 ≤ i ≤ 2n + N}
∪ {di,0 | 0 ≤ i < n + N} ∪ {d2n+N+i,j | 0 ≤ i ≤ N, 0 ≤ j ≤ 2i}
∪ {t′i, f ′i | 1 ≤ i ≤ n} ∪ {bi | 0 ≤ i ≤ T} ∪ Σ,

S = {t′′i , t′′′i , t′′′′i , f ′′i , f ′′′i , f ′′′′i , | 1 ≤ i ≤ n}
∪ {ai | 2 ≤ i ≤ 2n + 1} ∪ {ti,j, fi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ M}
∪ {c2j(2i),2j(2i+1) | 0 ≤ j ≤ M, 0 ≤ i < 2M−j−1}
∪ {zj | 0 ≤ j < M} ∪ {z} are synonyms

of some symbols d2n+2N,j, 0 ≤ j ≤ 2N ,

µ = [0 [1]1[2]2[3]3[4]4[5]5]0,

w0 = en+Nf, w1 = a1d, w2 = yes, w3 = b0no, w4 = e0en+N , w5 = d0,0z.

The following rules are used:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

7.2. SOLVING NP-COMPLETE PROBLEMS 181

• Cloning objects en+N

E1 [4 ei]4 → [4 ei+1]4[4 ei+1]4 ∈ R, 0 ≤ i < n + N ;

E2 (en+Nen+N , out; en+N , in) ∈ R4;

Starting from [4 e0en+N]4, in n+N steps, 2n+N copies of [4 en+Nen+N]4 are
produced by rule E1. Then, starting from one copy of en+N , in n + N more
steps, 2n+N copies of en+N are produced by rule E2.

• Producing objects for the computation

O1 [5 di,0]5 → [5 di+1,0]5[5 z]5 ∈ R, 0 ≤ i < n + N ;

O2 [5 di,0]5 → [5 di+1,0]5[5 di+1,0]5 ∈ R, n + N ≤ i < 2n + N ;

O3 [5 di,j]5 → [5 di+1,2j]5[5 di+1,2j+1]5 ∈ R,
2n + N ≤ i < 2n + 2N , 0 ≤ j ≤ 2N ;

O4 (d2n+2N,jz, out; en, in), 0 ≤ j < 2N ;

In membrane 5, the object di,0 “waits” for n + N steps, i.e., changes into
dn+N,0 by rules O1 (also n+N dummy membranes are produced). In another
n steps, from [5 dn+N,0z]5, rules O2 produces 2n copies of [5 d2n+N,0z]5. In
further N steps, each of these 2n membranes divides by rule O3 and produces
[5 d2n+2N,0z]5, · · · , [5 d2n+2N,2N−1z]5, i.e., 2N membranes with different ob-
jects. These are the objects which we will need in the skin membrane for
the further computation, they are simultaneously brought in the skin by rule
O4 (let us give, for simplicity, pseudonyms to objects d2n+2N,j for different j
from entire set S: d2n+2N,0 = t′1, d2n+2N,1 = t′2, · · · , d2n+2N,|S| = z).

• Variable assignments

A1 [1 ai]1 → [1 t′i]1[1 f ′i]1 ∈ R, 1 ≤ i ≤ n;

A2 (t′i, out; t′′i ai+1, in) ∈ R1,
(f ′i , out; f ′′i ai+1, in) ∈ R1, 1 ≤ i ≤ n;

A3 (an+it
′′
i , out; t′′′i , in) ∈ R1,

(an+if
′′
i , out; f ′′′i , in) ∈ R1, 1 ≤ i ≤ n;

A4 (t′′′i , out; ti,0an+i+1, in) ∈ R1,
(f ′′′i , out; fi,0an+i+1, in) ∈ R1, 1 ≤ i ≤ n;

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

182 CHAPTER 7. APPLICATIONS

A5 (ti,j, out; ti,j+1ti,j+1, in) ∈ R1,
(fi,j, out; fi,j+1fi,j+1, in) ∈ R1, 1 ≤ i ≤ n, 0 ≤ j < M .

Using rules A1 and A2, [1 ai]1 changes to [1 t′′i+1ai+1]1[1 f ′′i+1ai+1]1 in two
steps, except for the case i = 1, where objects t′1 and f ′1 wait for 2n + 2N
steps until the objects from S are produced and moved to the environment.
In 2n steps, rules A3 and A4 exchange objects t′′i in membranes labelled 1 for
objects ti,0 (and f ′′i for fi,0). After some object ti,0 (fi,0) appears in membrane
1, it is exchanged for 2M copies of ti,M (fi,0, respectively), this replication
takes another 2n steps. In this way, there will be enough copies of ti,M (and
fi,0), i.e., witnesses of true/false assignment of variable xi for each object si,j

(and s′i,j), encoding the fact that if xi is true (false, respectively), then clause
Cj is satisfied. This part of computation will finish in at most 6n + 2N + M
steps from the beginning of the computation.

• Checking clauses

C1 (ti,Msi,j, out; cj−1,j, in) ∈ R1,
(fi,Ms′i,j, out; cj−1,j, in) ∈ R1, 1 ≤ i ≤ n;

C2 (c2j(2i),2j(2i+1)c2j(2i+1),2j(2i+2), out; c2j(2i),2j(2i+2), in) ∈ R1,
0 ≤ j ≤ M , 0 ≤ i ≤ m

2j ·2 − 1,
(c2j(2i),2j(2i+1), out; zjc2j(2i),2j(2i+2), in) ∈ R1, 0 ≤ j < M , m

2j ·2 − 1 < i ≤
2M

2j ·2 − 1;

C3 (c0,2M d, out; z, in) ∈ R1;

C4 (yes, out; fd, in) ∈ R2;

C5 [3 bi]3 → [3 z]3[3 bi+1]3 ∈ R, 0 ≤ i < T ;

C6 (bTno, out; f, in) ∈ R3;

C7 (yes, out; $$, in) ∈ R0, (no, out; $$, in) ∈ R0.

All clauses are checked simultaneously by rules C1: clause Cj satisfied cor-
responds to object cj−1,j. Then rules C2 “assemble” the clause satisfiabil-
ity: objects cj1,j2 and cj2,j3 are replaced by an object cj1,j3 , but this assem-
bly has a binary character: j1 = 2j(2i), j2 = 2j(2i + 1), j3 = 2j(2i + 2)
(c0,1 + c1,2 −→ c0,2, c2,3 + c3,4 −→ c2,4, c0,2 + c2,4 −→ c0,4, etc.) The second

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

7.2. SOLVING NP-COMPLETE PROBLEMS 183

group of rules provide “automatic satisfiability” of the non-existing clauses
m + 1, · · · , 2M .

In this way in every membrane corresponding to a solution of γ, an object
c0,2M will be obtained. Then it will come in the skin membrane together with
an object d using rule C3. Next, d will be exchanged by yes by C4, also
removing f from the skin (if and only if γ is satisfiable; at most one copy).

This will happen at M + 3 steps after the end of the variable assignment
phase (this number is exact because all clauses need to be checked and con-
tribute to this result), i.e., at step 6n + 2N + 2M + 3 = T . Meanwhile, in
membrane 3 a counting until T is performed by rules C5. Rule C6 is executed
if and only if the object f is still in the skin (i.e., when γ is not satisfiable).

Then, either yes or no will be brought into the environment by C7. The
system halts in time T + 1 if the formula is satisfiable, and in time T + 2
otherwise.

Replacing rules C7 by (yes, out)) and (no, out) and redefining E as ∅
would lead to an equivalent solution.

7.2.3 Summary

The satisfiability problem for a boolean formula in the disjunctive normal
form with n variables and m clauses can be solved in time O(n) + O(log m)
by a uniform family of deterministic P systems with communication rules
(antiport-2/1, antiport-1/2, symport-1) and membrane division rules (with-
out polarization) and empty environment. The use of symport rules can be
eliminated at a price of statring with (at least 2 copies of) one symbol in the
environment, and the system will only eject the result in the environment.

We would like to make the following comments:

• The determinism heavily depends on the massive parallelism (not just
in different membranes corresponding to different clauses, but also in
each membrane for the same clause). Is massive parallelism of rules
with respect to membranes (i.e., using for some membrane the number
of rules not bounded by a constant independent of n and m) really
needed in order to have a deterministic construction, or it is only needed
for a construction that runs in logarithmic time with respect to the
number of clauses?

• Increasing both the number of membranes and objects heavily depends
on using membrane division. Since in the communicative model the

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

184 CHAPTER 7. APPLICATIONS

objects can be taken from the environment, it would be interesting to
consider a variant of membrane systems where membrane division does
not increase the number of objects. For instance, can SAT be solved by
communicative P systems with membrane separation? (See [23] for the
definition of membrane separation)

• We expect that the number of starting membranes can be decreased.
Is such a solution possible starting with two membranes?

7.3 From Protons to Bi-stable Catalysts

We will now switch to another kind of applications: applying proton pumping
results from Chapter 4 to the studies of maximally parallel multiset rewriting
systems, namely, with bi-stable catalysts.

An interesting observation is that, interpreting the same object in differ-
ent regions of the system as different objects in the same region (encoding
regions in objects), one can easily see that the proton becomes a bi-stable
catalyst. Let us explain this more formally.

Given a proton pumping P system with two membranes Π = (O,P ,
[1 [2]2]1, w1, w2, R1, R2, R

′
1, R

′
2) such that the communication rules are min-

imally cooperative (either symport rules of weight at most two and antiport
rules of weight 1) and the only rules associated to the skin membrane are the
rules that output the terminal symbols, one can construct a P system with
bi-stable catalysts in the following way:

Π′ = (O′, Cb, [1]1, w
′
1, R

′) where

O′ = {a, h(a) | a ∈ O} ∪ {bp | {p, h(p)} ∈ Cb},
Cb = {{p, h(p)} | p ∈ P},
w′

1 = hb(w1h(w2)),

R′ = R1 ∪ {h(u) → h(v) | (u → v) ∈ R2} ∪R′′,

R′′ = {a → aout | (a, out) ∈ R′
1} ∪ {h(u) → u | (u, out) ∈ R′

2}
∪ {u → h(u) | (u, in) ∈ R′

2} ∪ {h(u)v → h(v)u | (u, out; v, in) ∈ R′
2}

∪ {h(p)bp → pbp | (p, out) | R′
2, p ∈ P}

∪ {pbp → h(p)bp | (p, in) | R′
2, p ∈ P},

where h : O → {a′ | a ∈ O} and hb : O → O∗ are morphisms defined by
h(a) = a′ for every a ∈ O, hb(a) = a for a ∈ O − {p, p′ | p ∈ P}, hb(p) = pbp

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

7.3. FROM PROTONS TO BI-STABLE CATALYSTS 185

for p ∈ P , and hb(p
′) = p′bp: h is the priming morphism for objects of region

2, and hb is the morphism adding objects bp to objects p or p′.

It is easy too see that the behavior of Π′ is exactly the same as that of Π:
the objects in region 1 of Π are also in Π′, while the objects in region 2 of Π
are renamed (i.e., primed) and also placed in region 1 of Π, and the rules are
changed accordingly. The role of extra objects bp (one copy for every copy
of bi-catalytic symbols in w1 and w2) is to transform all non-cooperative
proton rules in cooperative bi-stable catalytic rules (because rules p → p′

or p′ → p, {p, p′} ∈ Cb, are forbidden by the definition of P system with
bi-stable catalysts).

Clearly, non-cooperative rules (except the uniport of protons) remain non-
cooperative, while other rules are changed as follows:

In Π (pa, out) (pa, in) (p, out; a, in) (a, out; p, in)
In Π′ p′a′ → pa pa → p′a′ p′a → pa′ pa′ → p′a

In Π (p, out) (p, in)
In Π′ p′bp → pbp pbp → p′bp

We can now claim that during this transformation the proton pumping
computational completeness constructions become the computational com-
pleteness constructions of P systems with (the same number as protons in
the original construction) bi-stable catalysts.

Example 7.3.1 Transformed time-free P system from Corollary 4.8.3 to
Theorem 4.3.2 (extra objects are not needed: the construction does not have
uniport rules of protons).

Π = (O,Cb, [1]1, w1, R1), where

O = {ai, a
′
i | 1 ≤ i ≤ m + 2} ∪ {lj, l′j | l ∈ I−, 1 ≤ j ≤ 4}

∪ {#1, #2, #′
1, #′

2} ∪ {l, l′ | l ∈ I} ∪ P,

Cb = {{Di, D
′
i}, {Ei, E

′
i} | i ∈ W},

w1 = l0#1D
′
m+1D

′
m+2Z

′
m+1Z

′
m+2,

and the sets of rules are the following:

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

186 CHAPTER 7. APPLICATIONS

R1 = {l → (ai)outl
(1), l → (ai)outl

(2) | l : (A(i), l(1), l(2)) ∈ I, 1 ≤ i ≤ m}
∪ {l → ail

(1), l → ail
(2) | l : (A(i), l(1), l(2)) ∈ I, i ∈ W} ∪ {#2 → #2}

∪ {l4 → l(1), l1 → l2, l2 → #2, l3 → l(2) | l : (S(i), l(1), l(2)) ∈ I},
∪ {l′ → l′4, l

′ → l′1, l
′
2 → l′3 | l : (S(i), l(1), l(2)) ∈ I} ∪ {#′

1 → #′
1},

∪ {l → l′, l′4D
′
i → l4Di, aiDi → a′iD

′
i, #′

1D
′
i → #1Di, l

′
1E

′
i → l1Ei,

aiEi → a′iE
′
i, l2Ei → l′2E

′
i, l

′
3 → l3 | l : (S(i), l(1), l(2)) ∈ I}.

Thus we obtain a (clearly, optimal) computational completeness result
for systems with one bi-stable catalyst: LOP1(2cat1, tar) = RE, improving
NOP5(cat2, 2cat1, tar) = NRE from [135]. Another new result (see the ex-
ample above) is that time-free systems with four bi-stable catalysts are com-
putationally complete: fLOP1(2cat4, tar) = RE (improving fPsOP1(2cat∗,
tar) = PsRE from [61]).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

Chapter 8

Conclusions and Open
Problems

We will first repeat the key notations, then we will list the results proved in
this thesis. Then we will give a number of conclusions and state some open
problems.

8.1 List of Key Notations

Behavior of a P system Π
N(Π) Set of numbers generated by Π
Ps(Π) Set of vectors generated by Π
L(Π) Language generated by Π
Na(Π) Set of numbers accepted by Π
Psa(Π) Set of vectors accepted by Π
AI(Π) Language accepted by a P automaton Π (initial mode)

Behavior of a family F of P systems
NF Family of sets of numbers generated by P systems Π ∈ F
PsF Family of sets of vectors generated by P systems Π ∈ F
LF Family of languages generated by P systems Π ∈ F
NaF Family of sets of numbers accepted by P systems Π ∈ F
PsaF Family of sets of vectors accepted by P systems Π ∈ F
AIF Family of languages accepted by P automata Π ∈ F

Classes of P systems (with at most m membranes, m ∈ N).

187

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

188 CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS

OPm P systems with symbol objects
E1OPm P systems with unstructured environment
ProP k

m Proton pumping P systems (with at most k protons)
OnPm P systems (with at most n objects)
OtPm Tissue P systems with symbol objects
OntPm Tissue P systems with at most n objects
Ont

′Pm as above, with multiple channels

Features of P systems

ncoo Simple non-cooperative rewriting rules
ncoo2 Simple binary non-cooperative rewriting rules
tar with targets
p1ncoo Simple non-cooperative rules with promoters of weight one
catk Rewriting rules with (at most k in the system) catalysts
2catk Rules with (at most k in the system) bi-stable catalysts
symi Symport rules of weight at most i
sym=i Symport rules of weight i
antij Antiport rules of weight at most j

In case rewriting rules are absent, an infinite environment is assumed
(this is not reflected in the notation).

Properties of P systems

D Deterministic
f Time-free

Particular notations can be obtained by combining the elements of these
tables: the behavior B of a family F of P systems with features γ satisfying
a property Q is denoted by QBF (γ).

8.2 List of Results

We now list the (main) results proved in this thesis; numbers are assigned to
them for possible references.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

8.2. LIST OF RESULTS 189

Evolution–communication and proton pumping

LOP2(ncoo, sym1, anti1) = RE, (8.1)

LOP2(ncoo, sym2) = RE, (8.2)

AIOP2(p1ncoo, sym1, anti1) = RE, (8.3)

AIOP2(p1ncoo, sym2) = RE, (8.4)

LE1OP2(ncoo2, anti1) = RE, (8.5)

LE1OP2(ncoo2, sym=2) = RE, (8.6)

fPsOP2(ncoo, sym1, anti1) = PsRE, (8.7)

fPsOP2(ncoo, sym2) = PsRE, (8.8)

LOP2(ncoo, tar, sym1, anti1) = RE, (8.9)

LOP2(ncoo, tar, sym2) = RE, (8.10)

DNaOP3(ncoo, sym1, anti1) = NRE, (8.11)

DNaOP3(ncoo, sym2) = NRE, (8.12)

fLProP 4
2 (ncoo, tar, sym1, anti1) = RE, (8.13)

fLProP 4
2 (ncoo, tar, sym2) = RE, (8.14)

LProP 1
2 (ncoo, sym1, anti1) = RE, (8.15)

LProP 1
2 (ncoo, sym2) = RE. (8.16)

Symport / antiport of small weight

NOP3(sym1, anti1) = NRE, (8.17)

NOP3(sym2) = NRE, (8.18)

NOtP2(sym1, anti1) = NRE, (8.19)

DNaOtP2(sym1, anti1) = NRE, (8.20)

NOtP2(sym2) = NRE, (8.21)

DNaOtP2(sym2) = NRE, (8.22)

N3OP2(sym1, anti1) = N3RE, (8.23)

N6OP2(sym2) = N6RE, (8.24)

PsOP2(sym1, anti1)T = PsRE, (8.25)

PsOP2(sym2)T = PsRE, (8.26)

NOP1(sym1, anti1) ⊆ NFIN, (8.27)

NOtP1(sym1, anti1) ⊆ NFIN, (8.28)

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

190 CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS

NOP1(sym1, anti1) ⊇ SEG1, (8.29)

NOP1(sym2) ⊇ SEG1 ∪ SEG2, (8.30)

N7OP1(sym3) = N7RE, (8.31)

Symport / antiport with a small alphabet

Ps(k)OsPm(sym∗, anti∗) = Psa(k)OsPm(sym∗, anti∗) = Ps(k)RE

for k = max{m(s− 2), (m− 1)(s− 1)} − 2 > 0, (8.32)

NO5P1(sym∗, anti∗) = NaO5P1(sym∗, anti∗) = NRE, (8.33)

NO4P2(sym∗, anti∗) = NaO4P2(sym∗, anti∗) = NRE, (8.34)

NO3P3(sym∗, anti∗) = NaO3P3(sym∗, anti∗) = NRE, (8.35)

NO2P4(sym∗, anti∗) = NaO2P4(sym∗, anti∗) = NRE, (8.36)

NO1P2(sym∗, anti∗) ⊇ NREG, (8.37)

NO2P1(sym∗, anti∗) ⊇ NREG, (8.38)

NO1P1(sym∗, anti∗) = NFIN, (8.39)

NO5t
′P1(sym∗, anti∗) = NRE, (8.40)

NO3tP2(sym∗, anti∗) = NO3t
′P2(sym∗, anti∗) = NRE, (8.41)

NO2tP4 = NO2t
′P3(sym∗, anti∗) = NRE, (8.42)

NOstP1(sym∗, anti∗) = NREG, s > 1, (8.43)

NO2t
′P1(sym∗, anti∗) ⊇ NREG, (8.44)

NO1tP3(sym∗, anti∗) ⊇ NREG, (8.45)

NO1t
′P2(sym∗, anti∗) ⊇ NREG, (8.46)

NO1tP1(sym∗, anti∗) = NO1t
′P1(sym∗, anti∗) = NFIN. (8.47)

Applications

A k-dimensional vector of non-negative integers can be sorted
(by an evolution–communication P system with priorities of
polynomial size with respect to k) in a linear number of steps
with respect to k. Actually, the size and time can be bounded
linearly with respect to the size and depth of any k-number
sorting network. (8.48)

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

8.3. LIST OF CONCLUSIONS, OPEN PROBLEMS AND RESEARCH DIRECTIONS191

An instance of SAT with n variables and m clauses can be
solved by a uniform family of deterministic P systems with
antiport 2/1 and antiport 1/2 in O(n log m) steps (only send-
ing the answer object in the environment). (8.49)

LOP1(2cat1, tar) = RE, (8.50)

fLOP1(2cat4, tar) = RE. (8.51)

8.3 List of Conclusions, Open Problems and

Research Directions

In this thesis, the studies of membrane systems with rules communicating
objects across membranes were presented. We will repeat the topics inves-
tigated: multiset rewriting, EC P systems, protons and bi-stable catalysts,
symport / antiport of small weight, symport / antiport with a small alphabet,
and solving particular problems by P systems.

8.3.1 Multiset Rewriting

It is possible to express most of the interactions between elements (agents,
membranes) of P systems via cooperation or context (promoters, inhibitors)
in a multiset-rewriting system. On the other hand, we have expressed the
notion of maximal parallelism in cooperative multiset-rewriting systems with
context via an integer multi-criterial linear optimization problem.

The key element of computing the behavior of a maximally parallel
multiset-rewriting system is computing the set of all maximal multisets of ap-
plicable rules. The presented algorithm has complexity O((n/w)r), where n
is the number of objects in the system, w is the minimal weight of a multiset
in the left-hand side of a rule, and r is the number of rules.

Although the algorithm is quite efficient in some cases, it is a research
direction to look for more efficient algorithms. For instance, it seems promis-
ing to try to express the solution via the solution of a corresponding con-
tinuous multi-criterial linear optimization problem (its complexity does not
depend on n).

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

192 CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS

8.3.2 EC P Systems

We stated a series of investigations about evolution–communication P sys-
tems. Since P systems with symport / antiport rules using at most three
objects are computationally complete with just one membrane, even without
evolution rules, when the infinite environment is present, we only considered
rules using at most two objects. The two cases of rules moving two objects
are sym=2 and anti1. Hence, the two main sets of features we have considered
are α = (ncoo, sym1, anti1) and β = (ncoo, sym2).

Only two membranes are enough for computational completeness of P
systems with features α or β, even in the sense of generating languages.
The computational completeness of time-free systems holds in the sense of
generating vector sets, or in the sense of languages if targets are allowed,
again for both sets of features, with just two membranes. On the other side,
the presence of an unstructured environment (and ignoring the corresponding
object in the result) allows us to restrict the features to (ncoo2, sym=2) or
(ncoo2, anti1) and still have computationally complete systems.

It is possible to accept any recursively enumerable language by EC P
automata, paying the price of using promoters at the level of non-cooperative
rewriting rules. However, considering internal input leads to the following
results: deterministic P systems with features α or β are computationally
complete with three membranes, in the sense of accepting vector sets.

Intuitively it seems (conjecture) that rewriting in two regions is necessary
for universality of EC P systems, and that rewriting in three regions is nec-
essary for universality of deterministic EC P systems. It is an open topic to
investigate the exact power of evolution–communication P systems with one
membrane, as well as deterministic P systems with one or two membranes.
An extended list of questions can be found in the preliminary version of [5].

8.3.3 Protons and Bi-stable Catalysts

A special restriction of EC P systems was presented: proton pumping sys-
tems. The main focus of this restriction is the way the two objects in-
teract. Surprisingly, this restriction does not ruin the computational com-
pleteness of two-membrane systems with features α = (ncoo, sym1, anti1)
or β = (ncoo, sym2). Four protons (“agents of cooperation”) are sufficient
for the computational completeness (in the sense of generating languages)
of time-free systems, while one proton is already sufficient if time-freeness is

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

8.3. LIST OF CONCLUSIONS, OPEN PROBLEMS AND RESEARCH DIRECTIONS193

not required. We recall that the last fact has been proved by a construction
with only four cooperative rules.

P systems with two membranes and k protons can be simulated by P
systems with one membrane and k bi-stable catalysts. Hence, the proton
results can be transferred to bi-stable catalysts: P systems with one bi-stable
catalyst are computationally complete in the sense of generating languages,
as well as time-free P systems with four bi-stable catalysts.

It seems that a 3-stable catalyst is needed for the computational com-
pleteness of accepting P systems, and that three membranes are needed for
the universality of accepting proton pumping P systems with one proton.
Completing the picture in this direction is an interesting research direc-
tion. A few open questions can be found in [6], e.g., it is an open question
whether four protons/bi-stable catalysts are necessary for time-freeness.

8.3.4 Symport / Antiport of Small Weight

We reflected a series of investigations about purely communicative P systems
with rules associated to membranes, focusing on the rules of small weight. We
recall that the environment is assumed to contain an infinite supply of objects
from a fixed subset of the alphabet. It is known that P systems with rules
that move across a membrane one object in one direction and two objects in
the other direction are computationally complete as deterministic acceptors
(or as generators, with one superfluous object, which can be removed by a
symport rule of weight one), while P systems with rules moving up to three
objects across a membrane in the same direction are also computationally
complete as deterministic acceptors.

We have shown that P systems with symport of weight at most three are
computationally complete as generators, with seven superfluous objects (it is
an open question whether this number can be decreased). In what follows,
by “small weight” we will understand two minimal cooperation variants, i.e.,
either α = (sym1, anti1) or β = (sym2).

We have shown that both variants of P systems with three membranes
are computationally complete in the sense of generating vector sets, without
superfluous objects. In the tissue case, two cells are already enough for both
variants; moreover, the result also holds for deterministic acceptors. The
results hold, with the same constructions, even if sequential channels are
replaced by maximally parallel channels.

Returning to the membrane case, even P systems with two membranes

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

194 CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS

have been shown to be computationally complete as generators of vector
sets, but with three superfluous objects with features α or with six super-
fluous objects with features β (it is an open whether these numbers can be
decreased).

Finally, we have stated the results on one-membrane systems with mini-
mal cooperation; the power of such systems is very limited (at most finite as
generators), but it is still an open problem to find their characterizations.

8.3.5 Symport / Antiport with a Small Alphabet

While one “corner” of descriptional complexity of P systems with symport /
antiport is the weight of the rules and the number of membranes, another
“corner” is the number of objects in the alphabet and the number of mem-
branes.

We presented results on P systems with symport / antiport rules of
“heavy” weights and a small alphabet. P systems with m ≥ 1 membranes
and s ≥ 2 objects are computationally complete as generators or acceptors
of number sets when m+s ≥ 6. A number of results for the other classes was
also stated, see the “complexity carpet” in Figure 6.1. The most interesting
open question is whether P systems with one symbol are computationally
complete (it is known that they can simulate partially blind counter au-
tomata). It seems (conjecture) that the answer is negative: a membrane
seems to need multiple ways of access (multiple symbols or multiple chan-
nels).

For tissue P systems, the corresponding question is known to have a
positive answer. We have presented results on tissue P systems with sym-
port / antiport rules of “heavy” weights and a small alphabet. Below are the
“known frontier” results: The computational completeness holds for tissue P
systems with m ≥ 1 cells and s > 1 symbols for (s, m) ∈ {(3, 2), (2, 4), (1, 7)}
as generators of number sets. If multiple channels are allowed, then tissue P
systems with m ≥ 1 cells and s > 1 symbols are computationally complete as
generators of number sets for (s, m) ∈ {(5, 1), (3, 2), (2, 3), (1, 6)}. A number
of results for the other classes was stated, see the “complexity carpet” in
Figure 6.2 and Figure 6.3.

One particular open question is whether NO1tP2(sym∗, anti∗) can gen-
erate NREG. It is a research direction to research the power of tissue
P systems with symport / antiport rules as generators of vector sets, or as
acceptors of sets of numbers or vectors, in a way similar to the way cell-like

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

8.3. LIST OF CONCLUSIONS, OPEN PROBLEMS AND RESEARCH DIRECTIONS195

P systems have been investigated.

8.3.6 Solving Particular Problems

While a very restricted set of features is often enough to obtain a universal
computational device (often implying that any kind of computational prob-
lem can be solved using it), applications of P systems in other areas of science
often deal with a much richer set of features. This is often due to the par-
ticular way a particular computational problem needs to be solved (imagine,
e.g., modern software implemented on a Turing machine instead of a random
access machine, with a polynomial slowdown).

In such a way, certain computation time is one demand, another one
would be the adequate (transparent) internal representation of the prob-
lem (initial data, final answer, and intermediate stages). We will not talk
here about the latter (relevant for modelling biological processes, modelling
linguistic phenomena, etc.), and focus on the first one instead. To devise
time-efficient algorithms (i.e., P system) for particular problems, massive
parallelism (a built-in capability of P systems) needs to be exploited.

We have presented EC P systems solving the sorting problem by pro-
cessing different pairs of numbers in parallel. Notice that in P systems with
symbol object string structures do not exist (unless many membranes are
used for this purpose), so all data have to be represented by multisets, in
this case - in unary. For a number (i.e., all occurrences of the same symbol
in the same region) to be processed (e.g., compared) in a constant time, ad-
ditional control is needed. In this case we have used priorities. Therefore,
two levels of parallelism are used: processing different symbols and process-
ing different copies of the same symbol. The number of steps needed for a P
system to solve the sorting problem is linear with respect to the depth of an
underlying sorting network.

We have stated the construction of P systems with symport / antiport
with membrane division solving SAT. Membrane division is a powerful feature
that lets the system increase the workspace in a fast way. We also “abuse”
the membrane division rules to increase the total number of objects in the
system and to do the work of renaming (i.e., unary non-cooperative) rules.
Antiport rules perform all necessary interactions between the information
stored in the objects.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

196 CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

List of Figures

3.1 Multi-criterial problem . 42
3.2 Simulator. The main interface 43

4.1 Using (ncoo, sym1, anti1) decrement: left, zero-test: right . . 50
4.2 Using (ncoo, sym2) decrement: left, zero-test: right 50
4.3 Deterministic P systems with (ncoo, sym1, anti1). Decrement

(top) and zero-test (bottom). 60
4.4 Deterministic P systems with (ncoo, sym2). Decrement (left)

and zero-test (right). 61

5.1 Bringing objects bj, dj. 87
5.2 Ending of the initialization (stage 1). 88
5.3 qi replaced by ql, ck moved into region 2. 89
5.4 qi replaced by ql, ck removed from region 2. 89
5.5 “Zero test” instruction. There is no ck in region 2. 89
5.6 “Zero test” instruction. There is ck in region 2. 90
5.7 Beginning of the termination (stage 3). 91
5.8 Bringing objects bj. 94
5.9 End of the initialization (stage 1). 94
5.10 qi replaced by ql, ck moved into region 2. 95
5.11 qi replaced by ql, ck removed from region 2. 95
5.12 “Zero test” instruction. There is no ck in region 2. 96
5.13 “Zero test” instruction. There is ck in region 2. 96
5.14 Beginning of the termination (stage 3). 97
5.15 End of the termination. 98

197

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

198 LIST OF FIGURES

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

List of Tables

1.1 Membrane Computing Meetings (downloadable from [205]) . . 10

4.1 Proton pumping by antiport. Register operations. 65
4.2 Proton pumping by antiport. Miscellaneous 66
4.3 Proton pumping by symport. Register 1. 69
4.4 Proton pumping by symport. Register 2. 69
4.5 Proton pumping by symport. Miscellaneous 1. 70
4.6 Proton pumping by symport. Miscellaneous 2. 70

6.1 Classes OsPm . 146
6.2 Families NOntPm . 167
6.3 Families NOnt

′Pm . 167

199

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

200 LIST OF TABLES

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

Bibliography

[1] B. Alberts et. al., Essential Cell Biology. An Introduction to the Molec-
ular Biology of the Cell, Garland Publ, New York, London, 1998.

[2] A. Alhazov, A Note on P Systems with Activators, in [167], 16–19.

[3] A. Alhazov, Generating Classes of Languages by P Systems and Other
Devices, in [63], 18–22.

[4] A. Alhazov, Maximally Parallel Multiset-Rewriting Systems: Browsing
the Configurations, in [108], 1–10, and Grammars, submitted, 2004.

[5] A. Alhazov, Minimizing Evolution–Communication P Systems and EC
P Automata, in [63], 23–31, and New Generation Computing 22, 4, 2004,
299–310.

[6] A. Alhazov, Number of Protons/Bi-stable Catalysts and Membranes in
P Systems. Time-Freeness, in [86], 102–122, and in [98], 80–96.

[7] A. Alhazov, On the Power of Deterministic EC P Systems, in [167], 11-
15, and Journal of Universal Computer Science 10, 5, 2004, 502–508.

[8] A. Alhazov, P Systems Without Multiplicities of Symbol-Objects, In-
formation Processing Letters, submitted, 2004, accepted, 2005.

[9] A. Alhazov, Solving SAT by Symport / Antiport P Systems with Mem-
brane Division, in [103], 1–6.

[10] A. Alhazov, M. Cavaliere, Evolution–Communication P Systems: Time-
freeness, in [108], 11–18.

[11] A. Alhazov, M. Cavaliere, Proton Pumping P Systems, in [27], 1–16,
and [139], 1–18.

201

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

202 BIBLIOGRAPHY

[12] A. Alhazov, R. Freund, On Efficiency of P Systems with Active Mem-
branes and Two Polarizations, in [146], 81–94, and in [145], 146–160.

[13] A. Alhazov, R. Freund, P Systems with One Membrane and Symport /
Antiport Rules of Five Symbols are Computationally Complete, in [108],
19–28.

[14] A. Alhazov, R. Freund, A. Leporati, M. Oswald, C. Zandron, (Tissue)
P Systems with Unit Rules and Energy Assigned to Membranes, Fun-
damenta Informaticae, to appear.

[15] A. Alhazov, R. Freund, M. Oswald, Cell / Symbol Complexity of Tissue
P Systems with Symport / Antiport Rules, International Journal of
Foundations of Computer Science 17, 1, 2006, 3–26.

[16] A. Alhazov, R. Freund, M. Oswald, Symbol/Membrane Complexity of
Symport / Antiport P Systems, in [86], 123–146, and in [98], 97–114.

[17] A. Alhazov, R. Freund, M. Oswald, Tissue P Systems with Antiport
Rules and Small Number of Symbols and Cells, in [103], 7–22, and Devel-
opments in Language Theory, 9th International Conference, DLT 2005,
Palermo (C. de Felice, A. Restivo, eds.), Lecture Notes in Computer
Science 3572, 2005, 100–111.

[18] A. Alhazov, R. Freund, Gh. Păun, Computational Completeness of
P Systems with Active Membranes and Two Polarizations, Machines,
Computations, and Universality, International Conference, MCU 2004,
Saint Petersburg, 2004, Revised Selected Papers (M. Margenstern, ed.),
Lecture Notes in Computer Science 3354, Springer, 2005, 82–92.

[19] A. Alhazov, R. Freund, Gh. Păun, P Systems with Active Membranes
and Two Polarizations, in [167], 20–36.

[20] A. Alhazov, R. Freund, Agust́ın Riscos-Núñez, One and Two Polariza-
tions, Membrane Creation and Objects Complexity in P Systems, in
[70], 9–18, and IEEE Computer Press, to appear.

[21] A. Alhazov, R. Freund, Yu. Rogozhin: Computational Power of Sym-
port / Antiport: History, Advances and Open Problems, in [86], 44–78,
and in [98], 1–31.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

BIBLIOGRAPHY 203

[22] A. Alhazov, R. Freund, Yu. Rogozhin, Some Optimal Results on Sym-
port / Antiport P Systems with Minimal Cooperation, in [103], 23–36.

[23] A. Alhazov, T.-O. Ishdorj, Membrane Operations in P Systems with
Active Membranes, in [167], 37–44.

[24] A. Alhazov, M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan,
Communicative P Systems with Minimal Cooperation, in [145], 162–
178.

[25] A. Alhazov, C. Mart́ın-Vide, L. Pan, Solving a PSPACE-Complete Prob-
lem by P Systems with Restricted Active Membranes, Fundamenta In-
formaticae 58, 2, 2003, 67–77.

[26] A. Alhazov, C. Mart́ın-Vide, L. Pan, Solving Graph Problems by P Sys-
tems with Restricted Elementary Active Membranes, Aspects of Molec-
ular Computing - Essays dedicated to Tom Head on the occasion of
his 70th birthday (N. Jonoska, Gh. Păun, G. Rozenberg, eds.), Lecture
Notes in Computer Science 2950 Festschrift, Springer, 2004, 1–22.

[27] A. Alhazov, C. Mart́ın-Vide, Gh. Păun (Eds.), Preproceedings of
the Workshop on Membrane Computing, Tarragona, GRLMC Report
28/03, Rovira i Virgili University, 2003.

[28] A. Alhazov, L. Pan, Polarizationless P Systems with Active Membranes,
Grammars 7, 2004, 141–159.

[29] A. Alhazov, L. Pan, Gh. Păun, Trading Polarizations for Labels in P
Systems with Active Membranes, Acta Informaticae 41, 2-3, 2004, 111–
144.

[30] A. Alhazov, Yu. Rogozhin, Minimal Cooperation in Symport / Antiport
P Systems with One Membrane, in [108], 29–34.

[31] A. Alhazov, Yu. Rogozhin, S. Verlan, Symport / Antiport Tissue P
Systems with Minimal Cooperation, in [103], 37–52.

[32] A. Alhazov, D. Sburlan, Static Sorting Algorithms for P Systems, in
[27], 17–40.

[33] A. Alhazov, D. Sburlan: Static Sorting P Systems, in [71], 215–252.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

204 BIBLIOGRAPHY

[34] A. Alhazov, D. Sburlan, (Ultimately Confluent) Parallel Multiset-
Rewriting Systems with Context, in [167], 45–52, and in [146], 95–103.

[35] A. Alhazov, D. Sburlan, Ultimately Confluent Rewriting Systems. Paral-
lel Multiset-Rewriting with Permitting or Forbidding Contexts, in [145],
178–189.

[36] A. Alhazov, S. Verlan, Sevilla Carpets of Deterministic Non-cooperative
P Systems, in [103], 53–60.

[37] O. Andrei, G. Ciobanu, D. Lucanu, Rewriting P Systems in Maude, in
[146], 104–118.

[38] I.I. Ardelean, M. Cavaliere, Modelling Biological Processes by Using a
Probabilistic P System Software, Natural Computing 2, 2, 2003, 173–
197.

[39] F. Arroyo Montoro, Structures and Biolanguage to Simulate Membrane
Computing, PhD Thesis, Univeridad Politecnica de Madrid, Madrid,
Spain, 2004.

[40] F. Arroyo, A.V. Baranda, J. Castellanos, C. Luengo, L.F. Mingo, A
Recursive Algorithm for Describing Evolution in Transition P Sys-
tems, Pre-Proceedings of Workshop on Membrane Computing, Curtea
de Argeş, 2001, GRLMC Report 17/01, Rovira i Virgili University, Tar-
ragona, 2001, 19–30.

[41] F. Arroyo, C. Luengo, A.V. Baranda, L.F. de Mingo, A Software Simu-
lation of Transition P Systems in Haskell, in [174], 29–44, and in [170],
19–32.

[42] J.J. Arulanandham, Implementing Bead-Sort with P Systems, Uncon-
ventional Models of Computation 2002 (C.S. Calude, M.J. Dinneen, F.
Peper, eds.), Lecture Notes in Computer Science 2509, Springer-Verlag,
Heidelberg, 2002, 115-125.

[43] D. Balbotin Noval, M.J. Pérez Jiménez, F. Sancho Caparrini, A
MzScheme Implementation of Transition P systems, in [174], 62–80, and
in [170], 58–73.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

BIBLIOGRAPHY 205

[44] A.V. Baranda, J. Castellanos, F. Arroyo, R. Gonzalo, Towards an Elec-
tronic Implementation of Membrane Computing: A Formal Description
of Nondeterministic Evolution in Transition P Systems, in [130], 350–
359.

[45] F. Bernardini, M. Gheorghe: On the Power of Minimal Symport / An-
tiport, in [27], 72–83.

[46] F. Bernardini, V. Manca, P Systems with Boundary Rules, in [174],
97–102, and in [170], 107–118.

[47] F. Bernardini, A. Păun, Universality of Minimal Symport / Antiport:
Five Membranes Suffice, in [139], 43–45.

[48] D. Besozzi, Computational and Modelling Power of P Systems, PhD
Thesis, Universitá degli Studi di Milano, Italy, 2004.

[49] A. Binder, R. Freund, G. Lojka, M. Oswald, Implementation of Cat-
alytic P Systems, Implementation and Application of Automata, 9th
International Conference, CIAA 2004, Kingston, Revised Selected Pa-
pers (M. Domaratzki, A. Okhotin, K. Salomaa, S. Yu, eds.), Kingston,
2004, 24–33.

[50] C. Bonchis, G. Ciobanu, C. Isbasha, D. Petcu, A Web-based P System
Simulator and Its Parallelization, Unconventional Computation, 4th In-
ternational Conference, UC 2005, Sevilla (C. Calude, M.J. Dinneen, Gh.
Păun, M.J. Pérez-Jiménez, G. Rozenberg, eds.), Lecture Notes in Com-
puter Science 3699, Springer, 2005, 58–69.

[51] C. Bonchis, C. Isbasa, D. Petcu, G. Ciobanu, WebPS: A Web-based P
System Simulator with Query Facilities, in [108], 63–72.

[52] P. Bottoni, C. Mart́ın-Vide, Gh. Păun, G. Rozenberg, Membrane Sys-
tems with Promoters/Inhibitors, Acta Informatica, 38, 10, 2002, 695–
720.

[53] C.S. Calude, E. Calude, M.J. Dinneen (Eds.), Developments in Lan-
guage Theory, 8th International Conference, DLT 2004, Auckland, Lec-
ture Notes in Computer Science 3340, Springer, Berlin, 2004.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

206 BIBLIOGRAPHY

[54] C.S. Calude, M.J. Dinneen, Gh. Păun (Eds.), Pre-proceedings of Work-
shop on Multiset Processing, Curtea de Argeş, 2000, CDMTCS research
report 140, Univ. Auckland, 2000.

[55] C.S. Calude, Gh. Păun, Bio-steps beyond Turing, CDMTCS research
report 226, Auckland Univ., 2003.

[56] C.S. Calude, Gh. Păun, Computing with Cells and Atoms: After Five
Years, CDMTCS research report 246, Univ. of Auckland, 2004.

[57] M. Cavaliere, Evolution, Communication and Observation. From Bi-
ology to Membrane Systems and Back, RNGC TR 03/2004, Sevilla
University.

[58] M. Cavaliere, Evolution, Communication, Observation: From Biology
to Membrane Computing and Back, PhD Thesis, University of Sevilla,
Spain, 2006.

[59] M. Cavaliere, Evolution–Communication P Systems, in [170], 134–145.

[60] M. Cavaliere, Towards Asynchronous P Systems, in [146], 161–173.

[61] M. Cavaliere, V. Deufemia, Further Results on Time-Free P Systems, in
[103], 95–116.

[62] M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun, Event-related Outputs
of Computations in P Systems, in [108], 107–122.

[63] M. Cavaliere, C. Mart́ın-Vide, Gh. Păun (Eds.), Brainstorming Week
on Membrane Computing, Tarragona, GRLMC Report 26/03, Rovira i
Virgili University, 2003.

[64] M. Cavaliere, D. Sburlan, Time and Synchronization in Membrane Sys-
tems, Fundamenta Informaticae 64, 1-4, 2005.

[65] M. Cavaliere, D. Sburlan, Time-independent P systems, Membrane
Computing, in [145].

[66] R. Ceterchi, C. Mart́ın-Vide, P Systems with Communication for Static
Sorting, in [63], 101–117.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

BIBLIOGRAPHY 207

[67] G. Ciobanu, V.M. Gontineac, Algebraic and Coalgebraic Aspects of
Membrane Computing, in [86], 289–311.

[68] G. Ciobanu, M. Gontineac, Mealy Membrane Automata and P Systems
Complexity, in [103], 149–164.

[69] G. Ciobanu, D. Paraschiv, Membrane Software. A P System Simulator,
Fundamenta Informaticae 49, 1-3, 2002, 61–66.

[70] G. Ciobanu, Gh. Păun (Eds), Pre-proceedings of the First International
Workshop on Theory and Applications of P Systems, Timişoara, Tech-
nical Report 05-11, Institute e-Austria, Timişoara, 2005.

[71] G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (Eds.), Applications of
Membrane Computing, Natural Computing Series, Springer-Verlag,
Berlin, 2005.

[72] G. Ciobanu, Gh. Păun, Gh. Ştefănescu, P transducers, New Generation
Computing 24, 1, 2006, 1–28.

[73] G. Ciobanu, Gh. Păun, Gh. Ştefănescu, Sevilla Carpets Associated with
P Systems, in [63], 135–140.

[74] G. Ciobanu, G. Wenyuan, A Parallel Implementation of Transition P
Systems, in [27], 169–184.

[75] A. Cordon-Franco, M.A. Gutierrez-Naranjo, M.J. Pérez-Jiménez, F.
Sancho-Caparrini, A Prolog Simulator for Deterministic P Systems with
Active Membranes, in [63] 141–154.

[76] E. Csuhaj-Varjú, Gy. Vaszil, New Results and Research Directions Con-
cerning P Automata, Accepting P Systems with Communication Only,
in [63], 171–179.

[77] E. Csuhaj-Varjú, G. Vaszil, P automata or Purely Communicating Ac-
cepting P Systems, in [170], 219–233.

[78] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

208 BIBLIOGRAPHY

[79] M. Davis, E. Weyuker, Computability, Complexity, and Languages: Fun-
damentals of Theoretical Computer Science, Academic Press, New York,
1994.

[80] R. Freund, Asynchronous P Systems, in [146], 12–28.

[81] R. Freund, Energy-controlled P systems, in [174], 221–236, and in [170],
247–260.

[82] R. Freund, Generalized P Systems, Fundamentals of Computation The-
ory, FCT’99, Iaşi, (G. Ciobanu, Gh. Paun, eds.), Lecture Notes in Com-
puter Science 1684, Springer, 1999, 281–292.

[83] R. Freund, Special Variants of P Systems Inducing an Infinite Hierarchy
with respect to the Number of Membranes, Bull. EATCS 75, 2001, 209–
219.

[84] R. Freund, O.H. Ibarra, Gh. Păun, H.-C. Yen, Matrix Languages, Reg-
ister Machines, Vector Addition Systems, in [108], 155–168.

[85] R. Freund, L. Kari, M. Oswald, P. Sośık, Computationally Universal P
Systems without Priorities: Two Catalysts Are Sufficient, Theoretical
Computer Science 330, 2, 2005, 251–266.

[86] R. Freund, G. Lojka, M. Oswald, Gh. Păun (Eds.), Pre-proceedings of the
Sixth Workshop on Membrane Computing (WMC6), Vienna, Austria,
2005.

[87] R. Freund, C. Mart́ın-Vide, A. Obtu lowicz, Gh. Păun, On Three Classes
of Automata-Like P Systems, Developments in Language Theory, 7th
International Conference, DLT 2003, Szeged (Z. Ésik, Z. Fülöp, eds.),
Lecture Notes in Computer Science 2710, 2003.

[88] R. Freund, M. Oswald, A Short Note on Analysing P Systems with
Antiport Rules, Bulletin of the European Association for Theoretical
Computer Science 78, 2002, 231–236.

[89] R. Freund, M. Oswald, GP Systems with Activated/Prohibited Mem-
brane Channels, in [170], 261–269.

[90] R. Freund, M. Oswald, GP Systems with Forbidding Context, Funda-
menta Informaticae 49, 1–3, 2002, 81–102.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

BIBLIOGRAPHY 209

[91] R. Freund, M. Oswald, P Colonies Working in the Maximally Parallel
and in the Sequential Mode, in [70], 49–56.

[92] R. Freund, M. Oswald, P Systems with Activated/Prohibited Membrane
Channels, in [170], 261–268.

[93] R. Freund, M. Oswald, P systems with Conditional Communication
Rules Assigned to Membranes, in [27], 231–240.

[94] R. Freund, M. Oswald, Tissue P Systems with Symport / Antiport Rules
of One Symbol are Computationally Universal, in [103], 187–200.

[95] R. Freund, A. Păun, Membrane Systems with Symport / Antiport: Uni-
versality Results, in [170], 270–287.

[96] R. Freund, Gh. Păun, On Deterministic P Systems, submitted, 2003,
see [205].

[97] R. Freund, Gh. Păun, M.J. Pérez-Jiménez, Tissue-like P Systems with
Channel States, in [167], 206–223 and Theoretical Computer Science
330, 2005, 101–116.

[98] R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa (Eds), Membrane Com-
puting. International Workshop, WMC6, Vienna, 2005. Revised Selected
and Invited Papers, Lecture Notes in Computer Science 3850, Springer,
Berlin, 2006.

[99] P. Frisco, About P Systems with Symport / Antiport, in [167], 224–236.

[100] P. Frisco, H.J. Hoogeboom, P Systems with Symport / Antiport Sim-
ulating Counter Automata, Acta Informatica 41, 2–3, 2004, 145–170.

[101] P. Frisco, H.J. Hoogeboom, Simulating Counter Automata by P Sys-
tems with Symport / Antiport, in [174], 237–248, and in [170], 288–301.

[102] S. Greibach: Remarks on Blind and Partially Blind One-Way Multi-
counter Machines, Theoretical Computer Science 7, 1978, 311–324.

[103] M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez (Eds.), Cel-
lular Computing (Complexity Aspects), ESF PESC Exploratory Work-
shop, Fénix Editorial, Sevilla, 2005.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

210 BIBLIOGRAPHY

[104] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, A Sim-
ulator for Confluent P Systems, in [108], 169–184.

[105] A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, F.J.
Romero-Campero, Characterizing Tractability with Membrane Cre-
ation, in [70], 61–68.

[106] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos Núñez, F.J.
Romero-Campero, On the Power of Dissolution in P Systems with Active
Membranes, in [86], 373–394.

[107] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero,
A Linear Solution for QSAT with Membrane Creation, in [86], 395–409.

[108] M.A. Gutiérrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D.
Sburlan (Eds.), Third Brainstorming Week on Membrane Computing,
Sevilla, GCN TR 01/2005, University of Seville, 2005.

[109] D. Hauschildt, M. Jantzen, Petri Net Algorithms in the Theory of
Matrix Grammars, Acta Informatica 31, 1994, 719–728.

[110] O.H. Ibarra, On Determinism Versus Nondeterminism in P Systems,
Theoretical Computer Science 344, 2005, 120–133.

[111] O.H. Ibarra, On Membrane Hierarchy in P Systems, Theoretical Com-
puter Science 334, 2005, 115–129.

[112] O.H. Ibarra, On the Computational Complexity of Membrane Com-
puting Systems, Theoretical Computer Science 320, 1, 2004, 89–109.

[113] O.H. Ibarra, P Systems: Some Recent Results and Research Problems,
Unconventional Programming Paradigms, International Workshop, UPP
2004, Le Mont Saint Michel, Revised Selected and Invited Papers (J.-P.
Banıatre, P. Fradet, J.-L. Giavitto, O. Michel, eds.) Lecture Notes in
Computer Science 3566, Springer, 2005, 225–237.

[114] O.H. Ibarra, Some Recent Results Concerning Deterministic P Sys-
tems, in [86], 24–25.

[115] O.H. Ibarra, The Number of Membranes Matters, in [27], 273–285.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

BIBLIOGRAPHY 211

[116] O.H. Ibarra, Z. Dang, O. Egecioglu, Catalytic Membrane Systems,
Semilinear Sets, and Vector Addition Systems, Theoretical Computer
Science 312, 2-3, 2004, 378–400.

[117] O.H. Ibarra, Z. Dang, O. Egecioglu, G. Saxena, Characterizations of
Catalytic Membrane Computing Systems, Mathematical Foundations of
Computer Science 2003, 28th International Symposium, MFCS 2003,
Bratislava (B. Rovan, P. Vojtás, eds.), Lecture Notes in Computer Sci-
ence 2747, Springer, 2003, 480–489.

[118] O.H. Ibarra, A. Păun, Counting Time in Computing with Cells, DNA11
Proceedings, London, Canada, 2005.

[119] O.H. Ibarra, Gh. Păun, Characterizations of Context-Sensitive Lan-
guages and Other Language Classes in Terms of Symport/Antiport P
Systems, submitted, 2005.

[120] O.H. Ibarra, S.Woodworth, On Bounded Symport / Antiport P Sys-
tems, DNA11 Proceedings, London, Canada, 2005.

[121] O. Ibarra, S. Woodworth, On Symport / Antiport P Systems with One
or Two Symbols, in [70], 75–82, and IEEE Computer Press, submitted,
2005.

[122] O.H. Ibarra, S. Woodworth, H. Yen, Z. Dang, On Symport / Antiport
Systems and Semilinear Sets, in [86], 312–335.

[123] O.H. Ibarra, H.-C. Yen, On Deterministic Catalytic P Systems, Im-
plementation and Application of Automata, 10th International Confer-
ence, CIAA 2005, Sophia Antipolis, Revised Selected Papers (J. Farré,
I. Litovsky, S. Schmitz, eds.), Lecture Notes in Computer Science 3845,
Springer, 2006, 163–175.

[124] O.H. Ibarra, H.-C. Yen, Z. Dang, The Power of Maximal Parallelism
in P Systems, in [53], 212–224.

[125] M. Ionescu, C. Mart́ın-Vide, Gh. Păun, P Systems with Symport /
Antiport Rules: The traces of objects, in [174], and Grammars 5, 2002,
65–79.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

212 BIBLIOGRAPHY

[126] M. Ionescu, C. Mart́ın-Vide, A. Păun, Gh. Păun, Membrane Systems
with Symport / Antiport. (Unexpected) Universality Results, DNA
Computing, 8th International Workshop on DNA Based Computers,
DNA8, Sapporo, Revised Papers (M. Hagiya, A. Ohuchi, eds.), Lecture
Notes in Computer Science 2568, Springer, 2003, 281–290.

[127] M. Ionescu, C. Mart́ın-Vide, A. Păun, Gh. Păun, Unexpected Univer-
sality Results for Three Classes of P Systems with Symport / Antiport,
Natural Computing 2, 4, 2003, 337–348.

[128] M. Ionescu, D. Sburlan, On P Systems with Promoters/Inhibitors, in
[167], 264-280, and Journal of Universal Computer Science 10, 5, 2004,
581–599.

[129] M. Ito, C. Mart́ın-Vide, Gh. Păun, A Characterization of Parikh Sets
of ET0L Languages in Terms of P Systems, Words, Semigroups, and
Transducers (M. Ito, Gh. Paun, S. Yu, eds.), World Scientific, Singapore,
2001, 239–254.

[130] N. Jonoska, N.C. Seeman (Eds.), DNA Computing, 7th International
Workshop on DNA-Based Computers, DNA7, Tampa, Revised Papers,
Lecture Notes in Computer Science 2340, Springer, 2002.

[131] L. Kari, C. Mart́ın-Vide, A. Păun, On the Universality of P Systems
with Minimal Symport / Antiport Rules, Aspects of Molecular Comput-
ing - Essays dedicated to Tom Head on the occasion of his 70th birthday
(N. Jonoska, Gh. Păun, G. Rozenberg, eds.), Lecture Notes in Computer
Science 2950 Festschrift, Springer, 2004, 254–265.

[132] J. Kleijn, M. Koutny, G. Rozenberg, Towards a Petri Net Semantics
for Membrane Systems, in [86], 439–460.

[133] S. N. Krishna, Languages of P Systems. Computability and Complexity,
PhD Thesis, Indian Institute of Technology, Madras, India, 2002.

[134] S.N. Krishna, A. Păun, Some Universality Results on Evolution–
Communication P Systems, in [63], 207–215.

[135] S.N. Krishna, A. Păun, Three Universality Results on P Systems, in
[63], 198–206.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

BIBLIOGRAPHY 213

[136] M. Kudlek, V. Mitrana, Some Considerations on a Multiset Model for
Membrane Computing, in [174], 311-316, and in [170], 352–359.

[137] M. Madhu, Studies of P Systems as a Model of Cellular Computing,
PhD Thesis, Dept. of Computer Science and Engineering, Indian In-
stitute of Technology, Madras, India, 2003.

[138] M. Margenstern, V. Rogozhin, Y. Rogozhin, S. Verlan, About P Sys-
tems with Minimal Symport / Antiport Rules and Four Membranes,
Pre-proceedings of the Fifth Workshop on Membrane Computing, Mi-
lano, 2004, 283–294.

[139] C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.)
Membrane Computing, International Workshop, WMC 2003, Tarragona,
Revised Papers, Lecture Notes in Computer Science 2933, Springer,
2004.

[140] C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodŕıguez-Patón, Tissue P
Systems, Theoretical Computer Science 296, 2, 2003, 295–326.

[141] C. Mart́ın-Vide, A. Păun, Gh. Păun, On the Power of P Systems with
Symport Rules, Journal of Universal Computer Science 8, 2, 2002, 317–
331.

[142] C. Mart́ın-Vide, Gh. Păun, Computing with Membranes (P Systems):
Universality Results, Proceedings of 3rd Int’l Conf. Machines, Com-
putability and Universality, Chişinău, 2001, Lecture Notes in Computer
Science 2055 (M. Margenstern, Yu. Rogozhin, eds.), Springer-Verlag,
2001, 82–101.

[143] C. Mart́ın-Vide, Gh. Păun, Elements of Formal Language Theory for
Membrane Computing, GRLMC Report 21/01, Rovira i Virgili Univer-
sity, Tarragona, 2001.

[144] C. Mart́ın-Vide, Gh. Păun (Eds.), Pre-proceedings of Workshop on
Membrane Computing, Curtea de Argeş, 2001, GRLMC Report 16/01,
Rovira i Virgili University, 2001.

[145] G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salo-
maa (Eds.), Membrane Computing. International Workshop, WMC5,

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

214 BIBLIOGRAPHY

Milan, 2004. Revised Papers, Lecture Notes in Computer Science 3365,
Springer-Verlag, Berlin, 2005.

[146] G. Mauri, Gh. Păun, C. Zandron (Eds.), Pre-proceedings of the Fifth
Workshop on Membrane Computing (WMC5), Milano, Universitá di
Milano-Bicocca, 2004.

[147] M.L. Minsky, Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, New Jersey, 1967.

[148] I.A. Nepomuceno-Chamorro, A Java Simulator for Basic Transition P
Systems, in [167], 309–315, and Journal of Universal Computer Science
10, 5, 2004, 620–619.

[149] M. Oswald, P Automata, PhD Thesis, Faculty of Computer Science,
TU Vienna, 2003.

[150] L. Pan, A. Alhazov, Solving HPP and SAT by P Systems with Active
Membranes and Separation Rules, IEEE Transactions on Computers,
accepted, 2005.

[151] L. Pan, A. Alhazov, T.-O. Ishdorj, Further Remarks on P Systems with
Active Membranes, Separation, Merging, and Release Rules, in [167],
316–324, and Soft Computing - A Fusion of Foundations, Methodologies
and Applications 9, 9, 2005, 686–690.

[152] C.H. Papadimitrou, Computational Complexity, Addison Wesley, 1994.

[153] A. Păun, On P Systems with Global Rules, in [130], 329–339.

[154] A. Păun, On P Systems with Membrane Division, Unconventional
Models of Computation (I. Antoniou, C.S. Calude, M.J. Dinneen, eds.),
Springer-Verlag, London, 2000, 187–201.

[155] A. Păun, Unconventional Models of Computation: DNA and Mem-
brane Computing, PhD Thesis, Department of Computer Science, The
University of Western Ontario, Canada, 2003.

[156] A. Păun, Gh. Păun, The Power of Communication: P Systems with
Symport / Antiport, New Generation Computing 20, 2002, 295–305.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

BIBLIOGRAPHY 215

[157] A. Păun, Gh. Păun, G. Rozenberg, Computing by Communication in
Networks of Membranes, International Journal of Foundations of Com-
puter Science 13, 6, 2002, 779–798.

[158] Gh. Păun, Computing with Membranes, Journal of Computer and Sys-
tem Sciences, 61, 1, 2000, 108–143, and Turku Center for Computer
Science- TUCS Report 208, 1998.

[159] Gh. Păun, Computing with Membranes: Attacking NP-Complete
Problems, Unconventional Models of Computation (I. Antoniou, C.S.
Calude, M.J. Dinneen, eds.), Springer-Verlag, London, 2000, 94–115.

[160] Gh. Păun, Computing with Membranes (P Systems): Twenty Six Re-
search Topics, CDMTCS research report 119, Univ. of Auckland, 2000.

[161] Gh. Păun, From Cells to Computers: Computing with Membranes
(P Systems), Proceedings of Int’l Workshop Grammar Systems 2000
(R. Freund, A. Kelemenova, eds.), Bad Ischl, 2000, 9–40, and BioSys-
tems, 59, 3, 2001, 139–158.

[162] Gh. Păun, Further Twenty Six Open Problems in Membrane Comput-
ing, in [108], 249–262.

[163] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag,
Berlin, Heidelberg, 2002.

[164] Gh. Păun, P Systems with Active Membranes: Attacking NP-Complete
Problems, J. Automata, Languages and Combinatorics, 6, 1, 2001, 75–
90, and CDMTCS research report 102, Univ. of Auckland, 1999.

[165] Gh. Păun, J. Pazos, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón, Sym-
port / Antiport P Systems with Three Objects are Universal, Funda-
menta Informaticae 64, 2005, 1–4.

[166] Gh. Păun, M.J. Perez-Jiménez, A. Riscos-Núñez, Tissue P Systems
with Cell Division, in [167], 380–386.

[167] Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini
(Eds.), Second Brainstorming Week on Membrane Computing, Sevilla,
GCN TR 01/2004, University of Seville, 2004.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

216 BIBLIOGRAPHY

[168] Gh. Păun, G. Rozenberg, A Guide to Membrane Computing, Theoret-
ical Computer Science 287, 1, 2002, 73–100.

[169] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Comput-
ing Paradigms, Springer, Berlin, Heidelberg, 1998.

[170] Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.), Mem-
brane Computing. International Workshop WMC-CdeA 2002, Curtea
de Argeş, Romania, Revised Papers, Lecture Notes in Computer Sci-
ence 2597, Springer-Verlag, Berlin, 2003.

[171] Gh. Păun, Y. Sakakibara, T. Yokomori, P Systems on Graphs of Re-
stricted Forms, Publicationes Mathematicae 60, 2002.

[172] Gh. Păun, T. Yokomori, Membrane Computing Based on Splicing, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence 54, American Mathematical Society, 1999, 217–232.

[173] Gh. Păun, S. Yu, On Synchronization in P Systems, Fundamenta Infor-
maticae 38, 4, 1999, 397–410, and University of Western Ontario Report
539, 1999.

[174] Gh. Păun, C. Zandron (Eds.), Pre-proceedings of Workshop on Mem-
brane Computing, Curtea de Argeş, MolCoNet Publication No 1, 2002.

[175] M.J. Pérez-Jiménez, Complexity Classes in Membrane Computing, in
[146], 63–63.

[176] M.J. Pérez Jiménez, A. Romero Jiménez, F. Sancho Caparrini, Com-
plexity Classes in Models of Cellular Computing with Membranes, Nat-
ural Computing 2, 3, 2003, 265–285.

[177] M.J. Pérez-Jiménez, A. Riscos-Núñez (Eds.), Modelos de Computacion
Molecular, Celular y Cuantica, Fénix Editorial, Sevilla, 2004.

[178] M.J. Pérez-Jiménez, F.J. Romero-Campero, Trading Polarizations for
Bi-stable Catalysts in P Systems with Active Membranes, in [146], 327–
342.

[179] M.J. Pérez-Jiménez, A. Romero-Jiménez, Simulating Turing Machines
by P Systems, Fundamenta Informaticae 49, 1-3, 2002, 273–287.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

BIBLIOGRAPHY 217

[180] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Com-
plexity Classes in Cellular Computing with Membranes, in [63], 270-278,
and Natural Computing 2, 3, 2003, 265–285.

[181] M.J. Pérez-Jiménez, F. Sancho-Caparrini, A Formalization of Basic P
Systems, Fundamenta Informaticae 49, 1-3, 2002, 261–272.

[182] M. Pérez Jiménez, F. Sancho Caparrini, Computacion celular con mem-
branas: Un modelo no convencional, Kronos Editorial, Sevilla, 2002.

[183] I. Petre, A Normal Form for P Systems, Bulletin of the EATCS 67,
1999, 165–172.

[184] Z. Qi, C. Fu, D. Shi, J.You, Specification and Execution of P Systems
with Symport / Antiport Rules Using Rewriting Logic, in [146], 363–371.

[185] Z. Qi, J. You, P Systems and Petri Nets, in [27], 387–403.

[186] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems,
Academic Press, New York, 1980.

[187] M.H. Saier, jr., A Functional-Phylogenetic Classification System for
Transmembrane Solute Transporters, Microbiology and Molecular Biol-
ogy Reviews, 2000, 354–411.

[188] A. Salomaa, G. Rozenberg (Eds.), Handbook of Formal Languages,
Springer-Verlag, Berlin, 1997.

[189] D. Sburlan, A Static Sorting Algorithm for P Systems with Mobile
Catalysts, Analele Stiintifice Univ. Ovidius Constanţa, seria Matemat-
ica, 11, 1, Constanţa, 2003, 195–205.

[190] D. Sburlan, Clock-free P Systems, in [146], 372–383.

[191] D. Sburlan, Further Results on P Systems with Promoters/Inhibitors,
in [108], 289–304.

[192] D. Sburlan, Membrane Systems with Promoters/Inhibitors. From Com-
putational Universality to Algorithms, RNGC Report 04/2004, Sevilla
University, 2004.

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

218 BIBLIOGRAPHY

[193] D. Sburlan, Non-cooperative P Systems with Priorities Characterize
PsET0L, in [86], 530–539.

[194] D. Sburlan, Promoting and Inhibiting Contexts in Membrane Comput-
ing, PhD Thesis, University of Sevilla, Spain, 2006.

[195] P. Sośık, The Power of Catalysts and Priorities in Membrane Systems,
Grammars 6, 1, 2003, 13–24.

[196] P. Sośık, R. Freund, P Systems Without Priorities are Computationally
Universal, in [170], 400–409.

[197] P. Sośık, Solving a PSPACE-Complete Problem by P Systems with
Active Membranes, in [63], 305–312.

[198] P. Sośık, R. Freund, P Systems Without Priorities are Computationally
Universal, in [170], 400–409.

[199] A. Syropoulos, E.G. Mamatas, P.C. Allilomes, K.T. Sotiriades, A Dis-
tributed Simulation of P Systems, in [27], 455–460.

[200] Gy. Vaszil, On the Size of P Systems with Minimal Symport / Antiport,
in [146], 422–431, and in [145], 404–413.

[201] S. Verlan, Head Systems and Application to Bio-informatics, PhD
Thesis, LITA, Univ. Metz, 2004.

[202] S. Verlan, Optimal Results on Tissue P Systems with Minimal Sym-
port / Antiport, Presented at EMCC meeting, Lorentz Center, Leiden,
2004.

[203] S. Verlan, Tissue P Systems with Minimal Symport / Antiport, in [53],
418–430.

[204] C. Zandron, A Model for Molecular Computing: Membrane Systems,
PhD Thesis, Dipartimento di Scienze dell’Informazione, Universitá
degli Studi di Milano, Italy, 2002.

[205] P Systems Web Page, http://psystems.disco.unimib.it

UNIVERSITAT ROVIRA I VIRGILI
COMMUNICATION IN MEMBRANA SYSTEMS WITH SYMBOL OBJECTS.
Artiom Alhazov
ISBN: 978-84-690-7630-9 / DL: T.1400-2007

