
Universitat Rovira i Virgili

Facultat de Lletres

Departament de Filologies Romàniques

Language Learning with

Correction Queries

PhD Dissertation

Cristina T̂ırnăucă

Supervised by

Colin de la Higuera and Victor Mitrana

Tarragona, Spain, 2009

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Supervisors :

Professor Colin de la Higuera
Laboratoire Hubert Curien

Jean Monnet University

18 Rue du Professeur Benôıt Lauras

42000 Saint-Etienne

FRANCE

Professor Victor Mitrana
Faculty of Mathematics and Computer Science

University of Bucharest

Str. Academiei 14

70109 Bucharest

ROMANIA

Tutor :

Dr. Gemma Bel Enguix
Grup de Recerca en Lingǘıstica Matemàtica

Universitat Rovira i Virgili

Pl. Imperial Tàrraco 1

43005 Tarragona

SPAIN

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Contents

1 Introduction 1

2 Preliminaries 11

2.1 Strings, String Languages and Automata 11

2.1.1 Distances on Strings . 12

2.1.2 Relations on Strings . 13

2.1.3 Finite Automata . 13

2.1.4 String Languages . 14

2.2 Trees, Tree Languages and Tree Recognizers 17

2.2.1 Finite Tree Recognizers, Regular Tree Languages 19

2.2.2 Orders on Trees . 21

Knuth-Bendix Orders . 21

2.3 Learning Models . 23

2.3.1 Query Learning . 26

2.3.2 Gold-style Learning . 26

2.3.3 A Hierarchy of Learning Models 27

2.3.4 Polynomial Time Algorithms; Key Ideas 29

2.4 The Algorithm L∗ . 29

3 Learning with Correction Queries 35

3.1 Learning with Prefix Correction Queries 36

3.1.1 Necessary and Sufficient Conditions 37

3.1.2 Learning with PCQs versus Learning with MQs 44

The Sets MemQ and PCorQA are Incomparable 44

The Set MemQ is Strictly Included in PCorQ 45

3.1.3 Learning with PCQs versus Gold-style Learning Models . 46

The Set PCorQA is Strictly Included in ConsvTxt 46

The Set PCorQ is Strictly Included in LimTxt 48

The Sets PCorQ , ConsvTxt and LimTxt 48

3.1.4 An Example: Learning k-Reversible Languages with PCQs 51

i

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

3.2 Learning with Length Bounded Correction Queries 54

3.3 Learning with Edit Distance Correction Queries 55

3.4 Remarks and Further Research 58

4 Polynomial Time Learning with Correction Queries 61

4.1 Polynomial Time Learning with PCQs 62

4.1.1 The Class of Pattern Languages 62

The Algorithm . 62

Running Example . 63

4.1.2 The Class of k-Reversible Languages 65

The Algorithm . 65

Running Example . 69

4.1.3 Polynomial Time Learning with PCQs versus MQs 70

4.2 Polynomial Time Learning with LBCQs 73

4.3 Polynomial Time Learning with EDCQs 74

4.4 Remarks and Further Research 77

5 Learning DFAs with CQs and EQs 81

5.1 Learning DFAs with PCQs and EQs 82

5.1.1 The Algorithm LCA . 82

5.1.2 Correctness, Termination and Running Time 84

5.1.3 Running Example . 89

5.1.4 When does LCA perform better than L∗? 92

5.2 Learning DFAs with LBCQs and EQs 104

5.2.1 The Algorithm LlBCA . 104

5.2.2 Correctness, Termination and Running Time 105

5.2.3 Running Example . 108

5.2.4 Comparison between LlBCA, LCA and L∗ 110

5.3 Remarks and Further Research 114

6 Learning RTLs with SCQs and EQs 117

6.1 The Algorithm LSCA . 118

6.1.1 The Learner . 121

6.1.2 The Teacher . 123

6.2 Correctness, Termination and Running Time 125

6.3 Running Example . 130

6.4 RTLs Learnable with SCQs . 132

6.5 Remarks and Further Research 135

Bibliography 137

Index 151

ii

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Preface

I would not be here today if it was not for my dear friend and colleague Mihai

Ionescu, who persuaded me to continue my studies and to enroll in a PhD

program in Tarragona. Also, I would like to address my gratitude to my mother,

first of all, for raising me the way she did, and secondly, for her altruistic advice

to pursue an academic career, even if this meant that I would be so far away

from her.

I am deeply grateful to my supervisors, Colin de la Higuera and Victor

Mitrana. To Colin, for introducing me to the field, guiding me along the way,

and being my source for a consistent reality check. And to Victor, for his

constant help, from proof-reading my first paper to the present time.

I have benefited greatly from the collaboration with my co-authors. Many

thanks to Leonor Becerra Bonache, who came up with the idea of corrections -

the backbone of my thesis, and to Adrian Horia Dediu, who co-opted me into

writing what became my very first paper. I would also like to thank Cătălin

T̂ırnăucă, who got me interested in the world of tree languages. I enjoyed work-

ing with Timo Knuutila, who is both an excellent programmer and a talented

theoretician. I owe much to Satoshi Kobayashi, with whom I did a substantial

part of the work presented here, and who has closely followed and guided my

research.

Over the last four years I have been very fortunate to meet fantastic peo-

ple, excellent researchers and good friends. Many of them had their own con-

tribution to this dissertation by sharing ideas, providing feedback, suggesting

hints for proofs, or proof-reading and improving the contents of the present

manuscript. Due to space limitations, I will only list (in alphabetical order)

some of them: Amittai Axelrod, Zoltan Ésik, Szilárd Fazekas, Sanjay Jain,

Efim Kinber, Andreas Maletti, Robert Mercaş, Alexander Okhotin, Jason Riesa,

Magnus Steinby, Osamu Watanabe, Thomas Zeugmann.

Thanks are due also to the members of the GRLMC research group and

to the professors of our PhD school. I have acquired a very good background

in formal language theory, and I have learned a great deal from our weekly

iii

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

seminars and other fruitful discussions. I would especially like to thank my

colleagues for providing such a warm and friendly environment (the meetings

from Plaça de la Font will not be forgotten). I will always be grateful to the

head of our research group, Carlos Mart́ın Vide, who was a permanent source of

down-to-earth advice and constant support. Special thanks to our assistant and

my good friend, Lilica Voicu, who helped me through all bureaucratic matters.

Additionally, none of this would have been possible without the financial

support of the FPU fellowship AP2004-6968 from the Spanish Ministry of Edu-

cation and Science, which also facilitated my stays in the University of Electro-

Communication, Tokyo, Japan and in the Hubert Curien Laboratory, Saint-

Étienne, France. I would also like to acknowledge the financial support of the

European Science Foundation (ESF), under the AutoMathA scheme, for spon-

soring my visit to the Department of Mathematics of Turku University, Finland.

Further, a great part of the actual writing of the thesis was done during my stay

at the Information Sciences Institute (ISI) of the University of Southern Cali-

fornia (USC), Los Angeles, USA. I would like to thank Kevin Knight and his

group for their hospitality.

Special thanks to all my family members, especially to my beloved husband,

for his patience and kindness, for supporting me and encouraging me all the way,

and most importantly, for being willing to relocate so I could follow my dream.

To my sister and her family, to my niece Marika and my nephew Alessandro,

whom I hope will be able to read this one day. To my grandmother, who missed

me so much, and yet never asked me to come back.

I would like to dedicate this work to the memory of my father, who always

told me, since I was a little child, that English and Computer Science represent

the future, and I had better know both.

iv

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Abstract

In the field of grammatical inference, the goal of any learning algorithm is to

identify (or to output a good enough approximation of) a target concept from

a given class by having access to a specific type of information. The main

learning settings are Gold’s model of learning in the limit [Gol67], Angluin’s

query learning model [Ang87c] and Valiant’s model of probably approximately

correct (PAC) learning [Val84]. This dissertation is primarily concerned with

the second approach.

We thoroughly investigate a recently introduced, linguistic motivated, type

of query called Correction Query (CQ). We consider three possible definitions,

and for each of them we give necessary and sufficient conditions for a language

class to be learnable with these types of queries. Furthermore, we compare the

model of learning with CQs with other well-known Gold-style and query learning

models when no efficiency constraints are imposed. Results are also obtained

for the restricted version of the model of learning with CQs in polynomial time.

Additionally, we discuss the learnability of deterministic finite automata

(DFAs) with correction and equivalence queries. We design several learning

algorithms and we present a comparison between our algorithms and the stan-

dard L∗ algorithm for learning DFAs with membership and equivalence queries.

These results are furthermore extended from string languages to tree languages.

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Chapter 1

Introduction

No formal model can currently express all aspects of human learning. Neverthe-

less, the overall aim of researchers working in grammatical inference has been

to gain a better understanding of what learning really is, as E.M. Gold points

out in his pioneering paper [Gol67].

I wish to construct a precise model for the intuitive notion “able to

speak a language” [...] My justification for studying identifiability

in the limit is this: A person does not know when he is speaking

a language correctly; there is always the possibility that he will find

that his grammar contains an error. But we can guarantee that a

child will eventually learn a natural language, even if it will not know

when it is correct. E.M. Gold [Gol67]

Gold views learning as an infinite process. At each time the learner receives a

unit of information and has to make a guess as to the identity of the unknown

language on the basis of the information received so far. In Gold’s model,

the learner has access to either a growing sequence of positive examples, i.e.,

strings in the target language (learning from text), or both positive and negative

information (learning from informant). A class of languages will be considered

learnable with respect to the specified method of presenting the information if

there is an algorithm that the learner can use to make his guesses, having the

following property: given any language of the class, there is some finite time

after which the guesses will all be the same and they will be correct. Similarly,

children progressively acquire their native language, but no one can accurately

indicate a precise moment for when it happened.

The Probably Approximately Correct (PAC) learning model proposed by L.G.

Valiant [Val84] reflects another feature of the human language acquisition pro-

cess. In the PAC model, the learner has to output, with high probability, a

1

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

language that is close enough to the target one (see [KV94] for further details).

This formalism captures our intuition that, although many of us might never

master to perfection a language, we should be able to get a good enough ap-

proximation eventually.

Children’s ability to ask questions within the process of acquiring their native

language has also been modeled by formal language theoreticians.

...a technique that humans use to learn (asking questions) is also

advantageous to machines that are trying to learn. Inquisitiveness

is the driving force behind all of science. W.I. Gasarch and C.H.

Smith [GS92]

In the query learning model, the learner receives information about a target

concept by asking specific queries to be truthfully answered by the teacher (or

the oracle). The learner is required to return its hypothesis after finitely many

queries, and this should be the correct one.

There are also hybrid models combining, for example, positive information

with queries (see, e.g., [Val84, Sak95, TTWT04]), a representation of our intu-

ition that children are not only widely exposed to words and sentences in the

language, but they can also enrich their knowledge by asking questions.

So, researchers have always been looking for formal models that can describe

as accurately as possible the way humans learn,

On the other hand, when we consider how a child learns a language

communicating with a teacher, it becomes clear that these models

[Gold’s models of learning in the limit from text and informant]

reflect two extremes of this process: positive data only is certainly

less than what a child actually gets in the learning process, while

informant (the characteristic function of the language) is much more

than what a learner can expect (see, for example, [BH70, DPS86,

HPTS84]). S. Jain and E. Kinber [JK08]

and the ability of asking queries is playing an important role.

The first query learning algorithm, called L∗, identifies any deterministic

finite automaton (DFA) in polynomial time by asking two types of queries:

membership queries (MQs) and equivalence queries (EQs) [Ang87c]. Meanwhile,

other types of queries have been introduced: subset, superset, disjointness and

exhaustive queries [Ang88], structured membership queries [Sak90], etc. None of

these queries reflect an important aspect of human language acquisition, namely

that although children are not explicitly provided negative examples (i.e., words

that are not in the language or ungrammatical sentences), they are corrected

when they make mistakes.

2

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

...the child receives negative instances by being corrected in a way we

do not recognize. E.M. Gold [Gol67]

Therefore, we study a recently introduced type of query, called CORRECTION

QUERY, which copes with this particularity of child’s language acquisition.

Defining a formal concept that corrects all possible mistakes one can make

in either written or spoken natural language is a difficult task. The following

examples illustrate the variety of error types one can encounter:

• Grammatical errors:

– subject-verb agreement (“The majority of people are Rh-positive”),

– verb tense agreement (“Did you sent me the postcard?”),

– noun-number agreement (“All birds are very good at building their

nest”)

• Word Choice: bring/take (“Take the supplies to my house so we can work

on the project”)

• Pronunciation: escape, pronounced excape;

• Punctuation: (“Hi Michael” instead of “Hi, Michael”)

• Spelling: wierd instead of weird

However, research in grammatical inference is focused on formal grammars

rather than on grammars of natural languages. Therefore, we concentrate in

this dissertation on defining and analyzing correction queries (CQs) that may

be used (alone or in combination with other types of queries) in formal language

theory.

Correction queries were first mentioned in [BBY04] as a new learning model

for families of mildly context-sensitive languages.

Correction queries are an extension of membership queries [...] In

the case of correction queries, if the answer is “no”, then a corrected

string is returned. However, in this paper, we will study the learn-

ability in the limit from only positive data [...] In our future research

schema, by correction queries we intend to define as an oracle that

takes a string w as input and produces as output a corrected string

wc (if w is close to an element wc of the target L) and “no” (oth-

erwise), where w being close to wc is defined by a certain measure

(such as “one-letter” difference or Hamming distance).

L. Becerra Bonache and T. Yokomori [BBY04]

3

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

The idea of extending MQs by providing feedback when the queried string

is not in the target language appears also in [JK07]. Jain and Kinber motivate

the use of a nearest positive example by an observation discussed, in particular,

in [RP99].

...while learning a language, in addition to overt explicit negative

evidence (when a parent points out that a certain statement by a

child is grammatically incorrect), a child often receives also covert

explicit evidence in form of corrected or rephrased utterances.

S. Jain and E. Kinber [JK07]

The first formal definition of CQs appears in a paper by L. Becerra Bonache,

A.H. Dediu and myself [BeBiDe05], in which the given algorithm - a straightfor-

ward modification of Angluin’s L∗ - allows the learner to identify any minimal

complete DFA from CQs and EQs in polynomial time. In order to distinguish

these queries from all the other types subsequently introduced, we will refer to

them as prefix correction queries (PCQs) throughout this thesis. A learner, in

response to a PCQ, gets the smallest (in the lex-length order) extension of the

queried datum such that their concatenation belongs to the target language.

Note that in the case of DFAs, returning the answer to a PCQ can be

easily done in polynomial time. However, when the target concept ranges over

arbitrary recursive languages, the answer to a PCQ might be very long or not

even computable (given a recursive language L and a string w, one cannot

decide, in general, if w is a prefix of a string in L). A possible solution to

avoid very long (or infinite) searches is to restrict the search space to only

short enough suffixes. Therefore, we introduce the notion of length bounded

correction query (LBCQ). Given a fixed number l, answering an l-bounded

correction query consists in returning all strings having the length smaller than

or equal to l that, concatenated with the queried datum, form a string in the

target language [T̂ır08a, T̂ır08b].

The third main type of CQs is based on the edit distance, and has been

independently introduced by E. Kinber in [Kin08] and by L. Becerra Bonache,

C. de la Higuera, J.C. Janodet and F. Tantini in [BBdlHJT07]. According to

[BBdlHJT07], the edit distance correction of a given string is, by definition, one

string in the target language at minimum distance from the queried datum. If

many such strings exist, the teacher randomly returns one of them. A slightly

modified type of edit distance correction query (EDCQ) is introduced by Kinber

in [Kin08]. The author there imposes a supplementary condition: the teacher

has to return only strings that have not previously appeared during the run

of the algorithm. Clearly, this restriction makes sense only with respect to an

algorithm, so we will consider this type of EDCQ only in the chapter dedicated

4

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

to polynomial time learning algorithms.

Several questions arise: if we are given a class of languages, what kind of CQs

should we use? What is the power of CQs? Can we compare them with other

query learning models? What about other Gold-style learning models? Which

of them provides the learner with more information? Can we build efficient

algorithms that learn well-known classes of languages with CQs? If we combine

them with EQs, can we outperform MQs? Is there a straightforward extension

of CQs that deals with trees? The main thrust of this thesis is to address these

questions.

The first topic we discuss is their power. More precisely, we compare the

model of learning with CQs with other established learning models. While Gold-

style learning and query learning seem to be two very different models, there are

strong correlations between them. In [LZ04b, LZ04c], S. Lange and S. Zilles pro-

vide characterizations of different models of Gold-style learning (learning in the

limit, conservative inference, and behaviorally correct learning) in terms of query

learning for indexed families of recursive languages. As an example, they show

that the collection of all language classes learnable with MQs coincides with the

collection of those that are finitely identifiable from informant, and that learn-

ing with EQs is equally powerful as learning in the limit from informant. The

study is furthermore extended to cover different hypotheses spaces: uniformly

recursive, uniformly recursively enumerable, and uniformly K-recursively enu-

merable families (for definitions and details, see [LZ04a, LZ05, JLZ05, JLZ07]).

In this dissertation, we compare the models of learning with CQs with both

Gold-style and query learning models.

Which techniques should one use in order to compare our model with others?

Obviously, some sort of characterization is needed. D. Angluin [Ang80b] is the

first one to observe the connection between the learnability of an indexed family

from text and the existence of a finite set (called tell-tale) that uniquely identifies

each language (that is, no other language in the class that contains the tell-tale

is properly included in the given language). She shows that an indexed family

is identifiable in the limit from text if and only if there exists a procedure that

enumerates, for each language in the class, a finite tell-tale. Twelve years later,

the class of languages finitely identifiable from text (informant) is independently

described by Y. Mukouchi [Muk92a] and S. Lange and T. Zeugmann [LZ92] in

terms of definite finite tell-tales (pairs of definite finite tell-tales, respectively).

They show that an indexed family is finitely learnable from text (informant)

if and only if one can compute a (pair of) definite finite tell-tales for each

language. We do something similar for the model of learning with CQs, by

providing necessary and sufficient conditions in terms of what we call triples of

definite finite tell-tales.

5

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

So far, we have been talking about the power of CQs in the general frame-

work, without the requirement for the algorithms to be polynomial. What

happens when we do impose efficiency constraints? Are the relations between

CQs and MQs preserved? In order to answer these questions, we focus on find-

ing language classes that would separate the two learning models. With that in

mind, we give polynomial time algorithms for two well-known language classes:

the class of pattern languages (that is, non-erasing pattern languages) and the

class of k-reversible languages, both introduced by Angluin (in [Ang79] and

[Ang82], respectively) and shown to be learnable from text in the limit.

Pattern languages have been widely investigated (see, e.g., [Sal94],[Sal95] or

[SA95, Mit99] for an overview). Polynomial time algorithms have been given for

learning from examples subclasses of regular patterns [CJR+03, CJR+06] and

k-variable patterns [Lan90, KP89], or for learning from (one or more) examples

and queries [MK87, Mar88, LW90, LW91, MS97]. More recent research concerns

the learnability of erasing pattern languages in the query learning model [LZ03,

NL05]. However, note that deciding membership for the pattern languages

is NP-complete (and hence, answering PCQs cannot be done in deterministic

polynomial time either). Therefore, any learning algorithm testing membership

will be infeasible in practice (because of the impossibility to implement such an

oracle) under the usual assumption that P 6= NP.

Not so much has been done for the k-reversible languages. They were known

to be learnable from text in the limit since their introduction. Other results

concerning this class include the algorithm given by S. Kobayashi and T. Yoko-

mori [KY97] for approximately learning regular languages having k-reversible

languages as hypotheses space (the algorithm outputs the smallest k-reversible

language that includes the target language), and the general algorithm for func-

tion distinguishable languages [Fer00] given by H. Fernau, algorithm that can

be applied, as a special case, to the class of k-reversible languages. Regarding

the learnability of this class in the query learning model, it is clear that the

combination of MQs and EQs allows a learner to identify any k-reversible lan-

guage from a minimally adequate teacher (the whole class of regular languages

is learnable this way). Notice that neither MQs[Ang81], nor EQs [Ang90] alone

are enough to allow polynomial time learning in this setting.

Once we determine what can be done with CQs alone, efficiently or not, we

move on to the identification of deterministic finite automata. The emphasis on

DFA learning is due to the fact that algorithms regarding the inference problem

for DFAs can be nicely adapted for larger classes of grammars, for instance

even linear grammars [SG94, Tak88, Tak94, Tak95], subsequential transducers

[OGV93], context-free grammars [OGV93, Sak92], when the data is presented

as unlabeled trees, or regular tree languages [DH03, DH07].

6

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

DFA learning has an extensive history, both in passive learning and in ac-

tive learning. Intractability results by Gold [Gol78] and Angluin [Ang78] show

that finding the smallest automaton consistent with a set of accepted and re-

jected strings is NP-complete. Nevertheless, a lot of work has been done on

learning DFAs from examples within specific heuristics, starting with the early

algorithms by B. Trakhtenbrot and Y. Barzdin [TB73] and Gold [Gol78]. Many

other algorithms have been developed, most of them having the convergence

based on characteristic sets: RPNI (Regular Positive and Negative Inference)

by J. Oncina and P. Garćıa [OG91, OG92], Traxbar by K. Lang [Lan92], EDSM

(Evidence Driven State Merging), Windowed EDSM and Blue-Fringe EDSM by

K. Lang, B. Pearlmutter and R. Price [LPP98], SAGE (Self-Adaptive Greedy

Estimate) by H. Juillé [JP98], etc.

The picture becomes brighter when we turn to active learning. Angluin

[Ang87c], elaborating on an algorithm by Gold [Gol72], proves that if a learning

algorithm can ask both MQs and EQs, then finite automata are learnable in

polynomial time. Later, R.L. Rivest and R.E. Schapire [RS87, RS93], L. Heller-

stein et al. [HRPW95, HPRW96] or J.L. Balcázar et al. [BDGW94] develop

more efficient versions of the same algorithm trying to increase the parallelism

level, to reduce the number of equivalence queries, etc. D. Angluin and M. Kriķis

[AK94] show how to efficiently learn DFAs from MQs and EQs when the answers

to the MQs are wrong on some subsets of the queries which may be arbitrary

but of bounded size. M.J. Kearns and U.V. Vazirani’s version [KV94] provides

ample additional intuitions that are rather hard to grasp in previous works. The

paper by J.L. Balcázar, J. Dı́az and R. Gavaldà [BDGW97] presents some of

the previous algorithms in a unified view. In our dissertation, we thoroughly

investigate DFA learning with CQs and EQs, and we propose some subclasses

of regular languages that can be learned efficiently with CQs alone.

The basic paradigm of asking questions has been applied to other formalisms

such as: DNF formulas [Ang87b], nondeterministic finite automata [Yok94],

two-tape automata [Yok96], context-free grammars [Ang87a, Sak90], determin-

istic one-counter automata [BR87], deterministic bottom up tree automata

[Sak87a, DH07], deterministic skeletal automata [Sak87b], Prolog programs

[Sha83], probabilistic automata [Tze89]. Valiant also considered the issue briefly

[Val84]. For a nice summary of some of these results, see [Ang88] and [Ang89].

Among the above mentioned language classes, the one that attracted a lot of

attention was the learnability of context-free grammars (CFGs). This problem

deserves to be investigated for both practical and theoretical reasons. Regarding

practical applications, the learnability of a CFG that produces a set of patterns

[Fu74] constitutes an important issue for people working in pattern recognition.

Also, the ability to infer (in fact to approximate since the problem of natural lan-

7

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

guages’ context-freeness is subject to a long debate) CFGs for natural languages

would enable a speech recognizer to adapt its internal grammar according to

the particularities of an individual speaker [Hor69]. The problem seems to be

interesting also from a theoretical point of view because, although context-free

languages (CFLs) are well-understood, there are various and serious restrictions

in the process of learning them. A very good survey of the problem of learning

CFLs can be found in [Lee96].

The first attempt to extend the query learning method to CFGs belongs to

Angluin [Ang87a]. She designs the algorithm Lcf and shows that, within specific

heuristics, CFGs are learnable. Among them, we mention two important ones:

the grammar should be in Chomsky normal form and the set of nonterminal

symbols, along with the start symbol, are assumed to be known by the learner.

Sakakibara extends the algorithm L∗ to skeletal regular tree automata, which are

a variation of finite automata that take skeletons as input [Sak90]. Intuitively,

skeletons (introduced in [LJ78]) are derivation trees of strings in a grammar

in which internal nodes are unlabeled. Such a tree reveals only the syntactic

structure associated with a string with respect to a CFG but not the concrete

rules generating it. F. Drewes and J. Högberg [DH03, DH07] improve Sakak-

ibara’s algorithm, with a generalization of L∗ to regular tree languages (RTLs)

that avoids dead states both in the resulting automaton and the learning phase

(which also leads to a considerable improvement with respect to efficiency).

The interest in learning RTLs [FK84, Sak90, Sak92, COCR98] is justified by

the fact that they provide a well-known generalization of regular string languages

to which nearly all the classical results carry over (see, e.g., [GS84]). Moreover,

their yields are exactly the context-free string languages. Therefore, in this

dissertation we drop the restriction to skeletal trees and we investigate the

learnability of RTLs with structural correction queries (SCQs) and EQs.

The thesis is organized as follows. Chapter 2 provides notions and notations

that are used throughout this monograph. In particular, we give definitions of

the models of learning in the limit, finite learning and query learning, and we

familiarize the reader with the standard L∗ algorithm for learning DFAs with

MQs and EQs.

In Chapter 3 we focus on the learning power of each of the three types of

CQs introduced so far when no efficiency constraints are imposed. In the case

of PCQs, we first provide the reader with necessary and sufficient conditions

for an indexed family of nonempty recursive languages to be inferable with

PCQs alone, and then we use these conditions to compare the model with other

standard learning models: (conservative) learning in the limit from text, finite

learning from text or informant, query learning with MQs or EQs. For the other

two types of CQs, the proofs are done the other way around. We first show that

8

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

learning with LBCQs and learning with EDCQs is basically the same as learning

with MQs. Then, we use the fact that learning with MQs is nothing more than

finite learning from informant [LZ04b] and Mukouchi’s characterization of the

later model [Muk92a] to characterize our models in terms of finite sets (pairs of

definite finite tell-tales, to be precise). An intuitive picture displaying all these

models and the relations between them is presented in the last section of the

chapter.

Our results show that PCQs are more powerful than MQs, that learning with

PCQs is strictly weaker than learning in the limit from text, and that learning

with PCQs and conservative learning from text in the limit are incomparable.

Actually, any indexable class of recursive languages that is learnable with PCQs

but not conservatively inferable from text in the limit must contain at least one

language with a non-recursive prefix. Therefore, if an indexable class of recursive

languages that is learnable with PCQs has only recursive prefixes, then it is also

conservatively learnable from text in the limit.

The results obtained for PCQs are based on the characterization of the model

in terms of finite tell-tales. Let us recall the basic difference between a finite

and a definite finite tell-tale. For the former one, each language in the class

should be the smallest one consistent with its tell-tale, whereas for the later

one, each language in the class should be the only one consistent with its tell-

tale. Furthermore, if a definite finite tell-tale is a set containing strings in the

language, a pair of definite finite tell-tales has two sets: one with positive and

one with negative examples. It turns out that positive and negative examples

are not enough to characterize the model of learning with PCQs, so a third

dimension is required (the third finite set will contain strings that are not a

prefix of any other string in the language). We introduce the notion of triples

of definite finite tell-tales, and we show that having a way to compute such a

triple for all languages in the class is a sufficient condition for the inferrability

of the given class with PCQs.

In Chapter 4 we focus on polynomial time algorithms to further understand

the model of learning with CQs. Again, the chapter is divided into four sections,

each of the first three dealing with one type of CQ, and the last one presenting

the global picture.

In the first section of Chapter 4 we give polynomial time algorithms for

learning the class of pattern languages, and the class of k-reversible languages,

respectively, with PCQs. Moreover, we show that pattern languages are not

efficiently learnable with MQs, and that there is no algorithm that identifies k-

reversible languages with a finite number of MQs(even if we allow exponentially

many MQs). All these results facilitate a comparison between PCQs and MQs

when efficiency constraints are imposed.

9

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

In the second and third section of Chapter 4 we show that learning with

LBCQs is not more powerful than learning with MQs even when we restrict to

polynomial time algorithms, and that the EDCQs and MQs do no longer share

the same learning power when we talk about efficient algorithms. Moreover, we

could prove that there are language classes polynomial time learnable with PCQs

for which there is no EDCQ efficient algorithm. Even if intuitively, there should

be situations where EDCQs are more powerful than PCQs in the restricted case

of polynomial time learnability, we could not find such a class, so we leave this

question open.

In Chapter 5 we switch to the problem of learning DFAs, one of the earliest

in grammatical inference, being also the purpose for introducing the model of

learning from queries (regular languages were known not to be learnable in

the identification in the limit model proposed by Gold). We investigate DFA

learnability with CQs and EQs - note that they are not learnable with CQs alone

since no superfinite class is learnable from text in the limit [Gol67], and the

model of learning with CQs is weaker. Moreover, we show how is the efficiency

of the algorithm L∗ affected when replacing MQs with PCQs (and with LBCQs,

respectively). Furthermore, we investigate two subclasses for which EQs are not

needed: injective languages and singleton languages. The reader may notice

that we have completely ignored the third type of CQ, namely the EDCQ. It is

because EDCQs are not helping in this case. A detailed discussion is presented

in Section 5.3.

In Chapter 6 we extend the notion of CQs to trees, thus defining Structural

Correction Queries (SCQs), and we provide an algorithm that learns any deter-

ministic bottom-up tree recognizer with SCQs and EQs in polynomial time (in

the size of the finite state machine and the size of the biggest counterexample

returned by the teacher). We also extend the results from the string case, show-

ing that there are subclasses of RTLs learnable with SCQs alone. The last result

has relevance in practice since one can imagine the teacher as a human expert

who might not have an automaton-like representation for the language but is

still able to return the correction based only on his domain-specific knowledge.

The order we choose for comparing trees (contexts) to obtain the minimal

one is a Knuth-Bendix order based on the weights associated to the symbols of

the alphabet. The minimal context may correspond to the most probable choice

in a real-life setting, like speech recognition or even machine translation if we

imagine an extension of our algorithm to transducers.

Results in this monograph have been previously published in [BeBiDe05,

BeDeT̂ı06, T̂ıKo07, T̂ıKn07a, T̂ıKn07b, T̂ıT̂ı07, T̂ır08a, T̂ıKo09, MiT̂ı08].

10

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Chapter 2

Preliminaries

We follow standard definitions and notations in formal language theory. The

reader is referred to [HU79, HU90, MVMP04] for further information about this

domain.

If φ is a function from X to Y then φ(X ′) = {φ(x) | x ∈ X ′} for any

X ′ ⊆ X. By |X| we denote the cardinality of the finite set X and by P(X) its

power set (i.e., the set of all subsets of X). The function φ is injective if for all

x1, x2 ∈ X, f(x1) = f(x2) implies x1 = x2, and surjective if for all y ∈ Y there

exists x ∈ X such that φ(x) = y. Then φ is bijective if and only if it is injective

and surjective.

A partition of a set X is a set of nonempty subsets of X such that every

element x in X is in exactly one of these subsets. More precisely, a set ρ of

nonempty sets is a partition of X if

• the union of the elements of ρ is equal to X, and

• the intersection of any two elements of ρ is empty.

The elements of ρ are sometimes called blocks or parts of the partition.

Given two partitions ρ1 and ρ2 of a given set X, we say that ρ1 is finer than

ρ2, (or that ρ2 is coarser than ρ1), if ρ1 splits the set X into smaller blocks than

ρ2 does, i.e., every element of ρ1 is a subset of some element of ρ2.

2.1 Strings, String Languages and Automata

Let Σ be a finite set of symbols called the alphabet and let Σ∗ be the set of

strings over Σ. A language L over Σ is a subset of Σ∗. The elements of L are

called strings or words. Let u, v, w be strings in Σ∗ and |w| be the length w.

λ is a special word called the empty string and has length 0. We denote by uv

11

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

or u · v the concatenation of the strings u and v. If w = uv for some u, v in

Σ∗, then u is a prefix of w and v is a suffix of w. A set L is called prefix-closed

(suffix-closed) if for any w in L, all prefixes (suffixes) of w are also in L.

By Pref (L) we denote the set {u ∈ Σ∗ | ∃v ∈ Σ∗ such that uv ∈ L} and by

TailL(u) the set {v | uv ∈ L}. Then, by Σ≤k, Σk and Σ≥k we denote the sets

{u ∈ Σ∗ | |u| ≤ k}, {u ∈ Σ∗ | |u| = k} and {u ∈ Σ∗ | |u| ≥ k}, respectively.

Assume that Σ is a totally ordered set and let ≺l be the lexicographical

order on Σ∗. Then, the lex-length order ≺ on Σ∗ is defined by: u ≺ v if either

|u| < |v|, or else |u| = |v| and u ≺l v. In other words, strings are compared first

according to length and then lexicographically.

2.1.1 Distances on Strings

There are several ways to determine how similar two strings are (a fairly com-

plete overview on string metrics can be found in [Cha]). One of the string

distances most used in practice (e.g., by spell checkers) is the edit distance (also

called Levenshtein distance [Lev66]). Informally, the edit distance between the

strings w and w′, denoted d(w,w′) in the sequel, is the minimum number of

edit operations needed to transform w into w′. The edit operations are either

(1) deletion: w = uav and w′ = uv, or (2) insertion: w = uv and w′ = uav,

or (3) substitution: w = uav and w′ = ubv, where u, v ∈ Σ∗, a, b ∈ Σ and

a 6= b. The above mentioned distance can be considered a generalization of the

Hamming distance [Ham50], which is used for strings of the same length and

only considers substitution edits. There are also further generalizations of the

Levenshtein distance that consider, for example, exchanging two characters as

an operation (called transposition), like in the Damerau-Levenshtein distance

algorithm [Dam64].

Example 1. Let us consider the strings bbab and baa. There are several ways

of transforming bbab into baa by using the three above mentioned operations.

For example, bbab → bab → baa or bbab → bba → baa, but there is no way of

obtaining baa from bbab with less than 2 operations. Therefore, the distance

d(bbab, baa) is 2.

Notice that for longer strings it is not as easy as in the example to find, by

hand, the shortest number of operations needed. Nevertheless, the edit distance

between two strings w and w′ can be computed in O(|w| · |w′|) time by dynamic

programming [WF74].

12

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

2.1.2 Relations on Strings

Given a language L, one can define the following equivalence relation (i.e., a

relation which is reflexive, symmetric and transitive) on strings: u ≡L v if and

only if (∀w ∈ Σ∗, u · w ∈ L ⇔ v · w ∈ L). This equivalence relation divides the

set of all strings into one or more equivalence classes. For any language L over

Σ and any w in Σ∗ we denote by [w]L the equivalence class of w with respect

to the language L, or simply [w] when L is understood from the context. The

number of equivalence classes induced by ≡L is called the index of L.

2.1.3 Finite Automata

A deterministic finite automaton (DFA) is a 5-tuple A = (Q,Σ, δ, q0, F) where

Q is the (finite) set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state,

F ⊆ Q is the set of final states and δ is a partial function that maps Q × Σ

to Q which can be extended to strings by doing δ(q, λ) = q and δ(q, wa) =

δ(δ(q, w), a) whenever the right-hand side is defined. The number of states in

Q gives the size of A. A string w is accepted by A if δ(q0, w) ∈ F . The set of

strings accepted by A is denoted by L(A) and is called a regular language.

We say that a DFA A = (Q,Σ, δ, q0, F) is complete if for all q in Q and a

in Σ, δ(q, a) is defined (i.e., δ is a total function). For any regular language L,

there exists a minimum state complete DFA hereinafter denoted AL such that

L(AL) = L. The Myhill-Nerode Theorem [Myh57, Ner58] states that the size

of AL equals the index of L. An immediate consequence of this theorem is that

a language L is regular if and only if L has finite index.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F)

where Q,Σ, q0 and F are defined exactly the same way as for a DFA and the

transition function δ : Q × Σ → P(Q) takes values in P(Q) instead of in Q.

Let A = (Q,Σ, δ, q0, F) be a DFA. A state q is called reachable if there exists

a string u in Σ∗ such that δ(q0, u) = q and co-reachable if there exists a string

v such that δ(q, v) ∈ F . A state which is reachable but not co-reachable is also

called a sink state. Note that for a minimal DFA A, there is at most one sink

state and all the states are reachable.

Let A = (Q,Σ, δ, q0, F) and A′ = (Q′,Σ, δ′, q′0, F
′) be two DFAs and φ be

a function from Q to Q′. Then φ is an automata morphism if φ(q0) = q′0,

φ(F) ⊆ F ′ and for all q ∈ Q, a ∈ Σ, φ(δ(q, a)) = δ′(φ(q), a). Moreover, if φ is a

bijective function and φ(F) = F ′ then φ is an automata isomorphism. The two

automata A and A′ are said to be equivalent if L(A) = L(A′) and isomorphic

if there exists an automata isomorphism φ : Q → Q′ .

The reverse of an automaton A = (Q,Σ, δ, q0, {qf}) is the automaton Ar =

(Q,Σ, δr, qf , {q0}) where δr(q, a) = {q′ | q ∈ δ(q′, a)}, for all a ∈ Σ and q ∈ Q.

13

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Pictorially, we obtain Ar from A by interchanging the initial and final states

and reversing each of the transition arrows. Then, an automaton A is said to

be 0-reversible if and only if both A and Ar are deterministic. Note that if A

= (Q,Σ, δ, q0, F) is a 0-reversible automaton which accepts both u1v and u2v,

then δ(q0, u1) = δ(q0, u2).

Let k be a fixed nonnegative integer and A = (Q,Σ, δ, q0, F) an automaton.

The string u is said to be a k-follower (or k-leader) of the state q in A if |u| = k

and δ(q, u) 6= ∅ (δr(q, ur) 6= ∅ respectively). Note that every state has exactly

one 0-follower and one 0-leader, namely, λ. The automaton A is defined to be

deterministic with lookahead k if for any pair of distinct states q1 and q2 such

that q1, q2 ∈ δ(q3, a) for some q3 ∈ Q and a ∈ Σ, there is no string that is a k-

follower of both q1 and q2. This guarantees that any nondeterministic choice in

the operation of A can be resolved by looking ahead k symbols past the current

one. An automaton A is said to be k-reversible if A is deterministic and Ar

is deterministic with lookahead k. Note that this definition coincide with the

definition for 0-reversible automaton when k = 0.

2.1.4 String Languages

Let us first introduce some particular classes of languages which will be later

used in this monograph.

• Following [BBdlHJT07], one can define the language Br(w) of all strings

whose edit distance is at most r from w where w ∈ Σ∗ and r ∈ R. This

language will subsequently be called the ball of center w and radius r.

Formally, Br(w) = {v ∈ Σ∗ | d(v, w) ≤ r}. We denote by B the class of

all balls of strings over a fixed alphabet Σ.

Example 2. If we take Σ = {a, b}, then Bk(λ) = Σ≤k for all k ∈ N, and

B1(aba) = {aa, ab, ba, aaa, aba, abb, bba, aaba, abaa, abab, abba, baba}.

• Given a nonnegative integer k, a language L is said to be k-reversible if

there exists a k-reversible automaton A such that L = L(A). We denote

by k -Rev the class of all reversible languages. We have:

Proposition 1 (Angluin [Ang82]). A regular language L is in k-Rev if

and only if whenever u1vw, u2vw are in L and |v| = k, TailL(u1v) =

TailL(u2v).

As a direct consequence, we get:

Corollary 1 (Angluin [Ang82]). A regular language L is 0-reversible if

and only if whenever u1w, u2w are in L, TailL(u1) = TailL(u2) (and

hence, u1 ≡L u2).

14

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Example 3. Let Σ = {a, b} and L = {ab2a, b3a, b4}. Because the strings

a · b2 · a and b · b2 · a are in L, |b2| = 2 and TailL(a · b2) = {a} 6= {a, b} =

TailL(b · b2), the language L is not in 2 -Rev (by Proposition 1). On the

other hand, the only strings in L having a common suffix of length at least

3 are a · b2a and b · b2a. But TailL(a · b2a) = {λ} = TailL(b · b2a). Hence,

L is 3-reversible and not 2-reversible.

• We assume a finite alphabet Σ such that |Σ| ≥ 2, and a countable, infinite

set of variables X = {x, y, z, x1, y1, z1, . . . , }. A pattern π is any nonempty

string over Σ ∪ X. The pattern language L(π) consists of all the strings

obtained by uniformly replacing the variables in π with arbitrary strings

in Σ+. Let us denote by P the set of all pattern languages over a fixed

alphabet Σ. The pattern π is in normal form if the variables occurring

in π are precisely x1, . . . , xk, and for every i with 1 ≤ i < k, the leftmost

occurrence of xi in π is left to the leftmost occurrence of xi+1.

Example 4. Let Σ = {a, b} and π1 = x, π2 = xx, π3 = axyb. Then,

L(π1) = L(x) = Σ+, L(π2) = L(xx) = {ww | w ∈ Σ+}, and L(π3) =

L(axyb) = the set of all words of length at least 4 starting with a and

ending with b.

• Given a fixed alphabet Σ, we denote by S the class of all singleton lan-

guages Lw = {w} over Σ, and by Sk the class (Lw)w∈Σk .

We assume the reader is familiar with basic notions of formal language the-

ory. In the sequel we briefly recall some definitions, closure properties and

decidability issues. The Chomsky hierarchy [Cho56] consists of:

• Type-0 grammars include all formal grammars. They generate exactly all

languages for which there exists a Turing machine recognizing them (also

known as recursively enumerable (RE) languages). A proper subclass is

the class of recursive languages that consists of all languages for which

there exists an always-halting Turing machine recognizing them.

• Type-1 grammars (context-sensitive grammars) generate the class of all

context-sensitive languages (CSLs).

• Type-2 grammars (context-free grammars) generate the class of context-

free languages (CFLs). They are the theoretical basis for the syntax of

most programming languages, and are also considered to be the best ones,

in the Chomsky hierarchy, for describing the syntax of natural languages.

• Type-3 grammars (regular grammars) generate the class of all regular

languages.

15

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

We denote by RE , CS , CF and Reg the family of languages generated by

arbitrary, context-sensitive, context-free, and regular grammars, respectively.

By Rec we denote the family of recursive languages.

A decision problem is a question in some formal system with a Yes/No an-

swer, depending on the values of some input parameters. A decision problem

is (algorithmically/recursively) decidable if there exists an algorithm such that,

given any instance of the problem as input, outputs Yes or No, provided that

the input is true or not, respectively [MVMP04]. Here is a list with the most

common decidability issues.

• Emptiness: is a given language empty?

• Finiteness: is a given language a finite set?

• Membership: does w ∈ L hold for a given string w and a language L?

• Inclusion: does L1 ⊆ L2 hold for two given languages L1 and L2?

• Equivalence: does L1 = L2 hold for two given languages L1 and L2?

Let us detail the status of these decision problems for some of the above

mentioned grammars (U stands for undecidable, and D for decidable).

Table 2.1: Decidability results
RE Rec CF Reg P B

Emptiness U U D D D D
Finiteness U U D D D D
Membership U D D D D D
Inclusion U U U D U D
Equivalence U U U D D D

The next table presents some closure properties of these classes of languages,

among which we emphasize that the intersection of two recursive languages is

recursive, and that Rec is closed under union and intersection with regular sets

(i.e., if L1, L2 are arbitrary languages in Rec and L is a regular language, then

L1 ∩ L2, L1 ∪ L2 and L1 ∩ L are also in Rec).

Table 2.2: Closure properties
RE Rec CF Reg

Union Yes Yes Yes Yes
Intersection Yes Yes No Yes
Intersection with regular languages Yes Yes Yes Yes

Finally, the last class of string languages we are going to present in this

introduction is the class of LL(1) linear context-free languages. An LL(1) parser

16

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

is a top-down parser for a subset of the context-free grammars. It parses the

input from left to right, and constructs a leftmost derivation of the sentence

using one token of look-ahead. The class of grammars which are parsable in

this way is known as the class of LL(1) grammars. We are not going into

further details, since the only property of this class that we use is that LL(1)

linear CFLs are all context-free, and hence recursive.

2.2 Trees, Tree Languages and Tree Recognizers

A wealth of information about trees, tree languages and tree recognizers can be

found in [CDG+07, GS84]. The trees considered here are finite, their nodes are

labeled by symbols, and the branches leaving any given node have a specified

order.

A ranked alphabet ∆ is a finite set of symbols each of them having a given

non-negative integer arity. For any m ≥ 0, the set of m-ary symbols in ∆ is

denoted by ∆m. In examples we may write ∆ = {f1/m1, . . . , fk/mk} to indicate

that ∆ consists of the symbols f1, . . . , fk with the respective arities m1, . . . ,mk.

In what follows ∆ is always a ranked alphabet.

In addition to a ranked alphabet, an ordinary finite alphabet, called a leaf

alphabet and usually denoted by X, is used for labeling leaves of trees. Leaf

alphabets are assumed to be disjoint from the ranked alphabets considered.

The set T∆(X) of ∆-terms with variables in X is the smallest set T such

that

• ∆0 ∪ X ⊆ T , and

• f(t1, ..., tm) ∈ T whenever m > 0, f ∈ ∆m and t1, ..., tm ∈ T .

Such terms are regarded as representations of trees, and we call them ∆X-

trees. Any f ∈ ∆0 ∪ X represents a tree with only one node labeled with

f . Similarly, f(t1, ..., tm) is interpreted as a tree formed by adjoining the m

trees represented by t1, ..., tm to a new f labeled root. The trees t1, ..., tm are

said to be the direct subtrees of the tree. Subsets of T∆(X) are called ∆X-

tree languages. We will generally speak about trees and tree languages without

specifying the alphabets.

Given a set T of ∆X-trees, we denote by T∆ the set of all trees f(t1, ..., tm)

such that f ∈ ∆m for some m ≥ 0, and t1, . . . , tm ∈ T .

The height hg(t) and the set of subtrees sub(t) of a ∆X-tree t are defined

such that

• hg(t) = 0, sub(t) = {t} for t = f ∈ ∆0 ∪ X, and

17

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

• hg(t) = max{hg(t1), . . . , hg(tm)}+1, sub(t) = {t}∪sub(t1)∪ . . .∪sub(tm)

for t = f(t1, . . . , tm), m > 0 and f ∈ ∆m.

Let ξ be a special symbol with arity 0 such that ξ 6∈ ∆∪X. A ∆(X∪{ξ})-tree

in which ξ appears exactly once is called a ∆X-context, or just a context . The

set of all ∆X-contexts is denoted by C∆(X). If c, c′ ∈ C∆(X), then c · c′ = c′(c)

is the ∆X-context, obtained from c′ by replacing the ξ in it with c. Similarly,

if t ∈ T∆(X) and c ∈ C∆(X), then t · c = c(t) is the tree obtained when the ξ

in c is replaced with t (we also say that the context c is applied to t).

Let c be a context in C∆(X). Then depth(c) and trees(c) are defined as

follows:

• depth(c) = 0, trees(c) = ∅ for c = ξ, and

• depth(c) = depth(c′) + 1, trees(c) = trees(c′) ∪ {t1, . . . , ti−1, ti+1, . . . , tm}

for c = f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · c′ with m > 0, f ∈ ∆m, t1, . . . , ti−1,

ti+1, . . . , tm ∈ T∆(X), 1 ≤ i ≤ m, and c′ ∈ C∆(X).

Example 5. If ∆ = {f/2, g/1} and X = {x, y}, then f(x, x), f(g(y), f(x, x))

are ∆X-trees, and g(ξ), f(g(y), ξ), f(g(y), g(ξ)) are ∆X-contexts.

f

x x

· f

g

y

ξ

= f

g

y

f

x x

g

ξ

· f

g

y

ξ

= f

g

y

g

ξ

tree · context = tree context · context = context

We have:

hg(f(g(y), f(x, x))) = 2, g(ξ) · f(g(y), ξ) = f(g(y), g(ξ)),

sub(f(x, x)) = {x, f(x, x)}, f(x, x) · f(g(y), ξ) = f(g(y), f(x, x)).

For a tree t ∈ T∆(X), the frontier derivative language of T with respect to t

is the set FronT (t) = {c ∈ C∆(X) | t · c ∈ T}.

A T∆(X)-substitution, or simply substitution, if the set of terms is irrelevant

or clear from the context - is a function φ : X → T∆(X). The set of all T∆(X)-

substitutions will be denoted by Sub(T∆(X)) or simply Sub. Any T∆(X)-

substitution φ can be extended to a mapping φ̂ : T∆(X) → T∆(X) as follows:

• φ̂(f) = f for all f ∈ ∆0 ∪ X, and

• φ̂(f(t1, . . . , tm)) = f(φ̂(t1), . . . , φ̂(tm)) for m > 0, f in ∆m and t1, . . . , tm

in T∆(X).

18

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

2.2.1 Finite Tree Recognizers, Regular Tree Languages

A deterministic bottom-up ∆X-tree recognizer , or tree recognizer, for short, is

a quintuple R = (Q,∆, X, δ, F), where ∆ is a ranked alphabet, X is a leaf

alphabet, Q is a finite set of states such that Q∩∆ = ∅, F ⊆ Q is a set of final

states, and the transition function δ is a family of maps δm (m ≥ 0,∆m 6= ∅)

such that:

• δ0 : ∆0 ∪ X → Q, and

• δm : Qm × ∆m → Q for m > 0.

Then for t ∈ T∆(X), one can inductively define δ(t) as follows:

• δ(t) = δ0(t) for t ∈ ∆0 ∪ X, and

• δ(t) = δm(δ(t1), . . . , δ(tm), f) for m > 0, f ∈ ∆m and t = f(t1, . . . , tm).

The set T (R) = {t ∈ T∆(X) | δ(t) ∈ F} is the tree language recognized

(accepted) by R. Such a tree language is a regular tree language. Let R =

(Q,∆, X, δ, F) and R′ = (Q′,∆, X, δ′, F ′) be deterministic bottom-up ∆X-tree

recognizers. One can say that R and R′ are equivalent if they accept the same

tree language, and R is isomorphic to R′ if there exists a bijection φ : Q → Q′

such that:

• φ(F) = F ′,

• φ(δ0(f)) = δ′0(f) for every f ∈ ∆0 ∪ X, and

• φ(δm(q1, . . . , qm, f)) = δ′m(φ(q1), . . . , φ(qm), f) for every m > 0, f ∈ ∆m

and every q1, . . . , qm ∈ Q.

Let R be a tree recognizer. A state q is called reachable if there exists a tree

t ∈ T∆(X) such that δ(t) = q. A reachable state q is co-reachable if there exists

a context c ∈ C∆(X) such that δ(t · c) ∈ F , where t is any tree in T∆(X) such

that δ(t) = q. A state which is reachable but not co-reachable is said to be a

sink state.

Lemma 1 (Replacement lemma [Sak90]). Let R = (Q,∆, X, δ, F) be a deter-

ministic bottom-up ∆X-tree recognizer. For t, t′ ∈ T∆(X) and c ∈ C∆(X), if

δ(t) = δ(t′), then δ(t · c) = δ(t′ · c).

For a given tree language T ⊆ T∆(X), the equivalence relation ∼=T on T∆(X)

is defined by: for any t, t′ ∈ T∆(X), t ∼=T t′ if for all contexts c ∈ C∆(X),

t · c ∈ T ⇔ t′ · c ∈ T . One can notice that ∼=T is a congruence (i.e. an

equivalence relation which is preserved by contexts: for t, t′ ∈ T∆(X), if t ∼=T t′,

then t · c ∼=T t′ · c for all contexts c ∈ C∆(X)).

19

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

It is known that each regular tree language T is accepted by a minimal tree

recognizer (which we denote by RT), unique up to isomorphism, that can be

constructed from any given tree recognizer R of T by first deleting all non-

reachable states and then merging all pairs of equivalent states. For details, we

refer to [GS84], pp. 87 - 94. Note that for a minimal tree recognizer R there is

at most one sink state and all the states are reachable.

Clearly, FronT (t) = {c ∈ C∆(X) | δ(t · c) ∈ F}, where R = (Q,∆, X, δ, F)

is any deterministic bottom-up ∆X-tree recognizer accepting the tree language

T . One can speak about the frontier derivative language of a state q as being

FronT (tq), where tq ∈ T∆(X) is such that δ(tq) = q.

Example 6. Let ∆ = {f/3, g/2, a/0, b/0}, X = ∅, and consider the tree lan-

guage

T = {t ∈ T∆(∅) | t = g(a, b) · [f(a, ξ, b)]n, n ≥ 0},

where [f(a, ξ, b)]0 = ξ and [f(a, ξ, b)]n = [f(a, ξ, b)]n−1 · f(a, ξ, b), n ≥ 1.

Let us now construct a tree recognizer R = (Q,∆, ∅, δ, F) such that T (R) =

T . For this, we need a set Q of four states: qa, qb, qs and qf . The transition

function δ is defined as follows:

• δ0(a) = qa, δ0(b) = qb,

• δ2(qa, qb, g) = qf ,

• δ2(qa, qa, g) = δ2(qb, qa, g) = δ2(qb, qb, g) = qs,

• δ3(qa, qf , qb, f) = qf , and

• δ3(·, ·, ·, f) = qs for all remaining cases.

If we take F = {qf}, it is clear that T (R) = T . The (accepting) computation

on the input t = f(a, f(a, g(a, b), b), b) is

δ(t) = δ3(qa, δ3(qa, δ2(qa, qb, g), qb, f), qb, f)
= δ3(qa, δ3(qa, qf , qb, f), qb, f)
= δ3(qa, qf , qb, f)
= qf .

f

a f

a g

a b

b

b

Also, it is easy to see that qs is a sink state and qf , qa and qb are co-reachable.

20

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

2.2.2 Orders on Trees

As in the case of strings, one may imagine various ways of defining orders

on trees. In this section we briefly present one method of constructing such

relations on trees (namely the simplification order) that yields classes of orders

(e.g., Knuth-Bendix orders) that can be used in fully automated termination

proofs. More details, examples and results can be found in [BN98], pp. 93-133.

Let ∆ be a ranked alphabet and X a leaf alphabet. A strict order < on

T∆(X) is called a rewrite order if it is:

1. compatible with ∆-operations: for all t, t′ ∈ T∆(X), all m ≥ 0, and all

f ∈ ∆m, t < t′ implies

f(t1, . . . , ti−1, t, ti+1, . . . , tm) < f(t1, . . . , ti−1, t
′, ti+1, . . . , tm)

for all i ∈ {1, . . . ,m}, and all t1, . . . , ti−1, ti+1, . . . , tm ∈ T∆(X).

2. closed under substitutions: for all t, t′ ∈ T∆(X) and all substitutions σ ∈

Sub(T∆(X)), t < t′ implies σ(t) < σ(t′).

Note that the first condition implies (and thus is equivalent to) the following

condition:

1′. for all t, t′ ∈ T∆(X) and all c ∈ C∆(X), t < t′ implies t · c < t′ · c.

A strict order < on T∆(X) is called a simplification order if it is a rewrite

order and satisfies the following subterm property : for all trees t ∈ T∆(X) and

all proper subtrees t′ ∈ sub(t)\{t} of t, we have t′ < t.

There are several methods for constructing specific simplification orders:

Knuth-Bendix orders, polynomial simplification orders, recursive path orders,

etc. The former one makes a lexicographic comparison, where first the weights

of the trees are compared, second their root symbols, and third recursively the

collections of direct subtrees. The difference between the Knuth-Bendix order

and the lexicographic path order in the case of trees is analogue to the difference

between the lex-length order and the lexicographical order for strings, as one

can see from Example 7.

Knuth-Bendix Orders

Let ∆ be a ranked alphabet, X a leaf alphabet, and < a strict order on ∆. Let

ω : ∆∪X → R+
0 be a weight function, where R+

0 denotes the set of nonnegative

real numbers. A weight function ω is called admissible for < if it satisfies the

following conditions:

21

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

1. There exists r0 ∈ R+
0 \{0} such that ω(x) = r0 for all variables x ∈ X, and

ω(f) ≥ r0 for all f ∈ ∆0.

2. If g ∈ ∆1 and ω(g) = 0, then g is the greatest element in ∆, i.e. f ≤ g for

all f ∈ ∆.

The weight function ω is extended to a function ω : T∆(X) → R+
0 as follows:

ω(t) =
∑

x∈X

ω(x) · |t|x +
∑

f∈∆

ω(f) · |t|f ,

where |t|x (|t|f) denotes the number of occurrences of the variable x (symbol f)

in t. Thus, ω(t) simply adds up the weights of all occurrences of symbols in t.

A Knuth-Bendix order <kbo on T∆(X) induced by < and ω is defined as

follows. For t, t′ ∈ T∆(X), we have t <kbo t′ if:

1. ω(t) < ω(t′) and |t|x ≤ |t′|x for all x ∈ X, or

2. ω(t) = ω(t′), |t|x ≤ |t′|x for all x ∈ X, and one of the following properties

holds:

(a) There exist a unary symbol f , a variable x, and a positive integer n

such that t = x and t′ = fn(x).

(b) There exist symbols f ∈ ∆m (m ≥ 0) and g ∈ ∆n (n ≥ 0) such that

f < g and t = f(t1, . . . , tm), t′ = g(t′1, . . . , t
′
n).

(c) There exist a symbol f ∈ ∆m (m > 0) and an index i, 1 ≤ i ≤ m,

such that t = f(t1, . . . , ti, . . . , tm), t′ = f(t′1, . . . , t
′
i, . . . , t

′
m), t1 =

t′1, . . ., ti−1 = t′i−1 and ti <kbo t′i.

Remark 1. The following properties hold:

1. ξ is the smallest context.

2. For any c1, c2 in C∆(X), if c1 <kbo c2, then c1 · c <kbo c2 · c and c · c1 <kbo

c · c2 for every c in C∆(X).

3. For any t1, t2 in T∆(X), if t1 <kbo t2, then t1 · c <kbo t2 · c for every c in

C∆(X).

4. For any t in T∆(X) and any c 6= ξ in C∆(X), t <kbo t · c.

5. For any c, c′ in C∆(X) with c′ 6= ξ, c <kbo c′ · c (a direct consequence of

the first two properties).

Notice that the above mentioned properties hold for any simplification order,

but the advantage of using a Knuth-Bendix order consists in the fact that t <kbo

t′ can be decided in time polynomial in the size of t and t′.

22

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Example 7. Let ∆ = {f/2, g/3} and assume that f < g. We define ω :

∆∪X → R+
0 by ω(x) = 1 for all x ∈ X, ω(f) = 2 and ω(g) = 5. It is clear that

ω is an admissible weight function. Let us now consider the trees t = g(x, x, x)

and t′ = f(g(x, x, f(x, x)), f(f(x, g(x, x, x)), x)).

t : g

x x x

t′ : f

g

x x f

x x

f

f

x g

x x x

x

Although ω(t) = 8 and ω(t′) = 27, t′ is smaller than t in lexicographical

path order (recall that f < g). Nevertheless, because of the weights, t <kbo t′.

Let us note that in many applications no separate leaf alphabets are used,

but a special set of nullary symbols is singled out when the need arises. Since

this can often be done without any loss of generality, we shall not use variables in

our presentation. If X = ∅ in the above definitions, T∆(X) becomes the set T∆

of ∆-trees, and C∆(X) the set C∆ of ∆-contexts and we write R = (Q,∆, δ, F)

instead of R = (Q,∆, ∅, δ, F). Notice that (T∆, <kbo) is an ordered set, and

<kbo is a strict total order. Moreover, for t, t′ ∈ T∆, we write that t ≤kbo t′ if

t <kbo t′ or t = t′.

2.3 Learning Models

The overall goal of any learning algorithm is to be able to identify a target lan-

guage from a given family of languages after receiving some information about

that language. The information can be given in different ways: it can be a se-

quence of positive examples (i.e., strings in the target language), or a sequence of

labeled examples (i.e., pairs of strings and labels, the labels indicating whether

or not the strings are in the target language). The choice for the sequence of

strings can be arbitrary, or they can be drawn according to a fixed distribu-

tion. The learning algorithm may also have access to an oracle that can answer

specific kind of queries (the active learning model). Regardless of which type

of information is accessible to the learner, the output of the algorithm might

be the target language or a good enough approximation of it (exact identifica-

tion versus probably approximately correct learning). On the other hand, the

algorithm may output just one hypothesis (one-shot learners), a bounded num-

ber of hypotheses such that the final one is the good one (inductive inference

23

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

with bounded mind changes [Muk92a, LZ93c, LZ93b]), or it can keep outputting

hypotheses until it converges to the correct one and never changes its mind

afterwards (learning in the limit model [Gol67]).

In this dissertation we focus on exact identification and active learning.

Moreover, all results concern the learnability of nonempty recursive languages.

The systematic study of these families was started by Angluin [Ang79, Ang80a,

Ang80b] and justified by potential applications.

We have not investigated the question of when an indexed family of

nonempty recursively enumerable languages is inferable from positive

data, since the motivating applications all seem to be families of

recursive languages. D. Angluin [Ang80b]

Let C be a class of nonempty recursive languages over Σ∗. Then C is an

indexable class (or indexed family) if there is an effective enumeration (Li)i≥1

of all and only the languages in C such that membership is uniformly decidable,

i.e., there exists a computable function that, for any w ∈ Σ∗ and i ≥ 1, returns 1

if w ∈ Li, and 0 otherwise. Such an enumeration will subsequently be called an

indexing of C. In the sequel we might say that C = (Li)i≥1 is an indexable class

and understand that C is an indexable class and (Li)i≥1 is an indexing of C. Well-

known examples of indexed families are the set of all context sensitive languages

in canonical enumeration (see Hopcroft and Ullman [HU69]) or the set of all

pattern languages in canonical enumeration (see Angluin [Ang79, Ang80a]).

Another important aspect when speaking about a learning model is the

choice of the hypotheses space [LZ93a, Lan94]. It is clear that the hypotheses

space must contain at least one description for each target language. That is

why many authors investigated the case where the indexed family itself is the

hypotheses space - the exact learning model (for example, Angluin [Ang80a,

Ang80b], Shinohara [Shi83], Jantke [Jan91], Mukouchi [Muk92b]).

... looking at potential applications of a learning system, users of

such a system might even be highly interested in getting as hypotheses

just the descriptions they proposed. That means they might formulate

their learning problems just by specifying a particular indexed family.

T. Zeugmann and S. Lange [ZL95]

One may also choose as hypotheses space for a language class C a sequence

H = G0, G1, . . . of grammars such that each grammar describes a language in

the class to be learned (i.e., L(Gi) ∈ C). This model is known in the literature

as class preserving .

From a practical point of view, it is obviously advantageous to use

a hypotheses space that is as small as possible in that it provides

24

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

exclusively descriptions for languages which are subject to learning.

T. Zeugmann and S. Lange [ZL95]

Of course, there might be various possibilities for choosing a hypotheses

space for a given family of languages. Take for example the case of the class

Reg of all regular languages. One may use as hypotheses space an indexing of all

DFAs, as well as the NFAs, or even the regular expressions. Clearly, in a given

setting, the same class may be learnable with respect to a certain hypotheses

space and not learnable with respect to another. A classical example is the

polynomial time learnability of DFAs and NFAs from a Minimally Adequate

Teacher1 (MAT). It has been shown that, under certain cryptographic assump-

tions, NFAs are not learnable with membership and equivalence queries in time

polynomial in the size of a minimum NFA and the length of the longest coun-

terexample returned by the teacher [AK91]. On the other hand, it is well-known

that DFAs are polynomial time learnable from MAT [Ang87c].

Sometimes though, allowing a class comprising hypotheses space (i.e., a hy-

potheses space H = G0, G1, . . . such that for every L ∈ C there exists Gi ∈ H

with L(Gi) = L) might lead to better learnability capabilities. Indeed, just

imagine that the language class we want to learn is the class S of all singleton

languages over a fixed alphabet Σ. Clearly, the learner may ask, if allowed to, if

the empty set is the target language. The only possible counterexample in this

case will disclose the target language. On the other hand, if the learner is con-

stricted to ask only proper equivalence queries (that is, queries with languages

from the class to be learned), then one may need to ask almost as many ques-

tions as languages in the class when faced with an adversary oracle. Angluin

tackles the issue of learning with proper equivalence queries versus learning with

extended equivalence queries in [Ang01, Ang04].

Actually, choosing an appropriate hypotheses space can be sometimes crucial

for achieving the desired learning goal.

Results obtained in the setting of PAC-learning impressively show

that at least the efficiency of learning can be heavily affected if one

insists to learn with respect to a particular hypotheses space (see, e.g.,

Pitt and Valiant [PV88], Blum and Singh [BS89]). Similar effects

have been observed in Gold-style language learning, too (see Lange

and Zeugmann [LZ93c]). T. Zeugmann and S. Lange [ZL95]

Furthermore, a language class C is said to be absolutely learnable provided it

can be learned with respect to every class preserving hypotheses space for it (see

1Details about this model will be given later in this chapter.

25

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Freivalds and Zeugmann [FZ96]). This is obviously a rather strong requirement,

not very useful in practice.

Since in our work we extensively make use of results proved in the exact

learning framework, the hypotheses space in what follows is either the indexed

family itself, when the focus is on general learnability results, or a class preserv-

ing family of generators such as DFAs, k-reversible DFAs, patterns, etc.

2.3.1 Query Learning

In this section we closely follow the definitions presented in [LZ04b]. In the query

learning model a learner has access to an oracle that truthfully answers queries

of a specified kind. A query learner is an algorithmic device that, depending

on the reply of the previous queries, either computes a new query, or returns a

hypothesis and halts.

More formally, let C be an indexable class, let L ∈ C and let H be a hy-

potheses space for C (recall that H can be an indexed family of either languages

(Li)i∈N or grammars (Gi)i∈N, depending on the chosen learning model). The

query learner Alg learns L with respect to H using some type of queries if it

eventually halts and its only hypothesis, say i, correctly describes L (i.e., Li = L

for the former case, or L(Gi) = L for the last one). So, Alg returns its unique

and correct guess i after only finitely many queries. Moreover, Alg learns the

class C with respect to H using some type of queries if it learns every language

of that class with respect to H using queries of the specified type.

The most investigated types of queries are:

• Membership queries (MQs). The input is a string w, and the answer is

Yes or No, depending on whether or not w belongs to the target language.

• Equivalence queries (EQs). The input is an index j of some language

Lj ∈ H (grammar Gj ∈ H, respectively). If L = Lj (L = L(Gj)), the

answer is Yes. Otherwise together with the answer No, a counterexample

from (Lj\L) ∪ (L\Lj) ((L(Gj)\L) ∪ (L\L(Gj))) is supplied.

The collections of all indexable classes C for which there is a query learner Alg

such that Alg learns C using membership (or equivalence) queries are denoted

by MemQ (EquQ , respectively).

2.3.2 Gold-style Learning

In order to present the Gold-style learning models we need some further notions,

briefly explained below (for details, see [Gol67, Ang80b, ZL95]).

26

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Let L be a nonempty language. A text for L is an infinite sequence σ =

w1, w2, w3, . . . such that {wi | i ≥ 1} = L. An informant for L is an infinite

sequence σ = (w1, b1), (w2, b2), (w3, b3), . . . with bi ∈ {0, 1} for all i ≥ 1 such

that {wi | i ≥ 1 and bi = 1} = L and {wi | i ≥ 1 and bi = 0} = Σ∗\L.

Let C = (Li)i≥1 be an indexable class. An inductive inference machine (IIM)

is an algorithmic device that reads longer and longer initial segments σ of a text

(informant), and outputs numbers as its hypotheses. An IIM returning some

i is construed to hypothesize the language Li. Given a text (an informant)

σ for a language L ∈ C, Alg learns L from σ if the sequence of hypotheses

output by Alg , when fed σ, stabilizes on a number i (i.e., past some point

Alg always outputs the hypothesis i) with Li = L. We say that Alg learns C

from text (informant) if it identifies each L ∈ C from every corresponding text

(informant).

A slightly modified version of the learning in the limit model is the model

of conservative learning (see [ZLK95, Zeu06] for more details). A conservative

IIM is only allowed to change its mind in case its actual guess contradicts the

data seen so far.

As above, LimTxt (LimInf) denotes the collection of all indexable classes C

for which there is an IIM Alg such that Alg identifies C from text (informant).

One can similarly define ConsvTxt and ConsvInf , for which the inference ma-

chines should be conservative IIMs.

Although an IIM is allowed to change its mind finitely many times before

returning its final and correct hypothesis, in general it is not decidable whether

or not it has already output its final hypothesis. Hence, the learner must go

on processing information forever because there is always the possibility that

some future information will force him to change his guess. As opposed to

that, in the finite identification model , the learner is required to know when his

answer is correct, that is, he has to stop the presentation of information at some

finite time when he thinks it has received enough, and state the identity of the

unknown object (see [Gol67]). The corresponding models FinTxt and FinInf

are defined as above.

2.3.3 A Hierarchy of Learning Models

There has been quite a lot of work done for comparing the aforementioned

learning methods and finding nice characterizations for the classes of languages

inferable within specific settings. We present in what follows only those results

which will be needed in our proofs (see [Lan00] for details).

Let C = (Li)i≥1 be an indexable class.

Definition 1 (Angluin [Ang80b]). A set Ti is a finite tell-tale of Li if

27

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

1. Ti is a finite subset of Li, and

2. for all j ≥ 1, if Ti ⊆ Lj then Lj is not a proper subset of Li.

Theorem 1 (Angluin [Ang80b]). The class C is in LimTxt if and only if there

exists an effective procedure which on any input i ≥ 1 enumerates a finite tell-

tale of Li.

Theorem 2 (Zeugmann, Lange, Kapur [ZLK95]). The class C = (Li)i≥1 be-

longs to ConsvTxt if and only if there exists an uniformly computable family

(T j
i)i,j≥1 of finite sets such that

1. for all L ∈ C, there exists i with Li = L and T j
i 6= ∅ for almost all j ≥ 1;

2. for all i, j ≥ 1, T j
i 6= ∅ implies T j

i ⊆ Li and T j
i = T j+1

i ;

3. for all i, j, k ≥ 1, ∅ 6= T j
i ⊆ Lk implies Lk 6⊂ Li

Definition 2 (Mukouchi [Muk92a]). A language L is consistent with a pair of

sets 〈T, F 〉 if T ⊆ L and F ⊆ Σ∗\L. The pair 〈T, F 〉 is said to be a pair of

definite finite tell-tales of Li if:

1. Ti is a finite subset of Li, Fi is a finite subset of Σ∗\Li, and

2. for all j ≥ 1, if Lj is consistent with the pair 〈T, F 〉, then Lj = Li.

Theorem 3 (Mukouchi [Muk92a]). The class C = (Li)i≥1 is in FinInf if and

only if a pair of definite finite tell-tales of Li is uniformly computable for any

i ≥ 1.

Since the class FinInf coincides with MemQ (see [LZ04b], for example), we

get the following corollary.

Corollary 2. The class C = (Li)i≥1 belongs to MemQ if and only if a pair of

definite finite tell-tales of Li is uniformly computable for any index i.

Figure 2.1: FinTxt ⊂ FinInf = MemQ ⊂ ConsvTxt ⊂ LimTxt ⊂ LimInf = EquQ

28

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

2.3.4 Polynomial Time Algorithms; Key Ideas

So far we have been talking about language learning in a general setting, where

no complexity measures are involved. It is clear though that in practice it is

the efficiency of the algorithms that really counts. The word “efficiency” itself

raises a few questions and opens plenty of space for discussion.

First of all, when we talk about polynomial algorithms we have to mention

the variable with respect to which we measure the time complexity. Clearly, if

we take as reference the cardinality of the languages being learned, then even

linear algorithms would imply an infinite computational time when the target

language is not finite. That is why, when we speak about the size of a language,

we understand the size of its smallest representation (e.g., the size of the minimal

complete DFA for regular languages, or the smallest context-free grammar for

CFLs).

Once we have the size problem settled, one still needs to decide what exactly

do we want to bound. Is it the total running time we are concerned with, or

just the update time [Pit89]? Of course, we might as well be interested in

the number of errors before converging (implicit prediction errors [Pit89]). Or

maybe we just need to bound the number of mind changes [AS83, CS83, DS86],

or the size of the characteristic sample [dlH97]. In active learning, the two most

used complexity measures are the number of queries and the total running time.

2.4 The Algorithm L∗

Since many of the algorithms proposed in this monograph are adaptations of

Angluin’s original algorithm L∗ (Algorithm 7 in Section 4.1.2, Algorithm 9 in

Section 5.1.1, Algorithm 11 in Section 5.2.1 and Algorithm 13 in Section 6.1.1),

we briefly highlight the concepts used there, we see how L∗ runs on an example,

and we discuss its time and query complexity. The same target language will

be used as running example throughout this monograph, in order to facilitate a

comparison between our algorithms and L∗.

Let us recall that in a standard query learning algorithm, the learner in-

teracts with a teacher who knows the target language L ⊆ Σ∗ and is assumed

to answer correctly. The goal of the algorithm is to come up with a minimal

representation for the language L.

For L∗, the target is a regular language, and the hypotheses space is formed

by all minimal complete DFAs. Based on the answers to the MQs provided by

the teacher, the learner constructs an observation table containing 0’s and 1’s.

When the table is closed (there is no row in the lower part of the table which

cannot be found in the upper part) and consistent (if there are two strings

29

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

u and v in the upper part of the table with equal row values, then the rows

of ua and va should also be equal for any a in Σ), the algorithm constructs

an automaton and asks an EQ. If the answer to the EQ is No, the teacher

returns also a counterexample, which is a string in the symmetric difference

of the two languages: the target language and the language inferred by the

learner. Otherwise, it outputs the conjectured DFA and halts. We will not get

into any further details because L∗ is not the main topic of our research (the

reader is referred to [Ang87c] for a complete description of the algorithm and

its features).

Let us assume that the language to be learned is L = (a + bba)+ over the

alphabet Σ = {a, b}. The minimal DFA AL is represented in Figure 2.2.

Figure 2.2: Minimal complete DFA for the language L = (a + bba)+

The algorithm starts with S = {λ}, E = {λ} and the following observation

table (see Table 2.3).

Table 2.3: S = {λ}, E = {λ}

First Table
E
λ

S λ 0

SΣ\S
a 1
b 0

Table 2.4: S = {λ, a}, E = {λ}

Second Table
E

State
λ

S
λ 0 q0

a 1 q1

b 0 q0

SΣ\S aa 1 q1

ab 0 q0

One may notice that this table is not closed, since the value of row(a) does

not appear in the upper part of the table. So the algorithm proceeds by adding

the string a to S and updating the table (see Table 2.4).

This table is closed and consistent, so the learner constructs the automaton

represented in Figure 2.3, and asks an EQ.

30

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Figure 2.3: The automaton associated with Table 2.4

At this point, the teacher is supposed to answer No (since the conjectured

automaton is clearly not isomorphic to the target one), and to provide a coun-

terexample. Of course, this can be chosen completely arbitrary. Assume that

the teacher returns the string ba as a counterexample (ba is accepted by the

conjectured automaton although it is not in the target language). This string

and all its prefixes are added to S, and the learner constructs an observation

table as the one in Table 2.5.

Table 2.5: S = {λ, a, b, ba}, E = {λ}

Third Table
E
λ

λ 0

S
a 1
b 0
ba 0
aa 1
ab 0

SΣ\S bb 0
baa 0
bab 0

Table 2.6: S = {λ, a, b, ba}, E = {λ, a}

Forth Table
E

λ a
λ 0 1

S
a 1 1
b 0 0
ba 0 0
aa 1 1
ab 0 0

SΣ\S bb 0 1
baa 0 0
bab 0 0

Let us note that the strings λ and b have identical row values while row(λ ·a)

and row(b ·a) are different. Since the table is not consistent, the algorithm adds

the string a to E and updates the table (see Table 2.6).

Table 2.7: S = {λ, a, b, ba}, E = {λ, a, ba}

Fifth Table
E

State
λ a ba

λ 0 1 0 q0

S
a 1 1 0 q1

b 0 0 1 q2

ba 0 0 0 q3

aa 1 1 0 q1

ab 0 0 1 q2

SΣ\S bb 0 1 0 q0

baa 0 0 0 q3

bab 0 0 0 q3

31

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

The observation table continues to be not consistent, since row(b) equals

row(ba) and the rows corresponding to the strings b · b and ba · b do not share

the same value on column a. So, the string b · a is added to E (see Table 2.7).

Now the table is both closed and consistent, so the algorithm constructs the

automaton represented in Figure 2.4.

Figure 2.4: The automaton associated with Table 2.7

The conjectured automaton is still not the target one, so the teacher will

answer accordingly, providing the learner with a counterexample. We have,

of course, no way of knowing what this could be. But just for the sake of

keeping the tables as small as possible, let us assume that the counterexample

returned by the teacher is the smallest possible one, that is, the string bbbba.

The algorithm adds bbbba and all its prefixes to S, and updates the observation

table (see Table 2.8).

Table 2.8: E = {λ, a, ba}, S =
{λ, a, b, ba, bb, bbb, bbbb, bbbba}

Sixth Table
E

λ a ba
λ 0 1 0
a 1 1 0
b 0 0 1

S
ba 0 0 0
bb 0 1 0
bbb 0 0 0
bbbb 0 0 0
bbbba 0 0 0
aa 1 1 0
ab 0 0 1
baa 0 0 0
bab 0 0 0

SΣ\S bba 1 1 0
bbba 0 0 0
bbbbb 0 0 0
bbbbaa 0 0 0
bbbbab 0 0 0

Table 2.9: E = {λ, a, ba, bba}, S =
{λ, a, b, ba, bb, bbb, bbbb, bbbba}

Seventh Table
E

Q
λ a ba bba

λ 0 1 0 1 q0

a 1 1 0 1 q1

b 0 0 1 0 q2

S
ba 0 0 0 0 q3

bb 0 1 0 0 q4

bbb 0 0 0 0 q3

bbbb 0 0 0 0 q3

bbbba 0 0 0 0 q3

aa 1 1 0 1 q1

ab 0 0 1 0 q2

baa 0 0 0 0 q3

bab 0 0 0 0 q3

SΣ\S bba 1 1 0 1 q1

bbba 0 0 0 0 q3

bbbbb 0 0 0 0 q3

bbbbaa 0 0 0 0 q3

bbbbab 0 0 0 0 q3

32

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

It is easy to see that the table is not consistent: the strings λ and bb have

identical row values, whereas row(λ · b) and row(bb · b) differ on column ba. The

algorithm adds the string b · ba to E and constructs Table 2.9.

The language accepted by the conjectured automaton is finally the target

one, so the algorithm terminates by outputting the right DFA. A simple counting

shows us that during its run, the algorithm L∗ submits to the teacher a total

number of 44 distinct strings as MQs, and asks 3 EQs.

Angluin shows in [Ang87c] that, if we denote by m the length of the longest

counterexample returned by the teacher and by n is the size of the target lan-

guage, then the total running time of L∗ can be bounded by a polynomial

function of m and n, and:

• the observation table can be explicitly represented by a finite table of size

polynomial in m and n (O(m2n2 + mn3) suffices),

• the number of MQs and EQs can be bounded by O(mn2) and n, respec-

tively,

33

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Chapter 3

Learning with Correction

Queries

The way children learn their mother language is an amazing process. They

receive examples of sentences in that language, and after some transitory period -

in which they still make mistakes and are corrected by adults - they are suddenly

able to express themselves fluently and errorless.

We have looked at the ways in which children learn language, and

we have seen that they do indeed appear to learn a great deal from

very little evidence, and that they do appear to build upon grammars

that they could not have simply plucked from the language that they

hear around them. T. Mason [Mas]

It is clear that a child left alone with all kinds of teaching material would

learn to speak slower (if ever) than one integrated in a community. The key

difference between the above mentioned cases consists in the possibility for the

second child to interact with others, and to be corrected when he or she makes

mistakes. As we have already argued in the introductory chapter, this interac-

tion within the process of child acquiring his native language is best described

(among the existing learning models) by the query learning model [Ang87c].

First introduced, and in the same time the most used types of queries, are

membership queries (MQs) and equivalence queries (EQs).

There are quite a few reasons though for which people working in gram-

matical inference, and especially in active learning, have been trying to find

effective algorithms able to identify regular languages without the use of EQs.

First of all, EQs are computationally costly. Secondly, they are quite unnatural

for a real life setting: no child would ever ask if his or her current hypothesis

35

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

represents the correct grammar of the language. Finally, it might happen that

the teacher does not even have a grammar of the target language - take, for

example, the case of native speakers that did not ever studied grammar.

On the other hand, membership queries are not informative enough, not

being able to capture the feedback received by the child when he or she makes

mistakes. Inspired by the way adults guide the process of children’s language

acquisition by correcting them when necessary, we investigate a modified ver-

sion of MQs, called correction query (CQ), that incorporates this idea. More

precisely, the difference consists in the fact that for strings not belonging to

the target language, the teacher must provide the learner with a correction.

Whereas in the case of natural languages the correction for an ungrammatical

sentence would be one in which the adult is replacing the error with a correct

(sequence of) word(s), in formal language theory different objects may require

different types of corrections. Therefore, we are going to consider several types

of CQs.

Intuitively, CQs are weaker than EQs and more informative than MQs. But

what exactly can we learn with them? In this chapter we investigate the condi-

tions which have to be met by a given class of languages in order to be learnable

with CQs, we analyze the relations existing between different types of correction

queries, as well as their connection to other well-known Gold-style and query

learning models. We focus on the identification of formal languages ranging

over indexable classes of nonempty recursive languages as target concepts and

we do not take into account time complexity issues (polynomial time learning

is discussed in Chapter 4).

3.1 Learning with Prefix Correction Queries

We begin our study with the type of corrections that were chronologically

the first ones introduced. We are going to call them prefix correction queries

(PCQs).

We would like to emphasize here that the particular choice we have made for

this first type of correction has to do with the class of languages it was originally

designed for, namely the class of regular languages. If we recall that, according

to the Myhill-Nerode characterization for regular languages, two strings u, v are

equivalent with respect to a language L if and only if they share the same set of

tails (i.e., TailL(u) = TailL(v)), then it is clear that taking the correction for w

to be the smallest string in the set TailL(w) (if TailL(w) is not empty) provides

the learner with important information about the equivalence class of w.

More formally, if L is a formal language over the alphabet Σ and w is any

string in Σ∗, we define the prefix correcting string of w with respect to L, and

36

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

we denote it simply by CL(w), to be the smallest string in the lex-length order

of the set TailL(w), if this set is not empty, and the symbol Θ 6∈ Σ otherwise.

Hence, CL is a function from Σ∗ to Σ∗ ∪ {Θ}. Note that CL(w) is λ if and only

if w ∈ L, and CL(w) equals Θ if and only if w is not the prefix of any of the

strings in L.

Remark 2. For any u, v, w ∈ Σ∗, if CL(u) = v · w then CL(u · v) = w.

Remark 3. For any u, v ∈ Σ∗, if TailL(u) = ∅ then TailL(u · v) = ∅.

Remark 4. For any u ∈ Σ∗, the following results hold:

1. If CL(u) 6= Θ then CL(u · CL(u)) = λ.

2. If CL(u) = Θ then ∀v ∈ Σ∗, CL(u · v) = Θ.

As already stated in the introduction of this chapter, our goal is to gain a

better understanding of what sort of language classes are inferable with these

queries. With this in mind, we denote by PCorQ the collection of all indexable

classes C for which there exists a query learner Alg such that Alg learns C using

PCQs.

In what follows we also pay a special attention to those classes of languages

for which a teacher can be effectively implemented. More precisely, we look into

indexable classes C = (Li)i≥0 that have the following property A: there exists

a recursive function φ : N × Σ∗ → Σ∗ ∪ {Θ} such that φ(i, w) = v if and only

if CLi
(w) = v for any w ∈ Σ∗ and Li ∈ C. In other words, an indexable class

C = (Li)i≥0 has property A if and only if for all indexes i, Pref (Li) is recursive

(computing the correction of a string w with respect to a language L can be

easily done once we know whether w is in Pref (L)). Note that for an arbitrary

recursive language L, the prefix Pref (L) is not necessary recursive1.

So, let us denote by PCorQA the collection of those classes of languages in

PCorQ for which condition A is satisfied. Similarly, MemQA is defined. Clearly,

for the language classes in PCorQA all answers to the PCQs can be effectively

computed. So in this case we could speak about a teacher instead of an oracle.

3.1.1 Necessary and Sufficient Conditions

In this section we give some necessary and sufficient conditions for a class of

languages to be learnable with PCQs alone. For this, we need some further

definitions and notations.

Recall that Mukouchi gives a characterization for finite learning from infor-

mant [Muk92a] (and hence for learning with MQs) in terms of what he calls

1See Corollary 5 later in this chapter.

37

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

pairs of definite finite tell-tales (see Definition 2 in Section 2.3.3), probably in-

spired by Angluin’s finite tell-tales [Ang80b]. Basically, what he shows is that

an indexable class C = (Li)i≥1 is learnable with MQs if and only if a pair of

definite finite tell-tales of Li is uniformly computable for any i ≥ 1. In other

words, a language class is inferable with MQs if for each language in the class,

there exists a pair of finite sets - one with positive examples and the other one

with negative examples - which makes it unique, and such a pair of sets can be

effectively computed.

First of all, we claim that this property is no longer enough to characterize

the model of learning with PCQs. A formal proof is given later in this chapter,

but let us just anticipate a bit, and give the intuition for what comes next. Take

the following example: if K1,K2,K3, . . . is the collection of all finite nonempty

sets of positive integers (indexed somehow), and Σ = {a}, we define Li = {an |

n ∈ Ki} for all i ≥ 1, and C = (Li)i≥1. One may imagine a simple algorithm

that learns any language L in C with PCQs. Indeed, it is enough to ask PCQs

for the strings w0, w1, w2, . . . , wn until the oracle returns the answer Θ (i.e.,

CL(wn) = Θ), where w0 = λ and wi+1 = wi ·CL(wi) ·a for all i ∈ {0, . . . , n−1}.

On the other hand, for all possible pairs of finite sets 〈T, F 〉 such that T ⊆ L

and F ⊆ Σ∗\L, there is always a bigger language L′ in C which includes T and

avoids F (i.e., does not contain any element of F). Hence, although the class C

does not admit pairs of definite finite-tell tales, it is still learnable with PCQs.

From this simple example we deduct that in order to learn a class in PCorQ

one may also need information about those strings that have the special symbol

Θ as correction. Keeping this in mind, we introduce the notion of triples of

definite finite tell-tales.

We say that a language L is consistent with a triple of sets 〈T, F, U〉 if T ⊆ L,

F ⊆ Σ∗\L and U ⊆ Σ∗\Pref (L).

The triple 〈T, F, U〉 is a triple of definite finite tell-tales of the language L

in C = (Li)i≥1 if :

1. T , F and U are finite,

2. L is consistent with 〈T, F, U〉, and

3. for all j ≥ 1, if Lj is consistent with 〈T, F, U〉, then Lj = L.

Going back to our example, it can be checked that 〈Ti, Fi, Ui〉 is a triple of

definite finite tell-tales for Li, where Ti = Li, l = max{n | n ∈ Ki}, Fi = {an |

n ∈ {1, . . . , l}\Ki} and Ui = {al+1}. A formal proof is given in Lemma 4 later

in this chapter.

We are going to establish necessary and sufficient conditions for a class of

languages to be learnable with PCS based on triples of definite finite tell-tales.

38

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

In what follows we use the notion of convergence in the following way: we say

that a series of triples of sets 〈Tj , Fj , Uj〉j≥1 converges, in the limit, to some

triple 〈T∗, F∗, U∗〉 if there exists an N ≥ 1 such that for all n ≥ N , 〈Tn, Fn, Un〉

= 〈T∗, F∗, U∗〉.

Proposition 2 (Necessary condition). If the class C = (Li)i≥1 is in PCorQ,

then there exists an effective procedure which enumerates, for any input i ≥ 1,

an infinite series of triples 〈Tj , Fj , Uj〉j≥1 that converges in the limit to a triple

of definite finite tell-tales of Li.

Proof. Let C = (Li)i≥1 be an indexable class in PCorQ , and Alg a query learn-

ing algorithm that learns C using PCQs. Since the class C does not necessarily

have property A, the answers to PCQs might not always be computable. We

use this observation to design an effective procedure as described above. When-

ever the oracle is queried with the string w, our teacher will return the value

CL≤n(w) where n is a fixed natural number and L≤n = {w ∈ L | |w| ≤ n}. Of

course, CL≤n(w) and CL(w) might be different, so Alg is not sure to converge

anymore (and even if it does, it might converge to a language that is different

from the target one). That is why we only run it for at most a finite number of

steps, avoiding possible loops.

The following procedure2 outputs an infinite series of triples that converges

in the limit to a triple of definite finite tell-tales of L.

Algorithm 1 A series convergent to a triple of definite finite tell-tales

1: Input: the target language L
2: n := 0
3: while TRUE do
4: n := n + 1
5: run Alg on L at most n steps, and collect the sequence of queries and
6: answers from the implemented teacher w.r.t. the language L≤n in QAn

7: Tn := {wv | (w, v) ∈ QAn and v 6= Θ}
8: Fn := {wv′ | (w, v) ∈ QAn, v 6= Θ and v′ ≺ v}
9: Un := {w | (w,Θ) ∈ QAn}

10: output 〈Tn, Fn, Un〉
11: end while

We show that the sequence of triples produced by Algorithm 1 converges to

a triple of definite finite tell-tales of L.

Let QA∗ be the sequence of queries and answers processed by Alg when

learning L and m the number of time steps that Alg performs (hence the car-

dinality of QA∗ is m). Take T∗ = {wv | (w, v) ∈ QA∗, v 6= Θ}, F∗ = {wv′ |

(w, v) ∈ QA∗, v 6= Θ and v′ ≺ v} and U∗ = {w | (w,Θ) ∈ QA∗}. Let us first

show that 〈T∗, F∗, U∗〉 is a triple of definite finite tell-tales of L.

2The idea of constructing a teacher that provides partial answers belongs to S. Kobayashi.

39

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Clearly, T∗, F∗ and U∗ are all finite. Note that if u ∈ T∗, then there exist

w, v in Σ∗ such that u = wv and v = CL(w). Hence, u = wv ∈ L. If u ∈ F∗,

then there exist w, v, v′ in Σ∗ such that v′ ≺ v, u = wv′ and v = CL(w). Hence,

u = wv′ 6∈ L. If u ∈ U∗, then CL(u) = Θ, and hence u ∈ Σ∗\Pref (L). So,

T∗ ⊆ L, F∗ ⊆ Σ∗\L and U∗ ⊆ Σ∗\Pref (L).

Let us take i such that Li is consistent with 〈T∗, F∗, U∗〉. We compute CLi
(w)

for each pair (w, v) in QA∗. If v = Θ, then w ∈ U∗. But U∗ ⊆ Σ∗\Pref (Li)

implies w /∈ Pref (Li), and hence CLi
(w) = Θ. If v ∈ Σ∗\{Θ}, then wv ∈ T∗

and wv′ ∈ F∗ for all v′ ≺ v. From T∗ ⊆ Li and F∗ ⊆ Σ∗\Li, we get wv ∈ Li

and wv′ 6∈ Li for all v′ ≺ v, and hence CLi
(w) = v.

We have shown that for all (w, v) ∈ QA∗, CLi
(w) = v = CL(w). Since the

algorithm Alg is assumed to identify a unique language from the class C, we

obtain Li = L. Hence, 〈T∗, F∗, U∗〉 is a triple of definite finite tell-tales of L.

If we take l = max{|wv| | (w, v) ∈ QA∗}, where the length of Θ is defined as

0, we have that for all n ≥ l and all pairs (w, v) in QA∗, CL(w) = v = CL≤n(w).

So, if N = max{l,m} then for all n ≥ N , 〈Tn, Fn, Un〉 = 〈T∗, F∗, U∗〉.

As a direct consequence we obtain the following corollary.

Corollary 3. If the class C = (Li)i≥1 is in PCorQ, then a triple of definite

finite tell-tales of Li does exist for any index i.

So, we know that for all language classes C in PCorQ , every language in

C has a triple of definite finite tell-tales. Proposition 3 shows that having a

way of computing such a triple is a sufficient condition for an indexable class of

languages to be in PCorQ .

Proposition 3 (Sufficient condition). Let C = (Li)i≥1 be an indexable class. If

a triple of definite finite tell-tales of Li is uniformly computable for any i, then

C is in PCorQ.

Proof. Let C = (Li)i≥1 be an indexable class for which a triple of definite finite

tell-tales 〈Ti, Fi, Ui〉 of Li is uniformly computable for any index i, and let

w1, w2, . . . be the lex-length enumeration of all strings in Σ∗. If L is the target

language, then the following query learning algorithm identifies L using PCQs.

40

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Algorithm 2 A PCQ algorithm for the language L in C

1: T := ∅, F := ∅, U := ∅, j := 1
2: while TRUE do
3: get from the oracle the answer to CL(wj)
4: if (CL(wj) = Θ) then
5: U := U ∪ {wj}, F := F ∪ {wj}
6: else
7: T := T ∪ {wj · CL(wj)}
8: if CL(wj) 6= λ then
9: F := F ∪ {wj}

10: end if
11: end if
12: for i := 1 to j do
13: if (Ti ⊆ T , Fi ⊆ F and Ui ⊆ U) then
14: output i and halt
15: end if
16: end for
17: j := j + 1
18: end while

It is not very difficult to see that if Algorithm 2 outputs a hypothesis, then

it is the correct one. Indeed, since we have constructed T, F and U such that

T ⊆ L,F ⊆ Σ∗\L and U ⊆ Σ∗\Pref (L), it is clear that as soon as we have

Ti ⊆ T , Fi ⊆ F and Ui ⊆ U for some i ≥ 1, the target language L is consistent

with the triple 〈Ti, Fi, Ui〉, and hence the algorithm outputs i such that Li = L.

Now, let us prove that after asking a finite number of queries, the sets

T , F and U are large enough to include Ti, Fi and Ui, respectively, where

i is the smallest index such that Li = L. Let j1, j2, j3 and l be such that

j1 = max{j | wj ∈ Ti}, j2 = max{j | wj ∈ Fi}, j3 = max{j | wj ∈ Ui} and

l = max{j1, j2, j3, i}.

Consider the triple 〈T, F, U〉 constructed after receiving the corrections for

the strings w1, w2, . . . , wl.

• For any w ∈ Ti we have w � wl and CL(w) = λ. Hence, w ∈ T (line 7).

• For any w ∈ Ui we have w � wl and CL(w) = Θ. Hence, w ∈ U (line 5).

• For any w ∈ Fi we have w � wl and CL(w) 6= λ. We distinguish two cases.

Either CL(w) ∈ Σ+ and then w is added to F at line 9 of the algorithm,

or CL(w) = Θ and w is added to F at line 5 of the algorithm. In both

cases, w ∈ F .

We have seen that after getting the corrections of at most l strings, Ti ⊆ T ,

Fi ⊆ F and Ui ⊆ U , and since i is smaller than or equal to l, the algorithm

outputs the (correct) hypothesis i.

41

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

So, we have found necessary and sufficient conditions for a class of languages

to be learnable with PCQs. In the sequel we show that if we restrict to indexable

classes with property A, then there exists a characterization of the learning with

PCQs model in terms of triples of finite sets. For this, let us first state and prove

the following proposition.

Proposition 4 (Necessary condition for PCorQA). If C = (Li)1≥1 belongs to

PCorQA, then a triple of definite finite tell-tales of Li is uniformly computable

for any index i.

Proof. Let C = (Li)i≥1 be an indexable class in PCorQA, and take Alg to be a

query learning algorithm which learns C using PCQs. Notice that in this case

the answer to any PCQ can be effectively computed. Algorithm 3 outputs a

triple of definite finite tell-tales for an arbitrary language L in C.

Algorithm 3 Computing a triple of definite finite tell-tales

1: Input: the target language L
2: run Alg on L, and collect the sequence of queries and answers in QA
3: T := {wv | (w, v) ∈ QA, v 6= Θ}
4: F := {wv′ | (w, v) ∈ QA, v 6= Θ and v′ ≺ v}
5: U := {w | (w,Θ) ∈ QA}
6: output 〈T, F, U〉 and halt.

It is straightforward to show that 〈T, F, U〉 is a triple of definite finite tell-

tales of L (a similar argument is used in the proof of Proposition 2).

The following theorem is a direct consequence of Propositions 3 and 4, and

provides a characterization for the class PCorQA.

Theorem 4. Let C = (Li)1≥1 be an indexable class with property A. Then

C belongs to PCorQ if and only if a triple of definite finite tell-tales of Li is

uniformly computable for any index i.

A question that naturally arises is whether or not PCorQ and PCorQA are

equal. Although intuitively this is not the case, finding a class of languages in

PCorQ\PCorQA is not immediate. It was A. Okhotin who drew our attention

to a recursive language L such that Pref (L) is not recursive.

We have the following lemma.

Lemma 2 (Okhotin [Okh05]). For every Turing machine (TM) M over an

input alphabet Σ there exists an alphabet Γ and an encoding of computations

CodM : Σ∗ → Γ∗, such that the language Valc(M) = {w♮CodM (w) | w ∈

Σ∗ and CodM (w) is an accepting computation} over the alphabet Ω = Σ∪Γ∪{♮}

is an intersection of two LL(1) linear context-free languages L1, L2 ⊆ Σ∗♮Γ∗.

42

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Given M , the corresponding LL(1) linear context-free grammars can be effec-

tively constructed.

For the sake of self-containment, we present here the proof in [Okh05].

Sketch of proof. Let V ⊃ Σ be the tape alphabet of M , let Q be its set of states,

define Γ = V ∪Q∪{♮}. Encode an instantaneous description of M after i steps of

computation on w ∈ Σ∗ as a word IDi = αqaβ ⊆ V ∗QV +, where the machine

is in the state q and its head scans the symbol a. A computation history of M

on w is encoded as

CodM (w) = ID0·♮·ID1·♮·. . .·♮·IDn−1·♮♮·IDn·♮·(IDn)R·♮·. . .·♮·(ID1)
R·♮·(ID0)

R

where by xR we denote the reverse of the string x.

It remains to construct two LL(k) linear context-free grammars G1 and G2,

such that L(G1)∩L(G2) = Valc(M). The first grammar specifies the following

conditions:

1. IDR
0 = (q0a1a2 . . . am)R, i.e., the computation is indeed on the word

a1a2 . . . am. This is an instance of the construct {xcxR | x ∈ {a, b}∗}.

2. For all i (0 ≤ i < n), IDi on the left and (IDi+1)
R on the right are con-

secutive configurations of the Turing machine. Since M is deterministic,

the symbols in (IDi+1)
R are completely determined by the corresponding

symbols in IDi, hence this can be checked using LL(1) rules.

3. IDn is a final configuration of M . The double marker ♮♮ instructs the

grammar to simulate a finite automaton that recognizes final configura-

tions.

The second grammar simply verifies that, for every i, IDi on the left and

(IDi)
R on the right are indeed reverses of each other. This is another instance

of {xcxR | x ∈ {a, b}∗}.

Corollary 4. For every TM M , the language Valc(M) is recursive.

Corollary 5. The prefix of a recursive languages is not necessarily recursive.

Proof. Let us take a TM M0 such that L(M0) ⊆ Σ∗ for some finite alphabet

Σ and L(M0) ∈ RE\Rec. By Corollary 4, Valc(M0) is recursive. On the

other hand, Pref (Valc(M0)) ∩ Σ∗♮ = L(M0)♮ , and hence, Pref (Valc(M0)) ∈

RE\Rec.

Now that we have a language with this property, we can construct a class

of languages C1 = (L1
i)i≥1 over the alphabet Ω such that C1 = (L1

i)i≥1 is in

43

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

PCorQ . For example, take L1
0 = Valc(M0) and L1

i = {ai♮ } for all i ≥ 1,

where a is any symbol in Σ. It is an easy exercise to construct a PCQ algorithm

for learning C1 = (L1
i)i≥1 (asking one PCQ for the string λ suffices). Since

C1 = (L1
i)i≥1 does not have property A, it follows immediately that C1 =

(L1
i)i≥1 ∈ PCorQ\PCorQA.

3.1.2 Learning with Prefix Correction Queries versus

Learning with Membership Queries

Let us recall that the notion of CQ itself appeared as an extension of the well-

known and widely studied MQ. The inspiration for introducing them comes

from a real-life setting (which is the case for MQs also): when children make

mistakes, the adults do not reply by a simple Yes or No (the agreement is actually

implicit), but they also provide them with a corrected word (or phrase). Clearly,

CQs can be thought of as some more informative MQs. So, it is only natural

to compare the two learning settings (learning with CQs versus learning with

MQs), and to analyze their expressive power.

When complexity issues are neglected, learning with MQs in finite time is

exactly as powerful as learning in the limit from informant [Lan00]. So, thanks

to the characterization we have for the class FinInf [Muk92a, ZLK95], we know

that a language class is learnable with MQs if and only if for each language in

the class a pair of definite finite tell-tales is uniformly computable (see Section

2.3.3, Theorem 3). Following this idea, we proved in Section 3.1.1 that the

model of learning with PCQs can be characterized as well by (triples of) finite

sets. The above mentioned results allow us to compare the two learning models:

learning with PCQs and learning with MQs.

The Sets MemQ and PCorQA are Incomparable

Let us first show that MemQ\PCorQA is not empty.

Lemma 3. C1 = (L1
i)i≥1 ∈ MemQ\PCorQA.

Proof. Since C1 = (L1
i)i≥1 6∈ PCorQA it is enough to show that C1 = (L1

i)i≥1 ∈

MemQ , that is, for any i ≥ 0, a pair of definite finite tell-tales of L1
i is uniformly

computable (by Corollary 2 from Section 2.3.3).

Clearly,
〈

{ai♮}, ∅
〉

is such a pair for i ≥ 1. Moreover, since M0 is a recursively

enumerable TM, there exists a recursive procedure to print all the elements of

L(M0) (we know that L(M0) 6= ∅). If w0 is the first element printed, then we

can effectively compute CodM0
(w0). Clearly, 〈{w0♮CodM0

(w0)}, ∅〉 is a pair of

definite finite tell-tales of L1
0.

44

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

In order to prove that PCorQA is not included in MemQ , we consider again

the language class from the beginning of Section 3.1.1. So, if K1,K2,K3, . . . is

the collection of all finite nonempty sets of positive integers (indexed somehow),

and Σ = {a}, we denote by L2
i the language {an | n ∈ Ki} for all i ≥ 1. Clearly,

C2 = (L2
i)i≥1 is an indexable class3 with property A.

Lemma 4. C2 = (L2
i)i≥1 ∈ PCorQA\MemQ.

Proof. We first prove that C2 = (L2
i)i≥1 ∈ PCorQA by using the characteriza-

tion of the class PCorQA in terms of triples of definite finite tell-tales (see The-

orem 4). For an arbitrary index i ≥ 1, we define Ti = L2
i , l = max{n | n ∈ Ki},

Fi = {an | n ∈ {1, . . . , l}\Ki} and Ui = {al+1}. Obviously, the sets Ti, Fi and

Ui are all finite, and the language L2
i is consistent with the triple 〈Ti, Fi, Ui〉.

Let us take j such that L2
j is consistent with the triple 〈Ti, Fi, Ui〉. Then,

Fi ⊆ Σ∗\L2
j implies ({1, . . . , l}\Ki) ∩ Kj = ∅, and Ui ⊆ Σ∗\Pref (L2

j) implies

Kj ⊆ {1, . . . , l}. Putting together these last two results we obtain Kj ⊆ Ki,

and hence L2
j ⊆ L2

i . But Ti ⊆ L2
j implies L2

i ⊆ L2
j , and hence L2

j = L2
i . So

〈Ti, Fi, Ui〉 is a triple of definite finite tell-tales of L2
i , and moreover, it can be

uniformly computed.

Let us now assume that C2 = (L2
i)i≥1 ∈ MemQ . Then, by Corollary 2

(Section 2.3.3), a pair of definite finite tell-tales 〈Ti, Fi〉 of L2
i is uniformly com-

putable for any i ≥ 1. Let us fix i, take l = max{n | an ∈ Fi}, and set j to be

the index for which Kj = Ki ∪{l +1}. Then, L2
j is also consistent with the pair

〈Ti, Fi〉 since Ti ⊆ L2
i ⊂ L2

j and Fi ⊆ Σ∗\L2
j (Fi ⊆ Σ∗\L2

i and al+1 /∈ Fi), and

hence L2
j = L2

i , which contradicts L2
j\L

2
i = {al+1}.

This last result can be extended to any alphabet Σ = {a1, a2, . . . , an}, if we

set L2
i to be {a1a2 . . . an−1a

m
n | m ∈ Ki} for any index i.

The Set MemQ is Strictly Included in PCorQ

Let C = (Li)i≥1 be an indexable class. We have the following theorem.

Theorem 5. If C is in MemQ, then C is in PCorQ.

Proof. Assume that C is in MemQ . Then by Corollary 2, a pair of definite

finite tell-tales 〈Ti, Fi〉 of Li is uniformly computable for any index i. We show

that 〈Ti, Fi, ∅〉 is a triple of definite finite tell-tales of Li. Clearly, Ti is a finite

subset of Li, Fi is a finite subset of Σ∗\Li, and the empty set is a finite subset

of Σ∗\Pref (Li). Let us now take j such that Lj is consistent with the triple

〈Ti, Fi, ∅〉. Because 〈Ti, Fi〉 is a pair of definite finite tell-tales of Li, Ti ⊆ Lj

and Fi ⊆ Σ∗\Lj , we obtain Lj = Li, and hence 〈Ti, Fi, ∅〉 is a triple of definite

3This class was proposed by S. Kobayashi.

45

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

finite tell-tales for Li. Using Proposition 3, it follows immediately that C is in

PCorQ .

Notice that the inclusion is strict since C2 = (L2
i)i≥1 ∈ PCorQ\MemQ (as

a consequence of Lemma 4). Because the class MemQ is strictly included in

PCorQ , we obtain that PCQs are more powerful than MQs, and they cannot

be simulated by a finite number of MQs.

3.1.3 Learning with Prefix Correction Queries versus

Gold-style Learning Models

Learning from queries is a one-shot learning model (i.e., the learner’s first hy-

pothesis is also the correct one) in which the learner receives rather global

information (in the sense that, at any point, the oracle can be interrogated

about any of the strings in the alphabet) about the object to be learned, be-

ing able to affect the sample of information, as opposed to Gold-style learn-

ing model where the information received is local (the learner cannot influ-

ence the sample) and the learner is allowed to change its current hypothesis

when new information is received. Although this two approaches seem rather

unrelated at first glance, there are several results that indicate the contrary

[Lan00, LZ04a, LZ04b, LZ04c, LZ05]. For example, it has been shown that

learning with MQs is equivalent with finite learning from informant, or that an

indexable class is learnable using extra superset queries if and only if there is a

conservative IIM that identifies this class from text [LZ04b].

In the sequel we show where our model is placed in the existing hierarchy of

both query and Gold-style learning models. The first step was already done in

Section 3.1.2: we proved that the classes MemQ and PCorQA are incompara-

ble, and that MemQ is strictly included in PCorQ (consequently, FinInf and

PCorQA are incomparable and FinInf is strictly included in PCorQ).

The Set PCorQA is Strictly Included in ConsvTxt

Let C = (Li)i≥1 be an indexable class. We have the following theorem.

Theorem 6. If C is in PCorQA, then C is in ConsvTxt.

Proof. If C = (Li)i≥1 is in PCorQA then, by Proposition 4, a triple of defi-

nite finite tell-tales 〈T ∗
i , F ∗

i , U∗
i 〉 of Li is uniformly computable for any index i.

Moreover, we can assume without loss of generality that for all i ≥ 1, T ∗
i is not

empty.

For all i, j ≥ 1, we define T j
i to be the set T ∗

i . Clearly, (T j
i)i,j≥1 is a

uniformly computable family of finite sets. Let us show that it also satisfies the

three conditions of Theorem 2.

46

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

1. for all L ∈ C, there exists i with Li = L and T j
i 6= ∅ for almost all j ≥ 1;

True - they are all nonempty.

2. for all i, j ≥ 1, T j
i 6= ∅ implies T j

i ⊆ Li and T j
i = T j+1

i ;

True.

3. for all i, j, k ≥ 1, ∅ 6= T j
i ⊆ Lk implies Lk 6⊂ Li.

This last condition translates to: for all i, k ≥ 1, T ∗
i ⊆ Lk implies Lk 6⊂

Li. So, let us assume that there exist i, k ≥ 1 such that T ∗
i ⊆ Lk and

Lk ⊂ Li. It follows that Pref (Lk) ⊆ Pref (Li), and hence Σ∗\Pref (Lk) ⊇

Σ∗\Pref (Li). Keeping in mind that U∗
i ⊆ Σ∗\Pref (Li) we obtain that

U∗
i ⊆ Σ∗\Pref (Lk). Moreover, F ∗

i ⊆ Σ∗\Li and Σ∗\Lk ⊇ Σ∗\Li imply

F ∗
i ⊆ Σ∗\Lk. Since Lk is consistent with the triple 〈Ti, Fi, Ui〉, we have

Li = Lk which contradicts our assumption.

By Theorem 2, we obtain that C is in ConsvTxt .

Let us now show that the inclusion is strict. For this, we denote by I(n)

the set of all positive integral multiples of n. Let the collection of all finite

nonempty sets of prime positive integers be P1, P2, P3, . . . indexed, for example,

in order of increasing
∏

p∈Pi
p. Then, take Σ = {a}, Ri = ∪p∈Pi

I(p) and

L3
i = {an | n ∈ Ri}. Clearly, C3 = (L3

i)i≥1 is an indexable class (the example is

taken from [Ang80b]).

Lemma 5. C3 = (L3
i)i≥1 is in ConsvTxt\PCorQ.

Proof. First notice that one can easily construct a conservative IIM that learns

the class C3 = (L3
i)i≥1: it is enough to update the hypothesis only when in the

presentation of information a string an appears, and n is either a prime number

or a power of a prime number that was not seen before.

Now let us assume that C3 = (L3
i)i≥1 is in PCorQ . By Corollary 3, a triple

of definite finite tell-tales 〈Ti, Fi, Ui〉 of L3
i does exist, for any index i. If we

denote by Len(L) the set of all possible lengths of strings in L (that is, Len(L)

= {|w| | w ∈ L}), then Ti ⊆ L3
i is equivalent to Len(Ti) ⊆ Ri, and Fi ⊆ Σ∗\L3

i

is equivalent to Len(Fi) ∩ Ri = ∅. Finally, Ui ⊆ Σ∗\Pref (L3
i) implies Ui = ∅.

Let us now choose a prime number p such that I(p) ∩ Len(Fi) = ∅ and

p 6∈ Pi, and take j such that Pj = Pi ∪{p}. Clearly, L3
i ⊂ L3

j . We show that L3
j

is consistent with 〈Ti, Fi, Ui〉.

Indeed, Ti ⊆ L3
j because Ti ⊆ L3

i and L3
i ⊂ L3

j . Also, Len(Fi) ∩ Rj = ∅

because Len(Fi) ∩ Ri = ∅, Len(Fi) ∩ I(p) = ∅ and Rj = Ri ∪ I(p). Hence,

Fi ⊆ Σ∗\L3
j . The empty set is trivially included in any set, and hence Ui ⊆

Σ∗\Pref (L3
j).

47

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

We found an index j such that L3
j is consistent with 〈Ti, Fi, Ui〉 and L3

j 6= L3
i

which is a contradiction, so C3 = (L3
i)i≥1 is not in PCorQ .

As a direct consequence we obtain that C3 = (L3
i)i≥1 ∈ ConsvTxt\PCorQA.

The Set PCorQ is Strictly Included in LimTxt

Let C = (Li)i≥1 be an indexable class. We have the following theorem.

Theorem 7. If C is in PCorQ, then C is in LimTxt.

Proof. To prove this theorem, we use Angluin’s characterization for the class of

languages identifiable in the limit from positive data. Thus, by Theorem 1, it

is enough to show that there exists an effective procedure which on any input

i ≥ 1, enumerates a finite tell-tale of Li.

Let us fix the target language L, and consider the Algorithm 1 described in

the proof of Proposition 2. We can modify it to output, instead of the triple

〈Ti, Fi, Ui〉, only the elements of the set Ti which did not appear previously, for

all i ≥ 1 (in order to avoid duplications). We show that the set T := ∪i≥1Ti is

finite, and moreover, it is a finite tell-tale of L. Indeed, we have seen in the proof

of Proposition 2 that for all n ≥ N , 〈Tn, Fn, Un〉 = 〈T∗, F∗, U∗〉 is a triple of

definite finite tell-tales for L. Clearly, Tn = T∗ is a finite tell-tale for L (a similar

argument was used in the proof of Theorem 6). But T = ∪i≥1Ti = ∪N
i=1Ti is a

finite set included in L, and hence it is also a finite tell-tale of L.

Moreover, the inclusion is strict since C3 = (L3
i)i≥1 is in LimTxt and not in

PCorQ .

The Sets PCorQ, ConsvTxt and LimTxt

We have seen that both PCorQ and ConsvTxt are strictly included in LimTxt .

In the sequel we show that there are languages in LimTxt which are not in

ConsvTxt ∪ PCorQ . For this, consider the class of languages described by

Angluin in [Ang80b], pp. 131-132.

Let us fix the alphabet Σ = {a, b}, and take a standard enumeration Alg1,

Alg2, Alg3, . . . of IIMs and some computable pairing function 〈·, ·〉 : N+ ×

N+ → N+. For all k ≥ 1 define L4
〈k,1〉, L

4
〈k,2〉, L

4
〈k,3〉, . . . as follows. L4

〈k,1〉 =

{apm
k | m ≥ 1}, where pk is the kth prime number. Let σk be the sequence

apk , ap2
k , ap3

k , ap4
k , . . . , of strings of length positive powers of pk. For all j > 1,

run the computation of Algk on input σk for j steps. If during this computation

Algk guesses 〈k, 1〉, then let U〈k,j〉 be the set of input strings read by Algk up

to the first time it guesses 〈k, 1〉. If Algk does not guess 〈k, 1〉 during the first j

steps of its computation on σk then let U〈k,j〉 = ∅. Define L4
〈k,j〉 = U〈k,j〉∪{apk}

48

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

and C4 = (L4
i)i≥1. Clearly, C4 = (L4

i)i≥1 is an indexed family of nonempty

recursive languages.

Lemma 6. C4 = (L4
i)i≥1 is in LimTxt\(ConsvTxt ∪ PCorQ).

Proof. Angluin shows in [Ang80b] that C4 = (L4
i)i≥1 is in LimTxt\ConsvTxt , so

we just need to prove that C4 = (L4
i)i≥1 is not in PCorQ . Assume by contrary

that it is. Then, since C4 = (L4
i)i≥1 has property A, it follows by Theorem 4

that C4 = (L4
i)i≥1 is in ConsvTxt , a contradiction.

Next we give an example4 of an indexed family of nonempty recursive lan-

guages in PCorQ\ConsvTxt . We use as starting point the class C4 = (L4
i)i≥1,

modifying it in order to become learnable with PCQs. The key idea is to add

some evidence to each language L4
i , i = 〈k, j〉 that indicates whether Algk on

input σk = apk , ap2
k , ap3

k , ap4
k , . . . , guesses 〈k, 1〉 at least once or not. In what

follows, whenever we say that a given inference machine guesses 〈k, j〉, it is

with respect to the indexed family of recursive languages (L5
〈k,j〉)k,j≥1 that is

subsequently defined.

Given an IIM Algk, one can construct a deterministic Turing machine Mk

which accepts the input string b if and only if Algk on σk guesses 〈k, 1〉 at some

finite step. Otherwise, Mk will loop forever, thus not accepting the input string

b. Clearly, L(Mk) is not recursive, but Valc(Mk) is (by Corollary 4). Then,

let Ek = Valc(Mk) ∩ b♮Γ∗. By the construction of Mk, it holds that Ek = ∅

if and only if Algk on input σk never guesses 〈k, 1〉. For all j, k ≥ 1, define

L5
〈k,j〉 = L4

〈k,j〉 ∪ Ek. The class C5 = (L5
i)i≥1 is an indexable class of recursive

languages.

Lemma 7. C5 = (L5
i)i≥1 is in PCorQ\ConsvTxt.

Proof. To show that C5 = (L5
i)i≥1 is learnable with PCQs, we consider the

following learning procedure. Assume L is the target language. First, get from

the oracle the value of CL(a2). Clearly, if k is such that pk = 2 + |CL(a2)| we

can conclude that the target language should be from L5
〈k,1〉, L

5
〈k,2〉, L

5
〈k,3〉, . . .

Next, ask a PCQ with b♮. There are two cases to consider.

1. If the answer is θ, we know that Algk never guesses 〈k, 1〉. So, L5
〈k,j〉 with

j > 1 contains only apk . Then, ask a PCQ with the string ap2
k . If the

answer is not θ, it means that the target language is L5
〈k,1〉 so we can

output 〈k, 1〉. Otherwise, it can be any language in L5
〈k,2〉, L

5
〈k,3〉, . . ., but

since they are all equal, it is enough to output 〈k, 2〉.

4We are indebted to S. Kobayashi for the construction of the language class C5 = (L5

i)i≥1

and the proof of Lemma 7.

49

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

2. If the answer is not θ, we know that Algk eventually guesses 〈k, 1〉. Then,

we run Algk on σk = apk , ap2
k , ap3

k , ... and wait for the first time Algk

guesses 〈k, 1〉. Let j be the first such step and let T = {apk , ap2
k , ..., apl

k}

be the set of initial segment of strings in σk read by Algk up to the step

j. Then, we know that:

• L5
〈k,1〉 = {apk , ap2

k , ap3
k , . . .} ∪ Ek

• L5
〈k,m〉 = {apk} ∪ Ek for m = 2, ..., j − 1

• L5
〈k,m〉 = {apk} ∪ T ∪ Ek for m = j, j + 1, j + 2,

To differentiate between the three languages, first ask a PCQ with the

string ap2
k . If the answer is θ, output 〈k, 2〉. Otherwise, ask a PCQ with

ap
l+1

k . If the answer is θ, output 〈k, j〉. Otherwise, output 〈k, 1〉.

This algorithm learns the class C5 = (L5
i)i≥1 with PCQs.

We next show that C5 = (L5
i)i≥1 is not in ConsvTxt using the same argu-

ment Angluin employed in the proof of Theorem 4 on page 131-132 [Ang80b].

Consider the computation of an inference machine Algk on σk = {apk , ap2
k , . . .}.

There are two cases to consider.

1. If Algk on σk never guesses 〈k, 1〉, then L4
〈k,j〉 = {apk} for all j > 1.

Furthermore, since EAlgk
= ∅, L5

〈k,j〉 = L4
〈k,j〉 holds for every j ≥ 1.

Therefore, σk is a positive presentation for L5
〈k,1〉. So, we can conclude

that Algk fails to infer L5
〈k,1〉 from positive data.

2. If Algk on σk eventually guesses 〈k, 1〉, then Ek contains a unique string,

say b♮w. Let j be the first step at which Algk on σk guesses 〈k, 1〉. Let σ̂k

be the finite initial segment of σk read by Algk up to step j, followed by the

unique string b♮w and an infinite sequence of apk ’s. Then, σ̂k is a positive

presentation of L5
〈k,j〉. Consider Algk on input σ̂k. We know that at step

j, Algk guesses 〈k, 1〉. If Algk never subsequently changes its guess, it fails

to infer L5
〈k,j〉 from positive data. On the other hand, if Algk subsequently

changes its guess, it fails to be conservative on L5
〈k,1〉, L

5
〈k,2〉, . . ., because

L5
〈k,1〉 is consistent with every initial segment of σ̂k.

Thus in either case Algk must either fail to infer L5
〈k,1〉, L

5
〈k,2〉, . . . from pos-

itive data or fail to be conservative on L5
〈k,1〉, L

5
〈k,2〉, Hence, the family

(L5
〈k,j〉)k,j≥1 is an indexed family of nonempty recursive languages such that no

inference machine can both infer the family from positive data and be conser-

vative on it. Therefore, there is no conservative IIM that learns C5 = (L5
i)i≥1

from text.

50

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

3.1.4 An Example: Learning k-Reversible Languages with

Prefix Correction Queries

The conditions introduced in Section 3.1.1 can be used not only to show the

relation of our model with other well-known learning models, but they are useful

as well in proving that a given class is learnable with PCQs (or the contrary,

for that matter). Let us consider for example the class of k-reversible languages

introduced by Angluin back in ’82, and shown to be inferable from positive data

in the limit [Ang82]. We will see that for any k-reversible language L, a triple of

definite finite tell-tales of L is uniformly computable and hence, by Proposition

3, k -Rev is in PCorQ . Note that the class k -Rev is not learnable with MQs, as

we will show later in this dissertation (see Theorem 14, Section 4.1.3).

We first state and prove the following observation.

Lemma 8. If L is a k-reversible language and u1, u2 are arbitrary strings in

Σ∗, then u1 ≡L u2 if and only if CL(u1v) = CL(u2v) for all v in Σ≤k.

Proof. Note that for all regular languages L and for any v ∈ Σ∗, u1 ≡L u2

implies u1v ≡L u2v, so CL(u1v) = CL(u2v) is trivially true. Thus, we just have

to show that if CL(u1v) = CL(u2v) for all v ∈ Σ≤k, then u1 ≡L u2.

Indeed, assume by contrary that there are strings u1, u2 in Σ∗ such that

u1 6≡L u2 and CL(u1v) = CL(u2v) for all v in Σ≤k. Hence, there must exist

w ∈ Σ∗ such that either

• u1w ∈ L and u2w 6∈ L, or

• u1w 6∈ L and u2w ∈ L.

Let us assume the former case (the other one is similar).

1. If |w| ≤ k, then w ∈ Σ≤k, and hence CL(u1w) = CL(u2w). But u1w ∈ L

implies CL(u1w) = λ, and so CL(u2w) = λ which contradicts u2w 6∈ L.

2. If |w| > k, then there must exist v, w′ ∈ Σ∗ such that w = vw′ and |v| = k.

By assumption, u1vw′ ∈ L and u2vw′ 6∈ L, so u1v 6≡L u2v. On the other

hand, since v ∈ Σ≤k we have CL(u1v) = CL(u2v) = v′. Because u1v ·w
′ ∈

L, TailL(u1v) 6= ∅ and hence CL(u1v) ∈ Σ∗. Since L is k-reversible,

u1vv′ ∈ L, u2vv′ ∈ L and |v| = k, we get TailL(u1v) = TailL(u2v) (by

Theorem 1) which contradicts u1v 6≡L u2v.

We showed that if CL(u1v) = CL(u2v) for all v in Σ≤k, then u1 ≡L u2 which

concludes our proof.

Let L be a k-reversible language over the alphabet Σ. We denote by L̃ the

set {w | ∀v ∈ [w]L, w � v} containing the smallest elements in each equivalence

51

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

class with respect to ≡L. Clearly, L̃ has exactly n elements where n is the index

of L, and it is computable in polynomial time for any regular language. The

following algorithm takes as input a k-reversible language and outputs a triple

of definite finite tell-tales for it.

Algorithm 4 Algorithm for computing a triple of definite finite tell-tales

1: Input: the target language L0

2: T0 := ∅, F0 := ∅, U0 := ∅
3: for all u in L̃0Σ

≤k+1 do
4: if (CL0

(u) = λ) then
5: add u to T0

6: else
7: if (CL0

(u) = Θ) then
8: add u to U0

9: else
10: add u · CL0

(u) to T0

11: for all v ≺ CL0
(u) do

12: add uv to F0

13: end for
14: end if
15: end if
16: end for

We show that the triple 〈T0, F0, U0〉 computed by Algorithm 4 is indeed a

triple of definite finite tell-tales of L0. For this, we need several lemmas.

Lemma 9. Let L be a k-reversible language consistent with 〈T0, F0, U0〉. For

any u in L̃0Σ
≤k+1, CL0

(u) = CL(u).

Proof. Let u be an arbitrary string in L̃0Σ
≤k+1. Since L is consistent with

〈T0, F0, U0〉, we have T0 ⊆ L, F0 ⊆ Σ∗\L and U0 ⊆ Σ∗\Pref (L).

One of the following three possible situations may occur.

• CL0
(u) = λ, so u ∈ T0 (added to T0 at line 5). But T0 ⊆ L, and hence

u ∈ L. We obtain CL(u) = λ = CL0
(u).

• CL0
(u) = Θ, so u ∈ U0 (added to U0 at line 8). But U0 ⊆ Σ∗\Pref (L),

and hence u 6∈ Pref (L). We obtain CL(u) = Θ = CL0
(u).

• CL0
(u) = v ∈ Σ+, so uv ∈ T0 and uv′ ∈ F0 for all v′ ≺ v. Thus, uv ∈ L

and uv′ ∈ Σ∗\L for all v′ ≺ v. We obtain CL(u) = v = CL0
(u).

So in all three cases, CL(u) = CL0
(u) which concludes our proof.

Lemma 10. Let L be a k-reversible language consistent with 〈T0, F0, U0〉. If

u1, u2 ∈ L̃0 are such that [u1a]L0
= [u2]L0

for some a ∈ Σ, then [u1a]L = [u2]L.

52

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Proof. Let u1, u2 be two elements of L̃0 such that [u1a]L0
= [u2]L0

for some

a ∈ Σ. We want to show that [u1a]L = [u2]L, that is, CL(u1av) = CL(u2v) for

all v ∈ Σ≤k (by Lemma 8). So, let us choose v in Σ≤k arbitrarily. Since both

u1av and u2v are in L̃0Σ
≤k+1, CL0

(u1av) = CL(u1av) and CL0
(u2v) = CL(u2v)

(by Lemma 9). Keeping in mind that [u1a]L0
= [u2]L0

and v ∈ Σ≤k, we obtain

CL0
(u1av) = CL0

(u2v), and hence CL(u1av) = CL(u2v).

Lemma 11. If L is a k-reversible language consistent with 〈T0, F0, U0〉, then

the index of L is greater than or equal to the index of L0.

Proof. Let u1, u2 be two distinct elements of L̃0. Since u1 6≡L0
u2, there must

exist a v in Σ≤k such that CL0
(u1v) 6= CL0

(u2v) (by Lemma 8). Because

both u1v and u2v are in L̃0Σ
k+1, we get CL0

(u1v) = CL(u1v) and CL0
(u2v) =

CL(u2v) (by Lemma 9). This implies CL(u1v) 6= CL(u2v), and hence u1 6≡L u2

(again by Lemma 8). So, L has at least as many equivalence classes as the

cardinality of the set L̃0, which means that the index of L is greater than or

equal to the index of L0.

For any regular language L over Σ and any string u ∈ Σ∗, we denote by

ũL the unique element v ∈ L̃ such that [u]L = [v]L. The following two lemmas

hold5.

Lemma 12. If L is a k-reversible language consistent with 〈T0, F0, U0〉, then

[u]L = [ũL0
]L for any u ∈ Σ∗.

Proof. Let us proceed by induction on the length of u. In case of |u| = 0, the

claim holds clearly. Assume that the claim holds for the case of |u| ≤ l, and

consider the case of |u| = l + 1. We can write u = va for some v ∈ Σl and

a ∈ Σ. Then by induction hypothesis, we have [v]L = [ṽL0
]L, and therefore

[va]L = [ṽL0
a]L holds. Note that ũL0

, ṽL0
∈ L̃0 and [ṽL0

a]L0
= [ũL0

]L0
, which

implies, by Lemma 10, that [ṽL0
a]L = [ũL0

]L. Finally, we have [u]L = [va]L =

[ṽL0
a]L = [ũL0

]L.

Lemma 13. If L is a k-reversible language consistent with 〈T0, F0, U0〉, then

for any u, v ∈ Σ∗, [u]L0
= [v]L0

implies [u]L = [v]L.

Proof. Assume [u]L0
= [v]L0

. Since [u]L0
= [ũL0

]L0
and [v]L0

= [ṽL0
]L0

, we

immediately get that [ũL0
]L0

= [ṽL0
]L0

, and hence ũL0
and ṽL0

must coincide

(the set L̃0 contains only one representative for each equivalence class). By

Lemma 12, we have [u]L = [ũL0
]L and [v]L = [ṽL0

]L. Therefore, [u]L = [ũL0
]L =

[ṽL0
]L = [v]L holds.

5Many thanks to S. Kobayashi for introducing the notation ũL, thus simplifying the proofs
of Lemma 12 and Lemma 13.

53

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Theorem 8. If L is a k-reversible language consistent with 〈T0, F0, U0〉, then

L0 = L holds.

Proof. Lemma 13 implies that ≡L is coarser than ≡L0
. Thus by Lemma 11,

we can conclude that ≡L is equivalent to ≡L0
which implies that w̃L0

= w̃L

for any w ∈ Σ∗. Therefore, we have w ∈ L0 if and only if CL0
(w) = λ if and

only if CL0
(w̃L0

) = λ if and only if CL(w̃L0
) = λ (by Lemma 9) if and only if

CL(w̃L) = λ if and only if CL(w) = λ if and only if w ∈ L.

We would like to stress here that later in this monograph (Chapter 4, Section

4.1.2) we prove a stronger result, namely that k-reversible languages are poly-

nomial time learnable with PCQs. However, we decided to include the proof of

its learnability in the general setting (where there are no constraints regarding

time complexity) for two reasons. First of all, we consider that this proof is an

exemplification of how theoretical results may arise from using the conditions

described in Section 3.1.1. Secondly, we might not even have thought of finding

an algorithm for the class k -Rev unless we knew that it is in PCorQ .

3.2 Learning with Length Bounded

Correction Queries

Let us recall that the particular choice we have made for the prefix correcting

string is closely related to the intrinsic structure of DFAs and their properties.

One may argue though that the smallest correcting string might be arbitrarily

long. For example, if we take n to be any natural number, then there exists a

string w in Σ∗ and a (regular) language L such that the correction of w with

respect to L is longer than n (take w = λ and L = {an+1} where a is an

arbitrary symbol in Σ). So, let us see what happens when, instead of returning

the smallest string in TailL(w), we return all tails shorter than a given fixed

natural number. Clearly, if there is no possible short correction, the oracle will

return the empty set.

Let us fix an integer l. Given a language L and a string w, we define the

l-bounded correction of w with respect to L (denoted Cl
L(w)) as the set of all

strings v of length at most l such that w · v is in L. Formally, Cl
L is a function

from Σ∗ to P(Σ∗) such that for any w in Σ∗, Cl
L(w) = {v ∈ TailL(w) | |v| ≤ l}.

Note that λ ∈ Cl
L(w) if and only if w ∈ L.

So, let us consider the model in which the learner must identify the target

language after asking a finite number of l-bounded correction queries (lBCQs).

Since any 0BCQ can be simulated by an MQ and the other way around, it is

clear that for l = 0, learning with lBCQs is equivalent to learning with MQs. It

54

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

is though less straightforward that the same property holds for an arbitrary l.

We show in the sequel that for any l, a language class is learnable with MQs if

and only if it is learnable with lBCQs. So let us denote by lBCorQ the collection

of all indexable classes C for which there exists a query learner Alg such that

Alg learns C using lBCQs. The following result holds.

Proposition 5. For any l ≥ 0, lBCorQ = MemQ.

Proof. Since for any language L and any string w in Σ∗, if we know the answer

to Cl
L(w) we also know if the string w is in L or not, it is clear that lBCorQ

includes MemQ . Hence, we have to show only that lBCorQ ⊆ MemQ .

Let us consider a language class C in lBCorQ , and let Alg be a query learner

such that Alg learns C using lBCQs. We modify Alg such that instead of

submitting an lBCQ for a given string w and the target language L, it submits

MQs for all the strings wu with u ∈ Σ≤l, and uses this information to construct

the answer for Cl
L(w) (i.e., Cl

L(w) := {u ∈ Σ≤l | wu ∈ L}). Clearly, this

modified version of Alg is a query learning algorithm that learns C using MQs.

This proposition is basically saying that having an oracle that can return at

once the answers for more than one MQ (one lBCQ contains the answer for 1+

|Σ|+ . . .+ |Σ|l MQs) does not increase the learnability power of the model (that

is, the learning with MQs model). The result was somehow expected if we recall

that time complexity issues are neglected in our analysis. Moreover, this allows

us to talk about the model of learning with length bounded correction queries

(LBCQs) in general, without specifying a given length bound. Therefore, we

denote by LBCorQ the collection of all language classes C for which there exists

an l ≥ 0 and a query learner Alg such that Alg learns C using a finite number

of lBCQs.

Combining the results of Proposition 5 and Corollary 2, we get the following

characterization of our model.

Corollary 6. The class C = (Li)i≥1 is learnable with LBCQs if and only if a

pair of definite finite tell-tales of Li is uniformly computable for any index i.

3.3 Learning with Edit Distance Based

Correction Queries

The idea of using corrections as an alternative to MQs has been enthusias-

tically embraced by other members of the grammatical inference community

[BBdlHJT07, JK07, Kin08]. While in [JK07] the correction of a string not in

55

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

the target language is defined as being the nearest positive example, where the

distance is the usual distance between numbers6, both [BBdlHJT07] and [Kin08]

define the correcting string with respect to the edit distance.

Since in [Kin08] the correction returned by the teacher heavily depends on

the algorithm chosen (on the sequence of queries previously asked by the learner,

to be precise), we chose not to include here a discussion about this model. We

will revisit this topic with details in Chapter 4, Section 4.3.

So, let us turn first to the corrections proposed by Jain and Kinber [JK07].

The authors introduce two models:

• in the first one, the learner receives the nearest positive example if the

submitted element is not in the target language; we refer to this model as

NPMemQ .

• in the second one, the nearest positive example not exceeding the size

of the negative example (i.e., an element submitted by the learner which

is not in the target language) is provided (if any); this second model

is motivated by the fact that in the first approach a teacher may have

difficulties providing the nearest (correcting) positive example, as it can

still be too complex - far larger than the negative example [JK07]. We

refer to this model as BNPMemQ (B stands for bounded).

Notice that in all those models the learner is allowed to query only elements

of
⋃

L∈C L - we indicate that by adding the prefix R (for restricted) in front

of MemQ . The authors of [JK07] point out that if one allows membership

queries for any member of N, the model - including the cases for the (bounded)

nearest positive examples - would collapse to learning from informant (that is,

NPMemQ = BNPMemQ = MemQ). In Figure 3.1 the results of Theorems 8, 9

and 10 from the same paper are summarized.

Figure 3.1: Learning with nearest positive example

We detail these results in the sequel, adapting them to our terminology (and

using as well Theorem 1 of the same paper [JK07]).

6The languages in their model are subsets of N.

56

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Theorem 9 (Jain, Kinber [JK07]). NPMemQ\BNPMemQ 6= ∅.

Theorem 10 (Jain, Kinber [JK07]). BNPMemQ\NPMemQ 6= ∅.

Theorem 11 (Jain, Kinber [JK07]). (NPMemQ ∩BNPMemQ)\RMemQ 6= ∅.

In other words, when the learner is not allowed to ask arbitrary MQs, learn-

ing with nearest positive example is strictly more powerful than learning with

MQs, even if the length of the example is bounded. We show that this is no

longer the case when the learner can query any string in Σ∗, and the distance

between strings is the edit distance. Even though our study does not directly

take into account the case where the length of the nearest positive example is

bounded by the negative one, the results can be easily extended to cover it.

Following [BBdlHJT07], we define the edit distance correction of a string w

with respect to the language L by:

EdcL(w) =

{

Yes, if w ∈ L, and

one string of {w′ ∈ L | d(w,w′) is minimum}, if w 6∈ L.

Similarly, we denote by MqL(w) the oracle’s answer when it is queried with the

string w for the target language L. That is, MqL(w) = Yes if w ∈ L, and No

otherwise.

Note that EdcL(w) = Yes if and only if w is in L. Clearly, any oracle an-

swering edit distance correction queries (EDCQs) would also give us the answer

for the corresponding MQ. If we denote by EditCorQ the collection of all index-

able classes C for which there exists a query learner Alg such that Alg learns C

using edit distance correction queries, it is clear that EditCorQ includes MemQ .

The following equality holds.

Theorem 12. EditCorQ = MemQ.

Proof. Let us first show that having an MQ oracle allows us to compute the

value of EdcL(w) for any language L 6= ∅ ⊆ Σ∗ and any w in Σ∗ using a finite

number of MQs. So, let us assume that we have a target language L and the

learner submits the string w to the oracle. Algorithm 5 computes the value of

EdcL(w) by asking only MQs.

If L is not empty, then the algorithm terminates by outputting a string u ∈ L

such that there is no v ∈ L with d(w, v) < d(w, u). Note that for a given w ∈ Σ∗

and r ∈ N there are only a finite number of strings v ∈ Σ∗ such that d(w, v) = r,

and there exists an algorithm who can generate all these strings (remember that

we are not concerned with the complexity of the resulting algorithm - the only

requirement is to return the answer after finite steps).

57

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Algorithm 5 An algorithm that computes EdcL(w) with an MQ oracle

1: input: L,w
2: if MqL(w) = Yes then
3: output Yes
4: else
5: while TRUE do
6: i := 1
7: for all u such that d(w, u) = i do
8: if MqL(u) = Yes then
9: output u and halt

10: end if
11: end for
12: i := i + 1
13: end while
14: end if

Now, if we take C to be a language class in EditCorQ , then there exists an

algorithm Alg that learns C using EDCQs. We can modify Alg to use the MQ

oracle to get the answers for the EDCQs as described above. We obtained an

algorithm that learns C using MQs only, so EditCorQ ⊆ MemQ which concludes

our proof.

We can now use Theorem 12 and Corollary 2 to give a characterization of

the model of learning with EDCQs in terms of finite sets.

Corollary 7. The class C = (Li)i≥1 belongs to EditCorQ if and only if a pair

of definite finite tell-tales of Li is uniformly computable for any index i.

3.4 Remarks and Further Research

Chapter 3 was dedicated to the learnability power of several types of CQs used

alone when complexity issues are neglected. A complete picture displaying the

relations between all discussed versions of query learning and Gold-style learning

is obtained (Figure 3.2).

Our results can be summarized as follows:

• learning with LBCQs and learning with EDCQs are as powerful as learning

with MQs;

• learning with PCQs is strictly more powerful than learning with MQs, and

strictly less powerful than learning in the limit from text;

• the sets PCorQ and ConsvTxt are incomparable, but any class which is

in PCorQ and not in ConsvTxt has the following property: at least one

of the languages in the class has the prefix not recursive.

58

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Figure 3.2: The hierarchy of Gold-style and query learning models

There are several directions that deserve further investigation. For exam-

ple, one may study language learning with CQs in other standard settings like

bounded learning [Wat94] or incremental learning (see [LG02] and the references

therein), or completely new ones: learning from positive examples and CQs, or

learning with CQs and (a bounded number of) EQs.

59

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Chapter 4

Polynomial Time Learning

with Correction Queries

In the previous chapter we have investigated the power of the query learning

model when an oracle answering correction queries is available. Several types of

CQs have been considered, and for each of them a characterization in terms of

finite sets has been given. Moreover, we compared the newly introduced models

with other well-known query learning and Gold-style learning models.

Although from a theoretical point of view it is important to know what lan-

guage classes are inferable in finite time steps, what matters in practice is the

efficiency of the algorithms. And indeed, if we need a machine capable of learn-

ing a given language class, it does not help us too much if we know that we will

get the answer in 153 years. That is why this chapter is dedicated to polynomial

time query learners that have access to CQ oracles. We show that there are sev-

eral nontrivial language classes which are polynomial time learnable with CQs,

and we investigate the relations existing between the different types of CQs in-

troduced so far when complexity issues are taken into consideration. Moreover,

we distinguish situations when although two query types are equally powerful

in the general case, the equality is not preserved under efficiency constraints.

The reader may notice that in this chapter we switch from learning languages

to learning grammars. Why? First of all, because in practice what we usually

want to learn is a grammar, and not a sequence of words, whereas from a

theoretical point of view it is less important if a given language class is learnable

with respect to a specific (and hence restrictive) hypotheses space. Secondly, if

we talk about efficient algorithms, then one needs to define first what polynomial

time learning is, and hence a reasonable measure for the size of a language is

required. Note that for infinite languages, having a polynomial algorithm in the

61

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

number of elements of the language does not make much sense. Moreover, any

grammar is a compact way of describing the language generated by it. That

is why from now on, by the size of a language we understand the size of the

smallest grammar (from a given hypotheses space) generating it.

4.1 Polynomial Time Learning with

Prefix Correction Queries

Let us start our study with the type of CQ that was chronologically the first one

introduced, and that gives, in the same time, the biggest power to the learner

amongst all of them. Intuitively, one should be looking for language classes

for which this sort of corrections offers some information about the intrinsic

structure of the language. We investigate two well-know language classes: the

class of pattern languages and the class of k-reversible languages.

4.1.1 The Class of Pattern Languages

Initially introduced by Angluin [Ang79] to show that there are nontrivial classes

of languages learnable from text in the limit, the class of pattern languages

has been intensively studied in the context of language learning ever since.

Polynomial time algorithms have been given for learning pattern languages using

one or more examples and queries [MK87], or just superset queries [Ang88], or

for learning k-variables pattern languages from examples [KP89], etc.

Recall that by P we denote the class of all pattern languages over a fixed

alphabet Σ. We exhibit an algorithm that learns any pattern language in poly-

nomial time using a finite number of PCQs.

The Algorithm

Suppose that the target language is a pattern language L(π), where π is in

normal form. Our algorithm is based on the following simple observations.

If w is the smallest string (in lex-length order) in L(π) and n = |w|, then for

all i in {1, . . . , n}, we have:

• if π[i] = a for some a in Σ, then for all b ∈ Σ\{a}, CL(w[1 . . . i − 1]b) is

either Θ, or longer than w[i + 1 . . . n].

• if π[i] is a variable x such that i is the position of the leftmost occurrence

of x in π, then |CL(w[1 . . . i− 1]a)| = |w[i+1 . . . n]| for any symbol a ∈ Σ;

moreover, we can detect the other occurrences of the variable x in π by just

checking the positions where the strings CL(w[1 . . . i−1]a) and w[i+1 . . . n]

do not coincide, where a is any symbol in Σ\{w[i]};

62

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

The following algorithm outputs the pattern π after asking a finite number

of PCQs (recall that, by convention, the length of the symbol Θ is 0).

Algorithm 6 An algorithm for learning the class P with PCQs

1: w := CL(λ), n := |w|, var := 0
2: for i := 1 to n do
3: π[i] := null
4: end for
5: for i := 1 to n do
6: if (π[i] = null) then
7: choose a ∈ Σ\{w[i]} arbitrarily
8: v := CL(w[1 . . . i − 1]a),m := |v|
9: if (v = Θ or m > n − i) then

10: π[i] := w[i]
11: else
12: var := var + 1, π[i] := xvar

13: for all j ∈ {1, . . . ,m} for which v[j] 6= w[i + j] do
14: π[i + j] := xvar

15: end for
16: end if
17: end if
18: end for
19: output π

From the above mentioned observations, it is clear that the algorithm ter-

minates in finite steps with a correct output. Moreover, for each symbol in the

pattern, the algorithm makes at most n + 1 comparisons, where n is the length

of the pattern. This implies that the total running time of the algorithm is

bounded by n(n+1), that is (n2). It is easy to see that the query complexity is

linear in the length of the pattern since the algorithm does not ask more than

n + 1 PCQs.

Running Example

Let us see how the algorithm works on an example. Assume that the target

pattern is 1x0xy and the alphabet is Σ = {0, 1}. The algorithm starts by

asking a PCQ for the string λ. The length of the returned string (the shortest

one in the language) gives us the size of the pattern. In our case, the smallest

string in the language is 10000, so w gets the value 10000, n is initialized with

5, and var becomes 0 (i.e., we did not identify any variable yet). Moreover, all

the elements of π become null, meaning “they are not yet known”.

63

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Next, the algorithm enters in the for loop (lines 5-18).

• i = 1. Since π(i) is obviously null, the algorithm continues by choosing

an a in Σ\{w[1]}. The only possibility in this case is a = 0. On line 8,

a PCQ is asked for the string w[1 . . . i − 1]a, that is, for 0. Because none

of the strings in the target language starts with the letter 0, the answer

returned by the teacher is Θ, so v becomes Θ and m = 0. Because the

condition v = Θ holds, π[1] is initialized with 1 (line 10).

i a v = CL(0) w[2 . . . 5] π

1 0 Θ 0000 1 null null null null

• i = 2. Since π[2] is not defined yet, the algorithm chooses an a different

from w[2] (i.e., a = 1). Then, it gives to v the value of the correction of

the string w[1]a = 11 (i.e., v = 010) and m becomes 3. One can easily

check that m = n− i, so π[2] becomes x1. Moreover, because v[2] 6= w[4],

π[4] also takes the value x1.

i a v = CL(11) w[3 . . . 5] π
2 1 010 000 1 x1 null x1 null

• i = 3. π[3] is still not known, so a takes the value 1. Since the correction of

the string 101 is 0010, v = 0010 and m = 4. Moreover, because m > n− i,

the algorithm proceeds by initializing π[3] with the value w[3] = 0.

i a v = CL(101) w[45] π

3 1 0010 00 1 x1 0 x1 null

• i = 4. The algorithm already knows that the forth symbol of the pattern

is a variable (π[4] 6= null), namely the same variable that is on the second

position of the pattern.

• i = 5. The algorithm has to identify now the fifth symbol of the pattern.

First of all, a is initialized with the letter 1, and then, the teacher is asked

to provide a correction for the string 10001. But 10001 clearly belongs to

the target language, so v = λ and m = 0. Moreover, since m = n− i, var

becomes 2 and π[5] is initialized with x2.

The algorithm terminates by outputting the pattern 1x10x1x2, which is ex-

actly the target one, up to a renaming of the variables.

64

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

4.1.2 The Class of k-Reversible Languages

Angluin introduces the class of k-reversible languages (henceforth denoted by

k -Rev) in [Ang82], and shows that it is inferable from positive data in the limit.

Later on, she proves that there is no polynomial algorithm that exactly identifies

DFAs for 0-reversible languages using only equivalence queries [Ang90].

We study the learnability of the class k -Rev in the context of learning with

PCQs, and show that there is a polynomial time algorithm that identifies any

k-reversible language after asking a finite number of PCQs.

In order to do so, we exhibit one important property of k-reversible lan-

guages. Let us fix the alphabet Σ and the k-reversible language L ⊆ Σ∗. For

any string u in Σ∗, we define the function rowk(u) : Σ≤k → Σ∗ ∪ {Θ} by

rowk(u)(v) = CL(uv). Recall that Lemma 8 from Section 3.1.4 of the previous

chapter is stating that given a k-reversible language L, two strings u1 and u2

are equivalent with respect to the language L if and only if CL(u1v) = CL(u2v)

for all v in Σ≤k. This means that each equivalence class in Σ∗/≡L
is uniquely

identified by the values of function rowk on Σ≤k.

Proposition 6. Let L be a k-reversible language. Then, for all u1, u2 ∈ Σ∗,

u1 ≡L u2 if and only if rowk(u1) = rowk(u2).

This result tells us that if AL = (Q,Σ, δ, q0, F) is the minimal complete

DFA for the k-reversible language L, then the values of function rowk(u) on

Σ≤k uniquely identify the state δ(q0, u).

The Algorithm

The algorithm follows the lines of L∗. We have an observation table denoted

by (S,Σ≤k, C) in which lines are indexed by the elements of a prefix-closed set

S, columns are indexed by the elements of Σ≤k, and the element of the table

situated at the intersection of line u with column v is CL(uv).

We start with S = {λ}, and then increase the size of S by adding elements

with distinct row values. An important difference between our algorithm and L∗

is that in our case the number of columns of the table is never modified during

the run of the algorithm (in L∗, there is only one column in the beginning, and

then more columns are gradually added when needed).

We say that the observation table (S,Σ≤k, C) is k-closed if for all u ∈ S

and a ∈ Σ, there exists u′ ∈ S such that rowk(u′) = rowk(ua). Moreover,

(S,Σ≤k, C) is k-consistent if for all u1, u2 ∈ S, rowk(u1) 6= rowk(u2). It is clear

that if the table (S,Σ≤k, C) is k-consistent and S has exactly n elements, where

n is the index of L, then the strings in S are in bijection with the elements of

Σ∗/≡L
.

65

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

For any k-closed and k-consistent table (S,Σ≤k, C), we construct the au-

tomaton A(S,Σ≤k, C) = (Q,Σ, δ, q0, F) as follows:

• Q = {rowk(u) | u ∈ S},

• q0 = rowk(λ),

• F = {rowk(u) | u ∈ S and CL(u) = λ}, and

• δ(rowk(u), a) = rowk(ua) for all u ∈ S and a ∈ Σ.

To see that this is a well-defined automaton, note that since S is a nonempty

prefix-closed set, it must contain λ, so q0 is defined. Because S is k-consistent,

there are no two elements u1, u2 in S such that rowk(u1) = rowk(u2). Thus,

F is well defined. Since the observation table (S,Σ≤k, C) is k-closed, for each

u ∈ S and a ∈ Σ, there exists u′ in S such that rowk(ua) = rowk(u′), and

because it is k-consistent, this u′ is unique. So δ is well defined.

Remark 5. The following statements hold.

1. rowk(u) is a sink state if and only if CL(u) = Θ;

2. δ(q0, u) = rowk(u) for all u in S ∪ SΣ.

We present an algorithm that learns any k-reversible language L with PCQs

and has a total running time bounded by a polynomial in the size of the target

language.

Algorithm 7 An algorithm for learning the class k -Rev with PCQs

1: S := {λ}
2: closed := TRUE
3: update the table by asking PCQs for strings in Σ≤k+1

4: repeat
5: if ∃u ∈ S and a ∈ Σ such that rowk(ua) 6∈ rowk(S) then
6: add ua to S
7: update the table by asking PCQs for strings in {uabv | b ∈ Σ, v ∈ Σ≤k}
8: closed := FALSE
9: end if

10: until closed
11: output A(S,Σ≤k, C) and halt.

Note that since the algorithm adds to S only elements with distinct row

values, the table (S,Σ≤k, C) is always k-consistent. We will see that as long as

|S| < n, it is not k-closed.

66

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Lemma 14. If |S| < n, then (S,Σ≤k, C) is not k-closed.

Proof. Let us assume that there exists m < n such that |S| = m and the table

(S,Σ≤k, C) is k-closed. Let AL = (Q′,Σ, δ′, q′0, F
′) be the minimal complete

DFA accepting L, and A(S,Σ≤k, C) = (Q,Σ, δ, q0, F).

We define the function φ : Q → Q′ by φ(rowk(u)) = δ′(q′0, u). Note that φ is

well defined because there are no two strings u1, u2 in S such that rowk(u1) =

rowk(u2). Moreover, it is injective since φ(rowk(u1)) = φ(rowk(u2)) implies

δ′(q′0, u1) = δ′(q′0, u2) which is equivalent to u1 ≡L u2, and furthermore to

rowk(u1) = rowk(u2) (by Proposition 6). We show that φ is an automata

morphism from A(S,Σ≤k, C) to AL, that is: φ(q0) = q′0, φ(F) ⊆ F ′, and

φ(δ(rowk(u), a)) = δ′(φ(rowk(u)), a) for all u ∈ S and a ∈ Σ.

Clearly, φ(q0) = φ(rowk(λ)) = δ′(q′0, λ) = q′0. Let us now take rowk(u) in

F , that is, u ∈ S and CL(u) = λ. Since φ(rowk(u)) = δ′(q′0, u) and u is in

L, it follows that φ(rowk(u)) ∈ F ′. Finally, φ(δ(rowk(u), a)) = φ(rowk(ua))

= φ(rowk(v)) for some v in S such that rowk(ua) = rowk(v) (the table is k-

closed), and δ′(φ(rowk(u)), a) = δ′(δ′(q′0, u), a) = δ′(q′0, ua). It is enough to see

that φ(rowk(v)) = δ′(q′0, v) = δ′(q′0, ua) (because by Proposition 6, rowk(v) =

rowk(ua) implies v ≡L ua, and AL is the minimal automaton accepting L) to

conclude the proof.

We have constructed an injective morphism from A(S,Σ≤k, C) to AL such

that |Q| = m < n = |Q′|. Since both A(S,Σ≤k, C) and AL are complete

automata, this leads to a contradiction.

Algorithm 7 does not work in general for arbitrary regular languages, as one

can see from Example 8.

Example 8. Let us fix k ≥ 0, and consider the finite (and hence regular)

language Lk = {abka, abkb, bk+1a}. The minimal complete DFA for Lk is rep-

resented in Figure 4.1.

Figure 4.1: The minimal DFA for the language Lk = {abka, abkb, bk+1a}

By Proposition 1 (see Section 2.1.4) the language Lk is not k-reversible since

67

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

the strings a · bk · a and b · bk · a are both in Lk, and TailLk
(a · bk) = {a, b} 6=

{a} = TailLk
(b · bk).

When running the algorithm on Lk, the set S is initialized with the value {λ}.

Then, since both rowk(a) and rowk(b) are different from rowk(λ), one of the two

elements is added to S. Note that for all u in Σ≤k, rowk(a)(u) = rowk(b)(u)

because:

• if u = bi with 0 ≤ i ≤ k, then CLk
(au) = bk−ia = CLk

(bu), and

• if u ∈ Σ≤k\{bi | 0 ≤ i ≤ k}, then CLk
(au) = Θ = CLk

(bu).

Hence, rowk(a) = rowk(b). But this implies that in the automaton output

by the algorithm, the strings a and b represent the same state, a contradiction.

In the sequel we show that the algorithm runs in polynomial time, and

terminates with the minimal automaton for the target language as output.

We have seen that as long as |S| < n, the table is not k-closed, so there

will always be an u in S and a symbol a in Σ such that rowk(ua) 6∈ rowk(S).

Since the cardinality of the set S is initially 1, and increases by 1 with each

repeat-until loop (lines 4–10), it will eventually be n, and hence the algorithm

is guaranteed to terminate.

We claim that when |S| = n, the observation table (S,Σ≤k, C) is k-closed

and k-consistent, and A(S,Σ≤k, C) is isomorphic to AL. Indeed if |S| = n,

then the set {rowk(u) | u ∈ S} has cardinality n, since the elements of S

have distinct row values. Thus for all u ∈ S and a ∈ Σ, rowk(ua) ∈ rowk(S)

(otherwise [ua]L would be the (n + 1)th equivalence class of Σ∗/≡L
), and hence

the table is k-closed.

To see that A(S,Σ≤k, C) and AL are isomorphic, let us take A(S,Σ≤k, C)

= (Q,Σ, δ, q0, F), AL = (Q′,Σ, δ′, q′0, F
′), and the function φ : Q → Q′ defined

by φ(rowk(u)) = δ′(q′0, u) for all u ∈ S. As in the proof of Lemma 14, it can

be shown that φ is a well-defined and injective automata morphism. Since the

two automata have the same number of states, φ is also surjective, and hence

bijective. Let us now show that φ(F) = F ′. Indeed, take q ∈ F ′. Because φ is

bijective, there exists u in S such that φ(rowk(u)) = q. It follows immediately

that δ′(q′0, u) ∈ F ′, and hence u ∈ L. Thus, CL(u) = λ and rowk(u) ∈ F .

Clearly, φ(rowk(u)) = q ∈ φ(F). So, F ′ ⊆ φ(F), and since φ(F) ⊆ F ′, φ(F) =

F ′ which concludes the proof.

Let us now discuss the time complexity of the algorithm. While the cardinal-

ity of S is smaller than n, the algorithm searches for a string u in S and a symbol

a in Σ such that rowk(ua) is distinct from all rowk(v) with v ∈ S. This can be

done using at most |S|2·|Σ|·|Σ≤k| operations: there are |S| possibilities for choos-

ing u (and the same number for v), |Σ| for choosing a, and |Σ≤k| operations to

68

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

compare rowk(ua) with rowk(v). If we take |Σ| = l, the total running time of the

repeat-until loop can be bounded by (12+22+. . .+(n−1)2)·l·(1+l+l2+. . .+lk).

Note that by “operations” we mean string comparisons, since they are generally

acknowledged as being the most costly tasks.

On the other hand, to construct A(S,Σ≤k, C) we need n comparisons to

determine the final states, and at most n2 · |Σ| · |Σ≤k| operations to construct

the transition function. This means that the total running time of the algorithm

is bounded by n + l · lk+1−1
l−1 · n(n+1)(2n+1)

6 , that is O(n3lk).

As for the number of queries asked by the algorithm, it can be bounded by

|S ∪ SΣ| · |Σ≤k| (i.e., by the size of the final observation table), so the query

complexity of the algorithm is O(nlk).

Running Example

Let us trace the run of Algorithm 7 on the language L = (a+bba)+. It is easy to

check that the language L is 1-reversible. So, the algorithm starts with S = {λ}

and the following observation table (Table 4.1).

Table 4.1: S = {λ}
T1 λ a b
λ a λ ba
a λ λ ba
b ba Θ a

We can see that the observation table is not 1-closed since both row1(a)

and row1(b) are different from row1(λ). The algorithm proceeds by adding the

strings a and b to S, and updating the table (see Table 4.2).

Table 4.2: S = {λ, a, b}
T2 λ a b
λ a λ ba
a λ λ ba
b ba Θ a

aa λ λ ba
ab ba Θ a
ba Θ Θ Θ
bb a λ Θ

Note that Table 4.2 is still not 1-closed, since row1(ba) and row1(bb) are not

in row1(S), so the elements ba and bb are added to S (see Table 4.3).

69

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Table 4.3: S = {λ, a, b, ba, bb}
T3 λ a b State
λ a λ ba q0

a λ λ ba q1 ∈ F
b ba Θ a q2

ba Θ Θ Θ q3

bb a λ Θ q4

aa λ λ ba q1 ∈ F
ab ba Θ a q2

baa Θ Θ Θ q3

bab Θ Θ Θ q3

bba λ λ ba q1 ∈ F
bbb Θ Θ Θ q3

The table is now 1-closed, and the algorithm terminates by outputting the

automaton A(S,Σ≤k, C) shown in Figure 4.2. Clearly, A(S,Σ≤k, C) is a mini-

mal complete DFA accepting L.

Figure 4.2: The automaton associated with Table 4.3

4.1.3 Polynomial Time Learning with Prefix Correction

Queries versus Membership Queries

In this section we make a step further toward understanding the differences and

similarities between MQs and PCQs by taking into consideration the efficiency

of the learning algorithms. We have seen in Section 3.1.2 that learning with

MQs is a strictly weaker model then learning with PCQs when time complexity

issues are neglected. One may think that from this it can be automatically

inferred that polynomial time learnability with MQs implies polynomial time

learnability with PCQs. We show by an example that one should not rush into

drawing such conclusions.

70

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Indeed, let us first recall that learning with EQs is strictly more powerful

than learning with PCQs when ignoring time complexity: PCorQ is strictly

included in LimTxt (by Theorem 7) and LimTxt is strictly included in EquQ

(see Section 2.3.3). On the other hand, although the class of 0-reversible lan-

guages is polynomially learnable with PCQs (one may use Algorithm 7), it is

not identifiable in polynomial time with EQs [Ang90].

Going back to the comparison between MQs and PCQs, we introduce first

some terminology and notations. Let C = (Li)i≥1 be an indexable class. We

say that C is polynomially learnable with MQs (or with PCQs) if there exists

a polynomial p(·) and an algorithm Alg that learns any language L in C in

time O(p(size(L))) by asking a finite number of MQs (PCQs, respectively). We

denote the collection of all indexable classes C which are polynomially learnable

with MQs by PolMemQ (PolPCorQ is defined similarly).

Lemma 15. PolMemQ ⊆ PolPCorQ.

Proof. Recall that if CL(w) = λ, then the string w is in the target language L,

and an MQ oracle would return the answer Yes when queried with the string

w; in all other cases, the same oracle would answer No.

Assume that C is a language class in PolMemQ and let Alg be a polynomial

time algorithm that learns every L of C after asking a finite number of MQs.

Obviously, the number of MQs asked while Alg is running with input L is also

bounded by a polynomial, let us say p(n) where n is the size of the target

language L. If we modify Alg so that instead of asking the oracle a MQ for the

string w, to ask a PCQ for the same string, we obtain another algorithm Alg′

which learns C with PCQs (it just uses the information received from asking

PCQs to determine whether or not the given string is in the target language).

The only thing left to be shown is that Alg′ is still polynomial. But this is clear

if we note that Alg′ performs at most p(n) more operations than Alg (for each

queried string w it compares CL(w) with λ), where n is the size of the target

concept. So Alg′ is a polynomial time algorithm that learns C using PCQs.

We show that the inclusion is strict using pattern languages as the separating

case.

Theorem 13. The class P is in PolPCorQ\PolMemQ.

Proof. It is clear that P is in PolPCorQ since Algorithm 6 is a polynomial time

algorithm that identifies any pattern language using PCOs (see Section 4.1.1).

Assume now that P is in PolMemQ , and consider the class S of singletons

over the fixed alphabet Σ. Because every language Lw = {w} in S can be

written as a pattern language (Lw = L(w), where w is a pattern without any

71

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

variables), our assumption would imply that S is also in PolMemQ . It is clear

though that any algorithm that learns S using MQs might need to ask |Σ| +

|Σ|2 + . . . + |Σ||w| MQs in the worst case to learn a given language Lw, which

leads to a contradiction.

Note that although P is not polynomially learnable with MQs, it is in MemQ

(see [Muk92a], page 266). However, there are classes of languages in PolPCorQ

which cannot be learned at all (polynomially or not) using MQs, as we will see

in the sequel.

Theorem 14. The class k-Rev is in PolPCorQ\MemQ.

Proof. Since Algorithm 7 learns any k-reversible language using PCQs in poly-

nomial time (see Section 4.1.2), it follows immediately that k -Rev ∈ PolPCorQ .

To show that k -Rev is not in MemQ , we use Mukouchi’s characterization

of the class MemQ in terms of pairs of definite finite tell-tales. Recall that an

indexable class C = (Li)i≥1 belongs to MemQ if and only if a pair of definite

finite tell-tales of Li is uniformly computable for any index i.

So, let us assume that k -Rev is in MemQ . Consider the alphabet Σ such

that {a, b} ⊆ Σ, and the language L = {a}. Clearly, L is in k -Rev for all k ≥ 0

and hence a pair of definite finite tell-tales 〈T, F 〉 is computable for L. This

means that T ⊆ L and F is a finite set included in Σ∗\{a}. Let us take m

to be max{|w| | w ∈ F} if F 6= ∅ and 0 otherwise, and consider the language

L′ = {a, bamb}. It is clear that L′ is in k -Rev for all k ≥ 0, and that it is

k-consistent with 〈T, F 〉. Moreover, L′ 6= L which leads to a contradiction.

On the other hand, very simple classes of languages cannot be learned in

polynomial time using PCQs. For example, if we take S̄ to be S̄ = (L̄w)w∈Σ∗ ,

where L̄w = Σ∗\{w}, then any algorithm would require at least 1+ |Σ|+ |Σ|2 +

. . . + |Σ||w| PCQs in order to learn L̄w.

Figure 4.3 displays the relations between the two models.

Figure 4.3: PCQ learning versus MQ learning

72

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

4.2 Polynomial Time Learning with

Length Bounded Correction Queries

Let l be a fixed nonnegative integer, and let us denote by Pol lBCorQ the col-

lection of all indexable classes C for which there exists a polynomial p(·) and an

algorithm Alg that learns any language L in C in time O(p(size(L))) by asking

a finite number of lBCQs. Clearly, we only consider those language classes C for

which the size of its languages is independent of l (more details are presented

further on in this section).

Lemma 16. Pol0BCorQ = PolMemQ.

Proof. The result is straightforward from the definition of C0
L(w): for any lan-

guage L over Σ and any string w in Σ∗,

C0
L(w) =

{

λ, if w ∈ L, and

∅, if w 6∈ L.

Lemma 17. Pol(l-1)BCorQ = Pol lBCorQ for any l ≥ 1.

Proof. Since one can easily extract the answer to an (l−1)BCQ from the corre-

sponding lBCQ, it is clear that Pol(l-1)BCorQ is included in Pol lBCorQ . Let

us now show that Pol lBCorQ is included in Pol(l-1)BCorQ . Assume C is an

indexed family of languages in Pol lBCorQ and let Alg be a polynomial time

algorithm that learns C with lBCQs. Note that for any language L over Σ, any

w ∈ Σ∗ and any l ≥ 1,

Cl
L(w) = {u ∈ Σ≤l | wu ∈ L}

= {u ∈ Σ≤l−1 | wu ∈ L} ∪ {au | a ∈ Σ, u ∈ Σl−1 and wau ∈ L}

= Cl−1
L (w) ∪ {au | a ∈ Σ, u ∈ Cl−1

L (wa)}

= Cl−1
L (w) ∪

⋃

a∈Σ aCl−1
L (wa).

So, one can modify Alg such that instead of asking an lBCQ for the string

w, to ask a finite number1 of (l− 1)BCQs (|Σ|+ 1 queries to be precise) for the

strings wa with a in {λ}∪Σ. Clearly, the modified algorithm is still polynomial.

Hence, Pol(l-1)BCorQ equals Pol lBCorQ .

The following theorem is a direct consequence of Lemma 16 and Lemma 17.

Theorem 15. Pol lBCorQ = PolMemQ for any l ≥ 0.

Therefore, we can introduce the notation PolLBCorQ for the collection of

all language classes that are efficiently learnable with LBCQs. Moreover, by

1Thanks are due to C. de la Higuera for suggesting this.

73

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

combining the theorem above with Lemma 15 and Theorem 13, one gets the

following corollary.

Corollary 8. Pol lBCorQ (PolPCorQ.

In the beginning of this section we pointed out that we should think of l as

a constant. By failing to do so, we may end up with contradictory results, as

one can see in Example 9.

Example 9. Let Sl be the class of all singleton languages of size l + 2, i.e.,

Sl = (Lw)w∈Σl where Lw = {w}. We can imagine a very simple lBCQ algorithm

to learn this class. The learner would simply ask one lBCQ, for the string λ,

and then output the string received as an answer. Since in this case the set of

possible corrections contains just one string of length size(L)− 2 where L is the

target language, it means that such an algorithm would work in linear time in

the size of the language. On the other hand, with an MQ oracle, any learner

would have to ask at least |Σ|l−1 MQs, hence an exponential number of queries

in the size of the target language. Thus, one might think that this language

class invalidates the result of Theorem 15. The trick here is that l is no longer a

constant for the class Sl, and that if we do think of l as a constant, then |Σ|l −1

is a constant as well.

So, what we have learned in this section is that having the possibility to get

answers for more than one MQ at once does not add any more learning power,

even if we impose time restrictions.

4.3 Polynomial Time Learning with

Edit Distance Based Correction Queries

We continue the analysis done in Section 3.3 on the power of learning with

edit distance based correction queries, this time by taking into account time

complexity issues. We have seen that what happens in the general model does

not necessary carry on to the polynomially bounded model. Let us recall the

results we have so far:

PCorQ ⊂ EquQ PolPCorQ 6⊂ PolEquQ
MemQ (PCorQ PolMemQ (PolPCorQ
MemQ = LBCorQ PolMemQ = PolLBCorQ

MemQ = EditCorQ PolMemQ ?= PolEditCorQ

Table 4.4: Relations between various learning models

So in the case of LBCQs versus MQs, as well as in the case of PCQs versus

MQs, the relation existing in the general case is preserved in the polynomial

74

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

learning model, while for the EQs versus PCQs it does not happen. On the other

hand, we already know that MemQ = EditCorQ , and the question is whether

or not PolMemQ = PolEditCorQ , where by PolEditCorQ we denote, as usual,

the collection of all indexable classes C for which there exists a polynomial p(·)

and an algorithm Alg that learns any language L in C in time O(p(size(L))) by

asking a finite number of EDCQs.

In this section we answer this question in the negative way, and we describe

some of the algorithms which use alternative CQs based on edit distance existing

in the literature.

Lemma 18. PolMemQ (PolEditCorQ.

Proof. One may show that PolMemQ is included in PolEditCorQ using an

argument similar with the one presented in the proof of Lemma 15, the only

difference being that in the case of EDCQs, the new algorithm Alg ′ has to check

whether or not EdcL(w) equals Yes, for all the strings w submitted to the oracle

by the learner of the original algorithm Alg (L is the target language).

Moreover, if S is the class of singleton languages over the alphabet Σ, then

S can be used as a separating language class:

• S 6∈ PolMemQ (see the proof of Theorem 13),

• one may imagine a very simple edit distance query algorithm for this

class. Indeed, it is enough to ask an EDCQ for an arbitrarily chosen

string w. The algorithm just outputs w, if the oracle’s answer is Yes,

and w′ if the answer returned by the oracle is the string w′. Since the

algorithm described above is polynomial in the size of the target language,

we conclude that S ∈ PolEditCorQ .

So, we have seen that singleton languages can be learned in polynomial time

using EDCQs. But these are rather simple objects and their learnability not

very interesting from a practical point of view. We will see in the sequel that

EDCQs can be a useful tool in learning more complicated language classes.

The first language class we will be discussing about is the class of balls of

strings, named like this because of its resemblance to a disk when we imagine its

geometrical interpretation. We recall that given a string w and a real number

r, the ball of center w and radius r is Br(w) = {v ∈ Σ∗ | d(v, w) ≤ r}. In

[BBdlHJT07], an algorithm for learning the class of all balls of strings using

EDCQ is given. Moreover, the authors of the above mentioned paper show that

the number of EDCQs used by this algorithm can be bounded by O(|Σ|+|o|+r).

Furthermore, for what they called q-good balls (the balls Br(w) for which there

75

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

exists a polynomial q(·) such that the radius r is no longer than q(|w|)), the

algorithm runs in polynomial time in the size of (the representation of) the

language.

Let L = Br(w) be the target language over the alphabet Σ = {a1, . . . , al}.

The idea of the algorithm is based on the following two observations (both

enunciated and thoroughly proved in [BBdlHJT07]):

• given a string of maximum length in L and the radius r, one may find the

center w of the ball by asking O(|w| + r) EDCQs (actually, in this case

asking MQs suffices).

• for a given k big enough (details about how to compute this k can be

found in [BBdlHJT07]; the important thing is it can be computed using

O(|Σ| + log2(|w| + r)) EDCQs), the string u = EdcL((a1 · · · al)
k) is a

string of maximum length in L, and the radius r can be computed with

the formula

r =
k − |u|

l − 1

A slightly different type of EDCQs is used in [Kin08] for learning a subclass

of regular expressions, and the class of pattern languages: if the queried string

is not in the target language, then the oracle returns the positive example with

a smallest distance from the queried string and previously not used in the

learning process. Moreover, preference is given to correcting strings of the

same length, if any, and among those having the same length, the smallest one

with respect to the lexicographical order is returned. More formally, Kinber’s

EDCQ of a string w with respect to the language L is given by Algorithm 8.

Algorithm 8 Computing the EDCQ of w w.r.t. L given A

1: input: w,L,A
2: if w ∈ L then
3: output Yes
4: else
5: V := {v ∈ L\A | |v| = |w| and d(v, w) = min{d(u,w) | u ∈ L\A}}
6: if V 6= ∅ then
7: output minv∈V v
8: else
9: V ′ := {v ∈ L\A | d(v, w) = min{d(u,w) | u ∈ L\A}}

10: if V ′ 6= ∅ then
11: output minv∈V ′ v
12: else
13: output ǫ
14: end if
15: end if
16: end if

76

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

In the above definition, ǫ is a symbol not in Σ, and A is the set of all strings

for which the learner has received the answer Yes on previous steps and all

the correcting strings received by the learner on previous steps. Moreover, the

minimum between strings is taken with respect to the lex-length order.

In [Kin08] two algorithms are given. The one for learning the class of pattern

languages with this special type of EDCQs works in time O(n3), asking O(n2)

queries. The other one for learning regular expressions of type

(∗) u1(v1)
+u2(v2)

+ . . . un(vn)+un+1

uses only one EDCQ and O(n3) MQs and runs in O(n4). The reader is referred

to [Kin08] for further details. The reason for mentioning these two results here

will be apparent in the next section.

4.4 Remarks and Further Research

In the end of the previous chapter we exhibited a complete picture of the rela-

tions existing between several models of learning with CQs and other learning

models (both Gold-style and query learning). We have seen that when we ne-

glect time complexity issues we can characterize the newly introduced query

models in terms of finite sets, and that learning with LBCQs and EDCQs is ba-

sically the same as learning with MQs, whereas PCQs are the only ones adding

some power to the model.

When we restrict to polynomial time algorithms, things are changing. And

although having an LBCQs oracle does still not improve on the learnability

power with respect to the MQ learning model, an EDCQ oracle or a PCQ

oracle does. It is not clear what relation is between learning with EDCQs and

learning with PCQs when we restrict to efficient algorithms. We conjecture that

the two classes are incomparable (see Figure 4.4).

Figure 4.4: Different types of correction queries

77

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Let us first notice that the class R1 of regular expressions of type (∗) is

learnable with EDCQs and with PCQs, since we only need one CQ to get

the shortest string in the language (i.e., the string u1v1u2 . . . unvnun+1) and

then MQs (which can be simulated with both types of CQs). It can be easily

shown that the class of all singleton languages also belongs to PolPCorQ ∩

PolEditCorQ .

Moreover, we argue that PolPCorQ\PolEditCorQ 6= ∅. Indeed, the class

k -Rev is in PolPCorQ and not in MemQ (by Theorem 14), and since EditCorQ

= MemQ (by Theorem 12), we obtain that k-reversible languages are not learn-

able with EDCQs either. Hence, k -Rev ∈ PolPCorQ\PolEditCorQ .

If for the class of k-reversible languages it was easy to decide whether or not

it is in PolEditCorQ , we cannot say the same thing for the class of pattern lan-

guages. Kinber describes an efficient algorithm that learns P with the modified

type of EDCQs with the strong requirement that the oracle must not return as

a correction any of the strings which appeared before. We strongly believe that

this requirement is actually mandatory, i.e., there is no algorithm that can learn

the class P with standard EDCQs. Far from being a proof, Example 10 shows,

nevertheless, on what our intuition is based on.

Example 10. Let π = 1xyyy111 and w0 = 11000111 a string of minimum

length in L(π). Then, although it is easy to determine the position of single

variables in the pattern (asking whether or not w = 10000111 is in the language

suffices), it is quite hard to find a way to distinguish between constants and

multiple variables (i.e., variables which appear more than once in the pattern)

if we are faced with an unfriendly oracle. Suppose the learner asks, for example,

if 11100111 is in the target language and the oracle returns as a correction the

string w0. In this case, there is no way the learner can deduce whether the 3rd

symbol of the pattern is 0, or a variable which appears more then once in π.

On the other hand, changing pairs (or triples, quadruples, etc.) of symbols at

once increases dramatically the number of queries needed.

To complete the picture, we would like to be able to say if there are language

classes in PolEditCorQ\PolPCorQ . A possible candidate is the class of q-good

balls of strings, which is known to be learnable with EDCQs in polynomial time.

Another future work direction is to find characterizations for the language

classes polynomial time learnable with (each type of) CQs. One can investigate,

for example, the teaching dimension of a concept class [GK91] (that is, the min-

imum number of corrections a teacher must reveal to uniquely identify any con-

cept in the class), or the computational power of polynomial time query learning

systems for different correction query types as in [Wat90, WG94]. Slightly re-

laxed learning criteria may lead to new learnability results. For example, in

78

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

the bounded learning framework introduced by Watanabe [Wat94], the learning

condition does not insist in exactly identifying a target language L, but only

requires that a learner should return, for any given length bound m, a language

L′ such that L and L′ coincide up to length m (i.e., L ∩ Σ≤m = L′ ∩ Σ≤m).

79

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Chapter 5

Learning Deterministic

Finite Automata with

Correction Queries and

Equivalence Queries

Efficient learning of DFAs is a challenging research problem in grammatical

inference. It is known that both exact and approximate (in the PAC sense)

identifiability of DFA is hard [PH97]. There is a lot of work done on learning

more general types of automata or learning them in various learning formalisms

(see, for examples, the surveys by Pitt [Pit89], Ron [Ron95], Balcázar, Dı́az,

Gavaldà and Watanabe [BDGW97]). The first important result obtained on

learning DFAs is essentially negative: there is no algorithm that can identify

DFAs from text in the limit (a direct consequence of the fact that no super-

finite class of languages is learnable from text in the limit [Gol67]). From

that, one can easily infer that CQs alone are not enough to learn the class

of DFAs, no matter which (of the several types of) corrections are used (recall

that LBCorQ = EditCorQ = MemQ , and both MemQ and PCorQ are strictly

included in LimTxt - see Chapter 3).

The first positive result concerning the learnability of DFAs is due to An-

gluin, who gives a polynomial query learning algorithm, called L∗, that identifies

any minimal complete DFA using MQs and EQs [Ang87c]. We propose1 to in-

vestigate what happens when we modify L∗ such that the learner gets, instead

of a simple No answer for strings not in the target language, a correction for

1The idea of replacing MQs in L∗ with more powerful queries belongs to L. Becerra
Bonache.

81

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

the given input string. On one hand, we know that, in general, CQs are more

powerful than MQs, and on the other hand, implementing a teacher that can

answer these types of queries is easy (can be done in polynomial time). In this

chapter we design polynomial time algorithms for learning DFAs with PCQs

and EQs, and with LBCQs and EQs, respectively, and we compare them with

L∗ and with each other. One may argue that we left out from our study the

edit distance correction queries. We will see why we did so in the end of this

chapter.

5.1 Learning Deterministic Finite Automata

with Prefix Correction Queries and

Equivalence Queries

Recall that we defined the prefix correcting string CL(w) of w with respect to

L to be the minimum string in the lex-length order of the set TailL(w), if this

set is not empty, and the symbol Θ otherwise.

5.1.1 The Algorithm LCA

Let L be the unknown regular set and Σ the alphabet of L. The information

we have at each step of the algorithm is organized into an observation table

consisting of: a nonempty finite prefix-closed set S of strings, a nonempty finite

suffix-closed set E of strings, and the map C which is the restriction of CL to

the set ((S ∪ SΣ) · E). The observation table will be denoted (S,E,C).

An observation table can be visualized as a two-dimensional array with rows

labeled by elements of S ∪ SΣ and columns labeled by elements of E with

the entry for row u and column e equal to C(u · e). If u is an element of

S ∪ SΣ then row(u) denotes the finite function from E to Σ∗ ∪ {Θ} defined by

row(u)(e) = C(u · e). By row(S) we understand the set {row(u) | u ∈ S}.

The algorithm LCA uses the observation table to build a DFA. Rows la-

beled by the elements of S are the candidates for states of the automaton being

constructed, and columns labeled by the elements of E correspond to distin-

guishing experiments for these states. Rows labeled by elements of SΣ are used

to construct the transition function.

An observation table (S,E,C) is called closed if for every u in S and a ∈ Σ

there exists a v in S such that row(ua) = row(v), and consistent if for any u1,

u2 in S such that row(u1) = row(u2), we have row(u1 · a) = row(u2 · a) for all

a in Σ.

82

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Let (S,E,C) be a closed and consistent observation table. We define the

automaton A(S,E,C) = (Q,Σ, δ, q0, F) as follows:

• Q = {row(u) | u ∈ S}

• q0 = row(λ)

• F = {row(u) | u ∈ S and C(u) = λ}

• δ(row(u), a) = row(u · a)

It can be easily shown that q is a sink state if and only if q belongs to

{row(u) | u ∈ S and C(u) = Θ} (from Remark 4 we know that C(u) = Θ

implies C(u · a) = Θ, ∀a ∈ Σ).

To see that this is a well-defined automaton, note that since S is a nonempty

prefix-closed set, it must contain λ, so q0 is defined. Also, since E is a nonempty

suffix-closed set, it must contain λ. Thus, if u1 and u2 are elements of S such

that row(u1)=row(u2), then C(u1) = C(u1 · λ) = row(u1)(λ) and C(u2) =

C(u2 · λ) = row(u2)(λ) are defined and equal to each other, hence F is well

defined. To see that δ is well defined, suppose u1 and u2 are elements of S

such that row(u1) = row(u2). Then, since the observation table A(S,E,C) is

consistent, for each a in Σ, row(u1 · a) = row(u2 · a), and since it is closed, this

common value is equal to row(u) for some u in S.

The learner algorithm (denoted LCA) uses as its main data structure the

observation table that we described above. Initially S = E = {λ}. To determine

the entries for the table (S,E,C), LCA asks PCQs for λ and each a in Σ.

The main loop of LCA tests the current observation table in order to see if

it is closed and consistent. While (S,E,C) is not closed LCA adds a new string

to S and updates the table asking PCQs for missing elements. While (S,E,C)

is not consistent, the algorithm adds a new string to E and updates the table

accordingly.

When the learner’s automaton is closed and consistent the learner asks an

EQ. The teacher’s answer can be Yes (in which case the algorithm terminates

with the output A(S,E,C)) or No (in which case a counterexample is provided,

all its prefixes are added to S and the table is updated using PCQs).

The algorithm itself is very similar to L∗. The main difference consists in

the fact that the entries for the observation table are strings instead of binary

elements.

83

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Algorithm 9 LCA: Learning DFAs with PCQs and EQs

1: Initialize S and E with {λ}
2: Ask PCQs for λ and each a ∈ Σ
3: Construct the initial observation table (S,E,C)
4: repeat
5: repeat
6: while (S,E,C) is not closed do
7: find u in S and a in Σ such that row(u · a) /∈ row(S)
8: add u · a to S
9: extend C to (S ∪ SΣ)E using PCQs

10: end while
11: while (S,E,C) is not consistent do
12: find u1,u2 ∈ S and a ∈ Σ, e ∈ E such that row(u1) = row(u2) and

C(u1 · a · e) 6= C(u2 · a · e)
13: add a · e to E
14: extend C to (S ∪ SΣ)E using PCQs
15: end while
16: until (S,E,C) is closed and consistent
17: Construct the conjecture A(S,E,C)
18: if the teacher replies with a counterexample u then
19: add u and all its prefixes to S
20: extend C to (S ∪ SΣ)E using PCQs
21: end if
22: until the teacher replies Yes to the conjecture
23: Halt and output A(S,E,C)

We show that the algorithm runs in polynomial time, and that it terminates

by outputting the minimal complete DFA for the target language.

5.1.2 Correctness, Termination and Running Time

It is clear that if LCA terminates, its output is the target language. Recall that

the teacher’s last answer to an EQ before halting is Yes.

Assume that (S,E,C) is a closed and consistent observation table. We say

that the automaton A = (Q,Σ, δ, q0, F) is consistent with the function C with

respect to the observation table (S,E,C) if for every u in S ∪ SΣ and e in E,

the following statements hold:

1. C(u · e) = Θ if and only if δ(q0, u · e) is a sink state,

2. C(u · e) = v ∈ Σ∗ if and only if (δ(q0, u · e · v) ∈ F and for all v′ ∈ Σ∗,

δ(q0, u · e · v′) ∈ F implies v � v′).

To prove that LCA terminates in finite steps, we show that:

• when the observation table (S,E,C) is closed and consistent, A(S,E,C)

is the minimal complete DFA consistent with C with respect to the given

84

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

table (S,E,C) (note that A(S,E,C) has exactly as many states as the

number of distinct rows in S), and

• the number of distinct rows in S is initially one, it cannot exceed n (the

size of the target DFA), and increases by at least one each time the table is

found not closed or not consistent; moreover, each time a counterexample

is added to S, the table becomes not consistent (see Lemma 23).

Let us first state and prove the following lemmas.

Lemma 19. Assume that (S,E,C) is a closed and consistent observation table.

For the automaton A(S,E,C) = (Q,Σ, δ, q0, F) and for every u in S ∪ SΣ,

δ(q0, u) = row(u).

Proof. We prove this lemma by induction on the length of u. When u = λ,

δ(q0, u) = row(u) becomes q0 = row(λ) which is true by the definition of q0.

Assume that the equality holds for all strings of length at most k, and let u be an

arbitrary string in S∪SΣ such that |u| = k +1. Since S is prefix-closed, u = va

for some v ∈ S and a ∈ Σ. By the induction hypothesis we get δ(q0, v) = row(v),

so we immediately obtain: δ(q0, u) = δ(q0, va) = δ(δ(q0, v), a) = δ(row(v), a) =

row(va) = row(u).

Lemma 20. Assume that (S,E,C) is a closed and consistent observation table.

For the automaton A(S,E,C) = (Q,Σ, δ, q0, F) and for every u in S ∪ SΣ and

e ∈ E, there exists v in S such that δ(q0, u · e) = δ(q0, v) and C(u · e) = C(v).

Proof. Let u be an arbitrary string in S ∪ SΣ. Since the table (S,E,C) is

closed, there exists v in S such that row(v) = row(u). So, δ(q0, v) = δ(q0, u)

(by Lemma 19) and C(u ·e) = C(v ·e) for any e in E . The proof is by induction

on the length of e.

• If e = λ, then the equalities δ(q0, u · λ) = δ(q0, v) and C(u · λ) = C(v)

obviously hold.

• Suppose the result is true for all strings in E of length at most k, and let e

be an element of E of length k+1. Then, since E is suffix-closed, e = a ·e′

for some a in Σ and e′ in E. By the induction hypothesis on e′, there

exists v′ in S such that δ(q0, va · e′) = δ(q0, v
′) and C(va · e′) = C(v′).

Thus, δ(q0, u · e) = δ(q0, v
′) and C(u · e) = C(v′).

We have shown that for any e in E there exists v′ in S such that C(u ·e) = C(v′)

and δ(q0, u · e) = δ(q0, v
′) which concludes our proof.

Lemma 21. Assume that (S,E,C) is a closed and consistent observation table.

Then the automaton A(S,E,C) is consistent with the function C with respect

to (S,E,C).

85

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Proof. Let w be in S ∪ SΣ and e in E. From Lemma 20 we know that there

exists u0 in S such that δ(q0, w · e) = δ(q0, u0) and C(w · e) = C(u0). Hence, we

have to show that:

1. C(u0) = Θ if and only if δ(q0, u0) is a sink state,

2. C(u0) = u ∈ Σ∗ if and only if (δ(q0, u0 · u) ∈ F and for all v ∈ Σ∗,

δ(q0, u0 · v) ∈ F implies u � v).

Clearly, C(u0) = Θ ⇔ row(u0) is a sink state ⇔ δ(q0, u0) is a sink state.

Assume now that C(u0) 6= Θ. We are going to show that:

• if C(u0) = u then δ(q0, u0 · u) ∈ F , and

• if v is the smallest string in Σ∗ with the property δ(q0, u0 · v) ∈ F , then

C(u0) = v.

So, let C(u0) = u = a1 · a2 · · · an for some a1, a2, . . . , an in Σ, n ≥ 0.

Because the table (S,E,C) is closed, we can inductively find the strings ui ∈ S,

i ∈ {1, . . . , n} such that row(ui−1 · ai) = row(ui). Therefore, δ(q0, ui−1 · ai) =

δ(q0, ui) and C(ui−1 · ai) = C(ui). Furthermore, we get by induction that

δ(q0, u0 ·u) = δ(q0, un). Now, C(u0) = a1 ·a2 · · ·an implies C(u0 ·a1) = a2 · · ·an,

that is, C(u1) = a2 · · ·an. Reasoning in the same way we obtain C(un) = λ. But

this means that row(un) is in F , and so is δ(q0, un). If we recall that δ(q0, un)

= δ(q0, u0 · u), we get δ(q0, u0 · u) ∈ F .

Now, assume v = b1 · b2 · · · bm (m ≥ 0) is the smallest string in Σ∗ with

the property δ(q0, u0 · v) ∈ F . Let v1, v2, . . . , vm be strings in S such that

row(u0 · b1) = row(v1) and for all j ∈ {2, . . . ,m}, row(vj−1 · bj) = row(vj)

(the table (S,E,C) is closed). As before, we get δ(q0, u0 · v) = δ(q0, vm) and

C(vm) = λ. Because δ(q0, u0 · v) = δ(q0, vm) and δ(q0, u0 · v) ∈ F it follows

that C(vm) = λ and hence C(vm−1 · bm) = λ which implies bm ∈ TailL(vm−1).

Assuming that C(vm−1) 6= bm leads to a contradiction. Hence C(vm−1) = bm.

Reasoning in the same manner we obtain that C(u0) = v, which concludes the

proof.

Lemma 22. Assume that (S,E,C) is a closed, consistent observation table.

Assume the automaton A(S,E,C) = (Q,Σ, δ, q0, F) has n states. If A′ =

(Q′,Σ, δ′, q′0, F
′) is any automaton consistent with C with respect to (S,E,C)

that has n or fewer states, then A′ is isomorphic with A(S,E,C).

Proof. We define the relation φ ⊆ Q×Q′ as follows. For all u ∈ S, row(u) φ q′

if q′ = δ′(q′0, u). We show that:

86

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

• φ is a bijective function. For this, we first prove that φ is an injective

relation. Indeed, let us assume the contrary, namely that there exist q′ in

Q′ and u1, u2 ∈ S such that row(u1) φ q′, row(u2) φ q′ and row(u1) 6=

row(u2). So δ′(q′0, u1) = q′ = δ′(q′0, u2), and there exists e ∈ E such that

row(u1)(e) 6= row(u2)(e) which is equivalent to C(u1 · e) 6= C(u2 · e). We

can distinguish two cases: one of the values of C(u1 · e), C(u2 · e) is Θ, or

both of them are in Σ∗.

I) Assume C(u1 · e) = Θ and C(u2 · e) = v 6= Θ (the case C(s1 · e) ∈ Σ∗

and C(u2 · e) = Θ is symmetric). Because A′ is consistent with C

with respect to (S,E,C) we get that δ′(q′0, u1 · e) is a sink state and

δ′(q′0, u2 · e · v) ∈ F ′. But δ′(q′0, u1) = δ′(q′0, u2) implies δ′(q′0, u1 · e) =

δ′(q′0, u2 · e), so δ′(q′0, u2 · e) is a sink state and hence δ′(q′0, u2 · e · v)

is also a sink state, which contradicts δ′(q′0, u2 · e · v) ∈ F ′.

II) Assume now that C(u1·e) = v1 and C(u2·e) = v2 for some v1, v2 ∈ Σ∗

such that v1 6= v2. Because A′ is consistent with C with respect to

(S,E,C) we get that δ′(q′0, u1 · e · v1) ∈ F ′, δ′(q′0, u2 · e · v2) ∈ F ′ and

v1, v2 are the smallest strings with this property. But δ′(q′0, u1) =

δ′(q′0, u2) implies δ′(q′0, u1 ·e ·v1) = δ′(q′0, u2 ·e ·v1), so δ′(q′0, u2 ·e ·v1)

∈ F ′ and v2 � v1. In a similar way it can be shown that v1 � v2,

and hence v1 = v2 which leads to a contradiction.

Because φ is an injection we deduce that |Q| ≤ |φ(Q)|. From the hy-

pothesis we know that |Q′| ≤ |Q| and hence |Q| = |φ(Q)| = |Q′|, which

makes our relation φ a function. It follows immediately that φ is bijective

since it is injective and has the domain and range finite and of the same

cardinality.

• φ is an automata isomorphism, that is φ(q0) = q′0, φ(F) = F ′ and for all

u ∈ S, a ∈ Σ, φ(δ(row(u), a)) = δ′(φ(row(u)), a). The proofs for the first

two statements are straightforward. For the last one, we take v ∈ S such

that row(v) = row(u · a). We have that φ(δ(row(u), a)) = φ(row(u · a)) =

φ(row(v)) = δ′(q′0, v) and δ′(φ(row(u)), a) = δ′(δ′(q′0, u), a) = δ′(q′0, u · a).

Since δ′(q′0, v) and δ′(q′0, u · a) have identical row values, namely row(v)

and row(u · a), they must be the same state of A′.

We have constructed an automata isomorphism from A(S,E,C) to A′, which

concludes our proof.

The following result can be deduced from the above mentioned lemmas.

87

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Theorem 16. If (S,E,C) is a closed and consistent observation table, then the

automaton A(S,E,C) is consistent with the finite function C with respect to

(S,E,C). Any other automaton consistent with C with respect to (S,E,C) but

inequivalent to A(S,E,C) must have more states.

Proof. Lemma 21 states that A(S,E,C) is consistent with C with respect to

(S,E,C), and Lemma 22 states that any other automaton consistent with C

with respect to (S,E,C) is either isomorphic to A(S,E,C) or contains at least

one more state. Thus, A(S,E,C) is the unique smallest DFA consistent with C

with respect to (S,E,C).

Now, let us notice that the injectivity of function φ defined on Lemma 22

implies that for any closed and consistent observation table (S,E,C), if k de-

notes the number of different values of row(u) for u in S then any automaton

consistent with C must have at least k states.

Suppose that n is the size of the target DFA. As the number of distinct

values of row(u) for u in S increases by at least one when the table is found not

closed or not consistent, the total number of operations of either type cannot

be more than n − 1 (this number is initially 1 and it is bounded by n). Hence

LCA always eventually finds a closed, consistent observation table (S,E,C) and

makes a conjecture A(S,E,C). Moreover, LCA can make at most n−1 incorrect

conjectures, since the size of the conjectured automaton is initially at least one,

and may not exceed n− 1 (whenever the teacher answers by a counterexample,

the number of distinct values of row(u) for u in S increases by at least 1 - see

Lemma 23). Since LCA has to make another conjecture as long as it is running,

it must terminate by making a correct conjecture.

Let us now discuss the worst case query complexity of LCA. We denote by

n the size of the target DFA and by m the length of the longest counterexample

returned by the teacher. As we already mentioned, the algorithm cannot ask

more than n − 1 EQs. Moreover, the number of PCQs asked by LCA during

its run can be bounded by the number of elements of the final observation

table (S,E,C). It is easy to see that the number of strings in S cannot exceed

n+m(n−1) (a counterexample requires the addition of at most m strings to S,

and this can happen at most n− 1 times), that S ∪SΣ has at most (|Σ|+ 1)|S|

elements and that in E the number of strings cannot be greater than n. So, the

total number of PCQs is bounded by (|Σ| + 1)(n + m(n − 1))n.

The total running time of the algorithm can also be expressed as a polyno-

mial in m and n, as we will see in the sequel. We have seen that the table can

be found not closed or not consistent at most n − 1 times. When the obser-

vation table is closed and consistent, the algorithm constructs the automaton

A(S,E,C) and asks an EQ, but this can happen no more then n − 1 times.

88

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

To check for closure, LCA considers each pair (u, v) in S× (SΣ\S) and com-

pares the values of the two rows, row(u) and row(v) (in a worst case situation).

This task can be done in time O(|S| · |SΣ\S| · |E| · n) (note that the entries of

the observation table are strings of length at most n).

To check for consistency, the algorithm first finds the strings u1, u2 in S such

that row(u1) = row(u2). This requires, in the worst case, |S|2 ·|E|·n operations.

Then it tries to find a ∈ Σ such that row(u1 · a) 6= row(u2 · a). In the worst

case, the algorithm would have to perform |Σ| · |E| ·n operations. Summing up,

we obtain that LCA needs at most O((|S|2 + |Σ|) · |E| · n) time steps to check

if the table is consistent or not.

Since the conjectured automaton A(S,E,C) can be constructed in time poly-

nomial in the size of the observation table, the total running time of the learning

process can be bounded by a polynomial function in m and n.

5.1.3 Running Example

We explain how our algorithm runs by tracing the evolution of the observation

table for the language L = (a + bba)+ over the alphabet Σ = {a, b}. Initially

the learner starts with S = {λ}, E = {λ} and the observation table described

as Table 5.1.

Table 5.1: S = {λ}, E = {λ}
T1 λ
λ a
a λ
b ba

We can observe that the information for the string a and the experiment λ

is known from the corresponding query for λ, since C(λ) = a implies C(a) = λ.

The table is not closed because row(a) and row(b) do not belong to row(S).

The algorithm adds the strings a and b to S, and extends the table (Table 5.2).

Table 5.2: S = {λ, a, b}, E = {λ}
T2 λ
λ a
a λ
b ba
aa λ
ab ba
ba Θ
bb a

89

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

The observation table is still not closed since row(ba) is not in row(S). The

algorithm adds the string ba to S (see Table 5.3). Notice that the corrections for

the strings baa and bab are already known, since C(ba) = Θ implies C(baa) =

C(bab) = Θ (by Remark 4, Section 3.1).

Table 5.3: S = {λ, a, b, ba}, E = {λ}
T3 λ State
λ a q0

a λ q1 ∈ F
b ba q2

ba Θ q3

aa λ q1 ∈ F
ab ba q2

bb a q0

baa Θ q3

bab Θ q3

In this moment, we can see that the observation table is closed and consis-

tent and the algorithm proceeds by asking the teacher an EQ. The conjectured

automaton is represented in Figure 5.1.

Figure 5.1: The automaton associated with Table 5.3

This is obviously not isomorphic with AL, and hence the teacher answers

with a counterexample. Suppose that the counterexample returned is the string

bbbba. The algorithm adds this string and all its prefixes to S and updates the

table (see Table 5.4).

90

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Table 5.4: S = {λ, a, b, ba, bb,
bbb, bbbb, bbbba}, E = {λ}

T4 λ
λ a
a λ
b ba
ba Θ
bb a
bbb Θ
bbbb Θ
bbbba Θ
aa λ
ab ba
baa Θ
bab Θ
bba λ
bbba Θ
bbbbb Θ
bbbbaa Θ
bbbbab Θ

Table 5.5: S = {λ, a, b, ba, bb,
bbb, bbbb, bbbba}, E = {λ, b}

T5 λ b State
λ a ba q0

a λ ba q1 ∈ F
b ba a q2

ba Θ Θ q3

bb a Θ q4

bbb Θ Θ q3

bbbb Θ Θ q3

bbbba Θ Θ q3

aa λ ba q1 ∈ F
ab ba a q2

baa Θ Θ q3

bab Θ Θ q3

bba λ ba q1 ∈ F
bbba Θ Θ q3

bbbbb Θ Θ q3

bbbbaa Θ Θ q3

bbbbab Θ Θ q3

The current observation table is not consistent, since row(λ) equals row(bb)

but row(λ·b) and row(bb·b) have different values. The algorithm adds the string b

to E, and updates the table accordingly (see Table 5.5). The table is now closed

and consistent, and the conjectured automaton A(S,E,C) is isomorphic with

AL (see Figure 5.2).

Figure 5.2: The automaton associated with Table 5.5

We notice that during the whole algorithm’s execution, the learner asks

only 2 EQs (the last one was successful) and 8 PCQs. Recall that for the same

language and the same returned counterexample, L∗ asks 3 EQs and 44 MQs.

91

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

5.1.4 When does LCA perform better than L∗?

Analyzing the complexity of the two algorithms we notice that in the worst case

they perform the same. Nevertheless, tests performed on randomly generated

DFAs indicate that this is not the case in general (the experiments are done by

A.H. Dediu - the automata and the results of the tests can be found in [BB06]).

In order to compare LCA and L∗ we focus on the query complexity, since the

total running time of the two algorithms is closely related to the number of

queries asked.

Intuitively, our algorithm should perform much better when the extra infor-

mation provided by correcting strings is actually helping the process of learning.

For example, imagine the case where all the states of the target DFA have dif-

ferent correcting strings2, as opposed to the case in which the total number

of possible correcting strings is very small compared to the number of states.

Clearly, in the first one we would be able to differentiate two states by asking

just one PCQ for each of them. On the other hand, the same strategy would not

be as efficient in the second case. To illustrate this idea, we first introduce the

notion of injectivity degree and then we present two extreme cases: one language

with injectivity degree 0, and another one with injectivity degree 9.

For any regular language L over the alphabet Σ, we denote by InjDeg(L)

the injectivity degree of the language L, that is:

InjDeg(L) = index (L) − |{CL(u) | u ∈ Σ∗}|

Moreover, we say that L is injective or that it has the injectivity property if

InjDeg(L) = 0.

Remark 6. A regular language L is injective if and only if CL(u) = CL(v)

implies u ≡L v for all u, v ∈ Σ∗.

Notice that the reverse implication always holds: u ≡L v ⇒ CL(u) = CL(v)

for all u, v ∈ Σ∗.

Now let us come back to our examples. In Figure 5.3, we have an automaton

with 10 states, each of them having distinct correcting strings as one can see in

Table 5.6.

Table 5.6: Possible corrections for strings in Σ∗ w.r.t the language L(A1)

States q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

CL(q) a λ aaba aaaaba aba bbaaba ba baba baaba aaaba

2Given a DFA A = (Σ, Q, δ, q0, F), by correcting string of a state q we understand the
string CL(wq) where wq ∈ Σ∗ is such that δ(q0, wq) = q.

92

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Figure 5.3: The automaton A1 with InjDeg(L(A1)) = 0

Counting the number of queries asked by the two algorithms having as input

the automaton from Figure 5.3, we obtain that LCA uses 11 PCQs and 1 EQ,

and that L∗ asks 269 MQs and 6 EQs. We have to mention here that in our

implementation the teacher always returns the shortest counterexample. Choos-

ing to return an arbitrary long counterexample might generate unfair results:

imagine that the two algorithms LCA and L∗ submit as an hypothesis the same

automaton, and one of them gets a very long counterexample.

Note that each string is counted only once: even if the algorithm reaches

a point where the learner should submit to the teacher a string which was

previously submitted we will not count this as another MQ (or PCQ). Moreover,

in the case of PCQs, the learner may obtain some implicit answers due to

Remark 2 and Remark 4. Therefore, the algorithm does not ask these questions

and we do not count them as new PCQs.

Figure 5.4 presents an automaton with 13 states which has only 4 possible

correcting strings: λ, a, b and aa, as one can see in Table 5.7.

Table 5.7: Possible corrections for strings in Σ∗ w.r.t the language L(A2)

The state q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

CL(q) b λ λ aa a b a λ λ λ λ λ λ

Figure 5.4: The automaton A2 with InjDeg(L(A2)) = 9

93

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

As expected, in this case the algorithm LCA cannot make use of the embed-

ded information normally brought by a correcting string. During its run it asks

122 PCQs and 5 EQ, slightly more than L∗ (113 MQs and 4 EQs).

We have seen examples showing that the smallest the injectivity degree of a

language is, the better LCA works when compared with L∗, and the other way

around. Therefore, the next question we will be addressing is: how is the query

complexity of LCA influenced by the injectivity degree of the input language?

With that in mind, let us first fix the notation. Assume that the language L

we want to learn has index n and injectivity degree InjDeg(L) = k. We denote

by m the length of the longest counterexample returned by the teacher, and by

Sf and Ef the final configuration of the sets S and E when we run either LCA

or L∗ on input L.

Clearly, the number of distinct elements in (Sf∪SfΣ)Ef represents, on one

hand, the number of MQs asked by L∗ when running on input L, and on the

other hand, an upper bound for the number of PCQs asked by LCA. Moreover,

for both algorithms, the size of Sf cannot exceed n + m(n − 1), and this is a

tight upper-bound. So, if the injectivity degree plays any role in determining

the number of queries asked by these algorithms, then it is the size of the set of

distinguishing experiments we should be looking into.

We start by showing that the cardinality of the set E is increasing by at

least one every time the teacher’s answer to an EQ is No, which implies that the

number of EQs is bounded by the cardinality of the set Ef. The proof is done

for the algorithm LCA, but it can easily be adapted to L∗.

Lemma 23. The total number of EQs asked by LCA during its run on input L

is smaller than or equal to |Ef|.

Proof. Let us assume that (S,E,C) is a closed and consistent observation table

such that A(S,E,C) is not isomorphic with AL. We show that if w is the

string returned by the teacher as a counterexample, then the table (S′, E,C)

obtained by adding w and all its prefixes to S is necessarily not consistent. This

implies that each EQ asked by the algorithm with the exception of the final one

increases the cardinality of the set E by at least 1. Hence, the total number of

EQs is smaller than or equal to |Ef|.

Let us first note that w 6∈ S∪SΣ. Indeed, if w is in S∪SΣ then δ(q0, w) equals

row(w), where A(S,E,C) = (Q,Σ, δ, q0, F), and hence w ∈ L ⇔ CL(w) = λ ⇔

row(w) ∈ F ⇔ δ(q0, w) ∈ F ⇔ w ∈ L(A(S,E,C)) which contradicts the fact

that w is in the symmetric difference of L and L(A(S,E,C)). Now, because

S is a nonempty prefix-closed set and w 6∈ S ∪ SΣ, there exist u0 ∈ S and

a0, a1, . . . an ∈ Σ with n ≥ 1 such that w = u0a0a1 · · · an and u0a0 ∈ SΣ\S.

So, let us assume by contrary that (S′, E,C) is consistent, and let S′′ be the

94

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

set obtained by adding to S′ as many elements as it takes until the table becomes

closed. Clearly, (S′′, E,C) is also consistent since we only added elements with

distinct row values.

We construct the sequence of strings u1, . . . , un in S such that row(uiai) =

row(ui+1) for all i ∈ {0, . . . , n} (recall that (S,E,C) is closed). This implies

δ(q0, uiai) = δ(q0, ui+1) (by Lemma 19) for all i ∈ {0, . . . , n}, so δ(q0, un+1) =

δ(q0, u0a0 · · · an). If we recall that the table (S′′, E,C) is consistent (by our as-

sumption), we get that row(u0a0) = row(u1) implies row(u0a0a1) = row(u1a1),

and furthermore row(u0a0a1) = row(u2). By applying a simple induction we

obtain that row(u0a0 · · · an) = row(un+1), so CL(u0a0 · · · an) = CL(un+1).

We have w ∈ L ⇔ CL(w) = λ ⇔ CL(un+1) = λ ⇔ δ(q0, un+1) ∈ F ⇔

δ(q0, w) ∈ F ⇔ w ∈ L(A(S,E,C)) which again contradicts the fact that w is in

the symmetric difference of L and L(A(S,E,C)). Hence, the observation table

(S′E,C) cannot be consistent.

Next, we show that in the case of LCA the injectivity degree can be used as

an upper bound for |Ef|.

Lemma 24. If we run LCA on input L, the cardinality of the set Ef is smaller

than or equal to k + 1.

Proof. Let AL = (Q,Σ, δ, q0, F) with |Q| = n be the minimal complete DFA

accepting L. Based on the final set Ef = {e0, e1, . . . , em} (m ≥ 0) of distin-

guishing experiments (the indexing reflects the order in which these elements

have been added to E; hence, e0 = λ), we are going to construct m + 2 parti-

tions of the set Q, denoted by ρ0, ρ1, . . . , ρm+1, such that ρ0 = {Q} and for all

i ∈ {1, . . . ,m + 1} we have:

• ρi = {Qi
1, . . . , Q

i
ki
} for some ki ≥ 1, and

• two states q1, q2 belong to the same block of the partition ρi if and only if

– q1, q2 are in the same block of the partition ρi−1, and

– the states δ(q1, ei−1) and δ(q2, ei−1) have the same correction (i.e.,

CL(w1) = CL(w2) for some w1, w2 ∈ Σ∗ such that δ(q0, w1) =

δ(q1, ei−1) and δ(q0, w2) = δ(q2, ei−1)).

We observe that:

• 1 ≤ ki ≤ n for any i ∈ {1, . . . ,m + 1}, because any partition of a set of n

elements has at most n blocks,

• ρi is finer than ρi−1 for all i ∈ {1, . . . ,m + 1}, since the algorithm LCA

adds ei−1 to the set of distinguishing experiments only when it separates

95

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

two states which could not have been distinguished with the help of the

previous experiments,

• ρ1 has exactly n − k blocks, because there are n − k possible correcting

strings and by definition, two states q1, q2 are in the same block of ρ1 if

and only if they have the same correction,

• ρm+1 has exactly n blocks (each of them containing one state), because

for any two states q1, q2 in Q there exists an experiment ej in Ef (j ∈

{0, . . . ,m}) such that δ(q1, ej) and δ(q2, ej) have different corrections (so,

q1 and q2 cannot be in the same block of the partition ρj+1).

From n − k = |ρ1| < |ρ2| < . . . |ρm+1| = n we conclude that m ≤ k, and

hence |Ef| ≤ k + 1.

Putting together these last two results, we get the following bounds for the

number of PCQs and EQs asked by LCA.

Theorem 17. When running on input L, LCA asks at most k + 1 EQs and

(n + m(n − 1))(|Σ|k + |Σ| − k) + k + 1 PCQs.

Proof. The fact that the number of EQs is bounded by k + 1 is an immediate

consequence of the previous two lemmas. Now, it is clear that the number of

PCQs is bounded by the number of distinct elements in (Sf ∪ SfΣ)Ef, that is,

by |Sf| + ((|Σ| − 1)|Sf| + 1) · |Ef| according to the following observation.

Remark 7. For any prefix-closed set S and any suffix-closed set E, we have:

• The number of distinct elements in (S ∪ SΣ)E is |S| + |SΣ\S| · |E|

• The number of elements of the set SΣ\S is (|Σ| − 1)|S| + 1

Taking into account that |Ef| ≤ k + 1 and |Sf| ≤ n + m(n − 1) concludes the

proof.

So, for any regular language of injectivity degree k, the final set of distin-

guishing experiments produced by LCA has at most k + 1 elements, whereas

the only bound for the one produced by L∗ is the size of the language itself (see

Example 11). On the other hand, there is no way we can bound the number

of rows of the final observation table other then using the length of the longest

counterexample as parameter, since the teacher is free to return arbitrarily long

strings. Hence, it is only when the injectivity degree of a language is rather

small in comparison with its size that one can get an important improvement

in the number of queries asked by replacing MQs with PCQs (smaller tables

means less queries asked).

96

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Example 11. Take L = {a} ∪ {ai | i ≥ 3, i 6≡ 2(mod 3)} over the alphabet Σ

= {a}. We have index (L) = 4, InjDeg(L) = 2 and |Ef| = 4 when running L∗

on L.

Let us see how does Theorem 17 apply to classes of languages with zero

injectivity degree. We fix the alphabet Σ and define Inj to be the class of

all regular languages over the alphabet Σ that have the injectivity property.

Probably the most well-known class of injective languages is the class of 0-

reversible languages.

Proposition 7. Any 0-reversible language is injective.

Proof. Assume that there exists L a 0-reversible language such that L is not

injective, i.e., there exists u, v in Σ∗ such that u 6≡L v and CL(u) = CL(v). Let

us denote by w the correcting string of u and v with respect to the language L.

Clearly, w 6= Θ, since w = Θ implies TailL(u) = TailL(v) = ∅, and furthermore

u ≡L v, a contradiction. So, w ∈ Σ∗. Moreover, since uw and vw are both in L,

we obtain that u ≡L v (by Corollary 1) which contradicts our assumption.

We can derive the following corollaries.

Corollary 9. For any language L in Inj, the number of PCQs needed by LCA

to learn L is n|Σ| + 1, and the number of EQs is one.

Proof. Theorem 17 states that LCA asks (n + m(n− 1))(|Σ|k + |Σ| − k) + k + 1

PCQs and k + 1 EQs while learning the language L of index n and injectivity

degree k. This means that for k = 0, LCA asks only one EQ and n|Σ|+1 PCQs

(since the only EQ asked by the algorithm is answered in the positive way, the

length m of the longest counterexample is 0).

Corollary 10. The class Inj is in PolPCorQ.

Proof. One can modify LCA to output the conjectured automaton A(S,E,C)

and halt when the table is closed and consistent. The restricted version of LCA

for the class of injective languages is presented in Algorithm 10.

97

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Algorithm 10 The algorithm LCAinj for injective languages

1: Initialize S and E with {λ}
2: Ask PCQs for λ and each a ∈ Σ
3: Construct the initial observation table (S,E,C)
4: while (S,E,C) is not closed do
5: find s in S and a in Σ such that row(s · a) /∈ row(S)
6: add s · a to S
7: extend C to (S ∪ SΣ)E using PCQs
8: end while
9: Construct the conjecture A(S,E,C)

10: Halt and output A(S,E,C)

Moreover, since LCAinj is a polynomial time algorithm, we get that the class

Inj is in PolPCorQ .

As expected, LCA performs much better than L∗ when running on injective

languages. First of all, LCA can learn any language in Inj by asking only

one EQs (the final one). This is not the case with L∗: the class of 0-reversible

languages is not polynomially learnable with MQs alone3, which implies that

L∗ asks more than one EQ, in general, when learning the class Inj4. Secondly,

the number of PCQs asked is linear in the size of the target language, and this

does not happen with the MQs (see Example 12).

Example 12. Let S = (Lw)w∈Σ∗ be the class of all singleton languages Lw =

{w} over an arbitrary alphabet Σ. Obviously, S ⊂ Inj. Let us compute the

number of MQs asked by L∗ when running on a language Lw in S.

Lemma 25. For any Lw in S, the number of MQs asked by L∗ in order to

identify Lw is at least

2(|Σ| − 1)|w|2 + (4|Σ| − 1)|w| + 2|Σ| + 1.

Proof. We give the proof only for the case |Σ| = 2. Similar reasoning applies to

any other alphabets and it is left to the reader. Let us denote by n the length

of w. Then, we have to show that the number of MQs asked by L∗ is at least

2n2 + 7n + 5.

Suppose the string w to be learned is w = a1a2 · · · an with ai in Σ = {0, 1}

for all i ∈ {1, 2, . . . , n}. We consider only the case n ≥ 2, because the proof for

n = 0 and n = 1 is a simple exercise. The algorithm starts by constructing the

observation table represented in Table 5.8.

3See Theorem 14 in Section 4.1.2; the result presented there is actually stronger, stating
that k-reversible languages are not finitely learnable with MQs.

4If L∗ was asking just one EQ for any injective language, than a slightly modified ver-
sion of L∗ would be a polynomial time algorithm for learning the class 0 -Rev with MQs, a
contradiction.

98

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Table 5.8: S = {λ}, E = {λ}
T1 λ State
λ 0 q0

0 0 q0

1 0 q0

The automaton associated with the current observation table does not accept

any string (see Figure 5.5).

Figure 5.5: The automaton associated with the observation Table 5.8

The counterexample returned (in this case the only possible one) is the

string w, so the algorithm L∗ adds w and all its prefixes to S and generates the

observation Table 5.9 (for any letter a of the alphabet Σ we denote by a the

only symbol in the set Σ\{a}, i.e., 0 is 1 and 1 is 0).

Table 5.9: E = {λ}, S =
{λ, a1, . . . , a1a2 · · · an}

T2 λ
λ 0
a1 0
...
a1a2 · · · an−1 0
a1a2 · · · an 1
a1 0
a1a2 0
...
a1 · · · an0 0
a1 · · · an1 0

Table 5.10: E = {λ, an},
S = {λ, a1, . . . , a1a2 · · · an}

T3 λ an

λ 0 0
a1 0 0
...
a1a2 · · · an−1 0 1
a1a2 · · · an 1 0
a1 0 0
a1a2 0 0
...
a1 · · · an0 0 0
a1 · · · an1 0 0

This table is not consistent because row(a1a2 · · · an−2) = row(a1a2 · · · an−1)

but row(a1a2 · · · an−2 · an) 6= row(a1a2 · · · an−1 · an) (their values in λ do not

coincide). So the algorithm adds the value an to the set E of experiments, and

updates the table (see Table 5.10).

The new table is still not consistent, because although row(a1a2 · · · an−3)

= row(a1a2 · · · an−2), row(a1a2 · · · an−3 · an−1) 6= row(a1a2 · · · an−2 · an−1) (the

two functions have different values in an).

99

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Therefore, L∗ adds the experiment an−1 · an to E. This procedure is contin-

ued until E = {λ, an, an−1an, · · · , a2a3 · · · an} (see Table 5.11).

Table 5.11: S = {λ, a1, . . . , a1a2 · · · an}, E = {λ, an, an−1an, . . . , a2a3 · · · an}
Tn+1 λ an an−1an a2a3 · · · an State
λ 0 0 0 0 q0

a1 0 0 0 1 q1

a1a2 0 0 0 0 q2

...
a1a2 · · · an−1 0 1 0 0 qn−1

a1a2 · · · an 1 0 0 0 qn ∈ F
a1 0 0 0 0 q0

a1a2 0 0 0 0 q0

...
a1 · · · an−1an 0 0 0 0 q0

a1 · · · an0 0 0 0 0 q0

a1 · · · an1 0 0 0 0 q0

This table is closed and consistent and the learner L∗ constructs the automa-

ton represented in Figure 5.6.

Figure 5.6: The automaton associated with the observation Table 5.11

The conjectured automaton is not the target one, so the teacher’s answer to

the EQ is a counterexample. Let us assume that the counterexample returned

by the teacher is the string a1a1a2 · · · an (since this is the shortest string in the

symmetric difference of L(ALw
) and L(A(S,E,C)), any other counterexample

would lead to even more MQs). Then, L∗ proceeds by adding this string and

all its prefixes to S. By updating the observation table we get Table 5.12.

100

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Table 5.12: S = {λ, . . . , a1a1a2 · · · an}, E = {λ, . . . , a2a3 · · · an}
Tn+2 λ an a2a3 · · · an

λ 0 0 0
a1 0 0 1
...
a1a2 · · · an 1 0 0
a1 0 0 0
a1a1 0 0 0
...
a1a1a2 · · · an 0 0 0
a1a2 0 0 0
a1a2a3 0 0 0
...
a1 · · · an−1an 0 0 0
a1 · · · an−1an0 0 0 0
a1 · · · an−1an1 0 0 0
a1a1 0 0 0
a1a1a2 0 0 0
...
a1a1 · · · an−1an 0 0 0
a1a1 · · · an−1an0 0 0 0
a1a1 · · · an−1an1 0 0 0

This table is not consistent because row(λ) = row(a1) and row(λ · a1)

6= row(a1 · a1) (they differ in the column corresponding to the experiment

a2a3 · · · an). So L∗ adds the experiment a1a2 · · · an to E and updates the ob-

servation table (see Table 5.13). The conjectured automaton is represented in

Figure 5.7.

Figure 5.7: The automaton associated with the observation Table 5.13

101

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Table 5.13: S = {λ, . . . , a1a1a2 · · · an}, E = {λ, . . . , a1a2 · · · an}

Tn+3 λ an a2a3 · · · an a1a2 · · · an State
λ 0 0 0 1 q0

a1 0 0 1 0 q1

...
a1a2 · · · an 1 0 0 0 qn ∈ F
a1 0 0 0 0 qn+1

a1a1 0 0 0 0 qn+1

a1a1a2 0 0 0 0 qn+1

...
a1a1a2 · · · an 0 0 0 0 qn+1

a1a2 0 0 0 0 qn+1

a1a2a3 0 0 0 0 qn+1

...
a1 · · · an−1an 0 0 0 0 qn+1

a1 · · · an−1an0 0 0 0 0 qn+1

a1 · · · an−1an1 0 0 0 0 qn+1

a1a1 0 0 0 0 qn+1

a1a1a2 0 0 0 0 qn+1

...
a1a1 · · · an−1an 0 0 0 0 qn+1

a1a1 · · · an−1an0 0 0 0 0 qn+1

a1a1 · · · an−1an1 0 0 0 0 qn+1

One can see that the conjectured automaton is isomorphic with the target

one, so the teacher’s answer to the EQ will be Yes. All we have to do now is to

count how many distinct MQs have been asked.

For this, let us first notice that only the elements that are marked as un-

derlined in Table 5.13 should be counted. By Remark 7, the number of distinct

elements in (S ∪ SΣ)E is |S| + (|S| + 1)|E|, that is, 2n + 2 + (2n + 3)(n + 1).

Hence, the number of distinct MQs is 2n2 + 7n + 5.

In conclusion, for any language in the class S, L∗ asks a quadratic number

of MQs and at least 3 EQs, while LCA needs a linear number of PCQs and only

one EQ (see Lemma 26).

Lemma 26. For any Lw in S, the number of PCQs asked by L∗ in order to

identify Lw is

(|Σ| − 1)|w| + |Σ| + 1.

Proof. We give the proof only for the case |Σ| = 2. Similar arguments can be

used for larger alphabets. Suppose the string w to be learned is w = a1a2 · · · an.

102

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

The algorithm starts with S = {λ}, E = {λ} and the following observation

table.

Table 5.14: S = {λ}, E = {λ}
T1 λ
λ a1a2 · · · an

a1 a2 · · · an

a1 Θ

Since row(a1) is not in row(S), Table 5.14 is not closed. The algorithm pro-

ceeds by adding to the set S, one by one, the strings: a1 , a1, a1a2 . . . a1a2an−1,

and finally a1a2 . . . an. The corresponding observation table is Table 5.15.

Table 5.15: S = {λ, . . . , a1a2 · · · an, a1}, E = {λ}
Tn+2 λ State
λ a1a2 · · · an q0

a1 a2 · · · an q1

...
a1 · · · an−1 an qn−1

a1a2 · · · an λ qn ∈ F
a1 Θ qn+1

a1a2 Θ qn+1

a1a2a3 Θ qn+1

...
a1 · · · an−1an Θ qn+1

a1 · · · an0 Θ qn+1

a1 · · · an1 Θ qn+1

a10 Θ qn+1

a11 Θ qn+1

Clearly, this last table is closed and consistent, and the conjectured automa-

ton (the one represented in Figure 5.7) is the target one. Hence the teacher’s

answer to the EQ is Yes and the algorithm ends by outputting ALw
.

All we have to do now is count the PCQs. Some of the answers are implicit,

like those for C(a1a2 · · · ai), for all i ∈ {1, 2, . . . , n} (from C(λ) = a1a2 · · · an we

know that C(a1a2 · · · ai) = ai+1 · · · an). Some basic counting shows that LCA

is asking a total of n + 3 questions in order to identify the target language.

103

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

5.2 Learning Deterministic Finite Automata

with Length Bounded Correction Queries

and Equivalence Queries

Recall that we defined the l-bounded correction of the string u with respect to

L (denoted Cl
L(u)) as the set of all strings v of length at most l such that u · v

is in L. Formally, Cl
L is a function from Σ∗ to P(Σ∗) such that for any u in Σ∗,

Cl
L(u) = {v ∈ TailL(u) | |v| ≤ l}. Moreover, λ ∈ Cl

L(u) if and only if u ∈ L.

So let us investigate what happens when we allow the learner to ask the

teacher lBCQs and EQs.

5.2.1 The Algorithm LlBCA

Basically what we do is adapting the algorithm LCA to the new type of queries.

For this, we keep S to be a nonempty prefix-closed set of strings, E a nonempty

suffix-closed set of experiments, but the entry for the element in the table that

is found at the intersection between row u and column e (for any u in SΣ ∪ S

and e in E) is now a set instead of a simple string, namely the set Cl
L(ue). So,

we denote the observation table by (S,E,Cl), and for any u in S, we define a

function row l(u) : E → P(Σ∗) by row l(u)(e) = Cl
L(u · e).

The algorithm LlBCA is basically the same: as long as the table is not l-

bounded closed or l-bounded consistent, it keeps adding elements to S or E, and

extends the table accordingly. When both conditions are satisfied, the learner

constructs its hypothesis and presents it to the teacher. If it is the correct one,

the algorithm halts by outputting the conjectured automaton. Otherwise, it

continues by processing the information received from the teacher (the coun-

terexample).

An observation table (S,E,Cl) is called l-bounded closed if for every u in

SΣ there exists a v in S such that row l(u) = row l(v), and l-bounded consistent

if for any u1, u2 in S such that row l(u1) = row l(u2), we have row l(u1 · a) =

row l(u2 · a) for all a in Σ.

For any l-bounded closed, l-bounded consistent observation table (S,E,Cl),

we define the automaton A(S,E,Cl) = (Q,Σ, δ, q0, F) as follows:

• Q = {row l(u) | u ∈ S},

• q0 = row l(λ),

• F = {row l(u) | u ∈ S and λ ∈ Cl
L(u)},

• δ(row l(u), a) = row l(u · a).

104

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

It is easy to see that A(S,E,Cl) is a well-defined automaton.

The algorithm is described in what follows.

Algorithm 11 LlBCA: Learning DFAs with lBCQs and EQs

1: Initialize S and E with {λ}
2: Ask lBCQs for λ and each a ∈ Σ
3: Construct the initial observation table (S,E,Cl)
4: repeat
5: repeat
6: while (S,E,Cl) is not l-bounded closed do
7: find u in S and a in Σ such that row l(u · a) /∈ {row l(v) | v ∈ S}
8: add u · a to S
9: extend Cl

L to (S ∪ SΣ)E using lBCQs
10: end while
11: while (S,E,Cl) is not l-bounded consistent do
12: find u1,u2 ∈ S and a ∈ Σ, e ∈ E such that row l(u1) = row l(u2) and

Cl
L(u1 · a · e) 6= Cl

L(u2 · a · e)
13: add a · e to E
14: extend Cl

L to (S ∪ SΣ)E using lBCQs
15: end while
16: until (S,E,Cl) is l-bounded closed and l-bounded consistent
17: Construct the conjecture A(S,E,Cl)
18: if the teacher replies with a counterexample u then
19: add u and all its prefixes to S
20: extend Cl

L to (S ∪ SΣ)E using lBCQs
21: end if
22: until the teacher replies Yes to the conjecture
23: Halt and output A(S,E,Cl)

5.2.2 Correctness, Termination and Running Time

In order to prove that the algorithm terminates by outputting the correct DFA,

we basically follow the same steps we did for LCA. First, we need to specify

what conditions have to be met by an automaton to be consistent with the

values of a given observation table.

Assume that (S,E,Cl) is an l-bounded closed and l-bounded consistent ob-

servation table. We say that the automaton A = (Q,Σ, δ, q0, F) is l-bounded

consistent with the function Cl
L with respect to (S,E,Cl) if for every u in S∪SΣ

and e in E,

Cl
L(u · e) = {v ∈ Σ∗ | |v| ≤ l, δ(q0, u · e · v) ∈ F}.

The following theorem is the key to proving that regular languages can be

learned in polynomial time using lBCQs and EQs.

105

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Theorem 18. If (S,E,Cl) is an l-bounded closed and l-bounded consistent

observation table, then the automaton A(S,E,Cl) is l-bounded consistent with

the finite function Cl
L. Any other automaton l-bounded consistent with Cl

L but

not equivalent to A(S,E,Cl) must have more states.

The theorem is proved by the following lemmas.

Lemma 27. Let (S,E,Cl) be an l-bounded closed and l-bounded consistent

observation table. For the automaton A(S,E,Cl) and every u in S ∪ SΣ,

δ(q0, u) = row l(u).

Proof. The proof is by induction on the length of u.

Lemma 28. If (S,E,Cl) is an l-bounded closed and l-bounded consistent obser-

vation table and A(S,E,Cl) = (Q,Σ, δ, q0, F), then for each u in S∪SΣ and all

e ∈ E, there exists v in S such that δ(q0, u · e) = δ(q0, v) and Cl
L(u · e) = Cl

L(v).

Proof. Let u be a string from S ∪ SΣ. Because (S,E,Cl) is l-bounded closed,

there exists v ∈ S such that row l(v) = row l(u), and hence δ(q0, v) = δ(q0, u)

(by Lemma 28) and Cl
L(v · e) = Cl

L(u · e) for all e in E.

The proof is by induction on the length of e.

• If e = λ, it is clear that δ(q0, u · λ) = δ(q0, v) and Cl
L(u · λ) = Cl

L(v).

• Now suppose the result holds for all e in E of length at most k, and let e be

an element of E of length k+1. Since E is suffix-closed, e = a·e′ for some a

in Σ and e′ in E. From δ(q0, u) = δ(q0, v) we get δ(q0, u ·e) = δ(q0, v ·a ·e
′).

Applying the induction hypothesis on e′ for the string va in S ∪ SΣ we

obtain that there exist v′ in S such that δ(q0, va · e′) = δ(q0, v
′) and

Cl
L(va · e′) = Cl

L(v′). Thus, δ(q0, u · e) = δ(q0, v
′) and Cl

L(u · e) = Cl
L(v′).

We have shown that for any u in S and any e in E there exists v′ in S such

that δ(q0, u ·e) = δ(q0, v
′) and Cl

L(u ·e) = Cl
L(v′) which concludes our proof.

Lemma 29. Let (S,E,Cl) be an l-bounded closed and l-bounded consistent

observation table. Then A(S,E,Cl) is l-bounded consistent with the function

Cl
L with respect to (S,E,Cl).

Proof. Let A(S,E,Cl) = (Q,Σ, δ, q0, F). We have to show that for any u in

S ∪ SΣ and e in E, Cl
L(u · e) = {v ∈ Σ∗ | |v| ≤ l, δ(q0, u · e · v) ∈ F}. From

Lemma 28 we know that there exists u0 in S such that δ(q0, u · e) = δ(q0, u0)

and Cl
L(u · e) = Cl

L(u0). Hence, it is enough to prove that given an arbitrary u0

in S, the following equality holds: Cl
L(u0) = {v ∈ Σ∗ | |v| ≤ l, δ(q0, u0 · v) ∈ F}.

Because the table is l-bounded closed, for any symbol ai in Σ∗, i ∈ {1, . . . , n}

we can inductively find the strings ui ∈ S such that row l(ui−1 · ai) = row l(ui)

106

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

(by Lemma 28), and hence δ(q0, ui−1 ·ai) = δ(q0, ui) and Cl
L(ui−1 ·ai) = Cl

L(ui).

Clearly, δ(q0, u0a1a2 · · · an) = δ(q0, un). It is straightforward to show that the

string a1a2 · · · an is in Cl
L(u0) if and only if λ is in Cl

L(un) and n ≤ l.

Now, if we denote the string a1a2 · · · an by w, what we obtained can be

summarized as follows: w ∈ Cl
L(u0) ⇔ (λ ∈ Cl

L(un) and |w| ≤ l) ⇔ (row l(un) ∈

F and |w| ≤ l) ⇔ (δ(q0, un) ∈ F and |w| ≤ l) ⇔ (δ(q0, u0 ·w) ∈ F and |w| ≤ l) ⇔

w ∈ {v ∈ Σ∗ | |v| ≤ l, δ(q0, u0 · v) ∈ F}. If we take the beginning and the end of

this series of equivalences we get Cl
L(u0) = {v ∈ Σ∗ | |v| ≤ l, δ(q0, u · e · v) ∈ F},

which concludes our proof.

Lemma 30. Let (S,E,Cl) be an l-bounded closed and l-bounded consistent

observation table. Suppose that A(S,E,Cl) has n states. If A′ = (Q′, Σ, δ′,

q′0, F ′) is any automaton l-bounded consistent with Cl
L with respect to (S,E,Cl)

that has n or fewer states, then A′ is isomorphic with A(S,E,Cl).

Proof. As in Lemma 22 from Chapter 5 we define the relation φ ⊆ Q×Q′ such

that row l(u) φ q′ if and only if q′ = δ′(q′0, u). We will first prove that φ is an

injection. Indeed, for any u1, u2 ∈ S such that row l(u1) φ q′, row l(u2) φ q′, we

have δ′(q′0, u1) = q′ = δ′(q′0, u2), and hence δ′(q′0, u1 · e · v) = δ′(q′0, u2 · e · v) for

all e in E and v in Σ∗. Because A′ is l-bound consistent with Cl
L, it follows

immediately that Cl
L(u1 · e) = Cl

L(u2 · e) for all e in E, which implies row l(u1)

= row l(u2).

One may show that φ is an automata isomorphism in exactly the same way

we did for the above mentioned Lemma 22, so we will omit this proof here.

We have shown that as soon as the table (S,E,Cl) is l-bounded closed and

l-bounded consistent, A(S,E,Cl) is the minimal automaton consistent with Cl
L

with respect to the given observation table. Combining this with the fact that

the number of distinct rows in S (and hence the size of A(S,E,Cl)) is necessarily

increasing until it reaches the size of the target automaton (for the same reasons

discussed in Section 5.1.2), we obtain that the algorithm LlBCA terminates in

finite steps by outputting the target automaton.

The total running time of LlBCA is bounded by a polynomial in n and

m where n is the size of the target language and m the length of the longest

counterexample returned by the teacher. The proof for this fact is very similar

to the one used for LCA, so we will omit it here.

One important difference though is that the observation table in this setting

contains sets instead of strings (0’s and 1’s for L∗, strings in Σ∪{Θ} for LCA).

So a natural question is how it affects the total running time of the algorithm.

Let us first notice that the set Cl
L(w) has at most c = (|Σ|l+1 − 1)/(|Σ| − 1)

strings (one of length zero, Σ of length 1,..., |Σ|l strings of length l) for any w in

107

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Σ∗ and any regular language L over the alphabet Σ. So, the size of Cl
L(w) might

be exponential in l for some w in Σ∗. But since l is fixed for our algorithm,

having to deal with sets instead of strings might increase the total running time

of the algorithm by a constant c = 1 + |Σ| + · · · + l|Σ|l, which does not change

the polynomiality of LlBCA. Of course this argument works when the target

class contains languages of size arbitrarily big. If we apply LlBCA for, let us

say, all DFAs of size l, then l is no longer a constant here and the algorithm is

definitely not polynomial in l.

5.2.3 Running Example

In order to explain how this algorithms works, we will track its run on the

same example we used for LCA. So, assume the language we want to learn is

L = (a + bba)+ and let us say take l = 3.

The algorithm starts with S = {λ}, E = {λ}, and the following observation

table.

Table 5.16: S = {λ}, E = {λ}
T1 λ
λ {a, aa, aaa, bba}
a {λ, a, aa, aaa, bba}
b {ba, baa}

This table is clearly not l-bounded closed, since both row3(a) and row3(b)

are different from row3(λ). The algorithm proceeds by adding a and b to S, and

updating the observation table (see Table 5.17).

Table 5.17: S = {λ, a, b}, E = {λ}
T2 λ
λ {a, aa, aaa, bba}
a {λ, a, aa, aaa, bba}
b {ba, baa}
aa {λ, a, aa, aaa, bba}
ab {ba, baa}
ba ∅
bb {a, aa, aaa}

Since the table is still not l-bounded closed (note that row3(ba) and row3(bb)

are not in row3(S)), two more string are added to S (see Table 5.18).

108

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Table 5.18: S = {λ, a, b, ba, bb}, E = {λ}
T3 λ State
λ {a, aa, aaa, bba} q0

a {λ, a, aa, aaa, bba} q1 ∈ F
b {ba, baa} q2

ba ∅ q3

bb {a, aa, aaa} q4

aa {λ, a, aa, aaa, bba} q1 ∈ F
ab {ba, baa} q2

baa ∅ q3

bab ∅ q3

bba {λ, a, aa, aaa, bba} q1 ∈ F
bbb ∅ q3

The observation table is now l-bounded closed and l-bounded consistent,

and one may notice that the conjectured automaton (represented in Figure 5.8)

is isomorphic to ALw
.

Figure 5.8: The automaton associated with Table 5.18

It is easy to check that the algorithm asks a total number of eleven 3BCQs

and only one EQ. Of course, choosing a smaller value for l would increase the

number of queries asked, as one can see in the following table.

Algorithm CQs EQs
L2BCA 11 1
L1BCA 40 3

L0BCA = L∗ 44 3
LCA 8 2

109

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

5.2.4 Comparison between LlBCA, LCA and L∗

Recall that the time complexity of the algorithm LCA records a serious improve-

ment when compared to L∗ for classes of languages with small injectivity degree.

In this section we define a similar measure for lBCQs, namely the l-injectivity

degree, and perform a similar investigation for classes of languages having the

l-injectivity property .

For any regular language L over the alphabet Σ, we denote by lInjDeg(L)

the l-injectivity degree of the language L, that is:

lInjDeg(L) = index (L) − |{Cl
L(u) | u ∈ Σ∗}|

Note that {Cl
L(u) | u ∈ Σ∗} is a set of sets, so what we count in |{Cl

L(u) |

u ∈ Σ∗}| is the number of distinct sets. Moreover, we say that the language L

has the l-injectivity property or that it is l-injective if lInjDeg(L) = 0. Let us

denote by lInj the class of all l-injective regular languages.

Remark 8. Let L be a regular language. The following properties are satisfied.

1. L is l-injective if and only if Cl
L(u1) = Cl

L(u2) implies u1 ≡L u2 for all

u1, u2 in Σ∗.

2. (l − 1)Inj (lInj for all l ≥ 1.

3. If L is in 0Inj then index (L) ≤ 2.

Theorem 19. For any language L in lInj , the number of lBCQs needed by

LlBCA in order to learn L is linear in the size of AL and the number of EQs is

one.

Proof. For the two trivial languages, L = ∅ and L = Σ∗ the proof is immediate.

Let L 6= Σ∗ be a nonempty arbitrary language in lInj of index n > 1, and AL

= (Q,Σ, q0, δ, F) the minimal complete DFA accepting L.

We show by induction that at any step k < n of the algorithm, the table

(S,E,Cl) has the following properties:

- E = {λ}

- |S| = k

- (S,E,Cl) is l-bounded consistent

- (S,E,Cl) is not l-bounded closed

For k = 1 it is clear that E = {λ}, S = {λ} (and hence |S| = k) and the

table is l-bounded consistent (since it has only one element). To prove that it

is not l-bounded closed, we assume the contrary. (S,E,Cl) is l-bounded closed

implies that Cl
L(a) = Cl

L(λ), ∀a ∈ Σ which corresponds to a ≡L λ, ∀a ∈ Σ and

110

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

hence δ(q0, a) = δ(q0, λ) = q0, ∀a ∈ Σ. This means that the target automaton

has only one state, which contradicts the non triviality of L.

Suppose that the result holds for all steps strictly smaller than k, and we

want to prove that the four conditions hold at the step k (k < n). Since at step

k − 1 the set S had k − 1 strings and the table was l-bounded consistent and

not l-bounded closed, it means that at step k the set S has one more element

(and hence k elements), E continues to be {λ} and the table remains l-bounded

consistent (since the algorithm proceeded by adding to S a distinct line). The

only thing that needs to be shown is that (S,E,Cl) is not l-bounded closed.

Assume by contradiction that (S,E,Cl) is l-bounded closed. Then LlBCA

constructs the conjectured automaton A(S,E,Cl) = (Q′,Σ, q′0, δ
′, F ′) as de-

scribed in Section 5.2.1. Let us define the function φ : Q′ → Q, by φ(row l(u)) =

δ(q0, u). We show that φ is well defined, injective, that φ(q′0) = q0, φ(F ′) ∈ F

and φ(δ′(row l(u), a)) = δ(φ(row l(u)), a), for all u in S and a in Σ.

1. φ is clearly well defined, since there are no two strings u1 6= u2 in S such

that row l(u1) = row l(u2).

2. To see that φ is injective, lets take two distinct states in Q′, row l(u1) and

row l(u2). Because E = {λ}, row l(u1) 6= row l(u2) ⇔ Cl
L(u1) 6= Cl

L(u2)

and since L has the injectivity property, this is equivalent to u1 6≡L u2 ⇔

δ(q0, u1) 6= δ(q0, u2) ⇔ φ(row l(u1)) 6= φ(row l(u2)), which implies that φ

is injective.

3. φ(q′0) = φ(row l(λ)) = δ(q0, λ) = q0.

4. Let us take q in φ(F ′). This means that there exists u in S such that

row l(u) ∈ F ′ and φ(row l(u)) = q, which is equivalent to λ ∈ Cl
L(u) and

δ(q0, u) = q. Hence, q is in F .

5. δ′(row l(u), a) = row l(u · a) = row l(v), where v ∈ S and hence φ(δ′(

row l(u), a)) = φ(row l(v)) = δ(q0, v). But δ(q0, v) = δ(q0, u · a) because

u · a ≡L v, since Cl
L(u · a) = Cl

L(v) and the language L is l-injective. So,

φ(δ′(row l(u), a)) = δ(δ(q0, u), a) = δ(φ(row l(u)), a).

Clearly, A(S,E,Cl) is a complete automaton. Now it is enough to see that

we have constructed an injective morphism between two complete automata

such that |Q′| = k < n = |Q|, which leads to a contradiction.

Note that there are only a finite number of l-injective languages (any lan-

guage in lInj has at most 21+|Σ|+···+|Σ|l states), so the total running time of

the algorithm might be exponential in the size of the target language as in the

following example.

111

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Example 13. Let us consider the class S̄l = (L̄w)w∈Σl with L̄w := Σ∗\{w}.

For any language L in S̄l we have: L ∈ lInj\(l − 1)Inj, index (L) = l + 2, and

for each u in Σ∗, the number of elements of the set Cl
L̄
(u) is at least |Σ≤l| − 1,

that is |Σ|(|Σ|l − 1)/(|Σ| − 1). So just to compare two rows in the observation

table we need exponential time in the size of AL.

Corollary 11. The class lInj is learnable with lBCQs.

Proof. The same argument as for the case of injective languages holds: if we

need only one EQs (which confirms that the conjectured automaton is the target

one), then we do not have to ask this question at all.

An algorithm similar to LCAinj can be constructed for l-injective languages.

This algorithm will use only lBCQs.

Algorithm 12 The algorithm LlBCAinj for l-injective languages

1: Initialize S and E with {λ}
2: Ask lBCQs for λ and each a ∈ Σ
3: Construct the initial observation table (S,E,Cl)
4: while (S,E,Cl) is not l-bounded closed do
5: find u in S and a in Σ such that row l(u · a) /∈ row l(S)
6: add u · a to S
7: extend Cl

L to (S ∪ SΣ)E using lBCQs
8: end while
9: Construct the conjecture A(S,E,Cl)

10: Halt and output A(S,E,Cl)

Please note that although LlBCAinj uses only a linear number of queries,

its total running time is not polynomial in general (see the language class from

Example 13). But this is not at all surprising if we take a closer look at our

previous results:

• PolMemQ = PolLBCorQ ,

• S̄l is not polynomial time learnable with MQs (hence S̄l 6∈ PolLBCorQ),

• S̄l ⊂ lInj (hence lInj 6∈ PolLBCorQ).

To conclude, by replacing MQs with LBCQs in L∗ we only get an improve-

ment in the number of queries since the total running time of the new algorithm

LlBCA is heavily dependent on the size of the correcting sets.

So far we introduced two language classes for which the algorithms LCA and

LlBCA need only a linear number of PCQs and LBCQs, respectively, and only

one EQ. In the sequel we show how are these two language classes related.

Proposition 8. For any L in Inj, there exists l such that L ∈ lInj .

112

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Proof. Let L be an arbitrary language in Inj. If l is the size of AL, we show that

L ∈ lInj , that is u1 ≡L u2 ⇔ Cl
L(u1) = Cl

L(u2). Since one implication always

holds, we have to prove only that Cl
L(u1) = Cl

L(u2) implies u1 ≡L u2. But this

is clear if we notice that from Cl
L(u1) = Cl

L(u2) we get CL(u1) = CL(u2) (the

correction of any string cannot be longer than the size of the language).

So, Inj ⊆
⋃

l≥1 lInj . To see that the inclusion is strict, consider the lan-

guage Linj = [(a + b + bb)a(a + b)]∗[(a + b + bb)a + (a + bb)b(a + b)∗] with ALinj

represented in Figure 5.9.

Figure 5.9: The minimal complete DFA for the language Linj

Clearly, Linj is not an injective language since the strings a and b have the

same prefix correcting string a although they are not in the same equivalence

class). Moreover, for all l ≥ 1, Linj ∈ lInj . Hence, Linj ∈ lInj\Inj for all

l ≥ 1.

On the other hand, we show that for any l ≥ 1, the sets Inj and lInj are

incomparable.

Proposition 9. For any l ≥ 0, there exists L in Inj such that L 6∈ lInj .

Proof. Let us take l ≥ 0 arbitrary, and consider the language Ll
inj = Σ≥l+2 over

the alphabet Σ = {a, b} with ALl
inj

represented in Figure 5.10.

Figure 5.10: The minimal complete DFA for the language Ll
inj

Notice that this language has as many prefix correcting strings as states in

its minimal DFA: CLl
inj

(ai) = al+2−i for any i ∈ {0, 1, . . . , l + 2}. Hence, Ll
inj is

113

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

injective. Moreover, Cl
Ll

inj

(λ) = Cl
Ll

inj

(a) = ∅ although λ 6≡Ll
inj

a. So, Ll
inj is not

l-injective.

An intuitive picture displaying the relation between the two language classes

is presented in Figure 5.11.

Figure 5.11: Comparison between Inj and lInj

Getting back to the comparison LlBCA versus L∗, there is a clear trade-off

between the number of queries asked by LlBCA and the size of the answers

returned by the teacher, that is, for bigger values of l, LlBCA asks less queries

than L∗, but with the price of increasing observation table entries.

On the other hand, when comparing LCA with LlBCA, there is no unique

answer for the question of which one is the best, or when is one of them per-

forming better than the other. What we can say though is that for big values of

l (a relative notion, heavily depending on the target language), LlBCA asks less

queries than LCA. But, the size of the entries of the observation table might

be exponentially bigger (or, they can as well be small enough).

5.3 Remarks and Further Research

This chapter was dedicated to the question “how can correction queries help in

the identification of DFAs?”. The reader might have noticed that, among the

three types of CQs previously discussed, we left out from our study the edit

distance based type of queries. The reason we did so is that, although they

seem to be the most adequate for learning natural languages, for the case of

DFAs they do not help too much, and we are going to detail the whys and

wherefores in the sequel. Of course they can be used, to the same extent as

MQs, to determine whether or not a string belongs to the target language, but

the extra information provided by the teacher does not help otherwise: note that

learning DFAs basically means learning a finite number of equivalence classes.

And, whereas in the case of PCQs and LBCQs, the possible corrections form a

114

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

finite set, the set of all possible edit distance correcting strings might be infinite.

Moreover, in many cases, two strings belonging to the same equivalence class

have different corrections as in the following example.

Example 14. Take Σ = {a} and L = (aa)∗. For any string w = a2k+1,

EdcL(w) is either a2k or a2k+2, which means that any string in L can be a pos-

sible correction. Furthermore, the distance between EdcL(a3) and EdcL(a205)

is at least 200 although a3 and a205 are equivalent with respect to L.

Therefore, the only helpful information we get from an EDCQ oracle when

the target is a DFA is whether or not the given string is in the language, and

for this purpose an MQ oracle suffices.

On the other hand, LBCQs are more useful than MQs only if our unique goal

is to reduce the number of interactions between the teacher and the learner, and

we are not worried about space or time limitations. We have seen though that

the teacher’s burden might be quite high: recall that if the class to be learned

is S̄ = (L̄w)w∈Σ∗ with L̄w = Σ∗\{w}, then any queried string would receive

as answer a set with at least |Σ| + |Σ|2 + . . . + |Σ|l elements. Moreover, unless

we are lucky to “guess” a prefix of w, we would get a lot of useless answers:

Cl
L̄w

(v) = Σ≤l for any v 6∈ Pref ({w}).

So, among the three types of correction queries proposed, the only ones that

make a difference and can be successfully used for DFA identification, together

with EQs, are the PCQs. With very few exceptions (which are rather extreme

cases, like the one presented in Figure 5.4), PCQs outperforms his “rivals”.

And even in those extreme cases mentioned earlier, the difference between the

number of MQs and PCQs is negligible.

There are various related research topics that deserve further investigation.

For example, instead of restricting the concept to be learned to the class of

DFAs, one may approach a broader perspective and study the conditions that

have to be met by an arbitrary language class in order to be learnable with

a polynomial number of CQs and EQs. This has already been done for the

combination of MQs and EQs5. Or, one could follow Angluin [Ang04] and

establish bounds for the number of CQs, or CQs and (proper) EQs needed to

learn a class of concepts. Moreover, it would be interesting to check whether

the classes of languages learnable with a finite number of CQs and a bounded

number of EQs form an infinite hierarchy, as suggested by the result of Theorem

17 in Section 5.1.4.

5Hellerstein et al. show that a target class is polynomial query learnable with MQs and
EQs if and only if it has polynomial certificates (see [HPRW96] for details).

115

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Chapter 6

Learning Regular Tree

Languages with Structural

Correction Queries

and Equivalence Queries In the Chomsky hierarchy, context-free grammars

(CFGs) are the ones that best approximate the structure of natural languages.

But context-free languages (CFLs) seem to be hard to learn (see [dlHO06], for

example). Back in the 90’s, Sakakibara has the idea to use the structure of

the parse trees as supplementary information, showing that CFLs are learnable

with structured membership queries and EQs. Twenty years later, Drewes and

Högberg [DH03, DH07] improve Sakakibara’s algorithm, generalizing L∗ to reg-

ular tree languages (RTLs). The interest in learning regular tree languages is

justified by the nice relationship that exists between these languages and CFLs:

the yield of any regular tree language is a CFL. On the other hand, trees have

proved to be very useful in other fields of natural language processing as well.

In this chapter, we introduce the notion of structural correction queries

(SCQs), thus adapting correction queries to trees, and we show that RTLs are

learnable with SCQs and EQs.

Let us fix ∆ to be an arbitrary ranked alphabet, and T ⊆ T∆ the regular tree

language to be learned. The EQs are defined as usual: given a tree recognizer R,

the teacher will check whether R is equivalent to RT . If the answer is No, then

a tree counterexample t ∈ (T (R)\T) ∪ (T\T (R)) (in the symmetric difference

of T (R) and T) is returned. The answer to a SCQ is a correcting context. The

correcting context of a tree t ∈ T∆ with respect to the tree language T and the

Knuth-Bendix order <kbo on C∆, denoted CorT (t), is the minimal context of

the set FronT (t). In case that no such context exists (i.e., FronT (t) = ∅) we say

117

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

CorT (t) = Θ, where Θ is a symbol which does not belong to ∆ ∪ {ξ}. Hence,

CorT is a function from T∆ to C∆ ∪ {Θ}. Note that CorT (t) = ξ if and only if

t is in T , and for all t1, t2 ∈ T∆, t1 ∼=T t2 implies CorT (t1) = CorT (t2), but the

converse does not hold.

Remark 9. If CorT (t) = c1 · c2, then CorT (t · c1) = c2 for any t ∈ T∆ and

c1, c2 ∈ C∆.

Proof. If CorT (t) = c1 · c2, then c1 · c2 is the smallest context in C∆ such that

t · c1 · c2 ∈ T , and hence c2 ∈ FronT (t · c1). But c2 must be the smallest context

with this property since otherwise we reach a contradiction with the minimality

of c1 · c2 (by Remark 1). We conclude that CorT (t · c1) = c2.

Remark 10. If t is a tree in T∆ such that FronT (t) = ∅, then FronT (t · c) = ∅

for all contexts c in C∆.

Proof. Suppose by contrary that there exists a context c ∈ C∆ such that

FronT (t · c) 6= ∅. Then for any c′ ∈ FronT (t · c), we have t · c · c′ ∈ T , and

hence c · c′ ∈ FronT (t). We reach a contradiction with FronT (t) = ∅.

Remark 11. For any tree t in T∆, the following statements hold:

1. If CorT (t) 6= Θ, then CorT (t · CorT (t)) = ξ.

2. If CorT (t) = Θ, then CorT (t · c) = Θ for all c ∈ C∆, but the existence of

a context c ∈ C∆ with CorT (t · c) = Θ does not imply that CorT (t) = Θ.

Proof. Let t be an arbitrary tree in T∆.

1. If CorT (t) = c 6= Θ, then t · c ∈ T which implies t · c · ξ ∈ T , and hence

ξ ∈ FronT (t · c). Because ξ is the smallest possible context, we obtain

immediately that CorT (t · CorT (t)) = ξ.

2. If CorT (t) = Θ, then FronT (t) = ∅ which implies, using Remark 10,

FronT (t · c) = ∅ for all c ∈ C∆, and hence CorT (t · c) = Θ. Let us

now consider the recognizer R = (Q,∆, δ, F) from Example 6. If we take

t = f(a, g(a, b), b) and c = g(ξ, b), it is clear that CorT (t · c) = Θ, but

CorT (t) = ξ 6= Θ.

6.1 The Algorithm LSCA

Let S be a set of trees in T∆ and E a set of contexts in C∆. Then, S is

called subtree-closed if t ∈ S implies that all subtrees of t are elements of S.

118

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

The set E is called ξ-prefix closed with respect to S if c ∈ E\{ξ} implies

that there exists c′ in E such that c = f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · c′ for

m > 0, f ∈ ∆m and t1, . . . , ti−1, ti+1, . . . , tm ∈ S. Let Composed(S) be the set

{f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) | m > 0, f ∈ ∆m, t1, . . . , ti−1, ti+1, . . . , tm ∈ S}.

For the tree language T , an observation table (S,E,Cor) consists of a non-

empty finite subtree-closed set S of trees, a nonempty finite set E of contexts

which is ξ-prefix closed with respect to S, and the restriction Cor of the mapping

CorT to the set {t · e | t ∈ S ∪ S∆, e ∈ E}, denoted by (S ∪ S∆)E. The

interpretation of Cor is that, for any t ∈ S ∪ S∆ and e ∈ E, Cor(t · e) = c if

and only if c ∈ C∆ is the minimal context such that t · e · c is accepted by the

target tree recognizer RT .

As usual, the observation table can be given as a two-dimensional array with

rows labeled by elements of S ∪S∆, columns labeled by elements of E, and the

entry for row s and column e equal to Cor(s · e). The elements in E help us

distinguish between two different states that have the same minimal context.

For example, if there are two trees s1, s2 ∈ S belonging to different equivalence

classes for which CorT (s1) = CorT (s2), E should, at some point, contain a

context e such that CorT (s1 · e) 6= CorT (s2 · e).

The algorithm LSCA will use the observation table to build a tree recognizer.

Rows labeled by the elements of S are candidates for states of the recognizer

being constructed, and columns labeled by the elements of E correspond to

distinguishing experiments for these states. Rows labeled by elements of S∆

are used to construct the transition function. An intuitive image is presented

in Table 6.1.

Observation table
E

. . . e . . .
...

...
S s . . . Cor(s · e) . . .

...
...

...
...

S∆\S f(s1, s2, . . . , sm) . . . Cor(f(s1, s2, . . . , sm) · e) . . .
...

...

Table 6.1: The structure of an observation table (S,E,Cor)

119

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

If s is an element of S ∪ S∆, Rows denotes the finite function from E to

C∆∪{Θ} defined by Rows(e) = Cor(s ·e) and represents the observed behavior

of the tree s. By RowS we understand {Rows | s ∈ S}.

An observation table (S,E,Cor) is called:

• tree-closed if for all s in S∆ there exists t in S such that Rows = Row t;

• tree-consistent if for any s1 and s2 in S such that Rows1
= Rows2

, we have

Rowf(t1,...,ti−1,s1,ti+1,...,tm) = Rowf(t1,...,ti−1,s2,ti+1,...,tm) for all m > 0, f

in ∆m, t1, . . . , ti−1, ti+1, . . . , tm in S and 1 ≤ i ≤ m;

• tree-complete if for any p in {Cor(s · e) | s ∈ S, e ∈ E}, trees(p) ⊆ S.

In other words a table is tree-closed if the observed behavior of every element

of S∆ can already be seen from the behaviors of elements of S. It is tree-

consistent if, for every two trees in S which have the same observed behavior, the

corresponding trees in S∆ (the ones obtained by applying a depth one context

with subtrees in S) will also have the same behaviors. A table is tree-complete if

all the implicit information which arises from the use of the correcting contexts

is used.

If (S,E,Cor) is tree-closed and tree-consistent, one can define the corre-

sponding tree recognizer R(S,E,Cor) = (Q,∆, δ, F) as follows:

• Q = {Rows | s ∈ S},

• F = {Rows | s ∈ S and Cor(s) = ξ},

• δ0(f) = Rowf for every f ∈ ∆0, and

• δm(Rows1
, . . . ,Rowsm

, f) = Rowf(s1,...,sm) for every m > 0, f ∈ ∆m and

s1, . . . , sm ∈ S.

It is clear that R(S,E,Cor) has at most one sink state qΘ = Rows, where

Cor(s) = Θ. Note that if Cor(s) = Θ, by Remark 11 and the above construction

of the recognizer, Cor(s · e) = Θ for all e ∈ E.

We show that R(S,E,Cor) is a well-defined (deterministic) tree recognizer.

Indeed, if s1, s2 are elements of S such that Rows1
=Rows2

, then Cor(s1) =

Cor(s1 · ξ) and Cor(s2) = Cor(s2 · ξ) are defined and equal to each other since

E contains ξ. Hence, F is well defined. Since the observation table (S,E,Cor)

is tree-consistent, Rowf(t1,...,ti−1,s1,ti+1,...,tm) = Rowf(t1,...,ti−1,s2,ti+1,...,tm) for f

in ∆m, m > 0, t1, . . . , ti−1, ti+1, . . . , tm ∈ S, and because it is tree-closed, this

common value is equal to Rows for some s in S. Thus δ is well defined.

120

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

6.1.1 The Learner

The algorithm can be seen as an interaction between two actors: the learner

who must identify the target language being allowed to use specific kinds of

questions (SCQs and EQs), and the teacher who knows this language and is

assumed to answer correctly to the questions.

Algorithm 13 LSCA: Learning regular tree languages with SCQs and EQs

1: Initialize S as {a} for an arbitrarily fixed a ∈ ∆0, and E as {ξ}
2: UPDATE(Tab)
3: repeat
4: repeat
5: while Tab is not tree-closed do
6: Tab:=CLOSURE(Tab)
7: end while
8: while Tab is not tree-consistent do
9: Tab:=CONSISTENCY(Tab)

10: end while
11: if Tab is not tree-complete then
12: Tab:=COMPLETENESS(Tab)
13: end if
14: until Tab is tree-closed and tree-consistent
15: eq:=EQUIV(Tab)
16: until eq=Yes

17: Return R(S,E,Cor)

In what follows we explain the steps performed by the learner in order to

identify the target language. The learner algorithm uses as its main data struc-

ture the observation table that we described in the previous section. We denote

an arbitrary observation table (S,E,Cor) by Tab.

The learner starts with an initial observation table Tab = (S,E,Cor), where

for an arbitrarily fixed a in ∆0, S = {a}, E = {ξ}, and the value Cor(a · ξ) is

obtained by asking a SCQ. The procedure UPDATE receives as a parameter an

observation table and asks SCQs for all the entries in the table where there is no

information available. The goal of the inner loop is to construct a tree-closed,

tree-consistent and tree-complete observation table.

The procedure CLOSURE is very simple. It just searches for a tree s ∈ S∆

such that Rows /∈ RowS and adds it to S. After that it updates the table

received as a parameter.

Procedure CLOSURE(Tab)
find s in S∆ such that Rows /∈ RowS;

S := S ∪ {s};
UPDATE(Tab);
return Tab;

121

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

The procedure CONSISTENCY searches for trees in S which have the same

row values, and hence seem to represent the same state of the automaton, but

which have a different behavior once we apply a context c in Composed(S). The

procedure adds a new experiment to E in order to distinguish between these

two states.

Procedure CONSISTENCY(Tab)
find s1, s2 ∈ S and e ∈ E such that Rows1

= Rows2
and

Cor(f(t1, . . . , ti−1, s1, ti+1, . . . , tm) · e) 6= Cor(f(t1, . . . , s2, . . . , tm) · e)
for some f ∈ ∆m and t1, . . . , ti−1, ti+1, . . . , tm ∈ S;

E := E ∪ {f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · e};
UPDATE(Tab);
return Tab;

The procedure COMPLETENESS is recursive, but terminating. It is enough

to see that the contexts returned by the teacher have a special feature. Each

subtree of those contexts is a minimal tree in its equivalence class. Because

T is a regular tree language, there are a finite number of equivalence classes,

and hence the table can be found not tree-complete at most n times, where n

represents the number of states of the minimal recognizer RT .

Procedure COMPLETENESS(Tab)
while there exist s ∈ S, e ∈ E such that trees(Cor(s · e)) 6⊆ S do

for all t ∈ trees(Cor(s · e))\S
S := S ∪ {t};

end for

UPDATE(Tab);
COMPLETENESS(Tab);

end while

return Tab;

The procedure EQUIV just asks the teacher if the conjectured recognizer

is equivalent to the target tree recognizer. If the answer is No, it takes the

counterexample returned by the teacher and adds it to S, along with all its

subtrees. After that it updates the observation table.

Procedure EQUIV(Tab)
construct R = R(S,E,Cor);
if R and RT are equivalent then return Yes;

else get a counterexample t;
for all t′ ∈ sub(t)

S := S ∪ {t′};
end for

UPDATE(Tab);
return No;

end if

122

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

We have seen an algorithm that learns RTLs with SCQs and EQS if a teacher

who can answer these two types of queries is available. Answering EQs for RTLs

can be done in polynomial time. In the sequel we show that SCQs can also be

answered in polynomial time.

6.1.2 The Teacher

Actually, the teacher can give the answer in linear time if some precomputation

is done (see Algorithm 14, lines 1-6). We just have to compute for each state

q its minimal context cq (this computation is polynomial in the size of the

target recognizer). The algorithm presented below first determines for each q

the minimal tree tq such that δ(tq) = q, and then computes the minimal context

cq such that δ(t · cq) ∈ F for all t ∈ T∆ with δ(t) = q, where RT = (Q,∆, δ, F)

is the minimal tree recognizer for the target tree language T . When the teacher

receives a tree t as an input, it is enough to compute δ(t) (which can be done

in linear time) and return cδ(t).

Algorithm 14 An algorithm for computing minimal contexts

1: for all q ∈ Q do
2: tq:=MinT(q, ∅);
3: end for
4: for all q ∈ Q do
5: cq:=MinC(q, ∅);
6: end for
7: for any input tree t submitted by the learner do
8: q := δ(t);
9: return cq;

10: end for

In the process of computing the minimal trees we have to consider only the

nonrecursive rules, that is, rules of the form δm(q1, . . . , qm, f) = q such that

q /∈ {q1, . . . , qm}. We show that recursive rules do not help finding the minimal

tree.

Indeed, let us suppose we know that the minimal trees for the states q1,...,

qi−1, qi+1, . . . , qm are t1, . . . , ti−1, ti+1, . . . , tm, respectively, and we want to com-

pute the minimal tree for q using the rule δm(q1, . . . , qi−1, q, qi+1, . . . , qm, f) = q.

It is clear that the tree f(t1, . . . , ti−1, t, ti+1, . . . , tm) is always greater than the

tree t, no matter what are the weights of f, t1, . . . , ti−1, ti+1, . . . , tm, t (this is

true even for the case in which m = 1 and ω(f) = 0).

Also, we have to eliminate the loops from our computation. For example,

if we want to compute the minimal tree for a state q using δm(q1, . . . , qm, f) =

q, then in the recursive process of computing minimal trees for all states qi we

have to eliminate all rules which contain the state q. Otherwise, we will find

123

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

ourselves in a similar situation to the one described above. That is why we need

to introduce the set N of “not allowed” states. We construct the set RN
t by

eliminating from the set of all rules first the recursive ones and after that all

the rules of the form δm(q1, . . . , qm, f) = q, where at least one qi is in N .

Procedure MinT(q, P)

MinTree:=Θ;

for all rules δm(q1, . . . , qm, f) = q in RN
t do

if MinT(qi, P ∪ {q}) 6= Θ for all i ∈ {1, . . . ,m} then

t := f(MinT(q1, P ∪ {q}), . . . , MinT(qm, P ∪ {q}));
if MinTree = Θ then MinTree:=t
else

if t <kbo MinTree then MinTree:=t
end if

end if

end if

end for

return MinTree;

The existence of a minimal tree for each state is guaranteed since the target

recognizer is minimal, and hence all its states are reachable. The symbol Θ is

used to indicate that the minimal tree has not been found yet or that there is

no minimal tree for that state in the given circumstances (we can think of the

set N as a supplementary restriction imposed on the search space).

In order to construct the minimal context for each state we also need to

remove from the search space the rules which would generate cycles. More

precisely, suppose we know that the state q appears in the left-hand side only in

the rule δm(q1, . . . , qi−1, q, qi+1, . . . , qm, f) = q′ and q′ appears in the left-hand

side of two rules and one of them is δl(q
′
1, . . . , q

′
i−1, q

′, q′i+1, . . . , q
′
l, g) = q. It is

clear that we should not use this rule to compute the minimal context, first of

all because we get into a loop, and secondly because the context c will always be

smaller then the context g(tq
′
1 , . . . , f(tq1 , . . . , tqi−1 , ξ, tqi+1 , . . . , tqm−1), . . . , tq

′
l) · c

for any c ∈ C∆. In order to avoid this kind of loops we introduce the set RN
c

which contains only rules of the form δm(q1, . . . , qm, f) = q in which q /∈ N .

It is also obvious that choosing to replace each state q by the minimal tree tq

is going to give us the smallest correcting context because if we take any other

tree t, then tq · c <kbo t · c for any context c ∈ C∆. Choosing to stop the search

once we found a final state is justified by the properties of the Knuth-Bendix

order. Continuing the search on the same path would give us only bigger and

bigger contexts.

The existence of a minimal context for all states except for the sink state

is also guaranteed since the target recognizer is minimal, and hence there is at

most one state which is not co-reachable (the sink state).

124

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Procedure MinC(q,N)

if q ∈ F then MinContext:=ξ;
else

MinContext:=Θ;

for all rules δm(q1, . . . , qi−1, q, qi+1, . . . , qm, f) = q′ in R
N∪{q}
c do

if MinC(q′, N ∪ {q}) 6= Θ then

c := f(tq1 , . . . , tqi−1 , ξ, tqi+1 , . . . , tqm)·MinC(q′, N ∪ {q});
if MinContext= Θ then MinContext:=c
else

if c <kbo MinContext then MinContext:=c;
end if

end if

end if

end for

end if

return MinContext;

The symbol Θ is used here for similar reasons: to indicate that either the

minimal context has not been found yet, or that given the set of rules which

can be applied, there is no minimal context for that state.

6.2 Correctness, Termination, Running Time

In order to prove that the algorithm terminates in finite steps we need further

definitions and results.

Assume that (S,E,Cor) is a tree-closed and tree-consistent observation ta-

ble. We say that the recognizer R = (Q,∆, δ, F) is tree-consistent with the

function Cor with respect to the observation table (S,E,Cor) if for every s in

S ∪ S∆ and e in E, the following statements hold:

1. Cor(s · e) = Θ ⇔ δ(s · e) is a sink state.

2. Cor(s · e) = c ∈ C∆ ⇔ (δ(s · e · c) ∈ F and for all c′ ∈ C∆, δ(s · e · c′) ∈ F

implies c <kbo c′).

The important fact about the recognizer R(S,E,Cor) is the following.

Theorem 20. If (S,E,Cor) is a tree-closed, tree-consistent and tree-complete

observation table, then R(S,E,Cor) is tree-consistent with Cor with respect to

(S,E,Cor). Any other tree recognizer tree-consistent with Cor with respect to

(S,E,Cor) but not isomorphic with R(S,E,Cor) must have more states.

The theorem is proved by a sequence of straightforward lemmas.

Lemma 31. Assume that (S,E,Cor) is a tree-closed, tree-consistent and tree-

complete observation table. For the recognizer R(S,E,Cor) and for every s in

S ∪ S∆, δ(s) = Rows.

125

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Proof. It is clear from the definition of R(S,E,Cor).

Lemma 32. Assume that (S,E,Cor) is a tree-closed, tree-consistent and tree-

complete observation table. For each s in S ∪ S∆ and e in E, there exists s′ in

S such that δ(s · e) = δ(s′) and Cor(s · e) = Cor(s′).

Proof. Let s be an element in S∪S∆. We prove our lemma by induction on the

depth of e. When e is ξ, by Lemma 31 we have δ(s) = Rows. Since (S,E,Cor)

is a tree-closed table, there exists s′ ∈ S such that Rows′ = Rows which implies

Cor(s′) = Cor(s) and δ(s′) = δ(s).

Next, suppose that the result holds for all contexts in E of depth at most

k, and let e be an element of E which has the depth k + 1. Since E is ξ-

prefix closed with respect to S, there exists e′ ∈ E of depth k such that e =

f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · e′ for some m > 0, f ∈ ∆m and t1, . . . , ti−1, ti+1,

. . ., tm in S. Because (S,E,Cor) is tree-closed, we can take s′ in S such that

Rows=Rows′ (hence, Cor(s · e) = Cor(s′ · e) and δ(s) = δ(s′)).

Then, δ(s · e) = δ(s · f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · e′)

= δ(s′ ·f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) ·e′) (replacement lemma)

= δ(f(t1, . . . , ti−1, s
′, ti+1, . . . , tm) · e′).

By the induction hypothesis on e′, there exists s′′ in S such that δ(s′′) =

δ(f(t1, . . . , ti−1, s
′, ti+1, . . . , tm) · e′) and Cor(f(t1, ..., ti−1, s

′, ti+1, ..., tm) · e′) =

Cor(s′′) which implies δ(s · e) = δ(s′′) and Cor(s · e) = Cor(s′′).

Lemma 33. Assume that (S,E,Cor) is a tree-closed, tree-consistent and tree-

complete observation table. Then the recognizer R(S,E,Cor) is tree-consistent

with the function Cor with respect to (S,E,Cor).

Proof. Let s be in S ∪ S∆ and e in E. From Lemma 32 we know that there

exists s′ in S such that δ(s · e) = δ(s′) and Cor(s · e) = Cor(s′). So, it is enough

to prove that for all s′ in S, we have:

1. Cor(s′) = Θ ⇔ δ(s′) is a sink state.

2. Cor(s′) = c ∈ C∆ ⇔ (δ(s′ · c) ∈ F and c is the smallest context with this

property).

For the first statement, it is enough to see that Cor(s′) = Θ if and only if

Rows′ is a sink state, and by Lemma 31, if and only if δ(s′) is a sink state. For

the second one, we will first show that Cor(s′) = c ∈ C∆ implies δ(s′ · c) ∈ F .

If c = ξ, the result is immediate. Suppose c equals c1 · c2 · . . . · cn with ci ∈ C∆

having the node labeled ξ at depth exactly 1 for all i ∈ {1, 2, . . . , n} and n ≥ 1.

From the definition of trees(c) it is clear that trees(ci) ⊆ trees(c) for every

i in {1, 2, . . . , n}. But (S,E,Cor) is tree-complete, so trees(c) ⊆ S, and hence

126

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

trees(ci) ⊆ S. Using the fact that depth(ci) = 1, we obtain that ci belongs

to Composed(S). Then, because the table (S,E,Cor) is tree-closed, we can

inductively find the trees s1, . . . , sn in S, as it is shown in the sequel:

s′ · c1 ∈ S∆ ⇒ ∃ s1 ∈ S: δ(s′ · c1) = δ(s1), Cor(s′ · c1) = Cor(s1)

s1 · c2 ∈ S∆ ⇒ ∃ s2 ∈ S: δ(s1 · c2) = δ(s2), Cor(s1 · c2) = Cor(s2)

. . .

sn−1 · cn ∈ S∆ ⇒ ∃ sn ∈ S: δ(sn−1 · cn) = δ(sn), Cor(sn−1 · cn) = Cor(sn).

Clearly, δ(s′ · c) = δ(sn) (using the replacement lemma). Starting from

Cor(s′) = c and applying several times Remark 9, we obtain Cor(sn) = ξ which

is equivalent to δ(sn) ∈ F , and furthermore with δ(s′ · c) ∈ F .

Next, we show that if we take c = c1 · c2 · . . . · cn to be the smallest context in

Knuth-Bendix order such that δ(s′ · c) ∈ F , then Cor(s′) = c. Note that the set

{c | δ(s′ · c) ∈ F} is not empty because we proved that it contains the context

Cor(s′).

We know that δ(s′ · c) = δ(sn), and δ(sn) ∈ F implies Cor(sn) = ξ. But

Cor(sn) = Cor(sn−1 · cn), so Cor(sn−1 · cn) = ξ, and hence cn ∈ FronT (sn−1).

We prove that this implies Cor(sn−1) = cn. Indeed, assume that there exists

a context c′n <kbo cn such that Cor(sn−1) = c′n. Then, we exhibit a context c′

strictly smaller than c such that δ(s′ · c′) ∈ F which contradicts the choice we

have made for c. We can take c′ to be c1 · c2 · . . . · cn−1 · c
′
n. Therefore, δ(s′ · c′)

= δ(s′ · c1 · . . . · cn−1 · c
′
n) = δ(sn−1 · c

′
n), and because Cor(sn−1) = c′n, it follows

that δ(sn−1 · c
′
n) ∈ F .

But Cor(sn−2 · cn−1) = Cor(sn−1) = cn. Reasoning in the same manner we

obtain Cor(s′) = c1 · c2 · . . . · cn which implies Cor(s′) = c.

We showed that:

1. Cor(s′) = c ∈ C∆ implies δ(s′ · c) ∈ F .

2. If c is the smallest context such that δ(s′ · c) ∈ F , then Cor(s′) = c.

So, if Cor(s′) = c ∈ C∆, then δ(s′ ·c) ∈ F . Now, assume c is not the smallest

context such that δ(s′ · c) ∈ F . Let us take c′ <kbo c to be the smallest context

with this property. Then, Cor(s′) = c′, and hence c = c′. This concludes the

proof of the lemma.

Lemma 34. Assume that (S,E,Cor) is a tree-closed, tree-consistent and tree-

complete observation table and that R(S,E,Cor) = (Q,∆, δ, F) has n states.

If R′ = (Q′,∆, δ′, F ′) is any recognizer tree-consistent with Cor with respect to

(S,E,Cor) that has n or fewer states, then R′ is isomorphic with R(S,E,Cor).

Proof. We define the relation φ ⊆ Q × Q′ as follows: for each s ∈ S, Rows φ

q′ ⇔ δ′(s) = q′.

127

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Let us take s1, s2 ∈ S such that there exists q′ ∈ Q′, Rows1
φ q′ and Rows2

φ

q′ (clearly, δ′(s1) = q′ = δ′(s2)). We will show that this implies Rows1
= Rows2

.

Suppose by contrary that Rows1
6= Rows2

. Then, there exists e ∈ E such that

Rows1
(e) 6= Rows2

(e), and so Cor(s1 · e) 6= Cor(s2 · e). We distinguish two

cases: Cor(s1 ·e) = Θ, Cor(s2 ·e) 6= Θ (the case Cor(s1 ·e) 6= Θ, Cor(s2 ·e) = Θ

is symmetric), and Cor(s1 · e), Cor(s2 · e) 6= Θ.

I) Cor(s1 · e) = Θ, Cor(s2 · e) = c 6= Θ. Because R′ is tree-consistent with

Cor, δ′(s1 · e) is a sink state and δ′(s2 · e · c) ∈ F ′. But δ′(s1) = δ′(s2),

and so δ′(s1 · e) = δ′(s2 · e). Hence, δ′(s2 · e) is a sink state. This means

that δ′(s2 · e · c) is a sink state which contradicts δ′(s2 · e · c) ∈ F ′.

II) Cor(s1 · e) = c1, Cor(s2 · e) = c2, c1 6= c2 and c1, c2 6= Θ. Because R′ is

tree-consistent with Cor, we have δ′(s1 · e · c1) ∈ F ′, δ′(s2 · e · c2) ∈ F ′ and

c1, c2 are the smallest contexts with this property. But δ′(s1) = δ′(s2),

and so δ′(s1 · e · c1) = δ′(s2 · e · c1). Hence, δ′(s2 · e · c1) ∈ F ′ which implies

c2 ≤kbo c1. In a similar way it can be shown that c1 ≤kbo c2. We draw

the conclusion that c1 = c2 which leads to a contradiction.

We have shown that the relation φ is an injection. This implies that |Q| ≤

|φ(Q)|. From our hypothesis we know that |Q′| ≤ |Q|. So, |Q| ≤ |φ(Q)| ≤

|Q′| ≤ |Q| implies |Q| = |φ(Q)| = |Q′| which makes our relation φ a function.

Because the function φ is injective and has the domain and range finite and

of the same cardinality, it follows immediately that φ is surjective, and hence

bijective.

We will show that φ is an isomorphism from R(S,E,Cor) to R′, that is, it

preserves the transition function and φ(F) = F ′:

1. We have q′ ∈ φ(F) ⇔ ∃s ∈ S such that Rows ∈ F and φ(Rows) = q′ ⇔

∃s ∈ S such that Cor(s) = ξ and δ′(s) = q′. Because R′ is tree-consistent

with Cor with respect to (S,E,Cor), this is equivalent to ∃s ∈ S such

that δ′(s) ∈ F ′ and δ′(s) = q′, and hence to q′ ∈ F ′.

2. Let f ∈ ∆0 ∩ S. We have φ(δ0(f))=φ(Rowf)=δ′0(f).

3. Let us take m > 0, f ∈ ∆m and t1, . . . , tm ∈ S. We want to show that

φ(δm(Row t1 , . . . ,Row tm
, f)) = δ′m(φ(Row t1), . . . , φ(Row tm

), f). First of

all, φ(δm(Row t1 , . . . ,Row tm
, f)) = φ(Rowf(t1,...,tm)) = φ(Rows′) = δ′(s′)

for some s′ in S such that Rows′ = Rowf(t1,...,tm). On the other hand,

δ′m(φ(Row t1), . . . , φ(Row tm
), f) = δ′m(δ′(t1), . . . , δ

′(tm), f) which further-

more equals δ′(f(t1, ..., tm)). Since δ′(s′) and δ′(f(t1, . . . , tm)) have iden-

tical row values, namely Rows′ and Rowf(t1,...,tm), they must be the same

128

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

state of R′, and hence we obtain that φ(δm(Row t1 , ...,Row tm
, f)) is equal

to δ′m(φ(Row t1), . . . , φ(Row tm
), f).

This concludes the proof.

Now the proof of Theorem 20 follows since from Lemma 33 we know that

R(S,E,Cor) is tree-consistent with Cor and Lemma 34 shows that any other

recognizer tree-consistent with Cor is either isomorphic to R(S,E,Cor) or con-

tains at least one more state. Thus, R(S,E,Cor) is the unique minimal tree

recognizer tree-consistent with Cor.

If the algorithm terminates, it obviously returns the correct recognizer. It is

also clear that LSCA halts in finitely many steps since:

• whenever the table is found not tree-closed or not tree-consistent the num-

ber of distinct rows in S increases by at least one;

• the procedure COMPLETENESS is performed at most n times;

• for any tree-closed, tree-consistent and tree-complete observation table

(S,E,Cor), if n denotes the number of different values of Rows for s in S,

then any recognizer tree-consistent with Cor must have at least n states

(from the injectivity of function φ defined in Lemma 34);

• LSCA can make at most n − 1 incorrect conjectures since the size of

the conjectured recognizer is initially at least one and may not exceed n

(whenever the teacher answers by a counterexample the number of distinct

values of Rows for s in S increases by at least 1).

Hence, LSCA always eventually finds a tree-closed, tree-consistent and tree-

complete observation table (S,E,Cor) and makes a conjecture R(S,E,Cor).

Since LSCA has to make another conjecture as long as it is running, it must

terminate by making a correct conjecture.

Let us now discuss the time complexity of the algorithm LSCA. The total

running time of LSCA could be bounded by a polynomial in n (n is the number

of states in RT) if the teacher always returned the minimal possible counterex-

ample. However, there is no restriction on the size of the counterexample.

Hence, we have to use both n and the maximum size of the counterexamples

(denoted by m in the sequel) as parameters when describing the complexity of

the algorithm.

We will first show that all the procedures run in time polynomial in the size

of the observation table and that the final observation table is polynomial in n

and m (although it is exponential in the maximum rank of symbols).

One may notice that CLOSURE(Tab) and CONSISTENCY(Tab) cannot

be called more than n − 1 times since each of them increases the number of

129

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

distinct rows from S, and this number is initially one and cannot exceed n.

The same statement also holds for the procedure COMPLETENESS(Tab): it

cannot be called more than n times since the total number of minimal tree

representatives for the states coincides with the number of states. When the

observation table is tree-closed, tree-consistent and tree-complete, the algorithm

runs the procedure EQUIV(Tab), and this can happen no more than n times

since any counterexample adds at least one distinct row to the set S.

To compute CLOSURE(Tab), the algorithm considers each pair in S ×

(S∆\S) and compares the observed behaviors of the two trees (in the worst

case). This task can be done using O(|S| · |S∆\S| · |E|) comparisons.

To compute CONSISTENCY(Tab), the algorithm finds the trees s, s′ in

S such that Rows = Rows′ . This requires, in the worst case, O(|S|2 · |E|)

operations. Then, it tries to find m > 0, f ∈ ∆m and t1, . . . , tm ∈ S such that

Rowf(t1,...,ti−1,s,ti+1,...,tm) 6= Rowf(t1,...,ti−1,s′,ti+1,...,tm). In the worst case the

algorithm would have to perform O(|∆| · |S|h−1 · |E|) comparisons, where h is

the maximum arity of the symbols in ∆.

To compute COMPLETENESS(Tab), for all contexts in {Cor(s · e) | s ∈

S, e ∈ E}, the algorithm checks if their direct subtrees are also in S. This can

be done in O(n(h − 1) · |S|2 · |E|) steps.

To compute EQUIV(Tab), LSCA first constructs R(S,E,Cor) in time poly-

nomial in the size of the observation table. A counterexample requires the

addition of at most m trees of size at most m to S, and this can happen at most

n − 1 times.

For the procedure UPDATE(Tab) it is clear that the number of SCQs asked

coincides with the size of the final observation table. Regarding the dimensions

of S, S∆\S and E, it is easy to see that the number of trees in S cannot

exceed 2n + m(n − 1) (it starts with one tree, the procedures CLOSURE and

CONSISTENCY together can add at most n − 1 trees, EQUIV at most m(n −

1) trees, and COMPLETENESS at most n trees), S∆\S has at most |∆||S|h

elements, and the number of contexts in E cannot be greater than n.

Hence, the total running time of LSCA can be bounded by a polynomial

function of m and n.

6.3 Running Example

In what follows we show how our algorithm works on an example. Let ∆ =

{f/3, g/2, a/0, b/0} be a ranked alphabet and assume the following order among

the symbols of the alphabet: a < b < g < f . The weight function ω : ∆∪{ξ} →

R+
0 is defined by: ω(ξ) = ω(a) = ω(b) = 1, ω(g) = 2 and ω(f) = 3.

130

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Assume that the target language is

T = {g(a, b) · [f(a, ξ, b)]n | n ≥ 0} ∪ {g(b, b) · [f(a, ξ, b)]n | n ≥ 0},

where [f(a, ξ, b)]0 = ξ and [f(a, ξ, b)]n = [f(a, ξ, b)]n−1 ·f(a, ξ, b), n ≥ 1. Clearly,

T is a regular tree language and RT = (Q,∆, δ, F) the minimal tree recognizer

for T , where Q = {qa, qb, qs, qf}, F = {qf}, and the transition function δ is

defined as follows:

• δ0(a) = qa, δ0(b) = qb,

• δ2(qa, qb, g) = δ2(qb, qb, g) = qf , δ2(qa, qa, g) = δ2(qb, qa, g) = qs,

• δ3(qa, qf , qb, f) = qf , and δ3(qx, qy, qz, f) = qs for all remaining cases.

The algorithm starts by constructing the following observation table, where

S = {a} and E = {ξ} (actually S can contain any of the two symbols with arity

0, i.e., a or b).

Tab1
E
ξ

S a g(ξ, b)
b g(ξ, b)

S∆\S g(a, a) Θ
f(a, a, a) Θ

Table 6.2: The observation table for S = {a} and E = {ξ}

The observation table from Table 6.2 is not tree-closed because Rowg(a,a)

is not in RowS , and the algorithm proceeds by adding the tree g(a, a) to S.

Updating the current table, we get the observation table from Table 6.3.

Tab2
E
ξ

S a g(ξ, b)
g(a, a) Θ

b g(ξ, b)
S∆\S g(a, g(a, a)) Θ

...
...

f(g(a, a), g(a, a), g(a, a)) Θ

Table 6.3: The observation table for S = {a, g(a, a)} and E = {ξ}

This table is tree-closed and tree-consistent but not tree-complete (we have

g(ξ, b) ∈ Cor(S ·E), and trees(g(ξ, b)) = {b} 6⊆ S). Hence, LSCA adds the tree

b to S and updates the table (see Table 6.4).

131

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Tab3
E
ξ

a g(ξ, b)
S b g(ξ, b)

g(a, a) Θ
g(a, b) ξ
g(b, a) Θ

S∆\S g(b, b) ξ
...

...
f(g(a, a), g(a, a), g(a, a)) Θ

Table 6.4: The observation table for S = {a, b, g(a, a)} and E = {ξ}

This table is not tree-closed because Rowg(a,b) /∈ RowS nor tree-consistent

because Rowa = Row b and Rowg(a,a) = Θ 6= ξ = Rowg(a,b). The algorithm

continues by adding the tree g(a, b) to S and the context g(a, ξ) to E. We get

the following observation table (Table 6.5).

Tab4 E States
ξ g(a, ξ)

a g(ξ, b) Θ qa

S b g(ξ, b) ξ qb

g(a, a) Θ Θ qs

g(a, b) ξ Θ qf

g(b, a) Θ Θ qs

g(b, b) ξ Θ qf

...
...

...
...

S∆\S f(a, g(a, a), b) Θ Θ qs

f(a, g(a, b), b) ξ Θ qf

...
...

...
...

f(g(a, b), g(a, b), g(a, b)) Θ Θ qs

Table 6.5: The observation table for S = {a, b, g(a, a), g(a, b)}, E = {ξ, g(a, ξ)}

The above observation table is tree-closed, tree-consistent and tree-complete,

and the conjectured recognizer R(S,E,Cor) is isomorphic to RT . Hence, the

teacher’s answer to the EQ will be Yes. The algorithm outputs R(S,E,Cor)

and halts.

6.4 Regular Tree Languages Learnable with

Structural Correction Queries

Recall that for the string case, the more “injective” a language is, the better

our algorithm - that uses CQs instead of MQs - works, to the extent that for

132

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

pure injective languages one does not need EQs anymore. In this section we

show that these results can be extended to trees, and hence that there exists an

infinite class of tree languages learnable with structural correction queries alone.

Moreover, we present a restricted version of LSCA for injective tree languages,

namely LSCAinj.

A tree language T is injective (or T has the injectivity property) if for any

two trees t1, t2 in T∆, t1 ∼=T t2 ⇔ CorT (t1) = CorT (t2). The subclass of regular

tree languages which have the injectivity property is denoted by TreeInj.

Note that one implication always holds: t1 ∼=T t2 ⇒ CorT (t1) = CorT (t2).

It is an easy exercise to see that the tree language from Example 6 belongs to

the class TreeInj and the one from Section 6.3 does not.

Theorem 21. For any tree language T in TreeInj, the algorithm LSCA asks

only one EQ when learning T .

Proof. For the two trivial languages T = ∅ and T = T∆ the proof is immediate.

Hence, let T be a non-trivial tree language in TreeInj and RT = (Q′,∆, δ′, F ′)

the minimal tree recognizer accepting T with |Q′| = n > 1.

We show by induction that, at any step k < n of the algorithm, the table

(S,E,Cor) has the following properties: E = {ξ}, |S| = k, and (S,E,Cor) is

tree-consistent but not tree-closed.

For k = 1, E = {ξ} and S = {a}, where a ∈ ∆0. It is clear that the table

is not tree-closed since this would imply that the target recognizer has only one

state which contradicts the non-triviality of T .

Suppose that the result holds for all steps strictly smaller than k, and we

want to prove that the above three conditions are satisfied at step k (k < n).

Since at step k − 1 the set S had k − 1 trees and the table was not tree-closed,

it means that at step k after running procedure CLOSURE the set S has one

more element (and hence k elements), E continues to be {ξ}, and clearly the

table is tree-consistent. The only fact that needs to be shown is that (S,E,Cor)

is not tree-closed.

Assume by contradiction that (S,E,Cor) is tree-closed. Then, we can con-

struct a recognizer R(S,E,Cor) = (Q,∆, δ, F) with |Q| = k, as in Section 6.1

(note that the observation table does not need to be tree-complete).

We define φ : Q → Q′ by φ(Rows)=δ′(s). We prove that the following

statements hold: φ is well defined and injective, φ(δm(Rows1
, . . . ,Rowsm

, f))

= δ′m(φ(Rows1
), . . . , φ(Rowsm

), f) for m ≥ 0, f ∈ ∆m, s1, . . . , sm ∈ S, and

φ(F) ⊆ F ′.

Clearly, φ is well defined since there are no two trees s1 6= s2 in S such that

Rows1
= Rows2

. To see that φ is injective, let us take two distinct states in Q,

namely Rows1
and Rows2

. Because E = {ξ}, Rows1
6= Rows2

is equivalent to

133

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Cor(s1) 6= Cor(s2), and since T has the injectivity property, this is equivalent

to s1 6∼=T s2 ⇔ δ′(s1) 6= δ′(s2) ⇔ φ(Rows1
) 6= φ(Rows2

). Thus, φ is injective.

We have δm(Rows1
, . . . ,Rowsm

, f) = Rowf(s1,...,sm) = Rows for some s in

S. Hence φ(δm(Rows1
, . . . ,Rowsm

, f)) = φ(Rows) = δ′(s). On the other hand,

we know that Cor(s) = Cor(f(s1, . . . , sm)) and the tree language T is injec-

tive. We get that s ∼=T f(s1, . . . , sm), so δ′(s) = δ′(f(s1, . . . , sm)). Hence,

φ(δm(Rows1
, . . . ,Rowsm

, f)) = δ′(f(s1, . . . , sm)) = δ′m(δ′(s1), . . . , δ
′(sm), f) =

δ′m(φ(Rows1
), . . . , φ(Rowsm

), f).

For any q′ in φ(F), there exists s in S such that Rows ∈ F and φ(Rows) = q′

which is equivalent to Cor(s) = ξ and δ′(s) = q′, and furthermore to q′ ∈ F ′.

Hence, φ(F) ⊆ F ′.

Clearly, R(S,E,Cor) is a complete recognizer (i.e., for all m ≥ 0, δm is a

total function). Now it is enough to see that we have constructed an injective

morphism from R(S,E,Cor) to RT such that |Q| = k < n = |Q′| which leads

us to a contradiction. Hence, (S,E,Cor) is not tree-closed.

We proved that the procedure CLOSURE(Tab) is called at least n−1 times.

Obviously, this means that by that time S already has n different rows, and

since it cannot have more (the total number of states in the target recognizer is

n), in step n the table will be tree-closed and tree-consistent. After running the

procedure COMPLETNESS (which cannot add any new row because the table

already contains n different rows), the output recognizer will be the target one,

and the answer to the EQ will be Yes.

Corollary 12. The class TreeInj is learnable with SCQs only.

Proof. One can modify LSCA to output the automaton R(S,E,Cor) and halt

when the table is tree-closed, tree-consistent and tree-complete. From the previ-

ous theorem it is clear that the algorithm will return the target automaton.

The restricted version of LSCA for the subclass of injective languages is

presented in Algorithm 15.

Algorithm 15 The algorithm LSCAinj for tree injective languages

1: Initialize S as {a} for an arbitrarily fixed a ∈ ∆0, and E as {ξ};
2: UPDATE(Tab);
3: while Tab is not tree-closed do
4: Tab:=CLOSURE(Tab);
5: end while
6: Return R(S,E,Cor);

134

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

6.5 Remarks and Further Research

We have seen that the results obtained for learning DFAs with PCQs and EQs

could be smoothly extended to cover their tree counterpart. In this chapter

we learned that RTLs are polynomial time learnable with SCQs and EQs, and

that EQs are not needed when the class to be identified is a subset of TreeInj

(injective regular tree languages). In order to do that, correcting strings be-

came correcting contexts, and LCA has been adapted to work with trees (a few

modifications were of course required). Obviously, the answer to CQs corre-

sponding to trees are no longer suffixes, but contexts that “embrace” the trees

received as input. Therefore, answering CQs for trees is a bit more intricate,

but polynomial nevertheless.

One may notice as well that because of the enhanced information carried over

by contexts (along with a correcting context we also get some details about the

structure of derivations), it is less common to have tree languages with high

injectivity degrees.

Regarding the complexity of our algorithm, we mentioned at some point

that although LSCA is polynomial in m and n (m being the size of the biggest

counterexample returned by the teacher and n the number of states of the

target recognizer), it is exponential in the rank of the symbols. That is because

in order to define a total transition function for a deterministic bottom-up tree

recognizers R = (Q,∆, δ, F), one needs |Q|m entries for each symbol f of arity

m. This drawback is actually inherited from the previous adaptations of L∗ to

trees. There exists though a generalization of L∗ for tree languages in which

dead states and unnecessary long counterexamples are avoided (saving a lot of

time and space resources) by Drewes and Högberg [DH07]. A similar approach

could be implemented for LSCA as well, but since it is rather straightforward,

we leave it to the reader as an exercise.

Finally, we should not forget the role of the weight function in determining

the correcting context. By changing the weights or the order between symbols

of the alphabet one can affect the answer to SCQs. On the other hand, the

order we have used in our algorithm, i.e., a Knuth-Bendix order, was only for

illustrative purposes: all the results are preserved if trees are compared using

any simplification order.

Further research topics on learning RTLs include, but is not limited to, the

study of their learnability with other types of SCQs and EQs, or the extension

of the results on l-injective languages obtained in the string case to trees.

135

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Bibliography

[AK91] Dana Angluin and Michael Kharitonov. When won’t membership
queries help? (extended abstract). In Proc. 23rd Annual ACM
Symposium on Theory of Computing, pages 444–454, New York,
NY, USA, 1991. ACM Press.

[AK94] Dana Angluin and Mārtiņš Kriķis. Learning with malicious mem-
bership queries and exceptions (extended abstract). In Proc. 7th

Annual Conference on Computational Learning Theory (COLT
’94), pages 57–66, New York, NY, USA, 1994. ACM Press.

[Ang78] Dana Angluin. On the complexity of minimum inference of reg-
ular sets. Information and Control, 39(3):337–350, 1978.

[Ang79] Dana Angluin. Finding patterns common to a set of strings (ex-
tended abstract). In Proc. 11th Annual ACM Symposium on The-
ory of Computing (STOC ’79), pages 130–141, New York, NY,
USA, 1979. ACM Press.

[Ang80a] Dana Angluin. Finding patterns common to a set of strings. J.
Comput. Syst. Sci., 21(1):46–62, 1980.

[Ang80b] Dana Angluin. Inductive inference of formal languages from pos-
itive data. Information and Control, 45(2):117–135, 1980.

[Ang81] Dana Angluin. A note on the number of queries needed to identify
regular languages. Information and Control, 51(1):76–87, 1981.

[Ang82] Dana Angluin. Inference of reversible languages. Journal of the
ACM, 29(3):741–765, 1982.

[Ang87a] Dana Angluin. Learning k-bounded context-free grammars.
Techn. Rep. TR-557, Yale University, New Haven, Conn., 1987.

[Ang87b] Dana Angluin. Learning k-term DNF formulas using queries and
counter-examples. Techn. Rep. TR-559, Yale University, New
Haven, Conn., 1987.

[Ang87c] Dana Angluin. Learning regular sets from queries and counterex-
amples. Information and Computation, 75(2):87–106, 1987.

[Ang88] Dana Angluin. Queries and concept learning. Machine Learning,
2(4):319–342, 1988.

137

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[Ang89] Dana Angluin. Equivalence queries and approximate fingerprints.
In X, editor, Proc. 2nd Annual Workshop on Computational
Learning Theory (COLT ’89), pages 134–145, San Francisco, CA,
USA, 1989. Morgan Kaufmann Publishers Inc.

[Ang90] Dana Angluin. Negative results for equivalence queries. Machine
Learning, 5(2):121–150, 1990.

[Ang01] Dana Angluin. Queries revisited. In Naoki Abe, Roni Khardon,
and Thomas Zeugmann, editors, Proc. 12th International Con-
ference on Algorithmic Learning Theory (ALT’01), volume 2225
of Lecture Notes in Artificial Intelligence, pages 12–31, Berlin,
Heidelberg, 2001. Springer.

[Ang04] Dana Angluin. Queries revisited. Theoretical Computer Science,
313(2):175–194, 2004.

[AS83] Dana Angluin and Carl H. Smith. Inductive inference: Theory
and methods. ACM Computing Surveys, 15(3):237–269, 1983.

[BB06] Leonor Becerra-Bonache. On the Learnability of Mildly Context-
Sensitive Languages using Positive Data and Correction Queries.
PhD thesis, University of Tarragona, 2006.

[BeBiDe05] Leonor Becerra-Bonache, Cristina Bibire, and Adrian Horia
Dediu. Learning DFA from corrections. In Henning Fernau, ed-
itor, TAGI, WSI-2005-14, pages 1–11. Technical Report, Univer-
sity of Tubingen, 2005.

[BBdlHJT07] Leonor Becerra-Bonache, Colin de la Higuera, Jean-Christophe
Janodet, and Frédéric Tantini. Learning balls of strings with
correction queries. In Joost N. Kok, Jacek Koronacki, Ra-
mon López de Mántaras, Stan Matwin, Dunja Mladenic, and
Andrzej Skowron, editors, Proc. 18th European Conference on
Machine Learning (ECML ’07), volume 4701 of Lecture Notes
in Computer Science, pages 18–29, Berlin, Heidelberg, 2007.
Springer-Verlag.

[BeDeT̂ı06] Leonor Becerra-Bonache, Adrian Horia Dediu, and Cristina
T̂ırnăucă. Learning DFA from correction and equivalence queries.
In Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, and
E. Tomita, editors, Proc. 8th International Colloquium on Gram-
matical Inference (ICGI ’06), volume 4201 of Lecture Notes in
Artificial Intelligence, pages 281–292, Berlin, Heidelberg, 2006.
Springer-Verlag.

[BBY04] Leonor Becerra-Bonache and Takashi Yokomori. Learning mild
context-sensitiveness: Toward understanding children’s language
learning. In Georgios Paliouras and Yasubumi Sakakibara, edi-
tors, ICGI, volume 3264 of Lecture Notes in Computer Science,
pages 53–64, Berlin, Heidelberg, 2004. Springer-Verlag.

138

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[BDGW94] José Luis Balcázar, Josep Dı́az, Ricard Gavaldà, and Osamu
Watanabe. An optimal parallel algorithm for learning DFA. In
Proc. 7th Annual Conference on Computational Learning Theory
(COLT ’94), pages 208–217, New York, NY, USA, 1994. ACM
Press.

[BDGW97] José Luis Balcázar, Josep Dı́az, Ricard Gavaldà, and Osamu
Watanabe. Algorithms for learning finite automata from queries:
A unified view. In Ding-Zhu Du and Ker-I Ko, editors, Advances
in Algorithms, Languages, and Complexity - In Honor of Ronald
V. Book, pages 53–72. Kluwer Academic Publishers, 1997.

[BH70] Roger Brown and Camille Hanlon. Derivational complexity and
the order of acquisition in child speech. In J.R. Hayes, editor,
Cognition and the Development of Language, pages 155–175. Wi-
ley, New York,, 1970.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, New York, NY, USA, 1998.

[BR87] Piotr Berman and Robert Roos. Learning one-counter languages
in polynomial time (extended abstract). In Proc. of the 28th

Annual Symposium on Foundations of Computer Science (FOCS
’87), pages 61–67. IEEE, 1987.

[BS89] Avrim Blum and Mona Singh. Learning functions of k terms. In
M. Fulk and John Case, editors, Proc. 3rd Annual Workshop on
Computational Learning Theory (COLT ’90), pages 144–153, San
Mateo, 1989. Morgan Kaufmann Publishers Inc.

[CCM08] Alexander Clark, Francois Coste, and Laurent Miclet, editors.
Proc. 9th International Colloquium on Grammatical Inference
(ICGI ’08), volume 5278 of Lecture Notes in Artificial Intelli-
gence, Berlin, Heidelberg, 2008. Springer-Verlag.

[CDG+07] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding,
Florent Jacquemard, Denis Lugiez, Sophie Tison, and Marc Tom-
masi. Tree automata techniques and applications (TATA). Avail-
able on: http://www.grappa.univ-lille3.fr/tata, 2007. Re-
lease October, 12th 2007.

[Cha] Sam Chapman. Sam’s string metrics. http://www.dcs.shef.

ac.uk/~sam/stringmetrics.html.

[Cho56] Noam Chomsky. Three models for the description of language.
IEEE Transactions on Information Theory, 2(3):113–124, 1956.

[CJR+03] John Case, Sanjay Jain, Rüdiger Reischuk, Frank Stephan, and
Thomas Zeugmann. Learning a subclass of regular patterns in
polynomial time. In Gavaldà et al. [GJT03], pages 234–246.

[CJR+06] John Case, Sanjay Jain, Rüdiger Reischuk, Frank Stephan, and
Thomas Zeugmann. Learning a subclass of regular patterns in
polynomial time. Theoretical Computer Science, 364(1):115–131,
2006.

139

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[CO94] Rafael Carrasco and José Oncina, editors. Proc. 2nd International
Colloquium on Grammatical Inference (ICGI ’94), volume 862 of
Lecture Notes in Artificial Intelligence, Berlin, Heidelberg, 1994.
Springer-Verlag.

[COCR98] Rafael Carrasco, José Oncina, and Jorge Calera-Rubio. Stochas-
tic inference of regular tree languages. In Honavar and Slutski
[HS98], pages 187–198.

[CS83] John Case and Carl Smith. Comparison of identification criteria
for machine inductive inference. Theoretical Computer Science,
2(25):193–220, 1983.

[Dam64] Fred J. Damerau. A technique for computer detection and correc-
tion of spelling errors. Communications of the ACM, 7(3):171–
176, 1964.

[DH03] Frank Drewes and Johanna Högberg. Learning a regular tree
language from a teacher. In Zoltán Ésik and Zoltán Fülöp, editors,
Proc. 7th International Conference on Developments in Language
Theory, volume 2710 of Lecture Notes in Computer Science, pages
279–291, Berlin, Heidelberg, 2003. Springer-Verlag.

[DH07] Frank Drewes and Johanna Högberg. Query learning of regular
tree languages: How to avoid dead states. Theory of Computing
Systems, 40(2):163–185, 2007.

[dlH97] Colin de la Higuera. Characteristic sets for polynomial grammat-
ical inference. Machine Learning, 27(2):125–138, 1997.

[dlHO06] Colin de la Higuera and Jose Oncina. Learning context-free lan-
guages. Artificial Intelligence Review, 2006.

[DPS86] Marty Demetras, Kathryn Post, and Catherine Snow. Feedback
to first language learners: The role of repetitions and clarification
questions. Journal of Child Language, 13:275–292, 1986.

[DS86] Robert P. Daley and Carl H. Smith. On the complexity of induc-
tive inference. Information and Control, 1-3(69):12–40, 1986.

[Fer00] Henning Fernau. Identification of function distinguishable lan-
guages. In Hiroki Arimura, Sanjay Jain, and Arun Sharma, edi-
tors, Proc. 11th International Conference on Algorithmic Learn-
ing Theory (ALT ’00), volume 1968 of Lecture Notes in Artificial
Intelligence, pages 116–130, Berlin, Heidelberg, 2000. Springer.

[FK84] H. Fukuda and Kazuo Kamata. Inference of tree automata from
sample set of trees. International Journal of Computer and In-
formation Sciences, 13(3):177–196, 1984.

[Fu74] King-Sun Fu. Syntactic Methods in Pattern Recognition. Aca-
demic Press, New York, 1974.

140

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[FZ96] Rusins Freivalds and Thomas Zeugmann. Co-learning of recur-
sive languages from positive data. In Proceedings of the Second
International Andrei Ershov Memorial Conference on Perspec-
tives of System Informatics, pages 122–133, London, UK, 1996.
Springer-Verlag.

[GJT03] Ricard Gavaldà, Klaus P. Jantke, and Eiji Takimoto, editors.
Proc. 14th International Conference on Algorithmic Learning
Theory (ALT ’03), volume 2842 of Lecture Notes in Artificial
Intelligence, Berlin, Heidelberg, 2003. Springer-Verlag.

[GK91] Sally A. Goldman and Michael J. Kearns. On the complexity of
teaching. In M. Fulk and John Case, editors, Proc. 4th Annual
Workshop on Computational Learning Theory (COLT ’91), pages
303–314, San Francisco, CA, USA, 1991. Morgan Kaufmann Pub-
lishers Inc.

[Gol67] E. Mark Gold. Language identification in the limit. Information
and Control, 10(5):447–474, 1967.

[Gol72] E. Mark Gold. System identification via state characterization.
Automatica, 8:621–636, 1972.

[Gol78] E. Mark Gold. Complexity of automaton identification from given
data. Information and Control, 37(3):302–320, 1978.

[GS84] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai
Kiadó, Budapest, 1984.

[GS92] William I. Gasarch and Carl H. Smith. Learning via queries.
Journal of ACM, 39(3):649–674, 1992.

[Ham50] Richard W. Hamming. Error detecting and error correcting codes.
Bell System Technical Journal, 26(2):147–160, 1950.

[Hor69] James Jay Horning. A study of grammatical inference. Techn.
Rep. 139, Univ. of Stanford, Dept. of Computer Science, 1969.

[HPRW96] Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan,
and Dawn Wilkins. How many queries are needed to learn? Jour-
nal of the ACM, 43(5):840–862, 1996.

[HPTS84] Kathryn Hirsh-Pasek, Rebecca Treiman, and Maita H. Schnei-
derman. Brown & Hanlon revisited: mothers’ sensitivity to un-
grammatical forms. Journal of Child Language, 11:81–89, 1984.

[HRPW95] Lisa Hellerstein, Vijay Raghavan, Krishnan Pillaipakkamnatt,
and Dawn Wilkins. How many queries are needed to learn? In
Proc. 27th Annual ACM Symposium on Theory of Computing,
pages 190–199, New York, NY, USA, 1995. ACM Press.

[HS98] Vasant Honavar and Giora Slutski, editors. Proc. 4th Interna-
tional Colloquium on Grammatical Inference (ICGI ’98), volume
1433 of Lecture Notes in Artificial Intelligence, Berlin, Heidel-
berg, 1998. Springer-Verlag.

141

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[HST07] Marcus Hutter, Rocco Servedio, and Eiji Takimoto, editors. Proc.
18th International Conference on Algorithmic Learning Theory
(ALT ’07), volume 4754 of Lecture Notes in Computer Science,
Berlin, Heidelberg, 2007. Springer.

[HU69] John E. Hopcroft and Jeffrey D. Ullman. Formal languages and
their relation to automata. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1969.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley,
Reading, Massachusetts, 1979.

[HU90] John E. Hopcroft and Jeffrey D. Ullman. Introduction To Au-
tomata Theory, Languages, And Computation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[Jan91] Klaus P. Jantke. Monotonic and non-monotonic inductive infer-
ence of functions and patterns. In J. Dix, P.H. Schmitt, and
K.P. Jantke, editors, Proc. 1st 1st International Workshop on
Nonmonotonic and Inductive Logic, volume 543, pages 161–177,
Berlin, Heidelberg, 1991. Springer-Verlag.

[JK07] Sanjay Jain and Efim B. Kinber. One-shot learners using negative
counterexamples and nearest positive examples. In Hutter et al.
[HST07], pages 257–271.

[JK08] Sanjay Jain and Efim B. Kinber. Learning languages from pos-
itive data and negative counterexamples. Journal of Computer
and System Sciences, 74(4):431–456, 2008.

[JL95] Klaus P. Jantke and Steffen Lange, editors. Algorithmic Learning
for Knowledge-Based Systems, GOSLER Final Report, volume
961 of Lecture Notes in Computer Science, London, UK, 1995.
Springer.

[JLZ05] Sanjay Jain, Steffen Lange, and Sandra Zilles. Gold-style and
query learning under various constraints on the target class.
In Sanjay Jain, Hans-Ulrich Simon, and Etsuji Tomita, edi-
tors, Proc. 16th International Conference on Algorithmic Learn-
ing Theory (ALT ’05), volume 3734 of Lecture Notes in Computer
Science, pages 226–240, Berlin, Heidelberg, 2005. Springer.

[JLZ07] Sanjay Jain, Steffen Lange, and Sandra Zilles. A general com-
parison of language learning from examples and from queries.
Theoretical Computer Science, 387(1):51–66, 2007.

[JP98] Hugues Juillé and Jordan B. Pollack. A stochastic search ap-
proach to grammar induction. In Honavar and Slutski [HS98],
pages 126–137.

[Kin08] Efim Kinber. On learning regular expressions and patterns via
membership and correction queries. In Clark et al. [CCM08],
pages 125–138.

142

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[KP89] Michael Kearns and Leonard Pitt. A polynomial-time algorithm
for learning k-variable pattern languages from examples. In Proc.
2nd annual workshop on Computational learning theory (COLT
’89), pages 57–71, San Francisco, CA, USA, 1989. Morgan Kauf-
mann Publishers Inc.

[KV94] Michael J. Kearns and Umesh V. Vazirani. An Introduction to
Computational Learning Theory. MIT Press, Cambridge, MA,
1994.

[KY97] Satoshi Kobayashi and Takashi Yokomori. Learning approxi-
mately regular languages with reversible languages. Theoretical
Computer Science, 174(1–2):251–257, 1997.

[Lan90] Steffen Lange. A note on polynominal-time inference of k-variable
pattern languages. In Jürgen Dix, Klaus P. Jantke, and Peter H.
Schmitt, editors, Nonmonotonic and Inductive Logic, volume 543
of Lecture Notes in Computer Science, pages 178–183. Springer,
1990.

[Lan92] Kevin J. Lang. Random DFA’s can be approximately learned
from sparse uniform examples. In Proc. 5th Annual Conference
on Computational Learning Theory (COLT ’92), pages 45–52,
New York, NY, USA, 1992. ACM Press.

[Lan94] Steffen Lange. The representation of recursive languages and its
impact on the efficiency of learning. In Proc. 7th Annual Con-
ference on Computational Learning Theory (COLT ’94), pages
256–267, New York, NY, USA, 1994. ACM Press.

[Lan00] Steffen Lange. Algorithmic learning of recursive languages. Men-
sch und Buch Verlag, 2000.

[Lee96] Lillian Lee. Learning of context-free languages: a survey of the
literature. Techn. Rep. TR-12-96, Harvard University, 1996.

[Lev66] Vladimir I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. Soviet Physics Doklady, 10:707–
710, 1966.

[LG02] Steffen Lange and Gunter Grieser. On the power of incremental
learning. Theoretical Computer Science, 288(2):277–307, 2002.

[LJ78] Leon S. Levy and Aravind K. Joshi. Skeletal structural descrip-
tions. Information and Control, 39:192–211, 1978.

[LPP98] Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Re-
sults of the abbadingo one dfa learning competition and a new
evidence-driven state merging algorithm. In Honavar and Slutski
[HS98], pages 1–12.

[LW90] Steffen Lange and Rolf Wiehagen. Polynomial-time inference of
pattern languages. In ALT, pages 289–301, 1990.

143

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[LW91] Steffen Lange and Rolf Wiehagen. Polynomial-time inference of
arbitrary pattern languages. New Generation Comput., 8(4):361–
370, 1991.

[LZ92] Steffen Lange and Thomas Zeugmann. Types of monotonic lan-
guage learning and their characterization. In Proc. 5th An-
nual Conference on Computational Learning Theory (COLT ’92),
pages 377–390, New York, NY, USA, 1992. ACM Press.

[LZ93a] Steffen Lange and Thomas Zeugmann. Language learning in de-
pendence on the space of hypotheses. In Proc. 6th Annual Con-
ference on Computational Learning Theory (COLT ’93), pages
127–136, New York, NY, USA, 1993. ACM Press.

[LZ93b] Steffen Lange and Thomas Zeugmann. Language learning with
a bounded number of mind changes. In Patrice Enjalbert, Alain
Finkel, and Klaus W. Wagner, editors, Proc. 10th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS ’93),
volume 665 of Lecture Notes in Computer Science, pages 682–691,
Berlin, Heidelberg, 1993. Springer-Verlag.

[LZ93c] Steffen Lange and Thomas Zeugmann. Learning recursive lan-
guages with bounded mind changes. Int. J. Found. Comput. Sci.,
4(2):157–178, 1993.

[LZ03] Steffen Lange and Sandra Zilles. On the learnability of erasing
pattern languages in the query model. In Gavaldà et al. [GJT03],
pages 129–143.

[LZ04a] Steffen Lange and Sandra Zilles. Comparison of query learning
and gold-style learning in dependence of the hypothesis space. In
Shai Ben-David, John Case, and Akira Maruoka, editors, Proc.
15th International Conference on Algorithmic Learning Theory
(ALT ’04), volume 3244 of Lecture Notes in Computer Science,
pages 99–113, Berlin, Heidelberg, 2004. Springer-Verlag.

[LZ04b] Steffen Lange and Sandra Zilles. Formal language identification:
query learning vs. Gold-style learning. Information Processing
Letters, 91(6):285–292, 2004.

[LZ04c] Steffen Lange and Sandra Zilles. Replacing limit learners with
equally powerful one-shot query learners. In John Shawe-Taylor
and Yoram Singer, editors, Proc. 17th Annual Conference on
Computational Learning Theory (COLT ’04), volume 3120 of Lec-
ture Notes in Computer Science, pages 155–169, Berlin, Heidel-
berg, 2004. Springer-Verlag.

[LZ05] Steffen Lange and Sandra Zilles. Relations between gold-style
learning and query learning. Information and Computation,
203(2):211–237, 2005.

[Mar88] Assaf Marron. Learning pattern languages from a single initial
example and from queries. In COLT, pages 345–358, 1988.

144

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[Mas] Timothy Mason. The evidence from acquisition in extreme con-
ditions. Available on: www.timothyjpmason.com/WebPages/

LangTeach/Licence/CM/OldLectures/L3_ExtremeCircs.htm.

[Mit99] Victor Mitrana. Patterns and languages: An overview. Gram-
mars, 2(2):149–173, 1999.

[MK87] Assaf Marron and Ker-I Ko. Identification of pattern lan-
guages from examples and queries. Information and Computa-
tion, 74(2):91–112, 1987.

[MS97] Satoshi Matsumoto and Ayumi Shinohara. Learning pattern lan-
guages using queries. In EuroCOLT ’97: Proceedings of the Third
European Conference on Computational Learning Theory, pages
185–197, London, UK, 1997. Springer-Verlag.

[MiT̂ı08] Victor Mitrana and Cristina T̂ırnăucă. New bounds for the query
complexity of an algorithm that learns DFAs with correction and
equivalence queries. Submitted to Information Processing Let-
ters, 2008.

[Muk92a] Yasuhito Mukouchi. Characterization of finite identification. In
Klaus P. Jantke, editor, Proc. 3rd International Workshop on
Analogical and Inductive Inference (AII ’92), volume 642 of Lec-
ture Notes in Artificial Intelligence, pages 260–267, London, UK,
1992. Springer.

[Muk92b] Yasuhito Mukouchi. Inductive inference with bounded mind
changes. In Klaus P. Jantke S. Doshita, K. Furukawa and
T. Nishida, editors, Proc. 3rd Workshop on Algorithmic Learn-
ing Theory (ALT ’92), volume 743 of Lecture Notes in Artificial
Intelligence, pages 125–134, Berlin, Heidelberg, 1992. Springer.

[MVMP04] Carlos Mart́ın-Vide, Victor Mitrana, and George Păun, editors.
Formal Languages and Applications. Studies in Fuzzyness and
Soft Computing 148. Springer-Verlag, Berlin, Heidelberg, 2004.

[Myh57] John Myhill. Finite automata and the representation of events.
Technical Report TR-57-624, WADD, Wright Patterson AFB,
Ohio, 1957.

[Ner58] Anil Nerode. Linear automaton transformations. In Proceedings
of the American Mathematical Society, volume 9, pages 541–544,
1958.

[NL05] Jochen Nessel and Steffen Lange. Learning erasing pattern lan-
guages with queries. Theoretical Computer Science, 348(1):41–57,
2005.

[OG91] José Oncina and Pedro Garćıa. Inferring regular languages in
polynomial update time. In Pérez de la Blanca, Sanfeliú, and
Vidal, editors, Pattern Recognition and Image Analysis, pages
49–61. World Scientific Publishing, 1991.

145

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[OG92] José Oncina and Pedro Garćıa. Identifying regular languages
in polynomial time. In H. Bunke, editor, Advances in Struc-
tural and Syntactic Pattern Recognition, volume 5, pages 99–108.
World Scientific Publishing, 1992. volume 5 of Series in Machine
Perception and Artificial Intelligence.

[OGV93] José Oncina, Pedro Garćıa, and E. Vidal. Learning subse-
quential transducers for pattern recognition interpretation tasks.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 15(5):448–458, 1993.

[Okh05] Alexander Okhotin. On language equations with symmetric dif-
ference. Techn. Rep. 734, TUCS, Turku University, 2005.

[PH97] Rajesh Parekh and Vasant G. Honavar. Learning DFA from sim-
ple examples. In Ming Li and Akira Maruoka, editors, Proc. 8th

International Conference on Algorithmic Learning Theory (ALT
’97), volume 1316 of Lecture Notes in Artificial Intelligence, pages
116–131, London, UK, 1997. Springer-Verlag.

[Pit89] Leonard Pitt. Inductive inference, DFAs, and computational com-
plexity. In AII ’89: Proceedings of the International Workshop
on Analogical and Inductive Inference, pages 18–44, London, UK,
1989. Springer-Verlag.

[PV88] Leonard Pitt and L.G. Valiant. Computational limitations on
learning from examples. Journal of the ACM, 35:965–984, 1988.

[Ron95] Dana Ron. Automata Learning and its Applications. PhD thesis,
Hebrew University, 1995.

[RP99] Douglas L.T. Rohde and David C. Plaut. Language acquisition
in the absence of explicit negative evidence: How important is
starting small. Cognition, 72:67–109, 1999.

[RS87] Ronald L. Rivest and Robert E. Schapire. Diversity-based infer-
ence of finite automata (extended abstract). In Proc. of the 28th

Annual Symposium on Foundations of Computer Science (FOCS
’87), pages 78–87. IEEE, 1987.

[RS93] Ronald L. Rivest and Robert E. Schapire. Inference of finite au-
tomata using homing sequences. Information and Computation,
103:299–347, 1993.

[SA95] Takeshi Shinohara and Setsuo Arikawa. Pattern inference. In
Jantke and Lange [JL95], pages 259–291.

[Sak87a] Yasubumi Sakakibara. Inductive reference of logic programs
based on algebraic semantics. Technical Report ICOT, TR-
260 79, Fujitsu International Institute for Advanced Study of
Social Information Science, 1987.

146

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[Sak87b] Yasubumi Sakakibara. Inferring parsers of context-free languages
from structural examples. Technical Report ICOT, TR-330 81,
Fujitsu International Institute for Advanced Study of Social In-
formation Science, 1987.

[Sak90] Yasubumi Sakakibara. Learning context-free grammars from
structural data in polynomial time. Theoretical Computer Sci-
ence, 76:223–242, 1990.

[Sak92] Yasubumi Sakakibara. Efficient learning of context-free grammars
from positive structural examples. Information and Computation,
97(1):23–60, 1992.

[Sak95] Hiroshi Sakamoto. Language learning from membership queries
and characteristic examples. In Klaus P Jantke, Takeshi Shi-
nohara, and Thomas Zeugmann, editors, Proc. 6th International
Conference on Algorithmic Learning Theory (ALT ’95), volume
997 of Lecture Notes in Artificial Intelligence, pages 55–65, Berlin,
Heidelberg, 1995. Springer.

[Sal94] Arto Salomaa. Patterns. Bulletin of the EATCS, 54:194–206,
1994.

[Sal95] Arto Salomaa. Return to patterns. Bulletin of the EATCS,
55:144–157, 1995.

[SG94] José M. Sempere and Pedro Garćıa. A characterization of even
linear languages and its application to the learning problem. In
Carrasco and Oncina [CO94], pages 38–44.

[Sha83] Ehud Y. Shapiro. Algorithmic Program DeBugging. MIT Press,
Cambridge, MA, USA, 1983.

[Shi83] Takeshi Shinohara. Polynomial time inference of extended reg-
ular pattern languages. In Proceedings of RIMS Symposium on
Software Science and Engineering, pages 115–127, London, UK,
1983. Springer-Verlag.

[T̂ır08b] Cristina T̂ırnăucă. Learning reversible languages from correction
queries only. Available on: http://grlmc-dfilrom.urv.cat/

grlmc/PersonalPages/cristina/publications.htm, 2008.

[T̂ır08a] Cristina T̂ırnăucă. A note on the relationship between different
types of correction queries. In Clark et al. [CCM08], pages 213–
223.

[Tak88] Yuji Takada. Grammatical interface for even linear languages
based on control sets. Information Processing Letters, 28(4):193–
199, 1988.

[Tak94] Yuji Takada. A hierarchy of language families learnable by regular
language learners. In Carrasco and Oncina [CO94], pages 16–24.

147

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[Tak95] Yuji Takada. A hierarchy of language families learnable by regular
language learning. Information and Computation, 123(1):138–
145, 1995.

[TB73] Boris A. Trakhtenbrot and Janis M. Barzdin. Finite Automata:
behavior and synthesis. North-Holland Publishing company, Am-
sterdam, 1973.

[T̂ıKn07a] Cristina T̂ırnăucă and Timo Knuutila. Polynomial time algo-
rithms for learning k-reversible languages and pattern languages
with correction queries. In Hutter et al. [HST07], pages 264–276.

[T̂ıKn07b] Cristina T̂ırnăucă and Timo Knuutila. Efficient language learning
with correction queries. Technical Report 822, Turku Center for
Computer Science, May 2007.

[T̂ıKo07] Cristina T̂ırnăucă and Satoshi Kobayashi. A characterization of
the language classes learnable with correction queries. In J. Cai,
S. Barry Cooper, and H. Zhu, editors, Proc. 4rd International
Conference on Theory and Applications of Models of Computa-
tion (TAMC ’07), volume 4484 of Lecture Notes in Computer Sci-
ence, pages 398–407, Berlin, Heidelberg, 2007. Springer-Verlag.

[T̂ıKo09] Cristina T̂ırnăucă and Satoshi Kobayashi. Necessary and suffi-
cient conditions for learning with correction queries. To appear
in Theoretical Computer Science, 2009.

[T̂ıT̂ı07] Cătălin Ionuţ T̂ırnăucă and Cristina T̂ırnăucă. Learning regu-
lar tree languages from correction and equivalence queries. Jour-
nal of Automata, Languages and Combinatorics, Special Issue for
WATA 2006, 12(4), 2007.

[TTWT04] Yasuhiro Tajima, Etsuji Tomita, Mitsuo Wakatsuki, and Mat-
suaki Terada. Polynomial time learning of simple deterministic
languages via queries and a representative sample. Theoretical
Computer Sciece, 329(1-3):203–221, 2004.

[Tze89] Wen-Guey Tzeng. The equivalence and learning of probabilistic
automata (extended abstract). In Proc. of the 30th Annual Sym-
posium on Foundations of Computer Science (FOCS ’89), pages
268–273. IEEE, 1989.

[Val84] Leslie G. Valiant. A theory of the learnable. Communications of
the ACM, 27(11):1134–1142, 1984.

[Wat90] Osamu Watanabe. A formal study of learning via queries. In
Mike Paterson, editor, Proc. 17th International Colloquium on
Automata, Languages and Programming (ICALP ’90), volume
443 of Lecture Notes in Computer Science, pages 139–152, Berlin,
Heidelberg, 1990. Springer-Verlag.

[Wat94] Osamu Watanabe. A framework for polynomial time query learn-
ability. Mathematical Systems Theory, 27:211–229, 1994.

148

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string
correction problem. Journal of ACM, 21(1):168–173, 1974.

[WG94] Osamu Watanabe and Ricard Gavaldà. Structural analysis of
polynomial-time query learnability. Mathematical Systems The-
ory, 27(3):231–256, 1994.

[Yok94] Takashi Yokomori. Learning non-deterministic finite automata
from queries and counterexamples. Machine Intelligence, 13:169–
189, 1994.

[Yok96] Takashi Yokomori. Learning two-tape automata from queries and
counterexamples. Mathematical Systems Theory, 29(3):259–270,
1996.

[Zeu06] Thomas Zeugmann. Inductive inference and language learning.
In J. Cai, S. Barry Cooper, and A. Li, editors, Proc. 3rd In-
ternational Conference on Theory and Applications of Models of
Computation (TAMC ’06), volume 3959 of Lecture Notes in Com-
puter Science, pages 464–473, Berlin, Heidelberg, 2006. Springer-
Verlag.

[ZL95] Thomas Zeugmann and Steffen Lange. A guided tour across the
boundaries of learning recursive languages. In Jantke and Lange
[JL95], pages 190–258.

[ZLK95] Thomas Zeugmann, Steffen Lange, and Shyam Kapur. Charac-
terizations of monotonic and dual monotonic language learning.
Information and Computation, 120(2):155–173, 1995.

149

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Index

(S,E,C), 82–88, 94, 95, 98
(S,E,Cl), 104–107, 110, 111
(S,E,Cor), 119–121, 125–129, 133, 134
(S,Σ≤k, C), 65–68
<kbo, 22, 23, 117, 124, 125, 127, 128
Br(w), 14, 75, 76
C(·), 82–87, 89, 90, 103
CL(·), 37–41, 49, 51–54, 62–68, 71, 82, 92–95, 97
Cl

L(·), 54, 55, 73, 104–108, 110, 111, 113
Composed(·), 119, 122, 127
L≤n, 39
Lw, 15, 71, 72, 74, 98, 100, 102, 103, 109
AL, 13, 30, 65, 67, 68, 90, 91, 94, 95, 110, 112,

113
Alg , 26, 27, 37, 39, 40, 42, 55, 57, 58, 73, 75
A(S,E,C), 83–89, 91, 94, 95, 97, 98, 100
A(S,E,Cl), 104–107, 111, 112
A(S,Σ≤k, C), 66–70
C1 = (L1

i)i≥1, 43, 44
C2 = (L2

i)i≥1, 45, 46
C3 = (L3

i)i≥1, 47, 48
C4 = (L4

i)i≥1, 49
C5 = (L5

i)i≥1, 49, 50
ConsvInf , 27
ConsvTxt , 27, 28, 46–50, 58, 59
Cor(·), 119–121, 125–131, 134
CorT (·), 117–119, 133
∆, 17–23, 117–121, 123, 125–127, 130–133, 135
EdcL(·), 57, 58, 115
EditCorQ , 57–59, 75, 78, 81
EquQ , 26, 28, 71, 74
FinInf , 27, 28, 44, 46
FinTxt , 27, 28
FronT (·), 18, 20, 117, 118, 127
InjDeg(·), 92–94, 97
Inj, 97, 98, 112–114

LBCorQ , 55, 59, 74, 81
LCA, 82–84, 88, 89, 92–98, 102–105, 107–110,

112, 114, 135
LCAinj, 98, 112
LSCA, 118, 119, 121, 129–131, 133–135
LSCAinj, 133, 134
LimInf , 27, 28
LimTxt , 27, 28, 48, 49, 71, 81
L∗, i, 2, 4, 8, 10, 29, 30, 33, 65, 81–83, 91–94, 96–

102, 107, 109, 110, 112, 114, 117, 135
MemQ , 26, 28, 44–46, 55–59, 72, 74, 75, 78, 81
MemQA, 37, 59
MqL(·), 57, 58
P, 15, 16, 62, 63, 71, 72, 77, 78
PCorQ , 37–40, 42, 44–49, 51, 54, 58, 59, 71, 72,

74, 81
PCorQA, 37, 42, 44–46, 48, 59
PolEditCorQ , 74, 75, 77, 78
PolEquQ , 74
PolLBCorQ , 73, 74, 77
PolMemQ , 71, 72, 74, 77
PolPCorQ , 71, 72, 74, 77, 78, 97, 98
Pol lBCorQ , 73, 74
Pref (·), 12, 37, 38, 40–43, 45, 47, 52, 115
RE , 16, 43
Rec, 16, 43
Reg , 16, 25
RowS(·), 120, 121, 131, 132
Rows(·), 120, 121, 125–130, 133, 134
S, 15, 72, 77, 98
Sk, 15
Σ, 11
Σ≥k, 12
Σk, 12
Σ≤k, 12, 14, 51, 53, 65–69
Sub, 18, 21

151

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

Sub(T∆(X)), 18
TailL(·), 12
Θ, 37
Valc(·), 43
L̄w, 72, 112, 115
S̄, 72, 112, 115
S̄l, 112
∼=T , 19
ǫ, 76, 77
≡L, 13
l-bounded correction, 54, 104

query, 4, 54
l-injectivity

degree, 110
property, 110

lBCQ, 54, 55, 73, 74, 104, 105, 110, 112
lBCorQ , 55
lInjDeg(·), 110
lInj , 110–114
LlBCA, 104, 105, 107, 108, 110–112, 114
LlBCAinj, 112
k -Rev , 14, 51, 54, 65, 66, 72, 77, 78
C∆(X), 18
T∆(X), 17
B, 14, 16
L(·), 13
O(·), 75
R(S,E,Cor), 120, 121
RT , 20, 119
T (·), 19
| · |, 11
≺, 12
≺l, 12
row(·)(·), 82
row l(·)(·), 104
rowk(·)(·), 65
TreeInj, 133
ω, 21
ξ, 18
depth(·), 18
hg(·), 17
sub(·), 17
trees(·), 18, 120

algorithm, i, 1, 4, 6, 7, 10, 23, 35, 38–42, 44, 48,

50, 52, 54, 55, 61–78, 81–84, 88–95, 97–
99, 103–105, 107–112, 117–119, 121, 123,
125, 129–135

polynomial time, 5, 6, 9, 10, 29, 62, 65, 68,
71, 73, 77, 82, 84, 98

alphabet, 10, 11, 13–15, 17, 25, 30, 36, 42, 43, 45,
46, 48, 51, 62, 63, 65, 71, 72, 75, 76, 82,
89, 92, 97–99, 102, 108, 110, 113, 130,
135

leaf, 17, 19, 21, 23
ranked, 17, 19, 21, 117, 130

ball of strings, 14, 75, 78
q-good, 75, 78
center, 14, 75, 76
radius, 14, 75, 76

bijective, 11, 13, 68, 87, 128

cardinality, 11, 29, 39, 53, 68, 87, 94, 95, 128
CFG, 7, 8, 117
CFL, 8, 15, 17, 29, 117
Chomsky hierarchy, 15, 117
coarser, 11, 54
complexity, 29, 36, 44, 55, 57, 58, 61, 92, 129, 135

query, 29, 63, 69, 88, 92, 94
time, 29, 54, 68, 70, 71, 74, 77, 110, 129

conservative learning, 8, 9, 27
context, 10, 18, 19, 22, 117–119, 122, 124, 126–

128, 130, 132, 135
depth, 120, 126
minimal, 10, 117, 119, 123–125

context-free grammar, 6, 7, 15–17, 29, 117
context-sensitive grammar, 15, 16
correcting

context, 117, 120, 124, 135
string, 54, 56, 76, 77, 92–94, 96, 97, 135

edit distance, 115
prefix, 36, 54, 82, 113

correction, iii, 10, 36–38, 41, 54–56, 62, 64, 74, 78,
81, 90, 92, 93, 95, 96, 113–115

edit distance, 4, 57
correction query, i, 1, 3, 35, 36, 61, 77, 78, 81,

114, 115, 117
edit distance, 4, 55, 57, 74, 82
length bounded, 4, 54, 55, 73, 104
prefix, 4, 36, 44, 46, 51, 62, 70, 82

152

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

structural, 8, 10, 117, 132, 133
counterexample, 10, 25, 26, 30–33, 83–85, 88, 90,

91, 93, 94, 96, 97, 99, 100, 104, 105, 107,
117, 122, 129, 130, 135

CQ, 3–10, 36, 44, 58, 59, 61, 62, 75, 77, 78, 82,
132, 135

decision problem, 16
emptiness, 16
equivalence, 16
finiteness, 16
inclusion, 16
membership, 16, 24

DFA, i, 2, 4, 6–8, 10, 13, 25, 26, 29, 30, 33, 54,
65, 67, 70, 81, 82, 84, 85, 88, 92, 95, 105,
108, 110, 113–115, 135

A = (Q,Σ, δ, q0, F), 13
k-reversible, 14, 26
0-reversible, 14
automata isomorphism, 13, 87, 107
automata morphism, 13
co-reachable state, 13
consistent with a function, 84
reachable state, 13
sink state, 13
size, 13
transition function, 13

DFA learning, 6–8, 10, 81, 82, 84, 105, 114, 135
distance, 4, 12, 56, 57, 76, 115

edit distance, 4, 12, 14, 56, 57, 75, 114
Levenshtein distance, 12

EDCQ, 4, 9, 10, 57, 58, 74–78, 115
empty string, 11
EQ, 2, 4–8, 10, 30, 35, 36, 59, 71, 75, 81, 82, 84,

88, 91, 93, 94, 96–98, 100, 102–105, 109,
110, 112, 115, 117, 121

equivalence class, 13, 36, 52, 53, 65, 68, 113–115,
119, 122

equivalence query, i, 2, 7, 25, 26, 35, 65, 81, 82,
104, 117

extended, 25
proper, 25

equivalence relation
on strings, 13
on trees, 19

exact identification, 23, 24

finite automaton
deterministic, i, 2, 6, 13, 81, 82, 104
nondeterministic, 7, 13

finite identification model, 27
frontier derivative language, 18, 20

Gold-style learning, i, 5, 25, 26, 36, 46, 58, 59, 61,
77

grammatical inference, i, 1, 3, 10, 35, 55, 81

hypotheses space, 5, 6, 24–26, 29, 61, 62
absolutely learnable, 25
class comprising, 25
class preserving, 24, 25
exact learning, 24

hypothesis, 2, 23, 26, 27, 35, 41, 46, 47, 93, 104,
128

IIM, 27, 48, 49
conservative, 27, 46, 47, 50

indexable class, 9, 24, 26, 27, 36–40, 42, 45–49,
55, 57, 71–73, 75

indexed family, 5, 8, 24, 26, 49, 50, 73
indexing, 24, 25, 95
inductive inference machine, 27
inductive inference with bounded mind changes,

24
informant, 5, 27
injective

function, 11, 67, 87, 111, 128
language, 10, 92, 97, 98, 112–114, 132, 133
morphism, 67, 68, 111, 133, 134
relation, 87
tree language, 133–135

injectivity
degree, 92, 94–97, 110
property, 92, 97

Knuth-Bendix order, 10, 21, 22, 117, 124, 127,
135

language, 11
l-injective, 110–112, 114, 135
k-reversible, 6, 9, 14, 51–54, 62, 65, 66, 68,

72, 78, 98

153

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

context-free, 8, 15, 117
context-sensitive, 3, 15
function distinguishable, 6
index, 13, 52, 53, 65, 94, 97, 110
injective, 10, 92, 97, 98, 112–114, 132, 133
linear context-free, 16, 42
pattern, see pattern
recursive, 4, 5, 8, 9, 15, 16, 24, 36, 37, 42, 43,

49, 50, 58
recursively enumerable, 15, 24, 44
regular, 6–8, 10, 13–16, 25, 29, 35, 36, 51–54,

67, 92, 96, 97, 105, 108, 110
singleton, 10, 15, 25, 74, 75, 78, 98
size, 29, 33, 61, 62, 66, 71, 73–76, 96, 98, 107,

108, 111, 113
LBCQ, 4, 9, 10, 55, 58, 73, 74, 77, 82, 112, 114,

115
learnable

with LBCQ, 55
in polynomial time, 73

with PCQ, 9, 37, 38, 42, 49, 51
in polynomial time, 10, 54, 71

learner, 1, 2, 4–6, 8, 23, 25–27, 29–32, 36, 46, 54,
56, 57, 62, 74, 75, 77–79, 81, 121, 123

learning
algorithm, i, 2, 5–7, 23, 29, 39, 40, 42, 70, 81
from informant, 1, 8, 9, 37, 46, 56
from text, 1, 8, 9
in the limit, 1, 24

from informant, 2, 5, 44
from text, 2, 9, 58

membership query, i, 2, 25, 26, 56, 70
structured, 2, 117

MQ, 2, 4–10, 26, 29, 33, 35–38, 44, 46, 51, 54, 55,
57, 58, 70–72, 74, 76–78, 81, 82, 91, 93,
94, 96, 98, 100, 102, 112, 114, 115, 132

NFA, 13, 25

observation table, 29–33, 65, 66, 68, 69, 82–86,
88–91, 94–96, 98–101, 103–109, 112, 114,
119–122, 125–127, 129–133

l-bounded closed, 104–112
l-bounded consistent, 104–107, 109–111
k-closed, 65–68

k-consistent, 65, 66, 68, 72
closed, 29, 30, 32, 82–86, 88–91, 94, 95, 97,

98, 100, 103
consistent, 29–33, 82–86, 88–91, 94, 95, 97,

99–101, 103
row, 29–33, 65, 66, 68, 82, 85, 87, 89, 95, 96,

104, 107, 112, 119, 122, 128–130, 134
tree-closed, 120, 121, 125–127, 129–134
tree-complete, 120–122, 125–127, 129–134
tree-consistent, 120, 121, 125–127, 129–134

oracle, 2, 3, 6, 23, 25, 26, 37–39, 41, 46, 49, 54,
55, 57, 58, 61, 71, 74–78, 115

order on strings
lex-length, 4, 12, 21, 37, 40, 62, 77, 82
lexicographical, 12, 21, 76

order on trees, 21
Knuth-Bendix order, see Knuth-Bendix or-

der
recursive path orders, 21
rewrite order, 21
simplification order, 21, 22, 135

PAC, 1, 81
learning, i, 1, 25

partition, 11, 95
block, 95, 96

pattern, 7, 15, 26, 63, 64, 71, 78
language, 6, 9, 15, 24, 62, 71, 76–78
normal form, 15, 62
variable, 15

PCQ, 4, 6, 8–10, 36–42, 44, 46, 49–51, 54, 58, 62–
66, 70–72, 74, 75, 77, 78, 82–84, 88, 91,
93, 94, 96–98, 102, 103, 112, 114, 115,
135

polynomial time learning, 36
prefix, 4, 9, 12, 31, 32, 37, 83, 90, 94, 99, 100, 115
prefix-closed, 12, 65, 66, 82, 83, 85, 94, 96, 104
prime number, 47, 48
probably approximately correct learning, 23
property A, 37, 39, 42, 44, 45, 49

query, i, 2–8, 10, 23, 25, 26, 29, 35, 36, 39, 40, 42,
46, 55, 56, 58, 59, 61–63, 69, 73–75, 77,
78, 81, 82, 88, 89, 92–94, 96, 104, 109,
112, 114, 115, 123

correction query, see correction query

154

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

disjointness query, 2
equivalence query, see equivalence query
exhaustive query, 2
membership query, see membership query
subset query, 2
superset query, 2, 46, 62

query learner, 26, 37, 55, 57
query learning, i, 2, 5, 6, 8, 26, 29, 35, 36, 39, 40,

42, 46, 58, 59, 61, 77, 78, 81

RE, 15
regular expression, 25, 76–78
regular grammar, 15, 16
replacement lemma, 19, 126, 127

SCQ, 8, 10, 117, 121, 123, 130, 134, 135
string, 11
subtree-closed, 118
suffix, 4, 12, 15, 135
suffix-closed, 12, 82, 83, 85, 96, 104, 106
surjective, 11, 68, 128
symmetric difference, 30, 94, 95, 100, 117

target, 3, 29, 31–33, 39, 64, 100, 102, 103, 112,
115, 134

automaton, 107, 111, 134
class, 108, 115
concept, i, 2, 4, 36, 71
DFA, 85, 88, 92
language, 1, 2, 4, 6, 23–26, 29–31, 33, 36, 39–

42, 48, 49, 52, 54–57, 62, 64, 66, 68, 71,
74–76, 78, 79, 81, 84, 98, 103, 107, 111,
114, 121, 131

pattern, 63
recognizer, 123, 124, 133–135
tree language, 123
tree recognizer, 119, 122

teacher, 2, 4, 6, 10, 25, 29–33, 36, 37, 39, 56, 64,
78, 82–84, 88, 90, 93, 94, 96, 100, 102–
105, 107, 114, 115, 117, 121–123, 129,
132, 135

tell-tale, 5, 9
definite finite, 5, 9
finite, 5, 9, 27, 28, 48
pair of definite finite, 5, 9, 28, 44
triple of definite finite, 5, 9, 39, 42, 51, 52

text, 5, 6, 8–10, 27, 46, 50, 62, 81
TM, 42–44
transition function, 82
tree, 5–8, 10, 17–19, 21, 23, 117–124, 130–133,

135
arity, 17, 18, 130, 131, 135
context, see context
direct subtree, 17, 21, 130
height, 17
root, 17, 21
substitution, 18, 21
subtree, 17, 21, 118, 120, 122

tree language, i, iii, 17, 19, 20, 117, 119, 123, 133–
135

ξ-prefix closed, 119, 126
injective, 133–135
injectivity degree, 135
injectivity property, 133, 134
regular, 6, 8, 19, 20, 117, 121, 122, 131–133,

135
tree recognizer, 17, 19, 20, 117, 119, 120, 122, 123,

125, 129, 131, 133
R = (Q,∆, X, δ, F), 19
co-reachable state, 19, 124
deterministic bottom-up, 10, 19, 20, 135
equivalent, 19
isomorphic, 19
isomorphism, 20, 128
minimal tree recognizer, 20
reachable state, 19
sink state, 19, 124
tree-consistent with a function, 125

Turing machine, 15, 42, 43, 49

uniformly computable, 40

weight function, 21, 135
admissible, 21

155

UNIVERSITAT ROVIRA I VIRGILI
LANGUAGE LEARNING WITH CORRECTION QUERIES
Cristina Tirnauca
ISBN:978-84-692-1536-4/DL-T-379-2009

