UNIVERSITAT ROVIRA I VIRGILI SYNTHESIS OF POLYMERS WITH COMBINED FLAME RETARDANCE AND LOW SHRINKAGE PROPERTIES. Judit Canadell Ayats ISBN: 978-84-690-7614-9 / DL: T.1300-2007

Conclusions | 191

1. Phosphorus- and silicon-containing spiroorthoesters were synthesized by two different approaches: esterification reaction or Michael addition from spiroorthoester precursors. The spiroorthoester moiety was obtained from γ -butirolactone and an epoxide.

2. Linear polymers which contain phosphorus and spiroorthoester moieties in the side chain were obtained by radical polymerization from an acrylate-containing spiroorthoester and different radically polymerizable phosphorus-containing comonomers. The polymers were crosslinked by a cationic double ring-opening of the spiroorthoester moieties with ytterbium triflate as an initiator.

3. Linear polymers which contain a spiroorthoester moiety in the side chain were successfully crosslinked with phosphorus-containing glycidyl derivatives.

4. Microwave irradiation showed to be useful method to synthesize one of the phosphorus-containing spiroorthoesters, which could not be obtained by conventional heating. These conditions allowed the crosslinking of a SOE with DGEBA with lanthanide triflates as initiators in reaction times significantly shorter than in conventional heating conditions.

5. All the above synthetic approaches led to materials with phosphorus or silicon heteroatoms and linear ester-ether moieties, introduced by double ring-opening of SOEs, which showed enhanced flame retardance and low shrinkage or even expansion upon curing.