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Abstract

A multireference configuration interaction scheme is presented to calculate elec-
tronic structure parameters for systems with an elevated number of unpaired elec-
trons. The paper concentrates on the magnetic coupling but the method can also
be applied to other parameters. The reference wave function contains not only the
usual configurations contained in the Anderson model but is extended with ligand-
to-metal charge transfer configurations. Subsequently a small subset of the complete
difference dedicated configuration interaction space is included in the calculation.
Different strategies to introduce the charge transfer configurations in the reference
wave function are compared. Projected model ligand vectors ensure the optimal
inclusion of the charge transfer effects and good agreement with more extensive
calculations is obtained at a more reduced computational cost.
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1 Introduction

The theoretical study of the coupling between localized spin moments in
molecules and solids is an emerging field. The constant increase of computer-
power and the development of new quantum chemical computational schemes
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allows the (quantum-)chemists to treat larger and more realistic systems with
higher accuracy. In the last decade, the density functional theory (DFT) has
been widely applied to the study of the magnetic coupling [1-7]. Medium-
sized molecules can be treated without the necessity to model any part of the
system, such as bulky external ligands. One has, however, to rely on the bro-
ken symmetry approach to describe electronic states that cannot be expressed
with a single Kohn-Sham determinant [8,9]. Moreover, the mapping of energy
expectation values of such symmetry broken states and the eigenvalues of the
Heisenberg Hamiltonian is subject of discussion [2,7,10-17].

Alternatively, one can apply wave-function based ab initio methodologies.
Electronic states with any spin coupling can be defined rigorously and the
mapping with the Heisenberg Hamiltonian is unique. Both the difference ded-
icated configuration interaction (DDCI) [18] and the complete active space
second-order perturbation theory (CASPT2) [19,20] have been successfully
applied to many systems. Not only, experimental data could be reproduced
satisfactorily, but also can one analyze and interpret the magnetic coupling in
a direct way [21-34].

The major drawback of the wave-function based methods is the high compu-
tational cost in comparison to DFT. DDCI diagonalizes a subset of the mul-
tireference singles and doubles CI (MR-SDCI) space. The reduction is based
on the understanding that up to second-order quasi-degenerate perturbation
theory, the effect of the double excitation from doubly occupied to virtual or-
bitals cause a uniform shift in the diagonal elements of the CI matrix. Hence,
they do not contribute to the energy difference between electronic states and
can be left out of the calculation. Since these double excitations are most nu-
merous, the dimension of the DDCI space is largely reduced in comparison
to a MR-SDCI calculation. Although total energies loose their meaning and
results at different geometries cannot be compared, the method produces very
accurate vertical excitation energies. The vast majority of the DDCI studies
concerning magnetic systems have been performed for the coupling between
two S=1/2 magnetic centers. In that case the size of the reference wave func-
tion is limited and the treatment of remaining electron correlation effects is
straightforward.

The DDCI calculations beyond the S=1/2 dimers become more cumbersome.
The calculation of the magnetic coupling parameter J between two S=1 cen-
ters (e.g. in a dinuclear Ni(IT) complex) is still possible, but the calculation is
rather expensive and external ligands need to be modeled with smaller groups
and small basis sets. A further increase of the spin moment or the nuclearity
leads to intractable CI expansions.

Because of the perturbational nature of CASPT2, the computational limits
for this method are somewhat less rigid. A CASPT?2 calculation is still feasible



for a reference wave function constructed with 15 magnetic orbitals and 15 un-
paired electrons. This opens the way to an ab initio evaluation of the magnetic
coupling between elevated spin moments and/or in complexes with more than
two magnetic centers. Although, a reference wave function that only includes
the magnetic orbitals and unpaired electrons usually gives good estimates of
J, it should include part of the ligand to metal charge transfer (LMCT) ef-
fects to obtain quantitative agreement with experiment for strongly coupled
systems such as copper oxides [35]. Moreover, the method becomes unreliable
for couplings smaller than ~ |8 cm™! and shows important deviations from
the expected Heisenberg splitting between states of different multiplicity in
case of elevated spin moments [36].

2 Methodology

From the above discussion, it is clear that an alternative, less expensive strat-
egy is required to extend the applicability of ab initio wave function based
calculations. One such scheme is based on a further reduction of the determi-
nants in the CI expansion. DDCI2 [37] treats a subset of determinants that
imply a change in the occupation of at least two active orbitals [38]. This set
of determinants is significantly smaller than the full DDCI set but normaly
only reproduces about 50% of the experimental coupling. This methodology
has been applied for Cr(III) and Ni(IT) dimers [39,40] and in the study of the
magnetic coupling in NagFesSg [41].

Alternatively, one could reduce the CI expansion by eliminating molecular or-
bitals (MO’s). However, the orbital energies are in general not a good criterion
to decide upon the importance of the MO'’s for the relative energy of the elec-
tronic states. Instead, the unitary transformation to dedicated orbitals of the
molecular orbitals obtained at a low-level calculation [42] makes it possible to
order the orbitals with respect to their contribution to the magnetic coupling
and to cut the MO space in a rational way. The computational cost of DDCI
is reduced with (almost) no loss of precision down to CI expansions that are
only 30% of the complete DDCI space [42].

The importance of LMCT configurations for the magnetic coupling has been
recognized in many studies (see Refs [21,24,43-47] and references therein) and
is considered as one of the key ingredients of the superexchange. Calzado and
co-workers [22] unraveled the relative importance of many more mechanisms
in the calculation of J. They classify all determinants external to the CAS by
the number of holes (h) in the doubly occupied orbitals and particles (p) in
the virtual orbitals with respect to the determinants in the CAS.

It was shown that a CI with the single excitations on top of the CAS (CAS*S)



usually results in ~50% of the full DDCI result. This CAS*S contains the
1h, the 1p, and the 1h-1p determinants, and hence the LMCT determinants.
However the coefficients of these excitations remain rather small. Adding the
2h and 2p determinants (i. e. the DDCI2 subset) does not significantly af-
fect the results. Hence, it was concluded that the remaining 2h-1p and 1h-2p
determinants play a very important role. Further analysis showed that not
all determinants in the latter group contribute equally to J [21]. The most
relevant contributions arise from the ligand to metal charge transfer (LMCT)
excitations coupled to excitations that account for the polarization of the elec-
tron density in reaction to this LMCT process. This polarization increases the
weight of the LMCT excitations in the wave function and in general very good
agreement with experimental magnetic couplings is obtained for the full DDCI
calculation.

By introducing the LMCT determinants in the CAS, the excitations that ac-
count for the polarization —i.e. the 2h-1p determinants— already appear at the
CAS*S level. This observation opens a third possibility to reduce the compu-
tational cost of the variational determination of J. This extended CAS*singles
method was introduced by Calzado and Malrieu [48,49] in the study of elec-
tronic structure parameters in La(s_5)Sr,CuOy4 and recently discussed in more
detail by Gellé et al. [50]. The central question of the method is the choice of
the active space: What ligand orbitals should be included in the active space
to obtain the most efficient description of the LMCT process and the polar-
ization of the electron density in response to that? Calzado and Malrieu use
the dedicated orbital transformation to identify the most implicated ligand
orbitals and add them to the active space. An alternative choice has been
presented by Gellé et al. Their choice is based on the overlap of the canonical
doubly occupied Hartree-Fock orbitals with the atomic basis function that has
the highest coefficient in the singly occupied (or magnetic) orbitals of the spin
state with highest multiplicity. In both proposals, the active space is extended
with as many ligand orbitals as there are magnetic orbitals.

The results of the CI singles calculations with an extended CAS reference wave
function (CAS(ext)*S) are certainly encouraging, but several questions remain
to be answered. In the first place, the methodology proposed has only been
tested for antiferromagnetic interactions in ionic insulators (copper oxides and
nickel fluorides) with perovskite structure. No evidence have been presented
that the results can be extrapolated to insulators with less symmetric crystal
structure or to molecular systems with more complex bridging ligands. Fur-
thermore, it remains unclear from the two previous works why ligand orbitals
are added to the active space that do not have any significant contribution
from the bridging ligand, but are instead delocalized over the external ligands
(see Fig. 4a of Ref. [49] and Fig. 3 of Ref. [50]). This is in contradiction with
the usual understanding of the magnetic coupling as a through bridge process
where the external ligands only play a minor role.



In the present paper, we will analyze and critically compare the different
choices of extending the active space. An orbital transformation will be pre-
sented that ensures the optimal inclusion of the LMCT determinants in the
active space. Furthermore, we will establish to what extent CAS*S with an
extended CAS reference wave function is valid for more complex insulators
and molecular complexes. Finally, the method will be applied to estimate the
magnetic coupling between centers with elevated spin moments.
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Fig. 1. Molecular orbital diagram showing the interaction between metal centered
and ligand-type orbitals. See text for further details.

3 Choice of the ligand orbitals

Figure 1 summarizes schematically the one-electron reasoning of the Anderson
model [51] or the Hay-Thibeault-Hoffmann model [52] for antiferromagnetic
superexchange. The degenerate orbitals a and b are singly occupied atomic-like
orbitals localized on the magnetic centers. On the right side of the diagram,
[ is one of the ligand orbitals among the whole set of doubly occupied ligand
orbitals ¢. The interaction of [ with a and b gives rise to two non-degenerate
magnetic orbitals ®, and ®, and a molecular orbital ®;, which is basically

localized on the bridging ligand. The splitting A between the magnetic orbitals
is a measure of the magnetic coupling between the unpaired electrons. To

achieve optimal superexchange, [ should be localized on the bridge and close
in energy to a and b.

The canonical self-consistent field (SCF) orbitals are usually delocalized over
the whole system and no guarantee can be given that there exist an orbital



among the doubly occupied that is sufficiently localized on the bridging ligand.
Dedicated orbitals are usually determined from a CAS*S calculation with a
minimal CAS reference. One of the major effects of such calculations is the
drastic reduction of the effective on-site repulsion parameter U, which is a
measure of the energy difference between the neutral determinants (n electrons
per magnetic site) and the ionic determinants (n + 1 or n — 1 electrons per
magnetic site). Hence, CAS*S dedicated orbitals are actually biased toward
the energy lowering of the ionic determinants, which is optimal when orbitals
are delocalized over all ligands coordinating the magnetic site and not just the
bridging ligands that connect the magnetic sites.

To ensure more control over the shape of the ligand orbital that will be added
to the CAS, we perform a unitary transformation of the doubly occupied

Hartree-Fock orbitals by the projection of a model vector |I) of pure bridging
ligand character onto the inactive space.

=i = |31l 1) (1

with |é) an inactive canonical Hartree-Fock orbital and n the total number
of inactive orbitals. The projected model vector |I) is orthogonal to the ac-
tive orbitals but not to the inactive orbitals. The inactive orbital with the
largest overlap with |I) is eliminated and the remaining orbitals are orthogo-
nalized onto the projected vector by means of the Gram-Schmidt procedure.
Afterwards, |I) is added to the active space.

When there are m active orbitals, we construct a maximum of m ligand-type
vectors |I) by putting all coefficients in the magnetic orbitals to zero except
those corresponding to basis functions centered on the bridging ligand. Only
the ligand-type vectors with a norm above a certain threshold are projected
onto the inactive space. For example, the ligand-type vector resulting from
magnetic orbital ®, in Figure 1 does not have any significant contribution from
the ligand. By symmetry, only the deep-lying s-type orbital can contribute to
this magnetic orbital. However, its contribution is so tiny that the resulting

ligand-type vector has a very small norm and is not further concerned.

4 Test calculations

To test the new strategy of constructing the extended CAS reference wave
function, J has been calculated for four members of the widely studied per-
ovskite copper oxide family [53,54]. These compounds exhibit large couplings
along the linear Cu—O—Cu bonds with marked LMCT effects. The minimal



Table 1

DDCI and CAS(ext)*S magnetic coupling parameters (in meV) of four copper oxides
with similar perovskite structure. The last row lists the number of determinants in
the CI for the singlet state of HgBagCuOy.

Compound DDCI CAS(ext)*S

Projection Dedicated Overlap [50] Exp.
LagCuOy -140 -138 -162 -143 -128+67, -13445b
SraCu02Cla -131 -137 -161 -139 -125¢
T1BayCuOs -167 -171 -203 -125
HgBayCuOy -159 -155 -196 -154
Determinants  5.2.10°  1.7-10* 3.1:10% 3.1-10%

@ Ref. [55] * Ref. [56] © Ref. [57]

active space contains two electrons and two orbitals that transform following
the ag and by, irreducible representations of the Dy, symmetry group. Fig-
ure 2 gives a graphical representation of the two active or magnetic orbitals
of HgBayCuOy4. These orbitals are representative for the other copper oxide
systems.

Fig. 2. The ag (left) and by, (right) magnetic orbitals for HgBasCuOy.

DDCI based on such active space accurately reproduces experimental J’s
[24,53,54] and will be used as reference data. Table 1 compares the results
of CAS(ext)*S calculations with the three different strategies to extend the
active space mentioned in the previous section. In the case of extending the
active space with the most dedicated orbitals (column 4, Dedicated) or by
selecting the ligand orbitals by the overlap criterion (column 5, Overlap), the
extended CAS contains four orbitals and six electrons. However, in the new
strategy of projection (column 3, Projection), the model vector of a, sym-
metry has a very small norm and has been discarded. Hence, the results in
column 3 are obtained with an extended CAS of only three orbitals and four
electrons.

A first look at Table 1 shows that all J-values calculated with CAS(ext)*S
are within 25% of the DDCI value. This is a significant improvement with
respect to the CAS*S values based on the minimal active space, which typically



deviate 40-50% from the DDCI values. A closer analysis evidences that the
extension of the active space with the most dedicated orbitals systematically
overestimates J by about 20%. The Projection and Overlap procedure lead to
values in significant better agreement with DDCI, although the CI expansion
in the former procedure is smaller. Moreover, the overlap selection criterion is
not without shortcomings. The value for TIBayCuOs is 25% smaller than the
DDCI reference, whereas such deviations are not observed for the projected
ligand vectors.

The shape of the projected ligand orbital added to the CAS (see Fig. 3 on
the right) has a markedly different character than those added by the other
two procedures. The projected orbital of by, symmetry is highly localized on
the bridging oxygen whereas the dedicated and canonical SCF orbitals (see
Fig. 4 and 5) are essentially delocalized over the whole cluster. To analyze the
apparent contradiction that the addition of different shaped orbitals to the
CAS lead to similar magnetic couplings, we performed additional calculations
in which either the a, or by, ligand orbital is added to the active space. Results
are listed in Table 2.

The role of the projected a, orbital is rather unimportant, which is not unex-
pected for a deep-lying O-2s orbital. In case of delocalized ligand orbitals, the
two orbitals added to the active space act in opposite direction. The a, orbital
introduces strong ferromagnetic interactions and give a J that is much smaller
for the minimal CAS. On the contrary, the by, orbital introduces antiferro-
magnetic contributions and increases .J. For the delocalized by, orbitals, this
effect is largely overestimated and unrealistic J’s are obtained. The fact that
good results are obtained with the Overlap selection and reasonable results
with dedicated orbitals when both orbitals are added seems to be due to a
cancellation of the two effects. Moreover, it can be seen that the ferromagnetic
effect introduced by the dedicated a, orbital is less strong than for the orbital
selected by overlap. On the contrary, the antiferromagnetic effect due to the
by, dedicated orbital is significantly larger. As a consequence the sum of the
two effects gives too large a J when dedicated orbitals are added to the CAS,
whereas (in most cases) the overlap criterion gives better results. Note that
the effect of adding the a, or by, orbital is not addditive and only indicate the
tendency in the CI calculation with both orbitals in the CAS.

Remains the question why the Overlap criterion fails to select a good ligand
orbital in some cases and does not correctly reproduce the DDCI value. As
mentioned before a deviation of 25% is found for TIBa,CuOs. The key to this
question can be found in Figs. 5 and 6. Because the a, orbital is very similar
for HgBayCuO4 and T1Bay;CuOs the addition of this orbital to the CAS in-
troduces an equal amount of ferromagnetic interaction for both compounds.
However, the shape of the by, orbital is markedly different, although the over-
lap with the atomic orbitals on the magnetic centers are very similar. In the



Table 2
CAS*S magnetic coupling parameters (in meV) of HgBasCuO,4 with different ref-

erence wave functions
Active space

Projection Dedicated Overlap

minimal CAS -87 -87 -87
+ ag -99 -35 -11
+ biy -155 -273 -253
+ ag, biu -168 -196 -154

case of TIBayCuOs, the by, orbital is less localized on the bridging ligand, and
hence, not so effective for antiferromagnetism. This leads to a partial compen-
sation only of the ferromagnetic interaction introduced by the a4 orbital and

too small a J-value.

)
&

Fig. 3. HgBayCuOy projected ligand orbitals of ag (left) and by, (right) symmetry.
Only the by, orbital is added to the active space.

Fig. 4. Most dedicated ligand orbitals added to the extended CAS for HgBasCuOy

Fig. 5. Canonical SCF ligand orbitals in the extended CAS for HgBayCuOy selected
by overlap following the procedure outlined in Ref. [50].



Fig. 6. Canonical SCF ligand orbitals in the extended CAS for T1BayCuOj selected
by overlap following the procedure outlined in Ref. [50].

5 Spin ladder compounds

In order to establish the validity of the CAS(ext)*S approach, we now turn
our attention to less symmetric copper oxide systems. In the next section we
will study molecular systems and systems with elevated spin moments. The
spin ladder systems SrCuy O3, CaCuyO3 and SroCuzOs recently received a lot
of attention [58,59] being an interpolation between the quasi one-dimensional
spin-1/2 chains and the two-dimensional layered perovskites, discussed in the
previous section. These systems exhibit many interesting physical phenomena,
although we will restrict the discussion here to magnetic coupling parameters.
The Cu?* ions are arranged in quasi isolated spin ladders with two (SrCuyOs
and CaCuyO3) or three legs (SroCuzOs5). Magnetic coupling occurs along the
legs and the rungs that connect the different legs of the same ladder. The
Sr compounds have almost planar ladder planes resulting in similar coupling
along rung and leg, whereas the ladder planes in CaCuyOj are strongly dis-
torted and hence, the coupling along the rung is much smaller than along the
leg. Additionally, there is a weak interladder coupling in all three compounds.

Table 3 lists the results of CAS(ext)*S calculations and compares them to
DDCI wvalues obtained with a minimal active space. For the leg and rung
interactions only one ligand orbital has been added to the active space. This
orbital is very similar in shape as the by, depicted in Fig. 3. However, the
interladder interaction is mediated by two oxygen ions and hence two ligand-
centered O-2p orbitals have to be added to the active space.

The CAS(ext)*S compares less favorable with DDCI than for the simpler per-
ovskites, deviations of about 20 meV are observed and in some cases (e.g. Jieg(1)
in SryCusz0s) even larger differences occur. In almost all cases the interaction
is predicted to be too antiferromagnetic (i.e. overestimation for negative J and
underestimation for positive J). The behaviour of CAS(ext)*S with dedicated
orbitals is even worse, all antiferromagnetic interactions are systematically
overestimated by a large amount. The Overlap selection criterion gives in gen-
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Table 3

Magnetic coupling parameters (in meV) of the spin ladder compounds SrCusOs3,
CaCuz03, and SraCuszOs. Projected ligand vectors are added to the active space.
The last row lists the number of determinants in the CI for the singlet state used
to calculate Jiey in SrCuz03.

Compound DDCI  CAS(ext)*S CAS(ext)*DDCI2
SrCuz03 leg -175 -197 -188
rung -152 -196 -186
inter 21 6 5
CaCus03 leg -130 -144 -137
rung -16 -36 -33
inter 17 8 6
SroCusOp leg(1)*  -184 -220 -210
rung -165 -202 -192
inter 21 34 25
leg(2) -172 -193 -185
Determinants 6.1-10°  2.2-10% 4.1-10*

@ leg(1) refers to the middle leg in the three-legged ladder, leg(2) is the outer leg

eral more reasonable agreement with DDCI, but in some cases the J-value is
very different due to the uncontrolable nature of the canonical SCF orbitals.

To improve the perfomance of the limited CI with an extended CAS, we added
the 2h and 2p excitations to the CI space, i.e. we perform a DDCI2 with an
extended CAS. With respect to the leading Cu-3d%-0-2p®-Cu-3d® configura-
tions, the CI now also contains the 2h-2p excitations in which two electrons
from the bridging ligand are excited to the virtual space. This type of excita-
tions account (at least partially) for the dynamical correlation effects of the
electrons on the bridge. As a consequence, the LMCT state becomes slightly
more unfavorable and the interaction with the leading configuration reduces.
This leads to a smaller antiferromagnetic coupling. In a one-electron reason-
ing (see Fig. 1), the introduction of electron correlation on the bridge lowers
the orbital energy of the ligand orbital [. This makes the separation with the
metal-centered orbitals a and b larger, and the splitting A smaller.

CAS(ext)*DDCI2 also introduces the 1h-2p type of determinants in the N-
electron wave function. These excitations contribute ferromagnetically to the
magnetic coupling parameter [22]. and are hence also expected to reduce the
overestimation of the negative J’s by CAS(ext)*S.

The last column in Table 3 indeed shows that the antiferromagnetic interac-
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Table 4

DDCI, CAS(ext)*S and CAS(ext)*DDCI2 magnetic coupling parameters (in meV)
for LagNiOy4. The last row lists the number of determinants for the singlet state.
Jezp = -31 meV

DDCI CAS(ext)*S CAS(ext)*DDCI2
Projection Dedicated Overlap Projection
Es — Er -24.1 -33.3 -38.4 -33.1 -32.0
$(Br —Eg)  -263 -36.8 -44.4 -36.9 -35.8
1(Es—Eg)  -25.6 -35.6 -42.4 -35.6 -34.5
Determinants  7.7-106  2.3.10° 1.7-108 1.7-106 4.2:10°

tions are less antiferromagnetic now and the values are in better agreement
with DDCI. On the other hand for the smaller ferromagnetic interactions the
situation is less clear. Although the absolute differences are of the same order
as the larger antiferromagnetic interactions, the relative error is quite large
and it remains unclear whether CAS(ext)*S or CAS(ext)*DDCI2 is a suitable
methodology to calculate ferromagnetic interactions.

CAS(ext)*DDCI2 hardly improves the results with dedicated orbitals neither
repairs the incidental failures (e.g. for TIBa;CuOjs) when canonical orbitals
selected by overlap are added to the CAS. This is closely related with the fact
that the orbitals added to the CAS in these procedures are delocalized over the
whole cluster. The electrons in these orbitals experience much less dynamical
correlation effects than electrons in localized orbitals such as the ones obtained
by projection. Finally, it is observed that the results with projected orbitals
for the cuprates listed in Table 1 are not affected by the inclusion of the 2h
and 2p excitations.

6 La;NiO,; and molecular complexes

The magnetic coupling in Ni(II) perovskites are in general much smaller than
the corresponding Cu(Il) compounds. This can be ascribed to the fact that
the LMCT energy is higher in the Ni-compounds. La;NiO, still has a sizeable
magnetic coupling (experiment: J = -31 meV [60]) and is used here as a first
test to treat systems with more than two unpaired electrons. The minimal
CAS contains four electrons and four orbitals with mainly Ni-3d(x%-y?) and
Ni-3d(2z%-x%-y?) character. This active space is extended with one projected
ligand orbital of O-2p character, i.e. a CAS(6,5) (6 electrons and 5 orbitals).
In the case of selection by overlap or dedicated orbitals, four ligand orbitals
have to be added to the minimal CAS, resulting in a CAS(12,8).
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The two S=1 spin moments on Ni?* couple to quintet, triplet and singlet,
and two independent estimates of J can be calculated from the energy differ-
ences. The results in Table 4 indicate small deviations of the pure Heisenberg
splitting, which can be ascribed to the appearance of biquadratic terms in
the magnetic coupling [25]. The ratio Ex — Eg/Es — Eg is 0.686 for DDCI,
where the pure Heisenberg splitting gives a ratio of 1/3. This deviation of 3%
is significantly larger than the ratio reported by Moreira and co-workers for
KyNiF, [25].

Concerning the comparison of the different CAS(ext)*S strategies with DDCI,
the general features observed for the copper oxides can also be recognized for
the Ni compound. Table 4 shows that CAS(ext)*S slightly overestimates the
antiferromagnetic contributions to J in comparison with the DDCI result,
although the comparison with the experimental value is as good as for DDCI.
This overestimation is largest when the four dedicated orbitals with highest
participation number are added to the CAS. Adding one projected ligand
orbital or four canonical orbitals selected by overlap give identical results. The
CI expansion is however almost ten times longer in the latter case. Adding
the 2h and 2p excitations to the Cl-space (CAS(ext)*DDCI2) slightly reduces
the difference with DDCI as observed before. Note that the number of Slater
determinants is still smaller than in the CAS*S calculation with a CAS(12,8)
reference wave function.

NH,
O\ cl
HN
C H;N 3 cy—0<
o’ A O’ C\ HN—""S5_—Cu—Hs
C\ “\ NH, . SNH,
NH
NH, s
0

Fig. 7. Schematic representation of the oxalato-bridged Cu(II) complexes with
square pyramidal (SPY) (left) and trigonal bipyramidal (TBP) (middle) Cu co-
ordination, and the oxo-bridged Cu(II) complex (right). The axial NH3 group for
Cug-oxalato (SPY) is not shown.

The model systems depicted in Fig. 7 are used to establish the performance for
molecular complexes. These model systems have been studied before [1,21,61,62]
and exhibit magnetic coupling ranging from moderately antiferromagnetic
to rather large ferromagnetic. Only the trigonal bipyramidal Cu(II) oxalato-
bridged model (Cus-oxalato (TBP)) represents a real molecule, namely (Ets-
dien)yCus(pu-C204), with Etsdien = 1,1,4,7,7-pentaethyldiethylenetriamine.
The experimental magnetic coupling of this molecule is -9.3 meV [63,64]. The
other two models are hypothetical molecules.
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Fig. 8. Cu—2-oxalato (SPY) projected ligand orbitals.

Table 5

DDCI, CAS(ext)*S and CAS(ext)*DDCI2 magnetic coupling parameters (in meV)
for three dinuclear Cu(II) molecular complexes. The last row lists the number of
determinants for the singlet state in Cug-oxalato (SPY).

Molecule DDCI CAS(ext)*S CAS(ext)*DDCI2
Projection Dedicated Overlap Projection
Cug-oxalato (SPY)  -22.4 -21.9 -18.9 -10.0 -20.7
Cug-oxalato (TBP)  -7.3 -10.4 -2.5 -2.8 -9.7
Cug-oxo 44 70 101 -92 41
Determinants 1.910°  1.0-10° 1.0-10°  1.0-10° 4.2:10°

The polyatomic nature of the bridges that connect the two Cu ions in the
three complexes makes that there exist valence bridge molecular orbitals with
the same symmetry for both magnetic orbitals. The extended CAS contains
four orbitals and six electrons. Figure 8 shows the projected ligand orbitals
added to the CAS for Cup-oxalato (SPY) and Table 5 resumes the results
obtained with the different orbital choices to introduce LMCT excitations in
the CAS. The projected ligand orbitals can best be described as bonding and
anti-bonding linear combinations of oxalato O-2p orbitals with small in-phase
contributions of the Cu-3d,, orbital.

Taking the DDCI with minimal CAS as reference values (second column), we
observe that CAS(ext)*S behaves reasonably well for the antiferromagnetic
systems but overestimates the ferromagnetic coupling in Cuz-oxo. CAS(ext)-
*DDCI2 hardly affects the results for the Cuy-oxalato complexes, but corrects
the overestimation of J for Cus-oxo. The extension of the CAS with dedicated
orbitals gives in general worse results, and the selection of canonical SCF or-
bitals by overlap is invalidated for these kind of systems. In all three cases the
DDCI J-value is not reproduced and in the case of Cus-oxo the coupling pa-
rameter is completely wrong as strong antiferromagnetic coupling is predicted
where a moderate ferromagnetic coupling is expected. The failure is again due
to the fact that at least one of the orbitals added to the CAS have negligible
contribution of the bridging ligand.
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Finally, we report the results of a hetero dinuclear complex, namely the [(NHj),-
(H20)2Cr(C204)Ni(NH3)]3 model as described in Ref. [34]. Ni(II) has an
electronic configuration [core]3d® with two unpaired electrons and Cr(III) is
[core]3d® with three unpaired electrons. Hence, the minimal CAS contains
five magnetic orbitals and five electrons, which leads to a DDCI expansion
of 1.56-10% determinants. This is obviously too large to be handled and al-
ternative strategies are necessary. The dedicated orbital transformation and
subsequent controlled reduction of the MO-space is one possibility, but the
Cl-space needs to be reduced significantly below the critical value of ~ 30%
and results should be looked at with caution [33].

The calculation of the magnetic coupling constant of the Ni-Cr complex with
the CAS(ext)*S methodology involves an active space with 10 orbitals (5
magnetic plus 5 ligand-centered orbitals) and 15 electrons. The CI singles on
top of this extended reference wave function leads to a coupling constant of
6.3 cm~! with practically no deviation from the pure Heisenberg splitting.
This result is in rather good agreement with the experimental value of 9 cm ™!
[65]. The number of determinants in this CAS(ext)*S calculation is becoming
rather large because of the size of the CAS, however, one could easily reduce
the computational cost by using dedicated virtual orbitals in combination with
the CAS(ext)*S methodology. This combination opens the way to a variational
evaluation of the magnetic coupling constants (and other electronic structure
parameters) in systems with even more unpaired electrons.

7 Conclusions

Accurate estimates of the coupling constants between magnetic centers and
other electronic structure parameters can be computed from a minimal active
space, reduced to the magnetic orbitals and the magnetic electrons, provided
that: i) the magnetic orbitals are obtained from a variational calculation, which
incorporates an optimal delocalization between the metal and the ligands,
and ii) this CASCI calculation is followed by an extensive multireference CI,
including all semi active double excitations on the top of the CAS, i.e. a DDCI
calculation.

The CAS(ext)*S method is presented as a reasonably accurate alternative
to this rather expensive standard DDCI method to variationally determine
the magnetic coupling parameter and other electronic structure parameters
in magnetic systems. The methodology is based on the understanding that
LMCT excitations play a fundamental role in the magnetic coupling provided
the N-electron wave function accounts for the dynamical repolarization of the
electron charge distribution in response to such processes. DDCI accounts for
these effects through the 2h-1p excitations, but it can also be accomplished
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by performing a CI singles with a reference wave function extended with the
LMCT configurations.

Where the active space to construct the reference wave function for DDCI is
easily chosen (all magnetic orbitals and the corresponding unpaired electrons),
the extended active space is less trivially obtained. It should be ensured that
it includes in an optimal way the LMCT effects. Three different procedures to
extend the active space are compared and the results show that the projection
of a model vector with pure bridging ligand character onto the inactive orbital
space provides an efficient scheme to introduce all important LMCT config-
urations in the reference wave function. Contrary to the other two schemes
its final results do not depend on the partial cancelation of two antagonist
contributions (cf. Table 2).

For the relatively simple lamellar cuprates, CAS(ext)*S reproduces with great
precision the DDCI values, which in turn are in very good agreement with
available experimental data. In the less symmetric spin ladder cuprates, the
methodology performs less well and tends to overestimate the antiferromag-
netic component of the coupling. This overestimation is partially remedied
by adding the 2h and 2p excitations to the CI expansion according to the
DDCI2 scheme. The wave function contains now dynamical correlation effects
of the electrons in the bridging ligand orbital added to the CAS. This tends
to reduce the importance of LMCT excitations. Moreover, the wave function
includes 1h-2p type of excitations, which have been shown to contribute ferro-
magnetically to the coupling. The test calculations on the molecular systems
reveal that the extension of the CAS with a ligand orbital selected by overlap
with the magnetic orbital [50] is not a universal recipe. This procedure badly
fails for the three systems considered in this paper. The extension of the ac-
tive space with the most dedicated orbital is also not a guarantee for good
estimates of the magnetic coupling parameter.

Finally, the possibilities are explored of the treatment of systems with elevated
spin moments. The coupling between two Ni(II) cations in LagNiQOy is correctly
reproduced and also for the more challenging Ni-Cr dimer a good variational
estimate is obtained. The combination of the CAS(ext)*S or CAS(ext)*DDCI2
with the reduction of the virtual MO-space by means of a dedicated orbital
transformation seems to be a very promising way to proceed to even larger
systems, either with more magnetic centers or in dimers (and probably trimers)
with higher spin moment per magnetic center.
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A Computational information

CuyO7 and NipOq; cluster models are used to represent the perovskite copper
and nickel oxides, respectively. These clusters are embedded in point charges
that represent the Madelung potential in the cluster region. To avoid boundary
effects, the point charges closest to the cluster are replaced with total ion
potentials that account (at least partially) for the short-range attractive and
repulsive interactions between the cluster atoms and its nearest neighbours.
For the spin ladders, the interaction along rung and leg is also calculated with
an embedded CuyO7 cluster, whereas the interladder interaction is derived
from a CuyOg cluster. The cluster geometry is adopted from the experimental
structure.

In the perovskite copper oxides systems, the inner electrons of the Cu ions (1s?
252 2p°) are replaced with the Hay and Wadt pseudopotential. The valence
electrons are described with the corresponding basis set of triple-¢ quality [66].
The atomic basis sets for the transition metal centers (Cu, Ni, Cr) in the rest of
the systems are of the atomic natural orbitals (ANO) type with a (5s,4p,3d,1f)
contraction [67]. The lighter atoms (C and O) bridging the magnetic centers
are described with (3s,2p,1d) contracted ANO basis functions [68]. The atoms
that form the external ligands are described with (3s,2p) contracted ANO
basis functions in all systems but for the perovskite copper oxides. In this case
the O-1s electron is replaced with the Durand-Barthelat pseudopotential and
the valence electrons are described with the corresponding double-C basis set
[69].

Defining the Heisenberg Hamiltonian as H=—J5,-5,, the magnetic coupling
parameter J is obtained from E(S)—E(S—1) = SJ, where E(S) is the energy
of the electronic state with spin multiplicity S.

Optimization of the molecular orbitals used in the CI calculations and the
transformation of the integrals to the molecular orbital basis have been done
with the MOLCAS 5.4 code [70], the subsequent CI calculations have been
done with the CASDI code [71].
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