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The four-spin cyclic exchange term Jring of three spin-ladder cuprates (SrCu2O3 , Sr2Cu3O5, and CaCu2O3)
has been calculated from ab initio quantum chemistry calculations. For the first two compounds, a non-
negligible cyclic exchange is found, aproximately 20% of the magnetic coupling across the rungs, J! , and
always larger than the value obtained for two-dimensional La2CuO4 system. In the case of CaCu2O3, the Jring
value is quite small, due to the folding of the Cu-O-Cu rung angle, but the Jring /J! ratio is also 0.2 as in the
two other systems.
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Spin-ladder cuprates constitute an active research field in
the last decade.1,2 They can be viewed as intermediates be-
tween the one-dimensional !1D" antiferromagnets and the
still controversial two-dimensional !2D" square lattices. Lad-
ders composed of Cu and O are specially interesting due to
their proximity to high-T c cuprates. Their magnetic proper-
ties depend on the number of legs. Even-legged ladders show
a spin gap excitation, whereas odd-legged ladders are gapless
and behave as a 1D spin chain.1,2 They also present different
properties regarding hole doping. It has been suggested that
even-legged spin ladders become superconductors upon hole
doping, which has been confirmed experimentally3 in the
two-legged ladder Sr14"xCaxCu24O41 under high pressure.
The magnetic properties of these compounds are con-

trolled by the effective magnetic coupling constant J, related
with the amplitude of the interactions between the spin mo-
ments of the Cu!2 ions. Different J constants can be defined,
as shown in Fig. 1. The two most important are the coupling
along the legs, J ! , and across the rungs, J! . The ratio J! /J !
is controversial since the interpretation of different experi-
mental data has led to estimates ranging from spatially iso-
tropic, J! /J !#1, to strongly anisotropic couplings, J! /J !
#0.5. The strong spatial anisotropy J! /J !#0.5 is in contra-
diction with geometrical considerations. Since the Cu-O-Cu
bonds are quite similar, the exchange pathways are expected
to be equivalent, and so, J !#J! . The theoretical calculations
of Mizuno, Tohyama, and Maekawa;4 and de Graaf et al.5 are
in agreement with these considerations.
It should be noted that most of the available J! and J !

values have been obtained by fitting the experimental data
onto a model Heisenberg Hamiltonian, containing just two-
body operators. As in the case of the 2D cuprates,6–10 some
authors have recently suggested the necessity of introducing
additional interactions in the model Heisenberg Hamiltonian
to study the properties of the spin ladders. The most impor-
tant are the diagonal coupling !second-neighbor interac-
tions", the interladder exchange and, especially, the four-spin
cyclic exchange !4SCE". In this context, de Graaf et al.5
have proposed that the omission of the interladder coupling
in the analysis of experimental data for SrCu2O3 may be the
reason that a ratio J! /J !#0.5 was obtained instead of
J! /J !#1. However, the quantum Monte Carlo !QMC" simu-

lations of the temperature dependence of the magnetic sus-
ceptibility of Johnston et al.11 do not confirm this hypothesis.
The inclusion of a ferromagnetic interladder coupling,
(Jinter /J !#"0.1), in their QMC simulations does not
change the fitted J! /J !#0.5 ratio obtained for SrCu2O3.
Recently, Brehmer et al.12 have analyzed the role of the

4SCE on the determination of coupling constants from lad-
der spectra. The 4SCE is a fourth-order term in the Hubbard
model, involving the circulation of the electrons around the
plaquette and scales as 80t4/U3, t being the hopping integral
and U the on-site Coulomb repulsion.13,14 The extended
Heisenberg Hamiltonian containing the diagonal interactions
and the 4SCE terms has the following form:
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where the higher multiplet energy is set to zero, J ! and J!

correspond to nearest-neighbor !NN" interactions, Jdiag to
the next nearest-neighbor !NNN" coupling, and Jring

i jkl to the
4SCE terms; and the superscript refers to the type of cyclic
interaction. Actually the introduction of Jdiag !especially, if it
is antiferromagnetic" implies that the NNN hopping tdiag is
not negligible, and the circulation of the four electrons may
involve the diagonal hopping. The physical content and ori-
gin of the three types of Jring is schematized in Fig. 2.
It has been argued that a finite value of the ring exchange

is necessary to reproduce the structure of the magnetic Ra-
man spectrum for 2D insulating cuprates.7,9,10 In spin-ladder
cuprates, Brehmer et al.12 have concluded that the cyclic ex-
change has a large influence on the spin gap and, conse-
quently, on the exchange constant values J ! and J! . A small
amount of Jring (Jring&0.28J!) is consistent with J !&J! as
expected from the geometrical structure. A similar result has
been obtained by Matsuda et al.15 for the two-legged ladder
La6Ca8Cu24O41 . A reasonable fit to the experimental data is
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obtained when a finite cyclic exchange !30% of J!) is in-
cluded in the Hamiltonian, with J !#J!#"110 meV. In the
absence of this 4SCE, a fit of comparable quality is obtained
with J!#"53 meV and J !#"106 meV. So, it seems that
the neglect of the 4SCE term could lead to the strong anisot-
ropy found for spin-ladder cuprates.
It is the aim of this report to simultaneously determine all

the effective interactions, appearing in Eq. !1", with special
attention to the 4SCE term, by means of ab initio quantum
chemical embedded cluster calculations. We report the am-
plitude of these operators for three spin-ladder compounds:
SrCu2O3 , CaCu2O3, and Sr2Cu3O5; and compare the results
with the values obtained for the 2D La2CuO4 system. A de-
tailed analysis of the eigenvalues and wave functions of
these systems enables us to determine the exchange interac-
tions in a Cu4O12 plaquette: the NN interactions, J! and J ! ,
the NNN interaction Jdiag , and the 4SCE term, Jring . This
approach only depends on the quality of the approximation

of the exact wave functions obtained from the calculations
and the correctness of the modeling.
The three systems here considered have different struc-

tural features. SrCu2O3 is a two-legged ladder, with a spin
gap of 680 K.16,17 Sr2Cu3O5 is a three-legged ladder without
spin gap. The structure of CaCu2O3 is similar to that of
SrCu2O3, but the Cu-O-Cu bond angle in the ladder rungs
equals 123°, and, therefore, the magnetic interaction along
the rung is expected to be much weaker than in SrCu2O3.
In all systems, a Cu4O12 plaquette has been chosen, em-

bedded in a set of optimized point charges placed at the
lattice positions to model the crystalline environment !see
Fig. 1". The Cu ions directely bonded to the cluster have
been described by total ion potentials !TIP’s" to avoid an
artificial polarization of the oxygen orbitals. TIP’s have been
also employed to represent the Sr and Ca ions in the neigh-
borhood of the cluster. The comparison of the cluster model
and periodic calculations on related compounds has shown
that this representation of the crystal is sufficient to accu-
rately describe the type of interactions, subject of the present
study.18 Details concerning the type of configuration interac-
tion !CI" calculations performed and the basis set used can be
found in Ref. 19.
The strategy to extract the effective 4SCE interaction in

FIG. 1. Cu4O12 plaquettes and first-neighbor TIP’s environment
models for !a" La2CuO4, !b" SrCu2O3 and CaCu2O3, and !c"
Sr2Cu3O5 compounds. Gray, small black, and big dark circles cor-
respond, respectively, to Cu, O, and counterions atoms (Sr!2,
Ca!2, or La!3). The different types of exchange interactions in the
spin ladders are shown in !d".

FIG. 2. Four-spin cyclic exchange couplings: !a" Jring1, circular
movement of the electrons, !b" Jring2, simultaneous exchange along
the legs, and !c" Jring3, simultaneous exchange across the rungs.

TABLE I. The Heisenberg Hamiltonian on the basis of the model space for SrCu2O3 and CaCu2O3 . Jr1 , Jr2, and Jr3 correspond,
respectively, to Jring1, Jring2, and Jring3 !see text".
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the CuO2 layers of La2CuO4 has been reported in Ref. 19.
For symmetry reasons, all the effective parameters in the
plaquette (J , Jdiag , and Jring) can be evaluated from energy
differences of the lowest states in the plaquette in La2CuO4.
In the case of the ladders, the number of unknown param-
eters is larger and the spectrum is no longer sufficient.
Let us consider the Cu4O12 fragment in some more detail.

The four unpaired electrons are located in the in-plane
dx2"y2-type orbitals centered on each Cu atom. Calling a, b,
c, and d the four magnetic orbitals !the rungs being a-b and
d-c), the model space S is constituted by six neutral deter-
minants with Ms#0. Table I shows the extended Heisenberg
Hamiltonian for four spins in a rectangular cluster on the
basis of this model space. Jring1, Jring2, and Jring3 concern
the three types of 4SCE interactions present in the plaquette
!Fig. 2": Jring1#Jring

abcd produces the circulation of all the
spins in the plaquette, and Jring2#Jring

adbc and Jring3#Jring
abdc

control, respectively, the simultaneous exchange of the spins
in the two legs and across the two rungs. In the case of
Sr2Cu3O5, we can distinguish between the internal J !

int and
the external leg J !

ext , and then, in the diagonal elements of
the matrix, J ! must be replaced by (J !

ext!J !
int)/2.

The diagonalization of this matrix gives six eigenstates of
different spin-space symmetries. Figure 3 shows the spec-
trum written on the basis of the parameters of the model

Hamiltonian. In all the cases, there are five energy differ-
ences. For SrCu2O3 and CaCu2O3, there are six parameters;
for Sr2Cu3O5 there are seven. In order to avoid a bias in the
determination of these sets of parameters, we use the effec-
tive Hamiltonian theory20 to evaluate all parameters, instead
of neglecting beforehand the presumably small secondary
four-spin interactions Jring2 and Jring3.
Our six eigenstates ''k& !with energies Ek) have the larg-

est projections on the model space S, with PS
#$ I!S'( I&%( I' the projector on the model space. The Bloch
effective Hamiltonian20 can be written as

HBloch'PS'k&#Ek'PS'k&, !2"
that is, the eigenvectors of this effective Hamiltonian are
projections of the exact eigenvectors on the model space and
their eigenenergies are the ones of the CI space. The spectral
representation of the Bloch effective Hamiltonian is HBloch

#$k'PS'k&Ek%PS'k
†', where 'PS'k

†&#S"1'PS'k& corre-
sponds to the biorthogonal vectors, S being the overlap ma-
trix between the projections 'PS'k&. Using this representa-
tion, it is possible to extract the values of the complete set of
parameters.
The values obtained for the three spin ladders are pre-

sented in Table II, together with those extracted for the 2D
La2CuO4 system.19 For SrCu2O3 and Sr2Cu3O5, the J! /J !
ratio is closer to 1 than to 0.5, consistent with the geometri-
cal structure of the ladders, and in agreement with the values
obtained for SrCu2O3 from binuclear clusters.5 The NN in-
teractions are always larger than for the 2D La2CuO4 com-
pound. The diagonal interaction is antiferromagnetic, as in
the 2D cuprates,8,21 with values around "15 meV. Regard-
ing the cyclic terms, the parameters Jring2 and Jring3 are
small in all cases. They are never larger than 4 meV and are
not explicitly reported !hereafter, Jring refers to Jring1). No-
tice, however, that this is an a posteriori information. The
4SCE is around 35 meV, significantly larger than for
La2CuO4. The Jring /J! ratio is 0.22 for both spin-ladder
compounds, and it is consistent with that proposed by Mat-
suda et al.15 for La6Ca8Cu24O41 and the value suggested by
Brehmer from numerical diagonalizations,12 but smaller than
those obtained for SrCu2O3 from the diagonalization of the
d-p model Hamiltonian (Jring /J!#0.4).4
The results for the CaCu2O3 system reflect the effect of

the folding of the Cu-O-Cu rung angle. The coupling across
the rungs is quite small, the bending of the Cu-O-Cu bond
induces an unfavorable overlap of the active dx2"y2 orbitals

FIG. 3. Spectrum of the plaquette with one electron per Cu atom
for SrCu2O3 and CaCu2O3. For Sr2Cu3O5, the parameter J ! must
be replaced by (J !

ext!J !
int)/2. On the left, the corresponding sym-

metry of the different states in the D2h group.

TABLE II. Exchange parameters for SrCu2O3 , Sr2Cu3O5 , CaCu2O3, and La2CuO4. All parameters in meV, except U in eV.

J ! J! Jdiag Jring J! /J ! Jring /J! U !eV" (Jring
ladder/Jring

2D )pert (Jring
ladder/Jring

2D )abinitio

SrCu2O3 "203 "157 "13 34 0.77 0.22 6.10 a 2.49 2.43
Sr2Cu3O5 "195 (ext) "177 "14 39 0.91 !ext" 0.22 6.10 a 2.78 2.79

"208 (int) 0.85 !int"
CaCu2O3 "147 "15 "0.2 4 0.10 0.26 6.60 a 0.16 0.29
La2CuO4 "124 "124 "6.5 14 1.00 0.11 7.31 b 1.0 1.0

aReference 24.
bReference 23.
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and the bridging oxygen ones. On the other hand, the J !
value is "147 meV, larger than the NN coupling in 2D cu-
prates, and in good agreement with the estimations coming
from magnetic susceptibility and neutron diffraction22 (J !#
"167$25 meV). Both the NNN interaction and the 4SCE
are also affected by the folding. However, the Jring /J! ratio
is 0.26, similar to those obtained for the two other ladder
compounds, and larger than the value reported for 2D cu-
prates.
As mentioned above, the 4SCE is a fourth-order term,

scaling as 80t4/U3. The perturbation theory second-order
contribution to the magnetic coupling takes the form J
#"4t2/U . The perturbative expression for the 4SCE can be
written as Jring

pert#80t!
2 t !
2/U3#5J!J ! /U , and the perturbative

Jring
ladder/Jring

2D ratio is

Jring
ladder

Jring
2D #

J!J !

J2D
2

U2D

Uladder
. !3"

Table II reports the perturbative estimates of the
Jring
ladder/Jring

2D ratio, together with the on-site Coulomb repul-

sion, determined from ab initio quantum chemistry calcula-
tions on embedded binuclear clusters !Ref. 23 for the 2D
cuprates and Ref. 24 for the ladders". An excellent agreement
between the perturbative and the ab initio ratios is observed.
!A similar behavior has been found for the perturbative esti-
mates of Jring2 and Jring3 as will be shown elsewhere.

24" We
can conclude that the larger values found for the 4SCE term
in the spin-ladder cuprates reflect the enlargement of the NN
coupling constants and the reduction of the on-site repulsion
U with respect to the 2D cuprates. The NN coupling constant
depends on t and U. Both parameters are affected by the
changes in the Madelung potential and the different polariza-
tion effects in the ladder compounds in comparison to the 2D
La2CuO4 compound. A detailed analysis of these effects will
be given in a forthcoming paper.24
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