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Method and model 
 
 
 
 
A detailed knowledge of catalysis and surface chemistry at a molecular level is crucial 

to understanding chemical processes. Theoretical simulations can provide a better 
interpretation of experimental results and provide information that cannot be obtained or is 
difficult to obtain experimentally. The last few years have seen enormous improvements in 
computer capacity and speed. There is now a wide and increasing variety of methods in 
Computational Chemistry. We are able to perform electronic structure calculations on 
models of sufficient size to represent the ‘chemistry’ occurring at surfaces. Computational 
Chemistry tools can reliably predict interaction energies, geometric structures and 
electronic properties. 

This chapter is organised as follows: section 2.1 introduces the Born-Oppenheimer 
approximation; section 2.2 summarises the basic principles of Density Functional Theory; 
section 2.3 describes the common strategies for dealing with infinite systems; section 2.4 
briefly explains pseudopotential approximation; section 2.5 summarises the key features of 
the program used to perform the calculations, VASP; section 2.6 discusses the fundamental 
principles of RAIRS and HREELS spectroscopies and develops the approximations used in 
this thesis to simulate the vibrational spectra; section 2.7 describes the transition state 
search algorithms currently available in VASP and the strategies used in this thesis to find 
saddle points; section 2.8 discusses the calculation of the Density of States; section 2.9 
summarises the approximations used to construct the pressure and temperature phase 
diagrams and section 2.10 presents and discusses some computational details of this thesis. 
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2.1 Born-Oppenheimer approximation  
 
The Schrödinger equation is the key equation of the science of quantum mechanics. 

This equation, developed by the physicist Erwin Schrödinger in 1925-26, has the same 
central importance to quantum mechanics as Newton's laws of motion have to the large-
scale phenomena of classical mechanics. 

For a system composed of N electrons and M nuclei, it is expressed as: 
 

{ }{ }( ) { }{ }( )µµ RrERrH innin

rrrr
Ψ=Ψˆ                                   (2.1) 

 
where Ĥ is the time-independent Hamiltonian, nΨ  is the wave function of the system 
associated to the energy level En (n accounts for the quantisation of the system) and ir

r
 and 

µR
r

 are the spatial coordinates of the electrons and the nuclei, respectively. All the 
properties of the electron-nuclei system are described by equation 2.1 (except for 
relativistic effects). By solving this equation we therefore obtain all the physico-chemical 
properties of the target system. Unfortunately, this involves dealing with a system of 
(N+M) interacting particles. Even for a very small system, this process is too complex to 
solve (even numerically!). To solve the Schrödinger equation, therefore, several 
approximations are needed. 
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For systems with many variables, a common way to simplify complicated equations is 
to separate the variables. One such separation step, universally accepted in electronic 
structure theory, is the separation of nuclear and electronic motion—the so-called Born-
Oppenheimer approximation [1]. This approximation is based on the difference in mass 
between nuclei and electrons. The lightest nucleus, the one of the hydrogen atom, is 
actually 1,836 times heavier than an electron. We can therefore consider nuclear and 
electronic motion as independent. Electrons follow nuclei instantaneously during the 
motion of the latter, i.e. they change their wave function very quickly with respect to the 
timescale of nuclei. We can then rewrite the expression for the Hamiltonian as 

 
 elnuc HTH ˆˆˆ +=                                                         (2.2) 

 
The electronic Hamiltonian elĤ  depends parametrically on nuclear positions (Rµ): the 

nuclear coordinates appear in the electronic Hamiltonian, but derivatives with respect to 
these coordinates do not. Therefore, the electronic problem can be solved for nuclei that are 
momentarily fixed in space. 

 
),()(),(),(ˆ RrRERrRrH elelelel ψψ =                                  (2.3) 

 
R and r are the total set of nuclear and electronic coordinates. The total wave function 

can then be approximated as a product 
 

),()(),( RrRRr elnucBO ψψ=Ψ                                          (2.4) 
 

where the nuclear wave function )(Rnucψ is a solution to the equation 
 

)()()}()(ˆ{ RERRERT nucnucelnuc ψψ =+                                  (2.5) 
 
Separation of the electronic and nuclear wave functions clearly simplifies the 

resolution of the Schrödinger equation. The determination of the total wave function of the 
system nuclei plus electrons is reduced to the determination of the total electronic wave 
function. However, for systems with hundreds or even thousands of electrons the electronic 
part of the problem is too complicated to be treated exactly.  

First-principle quantum chemical methods are intended to solve ab initio (‘from 
scratch’) the electronic Schrödinger equation. Ab initio methods include wave function 
methods—e.g. Hartree-Fock (HF), Configuration Interaction (CI) theory, Perturbation 
theory (PT) and coupled Cluster Methods (CC)—and Density Functional Theory (DFT) 
methods [2–7]. The former, which can provide extremely accurate results if a high level of 
Configuration Interactions is included, are limited to 10–100 electrons because of the great 
scaling with the system size. For transition metal surfaces its application is therefore 
restricted to quite small systems (tens of atoms). This usually makes these methods 
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unattractive to model transition metal catalysts. In fact, in surface science and catalysis they 
are mainly used as benchmarks [8] that can be used to gauge the accuracy of less 
computational-time-demanding DFT methods. Density Functional Theory has therefore 
been used for the calculations in this thesis. In the next section we briefly report the bases 
of this method. 

 
 

2.2 Density Functional Theory 
 
In the mid 1920s, Thomas and Fermi [9] made a crucial advance towards the resolution 

of the electronic Hamiltonian. They established that the energy of a homogeneous electron 
gas is a function of its electronic density. In 1964, Hohenberg and Kohn [10] showed that 
this principle can be generalised to any kind of electronic system and established the basis 
of Density Functional Theory (DFT). For a system of N electrons and M nuclei, the 
electronic Hamiltonian can be written as 

 
WVTH ˆˆˆˆ ++=                                                      (2.6) 

 
The first term in equation (2.6), T̂ , is the kinetic energy arising from the motion of 

electrons, the second term is the potential energy of the nuclear-electron attraction, V̂ , and 
the third term is the electron-electron repulsion, Ŵ . 

Hohenberg and Kohn proved that the ground-state molecular energy, wave function, 
and all other molecular properties are uniquely determined by the exact electron density, 

)(r
r

ρ . Therefore, the central focus of DFT is the electronic density, ρ , rather than the wave 
function,ψ . If N is the number of electrons, the density function, )(r

r
ρ , is defined by 

 

NdrdrdsNr ......)( 21
2

∫ ∫= ψρ                                         (2.7) 
 

where ψ  is the electronic wave function of the system. Then 
 

 Ndrr =∫ )(ρ                                                    (2.8) 

 
DFT is based on two main theorems, the first and second Hohenberg-Kohn theorems: 

Theorem 1. The external potential V̂  is a unique functional of ρ ; since V fixes the 
Hamiltonian, the particle ground state is a unique functional of ρ . Therefore, there is a 
direct relationship between the electronic density and the energy (and its individual parts). 

 
[ ] [ ] [ ] [ ]ρρρρ WVTE ++=                                           (2.9) 

[ ] ( ) ( )drrrV νρρ ∫=                                              (2.10) 
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Theorem 2. For a trial density )(r

r
ρ , such as 0)( ≥r

r
ρ and Ndrr =∫ )(ρ , [ ] [ ]ρρ EE ≤00 . 

In other words, the energy of the system [ ]ρE  reaches a minimum value 0E  for the exact 
density 0ρ . This is the so-called variational principle. 

If we take a closer look at equation (2.9), we can separate the [ ]ρW  functional into two 
contributions: the classic interaction between two charge densities (Coulomb) and a second 
term that contains the non-classical parts (eq. 2.11). 

 

[ ] ( ) ( ) [ ] [ ] [ ]ρρρ
ρρ

ρ NCLCLNCL WWWrdrd
r

rrW +=+= ∫∫ 21
12

21

2
1 rr

rr

              (2.11) 

 
The complete energy functional can be expressed as 
  

[ ] [ ] [ ] [ ] [ ]ρρρρρ NCLCL WWVTE +++=                               (2.12) 
 
In equation (2.12) only the [ ]ρV  and [ ]ρCLW terms are known. To solve the problem of 

the kinetic energy functional, this term is split into two contributions: [ ]ρsT and [ ]ρCT . The 
former is expressed as a one-particle approach (2.13) and the latter, still unknown, contains 
the difference between the real functional and the one particle term. 

 

[ ] ∑ ∇=
i

iiST ψψρ 2

2
1                                               (2.13) 

  
Equation (2.12) can be rewritten as follows 
 

 [ ] [ ] [ ] [ ] [ ] [ ]ρρρρρρ NCLCLCS WWVTTE ++++=                              (2.15) 
                            [ ] [ ] [ ] [ ]ρρρρ XCCLS EWVT +++=  
 

where the [ ]ρXCE or exchange-correlation functional contains all the unknown terms (all 
the many-body interactions).   

Unfortunately, the Hohenberg and Kohn theorems do not tell us how to calculate E0 
from ρ  since the exact form of the functional is not known. Kohn and Sham [11] invented 
an indirect approach to this functional. In the Kohn-Sham method, the exact ground state 
can be found from the Kohn-Sham orbitals, 

 
( ) ( ) 2∑=

i
i rr ψρ                                                  (2.16) 

 
The Kohn-Sham orbitals are obtained from the one-electron Kohn-Sham equations 
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iii

KS
Sf ψεψ =                                                    (2.17) 

 
where KS

Sf  is  

( ) )(
2
1

1
2

12

22 r
r
Z

rd
r
rf KS

S νρ
µ µ

µ +∑+∫−∇−=
r

r

                         (2.18) 

 
These equations are solved iteratively. Thus, we propose a guess density, which is used 

to build the KS
Sf , then we solve the set of equations (2.17) and obtain a new density, which 

is used to build a second KS
Sf , until self-consistency is reached. No one knows what the 

exact functional [ ]ρXCE  is. Finding the analytical expression of the exchange-correlation 
term is a major task in DFT. Some approximate functionals have been proposed. 

 
 

2.2.1 The exchange-correlation functional 
 
 To describe [ ])(rEXC ρ , two approximations are generally used: the Local Density 

Approximation (LDA) and the Generalised Gradient Approximation (GGA).  
LDA is based on a model called uniform electron gas [9]. This approximation assumes 

that the charge density varies slowly throughout a molecule so that a localised region of the 
molecule behaves like a uniform electron gas. The exchange-correlation energy is then 
expressed as a function of the exchange-correlation functional per particle of a uniform 
electron gas, XCε . 

 
[ ] [ ]drrrrE XC

LDA
XC )()()( ρερρ ∫=                                        (2.19) 

 
The energy functional accounts for the local value of ρ at each point in space regardless of 
any other point. Vosko, Wilk and Nusair (VWN) [12] reported the first analytic expression 
for the correlation term within this approximation. 

GGA adds an additional term to the LDA exchange-correlation energy. Gradient 
corrections are introduced to allow exchange-correlation functional to vary (the density 
gradient is taken into account). [ ])(rEXC ρ  is expressed  as 

 
[ ] ( ) drrrrfrE XC

GGA
XC ∫ ∇= )()(),()( ρρρρ                               (2.20) 

 
There are many exchange-correlation expressions in the literature, e.g. Perdew (P86), 

Becke (B86, B88), Perdew-Wang (PW91), Laming-Termath-Handy (CAM) and Perdew-
Burke-Enzerhof (PBE) for the exchange part and Perdew (P86), Lee-Yang-Parr (LYP), 
Perdew-Wang (PW91) and Perdew-Burke-Enzerhof (PBE) for the correlation term [13].  
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There is a third class of functionals in DFT called hybrid functionals, like the popular 
B3LYP [14] exchange-correlation functional. These include the exact exchange energy as a 
contribution from the exact exchange. This approach has extensively proven its accuracy 
for many systems, although they are more time-demanding than non-hybrid exchange-
correlation functionals because of the calculation of the two-electron integrals in the exact 
exchange.  

We chose the PW91 exchange-correlation functional for all the calculations performed 
in this thesis because of its good description of the chemical bond [15]. 

If the exact form of Exc is unknown, one cannot say very much about the performance 
of a new functional until it is tested with different chemical systems. The exchange-
correlation functional is still the most restrictive approximation in DFT calculations. 
Unfortunately, other approximations are needed to cope with the systems studied in this 
thesis (hydrocarbons on transition metal surfaces). 

 
 

2.3 Periodic calculations 
 
Metal crystals have an infinite number of atoms. Working with a system with an 

infinite number of atoms implies that the wave function has to be calculated for each of the 
infinite number of electrons and the basis set in which the wave function is expressed will 
be also infinite. In this section we briefly describe how to overcome these difficulties. 

 
2.3.1 Modelling a periodic system 

 
We are essentially interested in metallic surfaces. These bi-dimensional systems can be 

modelled by two different approaches: the finite, or the so-called cluster model approach 
[16–19], and the periodic or slab model [17,20]. Although finite models have extensively 
proven their ability to describe local properties [21–23], we chose periodic models to 
perform the calculations in this thesis because of the poor convergence of adsorption 
energies with respect to cluster size and the need to use a considerably large cluster in order 
to avoid undesirable edge effects.  

The slab model is based on the band-structure theory. A bi-dimensional slab is formed 
by periodically repeating the geometry of the system on the x and y axes. In the third 
direction (z axes), the periodicity is broken to create the surface. Depending on the basis set 
used in the periodic calculation, this slab is further repeated in the direction perpendicular 
to the surface with a large vacuum width between the repeated slabs (see Figure 2.1). This 
periodic approach avoids problems related to the artificial cluster boundaries, once the 
limitations associated with the model’s finite number of layers are under control. Another 
advantage of supercell models is that they are well suited to studying the influence of the 
adsorbates coverage on the surface. However, to study low coverage situations with slab 
models we need to use large supercells, with a concomitant increase in computational costs. 
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2.3.2 Bloch’s theorem and the plane wave basis set 

 
In a perfect metallic crystal, atoms are arranged in a regular way. The repeated units of 

the system are all identical and can be obtained by simple repetition of the unit cell [24]. 
This means that the Hamiltonian Ĥ  has to commute with the translation operator T̂  

 
[ ] 0ˆ,ˆ =TH                                                        (2.21) 

 
Bloch’s theorem [25] uses the periodicity of the crystal to reduce the infinite number of 

the one-electron wave function s to be computed to the number of electrons in the unit cell 
of the crystal. Then we can express the one-electron wave function s as the product of a cell 
periodic part and a wave-like part (Bloch functions) 

 

 
 

Figure 2.1. Sketch of the slab model. For sake of simplicity, only x and z directions are 
shown.  
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)()·(exp)( ,, RRkiR knBANDkn

rrrr
rr φψ =                                      (2.22a) 

 
where kn

r
,ψ  is the wave function  of the periodic system, R

r
 is the position in the crystal, k

r
 

is a vector of the reciprocal space of the crystal and )(, RknBAND

r
rφ  is a periodic function 

associated with a band nBAND (or ‘energy level’ for periodic systems), which has the same 
periodicity of the system. The problem is then transferred from the real to the reciprocal 
space. The infinite number of electrons is now mapped onto the problem of expressing the 
wave function in terms of an infinite number of reciprocal space vectors within the first 
Brillouin zone [26], k

r
. Unfortunately, we cannot deal with an infinite number of k

r
. We 

can solve this problem by sampling the Brillouin zone at special sets of k-points. The k-
points sample can be calculated by various methods. The most popular ones are the 
Monkhorst-Pack method [27] and the Chadi-Cohen [28] method. 

The total wave function at each k-point can be expressed in terms of a discrete plane-
wave basis set (3D-Fourrier series) 

 
RkgiaR

g
kgnBANDkn

rrrr
r

rrr )(exp)( ,,, +∑=ψ                                 (2.22) 

 
In principle this set is infinite but we can consider it converged for large values of 
kg
rr

+ . Introducing a plane-wave energy cut-off offcutGkg −<+
rr

reduces the basis set to a 

finite size. This energy cut-off value depends on the system one is working with. Therefore, 
it is strictly necessary to test the convergence of the energy for a given cut-off value. 
Moreover, the use of plane-waves forces us to describe the vacuum with the same accuracy 
as the regions of high electronic density (atoms). Usually a large number of plane waves are 
necessary.  

Using pseudopotentials reduces the offcutE −  and, consequently, the size of the 
expansion. 

 
 

2.4 Using Pseudopotentials. The PAW method 
 
Working with transition metals involves dealing with a large number of electrons, so 

the computational time increases exponentially as the system size increases. ‘Luckily’, the 
chemical bond does not strongly depend on the core electrons. In fact, only the bonding 
energy is affected by the average electrostatic potential generated in the vicinity of the core. 
The aim is then to model the core electrons and their interaction with the other electrons.  

 The concept of pseudopotential dates from the 1930s, when Fermi and Hellmann 
proposed solving the Schrödinger equation for the valence electrons in the subspace 
orthogonal to the core electrons. This concept was extended and led to the development of 
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pseudopotential methods such as ‘norm-conserving’ pseudopotentials [29], ultra-soft 
pseudopotentials (US-PP) [30] and the Projector Augmented Wave (PAW) method [31]. 

The PAW method, introduced by Blöchl, is built on projector functions that allow the 
complicated wave functions to be mapped onto ‘pseudo’ wave functions, which are easier 
to treat computationally. With this method, we model the core electrons taking the 
difference between the ‘true’ wave function and a pseudo-wave function obtained and 
neglecting the core electrons. The Schrödinger equation is then expressed as 

 
~

*
~

* Ψ=Ψ ττττ EH                                                   (2.23) 

where 
~

Ψ is the pseudo wave function  and τ  is the operator of transformation that 

connects the exact wave function ( Ψ ) and the pseudo-wave function (
~

Ψ ). 
In DFT, we solve the Schrödinger equation to determine the ‘pseudo’-wave functions. 

Projectors then enable us to obtain the exact density (whenever the basis set expansion is 
complete). 

The PAW method has extensively proven its high performance for studying molecules, 
surfaces and solids. We therefore used these pseudopotentials to perform our calculations. 

 
 

2.5 The VASP code 
 
The program VASP (Vienna Ab initio Simulation Package), developed by G. Kresse, J. 

Furthmüller and J. Hafner [32], has been used for all the calculations in this thesis. This 
code applies DFT to periodical systems, using plane waves and pseudopotentials. VASP 
includes an optimised set of US-PP and PAW potentials for all elements of the periodic 
system.  

In VASP, the Kohn-Sham equations are solved self-consistently with an iterative 
matrix diagonalisation combined with the Broyden/Pulay mixing method [33,34] for charge 
density. Combining these two techniques makes the code very efficient, especially for 
transition metal systems that present a complex band structure around the Fermi level. The 
algorithms implemented in VASP are based on the conjugate gradient scheme, the block 
Davidson scheme or a residual minimisation scheme (RMM). These algorithms work as 
follows: they calculate the electronic ground state for a given geometry, calculate forces, 
and then, based on these forces, predict a new geometry. These steps are then repeated until 
an energy convergence criterion is reached. A special algorithm is the quasi-Newton, where 
the energy criterion is ignored and only the forces are minimised. A detailed description of 
the algorithms implemented in VASP can be found in references [35,36]. 

The Hamiltonian is determined in pieces in direct and reciprocal space. Fast Fourrier 
Transformations (FFT) are used to switch from direct to reciprocal space and vice-versa. 
This allows for partial diagonalisation.  

Besides the pure local density approximation LDA, several gradient-corrected 
functionals are implemented in VASP to account for the non-local in the exchange-
correlation (BP, PW91, PBE). 
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The number of k-points in the irreducible part of the Brillouin zone is crucial for 
accurately integrating the properties computed. The k-points sample is usually calculated 
by the program using the Monkhorst-Pack method [27]. To improve the convergence with 
respect the k-points sampling, several techniques can be used: the linear tetrahedron 
method, smearing methods such as finite temperature approaches or improved functional 
form (Methfessel and Paxton method [37], and finite methods such as gaussian or fermi 
smearing).  

Transition state structures and energies can also be found by various techniques (NEB, 
Dimer method) implemented in the VASP code. Frequencies and normal modes can also be 
calculated with this code. Unfortunately, intensities cannot be directly computed. 

Further information about VASP can be found at: 
http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html. 

 
 

2.6 Vibrational analysis 
  

2.6.1 Experimental Techniques 
 
Vibrational data on the adsorbates have been widely used to determine the bonding 

pattern of the adsorbed species, including what sort of site the adsorbate has adopted. It is 
also very useful for providing valuable information about any fragmentation or reaction that 
has taken place. Two main techniques have been developed for studying vibrations of 
adsorbed species on single-crystal metallic surfaces: high-resolution electron energy loss 
spectroscopy, HREELS (or vibrational EELS, VEELS) and reflection adsorption infrared 
spectroscopy, RAIRS. We can find detailed and accurate descriptions of these techniques in 
references [38–42]. Here we will only sketch the most important points. 

 
2.6.1.1 Reflection Adsorption Infrared Spectroscopy (RAIRS) 
 

The application of IR techniques to surfaces owes much of its early development to the 
work of Eichens, Sheppard and Greenler. Reflection-adsorption infrared spectroscopy 
(RAIRS) allows for the study of metallic films, single crystals and opaque solids by 
reflection. This technique has also proved to be a particularly powerful research tool for 
studying adsorbed phases on metal surfaces. Greenler [43] was the first to demonstrate that 
the absorption of IR radiation by adsorbates on metallic films is enhanced at high angles of 
incidence. Figure 2.2 illustrates the plane of incidence (which contains the incident and the 
reflected rays and the surface normal), and the so-called s (perpendicular to the plane of 
incidence) and p (parallel to the plane of incidence) components of the radiation. At the 
interface, the p-polarised radiation has a net amplitude almost twice that of the incident 
radiation (p+p’).On the other hand, for s-polarised radiation the incident and emitted rays (s 
and s’) undergo a 180º transformation with respect to each other, so the net amplitude of the 
radiation parallel to the surface is zero. As a result, only vibrations with a component of the 
dynamic dipole that is polarised in the direction normal to the surface can be observed in 
RAIRS. 
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The IR spectrum of an adsorbate is recorded by tacking a single reflection of an 

infrared beam at high angles of incidence and taking the ratio of the resulting spectrum to 
the spectrum obtained for the reflection off the clean surface. The presence of the adsorbate 
causes small changes in reflectivity at the frequencies of the adsorbate vibrations, where IR 
radiation is absorbed.  

Surface IR spectroscopy can be performed only if the substrate does not absorb 
strongly. Depending on the substrate, this leads to a cut-off in the 500–1000 cm-1 region of 
the spectrum. The vibrational frequencies of both substrate-adsorbate bond and surface 
phonons are too low to be studied by this technique. 

 
2.6.1.2 High Resolution Electron Energy Loss Spectroscopy (HREELS) 

 
In the early 1970s, Ibach and co-workers revolutionised surface science thanks to the 

development of this technique as a surface probe. Early studies demonstrated that HREELS 
is sensitive to adsorbates with relatively weak dynamic dipoles.  At that time, IR methods 
such as RAIRS restricted its application to molecules with large dynamic dipole moments 
due to the limitations of equipment and detectors. Moreover, HREELS can interrogate the 
low-frequency region (100–800 cm-1), where RAIRS cannot be used. 

In an EELS experiment, the energetic distribution of electrons back-scattered from a 
sample bombarded with low energy electrons (E0, typically in the range of about 8–80 cm-1) 
is measured and the energy analysis is performed around the primary energy along a given 
direction with respect to the surface normal (see Figure 2.3). The energy E (energy of the 
scattered electrons) at which a signal occurs is (equation 2.24) 

 
νhEE −= 0                                                       (2.24) 

 
where E0 is the energy of the incident electrons, h  is the Planck’s constant and ν  is the 
frequency of the excited vibration.  

 
 

    Figure 2.2. Definition of the s and p polarised radiation in the RAIRS experiment. 
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To correctly interpret EEL spectra we need to know how electrons scatter inelastically. 

Two types of scattering of electrons can be considered (dipole scattering and impact 
scattering). A third mechanism in which an electron is trapped at the surface for a finite 
time will not be discussed here.  

  
Dipole scattering mechanism 
 

The dipole scattering mechanism is due to the long-range interaction between the 
electric fields from the incoming electrons and the adsorbate dipoles, which vary in 
magnitude during the vibration. The scattered electrons are grouped in a small angle around 
the specular direction. On metal surfaces, the conduction electrons screen the electric field 
associated with the vibration dipole inside the solid. Therefore, in a first approximation, we 
need to consider both the electric field generated by the dipole itself and its image 
underneath the metal surface—the so-called image-charge effect. Figure 2.4 shows that, 
for an adsorbate dipole of magnitude µ oriented parallel to the surface plane, the image 
dipole cancels out the surface dipole such that the net dipole is null. However, for a dipole 
normal to the surface, the presence of the image dipole results in a reinforcement of the net 
dipole. Therefore, only the vibrating modes that have a component that is perpendicular to 
the surface are detectable, i.e. only the IR active modes. For this reason, a RAIRS spectrum 
and a dipolar EELS spectrum are equivalent in terms of band positions, although intensities 
may vary due to differences in scattering and absorption factors. The absolute intensity of 
energy loss peaks from the dipole scattering mechanism is expressed as [41,44] 
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    Figure 2.3. Schematic representation of the HREELS experiment. 
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where a0 is the Bohr radius, ε0 is the vacuum permittivity, E0 is the primary energy of the 

electron beam, θI is the incident angle, ⎟
⎠
⎞⎜

⎝
⎛

kQδ
δµ are the dynamic dipole moment 

derivatives and ns [45] is the surface coverage. )ˆ( CF θ , θE and  Cθ̂ are defined as 
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where θC  is the acceptance angle of the spectrometer. 

 
Impact scattering mechanism 

 
This scattering mechanism is best visualised by assuming that the incoming electron 

‘hits’ or ‘impacts’ the adsorbate and is scattered by the surface atomic potentials, which are 
modulated at the vibrational frequencies. This mechanism is not subject to the same 
selection rule as dipole scattering, i.e. the rules valid for RAIRS are no longer appropriate. 
To determine whether a vibrational mode will lead to an impact scattered loss peak, we 
need to consider the orientation of the dynamic dipole with respect to the incidence plane of 

 
 

Figure 2.4. Image dipole at a metallic surface. 
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the electron beam (specifically to its symmetry elements). This involves group theory, 
which is beyond the scope of this chapter. In any case, the key point is that it is possible to 
detect vibrational modes that produce dynamic dipoles both perpendicular and parallel to 
the metal surface. Impact scattering is only observed in the off-specular direction. 

RAIRS and EELS can be considered complementary techniques. Table 2.1 
summarises the main characteristics of these two techniques. 

 
2.6.2 Simulation of vibrational spectra 

 
The theoretical simulation of vibrational spectra is becoming increasingly important in 

catalysis research. Its uses are diverse. In this thesis we use the theoretically predicted 
frequencies, intensities and normal modes to corroborate dubious or ambiguous 
assignments, identify reactive intermediates and characterise transition states.  

The vibrational frequencies and the corresponding normal modes were calculated 
within the harmonic approach using the VASP code. We greatly simplified the vibrational 
treatment by neglecting the coupling between surface phonons and adsorbate vibrations. 
We performed several tests to improve the description of the molecule-metal bond 
vibrations (frequencies below 600 cm-1). To do this we included the two uppermost metal 
layers in the Hessian matrix. These calculations showed that the frequency changes were 
always less than 10 cm-1 (for more details see Chapter 3).  

In VASP, the Hessian dynamical matrix is built with finite differences of the first 
derivatives of the total energy by geometrical perturbation of the optimised Cartesian 
coordinates. To establish the step length for these numerical differences, we performed 
extensive tests. These displacements should be taken as large as possible to have 
meaningful numerical values but small enough to avoid going beyond the harmonic region. 
We explored the 0.005 to 0.05 Å range and established that the optimal step length 
( )ir∆ was 0.02 Å. The diagonalisation of the Hessian matrix provides the adsorbate 
frequencies and the corresponding normal modes Qk with a matrix of weights Pij. 

Table 2.1. Comparative physical characteristics of the RAIRS and HREELS techniques 
 

 RAIRS HREELS 
Sample preparation Easy Difficult 
Temperature range (K) 70-600 Ambient 
Pressure range (mbar) Even above atmospheric P ~10-6 
Resolution (cm-1) 0.5-8 20-80a 
Lower limit (cm-1)  500-1000 <100 
Information Adsorbed species 

Functional groups Metal-ligand bonds 
 

a advanced spectrometers can now attain 8 cm-1. 



Method and model 

 24

 To our knowledge, VASP does not compute intensities directly but provides the 
dynamical dipole moment at each configuration used to construct the Hessian matrix. We 

calculated the first derivatives of the dynamical dipole moment ⎟
⎠
⎞

⎜
⎝
⎛

kdQ
dµ  to estimate the 

RAIRS and dipolar HREELS intensities for each normal mode. Note that, in RAIRS and 
dipolar HREELS, only vibrational modes that lead to an oscillating dipolar moment 
perpendicular to the surface are active. Consequently, to calculate the intensities we only 
considered the z-component of the dipole moment, zµ . 

RAIRS intensities are directly related to the square of the first derivative of zµ  with 
respect to the normal mode Qk. We evaluated the RAIRS intensities in the Cartesian 
coordinate system ( )ir∆  following 
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where µz is the z-component of the dipole moment, ir∆  are the Cartesian displacements and 

i

ki

m
P  is the mass weighted  coordinate matrix of the normal mode. 

To simulate the dipole HREELS spectra, we computed the absolute intensities k
lossI of 

the energy losses normalised to the elastic peak intensity elasticI  as 
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where ns [45] is the surface coverage, kω  is the calculated frequency associated with a 
given normal mode and )( kF ω is a function of some fixed experimental parameters (energy 
of the electron beam and working angles; see equations 2.26 to 2.28). 

 
2/1)1)(ˆ()( ECk FF θθω −=                                            (2.31) 

 
 

2.7 Transition state search 
 
Precise knowledge of the reaction energetics is essential for determining the minimum 

energy pathway leading from reactants to the desired products. Also, the possible 
intermediates and transition states need to be identified. At minima (reactants, products and 
intermediates) and transition states, the first derivatives of the energy (forces) must be zero. 
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However, unlike minima, transition states (i.e. first order saddle points) must be a 
maximum along one direction (the one which connects the reactant and the product 
minima) and minimum in all the other (perpendicular) directions i.e. the second derivative 
of the energy with respect to the reaction coordinate is negative but in all the other 
directions it is positive [46]. 

Transition state localisation is vital for understanding the energetics of a chemical 
reaction. A reliable method is therefore needed to obtain them. Jónsson and co-workers 
developed the two transition state search algorithms implemented in VASP and used during 
this thesis: the Nudged Elastic Band (NEB) Method and the Dimer method. These methods 
are summarised in the next sections.   

 
2.7.1 Nudged elastic band method 

 
The Nudged Elastic Band (NEB) Method [47] is an example of what is called a ‘chain-

of states’ method. With these methods, several images or states of the system are connected 

 
 

Figure 2.5. Schematic representation of the Nudged Elastic Band method. Starting from an 
initially guessed reaction path (black dot) the chain settles to the minimum energy path 
(white dot). 
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to trace out a path of some sort. Two points in the configuration space are needed (initial 
and final states). First, a set of images ([R0, R1, R2 ... RN], N-1 replicas) between the initial 
and final states, typically in the order of 4–20, is obtained by linear interpolation (Figure 
2.5). This is the most important step in the method: the initial guess has to be good enough 
to converge to a realistic Minimum Energy Path (MEP). 

 With the NEB method, the N-1 images are optimised with respect to all degrees of 
freedom except that of the reaction pathway. A spring constant is added to ensure the 
continuity of the path. The total force on an atom is the sum of the true force perpendicular 
to the local tangent and the spring force along the local tangent. The projection of the 
parallel component of the true force acting on the images and the perpendicular component 
of the spring force are cancelled.  

 
⊥−∇= |)(||| i

s
ii REFF                                                 (2.32) 

 
The two projections are  
 

iiii RERERE τ̂)()(|)( ∇−∇=∇ ⊥                                          (2.33) 
 
and 

 
( ) iiiii

s
i RRRRkF τ̂11 −+ −−−=                                           (2.34) 

 
Here, E is the energy of the system, k is the spring constant and τi the normalised local 

tangent at the image i. The above definition of the spring force ensures the constant spacing 
of the images. The program will run each image simultaneously and communicate the 
forces at the end of each ionic cycle to compute the force acting on each replica. The 
minimisation of the forces acting on the images would bring the NEB to MEP.  

Usually the number of images in NEB is too small for the length of the path and none 
of the images lies near to the transition state at the end of the minimisation process. Saddle 
point energy needs to be estimated by interpolation. The CI-NEB [48] was developed to 
cope with this problem. After several runs with the 'regular’ NEB, the highest energy image 
is identified (imax). This image is treated particularly and the force acting on it is now 
calculated as  

 
||maxmaxmax |)(2|)( iii REREF ∇+−∇=                                     (2.35) 
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where ||max |)(2 iRE∇  is twice the opposite of the true force parallel to the local tangent. The 
highest energy image is no longer affected by the spring forces. The minimisation of this 
force leads to a rigorous convergence to the saddle point.  
 
2.7.2 The Dimer method 

 
The Dimer method [49] involves working with two images (replicas, R1 and R2) of the 

target system (n atoms). This pair of images is called ‘dimer’. These two replicas have 
almost the same 3n coordinates, but are displaced a small distance from a common 
midpoint (centre of the dimer). The saddle point search algorithm involves moving the 
dimer uphill on the potential energy surface. There are two parts to each move: rotating and 
translating the dimer. Each time the dimer is translated, it has to be rotated in order to find 
the lowest curvature mode (lowest energy orientation). A rotational force RF

r
 is defined 

which is the difference in the force on the two replicas. Minimising the energy with respect 
to this rotational force aligns the dimer with the lowest curvature mode (see Figure 2.6). 

The saddle point is at a maximum along the lowest curvature direction. As well as 
being rotated, the dimer has to be translated and moved up the potential energy surface. The 
net force acting on the centre of the dimer tends to pull it towards a minimum.  

To avoid this, an effective force tF
r

 on the dimer is defined. In this modified force, the 
true force due to the potential acting in the midpoint of the dimer is defined as the opposite 
of the component along the dimer. Minimising with respect to this force brings the dimer to 
the saddle point.  

 
 

Figure 2.6. Schematic representation of the Dimer method.  
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In this thesis the Nudged Elastic Band method was used in combination with the Dimer 

method to determine the transition states. After a few iterations with the NEB, we obtained 
a rough estimate of the shape of the MEP. We then chose the two images with the highest 
energy to be the starting point for the Dimer method. Our results were refined until the 
value of the forces with the quasi-Newton algorithm implemented in VASP was negligible. 
We found that this sequence of algorithms (NEB, Dimer, quasi-Newton) was the most 
efficient for the transition state search.  

We verified the transition states identified with the NEB and Dimer methods by 
vibrational frequency analysis (see section 2.6.2), yielding a single negative/imaginary 
frequency. This imaginary frequency has to be consistent with the reaction path under 
study. 

 
 

2.8 Density of states 
 
One of the main objectives of computational surface science is to establish a detailed 

understanding of the adsorption process. Density of States (DOS) is an important tool for 
studying electronic interactions in periodic systems. For each energy E, DOS gives the 
number of states in the interval [E, E+δE] 

 

E
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∂
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=)(                           (2.36) 

 
Moreover, we can split the ‘total’ DOS into the different contributions of the atomic 

orbitals. In VASP the local orbitals are the spherical harmonics. We define the ‘projected’ 
Density of States (PDOS) as the projection of the ‘total’ DOS onto the spherical harmonics 
(of fixed radius) of each atom. With this approach, it is easier to analyse the character of the 
bond. 

 
 

2.9 Temperature and pressure phase diagrams 
 
DFT is often described as a zero-temperature, zero-pressure technique. To determine 

the stable phase at a given temperature and pressure, we must compute the Gibbs free 
energy for all the competing phases. In this thesis, we calculated the temperature pressure 
diagrams using a simple thermodynamical model [50] in which the gas phase plays the role 
of a reservoir in equilibrium with the surface and the substrate phase. Thus, it imposes its 
pressure and temperature on the adsorbed phase. The free Gibbs energy is expressed as: 
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where θ is the surface coverage, Eads is the adsorption energy (calculated with VASP), 
∆ZPE is the variation of the zero-point energy between the adsorbed phase and the gas-
phase plus the clean slab, qads and qgas are the partition functions of the adsorbed and gas 
phase, respectively, and the last term comes from the temperature pressure dependence of 
the gas phase chemical potential. 

∆ZPE is small since the hardest molecular frequencies are not significantly affected by 
the surface process and therefore do not contribute to the free Gibbs energy. Additional 
approximations were made to evaluate the partition functions. The partition function of the 
gas phase molecule is expressed as 

 
)()()( vibqtransqrotqq gasgasgasgas =                                      (2.38) 

 
For the adsorbed case the rotational and translational contributions are transformed into 

additional vibrational contributions 
 

 )(vibqq adsads =                                                    (2.39) 
 
 Finally, we assumed that the vibrational partition functions of the gas-phase, the 

adsorbed system and the clean surface are rather similar so they can be cancelled out; then: 
 

)()(
1

transqrotqq
q

gasgasgas

ads ≈                                        (2.40) 

 
For a given value of temperature and pressure, the favoured coverage is the one that 

leads to minimum ∆G. However, we should bear in mind that all our approximations were 
rather crude and the values obtained only provided general trends in adsorption. 

 
 

2.10  Computational Details 
  
In the previous sections we established the method and model we used to perform all 

the calculations in this thesis.  
To obtain generally uniform results, certain parameters have to be controlled: the DFT 

lattice constant of the metal (i.e. metal-metal distance), the ideal cut-off of the plane wave 
expansion, and the number of k-points needed to converge the energy. Also, the vacuum 
width between adjacent slabs and the thickness (number of layers) of the slabs have to be 
determined. 

First of all, we determined the DFT lattice constant that minimises the energy of the 
elementary mesh. In this thesis we studied four different metal surfaces: Cu, Pt, Pd and Rh. 
We optimised the metal-metal interatomic distance for the bulk and obtained the following 
values: 2.57 Å (Cu–Cu), 2.82 Å (Pt–Pt), 2.80 Å (Pd–Pd) and 2.72 Å (Rh–Rh). All these 
values are very close to the experimental ones. In fact, the differences are less than 2% [51]. 
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We obtained a tight convergence of the plane-wave expansion with a cut-off of 400 eV. 
This is the value we used to perform all the calculations in Chapters 4 and 5. However, we 
used a larger value (500 eV) to compute the geometry optimisations and frequency 
calculations in Chapter 3. 

For our purposes, we considered several unit cells: √3x√3, 2x2, 3x2, 4x2 4x√3 and 
3x3. We performed the 2D Brillouin integrations on a 7x7x1 grid for the √3x√3 unit cells, 
5x5x1 for the 2x2 structures, on a 3x5x1 grid for the 3x2 and 4x2, 3x7x1 for the 4x√3 and 
on a 3x3x1 k-mesh for the 3x3 unit cells. We checked that this density of k points provided 
a correct convergence of the adsorption energy in the case of the 3x3 unit cell with a 
difference of ~4 kJmol-1 between the 3x3x1 and 5x5x1 grids. Moreover, the energy 
differences among various adsorption modes were not modified at all when the grid was 
changed. However, we increased the number of k-points to compute the DOS because these 
calculations require a denser k-mesh (e.g. for a 2x2 unit cell we used a 7x7x1 k-points grid, 
for a 3x3 a 5x5x1 mesh …). 

We also investigated how the slab thickness and vacuum width affected the adsorption 
energy. 

In agreement with a study of Sautet and co-workers [52], comparison of the four-layer 
and six-layer slabs showed that the results were consistent only when the k-point 
convergence was reached and that the six-layer model needed a larger grid. In this thesis 
the surfaces were modelled by slabs containing four atomic metal layers. 

To determine the required vacuum size, we studied the convergence of the adsorption 
energy using a four layer slab and different vacuum widths. We found that adsorption 
energies converged for a vacuum width of around 12 Å. 

We performed all the calculations on one face of the metal slab (i.e. the target molecule 
or molecules were adsorbed only on one side of the model). We fully optimised the 
geometries of the adsorbate and the two uppermost metal planes but kept the two lower 
metal layers fixed at the optimised bulk geometry. 

We computed the adsorption energies (Eads) with the following formula 
 

 )( )(/ gHCsurfacesurfaceHCads yxyx
EEEE −−=                                       (2.41) 

 
To calculate the relative stabilities of the possible reaction intermediates, we used 

equation 4.1 and 5.1 (see Chapter 4 and 5). 
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