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ABSTRACT 

 
Last fifteen years improvements in HF digital systems have 
made ionospheric communications a true alternative to 
low bit rate, long distance links, especially in the polar 
caps where alignment with geostationary satellites is not 
always possible. Our previous research efforts were 
focused on using pseudo-noise (PN) sequences and 
Orthogonal Frequency Division Multiplexing (OFDM) 
pilot symbols to evaluate the 7900 miles link from the 
Spanish Antarctic Base Juan Carlos I to Spain, crossing 
the equatorial belt. In this paper we face the problem of 
designing the OFDM physical layer. Two multicarrier 
transmission schemes are proposed and compared based 
on channel measured transfer functions and noise plus 
interference records. Special attention is paid to pilot 
pattern design in order to maximize the system 
performance while assuring high power and bandwidth 
efficiency. The quality and throughput in real 
transmissions from the Antarctica, as well as the evolution 
of BER in front of interferences, are studied.  
 

INTRODUCTION 
 
Data communications from the Antarctica is mainly 
achieved via satellite. However, since communication with 
geostationary satellites is not always possible from the 
poles, skywave ionospheric radiocommunications have 
become a good and inexpensive alternative. The Research 
Group in Electromagnetism and Communications from La 
Salle School of Engineering, Ramon Llull University, is 
working on the design of a robust unidirectional system for 
very long distance HF communications. The transmitter is 
located at the Spanish Antarctic Base (SAB) in Livingston 
Island (62.6ºS,60.4ºW) and the receiver is located at the 
Ebre Observatory (EO) in Spain (40.8ºN, 0.5ºE). 
 
As a first step towards the implementation of the 
radiomodem the significant parameters of the ionospheric  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
link between the Antarctica and Spain were measured. In 
that sense a sounding system, named SANDICOM 
(Sounding System for Antarctic Digital Communications), 
was designed. SANDICOM is based on a digital platform 
with high speed A/D/A converters and FPGA devices. The 
signal is fully processed digitally and, as a result, only 
amplification and some filtering are performed in the 
analog domain [1,2]. 
 
Although channel measurements are still being done to 
obtain sufficient statistics of the channel, current work is 
mainly focused on the preliminary design of the system for 
data transmissions. Two major advanced modulation 
techniques are being evaluated: Direct-Sequence Spread-
Spectrum (DS-SS) Signaling [3] and Orthogonal 
Frequency Division Multiplexing (OFDM) [4]. In this 
paper we will focus on the design and evaluation of 
OFDM as a system candidate. In an OFDM system the 
data are transmitted over a number of parallel frequency 
channels, modulated by a baseband PSK symbol. The 
advantage of this technique is that it has an intrinsic 
robustness against multipath fading channels and 
narrowband interference.  
 
In [4] we presented a preliminary OFDM system that was 
used to evaluate the success of multicarrier modulations in 
long distance data communications. The work was focused 
on evaluating the channel estimation capabilities in long-
distance low-SNR HF link. In this paper, the channel 
measurements from the link between the Antarctica and 
Spain are used to find the optimum parameters of the 
OFDM physical layer, from theoretical analysis and 
exhaustive simulations. Subsequently, a physical layer 
technique that reduces the effect of interferences is 
evaluated. Simulation results with recorded interferences 
at the receiver site are used to evaluate the performance 
improvement capabilities of an OFDM system exploiting 
this technique compared to a conventional OFDM system. 

 
 

MULTICARRIER SYMBOL DESIGN FOR HF TRANSMISSIONS FROM 
THE ANTARCTICA BASED ON REAL CHANNEL MEASUREMENTS 
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SYSTEM ARCHITECTURE 
 
The system that was designed for channel sounding 
(SANDICOM) is also used for preliminary data 
transmissions. One of the major considerations to be 
considered for the design of the physical layer is the strict 
power consumption restrictions at the transmitter site. 
Since the SAB is only served by wind and solar power 
during 8 months per year, a power amplifier capable of 
transmitting at a maximum power of 250 watts is used. 
  
As multiple frequencies in the HF band are used, a 
broadband antenna is required. A monopole and an 
antenna tuner have been employed both in the emitter and 
in the receiver because of the ease of installation and the 
acceptable performance they show in the frequency range 
from 4 to 18MHz.  
 
Both, transmitted power and antenna restrictions, imply 
that low SNR will be obtained at the receiver site. For 
instance, when a transmission bandwidth of 300 Hz is used 
an average SNR at the receiver of 8 dB has been measured 
when the channel is available [5]. In the next campaign, a 
directive antenna will be used at the receiver site in order 
to increase the available SNR up to 10 dB in a 1 KHz. This 
is the condition assumed it the following design. 
 

SYMBOL DESIGN 
 
Channel state information prior to the demodulation stage 
is needed at the receiver in order to compensate the 
different attenuation and phase rotations of the subcarriers 
introduced by the channel. First, the pilot pattern has to be 
designed. We define the efficiency of an OFDM system as 
a function of the pilot density, and it can be approximated 
as:  
 

 
1T F

PD
T F

N N
N N

ρ ⋅ −≈
⋅

 (1) 

 
Where TN  and FN  are the pilot spacing in the time and 
frequency directions, respectively. If the pilots are too 
close to each other, an oversampling of the channel will 
occur causing an unnecessary penalty of the system 
efficiency. On the other hand, if pilot spacing is too large, 
channel variations will go unnoticed, dramatically 
reducing the system performance. In order to get a good 
estimation of the channel, the pilot grid has to fulfill the 
two-dimensional sampling theorem [6-8]. This theorem 
restricts the pilot spacing in the time domain to fulfill the 
following expression: 
 

 
1

2 D
T S

f
N T

≥
⋅ ⋅

 (2) 

 
Where Df  is the maximum Doppler frequency and ST is 
the OFDM symbol time. The pilot spacing in the 
frequency domain has to fulfill: 
 

 
1

FN f
τ≥

⋅∆
 (3) 

 
Where τ  is the maximum delay spread of the channel and 

f∆ is the subcarrier separation.  
 
Next, a cyclic prefix is added at the beginning of each 
OFDM symbol in order to assure that no inter symbol 
interference (ISI) occurs. Let CPT  be the length of the 

cyclic prefix and UT the length of the useful part of the 
symbol. The total symbol time becomes UCPS TTT += . 
The efficiency of an OFDM system due to the cyclic 
prefix can be expressed as  
 

 U
CP

U CP

T
T T

ρ =
+

 (4) 

 
Note that in order to increase both the spectral and power 
efficiency, large values of CPρ  should be used, i.e. the 
useful symbol time should be much larger than the length 
of the cyclic prefix. Let us define the efficiency of the 
OFDM system from (1) and (4) as:  
 

 
1

1
U CPT F

PD CP
T F U CP

T TN N
N N T T

ρ ρ ρ ⋅ −= ⋅ = ⋅
⋅ +

 (5) 

 
Figure 1 represents the efficiency of the system as defined 
in (5). It can be appreciated that for U CPT T values over 
16, efficiency improves slowly.  
 
We recall from [5] that typical 10dB-delay spread of 2.5 
msec and maximum 10dB-doppler frequency of 1.6 Hz 
have been observed during the sounding survey. In order 
to avoid ISI, the cyclic prefix is set to be TCP = 3 
milliseconds. From the sampling theorem introduced in (2) 
and (3), the maximum spacing between time and 
frequency pilots can be obtained. 
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Figure 1. Efficiency of the system as a function of the pilot 

density and the ratio U CPT T  
 
Choosing a useful time in order to get a ρCP > 0.95, we 
have TU = 60 milliseconds ( U CPT T = 20). If 60 
milliseconds is used as the useful symbol time, we have: 
 

 
1 1 2410.0025 0.06

FN
fτ

 
 ≤ = =

⋅∆  ⋅ 
 (6) 

 

 
1 1 5

2 2 1.5 0.063T
D S

N
f T

 ≤ = = ⋅ ⋅ ⋅ ⋅ 
 (7) 

 
The sampling theorem assumes a frequency doppler 
caused by different celerity vectors between transmitter 
and receiver and a uniform power density of the channel 
scattering function [9]. Moreover, some “rule of thumbs” 
can be found in the literature [8,10,11] that suggest a 
minimum oversampling of 2x or even more exhaustive 
channel sampling. If we focus on the ionospheric channel, 
spreading values varies widely from one path to another, 
so it is possible that the strongest signal path is not 
affected by the fastest variations. If dealing with low SNR 
levels, the effects of the weakest paths will go unnoticed, 
so if we synchronize to the strongest path, there is no need 
to track other paths variability if their relative level is low 
enough, yielding a more relaxed design. In addition, the 
fastest ionospheric layers variance occurs during the 
sunrise and sunset periods. If the channel propagation is 
not favourable for an OFDM transmission, the effects of 
these periods should not be taken into account [5]. There 
are several combinations of NTTS, NF∆f and TU that meet 
the sampling requirements shown in (1) and (2) 
respectively. Using channel measurements when 

propagation has been favourable enough for an OFDM 
transmission, a global best solution will be fulfilled. 
 
The maximum useful symbol time will be found using the 
simulation scheme of Figure 2. Random data is generated 
and after a serial to parallel conversion, data is mapped 
into a BPSK constellation space. Multipath ionospheric 
channel realizations taken from real measurements are 
applied in the frequency domain. The transfer function is 
directly extracted from the estimations of [4], so, no 
channel model is used. In order to find the maximum 
symbol time, white gaussian noise (AWGN) is added as 
the first approach. Beginning with an oversampled channel 
estimation, several pilot densities will be tested in order to 
search the optimum symbol time for this channel. 
 
Table 1. Optimum symbol time – Initial search parameters 

SNR 10 dB 
TCP 3 msec 

TU 
5, 55, 105, 155, 205, 255, 
305 and 355 msec 

NT 2, 3, 4, 5, 6, 7 
NF 2, 3, 4, 5, 6, 7 

Channel estimation 
method Least Squares 

Interpolation method Nearest pilot padding 
Runs for each TU, NT and 

NF combination 1.000 

Total runs 288,000 
 

Table 1 shows the simulation parameters: Six values of NT 
and of NF are evaluated based on hexagonal pattern 
locations [4,12] among several useful symbol times 
ranging from 5 to 355 msec. In order to compensate for the 
channel effects with reduced complexity methods (real 
time operation oriented), the channel is estimated with the 
Least Squares method [13] and interpolated with the novel 
Nearest Pilot Padding method [14]. This interpolation 
technique offers similar performance than other more 
complex methods in low SNR scenarios. 
 
When the pilots are close enough to each other, many 
values of the symbol time result in a good channel 
estimation. This circumstance is exposed Figure 3 (NT  = 2 
NF = 2), where the channel is sampled over the minimum 
sampling frequency and the BER will not improve even 
though the pilot density is increased.  
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Figure 2. Simulation block diagram with real channel 
measurements 

 

 
Figure 3. BER and useful symbol time (NT  = NF = 2 and 

NT  = 6 NF = 4) 
 

As pilot spacing increase, BER levels begin to rise. 
However, there is an optimum symbol duration that 
exhibits the same BER than before. From Figure 3 (NT  = 6 
NF = 4), an optimal symbol time around 55 msec can be 
guessed.  
 
A finest search is required, since a precision of 50 msec is 
not enough. The parameters used in order to find the exact 
value of the optimum symbol time are shown in Table 2. 

 
Table 2. Optimum symbol time – Fine search parameters 

TCP 3 msec 

TU 

25, 30, 35, 40, 45, 50, 55, 
60, 65, 70, 75, 80, 85, 90, 
95, 105 110 and 115 msec 

NT 5, 6, 7 
NF 5, 6, 7 

Channel estimation 
method Least Squares 

Interpolation method Nearest pilot padding 
Runs for each TU, NT and 

NF combination 1.000 

Total runs 153,000 
 
From Figure 4 we can state that the maximum useful 
symbol time for low BER values is 75 msec. Once the 
symbol time is fixed, simulations for finding the optimum 
value for NT and NF are performed. 

 

 
Figure 4. Detail of BER and symbol time (NT  = 6 NF = 4) 
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Figure 5. BER and pilot densities from NT  = NF = 2 to NT  

= NF = 26 (a. average channel and b. worst channel) 
 

In Figure 5, the study for  the average and worst channel is 
shown. If focused on the worst case, the maximum pilot 
spacing in the time domain without BER degradation is NT  
= 12 and NF = 18 for the frequency domain. Taking into 
account the pilot number efficiency, the maximum 
expected SNR at the receiver and following the balanced 
design approach defined in [8], the selected values for the 
OFDM symbol are presented in Table 3: 
  

Table 3. Frame and symbol parameters 
TCP 3 milliseconds 
TU 75 milliseconds 
TS 78 milliseconds 
∆f 13.33 Hz 
NT 6 
NF 12 
ρCP 0.9615 
ρPD 0.9861 
ρ 0.9481 

NSC 73 
RB 948 bps 

 

Where NSC is the number of subcarriers per OFDM symbol 
and RB is the raw modulation bit rate. 

 
INTERFERENCE EFFECTS 

 
In HF channels, the level of interference is usually the 
limiting factor, more than SNR and multipath effects. In 
this section, measured interference records have been used 
to compute the robustness of two multicarrier modulations 
against interference.  
 
First, a conventional OFDM modulation with the 
parameters shown in Table 3 will be tested under the 
measured multipath channel and AWGN (OFDM 
AWGN). Then, recorded noise plus interference (OFDM 
AvgNPI) samples will be used instead of AWGN and 
finally, OFDM performance will be evaluated under the 
worst interference conditions found during the sounding 
campaign (WstNPI). The OFDM AvgNPI simulation will 
show the average performance of the link. This is 
computed using the average interference found among all 
the situations during the sounding survey. Interferences in 
the HF band are usually slow variant, so they could be 
avoided if a feedback channel exists. In a simplex 
communication system, the interference location is 
unknown at the transmitter site, so the use of frequency 
diversity will guarantee the best average performance of 
the link.  
 

Table 4. Interference effects – Simulation parameters 
Num. subcarriers 73 

TCP 3 milliseconds 
TU 75 milliseconds 
TS 78 milliseconds 
∆f 13.33 Hz 

OFDM BW 1KHz 
NT 6 
NF 12 

Hopping rate (hR) 

0 Hz (hop every 0 symbols) 
12.82 Hz (hop every 1 symbol) 
1.83 Hz (hop every 7 symbols) 
0.41 Hz (hop every 31 symbols) 

Hopping frequency 1KHz 
SNR 0 to 14 dB (1 dB step) 

Runs for each hR and SNR 
combination 1.000 

Total runs 60,000 
 
OFDM has an intrinsic robustness against narrowband 
interference since the missing data of one subcarrier can be 
recovered if the information has been properly coded.  
This is only true when the interference bandwidth equals 
the subcarrier bandwidth and below. If interference 

a) 

b) 



6 of 7 

bandwidth is wide enough that equals the whole OFDM 
bandwidth, the multicarrier modulation sees the 
interference as a single carrier modulation would do, that 
is, as a global decrease of the SNR available at the 
receiver. In this situation, a frequency hopping approach 
with multicarrier modulation makes sense. Therefore, a 
frequency hopping OFDM modulation will be tested 
(Table 4) in order to approach the average performance of 
the conventional OFDM (OFDM AvgNPI). 
 
In Figure 6, a conventional OFDM is compared with the 
results obtained by hopping the whole OFDM symbol by 
1KHz frequency shift signal every 1,7 and 31 symbol 
times in order to evaluate the performance degradation due 
to the increase of the estimation error at the borders of the 
frequency / time matrix [9]. 
 

 
Figure 6. OFDM and FH-OFDM performances 

 
There is a slightly decrease of the performance as the 
hopping rate increases. This is due to the fact that the area 
decreases faster than the perimeter of the frequency / time 
matrix and the ratio between the pilots located at the 
borders and the total number of pilots increases, yielding a 
decrease of the system performance.  For hopping rates 
slower than 0.41 Hz, the performance almost equals the 
average performance of a standard OFDM.  
 
Although slow hopping increases the estimation accuracy, 
fast hopping increases the diversity order, enhancing the 
correction capabilities of coding since errors are spread in 
time. However, this problem can be overcome by a deep 
interleaving, consequently the transmission delay will be 
penalised [15].  
 

Interferences cause a serious impact on the system 
performance. From Figure 6, if we want to achieve the 
BER for the AWGN case, we are forced to reduce the 
number of active subcarriers in order to increase the SNR 
available at the receiver.  

 
CONCLUSIONS 

 
In this paper, the complete design of the most efficient 
useful symbol time and pilot density have been found for 
this trans-equatorial-belt 7900-miles-long ionospheric 
channel. On one hand, if the pilots are too close, the 
channel is oversampled and the efficiency is reduced 
without improving the estimation error. On the other hand, 
if the pilots are excessively spread along time and/or 
frequency dimension, the system performance will be 
dramatically reduced by channel aliasing. Although a 
generalized sampling theorem based on several mobile 
radio channel assumptions exists, a mismatch between the 
evaluation of that theorem and the exhaustive search for 
optimum symbol parameters has been exposed. In order to 
a priori properly estimate the pilot spacing requirements, 
several inputs are needed. First, an accurate path based 
channel sounding must be carried out in order to make the 
appropriate distinctions between path and multipath delay 
and doppler spread values. Second, without spreading 
gain, slightly high positive values of signal to noise ratio 
are needed in order to establish a reliable long distance 
link for low rate demanding applications. The OFDM has 
to be designed specifically for the time intervals where the 
propagation is good enough to transmit a non spread 
modulation.  
 
Since a feedback channel is not available, frequency 
location information can not be known at the receiver. The 
risk of being jammed by a wideband interference can be 
overcome by hopping the OFDM signal among different 
carrier frequencies. Otherwise, if the carrier frequency is 
chosen based on link availability issues only, there is a risk 
of being jammed by wideband interference. The obtained 
results approach the average performance that we would 
get with a standard OFDM but without the risk of being 
continuously jammed.  
 
In the next Antarctic campaign, an OFDM ionospheric link 
is expected to be established between SAB and OE based 
on the parameters found in this paper. The poor SNR 
available and the high interference level will constraint the 
maximum numbers of active subcarriers. A hexagonal 
pilot pattern with approximately 12 and 6 pilot spacing in 
frequency and time respectively will be used. Low 
complexity methods such Least Squares estimation and 
Nearest Pilot padding interpolation will be implemented 
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since a real-time FPGA based system is used for 
prototyping. 
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Abstract— In Automatic Meter Reading (AMR) technology,
electrical utilities (EUs) have been exploiting their own infras-
tructure to bill their customers in an efficient and economical way
using Power Line Communications (PLC) technologies. Since the
amount of data that has to be send is quite low related to the
available time to perform this task, AMR applications have been
demanding low bit rates. At this moment, EUs are exploring
and demanding other services as load and alarm management,
remote monitoring and disconnections, etc. In this context, the
Low Voltage PLC modems should provide more throughput
while keeping the cost of the hardware low. In this paper, a
low complexity multicarrier modulation is proposed in order to
exploit the CENELEC A Band.

I. INTRODUCTION

The power line network has not been originally designed to
transmit data, but the large coverage of the low voltage (LV)
network has become a great opportunity to electrical utilities
(EUs) to offer a “last-mile” communication alternative [1].
Another major application for Power Line Communications
(PLC) in the LV network is Automatic Meter Reading (AMR)
technology [2]. This application is especially interesting to
EUs due to the fact that they can bill the customer by
exploiting their own network, while meaning a cost reduction
and the opportunity of offering added-value services.

A lot of research has been made in the field of broadband
PLC, but little documentation can be found regarding systems
in the low frequency range (below 100 kHz), sometimes
because few studies have been done, sometimes because of its
confidentiality. This work will be focused on the CENELEC
EN50065, which rules the frequency usage from 3 to 148.5
kHz, concretely, on the A band, reserved for EU [3]. This
band ranges from 9 to 95 kHz and it is characterized by
high noise power spectral densities at lower frequencies, up to
several tens of kHz, and a dense concentration of narrowband
interferences [4].

Several solutions have been found, among them, we can
highlight the narrowband designs of ST (ST7538, FSK) [5]
or Echelon (PL3120, BPSK) [6] and the ones of AMIS
(AMIS-30585, S-FSK) [7] and Yitran (IT800, DCSK) [8].
Another versatile solution based on DSP is offered by Texas
Instruments [9].

The EUs are demanding new applications to the typical
AMR system, e.g. dynamic node discovery capabilities, power
consumption profiles, load connections and disconnections,
alarm management... These new applications need an increase
of the system performance in order to cope with the higher
demanded throughput, without compromising the cost of the
equipment, since the deployment and exploitation of the
technology has to be profitable. The aim of this paper is to
propose a low complexity physical layer approach, overcoming
the rate limitation of the existing solutions, while keeping
the complexity of the modulation technique reduced and the
hardware costs low.

Reducing the complexity of the equipment means reducing
the cost of the synchronization stages. We can distinguish three
synchronization stages: time, phase and frequency. These are
the approaches that we will follow in this work:

• Time Synchronization: Symbol windowing will be carried
out by means of the zero crossings of the mains voltage
carrier [10]. In order to cope with the drawbacks of
this time reference, a multicarrier (MC) approach will
be proposed.

• Frequency Synchronization: It is well known that fre-
quency synchronization is a critical point of MC mo-
dulations. Since no frequency synchronization will be
performed, the MC design and subcarrier separation
have to cope with the possible deviations between the
transmitter and the receiver clocks.

• Phase Synchronization: In order to avoid the phase reco-
very stage, a differential modulation will be proposed.

This paper is organized as follows: In Section II the
advantages and the problems of windowing the symbol by
using the mains voltage zero-crossing will be discussed. In this
section the impact in the performance of the jitter of the zero-
crossings will be theoretically analyzed and the use of a (MC)
modulation will be justified. In Section III, an adjustment of
the MC symbol will be carried out in order to cope with the
frequency offset caused by the non idealities of the transmitter
and receiver clocks, and finally, concluding remarks will be
summarized in Section IV.



TABLE I

ZERO-CROSSING JITTER PARAMETERS

Propagation Speed 0.577 · c0
DOWNLINK

Mean µ = 0

Standard Deviation STD ∈ (30, 100)µsec

UPLINK

Mean µ = 11.55µsec
Km

Standard Deviation STD ∈ (30, 100)µsec

II. TIME SYNCHRONIZATION

In AMR systems, time synchronization methods carried out
by means of mains voltage zero-crossing are preferred in order
to develop low cost modems. This time reference is not a fully
reliable reference, since the crossing moments are affected by
a jitter [10]. In this Section, we will assume a zero crossing
rate of 100 Hz, as well as a BPSK single carrier modulation
as a first approach of modulation scheme.

A. Time Reference

From [10], the zero-crossing can be characterized as a
Gaussian random process as can be seen in Table I. When
information is sent from the Transformation Center (TC) 1 to
the customer site, the data and the time reference propagate in
the same direction. Otherwise, if data is sent from the customer
modem to the TS, the data and time reference propagate
in opposite directions. In this case, a distance dependent
delay between the data and the time reference occurs. The
uncertainty of the zero-crossings around the mean is up to
STD = 100 µsec in the worst case. This variance will be
used in the sequel.

B. Performance Degradation due to the Jitter

Next, the degradation of the system performance due to
a time misalignment for a narrowband BPSK approach will
be deduced. In Fig. 1, the received signal ri(t) is the sum
of the transmitted symbols si(t) and the Additive White

Gaussian Noise (AWGN) n(t), where s0(t) = A�
(

t−T
2

T

)
and

s1(t) = −A�
(

t−T
2

T

)
are the two possible BPSK symbols. The

matched filter h(t) is matched to the difference signal defined
as c(t) = s0(t) − s1(t). Then, after the receiving filter, we
have zi(t) that is the sum of the signal ai(t) and AGN noise
nc(t), and finally, the sampled signal zi that will be tested
against the decision threshold γ. Let us define T as the bit
time, T ′ as the symbol time (with BPSK T = T ′), d ∈ (0, 1)
as the ratio between the time misalignment and T ′.

First, we will suppose that we have no adjacent symbols,
that is, there will be no signal energy in the time interval d ·T .
We define the sampled signal at the output of the correlator
as a0 and a1 when s0(t) and s1(t) are received respectively
((1) and (2)).

1The TC is where the low voltage transformer is located and where the
connection point that aggregates the PLC clients of that TC is coupled.

Fig. 1. Receiver block diagram

a0 = s0(t) ∗ h(t)
∣∣∣
t=n·T

= 2A2T (1 − d) (1)

a1 = s1(t) ∗ h(t)
∣∣∣
t=n·T

= −2A2T (1 − d) (2)

The system error probability is given in (3), where
pe(e/s0(t)) and pe(e/s1(t)) are the conditional probabilities
and p(s0(t)) and p(s1(t)) the probability of transmitting s0(t)
and s1(t) respectively.

pe(e) = p(s0(t)) · pe(e/s0(t)) +
p(s1(t)) · pe(e/s1(t)) (3)

Assuming equiprobable symbols, (3) yields to (4), where
σ2

c is the noise power after the correlator. The expression of
this power is given in (5), where N0

2

[
W
Hz

]
is the noise power

density at the input of the receiver.

pe(e) = Q

(
2A2T (1 − d)

σc

)
(4)

σ2
c =

N0

2

∞∫
−∞

|h(t)|2dt = 2N0A
2T (5)

If we substitute the bit energy Eb = A2T and (5)in (4),
we finally obtain the probability of error due to a windowing
misalignment without the presence of an adjacent symbol in
(6).

pe(e) = Q


√2Eb(1 − d)2

N0


 (6)

Only at the beginning or at the end of a frame we could
have no interference from adjacent symbols. In the other cases,
if a windowing misalignment occurs, we will be feeding the
correlator with energy of another symbol, causing intersymbol
interference (ISI) [11].

When the same symbols are transmitted, the correlator will
give the same output as if we had no interference. In this case,
the performance of the system can be obtained from (6) with
d = 0. Maintaining the condition of equiprobability between
s0(t) and s1(t), interfered and interfering will be the same
with a probability of 0.5. Otherwise, if adjacent symbols are
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Fig. 2. BPSK Performance as a function of the parameter d

different, and the interference lasts for a period of d·T seconds,
a decrease of the available energy for the detection stage will
be caused, leading to a degradation of the performance given
by (6) with d′ = 2d.

pe,d,T (e) = 0.5 · Q
(√

2Eb

N0

)
+

0.5 · Q

√2Eb(1 − 2d)2

N0


 (7)

where

Eb =

T∫
0

|s0(t)|2dt (8)

Finally, the probability of error that we will use is shown
in (7) and Fig. 2, where, on one hand, performance is dra-
matically reduced as long as d increases, and, on the other
hand, as the symbol rate is reduced, the ratio d decreases
and the performance of the system increases. There is a trade
off between rate and quality. This problem can be overcome
by splitting the high rate data stream into several low rate
subchannels, leading to a MC approach.

C. Multicarrier Proposal

A MC symbol is given by the complex modulation sequence
shown in (9), where s(t) is the time domain signal representa-
tion, NSC is the number of substreams or the number of sub-
carriers, bn ∈ {−1, 1} are the BPSK modulated symbols, ∆f
is the minimum intercarrier spacing necessary to keep those
subcarriers orthogonal, m∆f is the real intercarrier separation
and n is the subcarrier number where n = 0, 1, 2, · · · , NSC−1
[12].
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Fig. 3. System Performance (pe,T ′ (e)) as a function of NSC

s(t) =
NSC−1∑

n=0

bnej2π(f+nm∆f)t · �
(

t

T ′

)
(9)

where

T ′ = T · NSC (10)

In Fig. 3 and (11), the influence of the probability distribu-
tion of the jitter is applied using a normal distribution (pj(j))
with mean µ = 0 and standard deviation STD = 100 µsec.
The dashed line represents the optimum situation (d = 0).
This distribution has been discretized in 1 µsec steps and
jitters between ±400 µsec have been taken into account (this
represents the erf

(
4√
2

)
≈ 1 − 10−5 of the set). Thus,

the probability of error, as a function of the symbol rate
(Rs = 1

T ′ ), is found as follows:

pe,T ′(e) =
400µsec∑

jit=−400µsec

pj(jit) · pe, jit
T ′ ,T ′(e) (11)

For reduced data rates (i.e. 1000 bps), the splitting of the
data into more than two subchannels has little effect in the
improvement of the system performance. As long as the data
rates increase, a higher number of subcarriers is required in
order to maintain the BER low.

D. Cyclic Prefix

In the previous subsection, the superior performance of
splitting the high rate single carrier signaling into several low
rate MC subchannels has been shown. The longer the symbol
is, the better d = jitter

T ′ ratio, but the ISI between MC symbols
is still present with a probability of pj(j). In order to reduce,
even more, the effect of the jitter (ISI), we will add a cyclic
prefix (CP+) and a cyclic postfix (CP−) at the beginning and
at the end of each MC symbol respectively [12]. The objective
of the insertion of these pre and postfixes is the cancellation



of the ISI (this will keep the NSC subcarriers orthogonal)
as long as the ±dT ′ is less than the duration of the cyclic
pre and postfix. Since being misaligned +dT ′ and −dT ′ is
equiprobable, we will set the same duration to the prefix and
postfix. We will refer to this duration with the c = CPl

T ′ ratio,
where CPl is the CP+ and CP− length.

In order to evaluate the impact on the performance of the
use of the CP+ and CP−, we will redefine the distribution
of probability of the jitter (p′j(j)) as can be seen in (12).

p′j(j) =




pj(0) + 2
∑CPl

n=1µsec pj(n)dj j = 0

0 j ∈ [−CPl, 0) ∩ (0, CPl]

pj(j) others

(12)

Using this distribution, the probability of error as a function
of c, d and T ′ is shown in (13).

pe,c,T ′(e) =
400µsec∑

jit=−400µsec

p′j(jit) · pe,c, jit
T ′ ,T ′(e) (13)

where

pe,c,d,T ′(e) = 0.5 · Q



√√√√2Eb

(
1 − 2c

NSC

)2

N0


+

0.5 · Q



√√√√2Eb

(
1 − c

NSC
− 2 d−c

NSC

)2

N0




From (13), we can expect a decrease of the system per-
formance, since the use of cyclic pre and postfixes implies a
waste of power that will not be used for signal detection. Fig.
4 depicts this situation. For reduced data rates (i.e. 1000 bps)
and a NSC of 8 or 16, the performance degradation due to the
reduction of the power available for detection is negligible.
Obviously, as the data rates increase while the number of
subcarriers remains constant, that waste of power notably
reduces the performance of the system.

Although it seems that it is not worth to employ a cyclic
prefix, since far away from improving the performance, it is
reduced; the advantage of using these CPs is that we are
preventing intercarrier interference (ICI). In a MC environ-
ment, when ISI occurs, not only the degradation shown in
Fig. 3 succeed, moreover, the orthogonality among subcarriers
is destroyed [12], causing a higher degradation that the one
caused by ISI in a single carrier situation. The use of the cyclic
prefix will allow us to keep the subcarriers orthogonal when
time misalignment occurs, preventing ISI from causing ICI.

Among other sources of ICI, in this approach we will focus
on the different clock frequencies between the transmitter and
the receiver. In the next section, a study of the frequency
mismatch effect between clocks will be fulfilled.
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III. FREQUENCY SYNCHRONIZATION

Apart from the advantages above mentioned, MC modu-
lations are very sensitive to synchronization errors [12]. The
frequency offset correction between transmitter and receiver is
a key step in the demodulation process. In our scenario, this
frequency offset is caused by a frequency mismatch between
the transmitter and the receiver clocks.

If the frequency offset is not corrected before the MC
demodulation, two problems arise. First, we are not sampling
the subcarriers in the optimum point, so a decrease of the
available power that will be used for detection occurs. Second,
this deviation from the optimal sampling point will yield to
the undesirable sampling of the others subcarriers causing ICI.

From (9), the spectral representation of a MC signal can be
expressed as (14), where SCn is the n-subcarrier spectrum.
Let’s see the performance degradation caused by a frequency
offset of ξf [Hz] between the transmitter and receiver clocks
(see Fig. 5).

S(f) =
NSC−1∑

n=0

bn

sinc
(

f+nm∆f
∆f

)
∆f

=
NSC−1∑

n=0

bn · SCn(f,m, T ′) (14)

Several studies approach this ICI as a noisy Gaussian
process applying the central limit theorem [12], [13]. This
is only applicable when the number of subcarriers is high
enough. In this work, an exact calculation is derived, useful
for a low number of subcarriers. From a given NSC , m,
T ′ and ξf , we have to expect a decrease of the signal of
interest amplitude and the contribution of the constructive or
destructive levels of adjacent subcarriers. If we have NSC

subcarriers, we have NSC−1 potential interferers and 2NSC−1

combinations (c0, c1, · · · , c2NSC−1−1) of this interferers that
will contribute to the detected level of the signal of interest.
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The signal level that will be given to the decision stage
of the demodulation of the subcarrier n being affected by
a combination c of the interferers is an,c(ξf ,m, T ′) =

bnSCn(fn + ξf ,m, T ′)︸ ︷︷ ︸
signal of interest

+
NSC−1∑
i=0 i�=n

bi,cSCi(fn + ξf ,m, T ′)

︸ ︷︷ ︸
ICI

where bi,c is the BPSK symbol of the subcarrier i of the
combination c. In this scenario, with a probability of the
combination p(cc) = 1

2NSC−1 , we can define the probability
of error of the subcarrier n and the overall probability of
error as shown in (15) and (16) respectively.

pe,n,ξf ,m,T ′(e) =
2NSC−1−1∑

c=0

p(cc)Qn,c,ξf ,m,T ′ (15)

where

Qn,c,ξf ,m,T ′ = Q


√2

an,c(ξf ,m, T ′)2T ′

N0




pe,ξf ,m,T ′(e) =
1

NSC

NSC−1∑
n=0

pe,n,ξf ,m,T ′(e) (16)

The relative frequency offset to the intercarrier spacing can
be defined as ν = ξf

∆f . For a given ξf , it is interesting to choose
a high enough ∆f in order to keep ν as low as possible. If
the SCn are too narrow, the frequency offset will cause a
low amplitude sampling of those SCn. Otherwise, if we set
SCn wide enough, for a fixed ξf , we will sample more signal
level. From (14) and Fig. 4 a reasonable trade off between
SCn width and robustness against the jitter can be a T ′ of
1 msec. This symbol rate (Rs = 1

T ′ = 1 KSps), can be
delivered with several values of NSC . The higher NSC , the
more throughput we will get, but more interferers we will have
in case of ξf �= 0. From (16), for this first proposal, we will
choose NSC = 8 and R = 8000, as well as a cyclic prefix
length of 200 µsec and a postfix of the same length, giving in
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a useful symbol time of TU = 1
∆f = 600 µsec. These values

yield to a ν = 0.07 while given a high enough number of
subcarriers to deal with the jitter and small enough to allocate
them in a friendly frequency range of the CENELEC A Band,
as it will be shown later.

In order to avoid the introduced ICI, we will spread the
subcarriers m ·∆f Hz. Fig. 6 depicts the effect on the system
performance of spreading the subcarrier more than what is
strictly necessary. The dashed line represents the ICI-free
scenario. For m = 1, the performance dramatically decreases
to an unacceptable levels, for m = 4, it approaches the ideal
dashed line, occupying a bandwidth of ∆f · m · NSC =
53.3kHz. For m > 4, performance is slightly improved.

IV. PHASE ESTIMATION

The last synchronization stage to be faced is the phase
detection and compensation in order to correctly detect the
BPSK symbols. In our approach, the differential version of the
BPSK is proposed instead of the coherent one. The DBPSK
receiver is less complex and offers similar performance than
its coherent implementation. For Eb

N0
> 10 dB, the BPSK

outperforms the DBPSK by approximately 1 dB only [11].
All the discussion made up to this point is valid for a

DBPSK approach by shifting the performance curves 1 dB.

V. CONCLUSION

In order to deploy an AMR network, the cost of the equip-
ment on the customer premises and the added value services
that the system provides are two key factors in its business
case. If we focus on modulation issues, the synchronization
procedures are the most critical points that affect the comple-
xity and cost of the equipment. In this situation, it is mandatory
to use the implicit time reference that the power line network
offers. Due to the jitter, the mains voltage zero-crossings offer
a reliable time reference for reduced symbol rates. There are
two options in order to increase the data rate: either increasing



TABLE II

PROBABILITY OF ICI∣∣∣∣∣ CP [µsec]

STD[µsec]

∣∣∣∣∣ 0 40 80 120 160 200

30 1 2e−1 8e−3 6e−5 1e−7 3e−11

44 1 4e−1 7e−2 6e−3 3e−4 5e−6

58 1 5e−1 3e−1 4e−2 6e−3 6e−4

72 1 6e−1 3e−1 9e−2 2e−2 5e−3

86 1 6e−1 3e−1 1e−1 6e−2 2e−2

100 1 7e−1 4e−1 2e−1 1e−1 4e−2

Mean 1 5e−1 2e−1 9e−2 3e−2 1e−2

TABLE III

MC MODULATION PARAMETERS

Symbol Time T ′ = 1 msec

Cyclic Prefix Length CP+ = 200 µsec

Cyclic Postfix Length CP− = 200 µsec

Useful Symbol Time TU = 600 µsec

Number of Subcarriers NSC = 8

Mapping DBPSK

Bit Rate Rb = 8000 bps

Minimum Subcarrier Spacing ∆f = 1.6̂ kHz

Real Subcarrier Spacing m · ∆f |m=4 = 6.6̂ kHz

Occupied Bandwidth BW = 53.3̂ kHz

Central frequency fc = 41.6̂kHz

the modulation level or transmitting several low symbol rate
parallel streams. Since the channel impairments claim for a
robust mapping, only one bit per symbol has to be transmitted
and BPSK is used as a reliable modulation scheme. In this
paper, we have shown how the zero-crossing jitter effects can
be mitigated by means of employing a MC modulation and
CPs.

The sensitivity to ICI is one of the main drawbacks of MC
modulations. In this scenario, ICI is caused by ISI and by the
frequency difference between system clocks. The first source
of ICI is attenuated by means of the CPs. This solution covers
approximately 1 − 1e−2 of the occurrences (See Table II for
CPl = 200 µsec). As far as the second source of ICI is cocer-
ned, the separation of the NSC subcarriers along the available
frequency range more than what is strictly necessary reduces
the effect of the interferers subcarriers into the subcarrier of
interest. This subcarrier has to be wide enough to minimize
ν as much as possible, thus delivering enough signal level to
the demodulator. Coherent MC modulations need a channel
estimation stage before signal demapping and detection. This
process involves an added complexity to the system, so, the
differential version of the BPSK will avoid that cost with a
low decrease of the system performance. In Table III, the
MC modulation parameters are shown. In order to avoid the
noisiest regions of the available A band, the MC spectrum is
right shifted, occupying the upper frequency range.

Due to the robustness of the MC modulation in front of the

jitter and the spreading of the subcarriers, the cost of time and
frequency synchronization is avoided. The FFT demodulation
is the only cost of the data demodulation process. In order to
sample the BW = 53.3̂ kHz in (NSC−1)·m+1 = 29 points,
a 32 FFT has to be executed each symbol time T ′ leading to
a required computational cost of less than 100 KOperations
per second.

Further research has to be done in order to select the best
codes in terms of peak to average power ratio reduction and
data protection.
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Abstract— Power line communications (PLC) technologies rely
on the power grid for data transmission. Since the communicati-
ons channel is already deployed, this communication alternative
is specially interesting for the power grid owner, i.e., the electrical
utility (EU). Focusing on the MV distribution network, located
after the last step-down electrical substation, with typical levels
from 6 to 25 kV, feeds directly large commercial or industrial con-
sumers and domestic and small commercial consumers through
several transformer stations. The growing interest on MV-PLC
technology, the natural aggregation point for data coming and
going into the LV network, faces the same issue that the LV-
PLC technology did (and does): standardization. In this way, a
properly implemented channel model will allow the design of
suitable modulation and access methods This paper presents a
complete set of measurements done in a MV urban underground
ring and proposes a deterministic model for the MV-PLC transfer
function.

I. INTRODUCTION

The world of power line communications (PLC) can be
divided into three main types: low voltage (LV) PLC, medium
voltage (MV) PLC and high voltage (HV) PLC. These last
years, LV-PLC has attracted a great expectation. With the
telecommunications market liberalization, together with the
energy market derregulation, EUs can use their own infrastruc-
ture, the power line grid (specially the MV and LV networks),
to deliver communications services and increase their control,
monitoring and billing capabilities over costumers’ behavior.

In conjunction with the LV network, the MV network
comprises the distribution stage of the electric power grid.
Focusing on MV, the MV-PLC technology can be considered
as the natural aggregation point for data coming in and going
out the LV network. Located after the last step-down electrical
substation (ES), and with typical levels from 6 to 25 kV,
the MV network feeds directly large commercial or industrial
consumers and domestic and small commercial consumers
through several transformer stations (TS). This work will
focus in urban networks, where the MV network is fully
underground.

A key point in a physical layer design process is channel
modeling. If properly implemented, the channel model will
allow the design of suitable modulation and access methods.
Before modeling, channel characterization has to be carried
out. Basically, two different approaches regarding channel
characterization can be followed:

Behavioral This is a top-down strategy, followed when
dealing with random channel effects, such as the noise
scenario [1] or when the channel topology casuistic is
extremely large, e.g., LV networks [2].
Structural This is a bottom-up strategy, where physical
parameter estimation is derived from single measure-
ments of the power line network elements. Focusing MV
channel characterization, some transmission line model
based works can be found, e.g., [3]–[5].

On the other hand, two different approaches can be followed
regarding channel modeling:

Stochastic Derived from behavioral characterization, ty-
pically employed when modeling noise or complex topo-
logies [6], [7].
Deterministic Derived from structural measurements,
without random elements.

The aim of this work is to measure the structural parameters
of a MV ring and their devices in order to deterministically
model their behavior and then, based on statistic records of
European MV networks [8], tune the physical parameters that
will make the model valid for several regions. Moreover,
statistics regarding the noise scenario and a methodology for
channel input impedance measure will be given.

This paper is organized as follows. In Section II a brief
description of the network under study will be given, while in
Section III, the measurement set-up will be explained. Then, in
Section IV the structural and behavioral characterization will
be carried out. Finally, the validation of the transfer function
characterization and the concluding remarks will be given in
Section V.

II. MV NETWORK TOPOLOGY

Regarding the MV distribution power grid, there are ba-
sically three topologies: star, ring and mesh. This work is
focused on the typical urban ring topology [9]. In urban
areas, ENDESA is now mainly deploying 18/30 kV unipolar
underground cable, with triple extruded aluminium core and
cross linked polyethylene (XLPE) dielectric, compiling the
rules EN-50267-2-1, IEC-60502.2 and ENDESA proprietary
rules DND001 and SND013. When the MV line enters the TS
(Fig. 1) it has to pass through the input and output breaker to
follow its way through the ring. If the MV to LV transformer
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Fig. 1. Transformer Substation Schematic and Field Measurements Set-up

is wanted to be in service, the protection breaker has to be
switched on. In this work, the PLCoupling / DIMAT CAMT-
1 capacitive coupler has been used [10]. Near the mains
frequency, MV channel access impedance varies influenced
by the mains level. Otherwise, for frequencies over tens of
kilohertz, HV/MV and MV/LV transformers are almost perfect
barriers [11].

In this work, different measurements will be carried out in
order to characterize the following urban underground MV
channel effects [1], [12]:

• Input impedance. Mainly affected by:

- Characteristic impedance of the MV cable.
- Connected feeder’s loads.

• Noise scenario .

- Background colored noise: In MV networks, this
noise is mainly caused by leakage or discharge
events, power converters, transformer non idealiti-
es. . . As well as in HV networks, stationary low-
power periodical and synchronous with the mains
impulse events can also be considered background
noise.

- Impulse events: The main causes of this noise ty-
pe are network switching transients, lightening and
other discharging events.

- Narrowband noise: Narrowband interferences.

• Attenuation and frequency selectivity. Caused by power
dissipation and reflections in the grid or coupling devices.

III. MEASUREMENT SET-UP

In this Section, two measurement set-ups will be briefly
described. The first one, depicted in Fig. 1, shows the set-up
for the measurements carried out in the MV ring. A Network
analyzer (NA), two National Instruments PXI chassis, one of
them carrying an arbitrary generator board [13] and another
a high speed digitizer [13], both GPS synchronized, phase-to-
ground coupled by means of a PLCoupling / DIMAT CAMT-
1 capacitive coupler [10], have been employed. This set-up
was used for the Field measurements, explained in the next
Section. The second one, depicted in Fig. 2, describes the set-
up for the MV cable and coupler scattering (S) parameters [14]
characterizations, explained in Laboratory measurements.

Signal

Signal
Ground

Ground

NA Port 2NA Port 1 Signal

GroundGround

Signal MV 
Cable

MV 
Coupler

NA Port 2
NA Port 1

Fig. 2. Network Analyzer Set-up

IV. MEASUREMENTS AND RESULTS

The aim of this work is to provide a set of measurements in
order to get the needed behavioral and structural knowledge
to define a proper model for MV urban networks. This set of
measurements consists of:

1) Field measurements (FM). The following measurements
have been done in a 324 meters link in Barcelona, Spain,
between the FECSA/ENDESA substations BA07460
(transmitter) and BA07155 (receiver):

- Link attenuation characteristics.
- Link time and frequency spread.
- Background noise.
- Impulsive interferences.
- Reflection coefficient.

2) Laboratory measurements (LM):

- MV cable S parameters characterization.
- MV coupler S parameters characterization.

3) Joint measurements:

- Input Impedance.

A. FM: Link Attenuation Characteristics

The link attenuation characteristics have been measured by
means of a GPS synchronized sweep transmission from 100
kHz to 30 MHz in 100 kHz steps. The receiver averaged
the measured level during one second in order to minimize
the impact of noise. In Fig. 3, the attenuation of the link
under study is depicted. The dashed line shows the overall
link attenuation, i.e., the attenuation due to the cable losses,
the reflection and transmission capabilities of the coupler and
the input impedance and parallel loads connected to that link.
As stated, since there are more parameters than the intrinsic
cable attenuation, the continuous line depicts an approximation
of the attenuation per hundred meter, showing similar values
as the ones in [15]. This measure will be recalled in Section
V when validating the channel characterization.

The time behavior of this characteristic is notably constant,
with negligible variations over time. The attenuation charac-
teristic band-pass shape is mainly due, on one hand, to the
1 nF coupler capacitor and to the effect of the embedded
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impedance matching network 1, and, on the other, to the MV
cable attenuation.

B. FM: Link Time and Frequency Spread

By means of pseudo-noise (PN) based channel sounding,
the channel scattering function will be given, as well as the
delay and Doppler spread values.

Equation (1) shows the transmitted signal, s(t), consisting
on a modulated maximal length sequence (m-sequence) train
with center frequency fc = 2.5 MHz, located at the pass band
center of the attenuation characteristic.

s(t) =
Nsq−1∑
n=0

sPN (t − nT )ej2πfct (1)

=
n=Nsq−1∑

n=0

Nc−1∑
i=0

bip

(
t − i

T

Nc
− nT

)
ej2πfct

Where sPN (t) is a PN sequence of length Nc chips that
have been interpolated by a pulse shaping filter p(t), bi ∈
{−1, 1} are the sequence chips, Nsq is the number of m-
sequences per burst, T is the sequence period, Tc = T

Nc
is the

chip period and ∆Ts = TNsq is the sounding period. This
technique allows an unambiguous sounding when the channel
has a impulse response, h(τ), shorter than T , with a time
resolution of Tc, allowing a maximum detectable Doppler of
1

2T with an accuracy of 1
∆Ts

. Table I shows the sounding
parameters.

After downconversion, the base-band received m-sequence
train, rPN (t), is correlated with a local PN sequence replica
slPN (t), as shown in Eq. (2).

RrP N ,slP N
(t) =

∫ T

0

rPN (t + τ), slPN (τ)dτ (2)

If t = η T
NcNov

+ nT where Nov is the oversampling factor,
i.e., the number of samples per chip; the discretized channel
impulse response matrix h[n, η] can be obtained from Eq. (2)

1The CAMT-1 has an equipment side input impedance of 50 Ω and a line
side input impedance of 20 Ω

TABLE I

PN SOUNDING PARAMETERS

PARAMETER VALUE

Sequency type m-sequence

Number of chips Nc = 511

Chip period Tc = 1
1·106 = 1 µs

Sequence period T = Tc · Nc = 511 µs

Number of sequences per burst Nsq = 200

Pulse shaping (p(t)) filter Root Raised Cosine Filter (α = 0.65)

Occupied bandwidth 1.65 MHz

Center frequency fc = 2.5 MHz

Maximum Detectable Delay 511 µs

Delay Resolution 1 µs

Maximum Detectable Doppler 978 Hz

Doppler Resolution 9.7 Hz
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as shown in Eq. (3), where n and η are the time and delay
indexes respectively.

h[n, η] = RrP N ,slP N

(
η

T

NcNov
+ nT

)
(3)

where

n ∈ N and η ∈ [0, Nsq − 1]
η ∈ N and n ∈ [0, NcNov − 1]

Fig. 4 shows a single channel delay power profile, e.g.,
ηmax

∣∣
10dB

= 1 µs and ηmax

∣∣
40dB

= 7 µs.

C. FM: Background Noise

Simplifying the typical noise scenario defined in [6], two
kinds of noise analysis will be carried out: background and
impulsive noise. Fig. 5 depicts the mean PSD and the standard
deviation (STD) in the frequency domain. This noise has been
recorded during four days, with an overall observation time of
400 seconds, sampled at 50 Msps.

These statistics reveal a highly colored background noise
until 10 MHz, and from that point on, the delta-like spectrum is
related to low-power continuous impulsive events. The colored
behavior, due to the summation of several noise sources,



−200

−180

−160

−140

−120

−100

 

 

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25
0

4

8

12

16

20

 

 

Frequency [MHz]

M
ea

n
PS

D
[d

Bm
/H

z]

ST
D

PS
D

[d
Bm

/H
z]

Mean

STD

Fig. 5. Background Noise

10
−5

10
−4

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

Time [s]

Pr
ob

ab
ili

ty

tiat PDF
tiat CCDF
tw PDF
tw CCDF

Fig. 6. Time Width and Interarrival Time

remains at low frequencies, where the propagation from those
sources to the measurement point is possible. The maximum
variability has been observed in that frequency range, while
in the highest ranges, only minor changes happened.

D. FM: Impulsive Interferences

More than 18 minutes sampled at 20 Msps have been
processed to extract the following statistics. That observation
time yields to 7,426,304 analyzed impulses. The horizontal
parameters, i.e., random variables (RV), that typically charac-
terize these impulse events [6] are the impulse width (tw),
and the interarrival time (tiat); that is, the time between
the rising of the impulse and the end of the same, and
the time between two consecutive pulse risings, respectively.
Moreover, impulse interferences will be also characterized by
two vertical parameters, i.e., impulse peak power (ppk) and
impulse average power (pav). Fig. 6 and 7 depict the proba-
bility density function (PDF) and complementary cumulative
density function (CCDF) for the time and power related RVs,
respectively.

On one hand, impulses with durations less than 0.1 ms have
an occurrence probability of 1 − 10−5, showing that almost
all impulse durations are in the range of tens of microseconds.
On the other, interarrival times of milliseconds, are quite usual
(> 10−1), undisturbed intervals over tens of milliseconds can
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Fig. 7. Peak and Average Impulse Powers

arise with a probability of 10−3. Fig. 7 depicts that ppk CCDF
is a shifted version of pav CCDF, showing that impulse energy
is uniformly distributed along their duration.

E. FM: Reflection Coefficient

By means of the NA, the MV channel reflection coefficient,
measured at the coupler equipment side, namely Γin, will be
used for the network input impedance extraction, as shown in
Section IV-H.

F. LM: MV cable S parameters

The objective of this measurement is to obtain the MV cable
propagation constant γ, Eq. (4), and characteristic impedance
Z0.

γ = α + jβ β =
2πf

c
(4)

in

V (z) = V +e−γ + V −e−γ (5)

In Eq. (5), V (z) is the progressive, V +, and the regressive
voltage wave V −, in their phasorial representation. In the
expression of γ, α, β and c are the attenuation constant, phase
constant and propagation velocity, respectively. The extraction
of the cable characteristics has been carried out as follows:

1) Precise cable length measure.
2) Manufacture of the cable to NA connection.
3) S parameters measurement. Once the MV cable segment

has been properly connected to the NA, the measurement
of its 2x2 S parameters matrix, namely S

′
cbl, is carried

out. Note that S
′
cbl includes both cable and discontinuity

behaviors measured by a 50 Ω reference.
4) Transitional connection modeling. In order to extract

the discontinuity effect from S
′
cbl at both cable ends,

the transition is modeled by a serial anticoil (L
′
) and

a parallel anticapacitor (C
′
) respectively. When those

discontinuity effects are extracted, the resulting S matrix
will describe the behavior of the MV cable only, i.e.,
Scbl.

5) Compensation and deembedding of the discontinuity
connection geometrical change by means of gradient



0 50 100 150 200 250 300 350 400 450 500

−50

−40

−30

−20

−10

0  

 

 

0 50 100 150 200 250 300 350 400 450 500
−25

−20

−15

−10

−5

0

5

 

 

−200

−100

0

100

200

 

 

Frequency [MHz]

|S
1
,1
|[

dB
]

Frequency [MHz]

|S
2
,1
|[

dB
]

�(
S

2
,1
)

Mod

Phase

Interp

Fig. 8. Transmission and Reflection Parameters (10 m)

based optimization. An impedance matched transmission
line has a near zero reflection parameters, i.e., Scbl i,i ≈
0 ∀i. With the target of achieving such reflection values,
an optimization of L

′
, C

′
and reference impedance Z0 is

carried out, obtaining a S
′
cbl 1,1 and S

′
cbl 2,2 less than -25

dB from 10 kHz to 500 MHz. Figure 8 shows the S
′
cbl 1,1

and S
′
cbl 2,1 after the optimization. At this point, the

cable discontinuity parasit behavior can be considered
compensated and S

′
cbl becomes Scbl, where the actual

cable parameters are extracted. Equation (6), shows the
third order polynomial that fits the |Scbl 2,1| [dB/10 m]
with a root mean square error less than 0.1.

α(f [MHz]) = 9.5 · 10−19 · f3 − 2.3 · 10−10 · f2

−8 · 10−3 · f − 0.029 (6)

6) Z0 matching by means of cable reflection coefficient
minimization. Since the reflection coefficients are mini-
mized, it means that the reference impedance has the
same value that the cable characterized impedance, first
order fitted in Eq. (7).

Z0(f [MHz]) = 24.53 + 3.22 · 10−2 · f (7)

7) Finally, from the �(S2,1) in the 500 MHz frequency
range, and taking into account the cable length, the
propagation velocity (and β) can be known as shown
in Eq. (4): c = 1.9 · 108.

G. LM: MV coupler S parameters

Measured as depicted in Fig. 2, the PLCoupling / DIMAT
CAMT-1 capacitive coupler S parameters are extracted in
Scplr. It has been found by simulation that how MV channel
access impedance makes the coupler performance vary, as
shown in Fig. 9, where transmission and reflection performan-
ces are depicted for an access impedance of 10, 20 and 30 Ω.
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In Fig. 10 the the F{SC2,1}, where F{·} is the square of
the Fourier Transform, is shown. Besides, since the signal path
goes through two couplers from the transmitter to the receiver,
Fig. 10 also shows the delay power profile of two couplers in
cascade (F{SC2,1 · SC2,1}). Taking into account Fig. 4, that
measure shows that a large amount of time spreading is due
to the coupler.

H. Network Input Impedance

Finally, the MV access impedance is found as follows. If
Γin is the measured channel reflection at the equipment side
of the coupler, the MV channel reflection coefficient ΓL is
found as shown in Eq. (8), where | · | is the determinant of the
matrix.

Γin = Scplr 2,2
Scplr 1,2 · Scplr 2,1 · ΓL

1 − Scplr 1,1 · ΓL

ΓL =
Γin · Scplr 2,2

|Scplr| + Scplr 1,1 · Γin
(8)

ZL = Z0
1 + ΓL

1 − ΓL
(9)

From Eq. (8), it is straightforward to find the access
impedance ZL, as shown in Eq. (9) and depicted in Fig. 11,
where Z0 is the measurement reference impedance. It shows
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that for our measurement scenario, channel input impedance
real part ranges from 12 to 20 Ω, with no variations over time.

V. CONCLUDING DISCUSSION

This paper has presented seven measurements, two of them
for noise characterization and the others to properly model the
transfer function of the urban underground MV distribution
network. For this kind of scenario, the approximation that
best suits this channel is a combination of deterministic and
stochastical modeling.

From structural measurements, the MV distribution cable
and coupler have been characterized, in order to determinis-
tically model the MV channel topology. The validation of
the characterization has been carried out by modeling the
real measured network in ADS2, as shown in Fig. 12, and
measuring the simulated attenuation characteristic. MV/LV
transformers have been modeled as explained in [16]. The
MV cable has been modeled by the extracted parameters in
Eqs. (6,7, c and the coupler by Scplr. Fig 13 shows a quite
good match between simulation and measure. The deviations
between the two characteristics are most probably due to the
parasite behavior of RMU elements and physical construction
issues, e.g., breakers, structure shapes and sections, and so
on. Moreover, a methodology for extracting the network
input impedance and its value have been presented, based on
the coupler deembedding in order to get an actual channel
measure.

Due to the noise random nature, it has been characterized
in Figs. 6, 7 and 5, revealing its behavior in time width and

2Advanced Design System, from Agilent Technologies, Inc.
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interrarival impulse times, as well as the mean and variance for
the background noise in the frequency domain. Regarding the
noise scenario modeling, the several stochastic proposals, e.g.,
[6], can be easily tuned to met the MV channel background
noise and interference characteristics.

REFERENCES

[1] Z. Tao, Y. Xiaoxian, Z. Bahoui, C. Jian, Y. Zhi, and T. Zhihong,
“Research of noise characteristics for 10-kV medium-voltage power
lines,” IEEE Transactions on Power Delivery, vol. 22, pp. 142 – 150,
2006.

[2] H. Philipps, “Performance measurements of powerline channels at
high frequencies,” in IEEE International Symposium on Power Line
Comunications and Its Applications, 1998.

[3] R. Papayzan, P. Petterson, H. Edin, R. Eriksson, and U. Gäfvert, “Ex-
traction of high frequency power cable characteristics from S-parameter
measurements,” IEEE Transactions on Dielectrics and Electrical Insu-
lation, vol. 11, pp. 461 – 470, 2004.

[4] C. Hensen, W. Schulz, and S. Schwarze, “Characterization, measurement
and modeling of medium-voltage power line cables for high data rate
communication,” in IEEE International Symposium on Power Line
Comunications and Its Applications, 1999.

[5] Y. Xiaoxian, Z. Tao, Z. Baohui, H. Zonghong, C. Jian, and G. Zhiqiang,
“Channel model and measurement methods for 10-kV medium-voltage
power lines,” IEEE Transactions on Power Delivery, vol. 22, pp. 129 –
134, 2007.

[6] M. Zimmermann and K. Dostert, “Analysis and Modeling of Impulsive
Noise in Broad-band Powerline Communications,” IEEE Transactions
on Electromagnetic Compatibility, vol. 44, pp. 249 – 258, 2002.

[7] ——, “A multipath model for powerline channel,” IEEE Transactions
on Communications, vol. 50, pp. 553 – 559, 2002.

[8] “Report presenting the architecture of PLC system, the electricity
network topologies, the operating modes and the equipment over which
PLC access system will be installed,” OPERA, Tech. Rep. D-44, 2005.

[9] “Report on MV backbone system,” OPERA, Tech. Rep. D-14, 2005.
[10] Dimat, “Coupling unit for PLC equipment over medium voltage lines,”

Dimat, Tech. Rep., 2006.
[11] B. Gustavsen, “Wide band modeling of power transformers,” IEEE

Transactions on Power Delivery, vol. 19, pp. 414 – 422, 2004.
[12] K. Dostert, Powerline Communications. Prentice Hall, 2001.
[13] N. Instruments, “NI PXI-5441 specifications, 100 msps, 16-bit arbitrary

waveform generator with onboard signal processing,” National Instru-
ments, Tech. Rep., 2005.

[14] D. Pozar, Microwave Engineering. John Wiley & Sons, 2005.
[15] “Pathloss as a function of frequency, distance and network topology for

various LV and MV European powerline networks,” OPERA, Tech. Rep.
D-05, 2005.

[16] T. Tran-Anh, P. Auriol, and T. Tran-Quoc, “High frequency power
transformer modeling for Power line Communication applications,” in
IEEE Power Systems Conference and Exposition, July 2006.



 
 

 

 

 

 

 

 

 

 

 

8.4.

R. A
OFD
Jeju,

. APPENDIX

quilué, J.L. Pij
DM System”, in
, South Korea, 

 A.4 

joan, G. Sánc
n Proc. IEEE S
 2008. 

Appen

chez, “High V
Symposium on 

 
 

ndix A. Include

oltage Chann
 Power Line C

ed papers 

nel Measureme
Communication

ents and Field
ns and its Ap

d Test of a Lo
pplications (ISP

117 

ow Power 
PLC2008), 



Pow

 

      118 

 

wer Line Commmunications for the Electrica

 

l Utility: Physic
 

cal Layer Design and Channnel Modeling 



High Voltage Channel Measurements and Field Test
of a Low Power OFDM System
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Abstract— High voltage (HV) power lines have been used
as a communications medium since the 1920s. Those point to
point links were typically based on single-sideband amplitude
modulation. Nowadays, the state of the art in HV power line
carrier (PLC) communications comprises the combination of
analog systems, mainly for teleprotection tasks, and digital
systems, used for voice and data transmission. Beside traditional
core services (monitoring, operation management, and limitation
and removal of failures), electrical utilities would like to satisfy
the increasing need of new internal applications. In that way,
quadrature amplitude modulation and, most recently, multicar-
rier modulation (MCM) based modems are beginning to play an
important role in HV PLC systems. Although the typical 4 kHz
bandwidth has been recently increased up to 32 kHz, this paper
proposes a low-power 256 kHz bandwidth orthogonal frequency
division multiplexing (OFDM) based physical layer. Based on
channel measurements, the OFDM symbol has been designed
and tested in order to increase the user bit rate while keeping
both the power spectral density and bit error rate low.

I. INTRODUCTION

Since the beginning of 20th century, the High Voltage (HV)
network has been exploited as a communications medium.
Actually, the first ever running communication equipments
on power lines were the HV double-sideband amplitude mo-
dulation (1920s) and single-sideband amplitude modulation
(SSB-AM) modems (1940s). Since no other communications
network could offer such a geographic presence, reliability
and cost effectiveness, electrical utility (EU) core services, i.e.,
monitoring, operation management and limitation and removal
of failures, were carried out by voice transmission by means
of analog power line carrier (PLC) systems [1].

Due to the low reliability, rate and the level of automation
that voice transmission provided, digital data transmission
shown up by with low speed (50 bps) amplitude shift keying
modems. With the increase of the power grid automation level,
the required data rate grew to support the communications
of such a complex system, yielding to the typical 2400 bps
modems and the 4 kHz channelization [2], [3].

Nowadays, PLC systems are usually based on the combina-
tion of analog and digital technologies, that presents a higher
degree of flexibility for the EU: while it solves the problem
of the low reliability of the digital PLC for tasks such as
teleprotection, it overcomes the rate limitation of the analog
PLC.

Focusing on data transmission PLC state of the art, the
digital systems based on quadrature amplitude modulation
(QAM) single carrier modulation (SCM) can reach a net bit
rate of up to approximately 80 kbps in a 16 kHz bandwidth
with bit error rates (BERs) equal or below 10−6 [4]. Multi-
carrier modulation (MCM) begins to play an important role
in HV communications, being orthogonal frequency division
multiplexing (OFDM), the most adaptive and frequency ef-
ficient MCM version [5], the choice for manufacturer’s next
generation HV PLC equipment [6].

Based on the channel measurements carried out in this work,
an OFDM physical layer will be proposed and tested in a real
scenario. Although the licensed band for PLC is located from
40 kHz to 500 kHz [2], [3], in certain situations, the signal
propagation can be favorable enough to use the frequency
range above that upper limit; so, the study on this paper will go
beyond this constraint and will propose, based on the learned
experience, the exploitation of that range by MCM adaptive
[5] and Cognitive Radio (CR) techniques [7]. Based on the
same measurements, while trying to reduce the interference
on other PLC equipment in the PLC-licensed band and on the
existing broadcast signals on the non-PLC-licensed band, the
MCM symbol design will have in mind the minimization of
the transmitted power spectral density (PSD).

This paper is organized as follows: In Section II the descrip-
tion of the HV transport line available where the measurements
have been carried out, as well as the measurement and test set-
up will be described. In Section III, the measurement outcomes
will be discussed and then, in Section IV, the OFDM symbol
design and the proposed system performance will be shown.
Finally, concluding remarks will be summarized in Section V.

II. MEASUREMENT AND TEST SCENARIO

In this Section, the test scenario as well as the measurement
set-up will be introduced.

The scenario under test is a 4-circuits, 3-phase 110 kV,
6.35 km line between the “Egara” and the “Mas Figueres”
ENDESA substations, in Barcelona, Spain. Both channel
measurements and data transmission tests have been carried
out by the same equipment: two National Instruments PXI
chassis. Each chassis consists on an industrial embedded
computer, one high stability reference clock [8] and a special
instrumentation card: high speed arbitrary waveform generator
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Fig. 1. Measurement and Test Set-Up

at the transmission site [9], high speed digitizer at the reception
site [10]. Both chassis are GPS synchronized.

The measurement and test set-up is depicted in Fig. 1. At
the transmission site, the digital-to-analog converted signal is
immediately fed into a Dimat ad-hoc built amplifier. From 50
kHz to 1.4 MHz, this device offers a gain of 37.5 dB and
160 W of peak enveleope power. When amplified, the signal
gets the coupling device [11] that matches the 75 Ω amplifier
output impedance with the line access impedance.

That matching procedure is carried out manually, i.e., the
reflection coefficient at the input of the coupling unit is moni-
tored while switching among coupling unit different configura-
tions. Since the transformers at the line ends can be considered
as a perfect barriers for frequencies over a few tenths of kHz
[12], the previously found coupling device configuration (and
line access impedance) can be considered valid for that time
on. The line trap prevents the radio frequency signal from
entering the substation premises while it propagates toward
the receiver site. When decoupled and before the acquisition,
the signal is amplitude limited and noise and antialias low pass
filtered at 6 MHz. In the sequel, the channel is considered to
be between the amplifier output and the transient limiter input;
other devices will be properly compensated.

III. MEASUREMENTS AND RESULTS

In this Section, a complete wideband sounding for the HV-
PLC channel will be presented. First, the attenuation charac-
teristic will show the power line transmission capabilities and
its long term variations. Then, in order to get knowledge of
the short term variations and the channel delay, the pseudo-
noise (PN) sequence based sounding will be carried out.
Maximal length sequences (or m-sequences) are used because
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Fig. 2. Link Attenuation

of its well-known good autocorrelation properties [13]. From
these measurements, the channel coherence time (∆t0) and
coherence bandwidth (∆f0) will be deduced in order to
properly design the OFDM symbol. Finally, a background
noise analysis will be carried out.

A. Attenuation Characteritics

The attenuation characteristic of the link under study has
been measured by transmitting one tone sweep every 20
minutes from 10 kHz to 2 MHz in 10 kHz steps. Each step
consists on 10 averaged acquisitions during 2 seconds. In Fig.
2 all the measured sweeps can be seen overimposed.

The channel attenuation characteristic shows a pass band
behavior. The low cut-off frequency (40 kHz) is due to the
coupling capacitor and coupling device combined frequency
response, and the high one is due to the same devices plus
the line attenuation. The ripple at the pass band is due to
the multipath effect, while the null from 610 kHz to 880
kHz is due to the coupling devices impedance mismatching.
The perfect match among the 360 sweeps means that both
propagation and coupling performances remained constant for
one week, so, there is no long term variation in the link transfer
function.

B. Time Spread and Frequency Spread

The transmitted pilot signal, s(t) (Eq. (1)), consists on a
modulated m-sequence train at center frequency fc.

s(t) =
Nsq−1∑
n=0

sPN (t − nT )ej2πfct (1)

=
n=Nsq−1∑

n=0

Nc−1∑
i=0

bip

(
t − i

T

Nc
− nT

)
ej2πfct

Where sPN (t) is a PN sequence of length Nc chips that
have been interpolated by a pulse shaping filter p(t), bi ∈
{−1, 1} are the sequence chips, Nsq is the number of PN
sequences per burst, T is the sequence period, Tc = T

Nc
is



TABLE I

PN SOUNDING PARAMETERS

PARAMETER VALUE

Sequency type m-sequence

Number of chips Nc = 2047

Chip period Tc = 103 = 1.66 µs

Sequence period T = TcNc = 3.41 ms

Number of sequences per burst Nsq= 10

Pulse shaping (p(t)) filter Root Raised Cosine Filter (α = 0.65)

Occupied bandwidth 0.99 MHz

Center frequency fc = 600 kHz

the chip period and ∆Ts = TNsq is the sounding period.
This technique allows an unambiguous sounding when the
channel impulse response (h(τ)) is shorter than T , with a time
resolution of Tc, allowing a maximum detectable Doppler of
1

2T with an accuracy of 1
∆Ts

. Table I shows the sounding
parameters.

After downconversion, the base-band received m-sequence
train, rPN (t), is correlated with a local PN sequence replica
slPN (t), as shown in Eq. (2).

RrP N slP N
(t) =

∫ T

0

rPN (t + τ), slPN (τ)dτ (2)

If t = η T
NcNov

+ nT where Nov is the oversampling factor,
i.e., the number of samples per chip, and n and η are the
time and delay indexes respectively; the discretized channel
impulse response matrix h[n, η] can be obtained from Eq. (2)
as shown in Eq. (3).

h[n, η] = RrP N ,slP N

(
η

T

NcNov
+ nT

)
(3)

where

n ∈ N and n ∈ [0, Nsq − 1]
η ∈ N and η ∈ [0, NcNov − 1]

Fig. 3 shows the relative power of h[n, η] ∀n, that is, the
Nsq impulse responses overimposed, revealing no short time
channel variations. In the same, the first and most powerful
path, which is the direct one, followed by a negative exponenti-
al spreading of 20 µs, can be seen. This decreasing spreading
after each path is caused by network devices non idealities
(e.g. coupling devices, coupling capacitor, line traps...). That
first path is followed by the second one, 17.4 dB attenuated and
47 µs after. This second path is due to the reflection of the first
incoming signal at the receiving substation, its propagation
back again to the transmitter site and its second reflection
to the original destination. The same can be told about the
third path. It is straightforward to find a propagation speed of
2.7 · 108 m

s or 0.9 times c0 (speed of light in the vacuum).
This decrease on the expected speed is most probably due to
the line geometrical and topological characteristics, as well as
to the line supports.
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Fig. 3. Channel Impulse Response

The spreading in time calls for a robust modulation in front
of frequency selective channels and inter-symbol interference
(ISI). OFDM delivers such robustness in this kind of scenario
if both subcarrier bandwidth and cyclic prefix length are
properly designed, therefore, achieving a flat channel per
subcarrier and avoiding ISI, respectively. As expected, no
channel variation has been found in time domain, yielding
to a zero Doppler scattering and subsequently a ∆t0 →
∞. Adaptive techniques cannot be implemented in real time
due to equipment restrictions, however an stationary channel
enhances the modulation adaptation performance and OFDM
offers the maximum achievable spectral granularity, becoming
the best candidate to implement adaptive techniques [5].

Once the time domain variation has been characterized, the
frequency domain variation, i.e., the ∆f0, has to be found.
From 3, the channel transfer function, H(f) can be calculated
by means of the Fourier Transform. Then, in order to find the
∆f0, the frequency correlation function, Eq. (4), is depicted
in Fig. 4, yielding to a ∆f0 of 70 kHz for a 0.9 correlation
factor.

R(∆f) =
E{H∗(f)H(f + ∆f)}

E{H(f)} (4)

C. Noise Scenario

In this Section, a closer look will be given to the noise
scenario, specifically, to background noise. This type of noise
is a broadband permanent interference with relatively high
level and mainly caused by corona effect and other leakage or
discharge events. Background noise PSD is time and frequency
variant (colored noise). Due to climatic dependences, corona
noise power fluctuations up to tens of dB can be expected.
Stationary, low-power periodical and synchronous with the
mains impulse events can also be considered background
noise. These kinds of impulses are caused by discharges on
insulators and other electrical substation devices. Narrowband
interferences such a coupled broadcast emissions or other
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communications equipment, due to its slow variability, can
be considered background noise too [1].

Fig. 5 shows the background noise and OFDM overimposed
PSDs at the receiver site. Two noise regions can be clearly
identified, i.e., from the lower frequencies up to 500 kHz and
from 500 kHz on. The former band is colored noise limited,
while the latter is narrowband interference limited.

Fig. 6 depicts the maximum and the minimum PSD values
for 10 frequency subbands, from 0 to 1 MHz, 100 kHz
each, during a 4 days observation period. Although this
behavior can be considered slow variant, this scenario shows
a highly dynamic background noise in frequency domain,
since variations up to 20 dB have been measured in the
lower region. In the background limited band, the noise PSD
decreases as frequency increases, showing a friendly range
in the upper frequencies, until the end of the licensed range.
Since no adaptive scheme will be used, this background noise
study will not directly affect the OFDM symbol design, but
the obtained results claim again for a power and bit-loading
adaptive OFDM physical layer [5].
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IV. OFDM DESIGN AND TEST

In this Section, based on the measurements previously
presented, the MCM symbol design will be introduced, and
the performance of the proposed physical layer in a real HV
link will be tested.

Fig. 7 shows a typical OFDM transmitter and receiver block
diagram where Sr,s, for r, s ∈ N, r ∈ [0, Nsym − 1] and
s ∈ [0, Nsc − 1], are the complex symbols that will modulate
the Nsc subcarriers of the Nsym symbols per OFDM frame.
After the serial to parallel conversion, the OFDM symbol is
implemented by means of the inverse Fast Fourier Transform
(IFFT), Eq. (5). Then, after a serial to parallel conversion and
before the conversion to the analog domain, the Ng samples
of guard interval are added in order to avoid ISI in the useful
part of the symbol. By means of the received and sampled
signal y[n] FFT, the received symbols Rr,s are recovered and
ready for demapping [5].

xs[n] =
1

Nsc

Nsc−1∑
r=0

Sr,se
j2πn r

Nsc (5)

A. Symbol and Frame Design

Transmitted power will be chosen in order to get a BER of
approximately 10−2 before decoding. If using 16-QAM as a



mapping scheme, 256 kHz of occupied bandwidth and 0.15
W of transmitted power, around 20 dB of SNR is expected at
the receiver site (Fig. 5). Taking into account this ratio and
the impulse response in Fig. 3, only the first and the second
path (at τmax=46.86 µs) have to be considered. A Tcp=80 µs
will prevent ISI from occur. The cyclic prefix duration, Tcp,
is in charge of avoiding ISI, and consequently, inter-carrier
interference (ICI). This guard interval has to be greater than
the maximum delay spread (τmax) [5].

The 10−2 expected BER is the minimum required modu-
lation performance for allowing the channel coding perform
correctly. A 1/2 convolutional code with constraint length 7
and trace-back length 35 will be used in order to achieve a
BER performance close to the typical performance delivered
by other systems: 10−6. Morover, a 120 depth interleaving
will be employed in order to spread the symbols among the
whole OFDM lattice [14].

Once Tcp has been fixed, the symbol length will be chosen
while trying to maximize the cyclic prefix efficiency (6), that
is, the ratio between the useful symbol time, Tu, and the
symbol time Ts, where Ts = Tcp + Tu.

ρcp =
Tu

Tcp + Tu
(6)

The maximum symbol time is restricted by the ∆t0, i.e.
∆t0 > Ts, and by ∆f = 1

Tu
, since a minimum ∆f is needed

in order to avoid the effect of ICI for a given uncompensated
frequency offset, foff [Hz]. In this way, in order to keep
an acceptable performance degradation, a relative uncorrected
frequency offset, δoff , of δoff = foff

∆f ≤ 0.01 has to be
fulfilled. A Tu of 1 ms will yield to a relaxed constraint of
foff ≤ 10 Hz, while keeping ρcp ≥ 0.9 [5].

Finally, a 1080 µs OFDM symbol of Nsc=256 subcarriers
will be used. With ∆f=1 kHz per subcarrier, an overall symbol
bandwidth of 256 kHz is achieved.

Once ∆f has been determined, the pilot separation in
frequency domain, Nf can be found by satisfying the Nyquist
sampling theorem in the frequency domain [15]. There are
some rules of thumb that state that a channel oversampling
of 2x is recommended [16], so following (7) and (8), where
∆fNf

and �·� are the frequency separation between pilot
subcarriers and the nearest integer towards minus infinity
respectively, Nf can be found.

∆fNf
=

1
2

∆f0

2
=

1
2

70 kHz
2

= 17.5 kHz (7)

Nf = �∆fNf

∆f
� = 17 (8)

In order to avoid channel prediction, which is more unrelia-
ble than interpolation, instead of using a Nf of 17 subcarriers,
a separation of 16 subcarriers will be used.

Although the number of OFDM symbols in one frame is
usually constrained by time and frequency acquisition and
tracking algorithm accuracy (among others) [5], in our case,
this is upper limited by the receiving equipment digitizer

TABLE II

OFDM PARAMETERS

PARAMETER VALUE

Cyclic prefix Tcp = 80 µs

Useful symbol time Tu = 1 ms

Symbol time Ts = 1.08 ms

Subcarrier bandwidth ∆f = 1 kHz

Number of subcarriers Nsc = 256

Pilot subcarriers Np = 16

MCM bandwidth 256 kHz

Pilot frequency spacing Nf = 16

Pilot time spacing Nt = 4

Number of OFDM symbols per frame Nsym = 16

Mapping 16-QAM

Channel estimation Least Squares

Channel interpolation 1-D + 1-D 1st order

Channel coding 1/2 convolutional code,

constraint length 7,

trace-back length 35 and

120 of interleving depth

Gross bitrate Rbg = 930 kbps

User bitrate Rbu = 465 kbps

Transmission mean power Ptx = 8.9 dBm

Peak to average power ratio PAPR = 12.8 dB

memory, a limitation of 16 (+1 pilot symbol) symbols has to be
respected. A PN based pilot symbol used for synchronization
is inserted at the beginning of each frame.

The channel stationary behavior gives no restriction regar-
ding the pilot separation in time domain, so, since Nsym = 16,
a pilot separation in time domain Nt = 16 could be chosen,
yielding to a pilot density related efficiency ρpd of 0.996 (Eq.
(9)).

ρpd =
NfNt − 1

NfNt
(9)

On the other hand, noise effect regarding channel estimation
can be reduced if we decrease the pilot distance down to Nt

= 4, the efficiency is reduced only by a 1.2 %, yielding to the
overall system performance shown in Eq. (10).

ρcp · ρpd = 0.911 (10)

The design parameters of the OFDM symbol and frame are
summarized in Table II. While trying to simplify the receiver
complexity, least squares channel estimation and 1D+1D lineal
channel interpolation have been carried out before equalization
[17].

B. Performance

The BER performance of the proposed OFDM is depicted in
Fig. 8. The continuous line represent the modulation or gross
BER and the dashed one represents the BER after decoding,
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for a user bit rate of 465 kbps. Those lines show the day-by-
day averaged performance.

The modulation BER showed a constant behavior, around
2 · 10−2, while the performance after decoding yielded to a
BER of 4 · 10−6. The fifth day shows no line for the BER
after decoding, so a BER better than 10−7 was observed in
the last day.

V. CONCLUSION AND FUTURE WORK

In this work, a first step towards a new wideband physical
layer on HV lines has been presented. The needed channel
measurements to carry out an OFDM symbol design have been
fulfilled, and the performance of the proposed system has been
tested in a real scenario.

A properly designed OFDM allows an easy equalization
and detection while avoiding ISI. OFDM splits the selective
signal bandwidth into several flat subchannels, however, an
efficiency loss has to be paid due to the cyclic prefix. In order
to minimize that loss, a short cyclic prefix is desired, so, if
received SNR is low enough, less channel spreading will have
to be considered. In this work, only the first reflected path
was needed to be avoided. Moreover, it has been shown that
high rates can be achieved by increasing bandwidth instead of
signal power. This low-PSD minimizes undesired emissions
and signal coupling into other systems or other MV-PLC
links. The spectral granularity delivered by MCM can be also
exploited in terms of spectral notching. Spectral notching is
a desirable characteristic in PLC modulations when trying to
completely avoid the emission in certain frequencies.

Regarding channel time domain behavior, it has been found
that channel transfer function and access impedance can be
considered constant, revealing neither short time nor long time
variations. This friendly behavior in time domain suggests the
use of an adaptive modulation for an efficient channel capa-
city exploitation. Thus, without wasting power or increasing
BER, a higher link spectral efficiency can be achieved by
taking advantage of the OFDM subbands flat fading through

adaptation [18]. On the other hand, background noise does
vary in time domain (up to 20 dB in certain bands), but its
slow variability does not present a serious impairment for an
adaptive approach.

Moreover, measurements have revealed that transmission is
possible beyond the licensed HV-PLC band. The next spectrum
band is licensed to broadcast systems, but, as it has been
shown, an easily exploitable narrowband interference limited
noise region characterizes the spectrum from 500 kHz and on.
MCM access methods and CR techniques offer a good pos-
sibility to increase HV-PLC channel bandwidth and minimize
interferences between HV-PLC neighboring equipment [7].

Future work points to the test of OFDM signals with
different detectors, and MCM and spread spectrum (SS) com-
binations, e.g., multicarrier - code division multiple access
(MC-CDMA, MCM with spreading in frequency), multicarrier
- direct sequence - code division multiple access (MC-DS-
CDMA, MCM with spreading in time) and variable spreading
factor - orthogonal frequency and code division multiplexing
(VSF-OFCDM, MCM with variable spreading in both dimen-
sions) [5]; as well as the performance of previous systems
with large bandwidths and low PSDs in longer links, up to
hundreds of km.
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Abstract— Power line communications (PLC) technologies rely
on the power grid for data transmission. Since the communicati-
ons channel is already deployed, this communication alternative is
specially interesting for the power grid owner, i.e., the electrical
utility (EU). The medium voltage (MV) distribution network,
located after the last step-down electrical substation with typical
levels from 6 to 25 kV, feeds directly large consumers and small
ones through several transform stations. The growing interest
on MV-PLC technology, the natural aggregation point for data
coming and going into the low voltage (LV) network, faces
the same issue that the LV-PLC technology did (and does):
standardization. In this way, a properly implemented channel
model will allow the design of suitable modulation and access
methods. This paper proposes a deterministic channel model
for the MV underground network transfer function, based on
a complete set of measurements done in a MV urban ring.
Moreover, the characterization of the MV-PLC channel elements,
as well as the noise scenario and access impedance has been
carried out.

I. INTRODUCTION

The world of power line communications (PLC) can be
divided,regarding the network topology, into three main types:
low voltage (LV) PLC, medium voltage (MV) PLC and high
voltage (HV) PLC. These last years, LV-PLC has attracted a
great expectation since its wideband capabilities have made
this technology a suitable choice for last-mile access and in-
home communications. Moreover, LV-PLC also includes a
utility oriented low frequency and low speed applications, such
as automatic meter reading (AMR), load distribution, dynamic
billing and so on. On the other hand, MV-PLC and HV-PLC,
historically oriented to teleprotection and telecontrol tasks,
are being considered as a reliable communication channel.
With the telecommunications market liberalization, together
with the energy market derregulation, EUs can use their own
infrastructure, the power line grid (specially the MV and LV
networks), to deliver communications services and increase
their control and monitoring capabilities over costumers’ be-
havior.

In conjunction with the LV network, the MV network
comprises the distribution stage of the electric power grid.
Focusing on MV, the MV-PLC technology can be considered
as the natural aggregation point for data coming in and going

out the LV network. Located after the last step-down electrical
substation (ES), and with typical levels from 6 to 25 kV,
the MV network feeds directly large commercial or industrial
consumers and domestic and small commercial consumers
through several transform stations (TS).

Although this work will focus in urban networks, where
the MV network is fully underground, in rural areas, both
overhead and underground topologies can be found. The MV
networks can transport power in a single or double three phase
circuit basis. Single circuit consists on one line per phase,
while double circuit transports power in two lines per phase.
The former structure can be found in low density and rural
areas, while the latter, in high density areas or areas with
special requirements. One line acts as a service line while
the second acts as a backup [1].

A key point in a physical layer design process is channel
modeling. If properly implemented, the channel model will
allow the design of suitable modulation and access methods.
Before modeling, channel characterization has to be carried
out. Basically, two different approaches regarding channel
characterization can be followed:

Behavioral This is a top-down strategy, where the statis-
tical characterization of the system is based on exhaustive
channel measurements. It is not straightforward to define
reference models, since even more exhaustive measure-
ments are needed to cover power networks worldwide
casuistic. This is the followed approach when dealing
with random channel effects, such as the noise scenario
[2] or when the channel topology casuistic is extremely
large, e.g., LV networks [3].
Structural This is a bottom-up strategy, where physical
parameter estimation is more intuitive and derived from
single measurements of the power line network elements.
Model adaptation to power grid features worldwide is ea-
sier. Focusing MV channel characterization, some trans-
mission line model based works can be found [4]–[8]

On the other hand, two different approaches can be followed
regarding channel modeling:

Stochastic Derived from behavioral characterization, the-



se channels models simulate channel conditions based on
statistics. As stated, they are typically employed when
modeling noise or complex topologies [9], [10].
Deterministic Derived from structural measurements and
their structural devices definition, deterministic models
are restricted to simulate the modeled structure, without
random elements.

The best choice is the use of structural modeling with
statistical values for the structural parameters [11]. The aim of
this work is to measure the structural parameters of a MV ring
(see Section II) and their devices in order to deterministically
model their behavior and then, based on statistic records of
European MV networks [12], tune the physical parameters
that will make the model valid for several regions. Moreover,
statistics regarding the noise scenario and a methodology for
channel input impedance measure will be given.

This paper is organized as follows. In Section II a brief
description of the network under study will be given, while in
Section III, the measurement set-up will be explained. Then, in
Section IV the structural and behavioral characterization will
be carried out. Finally, the validation of the transfer function
characterization and the proposed model will be explained in
Section V and the concluding remarks will be given in Section
VI.

II. MV NETWORK TOPOLOGY

Regarding the MV distribution power grid, there are basi-
cally three topologies: star, ring and mesh. The star topology
joins the ES with the TSs by means of one or several radial
lines departing from the center of the star (the ES). These lines
(or feeders) can be exclusive for one transformer substation
or cross several transformer substations. Moreover, these lines
can be even branched.

In mesh topologies, where ES are joined by several MV
lines, the power can be delivered by several routes: in case
of a MV line failure, the power can be rerouted. Complexity
is the main drawback of this kind of architectures. On the
other hand, star topologies have several advantages over the
meshed ones, like easier fault protection, voltage control and
lower cost; but if one segment of the MV line fails, it means
interrupting the service beyond the point of failure. Although
MV networks are mainly meshed, EUs operate them as star or
ring topology, configuring the mesh into several star or ring
networks.

In order to overcome the problem of star networks, an
improved star topology named ring topology, consisting of
two MV feeders departing from the ES that share a common
point named the border of the ring. This border is an open
circuit between the two radial MV lines. This border can be
moved in order to limit the impact of a failure into the network,
minimizing the length of the segment (and the number of TS)
affected by the failure [1].

Focusing in the ring topology, when the MV line enters the
TS (Fig. 1) it has to pass through the input breaker and the
output breaker to follow its way through the ring. In case of a
failure in some TS, both the input and output breakers will be

Coupler

NI Tx / Rx

MV Ring OutputMV Ring Intput

Input Breaker Output Breaker

LV Network

MV / LV 
Transformer

Protection
Breaker

Network 
Analyzer

Fig. 1. Transformer Substation Schematic and Field Measurements Set-up

opened in order to move the ring border to the faulty point. In
conjunction with the protection breaker, the input and output
breaker are the typical topology configuration in TS called ring
main unit (RMU). If the MV to LV transformer is wanted to
be in service, the RMU protection breaker has to be switched
on. PLC signal is transmitted and received through the MV
channel by means of capacitive (or inductive) couplers. Typical
coupling scheme is phase-to-ground.

Near the mains frequency, MV channel access impedance
varies influenced by the mains level, directly connected loads
to the MV grid (large consumers), the connection and discon-
nection of other meshed MV feeders and the consumer loads
connected to them. Otherwise, for frequencies over tens of
kilohertz, HV/MV and MV/LV transformers are almost perfect
barriers, so, high frequency signals are naturally confined
within the MV network. Typically, high frequency signal
attenuations from 60 to 80 dB can be expected from the
transformer HV or LV side to the MV network [13]. On the
other hand, if some kind of high frequency coupling between
MV and LV or HV networks is needed, the MV properties will
be determined by the LV network, in terms of interference and
impedance [14], [15].

III. MEASUREMENT SET-UP

In this Section, two measurement set-ups will be briefly
described. The first one, depicted in Fig. 1, shows the set-
up for the measurements carried out in the MV ring. A
microwave network analyzer (MWNA), two National Instru-
ments PXI chassis, one of them carrying an arbitrary generator
board [16] and another a high speed digitizer [16], both
GPS synchronized [17], phase-to-ground coupled by means
of a PLCoupling / DIMAT CAMT-1 capacitive coupler [18],
have been employed. This set-up was used for the Field
measurements, explained in the next Section.

The second one, depicted in Fig. 2, describes the set-up
for the MV cable and coupler scattering (S) parameters [19]
characterizations, explained in Laboratory measurements.
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IV. MEASUREMENTS AND CHARACTERIZATION

In this work, different measurements will be carried out in
order to characterize the following urban underground MV
channel effects [2], [14]:

• Input impedance. Mainly affected by:

- Characteristic impedance of the MV cable.
- Connected feeder’s loads.

• Noise scenario .

- Background colored noise: In MV networks, this noi-
se is mainly caused by leakage or discharge events,
power converters, transformer non idealities. . . As
well as in HV networks, stationary low-power pe-
riodical and synchronous with the mains impulse
events can also be considered background noise.
These kinds of impulses are caused by discharges
on insulators and other ES or TS devices.

- Impulse events: The main causes of this noise type
are network switching transients (isolator switching
or breaker operation), lightening and other dischar-
ging events.

- Narrowband noise: Narrowband interferences such a
coupled broadcast emissions or other communicati-
ons equipment are considered background noise.

• Attenuation and frequency selectivity. Caused by power
dissipation and reflections in the grid or coupling devices.
These two effects are included in the channel transfer
function.

The aim of this work is to provide a set of measurements in
order to get the needed behavioral and structural knowledge
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to define a proper model for MV urban networks. This set of
measurements consists of:

1) Field measurements (FM). The following measurements
have been done in a 324 meters link in Barcelona,
Spain, between the Endesa (the main spanish electrical
utility) substations BA07460 (transmitter) and BA07155
(receiver):

- Link attenuation characteristics.
- Link time and frequency spread.
- Background noise.
- Impulsive interferences.
- Reflection coefficient.

2) Laboratory measurements (LM):

- MV cable S parameters characterization.
- MV coupler S parameters characterization.

3) Joint measurements:

- Input Impedance.

A. FM: Link Attenuation Characteristics

The link attenuation characteristics have been measured by
means of a GPS synchronized sweep transmission from 100
kHz to 30 MHz in 100 kHz steps.

In Fig. 3, the attenuation of the link under study is depicted.
The dashed line shows the overall link attenuation, i.e., the
attenuation due to the cable losses, the reflection and trans-
mission capabilities of the coupler and the input impedance
and parallel loads connected to that link. As stated, since there
are more parameters than the intrinsic cable attenuation, the
continuous line depicts an approximation of the attenuation
per hundred meter, showing similar values as the ones in [13].
This measure will be recalled in Section VI when validating
the channel characterization.

The time behavior of this attenuation characteristic is
notably constant, with negligible variations over time. The
attenuation characteristic band-pass shape is mainly due, on
one hand, to the 1 nF coupler capacitor and to the effect of



TABLE I

PN SOUNDING PARAMETERS

PARAMETER VALUE

Sequency type m-sequence

Number of chips Nc = 511

Chip period Tc = 1
1·106 = 1 μs

Sequence period T = Tc · Nc = 511 μs

Number of sequences per burst Nsq = 200

Pulse shaping (p(t)) filter Root Raised Cosine Filter (α = 0.65)

Occupied bandwidth 1.65 MHz

Center frequency fc = 2.5 MHz

Maximum Detectable Delay 511 μs

Delay Resolution 1 μs

Maximum Detectable Doppler 978 Hz

Doppler Resolution 9.7 Hz

the embedded impedance matching network, and, on the other,
to the MV cable attenuation.

B. FM: Link Time and Frequency Spread

By means of pseudo-noise (PN) based channel sounding
[20], the channel scattering function will be given, as well as
the delay and Doppler spread values.

Equation (1) shows the transmitted signal, s(t), consisting
on a modulated maximal length sequence (m-sequence) train
with center frequency fc = 2.5 MHz, located at the pass band
center of the attenuation characteristic.

s(t) =
Nsq−1∑
n=0

sPN (t − nT )ej2πfct (1)

=
n=Nsq−1∑

n=0

Nc−1∑
i=0

bip

(
t − i

T

Nc
− nT

)
ej2πfct

Where sPN (t) is a PN sequence of length Nc chips that
have been interpolated by a pulse shaping filter p(t), bi ∈
{−1, 1} are the sequence chips, Nsq is the number of m-
sequences per burst, T is the sequence period, Tc = T

Nc
is the

chip period and ΔTs = TNsq is the sounding period. This
technique allows an unambiguous sounding when the channel
has a impulse response, h(τ), shorter than T , with a time
resolution of Tc, allowing a maximum detectable Doppler of
1

2T with an accuracy of 1
ΔTs

. Table I shows the sounding
parameters.

After downconversion, the base-band received m-sequence
train, rPN (t), is correlated with a local PN sequence replica
slPN (t), as shown in Eq. (2).

RrPN ,slP N
(t) =

∫ T

0

rPN (t + τ), slPN (τ)dτ (2)

If t = η T
NcNov

+ nT where Nov is the oversampling factor,
i.e., the number of samples per chip; the discretized channel
impulse response matrix h[n, η] can be obtained from Eq. (2)
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as shown in Eq. (3), where n and η are the time and delay
indexes respectively.

h[n, η] = RrP N ,slP N

(
η

T

NcNov
+ nT

)
(3)

where

n ∈ N and n ∈ [0, Nsq − 1]
η ∈ N and η ∈ [0, NcNov − 1]

Fig. 4 depicts the Discreet Fourier Transform of h[n, η]
in the time domain, yielding to h[k, η], i.e., the scattering
function, where k is the Doppler index; and Fig. 5 shows the
channel delay power profile.
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The former (Fig. 4) depicts the power spreading in both
time and frequency domain, showing the obvious invariant
channel behavior, and the delay spread, detailed in Fig. 5,
e.g., ηmax

∣∣
10dB

= 1 μs and ηmax

∣∣
40dB

= 7 μs.

C. FM: Background Noise

One of the most characteristic aspect of PLC channels is
their noise scenario. Simplifying the typical noise scenario
defined in [9], two kinds of noise analysis will be carried out:

1) Background Noise. Including several low power spectral
density (PSD) noise sources, narrowband interferences
(mostly very slow variant sinusoidal signals) and low
power periodic impulsive noise: some impulsive events
also remain stationary, so, in this work, impulses with
a continuous repetition and with a peak power less than
6 dB than the background noise mean power will be
considered background noise too.

2) Impulsive Interferences. Those impulses not considered
background noise, i.e., impulses with a peak power more
than 6 dB than the background noise mean power.

Fig. 6 depicts the mean PSD and the standard deviation
(STD) in the frequency domain. This noise has been recorded
during four days, with an overall observation time of 400
seconds, sampled at 50 Msps.

These statistics reveal a highly colored background noise
until 10 MHz, and from that point on, the delta-like spectrum is
related to low-power continuous impulsive events. The colored
behavior, due to the summation of several noise sources,
remains at low frequencies, where the propagation from those
sources to the measurement point is possible. The maximum
variability has been observed in that frequency range, while
in the highest ranges, only minor changes happened.

D. FM: Impulsive Interferences

While some noisy events remain stationary during time with
a relatively low power, several impulsive interferences are
characterized by their high amplitude. During five days, more
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than 18 minutes sampled at 20 Msps have been processed to
extract the following statistics. That observation time yields to
7,426,304 analyzed impulses.

The horizontal parameters, i.e., random variables (RV), that
typically characterize these impulse events [9] are the impulse
width (tw), and the interarrival time (tiat); that is, the time
between the rising of the impulse and the end of the same, and
the time between two consecutive pulse risings, respectively.
Moreover, impulse interferences will be also characterized by
two vertical parameters, i.e., impulse peak power (ppk) and
impulse average power (pav). Fig. 7 and 8 depict the proba-
bility density function (PDF) and complementary cumulative
density function (CCDF) for the time and power related RVs,
respectively.

On one hand, impulses with durations less than 0.1 ms have
an occurrence probability of 1 − 10−5, showing that almost
all impulse durations are in the range of tens of microseconds.
On the other, interarrival times of milliseconds, are quite usual
(> 10−1), undisturbed intervals over tens of milliseconds can
arise with a probability of 10−3.

Fig. 8 depicts that ppk CCDF is a shifted version of pav

CCDF, showing that almost all impulses have the same shape
or damping factor. Almost all impulsive events, about 99.9
%, have an average power lower than 50 μW, on the other
hand, there is one per million ocurrences that reach the mW
of average power. Also one impulse per million aproximatelly,
reaches 10 μW of peak power.

E. FM: Reflection Coefficient

Input impedance, specially when dealing with power line
networks, is a key characteristic of the transmission channel,
since it is different for different topologies and rules the power
that the transmission and reception devices will be able to
inject and recover from the network, respectively.

By means of the MWNA, the MV channel reflection co-
efficient, measured at the coupler equipment side, namely
Γin, will be used for the network input impedance extraction,
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as shown in Section IV-H, where the coupler behavior will
be compensated in order to get the actual channel reflection
coefficient and input impedance, thus.

F. LM: MV cable S parameters

In urban areas, Endesa is now mainly deploying 18/30
kV unipolar underground cable, with triple extruded alumi-
nium core and cross linked polyethylene (XLPE) dielectric,
compiling the rules EN-50267-2-1, IEC-60502.2 and Endesa
proprietary rules DND001 and SND013.

The objective of this measurement is to obtain the MV cable
propagation constant γ, Eq. (4), and characteristic impedance
Z0.

γ = α + jβ (4)

where

β =
2πf

c
in

V (z) = V +e−γ + V −e−γ (5)

In Eq. (5), V (z) is the progressive, V +, and the regressive
voltage wave V −, in their phasorial representation. In the
expression of γ, α, β and c are the attenuation constant, phase
constant and propagation velocity, respectively. The extraction
of the cable characteristics has been carried out as follows:

1) Precise cable length measure.
2) Manufacture of the cable to MWNA connection. The

MV cable to the MWNA measurement port connections
(Fig. 2) need an ad-hoc transition manufacture. These
discontinuities involve geometrical changes in the ca-
ble structure, modifying its behavior, specially, at high
frequencies; so special attention has been paid in their
construction: short distance between the cable end and
the connector (about 2 mm), single direct path between
the cable aluminium conductor and the N connector core
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and several paths between cable and N connector shields
(tying to not to change the shield propagation modes).

3) S parameters measurement. Once the MV cable segment
has been properly connected to the MWNA, the mea-
surement of its 2x2 S parameters matrix, namely S

′
cbl,

is carried out. Note that S
′
cbl includes both cable and

discontinuity behaviors measured by a 50 Ω reference.
4) Transitional connection modeling. Taking into account

the transition shapes and signal paths, and, in order
to extract the discontinuity effect from S

′
cbl at both

cable ends, the transition is modeled by a serial anticoil
(L

′
) and a parallel anticapacitor (C

′
), i.e., a coil and a

capacitor with negative inductance and capacitance, res-
pectively. When those discontinuity effects are extracted,
the resulting S matrix will describe the behavior of the
MV cable only, i.e., Scbl.

5) Compensation and deembedding of the discontinuity
connection geometrical change by means of gradient
based optimization. An impedance matched transmission
line has a near zero reflection parameters, i.e., Scbl i,i ≈
0 ∀i. With the target of achieving such reflection values,
an optimization of L

′
, C

′
and reference impedance Z0 is

carried out, obtaining a S
′
cbl 1,1 and S

′
cbl 2,2 less than -25

dB from 10 kHz to 500 MHz. Figure 9 shows the S
′
cbl 1,1

and S
′
cbl 2,1 after the optimization. At this point, the

cable discontinuity parasit behavior can be considered
compensated and S

′
cbl becomes Scbl, where the actual

cable parameters are extracted. Equation (6), shows the
third order polynomial that fits the |Scbl 2,1| [dB/10 m]
with a root mean square error less than 0.1.

α(f [MHz]) = 8.1 · 10−8 · f3 − 9.8 · 10−10 · f2

−1.3 · 10−2 · f − 0.029 (6)

6) Z0 matching by means of cable reflection coefficient
minimization. By the same methodology and target
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of the reflection coefficient minimization, the optimum
reference impedance has been found. Since the reflection
coefficients are minimized, it means that the reference
impedance has the same value that the cable characteri-
zed impedance, first order fitted in Eq. (7).

Z0(f [MHz]) = 24.53 + 3.22 · 10−2 · f (7)

7) Finally, from the �(S2,1) in the 500 MHz frequency
range, and taking into account the cable length, the
propagation velocity (and β) can be known as shown
in Eq. (8), where l and φ are the cable length and the
phase rotation respectively.

c =
2π · f · l

φ
= 1.9 · 108 (8)

Fig. 10 summarizes the extracted MV cable parameters,
yielding to the complete definition of the characteristic im-
pedance and propagation constant, i.e., attenuation and phase
coefficients.

G. LM: MV coupler S parameters

In this work, the measurement devices have been connected
to the MV channel by means of phase-to-ground capacitive
coupling. Measured as depicted in Fig. 2, the PLCoupling /
DIMAT CAMT-1 capacitive coupler S parameters are extrac-
ted in Scplr . This device is intended to adapt a communications
equipment impedance of 50 Ω to an expected line access
impedance of 20 Ω. If this requirement is met, the performance
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of the coupler is the one shown in [18]. It has been found by
simulation that if MV channel access impedance is different
from the expected, the coupler performance varies, as shown
in Fig. 11, where transmission and reflection performances are
depicted for an access impedance of 10, 20 and 30 Ω.

In Fig. 12 the Scplr 2,1 is shown in time domain, i.e., the
F−12{SC2,1}, where F−12{·} is the square of the inverse
Fourier Transform. Besides, since the signal path goes through
two couplers from the transmitter to the receiver, Fig. 12 also
shows the delay power profile of two couplers in cascade
(F−12{SC2,1 · SC2,1}). Taking into account Fig. 5, that
measure shows that a most of the time spreading is due to
the coupler.

H. Network Input Impedance

Finally, the MV access impedance is found as follows. If
Γin is the measured channel reflection at the equipment side
of the coupler, the MV channel reflection coefficient ΓL is
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found as shown in Eq. (9), where | · | is the determinant of the
matrix.

Γin = Scplr 2,2
Scplr 1,2 · Scplr 2,1 · ΓL

1 − Scplr 1,1 · ΓL

ΓL =
Γin · Scplr 2,2

|Scplr| + Scplr 1,1 · Γin
(9)

From the expression of ΓL in Eq. (9), it is straightforward
to find the access impedance ZL, as shown in Eq. (10), where
Z0 is the measurement reference impedance, and depicted in
Fig. 13. It shows that for our measurement scenario, channel
input impedance real part ranges from 12 to 20 Ω, with no
variations over time; while the reactance behaves capacitive.

ZL = Z0
1 + ΓL

1 − ΓL
(10)

V. MV CHANNEL TOPOLOGY MODELING AND

VALIDATION

In some channels, like the LV grid, the network topology
is complex, very branched, and often, unknown. This kind of
enviroment calls for a stochastic modeling, usually based on
multipath models. This is not the case for the MV network,
where:

1) The topology is known.
2) The network device characteristics are known.

In this scenario, another kind of modeling can be carried out,
i.e., deterministic modeling. This work proposes an ad-hoc
modeling for every kind of MV network based on previous S
parameter characterization of network devices.

With this approach, given a network topology and the easily
measured device S parameters, the transfer function can be
easily obtained from and to any two points of the network. This
approach is very versatile, since the model can be exported
to different regions where different topologies and/or network

Data from network
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Data from network
devices

Selected Network Devices

Segment 1 Cable S param.
Segment 2 Cable S param.

...
Segment N Cable S param.

Tx coupler S param.
Rx coupler S param.

Tx

Rx

Selected Network 
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Model Simulator

Simulated Transfer Function

RxTx

Simulated Noise Scenario

Fig. 14. MV Channel Model

devices are used. Once the channel trasfer function has been
found, the noise scenario can be added by easily tuning some
noise model, e.g. [9], by the noise characterization presented
in this work (Fig. 14).

In order to deterministically model the MV channel to-
pology, the MV distribution cable and coupler have been
characterized from structural measurements. The validation of
the characterization and the model has been carried out by
modeling the real measured network in a circuital sumulator,
as shown in Fig. 15, and measuring the simulated attenuation
characteristic. The modeled network consists of five MV cable
segments and four joints between them. These joints are
the points where the RMUs are located. In each joint the
MV/LV transformer and the coupler can be found, as well
as the 50 Ω impedance of the measurement devices. Although
MV/LV transformers are considered perfect barriers for the
high frequency signals, they have been circuital modeled and
included in the simulated topology as explained in [21]. The
MV cable has been modeled by the extracted parameters in
Eqs. (6,7,8) and the coupler by Scplr .

Fig 16 shows a quite good match between simulation and
measure. The deviations between the two characteristics are
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most probably due to the parasite behavior of RMU elements
and physical construction issues, e.g., breakers, structure sha-
pes and sections, and so on.

VI. CONCLUDING DISCUSSION

This paper has presented a S parameters based MV channel
model for underground power lines. For this kind of scenario,
the approximation that best suits this channel is a combination
of deterministic and stochastical modeling for the channel
transfer function and the noise scenario, respectively.

Previous to the model, this work has presented seven
measurements, two of them for noise characterization and the
others to properly model the transfer function of the urban
underground MV distribution network.

The scattering parameters based structural characterization
of network devices easily yields to the deterministic modeling
of an arbitrary network topology, i.e., any kind of topology
with any type of components. Moreover, also scattering pa-
rameters based, a methodology for extracting the network
input impedance and its value have been presented, based on
the coupler deembedding in order to get an actual channel
measure.

The noise random nature has been characterized in Figs. 7,
8 and 6, revealing its behavior in time width and interrarival
impulse times, as well as the mean and variance for the

background noise in the frequency domain. Regarding the
noise scenario modeling, the several stochastic proposals, e.g.,
[9], can be easily tuned to met the MV channel background
noise and interference characteristics.

This is a very powerful approach, since the model can be
exported to different regions where different topologies and/or
network devices are used while obtaining precise channel
transfer functions. Moreover, the structural parameters can be
set by a statistical values, in order to get the channel behavior
for a certain network topology subset or group.
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Abstract— High voltage (HV) power lines have been used
as a communications medium since the 1920s. Those point to
point links were typically based on single-sideband amplitude
modulation. Nowadays, the state of the art in HV power line
carrier (PLC) communications comprises the combination of
analog systems, mainly for teleprotection tasks, and digital
systems, used for voice and data transmission. Beside traditional
core services (monitoring, operation management, and limitation
and removal of failures), electrical utilities would like to satisfy
the increasing need of new internal applications. In that way,
quadrature amplitude modulation and, most recently, multicar-
rier modulation (MCM) based modems are beginning to play
an important role in HV PLC systems. Although the typical 4
kHz bandwidth has been recently increased up to 32 kHz, this
paper proposes a low-power 256 kHz bandwidth multicarrier
spread spectrum (MC-SS) based physical layer. Based on channel
measurements, the MC-SS symbol has been designed and tested
in order to increase the user bit rate while delivering a reduced
power spectral density and bit error rate.

I. I NTRODUCTION

Since the beginning of 20th century, the High Voltage (HV)
network has been exploited as a communications medium.
Actually, the first ever running communication equipments
on power lines were the HV double-sideband amplitude mo-
dulation (1920s) and single-sideband amplitude modulation
(SSB-AM) modems (1940s). Since no other communications
network could offer such a geographic presence, reliability
and cost effectiveness, electrical utility (EU) core services, i.e.,
monitoring, operation management and limitation and removal
of failures, were carried out by voice transmission by means
of analog power line carrier (PLC) systems [1].

In the course of time, voice transmission could not achieve
the reliability, rate and the level of automation that the EUs
deserved for their applications, therefore, a rapid development
of PLC systems towards digital implementations shown up.

At the beginning, the digital data transmission was carried
out by means of low speed (50 bps) amplitude shift keying
modems. With the increase of the power grid automation level,
the required data rate grew to support the communications
of such a complex system, yielding to the typical 2400 bps
modems and the 4 kHz channelization [2], [3].

Nowadays, PLC systems are usually based on the combina-
tion of analog and digital technologies, that presents a higher
degree of flexibility for the EU: while it solves the problem
of the low reliability of the digital PLC for tasks such as

teleprotection, it overcomes the rate limitation of the analog
PLC.

Focusing on data transmission PLC state of the art, the
digital systems based on quadrature amplitude modulation
(QAM) single carrier modulation (SCM) can reach a net bit
rate of up to approximately 80 kbps in a 16 kHz bandwidth
with bit error rate (BER) equal or below10−6 [4]. Multicarrier
modulation (MCM) begins to play an important role in HV
communications due to its inherent robustness against multi-
path effects and narrowband interferers, in addition to a high
spectral efficiency. This is making orthogonal frequency divi-
sion multiplexing (OFDM), the most adaptive and frequency
efficient MCM version [5], the choice for manufacturer’s next
generation HV PLC equipment, delivering a data rate of 256
kbps available to the user in a bandwidth up to 32 kHz,
extending the usable carrier frequency range up to 1 MHz
[6].

Beside the traditional core services mentioned before, EUs
would like to satisfy the increasing need of new internal servi-
ces (support for advanced grid control and automation, audio
and video security related communication, etc), taking benefit
from the use of their own power grids. Current standards
regarding HV communications are obsolete and unaligned with
supporting HV PLC new technology deployment. IEC-TC57
Workgroup 20 recently started to work on a new standard
including HV Digital PLC (DPLC) [7].

Based on the channel measurements carried out in this work,
a multicarrier spread spectrum (MC-SS) physical layer will be
proposed and tested in a real scenario. Although the licensed
band for PLC is located from 40 kHz to 500 kHz [2], [3],
in certain situations, the signal propagation can be favorable
enough to use the frequency range above that upper limit; so,
the study on this paper will go beyond this constraint and will
propose, based on the learned experience, the exploitation of
that range by MCM adaptive [5] and Cognitive Radio (CR)
techniques [8]. Based on the same measurements, while trying
to reduce the interference on other PLC equipment in the PLC-
licensed band and on the existing broadcast signals on the non-
PLC-licensed band, the MCM symbol design is performed in
order to minimize of the transmitted power spectral density
(PSD).

This paper is organized as follows: In Section II the descrip-
tion of the HV transport lines where the measurements have



been carried out, as well as the measurement and test set-
up will be described. Two scenarios have been tested: first,
a 6.85 km long link, and another 27 km long. In Section
III, the measurement outcomes regarding the 6.85 km link
will be discussed and then, in Section IV, the MC-SS symbol
design and the proposed system performance will be shown
for the same link. In the next Section, Section V, a short
briefing of the 27 km link measurement and MC-SS data
transmission results will be given. Finally, concluding remarks
will be summarized in Section VI.

II. M EASUREMENT AND TEST SCENARIO

In this Section, the test scenario as well as the measurement
set-up will be introduced.

The scenarios under test are, in one hand, a 4-circuits,
3-phase 110 kV line between the “Egara” and the “Mas
Figueres” ENDESA substations, in Barcelona, Spain, both
substations separated by 6.85 km; and on the other, a similar
27 km line between the “Sant Celoni” and the “Tordera”
ENDESA substations, also in Barcelona. In the sequel, the
former will be named the “short” and the latter the “long”
link.

Both channel measurements and data transmission tests have
been carried out using the same equipment: two National
Instruments PXI chassis. Each chassis consists on an industrial
embedded computer, one high stability reference clock [9]
and a special instrumentation card. At the transmission site,
this instrumentation card is a high speed arbitrary waveform
generator, capable of output data at 100 Msps at 16 bits
of vertical resolution [10]; while the receiver chassis has an
analogous 14 bits high speed digitizer [11]. Both chassis are
GPS synchronized.

The measurement and test set-up is depicted in Fig. 1. At
the transmission site, the digital-to-analog converted signal is
immediately fed into an ad-hoc built amplifier1. From 50 kHz
to 1.4 MHz, this device offers a gain of 37.5 dB and 160 W of
peak envelope power (PEP). When amplified, the signal gets
the coupling device [12] that, taking into account the coupler
capacitor, matches the 75Ω amplifier output impedance with
the line access impedance.

That matching procedure is carried out manually, i.e., the
reflection coefficient at the input of the coupling unit is
monitored while switching among coupling unit different
configurations. Since the transformers at the line ends can
be considered as a perfect barriers for frequencies over a
few tenths of kHz [13], the previously found coupling device
configuration (and line access impedance) can be considered
valid for that time on.

The line trap prevents the radio frequency signal from
entering the substation premises while it propagates toward
the receiver site. When decoupled and before the acquisition,
the signal is amplitude limited and noise and antialias low pass
filtered at 6 MHz. In the sequel, the channel is considered to

1Manufactured by DIMAT S.A., a ZIV Group Company
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Fig. 2. Link Attenuation

be between the amplifier output and the transient limiter input;
other devices will be properly compensated.

In the next two Sections, III and IV, the channel measure-
ments as well as the symbol design and test concerning the
short link will be given. Since the same procedure has been
followed for the long link study, the most important details
concerning that link will be given in Section V.

III. C HANNEL MEASUREMENTS, SHORT L INK

In this Section, a complete wideband sounding for the HV-
PLC channel will be presented. First, the attenuation charac-
teristic will show the power line transmission capabilities and
its long term variations. Then, in order to get knowledge of
the short term variations, i.e., the channel delay and Doppler
spreads, the pseudo-noise (PN) sequence based sounding will
be carried out. Maximal length sequences (m-sequences) are
used because of its well-known good autocorrelation properties
[14]. From these measurements, the channel coherence time
(∆t0) and coherence bandwidth (∆f0) will be deduced in or-
der to properly design the MCM symbol. Finally, a background
noise analysis will be carried out.

A. Attenuation Characteritics

The attenuation characteristic of the link under study has
been measured by transmitting one tone sweep every 20
minutes from 10 kHz to 2 MHz in 10 kHz steps. Each step
consists on 10 averaged acquisitions during 2 seconds. In Fig.
2 all the measured sweeps can be seen overimposed.

The channel attenuation characteristic shows a pass band
behavior. The low cut-off frequency (40 kHz) is due to the
coupling capacitor and coupling device combined frequency
response, and the high one is due to the same devices plus
the line attenuation. The ripple at the pass band is due to
the multipath effect, as it will be shown later, whereas the
null from 610 kHz to 880 kHz is due to the coupling devices
impedance mismatching. The perfect match among the 360
sweeps (5 days) means that both propagation and coupling
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TABLE I

PN SOUNDING PARAMETERS

PARAMETER VALUE

Sequency type m-sequence

Number of chips Nc = 2047

Chip period Tc = 1.66µs

Sequence period T = TcNc = 3.41 ms

Number of sequences per burst Nsq = 10

Pulse shaping (p(t))filter Root Raised Cosine Filter (α= 0.65)

Occupied bandwidth 0.99 MHz

Center frequency fc = 600 kHz

performances remained constant for one week, so, there is no
long term variation in the link transfer function.

B. Time Spread and Frequency Spread

In this Section, by means of PN sequences, the short term
channel variation as well as time spreading will be studied.

The transmitted pilot signal,s(t) (Eq. (1)), consists on a
modulated m-sequence train at center frequencyfc.

s(t) =
Nsq−1∑
n=0

sPN (t − nT )ej2πfct (1)

=
n=Nsq−1∑

n=0

Nc−1∑
i=0

bip

(
t − i

T

Nc

− nT

)
ej2πfct

Where sPN (t) is a PN sequence of lengthNc chips that
have been interpolated by a pulse shaping filterp(t), bi ∈
{−1, 1} are the sequence chips,Nsq is the number of PN
sequences per burst,T is the sequence period,Tc = T

Nc
is

the chip period and∆Ts = TNsq is the sounding period.
This technique allows an unambiguous sounding when the
channel impulse response (h(τ)) is shorter thanT , with a time
resolution ofTc, allowing a maximum detectable Doppler of
1

2T
with an accuracy of 1

∆Ts
. Table I shows the sounding

parameters.
After downconversion, the base-band received m-sequence

train, rPN (t), is correlated with a local PN sequence replica
slPN (t), as shown in Eq. (2).

RrP N ,slP N
(t) =

∫ T

0

rPN (t + τ), slPN (τ)dτ (2)

The discretized channel impulse response matrixh[n, η] can
be obtained from Eq. (2) as shown in Eq. (3), wheret =
η T

NcNov
+ nT whereNov is the oversampling factor, i.e., the

number of samples per chip, andn and η are the time and
delay indexes respectively.

h[n, η] = RrP N ,slP N

(
η

T

NcNov

+ nT

)
(3)

where

n ∈ N andn ∈ [0, Nsq − 1]
η ∈ N andη ∈ [0, NcNov − 1]

Fig. 3 shows the normalized power ofh[n, η] ∀n, that is,
the Nsq impulse responses overimposed, revealing no short
time channel variations. In the same figure, the first and
most powerful path, which is the direct one, followed by
an exponential energy decrease of 20µs, can be seen. This
decreasing spreading after each path is caused by network
devices (e.g. coupling devices, coupling capacitor and line
traps, etc) non idealities. That first path is followed by the
second one, 17.4 dB attenuated and 47µs after. This second
path is due to the reflection of the first incoming signal
at the receiving substation, its propagation back again to
the transmitter site and its second reflection to the original
destination. The same can be told about the third path. Taking
into account a distance of 6.85 km between transmitter and
receiver, it is straightforward to find a propagation speed of
2.92 · 108 m

s
or 0.97 timesc0 (speed of light in the vacuum),

a little less than the expected for a transversal electromagnetic
propagation, probably due to the topological and structural line
characteristics, e.g, path, supports, direction changes, etc.

The spreading in time calls for a robust modulation in front
of frequency selective channels and inter-symbol interference
(ISI). OFDM delivers such robustness in this kind of scenario
if both subcarrier bandwidth and cyclic prefix length are
properly designed, therefore, achieving a flat channel per
subcarrier and avoiding ISI, respectively. As expected, no
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channel variation has been found in time domain, yielding
to a zero Doppler scattering and subsequently a large value
for the coherence time of the channel, i.e.,∆t0 → ∞.
Adaptive techniques cannot be implemented in real time due to
current equipment restrictions, however an stationary channel
enhances the modulation adaptation performance and OFDM
offers the maximum achievable spectral granularity, becoming
the best candidate to implement adaptive techniques [5].

Once the time domain variation has been characterized, the
frequency domain variation, i.e., the∆f0, has to be found.
From Eq. (3), the channel transfer function,H(f) can be
calculated by means of the Fourier Transform. Then, in order
to find the∆f0, the frequency correlation function, Eq. (4), is
depicted in Fig. 4.

R(∆f) =
E{H∗(f)H(f + ∆f)}

E{H(f)}
(4)

In this work, a ∆f0 of 70 kHz for a 0.9 correlation is
considered (Fig. 4). Taking this frequency correlation measure
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into account, the channel sampling theorem has to be fulfilled
in the frequency domain [15] for channel estimation purposes.
This issue will be deeply studied in Section IV-A.

C. Noise Scenario

In this Section, a closer look will be given to the noise
scenario, specifically, to background noise. This type of noise
is a broadband permanent interference with relatively high
level and mainly caused by corona effect and other leakage or
discharge events. Background noise PSD is time and frequency
variant (colored noise). Due to climatic dependences, corona
noise power fluctuations up to tens of dB may be expected.
Moreover, stationary, low-power periodical and synchronous
with the mains power frequency impulse events can also
be considered background noise. These kinds of impulses
are caused by discharges on insulators and other electrical
substation devices. Narrowband interferences such a coupled
broadcast emissions or other communications equipment, due
to its slow variability, can be considered background noise too
[1].

Fig. 5 shows the background noise and the received OFDM
overimposed PSDs at the receiver site. Two noise regions can
be clearly identified, i.e., from the lower frequencies up to 500
kHz and from 500 kHz on. The former band is colored noise
limited, while the latter is narrowband interference limited.

Fig. 6 depicts the maximum, the minimum and the mean
PSD values (three upper black lines) from 40 kHz to 1 MHz,
during a 4 days observation period. Although this behavior
can be considered slow variant, large differences in time
show up. This scenario shows a highly dynamic background
noise in frequency domain, since maximum variations up to
40 dB have been measured, with standard deviations (STD)
around 10 dBm/Hz, in the whole frequency range. Larger
differences between maximum and minimum, as well as larger
STD values, can be found in the frequencies where coupled
signals from other equipment are located, e.g., around 160
kHz and 320 kHz. Since no adaptive scheme will be used,
this background noise study will not directly affect the MCM
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symbol design, but the obtained results claim again for a power
and bit-loading adaptive MCM physical layer [5].

IV. MCM D ESIGN AND TEST, SHORT L INK

In this section, based on the measurements previously
presented, the MCM symbol design will be presented, as well
as the delivered performance for the three tested physical layer
schemes: OFDM (Fig. 7) and two combinations of OFDM and
code division multiple access (CDMA), generally known as
MC-SS techniques. According how different streams share the
spectrum, two typical schemes arise under the concept of MC-
SS: multicarrier- code division multiple access (MC-CDMA)
and multicarrier - direct sequence - code division multiple
access (MC-DS-CDMA) [16], [17].

Fig. 7 shows the typical OFDM transmitter and receiver
block diagram whereSr,s, for r, s ∈ N, r ∈ [0, Nsym −1] and
s ∈ [0, Nsc − 1], are the complex symbols that will modulate
the Nsc subcarriers of theNsym symbols per OFDM frame.
After the serial to parallel conversion, the OFDM symbol is
modulated in the frequency domain by means of the inverse
Fast Fourier Transform (IFFT). Then, after a serial to parallel
conversion and before the conversion to the analog domain,
the Ng samples of the guard interval are added in order to
avoid inter-symbol interference (ISI) in the useful part of the
symbol (5). By means of the received and sampled signaly[n]
FFT (IFFT), the received symbolsRk are recovered and ready
for demapping.

xs[n] =
1

Nsc

Nsc−1∑
r=0

Sr,se
j2πn r

Nsc (5)

Although two-dimensional spreading methods exists, e.g.,
Variable Spreading Factor - Orthogonal Frequency and Code
Division Multiplexing (VSF-OFCDM) [18], this work is focu-
sed on the two typical one-dimension spreading in frequency
and time, MC-CDMA and MC-DS-CDMA, respectively.

The MC-CDMA (Fig. 8) scheme, also known as OFDM-
CDMA, can be considered a classical OFDM system where
the information applied to eachLf subcarriers belongs to the
same spread symbol, whereLf is the spreading factor (SF) in
frequency domain. The choose of theLf determines how much
the information is spread and, thus, the degree of frequency
diversity. Moreover, theLf determines the number of streams
(Kf ≤ Lf ) that will share the same bandwidth. In case of
full-loading Kf = Lf . WhenLf becomes smaller thanNsc,
different groups of subcarriers can be established (Gf = Nsc

Lf
).

In MC-DS-CDMA, the information applied to eachLt OFDM
symbols in the same subcarrier belongs to the same spread
symbol, whereLt is the SF in time domain. The choose of
the Lt determines how much the information is spread and,
thus, the amount of time diversity. In the same way, theLt

determines the number of streams (Kt ≤ Lt) that will share
the same OFDM symbols. In case of full-loading, the number
of streams equals the SF again,Kt = Lt. WhenLt becomes
smaller than the number of OFDM symbols per frameNsym,
different groups can be established (Gt = Nsym

Lt
).

After the initial serial to parallel conversion, if channel state
information (CSI) is available at the transmitter, the signal
goes through a power and bit-loading algorithm in order to
adapt the power allocation and constellation scheme for each
subcarrier or subcarrier groups [19]. Due to technical real time
restrictions of the test equipment, the CSI is not available and
the power and bit allocation matrix equals the identity. Then,
Xi,j

n,m designates the symbol that will be spreaded in frequency
domain by the spreading codeci

f ∈ C
Lf×1 and in time domain

by the spreading codecj
t ∈ C

Lt×1, wherecHc = 1 and (·)H

represents the Hermitic transpose andi, j ∈ N, where i ∈
[1,Kf ] and j ∈ [1,Kt]. The indexesn,m ∈ N, wheren ∈
[1, Gf ] andm ∈ [1, Gt], denote the frequency and time group
whereXj,k

n,m belongs to.

Regarding MC-CDMA,Lt = 1 and c
j
t = [1] ∀j, while

Lf > 1 and ci
f = [β0,i

f , . . . , β
Lf−1,i

f ] yielding to Gf groups
in frequency domain (6). ThenXi,j

n,m can be redefined asXi
g,s,

wherei, g ands are the spreading code, frequency group and
OFDM symbol indexes, respectively.

xs[n] =
1

Nsc

Gf−1∑
g=0

Kf−1∑
k=0

Xk
g,s

Lf−1∑
l=0

β
l,k
f ej2πn

gLf +l

Nsc (6)

On the other hand, MC-DS-CDMA is characterized by
spreading in time, not in frequency, thenLf = 1 andci

f = [1]
∀i, while Lt > 1 andc

j
t = [β0,j

t , . . . , β
Lt−1,j
t ] yielding to Gt

groups in time domain (7). In (7),Xmod(d) is the remainder
of the quotientX

d
and ⌊·⌋ means the nearest integers towards

minus infinity. In this case,Xi,j
n,m can be redefined asXj

r,g′ ,
wherej, r andg are the spreading code, subcarrier and time
group.
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xs[n] =
1

Nsc

Kt−1∑
k=0

Nsc−1∑
r=0

Xk
r,g′β

l′,k
t ej2πn r

Nsc (7)

where

g′ =
⌊
smod(Gt)

⌋
l′ = smod(Lt)

As will be shown in the next Section, the three schemes, i.e.,
OFDM (5), MC-CDMA (6) and MC-DS-CDMA (7) are fairly
compared in this paper, since the same signal to noise ratio
(SNR) and the same user data rate will be used for testing,
i.e., the sameEb

N0
(bit energy to noise spectral density ratio).

A. Symbol Design

In this Section, the MCM symbol design will be carried
out. First, the OFDM symbol parameters as well as the frame
parameters will be given. Then, since the OFDM parameters
will be used as a starting point for the MC-SS modulations
design, only the spreading sequences, spreading factor and
number of active streams need to be determined.

Transmitted power will be chosen in order to get a BER
of approximately10−2 before decoding. If using 16-QAM as
a mapping scheme, 256 kHz of occupied bandwidth and 9
dBm of transmitted average power, around 20 dB of SNR is
expected at the receiver site (Fig. 5). Taking into account this
ratio and the impulse response in Fig. 3, only the first and
the second path (atτmax=46.86 µs) have to be considered.
A Tcp=80 µs will prevent ISI from occur. The cyclic prefix
duration,Tcp, is in charge of avoiding ISI, and consequently,
inter-carrier interference (ICI). This guard interval has to be
greater than the maximum delay spread (τmax) [5].

The 10−2 expected BER is the minimum required modu-
lation performance for allowing the channel coding perform
correctly. A 1/2 convolutional code with constraint length 7
and trace-back length 35 will be used in order to achieve a
BER performance close to the typical performance delivered
by other systems:10−6. Morover, a 120 depth interleaving
will be employed in order to spread the symbols among the
whole OFDM lattice [20].

OnceTcp has been fixed, the symbol length will be chosen
while trying to maximize the cyclic prefix efficiency (8), that
is, the ratio between the useful symbol time,Tu, and the
symbol timeTs, whereTs = Tcp + Tu.

ρcp =
Tu

Tcp + Tu

(8)



The maximum symbol time is restricted by the∆t0, i.e.
∆t0 > Ts, and by∆f = 1

Tu
, since a minimum∆f is needed

in order to avoid the effect of ICI for a given uncompensated
frequency offset,foff [Hz]. In this way, in order to keep
an acceptable performance degradation, a relative uncorrected
frequency offset,δoff , of δoff = foff

∆f
≤ 0.01 has to be

fulfilled. A Tu of 1 ms will yield to a relaxed constraint of
foff ≤ 10 Hz, while keepingρcp ≥ 0.9 [5].

Finally, a 1080µs OFDM symbol ofNsc=256 subcarriers
will be used. With∆f=1 kHz per subcarrier, an overall symbol
bandwidth of 256 kHz is achieved.

Once ∆f has been determined, the pilot separation in
frequency domain,Nf can be found by satisfying the Nyquist
sampling theorem in the frequency domain [15]. There are
some rules of thumb that state that a channel oversampling
of twice the Nyquist frequency is recommended [21], so
following (9) and (10), where∆fNf

and⌊·⌋ are the frequency
separation between pilot subcarriers and the nearest integer
towards minus infinity respectively,Nf can be found.

∆fNf
=

1
2

∆f0

2
=

1
2

70 kHz
2

= 17.5 kHz (9)

Nf = ⌊
∆fNf

∆f
⌋ = 17 (10)

In order to avoid channel prediction at the OFDM lattice
edges, which is more unreliable than interpolation, instead of
using aNf of 17 subcarriers, a separation of 16 subcarriers
will be used.

Although the number of OFDM symbols in one frame is
usually constrained by time and frequency acquisition and
tracking algorithm accuracy (among others) [5], in our case,
this is upper limited by the receiving equipment digitizer
memory, a limitation of 16 (+1 pilot symbol) symbols has to be
respected. A PN based pilot symbol used for synchronization
is inserted at the beginning of each frame.

The channel stationary behavior gives no restriction regar-
ding the pilot separation in time domain, so, sinceNsym = 16,
a pilot separation in time domainNt = 16 could be chosen,
yielding to a pilot density related efficiencyρpd of 0.996 (Eq.
(11)).

ρpd =
NfNt − 1

NfNt

(11)

On the other hand, noise effect regarding channel estimation
can be reduced if we decrease the pilot distance down toNt

= 4, the efficiency is reduced only by a 1.2%, yielding to the
overall system performance shown in Eq. (12).

ρcp · ρpd = 0.911 (12)

Finally, the MCM parameters can be seen in Table II.
While trying to simplify the receiver complexity, least squares
channel estimation and 1D+1D lineal channel interpolation
have been carried out before equalization [22].

TABLE II

MCM PARAMETERS

PARAMETER VALUE

OFDM

Cyclic prefix Tcp = 80 µs

Useful symbol time Tu = 1 ms

Symbol time Ts = 1.08 ms

Subcarrier bandwidth ∆f = 1 kHz

Number of subcarriers Nsc = 256

Pilot subcarriers Np = 16

MCM bandwidth 256 kHz

Pilot frequency spacing Nf = 16

Pilot time spacing Nt = 4

Number of OFDM symbols per frame Nsym = 16

Mapping 16-QAM

Channel estimation Least Squares and

Minimum Mean Square Error

Channel interpolation 1-D + 1-D 1st order

Channel coding 1/2 convolutional code,

constraint length 7,

trace-back length 35 and

120 of interleving depth

Gross bitrate Rbg = 930 kbps

User bitrate Rbu = 465 kbps

Transmission peak power P ′

tx = 150 mW or 21.7 dBm

Transmission mean power Ptx = 7.7 mW or 8.9 dBm

Peak to average power ratio PAPR = 12.8 dB

MC-CDMA 2

Spreading sequence Walsh-Hadamard

Spreading factor Lf = 8,

chip inteleaving depth 8

Detection Single User

Number of streams Kf = 8 (Fully loaded)

MC-DS-CDMA 2

Spreading sequence Walsh-Hadamard

Spreading factor Lt = 8,

chip inteleaving depth 2

Detection Single User

Number of streams Kt = 8 (Fully loaded)

In order to have a fair comparison between the OFDM
and the MC-SS schemes, a Walsh-HadamardLf =Lt=8 fully
loaded MC-CDMA and MC-DS-CDMA will be considered.
The interleaving carried out in OFDM yields to an increase
of both frequency and time diversity at symbol level. In the
MC-SS modulations, a chip level interleaving in frequency and
time will be carried out in MC-CDMA and MC-DS-CDMA,
respectively. A single user detection scheme will be used for
despreading [5].

2OFDM parameters apply to MC-CDMA and MC-DS-CDMA
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B. System Performance

The BER performance of the pure OFDM scheme is depic-
ted in Fig. 9. The continuous line represents the modulation
BER, i.e., without decoding, and the dashed line represents
the BER after decoding, for a user bit rate of 465 kbps. Those
lines show the day-by-day averaged performance.

The modulation BER showed a constant behavior, around
2 · 10−2, while the performance after decoding yielded to a
BER of 4.4 · 10−6. The fifth day shows no line for the BER
after decoding. During this interval, all the modulation errors
were successfully corrected by the code, so a BER better than
10−7 was observed.

The MC-SS scheme performance is depicted in Fig. 10.
Again, the continuous lines represent the modulation BER and
the dashed lines represent the BER after decoding, for a user
bit rate of 465 kbps. Since a higher level of channel diversity is
obtained with spreading, both MC-SS schemes outperform the
pure OFDM approach. Specifically, the MC-CDMA scheme
delivers the best performance, i.e.,3.1 ·10−7 of decoded BER
(again, no errors during the fifth day). This is due to the fact
than the channel we are dealing with presents a higher level of
frequency selectivity rather than time selectivity. This selective
behavior is most probably due to the noise scenario (colored
spectrum in frequency domain and asynchronous impulses in
time domain) rather than to the multipath effect.

Table III summarizes the performance of the three tested
schemes.

V. L ONG L INK

Previous sections have been focused on the channel study
and symbol design for a low power MCM symbol. Only 7.7
mW of average power have been used in order to deliver the
system performance shown in Table III.

In this Section, by means of the same channel study and
symbol design methodologies, both MC-CDMA and MC-
DS-CDMA schemes have been tested. In this scenario, the
system performance has been measured by using a similar
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TABLE III

SYSTEM PERFORMANCE

Gross bitrate = 930 kbps

SCHEME GROSSBER

OFDM 2 · 10−2

MC-DS-CDMA 9.9 · 10−3

MC-CDMA 8.7 · 10−3

User bitrate = 465 kbps

SCHEME USER BER

OFDM 4.4 · 10−6

MC-DS-CDMA 4.2 · 10−7

MC-CDMA 3.1 · 10−7

peak envelope power (PEP) that other commercial systems
use: 40 W, in a 27 km link.

With illustrative purposes only, Fig. 11 and Fig. 12 show
the link attenuation and the delay spread, respectively. In the
former, the lowest cut-off frequency is again caused by the
coupling devices and the ripple in the pass band region by the
multipath shown in the latter.

As expected, the attenuation characteristic is more severe
and the channel delay is longer than the ones found in the 6.85
km link, Fig. 12 shows the first path followed by two reflected
paths 19.8 dB below and 188µs after their predecessor. As
the link length increases, the time distance between reflections
increases, as well as their relative power. In order to be
efficient in terms of cyclic prefix duration, an adaptive guard
interval length is also welcomed in this channel invariant
scenario.

From the obtained results in the short link, only the MC-
SS schemes, not the pure OFDM, have been tested. In this
scenario, taking into account a PEP of 40 W and 12 dB of
peak to average power ratio (PAPR), since no PAPR reduction
technique has been implemented, an average power of 2.5
W will be injected into the channel. The test results are
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Fig. 12. Channel Impulse Response

shown in Table IV. Again, taking profit of the noise scenario
frequency selectivity, the spreading in frequency outperforms
the spreading in time. In some situations, by means of power
and bit-loading techniques, the achieved performance (465
kbps with8 · 10−8 BER) may be desired to be converted into
a less demanding figure (less bit rate and/or higher BER) by
reducing the average power and transmitted PSD. Moreover,
it is also possible that for some applications a BER of, e.g.,
1 · 10−3, can be enough, so higher bit rates could be achieved
using the same transmitted power.

VI. CONCLUSION AND FUTURE WORK

In this work, a first step towards a new wideband physical
layer on HV lines has been presented. The needed channel
measurements to carry out a MCM symbol design have been
fulfilled, and the performance of the proposed system has been
tested in a real scenario.

A properly designed OFDM allows an easy equalization

TABLE IV

SYSTEM PERFORMANCE

Gross bitrate = 930 kbps

SCHEME GROSSBER

MC-DS-CDMA 4 · 10−3

MC-CDMA 3 · 10−3

User bitrate = 465 kbps

SCHEME USER BER

MC-DS-CDMA 1 · 10−7

MC-CDMA 8 · 10−8

and detection while avoiding ISI. OFDM splits the selective
signal bandwidth into several flat subchannels, however, an
efficiency loss has to be paid due to the cyclic prefix. In order
to minimize that loss, a short cyclic prefix is desired, so, if
received SNR is low enough, less channel delay spread will
have to be considered. In this work, only the first reflected path
was needed to be avoided. Moreover, it has been shown that
high rates can be achieved by increasing bandwidth instead of
signal power. This low-PSD minimizes undesired emissions
and signal coupling into other systems or other MV-PLC
links. The spectral granularity delivered by MCM can be also
exploited in terms of spectral notching, that is a desirable
characteristic in PLC modulations when trying to completely
avoid the emission in certain frequencies.

Regarding channel time domain behavior, it has been found
that channel transfer function and access impedance can be
considered constant, revealing neither short time nor long time
variations. This friendly behavior in time domain suggests
the use of an adaptive modulation for efficient channel capa-
city exploitation. Thus, without wasting power or increasing
BER, a higher link spectral efficiency can be achieved by
taking advantage of the OFDM subbands flat fading through
adaptation [19]. On the other hand, background noise does
vary in time domain (up to 40 dB in certain bands), but its
slow variability does not present a serious impairment for
an adaptive approach. Moreover, special attention should be
given to this particular noise scenario: variable and colored
background noise regarding frequency domain selectivity, and
asynchronous impulse events regarding both frequency and
time domain selectivity; when designing noise aware adaptive
schemes.

Although channel diversity is exploited at bit level by
means of coding and interleaving, it has been shown that
better performance can be obtained by exploiting diversity at
chip level when using MC-SS schemes. Specifically, the MC-
CDMA scheme is able to take profit of the noise scenario
frequency selective behavior (colored spectrum) delivering the
best performance of the three tested schemes, i.e., 465 kbps
with 8 · 10−8 of BER with 2.5 W of average power in a 27
km link.

Moreover, measurements have revealed that transmission is
possible beyond the licensed HV-PLC band. The next spectrum
band is licensed to broadcast systems, but, as it has been



shown, an easily exploitable narrowband interference limited
noise region characterizes the spectrum from 500 kHz and on.
MCM access methods and CR techniques offer a good pos-
sibility to increase HV-PLC channel bandwidth and minimize
interferences between HV-PLC neighboring equipment [8].

Future work points to the test of MC-SS signals with PAPR
reduction techniques, different detectors, and hybrid MC-
SS approaches like orthogonal frequency and code division
multiplexing (VSF-OFCDM, MCM with variable spreading in
both dimensions) [5], [18]. This kind of hybrid schemes offer
a great level of granularity and adaptation capabilities, being
able to offer several quality of service levels in one single
frame architecture simultaneously.
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