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Abstract

Nowadays, Human Computer Interface (HCI) is one of the most studied disciplines in order to
improve real human interactions with machines on the present time and for the incoming future.
More and more electronic devices of the daily life are used by more people. This electronic incursion is
mainly due to two reasons. On the one hand, the undoubted increasing of the economical accessibility
to this technology but on the other hand, the more friendly interfaces that allow an easier and
more intuitive use. As a matter of fact, nowadays it is only necessary to observe the personal
computer interfaces, pocket size computers and even mobile telephones. All these new interfaces
let little experienced users make use of cutting edge technologies. Moreover, the inclusion of speech
technologies in these systems is becoming more usual since speech recognition and synthesis systems

have improved their performance and reliability.

The purpose of speech technology is to provide systems with a natural human interface so the
use can be extended to daily life. Text-To-Speech (TTS) systems are one of the main modules
under intense research activity in order to improve their naturalness and expressiveness. The use of
synthesizers has been extended during the last times due to the high-quality reached in real limited
domain applications and the good performance in generic purposes applications. However, there is

still a long way to go with respect to quality and open domain systems.

This work will present a TTS system based on a statistical framework using Hidden Markov
Models (HMMs) that will deal with the main topics under study in recent years such as voice
style adaptation, trainable TTS systems and low print databases. Moreover, a cutting edge hybrid
approach combining concatenative and statistical synthesis will also be presented. Ideas and results
in this work show a step forward in the HMM-based TTS system field.






Resumen

Hoy en dia, la Interaccién Hombre-Méaquina (IHM) es una de las disciplinas mds estudiadas con el
objetivo de mejorar las interacciones humanas con sistemas reales para el presente y para el futuro
venidero. Mdas y mds dispositivos electrénicos son usados por més gente en la vida diaria. Esta
incursion electrénica se debe principalmente a dos razones. Por un lado, el indudable aumento en
la accesibilidad econémica a esta tecnologia pero por otra parte, unos interfaces mas amigables que
permiten un uso mas facil e intuitivo. Simplemente hace falta observar hoy en dia los ordenadores
personales, las computadoras de bolsillo e incluso los teléfonos moéviles. Todos estos nuevos disposi-
tivos admiten que usuarios poco experimentados puedan hacer uso de las tecnologias méas punteras.
Por otra parte, la inclusién de las tecnologias del habla estd llegando a ser méds comun gracias a
que los sistemas de reconocimiento y de sintesis de voz han estado mejorando su funcionamiento y
fiabilidad.

El objetivo final de las tecnologias del habla es crear sistemas tan naturales como los seres
humanos para que su uso se pueda extender a cualquier rincén de la vida diaria. Los conversores de
Texto-a-Voz (o sintetizadores) son de los médulos que mds esfuerzo investigador han recibido con el
objetivo de mejorar su naturalidad y la expresividad. El uso de los sintetizadores se ha ampliado
durante los dltimos tiempos debido a la alta calidad alcanzada en usos de dominio restringido y el
buen comportamiento en aplicaciones de propdsito general. De todas formas, todavia queda un largo
camino por recorrer por lo que respecta a la calidad en aplicaciones de dominio abierto. Ademas,
algunas de las tendencias de los sistemas sintetizadores conllevan reducir el tamafno de las bases de

datos, sistemas flexibles para adaptar locutores y estilos de locucién y sistemas entrenables.

Esta tesis doctoral presentard un sintetizador de voz basado en el entorno probabilistico de los
Modelos Ocultos de Markov (MOM) que lidiaré con los principales temas estudiados en la actualidad
tales como adaptacién del estilo de locutor, sistema conversores de voz entrenables y bases de datos
de tamano reducido. Se describira el funcionamiento convencional de los algoritmos y se propondran
mejoras en varios ambitos tales como la expresividad. A la vez se presenta un sistema hibrido puntero
que combina modelos estadisticos y de concatenacién de voz. Los resultados obtenidos muestran
como las propuestas de este trabajo dan un paso adelante en el &mbito de la creacién de voz sintética

usando modelos estadisticos.
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Chapter

Introduction

This thesis concerns speech synthesis using Hidden Markov Model (HMM), defined as an HMM-
based TTS system hereon. In particular, the thesis focuses on HMM-based TTS systems for Spanish
and English and proposes different ways of improving naturalness and expressiveness of the synthetic
speech. Furthermore, we show how different applications for video games were developed using this

type of synthesis system. Finally, we propose a novel hybrid synthesis based on HMM.

1.1 General framework

TTS synthesis is one of the key technologies in speech processing. It is a technique for creating speech
from given texts in order to communicate machines and people as part of a Human Computer
Interface (HCI). Figure 1.1 depicts an example of video game application. This interface is a
multimodal dialogue system framework where multiple input sources can be used simultaneously.
In particular, an Automatic Speech Recognition (ASR) module converts speech into text and the
Natural Language Understanding (NLU) block processes an input text to extract users’ intentions
(e.g., ask for a cinema ticket). The dialogue manager controls the action to be taken (e.g., answer
a question) at each step of the conversation and the Natural Language Processor (NLP) module is
the opposite to the NLU block converting intentions into natural text. Finally, speech reaches the
final user through a TTS system. Firstly, this system produces neutral speech and then, an optional

voice transformation technique can also be used in order to introduce extra effects (e.g., emotions).

Ideally, these additional input modes in the framework shown in Figure 1.1 can also be hand-
writing (Vielhauer and Scheidat, 2005), events from hardware interfaces (Young, 2007) (e.g., mouse
movements) among others (e.g., motion capture). Today this is a reality in games such as EyePet

(PlayStation3 ®) and on certain gaming devices (e.g., Nintendo®Wii).

Nowadays, these HCI have evolved so as to include media technologies to create virtual col-
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laborative frameworks. In the past, some of these systems employed virtual actors (e.g., Virtual
Speaker (VS) (Melenchén et al., 2003)) whereas these frameworks now include multiple speech tech-

nologies, 3D audio, image processing and virtual reality.

Multimodal input| Game core
Speech
R ASR NLU Dialogue manage
; User
\oice Speech generatr
; NLP
transformation TS

Figure 1.1: An example game engine application described as a dialogue interaction with multiple
input sources, a dialogue manager and speech generated by a TTS system. Speech is converted to
text by the Automatic Speech Recognition (ASR) module whereas Natural Language Understanding
(NLU) and Natural Language Processor (NLP) blocks are used to convert text into the semantic
level and viceversa, respectively.

TTS systems have been conventionally applied to applications where the purpose is focused
on producing stable and intelligible speech (e.g., telephony), whereas naturalness has been often
relegated to a second position. By contrast, TTS system applied to games differs on some aspects to
that applied to conventional tasks (Rozak, 2007). Most computer games use recorded speech which
produces perfect and natural speech. The production efforts are a very time consuming process which
TTS systems can optimize. Nevertheless, the following constraints must be taken into account when

TTS systems are applied to video games:

e Speech can be produced online or offline. On the one hand, Figure 1.1 shows an online speech
production since the TTS system is integrated within the game engine so that the game can
produce live speech. On the other hand, offline speech would be statically introduced into the
game. Obviously, the possibility to create infinite content within the game and let the user

create their own content makes the online option more attractive.
e Players demand the best visual and audio effects quality.
e Speech in games is very expressive and might contains multiple styles and emotions.

e Usually, several voices are required for each of the different characters of the game.

As we can see, video games are a particular application which requires TTS systems to generate
natural speech with arbitrary speaker’s voice characteristics and speaking styles. There exist different
approaches to face those requirements and to produce stable and expressive speech. Currently

there are basically three main trends: Concatenative Unit Selection-based Text-To-Speech synthesis
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(Co-TTS), HMM-based TTS and hybrid systems. Each of these approaches have advantages and
disadvantages as well as different purposes. A brief discussion and overview is described in the

following sections.

1.2 Speech synthesis: an overview

As it has been described, the TTS system is responsible to generate synthetic speech from an input
text. Usually the input of a conventional speech synthesis system is plain text, though a richer
synthesis query might be also possible using a standard structured language (e.g., Speech Synthesis
Markup Language (SSML) (W3C, 2004)). The idea is to control the synthesis system to produce not

only a desired text but also to incorporate additional information (e.g., specific word intonation).

TTS systems have improved over the last years though it is still not possible to design the
perfect synthesis for any application and all domains (Black, 2002). It is a matter of fact that
the quality depends on the type of application, the amount of data and the affordable complexity
of the resulting system. A compromise is needed between the target quality and the domain of
the applications being designed. In speech synthesis, a domain refers to the semantic topic of the
application (e.g., sports, politics or action dialogues in films). The wider the range of domains a
TTS can handle maintaining the quality of the synthetic speech, the more generic the system is
considered to be. Hence, a generic system can synthesize any domain with the same quality and

naturalness. Generally, a generic synthesizer requires a very large corpus.

Usually, regardless of the type of synthesis system, two different types of applications can be
designed. On the one hand, a limited domain system (Alfas et al., 2005) which can produce a
high-quality synthetic speech while it has a drastically decrease of performance when text is out of
domain or when attempting to expand the domain itself. On the other hand, a generic TTS system
requires a very large corpus and computationally expensive unit selection algorithms (Black, 2002).
In addition, a so-called Multi-domain TTS was presented by (Alfas et al., 2006a, 2008) to overcome

the problems of a generic TTS when applied to a limited number of domains.

In the following sections, different speech synthesis approaches will be presented. In addition,
their performance will be discussed along with the type of application they are intended to be used

in.

1.2.1 Synthesis approaches

Speech production techniques can be classified into the following types (Huang and Hon, 2001;
Taylor, 2009):

e Formant-based techniques. They make use of the acoustic-tube model in such a way that

the control elements of the tube are easily related to acoustic-phonetic properties that can
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easily be observed. The formant synthesizer is not an accurate model of the vocal tract, so
the general assessment is that the quality is intelligible but far from natural. One of the most
sophisticated system at this time was the Klatt synthesizer (Klatt, 1980).

Articulatory-based techniques. They use a physical model of speech production that in-
cludes all the articulators. Some of the systems are based on fluids dynamic principles (Sinder,
1999) and some of the newest systems are based on the use of 3D models originally proposed
by (Badin et al., 1998) and recently presented with new techniques by (Engwall et al., 2006)
and also designed with HMMs (Zhang and Renals, 2008).

Sinusoidal model of speech. This analysis and synthesis technique is based on a set of
sine-wave components derived using the pitch frequency and voicing decisions. Synthetic
phases are assigned to each respective sine wave. Usually, sine-wave amplitudes and phases
are estimated by sampling a linear combination of frequency domain basis functions. The work
presented by (Chazan et al., 2000) uses the frequency domain algorithm for the reconstruction
of speech from the Mel Frequency Cepstrum Coefficients (MFCC). The basis function gains
are determined such that the mel-frequency binned spectrum of the reconstructed speech is
similar to the mel-frequency binned spectrum, obtained from the original MFCC vector by
IDCT and antilog operations. Natural and intelligible sounding quality speech is obtained
by this procedure. Furthermore, last advances by (Chazan et al., 2006) show an efficient
sinusoidal modelling framework for high quality wide band speech synthesis and modification.
This technique may serve as a basis for speech corpus compression in the context of small
footprint concatenative TTS systems and it becomes simpler and considerably more efficient
than STRAIGHT (see Section 3.3.5) since it outperforms it in speech quality for both speech

reconstruction and transformation.

Source filter model. It models speech as a sound source which is then modified by a vocal

tract filter (see a detailed description in Section 1.2.4.2).

Depending on the process of the synthesis units, three main trends are being under development

and research (Narayanan and Alwan, 2005; Taylor, 2009):

e Concatenative Unit Selection-based Text-To-Speech synthesis (Co-TTS). It gen-

erates speech by concatenating unit segments. The main module is a unit selection system,
whose basic premise is that one can synthesize new naturally sounding utterances by selecting
appropriate sub-word units from a database (see more details in Section 1.2.2). It is possi-
ble to concatenate not only natural units but also parameterized units. It usually requires a
signal processing module such as the Time-Domain Pitch Synchronous Overlap Add Method
(TD-PSOLA) (Moulines and Verhelst, 1995; Moulines and Charpentier, 1990).

Statistical speech synthesis based on HMMs (HMM-based TTS system) (Tokuda
et al., 1994a, 2000, 2002b; Black et al., 2007). This type of speech synthesis system selects or
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generates the parameters from a probabilistic model, usually an HMM. Although HMMSs were
originally designed for speech recognition, modelled units are also a good representation for
synthesis purposes. Statistical speech synthesis based on HMM is described in Chapter 2 and
is briefly introduced in Section 1.2.4.

e Hybrids. In this work, this term includes any system that uses both statistical and con-
catenative approaches in a single framework. The aim of those systems is to overcome the
problems of any isolated approach while emphasizing their advantages (a complete description

is presented in Chapter 4).

As we will see, a trade-off between quality, data and flexibility is the essence of TTS system
design. Nowadays, Co-TTS and statistical synthesis systems based on HMM using a source-filter
model are the two main basic trends for speech synthesis. Each of them has some advantages and

disadvantages related with these three issues that are discussed through Figure 1.2.

Co-TTS Limited domain Co-TTS Multi-domain Co-TTS Generic HMM-TTS Natural

Flexibility Quality

-

-7 *® Limited domain

Data [hours] 0

t t t t t t t t t t t t Data [hours]
1 3 5 20 100 00 1 3 5 20 100 00

(a) Flexibility and size of the data corpus. (b) Quality and size of the data corpus.

Figure 1.2: Speech synthesis development trade-off schematics.

In these Figures, Flexibility refers to the possibility of using vocabulary and sentences not em-
ployed for training during synthesis time. That is, if the synthesizer can produce any synthesis
for any input text without degrading the output quality, the system is considered to have a high
flexibility. On the contrary, natural speech is considered to have no flexibility since each sentence
is recorded. Quality of a TTS is usually measured by means of subjective experiments such as
Comparision Mean Opinion Scores (CMOS) (Taylor, 2009). Regardless of the technique, the quality
refers to how natural the synthetic speech is with respect to a reference baseline. This reference can

be natural speech or another TTS system.
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Figure 1.2(a) is an extension of the original figure presented for natural units of variable lengths (Yi
and Glass, 1998), then used for concept-to-speech synthesis (Taylor, 2000) and finally extended to in-
clude Multi-domain synthesis (Alfas et al., 2008). In the Figure, Co-TTS (in black) and HMM-based

TTS (in green) systems are compared along with natural speech (in red).

The conventional approach to a Generic Co-TTS tends to strive the flexibility at the expense
of quality. Systems focused on specific domains are constrained to improve firstly the quality and
then the flexibility. An HMM-based TTS system is considered to fit in the former approach since
the system produces a very flexible voice even with less data than a Co-TTS.

Using the same comparison philosophy, Figure 1.2(b) depicts the relation between quality and
data size. Note that in the extreme case of having a large amount of data (and assuming that it
would be possible to manage), current HMM-based TTS and Co-TTS systems would differ in the
final quality. On the one hand, it is a matter of empirical fact that Co-TTS systems reach the
highest quality when they use natural units. Nevertheless, any system can guarantee the perfect
concatenation for any application anytime. In fact, this problem becomes worse as the number of
domains increase and it becomes a problem for generic T'TS systems specially because the probability
of having errors in the corpus is more likely. Some of the common errors which degrade the quality
of the concatenation are due to incorrect phoneme segmentation, sparsity data problems or errors in
the unit selection algorithm. On the other hand, statistical systems produce an stable quality even
with less data than the Co-TTS system. Unlike the increase of the data has a positive effect for
Co-TTS systems, HMM-based TTS systems are not affected in the same manner because the lack
of naturalness is not produced by insufficient data but because of statistical processing and data

modelling (see Section 2.6 for a detailed description about the over-smoothing effect).

In the following sections, Co-TTS and source-filter model HMM-based TTS systems are briefly
described.

1.2.2 Concatenative Text-To-Speech synthesis (Co-TTS)

Concatenative systems using unit selection are the most used systems since they can produce a
very natural synthetic voice with a low computational cost. Unit selection is a natural extension
to solve the problem of managing a large number of units for concatenative systems. A unit is
defined by means of a specification, which contains information about linguistic features and prosodic

parameters (Taylor, 2009).

The standard to unit selection was established with the formalism presented by (Hunt and Black,
1996). A cost function is defined in order to select the best units by minimizing a total cost. The
unit selection technique must satisfy a target cost (i.e., how close a database unit is to a desired
unit) and a join cost (i.e., how well two adjacent selected units join together). The unit selection

process is designed to optimally minimise both target and join costs.

The design of a Co-TTS requires to address the following aspects:
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e Speech segments to use. The smaller the units, the easier it might be to have coverage
over the whole acoustic phonetic space as each unit may provide better sharing of contexts.
Common units are diphones used as half-phones (Iriondo et al., 2003) in order to concatenate
by the stable part of the signal. Smaller units have been used, for example 5 ms segments
using HMM states (Hirai et al., 2007).

e Design of the corpus. It is a matter of fact that more data yields to a better synthesis since
more units can be selected so a better joint is more likely. However, computational cost for
selecting the best units increases as well. The synthesis of a system strongly reflects the style
and coverage of the recorded databases. Domain specific databases can be built for specific
applications (e.g., weather forecast (Alfas et al., 2006a)) while open domain applications require
a well balanced corpus to tackle a wide range of possible inputs. Some open systems such as
BOSS (Breuer and Hess, 2010) or Festival (Black et al., 1999) are focused on multi-functionality

and multi-linguality.

e Unit selection algorithm. From a large set of possible units to concatenate, the best ones
need to be chosen from the recorded database. Two cost functions are defined: the target
cost Cy(fy,, un) is used to estimate the mismatch between the target specification vector f,
(which is usually linguistic, prosody and spectrum contexts) and the candidate unit u,; the
concatenation cost C.(u;, u;+1) is used to estimate the smoothness of the acoustic signal when

concatenating units u; and w;4.

Given a sequence F = {f},fs, ... fi} of specification vectors, the cost for one possible sequence
of units u = {uy,ua,...,uy} is:
N N
C(uv F) = Z Ct(f'ru un) + Z Cc(unflp un)
n=1 n=2

The unit selection can then be formulated as the problem of finding the optimal sequence of

units u* from multiple candidate units u that minimizes the total cost,

u* = argminC (u,F) (1.1)

u
Unfortunately, although the advantages of this approach, it also has some drawbacks. Generally,
this kind of system suffers of quality variability when applied to a non-limited domain applica-
tion. In order to control the possible problematic concatenation artifacts, corpus size is likely to

increase (Black, 2002) or domain can be limited or classified such in the next section.

1.2.3 Multi-domain synthesis

Depending on the domain, three types of Co-TTS systems can be defined: limited domain, multi-

domain and generic purposes systems.
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According to the discussion of Figure 1.2, the final goal of a TTS system is to produce natural
speech for any input text. Two different approaches are commonly used (use Figure 1.2(a) as a
reference). On the one hand, an approach is to design a generic TTS to be used in any application.
On the other hand, a constrained design is focused on the domain where the TTS system works in
order to produce the best quality for a specific domain. A multi-domain system belongs to the second
category where N domains are used as a pre-cluster of the units. In this case, the unit selection
algorithm reduces its search space. It is shown by (Alias et al., 2008) that a Co-TTS system presents
a better performance (i.e., quality) within its own domain. In addition, by pre-selecting the range

of units, the system also guarantees the most appropriate prosody for the input text.

In order to automatically categorize the input text in one of the N domains, a text classification
(TC) technique is used. Conceptually, automatic TC is a discipline that arises from the intersection
of information retrieval (representation of the used data) and artificial learning (techniques to model
the information). The aim of the TC is to cluster text into a specific domain. The classification
assumes the natural word sequentiality in the text. An Associative Relational Net (ARN) (Rennison,
1994) can be used to represent all the words of the modelled text whose connections are defined as
the number of times that these matched words appear within the text. Note that in the context of
a TTS system, TC has an extra difficulty due to the reduced lengths of the texts (e.g., a 5 words

sentence).

1.2.4 HMDM-based TTS system

In the following section, HMM-based TTS systems are introduced and the source-filter model is also

described as the speech production approach for this type of synthesis system.

1.2.4.1 Brief introduction

HMM-based TTS system is a technique for generating speech from trained statistical models where
information of basic speech units are modelled in a single framework (e.g., vocal tract, pitch and
durations) (Yoshimura et al., 1999). This type of synthesis approach appeared in the 90s in order
to overcome most of the limitations of the Co-TTS systems. Its main difference is the use of a

statistical model as part of the speech production system.

One of the main interests of TTS systems is to achieve the naturalness of the real speech. As
we have seen in Section 1.2.2, Co-TTS systems can reach a very good quality for limited domain
applications whereas it presents a set of disadvantages when applied to a different domain. Briefly,
most problems are related to corpus errors (e.g., linguistic labelling or unit segmentation) and in the
nature of the concatenative algorithms (e.g., missing linguistic features or concatenation smoothing).
Moreover, some other problems arise when attempting to expand a specific corpus (e.g, different
recording sessions might have different audio levels). Also, a Co-TTS system uses natural units

which provides a very high quality although, typically, it also implies a very large corpus.
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In contrast, unlike the concatenative approach, HMM-based TTS systems do not use natural
units during synthesis time but a model learned during a training stage. This capability makes these
systems more suitable to synthesize different speaker features, styles and emotions. Synthesizing
different speaking styles through concatenative speech synthesis still requires large databases in
contrast to HMM which can obtain better results with smaller databases (Yamagishi et al., 2005).
However, voice transformation techniques (Erro, 2008) offer a solution in order to adapt Co-TTS
systems without using a corpus-based approach although HMM-based adaptation has also been

shown to be very efficient transforming speech models (Yamagishi et al., 2009).

Some interesting voice transformation approaches using HMM were presented using speaker
adaptation (Tamura et al., 1998), an eigen-voice technique (Shichiri et al., 2002) or interpolation
models (Yoshimura et al., 2000).

The main problem of HMM systems is the over-smoothing effect due to the statistical processing
of the training data. This produces muffled speech and flat intonation. Many techniques have
been proposed in order to alleviate this problem. The idea is to enhance the HMMs in order to
introduce part of the missing variability lost during the training stage. As described further in
Section 2.6, a common approach is to use a global variance model during synthesis, the so-called
Global Variance (GV) described in Section 2.6.1.

Language is a key topic in the design of a TTS system. HMM-based TTS system uses a decision
tree-based context clustering which works as a unit selection system since it can characterize synthesis
units using a set of linguistic features. In other words, the scheme of the HMM-based TTS system is
based on contextual factors for clustering and can be adapted to any language (see Section 2.8 for a
description of the unit selection approaches used in HMM synthesis). By the time of this dissertation,
HMM-based TTS systems were applied to around 15 languages (e.g., Catalan (Bonafonte et al.,
2008), English (Tokuda et al., 2002b) or Portuguese (Maia et al., 2003)). As a result of the present
work, a Castilian Spanish HMM-based TTS system was firstly presented by (Gonzalvo et al., 2007b)

and is described in Section 2.8.3.

The conventional unit used for an HMM-based TTS system is the phoneme. The use of the
minimal unit in this kind of system is not as critical as for a concatenative approach because speech
is synthesized using parameters generated from HMMs and in consequence, it does not suffer from
segmentation and concatenation problems. However, some hybrids systems that combine Co-TTS
and HMM-based TTS systems might use diphones as the basic unit !.

The HMM-based TTS system presented in this work is based on a source-filter model (Sec-
tion 1.2.4.2) approach to generate speech directly from the HMM itself using a Maximum Likelihood
(ML) criterion (Section 2.5.1 describes the parameter generation algorithm in detail).

Current challenge for HMM synthesis is to increase naturalness and expressiveness. Unlike other

synthesis approaches, quality is still an issue for this type of system due to the vocoder. As it will

1Usually Co-TTS systems use diphones as the base unit due to their advantages during concatenation (Lambert
and Breen, 2004). As described in Chapter 4, concatenation-driven hybrid systems might force the HMM system to
use diphones in order to build a consistent design.
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be described, new modelling techniques with more complex mixed excitations or sinusoidal models
are being investigated. Nevertheless, HMM synthesis systems are a very promising approach due to
its stability and performance. Hybrid systems based on HMMs are also a very attractive solution in

order to take advantage of the HMM properties (e.g., spectral transition smoothness).

1.2.4.2 Source filter model

The source filter model (see Figure 1.3) is a type of speech production technique where speech is
comprised of a source component (or excitation signal) modified by the vocal-tract. In particular, this
excitation signal (e[n]) contains voiced and unvoiced parts which are shaped by the vocal-tract filter
coefficients (h[n]). Excitation signal is a representation of the residual signal (r[n]). This signal is
the prediction error after codifying input signal s[n] with the filter coefficients. Theoretically, when
the residual signal is filtered with these filter coefficients, the same input signal is obtained s[n].

Otherwise, an estimation of the input signal is produced 3[n].

The reconstruction of speech is performed in a different way depending if it is voiced or unvoiced.
The source e[n] in a voiced segment of speech tries to reproduce the vibration of the vocal folds (i.e.,
a periodic signal). In unvoiced speech frames, the source is not a regular vibration but rather
caused by turbulent airflow due to a constriction in the vocal tract (i.e., noise). Depending on the
complexity of this excitation signal, different qualities can be achieved (see Section 3.5). Basically,
an excitation can be: a simple pulse and noise, a multiband mixed excitation or other approaches.

All these approaches are discussed in the aforementioned section.

e[n]

Figure 1.3: Source filter model scheme. Filter coeflicients h[n| are set to encode an input signal s[n].
When the excitation e[n] is filtered with this filter, an estimated 3[n] is obtained.

The basic problem of a Co-TTS system is the discontinuities in joint points. The source filter
model is able to reduce this effect by smoothing the spectral discontinuities, though they cannot be
completely eliminated. The use of source filter models undertake the processing of the source and

the filter separately offering more control over the resulting synthesized signal.

One important advantage of using this representation is that several voice-quality effects can be
achieved relatively easily (e.g. whisper). In addition, as we will see in Chapter 2, the source filter
approach is convenient for voice conversion techniques (e.g. emotion adaptation) since it separates

speech in source and vocal tract.

Synthesis systems based on this model are not able to use the true excitation signal. In contrast,
they usually use a simplification, some form of periodic pulses and noise signal. The HMM-based TTS
system presented in this work uses this approach and statistically models the spectrum information

and the fundamental frequency contour to build an excitation signal.
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1.3 Motivation

At this point, HMM-based TTS systems have been introduced and briefly discussed along with
other synthesis approaches. So, why developing a synthesis system using HMM? Let’s analyze the
advantages and disadvantages of the HMM technique when applied to the framework described in
Section 1.1. On the one hand,

e Unlike other synthesis systems which require enormous amounts of storage, HMM voices have

a low footprint.

e During synthesis time, system performance is very high (i.e., it is not computational expensive,

thus the system can be very fast in terms of time real time),

e Unlike Co-TTS systems, parameters are generated by an algorithm using a smoothing con-
straint, so there are no concatenation errors. This is a significant advantage as the HMM-based

TTS system can steadily produce stable speech (e.g., content created by users).

e HMM can be modified by statistical techniques. Adaptation techniques can be applied to

produce different speaking styles or emotions using only a few amount of target data.

e The system can be automatically trained.
On the other hand, regarding the main disadvantages:

e Synthetic speech sounds buzzy, muffled and unnatural when a conventional source filter model
is used (described in Section 1.2.4.2). Therefore, one of the objectives would be to propose
an improved excitation in order to overcome the problem in the source-filter approach and

improve the naturalness.

e Synthetic speech tends to be mostly flat with respect to expressiveness (i.e. part of the prosody
of the natural speech is not reproduced in the synthetic speech). Since the goal of the statistical
process is to generalize the data in the HMM, part of the characteristics of the original speaker
are lost. This would require a different perspective in order to take advantage of the stability

of the HMM prosody while increasing the expressiveness.

e Apart from the previous problems, it is important to note that synthetic speech generated from
HMMs significantly differs from the natural speech reference. This is the price 