
CHAPTER 5:  Rational   design   and   development   of   biomimetic   nano -   
structured hybrid materials for bone and cartilage regeneration  

 98 

 

 
 
 
 
 

  



CHAPTER 5:  Rational   design   and   development   of   biomimetic   nano -   
structured hybrid materials for bone and cartilage regeneration  

 99 

Figure 29: Shematics of the 3 plasma reactors used in this work. 
(A) The central 10 cm wide glass tube (1) is where the plasma is generated by means of a 
copper coil (2), which is coupled to a Radio Frequency (RF = 13.56 MHz) pulsed generator 
(6). The generator is inductively coupled through the match box (5) to the coil, which is 
composed of eight turns of an 8 mm copper tube. The reactor tube has two small side 
openings, one for the entrance of the reactant gases (4) and one to measure the pressure 
inside the reactor using a pirani gauge (7). HA powders were placed on a vase (3) that was 
suspended to be near the copper coil, where plasma is generated. The upper round flask is 
connected to the vacuum system that includes a double cold trap (8) and the vacuum pump 
(9). (B) The glow discharge reactor consisted of a stainless steel discharge vessel (diameter: 
26cm, length: 24cm) parallel plate reactor (11) with a stainless steel door (19). The ground 
electrode (14) was the reactor chamber, and the Radio Frequency (RF) electrode was a 
stainless steel plate (12). The samples (13) were located on this plate for plasma treatment. 
The RF electrode was connected to a RF pulse generator (16) through a matching network 
(15). The gases were supplied via a standard manifold (17) with gas fluxes adjusted with 
needle valves. The system pressure was determined using a Pirani type vacuum meter (MKS, 
USA), positioned between the reactor and the two stage mechanical vacuum pump (18). (C) 
The central part is a 30 mm wide glass tube (21). The microparticles (23) are supported on a 
porous plate (24) with a porosity that has strong influence on the fluidization conditions in the 
reactor. The copper coil (22) has 9 turns and is 2 mm wide. The tube is connected at the 
upper part to the pressure gauge (32) on one side and the cold trap (28) and the vacuum 
pump (29) on the other. A special design of the cold trap (28) allows prevention of the 
entrance of the powder in case this escapes from the reactor. The RF pulse generator (31) 
and the matching system (32) are the same as those explained above. A flow of argon (26) is 
mixed with the monomer coming from an evaporation unit (27) and used to fluidize the 
microparticles (23). 

 

5.4.1.4. Dispersibility assay to evaluate efficiency of the coatings of HA microparticles 

There were three types of particles to be evaluated; HA microparticles, HA microparticles 

coated with acrylic acid by plasma polymerization and, finally, HA microparticles coated with 

AMMO and acrylic acid. These coated microparticles were submitted to a deposition assay in 

order to determine the grade of attachment of the polymer coating. The deposition assay 

consists on suspending 12 mg of HA powder into Simulated Body Fluid (SBF), prepared as 

already described [28], and then plotting the light absorption versus time (λ = 450 nm). The 

decrease in light absorption is proportional to the ratio of particles suspended in the fluid and 

allows comparing the dispersibility of the studied microparticles. The absorption values are 

presented as a normalized value referred to the first value of absorption of each sample. 

5.4.1.5. Design of a Cold Plasma Fluidized Bed Reactor 

A new plasma fluidized bed reactor was designed in order to render homogenously coated 

microparticles. This reactor (see Figure 29 C) has a glass body tube (∅ = 30 mm) that is 

connected to an argon flow and a preheated monomer at the bottom and to a pressure gauge 

and a vacuum pump at the top. The vacuum line is provided with a cold trap that prevents the 
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organic monomer as well as the particles from reaching the vacuum pump. In this reactor, 

cold plasma is generated by a radiofrequency altered inductive magnetic field. This altered 

magnetic field is obtained by surrounding the reactor with a nine-turn copper coil with 2 mm of 

diameter and connected to a power supply, which is in turn linked to a radiofrequency 

generator.  

5.4.2. Surface coating of 96 well plates with Pentafluorophenyl 
Methacrylate (PFM) 

5.4.2.1. Doehlert design to determine the best working conditions to perform grafting 
polymerization  

The plasma grafting has two steps: first, the plate’s surface is activated by an oxidizing 

plasma and then a solution of the monomer Pentafluorophenyl Methacrylate (PFM) diluted in 

acetonitrile is added to the wells to complete the reaction. Our group has intensive knowledge 

on the activation of organic surfaces with oxidizing plasma in a discharge plasma reactor 

(Francesch et al) so we focused on finding the best conditions in which the reaction between 

the activated surface and the PFM takes place. 

The conditions for the reaction between PFM and the 96-well plate were optimized by 

response surface methodology (RSM) using a Doehlert design with two variables that were 

reaction time and PFM concentration. The Doehlert design is a multivariate second order 

design that is frequently used in experimental set-ups [139-143]. In our case, we decided to 

include five levels for reaction time between the solution of PFM and the plasma activated 96-

well plate (15, 30, 45, 60, 75 minutes) and three levels for the concentration of PFM (55.7, 

200 and 344.3 mM). In the Doehlert design the number of experiments is equal to k2+k+1+n 

being k the number of factors studied, 2 in our case, and n the number of repetitions planned 

in the design. We decided to perform one repetition for each point in the Doehlert matrix so in 

our design, n = k2+k+1. Thus, the total number of experiments performed is 14. 

With this setting, the Doehlert matrix of experiments is detailed in Figure 30. Each of these 

experimental points was repeated twice giving rise to the 14 experiments noted above. 

 

[PFM] / mM 200 200 344.3 344.3 200 55.7 55.7 

T reaction / min 45 75 60 30 15 30 60 

Figure 30: Doehlert matrix of experiments. 
This table represents the 7 points defining the experimental hexagon used in the Doehlert 
design. [PFM] is studied at 3 levels being 0 nM and 400 nM the experimental range. Time of 
reaction is studied at 5 levels between 15 and 75 minutes.  
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5.4.2.2. Plasma activation of 96-well polystyrene plates 

The plasma apparatus consisted of a stainless steel discharge vessel (diameter: 26cm, 

length: 24cm) parallel plate reactor. The ground electrode was the reactor chamber, and the 

Radio Frequency (RF) electrode was a stainless steel plate placed in the middle of the reactor 

(Figure 29 B). Plasma was generated around the plate that served also as RF electrode and 

thus, the samples laid always on this plate for plasma-induced surface activation. The RF 

electrode was connected to a RF pulse generator (13.56 MHz) through a matching network. 

The reactant gases (oxygen and argon mixture 99.999% pure) were introduced in the 

reaction chamber via standard manifolds and their pressure was adjusted with needle valves. 

The system pressure was determined using a Pirani pressure gauge (MKS, USA) located 

between the reactor and a cold trap that prevented monomers to enter the vacuum pump. A 

two-stages mechanical pump (RV12 903, Edwards, GB) generated the vacuum conditions 

needed to produce cold plasma. Operation conditions included a power setting of 100W with 

continuous radiofrequency supply, a final pressure of argon and oxygen of 0.1 - 0.4 mbar and 

60 min of reaction time.  

5.4.2.3. Reaction between the plasma-activated plate and a solution of PFM 

The surface activated 96-well plate was placed in an argon hood to perform the reaction in 

inert atmosphere. Each well was filled with a solution of PFM (PC4318, Apollo Scientific) in 

acetonitrile (anhydrous, > 99,5% Sigma Aldrich 60004). Different concentrations were used in 

the reaction (55.7, 200 and 344.3 mM) following the Doehlert matrix design. The reaction time 

was also variable in the different wells also according to the Doehlert design: 15, 30, 45, 60 

and 75 minutes. Removing the reaction cocktail stopped the reaction. 

PFM fixation’s degree over the plate surface was determined by the reaction between PFM 

and glycine. So, after the PFM was fixed on the plate surface, the wells of the plate were 

washed with acetonitrile and soaked with a saturated glycine solution in acetonitrile. The 

attachment of glycine to the surface of the wells was analyzed by hydrolysis of the glycine in 

hydrochloric acid and further analysis by HPLC of the remnants of this hydrolytic cocktail. 

5.4.2.4. HPLC determination of glycine fixation over PFM modified plates 

The quantification of glycine by HPLC was performed with a C-18 reverse phase stationary 

column (Kromasil C18, Waters 2690) using a gradient mobile phase made of mixtures of 

three solvents: acetonitrile, water and a phosphate-acetate buffer. This buffer contained 

0.14 M sodium acetate (S7670, Sigma), 17 mM triethylamine (T0886, Sigma) and phosphoric 

acid (85 %, 345245, Aldrich) and the working pH was 5.05 ± 0.02. The gradient used during 

the chromatograms was the following: 
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t (min) Buffer (% v/v ) Acetonitrile (% v/v ) 

0-15 99 1 

15-19 95 5 

19-25 85 15 

25-30 0 100 

Figure 31: Mobile phase gradient used in the 
HPLC separation protocol of Glycine and Alanine 

 

Alanine was added to all analyzed hydrolysis cocktails and used as internal standard for 

quantification. The alanine and glycine of the samples were both labeled with a fluorophore 

using accQ-Fluor Reagent Kit (WAT052880, Waters), following the manufacturer’s 

instructions, to make the aminoacids visible to the fluorescent-based detector of the 

chromatographic system, (Alliance HPLC Waters 2695 module with a multi-λ fluorescent 

detector).  
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1. MEFs are multipotential cells capable of differentiating into other tissues of 

mesenchymal origin such as bone, cartilage and fat. Nevertheless, as cells need to 

be in a particular 3D environment in order to acquire all these phenotypes it can be 

concluded that the biological and biomechanical properties of the scaffold used for 

cell culture enhance fibroblast differentiation into other tissues. 

2. MEFs cultured in the self-assembling peptide RAD16-I suffer a morphogenetic 

process similar to the mesenchymal condensation. Mechanical issues as well as 

expression of transcription factors support this conclusion. It has also been stated 

that the process is dependent on cell proliferation, tissue biomechanics and the 

presence of certain growth factors (PDGF and TGF-β). This model can be used as a 

preamble to a medicine based on regenerating systems similar to those of 

developmental processes. 

3. MEFs cultured in RAD16-I have a default tendency to become chondrocyte-like cells, 

expressing genes like the sox trio or collagen type II. This intrinsic behavior of 

fibroblasts in RAD16-I opens the possibility of using this combination as a new 

strategy for cartilage repair. Moreover, this therapeutic approach has already proved 

safe once in animals because In vivo studies have shown that MEFs combined with 

RAD16-I have an excellent performance in mice in terms of cell viability and 

migration.  

4. It is possible to produce a high diversity of hydroxyapatites combining the fact that 

Captal® is less dispersible than tailor-made HA and that an organic coating has 

different effects over Captal® or tailor-made HA. Moreover, a silane interface 

between HA and an acrylic coating doesn’t affect the dispersibility of the particles so it 

can be inferred that the binding of HA and acrylic coatings is strong enough so that 

they are not significantly affected by a linking interface. Particular combinations of 

Captal®, tailor-made HA and coated samples of both will allow designing a stratified 

construct similar to the natural cartilage-to-bone interface in that calcium extracellular 

concentration and HA crystals will be different in different parts of the construct.  

5. Finally, a novel process to produce plates suitable for combinatorial biological or 

biochemical assays has been developed. A Doehlert matrix design has optimized the 

experimental domain that most efficiently coats 96-well plates with PFM. This PFM 

enables to attach any biological molecule, which in turn allows to perform 

combinatorial experiments to find relevant peptides, sugars… for any particular 

application. Nevertheless, the use of an organic solvent partially degrades the 

polystyrene of the plate so water-based reactions or vapor grafting should be tried 

before scaling the process. 
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