
University of Cantabria
Electronics and Computers Department

Integrating a Real-Time Model in 
Configurable Middleware for Distributed 

Systems

Ph. D. Thesis
Héctor Pérez Tijero

Santander, April 2012





University of Cantabria
Electronics and Computers Department

Integrating a Real-Time Model in Configurable 
Middleware for Distributed Systems

Ph. D. Thesis
submitted for the title of 
Doctor 
at the University of Cantabria 

Héctor Pérez Tijero



1



University of Cantabria
Electronics and Computers Department

Integrating a Real-Time Model in Configurable 
Middleware for Distributed Systems

Ph. D. Thesis
submitted for the title of Doctor at
the University of Cantabria
following the Science, Technology
and Computers postgraduate
programme by

Héctor Pérez Tijero

Héctor Pérez Tijero

Supervisor:
Dr. J. Javier Gutiérrez García
Associate Professor

I hereby declare
that the work in this thesis has been
undertaken under my supervision
in the Electronics and Computers
Department at the University of
Cantabria and it is suitable for
submission. 

Santander, April 2012

J. Javier Gutiérrez García



1



. . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ABSTRACT

This thesis describes the integration of the end-to-end flow real-time model, which is
defined in the MARTE (Modeling and Analysis of Real-Time and Embedded Systems)
standard, into distribution middleware, as it can facilitate the development process of
distributed real-time systems based on the Model-Driven Engineering (MDE)
paradigm. The study focuses on how distribution standards and their implementations
guarantee the real-time behaviour of these kinds of applications, thus providing a set
of features required to develop analyzable distributed real-time systems. The
standards studied are RT-CORBA (Real-Time Common Object Request Broker
Architecture), the DSA (Distributed Systems Annex) of Ada, and DDS (Data
Distribution Service for real-time systems). The features analysed will contribute to
the definition of the endpoints pattern, a new proposal that, when integrated with
distribution middleware, enables the use of MDE and schedulability analysis
techniques more easily. This thesis also presents a distributed real-time platform
supporting different distribution standards, and scheduling policies, and several
examples or case studies to validate the features and usability of the endpoints
pattern. In addition, this thesis deals with the use of the end-to-end flow model in
high-integrity systems by adapting the endpoints pattern to the Ravenscar profile, and
also explores the integration of the proposal into a toolset for MDE to enable the
automatic generation of Ravenscar-compliant distribution code. Finally, specific
implementations of the endpoints pattern are presented for full and restricted Ada. 



0



. . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TABLE OF CONTENTS

1. APPROACH AND OBJECTIVES .........................................................1

1.1 Introduction .................................................................................................1
1.1.1- Real-time systems.............................................................................4
1.1.2- Distribution middleware...................................................................9

1.2 Distributed real-time systems....................................................................11
1.2.1- Real-time system model .................................................................12
1.2.2- Schedulability analysis for distributed real-time systems ..............14
1.2.3- Real-time communication networks...............................................16

1.3 Real-time distribution middleware............................................................21
1.3.1- CORBA and RT-CORBA ..............................................................22
1.3.2- The Ada Distributed Systems Annex (DSA) .................................24
1.3.3- The Data Distribution Service for Real-Time Systems..................25
1.3.4- The Java approach ..........................................................................27

1.4 Development tools and strategies for real-time systems ...........................28
1.4.1- Analysis and verification of real-time requirements ......................29

1.5 Motivation and objectives .........................................................................31
1.5.1- Objectives .......................................................................................32

1.6 Outline of the thesis...................................................................................34

2. ANALYSIS OF THE REAL-TIME MECHANISMS INCLUDED IN THE 
DISTRIBUTION STANDARDS AND THEIR IMPLEMENTATIONS ......37

2.1 Introduction ...............................................................................................37

2.2 RT-CORBA...............................................................................................39
2.2.1- RT-CORBA implementations ........................................................42

2.3 The Ada Distributed Systems Annex (DSA) ............................................45
University of Cantabria i



1

2.3.1- DSA implementations ....................................................................48
2.4 The Data Distribution Service for Real-Time Systems (DDS) .................52

2.4.1- DDS implementations ....................................................................55
2.5 Real-time communication networks and distribution middleware............57

2.6 Analysis of distribution middleware from the real-time perspective ........60
2.6.1- Analysis of the real-time features of distribution standards...........60
2.6.2- Analysis of the real-time features of implementations...................64

2.7 Contributions of this chapter .....................................................................67

3. PROPOSAL FOR AN ANALYZABLE REAL-TIME MODEL IN 
DISTRIBUTION MIDDLEWARE .......................................................69

3.1 Introduction ...............................................................................................69

3.2 Distribution middleware and the end-to-end flow model .........................70
3.2.1- Modelling of asynchronous remote calls........................................72
3.2.2- Modelling of synchronous remote calls .........................................74
3.2.3- Validation of the end-to-end flow model in distribution  

middleware .....................................................................................76
3.3 The endpoints pattern ................................................................................76

3.3.1- Related work...................................................................................81
3.4 The endpoints API.....................................................................................81

3.4.1- Network scheduling interface.........................................................82
3.4.2- Processing node scheduling interface.............................................82
3.4.3- Event management interface ..........................................................83
3.4.4- Using the configuration interface ...................................................84

3.5 Integration into the Ada standard ..............................................................85

3.6 Automatic generation of the real-time configuration ................................88

3.7 Example of use ..........................................................................................90

3.8 The endpoints pattern and the concurrency patterns .................................96

3.9 Contributions of this chapter .....................................................................99

4. INTEGRATION AND VALIDATION OF THE REAL-TIME MODEL 
WITHIN DISTRIBUTION MIDDLEWARE........................................101

4.1 Introduction .............................................................................................101
ii Computers and Real-Time Group



4.1.1- Choice of the distributed real-time platform ................................102
4.1.2- Features of the distributed real-time platform..............................105

4.2 The distributed real-time platform and its extensions .............................110
4.2.1- Modifications applied to the platform ..........................................110
4.2.2- distributed real-time platform implementations ...........................118

4.3 Example of usage ....................................................................................120

4.4 Case studies .............................................................................................125
4.4.1- Applying the endpoints pattern in a real and complex system.....125
4.4.2- Adapting and using the endpoints pattern in dynamic systems....129

4.5 Advances over related work ....................................................................133

4.6 Contributions of this chapter ...................................................................135

5. ADAPTATION OF THE ENDPOINTS PATTERN TO HIGH-INTEGRITY 
DISTRIBUTED REAL-TIME SYSTEMS DEVELOPED IN ADA..........137

5.1 High-integrity systems and Ada ..............................................................137

5.2 Adapting the endpoints pattern to the Ravenscar profile ........................138

5.3 The endpoints API for high-integrity systems ........................................140
5.3.1- Event management interface ........................................................141
5.3.2- Network scheduling interface.......................................................141
5.3.3- Processing node scheduling interface...........................................141

5.4 Example of use ........................................................................................144

5.5 Integration and validation of the endpoints pattern in a high-integrity 
distributed real-time platform..................................................................146
5.5.1- Overview of the high-integrity distributed real-time platform.....146
5.5.2- Modifications and extensions applied to the high-integrity  

distributed real-time platform.......................................................149
5.6 Integrating the endpoints pattern into a model-driven development 

framework................................................................................................151

5.7 The endpoints pattern and static distributed ada .....................................154

5.8 Related work............................................................................................155

5.9 Contributions of this chapter ...................................................................157
University of Cantabria iii



1

6. CONCLUSIONS .............................................................................161

6.1 Thesis overview.......................................................................................161

6.2 Contributions of the work........................................................................162

6.3 Future work .............................................................................................165

A. RELATED RESEARCH PROJECTS............................................... 167

A.1 THREAD project................................................................................... 167

A.2 FRESCOR project ................................................................................. 167

A.3 RT-MODEL project .............................................................................. 168

A.4 ENERGOS project................................................................................. 169

A.5 HI-PARTES project............................................................................... 169

B. FRESCOR ADA BINDINGS.................................................. 171

B.1 FRESCOR data types ............................................................................ 171

B.2 FRESCOR programming interface........................................................ 177

REFERENCES .................................................................................. 187
iv Computers and Real-Time Group



. . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LIST OF FIGURES

1-1 Common interaction models for distributed systems .................................. 3
1-2 Basic services provided by distribution middleware ................................. 10
1-3 Modelling applications according to the end-to-end flow model.............. 13
1-4 End-to-end flow model proposed by MARTE standard............................ 14
1-5 Structure of Ethernet-based solutions for real-time systems ..................... 19
1-6 Components and architecture for CORBA distribution model ................. 22
1-7 Components and architecture for DSA distribution model ....................... 25
1-8 Communication model for DDS................................................................ 26
1-9 Distribution middleware and analyzable distributed applications............. 32
2-1 RT-CORBA extensions ............................................................................. 39
2-2 Application and protocol personalities in PolyORB ................................. 49
2-3 Tasking model in PolyORB....................................................................... 50
2-4 Qos parameters defined by DDS ............................................................... 52
2-5 Timing control in DDS .............................................................................. 54
3-1 Asynchronous end-to-end flow model and distribution model based on  

ORB and APCs.......................................................................................... 72
3-2 Asynchronous end-to-end flow model based on data-centric DDS  

model .........................................................................................................73
3-3 Synchronous end-to-end flow model and distribution model based on  

ORB and RPCs .......................................................................................... 74
3-4 Synchronous end-to-end flow model based on data-centric DDS model.. 75
3-5 Synchronous and asynchronous end-to-end flow model based on  

data-centric DDS model ............................................................................ 75
3-6 The endpoints pattern and distribution middleware .................................. 78
3-7 The endpoints pattern and the end-to-end flow model .............................. 79
3-8 Event flow in complex linear end-to-end flows ........................................ 80
3-9 Package hierarchy for end-to-end flow DSA systems............................... 85
3-10 MAST model for the example system....................................................... 91
3-11 Simplified model for the example system ................................................. 92
3-12 Package structure for the MAST example................................................. 92
University of Cantabria v



1

3-13 Concurrency patterns commonly used in distribution middleware ........... 97
3-14 Concurrency patterns of type ThreadPool ................................................. 98
3-15 Concurrency pattern based on dedicated tasks .......................................... 98
4-1 General architecture for PolyORB .......................................................... 108
4-2 I/O request processing in PolyORB......................................................... 109
4-3 RT-CORBA and PolyORB tasking model .............................................. 110
4-4 Interoperable Object Reference structure ................................................ 114
4-5 Message format for GIOP requests ......................................................... 115
4-6 General architecture for the distributed real-time platform..................... 118
4-7 Package structure for the PolyORB example .......................................... 121
4-8 Distributed architecture of the BTM ....................................................... 126
4-9 Distributed real-time platform for the BTM............................................ 127
4-10 DTM implementation and FRESCOR framework .................................. 129
4-11 The integration of the DTM into distribution middleware ...................... 132
4-12 Architecture for the distributed real-time platform ................................. 134
5-1 Package hierarchy for end-to-end flow Ravenscar systems .................... 140
5-2 Example of use for the endpoints API in high-integrity systems ............ 144
5-3 Architecture overview for Ocarina .......................................................... 147
5-4 General architecture for the high-integrity distributed real-time platform 

based on PolyORB-HI .............................................................................151
5-5 Development framework architecture for high-integrity distributed  

real-time systems .....................................................................................152
5-6 Ada toolchain for the development of high-integrity distributed  

real-time systems .....................................................................................153
vi Computers and Real-Time Group



. . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ACRONYMS AND ABBREVIATIONS

AFDX: AVIONICS FULL-DUPLEX SWITCHED ETHERNET

APC: ASYNCHRONOUS REMOTE PROCEDURE CALL

API: APPLICATION PROGRAMMING INTERFACE

BIP: BASIC PRIORITY INHERITANCE PROTOCOL

BTM: INDUSTRIAL ROBOTIC ARM

C/S: CLIENT / SERVER

CAN: CONTROLLER AREA NETWORK

CASE: COMPUTER-AIDED SOFTWARE ENGINEERING

CDR: COMMON DATA REPRESENTATION

CORBA: COMMON OBJECT REQUEST BROKER ARCHITECTURE

CSMA / CD: CARRIER-SENSE MULTIPLE-ACCESS PROTOCOL WITH COLLISION 
DETECTION

DDS: DATA DISTRIBUTION SERVICE FOR REAL-TIME SYSTEMS

DOM: DISTRIBUTED OBJECT MODEL

DR: DATA READER

DRTSJ: THE DISTRIBUTED REAL-TIME SPECIFICATION FOR JAVA

DSA: DISTRIBUTED SYSTEMS ANNEX

DTM: DISTRIBUTED TRANSACTION MANAGER

DW: DATA WRITER

EA: EXCLUSIVE AREAS

EDF: EARLIEST DEADLINE FIRST

ETF: EXTENSIBLE TRANSPORT FRAMEWORK

FPS: FIXED PRIORITY SCHEDULING

FRESCOR: FRAMEWORK FOR REAL-TIME EMBEDDED SYSTEMS BASED ON 
CONTRACTS

GA-HI: GUIDE FOR THE USE OF THE ADA RAVENSCAR PROFILE IN HIGH 
INTEGRITY SYSTEMS
University of Cantabria vii



1

GIOP: GENERAL INTER-ORB PROTOCOL

HDRT:  HIGH INTEGRITY DISTRIBUTED REAL-TIME APPLICATIONS

HL: HIGHEST LOCKER PROTOCOL

I/O: INPUT AND OUTPUT OPERATIONS

IDL:  INTERFACE DEFINITION LANGUAGE

IIOP: INTERNET INTER-ORB PROTOCOL

IOR:  INTEROPERABLE OBJECT REFERENCE

IP: INTERNET PROTOCOL

JMS: JAVA MESSAGE SERVICE

JVM: JAVA VIRTUAL MACHINE

LLF: LEAST LAXITY FIRST

MAC: MEDIA ACCESS CONTROL PROTOCOL

MARTE: MODELING AND ANALYSIS OF REAL-TIME AND EMBEDDED 
SYSTEMS

MAST: MODELING AND ANALYSIS SUITE FOR REAL-TIME APPLICATIONS

MDA: MODEL-DRIVEN ARCHITECTURE

MOM: MESSAGE ORIENTED MODEL

OMG: OBJECT MANAGEMENT GROUP

ORB: OBJECT REQUEST BROKER

OSI: OPEN SYSTEM INTERCONNECTION

P/S: PUBLISHER / SUBSCRIBER

PCP: PRIORITY CEILING PROTOCOL

PCS: PARTITION COMMUNICATION SUBSYSTEM

PIM: PLATFORM-INDEPENDENT MODEL

POA: PORTABLE OBJECT ADAPTER

PSM: PLATFORM-SPECIFIC MODEL

QOS: QUALITY OF SERVICE

RMA: RATE MONOTONIC ANALYSIS

RMI: THE REMOTE METHOD INVOCATION

RMS:  RATE MONOTONIC SCHEDULING

RPC: REMOTE PROCEDURE CALL

RTA:  RESPONSE TIME ANALYSIS

RT-EP: REAL-TIME ETHERNET PROTOCOL

RTPS: REAL-TIME PUBLISH-SUBSCRIBE WIRE PROTOCOL

RTSJ: THE REAL TIME SPECIFICATION FOR JAVA
viii Computers and Real-Time Group



TCP: TRANSMISSION CONTROL PROTOCOL

TDMA: TIME DIVISION MULTIPLE ACCESS

TTA: TIME TRIGGERED ARCHITECTURE

TTP / C: TIME TRIGGERED PROTOCOL FOR CLASS C
UB: UTILIZATION BOUND TEST

UDP: USER DATAGRAM PROTOCOL

WCET: WORST CASE EXECUTION TIME

WCRT: WORST-CASE RESPONSE TIME
University of Cantabria ix



1

x Computers and Real-Time Group



. . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LIST OF PUBLICATIONS AND AWARDS

The research work included in this thesis has led to several publications
and awards which are detailed below.

Publications

(1) PÉREZ, H. AND GUTIÉRREZ, J. J. “ON THE SCHEDULABILITY OF A DATA-
CENTRIC REAL-TIME DISTRIBUTION MIDDLEWARE”, JOURNAL OF
COMPUTER STANDARDS & INTERFACES, VOLUME 34, ISSUE 1, 2012, PP.
203-211. ISSN: 0920-5489.

(2) PÉREZ, H., GUTIÉRREZ, J. J. AND GONZÁLEZ HARBOUR, M. “ADAPTING
THE END-TO-END FLOW MODEL FOR DISTRIBUTED ADA TO THE RAVENSCAR
PROFILE”, IN PROCEEDINGS OF THE 15TH INTERNATIONAL REAL-TIME ADA
WORKSHOP (IRTAW), LIÉBANA (SPAIN). TO BE PUBLISHED IN ADA-
LETTERS, 2012. ISSN: 1094-3641.

(3) PÉREZ, H., GUTIÉRREZ, J. J., ASENSIO, E., ZAMORANO, J. AND DE LA
PUENTE, J. A. “MODEL-DRIVEN DEVELOPMENT OF HIGH-INTEGRITY
DISTRIBUTED REAL-TIME SYSTEMS USING THE END-TO-END FLOW
MODEL” IN PROCEEDINGS OF THE 37TH EUROMICRO CONFERENCE ON
SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS, OULU
(FINLAND), 2011, PP. 209-216. ISBN: 978-0-7695-4488-5.

(4) PÉREZ, H., GUTIÉRREZ, J. J. AND GONZÁLEZ HARBOUR, M. “SUPPORT FOR
A REAL-TIME TRANSACTIONAL MODEL IN DISTRIBUTED ADA”, IN
PROCEEDINGS OF THE 14TH INTERNATIONAL REAL-TIME ADA WORKSHOP
(IRTAW), PORTO VENERE (ITALY), ADA LETTERS (XXX), 2010, PP. 91-
103. ISSN: 1094-3641.
University of Cantabria xi



2

(5) SANGORRÍN, D., GONZÁLEZ HARBOUR, M., PÉREZ, H. AND GUTIÉRREZ, J.
J. “MANAGING TRANSACTIONS IN FLEXIBLE DISTRIBUTED REAL-TIME
SYSTEMS”, IN PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE
ON RELIABLE SOFTWARE TECHNOLOGIES, VALENCIA (SPAIN), SPRINGER,
LNCS 6106, 2010, PP. 251-264. ISSN: 0302-9743.

(6) PÉREZ, H. AND GUTIÉRREZ, J. J. “REVISIÓN DEL DDS Y SUS CAPACIDADES
PARA TIEMPO REAL”, IN PROCEEDINGS OF THE 3RD CONGRESO ESPAÑOL DE
INFORMÁTICA (CEDI), VALENCIA (SPAIN), 2010, PP. 33-40. ISBN: 978-84-
92812-64-6.

(7) PÉREZ, H. AND GUTIÉRREZ, J. J. “EXPERIENCE IN INTEGRATING
INTERCHANGEABLE SCHEDULING POLICIES INTO A DISTRIBUTION
MIDDLEWARE FOR ADA”, IN PROCEEDINGS OF THE ACM SIGADA ANNUAL
INTERNATIONAL CONFERENCE ON ADA AND RELATED TECHNOLOGIES,
FLORIDA (USA), ACM, ADA LETTERS (XXIX), 2009, PP. 73-78. ISSN:
1094-3641.

(8) PÉREZ, H., GUTIÉRREZ, J. J., SANGORRÍN, D. AND GONZÁLEZ HARBOUR,
M. “REAL-TIME DISTRIBUTION MIDDLEWARE FROM THE ADA
PERSPECTIVE”, IN PROCEEDINGS OF THE 13TH INTERNATIONAL
CONFERENCE ON RELIABLE SOFTWARE TECHNOLOGIES, VENICE (ITALY),
SPRINGER, LNCS 5026, 2008, PP. 268-281. ISSN: 0302-9743.

(9) PÉREZ, H. AND GUTIÉRREZ, J. J. “CORBA & DSA: ANÁLISIS Y
EVALUACIÓN DE SUS IMPLEMENTACIONES DESDE LA PERSPECTIVA DE LOS
SISTEMAS DE TIEMPO REAL”, IN PROCEEDINGS OF THE 2ND CONGRESO
ESPAÑOL DE INFORMÁTICA (CEDI), ZARAGOZA (SPAIN), 2007, PP. 11-17.
ISBN: 978-84-9732-608-7.
xii Computers and Real-Time Group



Awards

(1) OUTSTANDING PAPER AWARD FOR THE PAPER “EXPERIENCE IN
INTEGRATING INTERCHANGEABLE SCHEDULING POLICIES INTO A
DISTRIBUTION MIDDLEWARE FOR ADA” IN THE ACM ANNUAL
INTERNATIONAL CONFERENCE ON ADA AND RELATED TECHNOLOGIES
(SIGADA), 2009.

(2) XVII ADA-SPAIN AWARD FOR THE BEST ACADEMIC PROJECT RELATED TO
THE ADA PROGRAMMING LANGUAGE: “ADAPTACIÓN Y OPTIMIZACIÓN PARA
UNA PLATAFORMA DISTRIBUIDA DE TIEMPO REAL DE UN MIDDLEWARE
BASADO EN LOS ESTÁNDARES DE RT-CORBA Y ADA”, ADA-SPAIN
ASSOCIATION, 2009.
University of Cantabria xiii



2

xiv Computers and Real-Time Group



1
. . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
APPROACH AND OBJECTIVES

This chapter describes the scope of this thesis. First, in Section 1.1, we briefly review the
concepts of distributed systems, real-time systems, communication networks and
schedulability analysis. Section 1.2 introduces the challenges and the specific features of
distributed real-time systems. The most relevant distribution standards for the
development of real-time systems are introduced in Section 1.3. We subsequently review
the main software tools for the development of predictable systems, as well as some of
the most widely used design strategies in Section 1.4. Next, in Section 1.5, we describe
the motivations that have led to the development of this thesis, as well as its major
objectives. Finally, in Section 1.6, we present the organization of the remaining chapters
of the thesis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 I N T R O D U C T I O N

The concept of a distributed application is not new; it has existed since two
computers were first connected and may consist of several tens of processors
interconnected by one or more communication networks. However, the programming
techniques of these systems have evolved greatly and they have become especially
relevant in the last decade. Today many services are provided transparently to the user
and executed in a computer network: Automatic Teller Machines (ATM), cable TV or
web services are examples used in our daily lives.

A distributed system is primarily intended to promote collaboration and
exchange of information between applications and users. To this end, these systems are
characterized by easing access to resources in a transparent and homogeneous way,
hiding some of the complexity associated with the distribution of resources and
functionalities over a computer network. Since the whole network acts as a single
element for the user, these systems must be easily scalable, that is, they must be able to
be adapted to changes in the size or in the geographic location of the network. As a
drawback, a distributed system necessitates more complexity for design,
implementation, debugging and maintenance.
University of Cantabria 1-1



A P P R O A C H  A N D  O B J E C T I V E S
Introduction

1

The implementation of a distributed application requires the use of
communication services provided by operating systems to exchange information among
computers. The direct use of such services by the programmer, even if it usually provides
good performance, is a complex and error-prone procedure. Thus, a set of high-level
abstractions (distribution models or paradigms) have been defined for these
communication services in order to allow the programmer to specify interactions
between components of a distributed application easily. According to the mechanism
used for distribution, a distributed system can be classified as follows:

• Distribution based on the direct use of communication services 
Under this model, the programmer is responsible for performing the
distribution explicitly, that is, using the communication services provided
by the network and / or operating system.

• Distribution based on remote procedure calls (RPC) 
A remote procedure call allows an application to transparently invoke a
procedure located on another processing node, that is, solving all the issues
related to distribution: location of services, transmission of parameters and
results, heterogeneous systems, etc.

• Distribution based on objects (DOM) 
This is a higher level abstraction than RPCs and allows object-oriented
programming in distributed systems, integrating both technologies and
their main features.

• Distribution based on messages (MOM) 
In this case, communication between nodes within the distributed system is
performed by exchanging asynchronous messages while using, for
example, some kind of storage buffers. When the message content is not
opaque to the software system and it can operate directly on the content, it
can be considered as a new distribution model based on data (also known as
data-centric model).

In addition to the paradigm or model used to perform the distribution,
interaction models should be also considered in the design of distributed applications. In
fact, some important quality parameters such as flexibility, decoupling and efficiency
strongly depend on which interaction model is selected. This feature has also led to a
new classification of distributed systems, which is orthogonal to the distribution model
used. Within the context of this thesis, two interaction models have been considered,
which are depicted in Figure 1-1 and described briefly below:
1-2 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Introduction
• The Client / Server (C/S) interaction model 
Nowadays, distributed systems are mostly based on the client – server
paradigm. According to this model, clients make requests to the servers and
thus both entities are known in advance. An example illustrating this
behaviour is the web browser, which acts as a client and requests the web
page information. Such information is usually located in a central node
known as a server.

• The Publisher / Subscriber (P/S) interaction model 
Unlike the previous interaction model, some distributed systems require the
distribution of the information through several data producers and
consumers. Most of these systems focus on decoupled entities, meaning
that entities do not refer to each other to enable communication. In such
cases, the model that fits best is based on the publisher–subscriber
paradigm. According to this model, subscribers do not make requests to a
specific publisher, but register their interest in receiving a particular data
type. For example, imagine a system to monitor the temperature of several
rooms in a building. In this case, subscribers would be interested in
receiving the data type temperature. Whenever new data of this specific
type is available, it will be sent over the network through one or more
publishers (in our example, all those publishers which can read a
temperature sensor).

Furthermore, real-time systems, those whose logical correctness is based on
both the correctness of the outputs and their timeliness, are more and more usual in our
daily lives. For example, if the case of a car, you may not know we are using several tens
of processors in charge of controlling functions as diverse as radio, injection, brakes,
fluid level checks or vehicle air conditioning. However, some of these functions are
prioritized over others. For example, the brake control in an emergency stop or the
stability control in a skid must take precedence over other actions, such as a passenger
who is changing the temperature of the cabin area, and satisfy explicit (bounded)

Client / Server Publisher / Subscriber

Server

Client ClientClient

Publisher

Subscriber Subscriber Subscriber

Figure 1-1: Common interaction models for distributed systems
University of Cantabria 1-3



A P P R O A C H  A N D  O B J E C T I V E S
Introduction

1

response-time constraints. Thus, the system should not only successfully perform an
action, but must execute it in a certain amount of time. Formally, a real-time system is
characterized not only by its logical result but also by the time at which the results are
produced, what requires a predictable behaviour throughout the system (software and
hardware components).

1 .1 .1 REAL-T IME SYSTEMS

1.1.1.1 Main concepts and classification

Unlike general purpose systems, a real-time system is defined according to a
set of terms that characterize not only its logical behaviour but also its temporal
behaviour. Throughout this thesis, we will refer to the processing capacity usage which is
required for the execution of a piece of code (for example, reading a file or a simple
arithmetic operation) as operation, and to the software entity responsible for executing it
as task (or thread). Each operation is executed on a processing resource, typically in a
processor (CPU) or a communication network, and must be completed within a certain
amount of time known as a deadline. Finally, every operation has an associated worst-
case execution time (WCET), defined as the maximum time required to complete the
operation in an environment which provides exclusive access to all resources.

Another important timing feature relies on the activation pattern, which can be
periodic or aperiodic, depending on whether operations are triggered at regular intervals
of time or not, respectively. In the case of aperiodic activations, there are different types
of this pattern, such as the sporadic activation pattern (characterized by having a
minimum interarrival time between activations) and the bursty activation pattern
(characterized by having an upper bound on the number of activations that may arrive in
a given interval).

A real-time system can be classified according to the consequences of missing
a deadline. Real-time systems which cannot fail to meet any deadline are called hard
real-time systems, as this causes a total system failure. The flight control system of an
aeroplane should have these features, for example. However, not all real-time
applications are critical. Thus, a video conference could tolerate the loss of certain video
quality due to the delay in the arrival of new data to our media player. These systems are
called soft real-time systems, as they still operate correctly although deadlines are
occasionally missed (i.e. their performance is degraded). Such systems must guarantee a
certain quality of service (QoS). Lastly, there are some mixed real-time systems
[BUR09] in which a few missed deadlines are acceptable, but missing more than a few
may lead to system failure. 

When multiple tasks require simultaneously running operations in a single-
processor system, it is necessary to specify a criterion for accessing the CPU, called
scheduling policy. It consists of a set of rules to determine the exact order for tasks to be
1-4 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Introduction
executed in the processor. To determine whether a system is schedulable or not (i.e. if all
operations can be completed within their deadline when they are executed concurrently),
schedulability analysis techniques should be applied to the system. These techniques are
used to confirm that system timing requirements are satisfied by predicting the worst-
case response time (WCRT). WCRT is defined as the maximum time required to
complete a specific operation in a shared environment, or an upper bound of it.

In distributed systems, networks can be considered as another processing
resource, and messages and their transmission over the communication link are treated as
tasks and operations for processors, respectively.

1.1.1.2 Scheduling policies for real-time systems

Static systems are those where the total workload is within known bounds such
that a priori timing analysis can be performed, and dynamic systems are those which do
not have a sufficiently predictable workload and therefore require performing some kind
of analysis or admission test at runtime. Some common approaches to schedule static
systems include the following scheduling policies [KLE93] [LIU00]: 

• Cyclic Executive scheduling. In this case, the basic scheme is to go cyclicly
through a repeating sequence of operations. One possible implementation is
to specify the start and finish times of each operation in one or more tables
(table-driven) at compilation time.

• Round-Robin scheduling enables that all tasks to be fairly executed by
assigning them the same time slot.

• Fixed Priority Scheduling (FPS) uses priorities to determine which should
be the next task executed on the processor. The priorities assigned to each
task are fixed and do not vary with time.

• Dynamic priority scheduling also uses priorities but, in this case, priorities
may change at runtime. The main algorithms are Earliest Deadline First
(EDF), which assigns higher priorities to tasks with the shortest (nearest)
deadline, and Least Laxity First (LLF), which assigns higher priorities to
tasks according not only to their deadline but also their remaining
execution time.

Although most hard real-time systems are static and are scheduled through the
policies described above, there are systems whose workload varies with time, thus
preventing the application of a priori timing analysis. In recent years, the flexible
scheduling approach can be seen as one of the most representative examples of the
scheduling of such systems. This scheduling policy is based primarily on the concept of
resource reservations through an entity called contract. Contracts are negotiated at
runtime through an admission test, which can accept or reject the requested resource
University of Cantabria 1-5



A P P R O A C H  A N D  O B J E C T I V E S
Introduction

1

reservation. This type of scheduling can also be applied to static systems when
application requirements are verified at design time. The FIRST [ALD06] and
FRESCOR [FRSH11] projects are examples of this type of scheduling.

1.1.1.3 Synchronization protocols

The previous section has reviewed some common approaches for scheduling a
set of tasks, that is, to determine the exact order for tasks to execute operations in the
processor. However, operations may require accessing other kinds of resources to
continue their execution, such as data from external hardware, an area of memory or a
file. When several tasks modify the state of these resources (i.e. shared resources), it is
important to maintain data consistency because most of the resources do not allow
simultaneous access, but require mutual exclusion access. Operating systems provide
this safe access via synchronization mechanisms which are responsible for ensuring
mutually exclusive access to shared resources. Examples of synchronization mechanisms
include mutexes, semaphores, monitors or protected objects [BUR09].

From a real-time perspective, mutual exclusion can lead to an unbounded
priority inversion problem [KLE93]. This problem occurs when a higher priority task
“A” is blocked waiting for the release of a shared resource that is being used by a lower
priority task “B”. Given this scenario, intermediate priority tasks could be activated in
this system that would not allow the processing of task “B” and, consequently, so too
task “A”, even though the latter has the highest priority in the system. A real and
illustrative example of this problem and its consequences can be found in [WIL97].

The unbounded priority inversion problem can be solved by using appropriate
synchronization protocols to control the access to shared resources. The main protocols
developed for real-time systems using FPS include the Priority Ceiling Protocol (PCP),
the Highest Locker Protocol (HL) and the Basic Priority Inheritance Protocol (BIP).
These protocols are discussed in detail in the work described in [SHA90] and [RAJ89].

1.1.1.4 Schedulability analysis for real-time systems

To determine whether a set of tasks scheduled by means of a specific
scheduling policy can meet their deadlines, a schedulability analysis should be applied to
the set since it is difficult to estimate the temporal behaviour through simulation for any
non-trivial application [XU93]. For single-processor systems, the scheduling process for
static real-time systems using FPS integrates the following techniques:

• A priority assignment strategy, which is able to perform an automatic and
optimized assignment of priorities to a set of tasks. 

• A schedulability analysis, which predicts the worst-case behaviour of the
system when the priority assignment is applied.
1-6 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Introduction
Traditionally, Rate Monotonic Analysis (RMA) [LIU00], which comprises
both priority assignment and analysis techniques, is the most widely used technique in
such systems. The RMA theory originated in 1973 when Liu and Layland introduced
Rate Monotonic Scheduling (RMS), a scheduling algorithm with optimum priority
assignment for systems with independent tasks whose deadlines are equal to their
periods. This algorithm assigns higher priority to tasks with shorter period, and is
optimal in the sense that if a system is not schedulable with this priority assignment, then
no other assignment will be schedulable either. Under the conditions imposed by RMS,
Liu and Layland developed a schedulability test, called the Utilization Bound Test (UB),
which makes the schedulability of the system conditional on a maximum percentage of
system load. Although these techniques are applied to systems that are very restrictive,
they served as a basis for further work that successively removed these restrictions
[LEH89]. These works developed other analysis techniques (Response Time Analysis,
RTA) based on calculating the Worst-Case Response Time (WCRT) 
[JOS86][AUD93][TIN94A].

Although RMA techniques are only suitable for single-processor systems,
they can also be applied to distributed systems by modelling communications networks
as if they were processors, and network messages as if they were tasks [TIN94B]
[KLE93].

Finally, the development of analysis techniques for systems scheduled by
dynamic priorities is also important. The analysis techniques proposed in [BAR90] and
[SPU96] represent significant contributions in this field.

1.1.1.5 High-integrity systems

During the last decades real-time systems have increased their complexity by
means of adding dozens of processing nodes that host independent or coupled
applications, most of them having non-functional requirements such as deadlines, QoS
or integrity.

A high-integrity system can be defined as a system in which a failure may lead
to catastrophic consequences (i.e. financial, environmental or personal disasters).
Among the most common examples are control systems for commercial aircraft or
railway signalling, in which the lives of hundreds of passengers depend on the
correctness of the safety-critical system.

A high-integrity system must provide operational guarantees for both
hardware (mechanical components, electronics, electrical connections, etc.) and software
components. Unlike everyday computing applications, high-integrity software must
undergo a certification process to verify compliance with certain requirements imposed
by a regulatory authority. These requirements are generally reflected in specialized
standards for different industries, becoming a basic document in the design and
University of Cantabria 1-7



A P P R O A C H  A N D  O B J E C T I V E S
Introduction

1

development of high-integrity systems. Table 1-1 lists some of the most widely used
standards related to each sector. In general, each of these documents establishes a set of
criticality levels according to the software influence in system safety and reliability. For
example, within the avionics industry, the standard DO-178B defines five criticality
levels depending on the damage that software failure can cause to the system, from no
effect (level E) to catastrophic (level A), requiring a more stringent certification process
for the latter.

Due to the high costs associated with the certification process, the
development of safety-critical systems is characterized by the simplicity of source code,
that is, it tends to minimize the software complexity to ease the certification. A common
practice is to take advantage of subsets or profiles of a programming language that
restrict the use of those features that are difficult to certify, such as MISRA-C [MIS04] or
SPARK [SPA10].

High-integrity systems are usually scheduled by the cyclic executive policy.
However, this policy lacks the flexibility necessary to adapt the schedule to changes (due
to software errors, changes in the requirements or incorporating additional functionality)
and increases the difficulty of designing complex systems. This has motivated the real-
time community to attempt to evolve toward a fixed priority scheduling scheme. This
change would not only increase the flexibility in the development process, but would
also introduce concurrency features in high-integrity software. As a drawback, this also
introduces new sources of errors which makes the process of certification harder. One of
the proposed solutions is to create safe and analyzable subsets of concurrency facilities.
Among the most notable contributions is the Ravenscar profile [ADA05], which defines
a concurrent but certifiable model for Ada.

Table 1-1: Summary of main standards for high-integrity systems

INDUSTRY ORGANIZATION STANDARD NAME

AVIONICS RTCA DO 178B SOFTWARE CONSIDERATIONS IN AIRBORNE 
SYSTEMS AND EQUIPMENT CERTIFICATION

RAILWAY BS EN 50128 RAILWAY APPLICATIONS. COMMUNICATION, 
SIGNALLING AND PROCESSING SYSTEMS. SOFTWARE 
FOR RAILWAY CONTROL AND PROTECTION SYSTEMS

NUCLEAR IEC 880 SOFTWARE FOR COMPUTERS IN THE SAFETY 
SYSTEMS OF NUCLEAR POWER STATIONS

AUTOMOTIVE MISRA ISO/TR 15497 DEVELOPMENT GUIDELINES FOR VEHICLE BASED 
SOFTWARE

SPACE NASA NASA-STD-8719.13 NASA SOFTWARE SAFETY STANDARD

MILITARY IEEE/EIA ISO 12207 U.S. SOFTWARE LIFE CYCLE PROCESS
1-8 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Introduction
1 .1 .2 DISTRIBUTION MIDDLEWARE
Simple and homogeneous distributed applications can be developed directly

using the communications services provided by operating systems. However, in the case
of systems composed of dozens of computers with heterogeneous architectures, this
development becomes complex and must (1) ensure communication between nodes and
(2) address low-level communication details, such as the byte storage format (i.e.
endianess), word size or floating-point representation used. This complexity can be
managed transparently to the user through the use of middleware technology, an
intermediate software layer that simplifies the management and programming of
applications and which has become an essential tool in the development of distributed
systems. Today, the concept of middleware is very broad and provides several features: 

• Communication middleware, which is an abstraction of the low-level
details related to distribution and communications.

• Component middleware, which is usually based on a formal model that
enables the development of systems by assembling reusable software
modules (components) which have been developed previously by others
regardless of the application that will be used.

• Adaptive middleware, which enables the reconfiguration of distributed
applications to modify functionalities, resource usage, security settings and
so on.

• Context-aware middleware, which is able to interact with the environment
where distributed applications execute and take action to make changes at
runtime.

The development of this thesis focuses on the first group described,
communication middleware, which usually provides the basis for the development of
higher-level middleware. This type of middleware internally handles the details of the
interconnection process between nodes which usually consists of the following basic
features (see Figure 1-2): (1) addressing or the assignment of references to objects to
denote their location, (2) marshalling or the transformation of data into a representation
suitable for transmission over the network, (3) dispatching or the assignment of each
request onto an execution resource for processing, and (4) transport or the establishment
of a communication link for exchanging network messages. 

Furthermore, our approach only considers distribution middleware that is
based on standards due to its stability and impact on the industry. Currently, there are
many standards that fall within any of the above distribution paradigms. Thus, among the
most representative examples of distribution models based on RPCs are the OSF / DCE
standard [DCE97] or the Distributed Systems Annex of Ada language (DSA) [ADA05].
University of Cantabria 1-9



A P P R O A C H  A N D  O B J E C T I V E S
Introduction

1

In relation to the DOM model, this paradigm is probably the most relevant in current
industrial applications, and an important example is the CORBA standard [COR03].
Other examples of the DOM model are the Java Remote Method Invocation (RMI)
[RMI04] or the previously mentioned Ada DSA, which also allows distribution based on
objects. Examples of the MOM model are the Java Message Service (JMS), a de facto
standard, and the Data Distribution Service for Real-Time Systems (DDS) [DDS07].
However, the latter is often included in the data-centric category, since the contents of
exchanged messages are not opaque to middleware and can be handled directly. Table 1-
2 summarizes these standards and their main features.

However, not all these standards are suitable for developing distributed real-
time applications, as they require a set of mechanisms and capabilities to ensure
determinism: for example, task and network message scheduling, the assignment of
scheduling parameters or the use of synchronization protocols for a predictable access to
shared resources. These mechanisms can be explicitly defined within the standard (e.g.
DDS), be added as an extension to the original distribution model (e.g. CORBA and RT-
CORBA [RTC05]) or be considered independent of distribution mechanisms, as in the
case of the Ada language.

Calling Node Called Node

Activity A Activity B

Addressing

Transport

Dispatching

Transport

Marshalling / 
Unmarshalling

Addressing

Dispatching

Input Stream
Output Stream

M
ID

D
L

E
W

A
R

E M
ID

D
L

E
W

A
R

E

Marshalling / 
Unmarshalling

Figure 1-2: Basic services provided by distribution middleware
1-10 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Distributed real-time systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2 D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S

The strong growth in the volume of data and events that a current system must
process, along with the fast development of technologies for communication networks,
has provoked the need to extend the functionality of real-time applications over
distributed environments as was previously announced by J. Stankovic in the nineties
[STA92].

Within this scenario, middleware should provide mechanisms to guarantee
predictability over the whole application. In particular, distributed real-time systems
introduce the following new challenges for the developer: 

• The influence of communication networks on the system response times.
Although time constraints are usually associated with task execution, these
constraints are directly reflected on the messages exchanged between tasks
in a distributed system, that is, the execution time of a task depends on the
time spent by this task in sending and / or receiving messages as networks
can be viewed as shared resources. Furthermore, the evaluation of the end-
to-end communication delay is difficult as it depends on the network
topology used. 

• Appropriate techniques for schedulability analysis. Techniques developed
for single-processor systems cannot be applied, and should be extended to
incorporate diverse factors that may affect the temporal behaviour of the
whole application, such as:

Table 1-2: Classification of distribution standards

STANDARD
DISTRIBUTION 

PARADIGM INTERACTION PARADIGM OBSERVATIONS

OSF/DCE RPC C/S

ADA DSA RPC
DOM

C/S

CORBA DOM C/S

JAVA RMI DOM C/S

JMS MOM P/S

DDS MOM P/S DATA-CENTRIC
University of Cantabria 1-11



A P P R O A C H  A N D  O B J E C T I V E S
Distributed real-time systems

1

- Optimal allocation of resources. In distributed systems, it is
necessary to allocate n tasks to a number p of processors so that they
can satisfy the time constraints of the critical tasks. The process of
obtaining an optimal allocation belongs to the family of problems
known as NP-complete (non-deterministic polynomial-time)
[BUR91].

- Allocation of scheduling parameters. Although there are techniques
for the optimum assignment of scheduling parameters in single-
processor systems, these techniques are not optimal for distributed
systems where the problem becomes NP-complete [MOK78]
[BUR91].

- Jitter. It represents variations in the activation of tasks or in the
transmission of messages. This variation, which could be caused by
the inaccuracy of hardware, affects the temporal behaviour of real-
time distributed systems, such as in multimedia systems where jitter
produces undesirable effects (e.g. audio distortion or annoying
flickering in the video).

• Appropriate real-time model to integrate both the previous challenges.
Middleware should integrate a real-time model that allows schedulability
analysis techniques to be applied and network messages and tasks
scheduling to be configured.

An overview of the basic differences in the scheduling of single-processor,
multiprocessor and distributed real-time systems can be found in [BUR91]. This thesis
will only address those distributed environments with bounded latencies, which is the
traditional scenario for hard real-time systems. The issues described above are now
discussed in turn.

1 .2 .1 REAL-T IME SYSTEM MODEL
The objective of this section is to introduce a model of the behaviour of a real-

time system which will be used throughout the rest of the thesis. Viewed from the
perspective of an outside observer, a real-time distributed system can be modelled as a
set of distributed transactions [TIN94B] [HAR01], as illustrated in Figure 1-3. A
transaction is defined as an entity that holds a set of tasks and network messages with
some precedence relationship between them, sharing either functional or temporal
attributes (e.g. tasks that are activated with the same period). Under this model, each
transaction may be triggered by the arrival of one or more external event thereby causing
the execution of operations on the processors or in the networks. In the example shown
in Figure 1-3, the external event is represented by a timer. After the timer expires, the
sequence of Asynchronous remote Procedure Calls (APC) is performed, which implies
1-12 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Distributed real-time systems
the execution of the following operations: Take Data, Process Data and Actuate
subprograms and the transmission of two network messages. From the perspective of the
real-time transactional model, on completion of operations events are generated
internally to the transaction which may in turn activate other operations as illustrated in
Figure 1-3.

A system representation using this model is analyzable through different
schedulability analysis techniques, such as those included in MAST1 (Modelling and
Analysis Suite for Real-Time Applications) [HAR01]. MAST is a software toolsuite that
offers an open set of tools for modelling, analysis and design of real-time systems. It
proposes a system model also based on the aforementioned real-time transactional
model [TIN94B] [HAR01]. However, the real-time transactional model is currently
known as end-to-end flow model in the MARTE (Modeling and Analysis of Real-Time
and Embedded Systems) modelling standard [MAR08] and, since MAST is being
aligned with MARTE’s standardized terminology [HAR12], the latter terminology will
be used throughout this thesis. Therefore, the end-to-end flow model consists mainly of
the following entities (see Figure 1-4):

• Steps. This entity includes two concepts: firstly, the operation to be
executed (for example, the execution of a piece of code on a processor or
sending a message through a network); secondly, the schedulable entity to
execute the operation. 

• Events. These are the elements responsible for triggering the execution of a
step. There are two types of events: Workload_Event, which characterizes
the nature of end-to-end flows (i.e. periodic or aperiodic), and
Internal_Event, which represents the flow of steps within the end-to-end
flow. 

1. MAST is available at http://mast.unican.es

External
Event

Internal
Event

Internal
Event

Internal
Event

Internal
Event

Transaction

Application

NetworkNetworkCPU-1

Task #1 Net #1 Net #1Task #2 Task #3

CPU-2 CPU-3

Process Data

Process
Data

Actuate

Actuate

Take Data

Take 
Data

Message #1

Message
#1

Message #2

Message
#2

Timer

Figure 1-3: Modelling applications according to the end-to-end flow model
University of Cantabria 1-13



A P P R O A C H  A N D  O B J E C T I V E S
Distributed real-time systems

1

• Event Handlers. They represent the actions to be executed on the arrival of
an event. These actions may be linear, in which a single input event
generates a single output event (for example, the execution of a step) or
nonlinear, in which a single action can be activated by the combination of
one or more events or can generate multiples output events (e.g. sending a
multicast message is modelled by a Fork or the use of various sources of
data can be matched with a Merge (see Figure 1-4)).

• Observer. The Observer is an entity responsible for monitoring a set of
parameters associated with Internal_Events. For example, it allows
temporal parameters to be evaluated (e.g. deadlines or maximum jitter) at a
specific point in the end-to-end flow.

Therefore, the real-time transactional model or end-to-end flow model plays a
central role in the development of real-time distributed systems, as it is part of a relevant
modelling standard within the real-time community and also includes Computer-Aided
Software Engineering (CASE) tools such as MAST to facilitate the development process
for real-time engineers. Furthermore, this real-time model provides a simple and
complete representation of system entities where schedulability analysis techniques can
be directly applied.

1 .2 .2 SCHEDULABIL ITY ANALYSIS  FOR DISTRIBUTED REAL-
T IME SYSTEMS
Schedulability analysis techniques proposed for single-processor systems are

not directly applicable to distributed systems and should be revised (1) to include the
influence of communication networks in response times and (2) to consider the
precedence relationships between tasks allocated in different nodes.

Unlike single-processor systems, distributed systems requires the assignment
of tasks to appropriate nodes. Tasks can be allocated in a static or dynamic way to the
nodes. If we focus on systems with static allocation of tasks and messages to processors

S1E1 I1

Observer (D1)

I2

I3 I4S3 S4

S2E2

End-to-end flow

Sk

Ek

Dk

Ik

workload event

step

internal event

deadline
+

Event Handler (Merge)

Figure 1-4: End-to-end flow model proposed by MARTE standard
1-14 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Distributed real-time systems
and networks, respectively, then the problem is simplified and two fundamental issues
must be considered: (1) the schedulability analysis necessary to determine the
schedulability of processing resources (processors and communication networks), that is,
whether the system can meet deadlines even in the worst-case scenario; and (2) the
allocation of scheduling parameters to schedulable entities (tasks for processors and
messages for communication networks) to maximize the possibility of meeting these
requirements.

Previously, in section 1.1.1, a set of scheduling policies for real-time systems
was listed. For distributed systems, the easiest scheme is to use the cyclic executive
approach by laying out a complete schedule to cycle through a sequence of steps. This
type of scheduling, which is decided at compilation time, can be applied to single-
processor, multiprocessor or distributed systems. In the latter case, it must also use a
cyclic approach for communications (e.g. through TDMA techniques). Once the
schedule has been constructed, then no further schedulability test is required (proof by
construction). One example of this kind of architecture is the Time-Triggered
Architecture (TTA) [KOP11], which uses a complex heuristic function to guide the
search for a feasible and optimized schedule (e.g. phase aligned1). Drawbacks of this
scheme include the lack of flexibility for adaptation to non-periodic end-to-end flows
and the high cost associated with the redevelopment of the schedule when software is
modified [BUR09].

Cyclic executive scheduling is mainly used in high-integrity systems.
Currently, avionics systems follow the ARINC 653 standard [ARINC06], which allows
multiple applications of different software levels to be hosted on the same hardware.
Each piece of application software is called a partition, and it has its own memory space
and one or more dedicated time slots. Within each partition, multitasking is allowed and
thus other scheduling policies can be applied.

Other alternative approaches have also been considered. These determine
which task should execute at each time by the use of one or more scheduling parameters.
Although the RTA analysis is exact (that is, it obtains the exact WCRT of a given task)
for single-processor systems, this technique is no longer optimal for multiprocessors or
distributed systems [MOK78], mainly due to the problem of deferred activation or jitter.

Jitter can significantly affect the schedulability of the system [KLE93].
Among other factors, this effect is associated with the inaccuracy of the hardware used
such as the resolution (granularity) of the system clock. There is also another major
source of jitter in systems with precedence relationships. In this case, the activation time
of tasks is not perfectly periodic, but depends on the completion time of the triggering
task, which is variable. The effect of deferred activation is usual in distributed systems
where tasks are often activated from messages [GUT96].

1. Send slots in the communication subsystem are available immediately after the WCET of the previous processing action belonging to the 
same sequence
University of Cantabria 1-15



A P P R O A C H  A N D  O B J E C T I V E S
Distributed real-time systems

1

Therefore, schedulability techniques for distributed systems should consider
how the variability in the execution of a task or the transmission of a message will affect
another part of the system [BUR09]. For fixed priorities, Tindell and Clark [TIN94C]
[PAL97] proposed an algorithm to calculate an upper bound of response times for
distributed systems. This is called holistic schedulability analysis and takes into account
the jitter effect by using an iterative algorithm. This technique assumes that all system
tasks and messages are independent and therefore it leads to pessimistic results. To
reduce this pessimism, Tindell introduced the concept of offsets (activation phase)
[TIN94B] to avoid simultaneous activation of tasks / messages with precedence
relationships. This technique only considered static offsets, but this restriction was
eliminated by Palencia and Harbour in [PAL99]. However, the exact calculation of
WCRT through these techniques is intractable for large systems [TIN94B] so alternative
methods are applied to obtain upper bounds for the response times
[PAL99][RED04][MAKI08].

For systems with EDF scheduling, Spuri [SPU96] [SPU96-2] adapted holistic
schedulability analysis, while [PAL05] extended the offset-based schedulability analysis
techniques. Moreover, the authors in [RIV10] proposed another technique based on the
use of local deadlines1. 

Finally, the work included in [RIV11] integrated these techniques and
presented a set of tools able to analyse heterogeneous systems (i.e. processor and
communication networks having either fixed priority or EDF schedulers). These works
are the basis for the transactional model [TIN94B], the real-time model previously
discussed, which will be used in the context of this thesis. 

1 .2 .3 REAL-T IME COMMUNICATION NETWORKS
Nowadays, a real-time distributed system may consist of several tens of

processors interconnected by one or more communication networks (for example, the
Volvo XC90 architecture consists of a minimum of 4 communication networks which
interconnect up to 40 microprocessors [HRI05]). Software for this type of systems
consists of several concurrent tasks that communicate with each other by exchanging
messages over communications networks. Similarly to what happens with tasks in
processors, networks are shared resources that can be simultaneously accessed by
multiple nodes in a distributed system. A collision is the result of two or more nodes on
the same network attempting to transmit a message at exactly the same time. Hence, it is
necessary to establish an order for nodes to access the transmission medium. This is
known as network scheduling policy, and is one of the major differences between
general-purpose and real-time communication protocols. The latter are specifically
designed to eliminate or deterministically avoid the existence of collisions on the
network.

1. Deadlines are referenced to the local clock 
1-16 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Distributed real-time systems
Although a large number of network protocols are suitable for real-time
systems, the literature of real-time computing [BUR09] [KOP11] usually classifies them
according to the technique used to solve the problem of access to the transmission
medium:

• Time Division Multiple Access protocols (TDMA). This is a static
scheduling scheme in which each node is assigned a time slot for
transmitting network messages. Therefore, this technique eliminates the
collisions only if there is a precise timing synchronization of all clocks of
the distributed system.

• Token passing protocols. In this case, the protocol defines a particular
message type, called token. The token is passed between nodes and
authorizes the node to communicate. Since there is only one token within
the distributed system, it avoids the existence of collisions.

• Master-Slave protocols. Such protocols are based on a master node that
controls which node can access the communication network. Therefore,
this master node ensures the suppression of collisions and so this technique
is often implemented with redundant master nodes to avoid a single point
of failure.

• Priority-based protocols. Under this scheme, nodes must specify a priority
associated with each network message. These protocols tend to have two
phases. In the first phase, known as priority arbitration, each node indicates
the priority of the message it intends to transmit, and the node that owns the
highest priority message will be awarded the right to transmit its message.
Subsequently, the message is transmitted in the second phase.

Nowadays, a wide variety of communications networks exist for real-time
systems. In the last decades, the trend in the industry was toward the development of
special-purpose networks capable of providing quality of service in a specific scenario:
CAN [CAN91] and FlexRay [FLEX05] for automotive systems, PROFIBUS [IEC00] for
industrial automation and control systems or ARINC-629 [ARINC99] for avionics.
However, the increasing need to reduce costs and development time has promoted the
use of commercial hardware and protocols such as PROFINET [IEC07] or ARINC-664
Part 7 [AFDX09], which include the use of Ethernet technology that is widely used in
general-purpose systems.

The remainder of this section focuses on reviewing a subset of networks which
is able to provide soft or hard real-time guarantees, which are classified according to
their usage sector.
University of Cantabria 1-17



A P P R O A C H  A N D  O B J E C T I V E S
Distributed real-time systems

1

1.2.3.1 Specific-purpose real-time communication networks

Automotive systems

The CAN bus (Controller Area Network) [CAN91] was developed in the mid
80s by Robert Bosch as a serial communication bus for applications in the automotive
field and subsequently standardized in ISO 11898. The Media Access Control protocol
(MAC) used is CSMA / CD + AMP (Carrier-Sense Multiple-Access protocol with
Collision Detection and Arbitration on Message Priority) with deterministic resolution of
collisions. This protocol is optimized for small size messages (up to 8 bytes) that are
transmitted with a bit rate of up to 1Mbps using a fixed priority scheduling policy.

The FlexRay protocol [FLEX05] was developed recently by a consortium that
includes, among others, BMW, DaimlerChrysler, Motorola, GM, Bosch and Philips, as a
natural replacement for the CAN bus in automotive control systems. The main feature of
FlexRay is the efficient integration of communications based on time division (TDMA)
and event-driven techniques. Moreover, it has a bit rate up of to 20Mbps and can transmit
messages with a size between 2 and 354 bytes.

TTP / C (Time-Triggered Protocol for Class C) [KOP93] is a communication
protocol developed to support critical applications that require real-time guarantees and
fault tolerance in the automotive field. The medium access is performed using TDMA
techniques and the information about which node should transmit and when it should do
so is stored in a static table belonging to each node. This protocol supports transmission
speeds of 500Kbps, 1Mbps, 2Mbps and 25Mpbs.

Industrial automation and control systems

The PROFIBUS protocol [IEC00] is included in the IEC61158 standard and is
designed to support deterministic communications between computers, programmable
logic controllers and devices such as sensors and actuators. As with MAC protocol, it
uses a token-passing architecture that guarantees the exclusive use of the communication
bus, with a bit rate of up to 12Mbps and a fixed-priority scheduling policy.

Avionics

The ARINC-629 [ARINC99] standard describes communication networks for
avionics systems. This specification defines a multilevel protocol for data
communication via a bidirectional multiple-access bus. The MAC algorithm uses CSMA
/ CA (Carrier-Sense Multiple-Access protocol with Collision Avoidance) and TDMA
techniques for aperiodic and periodic network traffic, respectively. Furthermore, it
supports a bit rate of up to 2Mbps.
1-18 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Distributed real-time systems
Spacecraft systems

SpaceWire [SPW08] is a standard promoted by the European Space Agency
(ESA) that enables the interconnection of aerospace systems through a full-duplex high-
speed network (from 2 to 200Mbps). This network uses point-to-point serial connections
between nodes, but also supports the use of special routers to implement more complex
networks. Therefore, this type of connection eliminates collisions in the transmission
medium. A fixed-priority scheduling policy is used for network scheduling.

1.2.3.2 Real-time communication networks based on Ethernet 
technology

Ethernet is a suitable networking technology for local area networks.
Standardized as IEEE 802.3, Ethernet was originally designed to interconnect general-
purpose computers. However, the desire to incorporate a real-time element into this
increasingly popular protocol has led to an evolving field of research during the last
decade, mainly due to its features of low cost and high transmission speed (currently up
to 10Gbps). As is defined in IEEE 802.3, Ethernet technology is not deterministic and
thus it is unsuitable for real-time applications. The main problem is the MAC protocol
named CSMA / CD (Carrier-Sense Multiple-Access protocol with Collision Detection),
which uses non-predictable back-off algorithms to avoid a message collision. To
overcome the lack of predictability of CSMA / CD, several solutions have been
proposed. In [DEC05], the author classifies these solutions according to which part of
the protocol stack has been modified, as is shown in Figure 1-5. In particular, three

Ethernet Wiring 

Real-Time
Protocol

TCP/UDP
IP

Ethernet Ethernet Modified
Ethernet

Real-Time
Protocol

Real-Time
Protocol

Application

Transport

Network

Data Link

Physical

OSI Layers Solution #1 Solution #2 Solution #3

Figure 1-5: Structure of Ethernet-based solutions for real-time systems
University of Cantabria 1-19



A P P R O A C H  A N D  O B J E C T I V E S
Distributed real-time systems

1

solutions are presented which are described briefly below.

Real-time networks on top of TCP/IP or UDP/IP

There are some solutions that include some kind of temporal control over the
messages but, by themselves, do not guarantee a strictly bounded transmission time since
they do not change the media access control protocol defined in Ethernet. Some
examples include:

Real-Time Publisher Subscriber protocol (RTPS) [IEC04] [RTPS09], based on
the publisher - subscriber paradigm, integrates QoS parameters into communications.
These parameters are used to detect critical delays in the transmission of packets,
configure the availability and use of resources, adjust the system reliability, etc.

Real-Time Protocol (RTP) [RFC3550] is oriented to the management of
multimedia content and allows the QoS over the communication to be synchronized and
adapted.

PROFINET [IEC07] is a protocol divided into profiles according to the
required level of determinism. In the real-time profile, it is a protocol based on
asymmetric architecture with a master node that controls multiple slave nodes. Although
it can be used on commercial switches, the hard real-time profile requires the use of
specific hardware.

Real-time networks on top of modified Ethernet

This group consists of protocols that modify the Ethernet standard and its
infrastructure to provide temporal guarantees including, for example, those that modify
the original MAC layer.

The authors of [LEE98] combine a token-bus (IEEE 802.4) with the physical
layer of IEEE 802.3. In this way, a token-bus network is obtained but using Ethernet
technology. This technique reaches a bit rate of 5Mbps over 10Mbps Ethernet links.

The CSMA-DCR protocol [LELAN93] proposes deterministic avoidance of
collisions by creating a hierarchy of priorities as a binary tree composed of all the nodes
on the network.

Real-time networks on top of Ethernet

These solutions do not make any modification to Ethernet but implement
control mechanisms to suppress the collisions over the transmission medium. In general,
they require a dedicated Ethernet segment to guarantee bounded transmission times. The
following protocols can be included:

Real-Time Ethernet Protocol (RT-EP) [MAR05], a token-passing protocol
over a logical ring that uses a fixed priority scheduling policy.
1-20 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Real-time distribution middleware
Flexible Time-Triggered Ethernet protocol (FTT-Ethernet) [PED02] combines
both time-driven and event-driven communications. It is a master-slave protocol where
the master node controls the system requirements, the scheduling policies, and the
admission control at runtime. The possibility of failure on the master node is dealt with
by using redundancy of master nodes, thus avoiding a single point of failure.

RTnet protocol [KISZ05] presents an abstraction layer that allows different
techniques to be used to access the transmission medium. The existing version provides
support for two options: the standard CSMA / CD and a TDMA technique. As we said
earlier on in this section, the former cannot be applied for hard real-time systems.
Furthermore, RTnet also includes deterministic implementations of other higher-level
protocols, such as UDP / IP or ARP (Address Resolution Protocol), to facilitate the
encapsulation of general-purpose network traffic.

Finally, Switched Ethernet technology is presented as an alternative that has
become particularly relevant in recent years. This technology integrates the use of
standard Ethernet switches and full-duplex communications to avoid collisions in the
transmission medium. Furthermore, it can use a fixed priority scheduling policy
[VBLAN06] which provides real-time guarantees under certain conditions [PED03]
[VILA08]. For example, the Avionics Full-Duplex Switched Ethernet protocol (AFDX),
which is defined in the ARINC-664 specification [AFDX09], uses this technology for
aircraft data networks.

1 . 3 R E A L - T I M E  D I S T R I B U T I O N  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M I D D L E W A R E

In general-purpose systems, the use of middleware technology aims to
facilitate the programming of distributed applications. To this end, middleware provides
a high-level abstraction of the basic services provided by operating systems, mainly
those related to communications. Thus, developers are only responsible for defining
which part of the application can be accessible remotely (e.g. through an Ada DSA
interface or via a CORBA object), while middleware transparently establishes and
manages communication between nodes within the distributed system.

However, general-purpose middleware cannot be applied directly to real-time
systems. In general, the distribution process (see Figure 1-2) presents several potential
sources of indeterminism, including marshalling / unmarshalling of data, transmission /
reception queues for network messages, delays in transport service or requests
dispatching. Real-time middleware aims to solve these issues by implementing
predictable mechanisms, such as the use of specific-purpose real-time communication
networks or the management of scheduling parameters. Consequently, this kind of
University of Cantabria 1-21



A P P R O A C H  A N D  O B J E C T I V E S
Real-time distribution middleware

1

middleware addresses not only the distribution issues but also should provide developers
with mechanisms which allows the temporal behaviour of the distributed application to
be determined.

As we said earlier on in this chapter, this thesis will focus exclusively on
middleware technologies based on standards, due to their impact and stability. The
remainder of this section introduces the most notable distribution standards for real-time
systems.

1 .3 .1 CORBA AND RT-CORBA
The Common Object Request Broker Architecture (CORBA) [COR03] is

DOM middleware that follows the client-server paradigm, and whose main feature is to
facilitate the interoperability between heterogeneous applications (i.e. those coded in
different programming languages, executed on different platforms or even those
middleware implementations developed by different companies). The specification was
developed by an industry consortium called the Object Management Group (OMG1). An
overview of the CORBA architecture is shown in Figure 1-6 (A). It is comprised of the
following components:

• Object Request Broker (ORB). It represents the core of middleware and is
responsible for coordinating the communication between client and server
nodes.

• System interfaces. They consist of a set of interfaces grouped according to
their scope which include: (1) a collection of Basic Services which support

1. http://www.omg.org/

Object 
reference

stubs

Object Request
Broker

Object Request
Broker

Object 
implementation

skeletons

Client Server

network

Code from CORBA middleware

Code automatically generated

User-defined application code

(B)

Object Request
Broker

Basic Services

Common Interfaces

Domain Interfaces

User-defined Interfaces

(A)

Figure 1-6: Components and architecture for CORBA distribution model
1-22 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Real-time distribution middleware
the ORB (e.g. location of remote objects, concurrency, persistence, etc.);
(2) a set of Common Interfaces across a wide range of application domains
(database management, compression, authentication, etc.); (3) a group of
interfaces for a particular application domain (Domain Interfaces) such as
telecommunications, banking, finance, etc; and (4) User-Defined Interfaces
(i.e. not standardized).

Since there is no software, operating system or programming language that
meets all industry requirements, the main objective of CORBA is to provide solutions to
support the heterogeneity of systems, relying on two basic aspects:

• Language-independent middleware (multi-language).
CORBA objects are defined by using a description language called
Interface Definition Language (IDL). Currently, within the CORBA
standard, there are specifications for the mapping of data types of multiple
programming languages (Ada, Java or C, for example).

• Platform-independent middleware (interoperable).
CORBA defines a generic transport protocol called General Inter-ORB
Protocol (GIOP). This protocol ensures interoperability between CORBA
objects regardless of whether they are allocated to ORBs from different
vendors or to different platforms. The Internet Inter-ORB Protocol (IIOP)
is the specific mapping of the GIOP protocol over TCP/IP networks, which
is considered the baseline transport for CORBA implementations.

Communication between nodes is performed by using several CORBA
entities, which are illustrated in Figure 1-6 (B) and described below:

• Object Request Broker. The ORB provides mechanisms to enable
transparent invocation of a remote method as if it were a local method.
Thus, the ORB abstracts the location of remote objects and the method of
communicating with them.

• Client stubs and server skeletons. They represent those parts of the code,
which are usually automatically generated, in charge of redirecting the
remote call through the ORB, as well as performing the marshalling and
unmarshalling operations.

• Object reference. It is an identifier that uniquely determines the location of
a remote object and is called an Interoperable Object Reference (IOR). The
IOR includes details of all network protocols and receiving ports that the
ORB can use to process incoming requests. This reference is generated and
managed by the Portable Object Adapter (POA).
University of Cantabria 1-23



A P P R O A C H  A N D  O B J E C T I V E S
Real-time distribution middleware

1

• Communication networks. Both client and server nodes communicate
through the ORB by using the GIOP protocol. This protocol is on top of the
OSI transport layer and can be implemented on top of several network
protocols, although the CORBA standard only includes guidelines to
implement it for networks based on IP.

Although CORBA provides comprehensive support for distributed objects,
this standard does not include support for real-time applications. Therefore, this lack of
support was addressed by the OMG through an optional set of extensions to CORBA,
which is called RT-CORBA [RTC05]. This set of extensions includes new mechanisms
such as the RT-ORB, priority mappings or scheduling policies that enable its use for both
non-critical (e.g. travel agencies or on-line shopping cart) and critical systems (e.g. real-
time control systems).

1 .3 .2 THE ADA DISTRIBUTED SYSTEMS ANNEX (DSA)
The Ada programming language [ADA05] is an international standard that

includes an annex dedicated to developing distributed applications: Annex E or Ada
Distributed Systems Annex (DSA). The major strength of the DSA is that the source
code is written without regard for whether it will be executed on a distributed platform or
on a single processor.

In the design of distributed systems, an application designed for a single
processor can be divided into different functionalities which, when acting together, can
provide a particular service to end users. The execution of each of these functionalities
may be distributed across several interconnected nodes, while end users transparently
invoke the service. In the Ada programming language, each part of the complete
application that is independently assigned to each node is called a partition. Formally,
according to the Ada Reference Manual, “a partition is a program or part of a program
that can be invoked from outside the Ada implementation”.

Partitions communicate with each other by exchanging data through remote
procedure calls (Remote Call Interface) and distributed objects (Remote Types). The
DSA defines two kinds of partitions: active, which can execute in parallel with one
another, possibly in a separate address space and on a separate computer; and passive,
which are partitions without a task or thread of control (e.g. storage nodes). The
partitioning of an application through the DSA is not defined by the standard but is
implementation-defined.

Active partitions communicate through the Partition Communication
Subsystem (PCS), a language-defined interface responsible for routing subprogram calls
from one partition to another. Access to PCS should not be done directly from the
application level, but from calling and receiving stubs. The PCS allows compilers to
generate stubs for a standard interface without being concerned with the underlying
1-24 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Real-time distribution middleware
implementation. Despite this standardization effort, the latest revision of the
programming language [ADA05] allows the use of alternative interfaces to facilitate the
interoperability with other middleware (e.g. CORBA). 

The components of the distribution model proposed by the DSA are illustrated
in Figure 1-7. This figure represents three types of partitions: a local Ada partition
(partition #1), a partition that requires remote services (partition #2) and a partition that
provides these services (partition #3) through a remote call interface.

Lastly, the specification also defines a set of attributes and rules to check the
internal consistency of a distributed application. Since these applications can be executed
in separate nodes, these mechanisms are intended to ensure the use of the same version
of source code for generating each partition.

Although the DSA allows distributed systems to be built in a simple manner, it
is not specifically designed to support predictable applications and most of the issues that
affect determinism have been left up to the implementation. However, there are some
previous works that show it can be used for real-time applications [LOP04][LOP06].

1 .3 .3 THE DATA DISTRIBUTION SERVICE FOR REAL-T IME 
SYSTEMS
Anonymous and asynchronous dissemination of information has been a

common requirement for many different distributed applications, such as control
systems, sensor networks and industrial automation systems. The Data Distribution
Service for Real-Time Systems (DDS) [DDS07] aims to facilitate the exchange of data in
these kinds of systems through the publisher-subscriber paradigm. Unlike other

Network

User code

Ada runtime

Ada PCS

Ada runtime

Ada PCS

Ada runtime

Remote Call
InterfaceUser code

Receiving stubCalling stub

Partition #3Partition #2Partition #1

Figure 1-7: Components and architecture for DSA distribution model
University of Cantabria 1-25



A P P R O A C H  A N D  O B J E C T I V E S
Real-time distribution middleware

1

specifications that follow this paradigm, the communication model proposed by the DDS
is data-centric. This implies that middleware is aware of the content of the information
exchanged and several QoS can be applied to it (e.g. data filtering).

As with most of the standards defined within the OMG, the DDS supports
multi-language and multi-platform capabilities by using the IDL language [COR03] to
define shared data types and the DDS Interoperability Wire Protocol [RTPS09] to
interoperate among different implementations, respectively.

The DDS conceptual model is based on the abstraction of a strongly typed
Global Data Space, where publisher and subscriber respectively write (produce) and
read (consume) data, leading to a middleware focused on obtaining data independently
from its origin. To better handle the exchange of data, the standard defines a set of
entities involved in the communication process. Applications that whish to share
information with others can use this Global Data Space to declare their intent to publish
data through the Data Writer (DW) entity. Similarly, applications that need to receive
information can use the Data Reader (DR) entity to request particular data. Publisher
and Subscriber entities are containers for several DWs and DRs, which share a common
QoS, respectively. Likewise, these entities are grouped in Participants of a Domain.
Only entities belonging to the same Domain can communicate. At a higher level of
abstraction, the Participant entity contains all DWs, DRs, Publishers and Subscribers that
share a common QoS in the corresponding Domain.

To exchange information among entities, Publishers only need to know about
the specific Topic (i.e. the data type to share) and Subscribers require registration of their
interest in receiving particular Topics, while middleware will establish and manage the
communication almost transparently. The example in Figure 1-8 shows a distributed

Participant

DataReader DataReader

Particip

D t R d D

pantcipParticipant

DataWriterDataReader

Particip

D t R d

Participant

DataWriter

Participant

Global Data Space

DDS DOMAIN

SampleSample Sample SampleSample

Topic #1 Topic #2

Figure 1-8: Communication model for DDS
1-26 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Real-time distribution middleware
system which consists of three Participants in a single Domain and two Topics. Both
Topics have a single DW in charge of generating new data samples. However, successive
updates for Topic # 1 will only be received by one DR, whereas new samples for Topic #
2 will be received by two DRs.

Publishers and Subscribers are not required to communicate directly among
themselves but they are rather loosely coupled in terms of:

• Time, because data samples could be stored and retrieved later (for
example, when new Subscribers join the distributed system and require
information about the previous state of the system).

• Space, because Publishers of data do not need to know about each
individual receiver while Subscribers do not need to know the source of the
data samples (that is, Publishers and Subscribers are not known by each
other).

As was mentioned earlier, the development of distributed systems with DDS is
bound to another specification which sets the main guidelines for performing the
communication among entities: the DDS Interoperability Wire Protocol. This protocol
aims to guarantee the interoperability among different implementations by using the
standard Real-time Publish-Subscribe Wire Protocol (RTPS) [RTPS09] together with the
Common Data Representation (CDR) defined in CORBA [COR03]. Although this
specification is focused on IP networks, any other real-time network protocol could be
used. 

Finally, although DDS has been designed to be scalable, efficient, and
predictable, few researchers have evaluated its real-time capabilities. 

1 .3 .4 THE JAVA APPROACH
Besides the distribution standards, there are other non-standard solutions

which have attracted great interest among developers. This is the case of the Java
programming language and its extensions for distributed real-time systems, which is
considered a de facto standard by the community.

Java was initially designed as a programming language for general-purpose
systems and, therefore, has several drawbacks for the development of predictable
applications, especially those aspects related to the management of internal resources
such as memory or processor scheduling [BAS07]. Nevertheless, several lines of
research aims to adapt the language to a deterministic model not only for single-
processor environments but also for distributed ones [BAS07] [TEJ07]. For distributed
real-time systems, one of the most notable research works is The Distributed Real-Time
Specification for Java (DRTSJ) which integrates two existing Java technologies:
University of Cantabria 1-27



A P P R O A C H  A N D  O B J E C T I V E S
Development tools and strategies for real-time systems

1

• The Real-Time Specification for Java (RTSJ) [BOL00] defines a new Java
specification to address the limitations of the language to be used in real-
time systems. It is based on modifying the Java Virtual Machine (JVM),
and supports both general-purpose and real-time applications, but only for
single-processor systems. 

• The Remote Method Invocation (RMI) [RMI04] defines a DOM model
based on Java objects by defining a new interface in which the methods of
remote objects can be invoked from other JVMs, possibly on different
hosts.

Even though Java is becoming one of the most popular programming
languages, it has not released any official DRTSJ specification or draft yet. The working
group website [DRTSJ00] only outlines the important features of a future specification,
so this approach will not be considered as an objective of this thesis.

1 . 4 D E V E L O P M E N T  T O O L S  A N D  
S T R A T E G I E S  F O R  R E A L - T I M E  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S Y S T E M S  

In general, any software development process aims to build applications able
to meet certain functional requirements. However, the complexity of current systems has
meant that this process should be structured in some way, leading to a sequence of steps
which represent different levels of abstraction. For example, the development process
defined in [BUR09] is divided into (1) requirement specification, (2) system design, (3)
implementation and (4) testing.

However, although the methodology used in the development of real-time
systems does not differ from other applications, it requires additional techniques for
specifying, analysing and verifying the timing requirements. The evolving complexity of
such systems has lead to the need for using more sophisticated development processes.
Initially, structured programming strategies were used (e.g. DARTS [GOM84]) although
the success of object-oriented programming led to the shift to object-based strategies (for
example, HRT-HOOD [BUR94] or [MED05]). Likewise, new strategies have recently
been proposed such as component-based [LOPZ10] [PLA08] or model-driven (e.g. those
developed within the ASSERT project [MAZ09] [PERR10]) development processes,
which are mainly focused on achieving a sustainable development process in terms of
product costs, development times and quality.

Unlike these approaches based on programming languages, objects and
components, the model-driven methodology aims to raise the level of abstraction for
software development by setting the model concept as the basic entity for each stage of
1-28 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Development tools and strategies for real-time systems
the development process (from requirement specification to design, analysis,
configuration and implementation). Under this approach a software system is built from
a set of high-level models, which undergoes a series of transformations that finally
results in the executable code. Moreover, these transformation operations generate
derived models to which different types of analysis can be applied (e.g. schedulability
analysis).

One of the main supporters of these methodologies is the OMG, which has
developed a set of standards called Model-Driven Architecture (MDA). MDA consists of
a hierarchy of modelling levels:

• Platform-Independent Models (PIM) are used to specify a system
independently of the computer platform on top of which it will run.

• Platform-Specific Models (PSM) are derived for specific execution
platforms by transforming the PIM taking into account the particular
characteristics of the chosen platform, abstracted in the form of a platform
model (PM). The implementation code is automatically generated from the
PSM, ideally with no human intervention.

The integration of middleware into an MDA strategy can enable the automatic
configuration of certain critical parameters for real-time applications [MAH04] (e.g.
concurrency, resource allocation or scheduling parameters). However, such integration
should not be performed directly but requires middleware to support the same real-time
model used within the MDA strategy. This facilitate not only the development but also
the analysis of predictable applications at different stages of the development process
(from the initial prototypes to the release application), as well as integration with other
MDA tools. 

1 .4 .1 ANALYSIS AND VERIF ICATION OF REAL-T IME 
REQUIREMENTS
For real-time systems, it is not sufficient for the software to be logically

correct; the applications must also satisfy particular timing constraints. Therefore, the
verification of such requirements distinguishes the development of real-time systems
from other kinds of applications. The verification of a real-time system can be usefully
divided into a two-stage process [BUR09]:

• Verifying requirements / designs. This stage checks whether system timing
requirements are fully coherent and consistent. It may require the use of
formal methods for real-time systems, such as Real-Time Logic [JAH86].

• Verifying the implementation. This stage aims to verify whether system
timing requirements can be satisfied in a specific execution platform (that
University of Cantabria 1-29



A P P R O A C H  A N D  O B J E C T I V E S
Development tools and strategies for real-time systems

1

is, with a finite set of resources). RMA and holistic schedulability analysis
are notable examples of this kind of techniques.

While there are research works that integrate formal methods into both stages
[CHO95][MOK96][HEN06], this field is still open to research. Therefore, although the
use of formal methods can be considered relevant in the development of real-time
systems, the remainder of this section will focus on the second issue (implementation
verification).

One of the major challenges in the development process of real-time systems
is to accurately predict the worst-case temporal behaviour of the application. The
complexity and heterogeneity of today's distributed systems has recently lead to the need
for using techniques capable of obtaining reliable and accurate predictions which are
also computationally feasible. Among the most common approaches used by these
techniques are the solutions based on simulations, stochastic methods or analytic
techniques.

In general, simulation often suffers from insufficient application coverage
which may lead to an underestimation of the WCRT [XU93]. While this situation might
be tolerable for some soft real-time systems, it is not for hard real-time systems.
Representative examples of simulation-based tools are SIM-MAST [LOPZ04] or Extend
[KRAH01].

Similarly, stochastic methods propose statistical analysis to determine the
temporal behaviour of the system and they usually apply to soft real-time systems as well
[VILA08-B]. However, these methods are attracting a high degree of interest within the
real-time community and new analysis tools are being developed such as Stochan
[LOPE08] or MOTOR [BOHN07].

In relation to analytic techniques, they have been traditionally applied in the
analysis of hard real-time distributed systems. So far, this thesis has focused on
schedulability analysis through the RMA classical theory and its extensions for
distributed systems. However, there are other analytic techniques and tools for
distributed systems, such as Modular Performance Analysis with Real-Time Calculus
[THI00], based on queuing theory, or SymTA/S [HAM04], based on the compositional
scheduling analysis of the system. The work included in [PERA07] reviews and
evaluates different techniques and temporal analysis tools for distributed systems, and
concludes that one size does not fit all (that is, the use of either technique depends mainly
on the type of real-time application to be analysed).

For RMA, there are many software applications capable of modelling and
analysing real-time systems, both commercial (e.g. TimeWiz [TIM02] or Rapid RMA
[RAP03]) and open-source (e.g. Cheddar [SIN04] and MAST [HAR01]). MAST, as was
discussed above, provides a set of tools to perform various types of timing analysis:
schedulability analysis, sensitivity analysis or optimized scheduling parameters
1-30 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Motivation and objectives
assignment techniques. As this software is open-source and follows the end-to-end flow
model, it will become an useful tool within the context of this thesis.

A prerequisite for MAST and any schedulability analysis tool is knowledge
about the WCET of each operation defined in the application. Estimating such values is
still a major challenge, as they depend on the complexity of the system in terms of both
software and hardware. However, currently there are some commercial tools such as
AiT1, which uses an abstract model of the processor on which the code is executed, or
RapiTime2, which uses timing measurements on the actual hardware together with
coverage analysis to provide accurate estimates of WCET. Finally, RapidET [LU11] is
another tool for calculating WCET based on stochastic analysis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 5 M O T I V A T I O N  A N D  O B J E C T I V E S

As we said earlier, the continuous increase in the complexity of modern real-
time systems has lead to the need for new development processes that minimize
development times and costs while still maintaining satisfactory levels of quality. The
use of model-driven approaches is being accepted for the development of mission-
critical and real-time systems, as they allow timing analysis techniques to be applied at
different stages of the development. This type of development process usually relies on
the automatic generation of the source code from a set of high-level models, which
implies that the use of middleware adapted to the real-time model being applied could
facilitate the development process, as well as the integration of different CASE tools.
This becomes particularly important in high-integrity real-time systems in which new
restrictions and requirements apply, such as the use of schedulability analysis techniques
or the compliance with certain properties amenable to certification.

In the design of distributed real-time systems, one of the most critical stages is
schedulability analysis; this stage is responsible for calculating the WCRT. Timing
analysis for distributed systems usually tends to be performed independently for
processors and communication networks, that is, both resources are scheduled
separately. However, this strategy could be improved when precedence relationships are
present in the real-time application. The end-to-end flow model, which has recently been
standardized in the MARTE specification, is suited to this type of systems and allows
distributed systems to be modelled in a simple and complete way. After modelling the
system, schedulability analysis techniques can be applied to verify whether end-to-end
timing requirements are satisfied.

1. AiT is available at http://www.absint.com/ait
2. RapiTime is available at http://www.rapitasystems.com
University of Cantabria 1-31



A P P R O A C H  A N D  O B J E C T I V E S
Motivation and objectives

1

Furthermore, distribution middleware usually provides little or no support to
bound end-to-end response times in distributed systems. This lack of support could be
overcome by integrating the real-time end-to-end flow model into middleware to
facilitate the modelling, configuration and scheduling of distributed systems, as is
illustrated in Figure 1-9. 

Although Ada defines a coherent real-time model for single-processor
systems, this standard provides limited support for the development of real-time
distributed systems. Actually, there is no integration between the Distributed Systems
Annex and the Real-Time Annex. Current research in this field has not been sufficiently
widely accepted to merit standardization [BUR09]. This thesis also aims to fill this gap
by proposing the development of distributed real-time applications designed to be
analyzable via traditional schedulability analysis techniques for distributed systems.

1 .5 .1 OBJECTIVES
This thesis aims to make contributions in the field of distributed real-time

systems by adding a real-time model suitable for schedulability analysis to distribution
middleware. This objective has two fundamental premises:

• The use of distribution standards. Standards play a central role in the
current development of complex real-time systems, and help to make

FUNCTIONAL
CODE

CONFIGURATION
CODE

DISTRIBUTION MIDDLEWARE

ANALYZABLE DISTRIBUTED
APPLICATION

SCHEDULABLE DISTRIBUTED
APPLICATION

TIMING ANALYSIS
AND OPTIMIZATION

TOOLS

REAL-TIME MODEL

Figure 1-9: Distribution middleware and analyzable distributed applications
1-32 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Motivation and objectives
products accessible and understandable for the community and the industry.
Moreover, the implementation and testing of our approach would also
benefit from using open-source software.

• The application of the end-to-end flow model. This model has been
traditionally used for calculating response times in distributed real-time
systems, and it has recently been included as a part of the MARTE
modelling standard.

In particular, the main objective of this thesis lies in the integration of the end-
to-end flow model into distribution middleware. This integration would facilitate
schedulability analysis of real-time applications which have been distributed through
middleware, as well as its incorporation into model-driven development processes.
Within this development, the following specific objectives should be considered:

Objective #1: Analysis of the main distribution standards oriented to real-time 
systems.

Currently, there is a wide set of standards that support the development of
distributed real-time applications. However, most of these standards
provide limited support for the configuration of the temporal aspects of
the application, as well as the verification of compliance with the timing
requirements at runtime. Therefore, the first objective is to analyse the
mechanisms proposed by each standard, as well as whether the available
facilities are sufficient to guarantee determinism over the whole
application.

Objective #2: Identification of a set of middleware features required for the 
development of analyzable applications. 

Given the wide variety of standards, the second objective will be to
identify a set of features and deployment options that would be desirable
in any distribution middleware. The implementation of these features will
enable the application of schedulability analysis techniques regardless of
the distribution model and / or standard used.

Objective #3: Integration of the real-time end-to-end flow model into distribution 
middleware. 

To this end, the proposed mechanisms should be flexible enough to allow
the use of different scheduling policies and concurrency patterns.
Furthermore, they must also be easily integrated with different
distribution paradigms, such as those proposed by RT-CORBA or Ada
DSA.
University of Cantabria 1-33



A P P R O A C H  A N D  O B J E C T I V E S
Outline of the thesis

1

Objective #4: Adaptation of the end-to-end flow model to the Ada standard.

Ada was initially designed to support the development of real-time
applications for single-processor systems and it has become an important
programming language for safety-critical systems. Furthermore, this
language also addresses distributed systems through one of its annexes,
the DSA, although the standard does not provide details about the issue of
distributed real-time programming. In view of these facts, this thesis
proposes the use of Ada and its facilities as the base technology on which
to develop our proposal, due to both its relevance within the real-time
industry and its need to address the development of distributed real-time
systems.

Objective #5: Development of a distributed real-time platform. 

This platform will allow the real-time model and the proposed
architecture to be validated. To this end, the platform should integrate
several components such as middleware, operating system or
communication networks while preserving system predictability. 

Objective #6: Applying the end-to-end flow model to high-integrity systems.

High-integrity systems are characterized by imposing severe restrictions
on the design and software development, as well as their need to undergo
complex certification processes. The validation of the end-to-end flow
model for this kind of systems aims to explore the flexibility and
generality of our approach.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 6 O U T L I N E  O F  T H E  T H E S I S

The rest of this thesis is structured in five chapters, which correspond almost
directly with the objectives listed above, as follows:

• Chapter #2 analyses the distribution standards from the real-time systems
perspective, with particular emphasis on both the mechanisms included in
the specifications and the issues that remain open to implementations. This
chapter also describes the features that should be supported by distribution
middleware to allow the development of predictable applications.

• Chapter #3 introduces the distributed real-time model, which is the key
issue of this thesis. The elements that compose the model, its configuration
1-34 Computers and Real-Time Group



A P P R O A C H  A N D  O B J E C T I V E S
Outline of the thesis
and operation are described throughout this chapter. Additionally, a specific
implementation for Ada DSA is proposed.

• The main objective of Chapter #4 is to validate the use of the real-time
model in several scenarios and to apply different distribution models. This
chapter includes the development of the distributed real-time platform for
testing and its integration with the real-time model.

• Chapter #5 focuses on adapting the model to high-integrity systems. It
describes the most common restrictions in these systems and discusses how
to apply the model according to these guidelines. Additionally, a specific
implementation is proposed for middleware, useful for high-integrity
applications developed in Ada. 

• Chapter #6 discusses the results of the thesis and explains the main
conclusions. It also proposes the lines for future work. 

Finally, the bibliography and two appendixes are included. Appendix “A”
briefly introduces the main objectives and results of the national and international
projects with implications for this research work, as well as its specific contributions to
them. Appendix “B” lists the bindings developed to provide an Ada interface to a
contract-based scheduling framework.
University of Cantabria 1-35



A P P R O A C H  A N D  O B J E C T I V E S
Outline of the thesis

1

1-36 Computers and Real-Time Group



2ANALYSIS OF THE REAL-TIME 
MECHANISMS INCLUDED IN THE 
DISTRIBUTION STANDARDS AND THEIR 

. . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IMPLEMENTATIONS 

This chapter is focused on the analysis of the main distribution standards from the real-
time systems perspective. First, in Section 2.1, the general context is introduced. Then
the following three sections present the real-time capabilities of the distribution
middleware based on RT-CORBA, Ada DSA and DDS standards. Section 2.5 analyses
real-time networks and their relationship with distribution middleware. Section 2.6
discusses whether the real-time mechanisms, included in distribution standards, and
their implementations are enough to ensure application predictability, and reviews the
desirable features and properties for this type of middleware. Finally, Section 2.7
summarizes the contributions of the chapter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 1 I N T R O D U C T I O N

The main objective in the design of distributed real-time systems lies in
guaranteeing determinism over the whole application. For this purpose, distribution
standards include different mechanisms to control the timing aspects of software and
enable the application of schedulability analysis techniques to them. Basically, these
mechanisms attempt to highlight implicitly how the available resources of the system
should be used, mainly those concerned with the management of processors and
communication networks.

Although there are some previous works which deal with a performance
analysis of distribution middleware based on jitter, latency or throughput features
[SCH01] [XIO03], none of them address it from the schedulability analysis perspective.
This chapter focuses on this topic, and describes the key features of distribution
standards in terms of the management of resources, their proposed scheduling models,
their adaptation to the current schedulability analysis techniques and their link to real-
time communication networks. In particular, this analysis reviews the distribution
University of Cantabria 2-37



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
Introduction

2

mechanisms proposed by RT-CORBA, Ada’s DSA and DDS, as they provide
outstanding and standardized solutions for the development of distributed real-time
systems. Then, the analysis is completed by reviewing some of their reference
implementations as they can strongly influence the real-time behaviour of applications.
Among other features, this part of the analysis will review the proposed concurrency
patterns, the support provided for configuring the schedulable entities or the
synchronization mechanisms used to control the access to shared resources.

The development framework provided by the Java language is also an
important technology within the real-time community. The model of distributed systems
for real-time Java is being developed by the JSR-50 Expert Group [DRTSJ00]. However,
the lack of a definitive specification means that there is only an outline of its key
elements. The major objective is to incorporate the concepts of distribution and real-time
to Java instead of adapting the language to provide this support. The key elements to
emphasize are:

• Coherent support for end-to-end requirements in distributed applications. 
Support for these kinds of requirements (e.g. not only temporal constraints
but also other ones such as fault management or security properties) must
be included in middleware. To this end, a new entity called Distributable
Thread is introduced to provide an abstraction of the control flow of
distributed applications. This concept is similar to the end-to-end flow
described in the MARTE specification.

• An easily extensible scheduling and integrity framework must be provided.
To facilitate the building of heterogeneous and complex systems,
application designers may use appropriate user-defined policies for
recovery in the presence of failures or scheduling distributable and local
threads. 

• The use of a real-time network protocol must not be obligatory by default.
This would allow the interoperability between general-purpose and real-
time systems.

Although Java defines a real-time model for single-processor systems, its
applicability to distributed systems still represents an open research field
[BAS07][TEJ07]. Therefore, and since the DRTSJ specification is not complete yet and
there are aspects that still have not been addressed, a more thorough analysis of it will
not be made, and hereinafter we will focus on the study of the RT-CORBA, DDS and
Ada DSA standards.
2-38 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

RT-CORBA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 2 R T - C O R B A

The extension of the CORBA specification for real-time systems, which is
called RT-CORBA [RTC05], adds new interfaces and mechanisms that aim to increase
the predictability of applications distributed through CORBA. The standard is divided
into two distinct parts: the first deals with those systems which are suitable for a priori
timing analysis to determine the schedulability of the system (static systems), while the
second focuses on systems with variable workload and whose schedulability is
guaranteed at runtime (dynamic systems).

Figure 2-1, which is taken from [RTC05], illustrates the RT-CORBA
architectural overview. This figure shows how key entities defined by the RT-CORBA
extensions relate to the standard CORBA architecture. They are described below: 

• RT-ORB, which is an ORB extension that adds functions for the creation
and destruction of specific real-time entities (e.g. mutexes, threadpools or

RT-ORB

Threadpool

RTCurrent

Current

ORB

RT-POAPOA

Priority

Scheduling
Service

Mutex

IIOP (others) Priority Mapping

Client Server

Real-Time CORBA entity existing CORBA entity

Figure 2-1: RT-CORBA extensions
University of Cantabria 2-39



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
RT-CORBA

2

scheduling policies) and enables the assignment of priorities for their usage
by internal ORB tasks.

• RT-POA, which represents an extension to the POA [COR03] and provides
support for the configuration of the real-time policies defined by RT-
CORBA. Such policies handle the end-to-end priority propagation models,
the management of remote calls, the priority banded connections or the
selection / configuration of available network protocols.

• Priority and Priority Mapping, which represent an interface that both
defines a generic priority data type (regardless of the underlying operating
system) and provides operations to map native priorities onto RT-CORBA
priorities (range 0 - 32767). This mapping is not standardized.

• Mutex, which is a portable interface for accessing the mutexes supplied by
the RT-ORB. It provides synchronization mechanisms for controlling
access to shared resources (e.g. sections of code).

• RTCurrent, which is an interface to determine the priority of the current
invocation (i.e. it enables the priority of application tasks to be handled).

• ThreadPool as a mechanism to control the degree of concurrency during
the execution of remote calls on the server-side.

• Scheduling Service, a service that simplifies the configuration of the timing
aspects of the system. Through this service, RT-CORBA allows the
application to specify its requirements based on various parameters such as
priorities, deadlines or expected execution time, while middleware will be
responsible for setting up the required resources to meet them.

By using these RT-CORBA entities, applications are able to configure and
control the system resources explicitly as is described below.

Managing processor resources

According to the static scheduling Chapter of this specification, the main
features of the RT-CORBA architecture are:

• Scheduling based on fixed priority scheduling policy. This first part of
the specification includes only those systems scheduled by means of fixed
priorities. This scheduling policy is implemented by the majority of real-
time operating systems, especially those following the POSIX real-time
standard [POS98]. 

• Use of tasks as schedulable entities, by which an RT-CORBA priority can
be applied and by which there are functions for conversion to the native
2-40 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

RT-CORBA
priorities of the system on which they execute. According to this priority
mapping, RT-CORBA defines three priority models: 

- Client_Propagated, where the invocation is executed in the remote
node at the priority of the client, which is transmitted with the request
message.

- Server_Declared, when all the requests to a particular distributed
object are executed at a priority preset in the server. 

- A Priority Transforms model, which enables the user to define
priority transformations that modify the priority associated with the
server depending on different parameters such as the current system
workload or state. The transformation is done with two functions
called inbound (which transforms the priority before running the
server's code) and outbound (which transforms the priority with
which the server makes calls to other remote services).

• Definition of Threadpools to control the degree of concurrency in the
server. This mechanism enables different applications to share a number of
tasks or threads. The configuration of this entity enables the specification of
the number of tasks that must be preallocated, the number of tasks that may
be created dynamically, and their default priority. It also allows groups of
tasks to be defined based on priority (ThreadpoolLanes).

• Deterministic access to shared resources. RT-CORBA defines a local
Mutex object to coordinate contention for shared resources. This mutex
should implement a synchronization protocol based on priority inheritance.
However, the standard does not specify any particular protocol so
implementations are responsible for setting which protocol or protocols
may be used.

The specification of RT-CORBA incorporates a chapter dedicated to dynamic
scheduling, which basically introduces two concepts: 

• The use of different scheduling policies. The possibility of introducing
other scheduling policies in addition to the fixed-priority policy, such as,
EDF (Earliest Deadline First), LLF (Least Laxity First), and MAU
(Maximize Accrued Utility). The scheduling parameters are defined as a
container that can contain more than one simple value, and can be changed
by the application dynamically at runtime.

• The use of Distributable Threads as schedulable entity. The
Distributable Thread enables end-to-end scheduling by identifying
scheduling segments and scheduling points that may be allocated in a
University of Cantabria 2-41



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
RT-CORBA

2

separate address space. Scheduling segments represent pieces of code
associated with a given set of scheduling parameters specifically set by the
application. Scheduling points define points in time and/or code at which
the scheduler is run and may result in schedule changes [RTC05]. As in the
case of DRTSJ, the concept of distributable thread is similar to the end-to-
end flow used by response time analysis techniques [TIN94C] [PAL99]. 

Managing network resources

RT-CORBA does not explicitly consider the possibility of passing scheduling
parameters to the communications networks, although it defines other
mechanisms to mitigate the lack of predictability associated with the use of
general-purpose communication networks. These are described below:

• Protocol properties. RT-CORBA provides interfaces to specify the
preferred protocol and to fine tune the parameters of the protocol on both
the client and server side. There are implementations that extend this
interface to map the RT-CORBA priorities onto the underlying network
[SCH05], although this is not standardized in the specification.

• Use of private connections. Ordinarily, given that GIOP is a connection-
oriented protocol, the ORB is allowed to reuse or share a network
connection to service multiple remote objects. However, multiplexing
requests on a single connection implies that a client may be blocked while
the connection is being used by another invocation. This mechanism
removes this blocking by enabling the client to get a dedicated connection
(that is, non-multiplexed) per remote object.

• Definition of Priority-Banded Connections. This mechanism allows
multiples connections between clients and servers to be established by
associating each connection with a single or a range of priorities. This
mechanism aims to reduce priority inversions when the underlying
transport protocol is not deterministic.

2 .2 .1 RT-CORBA IMPLEMENTATIONS
The distribution model proposed by CORBA is a mature technology that has

led to numerous implementations both commercial and open-source. In the case of RT-
CORBA, there are real-time versions of the commercial distributions ORBExpress1,
e*ORB2 and VisiBroker3, and open-source distributions such as ROFES [LAN02]
[LAN03], TAO [SCH98-2] or PolyORB [VER04]. PolyORB is characterized by

1. ORBExpress s available at http://www.ois.com
2. e*ORB s available at http://www.prismtech.com
3. VisiBroker s available at http://www.borland.com
2-42 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

RT-CORBA
supporting different distribution models, including among others the aforementioned RT-
CORBA or Ada's DSA. Therefore, the analysis of PolyORB will be dealt with in the
Section related to the distribution model proposed by Ada. TAO may be regarded as the
most popular implementation of RT-CORBA and one of the most complete and efficient
versions currently available for real-time systems [SCH01], so the analysis will focus on
this implementation in the following.

TAO implements all the mandatory features and services that have been
defined in the latest version of RT-CORBA [SCH05] with the following exceptions:

• The priority transforms model
• The use of buffers to store remote requests in threadpools
• The borrowing of tasks among threadpool lanes

In relation to the management of remote calls, TAO defines several
configurable properties depending on whether the application is acting as a server or a
client.

Concurrency patterns for server nodes

These parameters establish concurrency constraints that are imposed by the
server node during the processing of requests in a multitasking environment.
TAO defines two levels of concurrency which are closely related:

• Concurrency at application-level. These policies control which task
executes the call on the distributed object. Two values are defined:

- Orb_Ctrl_Model. This policy allows concurrent requests to a
distributed object. In this case, the application developer is
responsible for providing task-safe access to the object (i.e. safe
execution by multiple tasks at the same time).

- Single_Thread_Model. By using this policy, all requests to the
distributed object are called sequentially. Therefore, concurrent calls
cannot occur within the scope of this policy.

• Concurrency at ORB-level. It represents a set of policies to define how
tasks receive and process requests. These policies are only available if the
application-level concurrency is set to Orb_Ctrl_Model. In this case, TAO
supports three concurrency patterns:

- Reactive. Through this policy, a single server task is dedicated to
handling multiple connections. In addition, other tasks may also exist
in the system to execute internal middleware operations.
University of Cantabria 2-43



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
RT-CORBA

2

- Thread-per-connection. In this case, the ORB creates a new task to
serve each new connection. This task is dedicated to processing all
requests performed on that connection, which will be processed
sequentially. After closing the connection, the task will be released.

- Threadpool. Under this policy, middleware creates a pool of threads
which are responsible for processing concurrent incoming requests
according to a concurrency pattern called Leader & Followers
[SCH98] [PYA01]. In the leader-followers pattern, several threads
take turns to monitor input / output (I/O) operations and then process
the requests once they have arrived. One task becomes the leader and
then takes responsibility for awaiting a new request and also
processing it (i.e. I/O operations are not decoupled from request
processing). Other tasks in the pool are the followers. As soon as the
leader task receives a new request, one of the follower tasks becomes
the new leader. Once the task finishes processing the request, it
returns to the pool and waits to become the leader again.

Concurrency patterns for client nodes

These parameters affect the multitasking behaviour of the client when a
synchronous remote call is performed, that is, when a client task must wait for
a reply from the server. TAO defines a number of concurrency policies for
waiting replies in client nodes, which are described below:

• Wait-on-read. According to this policy, when a client task invokes a
synchronous remote call, it is blocked waiting to read the reply from the
server node.

• Wait-on-reactor. Under this policy, a single task is responsible for
performing all requests, although it can still perform other internal
middleware operations while waiting for the replies (i.e. it is not blocked).
When a reply is received, this task will be notified in order to process it.

• Wait-on-leader-follower. This policy enables client tasks to wait for replies
using the Leader & Followers concurrency pattern. Therefore, client tasks
waiting for replies becomes followers and can be used to perform other I/O
or internal middleware operations. As with the Wait-on-reactor case, when
a reply is received, the target task will be notified in order to process it.

In relation to the scheduling for processors, TAO provides support for
scheduling policies based on fixed priorities and the importance of tasks (Most Important
First, MIF) [SCH05]. The latter policy is not included in the RT-CORBA standard and
defines a parameter called importance to determine which task should execute.
2-44 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

The Ada Distributed Systems Annex (DSA)
Although RT-CORBA does not consider the assignment of scheduling
parameters to the communications networks, TAO provides a solution to schedule IP-
based networks. As an extension to RT-CORBA, TAO provides a mechanism to map RT-
CORBA priorities to network priorities via the configuration protocol properties service.
Thus it is possible to differentiate classes of network traffic. To this end, it uses a data
field within the IP header called Diffserv [RFC2474]. In TAO, protocol properties can be
set at the ORB, task or object level so it is possible to enable the network priority
mapping for all requests invoked (1) through a particular ORB, (2) through the task itself
or (3) through the remote object itself, respectively.

Finally, the RT-CORBA standard does not address other kinds of real-time
features, such as the priority mapping between native priority and CORBA priority or the
synchronization protocol used for shared resources. For the former, TAO defines three
priority mappings which are based on a one-to-one mapping (Direct mapping), one-to-
one mapping but within a predefined range of CORBA priorities (Continuous mapping)
and one-to-many mapping that covers all the range of CORBA priorities (Linear
mapping). For the latter, TAO does not oblige the use of any specific synchronization
protocol, so the choice of this protocol will depend on what is provided by the
underlying real-time operating system by default.

2 . 3 T H E  A D A  D I S T R I B U T E D  S Y S T E M S  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A N N E X  ( D S A )

The Distributed Systems Annex of Ada only deals with those mechanisms
concerning distribution, such as the configuration of the partitions of a program, the
distribution models supported or how to perform the communication between partitions.
However, the DSA delegates the concurrent and real-time features to other parts of the
language, such as those defined in the Real-Time Systems Annex (i.e. Annex D).
Thereafter, since the use of the DSA is closely linked to Ada programming, the analysis
of the standard will consider the features included in the core of the language and the
Real-Time Systems and Distributed Systems annexes.

The latest versions of the language, which are named Ada 95 and Ada 2005,
have defined new mechanisms to develop predictable applications within the Real-Time
Systems Annex and the Ada concurrency model. Therefore, the concurrency and the
real-time mechanisms are supported by the language itself with the definition of:

• Tasks, which represent active entities that provide support for programming
concurrent or parallel operations and interaction mechanisms. Furthermore,
different scheduling parameters can be assigned to them, such as a priority
or a deadline.
University of Cantabria 2-45



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
The Ada Distributed Systems Annex (DSA)

2

• Protected objects, which provide a task-safe and deterministic access to
shared data. 

• Timing facilities, such as different kinds of clocks and timers to measure
real time and execution time of a single task or a group of tasks, and
statements to suspend tasks with absolute, relative or conditional delays.

• Flexible and extensible scheduling facilities for tasks. This includes
standard scheduling policies based on fixed or dynamic priorities which
can be simultaneously applied on the same system.

As in the case of Java, Ada defines a coherent real-time model for single-
processor and multiprocessor systems, but does not address distributed systems. That is,
the DSA is not specifically designed to support real-time applications. However, there
are research works that demonstrate that it is possible to write real-time implementations
within the standard [GUT99] [GUT01]. The key aspects of the language for the
management of processor and communication network resources are described briefly
below.

Managing processor resources

The Ada concurrency model is supported by tasks and several interaction
mechanisms and it has the following features:

• Flexible and extensible scheduling model. The language allows the use of
different scheduling policies on the same partition, thus enabling the
execution of applications with heterogeneous requirements. Ada includes
the following scheduling policies within the Real-Time Systems Annex:

- FIFO_Within_Priorities, a preemptive scheduling policy based on
fixed priorities which uses first-in-first-out (FIFO) order for the same
priority level. 

- Non_Preemptive_FIFO_Within_Priorities, a non-preemptive
scheduling policy based on fixed priorities which uses FIFO order
for the same priority level.

- Round_Robin_Within_Priorities, a preemptive scheduling policy in
which tasks are time-sliced for each priority level.

- EDF_Across_Priorities is a preemptive scheduling policy based on
dynamic priorities which uses deadlines for ordering tasks at the
same priority level. 

• Support for servicing concurrent remote calls. The specification
requires support for executing concurrent remote calls and for waiting until
the return of the remote call. As was previously mentioned, the
communication among active partitions is carried out in a standard way
2-46 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

The Ada Distributed Systems Annex (DSA)
using the Partition Communication Subsystem (PCS), although the
specification does not define how it is performed (i.e. it is implementation
defined).

• Predictable access to shared resources. Protected objects guarantee
mutually exclusive access to shared resources, but they do not provide
bounded blocking times during access. For this, the standard has defined a
set of protocols depending on the scope:

- Synchronization protocols (or locking policies according to Ada
terminology), which enable deterministic access to shared resources.
The Real-Time Systems Annex only obliges the implementation of
the Priority Ceiling Protocol or HL for both the fixed priorities
[SHA90] and EDF [BAK91] versions, although it does not preclude
the use of other policies. 

- Queuing policies to specify the order in which tasks are queued for
accessing shared resources. Two queuing policies are language
defined: priority order (Priority_Queuing) and arrival order
(FIFO_Queuing).

Managing network resources

Like RT-CORBA, Ada DSA does not consider the possibility of passing
scheduling parameters to the communications networks, although there are
some research works that have incorporated this concept [GUT99][GUT01].

Furthermore, Ada DSA does not have any mechanism for the transmission of
priorities, as this aspect is open to implementation. [PAU00] proposes a
mechanism to handle the transmission of priorities following the same scheme
defined by RT-CORBA. Moreover, in [LOP04] and [LOP06] some
mechanisms for handling the transmission of priorities within the DSA are
proposed. These mechanisms are in principle more powerful than that of RT-
CORBA, as they allows total freedom in the assignment of priorities both in
the processors and in the communication networks.

Finally, although Ada provides powerful and flexible mechanisms, the
development of real-time systems is still considered a challenging, complex and costly
process (for example, due to the certification process in high-integrity systems). Over the
last decade, one of the major challenges for the real-time community has been to
demonstrate that concurrent programming is a useful, safe and applicable facility even in
safety-critical systems. To this end, the latest revision of the language introduced the
Ravenscar profile [ADA05], a subset of the Ada tasking and real-time features designed
to facilitate the development of complex safety-critical hard real-time applications while
simplifying schedulability analysis. This profile has become a useful tool for developing
University of Cantabria 2-47



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
The Ada Distributed Systems Annex (DSA)

2

real-time single-processor systems, although its applicability to distributed systems still
remains open to research. This issue is the topic of Chapter 5, which will concentrate on
how to adapt the real-time end-to-end flow model to high-integrity distributed real-time
systems.

2 .3 .1 DSA IMPLEMENTATIONS
Although distributed programming with the DSA is easier and more intuitive

than with other technologies [KER99], the commercial impact of this annex has not been
very significant and only a couple of implementations are relevant today: Glade and
PolyORB.

Glade [PAU00] is the original implementation of the DSA offered by
AdaCore1 to support the development of distributed applications with real-time
requirements. The scheduling is done through fixed priorities and it implements two
policies for distribution of priorities in the style of RT-CORBA (Client Propagated and
Server Declared). This implementation does not consider scheduling for
communications networks.

For the management of remote calls, Glade defines a taskpool to process the
requests. The number of tasks in the pool can be configured through three parameters:
minimum size, which indicates the number of preallocated tasks; high size, which
represents a ceiling in the number of available tasks to process requests (i.e. tasks are
deallocated if the number of tasks is greater than the ceiling); and maximum size, which
represents the absolute maximum number of tasks in the pool, which therefore indicates
the number of requests that can be concurrently processed (i.e. not queued). Glade also
uses another intermediate task to await the arrival of requests, perform an initial
processing and select one of the tasks of the pool to finally execute the remote call.

Glade maintenance has been discontinued today, and its functionality has been
replaced by other middleware developed by the same company, called PolyORB
[VER04]. PolyORB is introduced as a middleware that can support different distribution
standards such as CORBA, RT-CORBA, DSA or Web Services. It is distributed with the
GNAT compiler and in principle it is envisaged for applications programmed in Ada. It
currently supports CORBA, some basic notions of RT-CORBA (priorities and their
propagation) and DSA. 

The architecture of PolyORB is divided into three separate layers: the
application layer (referred to as application personality), the neutral layer or microkernel
and the protocol layer (called protocol personality). Therefore, PolyORB provides a set
of common components on top of which several personalities can be developed. This
type of architecture allows different personalities to be combined, either at the
application level or at the protocol level, within the same software system and thus

1. Ada-Core Technologies, The GNAT Pro Company. http://www.gnat.com/
2-48 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

The Ada Distributed Systems Annex (DSA)
enables interoperability and integration of different distribution paradigms under a single
platform. Figure 2-2 illustrates this behaviour. Let’s assume that the application invokes
a remote call to perform an arithmetic operation. In this example, both the invoking and
the invoked application can be distributed according to the DSA and CORBA, but the
remote call is handled by the same middleware in any case. Furthermore, this
architecture allows different communication protocols to be used regardless of the
application personality. Thus, in the example shown in Figure 2-2, the communication
between DSA partitions can be done through the GIOP protocol, which is defined in the
CORBA specification. The key feature of this interoperability relies on: (1) the use of a
common network protocol for communications and (2) the conversion of any data to
neutral data structures defined in the microkernel. Not only does this microkernel
provide the same services that a conventional ORB does, but it also includes facilities for
performing the conversion between distribution models. The decoupling of application
and protocol personalities, and the support for multiple simultaneous personalities within
the same running middleware, has led to it being presented as a schizophrenic
middleware.

For the management of remote calls, PolyORB supports different
configurations to adapt the interaction between personalities and the microkernel.
According to Figure 2-3, such configurable features include (1) the ORB tasking policies
(which determine which tasks will execute requests from remote nodes), (2) the ORB
controller policies (which determine which tasks will execute internal middleware
operations such as I/O processing) and (3) the tasking runtimes (which represent a set of
restrictions that must be fulfilled by system tasks). They are briefly described below.

Tasking runtimes

PolyORB defines three tasking profiles or runtimes to establish a set of
restrictions on the concurrency model. The choice of a specific tasking
runtime is a compilation-time parameter which can take the following values: 

 Broker

DSA CORBA. . .

GIOP. . .SOAP

 Broker

DSA CORBA. . .

GIOP . . . SOAP

Network

Application
Personality

Protocol
Personality

Neutral Core

Figure 2-2: Application and protocol personalities in PolyORB
University of Cantabria 2-49



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
The Ada Distributed Systems Annex (DSA)

2

• Full Tasking. This runtime enables all middleware capabilities to manage
and synchronize system tasks.

• No Tasking. Under this runtime, no tasking is required and therefore
applications can hold a single task at most.

• Ravenscar. This runtime enables the concurrency facilities which are
compliant with the Ravenscar profile [ADA05].

Tasking policies

These policies control the creation of tasks for processing incoming remote
calls. PolyORB defines the following four policies:

• No Tasking. Under this policy, the environment task processes all incoming
requests and internal middleware operations. 

• Thread Pool. This policy defines a group of tasks or threadpool responsible
for processing all jobs in middleware. As in the case of Glade, there are
three configurable parameters: min_spare_threads, which indicates the
minimum number of tasks created at start-up time; max_spare_threads,
which represents a ceiling in the number of available tasks to process
requests (i.e. tasks are deallocated if the number of tasks is greater than the
ceiling); and max_threads which indicates the absolute maximum number
of tasks that the group may contain.

Tasking Policies
Application Personality

ORB Controller Policies
Protocol Personality

Neutral Core

Tasking Profiles

Figure 2-3: Tasking model in PolyORB
2-50 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

The Ada Distributed Systems Annex (DSA)
• Thread Per Session. This policy creates one task per network connection
(i.e. when a new communication session is opened). The task terminates
when the connection is closed.

• Thread Per Request. This policy creates one task per incoming request. The
task is terminated when the request is completed.

PolyORB tasking policies and tasking runtimes have a dependency among
them so distributed applications must be configured with a coherent scheme
(e.g., the No Tasking runtime implies the No Tasking policy). 

ORB Controller policies

Four policies are defined that affect the internal behaviour of middleware,
such as the assignment of internal operations and I/O monitoring to
middleware tasks. 

• No Tasking. Under this policy, a loop monitors I/O operations and
processes the requests.

• Workers [SCH98]. Under this policy, all the threads are equal and they
monitor the I/O operations and process the incoming requests alternatively. 

• Half Sync/Half Async [SCH96][PYA01]. This policy defines one single
task to monitor the I/O operations and add the requests to a queue while the
other tasks are responsible for processing them (i.e. I/O operations are
decoupled from request processing).

• Leader/Followers [SCH98][PYA01]. As in the case of TAO, this policy
defines several tasks that take turns to monitor I/O sources and then process
the requests once they have arrived (i.e. I/O operations are not decoupled
from request processing).

This middleware is oriented to be used in real-time systems since it partially
supports the RT-CORBA standard (static scheduling based on fixed priorities).
Furthermore, the DSA personality, even when the standard does not include support for
real-time distributed systems, follows the same static scheduling scheme as RT-CORBA
which was already implemented in Glade: Client Propagated and Server Declared. 

This implementation does not explicitly consider the possibility of passing
scheduling parameters to the communications networks or configuring synchronization
protocols to control the access to shared resources. For the latter, the Ada Real-Time
Systems Annex allows the Priority Ceiling Protocol or HL to be applied by means of a
compiler directive (pragma) that configures by default all the protected objects created
by middleware. However, the appropriateness of this default configuration will depend
on the target application.
University of Cantabria 2-51



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
The Data Distribution Service for Real-Time Systems (DDS)

2

2 . 4 T H E  D A T A  D I S T R I B U T I O N  S E R V I C E  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F O R  R E A L - T I M E  S Y S T E M S  ( D D S )

The DDS standard was explicitly designed to build distributed real-time
systems. To this end, this specification adds a set of Quality of Service (QoS) parameters
to configure non-functional properties. In this case, DDS provides high flexibility in the
configuration of the system by associating a set of QoS parameters to each individual
entity. Furthermore, DDS enables the modification of some of these parameters at
runtime while performing a dynamic reconfiguration of the system. This set of QoS
parameters allows several aspects of data, networks and computing resources to be
configured and may be classified in the following categories (see Figure 2-4):

• Data availability. It comprises those parameters for controlling queuing
policies and data storage. The parameters that fall into this category are
Durability, Lifespan and History.

• Data delivery. It specifies how data must be transmitted and presented to
the application The parameters that fall into this category are Presentation,
Reliability, Partition, Destination_Order and Ownership.

• Data timeliness. It controls the latency in the distribution of data. The
parameters that fall into this category are Deadline, Latency_Budget and
Transport_Priority.

Reliability

Destination
Order

Presentation

Ownership

History

Lifespan

Durability Lifecycle

Limits

Time Based
Filter

Reliability

Destination
Order

Presentation

Ownership

History

Lifespan

Durability Lifecycle

Limits

Time Based
Filter

Data 
Timeliness

Latency
Budget

Transport
PriorityDeadline

Data 
Delivery

User
Configuration

Data 
Availability

Resources

Figure 2-4: Qos parameters defined by DDS
2-52 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
The Data Distribution Service for Real-Time Systems (DDS)
• Maximum Resources. It limits the amount of resources that may be used
in the system through parameters such as Resource_Limits or
Time_Based_Filter.

• User Configuration. These parameters allow extra information to be
added to each entity at application level.

Finally, this specification follows the “subscriber-requested, publisher-
offered” pattern to set QoS parameters. By using this pattern, both publishers and
subscribers must specify compatible QoS parameters to establish the communication.
Otherwise, middleware must indicate to the application that communication is not
possible. 

Managing processor resources

The DDS specification does not explicitly address the scheduling of tasks in
the processors, as this is an implementation-defined aspect. However, a subset
of the QoS parameters defined by the standard is focused on controlling the
temporal behaviour and improving the predictability of the application. The
three parameters of Data Timeliness, which are highlighted in Figure 2-4, are
particularly important in the management of resources for real-time systems.
In particular, the specification has defined the following parameters for
managing processor resources:

• Deadline. This parameter indicates the maximum amount of time available
to send/receive data samples belonging to a particular topic. However, it
does not define any associated mechanism to enforce this timing
requirement and therefore this QoS parameter only represents a notification
service in which middleware informs the application that the deadline has
been missed.

• Latency_Budget. This parameter is defined as the maximum acceptable
delay in message delivery. However, the standard emphasizes that this
parameter must not be enforced or controlled by middleware and,
consequently, indicates the urgency in the processing of data samples.
Therefore, it can be considered as a best-effort parameter to configure the
internal behaviour of middleware.

These two QoS parameters, even if both share similar objectives, are applied
at different levels as is illustrated in Figure 2-5. This figure shows how the
University of Cantabria 2-53



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
The Data Distribution Service for Real-Time Systems (DDS)

2

Deadline parameter is monitored within the DDS layer, while the
Latency_Budget is applied within the RTPS layer.

DDS defines different mechanisms to enable communication among entities.
On the publisher side, the communication mechanism is straightforward:
when new data are available, the Data Writer (DW) performs a simple write
call (e.g. write or dispose) to publish data into a DDS Domain. Then, the data
sample is transmitted using asynchronous and one-to-one or one-to-many
communication modes. However, DDS also provides support to block the
calling task until the data sample has been delivered and acknowledged by the
matched Data Readers (DR).

On the subscriber side, the reception of data can be performed in both
synchronous and asynchronous mode. These models are not only valid for the
reception of data but also for the notification of any change in the
communication status (e.g. non-fulfilment of requested QoS). In particular, the
application could be notified through:

• Listeners, attaching a callback function to asynchronously access
modifications in the communication status while the application keeps
executing (i.e. middleware tasks are responsible for managing any change
in the communication status).

• Conditions and Wait-sets, which allow application tasks to be blocked until
one or several conditions are met. Both represent the synchronous
mechanism to manage any change in the communication status.

Managing network resources

In relation to networks, this specification defines a set of features focused on
guaranteeing determinism for communications, such as the use of scheduling

RTPSLatency Budget

DDS

RTPS

DDS Deadline

Transport  PriorityNetwork Network

Figure 2-5: Timing control in DDS
2-54 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
The Data Distribution Service for Real-Time Systems (DDS)
parameters in networks and the definition of the format for the exchanged
messages.

The passing of scheduling parameters to communication networks is
performed through another QoS parameter included in the Data timeliness
category (see Figure 2-4):

• Transport_Priority. Unlike the Latency_Budget which attempts to
optimise the internal behaviour of middleware, this parameter prioritizes
the access to the communication network (see Figure 2-5). Furthermore,
since communications are unidirectional, it is only associated with DW
entities. 

Moreover, the DDS Interoperability Wire Protocol defines the set of rules and
features required to enable communication among DDS entities. Although this
specification is not particularly oriented to the use of real-time networks, it
does not preclude their usage and only lists a set of requirements for the
underlying networks. The most important point addressed by the specification
is the description of the RTPS protocol, which is responsible for specifying
how to disseminate data among nodes. This requires the definition of the
exchange information protocols and message formats. In particular, the
structure of an RTPS message consists of a fixed-size header followed by a
variable number of sub-messages. By processing each sub-message
independently, the system can discard unknown or erroneous sub-messages
and thus ease future extensions of the protocol.

Another key feature of DDS is the overhead introduced by internal
middleware operations. In this case, the standard defines a series of operations to be
performed by implementations which consumes both processor and network resources.
In particular, DDS provides a service for the automatic management of entities called
Discovery. This service describes how to obtain information about the presence and
characteristics of any other entity within the distributed system. As a result,
implementations must create a set of DDS entities by default. These built-in entities are
responsible for (1) establishing the communication transparently with the user and (2)
discovering the presence or absence of remote entities (such as a plug-and-play system).
This kind of network traffic, which is internal to middleware, is called metatraffic and
should be considered in the schedulability analysis.

2 .4 .1 DDS IMPLEMENTATIONS
The increasing interest within the industry in applying the distribution model

defined by DDS has motivated the development of several implementations, both
University of Cantabria 2-55



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
The Data Distribution Service for Real-Time Systems (DDS)

2

commercial (CoreDX1 or RTI-DDS2) and open-source software (OpenSplice3 or
OpenDDS4). For our purposes, we have selected RTI-DDS middleware because it is a
reference implementation and is considered one of the most efficient implementations of
the standard [XIO03].

RTI, one of the driving forces behind the DDS standard, develops and markets
a software product called “RTI Data Distribution Service” (RTI-DDS). As would be
expected from the analysis performed in this section, the DDS standard does not address
any aspect of the concurrency model of distributed applications, nor the scheduling of
tasks either. In this case, the RTI-DDS tasking model uses three types of internal
middleware tasks whose priorities are assigned through a proprietary extension of the
QoS parameters and cannot be changed dynamically:

• Database: This task is responsible for storing updated information about
locally-created and remotely-discovered entities.

• Event: This task is dedicated to checking the condition of many different
time-triggered events.

• Receive: One or more tasks dedicated to processing the I/O events received
via the underlying network transport. The static assignment of priorities to
Receive tasks can only be applied at Participant level, that is, all the
receiving tasks belonging to the same Participant will share the same
priority (both for metatraffic and user data).

The RTI-DDS implementation has created a concept called Exclusive Areas
(EA) to encapsulate mutexes and critical sections. RTI-DDS defines an ordering of the
EAs and a set of accessing rules (e.g. they are always accessed in the same order), which
prevents deadlocks even for synchronization protocols susceptible to this problem such
as BIP [SHA90].

Finally, in the case of communications networks, the assignment of scheduling
parameters is performed through the Transport_Priority QoS parameter. Under this
implementation, this parameter allows different priorities to be allocated to the data sent
on a per-DW basis. To this end, the priority is mapped to the Diffserv field [RFC2474]
within the IP header in order to prioritize network traffic through capable network
elements (e.g. routers or high-level switches). 

1. CoreDX is available at http://www.twinoakscomputing.com/
2. RTI-DDS is available at http://www.rti.com/
3. OpenSplice is available at http://www.prismtech.com/
4. OpenDDS is available at http://www.ociweb.com/
2-56 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

Real-time communication networks and distribution middleware
2 . 5 R E A L - T I M E  C O M M U N I C A T I O N  
N E T W O R K S  A N D  D I S T R I B U T I O N  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M I D D L E W A R E

Along with the distribution mechanisms provided by middleware, networks
represent the other key element in the communications of a real-time system. While most
standards do not consider network scheduling (e.g. RT-CORBA or DSA) or provide
limited support for it (such as DDS), the amount of time for sending or receiving
messages determines the response time of a distributed system. From the perspective of
real-time systems, communication networks are responsible for solving several problems
such as:

• The transmission order for messages available in a network device. It is
necessary to use a policy to schedule which message, among all those
locally available, will be the next to be transmitted. This problem is
especially relevant when using interconnection devices (e.g. switches) that
should order incoming messages from different nodes prior to their
transmission (e.g. by using priorities). 

• Shared transmission medium among several network devices. In this case,
it is necessary to use a policy to schedule which network device, among all
those available, will be the next to transmit. A wide range of techniques
that solve the problem of message collision have already been introduced in
Chapter 1.

However, in general, the distribution standards that have been analysed do not
consider any of these problems and, therefore, they do not specify the required properties
of the underlying communication subsystem which may affect the temporal behaviour of
the distributed system. Thus, while the DSA does not address any characteristics of
communications networks, the RT-CORBA and DDS specifications define two network
protocols to facilitate interoperability between implementations, called GIOP and RTPS,
respectively. Although both protocols require the use of a message format by default,
neither addresses how communications should be performed, as this aspect is defined by
the underlying transport service.

In the first case, GIOP requires a reliable and connection-oriented transport
service. This latter requirement has motivated the adaptation of some real-time protocols
to comply with the standard, as is the case of the CAN protocol implemented by ROFES
[LAN03]. However, the standard defines the IIOP protocol, which uses TCP/IP, as the
reference protocol for the interconnection of CORBA subsystems. For instance, the TAO
implementation, as was previously discussed in this chapter, provides a mechanism to
map RT-CORBA priorities onto Diffserv data field [RFC2474]. The mechanism
University of Cantabria 2-57



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
Real-time communication networks and distribution middleware

2

proposed by Diffserv is based on the principle of traffic classification, where each
network packet is placed in a different class of network traffic. Its main objective is to
provide QoS guarantees in wide area networks such as Internet. Under this approach,
developers can specify the traffic class corresponding to the IP packet through a header
data field whose length is 6 bits, thus allowing up to 64 different traffic classes. Each
network device is configured to differentiate traffic based on its class, each traffic class
being managed differently. However, Diffserv does not address what types of traffic
should be given priority treatment, as it is depended on each network device. Therefore,
Diffserv cannot assure a priori that packet processing will be uniform over the network.
To partially mitigate this issue, the IETF RFC 2474 standard [RFC2474] recommends
certain values for this data field to ease interoperability between network devices (for
example, a value of 46, corresponding to the traffic class named “Expedited
Forwarding”, will use a strict priority queuing above all other traffic classes).

However, the use of TCP/IP, even when using Switched Ethernet technology,
is not appropriate for hard real-time systems [FEL01] [ZHA01]. This has motivated the
development of an extension to the standard called Extensible Transport Framework
(ETF) [ETF04], a framework that allows the integration of communication protocols
other than TCP/IP with GIOP. However, there are hardly any developments using this
framework to integrate real-time network protocols, probably because of its complexity
[FOS05]. The work in [LOS04] uses a preliminary version of ETF to implement a
prototype that integrates the TTP / C communication protocol with RT-CORBA.

The RTPS protocol is designed to use a multicast and connectionless best-
effort transport, and only requires a minimal set of services from the transport layer.
Actually, it is sufficient that the underlying transport offers support to send / receive
messages and detects errors during transmission (for example, incomplete or corrupted
messages). Moreover, since the size of messages is not sent explicitly by the RTPS
protocol, the underlying transport must provide a mechanism to deduce the size of the
received message. This latter requirement can be problematic for protocols which
transmit data as an unstructured sequence of bytes (stream-oriented) and do not preserve
the boundary of messages from upper layers (e.g. TCP/IP). Finally, although the DDS
specification includes a QoS parameter to send network messages with different
priorities, the underlying transport is not required to be capable of managing priorities or
to support network scheduling based on priorities. Therefore, most implementations use
UDP/IP networks, although there are some academic research works that integrate real-
time communication networks, such as the CAN bus in [REK03]. In the case of RTI-
DDS, this implementation mainly uses an UDP/IP transport and, in a similar way to what
is done in TAO, maps the Transport_Priority QoS parameter to the Diffserv data field
[RFC2474].

Therefore, one of the main conclusions to be drawn is that most distribution
standards and implementations for real-time systems currently use IP-based
communication networks. Several factors may explain this willingness to use general-
2-58 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

Real-time communication networks and distribution middleware
purpose instead of specific real-time communication networks, among which are their
reduced costs and high data rates, as well as the evolution of the Ethernet technology to
meet new bandwidth and market requirements, including the development of new
standards (e.g. IEEE 802.1p [VBLAN06]) that allow the prioritization of network traffic. 

As we said earlier on Section 1.2.3.2, shared Ethernet is unfeasible as a real-
time network due to the non-deterministic resolution of collisions. However, Switched
Ethernet introduces single collision domains and thus eliminates access contention. This
has increased the volume of information that switches can receive simultaneously and, as
a result, the existence of long bursts of messages or even an excess of multicast or
broadcast messages may cause queue overflow for switches [PED03]. This effect, which
is unacceptable for hard real-time systems, can be controlled by using flow control
techniques for network traffic as is described in [VILA08] or in the recent IEEE
802.1Qbb specification [FLOWC11]. In the former, the authors limit network traffic
through flow control mechanisms provided by operating systems in order to classify,
schedule and drop network messages when sending large volumes of information. The
latter is the reference to a new standard that defines flow control mechanisms within
network devices based on message priority. Another important factor to consider when
using Ethernet devices for hard real-time systems is the network traffic generated by
switches. This kind of traffic, which is caused by other network protocols such as the
Spanning Tree protocol [MACB04], must be disabled or modelled so that it can be taken
into account in the timing analysis.

Thus, Switched Ethernet technology is presented as a valid alternative to
traditional real-time networks as long as it is used under certain conditions (for example,
with controlled traffic loads). This is the case, for example, of the new ARINC-664
specification, Part 7, which is called Avionics Full-Duplex Switched Ethernet (AFDX)
[AFDX09] and defines a hard real-time network based on Switched Ethernet for aircraft
data networks.

Finally, distribution middleware provides a set of software services, as shown
in Figure 1-2, to facilitate the distribution of one or more application among different
nodes. However, when middleware is specifically designed to be used in real-time
systems, it should also provide support for configuring networks (for example, by
allowing the assignment of scheduling parameters to network messages) and should
define the required constraints on the underlying transport to ensure predictability (e.g.
deterministic resolution or suppression of message collisions, identification of the
additional traffic generated by network devices, predictable routing, etc).
University of Cantabria 2-59



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
Analysis of distribution middleware from the real-time perspective

2

2 . 6 A N A L Y S I S  O F  D I S T R I B U T I O N  
M I D D L E W A R E  F R O M  T H E  R E A L - T I M E  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P E R S P E C T I V E

2.6 .1 ANALYSIS OF THE REAL-T IME FEATURES OF 
DISTRIBUTION STANDARDS
After analysing the different distribution standards aimed at the development

of applications with timing requirements, this section attempts to find the analogies and
differences among these specifications, as well as to assess their appropriateness for use
in real-time systems.

According to the model used in the analysis, two types of schedulable entities
can be identified in a real-time system: tasks for processors and messages for
communications networks. As was introduced in Chapter 1, there are situations in which
processors and networks should be scheduled together, so middleware should provide
sufficient mechanisms to configure both entities.

2.6.1.1 Managing processor resources

The temporal behaviour of distribution middleware is strongly determined by
scheduling policies and concurrency patterns [PER08]. In the first case, it is necessary to
identify which mechanisms are provided by middleware to select a specific scheduling
policy and how to perform the assignment of the corresponding scheduling parameters to
the schedulable entities. The second case deals with the options available to establish
which task is responsible for sending or receiving remote requests.

Firstly, it is possible that schedulers are directly supported by the operating
system. However, since these distribution standards are aimed at developing real-time
systems, it would be desirable to include operations in their APIs to set a specific
scheduling policy and the corresponding scheduling parameters for system tasks.

Both Ada and RT-CORBA specifications provide support for different
scheduling policies, including the FPS policy. However, the model proposed in DDS
does not include the scheduling in the processors, which remains undefined. Although
the DDS standard defines several timing parameters, none of them are suitable to
schedule tasks in the processors: the Deadline parameter could be used in some cases
(i.e. EDF systems) but the standard does not consider such use. A similar situation exists
with the Latency_Budget parameter and whose definition is not clear, although the
specification proposes data batching (i.e. gathering a set of data samples to be sent in a
single large network package) as an example of use.
2-60 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

Analysis of distribution middleware from the real-time perspective
RT-CORBA is the only specification that provides mechanisms to specify the
scheduling parameters to be used during the execution of the requested operations on the
remote node. The specification for static systems defines two policies, Server_Declared
and Client_Propagated, which impose restrictions on the assignment of priorities and
therefore reduce the schedulability of the system [LOP06].

Secondly, the processing of remote calls represents a process that includes (1)
the listening for I/O events in communication networks and the processing of network
messages; and (2) the execution of the application code associated with remote calls. In
general, regardless of which task or tasks are responsible for processing each stage, it is
important that middleware provides the necessary mechanisms to control their
scheduling parameters. However, how to manage and process a remote call is
implementation-defined. As has been discussed above, distribution standards do not
define which concurrency pattern should be used for sending and / or receiving remote
calls, but specify that implementations must service concurrent remote requests (for
example, the Ada DSA explicitly indicates this aspect, whereas RT-CORBA implicitly
specifies it through the definition of Threadpools). However, the choice of one or
another concurrency pattern is a factor that determines the temporal behaviour of the
application, so this issue will be addressed further in the analysis of the implementations.

Finally, deterministic access to shared resources prevents the unbounded
priority inversion problem [SHA90]. Both Ada and RT-CORBA include the use of
synchronization protocols for access to critical sections, although only Ada specifies that
implementations need to support a predefined protocol (in this case, the HL or Priority
Ceiling Protocol).

2.6.1.2 Managing network resources

In relation to communications networks, neither RT-CORBA nor Ada's DSA
include the possibility of assigning scheduling parameters and therefore implementations
are responsible for providing the necessary support for it. In the case of DDS, the
specification only considers networks based on a fixed priority scheduling policy while it
excludes any other kind of predictable networks used in the industry (e.g. time-triggered
networks). It is more flexible to modify the definition of the Transport_Priority
parameter to include a wider range of network scheduling policies (e.g.
Transport_Scheduling_Parameter).

Although most of the standards analysed are focused on Ethernet-based
networks (such as RT-CORBA with TCP/IP and DDS with UDP/IP), this
communication network is not suitable to provide deterministic response times itself as it
was discussed in Section 2.5. However, the evolution of IP technology in recent years,
with the definition of new standards, such as 802.1p [VBLAN06] which prioritizes
different message streams, together with its low cost, has resulted in a growing interest
within the industry in using this approach in the future development of real-time systems.
University of Cantabria 2-61



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
Analysis of distribution middleware from the real-time perspective

2

When distribution middleware is implemented on operating systems and
network protocols with priority-based scheduling, it is easy to transmit the priority at
which a remote service must be executed inside the messages sent through the network.
For example, this scheme is used by the Client_Propagated policy in RT-CORBA.
However, this solution does not work if more complex scheduling policies, such as
flexible scheduling frameworks based on contracts, [ALD06] [FRSH11], are used.
Sending the contract parameters through the network is inefficient because these
parameters are large in size. 

Another important factor to consider is the size of network messages, which
must be bounded and known before the schedulability analysis. This point is particularly
critical in the design of predictable applications with DDS since an RTPS message can
comprise an undefined number of sub-messages, including not only metatraffic but also
user data. Although this mechanism is quite efficient for minimizing the average
response time, it is not usually suitable for real-time systems which aim at guaranteeing
latencies limits in each network stream.

Finally, the presence of messages and operations belonging to middleware
may cause an increase of the response times of critical user applications. Although this
overhead depends almost exclusively on each implementation, the effect seems to be
more significant in standards such as DDS which defines a set of built-in entities that
may consume both processor and network resources. 

2.6.1.3 Comparative summary

This section has focused on discussing the mechanisms provided by
distribution standards for the management of processors and networks. Table 2-1
summarizes the main real-time features defined by these standards, which are grouped
into the following categories:

• Scheduling, which includes policies responsible for ordering the concurrent
access of tasks and messages to processors and communication networks,
respectively.

• Concurrency patterns for the execution of remote requests, or those
strategies defined for controlling and processing remote requests on the
node called.

• Controlled access to shared resources through the implementation of
synchronization protocols.

• Setting of scheduling parameters to remote calls, including those
mechanisms defined for the transmission of scheduling parameters.

• Support for the end-to-end flow model or distributable thread.
2-62 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

Analysis of distribution middleware from the real-time perspective
Most of these features, which are required to perform the schedulability
analysis, remain open to implementations as is shown in Table 2-1. Consequently, the
choice of a particular middleware determines not only the application performance but
also its predictability, and thus the ability to meet its deadlines. The choice of the
concurrency pattern for the execution of remote calls is particularly relevant, although
this feature is set by implementations and therefore it will be dealt in more detail with the
next section.

Since the end-to-end flow model has been traditionally used in calculating the
response times of distributed systems [TIN94B], its integration into distribution
middleware would facilitate the development of real-time systems in several aspects.
Firstly, it would allow the straightforward application of CASE tools, such as MAST
[HAR01], for analysis and / or optimization. Secondly, given that the end-to-end flow
model is defined within the MARTE standard [MAR08], it would facilitate the automatic
generation of distribution and real-time source code when it is incorporated into model-
driven development processes, such as the ASSERT development process [MAZ09]
[PERR10].

Furthermore, the Ada language does not consider in any case the existence of
the end-to-end flow model, but there are research works that show that it is possible to
integrate it into the DSA, such as the proposals included in [LOP06] and this thesis, part
of which is included in [PER10]. RT-CORBA defines a similar concept to end-to-end
flow, the Distributable Thread, which allows end-to-end scheduling for distributed
applications. However, the high complexity of this part of the specification means that
only two implementations [SCH05] [LI04] provide the required support, although there
are no references to practical applications that use it up to now. In the case of DDS, the
standard does not consider the use of the end-to-end flow model.

Table 2-1: Real-time capabilities of distribution standards

MIDDLEWARE

SCHEDULING
CONCURRENCY 

PATTERN

SHARED 
RESOURCE 

ACCESS CONTROL

SETTING OF 
SCHEDULING 
PARAMETERS

END-TO-END 
FLOW MODELPROCESSORS NETWORKS

RT-CORBA FPS

EDF

LLF

MAU

NOT DEFINED THREADPOOL REQUIRED CLIENT 
PROPAGATED

SERVER 
DECLARED

DISTRIBUTABLE 
THREAD

ADA DSA FPS

NON PREEMPTABLE

ROUND-ROBIN

EDF

NOT DEFINED NOT DEFINED PRIORITY CEILING 
PROTOCOL

NOT DEFINED NOT DEFINED

DDS NOT DEFINED FPS NOT DEFINED NOT DEFINED NOT DEFINEDA 

A. NOT APPLICABLE FOR P/S SYSTEMS

NOT DEFINED
University of Cantabria 2-63



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
Analysis of distribution middleware from the real-time perspective

2

Finally, although this may be considered a subjective comment, distribution
middleware should target the ease of programming, for example by allowing the
separation of concerns among the application logic, the distribution code and the real-
time configuration. In this case, neither RT-CORBA nor DDS fulfil this requirement. 

2 .6 .2 ANALYSIS OF THE REAL-T IME FEATURES OF 
IMPLEMENTATIONS
This analysis aims to assess the solutions provided by implementations about

those features that standards leave as implementation-defined and which may affect the
temporal behaviour of applications.

2.6.2.1 Managing processor resources

The support provided by each implementation included in the analysis in
relation to task scheduling is quite diverse. The usual approach is to provide an interface
to configure the scheduling parameters of application tasks and delegate their execution
sequence to the scheduler provided by the underlying operating system. In this case, the
PolyORB-CORBA personality and TAO provide a compliant interface with the RT-
CORBA specification, whereas RTI-DDS supports a proprietary interface. In relation to
PolyORB-DSA; it does not provide any interface and delegates the configuration and
scheduling to the Ada runtime. Furthermore, TAO also includes support for another
scheduling policy named MIF which is not defined by the CORBA standard. Under this
scheduling policy, middleware is responsible for determining which task among all those
available within the application should execute next.

In general, the processing of remote calls is a two-stage process that includes:
firstly, waiting for requests arriving from the network and their initial processing; and
secondly, the execution of the user code associated with the requested service.
Regardless of which task or tasks are responsible for processing each stage, it is
important that middleware can provide the necessary mechanisms to control their
scheduling parameters.

In relation to the controlled execution of concurrent remote calls, the
concurrency patterns implemented in TAO and PolyORB can be used as a reference for a
large number of scenarios. However, the use of concurrency patterns based on the
dynamic creation of tasks, such as Thread-per-Connection or Thread-Per-Session,
should be restricted to those situations where the creation of new tasks does not
jeopardize the determinism of the whole system (e.g. through an admission test at run
time). Moreover, other critical scenarios should also be considered; for example, in
flexible scheduling frameworks [ALD06] [FRSH11] where tasks execute under
contracts, middleware implementations should select a concurrency pattern that
minimizes the dynamic change of the scheduling parameters [PER09] as the cost of
2-64 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

Analysis of distribution middleware from the real-time perspective
negotiating or changing contracts is very high. 

In general, those concurrency patterns that prevent the dynamic change of
scheduling parameters and minimize context switches are used in hard real-time systems.
In this case, not all analysed implementations can be configured to meet these
requirements. Thus, TAO allows the application to be configured to select the Leader &
Followers pattern that, when applied together with some RT-CORBA mechanisms (such
as ThreadpoolLanes, Private Connections and Priority-Banded Connections), makes
available a set of tasks to process the remote request while preserving the end-to-end
priority assignment. However, even when PolyORB presents similar mechanisms to
TAO, this implementation does not allow this type of configuration because, among
other reasons, it lacks support for some RT-CORBA facilities, such as Private
Connections and Priority-Banded Connections. In the case of RTI-DDS, the use of
Listeners along with its implemented concurrency pattern allows tasks to process
incoming requests without using other intermediate tasks. In general, the restrictions
imposed by DDS implementations in the assignment of scheduling parameters may
cause quite variable response times depending on the target application [PER12].

Finally, both TAO and RTI-DDS delegate the choice of the synchronization
protocol to the underlying operating system. Nevertheless, the POSIX real-time standard
[POS98] does not dictate the use of any synchronization protocol by default, so
middleware is responsible for configuring or providing the necessary mechanisms to
configure the selected protocol. Furthermore, in the case of PolyORB, this aspect is
delegated to the Ada language and, therefore, applications may configure the predefined
Priority Ceiling Protocol as long as the Real-Time Systems Annex is supported by the
Ada compiler that is being used.

2.6.2.2 Managing network resources

As in the case of the distribution standards, the implementations analysed
mostly use general-purpose networks but incorporating some extensions to assign
priorities in the communications networks. Thus, both TAO and RTI-DDS provide an
interface to define the scheduling parameters for the message streams in a proprietary or
standard way, respectively. PolyORB does not consider in any case the use of scheduling
parameters in the communications networks.

2.6.2.3 Comparative summary

This section has focused on discussing the mechanisms provided by
middleware implementations for the management of the processing resources (i.e.
processors and communications networks). Although the main objective is to analyse the
capabilities of distribution standards for developing distributed real-time systems, the
University of Cantabria 2-65



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
Analysis of distribution middleware from the real-time perspective

2

analysis of implementations has allowed the lacks and needs of current specifications to
be identified.

In particular, the analysis of implementations has focused on the configuration
mechanisms for tasks and messages scheduling, as well as the concurrency patterns
implemented for processing concurrent remote calls. Table 2-2 summarizes the real-time
features taken from the analysis of standards and integrates the solutions provided by
each implementation. Thus, as in the case of the distribution standards, the
implementations mostly support FPS and provide the required mechanisms for
establishing the scheduling parameters, either through a standard API (e.g. TAO and
PolyORB-CORBA), a proprietary API (e.g. RTI-DDS) or through the programming
language (e.g. Ada for PolyORB-DSA). In relation to communications, most
implementations use network scheduling based on fixed priorities over Ethernet
technology, although these networks do not meet hard real-time requirements yet
[VILA08] [PED03] except under very specific conditions [AFDX09].

The design and development of efficient concurrency patterns for managing
concurrent invocations is a key factor in the temporal behaviour of implementations. The
concurrency patterns implemented in TAO and PolyORB can be used as a reference for a
wide range of scenarios, but only TAO considers the specific scenario in which avoiding
the delay for the highest priority invocation is required (i.e. by avoiding the dynamic
update of the scheduling parameters and minimizing the context switches). Although the
concurrency pattern implemented in RTI-DDS would also be suitable for this latter
scenario, the lack of flexibility in the assignment of scheduling parameters may penalize
the temporal behaviour of certain types of applications.

Finally, most implementations delegate the use of synchronization protocols to
the operating system. This is worthy of consideration because even the POSIX standard

Table 2-2: Real-time capabilities of middleware implementations

MIDDLEWARE

SCHEDULING
CONCURRENCY 

PATTERN

SHARED 
RESOURCE 

ACCESS CONTROL

SETTING OF 
SCHEDULING 
PARAMETERS

END-TO-END 
FLOW MODELPROCESSORS NETWORKS

TAO FPS

MIF

FPS OVER IP REACTIVE

THREAD PER CONNECTION

THREADPOOL

RTOS DEPENDENT CLIENT 
PROPAGATED

SERVER 
DECLARED

DISTRIBUTABLE 
THREADA

a. Not tested

POLYORB FPS

NON PREEMPTABLE

ROUND-BOBIN

EDF

NOT DEFINED NO TASKING

THREAD PER REQUEST

THREAD PER SESSION

THREADPOOLB

b. Several control patterns can be applied: Workers, Half Sync/Half Async or Leader & Followers

PRIORITY CEILING 
PROTOCOL

CLIENT 
PROPAGATED

SERVER 
DECLARED

NOT DEFINED

RTI-DDS FPS FPS OVER IP THREADPOOL RTOS DEPENDENT NOT DEFINED NOT DEFINED
2-66 Computers and Real-Time Group



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  D I S T R I B U T I O N
S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S

Contributions of this chapter
[POS98], which can be considered a point of reference for real-time operating systems,
does not dictate the use of any protocol by default. In this case, PolyORB can be used as
a reference as it allows the configuration of synchronization protocols through the
mechanisms provided by the Ada language.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 7 C O N T R I B U T I O N S  O F  T H I S  C H A P T E R

This chapter has reported an analysis of distribution middleware options from
the viewpoint of their suitability for the development of real-time systems, and has also
discussed some solutions adopted according to the proposals of this thesis. Specifically,
the study has analysed the RT-CORBA, the Ada DSA and the DDS standards, with
particular emphasis on the scheduling of processors and networks. Based on the analysis
above, we have isolated a set of features and objectives that all distribution standards for
real-time systems and / or their implementations should incorporate:

• Control of remote calls. Regardless of the concurrency pattern used, the
determinism of the application can only be guaranteed by controlling the
scheduling parameters even for tasks created internally by middleware.
This would avoid potential unbounded priority inversions.

• Enabling free assignment of scheduling parameters. Scheduling
parameters should be assignable without restrictions throughout the chain
of entities that compose the end-to-end flow in order to maximize the
schedulability of the system.

• Support for different scheduling policies. Although the fixed priority
scheduling policy is the most popular and widespread today, there are
scenarios where the use of other policies, such as EDF or flexible
scheduling based on contracts, could be more appropriate [LIU73]
[FOH02]. Therefore, it would be desirable that real-time distribution
standards can provide homogeneous support for the configuration of
different scheduling policies.

• Bound the effect of priority inversion. Middleware should provide
sufficient support to guarantee the predictability of the distributed system.
On the one hand, by providing mechanisms to facilitate the configuration of
synchronization protocols on access to critical sections and, on the other
hand, by ensuring a maximum size for network messages.

• Documentation of the overhead introduced by implementations. In the
analysis of a distributed real-time application, practitioners should be able
to consider and evaluate each entity involved in the system, even those
created internally by middleware (e.g. the internal tasks for I/O
University of Cantabria 2-67



A N A L Y S I S  O F  T H E  R E A L - T I M E  M E C H A N I S M S  I N C L U D E D  I N  T H E  
D I S T R I B U T I O N  S T A N D A R D S  A N D  T H E I R  I M P L E M E N T A T I O N S
Contributions of this chapter

2

management or the network messages belonging to metatraffic). The role
and influence of these built-in entities must be clearly specified by the
implementation as these entities can increase the response times of the
system by consuming processor and / or network resources.

• End-to-end flows or distributable threads. The integration of this
concept into distribution middleware would facilitate the application of
CASE tools for analysis and optimization, as well as its integration into
model-driven development processes.

• Enabling schedulability analysis of the complete application. Although
middleware is executed in the processor, the temporal behaviour of the
networks has a strong influence on the overall response times. Moreover, in
many cases both networks and processors should be scheduled together
with appropriate techniques [LIU00] and, therefore, middleware should
have the ability to specify the scheduling parameters of both processing
resources through suitable models. 
2-68 Computers and Real-Time Group



3PROPOSAL FOR AN ANALYZABLE REAL-
TIME MODEL IN DISTRIBUTION 

. . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MIDDLEWARE 

This chapter is organized as follows. First, in Section 3.1, the basic features that
distribution middleware should support to develop real-time applications are introduced.
The integration of the end-to-end flow concept into the distribution models analysed in
Chapter 2 is addressed in Section 3.2. Section 3.3 discusses in detail the proposal for
integrating the real-time model into distribution middleware. A detailed description
about the interface designed to support the real-time model is dealt with in Section 3.4.
The development of the proposed interface for Ada is included in Section 3.5, while
Section 3.6 discusses the mechanisms required to enable the automatic generation of the
real-time configuration code from high-level system models. An example of use for the
proposed interface is included in Section 3.7. Section 3.8 discusses the use of
concurrency patterns with the real-time model. Finally, Section 3.9 summarizes the
contributions of the chapter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 1 I N T R O D U C T I O N

Chapter 2 reviewed the distribution standards usually applied for real-time
systems, as well as the analysis of their real-time capabilities and the mechanisms
currently supported. These standards follow different interaction paradigms (e.g., client -
server or publisher - subscriber) which can be easily modelled through the end-to-end
flow model. Once the system is represented as a set of end-to-end flows, timing analysis
techniques can be directly applied to verify whether the distributed application meet its
deadlines. Within the real-time community, the end-to-end flow model has traditionally
been used in calculating the response times of a distributed system, and it has recently
been included in the MARTE standard for modelling and analysing real-time systems
[MAR08]. Therefore, the incorporation of this model into distribution middleware would
facilitate the development process for distributed real-time systems, as it would provide
the required support to apply timing analysis, optimization and automatic code
generation tools. Furthermore, this would also allow its integration with model-driven
University of Cantabria 3-69



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
Distribution middleware and the end-to-end flow model

3

development processes. In particular, it would be desirable that the usage of the end-to-
end flow model along with distribution middleware could support the following
characteristics:

• Separation of concerns between the logic of the application and the
real-time aspects. This would require hiding the details related to
scheduling from the software engineers developing the functional parts of
the application. Moreover, the responsibility of programming the real-time
aspects might even rely on another kind of developer specialized in real-
time systems. 

• Support for heterogeneous scheduling policies and parameters.
Distribution middleware should provide mechanisms to allow the use of
interchangeable scheduling policies. Likewise, it would also be desirable to
be able to specify the scheduling details through a uniform methodology
which should be independent of the scheduling policy or parameters used. 

• Control in the identification and / or assignment of scheduling
parameters. Distribution middleware should document the existence and
nature of each schedulable entity within the system, as well as providing
mechanisms flexible enough to configure them.

• Infrastructure for CASE tools. The configuration of the real-time aspects
should be performed automatically by means of software tools that
generate the required configuration code from high-level system models.

In order to incorporate these features into distribution middleware and
facilitate the application of timing analysis techniques, a new configuration mechanism
has been developed. It is called the endpoints pattern and it represents a set of
mechanisms which allow the real-time requirements and capabilities of a distributed
system to be specified according to the end-to-end flow model. Nevertheless, before we
go into the details about the endpoints pattern, it is worth examining how to integrate the
end-to-end flow model into distribution middleware and, in particular, into the
distribution models which were discussed in Chapter 2.

3 . 2 D I S T R I B U T I O N  M I D D L E W A R E  A N D  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T H E  E N D - T O - E N D  F L O W  M O D E L

As we saw in the previous chapter, it would be desirable that distribution
middleware can provide the required mechanisms to configure the schedulable entities.
However, this configuration process is not trivial and requires the application of analysis
and optimization techniques to satisfy its timing requirements. For example, although the
3-70 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

Distribution middleware and the end-to-end flow model
developers can assign priorities based on their experience and according to certain
application features, the problem becomes intractable as soon as the system is composed
of dozens of tasks and more than three or four processors. In this case, the application of
automated tools for timing analysis and feasible assignment of scheduling parameters is
required as there are multiple and complex interactions between tasks in distributed
systems. This precedence relationship between tasks means that the assignment of
scheduling parameters to a single task (or message, in the case of networks) may
influence the temporal behaviour of other system tasks. A reliable mechanism to
determine whether the scheduling policy and the priority assignment applied can meet
the required timing requirements consists of an a priori schedulability test, since
simulation can in general underestimate the worst case response time of applications
[XU93].

This section aims to explore the integration of the end-to-end flow concept
into the distribution models proposed by the standards for developing distributed real-
time systems. To continue the same line of research followed by the previous chapter,
this section will focus on the following standards, which are classified according to their
distribution paradigms: Ada DSA for remote procedure calls, CORBA for distribution of
objects and DDS for data-centric distribution.

The distribution paradigm included in DSA defines two communication
modes in the calling node: synchronous mode (i.e. RPCs), in which the calling task is
blocked on the communication network until the remote call is completed and the reply
received; and asynchronous mode (APCs), in which the task is allowed to return before
the completion of the remote call. For CORBA, the available communication modes are
similar: remote requests are performed through the ORB asynchronously (called Oneway
requests in the CORBA standard) or synchronously. However, the decoupling features of
the message-oriented distribution paradigm cause significant differences compared to the
previous cases. For instance, DDS only provides a single mechanism to publish data,
which is asynchronous and unidirectional (i.e. it allows one-to-one or one-to-many
communications).

From the viewpoint of called nodes, neither DSA nor CORBA define any
communication modes, and they only specify that the system must provide support to
process requests concurrently. However, DDS does include multiple communication
modes. Actually, Subscribers can receive data either asynchronously (i.e. through
Listener entities), in which the internal middleware tasks are responsible for processing
received data, or synchronously (i.e. through Wait-set entities), in which the internal
middleware tasks are responsible for receiving data, but application tasks are in charge of
processing them.

As we said earlier on Chapter 1, real-time systems can be modelled as a group
of end-to-end flows. In a distributed real-time system, this model enables the calculation
of the worst-case response time for each end-to-end flow that has been defined. The
University of Cantabria 3-71



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
Distribution middleware and the end-to-end flow model

3

optimization of these response times requires a thorough assignment of the scheduling
parameters to each schedulable entity (tasks or messages), which are responsible for
processing each step.

3 .2 .1 MODELLING OF ASYNCHRONOUS REMOTE CALLS
To illustrate the modelling of Asynchronous remote Procedure Calls (APCs),

once again we consider the linear end-to-end flow example used in Chapter 1 and
illustrated in Figure 1-3; in this example, CPU-1 has to take an image of the
environment, send it to another processor to be analysed, and finally cause an action to
occur in CPU-3. Figure 3-1 represents the end-to-end flow model for schedulability
analysis (A) and the distribution model based on ORB/APCs (B).

The theoretical model shown in Figure 3-1-A defines a linear distributed end-
to-end flow performing asynchronous remote calls whose timing requirement is an end-
to-end deadline from the creation of the image until the actuation executed in CPU-3.
The model shows all the events, steps and processing resources (the processors or the
network) defined in the end-to-end flow. In particular, the end-to-end flow consists of
five steps:(1) taking an image, (2) sending the image to be analysed through the network,
(3) analysing the image to determine the actuation, (4) sending the command for
actuation through the network and (5) performing an action depending on the command
received.

The implementation of this example using the model based on ORB/APCs
(Figure 3-1-B), requires the definition of Process Image and Actuate as remote

CPU-2CPU-1 CPU-3

Network

External e11 e12 e13 e14 e15

End-to-end timing requirement

Network

CPU-1 CPU-3CPU-2

Take Image

APC APC

Code executed by middleware threads Code executed by application threads

(A)

(B)

StepStep Step Step Step
Operation

Actuate
Operation

Process
Image

Operation
Send

Image

Operation
Order

Operation
Take 

Image

ORB/APC ORB/APC ORB/APC

Process Image Actuate

Figure 3-1: Asynchronous end-to-end flow model and distribution model based 
on ORB and APCs
3-72 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

Distribution middleware and the end-to-end flow model
procedures or methods belonging to a remote object. According to this model, this part
of the user code will be executed by internal middleware tasks, and therefore middleware
should provide support to explicitly assign their scheduling parameters [PER08].

On the other hand, the data-centric model used in DDS would require the
definition of (see Figure 3-2): 

• Two topics to describe both the image and the command to be executed.
• Four entities to perform the distribution, a DW-DR pair is required for each

topic registered in the system.

According to the model followed by DDS, each DW-DR pair has an
associated set of specific QoS parameters, and the configuration of each entity must be
performed individually: the scheduling parameters for the network messages are
configured explicitly in each DW through the Transport_Priority parameter, while the
configuration of the processing tasks is not considered by the standard and therefore it
remains implementation-defined. Under this model, the remote procedures Process
Image and Actuate could be executed using either internal middleware tasks, by means
of the Listener mechanism (see Figure 3-2-A), or application tasks, through Wait-set
structures (see Figure 3-2-B).

Network

CPU-1 CPU-3CPU-2

Network

CPU-1 CPU-3CPU-2

Take Image

Take Image Process Image Actuate

Writes

WritesWrites Reads Reads

WritesReads Reads

Compatible
QoS

Compatible
QoS’

Compatible
QoS

Compatible
QoS’

(A)

(B)

DW

Process Image Actuate

DW DW DRDR

DW DRDR

Code executed by middleware threads Code executed by application threads

Topic #1 Topic #2

Figure 3-2: Asynchronous end-to-end flow model based on data-centric DDS 
model
University of Cantabria 3-73



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
Distribution middleware and the end-to-end flow model

3

3 .2 .2 MODELLING OF SYNCHRONOUS REMOTE CALLS
In end-to-end flows that represent synchronous remote calls, the theoretical

model is extended with a second chain of activities and events representing the return
path. Figure 3-3-A shows the same example used in the previous section but, in this case,
the system has been modified to return the result of the remote calls. Figure 3-3-B shows
the model based on ORB/RPCs, which is similar to the asynchronous case but requires
the creation of two new message streams for the replies. However, the DDS model,
which is essentially asynchronous, requires the definition of two new topics to determine
each result and their corresponding entities for the distribution besides the two message
streams. Figure 3-4 shows two possible approaches to build this type of synchronous
end-to-end flow using DDS: Listeners are used in Figure 3-4-A while Wait-sets are used
in Figure 3-4-B. In this case, it is important to remark that this model:

• Requires the definition of a second part of the procedures to process the
results (Take Image II and Process Image II). This approach is quite similar
to the end-to-end flow model used in the analysis and therefore facilitates
the transition from the model to the real system.

CPU-2CPU-1 CPU-3

Network

External e11 e12 e13 e14

e19 e18 e17 e16 e15

End-to-end timing requirement

CPU-1 CPU-3CPU-2

Take Image

RPC RPC

Code executed by middleware threads Code executed by application threads

(A)

(B)

StepStep

Step Step

Step Step

StepStep

Step

Operation
Actuate

Operation
Process
Image

Operation
Send

Image

Operation
Reply To 

Send Image

Operation
Order

Operation
Reply To

Order

Operation
Take 

Image

ORB/RPC ORB/RPC ORB/RPC

Process Image Actuate

Operation
Process
Image II

Operation
Take 

Image II

Reply Reply

Network

Figure 3-3: Synchronous end-to-end flow model and distribution model based 
on ORB and RPCs 
3-74 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

Distribution middleware and the end-to-end flow model
• Provides more flexibility to build the system. For example, if the system
described above is modified to return the result of the action performed
only to CPU-1, in this case the adaptation of the DDS application is
straightforward (see Figure 3-5) while the ORB/RPCs model requires the
reply to come through CPU-2 or the nature of the application to be changed
to asynchronous.

Network

(A)

(B)

CPU-1

Take Image

DW DR

CPU-3

DW

Actuate

DR

CPU-2

Process Image

DWDR DWDR

Process Image II

Network

CPU-1

Take Image

DW

Take Image II

DR

CPU-3

DW

Actuate

DR

CPU-2

Process Image

DWDR DWDR

Process Image II

Take Image II

Code executed by middleware threads Code executed by application threads

Topic #1 Topic #2 Topic #3 Topic #4

Figure 3-4: Synchronous end-to-end flow model based on data-centric DDS 
model

Network

(A)

(B)

CPU-1

Take Image

DW DR

CPU-3

DW

Actuate

DR

CPU-2

Process Image

DWDR

Network

CPU-1

Take Image

DW

Take Image II

DR

CPU-3

Actuate

DR

CPU-2

Process Image

DWDR DW

Take Image II

Code executed by middleware threads Code executed by application threads

Topic #1 Topic #2 Topic #3

Figure 3-5: Synchronous and asynchronous end-to-end flow model based on 
data-centric DDS model 
University of Cantabria 3-75



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
The endpoints pattern

3

3 .2 .3 VALIDATION OF THE END-TO-END FLOW MODEL IN  
D ISTRIBUTION MIDDLEWARE
After completing the analysis, we can conclude that the end-to-end flow

model can be applied to the three specifications, although the distribution model
proposed by DDS displays greater similarity to the theoretical model. Therefore, a
distributed application that conforms to any of these standards, either using synchronous
or asynchronous communication modes, can be represented as a set of end-to-end flows.
Although this study has only focused on the basic communication mechanisms between
entities, its results can validate the use of the end-to-end flow model in a distributed
system following the RT-CORBA, DSA or DDS standards. However, we cannot
conclude that any mechanism included in these standards (for example, those defined by
DDS to provide a certain QoS) is suitable to be modelled with the end-to-end flow
model. This part of the study, which represents an interesting line of research, is beyond
the scope of this thesis and it is proposed as future work.

Furthermore, the modelling and analysis of current distributed systems, which
can be composed of dozens of tasks and several processors, is a complex and error prone
process that usually requires CASE tools to be applied. To this end, not only should the
real-time model be abstracted from the distributed application, but distribution
middleware should also be adapted to it. This integration would incorporate the
capability to explicitly create, configure and manage those entities related to the end-to
end flow model within distribution middleware. For this purpose, a set of entities to
support the real-time model should be identified. This point constitutes one of the
objectives of this thesis, whose proposal defines a set of entities, configuration interfaces
and new services which are called the endpoints pattern.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 3 T H E  E N D P O I N T S  P A T T E R N

The endpoints pattern aims to provide a homogeneous solution for creating
and configuring the entities within the end-to-end flow model. As we explained earlier in
Chapter 1, an end-to-end flow consists of a sequence of interrelated events and steps
whose execution must usually satisfy end-to-end timing requirements. While the steps
represent either the execution of a piece of code by means of a task or the transmission of
a message through a network, the event is the entity responsible for triggering the
execution of a step with specific scheduling parameters. The endpoints pattern
incorporates the event concept by defining a new element called Event_Id. This element
identifies an end-to-end flow in its execution as it is transmitted through the network
within each remote call thus allowing the scheduling parameters associated with each
step to be applied.
3-76 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

The endpoints pattern
Once the Event_Id has been incorporated into the model, the next step in the
modelling of distributed applications through end-to-end flows is the identification of the
schedulable entities. In the case of the endpoints pattern, two kinds of schedulable
entities are defined:

• For the processing nodes, the handler tasks intended to execute remote
calls. These handlers are created explicitly with the appropriate scheduling
information.

• For the network, the endpoints or communication points are used to
transport messages through the network. There are two types of endpoints:
those related to the transmission (send endpoints), which are associated
with specific scheduling parameters; and those related to the reception
(receive endpoints), which constitute the waiting mechanism for handlers
tasks or those tasks that perform a synchronous remote call. As in the case
of the handler tasks, the endpoints must be created explicitly and with a set
of scheduling parameters associated with the transmission of messages
through the network for send endpoints.

A send endpoint contains information about the network to be used, the
destination address and the communication port that is used to establish the link between
the send and the receive endpoints. A receive endpoint contains information about the
network and the communication port to be used. In order to support both asynchronous
and synchronous remote calls, the endpoints pattern distinguishes different types of send
and receive endpoints. In particular, the following endpoints are considered:

• Send endpoint to send messages with specific scheduling parameters. It has
an associated Event_Id to identify the specific message stream to use.

• Receive endpoint to listen for incoming requests. It is not directly
associated with any Event_Id and thus it can process different end-to-end
flows depending on the incoming events.

• Send reply endpoint to send the reply message of a synchronous remote call
with specific scheduling parameters. It has an associated Event_Id to
identify the specific message stream to use.

• Receive reply endpoint to listen for the reply message provoked by a
synchronous remote call. It has an associated Event_Id that allows the
calling task to wait for the reply message.

In Chapter 1, Figure 1-2 showed the set of basic services provided by
distribution middleware to enable communications between nodes to be performed
transparently from the developers’ viewpoint. However, there is a loss of abstraction in a
real-time system because, among other requirements, developers may have to specify the
University of Cantabria 3-77



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
The endpoints pattern

3

scheduling parameters of network messages. Thus, in order to guarantee the
schedulability of the system, distributed calls must be known in advance by developers,
who should configure them appropriately.

Figure 3-6 shows the entities and services added by the endpoints pattern to
distribution middleware. First, the send and receive endpoints are created explicitly and
configured to process one or more end-to-end flow. Similarly, the developer or real-time
engineer controls both the handler tasks and their scheduling parameters, and is
responsible for associating each handler task with the end-to-end flows to be processed.

Moreover, in addition to these entities, the endpoints pattern adds a new
functionality to distribution middleware: the event transformation service. This service
provides internal support for the end-to-end flow model, as it hides the management of
the real-time details from the application code. In order to build an end-to-end flow, not
only should the active components of an end-to-end flow be indicated but their
precedence relationship should also be stipulated. Under the endpoints pattern, this
precedence relationship is established by the aforementioned Event_Id element. The
Event_Id is transmitted through the network with each remote call and is managed by the
event transformation service to configure the end-to-end flow (see Figure 3-6). 

To explain how the end-to-end flow model is related to distribution
middleware and the endpoint patterns, we again consider the linear and asynchronous
end-to-end flow example used in Section 3.2.1 and illustrated in Figure 1-3. For this end-

App Task Handler Task n
Calling Node Called Node

Activity A Activity B

Marshalling

Addressing

Dispatching

Event Transformation

Marshalling

Addressing

Dispatching

Event Transformation

Transport Transport
Receive Endpoint

Send Endpoint Receive Endpoint

Send Endpoint

Handler
Task n

M
ID

D
L

E
W

A
R

E
M

ID
D

L
E

W
A

R
E

Event_Id

Figure 3-6: The endpoints pattern and distribution middleware
3-78 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

The endpoints pattern
to-end flow, each step generates a single internal event as output which, depending on its
value, will trigger the execution of the next step with the appropriate scheduling
parameters. Under the endpoints pattern, each of these internal events is identified
through Event_Id. Figure 3-7 shows the details of the events, steps and processing
resources (the processors or the network) according to the endpoints pattern.
Furthermore, the event transformation service is represented through the Event
Transformation Points in Figure 3-7. By setting the initial event External1, the
application task triggers the activation of the end-to-end flow that generates the output
event e11. This event causes a message to be sent to perform the first remote call. In
CPU-2, distribution middleware identifies the incoming event at the receive endpoint
and transforms it to the corresponding event e12. Then, middleware sets the appropriate
scheduling parameters for the handler task depending on the event received. After
processing the data, a message is sent to perform the remote call to CPU-3 with event
e12. Finally, middleware executed in CPU-3 will transform the incoming event into
event e3 and will set the corresponding scheduling parameters for the actuation. This
action completes the execution of the end-to-end flow.

By using the endpoints pattern, distributed real-time applications can be
developed and configured separately in a flexible way. Among the major advantages of
the proposed approach are: 

• Support for the management of complex linear end-to-end flows. For
instance, nested remote calls can be appropriately executed by means of the
Event_Id and the event transformation service. Moreover, this event
management is particularly useful in end-to-end flows that invoke the same
remote operation two or more times, and which may require different
scheduling parameters for each call. This case is illustrated in Figure 3-8

����� �����

�	
��������
�

�����������	
�����

� �

�����

�������
��
�

�����������
�����������
�����������

����������

�

������
����

���

��
��
�

�����������
�����������
�����������

����
��
�

�����������
�����������
�����������

���
����

���

�����
�������


����� ��
�������


� � ��
�
�����!��"�
��������


������
����

���

Figure 3-7: The endpoints pattern and the end-to-end flow model
University of Cantabria 3-79



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
The endpoints pattern

3

where the application task makes several synchronous requests to the same
remote service. Setting the initial Event_Id is sufficient to enable the
middleware to identify the particular point in the end-to-end flow and
therefore the scheduling parameters required in each case. 

• Support for the sharing of handler tasks by several end-to-end flows.
The endpoints pattern also allows a handler task to be shared among
different end-to-end flows executing in turn with different scheduling
parameters, which is interesting in order to reduce the total number of tasks
in the system. Moreover, this feature enables the model to support complex
non-linear end-to-end flows.

• Support for separating the logic of application and the real-time
aspects. A desirable feature for a real-time model is the separation of
concerns between the logic of application and the real-time aspects. Under
the proposed real-time model based on the endpoints pattern, the creation
of schedulable entities and scheduling parameters is performed by means of
a set of interfaces that represent a simple configuration operation. Once the
initial stage for the creation and configuration of entities is finished,
middleware will be responsible of updating the scheduling parameters and
managing the chain of events within the end-to-end flow in a transparent

�����
�����	�


����	��
�����	�


� ���
�
����������
	�����	�


����������	��
�����	�


�����������
�����	�


����������	


��
		
���
���
����

�����������
�����������

����
	���	


�������
����

�������

�������

��

��

�������

�������

�	

�


�������

�������
�����

�

�

�

�

��

����	��
	��
����

��

��
		
���
���
�
��

�����������
�����������

�

��
		
���

��

��

�	

���������
	
���

Figure 3-8: Event flow in complex linear end-to-end flows
3-80 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E
The endpoints API
way. Moreover, this real-time configuration process can be automated by
applying MDE techniques based on the end-to-end flow model. 

3 .3 .1 RELATED WORK
Over the last years there has been a significant effort to apply the end-to-end

flow model to distribution middleware, which has led to several research works that
constitute the basis of the endpoints pattern. These works include studies about
modelling, analysis and integration of the end-to-end flow model with the distribution
mechanisms mainly proposed for the Ada programming language. Thus, a previous work
about the modelling of distributed applications with the DSA was presented in [GUT02],
while [GUT99] discusses different methods for the assignment of priorities to optimise
response times for an end-to-end flow. Both research works provided an initial
integration of the end-to-end flow model into distribution middleware. Moreover, these
initial proposals were extended and implemented in [LOP04] and [LOP06]. While the
former enables the free assignment of priorities in remote calls (both in the processors
and in the communication networks), the latter supported different scheduling policies
and proposed a way to incorporate the end-to-end flow model into the DSA. In
particular, the authors in [LOP06] proposed an interface for DSA to customize the
communication layer and handler tasks and thus it can be considered a first step in the
direction of the endpoints pattern presented in this thesis.

Compared to the approach defined in [LOP06], this thesis incorporates several
features which provide the proposal with new services and more flexible support of the
end-to-end flow model. Unlike the interface defined by [LOP06], the endpoint pattern
considers the use of different scheduling policies for processors and networks. Moreover,
while [LOP06] associates each receive endpoint with a single event, the endpoint pattern
allows multiples events to be handled by each receive endpoint (i.e. it allows handler
tasks to be shared by several end-to-end flows). The endpoint pattern also adds a new
event transformation service to avoid the management of real-time aspects within the
application code. Lastly, it can support different distribution models and can be used in
high-integrity systems as will be shown later.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 4 T H E  E N D P O I N T S  A P I

The proposal included in this thesis defines a set of interfaces (API) to provide
complete support for the end-to-end flow model. These interfaces enable distribution
middleware to create and configure the schedulable entities, as well as the management
of resources in the processors and communication networks. The endpoints pattern
includes separate interfaces for handler tasks and communication endpoints to ease the
integration of new, possibly different, scheduling policies both in processing nodes and
University of Cantabria 3-81



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
The endpoints API

3

networks. Moreover, the proposal also defines a third interface to allow middleware and
applications to manage event associations through the event transformation service. The
following sections of this chapter describe the functionality of each of these interfaces.

3 .4 .1 NETWORK SCHEDULING INTERFACE
Meeting real-time requirements in a distributed application requires the

networks to be scheduled with appropriate techniques. The endpoints pattern considers
the scheduling of communication networks by making the communication endpoints
visible, and by associating scheduling parameters to the messages sent through them. 

The proposed interface is abstract, that is, it should be extended by each
scheduling policy according to its own scheduling parameters (e.g. priorities, deadlines
or more complex parameters for contract-based scheduling). The network scheduling
interface defines the following primitives:

• Create_Send_Endpoint. Subprogram to create a new endpoint to send
requests through a particular network. This kind of endpoint is associated
with specific scheduling information. 

• Create_Receive_Endpoint. Primitive to create an endpoint in a particular
network to receive requests. Handler tasks are responsible for awaiting the
arrival of incoming requests in such endpoints.

• Create_Reply_Send_Endpoint. Subprogram to create a communication
endpoint to send replies through a particular network in a synchronous
request. This kind of endpoint is associated with specific scheduling
information.

• Create_Reply_Receive_Endpoint. Primitive to create an endpoint in a
particular network to listen to replies to a synchronous remote call.
Therefore, the task responsible for awaiting the reply is the same as the one
that performed the remote call.

Finally, corresponding subprograms are provided by the interface to destroy
the endpoints created.

3 .4 .2 PROCESSING NODE SCHEDULING INTERFACE
In a distributed real-time system, the arrival of concurrent remote requests

with different degrees of urgency is frequent. Handler tasks are responsible for awaiting
arriving requests and processing them. 

As in the case of networks, the interface that allows the handler tasks to be
created and configured with appropriate scheduling parameters is abstract, and therefore
3-82 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E
The endpoints API
it should be extended for each scheduling policy to be used. The processing node
scheduling interface includes the following primitives:

• Create_Handler_Task. Primitive to create a handler task associated with
specific scheduling parameters. This handler task is responsible for
processing incoming requests arriving at a single receive endpoint (i.e. it is
bound to a particular receive endpoint).

Since a single handler task could process several requests matching different
end-to-end flows, each of them with its specific scheduling information, this interface
defines two primitives for the dynamic update of scheduling parameters:

• Set_Event_And_Sched_Params_Association. Subprogram to link a
particular event to the scheduling parameters provided.

• Update_Scheduling_Parameters. Subprogram to update the scheduling
parameters for a selected handler task. 

Finally, corresponding subprograms are provided by the interface to destroy
the handler tasks created.

3 .4 .3 EVENT MANAGEMENT INTERFACE
The event transformation service completes the support for the development

of the end-to-end flow within distribution middleware. In the end-to-end flow model,
external events trigger the end-to-end flows, and the setting of an identifier of those
events is the only operation that our model requires the application code to perform.
Once the application has set this external event at the beginning of the end-to-end flow,
all the subsequent steps are scheduled according to the associated internal event at each
moment. These internal events are transmitted through the end-to-end flow by means of
the Event_Id parameter, which enables middleware to identify a particular point in the
end-to-end flow and therefore the scheduling parameters required in each case.
Furthermore, these internal events are automatically set by middleware at the
transformation points, which match the receive endpoints used by both handler and
application tasks.

Therefore, the developer or real-time engineer should configure the event flow
within an end-to-end flow, and middleware will be in charge of automatically setting the
appropriate event at the transformation points of the remote call. For this purpose, the
event management interface provides the following primitives:

• Set_Event_Assocation. Subprogram to set associations between input and
output events. Middleware will use this link to select an appropriate output
event at the specified transformation points.
University of Cantabria 3-83



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
The endpoints API

3

• Get_Event_Association. Primitive to return the output event associated
with the specified input event.

• Set_Event_Id. Subprogram to set the current event associated with a task. 
• Get_Event_Id. Primitive to get the current event associated with a task.

3 .4 .4 USING THE CONFIGURATION INTERFACE
The integration of the proposed interfaces with distribution middleware

enables the developer to explicitly specify all the details related to system scheduling. To
this end, the developer should use the proposed configuration interfaces (i.e. processing
node scheduling, network scheduling and event management interfaces) to specify all the
end-to-end flow elements belonging to the application, regardless of the selected
scheduling policy.

Within the initialization stage of a system, the application is responsible for
creating the schedulable entities and configuring the scheduling parameters associated
with tasks, network messages and the execution of remote calls. All these operations can
be performed within a new phase which is called real-time configuration stage. This
real-time configuration is completely independent of the functional parts of the
application, and its programming may even be done by another developer specialized in
real-time systems. Those aspects related to the coordinated and deterministic
initialization of nodes in a distributed system are beyond the scope of the real-time
model and, therefore, the endpoints pattern. Nevertheless, this aspect is really important
in a distributed system and so its study remains open to future work.

Once the system has been initialized, the distributed real-time application will
start to execute and then only distribution middleware will make use of the API to
automatically manage the events transformation and the update of scheduling parameters
if required.

Furthermore, although the endpoints pattern is suitable for use in static
systems (i.e. their workload is within known bounds), it can also be used in dynamic
systems whose workload varies with time. This would require higher level software tools
to be applied which are responsible for guaranteeing determinism during the creation of
new entities, as well as during the execution of new end-to-end flows (i.e. new end-to-
end flows will not affect the temporal behaviour of the rest of the system). The validation
of the use of the endpoints pattern in both types of systems is part of the next chapter of
this thesis, and is included in the following research works: [PER09] and [SAN10].
3-84 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

Integration into the Ada standard
3 . 5 I N T E G R A T I O N  I N T O  T H E  A D A  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S T A N D A R D

Once the functionality of the endpoints pattern has been described, the next
step is to define a specific API for Ada that allows the development of distributed real-
time applications. In particular, we have defined a set of Ada packages that can be
integrated into the DSA, as is illustrated in Figure 3-9.

Firstly, the package defined in Listing 3-1 includes the identifiers for the basic
elements to be set up in a distributed system: communication networks, send/receive
ports and nodes.

The second package, which is described in Listing 3-2, contains the identifiers
of common elements in the proposed end-to-end flow model for real-time environments.
The Send_Endpoint_Id and Receive_Endpoint_Id are the types used to identify
endpoints, which are used as links to enable the communication among different nodes.
The type Event_Id implements the event defined by the endpoints pattern and it is used
to attach an identifier which associates scheduling parameters to the schedulable entities
within the end-to-end flow (send endpoints or handler tasks) and to identify the endpoint
where a task performing an RPC should await the reply. This Event_Id is the only data

Figure 3-9: Package hierarchy for end-to-end flow DSA systems

Listing 3-1:  Package a-distributed.ads

1: package Ada.Distributed is
2: pragma Pure;
3: type Port_Id is range implementation-defined;
4: type Node_Id is range implementation-defined;
5: type Network_Id is range implementation-defined;
6: end Ada.Distributed;
University of Cantabria 3-85



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
Integration into the Ada standard

3

type which is defined within the public part of the Ada specification (see Listing 3-2). As
was discussed in Section 3.4, this seems reasonable since this parameter is mainly
managed within the application code (for example, on setting the initial event). 

The interface responsible for network scheduling is defined in the following
Ada package (see Listing 3-3). This interface is abstract and holds the primitives in
charge of creating and destroying the communication endpoints. Each of these
subprograms receives the minimum information necessary to establish communication
as input parameters (i.e., the network and the communication port). Additionally, these
subprograms responsible for the creation of the send endpoints also receive an identifier
for the destination node and an abstract tagged private type called
Message_Scheduling_Parameters as input parameters. Extensions of the
Message_Scheduling_Parameters tagged type will contain the specific network
scheduling parameters that must be associated with a specific send endpoint.
Furthermore, each scheduling policy must implement subprograms to map its own
scheduling parameters (e.g., priorities, deadlines, or contract-based parameters) onto
extensions of this private type. 

As in the case of the network scheduling interface, the Ada package
responsible for the processing node scheduling (which is defined in Listing 3-4) includes
an abstract tagged private type called Task_Scheduling_Parameters. This tagged type
should be extended with appropriate data for the scheduling policy supported (e.g.,
deadlines for EDF or more complex parameters for contract-based scheduling).
Furthermore, supported policies must implement subprograms to map their own
scheduling parameters onto this private type. This interface allows end users (1) to create
handler tasks, specifying both the initial scheduling parameters and the receive endpoint
associated with this new handler task, and (2) to associate the processing of an incoming
event with specific scheduling parameters.

In addition to the public interface to create and configure handler tasks,
middleware will require a primitive to internally manage the scheduling parameters
associated with a handler task. This primitive is only used by the middleware, so a new
Ada package is provided to separate the application user interface from the middleware’s

Listing 3-2:  Package a-distributed-real_time.ads

1: package Ada.Distributed.Real_Time is
2: pragma Pure;
3: type Send_Endpoint_Id is private;
4: type Receive_Endpoint_Id is private;
5: type Event_Id is range implementation-defined;
6:
7: private 
8: type Send_Endpoint_Id is ...;
9: type Receive_Endpoint_Id is ...;

10: end Ada.Distributed.Real_Time;
3-86 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

Integration into the Ada standard
one. The description of this package is shown in Listing 3-5. The subprogram
Update_Scheduling_Parameters will update scheduling parameters for a selected
handler task, therefore allowing different concurrency patterns to process remote
requests as will be discussed in Section 3.8.

Finally, the last proposed interface, which is defined in Listing 3-6, is
responsible for providing the necessary subprograms to (1) configure the event flow

Listing 3-3:  Package a-distributed-real_time-network_scheduling.ads

1: package Ada.Distributed.Real_Time.Network_Scheduling is
2: type Message_Scheduling_Parameters is abstract tagged private;
3: type Message_Scheduling_Parameters_Ref is access all 

Message_Scheduling_Parameters'Class;
4:
5: procedure Create_Receive_Endpoint
6: (Net : Network_Id;
7: Port : Port_Id;
8: Endpoint  : out Receive_Endpoint_Id) is abstract;
9:

10: procedure Create_Send_Endpoint
11: (Param : Message_Scheduling_Parameters_Ref;
12: Dest_Node : Node_Id;
13: Event : Event_Id;
14: Net : Network_Id;
15: Dest_Port : Port_Id;
16: Endpoint  : out Send_Endpoint_Id) is abstract;
17:
18: procedure Create_Reply_Receive_Endpoint
19: (Net : Network_Id;
20: Event_Sent : Event_Id;
21: Port : Port_Id;
22: Endpoint : out Receive_Endpoint_Id) is abstract;
23:
24: procedure Create_Reply_Send_Endpoint
25: (Param : Message_Scheduling_Parameters_Ref;
26: Dest_Node : Node_Id;
27:  Event : Event_Id;
28: Net : Network_Id;
29: Dest_Port : Port_Id;
30: Endpoint : out Send_Endpoint_Id) is abstract;
31:
32: procedure Destroy_Receive_Endpoint
33: (Endpoint : Receive_Endpoint_Id) is abstract;
34: procedure Destroy_Send_Endpoint
35: (Endpoint : Send_Endpoint_Id) is abstract;
36: private 
37: type Message_Scheduling_Parameters is abstract tagged ...;
38: end Ada.Distributed.Real_Time.Network_Scheduling;
University of Cantabria 3-87



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
Automatic generation of the real-time configuration

3

within an end-to-end flow and (2) handle event identifiers (e.g. for setting the initial
event that triggers the start of the end-to-end flow).

3 . 6 A U T O M A T I C  G E N E R A T I O N  O F  T H E  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R E A L - T I M E  C O N F I G U R A T I O N

The creation and configuration of communication endpoints and handler tasks,
and the assignment of scheduling parameters to them, may be seen as a complex task that
requires the application developer to add a lot of code to an already complex application.
However, most of the work can be done at initialization time, and all the information

Listing 3-4:  Package a-distributed-real_time-processing_node_scheduling.ads

1: package Ada.Distributed.Real_Time.Processing_Node_Scheduling is
2: type Task_Scheduling_Parameters is abstract tagged private;
3: type Task_Scheduling_Parameters_Ref is access all 
4: Task_Scheduling_Parameters'Class;
5: type Handler_Id is range implementation-defined;
6:
7: procedure Create_Handler_Task
8: (Default_Params : Task_Scheduling_Parameters_Ref;
9: Endpoint : Receive_Endpoint_Id;

10: Handler : out Handler_Id) is abstract;
11:
12: procedure Destroy_Handler_Task
13: (Handler : Handler_Id) is abstract;
14:
15: procedure Set_Event_And_Sched_Params_Association
16: (Params : Task_Scheduling_Parameters_Ref;
17: Event : Event_Id) is abstract;
18:
19: function Current_Handler_Id return Handler_Id;
20:
21: private 
22: type Task_Scheduling_Parameters is abstract tagged ...;
23: end Ada.Distributed.Real_Time.Processing_Node_Scheduling;

Listing 3-5:  Package a-distributed-real_time-processing_node_scheduling-internals.ads

1: package Ada.Distributed.Real_Time.Processing_Node_Scheduling.Internals is
2: procedure Update_Scheduling_Parameters
3: (Params : Task_Scheduling_Parameters_Ref;
4: Handler : Handler_Id := Current_Handler_Id) is abstract;
5: end Ada.Distributed.Real_Time.Processing_Node_Scheduling.Internals;
3-88 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

Automatic generation of the real-time configuration
needed can be automatically obtained from the real-time end-to-end flow model. From
this model it is possible to make a transformation to automatically generate the
configuration code that needs to be run at initialization time, thus easing the application
of CASE tools. Following this approach, the application code would only need to include
a simple Set_Event_Id call to set the initial event that triggers the end-to-end flow.

With the increasing complexity of software applications, the use of model-
driven development processes such as MDA is becoming more and more frequent. This
type of methodologies requires a model of real-time behaviour in which the operations,
tasks, messages, triggering events and their interactions and deployment on a particular
hardware platform are explicitly described. This model allows the application developer
to perform a real-time analysis in which the timing requirements of the applications can
be validated. This model can be generated simply for the purpose of analysis, or it could
be obtained from design information of the application developed, for instance, with the
MARTE UML profile for embedded real-time systems [MAR08].

The model proposed by MAST [HAR01] allows the real-time behaviour of an
application to be represented and it may be obtained from the Schedulability Analysis
Modeling (SAM) subprofile included in MARTE [MED11]. The MAST model contains
descriptions of the execution and communications platform, the concurrent architecture
of the application, its operations including any synchronization, and the end-to-end flows
that describe the flow of events in the system. This software includes tools for
performing schedulability analysis as well as automatic assignment of scheduling
parameters, or sensitivity analysis. 

Although the MAST model contains most of the information that is required to
automatically generate the configuration of each architectural element defined in the
endpoints pattern, the integration of this model into distribution middleware is not

Listing 3-6:  a-distributed-real_time-event_management.ads

1: package Ada.Distributed.Real_Time.Event_Management is
2:
3: procedure Set_Event_Association
4: (Input_Event : Event_Id;
5: Output_Event : Event_Id);
6:
7: function Get_Event_Association 
8: (Input_Event : Event_Id) return Event_Id;
9:

10: procedure Set_Event_Id (New_Event : Event_Id);
11:
12: function Get_Event_Id return Event_Id;
13:
14: end Ada.Distributed.Real_Time.Event_Management;
University of Cantabria 3-89



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
Example of use

3

straightforward. Therefore, the current MAST model would need to be augmented to
describe a few additional properties that are required for this automatic configuration.

• Identification of the nature of each task: Unlike the endpoints pattern,
MAST does not differentiate whether tasks are dynamically created by
middleware or not, that is, if it is an application task or a handler task. The
latter is associated with a receive endpoint and is usually created by
middleware.

• Identification of the nature of messages. MAST models synchronous
remote calls as if they were asynchronous, and it does not distinguish
between the call and the reply of an RPC. However, the endpoints pattern
clearly distinguishes between RPCs and APCs because they use a different
configuration for the endpoints.

Once these features have been incorporated, the application of a set of rules
would be enough to generate the real-time configuration code automatically:

• For each message transmission operation, create a send endpoint in the
sending node (with the scheduling parameters associated with the message
stream), and a receive endpoint in the receiving node.

• For each handler task, create the corresponding handler with its specific
scheduling parameters.

• For each external event, add the corresponding Set_Event_Id call.
• For each input event to a step, generate the mapping between the event and

the corresponding scheduling parameters, as well as the association
between input and output events.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 7 E X A M P L E  O F  U S E

This section describes a simple example to illustrate the usage of the proposed
configuration interface. We once again consider the example described in Section 3.2.1
but, in this case, with two linear end-to-end flows performing asynchronous remote
procedure calls through three processors and using one communication network. The
elements belonging to each end-to-end flow are the same as were defined in Section 3.3
and depicted in Figure 3-7. The MAST model of this system is shown in Figure 3-10 and
it includes the details of the events, steps and processing resources (the processors or the
network). Each processor contains only a single Ada partition, so for our purposes,
3-90 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

Example of use
partitions and processors are equivalent. Note that in CPU-2 the Process_Image step is
performed by the same handler task (Process_Image_Shared) for both end-to-end flows. 

As can be seen in Figure 3-11, our approach only contains the entities
implemented in the application. In our case, the external events External1 and External2
trigger the execution of the steps in CPU-1 which, in turn, generate output events e11 and
e21. Those events cause messages to be sent to perform the remote call to the
Process_Image operation. CPU-2 identifies the incoming events (e11 or e21) in the
receive endpoint and transforms them to the corresponding events e13 or e23. Then,
middleware sets the appropriate scheduling parameters for the handler tasks depending
on the event received. After executing the steps in CPU-2, messages are sent to perform
the new remote call to CPU-3 with the current events. Finally, middleware in CPU-3 will
transform the incoming events into events e15 and e25 which will be used to set the
corresponding scheduling parameters for the steps. This ends the execution of the end-to-
end flows.

Figure 3-12 shows the Ada packages used in this example. These packages
can be classified into two different groups of files: (1) real-time configuration files and
(2) application code, which is divided in turn into the remote call interfaces and the main
procedures. The former are developed as Ada packages for CPU-3 and CPU-2 (see
Listing 3-7 and Listing 3-8, respectively). Listing 3-8 also shows how the remote call to
CPU-3 is performed. The latter are represented in Listing 3-9, Listing 3-10 and Listing 3-

� �
�������

�	
�� �	
�

�������	


�	
��

����������
���������

������

����������


����

�

 �
� �
� �
� �
�
���������

�����
������

������


����

����������
�������������

������

�������������
������������

����

����������
�����
������

������


����

����������
�������
������

��������


����

�������	�
����������
���������

������

�����������

����

��
 ��� ��� ��� ���
���������

�����
������

�������

����

����������
�������������

������

�������������
������������

����

����������
�����
������

�������

����

����������
�������
������

���������

����

Figure 3-10: MAST model for the example system
University of Cantabria 3-91



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
Example of use

3

11 for CPU-3, CPU-2 and CPU-1, respectively. While CPU-3 and CPU-2 only require
the real-time configuration to be performed for the end-to-end flows, CPU-1 also
requires the initial event to be set and the Process_Image remote request to be performed
(see Listing 3-11). As a result, we can appreciate the separation of concerns achieved by
the proposal between the application logic and the real-time configuration code.   

� �

����� �����

������������	

����������

�	
�����

�

�

����


�������
�����

�����������
�����������
�����������

����������

�

�������

��
��
���

��	

��
��
�

�����������
�����������
�����������

������������	

��������
�

�	
����


��������
�

�
�������

��
��
��


�
	

����
�����

�����������
�����������
�����������

	�
�

����
�������

���

�

	�
�

����
������


�
�

�����
������


��������
������


� ����
�
����������
��������


�������

�������
�����
�#����

���

�
�

Figure 3-11: Simplified model for the example system

Partition_1
Configuration_File

Partition_1

CPU-1
Partition 1

Partition_2
Configuration_File

Process_Image Partition_2

CPU-2
Partition 2

Partition_3Partition_3
Configuration_File

Actuate

CPU-3
Partition 3

End-to-end flow
configuration

Main
procedure

Remote 
Call Interface

Figure 3-12: Package structure for the MAST example
3-92 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

Example of use
As was described in Section 3.6, the real-time configuration file for each
partition would be generated automatically from the MAST model shown in Figure 3-10.
As an example, we will show how to generate the configuration code for CPU-2 and a
similar procedure could be followed for CPU-1 and CPU-3. The configuration code for
CPU-2 should include the following procedure calls (see Listing 3-12):

Listing 3-7:  Packages actuator.ads and actuator.adb

1: package Actuator is
2: pragma Remote_Call_Interface;
3: procedure Actuate (The_Command : Command_Type);
4: pragma Asynchronous;
5: end Actuator;

1: package Actuator is
2: procedure Actuate (The_Command : Command_Type) is
3: begin
4: ... -- Application code for the actuation
5: end Actuate;
6: end Actuator;

Listing 3-8:  Packages image_analysis.ads and image_analysis.adb

1: package Image_Analysis is
2: pragma Remote_Call_Interface;
3: procedure Process_Image (The_Image : Image_Type);
4: pragma Asynchronous;
5: end Image_Analysis;

1: with Actuator;  -- Other dependences
2: package body Image_Analysis is
3: procedure Process_Image (The_Image : Image_Type) is
4: begin
5: ... -- Process current image and decide the actuation
6: Actuator.Actuate (Current_Command);
7: end Process_Image;
8: end Image_Analysis;

Listing 3-9:  Procedure partition_3.adb

1: procedure Partition_3 is
2: begin 
3: Partition_3_Configuration_File;
4: ... -- Application code
5: end Partition_3;
University of Cantabria 3-93



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
Example of use

3

• Set_Event_Association: As can be seen in Figure 3-10, CPU-2 receives e11
or e21 as incoming events and transforms them to events e13 or e23
respectively. Such mapping between events remains registered in the
middleware for its management at runtime.

• Create_Receive_Endpoint and Create_Send_Endpoint: CPU-2 considers
four network transmission steps: two of them are for sending messages

Listing 3-10:  Procedure partition_2.adb

1: procedure Partition_2 is
2: begin 
3: Partition_2_Configuration_File;
4: ... -- Application code
5: end Partition_2;

Listing 3-11:  Procedure partition_1.adb

1: with Image_Analysis;  -- Other dependences
2: procedure Partition_1 is
3:
4: task Take_Image_1 is
5: ... -- Set task properties
6: end Take_Image_1;
7:
8: task Take_Image_2 is
9: ... -- Set task properties

10: end Take_Image_2;
11:
12: task body Take_Image_1 is
13: begin
14: Set_Event_Id (External1);
15: ... -- Application code
16: Image_Analysis.Process_Image (Curren_Image);
17: end Take_Image_1;
18:
19: task body Take_Image_2 is
20: begin
21: Set_Event_Id (External2);
22: ... -- Application code
23: Image_Analysis.Process_Image (Curren_Image);
24: end Take_Image_2;
25:
26: begin 
27: Partition_1_Configuration_File;
28: ... -- Application code
29: end Partition_1;
3-94 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

Example of use
(scheduled by Order_1 and Order_2) and therefore associated with two
send endpoints with their specific scheduling information. The other two
network steps (scheduled by Image_1 and Image_2) correspond to
incoming messages and therefore they must be mapped to receive
endpoints. In this case only one receive endpoint is required because both
input events (e11 and e21) are processed by the same handler task (which is

Listing 3-12:  Procedure partition_2_configuration.adb

1: procedure Partition_2_Configuration is
2: -- The definition of variables is omitted
3: begin 
4:
5: --  Set event associations
6: Set_Event_Association (Input_Event  => e11,
7: Output_Event => e13);
8: Set_Event_Association (Input_Event  => e21
9:  Output_Event => e23);

10:
11: --  Create receive endpoint for shared RPC handler
12: Create_Receive_Endpoint (Net      => Default_Network,
13:  Port     => Receive_Port,
14:  Endpoint => Rcv_Endpoint_Id);
15:
16: --  Create RPC Handler and scheduling params associated
17: Set_Event_And_Sched_Params_Association
18:    (Params => Process_Image_Shared_Sched_Params_e13,
19:    Event  => e13);
20: Set_Event_And_Sched_Params_Association
21:      (Params => Process_Image_Shared_Sched_Params_e23,
22:       Event  => e23);
23: Create_RPC_Handler
24: (Default_Params => Process_Image_Shared_Sched_Params,
25: Endpoint       => Rcv_Endpoint_Id);
26:
27: --  Create two send endpoints
28: Create_Send_Endpoint (Param => Msg_Scheduling_Parameters_e13,
29:  Dest_Node => Partition_3,
30:  Event => e13,
31:  Net => Default_Network,
32:  Dest_Port => Rcv_Port_Partition_e13,
33:  Endpoint => Snd_Endpoint_Id_e13);
34: Create_Send_Endpoint (Param => Msg_Scheduling_Parameters_e23,
35:  Dest_Node => Partition_3,
36:  Event => e23,
37:  Net => Default_Network,
38:  Dest_Port => Rcv_Port_Partition_e23,
39:  Endpoint => Snd_Endpoint_Id_e23);
40: end Partition_2_Configuration;
University of Cantabria 3-95



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
The endpoints pattern and the concurrency patterns

3

identified as Process_Image_Shared in Figure 3-10).
• Create_Handler_Task: The Process_Image_Shared task acts as a handler

task and therefore must be created explicitly by distribution middleware.
• Set_Event_And_Sched_Params_Association: This call allows CPU-2 to be

configured in order to have the Process_Image operation executed by a
single handler task. Thus, both end-to-end flows will share the handler task
and this operation can be executed with different scheduling parameters
depending on the triggering event after the corresponding transformation
(e13 or e23).

3 . 8 T H E  E N D P O I N T S  P A T T E R N  A N D  T H E  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C O N C U R R E N C Y  P A T T E R N S

One of the basic issues in the design of real-time applications lies in bounding
the WCRTs. These values do not depend exclusively on the application logic, which is
influenced by the concurrent aspects of the system, such as context switches or priority
inversions. However, due to the complexity of current software systems, other factors
may be involved in the choice of the concurrency pattern for the execution of remote
calls (for example, memory constraints in embedded systems or scalability in distributed
systems). Therefore, current distribution middleware often relies on different
concurrency patterns according to their most critical requirements.

To better handle the configuration of distributed real-time applications, the
endpoints pattern not only makes visible their schedulable entities, but it also provides
complete support for the end-to-end flow model. Furthermore, the endpoints pattern is
closely related to concurrency patterns as it provides the support required to configure
the handler tasks defined by middleware. 

As we discussed in Chapter 2, hard real-time systems usually require a
concurrency pattern which tends to minimize context switches and avoids the dynamic
update of scheduling parameters. Moreover, these requirements can also be useful in
other kind of real-time systems such as flexible scheduling environments [ALD06]
[FRSH11]. Therefore, this section aims to select the most appropriate concurrency
pattern to be used with the endpoints pattern. To this end, we briefly review below the
most common concurrency patterns used in distribution middleware for processing
concurrent remote calls.

In non-tasking environments, applications instantiate one task to process all
the remote requests. This task is responsible for I/O monitoring and processing the
incoming requests sequentially, so new requests arriving at the system will be blocked
until the previous request is completed. This behaviour is illustrated in Figure 3-13-A, in
3-96 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

The endpoints pattern and the concurrency patterns
which all the remote invocations performed by each system node converge at a single
communication point.

In multi-tasking environments, applications instantiate multiple tasks to
process incoming requests concurrently. Some examples for multi-tasking concurrency
patterns include the Thread-Per-Connection pattern [SCH98] (see Figure 3-13-B), which
creates a handler task for each session or connection request destroys it when the
connection is closed, and the Thread-Per-Request pattern [SCH98], which creates a
handler task for each incoming request and destroys it when the request is completed.
Both patterns require the dynamic creation and destruction of tasks per connection or per
request, respectively.

The Threadpool pattern is represented in Figure 3-13-C and includes all those
strategies based on the definition of a pool of tasks in charge of processing incoming
requests, such as:

• Workers [SCH98]. According to this pattern (see Figure 3-14-A), all tasks
from the pool are equal and they monitor the I/O operations and process the
incoming requests alternately.

• Half-Sync / Half-Async [SCH96][PYA01]. In this case, one specific task
monitors the I/O operations and queues the incoming requests, while the
tasks from the pool are responsible for processing them. This pattern is
shown in Figure 3-14-B.

• Leader & Followers [SCH98][PYA01]. Under this pattern, middleware
alternately selects a task from the pool to be the leader, thus becoming the

(A) Non-tasking (B) Thread-Per-Connection
Thread-Per-Request  

(C) Thread Pool

Transport

Dispatching

TaskI/O Buffer Remote Requests / Connections

Figure 3-13: Concurrency patterns commonly used in distribution middleware
University of Cantabria 3-97



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
The endpoints pattern and the concurrency patterns

3

task responsible for waiting, receiving and processing the next incoming
request, as is shown in Figure 3-14-C.

None of the concurrency patterns described above can satisfy the requirements
of avoiding unnecessary context switches and the dynamic update of scheduling
parameters. Therefore, we should define a new concurrency pattern capable of satisfying
both requirements and compatible with the endpoints pattern. 

This new concurrency pattern for multi-tasking environments consists of a
pool of statically created, dedicated tasks, that is, each task from the pool is pre-assigned
the processing of a set of specific end-to-end flows, thus avoiding unnecessary context

(A) Workers (B) Half Sync / Half Async (C) Leader & Followers

Transport

Dispatching

TaskI/O Buffer Remote Requests / Connections

Figure 3-14: Concurrency patterns of type ThreadPool

Transport

Dispatching

TaskI/O Buffer Remote Requests / Connections

Figure 3-15: Concurrency pattern based on dedicated tasks
3-98 Computers and Real-Time Group



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  D I S T R I B U T I O N
M I D D L E W A R E

Contributions of this chapter
switches. In the context of this thesis, this concurrency pattern has been called Ready To
Go (RATO). RATO supports the use of both static and dynamic scheduling parameters
for handler tasks as this is a configurable option. For the former case, developers should
define the same number of handler tasks as end-to-end flows that need to be processed
with different scheduling parameters. For the latter case, a single handler task is required
to process at least two end-to-end flows with different scheduling parameters. Figure 3-
15 represents this scenario. In this case, the system is configured to instantiate two
handler tasks, but one of them is responsible for handling the arrival of two separate end-
to-end flows, and can process both end-to-end flows with the same or different
scheduling parameters depending on the real-time configuration.

The scenario described in Figure 3-15, in which a single handler task can
await the arrival of several end-to-end flows, has the advantage of being easily scalable.
However, as a drawback, these end-to-end flows might be processed sequentially as they
share the same handler task.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 9 C O N T R I B U T I O N S  O F  T H I S  C H A P T E R

This chapter has described the process of integrating an analyzable real-time
model into middleware. Firstly, we studied the different distribution mechanisms defined
in distribution standards (remote procedure call, distributed objects and data-centric) to
validate their modelling and analysis by using the end-to-end flow model. Secondly, we
defined the entities and mechanisms required to integrate this real-time model into
distribution middleware, which resulted in the endpoints pattern, whose main
characteristics are presented below:

• Separation of concerns between the logic of the application and the
real-time aspects. Through the proposed API, the application code would
only need to include a simple Set_Event_Id call to set the initial event that
triggers the end-to-end flow. The rest of the end-to-end flow elements can
be described as a part of a configuration operation which must be
performed during the real-time configuration stage. 

• Support for heterogeneous scheduling policies and parameters. The
proposed interface presents a set of abstract primitives that should be
extended for each scheduling policy used.

• Control in the identification and / or assignment of scheduling
parameters. The proposed interface provides the required mechanisms to
create and configure the schedulable entities (handler tasks and endpoints)
included in the distributed system.
University of Cantabria 3-99



P R O P O S A L  F O R  A N  A N A L Y Z A B L E  R E A L - T I M E  M O D E L  I N  
D I S T R I B U T I O N  M I D D L E W A R E
Contributions of this chapter

3

• Infrastructure for CASE tools. In this case, we performed an analysis to
integrate the endpoints pattern with MAST, a schedulability analysis tool
based on the end-to-end flow model. This integration would allow us to
validate the proposed model and automatically generate the configuration
code required for distributed real-time systems.

The endpoints pattern defines a set of interfaces within distribution
middleware that allows processors and communication networks to be configured
explicitly. In particular, these APIs allow the scheduling parameters of a distributed real-
time application to be controlled. Although the configuration of a real-time application
using the proposed approach could be seen as a tedious task for developers, it can be
performed automatically by applying MDE techniques based on the end-to-end flow
model defined in the MARTE standard. In Chapter 5, we will explain how the endpoints
pattern can be used in a framework for the development of high-integrity distributed
applications following an MDE strategy. 

The endpoints pattern has been implemented for Ada by developing a set of
interfaces at two different application levels: developer level, for the creation and
configuration of the schedulable entities, and middleware level, for the internal
management of the end-to-end flow and its dynamic adaptation. These APIs have been
proposed for standardization within the Ada programming language as a solution for the
lack of support for development of distributed real-time systems.

Finally, we have defined a new concurrency pattern, which is called RATO, to
be used with the endpoints pattern. This pattern avoids unnecessary context switches and
the dynamic update of scheduling parameters. According to this pattern, developers are
responsible for explicitly defining which handler task and which scheduling parameters
will be used for each end-to-end flow defined in the distributed system.
3-100 Computers and Real-Time Group



4INTEGRATION AND VALIDATION OF THE 
REAL-TIME MODEL WITHIN DISTRIBUTION 

. . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MIDDLEWARE

This chapter is organized as follows. First, in Section 4.1, the general context to
integrate the endpoints pattern into a distributed real-time platform is introduced, as
well as the basic features of the specific distribution middleware selected for this
purpose. Section 4.2 introduces the distributed real-time platform and presents the
modifications performed within middleware to optimise its execution in a real-time
environment. An example of use is included in Section 4.3. Section 4.4 presents the
validation of the proposed approach through two different case studies. Section 4.5
reviews the previous work done to support the end-to-end flow model in distributed Ada
according to the DSA, and analyses in detail the differences compared with our
approach. Finally, Section 4.6 summarizes the main contributions of this chapter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 1 I N T R O D U C T I O N

One of the major conclusions drawn from the analysis of distribution
standards was the need to include new real-time mechanisms which (1) allow distributed
applications to be analysed through schedulability analysis techniques and (2) facilitate
the integration of middleware into new model-driven development processes. To fulfil
the two conditions, the previous chapter defined the endpoints pattern, a set of
mechanisms which allows the real-time requirements of a distributed application to be
specified. Once these mechanisms have been introduced, this chapter focuses on the
implementation and validation of the endpoints pattern in a distributed real-time
platform. 

In addition to integrating the endpoint pattern into distribution middleware,
the design of this kind of platform requires the integration of other components which
may affect the temporal behaviour of the system. In particular, the following components
are considered:
University of Cantabria 4-101



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Introduction

4

• Communication middleware, which is responsible for providing
applications with predictable mechanisms when requesting remote
services. This kind of mechanisms must also be aware of the underlying
communication protocols.

• Communication networks, which are responsible for ordering the nodes’
accesses to the communication media and guaranteeing bounded latencies.

• Operating system, which must be able to react to internal or external events
in a bounded period of time, as well as to provide a set of basic services for
a precise and deterministic execution of the system (e.g. scheduling or
timing services).

Besides these components, selecting an appropriate programming language
can facilitate the coding of the real-time parameters of applications. Furthermore, this
choice is also a key element in terms of efficiency, reliability and maintenance of the
system. Although the coding of real-time systems was initially performed by means of
assembly language, nowadays the use of high-level programming languages is more and
more usual, either sequential (e.g. C) or concurrent languages (such as real-time
extensions of Java [BOL00] or Ada [ADA05]). As was commented in Chapter 1, Ada
has been designed to develop real-time systems and already includes concurrent and
real-time mechanisms in the language itself. Moreover, the endpoints API was
implemented for Ada in the previous chapter. Therefore, support for this programming
language would also be desirable in the distributed real-time platform.

4 .1 .1 CHOICE OF THE DISTRIBUTED REAL-T IME PLATFORM
One of the objectives of this thesis is to assist programmers in the

development of distributed real-time systems coded in Ada, as was shown in the
previous chapter where the endpoints APIs were implemented for Ada. Therefore, the
platform selected should provide support for building distributed systems by means of
Ada DSA.

From the two DSA implementations that were analysed in Chapter 2, Glade
and PolyORB, the latter is the only one which is currently active and still evolving.
Additionally, PolyORB addresses the interoperability among distribution models (such
as RT-CORBA or DSA), which represents an interesting feature that can be used to
validate the proposal with different distribution models while using the same software
platform. 

As was shown in the analysis included in Chapter 2, PolyORB is oriented to
the development of real-time systems as it partially supports the RT-CORBA standard.
Although the DSA annex does not provide support for building distributed real-time
systems, the DSA personality included in this middleware follows a similar approach to
RT-CORBA. However, the analysis concluded that PolyORB requires some extensions
4-102 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Introduction
to optimise its predictability, such as the integration and scheduling of real-time
communication networks.

Since the existing version of PolyORB only supports communications based
on the IP protocol, one of our objectives will be provide this middleware with real-time
communication networks. For this purpose, it is necessary to choose a set of parameters
to evaluate the real-time capabilities of each communication network described in
Chapter 1. Unfortunately, the large number of scenarios and cases of use makes this
evaluation harder. Nevertheless, there are some surveys for specific technological sectors
such as that developed by IEC 61784 standard [IEC07] for industrial control systems.
Due to the objectives of the platform, the network or networks used should allow the
execution of hard real-time applications. Moreover, it should also be based on a costless
and accessible technology, such as for example Ethernet. In general, the processing
nodes of a hard real-time system communicate through one or several local and
controlled networks, and therefore it is not necessary to be interoperable with external
systems, for example by using Internet. Table 4-1 summarizes these properties for most
of the networks introduced in chapter 1. In particular, the following properties are
considered:

• Bit rate or maximum transmission capacity supported by each network link,
without considering the overhead introduced by protocols.

Table 4-1: Classification of real-time communication networks

TECHNOLOGY BIT RATE DETERMINISTIC
COMPATIBLE WITH 

ETHERNET COST

CAN 1MBPS YES INCOMPATIBLE MIDDLE/LOW

FLEXRAY 20MBPS YES INCOMPATIBLE MIDDLE

PROFIBUS 12MBPS YES INCOMPATIBLE MIDDLE

PROFINET 100MBPS YES NON-INTEROPERABLE MIDDLE

RTPS 10GBPS NO INTEROPERABLE LOW

RTP 10GBPS NO INTEROPERABLE LOW

CSMA/DCR 10GBPS YES INCOMPATIBLE MIDDLE

RT-EP 10GBPS YES NON-INTEROPERABLE LOW

FTT-ETHERNET 10GBPS YES NON-INTEROPERABLE LOW

RTNET 10GBPS YES INTEROPERABLE LOW

SWITCH AFDX 100MBPS YES INCOMPATIBLE VERY HIGH

SWITCH 802.1P 10GBPS YESA INTEROPERABLE MIDDLE/HIGH

a. with controlled workload
University of Cantabria 4-103



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Introduction

4

• Predictability of message transmission.
• Degree of compatibility with Ethernet standard classified according to: 

- Incompatible, if it does not use Ethernet technology or cannot be
implemented without modifying Ethernet hardware/firmware.

- Non-interoperable, if the mechanisms added to Ethernet cannot
operate in the presence of network nodes that do not implement the
alterations. 

- Interoperable, if it may coexist with standard Ethernet nodes.
However, these solutions may not offer temporal guarantees when
standard nodes are present. 

• Technology implementation costs.

Of the networks listed in Table 4-1, the RT-EP, FTT-Ethernet and RTnet
protocols fulfil the desirable properties of accessibility, predictability and cost. For these
solutions not based on Ethernet, the CAN bus can be considered an interesting option as
it is mature and accessible technology which is widely used in automotive and control
systems. Lastly, it is also important to consider how these protocols are supported by the
underlying operating system.

Unlike general-purpose operating systems, which focus on getting good
average response times, these services offered by real-time operating systems must be
executed with bounded maximum times. The only real-time operating system supported
by PolyORB is VxWorks1, a proprietary operating system for embedded applications
whose high cost has ruled out its use in our platform. Therefore, PolyORB should be
ported to another real-time operating system. As was the case for the development of
distributed systems, it would be desirable that the operating system selected were based
on standards, as they provide notable and stable solutions. Among the international
standards, the Portable Operating System Interface (POSIX) standard is one of the most
widely accepted by industry. Its main objective is to define a common interface which
allows applications to be executed using different operating systems. This standard
defines a set of services for different types of applications, including those related to
real-time systems which are collected in a profile named POSIX.13 [POS98]. POSIX.13
has been successfully implemented both in proprietary systems, such as the
aforementioned VxWorks or Integrity2, and in open-source systems, such as for example
MaRTE OS [ALD01].

MaRTE OS is a real-time kernel for embedded systems that follows the
POSIX.13 profile. This operating system provides the POSIX interfaces for C and Ada
programming languages, is open-source and supports hard real-time applications for

1. VxWorks is available at http://www.windriver.com/products/vxworks
2. Integrity is available at http://www.ghs.com/products/rtos/integrity.html
4-104 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Introduction
single processor and distributed systems, as it includes real-time communication
protocols like RT-EP or CAN. 

Summing up, the distributed real-time platform will consist of several nodes
running over MaRTE OS. For the communication services, the distributed platform can
use the RT-EP protocol or the CAN bus, which can meet hard real-time requirements and
are supported by MaRTE OS. Finally, PolyORB provides us with RT-CORBA and DSA
distribution models, two of the most notable standards in the development of distributed
real-time systems.

4 .1 .2 FEATURES OF THE DISTRIBUTED REAL-T IME PLATFORM
After selecting the elements of the distributed real-time platform (middleware,

operating system and communication networks), this section aims to review the main
features of these elements and it briefly introduces the architecture, configuration options
and services provided by each of them. The objective is to provide a general overview of
each element, identifying the possible weaknesses that should be modified to meet hard
real-time requirements.

4.1.2.1 MaRTE OS overview

As was previously commented in Section 4.1.1, MaRTE OS follows the
POSIX.13 profile. This profile includes a minimal set of services to allow embedded
applications to be developed efficiently. Among other features, it does not require either
implementing a file system or supporting multiple processes. Therefore, the concurrency
services (e.g. execution, scheduling or synchronization protocols) are only supported at
task level. Besides the concurrency model defined by the POSIX standard, this operating
system also provides support for the concurrency model defined by Ada. 

The MaRTE OS provides support for the scheduling policies defined in the
POSIX and Ada standards, which have been listed in Table 4-2.. Moreover, it also
provides a scheduling service, called Application-Defined Scheduling, for applications to
define their own scheduling algorithms. This service is used, for example, to implement

Table 4-2: Scheduling policies supported by MaRTE OS

STANDARD SUPPORTED POLICIES

POSIX SCHED_FIFO
SCHED_RR

SCHED_SPORADIC

ADA NON_PREEMPTIVE_FIFO_WITHIN_PRIORITIES

FIFO_WITHIN_PRIORITIES

ROUND_ROBIN_WITHIN_PRIORITIES

EDF_ACROSS_PRIORITIES
University of Cantabria 4-105



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Introduction

4

flexible scheduling techniques such as FSF [ALD06] or FRESCOR [FRSH11] but
without modifying the existing scheduling service included in MaRTE OS. Therefore,
the scheduling architecture defined by the MaRTE OS will allow the endpoints pattern to
be implemented for different scheduling policies, which represents one of the desirable
features for distribution standards and/or their implementations as commented in
Chapter 2.

In order to build applications, MaRTE OS uses its own compilation process
based on GNAT (i.e. the Ada compiler developed by AdaCore1) and provides a
compilation script, which is called mgnatmake, responsible for compiling and linking
with the appropriate kernel’s libraries.

Regarding communication networks, the MaRTE OS includes support for the
RT-EP protocol and the CAN bus. For the former, MaRTE OS implements the protocol’s
algorithm and also provides the drivers for several Ethernet cards (sis900, eepro100 and
rtl8139). For the latter, the kernel only includes the driver for a single card (Adlink PCI
7841). Finally, the existing version of MaRTE OS does not include any support for
networks based on the IP protocol.

4.1.2.2 RT-EP and CAN overview

RT-EP (Real-Time Ethernet Protocol) is a software-based token-passing
protocol over a logical ring. This protocol is built upon the Ethernet standard and can
handle network messages with MTU (Maximum Transmission Unit) up to 1492 bytes in
a single packet.

The software architecture of this protocol consists of several reception
channels, one per task that may communicate through the network, and only one
transmission channel. These channels are implemented as priority queues, and packets
with the same priority are stored in FIFO order. There is also one task, the Main
Communications Task, which is responsible for configuring and managing the logical
ring. Furthermore, this task is also in charge of processing I/O events, that is, sending the
data stored in the transmission queue and reading the incoming packets from the network
to store them into the reception queues.

CAN is a serial communication bus scheduled through fixed priorities, and
whose MTU is only 8 bytes. In this case, MaRTE OS only provides the driver for a single
card and does not implement any high-level protocol over the CAN bus.

However, none of the available drivers in the MaRTE OS provides message
fragmentation services to enable sending larger messages than their MTU (1492 bytes
for RT-EP and 8 bytes for the CAN bus). Although 1492 bytes may be enough for some

1. Ada-Core Technologies, The GNAT Pro Company. http://www.gnat.com/
4-106 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Introduction
kind of applications, 8 bytes are clearly inadequate for most of the communications used
by our platform, such as the CORBA standard.

4.1.2.3 FRESCOR overview

The FRESCOR (Framework for Real-time Embedded Systems based on
COntRacts) EU project [FRSH11] has the objective of providing engineers with a
scheduling framework that represents a high-level abstraction that lets them concentrate
on the specification of the application requirements, while the system transparently uses
advanced real-time scheduling techniques to meet those requirements. In order to keep
the framework independent of specific scheduling schemes, FRESCOR introduces an
interface between the applications and the scheduler, called the service contract.
Application requirements related to a given resource are mapped to a contract, which can
be verified at design time by providing off-line guarantees, or can be negotiated at
runtime, when it may or may not be admitted. As a result of the negotiation a virtual
resource is created, representing a certain resource reservation. The resources managed
by the framework are the processors, networks, memory, shared resources, disk
bandwidth, and energy; additional resources could be added in the future.

FRESCOR provides support for network contracts through a uniform interface
called FNA (FRSH Network Adaptation layer), which has been designed to allow
network modules to be easily plugged in for the same or different networks. In order to
be integrated into the framework, each network must implement this FNA layer. The
existing framework provides support for the RT-EP and CAN real-time networks, but
their scheduling is based on contracts instead of simple priorities. These are called
FRSH-RTEP [FRSH09-A] and FRSH-CAN [FRSH09-B], respectively.

In the FRESCOR framework, support for the end-to-end flow model is being
built. A tool called the Distributed Transaction Manager (DTM) [FRSH09-C] is a
distributed application responsible for the negotiation of end-to-end flows in the local
and remote processing nodes in a FRESCOR system that implements the contract-
scheduling framework. Managing distributed end-to-end flows cannot be done on an
individual processing node because it requires dynamic knowledge of the contracts
negotiated in the other nodes, leading to a distributed consensus problem. The objective
of the Distributed Transaction Manager is to enable the remote management of contracts
in distributed systems, including capabilities for remote negotiation and renegotiation,
and management of the coherence of the results of these negotiation processes. In this
way, FRESCOR provides support for distributed global activities or end-to-end flows
consisting of multiple actions executed in processing nodes and synchronized through
messages sent across communication networks.

The current implementation of the DTM limits its capabilities to the
management of remote contracts, and it is implemented directly over the network
services provided by FNA.
University of Cantabria 4-107



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Introduction

4

4.1.2.4 PolyORB overview

As was shown in Chapter 2, PolyORB is a middleware oriented to building
distributed real-time systems. However, it requires some extensions to optimise its
determinism. Figure 4-1 shows the general architecture for the distributed real-time
platform provided by PolyORB and summarizes the configuration options according to
six categories: Application personalities, Scheduling policies, Concurrency patterns,
Protocol personalities, Communication networks and Operating systems. In the
following, this general scheme will be used to identify the modifications included in the
proposed distributed real-time platform. Some of the modifications required at the
structural level have already been introduced (for example, support for a new real-time
operating system, incorporation of scheduling parameters in the communications and
integration of new real-time networks); however, it is also necessary to identify other
features that may affect the predictability of the approach. In particular, we will focus on
the mechanisms available to manage and process remote calls.

Figure 4-2 illustrates how I/O events are managed in PolyORB; this figure
represents the three layers defined by PolyORB (application, neutral and protocol layers)
and focuses on the Dispatching (neutral layer) and Transport (protocol layer) services.
As is shown in this figure, incoming network events (such as a connection request or the
reception of a message) are represented in PolyORB as an object called Event_Source,
which is a high-level abstraction of the entity responsible for managing the
communications for each network (e.g. a socket for IP networks). Therefore, each
network has a different type of Event_Source. If several Event_Source objects share the
same type, they are grouped in another entity called Monitor (see Figure 4-2). Thanks to
this entity, middleware can simultaneously monitor several Event_Source with a single

Application Personality

Operating System

Communication Network

Concurrency Pattern

Scheduling Policy

Network Personality

CORBA / DSA / 
Web Services

FPS

GIOP / SOAP

IP

VxWorks / Linux / 
Solaris / Windows

Controller
 Policies

Tasking 
Policies

Tasking 
Profiles

Figure 4-1: General architecture for PolyORB
4-108 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Introduction
task (for example, by using the select call defined for sockets). In PolyORB, the
processing of remote calls is divided into two stages as illustrated in Figure 4-2: “Check
for messages” and “Read message”. In the first stage, the task designated to monitor I/O
events will check the state of each Event_Source associated with the same Monitor.
When a new message has arrived at the system, the second stage starts and middleware
will select one or several tasks according to the concurrency pattern to read and process
the received message. 

Incoming messages are processed depending on the concurrency pattern used.
As was described in Chapter 2, PolyORB defines a set of concurrency patterns which
control the interaction among the personalities and the distribution micro-kernel. These
patterns include (1) tasking policies (No Tasking, Thread Per Request, Thread Per
Session or Thread Pool), (2) ORB controller policies (No Tasking, Workers, Half
Sync/Half Async or Leader/Followers) and (3) tasking profiles (No Tasking, Full Tasking
or Ravenscar). Although these patterns allow the application’s concurrent behaviour to
be configured, they do not consider the assignment of scheduling parameters for each
task. Furthermore, despite PolyORB implementing the RT-CORBA specification and
providing support for the management of priorities within the threadpool, this
management is performed at the application personality level. Therefore, the processing
of remote requests within the micro-kernel and protocol personality levels is performed
by internal middleware tasks. This is illustrated in Figure 4-3, which shows how this
middleware may suffer from the priority inversion problem when any of the predefined
concurrency patterns is used. The same problem applies when using the DSA application
personality since it also follows the scheduling model proposed by RT-CORBA. In fact,
this personality shares several aspects with RT-CORBA, such as the use of GIOP as the
communication protocol or the need of a Naming Server [NAM04] to register and locate
remote objects.

Check for messages Read message

Ev1 EvnEv2

Monitor
Transport

Service

Dispatching
Service

Ev1 EvnEv2

Application Personality Application Personality

PolyORB
internal
tasks

Ev Event
Source

Figure 4-2: I/O request processing in PolyORB
University of Cantabria 4-109



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
The distributed real-time platform and its extensions

4

However, the compilation process is different for both personalities. While
RT-CORBA uses an IDL compiler to statically generate stubs from IDL files and then
builds the application with a generic Ada compiler, DSA uses its own compiler, which is
called po_gnatdist, to generate stubs and build the application. Therefore, the
configuration options available for DSA depend on the po_gnatdist compiler instead of
PolyORB middleware (for example, a PolyORB-DSA application will always set
Workers as the ORB controller policy).

4 . 2 T H E  D I S T R I B U T E D  R E A L - T I M E  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P L A T F O R M  A N D  I T S  E X T E N S I O N S

4.2 .1 MODIF ICATIONS APPLIED TO THE PLATFORM
One of the major advantages of implementing the endpoints pattern relies on

separating the logic of the application from the real-time aspects. This can be seen in the
implementation performed in PolyORB, where the creation of schedulable entities
(handler tasks and endpoints) and the assignment of their scheduling parameters are
carried out by means of the proposed APIs, while events internal to end-to-end flows are
handled automatically by middleware.

As was described earlier in Chapter 3, the incorporation of the end-to-end flow
model and the endpoints pattern into distribution middleware requires the definition of a
parameter, which is called Event_Id, to identify the end-to-end flow being executed. This

PolyORB Server

RT-CORBA

GIOP

Neutral Core
PolyORB 
internal tasks

RT-CORBA 
threadpool

PundefinedPobject

Figure 4-3: RT-CORBA and PolyORB tasking model
4-110 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

The distributed real-time platform and its extensions
parameter is sent through the network and the appropriate scheduling parameters will be
used depending on it. In PolyORB, the Event_Id is transmitted as part of the GIOP
message in a data field called Service_Context [COR03]. This data field allows
middleware to specify service-specific context information for requests and replies, such
as the priority or the encoding used, as this information is passed implicitly with each
message. Unlike other solutions such as appending the Event_Id to a raw network
message, the use of the Service_Context data field is still compatible with the CORBA
standard and so it maintains the interoperability among different ORBs. Nevertheless,
this solution introduces some overhead because messages must be partially processed
before getting the Event_Id and updating the scheduling parameters whenever it is
required. The amount of overhead is not fixed and depends on each implementation since
the standard does not define any specific processing order when several
Service_Contexts are used [COR03]. Table 4-3 summarizes the new files and
modifications performed in PolyORB to implement the transmission of the Event_Id
parameter.

As was commented in Section 4.1.2.4, the management of priorities included
in PolyORB follows the same approach as the RT-CORBA specification. In this case, the
implementation of the endpoints pattern has a set of advantages over the RT-CORBA
approach, such as the use of interchangeable scheduling policies or the free assignment
of scheduling parameters. 

The endpoints API has been developed and completed in PolyORB for three
scheduling policies: FPS, EDF and flexible scheduling. Abstract interfaces have been
extended for each policy and therefore they use their corresponding scheduling
parameters, that is, priorities, deadlines and FRESCOR contracts, respectively. The
former two scheduling policies are fully supported by Ada so their integration was
straightforward. However, the flexible scheduling policy requires (1) the creation of the
Ada bindings to the FRESCOR framework (see Annex B) and (2) integrating the
creation and negotiation of contracts for internal middleware tasks into distribution
middleware.

Furthermore, the mechanisms included in the original version of PolyORB are
insufficient to optimise the timing behaviour of distributed applications, as is clear from

Table 4-3: Modifications performed in PolyORB to transmit the Event_id 
parameter

FILES PURPOSE

POLYORB-QOS-EVENT_PARAMETERS.ADS

POLYORB-QOS-EVENT_PARAMETERS.ADB

MARSHALLING / UNMARSHALLING SUBPRIOGRAMS FOR EVENT_ID 
PARAMETER

POLYORB-QOS-SERVICE_CONTEXTS.ADS TAG DEFINITION FOR SERVICE CONTEXT

POLYORB-QOS.ADS SUPPORTED QOS PARAMETERS
University of Cantabria 4-111



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
The distributed real-time platform and its extensions

4

the analysis in Chapter 2, which has led to the incorporation of a number of
improvements and extensions aimed at providing greater predictability.

As we said earlier in Chapter 2 and Section 4.1.2.4, PolyORB requires some
extensions to optimise the real-time behaviour of distributed applications. This has
motivated the incorporation of a set of enhancements which are described below:

• Support for a new real-time operating system
• New ORB controller and tasking policies that avoid unnecessary context

switches and the dynamic update of scheduling parameters.
• Definition of a new protocol personality for PolyORB to include

appropriate communication networks for hard real-time systems
• New tasking profiles adapted to the requirements set by the endpoints

pattern and the flexible scheduling policy. 

4.2.1.1 Support for a new real-time operating system

PolyORB has been ported to MaRTE OS which provides support for the
architectures based on fixed priorities, EDF and contracts that have been implemented in
middleware. The following changes were applied:

• Removal of packages whose subprograms are not supported by MaRTE
OS, such as those packages related to sockets or requiring a persistent file
system.

• Fixing the compilation process by adding a set of files to libmgnat, a
general-purpose library included in MaRTE OS. 

• Development of a new two-stage compilation process: firstly, these
development tools and services included in PolyORB are compiled using
the Ada compiler (GNAT), as they must be executed in the host computer
in order to enable the generation of stubs or the configuration of PolyORB
parameters; secondly, real-time applications are built by compiling and
linking source code and PolyORB libraries by means of the aforementioned
mgnatmake script. 

• Adaptation of the po_gnatdist compiler to the MaRTE OS environment.

4.2.1.2 New ORB controller and tasking policies

One of the conclusions drawn from the analysis of distribution middleware for
real-time systems was the direct connection between concurrency patterns and the
unbounded priority inversion problem. Regardless of the concurrency pattern used, the
4-112 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

The distributed real-time platform and its extensions
determinism of applications can only be guaranteed through an absolute control of the
scheduling parameters associated not only with application tasks but also with internal
middleware tasks.

Returning to the discussion dealt with in Chapter 3, hard real-time systems
usually select a concurrency pattern capable of avoiding unnecessary context switches
and the dynamic update of scheduling parameters. This may also be applicable to these
environments where the cost of the dynamic modification of the scheduling parameters
can be computationally high, as is the case of the flexible scheduling policy based on
contracts [ALD06] [FRSH11]. Since none of the concurrency patterns defined in
PolyORB can satisfy these requirements, a new concurrency pattern must be integrated
into middleware. In addition to satisfying both requirements, this new pattern should be
implemented together with the endpoints pattern. 

The RATO concurrency pattern was introduced in Chapter 3 and illustrated in
Figure 3-15. This pattern consisted of a pool of statically created, dedicated tasks.
According to the nomenclature included in PolyORB, RATO can be considered as a new
ORB Controller Policy. Specifically, it manages the distribution kernel’s main loop, the
I/O events and the processing of requests by means of dedicated tasks that wait directly
on the network.

PolyORB also defines the Tasking Policies to control the creation/removal of
internal middleware tasks. To this end, a new tasking policy named Thread Per Target
(TPT) has been defined as a complementary policy to RATO. This policy provides
mechanisms to create tasks explicitly with the appropriate scheduling information. As a
result, this policy can guarantee that tasks intended to process incoming remote calls are
usually created in the real-time configuration stage (see Section 3.4.4 in Chapter 3).
Table 4-4 summarizes the new files and modifications performed in PolyORB to
implement the new ORB controller and tasking policies. 

4.2.1.3 New protocol personality

Protocol personalities handle the mapping of network events onto middleware
data structures. In our case, the RT-EP protocol and the FNA FRESCOR communication
layer have been adapted to PolyORB in order to add network messages as new

Table 4-4: Modifications performed in PolyORB to create new tasking and 
orb_controller policies

FILES PURPOSE

POLYORB-ORB_CONTROLLER-READY_TO_GO.ADS

POLYORB-ORB_CONTROLLER-READY_TO_GO.ADB

NEW ORB_CONTROLLER TASKING POLICY

POLYORB-ORB-THREAD_PER_TARGET.ADS

POLYORB-ORB-THREAD_PER_TARGET.ADB

NEW ORB TASKING POLICY
University of Cantabria 4-113



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
The distributed real-time platform and its extensions

4

schedulable entities. These network protocols have been implemented within the GIOP
communication layer. Not only does this layer maintain the interoperability among
different ORBs which implement any of these protocols, but it also provides a message
fragmentation layer at the transport level. In our case, this fragmentation service is
particularly important as the network services included in MaRTE OS do not provide this
functionality. 

This deployment has required the use of two RT-CORBA standard elements:
the IOR and the Service_Context. The former is a data structure that stores the required
information to locate remote objects. As can be seen in Figure 4-4, the IOR consists of a
list of supported profiles, each of them with a specific identifier associated. In our case, a
new profile has been created for each protocol (i.e. RT-EP and FNA) which includes the
version of the protocol, the location of the remote object encoded as the station and
channel parameters, an object identifier to locate it within the remote node (Object Key)
and an extendable data field called Components. This data field contains additional
information supporting optional protocol features, such as the use of encrypted
communications or priorities depending on the scheme defined for each protocol (e.g.
RT-EP or CAN).

Once the processing nodes know the location of the remote objects and how to
contact them through the communication network, it is necessary to have mechanisms to
specify the execution priority for the requested services and the priority of the reply
messages in the case of RPCs. As was stated at the beginning of Section 4.2.1, the
transmission of the Event_Id parameter within the Service_Context data field allows
contextual information to be included with each request and response. This data structure
is transmitted with each request using a standard GIOP message, as illustrated in Figure
4-5.

Figure 4-4: Interoperable Object Reference structure
4-114 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

The distributed real-time platform and its extensions
After setting the scheduling parameters for both network messages and remote
objects, the next issue to consider is the management of these parameters by middleware.
As was discussed in Section 4.1.2.4, PolyORB defines a set of policies for managing
concurrent remote calls that are suitable for the priority inversion problem, both in the
management of the I/O events and in the processing of messages within the ORB (see
Figure 4-3). To solve this problem, a new software layer has been added within the
protocol personality level. This layer takes advantage of the features provided by RATO
and TPT policies in the management of network messages and the controlled use of task
and message scheduling parameters.

This software layer is common for both networks added (RT-EP and FNA) but
it provides specific operations for sending or receiving data, as well as for the specific
type of scheduling parameters handled by each of the protocols. Unlike the original
version of PolyORB, this modified version is designed to wait directly on the network
(i.e. the stage Check for messages, which was shown in Figure 4-2, was removed) and
assign scheduling parameters based on the value of the Event_Id parameter.
Consequently, this operation scheme based on the Event_Id does not use the RT-CORBA
policies since real-time requirements are managed independently at end-to-end flow
level through the mechanisms defined by the endpoints pattern.

Finally, Table 4-5 summarizes the most notable differences among the three
protocol personalities: IIOP, RT-EP and FNA. While the former was originally included
in PolyORB and is intended for IP-based networks, the latter two correspond to real-time
networks and have been developed as part of this thesis.

� �

���������	
���
��������	�
���

���������
�

����
�����
������������
�

�����������
��
�

���������������

�����
����

!���"����#
����

����������

����$����%&���

����$�������
����

!�������'����(�

'����(�
)�!*�+������

Figure 4-5: Message format for GIOP requests
University of Cantabria 4-115



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
The distributed real-time platform and its extensions

4

4.2.1.4 New tasking profiles

As was introduced in Chapter 2, PolyORB defines a series of tasking profiles
(No Tasking, Full Tasking, Ravenscar) to establish the restrictions that system tasks must
fulfil. In the case of the endpoints pattern, it is necessary to define (1) a way to establish
the scheduling parameters upon creating tasks and (2) a data structure that associates
each task with the specific Event_Id that is currently being processed, as well as with
other characteristic parameters (for example, a receive endpoint is associated with a
specific handler task). For our purposes, a data structure called Notes, which is already
defined in PolyORB, will be used. This data structure allows contextual information to
be associated with certain entities, such as for example tasks. For this particular case,
Notes is implemented as a tasks Ada attribute [ADA05]. This behaviour is collected by
means of a new tasking profile called Full Tasking Endpoints.

In addition to the conditions set by the endpoints pattern, the use of flexible
scheduling policies (i.e. the FRESCOR framework) adds several restrictions in the
creation / deletion of tasks that should be included in a new profile. Specifically, each
task executed within the framework must satisfy two conditions: firstly, it must be
associated with a contract that authorizes the use of system resources; secondly, it must
be restricted to possible changes in its scheduling parameters (e.g. priority) through
operations outside the framework. Therefore, a new profile has been added to PolyORB.
This new profile is called Full Tasking Frsh and it enables the creation of tasks
associated with a previously negotiated contract.

Due to the special features of tasks being executed within the FRESCOR
framework, specific support for the creation and integration of tasks into the framework
through middleware has been also included. To this end, two new subprograms have
been added to PolyORB, which are detailed in Listing 4-1. The first subprogram, which

Table 4-5: Differences among the new protocol personalities

IIOP RT-EP FNA

SUPPORTED PROTOCOLS TCP-IP RT-EP FRSH-RTEP / FRSH-CAN

SCHEDULING PARAMETERS SENT THROUGH THE NETWORK STATIC CONFIGURATION STATIC CONFIGURATION

TASKING POLICIES THREAD-PER-SESSION / THREAD-
PER-REQUEST / THREADPOOL

TPT TPT

ORB CONTROLLER POLICIES WORKERS /HS-HA / LF RATO RATO

I/O MONITORING SINGLE TASKA TASKS ON DEMAND TASKS ON DEMAND

UNFORCED CONTEXT SWITCHES 
FOR HIGHEST PRIORITY TASK

ACCORDING TO POLICY NONE NONE

a. Select call will be used to monitor multiple receive endpoints
4-116 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

The distributed real-time platform and its extensions
is called Create_FRSH_Thread, enables the creation of application tasks within the
framework. This subprogram takes the scheduling parameters and the code to be
executed by the new task (i.e. New_Thread_Code in Listing 4-1) as input parameters.

As Ada supports the creation of tasks by means of the language itself, it may
be of interest that middleware can provide a second subprogram to integrate these tasks
into the FRESCOR framework. To this end, the Processing_Node_Scheduling API for
FRESCOR contracts adds Negotiate_Contract_For_External_Thread as a new
subprogram, whose specification is also defined in Listing 4-1. By invoking this
subprogram, tasks will be integrated into the FRESCOR framework after negotiating a
new contract with the input scheduling parameters. 

Finally, the new files and modifications performed in PolyORB to implement
our two new tasking profiles (Full Tasking Endpoints and Full Tasking Frsh) are
summarized in Table 4-6.

Listing 4-1:  Processing_Node_Scheduling API extensions for the FRESCOR framework

1: procedure Create_FRSH_Thread
2:      (Params          : Frsh_Task_Scheduling_Parameters_Ref;
3: New_Thread_Code : Frsh_Ada_Types.FRSH_Thread_Code);
4:
5: procedure Negotiate_Contract_For_External_Thread
6:      (Params      : Frsh_Task_Scheduling_Parameters_Ref);

Table 4-6: Modifications performed in PolyORB to create new tasking profiles

FILES PURPOSE

POLYORB-SETUP-TASKING-FULL_TASKING_ENDPOINTS.ADB

POLYORB-SETUP-TASKING-FULL_TASKING_ENDPOINTS.ADS

SETUP PACKAGE FOR FULL TASKING ENDPOINTS 
PROFILE

POLYORB-TASKING-PROFILES-FULL_TASKING-ENDPOINTS_THREADS.ADS

POLYORB-TASKING-PROFILES-FULL_TASKING-ENDPOINTS_THREADS.ADB

NEW TASKING PROFILE TO ASSOCIATE SHCEDULING 
PARAMETERS AND ENDPOINTS WITH HANDLER TASKS

POLYORB-TASKING-PROFILES-FULL_TASKING-ENDPOINTS_THREADS-ANNOTATIONS.ADS

POLYORB-TASKING-PROFILES-FULL_TASKING-ENDPOINTS_THREADS-ANNOTATIONS.ADB

DATA STRUCTURES ASSOCIATED TO TASKS

POLYORB-SETUP-TASKING-FULL_TASKING_FRSH.ADB

POLYORB-SETUP-TASKING-FULL_TASKING_FRSH.ADS

SETUP PACKAGE FOR FULL TASKING FRSH PROFILE

POLYORB-TASKING-PROFILES-FULL_TASKING-FRSH_THREADS.ADS

POLYORB-TASKING-PROFILES-FULL_TASKING-FRSH_THREADS.ADB

NEW TASKING PROFILE TO INTEGRATE HANDLER 
TASKS INTO FRESCOR FRAMEWORK

POLYORB-TASKING-PROFILES-FULL_TASKING-FRSH_THREADS-ANNOTATIONS.ADS

POLYORB-TASKING-PROFILES-FULL_TASKING-FRSH_THREADS-ANNOTATIONS.ADB

DATA STRUCTURES ASSOCIATED TO TASKS
University of Cantabria 4-117



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
The distributed real-time platform and its extensions

4

4 .2 .2 DISTRIBUTED REAL-T IME PLATFORM 
IMPLEMENTATIONS
The work included in this thesis has been in evolution until the final proposal

for the endpoints pattern was made. This has led to different implementations in which
models and functionalities have been validated. These implementations are illustrated in
Figure 4-6. Although the main objective is to validate the use of the endpoints pattern
within distribution middleware, each implementation provides a set of different features
which are described below.

Figure 4-6-A shows the implementation performed on a Linux operating
system with the CONFIG_PREEMPT_RT1 patch. Although this operating system is not
able to satisfy hard real-time requirements, it facilitates the use of debugging tools and so
it has also facilitated the implementation of RATO and TPT policies. Therefore, it can be
considered as a first step in the development of our distributed real-time platform.
Furthermore, a new protocol personality for IP networks has been developed. Unlike the
IP-based protocol personalities already included in PolyORB, this new personality
supports the use of the endpoints pattern and includes the use of priorities in
communication networks through the Diffserv data field [RFC2474] (that is, a solution
similar to that proposed by TAO).

1. CONFIG_PREEMPT_RT patch is available at https://rt.wiki.kernel.org/index.html

Application
Personality

Operating System

Communication
Network

Scheduling Policies

Network
Personality

Controller  Policies

Tasking Policies

Tasking Profiles

CORBA / DSA

FPS

GIOP

Linux-rt

RATO

TPT

UDP/IP

Full Tasking

UDEP

CORBA

GIOP

MaRTE OS

RATO

TPT

CAN

FNARTEP_MAC

RT-EP

Endpoints
 Tasking

FRSH
Tasking

Endpoints protocol

FPS FRSH

CORBA / DSA

FPS

GIOP

MaRTE OS

RATO

TPT

FRSHEDF

CAN

FNARTEP_MAC

RT-EP

Endpoints
Tasking

FRSH
Tasking

(A) (B) (C)

Common Layer

Figure 4-6: General architecture for the distributed real-time platform
4-118 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

The distributed real-time platform and its extensions
Figure 4-6-B shows the first implementation performed on the distributed real-
time platform. It uses MaRTE OS as the hard real-time kernel and CAN and RT-EP as
the communication networks. The deployed version integrates processor and network
scheduling in a single Ada package and so cannot use different scheduling policies for
both resources. This restriction limits the implementation of mixed systems scheduled by
fixed priorities and, for example, TDMA communications. However, this
implementation allows the endpoints pattern to be validated in different distribution
models such as RT-CORBA and DSA, and under different scheduling policies such as
FPS, flexible scheduling and EDF. Currently, this implementation defines an API
corresponding to an earlier version of the endpoints pattern described in Chapter 3.

This preliminary version of the endpoints pattern does not include the event
transformation service either, and each end-to-end flow is identified by means of a single
Event_Id. This shortcoming limits the system whenever a remote object is invoked
several times during the same end-to-end flow but using different scheduling parameters.
Under this scenario, the use of a different Event_Id per remote call is required.

Figure 4-6-C illustrates the implementation corresponding to the final
proposal of the endpoints pattern included in this thesis. In this case, given that this work
is not included in the main development line of PolyORB, it was decided to rewrite the
API and the proposed extensions completely in order to facilitate the maintenance of the
proposal in future versions of middleware. Nevertheless, this API is currently
implemented only for the RT-CORBA distribution model and the fixed-priority and

Table 4-7: Files required to develop a new protocol personality in PolyORB

FILES PURPOSE

 POLYORB-BINDING_DATA.ADS NEW TAGS FOR THE PROTOCOL PERSONALITY

POLYORB-BUFFERS.ADB 
POLYORB-BUFFERS.ADS

NEW FUNCTIONS TO ADAPT RECEIVING MESSAGES TO MIDDLEWARE 
FORMAT

POLYORB-TRANSPORT-ENDPOINTS.ADB  
POLYORB-TRANSPORT-ENDPOINTS.ADS

BASIC STRUCTURES ASSOCIATED TO ENDPOINTS

POLYORB-TRANSPORT-ENDPOINTS-COMMON_LAYER.ADB

POLYORB-TRANSPORT-ENDPOINTS-COMMON_LAYER.ADS

COMMON LAYER ASSOCIATE DTO PROTOCOLS BASED ON ENDPOINTS

POLYORB-BINDING_DATA-GIOP-ENDPOINTS.ADB

POLYORB-BINDING_DATA-GIOP-ENDPOINTS.ADS

COMMON UTILITIES FOR GIOP INSTANCES THAT RELY ON ENDPOINTS 
ADDRESSES

POLYORB-BINDING_DATA-GIOP-EP.ADB

POLYORB-BINDING_DATA-GIOP-EP.ADS

NEW PROFILE FOR THE PROTOCOL PERSONALITY

POLYORB-GIOP_P-TRANSPORT_MECHANISMS-EP.ADB

POLYORB-GIOP_P-TRANSPORT_MECHANISMS-EP.ADS

NEW TRANSPORT MECHANISMS FOR THE PROTOCOL PERSONALITY

POLYORB-PROTOCOLS-GIOP-EP.ADB

POLYORB-PROTOCOLS-GIOP-EP.ADS

FILES REQUIRED TO CREATE A NEW GIOP INSTANCE FOR THE 
PROTOCOL PERSONALITY
University of Cantabria 4-119



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Example of usage

4

FRESCOR contracts scheduling policies, since our main objective is to verify the
functionality of the new features added to the endpoints pattern.

Unlike the other implementations of the endpoints pattern, this development
includes a common software layer shared by each real-time protocol and which has been
integrated as a new protocol personality (see Figure 4-6-C). This personality, which is
called the Endpoints protocol personality, is responsible for the management and
processing of I/O events of any real-time protocol based on the endpoints pattern. Table
4-7 summarizes the files required to implement the Endpoints protocol personality, and
Table 4-8 shows the adaptation files for each specific network protocol used (i.e. the RT-
EP protocol and the FRESCOR FNA communication layer).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 3 E X A M P L E  O F  U S A G E

The objective of this example is to describe the usage of the endpoints pattern
proposed in Chapter 3 and to introduce a simple application which executes over our
distributed real-time platform. In this case, the application consists of a linear and
synchronous end-to-end flow which executes remote calls through two processors and
one communication network. The application is implemented over the distributed real-
time platform defined in Figure 4-6-C, which implements all the features described by
the endpoints pattern.

Figure 4-7 shows the Ada packages used in this example. These packages can
be classified into three different groups of files: (1) the PolyORB configuration files, (2)
the end-to-end flow or real-time configuration files and (3) the application code. 

Table 4-8: RT-EP and FNA adaptation files to the protocol personality

FILES PURPOSE

POLYORB-TRANSPORT-ENDPOINTS-COMMON_LAYER-RTEP_MAC.ADB

POLYORB-TRANSPORT-ENDPOINTS-COMMON_LAYER-RTEP_MAC.ADS

WRITE / READ OPERATIONS FOR RT-EP PROTOCOL

POLYORB-SETUP-ACCESS_POINTS-RTEP_MAC.ADB

POLYORB-SETUP-ACCESS_POINTS-RTEP_MAC.ADS

SETUP OPERATIONS FOR RT-EPPROTOCOL

POLYORB-SETUP-RTEP_MAC.ADB

POLYORB-SETUP-RTEP_MAC.ADS

GIOP VERSIONS ENABLED AND INITIALIZATION OPERATIONS FOR RT-
EP PROTOCOL

POLYORB-TRANSPORT-ENDPOINTS-COMMON_LAYER-FNA.ADB

POLYORB-TRANSPORT-ENDPOINTS-COMMON_LAYER-FNA.ADS

WRITE / READ OPERATIONS FOR FNAPROTOCOL

POLYORB-SETUP-ACCESS_POINTS-FNA.ADB

POLYORB-SETUP-ACCESS_POINTS-FNA.ADS

SETUP OPERATIONS FOR FNA PROTOCOL

POLYORB-SETUP-FNA.ADB

POLYORB-SETUP-FNA.ADS

GIOP VERSIONS ENABLED AND INITIALIZATION OPERATIONS FOR FNA 
PROTOCOL
4-120 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Example of usage
Middleware configuration files allow a specific architecture within our
platform to be selected. In PolyORB, these files are different depending on the role of
each CPU (i.e. client or server) so two Ada packages have been developed called
polyorb-setup-endpoint_server (see Listing 4-2) and polyorb-setup-endpoint_client (see
Listing 4-3). 

Client
Configuration

File

Polyorb Setup 
Endpoint

Client

Client

CPU-1
Client

ServerServer
Configuration

File

Polyorb Setup 
Endpoint

Server

CPU-2
Server

End-to-end flow
configuration

Main
procedure

PolyORB 
configuration

Figure 4-7: Package structure for the PolyORB example

Listing 4-2:  Package polyorb-setup-endpoint_server.adb

1: -- Basic configuration of PolyORB 
2: with PolyORB.Setup.Base;
3: -- CORBA POA Configuration 
4: with PolyORB.Setup.OA.Basic_POA;
5:
6: -- Tasking profile 
7: with PolyORB.Setup.Tasking.Full_Tasking_Endpoints;
8: -- Tasking policy 
9: with PolyORB.ORB.Thread_Per_Target;

10: -- ORB Controller policy 
11: with PolyORB.ORB_Controller.Ready_To_Go;
12:
13: --  Transmission of Event Id parameter
14: with PolyORB.QoS.Event_Parameters;
15:
16: --  Personalities setup 
17: with PolyORB.Setup.RTEP_MAC;
18: with PolyORB.Setup.Access_Points.RTEP_MAC;
19:
20: package body PolyORB.Setup.Endpoint_Server is
21: end PolyORB.Setup.Endpoint_Server;
University of Cantabria 4-121



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Example of usage

4

For the server side, the application uses the CORBA distribution model
(Listing 4-2, lines 2 to 4), the RATO and TPT policies (Listing 4-2, lines 7 to 11) for the
management of remote calls and the RT-EP protocol (Listing 4-2, lines 17 to 18). The

Listing 4-3:  Package polyorb-setup-endpoint_client.adb

1: -- Basic configuration of PolyORB 
2: with PolyORB.Setup.Base;
3:
4: -- Tasking profile 
5: with PolyORB.Setup.Tasking.Full_Tasking_Endpoints;
6: -- Tasking policy 
7: with PolyORB.ORB.Thread_Per_Target;
8: -- ORB Controller policy 
9: with PolyORB.ORB_Controller.Ready_To_Go;

10:
11: --  Transmission of Event Id parameter
12: with PolyORB.QoS.Event_Parameters;
13:
14: --  Personalities setup 
15: with PolyORB.Setup.RTEP_MAC;
16: with PolyORB.Binding_Data.GIOP.EP;
17: with PolyORB.Binding_Data.GIOP.Endpoints;
18: with PolyORB.Binding_Data.GIOP;
19:
20: package body PolyORB.Setup.Endpoint_Client is
21: end PolyORB.Setup.Endpoint_Client;

Listing 4-4:  client_configuration.adb

1: procedure Client_Configuration is
2: ROP_Snd_Endpoint : Send_Endpoint_Id;
3: ROP_Reply_Endpoint : Receive_Endpoint_Id;
4: ROP_Params : Priorities_Message_Scheduling_Parameters_Ref :=
5: new Priorities_Message_Scheduling_Parameters;
6: begin 
7: ROP_Params.Message_Priority := 15;
8: --  Create one send endpoint and one reply receive endpoint 
9: Create_Send_Endpoint (Param => ROP_Params,

10: Dest_Node => Server_Node,
11: Event => 1,
12: Net => RTEP_Network,
13:   Dest_Port => 5,
14: Endpoint => ROP_Snd_Endpoint);
15:
16: Create_Reply_Receive_Endpoint (Net => RTEP_Network,
17: Event_Sent => 1,
18:  Port => 5,
19:  Endpoint => ROP_Reply_Endpoint);
20: end Client_Configuration;
4-122 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Example of usage
scheduling policy used for the processor is FPS, although this feature is selected through
the endpoints API. Lastly, it is also necessary to specify that the Event_Id parameter will
be transmitted as part of the Service Context field (Listing 4-2, line 14). 

For the client side, the PolyORB configuration file is similar to the file already
described for the server. However, in this case, PolyORB requires the inclusion of three
additional packages to select the RT-EP protocol personality (Listing 4-3, lines 16 to 18). 

After setting up the distribution middleware architecture, our next step deals
with the real-time configuration for the synchronous end-to-end flow. According to the
endpoints pattern, each element of the end-to-end flow can be described as a part of a
configuration operation executed during the real-time configuration stage (see Section
3.4.4). Listing 4-4 and Listing 4-5 show these real-time configuration files for the client
and server nodes, respectively. The former requires a send endpoint to be created to

Listing 4-5:  server_configuration.adb

1: procedure Server_Configuration is
2: ROP_Snd_Reply_Endpoint : Send_Endpoint_Id;
3: ROP_Receive_Endpoint : Receive_Endpoint_Id;
4: ROP_Handler : Handler_Id;
5: ROP_Handler_Params : Priorities_Task_Scheduling_Parameters_Ref :=
6: new Priorities_Task_Scheduling_Parameters;
7: ROP_Reply_Params : Priorities_Message_Scheduling_Parameters_Ref :=
8: new Priorities_Message_Scheduling_Parameters;
9: begin 

10: --  Create one receive endpoint and one reply send endpoint 
11: Create_Receive_Endpoint (Net      => RTEP_Network,
12:  Port     => 5,
13:  Endpoint => ROP_Receive_Endpoint);
14:
15: --  Create handler task and scheduling params associated
16: ROP_Handler_Params.Handler_Priority := 50;
17: Create_Handler_Task (Params => ROP_Handler_Params,
18: Endpoint       => ROP_Receive_Endpoint 
19: Handler_Task => ROP_Handler);
20:
21: ROP_Reply_Params.Message_Priority := 15;
22: Create_Reply_Send_Endpoint (Param => ROP_Reply_Params,
23: Dest_Node => Client_Node,
24: Event => 2,
25: Net => RTEP_Network,
26:   Dest_Port => 5,
27: Endpoint => ROP_Snd_Endpoint);
28:
29: Set_Event_Association (Input_Event  => 1
30:  Output_Event => 2);
31: end Server_Configuration;
University of Cantabria 4-123



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Example of usage

4

execute the remote request and a receive reply endpoint to wait for its result (see Listing
4-4). The latter requires a handler task to be created and a receive endpoint to process the
incoming request and a send reply endpoint to transmit the result. Furthermore, the event
mapping must also be included in the real-time configuration file for the server node (see
Listing 4-5).  

Finally, the application code for the main server and client procedures are
shown in Listing 4-6 and Listing 4-7, respectively. Those lists deliberately omit the
configuration corresponding to a CORBA system, but include calls to configure the end-
to-end flow (line 6 for Listing 4-6 and Listing 4-7) and the setting of the initial Event_Id
(see Listing 4-6, line 9). 

Listing 4-6:  server.adb

1: procedure Server is
2: begin 
3: --  Set up new CORBA object 
4: ...
5: -- Real-time configuration
6: Server_Configuration_File;
7:
8: --  Launch the server 
9: ....

10: end Server;

Listing 4-7:  client.adb

1: procedure Client is
2: begin 
3: --  Getting the CORBA object 
4: ...
5: --  Real-time configuration 
6: Clie nt_Configuration_File;
7:
8: --  Set Event_Id
9: Set_Event_Id (Event);

10:
11: loop
12: Result := ROP (ROP_Ref, Input_Params);
13: end loop;
14:
15: end Client;
4-124 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Case studies
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 4 C A S E  S T U D I E S

This section deals with the validation of the endpoints pattern by defining two
case studies which allow the most outstanding features of our proposal to be evaluated:

• Applying the endpoints pattern in a real and complex system, whose main
goal is to evaluate the complexity in the development of distributed real-
time applications running over our platform.

• Adapting and using the endpoints pattern in dynamic systems. This case
study permits the evaluation of the capabilities of our platform to be
adapted to dynamic changes in the system workload.

4 .4 .1 APPLYING THE ENDPOINTS PATTERN IN  A REAL AND 
COMPLEX SYSTEM
We have evaluated the impact of migrating a real application to the proposed

approach. The test platform consists of an industrial robotic arm (BTM) controlled by a
man-machine interface. In this case, the objective is to evaluate the complexity
introduced by applying the endpoints pattern to the controller software of a fully
operative robot. 

The BTM is a robotic arm composed of six independent axes driven by servo
motors. The controller software was developed previously so the effort has mainly
focused on adapting the source code to the distribution middleware developed in this
thesis. The main features of the platform are described below and in Figure 4-8:

• Hardware architecture. The platform shows a distributed architecture
connected through a 100 Mbps Ethernet network and is composed of two
processing nodes: the local robot controller, which manages the electrical
connections with the remotely manipulated arm, and the man-machine
interface, which sends the orders to the controller and periodically
supervises the system status.

• Software architecture. The robot software is divided into several software
modules, which are represented in Figure 4-8 and briefly described next.
On the one hand, the man-machine interface node includes the modules
named Control Manager, which manages the commands that the operator
introduces through the interface board, Trajectory Planner, for calculating
the trajectories that the robot must follow, and Reporter, to collect, display
and send information about the state of the system. On the other hand, the
University of Cantabria 4-125



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Case studies

4

local controller implements four modules which provide different remote
services: Servo Control, which implements the servo motors’ digital
control algorithm, Arm, which defines the basic elements of the remotely
operated arm grouped into two modules (sensors and actuators), Alarm, to
manage the alarms state for the overall control system, and Tools, which
includes the operations associated with the tools that the robot may have. 

• End-to-end flow model. Observing the software architecture shown in
Figure 4-8, we can see that the BTM application defines four periodic tasks
which are included in Control Manager, Trajectory Planner, Reporter and
Servo Control modules. In this case, we have four end-to-end flows, each
corresponding to one of the periodic tasks, but only two of them (the
Trajectory Planner and the Reporter end-to-end flows) are distributed as is
shown in Figure 4-8.

• Timing requirements. Hard Real-Time deadlines for control operations.

The distributed real-time platform developed in this chapter is responsible for
providing strict timing guarantees for the processing and the communications involved
in the BTM. In particular, the tests have been executed over a platform with the MaRTE

��������������
���	��
��������

�����	���

�
�����

�����	���

�
�����

����������	��

����������	��


�������
�������

�
�������
�
�������

�����	��
�����	��

���
�����
���
�����

����	�������
��
����	�������
��

����	�������
��
����	�������
��

������� �	��	���

 !!���

"!���

 !!���

���"���

�#��
�����
�#��
�����

$���
��

	��%

$���
��

	��%&

�#��
�����
�#��
�����

'����( )�������*#���#�	����� '����(+)�,��
���	��

��

���������

���

����������	��
����
����������	��
����

Figure 4-8: Distributed architecture of the BTM
4-126 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Case studies
v1.9 operating system, the modified version of PolyORB 2.4 and the FRESCOR
Framework v. January 2009.

Figure 4-9 summarizes the platform configurations tested with the distributed
controller, which uses the version of the endpoints pattern described in Figure 4-6-B. As
is shown in Figure 4-9, the software has been adapted to use both FPS and FRESCOR
contract scheduling policies. To avoid unnecessary context switches, middleware has
been configured to use the RATO and TPT policies for the processing of remote calls.
Furthermore, the RT-EP protocol has been selected as the communication network, using
both fixed-priority and contract-based implementations.

The distribution has been performed following both RT-CORBA and Ada
DSA standards. In the first case, the Ada packages involved in the remote services have
been re-written using the IDL language. Some difficulties have arisen in this step since
the Ada mapping to IDL specification [ALM01] does not cover all the aspects of the Ada
programming language. Some restrictions such as Ada ranges or subtypes do not have an
equivalent item in the IDL language, and moreover, predefined types (e.g. digits) or
arrays indexed by enumeration types lead to a minor modification of the application
code. 

On the other hand, a version has also been developed that uses Ada DSA and
FPS scheduling policy. As was introduced in Section 4.1.2.4, the DSA application
personality of PolyORB requires a naming server to be executed so a third node has been
added to the platform for this case. The evaluation results with the DSA personality were

PolyORB-CORBA

FPS

GIOP

MaRTE OS

RATO

TPT

FRSH

RT-EP

FRSH
Tasking

PolyORB-DSA

FPS

GIOP

MaRTE OS

RATO

TPT

RTEP_MAC

RT-EP

Network

Endpoints
Tasking

Endpoints
Tasking

FNARTEP_MAC

Common Layer

Figure 4-9: Distributed real-time platform for the BTM
University of Cantabria 4-127



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Case studies

4

not satisfactory due to a bug in the management of the dynamic memory. This bug
caused the middleware not to deallocate the memory previously allocated per request,
running out the available memory after processing a certain number of remote calls.
Because of this, the implementation based on FRESCOR contracts has been discarded.

The evaluation of the complexity in the integration of both distribution
standards within the distributed application has been measured computing the number of
extra source lines of code (SLOC) required to use the endpoints pattern (see Table 4-9).
This table shows the SLOC necessary for the environment initialization (e.g., selecting
tasking and controller policies, CORBA or DSA initialization operations, etc), the real-
time configuration (e.g., creating communication endpoints and handler tasks) and the
total. Three different versions of distribution middleware have been evaluated: RT-
CORBA with both FPS and FRSH scheduling, and DSA with FPS scheduling. As can be
observed, with the policy based on fixed priorities, the number of SLOC used by RT-
CORBA for the real-time configuration (23) is lower than for DSA (37). That slight
difference is caused by the new end-to-end flows in charge of the naming server
operations, that is, the registration and retrieval of the remote services location. When the
application is configured to use RT-CORBA with FRESCOR contracts, the SLOC added
is 38. That increase is due to the number of scheduling parameters included in a contract
and the negotiation process for external Ada tasks (i.e. not created by FRESCOR
framework). As final results, the RT-CORBA version required the addition of 61 SLOC
in total while DSA required only 43 SLOC over a project of more than 13,000 SLOC.
This comparison has not computed the necessary SLOC to with’ed new packages and the
overhead introduced by the data type mapping in the RT-CORBA case.

The adaptation of a complex real-time system, such as the BTM, to the
proposed platform has allowed us to validate the main features of the endpoints pattern:
minimal impact on the application code (less than 1%), full support for heterogeneous
scheduling policies and parameters (tested with FPS and FRESCOR contracts) and full
control over the creation and configuration of schedulable entities (by applying the
RATO and TPT policies).

Table 4-9: Complexity evaluation for the BTM (SLOCs)

DISTRIBUTION STANDARD
SCHEDULING 

POLICY
ENVIRONMENT 
INITIALIZATION

REAL-TIME 
CONFIGURATION TOTAL

RT-CORBA PRIORITIES 38 23 61

RT-CORBA FRSH 38 38 76

DSA PRIORITIES 6 37 43
4-128 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Case studies
4 .4 .2 ADAPTING AND USING THE ENDPOINTS PATTERN IN  
DYNAMIC SYSTEMS
The FRESCOR project had the objective of providing a flexible scheduling

framework able to apply advanced real-time scheduling techniques transparently. These
techniques may be applied either to systems with static workload, characterized by
having a fixed number of end-to-end flows, or those systems with dynamic workload
and, as a consequence, a variable number of end-to-end flows. In the latter, the
application requirements related to a given resource are mapped to a contract which is
negotiated at runtime and may or may not be admitted in the system.

This last case will enable us to check the use of the endpoints pattern in
dynamic systems. According to the end-to-end flow model, this dynamic workload is
interpreted as new end-to-end flows arriving at the system which may or may not be
executed, depending on the number of resources available. In a distributed system,
accepting a new end-to-end flow requires local and remote information from each node
involved in the negotiation process. As was previously commented, this complex process
is efficiently managed though a high-level tool called Distributed Transaction Manager
(DTM) [FRSH09-C]. Therefore, the first objective of this section is adapting the DTM to
our distributed real-time platform. 

Figure 4-10 shows the overall DTM architecture as viewed from the
application. The DTM has been designed as a layer between the application and the
FRESCOR API, called FRSH, in order to avoid increasing the complexity of the
FRESCOR framework. The existing version of the transaction manager limits its
capabilities to the management of remote contracts only. Under this implementation, the
DTM contains an agent in every node, which listens for messages either from the local

App thread
App thread

App. thread

FR
SH

FN
A

Protocol 1

DTM agent

DTM

Figure 4-10: DTM implementation and FRESCOR framework

App thread
App thread

App. thread

FR
SH

FN
A

Protocol 1 network 1

network 2

DTM agent

DTM data data

invocation logical link

M
sg

. F
ra

gm
en

ta
tio

n

M
sg

. F
ra

gm
en

ta
tio

n Protocol 2 Protocol 2
University of Cantabria 4-129



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Case studies

4

node or from remote nodes, performs the requested actions, and sends back the replies
(see Figure 4-10). In every node there is also a DTM data structure with the information
used by the corresponding agent. Part of this information is shared with the DTM
services invoked locally from the application threads. As was described before, this
architecture was initially implemented directly over the network communication
primitives provided by FNA as shown in Figure 4-10, but could alternatively be
implemented using different distribution standards (e.g. CORBA, DDS, or Ada DSA),
thus simplifying the complexity of the communication among agents, as well as enabling
the use of all the basic services provided by middleware (initialization, fragmentation,
data codification, etc).

Furthermore, this architecture could benefit from the presence of a distribution
middleware based on the endpoints pattern by providing full support for the end-to-end
flow model. To this end, the DTM should be provided with the following services:

• Specification of the full end-to-end flow with identification of its activities,
remote services and events, and contracts for the different resources
(processors and networks).

• Automatic deployment of the end-to-end flow in middleware. This would
require:

- choosing unused Event_Ids for the end-to-end flow events.
- choosing unused ports in the nodes involved, for the

communications.
- creating send endpoints for the client-side of the communications,

using the desired contracts and networks.
- creating receive endpoints for the reception of the reply on the client-

side of the communications, using the desired networks, ports, and
Event_Ids.

- creating the necessary handler tasks with their corresponding
contracts.

- creating the receive endpoints on the server-side for the
communications using the desired contracts and networks.

- creating the send endpoints on the server-side for the communication
using the desired contracts and networks.

All this deployment would be done automatically by the DTM using the
configuration information of the end-to-end flow. After the real-time configuration
stage, the end-to-end flow would start executing, its remote operations would be invoked
and middleware would automatically direct them through the appropriate endpoints and
handler tasks almost transparently. We would only specify the appropriate Event_Ids.
4-130 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Case studies
The DTM is essentially a distributed application that, in this case, will be
implemented using the CORBA personality. Thus, the remote data types and services
provided by the DTM must be described through the IDL language [COR03]. In
particular, this has required the definition of:

• DTM internals
- Send_Message. A remote call interface used to exchange the

different kinds of messages between the DTM agents.
- Idl_Dtm_Message. A data record used to store a generic message

unit. It consists of a header, indicating the message type, and a body,
storing the specific data associated with a particular message type. 

- Exchanged data types: Each kind of message has different data
structures which will be exchanged among the agents. All of them
must be described in IDL, including those consisting of complex
types such as the contracts.

• DTM services
- Initialization. This service assures that every agent in the distributed

system is ready to send and receive requests. In this case, the
initialization process is based on the CORBA Naming Service
[NAM04]. Under this approach, each agent should register its IOR
on the name server when it becomes ready to start or accept requests,
and obtain the IOR from the remaining agents to assert that they are
also in the ready state.

- Routing. In this context, routing means the capacity to interconnect
different networks in systems where nodes are not connected
directly. This service should be included as part of distribution
middleware to limit the overhead that would be incurred by crossing
all the implementation layers up to the application level so it has
been implemented in PolyORB within the GIOP protocol (see Figure
4-11). Our approach focuses on routing through the Event_Id. Once
the routing node has identified the event parameter and thus the
ongoing end-to-end flow, it asks middleware whether the invoked
object is located in the local node or not. If not, the implementation
will route the incoming message through the pre-configured send
endpoint.

Figure 4-11 represents a general overview of the DTM integrated into
PolyORB. The current version uses PolyORB-CORBA, FRSH contracts for the
scheduling policy, and RATO + TPT policies (which support the explicit creation of
handler tasks and their association with endpoints). Since the DTM and its integration
University of Cantabria 4-131



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Case studies

4

into distribution middleware is a complex development, any interested reader may
consult further details in [SAN10].

The last step is validating the use of the endpoints pattern in dynamic systems
by obtaining some time metrics for the negotiation and admission of new end-to-end
flows into the system. We have evaluated the DTM over a platform consisting of four
800 Mhz embedded nodes connected through a 100 Mbps Ethernet with GNAT GPL
2008, MaRTE OS 1.9 and the modified version of PolyORB 2.4. Three tests have been
run for two, three and four processing nodes. The tests consist of 10 independent
asynchronous end-to-end flows, each one negotiating one contract for each processing
node and one contract for each link over the network. Table 4-10 shows the times
measured for these three tests. As can be seen, the distributed negotiation process takes
less than 20 ms for two processing nodes. In the cases of three and four processing
nodes, this time is not increased significantly despite the higher overhead in the network
and the extra negotiations of contracts. In spite of the fact that the DTM specification
might seem complex and laborious, we have found that the system can obtain good
performance when negotiating new end-to-end flows.

Application Personality

Operating System

Communication Network

Scheduling Policy

Network Personality

CORBA

FRSH

GIOP + Routing Service

MaRTE OS

RATO

TPT

RT-EP

FRSH Tasking

Controller  Policy

Tasking Policy

Tasking Profile

FNA

CAN

DTM Manager

Common Layer

Distributed Application

Figure 4-11: The integration of the DTM into distribution middleware
4-132 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Advances over related work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 5 A D V A N C E S  O V E R  R E L A T E D  W O R K

As was introduced in Section 3.3.1, the integration of the end-to-end flow
model into distribution middleware has already been considered in a previous work. This
work led to the development of middleware technology called RT-GLADE, a
modification of GLADE which adds a set of extensions to optimise its real-time
behaviour. There are two versions of RT-GLADE: in the first one [LOP04], free
assignment of priorities in remote calls is allowed (both in the processors and in the
communication networks); the second version [LOP06] proposes a way of incorporating
distributed transactions or end-to-end flows into the DSA and providing support to
different scheduling policies in a distributed system.

Although the basic differences between the two proposals have been briefly
introduced, the implementation of the distributed real-time platform with PolyORB adds
several new features as shown in Figure 4-12. Each of these differences represents a step
forward in this previous work and is described next:

• Separate interfaces for processing resources 
RT-GLADE proposes a single interface to configure both processing
resources. However, our proposal defines different interfaces for handler
tasks and communication endpoints, which eases the integration of new,
possibly different, scheduling policies both in processing nodes and
networks.

• Shared use of handler tasks among different end-to-end flows 
As a result of defining different interfaces for processors and networks, the
initial restriction of having a handler task associated with a particular
Event_Id can be removed, thus allowing the same handler task to be shared
by several end-to-end flows. 

Table 4-10: DTM metrics to negotiate dynamic end-to-end flows using 
middleware (times in μs)

NUM. OF NODES MAX MED MIN STD. DEVIATION

TWO NODES 19508 19383 19133 111

THREE NODES 25546 25219 24470 330

FOUR NODES 33255 32713 32565 199
University of Cantabria 4-133



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Advances over related work

4

• Automatic management of events 
Our proposal supports a flexible end-to-end flow model with event
transformations to avoid the management of real-time aspects within the
application code. This management is done at runtime, but using the
configuration information defined at initialization time. It also supports
complex event patterns which are different from linear ones.

• API designed to ease the use of CASE tools 
The proposed interfaces facilitate the automatic generation of the real-time
configuration code through CASE tools, especially with those based on the
end-to-end flow model such as MAST. As was described in Section 3.6, the
transition between the MAST model and the real-time model integrated
into middleware is almost straightforward.

• Support for different distribution models 
As is illustrated in Figure 4-12, the interface defined for RT-GLADE was
only validated for Ada DSA, while our proposal has been validated in both
CORBA and DSA distribution models.

• Support for standardized communications 
The proposed approach relies on the standard GIOP protocol for
communications. This protocol enables the interoperability with other

Middleware

Operating System

Network

Scheduling

Tasking

RTGlade DSA

Special-purpose
fragmentation layer

Endpoints

CAN

FSFRTEP

RT-EP

FPS FSF

PolyORB CORBA / DSA

FPS

GIOP

MaRTE OS

RATO

TPT

FRSHEDF

CAN

FNARTEP_MAC

RT-EP

Endpoints
Tasking

FRSH
Tasking

Common Layer

Figure 4-12: Architecture for the distributed real-time platform
4-134 Computers and Real-Time Group



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  W I T H I N  D I S T R I B U T I O N
M I D D L E W A R E

Contributions of this chapter
CORBA implementations. Furthermore, it also provides a standard
fragmentation service, while RT-GLADE implements a specific
fragmentation layer for its implementation.

• Validation of the proposal in dynamic systems 
The use of the FSF framework in RT-GLADE does not include a high-level
manager to handle the remote negotiation and renegotiation of contracts
and the coherence of the results of these processes. Therefore, FSF
contracts must be negotiated locally and so new end-to-end flows must be
scheduled offline. However, the FRESCOR framework adds support for the
distributed negotiation of contracts through the DTM distributed tool and
thus our approach can be applied to distributed real-time systems with
variable workload. In order to provide support for this kind of scenario, the
DTM has been adapted to run over our distributed real-time platform by
developing it as a CORBA distributed application and also integrating it
into distribution middleware. 

• Adding new schedulers 
The middleware technology included in RT-GLADE was only validated for
static systems using FPS and FSF contracts [ALD06] scheduling policies.
Our development, besides the static systems scheduled with FPS and
FRESCOR contracts, adds support for these kinds of systems scheduled
through the EDF policy (see Figure 4-12). This case has only been tested
using simple examples with synthetic workload in order to check whether
this policy can be used with the endpoints pattern.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 6 C O N T R I B U T I O N S  O F  T H I S  C H A P T E R

This chapter has addressed the validation of the endpoints pattern by
implementing a distributed real-time platform capable of providing strict temporal
guarantees. Among other features, this platform has been developed to provide the end-
to-end flow model with support within distribution middleware, interchangeable
scheduling policies such as FPS, FRESCOR contracts and EDF, and a set of extensions
to enhance the system predictability. These improvements include (1) porting to a new
real-time operating system (MaRTE OS), (2) a new communication layer to use different
real-time protocols such as RT-EP or CAN, and (3) a new internal management of
middleware tasks by defining new tasking and controller policies and profiles.

One major contribution of this chapter is the use of the endpoints pattern with
different distribution models, such as RPCs for Ada DSA or distributed objects for RT-
CORBA. Figure 4-6 summarizes the architecture of our distributed real-time platform
University of Cantabria 4-135



I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  T H E  R E A L - T I M E  M O D E L  
W I T H I N  D I S T R I B U T I O N  M I D D L E W A R E
Contributions of this chapter

4

and shows the supported distribution models, tasking and scheduling policies, and
network protocols integrated into PolyORB. 

After the development of the distributed real-time platform, two case studies
have been proposed to validate the endpoints pattern in different scenarios. In a static
system, where there are a predefined number of end-to-end flows, the complexity of
adapting an existing real-time system to the proposed model was evaluated, and for
dynamic systems, the tests carried out demonstrated the capability of our approach to be
adapted to environments whose workload is variable. 

In the static case, the test results were satisfactory and allowed several design
goals to be evaluated: (1) separation of concerns between the logic of the application and
the real-time configuration code, (2) use of heterogeneous scheduling policies and
parameters, and (3) control in the creation and configuration of schedulable entities.
Likewise, the tests executed for dynamic systems showed that our approach can provide
temporal guarantees even when new end-to-end flows are being negotiated in the system.
4-136 Computers and Real-Time Group



5ADAPTATION OF THE ENDPOINTS PATTERN 
TO HIGH-INTEGRITY DISTRIBUTED REAL-

. . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIME SYSTEMS DEVELOPED IN ADA

This chapter focuses on the adaptation of the proposed endpoints pattern to the
restrictions imposed by high-integrity systems. The first section introduces the basic
concepts and the Ravenscar profile, a subset of the Ada programming language that
facilitates the development of safety-critical applications. Section 5.2 describes the
necessary modifications to the original API in order to be compatible with Ravenscar.
The new endpoints API for Ada is proposed in Section 5.3, while Section 5.4 shows an
example of use. Section 5.5 validates the proposal by implementing it over a high-
integrity distributed real-time platform. Section 5.6 introduces an environment for the
development of high-integrity distributed real-time applications where the proposal can
be integrated. Section 5.7 lists the minimum set of requirements that should be
implemented to support the end-to-end flow model in those systems that must be
configured at compilation time. A review of the related work is included in Section 5.8.
Finally, Section 5.9 summarizes the contributions of the chapter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 H I G H - I N T E G R I T Y  S Y S T E M S  A N D  A D A

The correct operation of a current complex computer system can depend on a
wide range of factors. For example, as noted in Chapter 1, a real-time application not
only depends on its logical result, but also on the time at which the result has been
produced. Furthermore, other real-time systems may even consider safety factors. For
example, in high-integrity systems a possible failure may lead to unacceptable
consequences or damage (e.g. financial, environmental or personal disasters). Therefore,
these kinds of systems must undergo a certification process to verify their compliance
with certain requirements imposed by different standards: DO-178B for avionics, IEC
880 for nuclear plants, MISRA for automotive, etc.

The main objective for high-integrity systems lies in the development of
reliable applications where the simplicity of the system is seen as an essential property.
One of the major advantages of Ada over other programming languages is the definition
University of Cantabria 5-137



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

of profiles that restrict the use of certain aspects of the programming language to favour
the simplicity of the analysis. In particular, Ada provides the following facilities to
develop safety-critical systems:

• ISO/IEC TR 1594 [GAHI00]. Guide for the use of the Ada programming
language in high-integrity systems (GA-HI). This document transfers the
general restrictions on the development of a high-integrity system to the
specific field of Ada. 

• SPARK [SPA10]. It is a subset of Ada which restricts the use of certain
features to facilitate the static analysis, focusing exclusively on the
sequential part of this programming language. However, not only does
SPARK restrict Ada but it also adds formal annotations within the source
code to perform data flow analysis automatically.

• Pragma Restrictions [ADA05]. It is a compiler directive that allows the
developer to select the restrictions that must be applied to software.

• Ravenscar profile [ADA05]. It is a profile that defines a safe and
analyzable subset of Ada concurrency facilities. Therefore, it aims to define
a deterministic concurrency model for Ada. It consists of a set of
restrictions.

Since the endpoints pattern facilitates the application of schedulability
analysis, its use in high-integrity systems is mainly limited by the restrictions defined by
the Ravenscar profile. Therefore, this chapter focuses on the adaptation of the proposed
real-time model to Ravenscar, but it also identifies the potential conflicts that may arise
with the other aforementioned Ada tools.

5 . 2 A D A P T I N G  T H E  E N D P O I N T S  P A T T E R N  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T O  T H E  R A V E N S C A R  P R O F I L E

The Ravenscar profile defines a set of restrictions in the system concurrency
model, thus imposing a review of the endpoints pattern. The complete list of restrictions
included in the profile can be found in [ADA05], although only a subset of them may
affect the proposal. In particular, the following restrictions must be considered:

• Only the FIFO_Within_Priorities dispatching policy is allowed.
The proposed approach is independent of the selected policy. However, this
flexibility does not violate this restriction because the choice of available
scheduling policies remains implementation-defined. Furthermore, keeping
5-138 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

Adapting the endpoints pattern to the Ravenscar profile
this flexibility enables future profile extensions [WHIT10].

• The set of tasks in the system is fixed and created at library level.
The Processing_Node_Scheduling interface provides operations to create
handler tasks at the real-time configuration stage, which is not Ravenscar
compliant. Therefore, it requires a revision of the proposal in order to
create handler tasks at library level.

• Tasks have static scheduling parameters.
Although the current approach allows handler tasks to update their
scheduling parameters at runtime according to the retrieved Event_Id, this
feature is not compatible with Ravenscar and must be disabled. However,
the transmission of the Event_Id parameter remains necessary in order to
allow the same handler task to be shared among multiple end-to-end flows,
if necessary.

Although the endpoints pattern does not violate any further Ravenscar
restrictions, there are some other aspects that middleware implementations should take
into account:

• Prevent the use of task attributes. 
As was said earlier in Chapter 4, the implementation of the endpoints
pattern for PolyORB [PER08] uses task attributes to store and retrieve the
Event_Id parameter.

• All tasks are non-terminating. 
The Processing_Node_Scheduling interface provides operations to destroy
handler tasks and, therefore, these operations must be disabled.

The Ravenscar profile has mainly been applied for the static analysis of
applications running within a single node or multiple nodes but without considering the
communication networks in the analysis. However, the real-time distributed model
proposed in this work includes the endpoints as schedulable entities representing the
communication points within the network. The ARINC 653 specification [ARINC06]
follows a similar approach through the definition of ports, entities that enable the inter-
partition and intra-partition communication and behave as the input points to a real-time
network (e.g., AFDX [AFDX09]).
University of Cantabria 5-139



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

5 . 3 T H E  E N D P O I N T S  A P I  F O R  H I G H -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I N T E G R I T Y  S Y S T E M S

Each of these aforementioned considerations must be addressed within the set
of interfaces introduced in Chapter 3. Figure 5-1 represents the Ada package hierarchy
for the new proposal for integrating the endpoints pattern into high-integrity systems.
The modifications proposed over the original API are detailed in the following
subsections. 

Figure 5-1: Package hierarchy for end-to-end flow Ravenscar systems

Listing 5-1:  Package r-distributed-real_time-event_management.ads

1: package Ravenscar.Distributed.Event_Management is
2:
3: procedure Set_Event_Association
4: (Input_Event : Event_Id;
5: Output_Event : Event_Id);
6:
7: function Get_Event_Association 
8: (Input_Event : Event_Id) return Event_Id;
9:

10: procedure Set_Event_Id (New_Event : Event_Id);
11: function Get_Event_Id return Event_Id;
12:
13: end Ravenscar.Distributed.Event_Management;
5-140 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

The endpoints API for high-integrity systems
5 .3 .1 EVENT MANAGEMENT INTERFACE
Real-time developers should configure the sequence of events within an end-

to-end flow, and the middleware will be in charge of automatically setting the
appropriate event at the transformation points of the remote call as shown in Chapter 3.
This interface is Ravenscar compliant and therefore it does not require any modification
from the original (see Listing 5-1). 

5 .3 .2 NETWORK SCHEDULING INTERFACE
The overall response time of a distributed system is strongly influenced by the

underlying networks and therefore networks are required to be scheduled with
appropriate techniques. This API addresses this aspect by making the communication
endpoints visible, and by associating scheduling parameters to the messages sent through
them. The approach defined in Chapter 3 is already Ravenscar compliant and thus it
could remain unaltered. However, the use of class-wide types and operations is
prohibited in high-integrity Ada systems [GAHI00] [SPA10]. As a result, a new Network
Scheduling API has been defined which is shown in Listing 5-2.

The operations provided to destroy endpoints (Destroy_Receive_Endpoint and
Destroy_Send_Endpoint) are not strictly necessary in this kind of static systems and can
be removed. However, in order to keep similar interfaces for full and restricted Ada, both
operations have been included.

Extensions of the Message_Scheduling_Parameters tagged type will contain
the specific network scheduling parameters that must be associated with a specific send
endpoint. Furthermore, each scheduling policy must implement operations to map its
own scheduling parameters (e.g., priorities) onto extensions of this private type.
However, the use of abstract types in high-integrity systems can be controversial, as they
are forbidden by SPARK but allowed by GA-HI. 

5 .3 .3 PROCESSING NODE SCHEDULING INTERFACE
Handler tasks are responsible for awaiting remote requests and processing

them. The proposal included in Chapter 3 to create and manage handler tasks relied on
the dynamic creation of tasks within the real-time configuration stage, which is
forbidden in Ravenscar systems (i.e. all tasks must be created at library level). The new
API uses a set of Ada packages instead: a Processing_Node_Scheduling package to
perform the registration and identification of tasks in the system, and a set of child
packages to create tasks with the appropriate scheduling parameters. The contents of the
Processing_Node_Scheduling package are implementation-defined, but an example of
this specification is shown in Listing 5-3. 
University of Cantabria 5-141



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

Under this proposal for high-integrity systems, implementations should define
one child package per scheduling policy supported and allow the scheduling parameters
to be assigned statically (for example, using a pragma). Since handler tasks must be
created explicitly at library level, the new API considers the creation of tasks through a
generic package which has been demonstrated to be a suitable approach [BORD07]. This
generic package includes the following parameters and operations:

Listing 5-2:  Package r-distributed-network_scheduling.ads

1: package Ravenscar.Distributed.Network_Scheduling is
2: type Message_Scheduling_Parameters is abstract tagged private;
3:
4: procedure Create_Receive_Endpoint
5: (Net : Network_Id;
6: Port : Port_Id;
7: Endpoint  : out Receive_Endpoint_Id) is abstract;
8:
9: procedure Create_Send_Endpoint

10: (Param : Message_Scheduling_Parameters;
11: Dest_Node : Node_Id;
12: Event : Event_Id;
13: Net : Network_Id;
14: Dest_Port : Port_Id;
15: Endpoint  : out Send_Endpoint_Id) is abstract;
16:
17: procedure Create_Reply_Receive_Endpoint
18: (Net : Network_Id;
19: Event_Sent : Event_Id;
20: Port : Port_Id;
21: Endpoint : out Receive_Endpoint_Id) is abstract;
22:
23: procedure Create_Reply_Send_Endpoint
24: (Param : Message_Scheduling_Parameters;
25: Dest_Node : Node_Id;
26:  Event : Event_Id;
27: Net : Network_Id;
28: Dest_Port : Port_Id;
29: Endpoint : out Send_Endpoint_Id) is abstract;
30:
31: procedure Destroy_Receive_Endpoint
32: (Endpoint : Receive_Endpoint_Id) is abstract;
33: procedure Destroy_Send_Endpoint
34: (Endpoint : Send_Endpoint_Id) is abstract;
35: private 
36: type Message_Scheduling_Parameters is abstract tagged ...;
37: end Ravenscar.Distributed.Network_Scheduling;
5-142 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

The endpoints API for high-integrity systems
• Task scheduling parameters. The scheduling parameters are set statically
via a pragma.

• Handler_Task_Callback. Procedure that will be used by handler tasks as
callback for each middleware implementation. 

• Create_Handler_Task_Endpoint. This function returns the receive endpoint
where the calling handler task will wait for incoming requests. Since the
communication endpoints are created through the API (i.e. during the real-
time configuration stage), and handler tasks are created at library level, the
latter requires a way to create the associated receive endpoint before
performing the I/O.

Furthermore, this generic package could be completed by including several
optional subprograms and parameters; for instance, to execute the basic initialization
operations required within each middleware implementation, to execute recovery
procedures when an error is detected or to specify basic properties associated with a task
(e.g., the stack size).

Finally, the use of generics, although common in many safety-critical Ada
research projects [BORD07] [HUG08], is debatable, as it is forbidden by SPARK but
allowed by GA-HI. As an example, the package shown in Listing 5-4 represents the
generic unit used for fixed priorities scheduling. 

Although Ravenscar only considers fixed-priority based scheduling, future
extensions of this profile may include the use of other scheduling policies (e.g., EDF as
shown in Figure 5-1 and proposed by [WHIT10]), which would also be supported by
means of the proposed API.

Listing 5-3:  Package r-distributed-processing_node_scheduling.ads

1: package Ravenscar.Distributed.Real_Time.Processing_Node_Scheduling is
2:
3:    function Get_Handler_Id
4:      (The_Task : Ada.Task_Identification.Task_Id := Ada.Task_Identification.Current_Task)
5:       return Handler_Id;
6:
7:    function Register_Task
8:      (The_Task : Ada.Task_Identification.Task_Id := Ada.Task_Identification.Current_Task)
9:       return Handler_Id;

10:
11: private 
12: ...
13: end Ravenscar.Distributed.Real_Time.Processing_Node_Scheduling;
University of Cantabria 5-143



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 4 E X A M P L E  O F  U S E

Once the endpoints API has been defined for high-integrity systems, this
section describes how to perform the real-time configuration for a simple example. To
this end, we consider the example introduced in Chapter 1 and depicted in Figure 5-2.
We will show how to generate the configuration code for CPU-2, but a similar procedure
could be followed for CPU-1 and CPU-3. 

Listing 5-4:  Package r-distributed-processing_node_scheduling.fixed_priorities.ads

1: -- Dependences are omitted 
2: generic 
3: Handler_Task_Priority : System.Priority;
4: with procedure Handler_Task_Callback 
5: (Endpoint : Receive_Endpoint_Id);
6: with function Create_Handler_Task_Endpoint return
7: Receive_Endpoint_Id;
8:
9: package Ravenscar.Distributed.Processing_Node_Scheduling.Fixed_Priorities is 

10:
11: task FP_Handler_Task is
12: pragma Priority (Handler_Task_Priority);
13: end FP_Handler_Task;
14:
15: end Ravenscar.Distributed.Processing_Node_Scheduling.Fixed_Priorities;

����� �����

�	
��������
�

�����������	
�����

� �

�����

�������
��
�

�����������
�����������
�����������

����������

�

������
������

���

��
��
�

�����������
�����������
�����������

����
��
�

�����������
�����������
�����������

���
����

���

������
������

���

�����
�����	�



���	���
�����	�


�
����
�
���������
	�����	�


���������
����
�
	$���%����

Figure 5-2: Example of use for the endpoints API in high-integrity systems
5-144 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

Example of use
The real-time configuration shall include the code required to create and
configure each end-to-end flow defined in the system. Under this approach, the real-time
configuration is included in an Ada package (instead of a simple procedure) named
partition_2_configuration. For the example illustrated in Figure 5-2, there is only one
linear and asynchronous end-to-end flow that requires the definition of the following
elements (see Listing 5-5): 

• Handler_Task_1 package: It is responsible for the creation of a handler
task, the creation/retrieval of the associated receive endpoint and the
callback to the main loop defined in the middleware implementation.

• Set_Partition_Configuration procedure: It performs the configuration of
the rest of the end-to-end flow elements (communication endpoints,
scheduling parameters and event association).

Then, the package body for partition_2_configuration should define the real-
time configuration code for CPU-2. In particular, Listing 5-6 shows the
Set_Partition_Configuration procedure that calls the following subprograms:

• Set_Event_Association. As can be seen in Figure 5-2, CPU-2 receives e12
as an incoming event and transforms it to event e13. This mapping between
events remains registered in middleware. Although the event
transformation service does not have any effect in this specific example,
this service is still required in order to allow the same handler task to be
shared among multiple end-to-end flows.

• Create_Send_Endpoint. According to Figure 5-2, this partition considers
two network transmission steps: one of them is for sending messages and
so it is associated with one send endpoint, with its specific scheduling
information. The other network step corresponds to the incoming messages

Listing 5-5:  Package partition_2_configuration.ads

1: package Partition_2_Configuration is
2:
3: package Handler_Task_1 is new 
4: Ravenscar.Distributed.Processing_Node_Scheduling.Fixed_Priorities
5: (Handler_Task_Priority => Handler_Task_1_Priority,
6: Create_Handler_Task_Endpoint => 

Partition_2_Configuration_File.New_Receive_Endpoint,
7: Handler_Task_Callback => MW_Implementation.Main_Loop);
8: ...
9: procedure Set_Partition_Configuration;

10: end Partition_2_Configuration;
University of Cantabria 5-145



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

and therefore it must be mapped to a receive endpoint. However, according
to the endpoints proposal for high-integrity systems, this receive endpoint
is now created by the associated handler task to avoid the complexity of
synchronization issues during the creation of endpoints (i.e. operation
performed within the real-time configuration stage) and handler tasks (i.e.
operation performed at library level).

5 . 5 I N T E G R A T I O N  A N D  V A L I D A T I O N  O F  
T H E  E N D P O I N T S  P A T T E R N  I N  A  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P L A T F O R M

5.5 .1 OVERVIEW OF THE HIGH- INTEGRITY DISTRIBUTED 
REAL-T IME PLATFORM
This section describes how the endpoints pattern has been integrated into a

high-integrity platform composed of Ocarina and PolyORB-HI tools [HUG08]. This set
of tools provides an appropriate framework to develop high-integrity distributed real-
time applications (HDRT) through the automatic generation of source code from high-
level system models.

Listing 5-6:  Package partition_2_configuration.adb

1: package body Partition_2_Configuration is
2:
3: procedure Set_Partition_Configuration is
4: -- The definition of variables is omitted 
5: begin
6:   --  Set event associations 
7:  Set_Event_Assocation (Input_Event => e2, Output_Event => e3);
8:
9: --  Create one send endpoint 

10:  Create_Send_Endpoint
11:  (Param => Msg_Scheduling_Parameters_e3,
12:  Dest_Node => CPU-3,
13:  Event => e3,
14:  Net => Default_Network,
15:  Dest_Port => Rcv_Port_Partition_e3,
16:  Endpoint => Snd_Endpoint_Id_e3);
17: end Set_Partition_Configuration;
18: end Partition_2_Configuration;
5-146 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

Integration and validation of the endpoints pattern in a high-integrity distributed real-time platform
Figure 5-3 shows the architecture of Ocarina which comprises two different
parts: a frontend, which processes the system model described in the input file, and a
backend, which implements the strategies to generate the source code for different
targets. The current version supports the AADL modelling language [SAE09] as input
and several targets, such as those based on the PolyORB-HI middleware, as output.

PolyORB-HI is a lightweight distribution middleware compatible with the
restrictions specified by the Ravenscar profile. It is distributed with the Ocarina tool as
an AADL runtime that provides all the required resources (i.e. stubs, skeletons,
marshallers and concurrent structures) to build high-integrity distributed systems.
Additionally, it also provides a communication layer which takes care of the physical
communication over the network. The current software release provides three runtimes
depending on the target system: PolyORB-HI-C, PolyORB-HI-QoS and PolyORB-HI-
Ada.

PolyORB-HI-Ada supports both native (e.g. Linux or Solaris for testing
purposes) and high-integrity platforms (e.g. ERC32 [ATMEL05] or LEON bare board
[LEON05] targets). Communication between nodes can be enabled, with current support
for TCP/IP sockets on native platforms, and the SpaceWire fieldbus [SPW08] on LEON
boards. 

The process of producing a working application from an AADL model in
Ocarina uses three main entities: (1) an AADL model and application logic (i.e. user
code), (2) a code generator or backend and (3) a minimal middleware known as
PolyORB-HI. The process starts with the description of the system through an AADL
model. Then, the code generator automatically produces Ada code from this model by
mapping the AADL constructs onto the middleware primitives, which represent an
abstraction layer on top of OS concurrency primitives and communication stacks.
Finally, the code generated is compiled with the middleware and the user code to create
the executable.

Figure 5-3: Architecture overview for Ocarina
University of Cantabria 5-147



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

Basically, the code generated relies on middleware which provides it with
basic services (i.e. tasking and communication facilities, data types or device drivers). To
interface with PolyORB-HI, the backend automatically creates a set of files which are
described below:

• PolyORB_HI_Generated.Types, a package that includes the data types used
in a given node.

• PolyORB_HI_Generated.Activity, a package that includes the protected
objects and tasks defined for a given node.

• PolyORB_HI_Generated.Subprograms. The code generator implements
each of the AADL subprograms defined for a given node in this package.

• PolyORB_HI_Generated.Marshallers. This package provides the basic
mechanisms of data representation, including the subprograms for
marshalling and unmarshalling data.

• PolyORB_HI_Generated.Naming, a package that provides a naming
service through static tables for each of the supported transport protocols.

• PolyORB_HI_Generated.Transport, a package that provides high level
operations for exchanging messages among local or remote entities. It
provides subprograms to send and receive messages through the correct
low transport layer based on the source or the destination of a message.

• PolyORB_HI_Generated.Deployment. This package provides information
about the topology of the distributed application.

• Main procedure. For each node of the distributed application, the code
generator produces a main procedure that includes the remaining
components not included in the other packages and the initialization
procedures.

The middleware layer defined for PolyORB-HI may be regarded as a passive
entity (i.e. it does not implement any task). It provides a set of generic packages which
defines different types of tasks that must be instantiated during the code generation
process. Let us briefly review them in some coarse detail:

• Periodic, a type of task which periodically executes a job with a predefined
priority.

• Aperiodic, a type of task which waits for a triggering event to execute a job
with a predefined priority.

• Sporadic, a type of task which waits for a triggering event to execute a job
with a predefined priority but also guarantees that a minimal inter-arrival
time between event processing has elapsed.
5-148 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

Integration and validation of the endpoints pattern in a high-integrity distributed real-time platform
• Background, a type of task to execute a single job with a predefined
priority.

• Hybrid, a type of task which implements both periodic and sporadic
behaviour. The periodic behaviour is driven by another type of task, called
hybrid task driver.

• Hybrid driver, a type of task which sends periodic events to hybrid tasks.

Although PolyORB-HI is mainly a passive entity, its communications layer is
designed to be an active entity. In PolyORB-HI, network devices are managed by one or
more protocols instances. Each of these instances creates one internal task to decouple
the I/O events arriving at one specific receiving port. Then, incoming network messages
are stored in a protected object where a task instance (e.g. a sporadic task) will be
waiting to process it.

5 .5 .2 MODIF ICATIONS AND EXTENSIONS APPLIED TO THE 
HIGH- INTEGRITY DISTRIBUTED REAL-T IME PLATFORM
In order to validate the proposed endpoints pattern for high-integrity systems,

both Ocarina and PolyORB-HI have been extended to provide a new backend or code
generation strategy called PolyORB-HI-Endpoints (see Figure 5-3). Table 5-1
summarizes the files required to build this new backend, and also describes the purpose
of each new file. As can be seen, the generation of this new backend involves defining
the rules for building all the PolyORB_HI_Generated files described in the previous
section, as well as a set of facilities to help in the development of automatically
generated packages. Likewise, the ocarina-backends root file has also been modified to
integrate and register the PolyORB-HI-Endpoints as a new Ocarina backend.

In relation to high-integrity distribution middleware, a set of modifications has
been performed to allow the endpoints API to be accessed by PolyORB-HI.
Furthermore, this middleware has been extended to provide two additional
functionalities: firstly, the marshalling and unmarshalling primitives required to transmit
the Event_Id parameter through communication networks (polyorb_hi-
event_id_marshallers package); secondly, the operations responsible for the internal
management of events by middleware (i.e., those subprograms defined by the
Event_Management interface).

Furthermore, a new network service has been implemented and integrated into
PolyORB-HI. This service adds two functionalities: firstly, it allows multiple receive
ports to be used in a single protocol instance (for example, for connectionless networks);
secondly, it allows handler tasks to wait directly in the network, thus avoiding decoupled
communications.
University of Cantabria 5-149



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

Finally, these modifications were incorporated into a prototype. This prototype
implements the PolyORB-HI-Endpoints backend on a x86 architecture and a UDP-based
network, as is illustrated in Figure 5-4. Although this platform is not appropriate to build
high-integrity systems, here the objective is to develop a distributed real-time platform
on which the endpoints pattern can be conceptually validated. As we said earlier, this
prototype uses fixed-priority scheduling policies for both schedulable resources:
processors and networks. The network uses the 802.1p specification [VBLAN06] to
prioritize different message streams. Lastly, the real-time configuration file is currently
generated by hand, although the automatic generation of the real-time configuration code
can be performed by integrating the approach within a MDE development framework for
high-integrity systems. This issue is dealt with next. 

Table 5-1: Modifications performed in Ocarina to create a new backend

FILES PURPOSE

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-ACTIVITY.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-ACTIVITY.ADS

OPERATIONS TO BUILD THE POLYORB_HI_GENERATED.ACTIVITY 
PACKAGE THAT CONTAINS THE MAPPING OF TASKS AND PROTECTED 

OBJECTS

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS.ADS

ROOT UNIT FOR THE CODE GENERATOR FOR POLYORB-HI 
MIDDLEWARE

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-DEPLOYMENT.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-DEPLOYMENT.ADS

OPERATIONS TO BUILD THE POLYORB_HI_GENERATED.DEPLOYMENT 
PACKAGE THAT CONTAINS DEPLOYMENT INFORMATION ON THE 

DISTRIBUTED APPLICATION

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-MAIN.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-MAIN.ADS

OPERATIONS TO BUILD THE MAIN SUBPROGRAM CORRESPONDING 
TO EACH NODE

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-MAPPING.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-MAPPING.ADS

OPERATIONS TO MAP AADL ENTITIES INTO POLYORB-HI ENTITIES

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-MARSHALLERS.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-MARSHALLERS.ADS

OPERATIONS TO BUILD THE 
POLYORB_HI_GENERATED.MARSHALLERS PACKAGE THAT CONTAINS 

THE DATA MARSHALLERS AND UNMARSHALLERS

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-NAMING.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-NAMING.ADS

OPERATIONS TO BUILD THE POLYORB_HI_GENERATED.NAMING 
PACKAGE THAT CONTAINS THE INFORMATION CONTACT OF A GIVEN 

NODE

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-RUNTIME.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-RUNTIME.ADS

FACILITIES TO HANDLE THE ADA ENTITIES

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-SUBPROGRAMS.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-SUBPROGRAMS.ADS

OPERATIONS TO BUILD THE POLYORB_HI_GENERATED.SUBPROGRAM 
PACKAGE THAT CONTAINS THE MAPPING SUBPROGRAMS

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-TRANSPORT.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-TRANSPORT.ADS

OPERATIONS TO BUILD THE POLYORB_HI_GENERATED.TRANSPORT 
PACKAGE THAT CONTAINS THE MAPPING OF THE TRANSPORT 

FACILITIES

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-TYPES.ADB

OCARINA-BACKENDS-PO_HI_ADA_ENDPOINTS-TYPES.ADS

OPERATIONS TO BUILD THE PACKAGE 
POLYORB_HI_GENERATED.TYPES THAT CONTAINS THE MAPPING OF 

USER DATA
5-150 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

Integrating the endpoints pattern into a model-driven development framework
5 . 6 I N T E G R A T I N G  T H E  E N D P O I N T S  
P A T T E R N  I N T O  A  M O D E L - D R I V E N  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D E V E L O P M E N T  F R A M E W O R K

A development framework for real-time systems must fulfil several
conditions, such as the use of a predictable execution platform suitable for calculating
the WCET accurately, an analyzable concurrency model and communication middleware
that guarantees bounded transmission times. In the case of high-integrity systems, the
first condition implies the use of specific processor architectures, such as the ERC32
[ATMEL05] or the LEON [LEON05] processors, and operating systems such as
INTEGRITY-178B1 or the open source kernel ORK+ [PUE00]. The Ravenscar profile
and its proposed concurrency model have been designed to meet the second requirement,
while the third condition can be fulfilled by any of the distribution models discussed in
Chapter 2 or through the automatic generation of distribution code, as described in the
previous section.

Schedulability analysis is a crucial activity in the development of high-
integrity real-time systems. It allows software engineers to detect potential timing
problems in early development phases, and take corrective actions on the system
architecture in order to guarantee that the implementation will provide the required

1. INTEGRITY-178B is available at http://www.ghs.com/products/safety_critical

Distribution technique

Operating System

Network

Concurrency Pattern

Scheduling

Automated generation of 
Ravenscar-compliant code

FPS

Middleware 
communication layer

UDP

Linux -rt

Endpoints

Figure 5-4: General architecture for the high-integrity distributed real-time 
platform based on PolyORB-HI
University of Cantabria 5-151



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

temporal behaviour. When an MDE approach is used, several properties can be verified
by applying the corresponding analysis techniques over system models. However, the
verification of temporal properties is more complex as it strongly depends on the
execution platform. For this reason, the development framework should be flexible
enough to allow the system to be reconfigured through an iterative process that may
modify the system model according to the analysis results.

A model-driven development process for high-integrity systems can be
represented by the architecture shown in Figure 5-5. This figure focuses exclusively on
the timing analysis tools, and omits other kinds of analysis. In this case, the development
process has been divided into three stages: code generator, model annotation and model
analysis. First, the binary code is auto-generated from the model and the application
code. In a second stage, the tools for WCET calculations are applied on the binary code
and the result completes the timing view of our model (annotated model in Figure 5-5).
Finally, the third stage can generate the real-time model on which to apply the
schedulability analysis and obtain the scheduling parameters as shown in Figure 5-5.
This step completes the system model and then the framework can automatically
generate the source code and the real-time configuration for the application.

As we said earlier in Chapter 1, the project ASSERT (Automated proof-based
System and Software Engineering for Real-Time systems) defines different model-driven
strategies for the development of high-integrity systems [MAZ09] [PERR10]. The latter
work includes a set of tools, called TASTE, which provides support for the ASSERT
development process. Specifically, TASTE uses RapiTime1 and Bound-T2 tools for
WCET calculations, Ocarina and a set of scripts for model transformations, the
PolyORB-HI backend for automatic generation of source code, and MAST and Cheddar
[SIN04] for modelling and schedulability analysis.

1. RapiTime is available at http://www.rapitasystems.com/rapitime
2. Bound-T is available at http://www.bound-t.com

Model transformation tools

System model

User code

Annotated 
Model

Binary
code

Code generator 
tool

WCET estimation
tool

Schedulabilty
analysis tool

Code generator Model annotation Model analysis

Figure 5-5: Development framework architecture for high-integrity distributed 
real-time systems
5-152 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

Integrating the endpoints pattern into a model-driven development framework
Section 1.5 already discussed how model-driven strategies may benefit from
adapting distribution middleware to the real-time model used. This would facilitate the
development and integration of the different timing tools. Therefore, the set of tools
included in TASTE seems an appropriate framework to incorporate the end-to-end flow
model, using the PolyORB-HI-Endpoints backend for the automatic generation of source
code and MAST for modelling and schedulability analysis 

The proposed high-integrity distributed real-time platform can be extended to
include the automatic generation of the real-time configuration code. This feature can be
integrated into TASTE as illustrated in Figure 5-6. Under this approach, the MAST
model can be auto generated from the annotated system model (for instance, with the
WCET calculations from the RapiTime tool) through a new Ocarina backend or an
external AADL2MAST conversion tool [PER11] and thus it provides the necessary
support to perform an offline verification of the end-to-end deadlines. As a result of the
analysis, a real-time configuration file is created containing all the parameters required.
Finally, the application is generated by compiling the source code generated from the
PolyORB-HI-Endpoints backend and the real-time configuration file. A more detailed
description of this framework can be found in [PER11]. 

Figure 5-6: Ada toolchain for the development of high-integrity distributed 
real-time systems
University of Cantabria 5-153



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

5 . 7 T H E  E N D P O I N T S  P A T T E R N  A N D  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S T A T I C  D I S T R I B U T E D  A D A

Section 5.2 proposed the adaptation to Ravenscar of the endpoints API
designed to support the timing analysis of distributed real-time systems in full Ada.
Although the changes suggested are compatible with the Ravenscar profile, the new
approach may not be acceptable for static high-integrity systems due to the following
issues:

• The use of abstract types and generic units. Although both Ada features
are used in some research projects oriented to the development of high-
integrity systems, neither of them are included in SPARK.

• The use of a configuration interface. While the Ravenscar profile seems
to fit better into an absolutely static system, the use of the endpoints API
provides a more dynamic nature: the system is static but only after the real-
time configuration stage.

One of the most important advantages of adapting the endpoints API is that it
represents a quite similar solution for full and restricted Ada. However, another kind of
solution could fit better into this kind of systems. The next list briefly summarizes the
minimum requirements for developing high-integrity distributed real-time systems
following the end-to-end flow model. As a consequence, the configuration of the
application can be divided into three stages:

1. Configuring the partition of the program, as required by the Ada
DSA. The definition and implementation of this stage is
implementation-defined.

2. Identification and configuration of the schedulable entities. This
step should contain the following semantics:

- A distributed real-time application defines two kinds of schedulable
entities: the tasks for the processor, and the messages for the
networks.

- The implementation shall provide means for explicitly creating and
configuring each schedulable entity with the appropriate scheduling
parameters and associating the handler tasks to the appropriate
receive endpoint.

3. Identification and configuration of the different end-to-end flows.
This step should contain the following semantics:
5-154 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

Related work
- The implementation shall provide means for explicitly setting the
initial event for application tasks. This can be achieved by defining a
new pragma associated with tasks that identify the starting end-to-
end flow.

- The implementation shall provide means for explicitly performing
the event mapping.

- The implementation shall include the Event_Id parameter as part of
the network message if a single handler task may process several
requests matching different end-to-end flows.

Another possible approach could be to incorporate support for initialization-
level configuration to Ada. This may include the definition of APIs which can only be
used at certain stages (for example, during system startup and system shutdown), thus
avoiding exposing the API to erroneous usage. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 8 R E L A T E D  W O R K

One of the main objectives of this chapter was to address how to build HDRT
systems compatible with Ravenscar. This objective is of great interest to the community,
as can be seen by the research works arising in the same line and sharing the same
objective. According to the distribution model, those works can be classified as follows:

• Ravenscar and Ada DSA. These works are mainly focused on the
adaptation of the Ada DSA to be Ravenscar compliant as discussed in
[AUD01] and [URU11]. The main disadvantage of this option is the lack of
a standard real-time distributed framework for Ada.

• Ravenscar and a custom mechanism to perform the distribution. Under
this approach the HDRT systems are built by automatically generating
source code from architectural descriptions (i.e. system models). A
representative example is the tool suite Ocarina, software that has already
been introduced in this chapter as the base platform to validate the
proposed API for high-integrity systems.

Comparing the proposal in this thesis and these works, the most notable
difference is that our approach does not only rely on the Ada DSA to perform the
distribution, but it can be applied to different distribution models [PER09]. Nevertheless,
it can be considered as a complementary work to [AUD01] and [URU11] since the end-
to-end flow model provides a feasible architecture for performing a static timing analysis
in which the timing requirements of the applications can be validated. Our approach does
University of Cantabria 5-155



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

not deal with other important features required in high-integrity systems and detailed in
these references, such as the coordinated elaboration of partitions or the bounded size of
network messages. However, our real-time distributed model still provides support for
some of the restrictions discussed in these works:

1. The use of synchronous remote calls (RPCs). According to [AUD01]
and [URU11], the use of synchronous RPC complicates the
schedulability analysis and must be prohibited for high-integrity
systems. However, both the synchronous and asynchronous remote
procedure calls provided by the DSA are predictable (given predictable
low-level communications). In the case of RPCs, this kind of
communication is amenable to schedulability analysis and current
techniques have actually reduced the pessimism introduced in a wide
range of scenarios. However, there are typical situations in distributed
systems whose analysis can still be improved; for instance, the
existence of simultaneous activations owning the same end-to-end flow
(i.e. a linear end-to-end flow with the response time greater than the
period). The endpoints pattern supports the use of RPCs by defining the
reply endpoints.

2. The use of concurrent remote calls. According to [URU11], a remote
operation should not be called while processing a past invocation of the
same remote subprogram. This avoids the implementation of wait
queues for each remote operation and thus facilitates the schedulability
analysis. However, the buffering of incoming requests usually relies on
the services provided by communication networks, such as in AFDX
[AFDX09] or SpaceWire [SPW08]. Furthermore, the problem of
dimensioning a wait queue to hold the incoming requests is already
considered by the timing analysis techniques. Therefore our approach
does not preclude the reception of concurrent remote calls.

3. The use of nested RPCs. [URU11] argues that the schedulability
analysis can be simplified if a synchronous remote subprogram cannot
perform another (blocking) remote call before returning to the caller.
However, the end-to-end flow model is able to compute the waiting
times associated with the nested remote calls and thus, from the real-
time perspective, the response time analysis can be performed except
when the response time of the end-to-end flow is greater than the
period.

4. Assignment of priorities for remote calls. [URU11] differentiates
how to configure the real-time aspects between Ada remote procedure
calls and remote objects. For the latter, the author proposes three design
strategies to specify their execution priority: priority per object,
5-156 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

Contributions of this chapter
priority per remote reference and priority per tagged type. In contrast
to this approach, the endpoints pattern provides a uniform solution for
both distribution paradigms, as they are equally configured through the
proposed API. 

Finally, HDRT systems usually require support for other safety-critical
facilities that could also be adapted to the Ravenscar profile. For instance, the authors in
[PIN02] and [PIN02-B] propose a framework for the development of fault-tolerant
applications conforming to the Ravenscar profile. Although it is an interesting field for
research, this kind of facilities falls beyond the scope of this thesis. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 9 C O N T R I B U T I O N S  O F  T H I S  C H A P T E R

Building high-integrity systems with timing requirements is a hard and
complex task whose development is restricted by several specific standards. To simplify
this process, the Ada programming language has defined the Ravenscar profile as a set of
guidelines that restricts the concurrent part of the real-time application for single-
processor systems. Furthermore, Chapter 3 defined an API that implements the
endpoints pattern for Ada and thus it integrated the end-to-end flow model within the
language for developing distributed real-time systems in Ada. Based on both aspects,
this chapter has aimed to validate the use of the endpoints pattern over a high-integrity
platform. To this end, the following actions have been performed:

• Adaptation of the endpoints pattern to the Ravenscar profile. Since the
endpoints API proposed in Chapter 3 is not compatible with the Ravenscar
profile, the adaptation has involved a set of modifications mainly related to
the way in which handler tasks are created and assigned their scheduling
parameters. 

• Proposals for integrating the endpoints pattern into restricted Ada. We
have defined two different proposals, both compatible with the Ravenscar
profile. The first, which is based on a configuration interface, represents a
homogeneous solution for full and restricted Ada; however, this solution
must be applied during the real-time configuration stage. The second
represents an even more static approach and lists the minimum
requirements that must be implemented to support the end-to-end flow
model, leaving the internal details open to implementations. This solution
can be applied at compilation time and thus it can fit better into the
development of high-integrity distributed real-time systems.
University of Cantabria 5-157



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

• Implementation and validation of the proposed interface on a high-
integrity platform. To validate the use of the endpoints pattern with the
Ravenscar profile, the restricted interface has been integrated into the
Ocarina toolsuite. To this end, we have developed a prototype that
implements an endpoints API compatible with Ravenscar which, together
with the new PolyORB-HI-Endpoints backend and the modifications
performed to middleware, have the following features:

- Automatic generation of source code. The proposed approach has
been seamlessly integrated within the Ocarina architecture by
developing a new backend to automatically generate the source code
based on the real-time end-to-end flow model

- Automatic management of events. It comprises an extension of
PolyORB-HI to provide marshalling and unmarshalling primitives
for the Event_Id parameter and thus enable the use of shared handler
tasks among several end-to-end flows.

- Fixed-priority scheduling for the processors. According to the
Ravenscar profile, it includes an implementation of the
Processing_Node_Scheduling interface that has been developed for
fixed-priority policy

- Fixed-priority scheduling for a new network service. A new network
service has been developed and integrated in PolyORB-HI to use the
handler tasks to directly wait on the network for incoming requests,
thus avoiding I/O decoupling. Furthermore, a fixed priority version
has been implemented for the Network_Scheduling interface.

- Adaptation code to integrate the middleware internal characteristics
into the proposed model. Middleware built on top of the endpoints
pattern requires some glue code to handle and map its internal
structures consistently and integrate the management and utilization
of the communication endpoints.

- Real-time configuration code. As we discussed earlier in Chapter 3,
the initialization code for end-to-end flows (for example, the creation
of endpoints and handler tasks or the event mapping) may be
specified through a simple configuration operation. 

• Description of a development framework for high-integrity distributed
real-time systems. Due to the complexity associated with the development
of this kind of systems, the TASTE toolset has been explored to provide
support for the development of distributed real-time systems compatible
with the Ravenscar profile.
5-158 Computers and Real-Time Group



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H - I N T E G R I T Y  D I S T R I B U T E D
R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  A D A

Contributions of this chapter
• Study and analysis of the related work. We reviewed the other solutions
proposed to extend the use of the Ravenscar profile to distributed systems.
Since our objective is to provide an analyzable real-time model, most of
these solutions have features that complement our work and should be
taken into account in the development of a Ravenscar profile for distributed
systems.
University of Cantabria 5-159



A D A P T A T I O N  O F  T H E  E N D P O I N T S  P A T T E R N  T O  H I G H -
I N T E G R I T Y  D I S T R I B U T E D  R E A L - T I M E  S Y S T E M S  D E V E L O P E D  I N  
A D A

5

5-160 Computers and Real-Time Group



6
. . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CONCLUSIONS

This chapter summarizes the main contributions of this thesis and proposes the future
work. Section 6.1 outlines the main actions undertaken throughout this thesis, while
Section 6.2 details the specific contributions. Finally, Section 6.3 describes the possible
lines of future work which arise from the results obtained.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 . 1 T H E S I S  O V E R V I E W

This thesis aimed to make contributions in the field of distributed real-time
systems. Current trends in the development of distributed systems include the use of
middleware technology as a stand-alone tool or as a part of a MDE strategy. However,
the latter option becomes particularly important in distributed real-time systems in which
new requirements apply and the integration of middleware into an MDE strategy can
enable the automatic configuration of certain critical parameters for real-time
applications.

One of the major objectives of this thesis is the integration of a real-time
model suitable for schedulability analysis into distribution middleware. This integration
becomes particularly important in model-driven based approaches, as it facilitates the
development process and the integration of the different timing tools. To this end, our
approach has focused on how to adapt the end-to-end flow model, which is taken from
scheduling theory and also from the MARTE modelling standard, to current distribution
standards.

Firstly, we reviewed the main distribution standards oriented to real-time
systems in order to identify the real-time facilities initially included by them for the
management of processors and networks. In particular, we dealt with the analysis of the
RT-CORBA, Ada DSA and DDS specifications, and some particular implementations
(TAO, PolyORB and RTI-DDS, respectively). In practice, their real-time facilities were
grouped in five categories (scheduling policies, concurrency patterns, controlled access
to shared resources, setting of scheduling parameters and support for the end-to-end
flow model) which motivated the identification of a set of features required for the
University of Cantabria 6-161



C O N C L U S I O N S
Contributions of the work

6

development of analyzable applications regardless of the distribution model and / or
standard used. 

Taking this set of features as the basis, we presented a proposal to integrate the
end-to-end flow model into distribution middleware called the endpoints pattern. It
consists of a set of interfaces within distribution middleware that allows processors and
communication networks to be configured explicitly. Then, we also addressed how to
develop analyzable distributed real-time applications in Ada by proposing a specific
implementation of the endpoints pattern for this programming language. Furthermore, a
first step towards the integration of this pattern into model-driven development processes
was performed by considering the automatic generation of the real-time configuration
through the MAST modelling tool.

We have also focused on the implementation and validation of the endpoints
pattern in a distributed real-time platform. To this end, the platform integrated several
software components such as (1) PolyORB as a distribution middleware, (2) MaRTE OS
as an operating system and (3) RT-EP and FRSH communication layer as
communication networks. Two case studies were proposed to validate the endpoints
pattern with different distribution models in static and dynamic scenarios, and these
studies showed satisfactory results.

Finally, we explored the flexibility and generality of the endpoints pattern for
use in high-integrity systems. For this purpose, we defined an endpoints API which was
compatible with the Ravenscar profile. We also proposed a specific implementation of
the endpoints API for restricted Ada. Furthermore, this deployment was integrated into a
model-driven development framework for high-integrity systems.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 . 2 C O N T R I B U T I O N S  O F  T H E  W O R K

Our first step in this thesis was to report an analysis to determine whether the
real-time mechanisms, included in distribution standards and their implementations,
were enough to ensure determinism over the whole application. Based on this analysis,
we isolated a set of features and objectives that all distribution standards for real-time
systems and / or their implementations should incorporate: 

• Control of remote calls by selecting an appropriate concurrency pattern and
providing explicit mechanisms to assign the scheduling parameters. 

• Enabling free assignment of scheduling parameters throughout the chain of
entities that compose the end-to-end flow.

• Support for different scheduling policies to be easily adaptable to multiple
scenarios.
6-162 Computers and Real-Time Group



C O N C L U S I O N S
Contributions of the work
• Bounding of the effect of priority inversion through the appropriate
configuration of synchronization protocols and ensuring a maximum size
for network messages.

• Documentation of the overhead introduced by implementations, even those
entities created internally by middleware.

• Support for the end-to-end flow model to facilitate the application of CASE
tools for analysis and optimization, as well as its integration into MDE
strategies.

• Enabling schedulability analysis of the complete application by supporting
the configuration of both processors and communications networks. 

The process of integrating an analyzable real-time model into distribution
middleware has been built upon this set of features. As a result, we have defined a set of
entities and mechanisms required to integrate the end-to-end flow model into distribution
middleware which was called the endpoints pattern. This pattern defines a set of
interfaces within distribution middleware that allows processors and communication
networks to be configured explicitly, supporting heterogeneous scheduling policies and
parameters and providing the required mechanism to configure them. 

One of the major features of the endpoints pattern is that it enables the logic of
the application to be separated from the real-time aspects. Under our approach, the only
requirement is simply to set the initial event that triggers the end-to-end flow (i.e. by
including a Set_Event_Id call within the application code), while the rest of the end-to-
end flow elements can be described as a part of a configuration operation. Although the
configuration of a real-time application using the endpoints pattern could be seen as a
complex process, it can be performed automatically by applying MDE techniques based
on the end-to-end flow model. For this purpose, this thesis presented an analysis to
integrate the endpoints pattern with MAST. This analysis identified the additional
properties that should be added to MAST to enable the integration, as well as the set of
rules required to generate the real-time configuration code automatically.

As a complementary facility, this thesis was considered which concurrency
pattern should be selected to be used with the endpoints pattern. Our analysis showed
that none of the most common concurrency patterns used in distribution middleware can
satisfy some of the usual requirements for hard real-time systems, so this motivated the
definition of a new concurrency pattern called RATO. The benefits of applying RATO
include avoiding unnecessary context switches and the dynamic update of scheduling
parameters, while it is still compatible with the endpoints pattern.

In order to validate the features of the endpoints pattern and its usability, a
distributed real-time platform capable of providing strict temporal guarantees was
implemented. Among other features, this platform was developed to provide support for
the end-to-end flow model within distribution middleware, interchangeable scheduling
University of Cantabria 6-163



C O N C L U S I O N S
Contributions of the work

6

policies such as FPS, FRESCOR contracts and EDF, and a set of extensions to enhance
the system predictability. These extensions include (1) porting to a new real-time
operating system (MaRTE OS), (2) a new communication layer to use different real-time
protocols such as RT-EP or CAN, and (3) a new internal management of middleware
tasks by defining new tasking and controller policies and profiles.

The proposal was evaluated in two case studies. The first study dealt with the
migration of an industrial robotic distributed system to our platform using the endpoints
pattern. This distributed real-time system was implemented using different distribution
models (RPCs and distributed objects) to evaluate the complexity of using our approach,
resulting in a minimal impact in the application code (less than 1%). The second case
study implemented a software tool responsible for the distributed negotiation of new
end-to-end flows, thus checking the capability of our approach to be adapted to
environments whose workload is variable. In this case, the study showed that our
approach can provide temporal guarantees even when new end-to-end flows are being
negotiated in the system.

Another important aspect of this thesis is the adaptation of the endpoints
pattern to high-integrity systems. In particular, we modified the endpoints pattern to
make it compatible with the Ravenscar profile by reviewing how handler tasks are
created and how their scheduling parameters are assigned. Furthermore, this adaptation
also considered the restrictions imposed by other high-integrity facilities, such as
SPARK or GA-HI. As a result, a new endpoints API was defined for use with this kind of
systems. The resulting approach has been validated by implementing a high-integrity
distributed real-time platform. The Ocarina toolsuite was taken as a starting point for
supporting the approach. This toolsuite has been extended with a new backend called
PolyORB-HI-Endpoints and new network services. Due to these modifications, the
platform developed was able to integrate the end-to-end flow model with the automatic
generation of Ravenscar-compliant source code and distribution middleware. 

For the high-integrity distributed real-time platform, the endpoints
configuration may also be specified through a simple configuration operation. In this
case, this thesis explored the use of the TASTE toolset to provide complete support for a
MDE strategy for high-integrity systems, using the PolyORB-HI-Endpoints backend for
the automatic generation of source code and MAST for modelling and schedulability
analysis.

Finally, the last aspect we want to highlight is the development of a specific
implementation of the endpoints pattern for Ada as a solution to the lack of support for
the development of distributed real-time systems using this programming language.
Furthermore, this thesis has also defined two different proposals for integrating the
endpoints pattern into restricted Ada. The first, which is based on a configuration
interface, represents a homogeneous solution for full and restricted Ada; however, this
solution must be applied during the real-time configuration stage. The second represents
6-164 Computers and Real-Time Group



C O N C L U S I O N S
Future work
an even more static approach and lists the minimum requirements that must be
implemented to support the end-to-end flow model, leaving the internal details open to
implementations. This solution can be applied at compilation time and thus it can fit
better into the development of high-integrity distributed real-time systems.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 . 3 F U T U R E  W O R K

The endpoints pattern has been developed in response to the need of add a
real-time model in distribution middleware, thus facilitating the integration of both into
model-driven development processes. This pattern represents one of the steps towards
the definition of a complete development framework supporting the verification of
temporal properties over system models. However, there are still open research lines in
this field. These are briefly described below.

Although distribution standards play a central role in the current development
of distributed real-time systems, they usually provide little or no support for the end-to-
end flow model. Based on the analysis presented in this thesis, we can conclude that the
distribution models proposed by DSA, RT-CORBA and DDS are appropriate to integrate
the concept of end-to-end flow. However, these standards also support advanced
configurations that require further analysis. For example, both RT-CORBA and DDS
support different mechanisms to provide a wide range of QoS guarantees, whose
representation using the end-to-end flow model should be further investigated. In the
case of DDS, there are still several aspects to be analysed that may affect the
determinism of the distributed system, for instance, the influence of the built-in entities,
dynamic systems or the discovery process, as has been indicated in this thesis.

Furthermore, the endpoints pattern can be extended in a number of ways.
Although it defines a real-time configuration stage to create and configure the
schedulable entities explicitly, it is necessary to deal with other relevant aspects of
distributed systems such as their coordinated initialization during the start-up. This is not
strictly part of the real-time model and therefore it was beyond the scope of this thesis,
but this aspect represents a key element of these systems and should be further
investigated.

Since the integration of our distributed real-time platform into MDE strategies
has been developed as a proof of concept, other plans for the near future include
completing the platform with those aspects that were outside the initial prototype. In this
case, this would require:

• Developing or adopting a platform to build distributed real-time systems
using MDE strategies based on the MARTE standard in order to integrate
the middleware technology developed.
University of Cantabria 6-165



C O N C L U S I O N S
Future work

6

• Obtaining the complete real-time model of distribution middleware. This
real-time model would allow an a priori schedulability analysis to be
performed that is suitable for any application using this distribution
middleware. For instance, this could imply obtaining the MAST model of
PolyORB and PolyORB-HI. 

• Completing the integration of timing analysis tools (e.g., for schedulability
analysis and WCET estimation) into the MDE-based platform to provide
the necessary support to perform the verification of end-to-end deadlines. 

• Providing support for the automatic generation of the real-time
configuration. In the case of MAST, this would require incorporating the
changes proposed in this thesis (e.g., the identification of the nature of tasks
and messages) in order to generate the endpoints configuration.

Additionally, if the MDE representation strategy is not based on the MARTE
standard, the MDE platform should provide model transformation tools to generate the
end-to-end flow real-time model. For example, the MAST model could be directly auto
generated from an AADL textual representation. 

Regarding high-integrity systems, traditionally this kind of system does not
consider the use of distribution standards, because it involves the use of a middleware
layer which makes the certification process more complex. However, there are some
efforts in this direction; for example, a DDS profile for safety-critical systems is being
discussed at current meetings of the OMG. This opens an important research field to
apply communication middleware based on distribution standards over, for example,
ARINC partitioned systems.

Although several approaches have been proposed to solve the problem of
developing distributed real-time systems compatible with the Ravenscar profile, the
definition of a generic solution for full and restricted Ada would be desirable and should
be further investigated. For example, this could be done by exploring how to incorporate
support for initialization-level configuration into Ada.

Finally, the integration of the Distributed Systems Annex and the Real-Time
Annex of Ada is an interesting task that can be addressed by using our proposal as a
starting point. In the same line, the definition of a Distributed Ravenscar profile could be
another important objective for future work.
6-166 Computers and Real-Time Group



A
. . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RELATED RESEARCH PROJECTS

The research work included in this thesis has been funded by the IST Programme of the
European Commission under project FP6/2005/IST/5-034026 (FRESCOR), by the
Spanish CDTI under project CEN2009-1048 (ENERGOS) and by the Spanish Ministry of
Science and Technology under grants number TIC2005-08665-C03-02 (THREAD),
TIN2008-06766-C03-03 (RT-MODEL), and TIN2011-28567-C03-02 (HI-PARTES). This
annex introduces these research projects and their relationship with this thesis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 T H R E A D  P R O J E C T

THREAD (Integral support for embedded, distributed open real-time systems)
is a research project funded by the Spanish Ministry of Science and Technology (2005 -
2008). The major objective of this project was to provide integral support for the
development of distributed real-time embedded systems which will include a family of
interoperable platforms, their connection mechanisms, the applicable architecture and
design methodologies, and the application domains of the new generation of this kind of
systems. This integral support will deal with all the levels from the operating system and
the networks, through the communications and quality of service management
middleware, up to the application level.

Within the context of this project, this thesis has contributed to the
development of communication middleware for distributed real-time embedded systems
with capabilities to provide deterministic communications between subsystems, even
when they are being executed in different environments and have been developed using
different methodologies, communication protocols and programming languages.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 F R E S C O R  P R O J E C T

The FRESCOR (Framework for Real-time Embedded Systems based on
COntRacts) EU project, which is funded by the European Union’s Sixth Framework
University of Cantabria A-167



R E L A T E D  R E S E A R C H  P R O J E C T SA
Programme (2006 - 2009), had the objective of providing engineers with a scheduling
framework that represents a high-level abstraction that lets them concentrate on the
specification of the application requirements, while the system transparently uses
advanced real-time scheduling techniques to meet those requirements.

The approach to achieve this main objective was to integrate advanced flexible
scheduling techniques directly into an embedded systems design methodology, covering
all the levels involved in the implementation, from the operating system primitives,
through the middleware, up to the application level. This was achieved by creating a
contract model that specifies the application requirements with respect to the flexible use
of the processing resources in the system, and also the resources that must be guaranteed
if the component is to be installed in the system. Moreover, it explains how the system
can distribute any spare capacity that it has, to achieve the highest usage of the available
resources.

Contributions of this thesis include the development of a distributed real-time
platform for testing purposes and the integration of middleware technology into the
framework in order to provide distribution services within a flexible scheduling
environment.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 R T - M O D E L  P R O J E C T

RT-MODEL (Real-time platforms for model-driven design of embedded
systems) is a research project funded by the Spanish Ministry of Science and Technology
(2009 - 2011). This project was aimed at extending model-driven software development
methods (MDA/MDE) to computer systems with non-functional requirements, such as
real-time, quality of service and high-integrity. Such systems were assumed to execute
on distributed, heterogeneous embedded platforms with standard middleware and
underlying services. 

Within the context of this project, this thesis has contributed to the
development of a specific middleware and platform for high-integrity distributed real-
time systems. These technologies must be able to provide services and resources that
support the execution of applications built from high-level system models, as well as
mechanisms to simplify the configuration of these platforms using CASE tools.
Furthermore, this thesis also explored the real-time modelling of data-centric
middleware.
A-168 Computers and Real-Time Group



R E L A T E D  R E S E A R C H  P R O J E C T S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 E N E R G O S  P R O J E C T

The ENERGOS (Technologies for the automatic and intelligent management
of future distribution networks) project, which is funded in part by the CENIT Fifth
Framework Programme (2009 - 2012), has the objective of developing technologies and
knowledge to move towards the implementation of future electrical distribution
networks (smart grid). This network is much more complex than the present distributed
networks due to distributed energy generation (based on renewable energy sources) and
the automation required to optimise energy consumption.

Within the context of this project, this thesis has contributed to the analysis
and adaptation of middleware technologies capable of providing real-time guarantees for
new smart grids.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 H I - P A R T E S  P R O J E C T

HI-PARTES (High-integrity partitioned embedded systems) is a research
project funded by the Spanish Ministry of Science and Innovation (2012 - 2015). The
main aim of this project is to contribute to the improvement of technology for the
development and execution of high-integrity embedded systems, which currently show a
continuous increase in their complexity. The development of high-integrity systems
requires a number of additional activities, such as system partitioning, partition
configuration, or global response time analysis. Model-driven architecture (MDA) is a
suitable basis for providing integrated support for these activities. This technology
allows the abstraction level of development languages and tools to be raised, and the
information and processing logic to be isolated from the aspects related to the
implementation technology and the execution platform.

From the experience and results obtained in this thesis, our work will
contribute to this project with the study and characterization of communication
middleware based on distribution standards for partitioned systems. 
University of Cantabria A-169



R E L A T E D  R E S E A R C H  P R O J E C T SA
A-170 Computers and Real-Time Group



B
. . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FRESCOR ADA BINDINGS

This annex introduces the Ada bindings for the FRESCOR framework. These Ada
packages provide thin, direct Ada bindings to the most important data types and
subprograms of the FRESCOR API.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 F R E S C O R  D A T A  T Y P E S

The following package, which is called frsh_ada_types.ads, defines the
bindings for Ada of most of the data types used in the FRESCOR framework, including
those related to the definition of contracts and schedulable entities.

Listing B-1:  Package frsh_ada_types.ads

1:--  -----------------       FRSH Mapping ----------------------- --
2:----------------------------------------------------------------------------
3:--                         Copyright (C) 2006-2009
4:--                     Universidad de Cantabria, SPAIN
5:--                        http://www.ctr.unican.es/
6:
7:--  This package contains the Ada interface to main procedures and functions
8:--  used in FRESCOR Framework
9:
10:with Interfaces.C;
11:with MaRTE.Timespec;
12:with System;
13:
14:package Frsh_Ada_Types is
15:
16:   package Time_MaRTE_C_Types renames MaRTE.Timespec;
17:   package C_Types            renames Interfaces.C;
18:
19:   --  FRESCOR TYPES  --
20:
21:   --  Kind of schedulable entities
22:   type Resource_Type is (FRSH_RT_PROCESSOR, FRSH_RT_NETWORK, FRSH_RT_MEMORY,
University of Cantabria B-171



F R E S C O R  A D A  B I N D I N G SB
23:                          FRSH_RT_DISK);
24:   --  Must follow the same value
25:   for Resource_Type use
26:     (FRSH_RT_PROCESSOR => 0, FRSH_RT_NETWORK => 1,
27:      FRSH_RT_MEMORY => 2, FRSH_RT_DISK => 3);
28:
29:   --  Must follow C enumeration size (integer)
30:   pragma Convention (C, Resource_Type);
31:
32:   --  Virtual resource identification
33:   type VRES_ID is new C_Types.unsigned;
34:
35:   --  Endpoint identification
36:   subtype Endpoint_Id is C_Types.int;
37:
38:   --  Pointers to message buffer
39:   subtype Pvoid is System.Address;
40:
41:   --  Initial code to be executed by a newly created thread
42:   type Initial_Thread_Code is not null access procedure (Arg : in Pvoid);
43:   pragma Convention (C, Initial_Thread_Code);
44:
45:   --  Parameterless procedure to follow PolyORB restrictions
46:   type FRSH_Thread_Code is not null access procedure;
47:
48:   --  Timespec definition compatible with posix one.
49:   subtype Timespec is Time_MaRTE_C_Types.Timespec;
50:
51:   --  Preemption level priority definition
52:   subtype Preemption_Level is C_Types.unsigned_long;
53:
54:   --  Instead of mapping all contract parameters, we introduce a identificator
55:   --  and we manage them in C wrapper
56:   type Contract_Label is new C_Types.char_array (1 .. 16);
57:
58:   --  Mapping of contract variable
59:   --     /** Utilization (C, T, and D) **/
60:   type Frsh_Utilization_T is record
61:      Budget   : Timespec;    -- Execution time
62:      Period   : Timespec;    -- Period
63:      Deadline : Timespec;    -- Deadline
64:   end record;
65:   pragma Convention (C, Frsh_Utilization_T);
66:
67:   --  /**
68:   --   * Maximum number of utilization values (pairs of budget and period)
69:   --   * that can be stored in a contract parameter object
70:   --   **/
71:   --  Configuration parameter in frsh
B-172 Computers and Real-Time Group



F R E S C O R  A D A  B I N D I N G S
72:   FRSH_MAX_N_UTILIZATION_VALUES : constant := 5;
73:
74:   --  /** List of utilization values **/
75:   type Frsh_Utilization_T_Array is array
76:     (0 .. FRSH_MAX_N_UTILIZATION_VALUES) of Frsh_Utilization_T;
77:   type Frsh_Utilization_Set_T is record
78:      Size           : C_Types.int; -- = 0
79:      Utilizations   : Frsh_Utilization_T_Array;
80:   end record;
81:   pragma Convention (C, Frsh_Utilization_Set_T);
82:
83:   --     /** Kind of workload expected in vres: bounded or indeterminate **/
84:   type Frsh_Workload_T is (FRSH_WT_BOUNDED,
85:                            FRSH_WT_INDETERMINATE,
86:                            FRSH_WT_SYNCHRONIZED);
87:   --  Must follow the same value
88:   for Frsh_Workload_T use
89:     (FRSH_WT_BOUNDED       => 0,
90:      FRSH_WT_INDETERMINATE => 1,
91:      FRSH_WT_SYNCHRONIZED  => 2);
92:
93:   --  Must follow C enumeration size (integer)
94:   pragma Convention (C, Frsh_Workload_T);
95:
96:--  /** Kind of contract: regular, background or dummy **/
97:   type Frsh_Contract_Type_T is (FRSH_CT_REGULAR,
98:                                 FRSH_CT_BACKGROUND,
99:                                 FRSH_CT_DUMMY);
100:   --  Must follow the same value
101:   for Frsh_Contract_Type_T use
102:     (FRSH_CT_REGULAR       => 0,
103:      FRSH_CT_BACKGROUND    => 1,
104:      FRSH_CT_DUMMY         => 2);
105:
106:   --  Must follow C enumeration size (integer)
107:   pragma Convention (C, Frsh_Contract_Type_T);
108:
109:   --  Mapping of a C union
110:   type Signal_Access is (Value, Pointer);
111:   type Frsh_Signal_Info_T (Option : Signal_Access := Value) is
112:      record
113:         case Option is
114:            when Value =>
115:               Sival_Int : C_Types.int;
116:            when Pointer =>
117:               Sival_Ptr : Pvoid;
118:         end case;
119:      end record;
120:
University of Cantabria B-173



F R E S C O R  A D A  B I N D I N G SB
121:   pragma Unchecked_Union (Frsh_Signal_Info_T);
122:   pragma Convention (C, Frsh_Signal_Info_T);
123:
124:   --  /** Granularity of spare capacity requirements: continuous or discrete **/
125:   type Frsh_Granularity_T is (FRSH_GR_CONTINUOUS, FRSH_GR_DISCRETE);
126:   --  Must follow the same value
127:   --  Values not defined in FRSH. Take default one --  TO_BE_REVISED
128:   for Frsh_Granularity_T use
129:     (FRSH_GR_CONTINUOUS       => 0,
130:      FRSH_GR_DISCRETE         => 1);
131:   --  Must follow C enumeration size (integer)
132:   pragma Convention (C, Frsh_Granularity_T);
133:
134:   --  /**
135:   --   * Critical section data
136:   --   * - comon parameters
137:   --   *     op_kind;     // kind of operation (READ or WRITE)
138:   --   *     obj_handle;  // handle to shared object
139:   --   *     wcet;        // Execution time
140:   --   *     blocking;    // Blocking time (execution time + protection overheads)
141:   --   * - attributes used only for protected shared objects
142:   --   *     op;          // pointer to the operation
143:   --   * - attributes used only for protected write operations
144:   --   *     areas;       // memory areas to be protected
145:   --   *
146:   --   **/
147:
148:   --  /**
149:   --   * Kind of protected operation: read, write or unchecked
150:   --   **/
151:   type Frsh_Csect_Op_Kind_T is (FRSH_CSOK_UNCHECKED, FRSH_CSOK_READ,
152:                                 FRSH_CSOK_WRITE);
153:      --  Must follow the same value
154:   for Frsh_Csect_Op_Kind_T use
155:     (FRSH_CSOK_UNCHECKED       => 0,
156:      FRSH_CSOK_READ            => 1,
157:      FRSH_CSOK_WRITE           => 2);
158:
159:   --  Must follow C enumeration size (integer)
160:   pragma Convention (C, Frsh_Csect_Op_Kind_T);
161:
162:   subtype Frsh_Sharedobj_Handle_T is C_Types.int;
163:   --   /**
164:   --   *  Pointer to protected operation, which takes a pointer to
165:   --   *  the input parameters, and a pointer to the output
166:   --   *  parameters; the user is responsible for not exceeding the
167:   --   *  sizes of the respective input and output parameters data structures
168:   --   */
169:   type Frsh_Csect_Op_T is access procedure (Input_Arg  : in Pvoid;
B-174 Computers and Real-Time Group



F R E S C O R  A D A  B I N D I N G S
170:                                             Output_Arg : out Pvoid);
171:   pragma Convention (C, Frsh_Csect_Op_T);
172:
173:   --   /**
174:   --   *  A memory area
175:   --   */
176:   type Frsh_Memory_Area_Data_T is record
177:      Size : C_Types.int;  --  Size_t
178:      Area : Pvoid;
179:   end record;
180:   pragma Convention (C, Frsh_Memory_Area_Data_T);
181:
182:   --  /**
183:   --   * Maximum number of memory areas that can be specified for a
184:   --   * write operation in a critical section
185:   --   **/
186:   --  Defined in frsh configuration parameters
187:   FRSH_MAX_N_MEMORY_AREAS  : constant := 4;
188:
189:   --  /**
190:   --   * Memory areas container
191:   --   **/
192:   type Frsh_Memory_Area_Data_T_Array is array
193:     (0 .. FRSH_MAX_N_MEMORY_AREAS) of Frsh_Memory_Area_Data_T;
194:   type Frsh_Memory_Areas_T is record
195:      Size         : C_types.int; -- = 0
196:      Memory_Areas : Frsh_Memory_Area_Data_T_Array;
197:   end record;
198:   pragma Convention (C, Frsh_Memory_Areas_T);
199:
200:   type Frsh_Csect_T is record
201:      Op_Kind             : Frsh_Csect_Op_Kind_T;
202:      Obj_Handle          : Frsh_Sharedobj_Handle_T;
203:      Wcet                : Timespec;
204:      Blocking            : Timespec;
205:      Op                  : Frsh_Csect_Op_T;
206:      Areas               : Frsh_Memory_Areas_T;
207:      Storage             : Frsh_Memory_Areas_T;
208:   end record;
209:   pragma Convention (C, Frsh_Csect_T);
210:
211:   --  /**
212:   --   * Maximum number of critical sections that can be stored in a
213:   --   * contract parameter object
214:   --   **/
215:   --  Defined in FRSH Configuration parameters
216:   FRSH_MAX_N_CRITICAL_SECTIONS : constant := 10;
217:
218:   --  /**
University of Cantabria B-175



F R E S C O R  A D A  B I N D I N G SB
219:   --   * Container of a group of critical sections, up to a maximum size
220:   --   **/
221:   type Frsh_Csect_T_Array is array
222:     (0 .. FRSH_MAX_N_CRITICAL_SECTIONS) of Frsh_Csect_T;
223:   type  Frsh_Csects_Group_T is record
224:      Size   : C_Types.int;        --  size of the group; initially=0
225:      Csects : Frsh_Csect_T_Array; --  array of csect
226:   end record;
227:
228:   --     /** Scheduling policies **/
229:   type Frsh_Sched_Policy_T is (FRSH_FP, FRSH_EDF, FRSH_TABLE_DRIVEN,
230:                                FRSH_RR, FRSH_NONE);
231:   for Frsh_Sched_Policy_T use
232:     (FRSH_FP => 0, FRSH_EDF => 1, FRSH_TABLE_DRIVEN => 2,
233:      FRSH_RR => 3, FRSH_NONE => 4);
234:   --  Must follow C enumeration size (integer)
235:   pragma Convention (C, Frsh_Sched_Policy_T);
236:
237:   --   /**
238:   --   * Extra protocol dependent opaque information for the application.
239:   --   * It can be used in different places: contract negotiation, extra
240:   --   * endpoint info, extra status info...
241:   --   **/
242:   type Frsh_Protocol_Info_T is record
243:      Body_Ptr : PVoid;
244:      Size     : C_Types.int;
245:   end record;
246:
247:   --  /**
248:   --   * Algorithm used when the queue is full to choose the message to reject
249:   --   **/
250:   type Frsh_Queue_Rejection_Policy_T is
251:     (
252:      --      /** A new message is admitted rejecting the oldest message in the
253:      --          queue to make room for the newcomer **/
254:      FRSH_QRP_OLDEST,
255:      --      /** Incoming messages are rejected if the queue is full **/
256:      FRSH_QRP_NEWCOMER);
257:
258:   --  Must follow the same value
259:   --  Values not defined in FRSH. Take default one --  TO_BE_REVISED
260:   for Frsh_Queue_Rejection_Policy_T use
261:     (FRSH_QRP_OLDEST       => 0,
262:      FRSH_QRP_NEWCOMER         => 1);
263:
264:   --  Must follow C enumeration size (integer)
265:   pragma Convention (C, Frsh_Queue_Rejection_Policy_T);
266:
267:   --  /**
B-176 Computers and Real-Time Group



F R E S C O R  A D A  B I N D I N G S
268:   --   * Queing information for endpoints
269:   --   **/
270:   type Frsh_Endpoint_Queueing_Info_T is record
271:      Queue_Size : C_Types.int;  --  /** Size 0 means that there is no queue **/
272:      Queue_Policy : Frsh_Queue_Rejection_Policy_T;
273:   end record;
274:
275:   type Contract is record
276:      --     /** frsh_contract_parameters_t **/
277:      --    /** Processor Id or Network Id **/                          '
278:      Resource_Id               : C_Types.unsigned_short;
279:      --          /** Whether processor or network **/                        '
280:
281:      --    /** Maximum period that the system system can sustain **/   '
282:      Period_Max                : Timespec;
283:
284:      --    /** Signal parameters for the case of
285:      --        attempting to use too much budget       **/             '
286:
287:      Budget_Overrun_Siginfo    : Frsh_Signal_Info_T;
288:
289:      --    /** Signal parameters for the case a deadline
290:      --       is missed **/                                           '
291:      Deadline_Miss_Siginfo     : Frsh_Signal_Info_T;
292:
293:      Queueing_Info             : Frsh_Endpoint_Queueing_Info_T;
294:
295:      --    /** Maximum loss rate
296:      --        Percentage of packet loss in the network that is
297:      --        tolerated by the application **/                       '
298:      Max_Loss_Rate             : C_Types.int;
299:end record;
300:   pragma Convention (C, Contract);
301:
302:end Frsh_Ada_Types;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 F R E S C O R  P R O G R A M M I N G  I N T E R F A C E

The following package, which is called frsh_ada.ads, defines the bindings for
Ada of most of the API operations defined in the FRESCOR framework, including those
related to the creation and management of contracts.
University of Cantabria B-177



F R E S C O R  A D A  B I N D I N G SB
Listing B-2:  Package frsh_ada.ads

1:--  -----------------       FRSH Mapping      ------------------------ --
2:----------------------------------------------------------------------------
3:--                         Copyright (C) 2006-2009
4:--                     Universidad de Cantabria, SPAIN
5:--                        http://www.ctr.unican.es/
6:
7:--  This package contains the Ada interface to main procedures and functions
8:--  used in FRESCOR Framework
9:
10:with Interfaces.C;
11:
12:with MaRTE.Timespec;       --  MaRTE definition and functions of type "timespec"
13:with MaRTE.Integer_Types;  --  MaRTE definiton of C Integer types
14:
15:with Interfaces.C.Strings;
16:with Ada.Streams;
17:with System;
18:
19:with Frsh_Ada_Types; use Frsh_Ada_Types;
20:
21:package FRSH_Ada is
22:
23:   package MaRTE_C_Types      renames MaRTE.Integer_Types;
24:   package C_Types            renames Interfaces.C;
25:   package String_C_Types     renames Interfaces.C.Strings;
26:   package Time_MaRTE_C_Types renames MaRTE.Timespec;
27:
28:   ---------------------------------
29:   -- FRSH_Initialize --
30:   ---------------------------------
31:   --  FRESCOR Framework init function
32:
33:   procedure FRSH_Initialize (Status : out C_Types.int);
34:   pragma Import (C, FRSH_Initialize, "frsh_init");
35:   pragma Import_Valued_Procedure
36:     (Internal        => FRSH_Initialize,
37:      External        => "frsh_init",
38:      Mechanism       => (Value));
39:
40:   --  FUNCTIONS  --
41:
42:   -------------------------------
43:   -- Contract_Init --
44:   -------------------------------
45:
46:   procedure Contract_Init (Status      : out C_Types.int;
47:                            My_Contract : in System.Address);
48:   pragma Import (C, Contract_Init, "frsh_contract_init");
B-178 Computers and Real-Time Group



F R E S C O R  A D A  B I N D I N G S
49:   pragma Import_Valued_Procedure
50:     (Internal        => Contract_Init,
51:      External        => "frsh_contract_init",
52:      Mechanism       => (Value));
53:
54:   -------------------------------------------------
55:   -- Contract_Set_Resource_And_Label --
56:   -------------------------------------------------
57:
58:   procedure Contract_Set_Resource_And_Label
59:     (Status      : out C_Types.int;
60:      My_Contract : in System.Address;
61:      Res_Type    : in Resource_Type;
62:      CPU         : in Integer;  --  C_TYpes.Int mejor, no??? TO DO
63:      Label       : in Contract_Label);
64:
65:   pragma Import (C, Contract_Set_Resource_And_Label,
66:                  "frsh_contract_set_resource_and_label");
67:   pragma Import_Valued_Procedure
68:     (Internal        => Contract_Set_Resource_And_Label,
69:      External        => "frsh_contract_set_resource_and_label",
70:      Mechanism       => (Value));
71:
72:   -------------------------------------------
73:   -- Contract_Set_Basic_Params --
74:   -------------------------------------------
75:
76:   procedure Contract_Set_Basic_Params
77:     (Status        : out C_Types.int;
78:      My_Contract   : in System.Address;
79:      B_Min         : in Timespec;
80:      P_Max         : in Timespec;
81:      Workload_Type : in Frsh_Workload_T := FRSH_WT_INDETERMINATE;
82:      Contract_Type : in Frsh_Contract_Type_T := FRSH_CT_REGULAR);
83:
84:   pragma Import (C, Contract_Set_Basic_Params,
85:                  "frsh_contract_set_basic_params");
86:   pragma Import_Valued_Procedure
87:     (Internal        => Contract_Set_Basic_Params,
88:      External        => "frsh_contract_set_basic_params",
89:      Mechanism       => (Value));
90:
91:   -----------------------------------------------
92:   -- Contract_Set_Preemption_Level --
93:   -----------------------------------------------
94:
95:   procedure Contract_Set_Preemption_Level
96:     (Status      : out C_Types.int;
97:      My_Contract : in System.Address;
University of Cantabria B-179



F R E S C O R  A D A  B I N D I N G SB
98:      Priority    : in Preemption_Level);
99:   pragma Import (C, Contract_Set_Preemption_Level,
100:                  "frsh_contract_set_preemption_level");
101:   pragma Import_Valued_Procedure
102:     (Internal        => Contract_Set_Preemption_Level,
103:      External        => "frsh_contract_set_preemption_level",
104:      Mechanism       => (Value));
105:
106:   ------------------------------------
107:   -- Contract_Negotiate --
108:   ------------------------------------
109:
110:   procedure Contract_Negotiate
111:     (Status      : out C_Types.int;
112:      My_Contract : in  System.Address;
113:      VRes        : out VRES_ID);
114:
115:   pragma Import (C, Contract_Negotiate, "frsh_contract_negotiate");
116:   pragma Import_Valued_Procedure
117:     (Internal        => Contract_Negotiate,
118:      External        => "frsh_contract_negotiate",
119:      Mechanism       => (Value));
120:
121:   -------------------------------------------
122:   -- Contract_Renegotiate_Sync --
123:   -------------------------------------------
124:
125:   --  The operation renegotiates a contract for an existing vres
126:
127:   procedure Contract_Renegotiate_Sync
128:     (Status      : out C_Types.int;
129:      My_Contract : in System.Address;
130:      VRes        : in VRES_ID);
131:   pragma Import (C, Contract_Renegotiate_Sync,
132:                  "frsh_contract_renegotiate_sync");
133:   pragma Import_Valued_Procedure
134:     (Internal        => Contract_Renegotiate_Sync,
135:      External        => "frsh_contract_renegotiate_sync",
136:      Mechanism       => (Value));
137:
138:   ----------------------------------------
139:   -- Thread_Create_And_Bind --
140:   ----------------------------------------
141:
142:   --  Create FRSH Thread and associate it with a Vres and an execution code
143:   --  This operation creates a thread and binds it to an existing vres.
144:   --  This is the preferred way to add threads to the application because
145:   --  we make sure that the thread won’t become unbound.
146:   --
B-180 Computers and Real-Time Group



F R E S C O R  A D A  B I N D I N G S
147:   --  TO DO
148:   --  Thread Attributes not mapped
149:   --  MaRTE issue: Thread new code termination not supported by OS by now.
150:
151:--     procedure Thread_Create_And_Bind
152:--       (Status      : out C_Types.int;
153:--        VRES        : in VRES_ID;
154:--        Thread_ID   : out System.Address;
155:--        Thread_Code : in Initial_Thread_Code;
156:--        Arg         : in Pvoid);
157:--
158:--     pragma Import (C, Thread_Create_And_Bind, "frsh_thread_create_and_bind");
159:--     pragma Import_Valued_Procedure
160:--       (Internal        => Thread_Create_And_Bind,
161:--        External        => "frsh_thread_create_and_bind",
162:--        Mechanism       => (Value));
163:
164:   procedure Thread_Create_And_Bind
165:     (VRES        : in VRES_ID;
166:      Thread_ID   : out System.Address;
167:      Thread_Code : in Initial_Thread_Code;
168:      Arg         : in Pvoid);
169:
170:   pragma Import (C, Thread_Create_And_Bind, "frsh_thread_create_and_bind_c");
171:
172:   -------------
173:   -- Network --
174:   -------------
175:
176:   ----------------
177:   -- Send_Async --
178:   ----------------
179:
180:   --  This operation sends a message stored in msg and of length size through
181:   --  the given endpoint.
182:   --  The operation is non-blocking and returns immediately.
183:
184:   procedure Send_Async
185:     (My_Endpoint  : in MaRTE_C_Types.Int;
186:      Message      : in Ada.Streams.Stream_Element_Array;
187:      Message_Size : in C_Types.size_t);
188:
189:   pragma Import (C, Send_Async, "frsh_send_async_c");
190:
191:   pragma Import_Procedure
192:     (Internal        => Send_Async,
193:      External        => "frsh_send_async_c",
194:      Mechanism       => (Value, Reference, Value));
195:
University of Cantabria B-181



F R E S C O R  A D A  B I N D I N G SB
196:   ------------------------------
197:   -- Receive_Sync --
198:   ------------------------------
199:   --  If there are no messages available in the specified receive endpoint
200:   --  this operation blocks the calling thread waiting for a message to be
201:   --  received.
202:   --  When a message is available, if its size is less than or equal to the
203:   --  buffer_size, the function stores it in the variable pointed to by buffer
204:   --  and puts the number of bytes received in the variable pointed to by
205:   --  message size.
206:
207:   procedure Receive_Sync
208:     (Station      : out C_Types.unsigned_short;
209:      My_Endpoint  : in C_Types.int;
210:      Message      : out Ada.Streams.Stream_Element_Array;
211:      Buffer_Size  : in C_Types.size_t;
212:      Message_Size : out C_Types.size_t);
213:
214:   pragma Import (C, Receive_Sync, "frsh_receive_sync_c");
215:   --  This pragma assures a valid exchange of parameters. Target function must
216:   --  return the first parameter.
217:   pragma Import_Valued_Procedure
218:     (Internal        =>  Receive_Sync,
219:      External        => "frsh_receive_sync_c",
220:      Mechanism       => (Value,
221:                          Value,
222:                          Reference,
223:                          Value,
224:                          Reference));
225:
226:   -----------------------------------------
227:   -- Network_Bytes_To_Budget --
228:   -----------------------------------------
229:
230:   --  This operation converts a number of bytes into a temporal budget for a
231:   --  specific network. Network overheads are not included here but are
232:   --  considered internally when negotiating a specific contract.
233:
234:   procedure Network_Bytes_To_Budget
235:     (Network_ID : in C_Types.int;
236:      Bytes      : in C_Types.int;
237:      Budget     : out Timespec);
238:
239:   --------------------------------------
240:   -- Send_Endpoint_Create --
241:   --------------------------------------
242:
243:   --  This operation creates a unidirectional stream input endpoint through
244:   --  which, after the corresponding binding, it is possible to send data to a
B-182 Computers and Real-Time Group



F R E S C O R  A D A  B I N D I N G S
245:   --  unicast or multicast destinations.
246:   --
247:   --  TO DO
248:   --  Protocol info not mapped
249:
250:   procedure Send_Endpoint_Create
251:     (Network_ID : C_Types.int;
252:      To_Station : C_Types.int;
253:      To_Channel : C_Types.int;
254:      Endpoint   : out C_Types.int);
255:
256:   -----------------------------------------
257:   -- Receive_Endpoint_Create --
258:   -----------------------------------------
259:
260:   --  This operation creates a receive endpoint associated with a
261:   --  undirectional
262:   --  stream within a network interface of the node.
263:   --  Receiving endpoints are not bound to any network vres, this is because
264:   --  they don’t originate any traffic.
265:   --
266:   --  TO DO
267:   --  Protocol info not mapped
268:   --  Queueing info not mapped
269:
270:   procedure Receive_Endpoint_Create
271:     (Network_ID : C_Types.int;
272:      Channel    : C_Types.int;
273:      Endpoint   : out C_Types.int);
274:
275:   ------------------------------------
276:   -- Send_Endpoint_Bind --
277:   ------------------------------------
278:
279:   --  This operation associates a send endpoint with a network vres, which
280:   --  means that messages sent through this endpoint will consume the vres’s
281:   --  reserved bandwidth and its packets will be sent according to the
282:   --  contract established for that vres.
283:
284:   procedure Send_Endpoint_Bind
285:     (VRES     : VRES_ID;
286:      Endpoint : C_Types.int);
287:
288:   pragma Import (C, Send_Endpoint_Bind, "frsh_send_endpoint_bind_c");
289:
290:   -------------------------------------------
291:   -- Thread_Join_In_Background --
292:   -------------------------------------------
293:
University of Cantabria B-183



F R E S C O R  A D A  B I N D I N G SB
294:   --  This function creates a "background contract" that does not need to
295:   --  be negotiated, associating the calling task with this contract and binding it 
296:   --  to the new vres.
297:
298:   procedure Thread_Join_In_Background
299:     (Resource_Id : in Integer;
300:      Res_Type    : in Resource_Type;
301:      Label       : in Contract_Label;
302:      VRES        : out VRES_ID);
303:
304:   -------------------------------
305:   -- Get_My_CPU_Id --
306:   -------------------------------
307:   --  Recover FRSH_CPU_ID_DEFAULT Variable
308:
309:   procedure Get_My_CPU_Id (Id : out C_Types.int);
310:   pragma Import (C, Get_My_CPU_Id, "get_my_cpu_id");
311:   pragma Import_Valued_Procedure
312:     (Internal        => Get_My_CPU_Id,
313:      External        => "get_my_cpu_id",
314:      Mechanism       => (Value));
315:
316:private
317:   ---------------------------------------------
318:   -- Thread_Join_In_Background_C --
319:   ---------------------------------------------
320:
321:   function Thread_Join_In_Background_C
322:     (Resource_Id : in Integer;
323:      Res_Type    : in Resource_Type;
324:      Label       : in Contract_Label) return VRES_ID;
325:
326:   pragma Import (C, Thread_Join_In_Background_C,
327:                  "frsh_thread_join_in_background_c");
328:
329:   -------------------------------------------
330:   -- Receive_Endpoint_Create_C --
331:   -------------------------------------------
332:
333:   function Receive_Endpoint_Create_C
334:     (Network_ID : C_Types.int;
335:      Channel    : C_Types.int) return C_Types.int;
336:
337:   pragma Import (C, Receive_Endpoint_Create_C,
338:                  "frsh_receive_endpoint_create_c");
339:
340:   ----------------------------------------
341:   -- Send_Endpoint_Create_C --
342:   ----------------------------------------
B-184 Computers and Real-Time Group



F R E S C O R  A D A  B I N D I N G S
343:
344:   function Send_Endpoint_Create_C
345:     (Network_ID : C_Types.int;
346:      To_Station : C_Types.int;
347:      To_Channel : C_Types.int) return C_Types.int;
348:
349:   pragma Import (C, Send_Endpoint_Create_C, "frsh_send_endpoint_create_c");
350:
351:   -------------------------------------------
352:   -- Network_Bytes_To_Budget_C --
353:   -------------------------------------------
354:
355:   function Network_Bytes_To_Budget_C
356:     (Network_ID : in C_Types.int;
357:      Bytes      : in C_Types.int) return Timespec;
358:
359:   pragma Import (C, Network_Bytes_To_Budget_C,
360:                  "frsh_network_bytes_to_budget_c");
361:
362:end FRSH_Ada;
University of Cantabria B-185



F R E S C O R  A D A  B I N D I N G SB
B-186 Computers and Real-Time Group



. . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES

[ADA05] Taft, S. T., Duff, R. A., Brukardt, R., Ploedereder, E. and Leroy, P. Ada
2005 Reference Manual. Language and Standard Libraries - International
Standard ISO/IEC 8652/1995 (E) with Technical Corrigendum 1 and
Amendment 1, Vol. 4348, Springer, 2006.

[AFDX09] “Aircraft Data Network, Part 7 - Avionics Full Duplex Switched Ethernet
(AFDX) Network”, ARINC Specification 664P7, Airlines Electronic
Engineering Committee, Aeronautical Radio INC., 2009.

[ALD01] Aldea, M. and González Harbour, M. “MaRTE OS: An Ada Kernel for
Real-Time Embedded Applications”, Proceedings of the 6th Ada-Europe
International Conference on Reliable Software Technologies, Springer,
2001, pp. 305-316.

[ALD06] Aldea, M., Bernat, G., Broster, I., Burns, A., Dobrin, R., Drake, J. M.,
Fohler, G., Gai, P., González Harbour, M., Guidi, G., Gutiérrez, J. J.,
Lennvall, T., Lipari, G., Martínez, J. M., Medina Pasaje, J., Palencia J. C.
and Trimarchi, M. “FSF: A Real-Time Scheduling Architecture
Framework”, in 'IEEE Real Time Technology and Applications
Symposium', 2006, pp. 113-124.

[ALM01] Ada Language Mapping Specification (v1.2), Object Management Group,
OMG Document, 2001.

[ARINC06] ARINC. “Avionics Application Software Standard Interface”. ARINC
Specification 653-1, 2006.

[ARINC99] “ARINC Specification 629”, Aeronautical Radio, Incorporated (ARINC),
1999.
University of Cantabria R-187



R E F E R E N C E SR
[ATMEL05] “Rad-Hard 32 bit SPARC V8 Processor — AT697E”. Available on
http://www.atmel.com/dyn/resources/prod_documents/doc4226.pdf,
Atmel, 2005.

[AUD01] Audsley, N. and Wellings, A. “Issues with using Ravenscar and the Ada
distributed systems annex for high-integrity systems”, Ada Letters (XXI),
2001, pp. 33-39.

[AUD93] Audsley, N., Burns, A., Richardson, M., Tindell, K. and Wellings, A.
“Applying new scheduling theory to static priority pre-emptive
scheduling”, Software Engineering Journal (8:5), 1993, pp. 284 -292.

[BAK91] Baker, T. P. “Stack-based scheduling for realtime processes”, Real-Time
Systems (3), 1991, pp. 67-99.

[BAR90] Baruah, S. K., Rosier, L. E. and Howell, R. R. “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor”, Real-Time Systems (2), 1990, pp. 301-324.

 [BAS07] Basanta-Val, P. and García Valls, M. (Thesis supervisor) “Técnicas y
extensiones para Java de Tiempo Real distribuido”, Doctoral Dissertation
, Universidad Carlos III de Madrid, 2007.

[BOHN07] Bohnenkamp, H., Hermanns, H. and Katoen, J.-P. “MOTOR: the
MODEST tool environment”, in Proceedings of the 13th international
conference on Tools and algorithms for the construction and analysis of
systems, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 500-504.

[BOL00] Bollella, G. and Gosling, J. “The Real-Time Specification for Java,”,
IEEE Computer (33:6), 2000, pp. 47-54.

[BORD07] Bordin, M. and Vardanega, T. “Correctness by construction for high-
integrity real-time systems: a metamodel-driven approach”, in
Proceedings of the 12th international conference on Reliable software
technologies, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 114-127.

[BUR09] Burns, A. and Wellings, A. J. “Real-Time Systems and Programming
Languages: ADA 2005, Real-Time Java, and Real-Time POSIX”,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2009.
R-188 Computers and Real-Time Group



R E F E R E N C E S
[BUR91] Burns, A. “Scheduling hard real-time systems: a review”, Software
Engineering Journal (6), 1991, pp. 116-128.

[BUR94] Burns, A. and Wellings, A. J. “HRT-HOOD: A structured design method
for hard real-time systems”, Real-Time Systems (6), 1994, pp. 73-114.

[CAN91] “CAN Specification”(v 2.0), Bosch, Postfach 50, D-700 Stuttgart 1, 1991.

[CHO95] Choi, J.-Y., Lee, I. and Xie, H.-L. “The Specification and Schedulability
Analysis of Real-Time Systems using ACSR”, in Proceedings of the 16th
IEEE Real-Time Systems Symposium, IEEE Computer Society,
Washington, DC, USA, 1995, pp. 266-275.

[COR03] “CORBA Core Specification” (v3.0), Object Management Group, OMG
Document formal/02-06-01, 2003.

[DCE97]  “DCE 1.2: Remote Procedure Calls”, The Open Group, 1997.

[DDS07] “Data Distribution Service for Real-time Systems”, (v1.2), Object
Management Group, OMG Document formal/07-01-01, 2007.

[DEC05] Decotignie, J.D. “Ethernet-Based Real-Time and Industrial
Communications”, in Proceedings of the IEEE (93:6), 2005, pp. 1102 -
1117.

[DRTSJ00] “Distributed real-time specification”, JSR-50,
http://www.jcp.org/en/jsr/detail?id=50, 2000.

[ETF04] “Extensible Transport Framework”, (v 1.0), Object Management Group,
OMG Document formal/04-03-03, 2004.

[FEL01] Felser, M. “Ethernet TCP/IP in automation: a short introduction to real-
time requirements”, in 8th IEEE International Conference on Emerging
Technologies and Factory Automation, 2001, pp. 501 -504 vol.2.

[FLEX05] “FlexRay Communications System Protocol Specification”, (v 2.1), 2005.

[FLOWC11] “IEEE 802.1Qbb “Priority based flow-control”, (v 1.0), The Institute of
Electrical and Electronics Engineers (IEEE), 2011.
University of Cantabria R-189



R E F E R E N C E SR
[FOH02] Fohler, G. and Buttazzo, G. C. “Introduction to the Special Issue on
Flexible Scheduling”, Real-Time Systems, Vol. 22, Springer Netherlands,
2002.

[FOS05] Foster, A. and Aslam-Mir, S. “Practical Experiences Using The OMG's
Extensible Transport Framework (ETF) Under A Real-time Corba ORB
To Implement QoS Sensitive Custom Transports For Sdr.”, in Proceeding
of the SDR Technical Conference and Product Exposition, 2005.

[FRSH09-A] Vila-Carbó, J., López, D. S., Orallo, E. H. and Smolík, P. “General
Purpose Networks. Deliverable (D-ND2) - FRESCOR Framework”,
2009.

[FRSH09-B] Sangorrín, D. and González Harbour, M. “Fieldbus Systems. Deliverable
(D-ND1) - FRESCOR Framework”, 2009.

[FRSH09-C] Sangorrín, D. and González Harbour, M. “Distributed Transaction
Manager - Proof of Concepts. Deliverable (D-ND5) - FRESCOR
Framework”, 2009.

[FRSH11] FRESCOR project web page: http://frescor.org. Last access in April,
2011.

[GAHI00] “Guide for the Use of the Ada Programming Language in high integrity
Systems”, ISO/IEC TR 15942, 2000.

[GOM84] Gomaa, H. “A software design method for real-time systems”,
Communications of the ACM (27), 1984, pp. 938-949.

[GUT01] Guitiérrez, J. J. and González Harbour, M. “Towards a real-time
distributed systems annex in Ada”, Ada Letters (XXI), 2001, pp. 62-66.

[GUT02] Gutiérrez, J. J., Drake, J. M., González Harbour, M. and Medina Pasaje, J.
“Modeling and schedulability analysis in the development of real-time
distributed Ada systems”, Ada Letters (XXII), 2002, pp. 58-65.

[GUT96] Gutiérrez, J. J. and González Harbour, M. “Minimizing the effects of jitter
in distributed hard real-time systems”, Journal of Systems Architecture
(42), 1996, pp. 431-447.
R-190 Computers and Real-Time Group



R E F E R E N C E S
[GUT99] Gutiérrez, J. J. and González Harbour, M. “Prioritizing remote procedure
calls in Ada distributed systems”, Ada Letters (XIX), 1999, pp. 67-72.

[HAM04] Hamann, A., Jersak, M., Richter, K. and Ernst, R. “Design Space
Exploration and System Optimization with SymTA/S - Symbolic Timing
Analysis for Systems”, in Proceedings of the 25th IEEE International
Real-Time Systems Symposium, IEEE Computer Society, Washington,
DC, USA, 2004, pp. 469-478.

[HAR01] González Harbour, M., Gutiérrez J. J., Palencia J. C. and Drake J. M.
“MAST: Modeling and Analysis Suite for Real Time Applications”, in
Proceedings of the 13th Euromicro Conference on Real-Time Systems,
IEEE Computer Society, Washington, DC, USA, 2001, pp. 125-134.

[HAR12] González Harbour, M. Gutiérrez, J. J., Drake, J. M., López Martínez, P.
and Palencia, J. C. “Modeling distributed real-time systems with MAST
2”, Journal of Systems Architecture,
http://dx.doi.org/10.1016/j.sysarc.2012.02.001, 2012.

[HEN06] Hendriks, M. and Verhoef, M. “Timed automata based analysis of
embedded system architectures”, in 20th International Parallel and
Distributed Processing Symposium (IPDPS), 2006, pp. 179-187.

[HRI05] Hristu-Varsakelis, D., Levine, W. S., Alur, R., Arzen, K.-E., Baillieul, J.
and Henzinger, T. A. Handbook of Networked and Embedded Control
Systems (Control Engineering), Birkhauser, 2005.

[HUG08] Hugues, J., Zalila, B., Pautet, L. and Kordon, F. “From the prototype to
the final embedded system using the Ocarina AADL tool suite”, ACM
Transactions on Embedded Computing Systems (7), 2008, pp. 1-25.

[IEC00] “IEC International Standard 61158: Fieldbus standard for use in industrial
control systems”, IEC International Electrotechnical Comittee, IEC
Document, 2000.

[IEC04] “IEC PAS 62030: Digital data communications for measurement and
control”, (First edition), IEC International Electrotechnical Commission.,
IEC Document, 2004.
University of Cantabria R-191



R E F E R E N C E SR
[IEC07] “IEC International Standard 61784-1 and -2: Industrial communication
networks.”, IEC International Electrotechnical Comittee, IEC Document,
2007.

[JAH86] Jahanian, F. and Mok, A. K. “Safety analysis of timing properties in real-
time systems”, IEEE Transactions on Software Engineering (12), 1986,
pp. 890-904.

[JOS86] Joseph, M. and Pandya, P. “Finding Response Times in a Real-Time
System”, The Computer Journal (29:5), 1986, pp. 390-395.

[KER99] Kermarrec, Y. “CORBA vs. Ada 95 DSA: a programmer's view”, Ada
Letters (XIX), 1999, pp. 39-46.

[KISZ05] Kiszka, J. and Wagner, B. “RTnet - a flexible hard real-time networking
framework”, in 10th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA), 2005, pp. 456-464.

[KLE93] Klein, M. H., Ralya, T., Pollak, B., Obenza, R. and González Harbour, M.
“A practitioner's handbook for real-time analysis”, Kluwer Academic
Publishers, Norwell, MA, USA, 1993.

[KOP93] Kopetz, H. and Grunsteidl, G. “TTP - A time-triggered protocol for fault-
tolerant real-time systems”, in The Twenty-Third International
Symposium on Fault-Tolerant Computing (FTCS), 1993, pp. 524 -533.

[KOP11] Kopetz, H. “Real-Time Systems: Design Principles for Distributed
Embedded Applications”, Springer, 2011.

[KRAH01] Krahl, D. “Extend: the Extend Simulation Environment”, in Proceedings
of the 33rd Winter Simulation Conference, IEEE Computer Society,
Washington, DC, USA, 2001, pp. 217-225.

[LAN02] Lankes, S., Reke, M. and Jabs, A. “A Time-Triggered Ethernet Protocol
for Real-Time CORBA”, in Proceedings of the Fifth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC), IEEE Computer Society, Washington, DC, USA, 2002, pp. 215-
222.
R-192 Computers and Real-Time Group



R E F E R E N C E S
[LAN03] Lankes, S., Jabs, A. and Bemmerl, T. “Integration of a CAN-Based
Connection-Oriented Communication Model into Real-Time CORBA”,
in Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, IEEE Computer Society, Washington, DC, USA,
2003, pp. 121-129.

[LEE98] Lee J-Y., Moon H-J., Kwon W. H., Less S. W. and Park I. S. “Token-
Passing bus access method on the IEEE 802.3 physical layer for
distributed control networks”, Distributed Computer Control Systems
(DCCS), Elsevier Science, 1998, pp. 31-36.

[LEH89] Lehoczky, J., Sha, L. and Ding, Y. “The rate monotonic scheduling
algorithm: exact characterization and average case behavior”, in Real
Time Systems Symposium, 1989, pp. 166 -171.

[LELAN93] LeLan, G. Rivierre, N. “Report RR1863: Real-Time Communications
over Broadcast Networks: the CSMA-DCR and the DOD-CSMA-CD
Protocols”, Technical report, INRIA, 1993.

[LEON05] “LEON2 Processor User’s Manual”, Gaisler Research, 2005.

[LI04] Li, P., Ravindran, B., Cho, H. and Jensen, E. D. “Scheduling Distributable
Real-Time Threads in Tempus Middleware”, in Proceedings of the Tenth
International Conference on Parallel and Distributed Systems, IEEE
Computer Society, Washington, DC, USA, 2004, pp. 187-194.

[LIU00] Liu, J. W. S. “Real-Time Systems”, Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

[LIU73] Liu, C. L. and Layland, J. W. “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment”, J. ACM (20),
1973, pp. 46-61.

[LOP04] Campos, J. L., Gutiérrez, J. J. and González Harbour, M. “The Chance for
Ada to Support Distribution and Real-Time in Embedded Systems”, in
Proceedings of the 9th Ada-Europe International Conference on Reliable
Software Technologies, Springer, 2004, pp. 91-105.
University of Cantabria R-193



R E F E R E N C E SR
[LOP06] Campos, J. L., Gutiérrez, J. J. and González Harbour, M.
“Interchangeable Scheduling Policies in Real-Time Middleware for
Distribution”, in Proceedings of the 11th Ada-Europe International
Conference on Reliable Software Technologies, Springer, 2006, pp. 227-
240.

[LOPE08] López, J. M., Díaz, J. L., Entrialgo, J. and García, D. “Stochastic analysis
of real-time systems under preemptive priority-driven scheduling”, Real-
Time Systems (40), 2008, pp. 180-207.

[LOPZ04] López Martínez, P., Medina Pasaje, J. and Drake, J. M. “Sim_MAST:
Simulador de Sistemas Distribuidos de Tiempo Real”, in XII Jornadas de
Concurrencia y Sistemas Distribuidos, 2004.

[LOPZ10] López Martínez, P. and Drake, J.M. (Thesis Supervisor) “Desarrollo de
sistemas de tiempo real basados en componentes utilizando modelos de
comportamiento reactivos”, Doctoral Dissertation, 2010.

[LOS04] Losert, T., Huber, W., Hendling, K. and Jandl, M. “An extensible transport
framework for CORBA with emphasis on real-time capabilities”, in
Second IEEE International Conference on Computational Cybernetics
(ICCC), 2004, pp. 155-161.

[LU11] Lu, Y., Nolte, T., Cucu-Grosjean, L. and Bate, I. “RapidRT: A Tool For
Statistical Response-Time Analysis of Complex Industrial Real-Time
Embedded Systems”, in Real-Time SystemS @ Work, the Open Demo
Session of Real-Time Techniques and Technologies of the 32nd IEEE
Real-Time Systems Symposium (RTSS'11), 2011.

[MACB04] “IEEE Std 802.1D-2004. “Media Access Control (MAC) Bridges”, The
Institute of Electrical and Electronics Engineers (IEEE), 2004.

[MAH04] Mahmoud, Q. Middleware for communications, J. Wiley & Sons Ltd,
2004.

[MAKI08] Mäki-Turja, J. and Nolin, M. “Efficient implementation of tight response-
times for tasks with offsets”, Real-Time Systems (40), 2008, pp. 77-116.
R-194 Computers and Real-Time Group



R E F E R E N C E S
[MAR05] Martínez, J. M. and González Harbour, M. “RT-EP: A Fixed-Priority Real
Time Communication Protocol over Standard Ethernet”, in Proceedings
of the 10th Ada-Europe International Conference on Reliable Software
Technologies, Springer, 2005, pp. 180-195.

[MAR08] “A UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems”, Object Management Group, OMG Document
ptc/2008-06-09, 2008.

[MAZ09] Mazzini, S., Puri, S. and Vardanega, T. “An MDE methodology for the
development of high-integrity real-time systems”, in Proceedings of the
Conference on Design, Automation and Test in Europe, European Design
and Automation Association, 3001 Leuven, Belgium, Belgium, 2009, pp.
1154-1159.

[MED05] Medina Pasaje, J. and Drake, J.M. (Thesis Supervisor) “Metodología y
herramientas UML para el modelado y análisis de sistemas de tiempo real
orientados a objetos”, Doctoral Dissertation, 2005.

[MED11] Medina Pasaje, J. and García Cuesta, A. “Model-based analysis and
design of real-time distributed systems with Ada and the UML profile for
MARTE”, in Proceedings of the 16th Ada-Europe international
conference on Reliable software technologies, Springer-Verlag, Berlin,
Heidelberg, 2011, pp. 89-102.

[MIS04] “Guidelines for the Use of the C Language in Critical Systems”, Technical
report, MISRA Consortium, 2004.

[MOK78] Mok, A. and Dertouzos, M. “Multiprocessor scheduling in a hard real-
time environment”, in Proceedings of the Seventh Texas Conference on
Computing Systems, 1978.

[MOK96] Mok, A. K., Tsou, D.-C. and de Rooij, R. C. M. “The MSP.RTL real-time
scheduler synthesis tool”, in Proceedings of the 17th IEEE Real-Time
Systems Symposium, IEEE Computer Society, Washington, DC, USA,
1996, pp. 118-128.

[NAM04] “Naming Service Specification”, (v 1.3), Object Management Group,
OMG Document formal/04-10-03, 2004.
University of Cantabria R-195



R E F E R E N C E SR
[PAL05] Palencia, J. C. and González Harbour, M. “Response time analysis of
EDF distributed real-time systems”, Journal of Embedded Computing (1),
2005, pp. 225-237.

[PAL97] Palencia, J. C., Gutiérrez J. J. and González Harbour, M. “On the
schedulability analysis for distributed hard real-time systems”,
Proceedings of the Ninth Euromicro Workshop on Real-Time Systems,
1997, pp. 136-143.

[PAL99] Palencia, J. C. and González Harbour, M. “Exploiting Precedence
Relations in the Schedulability Analysis of Distributed Real-Time
Systems” in Proceedings of the 20th IEEE Real-Time Systems
Symposium, IEEE Computer Society, Washington, DC, USA, 1999, pp.
328-339.

[PAU00] Pautet, L. and Tardieu, S. “GLADE: A Framework for Building Large
Object-Oriented Real-Time Distributed Systems”, ISORC, 2000, pp. 244-
251.

[PED02] Pedreiras, P., Almeida, L. and Gai, P. “The FTT-Ethernet Protocol:
Merging Flexibility,Timeliness and Efficiency”, in Proceedings of the
14th Euromicro Conference on Real-Time Systems, IEEE Computer
Society, Washington, DC, USA, 2002, pp. 134-142.

[PED03] Pedreiras, P., Leite, R. and Almeida, L. “Characterizing the Real-Time
Behavior of Prioritized Switched-Ethernet”, in Proceedings of the 2nd
Workshop on Real-Time LAN's in the Internet Age (RTLIA), 2003.

[PER08] Pérez, H., Gutiérrez, J. J., Sangorrín, D. and González Harbour, M. “Real-
Time Distribution Middleware from the Ada Perspective”, in Proceedings
of the 13th Ada-Europe International Conference on Reliable Software
Technologies, Springer, 2008, pp. 268-281.

[PER09] Pérez, H. and Gutiérrez, J. J. “Experience in integrating interchangeable
scheduling policies into a distribution middleware for Ada”, in
Proceedings of the ACM SIGAda annual international conference on Ada
and related technologies, ACM, New York, NY, USA, 2009, pp. 73-78.
R-196 Computers and Real-Time Group



R E F E R E N C E S
[PER10] Pérez, H., Gutiérrez, J. J. and González Harbour, M. “Support for a real-
time transactional model in distributed Ada”, Ada Letters (XXX), 2010,
pp. 91-103.

[PER11] Pérez, H., Gutiérrez, J. J., Asensio, E., Zamorano, J. and de la Puente, J.
A. “Model-Driven Development of High-Integrity Distributed Real-Time
Systems Using the End-to-End Flow Model” in Proceedings of the 37th
Euromicro Conference on Software Engineering and Advanced
Applications, Oulu, Finland, 2011, pp. 209-216.

[PER12] Pérez, H. and Gutiérrez, J. J. “On the schedulability of a data-centric real-
time distribution middleware”, Journal of Computer Standards &
Interfaces, Volume 34, Issue 1, 2012, pp. 203-211.

[PERA07] Perathoner, S., Wandeler, E., Thiele, L., Hamann, A., Schliecker, S.,
Henia, R., Racu, R., Ernst, R. and González Harbour, M. “Influence of
different system abstractions on the performance analysis of distributed
real-time systems”, in Proceedings of the 7th ACM & IEEE international
conference on Embedded software, ACM, New York, NY, USA, 2007, pp.
193-202.

[PERR10] Perrotin, M., Conquet, E., Dissaux, P., Tsiodras, T. and Hugues, J. “The
TASTE Toolset: turning human designed heterogeneous systems into
computer built homogeneous software”, in Proceedings of Embedded
Real Time Software and Systems, Toulouse, France, 2010.

[PIN02] Pinho, L. M. and Vasques, F. “Transparent Environment for Replicated
Ravenscar Applications”, in Proceedings of the 7th Ada-Europe
International Conference on Reliable Software Technologies, Springer-
Verlag, London, UK, 2002, pp. 297-308.

[PIN02-B] Pinho, L. M. and Vasques, F. “Using Ravenscar to support fault-tolerant
real-time applications”, Ada Letters (XXII), 2002, pp. 47-52.

[PLA08] Merle, A. P. P. and Seinturier, L. “A Real-Time Java Component Model”,
in IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, (0), 2008, pp. 281-288.
University of Cantabria R-197



R E F E R E N C E SR
[POS98] “POSIX.13 IEEE Std. 1003.13-1998. Information Technology -
Standardized Application Environment Profile - POSIX Realtime
Application Support (AEP)”, The Institute of Electrical and Electronics
Engineers (IEEE), 1998.

[PUE00] de la Puente, J. A., Ruiz, J. and Zamorano, J. “An Open Ravenscar Real-
Time Kernel for GNAT”, in Proceedings of the 5th Ada-Europe
International Conference on Reliable Software Technologies, 2000,
Springer Berlin / Heidelberg, pp. 5-15.

 [PYA01] Pyarali, I., Spivak, M., Cytron, R. and Schmidt, D. C. “Evaluating and
Optimizing Thread Pool Strategies for Real-Time CORBA”, LCTES/OM,
ACM, 2001, pp. 214-222.

[RAJ89] Rajkumar, R. “Task synchronization in real-time systems”, Doctoral
Dissertation, Carnegie Mellon University, Pittsburgh, PA, USA,
AAI9016357, 1989.

[RAP03] “Rapid-RMA: The Art of Modeling Real-Time Systems”, Technical
report, Tri-Pacific, 2003.

[RED04] Redell, O. “Analysis of tree-shaped transactions in distributed real time
systems”, in Proceedings of the 16th Euromicro Conference on Real-Time
Systems, 2004. ECRTS 2004, 2004, pp. 239-248.

[REK03] Rekik, R. and Hasnaoui, S. “Application of a CAN BUS transport for
DDS middleware”, in Second International Conference on the
Applications of Digital Information and Web Technologies (ICADIWT),
2009, pp. 766 -771.

[RFC2474] Nichols, K., Blake, S., Baker, F. and Black, D. “Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers”,
RFC Editor, United States, 1998.

[RFC3550] “RFC 3550: RTP: A Transport Protocol for Real-Time Applications”, The
Internet Society, 2003.
R-198 Computers and Real-Time Group



R E F E R E N C E S
[RIV10] Rivas, J., Gutiérrez, J. J., Palencia, J. C. and González Harbour, M.
“Optimized Deadline Assignment and Schedulability Analysis for
Distributed Real-Time Systems with Local EDF Scheduling”, 8th
International Conference on Embedded Systems and Applications (ESA),
2010.

[RIV11] Rivas, J., Gutiérrez, J. J., Palencia, J. C. and González Harbour, M.
“Schedulability Analysis and Optimization of Heterogeneous EDF and FP
Distributed Real-Time Systems”, 23rd Euromicro Conference on Real-
Time Systems (ECRTS), 2011, pp. 195-204.

[RMI04] “Java Remote Method Invocation (RMI)”, Sun Microsystems,
http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf, 2004.

[RTC05] “Realtime CORBA Specification”, (v1.2), Object Management Group,
OMG Document formal/05-01-04, 2005.

[RTPS09] “The Real-time Publish-Subscribe Wire Protocol. DDS Interoperability
Wire Protocol Specification”, Object Management Group, 2009.

[SAE09] “Architecture Analysis and Design Language (AADL) - AS5506A”,
SAE, 2009.

[SAN10] Sangorrín, D., González Harbour, M., Pérez, H. and Gutiérrez, J. J.
“Managing Transactions in Flexible Distributed Real-Time Systems”, in
Proceedings of the 15th Ada-Europe International Conference on Reliable
Software Technologies, Valencia, Spain, Springer, 2010, pp. 251-264.

[SCH01] Schmidt, D. C., Mungee, S., Flores-Gaitan, S. and Gokhale, A. “Software
Architectures for Reducing Priority Inversion and Non-determinism in
Real-time Object Request Brokers”, Real-Time Systems (21), 2001, pp.
77-125.

[SCH05] Schmidt, D. C. “TAO Developer's Guide. Building a standard in
performance”, Object Computing, Inc., 2005.

[SCH96] Schmidt, D. C. and Cranor, C. D. “Pattern languages of program design
2”, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1996, pp. 437-459.
University of Cantabria R-199



R E F E R E N C E SR
[SCH98] Schmidt, D. C. “Evaluating Architectures for Multithreaded Object
Request Brokers”, Communications of the ACM (41:10), 1998, pp. 54-
60.

[SCH98-2] Schmidt, D. C., Levine, D. L. and Mungee, S. “The design of the TAO
real-time object request broker”, Computer Communications (21:4),
1998, pp. 294-324.

[SHA90] Sha, L., Rajkumar, R. and Lehoczky, J. P. “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization”, IEEE Transactions on
Computers (39), 1990, pp. 1175-1185.

[SIN04] Singhoff, F., Legrand, J., Nana, L. and Marcé, L. “Cheddar: a flexible real
time scheduling framework”, in Proceedings of the 2004 annual ACM
SIGAda international conference on Ada: The engineering of correct and
reliable software for real-time & distributed systems using Ada and
related technologies, ACM, New York, NY, USA, 2004, pp. 1-8.

[SPA10] “SPARK - The Spade Ada Kernel”, SPARK LRM, 2010.

[SPU96] Spuri, M. “Analysis of Deadline Scheduled Real-Time Systems”,
Technical report, Technical report, Institut National de Recherche en
Informatique et en Automatique (INRIA), 1996.

[SPU96-2] Spuri, M. “Holistic Analysis of Deadline Scheduled Real-Time
Distributed Systems”, Technical report, Technical report, Institut National
de Recherche en Informatique et en Automatique (INRIA), 1996.

[SPW08] “SpaceWire - links, nodes, routers and networks”, European Corporation
for Space Standardization (ECSS), 2008.

[STA92] Stankovic, J. “Distributed real-time computing: the next generation”,
Technical report, Dept. of Computer and Information, University of
Massachusetts, 1992.

[TEJ07] Tejera, D., Alonso, A. and de Miguel, M. A. “RMI-HRT: remote method
invocation - hard real time”, in Proceedings of the 5th international
workshop on Java technologies for real-time and embedded systems,
ACM, New York, NY, USA, 2007, pp. 113-120.
R-200 Computers and Real-Time Group



R E F E R E N C E S
[THI00] Thiele, L., Chakraborty, S. and Naedele, M. “Real-time calculus for
scheduling hard real-time systems”, in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), 2000, pp.
101 -104 vol.4.

[TIM02] “Using TimeWiz to Understand System Timing before you Build or Buy.
White paper”, Technical report, TimeSys Corporation, 2002.

[TIN94A] Tindell, K. W., Burns, A. and Wellings, A. J. “An extendible approach for
analyzing fixed priority hard real-time tasks”, Real-Time Systems (6),
1994, pp. 133-151.

[TIN94B] Tindell, K. “Adding Time-Offsets to Schedulability Analysis”, Technical
report, Technical report, University of York, 1994.

[TIN94C] Tindell, K. and Clark, J. “Holistic schedulability analysis for distributed
hard real-time systems”, Microprocessors and Microprogramming Journal
(40), 1994, pp. 117-134.

[URU11] Urueña, S. and Zamorano, J. (Thesis Supervisor) “Arquitectura Software
De Comunicaciones Para Sistemas Distribuidos Críticos Con Requisitos
De Tiempo Real Estrictos”, Doctoral Dissertation, Universidad
Politécnica de Madrid, 2011.

[VBLAN06] “IEEE Std 802.1Q. “Virtual Bridged Local Area Networks”, Annex G,
The Institute of Electrical and Electronics Engineers (IEEE), 2006.

[VER04] Vergnaud, T., Hugues, J., Pautet, L. and Kordon, F. “PolyORB: A
Schizophrenic Middleware to Build Versatile Reliable Distributed
Applications”, in Proceedings of the 9th Ada-Europe International
Conference on Reliable Software Technologies, Springer, 2004, pp. 106-
119.

[VILA08] Vila-Carbó, J., Tur-Masanet, J. and Hernández-Orallo, E. “An evaluation
of switched ethernet and linux traffic control for real-time transmission”,
ETFA, 2008, pp. 400-407.

[VILA08-B] Vila-Carbó, J. and Hernández-Orallo, E. “An analysis method for variable
execution time tasks based on histograms”, Real-Time Systems (38),
2008, pp. 1-37.
University of Cantabria R-201



R E F E R E N C E SR
[WHIT10] White, R. “Providing additional real-time capability and flexibility for
Ada 2005”, Ada Letters. (30), 2010, pp. 135-146.

[WIL97] Wilner, D. “What really happened on Mars?”, Keynote talk at the 18th
IEEE Real-Time Systems Symposium (RTSS), IEEE Computer Society,
1997.

[XIO03] Xiong, M., Parsons, J., Edmondson, J., Nguyen, H. and Schmidt, D.
“Evaluating Technologies for Tactical Information Management in Net-
Centric Systems”, in Proceedings of the Defense Transformation and Net-
Centric Systems Conference, 2007.

[XU93] Xu, J. and Parnas, D. L. “On Satisfying Timing Constraints in Hard-Real-
Time Systems”, IEEE Transactions on Software Engineering (19), 1993,
pp. 70-84.

[ZHA01] Zhang, C. and Tsaoussidis, V. “TCP-real: improving real-time capabilities
of TCP over heterogeneous networks”, in Proceedings of the 11th
international workshop on Network and operating systems support for
digital audio and video, ACM, New York, NY, USA, 2001, pp. 189-198.
R-202 Computers and Real-Time Group


	Title page
	Abstract
	1. Approach and objectives
	1.1 Introduction
	1.1.1 Real-time systems
	1.1.2 Distribution middleware

	1.2 Distributed real-time systems
	1.2.1 Real-time system model
	1.2.2 Schedulability analysis for distributed real- time systems
	1.2.3 Real-time communication networks

	1.3 Real-time distribution middleware
	1.3.1 CORBA and RT-CORBA
	1.3.2 The Ada Distributed Systems Annex (DSA)
	1.3.3 The Data Distribution Service for Real-Time Systems
	1.3.4 The Java approach

	1.4 Development tools and strategies for real-time systems
	1.4.1 Analysis and verification of real-time requirements

	1.5 Motivation and objectives
	1.5.1 Objectives

	1.6 Outline of the thesis

	2. Analysis of the real-time mechanisms included in the distribution standards and their implementations
	2.1 Introduction
	2.2 RT-CORBA
	2.2.1 RT-CORBA implementations

	2.3 The Ada Distributed Systems Annex (DSA)
	2.3.1 DSA implementations

	2.4 The Data Distribution Service for Real-Time Systems (DDS)
	2.4.1 DDS implementations

	2.5 Real-time communication networks and distribution middleware
	2.6 Analysis of distribution middleware from the real-time perspective
	2.6.1 Analysis of the real-time features of distribution standards
	2.6.2 Analysis of the real-time features of implementations

	2.7 Contributions of this chapter

	3. Proposal for an analyzable real- time model in distribution middleware
	3.1 Introduction
	3.2 Distribution middleware and the end-to-end flow model
	3.2.1 Modelling of asynchronous remote calls
	3.2.2 Modelling of synchronous remote calls
	3.2.3 Validation of the end-to-end flow model in distribution middleware

	3.3 The endpoints pattern
	3.3.1 Related work

	3.4 The endpoints API
	3.4.1 Network scheduling interface
	3.4.2 Processing node scheduling interface
	3.4.3 Event management interface
	3.4.4 Using the configuration interface

	3.5 Integration into the Ada standard
	3.6 Automatic generation of the real-time configuration
	3.7 Example of use
	3.8 The endpoints pattern and the concurrency patterns
	3.9 Contributions of this chapter

	4. Integration and validation of the real-time model within distribution middleware
	4.1 Introduction
	4.1.1 Choice of the distributed real-time platform
	4.1.2 Features of the distributed real-time platform

	4.2 The distributed real-time platform and its extensions
	4.2.1 Modifications applied to the platform
	4.2.2 distributed real-time platform implementations

	4.3 Example of usage
	4.4 Case studies
	4.4.1 Applying the endpoints pattern in a real and complex system
	4.4.2 Adapting and using the endpoints pattern in dynamic systems

	4.5 Advances over related work
	4.6 Contributions of this chapter

	5. Adaptation of the endpoints pattern to high-integrity distributed real- time systems developed in ada
	5.1 High-integrity systems and Ada
	5.2 Adapting the endpoints pattern to the Ravenscar profile
	5.3 The endpoints API for high- integrity systems
	5.3.1 Event management interface
	5.3.2 Network scheduling interface
	5.3.3 Processing node scheduling interface

	5.4 Example of use
	5.5 Integration and validation of the endpoints pattern in a high- integrity distributed real-time platform
	5.5.1 Overview of the high-integrity distributed real-time platform
	5.5.2 Modifications and extensions applied to the high-integrity distributed real-time platform

	5.6 Integrating the endpoints pattern into a model-driven development framework
	5.7 The endpoints pattern and static distributed ada
	5.8 Related work
	5.9 Contributions of this chapter

	6. Conclusions
	6.1 Thesis overview
	6.2 Contributions of the work
	6.3 Future work

	Related research projects
	FRESCOR ADA BINDINGS
	References

