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Summary 
 

Dry-cured meats play an important part in many diets, providing valuable proteic and fat nutrients 
and interesting flavours. These products, due to the intermediate water activity and acid pH 
values achieved through the fermentation, drying and ripening period, extend considerably the 
shelf-life of perishable raw meat. NaCl, which is added during processing, additionally exerts an 
important preservative effect. Nevertheless, to respond to the fast changing demands of today’s 
consumers, industry is interested in new technologies, such as the QDS process®, which permits 
the shortening of the drying phase and therefore involves an economical advantage over the 
traditional method. Another way of innovation takes into account public health protection 
campaigns against illnesses linked to nutrition, and consists in the complete substitution of the 
NaCl-content in the production of dry-cured meat products by KCl, potassium lactate and sugars 
(“NaCl-free processing”). However, although both technologies are feasible from a technological 
point of view, their food safety impact must be clarified. The application of a high pressure 
treatment could be useful to improve the food safety of reformulated products and/or products of 
which the traditional production process has been modified.  

With the objective to study food safety aspects of innovative meat technologies and combinations 
among them, QDS, NaCl-free processing and high pressure were integrated in the production of 
two types of dry-cured meat products. Dry fermented sausages (chorizo) were produced at acid 
(4.8) and low acid (5.2) pH and hurdles such as acidification and smoking were introduced in the 
production of dry-cured hams. All products were challenged with low levels (< 2 log CFU/g) of 
Listeria monocytogenes and Salmonella, whereas inoculation was performed in the meat batter 
of chorizos and directly on the surface of dry-cured ham slices. Pressurisation (600 MPa, 5 min, 
13ºC) was applied as an in-package-cold pasteurisation. The fate of the pathogenic 
microorganisms in addition to technological microbiota and physicochemical parameters were 
investigated throughout the production and/or the storage period under refrigeration. 

Neither the QDS technology nor NaCl-free processing affected the particular hostile environment 
of chorizo or dry-cured ham and pathogenic microorganisms did not grow in any of the products. 
However, the fate of both pathogens was affected by NaCl-free processing, acidification, 
smoking and pressurisation. In all types of chorizo except the low acid traditionally dried and 
NaCl-free processed one, pathogens were eliminated during production (acidification and 
drying). Accordingly, the application of a high pressure treatment would only be necessary to 
assure food safety of chorizos with less hurdles. In dry-cured ham, the combination of 
acidification and smoking was the most inhibitory and by means of pressurisation both pathogens 
were eliminated from all types of dry-cured ham throughout refrigerated storage. 

Thus, the combination of QDS and NaCl-free processing could be useful for the fast 
development of safe and healthy sliced dry-cured meat products. Depending on the product, 
however, a high pressure treatment may be required, of which the effectiveness must be 
specifically evaluated, as in the case of products with a complete reduction of the NaCl content, 
where the bactericidal effect of pressurisation can decrease.  
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Resumen 
 

Los productos crudo-curados están presentes en muchas dietas, proporcionando proteínas, 
grasas y flavores interesantes. Estos productos, debido a sus valores de pH ácido y una 
actividad de agua intermedia alcanzados durante la fermentación, la maduración y el secado, 
tienen una vida útil considerablemente más larga que la de la carne fresca. El NaCl, que se 
añade durante el procesado, ejerce también un importante efecto conservante. Además, para 
poder responder rápidamente a las demandas de los consumidores, la industria está interesada 
en la aplicación de nuevas tecnologías como el procesado QDS®, que permite acortar la fase de 
secado, lo que posibilita el desarrollo de nuevos productos y supone una ventaja económica 
frente al secado tradicional. Otra vía de innovación, el “procesado sin NaCl añadido”, tiene en 
cuenta los objetivos propuestos en la estrategia NAOS (Estrategia para la Nutrición, Actividad 
Física y Prevención de la Obesidad) para prevenir enfermedades nutricionales y consiste en la 
sustitución completa del NaCl, usado durante la manufacturación de los productos crudo-
curados, por KCl, lactato potásico y azúcares. Sin embargo, aunque ambas tecnologías son 
viables desde un punto de vista tecnológico, su impacto en la seguridad alimentaria de los 
productos finales tiene que ser evaluado. La aplicación de altas presiones puede mejorar la 
seguridad alimentaria de productos reformulados y/o de productos donde el proceso tradicional 
de producción ha sido modificado. 
Con el objetivo de valorar el impacto que tienen sobre la seguridad alimentaria tecnologías 
innovadoras en la industria cárnica y combinaciones entre ellas, el procesado QDS®, el 
“procesado sin NaCl añadido” y las altas presiones se integraron en la producción de dos tipos 
de productos crudo-curados: embutido fermentado (chorizo ácido, pH 4.8, y poco ácido, pH 5.2) 
y jamón curado (con y sin acidificación y/o ahumado). Los productos se inocularon con niveles 
bajos (<2 log ufc/g) de los patógenos Listeria monocytogenes y Salmonella en la masa cárnica, 
en el caso de los chorizos, y en la superficie de las lonchas, en el caso del jamón curado. Las 
lonchas envasadas al vacío se sometieron a un tratamiento de alta presión de 600MPa, 5 min y 
13ºC. La evolución de los patógenos, así como de la microbiota tecnológica y los parámetros 
físico-químicos se investigó a lo largo de la producción y/o período de almacenaje en 
refrigeración. 
Ni el procesado QDS® ni el “procesado sin NaCl añadido” afectaron el ambiente inhóspito del 
chorizo y el jamón curado, el cual impidió el crecimiento de los patógenos. Sin embargo, la 
evolución de ambos patógenos se vio afectada por el “procesado sin NaCl añadido”, la 
acidificación, el ahumado y la presurización. En todos los tipos de chorizo, excepto el poco ácido 
secado de forma tradicional y el “procesado si NaCl añadido”, los patógenos fueron eliminados 
durante la producción (acidificación y secado). Así, la aplicación de las altas presiones sólo fue 
necesaria para asegurar la seguridad alimentaria en el caso del chorizo con menos obstáculos 
para el crecimiento microbiano. En jamón curado, la combinación de acidificación y ahumado fue 
la más inhibitoria tanto en productos estándar como “procesados sin NaCl añadido” y con el 
tratamiento de alta presión se logro ausencia de L. monocytogenes y Salmonella en todos los 
tipos de jamón curado durante el almacenaje en refrigeración. 
Consecuentemente, el procesado QDS y el “procesado sin NaCl añadido” son útiles para el 
rápido desarrollo de productos cárnicos crudo-curados loncheados sanos y seguros. Sin 
embargo, dependiendo del tipo de producto podría ser necesaria la aplicación de un tratamiento 
de alta presión cuya eficiencia tendrá que ser valorada específicamente, ya que en el caso de 
productos elaborados sin la adición de NaCl, el efecto bactericida del tratamiento puede 
disminuir. 
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Resum 
 

Els productes crus-curats són presents en moltes dietes, proporcionant proteïnes, greixos i 
flavors interessants. Aquests productes, degut als valors de pH àcid i una activitat d’aigua 
intermitja assolits després de la fermentació, la maduració i l’assecat, tenen una vida útil 
considerablement més llarga que la de la carn fresca. El NaCl, que s’afegeix durant el processat, 
exerceix també un important efecte conservador. A més, per poder respondre ràpidament a les 
demandes dels consumidors, la industria està interessada en l’aplicació de noves tecnologies 
com el processat QDS®, que permet escurçar la fase d’assecat facilitant així el desenvolupament 
de nous productes i suposant una avantatge econòmica enfront l’assecat tradicional. Una altra 
via d’innovació, el “processat sense NaCl afegit”, té en compte els objectiu proposats a 
l’estratègia NAOS (Estrategia para la Nutrición, Actividad Física y Prevención de la Obesidad) i 
consisteix en la substitució total de l’NaCl per KCl, lactat potàssic i sucres. De totes maneres, 
encara que les dues tecnologies siguin viables des del punt de vista tecnològic, el seu impacte 
en la seguretat alimentaria dels productes resultants cal que sigui avaluat. L’aplicació d’altes 
pressions pot millorar la seguretat alimentaria de productes reformulats i/o productes on el 
procés tradicional ha estat modificat. 
Amb l’objectiu de valorar l’impacte que tenen sobre la seguretat alimentaria tecnologies 
innovadores en la indústria càrnia i combinacions entre elles, el processat QDS®, el “processat 
sense NaCl afegit” i les altes pressions hidrostàtiques es van integrar en la producció de dos 
tipus de productes crus-curats: embotit fermentat (xoriço àcid, pH 4.8, i poc àcid, pH 5.2) i pernil 
curat (amb i sense acidificació i/o fumat). Els productes es van inocular amb nivells baixos (<2 
log ufc/g) dels patògens Listeria monocytogenes i Salmonella a la massa càrnia, en el cas dels 
xoriços i a la superfície de les llenques, en el cas del pernil curat. Les llenques envasades al buit 
es van sotmetre a un tractament d’alta pressió de 600 MPa, 5 min y 13ºC. L’evolució dels 
patògens, així com de la microbiota tecnològica i els paràmetres físico-quimics es va investigar 
al llarg de la producció i període d’emmagatzematge en refrigeració. 
Ni el processat QDS ni el “processat sense NaCl afegit” van afectar l’ambient inhòspit del xoriço i 
el pernil curat, el qual va impedir el creixement dels patògens. Malgrat això, l’evolució d’ambós 
patògens es va veure afectada pel “processat sense NaCl afegit”, l’acidificació, el fumat i la 
pressurització. En tots els tipus de xoriço, excepte el poc àcid assecat de forma tradicional i el 
“processat sense NaCl afegit”, els patògens van ser eliminats durant la producció (acidificació i 
assecat). Així, l’aplicació de les altes pressions només va ser necessaria per assegurar la 
seguretat alimentaria en el cas del xoriço amb menys obstacles pel creixement microbià. En 
pernil curat, la combinació d’acidificació i fumat va ser la més inhibidora tant en producte 
estàndard com en “processat sense NaCl afegit” i amb l’aplicació d’alta presió es va aconseguir 
absència de L. monocytogenes i Salmonella en tots els tipus de pernil durant el període 
d’emmagatzematge en refrigeració. 
Conseqüentment, el processat QDS i el “processat sense NaCl afegit” són útils pel ràpid 
desenvolupament de productes carnis crus-curats llescats sans i saludables. Malgrat això, 
depenent del tipus de producte pot ser necessària l’aplicació d’un tractament d’alta pressió 
l’eficàcia del qual s’haurà de valorar específicament, ja que en el cas de productes elaborats 
sense l’addició de NaCl, l’efecte bactericida del tractament pot disminuir. 
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Dry-cured meats are generally considered as shelf-stable products (Barbuti & Parolari, 2002; 

Reynolds, Harrison, Rose-Morrow & Lyon, 2001). Their food safety is based on a number of 

hurdles, which in combination do not allow the growth of pathogenic microorganisms of 

concern for meat products, such as Listeria monocytogenes and Salmonella. The most 

important preservative factors assuring food safety in dry-cured meat products are the 

intermediate water activity (aw), which is achieved during long ripening times. Salt (NaCl), 

which is added during processing, contributes to reduce the aw and exerts an important 

preservative effect. 

Recent innovations performed in this field include “the QDS drying technology” to speed up 

production by shortening the drying phase and the “NaCl-free processing”, a new strategy 

where no NaCl is added during production. 

 

The technological advantages of the QDS process® 

The fast adaption to new consumption trends raises much commercial interest in the fast 

production of dry-cured meat products. For the sliced product market, the QDS process® 

technology presents a large number of advantages compared to the traditional drying 

technology for raw cured products: It allows for much better control of the production process 

and of the product quality, which stands for yield improvement and waste reduction. The 

energy consumption of the high speed process is notably lower and the methodology offers 

great flexibility in production planning. The shorter process allows a just-in time workflow, 

which would reduce the financing of the stock. From the point of view of investment, this new 

technology requires much less space than the traditional system. Additionally, it permits the 

development of new formats other than the traditional round shape and also new products in 

line with the lifestyle tendencies of today’s consumers, who demand RTE products in small 

formats (Comaposada et al., 2010). 
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The need for reducing salt from the diet 

Sodium is an essential ingredient, which is added in human diet mostly in the form of sodium 

chloride (NaCl), which is the common salt. In earlier times, it was viewed as a food 

preservative that enhanced human health by killing or limiting growth of food-borne 

pathogens and spoilage organisms. However, in recent decades, with increasing 

consumption of many different processed foods containing high levels of sodium, the 

perception of dietary salt has evolved to a point where it is now considered to be a potential 

health threat (Doyle & Glass, 2010). In Europe, the average daily sodium intake was 

reported to lie at about 3-5 g, this corresponds to 8-11 g NaCl (EFSA, 2005) and to levels 

which twice exceed recommended doses. Sodium occurs naturally in fresh beef, pork, and 

poultry meats at relatively low levels, ranging from 50 to 70 mg sodium per 100 g (Verma & 

Banerjee, 2012). Dry-cured meat products however, are heavy salt contributors to the diet 

owing their salt content (5.5% in dry-cured ham, 4.6% in “salchichón extra” and 3.9% in 

“chorizo extra”, AESAN, 2011) to traditional production procedures using high amounts of 

NaCl. Eating habits estimates suggested that dry-cured meat products contribute with 26.2% 

to the common salt intake and represent herewith the second largest group after cereals and 

cereal products (AESAN, 2011). 

 

Strategies to protect public health and the socio-economic impact of reducing NaCl from 
food 

The World Health Organisation (WHO) estimated that globally 62% of cerebrovascular 

disease and 49% of ischaemic heart disease were attributable to elevated blood pressure 

(systolic > 115 mm Hg) and that heart diseases are the leading cause of death for persons 

over 60 years of age and the second cause of death for persons aged 15 – 59 years (WHO, 

2007). It should also be noted that the metabolic syndrome can enhance blood pressure 

response to sodium so that sufferers are more salt sensitive than those without the 

syndrome (Chen et al., 2009; Hoffmann & Cubeddu, 2007) and that adverse cardiovascular 
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events can occur more frequently in patients with sodium-sensitive hypertension (Morimoto 

et al., 1997). 

With the aim to preventively protect population from illnesses linked to nutrition, public health 

politics have elaborated programmes on national (NAOS) and international (WHO) levels. To 

reduce the risks associated with cardiovascular disease, population-wide salt reduction 

strategies have been stated to be the most cost-effective (WHO, 2007). In relation to 

reducing the salt intake, studies were performed reporting the economic and social benefits 

and the improvement of life quality for the population (Beaglehole, Ebrahim, Reddy, Voute & 

Leeder, 2007; Dall et al., 2009; Palar & Sturm, 2009). Bibbins-Domingo et al. (2009) recently 

reported that a 3 g/day-reduction in salt intake (about 1.2 g of sodium) would result in 6% 

fewer cases of new heart disease, 8% fewer heart attacks and 3% fewer deaths. However, 

considering the high contribution (70-75%) of manufactured goods to total household dietary 

salt intake (AESAN, 2011), it gets apparent that it is not possible to meet the recommended 

target levels of 5 g/day of NaCl (2 g/day sodium) by simply reducing the amount of 

discretionary salt added to food by consumers (Stringer & Pin, 2005). Therefore, NAOS and 

WHO strategies not only encourage consumer awareness towards healthier food, but also 

involve industry with the aim to develop and promote products which contribute to a healthier 

choice, among them, products with a reduced content of NaCl. 

In this context Arnau, Comaposada, Serra, Bernardo & Lagares (2011) recently submitted a 

patent application that deals with the complete exclusion of NaCl from the production 

process of dry-cured meat products. As part of this patent application, authors proposed to 

combine “NaCl-free processing” with the QDS technology. According to the European 

Regulation (EC) Nº 1924/2006 on nutrition and health claims made on foods, a product can 

be designated “sodium-free or salt-free” when it contains no more than 0.005 g of sodium, or 

the equivalent value for salt, per 100 g. Although in the submitted procedure no NaCl was 

added during the production process, the designation “sodium-free” cannot be used, due to 

the amout of NaCl naturally present in meat. Thus, the term “NaCl-free processing” was 
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chosen for describing the production process of dry-cured meat products without the use of 

NaCl. 

 

The fundamental question of this PhD thesis 

From a socio-economic point of view, the application of both technologies is useful and can 

contribute to the fast production of healthy dry-cured meat products. From a food safety 

point of view, however, changes in traditional processing and/or product reformulations could 

have a significant impact on the originally safe character of dry-cured meat products (Figure 

1.), which up to date has not been evaluated. 

Safe
dry-cured

meat product

Traditional dry-cured meat product

Safe
dry-cured

meat product?

Innovative dry-cured meat product

 

Figure 1. The fundamental question of this PhD thesis 
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1. Dry-cured meat products 

Dry-cured meat products such as sliced dry-cured ham or dry fermented sausages can be 

categorized as ready-to-eat (RTE) foods, which are intended by the producer or 

manufacturer for direct human consumption without the need for cooking or other processing 

effective to eliminate or reduce to an acceptable level microorganisms of concern (European 

Commission, 2005). RTE dry-cured meat products such as chorizo and dry-cured ham 

belong to the product classes “chopped or comminuted fermented meats” and “whole piece 

meat products” respectively, according to Campbell-Platt, (1995). 

 

1.1. Chopped or comminuted fermented meats 

All types of fermented sausages belong to this group. They are usually made out of ground 

meat, most often pork or beef (initial pH 5.4-6.0), fat, salt, curing agents (nitrate and nitrite), 

carbohydrates, spices and additives (Campbell-Platt, 1995; Fernández, Ordóñez, Bruna, 

Herranz & de la Hoz, 2000; Ordóñez & de la Hoz, 2001). The mixture is stuffed into casings, 

of which artificial ones are rather used for products to be sliced because they show higher 

water permeability and resistance, constant diameter and are easier to remove before slicing 

than natural ones (Arnau, Serra, Comaposada, Gou & Garriga, 2007). The fresh sausages 

are fermented, optionally smoked and dried to the target water content at controlled 

temperature and relative humidity (RH). The official classification of fermented sausages 

varies from country to country (Adams, 1986; Zeuthen, 1995) and may be based on the final 

moisture content (moist: 50-60%, semi-dried: 35-50% and dried: 20-35%, Campbell-Platt, 

1995). From a microbiological point of view, fermented sausages are best subdivided on the 

basis of aw and surface treatment (Table 1). 
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Table 1. Classification of fermented sausages (modified from Lücke, 1998) 
Category Ripening times Final aw Application of 

smoke 
Examples 

Dry, mould ripened >4 weeks <0.9 No Genuine Italian salami, 
French saucisson sec 

Dry, mould ripened >4 weeks <0.9 Yes (during 
fermentation) 

Genuine Hungarian salami 

Dry, no mould 
growth 

>4 weeks <0.9 Yes or No German Dauerwurst 

Semi-dry, mould 
ripened 

<4 weeks 0.9-0.95 No Various French and 
Spanish raw sausages 

Semi-dry, mould 
ripened or not 

>4 weeks 0.9-0.94 No Spanish dry fermented 
sausages 

Semi-dry, no mould 
growth 

<4 weeks (usually 
10-20 days) 

0.9-0.95 Yes (with 
exceptions) 

Most fermented sausages 
in Germany, The 
Netherlands, Scandinavia, 
USA, etc. 

Undried, 
spreadable 

<2 weeks 0.94-0.96 Yes or No German Streichmettwurst 

 

Additional criteria for classification include the casing diameter, the degree of comminution of 

ingredients, the animal species used for obtaining the raw material, the fat content and type 

of tissue used, as well as spices, seasonings and other non-meat ingredients used (Lücke, 

1998; Ordóñez et al., 2001). In Europe, dry fermented sausages have the longest tradition. 

In Spain, about 50 varieties are catalogued although many more are produced in craft 

industry (MAPA, 1997). The most characteristic Spanish products are “chorizo” and 

“salchichón”, of which the main difference consists in the paprika added to chorizo. 

During fermentation the pH decreases through glycolysis by lactic acid bacteria (LAB). 

According to the achieved pH level, dry fermented sausages can be classified in “acid” and 

“low acid”. Low acid dry fermented sausages with a pH of ≥ 5.3 (Aymerich et al., 2006; 

Ordóñez et al., 2001) are typical Mediterranean products, associated with a long maturation 

period. Acid dry fermented sausages (final pH 4.6-5.0) are commonly produced in Central 

and Northern Europe at medium (20-24ºC) and in the United States at high (ca. 37ºC) 

fermentation temperatures (Jessen, 1995; Ordóñez et al., 2001). These variations are 

related to the differences of used starter cultures: while in North America typically 

Pediococcus acidilactici is used, which has its growth optimum at ca. 40°C, in Europe, mixed 
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cultures consisting of LAB (Lactobacillus or Pediococcus) and gram-positive, catalase 

positive cocci (GCC+, Staphylococcus and Kocuria) are applied (Jessen, 1995; Lücke, 

2000). Acid dry fermented sausages usually contain carbohydrates (glucose, 1-8 g/kg to 

achieve a pH < 5.2; (Garriga & Aymerich, 2007) as substrates for LAB to facilitate 

fermentation and consequently the pH decrease. Traditionally, LAB fermentation was due to 

endogenous microbiota or performed by “back-slopping” (Campbell-Platt, 1995). Nowadays 

however, in meat industry, where big volume batches are produced to guarantee safety and 

standardize product properties (starter cultures represent important organoleptic 

contributions, (Lücke, 1998), fermentation is mostly achieved through starter culture 

application (Garriga et al., 2007; Zeuthen, 1995). Alternative to LAB fermentation, the pH 

decrease can also be produced by the addition of chemical additives, such as 

gluconodeltalactone (GDL) or encapsulated acids (e.g. lactic and citric acids). GDL 

hydrolyzes to gluconic acid while encapsulated acids comprise a mechanism for slow and 

targeted acid release by employing coating materials that take time to dissolve or break 

down (Gibbs, Kermasha, Alli & Mulligan, 1999). 

During the whole ripening (including fermentation) and drying, flavour, colour and texture, 

characteristic for dry fermented sausages are formed due to several enzymatic (endogenous 

and microbial enzymes) and chemical reactions, including lipid oxidation, Maillard reactions 

and Strecker degradations (Garriga et al., 2007; Lücke, 1998; Ordóñez, Hierro, Bruna & 

Hoz, 1999; Toldrá, 1998). 

 

1.2. Fermented whole piece meat products 

To this group belongs dry-cured ham, which is usually made from the hind leg of pork (pH24 

between 5.8 and 6.4; Weber, 2003). The production process is based on a salting-curing 

step where curing salts and optionally other additives (e.g. ascorbate and carbohydrates) are 

absorbed, followed by a resting period at a temperature below 5ºC until aw decreases below 

0.96 to prevent growth of undesirable microorganisms (Leistner, 1985; Weber, 2003). During 
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the drying period, temperature is gradually raised as aw decreases to accelerate the drying 

process and the development of the typical aged flavour (Arnau et al., 2007). 

Dry-cured hams are principally produced in Europe and North America with some production 

in South America, Asia, Oceania and Africa (Campbell-Platt, 1995). Depending on the 

geographical region of manufacturing, different procedures have been established, which 

discern basically (i) in the preparation of the used meat (entire hams with femur bone vs. 

boned hams vs. restructured meat chunks), (ii) in the salting method (dry salting vs. brine 

immersion), (iii) in smoke application or not and (iv) in the duration of the ageing period 

(Flores, 1997). These technological differences together with the raw material characteristics 

determine the quality of the finished product (Arnau, Guerrero, Gou & Monfort, 2001). 

Within Europe, in Mediterranean countries (mainly Spain, France and Italy) the traditional 

hams are more frequently prepared out of hams containing femur bone (bone-in hams), 

which are dry salted, non-smoked and submitted to an ageing period from six months to two 

years. Products elaborated in Central Europe (Germany, Austria, Switzerland) are rather 

made out of boned hams or meat chunks) and manufacturing is characterized by brine 

immersion and vacuum tumbling, subsequent drying and/or smoking and ageing for 3 to 12 

months (Arnau et al., 2007). While dry salting achieves a better osmotic dehydration, brine 

immersion provides less consumption of salt. Smoking involves the typical smoked colour 

and flavour and has antibacterial and fungicide properties (Flores, 1997). Therefore smoking 

inhibits growth of surface bacteria and moulds, to which products are more susceptible in the 

cold damp climates found in Central Europe. A comparison of the most common European 

products regarding their differences in manufacturing is represented in Table 2. 
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Table 2. Some types of dry-cured ham (modified from Campbell-Platt, 1995) 
Type Area of 

Production 
Raw 
material 

Salting Smoking Drying and 
maturation 

Jambon d’Ardenne Belgium 
Bone-in 
ham 

Dry salting or Brine 
curing, (no brine injection) Yes > 4 months 

Jambon de Bayonne France 
Bone-in 
ham Dry salting No 9-10 months 

Iberico Spain 
Bone-in 
ham Dry salting No 18-24 months 

Prosciutto di Parma 
Parma, 
Italy 

Bone-in 
ham Dry salting No 12-18 months 

Prosciutto di San Daniele Italy 
Bone-in 
ham Dry salting No > 12 months 

Schwarzwälder Germany 
Boned 
ham Brine curing Yes 3 months 

Serrano Spain 
Bone-in 
ham Dry salting No > 7 months 

Westphalian Germany 
Boned 
ham 

Dry salting and brine 
curing Yes > 6 months 

 

Regarding dry-cured meat products, although found in most parts of the world, Europe is the 

major producer and consumer of these products (Campbell-Platt, 1995). In Spain in 2009, 

1,251 tonnes of meat products were produced, of which 20% were dry-cured hams and 15% 

dry fermented sausages (ANICE, 2012). Evaluation of Spanish meat consumption evolution 

between 2004 and 2008 showed that among cured products, ham was keeping a leading 

position and together with “chorizo” made up to 60% of the total consumption of cured 

products (European Commission, 2011). 

 

2. Food Safety of dry-cured meat products 

Dry-cured meat products are generally regarded as shelf-stable and safe meat products and 

they have rarely been implicated in food poisoning (Barbuti & Parolari, 2002; Reynolds, 

Harrison, Rose-Morrow & Lyon, 2001). This fact is due to the presence of particular 

preservative factors called “microbiological hurdles” that are applied or develop during 

manufacturing and protect the food product against undesired microorganism growth 

(Leistner, 2007). In dry-cured meat products, the following factors assure microbiological 

stability: 

• The decrease of aw, which is caused by solutes (salt, carbohydrates, etc.) and 

dehydration throughout production and subsequent drying. It is the only factor of 



Introduction 

 

22 

 

increasing importance along ripening of a dry-cured meat product due to progressive 

desiccation to a aw < 0.9 (Jofré, Aymerich & Garriga, 2009a). 

• The pH decrease produced by acidification (due to endogenous LAB, applied starter 

cultures or chemical substances) plays a more crucial role in dry fermented sausages 

than in dry-cured ham. Accordingly, low acid dry fermented sausages, due to the 

absence of the acidity hurdle, are more at risk than acid products and may require 

alternative preservative factors to achieve an equal food safety standard (Jofré et al., 

2009a). In this regard, it is worth mentioning that LAB also act as competitive 

microbiota and therefore represent an additional hurdle (Lücke, 1998). In whole piece 

meat products fermentation is not typical because carbohydrates are rarely added 

and LAB are not the predominant microorganisms (Arnau et al., 2007). In the same 

sense, Reynolds et al. (2001) reported the pH changes observable in dry-cured ham 

to be more subtle than those found in dry fermented sausages. Although pH in 

German raw hams indeed decreases slightly during the first two weeks to values of 

normally 5.7-5.9, this decrease is not comparable to that happening in dry fermented 

sausages (Weber, 2003). From a technological point of view, acidification of dry-

cured meat products improves cohesiveness of the meat mixture when the pH 

decreases below the isoelectric point of myosin (pI 5.4) (Hamm, 1986). 

• NaCl, nitrate and nitrite, the curing salts, contribute to a large extent to both food 

safety and quality. Salt, in addition to decrease aw, has an important bactericidal 

effect (explained below). The microbial enzyme nitrate reductase reduces nitrate to 

nitrite, which acts as an antioxidant and prevents or retards microbial growth, apart 

from its colour stabilizing and flavour effect (Honikel, 2007). 

• Lactate is a compound that can be found in food naturally formed during processing 

or added as an ingredient (Ray, 2004). Its acid form is GRAS listed and is widely 
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used as food additive for preservation purposes, due to its antimicrobial character 

that is debited to its ability to acidify the cytoplasm of the cell and its aw lowering 

effect (Shelef, 1994). 

• Smoking (mainly used in Central European meat processing) has antibacterial and 

fungicide properties which can be attributed to formaldehyde and phenolic 

compounds (Girard, 1988; Toth & Potthast, 1984). 

 

2.1. Pathogenic microorganisms in dry-cured meat products 

Raw meat is highly perishable due to its pH near 7, its aw > 0.97 and its highly nutritive 

nature, representing optimum conditions for the growth of most bacteria. After some time of 

refrigerated storage in air, microflora of fresh meat largely consists of gram-negative, 

oxidase-positive rods, particularly psychrotrophic pseudomonads and psychrotrophic 

Enterobacteriaceae, while gram-positive organisms including LAB usually occur only in small 

numbers (Gill, 1982; Lücke, 1998). High levels of hygiene during meat processing are crucial 

as long as raw material contamination, for example through gastrointestinal tract, feet, hides, 

or skins of slaughtered animals, is still the primary source of contamination (Garriga et al., 

2007). The contaminating microbiota includes technologically important microorganisms but 

also spoilage and pathogenic bacteria (Garriga et al., 2007), of which L. monocytogenes and 

Salmonella are the most commonly linked to food-borne illness outbreaks derived from RTE 

food products (Moore, 2004). 

Instruments and surfaces in processing plants and human handling (infected personnel or 

healthy carriers) can further easily contribute to cross-contaminations (Garriga et al., 2007; 

Jaroni, Ravishankar & Juneja, 2011). With the objective to assess the efficiency of hygienic 

practices, Talon et al. (2007) showed in a survey of microbial ecosystems of environments in 

54 processing units of fermented sausages that sporadic contamination with pathogens was 

recorded and that Salmonella was detected at 4.8% and L. monocytogenes at 6.7% of the 
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equipment samples. In this context it has to be stressed that the ability of L. monocytogenes 

to form biofilms represents a particular threat for food processors, because when a biofilm is 

formed, it is subsequently very difficult to eradicate from food processing environments 

(Jaroni et al., 2011). Salmonella contamination of meat was similarly reported to be often 

provoked by cross-contamination via ambient and contaminated equipment (ICMSF, 1996). 

For marketing, convenience and quality reasons, nowadays dry-cured meats are vacuum- or 

MAP (modified atmosphere) packaged and stored, distributed and displayed at refrigeration 

temperatures. These conditions positively affect the product appearance and shelf-life 

(Gounadaki, Skandamis, Drosinos & Nychas, 2007). Additionally, vacuum-packaging has 

been described to prevent the growth of aerobic microorganisms (Ahn & Byungrok, 2007). 

However, at the same time, vacuum-packaging prevents the further reduction of aw that 

suffer whole piece dry-cured products during storage and which represents a significant 

additional hurdle for the inactivation of possible pathogens in the product (Jofré et al., 

2009a). In this sense, growth of L. monocytogenes and Salmonella was outlined to be a 

possible hazard in vacuum-packed foods (MAFF, 1991). 

A high level of protection of public health is one of the fundamental objectives of food law, 

therefore, general food safety requirements are laid down in the European Commission 

Regulation (EC) N° 2073/2005 on microbiological criteria for foodstuffs, according to which 

non-complying food must not be placed on the market. For Salmonella, the food safety 

criteria demands for “Meat products intended to be eaten raw, excluding products where the 

manufacturing process or the composition of the product will eliminate the salmonella risk” 

absence in 25 g (n=5) for products placed on the market during their shelf-life. For L. 

monocytogenes, the food safety criteria demands for “RTE foods unable to support the 

growth of L. monocytogenes, other than those intended for infants and for special medical 

purposes” that 0 out of 5 samples result <100 CFU/g for products placed on the market 

during their shelf-life. In comparison, in the United States, the more stringent zero tolerance 

policy is applied, according to which L. monocytogenes must be absent in 25 g of the 
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product. The European 2073/2005 as well as the U.S. Food Safety and Inspection Service 

(FSIS, 2002) regulations consider RTE-products as stable and not supporting L. 

monocytogenes growth, if they comply with at least one of the requirements listed in Table 3. 

Other food products can also belong to this category, however, they must be subjected to 

scientific justification (European Commission, 2005). 

 
Table 3. Conditions validated to prevent growth of L. monocytogenes in RTE-products 
Conditions Regulation 
pH ≤ 4.4 EC 2073/2005 
aw ≤ 0.92 EC 2073/2005 
pH ≤ 5.0 and aw ≤ 0.94 EC 2073/2005 
Shelf life < 5 days EC 2073/2005 
pH < 4.5 FSIS 2002 
pH < 5.0 + refrigeration FSIS 2002 
aw < 0.9 FSIS 2002 
aw < 0.92 + refrigeration FSIS 2002 
pH < 5.5 and aw < 0.95 FSIS 2002 
Presence of antimicrobial agent validated to inhibit L. monocytogenes growth (e.g. lactate) FSIS 2002 
Product that is held below 0°C and labeled „keep frozen“ FSIS 2002 
Product that has recieved a post-lethality treatment validated to be lethal against L. 
monocytogenes  

FSIS 2002 

 

These harmonised criteria should form an integral part of the implementation of HACCP 

(hygiene and critical control points)-based procedures and other hygiene control measures 

and were set to prevent differing interpretations. In spite of existing microbiological criteria, in 

2010, 181 human deaths due to listeriosis and 62 deaths due to non-typhoidal salmonellosis 

were estimated in the European Union (EFSA, 2012). 

 

2.2. L. monocytogenes  

Bacteria of the genus Listeria are gram-positive, facultatively anaerobic, non-spore-forming 

and motile by means of flagella. They are rod shaped, measuring 0.5 µm in diameter and 1 

to 2 µm in length. Six species have been detected of which L. monocytogenes is the most 

infectious but only the heamolytic strains of L. monocytogenes are pathogenic. From an 
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epidemiological point of view, the serotypes 1/2a, 1/2b and 4b are the most important ones 

out of 13 identified (Rocourt & Buchrieser, 2007). 

Disease caused by L. monocytogenes is not frequent, but can be severe, with a high 

mortality rate in populations at risk. Listeriosis in humans is accompanied by mild flu-like 

symptoms such as headache, chills, and fever, along with gastrointestinal symptoms like 

nausea, vomiting and diarrhea. Immunocompromised people, infants, pregnant women and 

elderly people are more at risk for contracting the disease and meningitis, abortion, and 

prenatal septicaemia are some of the primary manifestations, which in serious cases can be 

fatal (Food and Drug Administration (FDA), 2001). The dose of infection of L. 

monocytogenes is not well known, apparently it is higher than 100 cells, but it can depend on 

strain and host factors such as age, health and exposure to certain foods (NACMCF, 1991). 

The incubation period is extremely long and lasts from 3 to 70 days (Forsythe, 2010). 

Especially if untreated, mortality may exceed 25% in predisposed groups (Farber & Harwig, 

1996). In the years 2009 and 2010, according to the EFSA, 1,645 and 1,601 confirmed 

listeriosis cases in humans were recorded, respectively, among which the fatality rate was 

ca. 17% (EFSA, 2011; EFSA, 2012). 

Listeria can grow and survive in between wide pH (4.39 - 9.4) and temperature ranges (-0.4 

to 45ºC) and at relatively low aw levels (> 0.92) in broth, when other parameters are at 

optimum (ICMSF, 1996). The pathogen was furthermore described to be able to grow in the 

presence of nitrite (Campbell-Platt, 1995) and in up to 12% NaCl (% w/w, Stringer & Pin, 

2005). L. monocytogenes is psychrotrophic and able to grow in food under various 

conditions: its growth limit in food with a neutral pH and with high content of nutrients 

stabilizes at 0ºC (Walker, Archer & Banks, 1990). Depending on ambient conditions, the 

growth limiting aw value vary and has been described to lie at 0.93 in meat products (ICMSF, 

1996). 

In nature, L. monocytogenes is ubiquitously distributed. It has been isolated from different 

ambient including soil, water, diverse animal and vegetal sources, feed and water residues. 
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Moreover, L. monocytogenes has been found in at least 37 mammalian species, both 

domestic and feral, as well as in at least 17 species of birds and possibly of fish and 

shellfish; it is furthermore plausible that 1-10% of humans may be intestinal carriers of L. 

monocytogenes (Forsythe, 2010). It can also be found in a wide range of food, raw or 

processed, where it can survive and multiply fast during storage. Foods implicated in 

outbreaks include milk, butter, cheese, RTE meat products, surimi, smoked mussels and 

trout, and vegetables (ICMSF, 2001). L. monocytogenes is one of the microorganisms of 

most concern in food, because it causes only little or no deterioration to the product which is 

supporting its growth (ICMSF, 2001). 

 

2.3. Salmonella  

Salmonella belongs to the Enterobacteriaceae family and is gram-negative, facultatively 

anaerobic, non-spore-forming and rod shaped, and motile forms have peritrichous flagella. 

They can ferment glucose while producing acid and sometimes gas (ICMSF, 1996). There 

are more than 2,600 serovars of Salmonella. In the EU, S. Enteritidis and S. Typhimurium 

are the serovars most frequently associated with human illness (EFSA, 2012). Human S. 

Enteritidis cases are most commonly associated with the consumption of contaminated eggs 

and poultry meat, while S. Typhimurium cases are mostly associated with the consumption 

of contaminated pig, poultry and bovine meat. 

Salmonella can cause gastroenteritis, enteric fever and sepsis. The infection dose can vary 

from 20 to 106 cells depending on the serotype, food, and host vulnerability (age and health 

state) (Forsythe, 2010). Very low infection doses have been observed (< 100 cells) in water 

and fatty foods or foods with buffer capacities (ICMSF, 1996). The incubation period lies 

between 16-72 hours and the illness can take from 2 to 7 days. 

The pathogen can multiply in a wide range of temperature (5.2-46.2ºC) and pH (3.8-9.5). 

Salmonella growth is significantly affected by the aw value that promote growth optimally at 

ca. 0.99 and inhibit growth below 0.94 in broth. However, due to its high desiccation 
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tolerance, Salmonella was reported to be able to survive for a year or more in foods with low 

aw such as chocolate, black pepper, peanut butter and gelatine (ICMSF, 1996). 

Salmonella lives in the intestinal tract of human and animals as either pathogen or 

commensal and its distribution in nature is ubiquitous. Many foods, mainly of animal origin or 

contaminated with residual water, have been identified as vehicles of transmission of this 

pathogen to humans. According to the rapid alert system for food and feed (RASFF, 2010). 

Salmonella-caused food poisonings are amongst the most frequently reported. In 2010, a 

total of 99.020 confirmed cases of human salmonellosis were reported in the EU (EFSA, 

2012). RTE-products such as salad vegetables, leafy greens, meat, poultry, seafood, dairy, 

eggs, and tree nuts, along with herbs, spices and dried seeds, have all been found to be 

contaminated with Salmonella (Jaroni et al., 2011). In Europe in 2012, Salmonella in 

foodstuffs was mainly detected in meat and products thereof (EFSA, 2012). 
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2.4. Incidence of L. monocytogenes and Salmonella in dry-cured meat 

products 

Despite containing microbiological hurdles, various studies performed on dry-cured meat 

products have shown the survival of L. monocytogenes and Salmonella during 

manufacturing and/or subsequent ripening (Barbuti et al., 2002; Encinas, Sanz, García-

López & Otero, 1999; Glass, Doyle, 1989; Hajmeer, Basheer & Cliver, 2006; Ihnot, Roering, 

Wierzba, Faith & Luchansky, 1998; Johnson, Doyle & Cassens, 1990; Nightingale, 

Thippareddi, Phebus, Marsden & Nutsch, 2006; Reynolds et al., 2001; Varabioff, 1992). In 

2010, according to the EFSA, 0.5% and 0.6% of the analysed RTE products of pig meat did 

not comply with the microbiological criteria EC2073/2005 for L. monocytogenes and 

Salmonella, respectively (for Salmonella: n=11,675; for L. monocytogenes: n=22,158; EFSA, 

2012). 

Growth limits of pathogens can be tested and physicochemical parameters can be set at 

specific values for general purposes, but microorganisms may respond different in food 

products due to the complex interactions among physicochemical parameters and matrix 

composition (Brocklehurst, 2004) and the possible protective effects of some food 

components. Hence, to estimate and predict pathogenic microorganism behaviour in food 

products, especially when their processing includes new technologies or compositional 

changes, the careful investigation of hurdle effects in challenge test studies with the target 

food product and the microorganism of concern is indispensible and must precede 

commercialization. 
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3. Shortening the production of dry-cured meat products 

Dry-cured hams and dry fermented sausages are traditional products prepared since the 

earliest civilizations to preserve meat and are still produced in large quantities due to their 

appreciated and typical flavour characteristics. However, their elaboration process is very 

time consuming, due to the long lasting drying-ripening times depending on the product, 

which take from a few weeks in small calibre fermented sausages up to years in Iberian 

hams obtained from Iberian pigs fed and fattened with acorns (Arnau et al., 2007). 

Therefore, processors of ripened food products have been searching for methods to speed 

up manufacturing to make the production of ripened food more flexible. In the 1970s, first 

attempts to accelerate the maturation of ripened foods were carried out in cheese, with the 

purpose of enhancing the lipid and protein breakdown by different strategies (Fernández et 

al., 2000). Most of the approaches to cheese ripening enhancement were related to elevated 

ripening temperature, enzyme addition to milk or curd, addition of slurries containing cheese 

flavour components or addition of modified or non-modified cheese related microorganisms 

(El-Soda, Madakor & Tong, 1999). 

For dry fermented sausages, the objective of the first assays for accelerating the production 

was to remove as much water as possible prior to fermentation. Lu & Townsend (1973) 

shortened the drying period by incorporating freeze-dried meat into the meat block of a dry 

sausage formulation. With the incorporation of pale soft exudative (PSE) meat in the meat 

block (meat with reduced water holding capacity) Townsend (1980) succeeded in reducing 

the drying time of fermented sausages for ca. 40 to 50%. Chin, Keeton & Lacey (1996) 

investigated the shortening of the drying period to increase the efficiency of pepperoni 

production by the application of vacuum during drying, which may accelerate water 

evaporation from the surface by increasing internal capillary flow. As a result, authors 

reported a reduction in drying time of ca. 30% without noticeable quality defects. Another 

technique to shorten the drying time of fermented sausages comprises the reduction of the 
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product calibre (Arnau et al., 2007). In this way, the distance for water to reach the product 

surface is reduced. Soy protein isolates were described to stimulate LAB starter growth and 

speed up the fermentation process (Hagen, Naes, & Holck, 2000). Similarly Mn2+
, which can 

be found in some spices, accelerates the pH drop and stimulates lactobacilli growth, 

however, the magnitude and perseverance of the stimulating effect produced by Mn2+ differs 

with the type of LAB starter (Hagen et al., 2000; Vandendriessche, Vandekerckhove & 

Demeyer, 1980; Zaika & Kissinger, 1984). To eliminate the 12–48 h fermentation period, 

chemical acidification was proposed as an alternative to LAB fermentation (Barbut, 2005). 

In order to speed up the process for dry-cured hams, several production techniques based 

on facilitating cure penetration and weight loss have been proposed, including boning and 

skinning pork legs prior to cure application, trimming of subcutaneous and intermuscular fat, 

blade tenderization and tumbling (Kemp, Abidoye & Langlois, 1980; Kemp & Fox, 1985; 

Marriott, Graham & Claus, 1992; Marriott, Graham, Shaffer & Phelps, 1987; Montgomery, 

Kemp & Fox, 1976; Ockerman & Organisciak, 1978). By using vacuum impregnation 

techniques in salting processes of meat, faster salting kinetics could be obtained with a more 

even salt distribution in the product and with increased process yields (Chiralt et al., 2001). 

The brine thawing/salting operation was introduced as a method in which frozen hams can 

be processed directly: Instead of using fresh pile salted ham, or thawing the ham in a cold 

chamber and proceeding to pile salting as usually done, thawing and salting are performed 

simultaneously (Barat, Grau, Montero, Chiralt & Fito, 1997). The brine thawing/salting 

operation was reported to involve changes in the different steps that constitute the whole 

process: salting, post-salting and maturation (Barat, Grau, Pagán-Moreno & Fito, 2004). 

Authors demonstrated that the use of brine thawing/salting with saturated brine in fresh and 

thawed hams allowed 58% and 61% time reductions, respectively, in reaching a NaCl 

concentration similar to the one obtained in the traditional pile salting method (Barat, Grau, 

Ibañez & Fito, 2005). 
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To accelerate production, Jessen (1995) highlighted the application of starter cultures to salt 

brines of dry-cured hams, which stabilize and improve colour and flavour. In boned hams the 

salting process can be accelerated by trimming the products of skin and subcutaneous fat 

and salting them directly combined with the curing mixture in a tumbler under vacuum. Once 

the curing mixture has been absorbed, the pieces could be treated with transglutaminase 

(TGase; EC 2.3.2.13), an enzyme that has the property to form crosslinks between protein 

molecules (DeJong & Koppelman, 2002; Kuraishi et al., 1997; Motoki & Seguro, 1998). 

Hams are then stuffed into casings and kept at 5ºC for a period longer than 2 h (Arnau et al., 

2007). For the drying of restructured hams, water-permeable plastic bags have been 

proposed to minimize handling, to improve hygiene and binding, to start drying earlier and to 

prevent crusting, mould growth and mite infestation (Serra, Gou, Fulladosa, Costa & Arnau, 

2007). By increasing the temperature and reducing the RH of air, the drying of the dry-cured 

ham process can also be speeded up (Arnau et al., 2007). 

 

3.1. The Quick Dry Slice (QDS) process® – a fast drying technology 

In terms of time, the drying period in the production of dry-cured meat products is the limiting 

step, requiring much energy and therefore contributing in a large extent to the total costs of 

the manufacturing process. A fast drying method would hence not only facilitate the 

reduction of drying, but also bring along a reduction in capital and labour. At the same time, 

the profit margin and the product competitiveness would increase, due to the possibility of 

rapid adaptation to marketing trends and production of small quantities. Some safety 

concerns, such as mould growth, lipid oxidation and mite infestation, which could happen 

during long traditional drying periods, are additionally reduced. 

 

To meet all these requirements, the Quick-Dry-Slice (QDS) process® has been patented for 

sliced products (Comaposada, Arnau, Gou & Monfort, 2004). Dry-cured meat products are 

fermented to the desired pH in the case of dry fermented sausages, or prepared according 
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to manufacturing protocols in the case of dry-cured hams, and then frozen, sliced and dried 

in a continuous system with the application of convective air (Metalquimia S.A., Girona, 

Spain). Figure 2 represents a schematic flow-diagram comparing QDS and traditional 

processing for dry fermented sausages and dry-cured ham. With the QDS system, the 

traditional drying process could be drastically reduced, to approx. 45 min, depending on slice 

diameter and thickness. 
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QDS drying 
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Figure 2. Schematic representation of the production of QDS products and 
comparison with traditional processing 
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3.1.1 The QDS process® pre-prototype 

  

Figure 3. A: QDS process® pre-prototype equipment; B: tray loaded with dry 
fermented sausage slices 

The first QDS equipment was constructed out of a hermetically sealable tank (Figure 3 A), in 

which only one metallic tray fit. In this pre-prototype the vacuum drying could be performed. 

The trays were manually loaded, with product slices (Figure 3 B), weighed and placed. 
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3.1.2 The QDS process® prototype equipment 

  

Figure 4. A: QDS process® prototype equipment; B: convective drying zone loaded 
with dry fermented sausage slices 

Pictures kindly provided by Metallquimia S.A., text adapted from Comaposada et al. 

(2010). 

The equipment was designed by the company Metalquimia S.A. (Figure 4 A) for performing 

QDS processing in a continuous system. It consists of a zone for loading frozen slices, a 

tempering and forced-air drying zone and a vacuum-drying zone to eliminate the water from 

the slices that is most difficult to extract. Slices are deposited on stainless steel conveyor 

belts (Figure 4 B) so that water can drain from the slices during the forced-convection drying 

phase and the vacuum-drying phase. The tempering-drying air used in the forced-convection 

phase is conditioned by using a high-efficiency absolute filter (HEPA) to minimize 

contamination of the air contacting the product. Additionally and in order to regulate the 

tempering-drying speed, control is exercised on temperature, RH and velocity of the air to 

which the product slices are exposed. The vacuum-drying phase is mainly regulated by the 

working pressure and the heating temperature. The different process sections are connected 
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by means of conveyor belts and mechanisms (gantry robots) for loading and unloading the 

slices. The entire process is regulated with a Programmable Logic Controller that also allows 

for monitoring and recording control parameters. 

In the development of QDS processing, research on the prototype equipment revealed that it 

was possible to reduce or eliminate the vacuum drying stage for most products, replacing it 

with a longer convective drying time. The obtained products showed equivalence to those 

produced with the original QDS process®, while the production was more simple and 

required less energy. So, the industrial line for the QDS process® was constructed, using a 

convective drying. 
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3.1.3 The QDS process® industrial line 

Here is a scheme of a QDS process® line with an average production capacity of 400 kg/h. 

 

 

Figure 5. QDS process® industrial line 

The product is sliced in the slicing zone (1) and distributed on perforated plastic trays, which 

transport the slices to the convective drying zone (2). Slices are dried by means of a lateral 

flow of air at controlled temperature and humidity. Due to the short processing time required 

for drying with QDS, higher processing temperatures can be tolerated without altering the 

sensory characteristics of the product (Comaposada et al., 2010). These temperatures, 

usually between 20 and 30ºC, would allow, in temperate climate zones, the use of air 

conditioners that automatically regulate and re-circulate the mixture of outer air (“free-

cooling”) instead of using refrigeration equipments. After passed through the QDS process® 

drying tunnels and with the aim to adapt the temperature of the slices to packaging 
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conditions, trays pass through the accumulator-cooler zone (3). After final weighing and 

definite weight loss calculation, slices are supplied to the packaging zone (4) where they are 

placed in thermoformer forms. The washing zone (5) consists of a sanitation and drying 

tunnel and is used for the cleaning of the trays. 

 

3.1.4 Effects of QDS drying on product characteristics 

Some differences in organoleptic properties were noticed between QDS and traditionally 

processed dry fermented sausages, especially less acid flavour was recorded in QDS dried 

products (Comaposada et al., 2008). This observation was probably due to differences in pH 

evolution: whereas pH normally changes during traditional drying (Leistner, 1995), values 

maintained during QDS drying (Comaposada et al., 2008) due to the no formation of an acid 

gradient between the outer and central part of the slice and the even removal of volatile 

acids during drying (Arnau et al., 2007). Colour was more intense in the QDS processed 

than in traditionally dried products and some sensitive colorants (e.g. Ponceau 4R) did not 

fade during the process (Comaposada et al., 2008). 

At the food safety level, a preliminary study suggested that dry fermented sausages 

manufactured with the QDS system did not show important differences when compared to a 

traditionally dried fermented product (Arnau et al., 2007). However, the effect of QDS 

processing on the food safety of different types of dry-cured meat products containing 

different hurdles has not yet been evaluated. 

 

4. The design of NaCl-free processing 

Salting is one of the oldest techniques of preservation and allowed the extension of 

nutritional benefits of meat from times of plenty to times of scarcity during many years 

(Stringer et al., 2005). The development of other preservation techniques such as 

refrigeration and better packaging, transport and storage, however, reduced the need of high 

salt levels to maintain product integrity. Nevertheless, the exclusion of NaCl from the 
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production of meat products is a challenging task, because salt contributes to functional and 

organoleptic product characteristics and exerts a preservative effect. 

 

4.1. The effect of NaCl on functional and organoleptic product 

characteristics  

In meat, salt alters the osmotic equilibrium and increases the water holding capacity: while 

the inclusion of Cl- in the meat matrix provokes the loss of the myofibrilar structure, Na+ 

cations are pulled close to the filament surfaces creating an uneven distribution of ions in the 

water phase. This establishes an osmosis-like force within the filament lattice pulling water 

molecules into the system (Offer & Knight, 1988). The contribution of NaCl to protein 

solubilisation permits the binding of the product and therefore the achievement of the desired 

texture (Desmond, 2006). 

In this sense, one of the particular problems associated with partial or complete NaCl 

reduction is related to changes in the binding and thus, in texture (Arnau, Comaposada, 

Serra, Bernardo & Lagares, 2011). 

Further, the characteristic organoleptic properties of dry-cured meat products including 

texture and flavour are due to enzymatic processes (proteolysis, lipolysis and lipid oxidation), 

which generate peptides, free amino acids, free fatty acids and various volatile compounds 

during the whole production and ripening period (Molly et al., 1997; Toldrá, 2006; Toldrá, 

Flores & Sanz, 1997). It was suggested that a certain level of NaCl was important for the 

stabilisation and activation of muscle proteases and exerts a promoting effect on lipolytic 

activity (Costa Corredor, 2010). However, in dry-cured ham, the decrease of proteolytic 

activity throughout the ongoing salting process was related to the inhibiting effect of high salt 

concentration (Sárraga, Gil, Arnau & Monfort, 1989).  

NaCl is the saltiest sodium ingredient (Doyle & Glass, 2010) and its flavour enhancing 

properties increasing the characteristic flavour of meat products can be related to its effect 
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on aw (Matulis, McKeith & Brewer, 1994; Ruusunen, Särkkä-Tirkkonen & Puolanne, 1999). 

Due to aw reduction, the concentration of other compounds in solution is increased, their 

volatility is enhanced and therefore their sensory perception. The intensity of the salty taste 

was demonstrated to be increased by glutamic acid and aspartic acid, which are formed 

during proteolysis, (Careri et al., 1993) but diminished by ingredients like sugars or special 

organic or inorganic salts used to reduce the sodium content in meat products (Boadas, 

Gou, Guarida & Arnau, 2000), which should be kept in mind when implementing product 

reformulations with the aim to reduce or exclude the NaCl amount. Another particular 

problem with low-salt meat products is that not only the perceived saltiness, but also the 

intensity of the characteristic flavour decreases (Ruusunen et al., 2005). 

 

4.2. The effect of NaCl on microbiological stability 

The preservative effect of NaCl is primarily due to its ability to lower aw (Marsh, 1983; Sofos, 

1983). Bacterial cells maintain the osmotic equilibrium with their surrounding media that 

means that an addition of ions, for example through NaCl, causes a water efflux through 

their semi-permeable membranes, which leads to shrinkage of the cytoplasmic volume. This 

efflux is also called plasmolysis (Csonka, 1989; Stringer et al., 2005). As cells must maintain 

a suitable level of cytoplasmic water for effective functioning of cell components, they try to 

maintain homeostasis by active accumulation of ions or uptake or synthesis of compatible 

solutes. The energy expended in these activities reduces and eventually prevents growth 

(Stringer et al., 2005). In this sense a sudden onset of plasmolysis was reported to cause 

inhibition of nutrient uptake and DNA replication and triggered an increase in the ATP levels 

of cells, which could lead to inhibition of macromolecular biosynthesis (Csonka, 1989). Salt 

concentrations between 3 and 7% were described to potentially inhibit enzymes important 

for glycolysis and the acid citric cycle (Krebs-cycle) (Csonka, 1989). However, early research 

showed that the preserving effect of NaCl involves more than dehydrating capacity. 

Magnesium sulphate was shown to have greater dehydrating effect on proteins than NaCl, 
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but was not as bacteriostatic as NaCl against Staphylococcus aureus (Rockwell & Ebertz, 

1924). This research concluded that the factors involved in preservative properties of NaCl 

include the direct toxicity of Cl−, removal of oxygen from the medium, sensitisation of the 

organisms to CO2, and interference with the rapid action of proteolytic enzymes. The grade 

of fineness of NaCl was also related to its cell damaging effect (Hajmeer, Ceylan, Marsden & 

Fung, 2006). Researchers observed that extra coarse grade NaCl (e.g, sea salt) had a 

milder effect compared to fine grade salt on Escherichia coli and S. aureus cells. 

The inhibiting effect of salt on pathogenic microorganisms has been observed in culture 

media and in food products. From studies on S. typhimurium in glucose-mineral salts 

medium at fixed temperature (19°C) and pH (7.0) levels, Thayer, Muller, Buchanan & Phillips 

(1987) observed decreasing aerobic growth with increasing NaCl concentrations. Other 

specific research focussed on pathogenic growth inhibition due to salt, confirmed 

plasmolysis and morphological changes due to growth in media supplemented with NaCl for 

L. monocytogenes (Zaika & Fanelli, 2003). NaCl also affected cellular progresses in 

Clostridium sporogenes, Paracoccus denitrificans and S. aureus (Erecinska & Deutsch, 

1985; Smith, Maurer, Bencivengo & Kunsch, 1987; Woods & Wood, 1982). Desmond (2006) 

stated that salt was added to meat particularly as a deterrent to the growth of Clostridium 

botulinum. In cured meat products, the synergistic effect of nitrite and NaCl against C. 

botulinum has been reported (Sofos, 1983). The antimicrobial contribution of NaCl in a food 

system may also be influenced by other ingredients or food processing techniques. 

Synergistic effects or interactions of NaCl with benzoate, sorbate, phosphates, antioxidants 

(BHA), spices, liquid smoke, isoascorbate, etc. can be found in literature (Sofos, 1983). 

Smoking and NaCl were observed to inhibit L. monocytogenes in salmon (Niedziela, 

MacRae, Ogden & Nesvadba, 1998) and C. botulinum in fish (Eklund, Pelroy, Paranjpye, 

Peterson & Teeny, 1982). Similarly, drying and 3.64% (w/w) NaCl limited growth of coliforms 

and S. aureus toxin production during drying (10 days at 21°C) of air-dried fresh pork 

sausage (Bang, Hanson & Drake, 2008). 
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Microorganisms may tolerate salt stress in otherwise optimum conditions, however, this 

ability varies widely between species and will be reduced by suboptimal pH, temperature, 

redox potential, nutrient availability and the presence of other antimicrobial agents (Stringer 

et al., 2005). 

 

4.3. Attempts to achieve the complete or partial exclusion of NaCl from the 

processing of dry-cured meat products 

According to Ruusunen et al. (2005), different options exist to reduce the NaCl content in 

processed meat products, including  

(i) the replacement (totally or partially) with other chloride salts, such as KCl, CaCl2 and 

MgCl2, of which KCl has been described to be the most used substitute for NaCl in 

low- or salt/sodium reduced foods (Desmond, 2006). 

(ii) the replacement with non-chloride salts,  

(iii) the use of new processing techniques or process modifications, 

(iv) combinations of all the above approaches.  

For dry-cured ham, techniques to accelerate salt distribution could be useful to reduce the 

amount of NaCl, including the reduction of ham thickness, using boned hams, trimming away 

subcutaneous and intermuscular fat and salting ham pieces with the curing mixture in a 

tumbler under vacuum (Arnau et al., 2007). In this type of products, the enzyme 

transglutaminase, which is used in developing restructured and low salt meat products 

(Verma & Banerjee, 2012), could be helpful to facilitate binding (Fulladosa, Serra, Gou & 

Arnau, 2009; Motoki et al., 1998). 

The patent “Composición para la sustitución total o parcial del cloruro sódico en la 

elaboración de productos cárnicos crudos curados parcialmente deshidratados, uso de 

dicha composición, y proceso para la elaboración de productos cárnicos crudos curados 

parcialmente deshidratados en ausencia total o parcial de cloruro sódico” (Arnau et al., 
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2011) allows for the first time, the production of dry-cured meat products without the addition 

of NaCl. “NaCl-free processing” could be developed by using KCl and potassium lactate 

(being K+ at equalmolar concentrations as Na+) and sugars for taste correction. 

The following tables represent an overview of the published results on the partial or 

complete reduction of NaCl and its effect on physicochemical and organoleptic properties 

(Table 4) and microbiological stability (Table 5). 

Table 4. Overview about the studies investigating the impact of partial or complete 
NaCl replacement on physicochemical and organoleptic properties of dry-cured meat 
products. 
Main focus Implementation of NaCl reduction Important Observations Reference 

Studies using KCl and/or potassium lactate 

Physicochemical and 
organoleptic  
parameters of 
restructured dry-cured 
ham 

I: Control: 30 g/kg NaCl 

II: 15 g/kg NaCl 

III: 15 g/kg NaCl + 39.7 g/kg potassium 

lactate 

Potassium lactate had negative positive  
effect on colour, flavour or texture 

(Fulladosa et al., 
2009) 

physicochemical and 
sensory parameters of 
restructured dry-cured 
hams 

I: Control: 30 g/kg NaCl 
II: 15 g/kg NaCl 
III: 15 g/kg NaCl + 19.7 g/kg potassium 
lactate 

II: Reduction of saltiness, increase of aw, 
proteolysis and softness; 
III: the addition of potassium lactate 
contributed to reduce effects observed 
in II 

(Costa-Corredor, 
Serra, Arnau & Gou, 
2009) 

consumer acceptability 
of small calibre 
fermented sausages 

50% molar substitution of NaCl with 6 

different mixtures of KCl (0-50%) and 

potassium lactate (0-50%) 

The reduction of 50% of NaCl with a 
mixture of 40% KCl and 10% potassium 
lactate was sensorially accepted 

(Guàrdia, Guerrero, 
Gelabert, Gou & 
Arnau, 2006; 
Guàrdia, Guerrero, 
Gelabert, Gou & 
Arnau, 2008) 

texture and flavour of 
fermented sausages 

9 different mixtures in which NaCl is 

partially (up to 60%) substituted by 

different combinations of KCl, 

potassium lactate and glycine 

notable flavour and texture defects when 
using 40% KCl or 30% potassium 
lactate + 20% glycine; important flavour 
and texture defects when NaCl is 
replaced by > 40% 

(Gelabert, Gou, 
Guerrero & Arnau, 
2003) 

texture, flavour and 
colour of fermented 
sausages 

Substitution of NaCl by KCl (0 - 60%), 

potassium lactate (1-100%) and glycine 

(0-100%) 

Important flavour defects when NaCl 
was substituted at > 40%; loss of 
cohesiveness by using potassium 
lactate > 30% and glycine > 50% (Gou, Guerrero, 

Gelabert & Arnau, 
1996) 

texture, flavour and 
colour of dry-cured loin 

Important flavour defects when NaCl 
was substituted by KCl and potassium 
lactate > 40% and glycine > 30%; 
sensory analysis of substitution did not 
detect an effect on texture traits  

sensory parameters of 
Pasterma 

NaCl was replaced at 30, 40 or 50% 

levels by KCl or potassium lactate 

no significant changes in sensory 
properties when NaCl was substituted 
up to 40% 

(Askar, El-Samahy & 
Tawfik, 1994) 
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Table 4. continued. 
Main focus Implementation of NaCl reduction Important Observations Reference 

Studies using KCl and/or other chloride salts 

biochemical and 
sensory changes of 
dry-cured ham 

I: Control: 100% NaCl 

II: 50% NaCl+50% KCl 

III: 55% NaCl+25% KCl+15% 

CaCl2+5% MgCl2 

III: no significant effect on proteolysis; all 
sensory attributes were affected;  
II: better evaluation but notable bitter 
taste of KCl 

(Armenteros, Aristoy, 
Barat & Toldrá, 2012) 

post salting stage of 
dry-cured ham 

II: 16 days longer post salting than I; 
III: 26 days longer post salting than I  

(Aliño, Grau, Fuentes 
& Barat, 2010b) 

physicochemical 
parameters of dry-
cured ham 

II: higher salt concentration than I and 
lower water contents than in I; 
III: lower salt concentration due to the 
difficulty of divalent cations to penetrate 
the muscle, which induced a higher 
water content and higher aw values than 
in I 

(Aliño, Grau, Toldrá 
& Barat, 2010) 

physicochemical 
properties of dry-cured 
loin 

I: Control: 100% NaCl 

II: 55% NaCl+25% KCl+15%  

CaCl2+5% MgCl2 

III: 45% NaCl+25% KCl+20% 

CaCl2+10% MgCl2 

IV: 30% NaCl+50% KCl+15% 

CaCl2+ 5% MgCl2 

I-III: no significant differences in 
physicochemical characteristics; 
IV: significant increase in hardness and 
chewiness 

(Aliño et al., 2010) 

biochemical and 
sensory changes of 
dry-cured loin 

II and IV: higher proteolytic acitivty than 
I; 
II: no significant differences in sensory 
traits when compared to I 

(Armenteros, Aristoy, 
Barat & Toldrá, 
2009b) 

pile salting of dry-cured 
loin 

I: Control: 100% NaCl 

II: 75% NaCl+25% KCl 

III: 65% NaCl+35% KCl 

IV: 50% NaCl+50% KCl 

V: 55% NaCl+25% KCl+15% 

CaCl2+5% MgCl2 

VI: 45% NaCl+25% KCl+20% 

CaCl2+10% MgCl2 

Strong effect of required salting time to 
reach comercial chloride concentration: 
presence of KCl decreased salting time 
while the addition of CaCl2 and MgCl2 
had a contrary effect 

(Aliño, Grau, Fuentes 
& Barat, 2010a)  

compositional, physic-
chemical and sensory 
parameters of Italian 
salami 

I: Control: 27 g/kg NaCl 

II: 13.5 g/kg NaCl + 4.2 g/kg KCl + 2.4 

g/kg CaCl2 + 2.4 g/kg MgCl2 

II: Limited detrimental effects on sensory 
attributes, no effects on compositional 
parameters, pH, aw and free fatty acid 
composition; significant increase in lipid 
oxidation 

(Zanardi, Ghidini, 
Conter & Ianieri, 
2010) 

biochemical changes 
and sensory 
characteristics of dry-
cured loin 

I: Control: 100% NaCl 

II: 65% NaCl + 35% KCl 

III: 50% NaCl + 50% KCl 

IV: 30% NaCl + 70 % KCl 

No significant differences in proteolysis, 
lipolysis and sensory analysis between I, 
II and III 

(Armenteros, Aristoy, 
Barat & Toldrá, 
2009a) 

physicochemical 
parameters of dry-
cured loin 

Substitution of NaCl with KCl up to 50% 
without detrimental effects on 
physicochemical parameters was 
possible 

(Aliño et al., 2009)  

texture and colour of 
dry fermented 
sausages 

I: Control: 2.6% NaCl 

II: 1% NaCl + 0.55% KCl + 0.74% 

CaCl2  

II: acceptable, but lower scores in 
texture and colour than in I 

(Gimeno, Astiasarán 
& Bello, 1999) 
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Table 4. continued. 
Main focus Implementation of NaCl reduction Important Observations Reference 
proteolysis and 
insolubilisation 
processes of dry 
fermented sausages 

I: Control: 3% NaCl 

II: 1.5% NaCl + 1% KCl 

II higher percentage of insoluble protein 
fraction and higher intensity of 
proteolysis; softer and saltier taste than I 

(Ibañez, Quintanilla, 
Cid, Astiasarán & 
Bello, 1997) 

stability of the 
nitrosation process of 
dry fermented 
sausages 

II: more intense nitrosation process, 
lower pH and higher aw than I 

(Ibañez, Quintanilla, 
Cid, Astiasaran & 
Bello, 1996) 

Lipid fraction of dry 
fermented sausages 

II: higher amount of volatile fatty acids 
than I and increased lipolytic activity 

Quintanilla, Ibañez, 
Cid, Astiasarán & 
Bello 1996) 

carbohydrate 
fermentation and 
nitrosation process of 
dry fermented 
sausages 

Results suggested that II favoured the 
nitrosation process and carbohydrate 
heterofermentative activity of 
microorganisms 

(Ibañez et al., 1995) 

proteolysis, texture and 
flavour of Country-style 
ham  

I: Control: 3% NaCl 

II: 1.5% NaCl + 1% KCl 

I: Control: 100% NaCl 
II: 33.3% KCl + 66.7% NaCl 
III: 66.7% KCl + 33.3% NaCl 
IV: 100% KCl. Complete (100%) or 
partial (50%) substitution of NaCl with 
equivalent ionic strengths of either KCl 
or LiCl 

III and IV had higher levels of residual 
NO3

-, less aged flavour, more 
cohesiveness and were unacceptable 
due to extreme bitterness. Hams II 
showed the same slight level of 
bitterness as I; hams with KCl had worst 
off-flavour, LiCl is not GRAS listed 
(toxic) but achieved sensory values 
more closely to NaCl 

(Keeton, 1984) 

Studies with simple NaCl content reduction 

sensory characteristics 
of Iberian dry-cured 
ham 

2 different salt levels: 

I: 6% NaCl (w/w) 

II: 3% NaCl (w/w) 

Biceps femoris muscles from I were 
harder, dryer and more fibrous than II 

(Andrés, Cava, 
Ventanas, Thovar & 
Ruiz, 2004) 

organoleptic, chemical, 
and physical 
parameters of dry 
sausages 

I: 2.25% NaCl 

II: 2.5% NaCl 

III: 2.75% NaCl 

IV: 3.00% NaCl 

V: 3.25% NaCl 

I: less acceptable flavour and softer 
texture than II-V; faster aw decrease in V 
than in I 

(Petäjä, Kukkonen & 
Puolanne, 1985) 

 

From the published studies, the main findings on physichochemcial and organoleptic level 

were that NaCl could be reduced up to a maximum of 50%, by the combination of KCl (40%) 

and potassium lactate (10%) (Guàrdia et al., 2006; Guàrdia et al., 2008). A substitution of 

NaCl with KCl at levels higher than 40% resulted in sensorially unacceptable products. 

Potassium lactate was reported to improve colour, juiciness, tenderness and enhanced 

flavour (Terrell, Quintanilla, Vanderzant & Gardner, 1983) and was shown to extend shelf life 

of dry-cured meat products (Choi & Chin, 2003; Pipek et al., 2005; Prasai et al., 1992). 

However up to date, as can be seen from Table 4, no sensorially acceptable formulation for 

the complete NaCl replacement has been published. 
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In the NaCl-free processing strategy followed by Arnau et al. (2011) and used in the studies 

included in this PhD thesis, the texture and flavour problematic has been solved by using 

lactate together with the chloride salt KCl to reduce the aw and to favour the protein 

solubilisation of the meat product. Additionally, authors found that the addition of an 

encapsulated acid or acid precursor (GDL) significantly contributes to correct the bitter and 

unpleasant taste of lactate and KCl and has a positive effect on the texture of the final 

product. This formulation, accordingly, can be used for the elaboration of dry-cured meat 

products without negatively affecting the organoleptic properties. 

 

Table 5. Studies investigating the impact of partial or complete NaCl replacement 
microbiological stability of dry-cured meat products 
Main focus Implementation of NaCl reduction Important Observations Reference 

Studies using KCl and/or potassium lactate 

safety and quality of 
restructured dry-cured 
ham 

I: Control: 30 g/kg NaCl 

II: Salt reduced: 15 g/kg NaCl 

III: Salt reduced + lactate: 15 g/kg NaCl 

+ 39.7 g/kg potassium lactate 

Produced products were safe; 
potassium lactate reduced aw and 
microbiota mainly in the inner parts of 
the hams and had no effect on colour or 
sensory parameters 

(Fulladosa, Sala, 
Gou, Garriga & 
Arnau, 2012) 

microbiological 
parameters of 
fermented sausages 

9 different mixtures in which NaCl is 

partially (up to 60%) substituted by 

different combinations of KCl, 

potassium lactate and glycine 

Little effect on microbiologial stability (Gelabert et al., 
2003) 

microbiological 
parameters of 
Pasterma 

NaCl was replaced at 30, 40 or 50% 

levels by KCl or potassium lactate 

No differences in bacteriological 
analysis 

(Askar et al., 1994) 

Studies using KCl and/or other chloride salts 

Physicochemical 
properties of dry cured 
loin 

I: Control: 100% NaCl 

II: 55% NaCl+25% KCl+15%  

CaCl2+5% MgCl2 

III: 45% NaCl+25% KCl+20% 

CaCl2+10% MgCl2 

IV: 30% NaCl+50% KCl+15% 
CaCl2+ 5% MgCl2 

I-III: no significant differences in 
physicochemical characteristics; 
IV: significant increase in hardness and 
chewiness 

(Aliño et al., 2010) 

microbiological 
parameters of dry-
cured loin 

I: Control: 100% NaCl 
II: 65% NaCl + 35 % KCl 
III: 50% NaCl + 50% KCl 
IV: 30% NaCl + 70% KCl 

no differences in microbial counts 
between all formulations 

(Aliño et al., 2009)  

physicochemical and 
microbiological 
changes during the 
post-salting stage of 
dry-cured ham 

I: Control: 100% NaCl 
II: 50% NaCl + 50% KCl 
III: 55% NaCl + 25% KCl + 15% CaCl2 

+ 5% MgCl2 

No differences in counts of mesophilic 
aerobic counts and salt tolerant 
microbiota between all formulations; II 
and III needed more time to reach 
similar aw values than I, especially III 

(Blesa et al., 2008) 
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Table 5. Continued. 
Main focus Implementation of NaCl reduction Important Observations Reference 
microbiology of dry 
fermented sausages 

I: Control: 2.6% NaCl 

II: 1% NaCl + 0.55% KCl + 0.74% 

CaCl2  

No effect on Lactobacillus and 
Micrococcaceae counts, indicating that 
modification did not affect starter culture 
development 

(Gimeno, Astiasarán 
& Bello, 2001) 

physicochemical and 
sensory parameters of 
dry fermented 
sausages 

I: Control: 2.6% NaCl 

II: 1% NaCl, 0.55% KCl, 0.23% MgCl2, 

and 0.46% CaCl2 

II: lower pH and higher aw; lower 
Micrococcaceae counts; lower sensory 
acceptability than I 

(Gimeno, Astiasarán 
& Bello, 1998) 

physicochemical and 
microbiological 
parameters in dry 
fermented sausages 

I: Control: 3% NaCl 

II: 1.5% NaCl + 1% KCl 

Similar physicochemical parameter 
levels and microbiological results 

(Ibañez et al., 1995) 

quality and microflora 
of boneless dry-cured 
ham 

I: Control: 100% NaCl 
II: 70% NaCl + 30% KCl 
III: 50% NaCl + 50% KCl 

II: no effect on palatability or microbial 
quality (aerobic counts) 
III: important decrease in palatability and 
increase in microbial counts. 

(Leak, Kemp, Fox & 
Langlois, 1987) 

Studies with simple NaCl content reduction 

survival of S. 
typhimurium and S. 
aureus in Genoa 
salami 

I: 2% NaCl 
II: 2.75% NaCl 
III: 3.3% NaCl 

No differences in aw and pH; Salmonella 
could no longer be detected from day 11 
in none of the samples; Higher counts of 
S. aureus: were recorded in I than in II 
and III 

(Messier, Smith & 
Tittiger, 1989) 

microbiology of dry 
sausages 

I: 2.25% NaCl 
II: 2.5% NaCl 
III: 2.75% NaCl 
IV: 3.00% NaCl 
V: 3.25% NaCl 

similar levels of total bacteria counts, 
lactobacilli and staphylococci in I–V; 
highest level of gram-negative bacteria 
in V and lowest level in I 

(Petäjä et al., 1985) 

 

Changing salt concentrations will not affect the occurrence of organisms in foods but may 

affect their growth, survival or death (Stringer et al., 2005). Although it is known that the 

lowering of the salt content potentially reduces product safety unless alternative hurdles are 

included or shelf-life is reduced, only a few studies have focussed on microorganism 

behaviour, and only one has evaluated the fate of inoculated pathogens. In NaCl-free 

processing, the food safety primarily depends on the antimicrobial effects of KCl and 

potassium lactate used to substitute NaCl. The antimicrobial effects of equalmolar 

concentrations of NaCl and KCl at similar aw values in broth were evaluated and both salts 

exerted similar effects on L. monocytogenes Scott A (Boziaris, Skandamis, Anastasiadi & 

Nychas, 2007). It was therefore concluded that NaCl could be replaced by KCl without 

risking the microbiological safety of the product (Bidlas & Lambert, 2008; Boziaris et al., 

2007). However, Bautista-Gallego, Arroyo-Lopez, Duran-Quintana & Garrido-Fernandez 

(2008) showed in broth, that KCl was less inhibitory for Lactobacillus pentosus than NaCl. 
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The antimicrobial effect of lactate has been studied in broth (Chen & Shelef, 1992; de Wit & 

Rombouts, 1990). At equal aw values, van Burik & de Koos (1990) showed in studies 

performed on culture media that sodium lactate provided better growth inhibition on S. 

typhimurium and S. aureus than NaCl. Moreover, in a wide range of meat products such as 

cooked ham (Jofré, Garriga & Aymerich, 2008; Stekelenburg & Kant-Muermans, 2001), 

frankfurter sausage (Stekelenburg, 2003), beef bologna (Mbandi & Shelef, 2002), cooked 

beef (Miller & Acuff, 1994), chicken dry fermented sausage (Deumier & Collignan, 2003) and 

restructured dry-cured ham with a reduced NaCl content (Fulladosa et al., 2012) the 

antimicrobial effect of lactate has been demonstrated. Additionally, the effect of lactate was 

reported to be enhanced by NaCl (Shelef, 1994; Taormina, 2010) and GDL (Garcia Zepeda 

et al., 1994; Juncher et al., 2000). 

A considerable number of studies deal with the exclusion or reduction of salt in dry-cured 

meat products (Table 4 and 5), however, most of them investigated the effect of NaCl 

reduction on physicochemical and sensory traits. Up to date, no food safety studies have 

been performed on the complete exclusion of NaCl from dry-cured meat processing. 

 

5. High pressure processing 

Consumers increasingly demand high quality convenient foods with natural flavour and 

taste, free from additives and preservatives. With the aim to meet these requirements, 

several non-thermal technologies as alternatives and/or complementary technologies to 

traditional conservation treatments have been developed, among them high pressure (HP) 

processing (Garriga & Aymerich, 2009; Rastogi, Raghavarao, Balasubramaniam, Niranjan & 

Knorr, 2007). HP processing is defined as adiabatic compression, hold, and decompression 

of foods at pressures in the range of 100 to 800 MPa for holding times of 0.001 to 1200 

seconds or longer (IFT, 2000). Nowadays, commercially available industrial HP equipments 

can reach up to 600-700 MPa and have capacities of up to 420 litres (Hiperbaric, 2012). At a 
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pressure level of 600 MPa, the economically reasonable time of treatment was estimated at 

6 min (Garriga, Grèbol, Aymerich, Monfort & Hugas, 2004). Worldwide, more than 250 

different HP-treated products are marketed. Roughly one-third of the HP processing 

machines are in use for processing RTE vegetables, primarily avocado products. A third of 

the installed HP machines are used to process meat products such as sliced or diced 

cooked pork, chicken, and turkey. The last third are used to process juices and beverages 

such as smoothies, seafood and fish, and other products such as dairy or for coprocessing 

or in tolling applications (Tonello, 2011). In Europe, HP technology is well accepted as an 

alternative technology and is industrially applied to a range of meat products, including dry-

cured ones (Garriga et al., 2009). Spain as a pioneer in HP treated meat, first 

commercialized sliced cooked ham in 1998 (Tonello, 2011). 

The effect of HP is based on two principles: as a general rule and first principle (Le 

Chatelier´s Principle), pressure enhances reactions that lead to volume decrease, and 

reactions involving increases in volume are generally inhibited or reduced by pressure 

application. According to the Arrhenius law, the reaction rate increases with increasing 

temperature. The second principle states (Principle of Pascal) that pressure is 

instantaneously and uniformly transmitted independent of the size and the geometry of the 

food. During pressurisation, the work of compression increases the temperature of foods 

through adiabatic heating approximately 3°C per 100 MPa, depending on the composition of 

the food (Smelt, 1998). 

It is known that the key effects of HP include (i) the inactivation of microorganisms, (ii) the 

modification of biopolymers, such as protein denaturation, enzyme activation or inactivation, 

gel formation, influence on degradation, or extraction; (iii) quality retention (especially flavour 

and colour), due to the fact that only non-covalent bonds are affected by pressure; and (iv) 

product functionality, as exemplified by density changes, freezing and melting temperatures, 

or textural attributes (Knorr, 1993). The fact that nutritional values and quality are not 

affected by HP is viewed as an important benefit for food industry (Hoover, Metrick, 
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Papineau, Farkas & Knorr, 1989; Smelt, 1998; Téllez, Ramírez, Pérez, Vázquez & Simal, 

2001). It can be applied as a final preservation measure, after slicing and packaging, as an 

in-package “cold” pasteurization step (Bover-Cid, Belletti, Garriga & Aymerich, 2011). 

 

5.1. Effect on microorganisms 

The greater the pressure level and time of application, the greater the potential for changes 

in the appearance of selected foods. These changes are usually undesirable for food but 

useful for the inactivation of pathogens. 

High pressure induces several changes in the cell, including separation of the cell 

membrane from the cell wall, contraction of the cell membrane, compression of gas 

vacuoles, cell lengthening, and release of intracellular material (Patterson, 2005). Moderate 

levels of pressure decrease the rate of growth and reproduction, whereas very high 

pressures cause inactivation by completely destroying the functionalities of cell wall and 

cytoplasmic membrane, dissociation of the proteins and the ribosomal subunit structures and 

inactivation of some enzymes (Abe, 2007; Smelt, 1998). HP is similar to thermal processing 

in that there is a threshold value which depends on the microorganism and species and 

below which no inactivation occurs (Patterson, Linton & Doona, 2007). Above the threshold, 

cell death increases with pressure but it does not follow a first-order kinetics and sometimes 

there is a tailing off in inactivation (Garriga et al., 2004). Tailing may be a normal feature of 

the mechanism of resistance involving adaptation and recovery (Earnshaw, 1995). In 

practice, the non-logarithmic inactivation curves make it difficult to determine the appropriate 

kinetic parameters. Under favourable storage conditions sublethally injured microorganisms 

can recover and produce food-borne disease, as demonstrated in milk (Koseki, Mizuno & 

Yamamoto, 2008) and in chicken (Patterson, McKay, Connolly & Linton, 2010). 

In general, gram-positive bacteria are usually more pressure resistant than gram-negative 

bacteria and the more developed the life form, the more sensitive it is to pressure (IFT, 

2000). In general, cells in the exponential growth phase are more pressure-sensitive than 
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cells in the stationary phase (Mackey, Forestiere & Isaacs, 1995). Incomplete inactivation of 

microorganisms by pressure will result in injured cells capable of recovery under optimal 

growth conditions (IFT, 2000; Metrick, Hoover & Farkas, 1989). 

Several studies have been performed on the gram-positive bacteria L. monocytogenes and 

S.aureus reporting their resistance against HP under various conditions (Chen, 2007; 

Garriga, Aymerich, Costa, Monfort & Hugas, 2002; Hayman, Baxter, O'Riordan & Stewart, 

2004; Jofré, Aymerich, Grèbol & Garriga, 2009b; Jofré et al., 2008; Simpson & Gilmour, 

1997b). Some strains of Salmonella spp. have also been demonstrated to have relatively 

high levels of pressure resistance (Jofré, Aymerich, Bover-Cid & Garriga, 2010). In 

phosphate and citrate buffer systems the inactivation of L. monocytogenes has been 

demonstrated to depend on the pH, duration and temperature of the treatment and pressure 

level (Ritz et al., 2000). Similarly, Salmonella was more inactivated at higher pressure levels 

in phosphate buffers (Patterson et al., 2007). 

 

5.2. Studies on dry-cured meat products 

The effect of pressure on several characteristics of meat and meat products has been 

published (Cheftel & Culioli, 1997; Ledward, 1998; Suzuki, Kim, Tanji, Nishiumi & Ikeuchi, 

2006). Industry has found that an operating pressure of 600 MPa (87.000 psi) provides a 

satisfactory pasteurisation pressure and holding time (3-5 min) for most vegetative microbes 

(Tonello, 2011). Regarding pathogenic microorganisms of concern, HP has been recognized 

by the Codex Alimentarius (CAC, 2007) and the FDA, Health and Human Services (HHS, 

2008) as a listericidal treatment for RTE products. A recently published model of HP induced 

inactivation of L. monocytogenes in dry-cured ham showed that considering the low 

contamination levels and the inability of L. monocytogenes to grow in dry-cured ham, 613 

MPa for 5 min would be sufficient to achieve the U.S. “zero tolerance” policy (Bover-Cid et 

al., 2011). For Salmonella, a significantly reducing effect after pressurisation at 600 MPa has 

already been described (Bover-Cid, Belletti, Garriga & Aymerich, 2012; Jofré et al., 2009b). 
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Important findings from challenge tests with L. monocytogenes and Salmonella performed 

on different dry-cured meat products are summarized in Table 6. 

 

Table 6. Important findings from HP studies focussed on the fate of  
L. monocytogenes and Salmonella in fermented sausages and dry-cured meat 
products 
Product Treatment 

Conditions 
P(MPa)/T(ºC)/t(min) 

log 
cfu/
g 

Storage
cond. 

Observations Reference 

Inactivation studies using high inoculum levels 

Sliced dry-cured 
ham 
pH: 5.85 
aw: 0.891 

600/12/5 
500/12/5 
400/12/5 

6 8°C 
60 days 

Salmonella Enteritidis: 
600 MPa: immediate reduction: 4.32 log, 
detectable in enrichment at end of storage. 
500 MPa: immediate reduction: 2.54 log, 
further 2.66 log reduction after 60 days. 
400 MPa: immediate reduction: 1.06 log, 
further reduction of 2.56 log after 60 days. 

(de Alba, Montiel, 
Bravo, Gaya & Medina, 
2012) 

Sliced dry-cured 
ham  
pH: 5.84 
aw: 0.88 

347-852/ 
7.6-24.4/ 
2.3-15.75 
Modelling study 

9 - 

Salmonella enterica: 
Conditions proposed by authors to comply 
with the Food Safety Objective: 
525 MPa (15.5 min/16ºC or 12 min/7.6ºC) 
to 
600 MPa (12.1 min/16ºC or 5 min/23.5ºC). 

(Bover-Cid et al., 2012) 

L. monocytogenes 
Conditions proposed by authors to achieve 
the U.S. “zero-tolerance: 
613 MPa for 5 min. 

(Bover-Cid et al., 2011) 

Sliced dry-cured 
ham 
pH: 5.91 
aw: 0.92 

600/15/5 7 8°C 
60 days 

L. monocytogenes: 
Immediate reduction: 3.85 log, 
decrease under LOD (10 CFU/g)at end of 
storage. (Hereu, Bover-Cid, 

Garriga & Aymerich, 
2012)  Sliced dry-cured 

ham 
pH: 5.84 
aw 0.88 

L. monocytogenes: 
Immediate reduction: 1.82 log, 
further reduction of 3.34 log at end of 
storage. 

Genoa salami 
(65 mm-
diameter) 
pH: 4.65 
aw: 0.92 

600/19/5 
483/19/12 7 4°C 

28 days 

L. monocytogenes 
Decrease to 6.08 log CFU/g before HP, 
600MPa: immediate reduction: 3.94 log, 
further decrease to < 1 log CFU/g (=LOD) 
at the end of storage (absence in 5/5 
enriched samples). 
483MPa: immediate reduction:3.35 log, 
further decrease to < 1 log CFU/g (=LOD) 
at the end of storage (absence in 3/6 
enriched samples). 

(Porto-Fett et al., 2010) 
Salmonella 
Decrease to 2.21 log CFU/g before HP, 
600MPa: immediate reduction to ≤ 0.3 log 
CFU/g (absence in 4/5 enriched samples).  
End of storage : absence in 6/6 enriched 
samples. 
483MPa: immediate reduction to ≤ 0.3 log 
CFU/g (absence in 5/5 enriched samples) 
End of storage : absence in 6/6 enriched 
samples. 
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Table 6. Continued. 
Product Treatment 

Conditions 
P(MPa)/T(ºC)/t(min) 

log 
cfu/
g 

Storage 
cond. 

Observations Reference 

Sliced dry-cured 
ham 
pH: 5.91 
aw: 0.92  

600/15/5 7 8°C 
60 days 

Salmonella: 
Immediate reduction of 4.18 log, 
decrease under LOD (10 CFU/g) during 
storage. (Hereu, Bover-Cid, 

Rubio, Garriga & 
Aymerich, 2010) Sliced dry-cured 

ham 
pH: 5.84 
aw: 0.88 

Salmonella: 
Immediate decrease of 2.82 log, 
further reduction of0.65 logduring storage. 

Sliced dry-cured 
Serrano ham 
pH: 5.61 
aw: 0.88 

450/12/10  6.78  
4°C or 
8°C 
60 days 

L. monocytogenes Scott A: 
Immediate reduction: 1.16 log, 
further decrease to 2.73 log CFU/g during 
storage. (Morales, Calzada & 

Nuñez, 2006)  Sliced dry-cured 
Iberian ham 
pH: 5.9 
aw: 0.904 

L. monocytogenes Scott A: 
Immediate reduction: 1.5 log, 
further decrease to 3.24 log CFU/g during 
storage. 

Growth inhibition studies using low inoculation levels 

Fuet 
pH: 5.92 
aw: 0.9 

400/17/10 3 7°C 
30 days 

L. monocytogenes: 
grow to 6.5 log CFU/g before HP 
Immediate reduction: 0.58 log, 
decreasing trend during storage, 4 log 
decrease in last storagestage. (Ananou et al., 2010) 
Salmonella: 
Immediate reduction: 2.08 log, 
furtherdecrease < 1 log CFU/g during 
storage. 

Cecina de Leon 
pH: 5.87 
aw: 0.909 

500/18/5 4 
6°C 
120 days 

L.monocytogenes 
Immediate reduction: 1.93 log, 
detectable at 2.56 log CFU/g until day 90. 

(Rubio, Martínez, 
Garcia-Cachán, Rovira 
& Jaime, 2007a; 
Rubio, Martínez, 
Garcia-Cachán, Rovira 
& Jaime, 2007b;  
Rubio, Martínez, 
Garcia-Cachán, Rovira 
& Jaime, 2010) 
 

Salchichón 
pH: 5.1 
aw: 0.827 

L.monocytogenes 
Immediate reduction: 1 log, 
Further decrease <2 log CFU/g at day 15. 
No recovery recorded. 

Sliced dry-cured 
ham 
pH: 5.88 
aw: 0.91 

600/31/6  3.5 4°C 
120 days 

L. monocytogenes and Salmonella: 
Immediate decrease under LOD (10 
CFU/g) and no recovery during storage. 

(Jofré et al., 2009b) 

Fuet 
pH: 6.1 
aw: 0.93 

400/17/10 2.7 7°C 
30 days 

L. monocytogenes: 
grow to 6.5 log CFU/g before HP, 
immediate reduction: 0.6 log, 
decreasing trend during storage, 4 log 
decrease in last storagestage. (Jofré et al., 2009a) 
Salmonella: 
Immediate reduction: 2 log, 
further decrease to < 1 log CFU/g during 
storage. 



Introduction 

 

54 

 

Table 6. Continued. 
Product Treatment 

Conditions 
P(MPa)/T(ºC)/t(min) 

log 
cfu/
g 

Storage 
cond. 

Observations Reference 

Chorizo 
pH: 5.7* 
aw: 0.98* 
(*at the moment 
of HP 
treatment) 

300/17/10 
Applied before 
ripening 

2.8 

Ripening 
cond.: 
12°C 
27 days 

L. monocytogenes: 
Immediate reduction: 1 log, 
recovery of 1.8 log, which led to higher 
counts in pressurised than in non-
pressurised samples. 

(Marcos, Aymerich & 
Garriga, 2005) 

Salmonella: 
No immediate reduction, 
faster decrease during storage in HP 
treated samples. 

Fuet 
pH: 5.7* 
aw: 0.98* 
(*at the moment 
of HP 
treatment) 

L. monocytogenes: 
Immediate reduction: 1 log, 
recovery of 0.9 log, which led to higher 
counts in pressurised than in non-
pressurised samples 
Salmonella: 
No immediate reduction, 
faster decrease during storage in HP 
treated samples 

Chorizo 
pH: 5.7 
aw: 0.83-0.86 

400/17/10 2.78 
20°C 

28 days 

L. monocytogenes: 
Immediate reduction of 0.9 log, 
no information about behaviour during 
storage. 

(Garriga et al., 2005) 

Salmonella: 
Immediate reduction to absence in 25 g, 
no recovery during storage. 

Fuet 
pH: 5.7 
aw: 0.83-0.86 

L. monocytogenes: 
No immediatereduction, 
no information about behaviour during 
storage 

Salmonella: 
Immediate reduction to absence in 25 g, 
no recovery during storage. 

 
In food products, two effects determine microbiological safety and stability: the effect of the 

food matrix during treatment and the effect after treatment (immediate and long term 

inactivation). In this context it should be taken into account that results from studies in 

buffers or laboratory media cannot be directly extrapolated to real food situations (Simpson 

& Gilmour, 1997a) because factors influencing threshold of inactivation not only include the 

pressure applied, the time and temperature of processing, pH and aw, but also the 

composition of the food (Tewari, Jayas & Holley, 1999). In this sense, pressure resistance of 

microorganisms was reported to be reinforced in rich nutrient media (Hoover et al., 1989) 

and food constituents such as proteins, carbohydrates and lipids (Simpson et al., 1997a) or 
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cations such as Ca2+ could have a protective effect on microorganisms (Patterson et al., 

2007). 

Regarding performed studies listed in Table 6 and according to Jofré et al. (2009a), the 

effectiveness of pressurisation in dry-cured meat products not only depended on the 

treatment conditions (pressure and time) and the type of product, but also appeared to be 

highly related with the ripening stage at which the HP treatment was applied and the 

bacterial species. Used as a post processing treatment however, it can be assumed that HP 

could be used to eliminate low contamination levels of L. monocytogenes and Salmonella in 

dry-cured meat products. 

Garriga et al. (2009) emphasized that low acid fermented sausages, due to the absence of 

the low pH hurdle, and sliced products, due to possible re-contamination during post 

handling (slicing), would benefit from the food safety enhancing effect of HP. For meat 

products with a low salt content, pressurisation was also proposed as potential 

complementary technology to enhance product shelf life (Verma et al., 2012). 
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The main objective of this PhD thesis was to evaluate the food safety impact of the QDS 

technology and/or NaCl-free processing on the fate of Listeria monocytogenes and 

Salmonella during the production and/or the refrigerated storage of dry-cured meat products. 

To that end the following specific objectives were proposed: 

 

 

1. To evaluate the food safety impact of the QDS process® in acid and low acid chorizo; 

2. To compare the food safety of NaCl-free processed acid and low acid chorizo 

produced with the QDS or the traditional drying method; 

3. To evaluate the food safety impact of NaCl-free processing in traditionally dried 

smoked dry-cured ham; 

4. To compare the food safety of QDS dried dry-cured hams produced with or without 

NaCl, acidification and smoking; 

5. To assess the effectiveness of an industrial HP treatment (600 MPa at 13 ºC for 5 

min) in all the above mentioned dry-cured meat products. 
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The protocol of the challenge tests performed within the present PhD thesis was designed 

according to the recommendations from several challenge test guidelines documents 

published by different organisations/institutes (AFNOR, 2004; CRL/AFSSA, 2008; NACMCF, 

2005; NACMCF, 2010; Scott et al., 2005) as follows: 

• Products were handled under conditions that mimic as closely as possible the 

distribution, storage and use of a food product. Additionally in product preparation it 

was taken into account that the conditions (e.g. pH and aw) within the range of 

variability, were most conducive to pathogen growth or survival (“worst-case 

scenario”). 

• The method of inoculation was consistent with how the food may be contaminated. 

Accordingly, the meat batter of comminuted products (products assumed to be 

homogenous) and the slices of whole piece products were spiked with L. 

monocytogenes and Salmonella. 

• The choice of the pathogenic microorganisms was based on the likelihood of 

pathogen association with the specific food and pathogen resistance to inactivation. 

In this regard, the 2073/2005 regulation listed L. monocytogenes and Salmonella as 

pathogens that must be controlled in RTE-meat products. 

• The chosen pathogenic microorganism strains were isolated from meat products and 

animal origin, in line with described desirable strain characteristics. In order to 

account for variations in growth and survival among strains, three different strains of 

each pathogen were used. 

• Stationary phase cells were selected because the contaminating cells in a production 

environment are more likely to be in this phase than in the exponential phase. 
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• The level of inoculation reflected the contamination expected to occur in the food 

chain and was calculated regarding recommended levels of ca. 50-100 CFU/g to 

accurately represent the product’s ability to support growth. 

• The chosen temperature profile consisted of 1/3 of the storage at temperature 1 (T1) 

and 2/3 at temperature 2 (T2). T1 represented the temperature used under retail 

conditions (2-4ºC, restrictive temperature) and T2 the temperature common in the 

household (8ºC, abusive temperature). 

• Storage times longer than commercial shelf-lifes were set for the evaluated products. 

• Microbiological analysis of L. monocytogenes and Salmonella was performed directly 

after inoculation and periodically during subsequent processing and/or storage (five 

to seven samplings over the duration of the study were recommended). All 

experiments were repeated in two independent experiments and samples were 

analysed in duplicate (n=4). Recommendations about replicates indicate a minimum 

of two samples to be analysed at each sampling point, coming from different lots or 

batches to account for product variation. 

• The determination of the physicochemical characteristics was necessary in order to 

compare the products submitted to challenge testing to the products routinely 

produced by the factory. Moreover, the determination of typical levels of competitive 

microbiota including starter cultures could provide useful information about possible 

interactions. For obvious safety reasons, no sensory assessment other than changes 

in appearance was performed on challenge test samples. 
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According to the objectives and the challenge test protocol, Figure 6 schematically 

represents the experimental design of all the assays performed in the framework of this 

thesis. 
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Figure 6. Schematic representation of experimental design 
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Table 7 lists the manufactured products, the abbreviations, which will be used in the general 

discussion and conclusions and the related sections of the “Results” in which the 

corresponding article is included. 

 

Table 7. Overview about the products studied in the framework of this PhD thesis 
Product Specification Processing Drying Abbreviation Section 

Chorizo 

Acid 
Standard QDS 

process A-QDS-S 

V.1. 
Standard Traditional  A-TRADI-S 

Low acid 
Standard  QDS 

process LA-QDS-S 

Standard  Traditional LA-TRADI-S 

Acid 
NaCl-free QDS 

process A-QDS-F 

V.2. 
NaCl-free Traditional A-TRADI-F 

Low acid 
NaCl-free QDS 

process LA-QDS-F 

NaCl-free Traditional LA-TRADI-F 

Dry-
cured 
ham 

smoking 
Standard Traditional TS-TRADI-S 

V.3. 
NaCl-free Traditional TS-TRADI-F 

Non-acidified 
smoked 

Standard QDS 
process NS-QDS-S 

V.42. 

NaCl-free QDS 
process NS-QDS-F 

Acidified 
Standard QDS 

process A-QDS-S 

NaCl-free QDS 
process A-QDS-F 

Acidified-
smoked 

Standard QDS 
process AS-QDS-S 

NaCl-free QDS 
process AS-QDS-F 
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1. Ensuring food safety by an innovative fermented sausage manufacturing 

system 



Katharina Stollewerk, Anna Jofré, Josep Comaposada, Gabriele Ferrini, Margarita Garriga. 

“Ensuring food safety by an innovative fermented sausage manufacturing system”. Food 

control. Vol. 22, issue 12 (December 2011) : p. 1984–1991 

Copyright © 2011, Elsevier 
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Abstract 

Accelerated production of dry fermented sausages by shortening the drying‐ripening 
process represents one of the new developments in meat product technology and is 
expected to have a promising future. However, food safety concerns, which could exist 
when processes are shortened, must be investigated in particular. In the present challenge 
test, the fate of Listeria monocytogenes and Salmonella was investigated in acid (pH 4.8) 
and low‐acid (pH 5.3) chorizo that were fermented, thermally treated and dried either by 
the accelerated drying system QDS process® or the traditional process. Even though the 
innovative QDS process® substantially shortened the drying time when compared to the 
traditional drying system, results showed that in case of low level contamination of raw 
meat, the same product safety was achieved. 

 

Highlights 

► QDS process shortens the drying of fermented meat products. ► Chorizos were spiked 
with L. monocytogenes and Salmonella in the meat batter. ► We evaluated the impact of 
traditional and QDS drying on food safety of chorizo. ► Traditional and QDS process 
provided equal food safety. 

 

Keywords 

 Accelerated drying;  
  Challenge test;  
 Chorizo;  
 High hydrostatic pressure;  
 Listeria monocytogenes;  
 Salmonella 
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2. The impact of fast drying (QDS process®) and high pressure on food safety 

of NaCl-free processed dry fermented sausages 

 



Katharina Stollewerk, Anna Jofré, Josep Comaposada, Jacint Arnau, Margarita Garriga. “The 
impact of fast drying (QDS process®) and high pressure on food safety of NaCl‐free 
processed dry fermented sausages”. Innovative Food Science & Emerging Technologies. 

(In Press)   Copyright © 2012 Elsevier Ltd. All rights reserved 

Available online 8 May 2012 
 
http://dx.doi.org/10.1016/j.ifset.2012.04.010 
 
http://www.sciencedirect.com/science/article/pii/S1466856412000598 
 

ABSTRACT 

In the present study the food safety impact of the QDS process® combined with a high pressure 
treatment at 600 MPa was evaluated in NaCl‐free processed acid (pH 4.8) and low‐acid (pH 5.2) 
chorizo. A challenge test was performed where the raw meat batter was spiked with low levels of 
Listeria monocytogenes and Salmonella (< 100 CFU/g) and chorizos were manufactured following 
either a traditional drying or a QDS process®. After drying, half of the sliced chorizo samples were 
pressurized (600 MPa, 5 min, 13 °C) and stored under refrigeration for 91 days. QDS processing 
proved to be adequate for the production of safe NaCl‐free processed dry fermented sausages. 
Regarding pathogenic microorganisms elimination, it was as effective as traditional processing for 
acid chorizo and even safer for low‐acid chorizo. The high pressure treatment assured absence of 
both pathogens in all samples during the whole storage time. Sausage reformulation to meet NaCl‐
free processing requirements modified the progress of pH and technological microbiota. 

Industrial relevance: The QDS process® was designed to reduce the manufacturing time of sliced dry‐
cured meat products. It allows a just in time workflow, requires less space and energy and facilitates 
the rapid elaboration of new products, implying fast adaptation to marketing promotions. Among 
them, dry fermented sausages with reduced sodium chloride content is currently one of the major 
subjects investigated on the meat sector. Reduction of NaCl and the use of replacers, however, could 
negatively affect food safety and quality, which must therefore be properly evaluated. To extend 
shelf‐life and improve safety, especially in products which are reformulated, high pressure 
processing could be a useful technology. The development of safe NaCl‐free sliced dry fermented 
sausages in a short period of time is relevant for industry to meet consumer demands for convenient 
and healthy ready‐to‐eat products. 

Highlights 

► Safety of fast and traditionally dried NaCl‐free processed chorizos was evaluated. ► A challenge 
test with L. monocytogenes and Salmonella was performed. ► The QDS process® was safer than the 
traditional process. ► Pathogen elimination from traditional low‐acid chorizo required 
pressurization. 

Keywords 

 L. monocytogenes;     Salmonella;    Fast ripening;  
 Chorizo;   Pressurization;    Food safety 
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3. The effect of NaCl-free processing and high pressure on the fate of Listeria 

monocytogenes and Salmonella on sliced smoked dry-cured ham 

 



Katharina Stollewerk, Anna Jofré, Josep Comaposada, Jacint Arnau, Margarita Garriga. “The 
effect of NaCl‐free processing and high pressure on the fate of Listeria monocytogenes and 
Salmonella on sliced smoked dry‐cured ham”. Meat science. Vol. 90, issue 2 (February 2012) 
: p. 1984‐1991 

Copyright © 2012, Elsevier 

 

http://dx.doi.org/10.1016/j.meatsci.2011.09.009  

http://www.sciencedirect.com/science/article/pii/S0309174011003147  

 

Abstract 

NaCl is an important multifunctional ingredient applied in dry‐cured ham elaboration. 
However, its excessive intake has been linked to serious cardiovascular diseases causing a 
recent increase in the development of reduced salt products. In the present study Listeria 
monocytogenes and Salmonella, food‐borne pathogens which can cross‐contaminate post 
processed products, were spiked with < 100 CFU/g on slices of both standard (S) and NaCl‐
free processed (F) (elaborated with KCl + potassium lactate instead of NaCl) smoked dry‐
cured ham. Although L. monocytogenes and Salmonella counts decreased faster in S ham, 
pathogens were present in both types of non‐pressure treated ham during the entire 
refrigerated storage period (112 days). Pressurisation at 600 MPa for 5 min caused the 
elimination of both pathogens in S ham after 14 days. In contrast, Salmonella and L. 
monocytogenes were present in F ham until days 28 and 56, respectively, indicating that the 
NaCl‐free processed dry‐cured ham had lower stability than standard smoked dry‐cured 
ham. 

Highlights 

► We compare food safety of standard and NaCl‐free processed dry‐cured ham. ► NaCl 
was substituted by KCl and potassium lactate. ► A challenge test with low levels of L. 
monocytogenes and Salmonella was performed. ► NaCl‐free ham had a higher food safety 
risk compared to the standard product. ► Pressurization was necessary to eliminate 
pathogens from both types of ham. 

Keywords 

 Food‐borne pathogens;  
 High hydrostatic pressure;  
 KCl;  
 Potassium lactate;  
 Smoked dry‐cured ham;  
 Sodium reduction 
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Abstract 1 

To evaluate the food safety effect of NaCl-free processing, acidification, smoking and high pressure in 2 

QDS processed® dry-cured ham, 3 ham types (non-acidified smoked, acidified, and acidified smoked) 3 

were produced according to a standard (-S) and a new NaCl-free (-F) process. Slices were spiked 4 

with Listeria monocytogenes and Salmonella (<2 log CFU/g), dried by the QDS process®, vacuum 5 

packed, high pressure treated at 600 MPa and stored under refrigeration for 112 days. Results of the 6 

challenge test showed that L. monocytogenes could only be eliminated from acidified smoked (AS) -S 7 

and -F processed ham slices at the end of storage, while Salmonella was present in all non-8 

pressurised slices. The safest hams were those pressurised, especially AS-S hams, where L. 9 

monocytogenes was eliminated from 25 g of product immediately after HP treatment and Salmonella 10 

after 14 days. Compared with standard processing, NaCl-free processing showed lower levels of 11 

pathogens in non-pressurised slices but their elimination was delayed in pressurised ham slices. 12 

 13 

Keywords: L. monocytogenes; Salmonella; fast drying; meat products; sodium chloride reduction.  14 

15 



125 
 

1. Introduction 16 

In dry-cured ham production, ripening is the most time consuming step. It can last from a few weeks 17 

up to years, and various strategies have been described to accelerate the process (Arnau, Serra, 18 

Comaposada, Gou & Garriga, 2007). Among them the Quick Dry Slice process® (QDS process®) 19 

based on the patented technology from Comaposada, Arnau, Gou & Monfort (2004), is an innovative 20 

process which facilitates the reduction of the drying period of sliced products by direct drying of slices 21 

in a continuous system. Improved control of processing and product quality provides greater flexibility 22 

in production planning and allows a faster optimization of the development of new products. 23 

Additionally, less space and energy are required when compared to traditional systems (Comaposada 24 

et al., 2010).  25 

Food safety and stability of traditional dry-cured meat products are based on a number of hurdles (pH, 26 

water activity (aw), nitrite), which assure a long shelf-life through their combined effect (Leistner, 2000; 27 

Reynolds, Harrison, Rose-Morrow & Lyon, 2001). Likewise, they prevent the growth of pathogens, for 28 

example L. monocytogenes and Salmonella, which have been a concern in ready-to-eat (RTE) 29 

products (European Food Safety Authority, 2011). Nowadays, aw values found in sliced and vacuum 30 

packed products are often higher than 0.92 (Hereu, 2009). Moreover, the fact that slicing represents a 31 

possible cross-contamination source for meat products (Talon et al., 2007) and the tendency to 32 

reduce the NaCl content require a redesigning in dry-cured ham manufacturing and proper food 33 

safety investigation. NaCl is an essential ingredient in processed meat products because of its 34 

multifunctional character, but the adverse cardiovascular effects of an excessive sodium intake on 35 

hypertension have provoked increased investigation on salt reduced products in recent years (FSAI, 36 

2005; WHO/ISH, 2003). Therefore, for dry-cured ham, techniques to accelerate salt distribution, which 37 

could be useful to reduce the NaCl amount, have been described, such as reducing ham thickness, 38 

using boned hams, trimming away subcutaneous and intermuscular fat and salting ham pieces with 39 

the curing mixture in a tumbler under vacuum (Arnau et al., 2007). Transglutaminase, an enzyme, 40 

which is extensively used in developing restructured and low salt meat products (Verma & Banerjee, 41 

2012) also facilitates binding to form restructured hams (Motoki & Seguro, 1998). In relation with this, 42 

Fulladosa, Serra, Gou & Arnau (2009) demonstrated that a 50% reduction of NaCl was possible in 43 

restructured transglutaminase added dry-cured hams. Regarding the use of NaCl substitutes in meat 44 

products, KCl and lactate, due to their technological properties, have been reported as suitable 45 
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compounds (Desmond, 2006; Gou, Guerrero, Gelabert & Arnau, 1996) and have been included 46 

recently in a process to produce NaCl-free dry-cured ham (Arnau et al., 2011). 47 

The inclusion of antimicrobial ingredients (e.g. lactate) and/or additional (fermentation, smoking) or 48 

alternative techniques such as high pressure (HP) processing may be of great interest in the 49 

development of safe new products. The antimicrobial effect of lactate has been demonstrated in 50 

different meat products (Jofré, Garriga & Aymerich, 2008; Mbandi & Shelef, 2002; Miller & Acuff, 51 

1994; Stekelenburg, 2003) against Salmonella and especially L. monocytogenes. Fermentation is not 52 

common in traditional dry-cured ham manufacturing (Arnau et al., 2007) but has been described to 53 

improve product stability, flavour and texture in fermented sausages. Smoking, mainly used in 54 

northern European meat processing has antibacterial and fungicide properties, attributed to the 55 

formaldehyde and phenolic compounds (Girard, 1988; Toth & Potthast, 1984). High pressure (HP) 56 

processing is a non-thermal food preservation technology that can be used for microbiological safety 57 

improvement and shelf life extension of RTE foods. Regarding L. monocytogenes, HP is recognized 58 

as a listericidal treatment by the Codex Alimentarius (CAC, 2007) and the FDA (HHS, 2008). For dry-59 

cured ham, a recently published model for HP inactivation showed that pressurisation at 613 MPa for 60 

5 min was sufficient to achieve the L. monocytogenes US “zero tolerance” policy (Bover-Cid, Belletti, 61 

Garriga & Aymerich, 2011a) considering the low contamination levels and the inability of L. 62 

monocytogenes to grow in this product. For Salmonella, a significantly reducing effect after 63 

pressurisation at 600 MPa has already been described (Bover-Cid, Belletti, Garriga & Aymerich, 64 

2011b; Jofré, Aymerich, Grèbol & Garriga, 2009b; Stollewerk, Jofré, Comaposada, Arnau & Garriga, 65 

2011).  Moreover, the effects of HP have been studied at the physicochemical, sensorial and 66 

microbiological level in NaCl reduced ham (Fulladosa et al., 2009; Fulladosa, Sala, Gou, Garriga & 67 

Arnau, 2012) and on L. monocytogenes and Salmonella in traditionally dried NaCl-free processed 68 

ham (Stollewerk et al., 2012). Up to date the impact of HP on food safety of QDS dried NaCl-free 69 

processed hams during cold storage has not been evaluated. 70 

As postulated by the hurdle technology, the combination of different preservative factors is more 71 

efficient for controlling microorganisms in food than using individual hurdles (Leistner, 2007). Based 72 

on this technology, the aim of the present study was to evaluate through a challenge test the fate of L. 73 
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monocytogenes and Salmonella spiked on QDS process® dried slices of dry-cured ham, 74 

manufactured with and without NaCl, acidification, smoking and pressurisation. 75 

 76 

2. Materials and Methods 77 

2.1. Manufacture of dry-cured hams and partial drying 78 

Three ham types (non-acidified smoked (NS), acidified (A) and acidified smoked (AS)) were 79 

manufactured following different salting processes (dry salting or brine injection). Furthermore, 80 

composition of hams was adapted to the production process (standard (-S) and NaCl-free (-F)), based 81 

on previous sensorial results (Arnau, et al, 2011). The main differences between -S and -F processed 82 

hams included the substitution of NaCl by KCl and potassium lactate and the addition of more sugars 83 

to compensate the bitter taste of KCl and potassium lactate (Gou et al., 1996). Acidification to a pH of 84 

approximately 5.2 in A-S and AS-S hams was achieved by lactic acid bacteria (LAB) fermentation, 85 

while calculated amounts of gluconodeltalactone (GDL) were applied to A-F and AS-F hams to 86 

produce acidification because the addition of lactate delays the growth of LAB.  87 

Figure 1 shows a schematic representation of the manufacturing process. All types of ham were 88 

elaborated from commercial raw boned hams trimmed of skin and subcutaneous fat with a pH24 < 6.0 89 

in Semimembranosus muscle. Non-acidified smoked hams (NS-S and NS-F) were salted directly in 90 

the massaging unit with the addition of the ingredients (Table 1). The curing period was 48 h for NS-S 91 

and 72 h for NS-F hams to assure ingredient absorption. In the second massage, to help binding, 3 92 

g/kg of transglutaminase (Denatex 100pur, Activa WM, Ajinomoto®, Impex Química, SA, Barcelona, 93 

Spain) and 3.5 g/kg of sodium lactate, were added, which were substituted by equal molar 94 

concentrations of potassium lactate (4 g/kg) in NS-F hams. Non-acidified smoked hams (NS-S and 95 

NS-F) were covered with a collagen film and then packed (Fig. 1). Acidified hams with (A-S) and 96 

without (A-F) NaCl and acidified smoked hams with (AS-S) and without NaCl (AS-F) were salted by 97 

injecting 15 g of brine in 100 g of meat (Table 1) and tumbling (25 min). Subsequently hams were 98 

wrapped in an elastic mesh (Euronet®-FRA®: Rete Spira AS 30 A 19) and vacuum packed (Cryovac 99 

bag CN330, 60 micron, 300x600mm). After pressing, all -F hams were repacked in drying bags 100 

(Tublin®, TUB-EX ApS, Taars, Denmark) allowing additive penetration and liquid evaporation up to a 101 
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weight loss of 8 %. Following, NS and AS hams were smoked for 3 h at 25-30 ºC by combustion of 102 

beech flakes using an oven (Doleschal, Steyr, Austria) connected to a smoker. 103 

Non-acidified smoked hams (NS-S and NS-F) were subjected to a partial drying process, for 25 days 104 

at 5 ºC and for 8 days at 12 ºC until a final weight loss of 24 % was achieved. Continuous ventilation 105 

was applied for maintaining relative humidity (RH) at 65 %. After manufacturing all the hams were 106 

frozen at -20 ºC. 107 

For each type of ham a total of eight hams were produced in two independent batches (4 hams per 108 

production). 109 

2.2. Slicing, inoculation and QDS drying  110 

Two challenge tests were performed on different days. For each challenge test and type of product 111 

two hams from two independent batches were sliced. Ham slices (2 mm thick, approximately 35 112 

g/slice) were spiked with a mixture of L. monocytogenes and Salmonella enterica (3 strains each, 113 

Table 2) at the low inoculum levels of 50 CFU/g and 40 CFU/g respectively to simulate a 114 

recontamination during slicing (CRL/AFSSA, 2008; Hoz, Cambero, Cabeza, Herrero & Ordóñez, 115 

2008). The mixture was prepared by diluting -80 ºC frozen cultures (previously grown overnight in 116 

BHI) of each strain in distilled water. The inoculation cocktail (0.2 ml) was spread on the surface of the 117 

slices with a Drigalsky spreader until it was completely absorbed.  118 

Drying of ham slices was finished by applying the QDS drying, which was performed by convection of 119 

air at 30 ºC during approximately 50 min at a RH of 40 % until a product water content of 54 % was 120 

reached, calculated on basis of the water content measured before QDS and the drying weight loss. 121 

The maximum temperature of slices during the drying process was 20 ºC. Subsequently pairs of 122 

slices were vacuum packed in plastic bags of PA/PE (Sacoliva S.L., Castellar de Vallès, Spain) and 123 

stored for 12 h at 4 ºC until HP was applied. 124 

2.3. High pressure treatment and storage 125 

Half of the samples of each ham type were submitted to a HP treatment of 600 MPa for 5 min at 13 ºC 126 

in an industrial hydrostatic pressurisation unit (Wave 6000 from NCHiperbaric, Burgos, Spain). The 127 

chamber volume was 120 l, the come up time was 3.8 min and the pressure release was almost 128 

immediate. Subsequently, treated and non-treated samples were stored under refrigeration at 4 ºC for 129 
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38 days and afterwards at 8 ºC for 74 days, following the temperature profile recommended by 130 

guidance documents (AFNOR, 2004; CRL/AFSSA, 2008).  131 

2.4. Microbiological analysis 132 

Sampling was performed after inoculation and periodically (1, 14, 28 and 112 day(s) after drying) 133 

during storage under refrigeration. For plate counting, 25 g of the product were diluted 1/10 in BHI 134 

broth (Brain heart infusion, DB, NJ, USA) and homogenised in a Masticator Classic (IUL S.A., 135 

Barcelona, Spain). Appropriate dilutions of the homogenate were plated onto the following media: 136 

Chromogenic Listeria agar (Oxoid Ltd., Basingstoke, England) incubated for 48 h at 37 ºC for L. 137 

monocytogenes; CHROMagarTM Salmonella Plus (Scharlab, Barcelona, Spain) incubated for 48 h at 138 

37 ºC for Salmonella; MRS agar (Merck KGaA, Darmstadt, Germany) incubated for 48-72 h at 30 ºC 139 

in anaerobiosis for LAB and MSA agar (Mannitol salt phenol-red agar, Merck KGaA) incubated 48-72 140 

h at 30 ºC for grampositive catalase positive cocci (GCC+). When counts of L. monocytogenes and 141 

Salmonella were under 135 mm  plate detection limit (10 CFU/g), presence or absence of viable 142 

cells in the enriched homogenates (48 h at 37 ºC) was investigated by seeding dots on selective 143 

media. For every L. monocytogenes enrichment, two 20-µl dots were seeded onto Chromogenic 144 

Listeria agar. For Salmonella, 200 µl of the enriched homogenate were transferred onto 10 ml of 145 

Rappaport-Vassiliadis Enrichment Broth (Oxoid). After incubation at 41.5 ºC for 48 h, 10 µl were 146 

seeded onto CHROMagarTM Salmonella Plus. Presumptive colonies of both L. monocytogenes and 147 

Salmonella were confirmed by real time PCR using the hly and ttrBCA genes for L. monocytogenes 148 

and Salmonella, respectively (Stollewerk et al., 2012).   149 

2.5. Physico-chemical analysis 150 

The pH of the minced slices was measured by using a portable Crison penetration electrode 151 

connected to a Crison pH metre PH25 (Crison Instruments S.A., Alella, Spain) and the aw with an 152 

Aqualab S3TE dew point water activity meter (Decagon Devices, Inc. Pullman, Washington, USA). 153 

2.6. Statistical analysis 154 

Absence of the pathogens in 25 g of product was considered “N=0” and presence (counts below the 155 

plate detection limit (10 CFU/g) but presence in the enriched homogenate) “N=1”. To allow logarithmic 156 

transformation of zero values, log (N+1) was used. Data was analysed by analysis of variance 157 
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(ANOVA), followed by Tukey’s test at the 0.05 level of significance using the Statistica 7.0 software 158 

(Statsoft, Tulsa, UK). 159 

 160 

3. Results  161 

3.1. Physicochemical parameters 162 

Differences in composition and processing had an impact on the physicochemical properties of the 163 

hams. pH values of non-acidified smoked hams recorded before QDS drying were 5.45 ± 0.21 in NS-164 

S and 5.75 ± 0.05 in NS-F, however, after drying values increased (Table 3) and were comparable to 165 

those found in commercially processed hams during storage. In standard hams, acidification due to 166 

fermentation led to significantly lower pH levels in acidified hams when compared to NS hams, during 167 

the whole study. In all NaCl-free processed hams, higher pH levels (ca. 0.3 units, p<0.05) were 168 

observed before drying (Table 3). The QDS-drying process® produced a pH increase in all non-169 

pressurised samples, recording the highest one in A-S (0.37 units, p<0.05). During storage, pH values 170 

of NS and A hams followed the same trend in -S and -F processed samples but not in AS hams 171 

(p<0.05). Slightly lower aw levels were recorded in NS than in acidified hams (0.014 units in –S and 172 

0.006 units in –F hams, Table 4). Concerning manufacture and due to differences in composition of 173 

the brine and length of the curing period (1 day shorter in –S hams), initial aw values (before QDS) of -174 

S processed hams were higher than those of -F processed hams (p<0.05). However, after drying no 175 

important differences were found among them and aw values after 112 days of storage did not differ 176 

(p>0.05). The application of a HP treatment did not affect or produced small changes in pH (an 177 

increase of 0.29 in NS-F and 0.21 in A-F hams) and aw (changes <0.005 aw units) of dry-cured ham 178 

slices (Tables 3 and 4). 179 

3.2. Technological microbiota 180 

At the time of slicing and spiking with pathogens, similar LAB counts were recorded in non-acidified 181 

smoked (NS) –S and –F hams (ca. 107 CFU/g), while in acidified (A) and in acidified smoked (AS) 182 

hams, counts were ca. 2.5 log higher in standard (-S) than in NaCl-free (-F) hams (Fig. 2). During the 183 

following storage period of 112 days, LAB levels developed similarly in NS hams (p>0.05) and 184 

significant differences remained between counts of -S and -F processed A and AS hams. The 185 

application of a HP treatment of 600 MPa produced the highest LAB reductions in NS (>2 log) and 186 
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NaCl-free processed (>1.2 log) hams, although reduction was only statistically significant in NS-F 187 

samples (2.34 log). During subsequent storage LAB decreased an additional 1.5 log in all acidified 188 

hams and maintained in NS-F at a level of 4.5 log CFU/g. In NS-S, in contrast, LAB started growing 189 

from day 28 and reached the initial level after 112 days. 190 

Initial GCC+ counts were 3.2 log lower (p<0.05) in NS-S than in the other hams (6-6.5 log CFU/g). 191 

During storage, differences in behaviour were only observed between GCC+ of NS-S and NS-F hams 192 

(Fig. 2), which led to a 1.6 log higher final GCC+ level of NS-S ham (p<0.05). HP did not affect GCC+ 193 

counts in A-S, AS-S and all -F ham slices and counts remained at the initial level or slightly decreased 194 

(p>0.05) during storage. In contrast, an increase of 3.5 log (p<0.05) to initial levels was observed in 195 

HP treated NS-S ham after 112 days. 196 

3.3. Pathogenic microbiota 197 

Dry-cured ham slices were spiked with L. monocytogenes and Salmonella at a level of < 2 log CFU/g. 198 

Subsequent QDS-drying did not affect the levels of pathogens in any of the -S and -F hams (p>0.05, 199 

Fig. 3). During refrigerated storage of vacuum packed ham slices L. monocytogenes counts 200 

decreased similarly (1.3-1.5 log) in all types of ham. At the end of storage, however, absence in 25 g 201 

of product was only recorded in AS-S and AS-F samples. Comparing non-pressurised -S and -F 202 

samples, equal or lower counts were recorded in -F hams during the whole experiment. A HP 203 

treatment of 600 MPa had an immediate bactericidal effect of 1.6 log reduction (p<0.05) in NS-S and 204 

A-S and eliminated the pathogen from all AS-S samples, while it took 112 days to achieve the same 205 

result in NS-S. Compared to -S ham samples, immediate reductions caused by HP were 0.22, 0.92 206 

and 0.67 log lower in NS-F, A-F and AS-F, respectively. During storage, similarly, L. monocytogenes 207 

decreased slower in –F hams and pathogen absence was recorded in A-F and AS-F hams after 56 208 

days. Regarding Salmonella, a similar decrease during storage was observed in all hams (Fig. 3). 209 

However, a HP treatment of 600 MPa was necessary to achieve absence in all -S and -F hams during 210 

storage. Taken together, Salmonella elimination from pressurised samples (25 g) was achieved faster 211 

in acidified and -S hams, for example, after 14 days the pathogen was absent from AS-S slices but its 212 

elimination from NS-F required 112 days. 213 

 214 
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4. Discussion  215 

The decrease of pH and aw during the ripening phase of dry-cured meat products due to fermentation 216 

and drying, respectively, are among the most important factors to assure food safety and stability 217 

(Leistner, 2000). New formulations or manufacturing procedures, which imply possible modifications 218 

of these factors, must therefore be properly evaluated. In the present study, differences in aw 219 

observed before QDS drying could be attributed to variations in manufacturing processes (type of 220 

salting, curing period, ingredient composition, etc). However, after QDS drying, aw values of different 221 

ham types were equalised to 0.93-0.94 and maintained at similar levels during storage. Hence, 222 

regarding described growth limits of L. monocytogenes and Salmonella (0.92 and 0.94, respectively, 223 

(ICMSF, 1996), theoretically aw would not prevent their multiplication during storage. It must also be 224 

taken into account that similar aw levels from hams with varying composition have been achieved by 225 

different solutes (NaCl vs. KCl + potassium lactate + sugars) and the type of solute has been shown 226 

to have an effect on microbial behaviour (Beuchat, 1974; Strong, Foster & Duncan, 1970). 227 

Evaluations of food safety as a consequence of the replacement of NaCl by KCl in broth 228 

demonstrated that KCl is a direct 1:1 molar replacer for the antimicrobial effect of common salt 229 

against Aeromonas hydrophila, Enterobacter sakazakii, Shigella flexneri, Yersinia enterocolitica and 230 

Staphylococcus aureus (Bidlas & Lambert, 2008). Regarding L. monocytogenes, Boziaris, 231 

Skandamis, Anastasiadi & Nychas (2007) demonstrated that NaCl could be replaced by equal-molar 232 

concentrations of KCl without risking microbiological safety in culture media. van Burik & de Koos 233 

(1990) showed that sodium lactate provided better growth inhibition on S. typhimurium and S. aureus 234 

than NaCl at equal aw values in broth. Bacterial behaviour in foodstuff, however, cannot be directly 235 

extrapolated from studies in broth due to the significant effect of the food matrix composition 236 

(Brocklehurst, 2004). 237 

From a technological point of view, acidification of dry-cured meat products increases hardness 238 

(Leroy, Verluyten & De Vuyst, 2006) when the pH decreases below the isoelectric point of myosin (pI 239 

5.4) (Hamm, 1986). From a food safety point of view, a low pH represents an additional hurdle to the 240 

growth of pathogenic and spoilage bacteria and prolongs shelf life (Barbut, 2005). The stabilizing 241 

effect of a low pH in meat products is well known and reported from dry-fermented sausages 242 

(Leistner, 1995). Standard dry-cured ham production, however, does not include a fermentation step 243 

and the naturally occurring pH change is described to be unlikely a major factor in the microbial 244 
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stability (Reynolds et al., 2001). Nevertheless, the use of starter cultures in hams salted with brine 245 

injection has been proposed to accelerate the production process (Jessen, 1995). In the present 246 

study, starter cultures were added to A-S and AS-S hams, while in A-F and AS-F hams, due to the 247 

possible growth delaying effect of lactate on LAB (Shelef, 1994), GDL together with GCC+ starter 248 

were applied to improve flavour and colour. In this context, it has been observed on vacuum packed 249 

beef that GDL enhanced the bactericidal effect of lactate on LAB (García Zepeda et al., 1994). In non-250 

acidified hams (NS hams), where no starter or GDL was applied, endogenous LAB grew during 251 

manufacturing. Thus, differences in composition caused different levels of LAB between -S and -F 252 

acidified hams at the moment of slicing and during subsequent storage. In contrast to the lower LAB 253 

levels in -F hams, GCC+ starter behaved similar in -S and -F acidified (A and AS) hams and was not 254 

affected by the presence of lactate. The application of a starter was necessary to achieve high levels 255 

of GCC+ in NS-F, while in NS-S the same or higher levels were reached by endogenous GCC+ 256 

growth during storage. 257 

Acidification was among the most important factors affecting the levels of pathogenic bacteria. In 258 

general, acidified hams achieved higher proportion of samples with absence of L. monocytogenes 259 

and Salmonella, which indicated that in dry-cured ham, pH reduction could provide additional food 260 

safety. The antimicrobial activity of lactate against L. monocytogenes has been demonstrated in 261 

various meat products, especially those cooked, such as frankfurter sausage (Stekelenburg, 2003), 262 

beef bologna (Mbandi et al., 2002), comminuted cooked beef, cooked chicken roll and pork liver 263 

sausage (Shelef, 1994). An enhanced effect of lactate in combination with GDL was also observed on 264 

L. monocytogenes in a cooked cured emulsion type product, when 0.25 % GDL + 2 % lactate was 265 

used instead of lactate alone (Juncher, Vestergaard, Soltoft-Jensen, Weber, Bertelsen & Skibsted, 266 

2000). In contrast, studies on the inhibiting effect of lactate against Salmonella performed on chicken 267 

dry fermented sausages, cooked ham and beef bologna only observed poor or no pathogen inhibition 268 

(Deumier & Collignan, 2003; Jofré et al., 2008; Mbandi et al., 2002). Although in none of the dry-cured 269 

hams L. monocytogenes and Salmonella could grow, absence of L. monocytogenes (in all the 270 

replicates) was only achieved after 112 days in both acidified smoked (AS) -S and -F hams. Thus, 271 

smoking in combination with acidification provided the best pathogen inhibition in non-pressurised 272 

ham slices. The present results are in general agreement with literature, where the combined effect of 273 

cold or liquid smoke together with low pH conditions and high salt concentrations have been observed 274 
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against L. monocytogenes and/or L. innocua in fish and meat products (Martin et al., 2010; Milly, 275 

Toledo & Chen, 2008; Montero, Gómez-Estaca & Gómez-Guillén, 2007). Salmonella has also been 276 

shown to be inhibited by smoke although its sensitivity is lower than the one observed for L. 277 

monocytogenes or other grampositive bacteria (Asita & Campbell, 1990; Suñen, 1998). 278 

One of the major problems in the development of NaCl-free processed products is related to the 279 

multifunctional character of NaCl due to its flavouring and functional contributions and especially its 280 

antimicrobial activity (Sofos, 1983). In dry-cured ham, the substitution of 50 % NaCl by KCl did not 281 

affect mesophilic aerobic and salt tolerant flora (Blesa, Aliño, Barat, Grau, Toldrá & Pagán, 2008) and 282 

partial replacement of 40 % NaCl by KCl in dry fermented sausages maintained the microbiological 283 

stability of the product (Ibañez et al., 1995). However, food safety of traditionally dried dry-cured ham 284 

slices, spiked with L. monocytogenes and Salmonella, was compromised by NaCl substitution with 285 

the same ingredients as those reported in the present study (Stollewerk et al., 2012). Nevertheless, 286 

recorded differences could not only be related to the composition (presence of NaCl, KCl or lactate) 287 

but also to the acidification system (bacterial fermentation or GDL application) and the aw of the 288 

product at the time of slicing (finished product in traditional hams (Stollewerk et al., 2012) vs. undried 289 

or partially dried product in QDS hams (this study)). 290 

Pressurisation at 600 MPa is nowadays industrially applied on dry-cured meat products (Garriga & 291 

Aymerich, 2009), primarily because of its bactericidal and shelf-life extending effect while leaving 292 

important quality characteristics intact (Knorr, 1993). In the present study, the application of a HP 293 

treatment did not affect aw and did not affect or increased slightly pH, as shown in previous studies 294 

performed on dry-fermented sausages (Jofré, Aymerich & Garriga, 2009a; Marcos, Aymerich & 295 

Garriga, 2005). 296 

Regarding technological microbiota, pressurisation had an immediate lethal effect that was stronger 297 

on endogenous LAB than on starter LAB and GCC+. In pressurised NS-S ham, the only non-acidified 298 

product, recovery of endogenous LAB and GCC+ to levels of non-pressurised samples was observed. 299 

Similar behaviour was previously observed in traditionally dried dry-cured ham (Stollewerk et al., 300 

2012).  301 

The HP treatment of 600 MPa significantly affected both L. monocytogenes and Salmonella counts in 302 

all hams, confirming the listericidal and “anti-salmonella” effect of pressurisation, which has been 303 
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described before in traditional dry-cured ham (Bover-Cid et al., 2011a; Bover-Cid et al., 2011b; Hereu, 304 

Bover-Cid, Garriga & Aymerich, 2012; Jofré et al., 2009b; Morales, Calzada & Nuñez, 2006; 305 

Stollewerk et al., 2012). Nevertheless, ham type influenced the efficiency of pressurisation and 306 

pathogen elimination, in particular L. monocytogenes, was considerably delayed in non-acidified 307 

hams (112 days). The combination of low pH and HP has been described as an efficient way to 308 

inactivate pathogenic microorganisms in foodstuff and to inhibit subsequent outgrowth of sublethally 309 

injured cells (Smelt, 1998). However, it was the combination of acidification, smoking and HP that 310 

provided the best protection and achieved immediately after processing absence of L. 311 

monocytogenes and after 14 days of storage of slices under refrigeration absence of Salmonella. 312 

Similarly, (Montero et al., 2007) observed that smoking and pressurisation, together with a high salt 313 

concentration, kept L. monocytogenes counts under detection limit throughout 100 days of storage at 314 

5 ºC in cold-smoked dolphinfish. Comparing the different manufacturings (-S and -F), pathogen 315 

inhibition was lower in all NaCl-free processed hams, which we related to the protecting effect of 316 

lactate on L. monocytogenes during pressurisation that has been previously reported from traditionally 317 

dried dry-cured ham (Stollewerk et al., 2012) and cooked ham (Aymerich, Jofré, Garriga & Hugas, 318 

2005; Jofré et al., 2008). Hence, the substitution of NaCl and its antimicrobial activity affected the 319 

stability of NaCl-free processed HP treated hams and produced a significant delay in pathogen 320 

elimination.   321 

To sum up, the present study demonstrated for the first time that in case of a low-level 322 

recontamination with L. monocytogenes and Salmonella during slicing, QDS dried cured ham 323 

produced with a mixture of potassium lactate, KCl and sugars (-F) was safer than ham produced with 324 

NaCl (-S). The combination of KCl together with potassium lactate, sugars and GDL in the case of A-325 

F and AS-F allowed a safe substitution of NaCl in dry-cured ham. The application of a HP treatment 326 

was useful to produce an additional reduction of Salmonella and L. monocytogenes, however, the 327 

inhibitory effect of pressurisation was higher in –S than in –F processed hams. New hurdle 328 

combinations in reformulated food products must therefore be well considered and selected with 329 

diligence. 330 

 331 

 332 
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Tables and Figure legends 513 

Table 1. Composition of the salting mixture applied to standard (-S) and NaCl-free processed (-F) 514 

hams (in g per kg of raw meat). 515 

Table 2. Description of the L. monocytogenes and Salmonella strains used to inoculate dry-cured 516 

ham slices. 517 

Table 3. pH values of non-pressurised (HP-) and high pressure-treated (HP+; 600 MPa/5 min/13 ºC) 518 

standard (-S) and NaCl-free processed (-F) dry-cured ham slices before (day 0) and after (day 1) 519 

drying and at the end (day 112) of storage. 520 

Table 4. Aw values of non-pressurised (HP-) and high pressure-treated (HP+; 600 MPa/5 min/13 ºC) 521 

standard (-S) and NaCl-free processed (-F) dry-cured ham slices before (day 0) and after (day 1) 522 

drying and at the end (day 112) of storage. 523 

Fig. 1. Schematic representation of manufacturing processes of different ham types. 524 

Fig. 2. Behaviour of (a) Lactic Acid Bacteria (LAB) and (b) Gram-positive catalase-positive cocci  525 

(GCC+) in non-pressurised (HP-) and high pressure-treated (HP+; 600 MPa/5 min/13 ºC) standard (-526 

S) and NaCl-free (-F) processed dry-cured ham slices during the 112 days of refrigerated storage. 527 

Data (mean and standard deviation) comes from 2 independent experiments performed in duplicate. 528 

Fig. 3. Behaviour of (a) L. monocytogenes and (b) Salmonella in non-pressurised (HP-) and high 529 

pressure treated (HP+; 600 MPa/5 min/13 ºC) standard (-S) and NaCl-free (-F) processed dry-cured 530 

ham slices during the 112 days of refrigerated storage. Data (mean and standard deviation) comes 531 

from 2 independent experiments performed in duplicate. 532 



 

1(Thermomat PX500, Metalquimia, Girona, Spain; velocity: 4 rpm); 2(Viscofan Naturin Coff i® Cal. 570, Tajonar-Navarra, España) 3(Euronet® -FRA®: Rete Spira
AS 30 A 19); 4(Cryovac bag CN330, 60 micron, 300x600 mm); 5(high pressure spray effect multi needle injector Movistic 30PC, Metalquimia, Girona, Spain);
6(Tublin® 05, TUB-EX ApS, Taars, Denmark); 7(Doleschal, Steyr, Austria).

NS-S A-S AS-S

Standard (-S)

Boned hams

Curing period: 48 h at 5 ºC

Packaging: elastic mesh3 and vacuum4

Pressing with 100 kg weight: 
7 d at 5 ºC

Natural 
smoking7:

3 h at 25-30 ºC 

Brine Injection5 and tumbling1

Fermentation
(3 d at 12 ºC and 2 d at 20 ºC) 

while pressing with 100 kg weight

Natural 
smoking7:

3 h at 25-30ºC

Partial drying process

NS-F A-F AS-F

NaCl-free (-F)

Boned hams

Packaging: elastic mesh3 and vacuum4 

Re-packaging in drying bags6: 13 d at  5 ºC

Brine Injection5 and tumbling1

Acidif ication with GDL*
(3 d at 5 ºC)

while pressing with 100 kg weight

Partial drying process

2nd massage1: 20 min

Salting in tumbler1

1st massage: 20 min

Curing period: 72 h at 5 ºC

2nd massage1: 20 min

*pH decrease was due to the conversion of  GDL to gluconic acid.

Natural
smoking7:

3 h at 25-30 ºC 

Natural
smoking7:

3 h at 25-30 ºC

Fig. 1

Storage: 24 h at 5 ºC Storage: 24 h at 5 ºC

Salting in tumbler1
1st massage: 20 min

Collagen f ilm wrap up2 Collagen f ilm wrap up2

Pressing with 100 kg weight: 
7 d at 5 ºC

Figure



Fig. 2 

N
O

N
-A

C
ID

IF
IE

D
 S

M
O

K
E

D
 H

A
M

 (N
S

) 
A

C
ID

IF
IE

D
 H

A
M

 (A
) 

A
C

ID
IF

IE
D

 S
M

O
K

E
D

 H
A

M
 (A

S
) 

0

2

4

6

8

10

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

  L
A

B

Days of storage

0

2

4

6

8

10

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

  L
A

B

Days of storage

0

2

4

6

8

10

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

  L
A

B

Days of storage

0

2

4

6

8

10

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

  G
C

C
+

Days of storage

0

2

4

6

8

10

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

  G
C

C
+

Days of storage

0

2

4

6

8

10

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

  G
C

C
+

Days of storage

S HP-   S HP+ F HP- F HP+ 

Figure



N
O

N
-A

C
ID

IF
IE

D
 S

M
O

K
E

D
 H

A
M

 (N
S

) 
A

C
ID

IF
IE

D
 H

A
M

 (A
) 

A
C

ID
IF

IE
D

 S
M

O
K

E
D

 H
A

M
 (A

S
) 

0

1

2

3

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

  L
. m

o
n

o
cy

to
g

en
es

Days of storage

0

1

2

3

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

  L
. m

o
n

o
cy

to
g

en
es

Days of storage

0

1

2

3

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

 L
. m

o
n

o
cy

to
g

en
es

Days of storage

0

1

2

3

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

  S
a

lm
o

n
el

la

Days of storage

0

1

2

3

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

  S
a

lm
o

n
el

la

Days of storage

0

1

2

3

0 14 28 42 56 70 84 98 112

Lo
g 

C
FU

/g
   

 S
a

lm
o

n
el

la

Days of storage

Fig. 3 

S HP-   S HP+ F HP- F HP+ 

ham \ day 1 14 28 56 112

A-S HP- 4 P 4 P 4 P 2 P/2 A 1 P/3 A
A-F HP- 4 P 4 P 3 P/1 A 1 P/3 A 1 P/3 A
A-S HP+ 4 A 1 P/3 A 4 A 4 A 4 A
A-F HP+ 4 P 4 P 3 P/1 A 4 A 4 A

ham \ day 1 14 28 56 112

AS-S HP- 4 P 4 P 3 P/1 A 3 P/1 A 4 A
AS-F HP- 4 P 4 P 4 P 2 P/2 A 4 A
AS-S HP+ 4 A 4 A 4 A 4 A 4 A
AS-F HP+ 4 P 4 P 2 P/2 A 4 A 4 A

ham \ day 1 14 28 56 112

A-S HP- 4 P 4 P 4 P 4 P 4 P
A-F HP- 4 P 4 P 4 P 4 P 4 P
A-S HP+ 3 P/1 A 2 P/2 A 4 A 4 A 4 A
A-F HP+ 4 P 2 P/2 A 4 A 4 A 4 A

ham \ day 1 14 28 56 112

AS-S HP- 4 P 4 P 4 P 4 P 4 P
AS-F HP- 4 P 4 P 4 P 4 P 4 P
AS-S HP+ 3 P/1 A 4 A 4 A 4 A 4 A
AS-F HP+ 4 P 4 P 1 P/3 A 4 A 4 A

ham \ day 1 14 28 56 112

NS-S HP- 4 P 4 P 4 P 4 P 2 P/2 A
NS-F HP- 4 P 4 P 3 P/1 A 2 P/2 A 4 P
NS-S HP+ 4 P 2 P/2 A 2 P/2 A 1 P/3 A 4 A
NS-F HP+ 3 P/1 A 3 P/1 A 2 P/2 A 1 P/3 A 4 A

ham \ day 1 14 28 56 112

NS-S HP- 4 P 4 P 4 P 4 P 4 P
NS-F HP- 4 P 4 P 4 P 4 P 4 P
NS-S HP+ 4 P 2 P/2 A 2 P/2 A 4 A 4 A
NS-F HP+ 4 P 2 P/2 A 4 A 1 P/3 A 4 A

Figure



Table 1. 

 Standard (-S) NaCl-free (-F) 

Ingredients (g/kg of meat) NS A and AS NS A and AS 

NaCla 28 18 - - 
KCla - - 15.31 15.31 
Potassium lactate (77.8% v/v)w,a - - 33.83 33.83 
Potassium lactate (60 % v/v)x,b - - 41 - 
Sodium lactate (60 % v/v)y,b 3.51 - - - 
Lactose - - 10 10 
Water - 124.57 10 47.31 
GDL - - - 10 
Sucrose - - 7 7 
Dextrose 3 3 3 3 
Sodium ascorbate 0.5 0.5 - - 
Ascorbic acid - - 0.445 0.445 
Potassium nitritec - - 0.15 0.15 
Sodium nitritec 0.12 0.12 - - 
Potassium nitrate 0.15 0.15 0.15 0.15 
Magnesium sulfate - 0.05 - - 
Manganese sulfate - 0.009 - - 
Starter culture (Lyocarni SXH-38 Sacco (Activa) S. xylosus - - 0.25 0.25 
Starter cultura (Grama SE301: L. sakei, S. xylosus, S. carnosus) - 0.1 - - 
Transglutaminase 31  31  
wPurasal® Hi Pure P Plus, xPurasal® Hi Pure P, yPurasal S, all from Purac bioquímica, S.A. Montmeló, 
Spain. Equal molar concentrations of Na+ and K+ (a), potassium lactate and sodium lactate (b) and nitrite (c) 
were used. 1ingredients added in the 2nd massage. 

Table



 

 

Table 2. 
 
Species Reference

a
 Serotype Origin 

L. monocytogenes CTC1011 1/2c Meat product 

 CTC1034 4b Meat product 

 CECT 4031 1a Rabbit 

Species Reference
a
 Serovar Origin 

S. enterica CTC1003 London Meat product 

 CTC1022 Derby Meat product 

 GN-0006 Typhimurium Pork gut 

aCTC and CECT strains belong to collections from IRTA and Spanish 
type culture collection, respectively. GN strains were kindly provided by 
Dr. Badiola (CReSA, Bellaterra, Spain).  

Table



 

Table 3. 

Manufacturing Standard (-S) NaCl-free (-F) 

Ham type NS A AS NS A AS 

HP treatment HP- HP+ HP- HP+ HP- HP+ HP- HP+ HP- HP+ HP- HP+ 

Before QDS process
®
 5.45±0.21Ab 4.98±0.10Bb 5.06±0.07Ba 5.75±0.05Cab 5.27±0.03Aa 5.36±0.07Aa 

D
a
y

s
 o

f 
s

to
ra

g
e

 

1 
5.82± 

0.11BCGa 
5.87± 

0.15BCa 
5.35± 

0.11ADa 
5.43± 

0.15ADEa 
5.19± 
0.14Aa 

5.21± 
0.22Aab 

5.85± 
0.08BCb 

5.99± 
0.04Cc 

5.37± 
0.18Aab 

5.58± 
0.13DEFb 

5.61± 
0.09EFGb 

5.68± 
0.17BFGb 

112 
5.77± 

0.27DEa 
5.91± 

0.17EFa 
5.42± 

0.02ABa 
5.42± 

0.10ABa 
5.38± 

0.18ABb 
5.28± 
0.11Bb 

5.65± 
0.12CDa 

5.94± 
0.12Fc 

5.42± 
0.02ABb 

5.53± 
0.06ACb 

5.52± 
0.02ACc 

5.63± 
0.05CDb 

Values are mean ± SD (n=4). For -S and –F processed hams, significant differences in rows are indicated by different capital letters and significant differences in columns are 
indicated by different small letters (p<0.05). 

 

 

 

Table



 

Table 4. 

Manufacturing Standard (-S) NaCl-free (-F) 

Ham type NS A AS NS A AS 

HP treatment HP- HP+ HP- HP+ HP- HP+ HP- HP+ HP- HP+ HP- HP+ 

Before QDS process
®
 0.970±0.003Db 0.985±0.007Cb 0.982±0.004Cb 0.953±0.001Ab 0.958±0.002ABb 0.960±0.001Bc 

D
a
y

s
 o

f 
s

to
ra

g
e

 

1 
0.932± 
0.012a 

0.932± 
0.007a 

0.942± 
0.014a 

0.941± 
0.014a 

0.939± 
0.015a 

0.938± 
0.004a 

0.936± 
0.014a 

0.941± 
0.004c 

0.932± 
0.007a 

0.930± 
0.007a 

0.931± 
0.003b 

0.926± 
0.007a 

112 
0.926± 
0.011a 

0.932± 
0.009a 

0.933± 
0.007a 

0.949± 
0.001a 

0.926± 
0.009a 

0.934± 
0.010a 

0.934± 
0.002a 

0.935± 
0.001a 

0.930± 
0.005a 

0.925± 
0.008a 

0.924± 
0.002a 

0.924± 
0.006a 

Values are mean ± SD (n=4). For -S and –F processed hams, significant differences in rows are indicated by different capital letters and significant differences in columns are 
indicated by different small letters (p<0.05). 
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Fast ripening/drying and the complete or partial reduction of the NaCl content in the 

production of dry-cured meat products are two intensively investigated research areas in 

meat science, since there is much commercial interest in the rapid production of healthy 

foods. In general, dry-cured meat products are considered as shelf-stable and do not permit 

the growth of pathogens such as L. monocytogenes and Salmonella (Reynolds, Harrison, 

Rose-Morrow & Lyon, 2001); they owe their microbiological stability primarily to the decrease 

of aw due to progressive desiccation and the decrease of pH during fermentation (Leistner, 

2000). The European Commission Regulation 2073/2005 on microbiological criteria for 

foodstuffs as well as the U.S. FSIS regulation use these physicochemical parameters for the 

prediction of a food product to be supportive or non-supportive to L. monocytogenes growth 

(see Table 3, introduction). The achievement of the same aw and pH levels in products of 

which the formulation or production process has been modified, could be one of the key 

prerequisites for innovative technologies to keep up with the food safety standards from 

traditional products. However, safe history of a food product is relevant only when all 

conditions remain the same. Even apparently minor changes in the product composition, 

process, or packaging method may have a large impact on the safety of the product 

(NACMCF, 2010). In this regard, similar levels of physicochemical parameters can only be 

considered as clues because in foods, the support or inhibition of pathogen growth is 

determined by many factors (NACMCF, 2010). To clarify food safety issues of innovative 

technologies, the performance of “pathogen growth inhibition studies” would be the most 

adequate. Accordingly, the AFNOR (2004), CRL/AFSSA (2008), European Commission 

(2005) and NACMCF (2010) recommend this type of challenge test, in addition to predictive 

mathematical modelling (European Commission, 2005), for the evaluation of the ability of a 

particular food product formulation with a specific type of processing and packaging to inhibit 

the growth of certain bacterial pathogens when held under specific storage conditions (time 

and temperature). 
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1. Effect of the QDS technology 

The QDS process® is a technology that implies a fast drying step in order to speed up the 

production of sliced dry-cured meat products. The main differences between traditional and 

QDS processing consists of the product format and in the associated technologies; whereas 

traditional products are dried in whole pieces, QDS processing comprises as part of the 

technology the slicing before and the vacuum- or MAP packaging after drying. Both 

technologies (slicing and vacuum-packaging) are favourable for marketing and convenience 

reasons, however, slicing can cause recontaminations (Talon et al., 2007), which possibly 

lead to growth of pathogens and/or spoilage microorganisms during storage, especially in 

products with high aw. 

The challenge tests performed within the framework of this PhD thesis showed that the 

behaviour of the evaluated pathogens, L. monocytogenes and Salmonella, was similar in 

QDS and traditionally processed dry-cured meat products (dry-cured ham and chorizo). 

In the case of standard dry-cured ham (processed with NaCl), the two pathogens showed 

the same trend in traditional (TS-TRADI-S) and QDS (NS-QDS-S) products (Figure 7). 
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Figure 7. Comparison of the behaviour of L. monocytogenes and Salmonella in QDS 
and traditionally dried dry-cured ham 
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In both cases the product did not support pathogens growth but caused the progressive 

decrease of L. monocytogenes and Salmonella during storage. Hence, the QDS technology 

had no impact on the fate of the pathogens but assured a fast achievement of similar aw 

(0.932 in TRADI and QDS) and pH (5.75 in TRADI and 5.82 in QDS) levels. The behaviour 

and levels of LAB and GCC+ during storage was also similar in both types of ham (Figure 8). 
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Figure 8. Comparison of the behaviour of L. monocytogenes and Salmonella in QDS 
and traditionally dried dry-cured ham 

The challenge test performed to evaluate the suitability of the QDS technology for the 

production of safe acid and low acid chorizo also showed equivalence for the traditional and 

the QDS process® regarding the fate of L. monocytogenes and Salmonella during production 

and storage of 91 days under refrigeration (V.1.). However, in this type of product and due to 

the QDS technology, variations in pH evolution and technological microbiota were observed. 

Comaposada et al. (2010) and Comaposada et al. (2008) highlighted the better control of pH 

by QDS processing and its contribution to a consistent product appearance (Comaposada et 

al., 2010). The faster decrease of LAB and GCC+ in QDS than in traditional products could 

be primarily attributed to the more intense thermal treatment associated with the QDS 

process®. It is well known that technological microbiota influences the texture and flavour 

characteristics of the final product. From the obtained results it can therefore be derived that 
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differences in the behaviour of LAB and GCC+ together with differences in ripening time and 

drying format (whole piece or slices) would possibly affect the sensory characteristics of the 

final product. 

From a food safety point of view, the QDS technology did not decrease the product stability 

in any of the dry-cured meat products. The decrease of L. monocytogenes and Salmonella in 

dry-cured ham during storage was due to the same preservative factors (low aw, presence of 

curing salts and spices and/or smoking) as in the traditional product. In chorizo, the 

elimination of both pathogens during production was achieved by both the traditional method 

and the QDS drying, which includes a longer thermal treatment. The QDS technology hence, 

did not affect the microbiological hurdles responsible for the safe character of dry-cured 

meat products. 

 

2. Effect of NaCl-free processing 

One of the major problems in the development of NaCl-free processed products is related to 

the multifunctional character of NaCl due to its flavouring and functional contributions and 

especially its antimicrobial activity (Sofos, 1983). In literature, strategies to completely or 

partially reduce the NaCl content in dry-cured meat products have been reported, most by 

using other chloride salts. Regarding microbiological stability, a few studies investigated the 

implications of partial NaCl replacement in dry-cured meats on Enterobacteriaceae, total 

mesophilic aerobic, salt-tolerant flora, technological microbiota, etc. and did not show 

important differences (see Table 5, introduction). In non-inoculated dry-cured meat products, 

absence of pathogens such as L. monocytogenes, Salmonella spp. and S. aureus has been 

detected (Aliño et al., 2009; Aliño et al., 2010; Blesa et al., 2008; Fulladosa, Sala, Gou, 

Garriga & Arnau, 2012), however, from a food safety point of view, there is a lack of 
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challenge test studies focusing on pathogenic microorganism behaviour in NaCl-free 

processed products. 

Differences between the performed challenge tests comparing standard (-S) and NaCl-free 

(-F) processing could be attributed to the reformulation of the product. The antimicrobial 

effects of KCl and potassium lactate, used to substitute NaCl, have been demonstrated 

separately in various studies performed in culture media (Boziaris, Skandamis, Anastasiadi 

& Nychas, 2007; Chen & Shelef, 1992; de Wit & Rombouts, 1990; van Burik & de Koos, 

1990). In dry-cured meat products however, the antimicrobial effects of KCl and potassium 

lactate (separately or in combination) on inoculated L. monocytogenes and Salmonella has 

not been investigated yet. Apparently, in NaCl-free processed traditionally dried dry-cured 

ham (TS-TRADI-F), the combination of KCl, potassium lactate and sugars proved to be 

suitable to maintain the particular hostile environment of dry-cured ham (see Fig. 1, V.3.) 

and pathogenic microorganisms growth was inhibited. However, in the case of L. 

monocytogenes, a lower reduction of the pathogen during storage was observed when 

compared with standard (processed with NaCl) hams. It is known that results from broth 

based studies cannot be directly extrapolated to real food situations, because the efficacy of 

an antimicrobial agent may be dependent on the formulation of the product (NACMCF, 

2010). Additionally, earlier studies showed that the type of solute chosen to control aw had a 

definite effect on microbial behaviour (Beuchat, 1974; Strong, Foster & Duncan, 1970). Apart 

from the described differences in antimicrobial potential between NaCl and the combination 

of KCl, potassium lactate and sugars in traditional dry-cured ham, variations could also be 

detected in the achieved physicochemical levels. Aw values were higher in NaCl-free 

processed hams throughout the whole storage period under refrigeration, thus, at day 112 

the aw was recorded at 0.926 in standard and at 0.940 in NaCl-free processed products. 

Slight differences were detected in pH values (5.75-5.87 in –S vs. 5.95-5.79 in –F). 
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Regarding technological microbiota, the difference in initial GCC+ counts of ca. 2 log was 

due to differences in starter culture application (Fig. 2, V.3.). 

In chorizo production, NaCl-free processing was accompanied with a modification in the 

acidification method, due to the presence of lactate which has been shown to affect LAB 

growth (Shelef, 1994) and which could compromise the pH decrease of the product: LAB 

fermentation was substituted by the application of a calculated amount of GDL. These 

changes in the formulation affected the decrease of the levels of pathogenic 

microorganisms, especially L. monocytogenes in low acid chorizo. LAB, apart from its 

competitive character, produced a stronger pH decrease during fermentation in LA-TRADI-S 

(to 4.82) than GDL acidification in LA-TRADI-F (5.14), which could explain the elimination of 

L. monocytogenes in fermented sausages but not in GDL acidified ones (Table 8). 

 

Table 8. Behaviour of L. monocytogenes in standard and NaCl-free processed acid 
and low acid chorizo dried following the traditional process 

Values are mean ± SD of two independent experiments performed in duplicate. For acid and low acid chorizo, 
significant differences in columns are indicated by different small letters (P < 0.05). ND: not detected in 25 g; 
PRE: presence in 25 g. *L. monocytogenes was only detected in 1 out of 4 replicates. 

 

 Chorizo 
type: ACID (A) LOW ACID (LA) 

 Processing: Standard (-S) NaCl-free (-F) Standard (-S) NaCl-free (-F)

P
ro

du
ct

io
n 

st
ep

 

Before 
acidification 1.48 ± 0.22b 1.08 ± 0.56a 1.82 ± 0.26 1.65 ± 0.13a 

After 
acidification 0.59 ± 0.69a 0.26 ± 0.52b ND 1.69 ± 0.34a 

After thermal 
treatment 0.26 ± 0.52a ND ND 0.52 ± 0.60b 

After drying ND ND ND ND 

HP Treatment: 0 MPa 600 MPa 0 MPa 600 MPa 0 MPa 600 MPa 0 MPa 600 MPa 

D
ay

s 
of

 s
to

ra
ge

 t0/after HP ND ND ND ND ND ND ND ND 
15 days ND ND ND ND ND ND 1PRE/3ND* ND 
28 days ND ND ND ND ND ND ND ND 
56 days ND ND ND ND ND ND ND ND 
91 days ND ND ND ND ND ND ND ND 
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Similarly in acid chorizo, although Salmonella was not eliminated by the pH decrease, its 

decrease was higher in fermented than in GDL chorizos (Table 9). 

Table 9. Behaviour of Salmonella in standard and NaCl-free processed acid and low 
acid chorizo dried following the traditional process 

Values are mean ± SD of two independent experiments performed in duplicate. For acid and low acid chorizo, 
significant differences in columns are indicated by different small letters (P < 0.05). ND: not detected in 25 g. 
PRE: presence in 25 g. *Salmonella was only detected in 1 out of 4 replicates. 

 

These differences in the acidification method consequently affected the evolution of pH 

during the storage period under refrigeration. The present observations were in line with 

results from Lücke (1998), who attributed differences in pH courses to differences in 

composition and production processes. 

NaCl-free processing decreased the food safety of low acid chorizo (LA-TRADI-F), where 

both pathogens could survive the production process (acidification and drying) (Table 8 and 

9). This observation could be related to variations in the composition between standard (–S) 

and NaCl-free processed (–F) chorizo and the higher pH level of the latter (4.82 in -S vs. 

5.14 in -F). Accordingly, the combination of higher pH and NaCl-free formulation hindered 

the elimination of L. monocytogenes and Salmonella. An important fact that must be 

considered at this point was the difference in the aw values between –S and –F processed 

 Chorizo 
type: ACID (A) LOW ACID (LA) 

 Processing: Standard (-S) NaCl-free (-F) Standard (-S) NaCl-free (-F)

P
ro

du
ct

io
n 

st
ep

 

Before 
acidification 0.55 ± 0.43b 1.04 ± 0.53a 0.30 ± 0.00b 1.04 ± 0.53a 

After 
acidification 1PRE/3ND* 0.97 ± 0.49a 0.23 ± 0.15ab 0.86 ± 0.37ab 

After thermal 
treatment ND 1PRE/3ND* 0.15 ± 0.17ab 0.30 ± 0.00b 

After drying ND ND ND 1PRE/3ND* 

HP Treatment: 0 MPa 600 MPa 0 MPa 600 MPa 0 MPa 600 MPa 0 MPa 600 MPa 

D
ay

s 
of

 s
to

ra
ge

 t0/after HP ND ND ND ND ND ND 1PRE/3ND* ND 
15 days ND ND ND ND ND ND ND ND 
28 days ND ND ND ND ND ND 1PRE/3ND* ND 
56 days ND ND ND ND ND ND ND ND 
91 days ND ND ND ND ND ND ND ND 
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chorizos: although higher levels were recorded in chorizos processed with NaCl (LA-TRADI-

S: 0.938) than in the NaCl-free processed ones (LA-TRADI-F: 0.908), pathogenic 

microorganisms survived the production process of the latter. This observation highlights the 

importance of the matrix composition (presence of NaCl in this case) and the acidity hurdle 

in dry fermented sausages and the requirement of (an) additional preservative factor(s) 

(thermal treatment, HP) for low acid products. NaCl-free processed low acid chorizo 

produced with the QDS process® (LA-QDS-F), including a more intense thermal treatment 

and more time at aw ≤ 0.9, was safer than the traditionally processed NaCl-free product (LA-

TRADI-F). In –F processed chorizos, these harsher conditions of QDS processing, however, 

not only affected pathogenic microorganisms, but also technological microbiota. In this 

sense, GCC+ counts only decreased in A-QDS-F (the product with the harshest conditions: 

lower pH and more intense thermal treatment), while endogenous LAB could only grow in 

LA-TRADI-F chorizo, due to the combination of higher pH, shorter thermal treatment, higher 

aw during processing and longer drying period (the product with the mildest conditions). 

To evaluate the safety of QDS processed dry-cured ham differing in acidity, smoking and 

NaCl content, three types of hams were produced including “non-acidified smoked” (NS), 

“acidified” (A) and “acidified smoked” (AS) according to the standard (-S) and the NaCl-free 

(-F) process. 

L. monocytogenes and Salmonella counts decreased similarly (1.3-1.5 log) in all types of 

ham. Interestingly in –F hams equal or lower counts than those found in –S hams were 

observed throughout the whole storage period under refrigeration. In the case of L. 

monocytogenes, this result was in contrast to observations from traditionally dried hams (Fig. 

1, TS-TRADI-S and TS-TRADI-F, V.3.) where lower levels of pathogens were recorded in 

the –S product. The differences in the product aw at the time of slicing (finished product in 

traditional hams vs. undried or partially dried product in QDS) hams and the acidification 

system (bacterial fermentation vs. GDL application) could have caused differences in the 
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fate of the pathogens. Thus, the QDS technology in combination with NaCl-free processing 

had a positive effect on the food safety of dry-cured hams. 

Moreover, differences in composition between –S and –F processed hams produced 

variations in pH values before QDS drying. In this sense, pH levels recorded from all NaCl-

free processed dry-cured hams (NS: 5.75, A: 5.27, AS: 5.36) were 0.3 units higher than in 

the corresponding standard processed dry-cured hams (NS: 5.45, A: 4.98, AS: 5.06). This 

fact could be attributed to the presence of lactate as previously demonstrated in dry-cured 

meat products in which the NaCl amount was partially reduced (Costa-Corredor, Serra, 

Arnau & Gou, 2009; Fulladosa, Serra, Gou & Arnau, 2009; Gou, Guerrero, Gelabert & 

Arnau, 1996).  

In A and AS products, acidification was achieved by adding LAB starter cultures to the salt 

brine of –S processed hams while GDL was added to NaCl-free processed dry-cured hams. 

This difference could have contributed to the observed variations in pH values before QDS 

drying, however, independent from the method, acidification was among the most important 

factors affecting the levels of pathogenic bacteria in the evaluated dry-cured hams. 

Accordingly, acidified hams achieved the highest proportion of samples with absence of L. 

monocytogenes and Salmonella (Fig. 3, V.4.). The only type of non-pressurised dry-cured 

ham in which absence of L. monocytogenes (in 25 g of sample) could be observed, 

however, was the acidified smoked one (both -S and –F processed). According to Leistner & 

Gorris (1995), it is more effective to use a combination of different microbial factors with low 

intensities that affect different microbial systems or act synergistically than to use a single 

preservative factor with a high intensity. In this sense, ham including more hurdles (smoking 

in combination with acidification) provided the best pathogen inhibition in both standard and 

NaCl-free processed (AS-QDS-S and AS-QDS-F) ham slices. These results are in general 

agreement with literature, where the combined effect of cold or liquid smoke together with 

low pH conditions and high salt concentrations have been observed against L. 
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monocytogenes and/or L. innocua in fish and meat products (Martin et al., 2010; Milly, 

Toledo & Chen, 2008; Montero, Gómez-Estaca & Gómez-Guillén, 2007). 

To sum up, NaCl-free processing affected the stability of traditionally processed dry-cured 

meat products. By using the QDS technology for the production of NaCl-free processed 

chorizo and dry-cured ham, however, it became possible to produce dry-cured meat 

products without the use of NaCl that were safer than the traditional ones. The low pH hurdle 

is crucial for dry fermented sausage products and its incorporation in dry-cured ham 

production improves the product safety. 

 

3. Effect of High Pressure 

In all the studied dry-cured hams and in low acid traditionally dried chorizo (LA-TRADI-F, the 

only chorizo batch where L. monocytogenes and Salmonella were not eliminated during 

production), it was possible to achieve absence (in 25 g) of both pathogens with the 

application of a HP treatment of 600 MPa at 13ºC for 5 min. Pressurisation at these 

conditions is nowadays industrially applied to enhance the safety and to extend the shelf-life 

of a variety of meat products (Garriga & Aymerich, 2009). In relation to innovative production 

processes and product reformulations, which possibly bring along food safety implications, 

an HP treatment could be useful as complementary technology to guarantee equal food 

safety levels. 

In pressurised samples, variations due to NaCl-free processing had the most important 

impact on pathogenic microorganism behaviour. Independently of the drying method 

(traditional or QDS) or inclusion of additional hurdles (low pH and/or smoking), a lower 

immediate bactericidal effect and slower elimination of L. monocytogenes and Salmonella 

throughout refrigerated storage was observed in all -F hams when compared with -S hams 

(Table 10 and Table 11). 
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Table 10. Elimination of L. monocytogenes during storage of HP treated dry-cured 
ham 

ham \ day 1 14 28 56 112 

TS-TRADI-S 4 ABS 4 ABS 4 ABS 4 ABS 4 ABS 

TS-TRADI-F 3 PRE/ 1 ABS 2 PRE/2 ABS 3 PRE/ 1 ABS 1 PRE/ 3ABS 4 ABS 

NS-QDS-S 4PRE 2 PRE/2 ABS 2 PRE/2 ABS 1 PRE/ 3ABS 4 ABS 

NS-QDS-F 3 PRE/ 1 ABS 3 PRE/ 1 ABS 2 PRE/2 ABS 1 PRE/ 3ABS 4 ABS 

A-QDS-S 4 ABS 1 PRE/ 3ABS 4 ABS 4 ABS 4 ABS 

A-QDS-F 4PRE 4PRE 3 PRE/ 1 ABS 4 ABS 4 ABS 

AS-QDS-S 4 ABS 4 ABS 4 ABS 4 ABS 4 ABS 

AS-QDS-F 4PRE 4PRE 2 PRE/2 ABS 4 ABS 4 ABS 

n=4; PRE: presence in 25 g; ABS: absence in 25 g. 
 

Table 11. Elimination of Salmonella during storage of HP treated dry-cured ham 
ham \ day 1 14 28 56 112 

TS-TRADI-S 3 PRE/ 1 ABS 4 ABS 4 ABS 4 ABS 4 ABS 

TS-TRADI-F 4PRE 1 PRE/ 3ABS 1 PRE/ 3ABS 4 ABS 4 ABS 

NS-QDS-S 4PRE 2 PRE/2 ABS 2 PRE/2 ABS 4 ABS 4 ABS 

NS-QDS-F 4PRE 2 PRE/2 ABS 4 ABS 1 PRE/ 3ABS 4 ABS 

A-QDS-S 3 PRE/ 1 ABS 2 PRE/2 ABS 4 ABS 4 ABS 4 ABS 

A-QDS-F 4PRE 2 PRE/2 ABS 4 ABS 4 ABS 4 ABS 

AS-QDS-S 3 PRE/ 1 ABS 4 ABS 4 ABS 4 ABS 4 ABS 

AS-QDS-F 4PRE 4PRE 1 PRE/ 3ABS 4 ABS 4 ABS 

n=4; PRE: presence in 25 g; ABS: absence in 25 g. 
 

The elimination of NaCl and its antimicrobial activity, hence, affected the stability of 

pressurised NaCl-free (-F) processed hams and produced a significant delay in pathogenic 

microorganism elimination (Fig. 1 in V.3. and Fig.3 in V.4.). This observation could be related 

to the previously observed protective effect of lactate on L. monocytogenes but not on 

Salmonella (Aymerich, Jofré, Garriga & Hugas, 2005; Jofré, Garriga & Aymerich, 2008). 
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Conversely, lactate had an inhibiting effect on technological microbiota, which could not 

recover after pressurisation in any of the batches were lactate was present. However, in 

traditionally dried and in non-acidified QDS dried hams with NaCl (TS-TRADI-S and NS-

QDS-S), the only products where neither LAB nor GCC+ starter cultures were applied, 

endogenous microbiota could recover during refrigerated storage to initial or higher levels. 

Studies evaluating the dependence of the pressurisation effect on other factors reported that 

physicochemical properties highly affect the impact of pressurisation and important 

differences in inactivation have been observed when different products were submitted to 

the same HP treatment (Garriga, Grèbol, Aymerich, Monfort & Hugas, 2004; Jofré, 

Aymerich, Grèbol & Garriga, 2009). Intermediate aw for example, that is normally found in 

dry-cured meat products, was observed to have a protective effect on pathogenic 

microorganisms, which seems to be compensated by the inhibition of the recovery of the 

cells during storage, because microorganisms injured by HP are more sensitive to 

intermediate aw (IFT, 2000). Most microorganisms tend to be more susceptible to pressure in 

low pH environments, and pressure-damaged cells are less likely to survive in acidic 

environments (Patterson, Linton & Doona, 2007). In addition, high salt concentrations and 

smoking compounds contribute to the particular hostile environment of dry-cured meat 

products (Flores, 1997; Verma & Banerjee, 2012) and could also hinder the recovery of sub-

lethally injured cells. 

Accordingly, the bactericidal effect of pressurisation observed in the present challenge tests 

varied between the products and was not only affected by compositional differences but also 

by physicochemical parameters. Among all NaCl-free processed (-F) hams, inactivation of 

pathogenic microorganisms was faster in acidified than in non-acidified dry-cured hams, 

especially in the case of L. monocytogenes. In this sense, the combination of low pH and HP 

has been described as an efficient way to inactivate pathogenic microorganisms in foodstuff 

and to inhibit subsequent outgrowth of sublethally injured cells (Smelt, 1998). In QDS dried 
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standard processed (-S) dry-cured hams, similarly, acidification achieved faster elimination 

of L. monocytogenes and Salmonella, although best results were achieved in the AS-QDS-S 

product, where elimination (absence of 25 g) of L. monocytogenes immediately after 

application and of Salmonella after 14 days was observed. The importance of smoking and 

presence of NaCl could also be observed in TS-TRADI-S ham, in which the same results as 

in AS-QDS-S were achieved. Similarly, Montero et al. (2007) demonstrated that smoking 

and pressurisation, together with a high salt concentration, kept L. monocytogenes counts 

under limit of detection throughout 100 days of storage at 5°C in cold-smoked dolphinfish. 

To sum up, pressurisation produced a general decrease but not complete elimination in 

pathogenic microorganism levels in all dry-cured hams and assured absence of L. 

monocytogenes and Salmonella throughout the storage of LA-TRADI-F chorizo. In NaCl-free 

processed dry-cured ham, however, the bactericidal effect of HP was attenuated. This is a 

remarkable finding and should be kept in mind when applying HP processing to improve the 

microbiological safety of products with a complete or partial reduction in the NaCl content. 

 

4. Differences between L. monocytogenes and Salmonella behaviour 

From the challenge tests performed within the framework of the present PhD thesis, some 

differences were observed in the behaviour of the pathogens L. monocytogenes and 

Salmonella, which could be attributed to differences in their growth limits and tolerance to 

antimicrobial factors. 

In dry-cured ham, L. monocytogenes was more affected than Salmonella counts by changes 

of aw and NaCl-free processing could be observed, especially in traditionally dried products. 

In TS-TRADI-F, L. monocytogenes showed higher counts than in TS-TRADI-S ham whereas 

Salmonella behaved similar in both products. Observed differences may result from the 

different aw growth optimums of the two pathogens (ICMSF, 1996) and their interaction with 
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temperature (psychrotrophic character of L. monocytogenes) and abilities to grow/survive in 

absence of NaCl. 

In non-pressurised dry-cured ham, absence of L. monocytogenes could be achieved after 

112 days in AS-QDS-S and AS-QDS-F whereas Salmonella could not be eliminated from 

any of the non-pressurised samples. In this context Asita & Campbell (1990) highlighted that 

smoke extracts are more active against gram-positive than gram-negative bacteria. 

Elimination of L. monocytogenes could be achieved immediately after pressurization in TS-

TRADI-S ham and in AS-QDS-S ham, while fastest inactivation of Salmonella through HP 

needed 14 days in the same samples (Fig. 1 in V.3. and Fig. 3 in V.4.). Although it is 

generally accepted that gram-positive bacteria are more resistant to pressurisation than 

gram-negative, strain and environmental conditions have an important effect and opposite 

results can be observed such as those found in the present studies and those reported by 

Chen, (2007) and Jofré, Aymerich, Bover-Cid & Garriga, (2010). 

In standard chorizo, higher resistance of Salmonella than L. monocytogenes was observed 

in low acid samples, which could be related to the higher growth limits of the former to acid 

and high temperature conditions (minimum pH and maximum temperature growth limits are 

3.8 and 49.5°C for Salmonella and 4.39 and 45°C for L. monocytogenes (ICMSF, 1996) 

(V.1.). Likewise in -F chorizo, Salmonella did not significantly decrease during acidification in 

the A batches such as L. monocytogenes (Table 8 and 9). 

The observed differences in pathogenic microorganism behaviour point out the importance 

of the adequate choice of pathogens of concern for a challenge study in order to assess the 

food safety effect of new processes and/or reformulations of food products. 
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According to the studies enclosed to this PhD thesis, it can be concluded: 

1. The QDS process® allows a fast achievement of an intermediate aw without 

compromising food safety of dry-cured meat products. 

2. The type of processing, traditional or QDS, has no influence on the behaviour of L. 

monocytogenes and Salmonella, which are eliminated after processing (fermentation 

and drying) and do not recover during storage of both acid and low acid chorizos and 

progressively decrease during storage of dry-cured ham. 

3. In chorizo, the inactivation of lactic acid bacteria due to the thermal treatment 

included in the processing with QDS and the attained aw level hinders further pH 

decrease during storage. 

4. NaCl-free processing, where NaCl is substituted by KCl and potassium lactate, has 

no effect on the particular hostile environment of chorizo and dry-cured ham and, as 

in standard processing, L. monocytogenes and Salmonella cannot grow in any of the 

products.  

5. NaCl-free processing affects the survival of L. monocytogenes and Salmonella and 

allows the survival of both pathogens during the production of traditionally processed 

low acid chorizo and produces a lower reduction of L. monocytogenes during the 

storage of traditionally dried dry-cured ham. 

6. The combination of NaCl-free processing with the QDS technology allows the 

production of chorizo without the use of NaCl that are safer than the corresponding 

traditional products. 

7. QDS dried NaCl-free processed dry-cured ham slices are safer than slices of QDS 

dried standard processed hams.  

8. The application of a HP treatment produces a general decrease (below 10 CFU/g in 

most cases) but not complete elimination of L. monocytogenes and Salmonella in all 

dry-cured hams and assures their absence throughout 91 days of storage in NaCl-
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free traditionally processed low acid chorizo, the only type of chorizo in which 

pathogens were detected during storage. 

9. The inhibitory effect of pressurisation can be compromised by the product 

reformulation. Thus, when applying HP processing to improve the microbiological 

safety of products with a complete or partial reduction in the NaCl content, it must be 

considered that NaCl-free processing used in this study attenuates the bactericidal 

effect of pressurisation. 

10. Lactate reduces the listericidal effect of HP in NaCl-free processed dry-cured ham 

and prevents the recovery of technological microbiota after pressurisation, during the 

storage period under refrigeration. 

11. Acidity achieved by bacterial fermentation or GDL application improves the food 

safety of standard, NaCl-free processed and pressurised dry-cured meat products. 


	Danksagung
	Agradecimientos
	Published works
	Abbreviations
	Figures
	Tables
	Table of contents
	Summary
	Resumen
	Resum
	I. Justificació
	II. Introduction
	1. Dry-cured meat products
	2. Food safety of dry-cured meat products
	3. Shortening the production of dry-cured meat products
	4. The design of NaCl-free processing
	5. High pressure processing
	6. References

	III. Objectives
	IV. Experimental design
	V. Results
	1. Ensuring food safety by and innovative fermented sausage manufacturing system
	2. The impact of fast drying (QDS process) and high pressure on food safety of NaCl-free processed dry fermented sausages
	3. The effect of NaCl-free processing and high pressure on the fate of Listeria monocytogenes and Salmonella on slice smoked dry-cured ham
	4. NaCl-free processing, acidification, smoking and high pressure: effects on growth of Listeria monocytogenes and Salmonella in QDS processed dry-cured ham

	VI. General discussion
	1. Effect of the QDS technology
	2. Effect of NaCl-free processing
	3. Effect of high pressure
	4. Differences between L. monocytogenes and Salmonella behaviour
	5. References

	VII. Conclusions



