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parte del grupo, no se si habŕıa llegado este momento. También quiero nombrar gente de
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conocerles a todos, todos ellos me han apoyado y animado durante estos años.
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Introduction

During 17th century, ordinary differential equations were born to explain the movement
of the particles in physical systems, such as the translation of the planets around the
Sun. Since then they have become a very important tool in many other fields in science
and engineering, like biology or electronics. For instance, they are used to model the
population growth of species or the evolution of electrical circuits. When the derivation
variable just plays an implicit role, the differential equation is said autonomous. The
autonomous cases can be considered as dynamical systems. Intuitively, they are rules for
the evolution in time of any particle in space. Therefore time is taken as the derivation
variable.

Ordinary differential equations of order n take the form

F (t, x, x′, x′′, . . . , x(n)) = 0, (1)

where x(n) is the nth derivative of x with respect to t. The autonomous cases take place
when F does not depend on t. If x is a vector instead of a real function, equation (1)
is called a differential system. In particular, if the space where x is considered is R2 or
any contained open subset, we refer to it as a planar differential system.

In this thesis the equations considered are, or can be seen as, first-order autonomous
planar differential systems, {

x′ = f(x, y),
y′ = g(x, y),

(2)

where x(t), y(t), f(x, y) and g(x, y) are real functions.
The aim of the qualitative theory is to understand the behavior of the solutions

of any differential system without obtaining their specific expression. The qualitative
theory was first introduced by Henri Poincaré in his “Mémoire sur les courbes définies
par une équation différentielle”, [Poi81], which was a great breakthrough in the study
of differential systems. Poincaré mainly studies the case of planar differential systems
and proposes a geometric framework for studying their solutions.

In order to understand this geometric point of view, let us consider the velocity field
X , which is the vector field whose components are f and g, the functions in system (2).
The solutions of the differential system are the trajectories of the vector field. It means
that at any point the tangent vectors to the solution curves and the vector field are
parallel. The trajectories are also known as the orbits of the vector field. The advantage
of using orbits lies in the fact that if we change the time parametrization, they remain
unchanged.

iii



iv Introduction

There are some concrete orbits with particular behaviors. Some of them were cha-
racterized by Poincaré, among others singular points and cycles. Singular points are the
points where the field vanishes. They are also called critical or fixed points. And, cycles
are the trajectories of the vector field that repeat themselves along time. Usually, they
are also called closed or periodic orbits. Notice that singular points are a particular
type of cycles. For a point in a cycle after a time T , its orbit will be again on him. For
a fixed point, its orbit is on him for every time t in R.

The notion of limit cycle was also introduced in the first papers which dealt with
qualitative theory. Essentially, a limit cycle, γ, is a periodic orbit such that at least
one trajectory of the vector field, different from γ, approaches γ in positive or negative
time. See, for example [HS74, Chi06]. Usually, when the vector field is of class C1 an
alternative definition is given. A closed orbit is named limit cycle if it is isolated from
the other periodic orbits. See [Sot79]. This definition is, in general, more restrictive
than the previous one, but both are equivalent in the analytic case.

In many senses a cornerstone of the qualitative theory of autonomous systems in
dimension two is the Poincaré-Bendixson Theorem. It first appeared in the third volume
of [Poi81] for analytic vector fields. In [Ben01], it is extended to the case of differential
systems defined by functions of class C1. This result, for a continuous vector field
X , establishes that for any orbit contained in positive time in a bounded region, if it
approaches a set without singular points, this set is a periodic orbit. Different proofs of
this continuous version can be found in [CL55, Har64]. It can be mentioned [Cie02] as
a neat summary of the theorem and some related results.

Just for the completeness of the terminology, we should introduce the notions of α
and ω limit sets. They were first proposed by George D. Birkhoff in [Bir66]. So the
ω-limit of an orbit is the set of points that the orbit approaches in positive time. And
the α-limit is the set that the orbit departs from, in negative time.

As a corollary of the Poincaré-Bendixson Theorem we have that the ω-limit set of
a positive orbit contained in a bounded region can only be a fixed point, a cycle or a
polycycle, a set of fixed points and regular orbits connecting them. The regular orbits
connecting fixed points, in particular the ones in polycycles, are said homoclinic or
heteroclinic orbits depending in if they connect just one singular point or several ones,
respectively. An analogous result is obtained for the α-limit sets. Therefore the behavior
of the solutions of a differential equation can be almost reduced to a local study of the
singular points, the closed orbits and the connections of regular orbits and fixed points.
In this fact lies the importance of the limit sets. We are particularly interested in the
limit cycles. And our results are related with the most famous open problem about limit
cycles, that is the second part of the Hilbert 16th problem.

In the International Congress of Mathematics in 1900, David Hilbert proposed 23
problems that in his opinion would motivate advances in mathematics during the 20th
century. With the 16th problem, Hilbert asked about the topology of algebraic curves
and surfaces. He included a second part asking about the maximum number and the
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position of the limit cycles of a polynomial planar system,

{
x′ = P (x, y),
y′ = Q(x, y),

with P and Q polynomials of degree n. This maximum number depending just on n is
usually known as the Hilbert number, H(n).

There are a lot of published works in relation with this problem. But even the
minimum case, n = 2, it is yet to be proved. Vladimir I. Arnold in [Arn77, Arn83]
establishes a weak version of this problem, that is also still open. Steve Smale, in his
list of mathematical problems for the 21st century, includes a modern version of it, see
[Sma98]. Moreover, he proposes to found upper bounds of the number of limit cycles
of order nq, where q is a universal constant. In the Smale’s list, it occupies the 13th
position, so this problem is known as the Smale 13th. For more details in the 16th
Hilbert we refer the reader to [Ily02, Li03, CL07].

Smale also says that the computation of the Hilbert number can be notably difficult.
So the mathematicians must consider a special class of differential equations ‘where the
finiteness is simple, but the bounds remain unproved’. In fact, he proposes to seek
bounds for a special class of polynomial Liénard systems,

{
x′ = y − F (x),
y′ = −x,

where F is a real polynomial of odd degree and satisfying F (0) = 0.
In order to achieve the Hilbert number, the lower bounds are as important as the

upper bounds. The study of lower bounds for the Hilbert number focus mainly on two
standard techniques. One is the computation of the limit cycles that persist after the
polynomial perturbation of centers. And the other is the study of necessary conditions
for a family of differential systems depending on some parameters such that it succeed
the birth of a limit cycle from different kind of singular orbits, such as fixed points or
heteroclinic connections. It is known as the bifurcation of a limit cycle. For example, the
Hopf bifurcation phenomena implies the birth of a cycle from a singular point satisfying
some particular conditions.

This thesis deals with these aspects of limit cycles for some particular families of
differential equations. In the first chapter we examine the weak Hilbert 16th problem
restricted to the polynomial perturbation of a particular center. The second chapter
establishes sufficient conditions for the existence and uniqueness of limit cycles in a
generalization of the Liénard equation. Chapter 3 provides a study of the location of a
bifurcation curve in the parameter space of the Bogdanov-Takens system. Immediately,
we show more details of the problems treated. However, each chapter contains a section
devoted to summarize the problems and the main results obtained.

Because of the independence between the different problems proposed, this thesis
has been written in a modular form, been each chapter independent to the others. And,
therefore, it can be read in any order. To facilitate access to the individual topics, the
notation on each chapter is rendered as self-contained as possible.



vi Introduction

In Chapter 1 we examine the limit cycles that appear after the perturbation of a
linear center with extra singular points. The perturbed system that we consider is

{
x′ = y K(x, y) + εP (x, y),
y′ = −xK(x, y) + εQ(x, y),

(3)

where K is a specific family of polynomials, P and Q are any polynomial and ε a small
enough real number. This differential system has a center at the origin, equivalent to
the generated by the Hamiltonian H(x, y) = x2+y2. And the extra singular points that
we referred before are the ones that satisfy K(x, y) = 0.

In fact we analyze the Abelian integral associated to (3), as it was proposed by Arnold
in the statement of the weak Hilbert 16th problem. There are several previous works
dealing with the Abelian integral associated to this system where the set of singular
points take different forms, like straight lines [LLLZ02] or quadratic curves [BL07]. We
consider the case of finite sets of isolated points.

One of the key points of the work included in Chapter 1 is that we are able to consider
several period annulus where we can seek limit cycles. Hence, we develop a study of the
simultaneity of the limit cycles in the different annuli at the same time. Due to their
difficulty, the papers on the simultaneity of limit cycles in several regions are not common
at all. But some examples are [CL95, CLP09]. Other key point of the first chapter is the
study on the dependence of the number of limit cycles on the location of the parameters
included in Section 1.4.3. We have constructed a bifurcation diagram that distinguishes
different regions on the parameter space where we have different number of limit cycles.

In this chapter the lack of a partial fraction decomposition for two variable rational
functions does not allow us to obtain better upper bounds in the more general cases.
But the main difficulty in carrying out better results for this chapter is the amount and
the size of the computations that should be done. Some of the results of this chapter
appear in [PGT12].

In the second chapter of this thesis we extend some of the classical results about
existence and uniqueness of limit cycles for the Liénard equation [YCC+86, ZDHD92]
to the ϕ-laplacian case,

(ϕ(x′))′ + f(x)ψ(x′) + g(x) = 0. (4)

This equation appears in models that consider definitions of the derivative different from
the classic one, such as the relativistic one. In fact, the harmonic relativistic oscillator
can be modeled as 

 x′√
1− x′2

c2




′

+ x = 0,

see [Gol57, Mic98]. So, our results apply to the relativistic van der Pol equation,


 x′√

1− x′2

c2




′

+ µ(x2 − 1)x′ + x = 0,
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as well as to the ordinary one.
The results included in this chapter involve an ad hoc compactification designed with

two objectives. First, to unify the different behaviors of the functions in (4) satisfying
our hypothesis. And second, to make possible the comprehension of the global phase
portrait. The results of this chapter have also been done in collaboration with Pedro J.
Torres. And they appear in [PGTT12].

The aim of the third chapter is to obtain a global knowledge of the homoclinic
connection curve in the first quadrant of parameter space, where the limit cycles can
appear, in the system associated to this Bogdanov-Takens normal form,

{
x′ = y,
y′ = −n+ by + x2 + xy,

(5)

where the parameters, n and b, are real numbers. When the parameters vanish, the
origin shows a local structure of cusp point, a kind of degenerate singular point. But if
we unfold this vector field, they appear several bifurcation curves, a Hopf bifurcation,
a saddle-node bifurcation and a homoclinic connection curves. See [GH02] for more
details.

It is worth pointing out that the system (5) is a semi-complete family of rotated vector
fields with parameter b. So, for any fixed n, the limit cycle grows until it disappears in
the homoclinic connection when we range b from its birth in the Hopf bifurcation.

The study of the bifurcation curve of the homoclinic connection is usually restricted
to a local region near the origin. It is known, [GH02], that for n > 0 there exists a
value b∗(n) such that the system has a unique limit cycle if and only if b∗(n) < b <

√
n.

Moreover b∗(n) = 5
7

√
n + . . . for n small enough. In [Per92] the quadratic differential

system is considered in the whole space and it is proved that b∗(n) is analytic and that
the previous inequalities are satisfied for all n > 0. A detailed study of the curve b∗(n)
for n small enough is presented in [GGT10].

The results obtained in [GGT10] are based on an algebraic method for the location
of bifurcation curves. In our work we adapt this procedure to our needs. Finally, we
obtain explicit curves such that bd(n) < b∗(n) < bu(n) for all n > 0. With this result we
prove a conjecture proposed by Perko in [Per92], where he predicts that b∗(n) goes to
infinity as

√
n−1. In particular, we prove that b∗(n) goes to infinity as

√
n−1+O(1/n).

This chapter has also been developed in collaboration with Armengol Gasull and
Héctor Giacomini.
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Chapter 1

Limit cycles on a linear center with

extra singular points

1.1 Introduction

One of the main and oldest problems in the qualitative theory of differential systems is
the knowledge of the isolated periodic solutions that a concrete system presents. In the
plane, the Poincaré-Bendixson theorem ensures that these orbits are α or ω limit sets,
so we call them limit cycles. For planar polynomial vector fields, one of the most known
unsolved problems is the second part of Hilbert’s 16th problem, that can be expressed
as follows.

Hilbert 16th Problem. For the differential system
{
ẋ = P (x, y),
ẏ = Q(x, y),

(1.1)

where P and Q are polynomials of degree n, which is the maximum number of limit
cycles, H(n), for any n ∈ N? And, which are their relative positions?

A common technique to give lower bounds of this number is based on the perturba-
tion of centers. Hence, the limit cycles bifurcate from the periodic orbits of a center. We
say that a limit cycle bifurcates from a periodic orbit γ(r) if there exists a continuous
family of closed curves l(ε), where ε is the perturbed parameter, such that l(ε) is a limit
cycle of the perturbed system for ε 6= 0 and l(0) = γ(r).

Definition 1.1. Assume that system (1.1) has a center at the origin. Given a transver-
sal section Σ, parametrized by r ∈ [0, r0), the Poincaré map, P(r) ∈ [0, r0), is defined
on Σ by the first intersection of the positive semi-orbit of Σ(r) with Σ, at Σ(P(r)). See
Figure 1.1.

When system (1.1) has a center at the origin, we can extend the Poincaré map,
P(r, ε), also called the first return map, to the perturbed system

{
ẋ = P (x, y) + εf(x, y),
ẏ = Q(x, y) + εg(x, y).

(1.2)

1
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P(r)

r Σ

Figure 1.1 Poincaré map, P

Therefore, the periodic orbits of (1.2) coincide with the zeros of the displacement
function d(r, ε) = P(r, ε)− r. From [Poi90] we have that

d(r, ε) = ε (d0(r) +O(ε)) . (1.3)

If d0(r) is not identically zero, then the number of zeros of d(r, ε) is bounded by the num-
ber of zeros of d0(r) for ε small enough, taking into account its multiplicities. This fact
appears for the first time in [Pon34] for Hamiltonian systems and it could be expressed
as

Pontrjagin Criterion. If a limit cycle of (1.2) bifurcates from γ(r), a periodic orbit
of the unperturbed system, then d0(r) = 0. Conversely, if d0(r) = 0 and d′0(r) 6= 0 then
a limit cycle of (1.2) bifurcates from γ(r).

Then it can be considered the weak Hilbert’s 16th Problem. V. I. Arnold stated this
problem for Hamiltonian systems, see [Arn77] and [Arn83].

Weak Hilbert 16th Problem. Let H = H(x, y) be a polynomial in x, y of degree
m + 1 ≥ 2, and the level curves γh ⊆ {(x, y) : H(x, y) = h} with h1 < h < h2. These
curves, {γh}h1<h<h2, form a continuous family of simple closed curves around the point
(x0, y0). Additionally, let us consider the system





ẋ =
∂H(x, y)

∂y
+ εf(x, y),

ẏ = −∂H(x, y)

∂x
+ εg(x, y),

(1.4)

where max(deg(f), deg(g)) = n ≥ 2, and (x0, y0) is a center of (1.4) when ε = 0. Then,
for fixed n and m integer values, the weak Hilbert 16th problem ask for the maximum
number of isolated zeros of the Abelian integral, associated to system (1.4),

I(h) =

∮

γh

(f(x, y)dy − g(x, y)dx) . (1.5)
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For the case considered in the Arnold’s statement we have that, see [Poi90, Pon34],

I(h) = d0(h),

for d(h) given in (1.3) defined for any Σ, a transversal section of γh parametrized by
h ∈ (h1, h2).

In general, an Abelian integral, by definition, is the integral of a rational 1-form along
an algebraic simple closed curve [CL07, p. 99]. From the above relation between I(h) and
d(h) in the weak Hilbert’s 16th, I(h) is also known as the Poincaré-Pontrjagin-Melnikov
function of system (1.4).

It should be remarked that the study of the Abelian integrals does not give a complete
solution of Hilbert’s problem, even fixing a value of the degree of the perturbation, n.
But, it gives lower bounds for H(n) when it is applied to specific families of polynomial
vector fields. For more details about the Hilbert’s 16th problem we refer to [Ily02, Li03].

The problem that we consider in this work and we denote as P(n, k), is the study of
the number of limit cycles, H(n, k), that bifurcate for ε small enough, from the system

{
ẋ = y K(x, y) + εP (x, y),
ẏ = −xK(x, y) + εQ(x, y),

(1.6)

where P and Q are arbitrary real polynomials of degree n and K(x, y) is a concrete
polynomial. There are several papers where K(x, y) is considered in different ways. In
[LLLZ00, XH04a, XH04b] the set {K(x, y) = 0} represents a straight line of simple or
multiple singular points. In [BL07, LLLZ02, GL07], the problem when K(x, y) are some
concrete quadratic polynomials is considered. When the set {K(x, y) = 0} represents a
collection of straight lines orthogonal to the axes is studied in [GLT12].

In this chapter we take K(x, y) =
k∏
j=1

(
(x− aj)

2+ (y− bj)
2
)
where (aj , bj) are points

of R2. For simplicity, the zeros of K(x, y) are referred as the singularities of system (1.6).
As far as we know, the situation when the set {K(x, y) = 0} is a set of isolated points
and the perturbation is of degree n is only studied in [GPT08]. This last work can be
considered as our starting point.

Most of the papers referenced previously study problems with a unique period an-
nulus, the ones that contains the origin. In our problem, there are other period annuli
and they are all nested. Our aim is to obtain the maximum number of limit cycles that
bifurcate from the periodic orbits of all period annuli simultaneously, for a fixed col-
lection of singularities. This can be considered as a continuation of the work [GPT08],
where only the first period annulus is studied. In [GL07], among other general conics,
the case of one singularity is also done for both period annuli, but only under cubic
perturbations. Moreover, for some particular cases, we also study how this maximum
number changes when we move the singularities.

There are not so many papers focused on the study of the simultaneous bifurcation
of limit cycles for perturbed systems. Some of them are [GGJ08, CLP09] that deal with
the simultaneity between two different regions, or [DL03] where three separated period
annuli appear. A study of the simultaneity of limit cycles to obtain a lower bound
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of H(n) is done in [CL95] and, more recently, in [Li03]. In our general case, when k
singularities are considered, the problem presents k + 1 nested period annuli.

We should distinguish the general problem P(n, k), that studies the limit cycles in
terms of the values n and k, from the one that, for a particular k, the location of the
zeros of K(x, y) are fixed, Pa(n).

When K(x, y) does not vanish, after a time rescaling, system (1.6) is equivalent to




ẋ = y + ε
P (x, y)

K(x, y)
,

ẏ = −x+ ε
Q(x, y)

K(x, y)
.

(1.7)

The previous system corresponds to a rational perturbation of the linear center, and the
level curves of the unperturbed system are given by the circles

γr =
{
(x, y) ∈ R

2 : x2 + y2 = r2
}
.

As we have showed before, the number of perturbed limit cycles that equation (1.7)
can have up to a first order analysis, H(n, k), can be lower bounded by the number of
simple zeros of the Abelian integral

I(r) =

∮

γr

P (x, y)dy −Q(x, y)dx

K(x, y)
. (1.8)

In fact, this is the problem that we consider along this chapter: the study of the number
of simultaneous zeros of I(r) for

K(x, y) =

k∏

j=1

(
(x− aj)

2 + (y − bj)
2
)

(1.9)

where (aj , bj) are points of R2. In most cases, we consider only the generic situation
where these points are everyone different, isolated, nonaligned with the origin and r̃j =√
a2j + b2j does not vanish for j = 1, . . . , k. Since the different regions that we should

consider are the annuli between consecutive zeros of K(x, y), we suppose that these
points are located at different distances from the origin. We do not consider the case
r̃j = 0 for any j because, as it can be easily checked, the number of zeros of the
corresponding Abelian integral would have less zeros. As the associated Abelian integral
is not well defined for any r, we restrict our results to the level curves, γr, completely
contained in

Rj =
{
(x, y) ∈ R

2 : r̃2j = a2j + b2j < x2 + y2 < a2j+1 + b2j+1 = r̃2j+1

}
,

for j = 0, . . . , k − 1, (a0, b0) = (0, 0) and Rk = {(x, y) ∈ R
2 : a2k + b2k < x2 + y2}.

See Figure 1.2 for a particular configuration with three singularities. The above regions
R0, . . . ,R3 are also showed.

For the general case, we prove the following result.
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b

b

b R0 R1 R2 R3

r̃1 r̃2

r

γr

(a1, b1)

(a2, b2)

(a3, b3)

Figure 1.2 Example of location of the singularities (aj, bj) and the regions Rj

Theorem 1.2. Let k and n be any pair of natural numbers. Given system
{
ẋ = y K(x, y) + εP (x, y),
ẏ = −xK(x, y) + εQ(x, y),

(1.10)

where K(x, y) =
k∏
j=1

((x− aj)
2 + (y − bj)

2) and P and Q are polynomials of degree n.

Then the Abelian integral associated to system (1.10), I(r) as it is defined in (1.8), is
a piecewise rational function in r2. Moreover, the expression of I(r) depends on the
position of γr with respect to the period annuli Rj, so we can identify I with the vector
(I0, . . . , Ik) where Ij(r) = I(r) if γr ⊂ Rj for j = 0, . . . , k.

From this vectorial behavior of the Abelian integral, we can extend it to all the
aspects of our problem. Hence, we consider the following definitions.

Definition 1.3. Fixed any natural number k and a collection of points (ai, bi) for i =
1, . . . , k, a vector Z = (z0, . . . , zk) ∈ N

k+1 is called a configuration of simultaneous zeros
of Pa(n) if the Abelian integral I(r) satisfies that Ij(r) has exactly zj zeros contained in
Jj, for any j = 0, . . . , k.

Definition 1.4. Fixed any natural number k, a vector Z = (z0, . . . , zk) ∈ N
k+1 is called

a configuration of simultaneous zeros of P(n, k) if there exists a collection of points
(ai, bi) for i = 1, . . . , k such that the Abelian integral I(r) satisfies that Ij(r) has exactly
zj zeros contained in Jj for any j = 0, . . . , k.

Since the set of configurations of P(n, k) is contained in the Cartesian product,
N
k+1, we can induce some structure on it. Consequently, we can define a partial order

relation (known as the product order) and a norm (the norm of the sum) on the set of
configurations.
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Definition 1.5. Given Z1 and Z2 two configurations of simultaneous zeros of P(n, k),
we say that Z1 ≤ Z2 if z1j ≤ z2j for any j = 0, . . . , k.

Definition 1.6. Given Z a configuration of simultaneous zeros of P(n, k) or Pa(n), we
define the norm of Z as |Z| = z0 + . . .+ zk.

Remark 1.7. For each value of n, there is only one configuration of Pa(n), but for each
n and k there is more than one configuration of P(n, k).

Since we have defined a partial order on the set of configurations of P(n, k), Theo-
rem 1.2 provides the existence of an upper bound of this set. This can be done because
the Abelian integral is obtained as a vector of rational functions. And it allows us to
prove next result.

Corollary 1.8. There exists the maximum of the configurations of simultaneous zeros
of P(n, k). We call it ZM(n, k).

Additionally, as the set of configurations of P(n, k) is bounded, it should be finite.
This fact proves the existence of maximal configurations of P(n, k).

Definition 1.9. A configuration Z of P(n, k) is a maximal configuration if there not
exist any other configuration of simultaneous zeros of P(n, k) greater than Z.

Remark 1.10. The maximum configuration of P(n, k), ZM(n, k), is unique, but the
maximal configurations of P(n, k), in general, are not.

Although the expressions of the corresponding Ij are unique, the bounds that can be
achieve on its degrees depend on the Partial Fraction Decomposition of 1/K(x, y), that
is not unique. As we can see in this chapter it is not easy to achieve the exact value
of ZM(n, k) for all n and k and neither to give explicit upper bounds, i.e. k + 1-tuples
(z0, z1, . . . , zk) so that Zj ≤ zj for j = 0, . . . , k.

Proposition 1.11. Under the hypotheses of Theorem 1.2, we have

ZM(n, k) ≤ (N, . . . , N,N −min{n+ 1, (2k − 1)(k − 1)}) ,

where N =

[
max{n + 1, (2k − 1)(k − 1)}

2

]
+ n + 1 + (2k − 1)(k − 1). So,

|ZM(n, k)| ≤ kn + (k + 3)

[
max{n+ 1, (2k − 1)(k − 1)}

2

]
+ k(2k2 − 3k + 2).

Where [·] is the integer part function.

For fixed values of k the above result can be improved. In this work we present
better explicit values of upper bounds for k = 1 and k = 2.
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Theorem 1.12. Let k = 1. Under the conditions stated in Theorem 1.2 and denoting
by [·] the integer part function, we get

(i) n+ [(n+ 1)/2] ≤ H(n, 1), and,

(ii) given any (i, j) ≤ (n, [(n + 1)/2]), there exist polynomials P, Q of degree n such
that system (1.10) has at least i, j bifurcated limit cycles in R0,R1, respectively.

Theorem 1.13. Let k = 2. Under the assumptions of Theorem 1.2 and denoting by [·]
the integer part function,, we have that

ZM(n, 2) ≤
(
n+ 4, n+ 5,

[
n + 1

2

]
+ 4

)

and |Z(n, 2)| ≤ 2n+ [(n + 1)/2] + 13.
In particular, if a1/b1 = a2/b2 we have that

ZM(n, 2) ≤
(
n+ 1, n+ 2,

[
n + 1

2

]
+ 1

)

and |Z(n, 2)| ≤ 2n+ [(n + 1)/2] + 4.

Moreover, Theorem 1.12 generalizes the result of [GL07] for the case of two complex
straight lines intersecting in a real point. We consider any value of n instead of a
perturbation inside the cubic class.

Theorem 1.13 provides upper bounds of ZM(n, 2). However for fixed values of n,
the exact value can be computed. For example the maximum configuration of P(0, 2)
and P(1, 2) are ZM(0, 2) = (1, 1, 1) and ZM(1, 2) = (3, 2, 3), respectively. But these
maximums are not configurations of simultaneous zeros. In fact, we prove that there
are no configurations with three zeros for P(0, 2) nor configurations with seven or eight
zeros for P(1, 2). The following results summarize these facts.

Theorem 1.14. For P(0, 2), the Abelian integral I(r2) can have at most two simple
zeros. Moreover, its configurations are: (0, 0, 0), (1, 1, 0) and (0, 1, 1) for every pair of
points (ai, bi), i = 1, 2.

Theorem 1.15. The maximum number of simple zeros of P(1, 2) is six. The maximal
configurations are (3, 1, 2), (2, 2, 2) and (2, 1, 3). Additionally, an element in N

3 is a
configuration if, and only if, it is lower or equal to any of the maximal ones.

One question still unanswered is whether the maximal configurations of P(1, 2) are
configurations, or not, for every pair of points (ai, bi), i = 1, 2. In order to answer this
question a bifurcation diagram should be constructed, distinguishing the regions where
the maximum number of zeros of I(r) changes. As the configurations with four zeros
can be found for every particular choice of points, see Proposition 1.29, there should be
just represented by the regions with four, five or six maximum zeros.

Before showing the results on the bifurcation diagram, let us assume the following
hypothesis. The zeros of K(x, y) are ordered because they are located at different
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distances from the origin. Moreover, as the number of zeros of the Abelian integral does
not depend on any rescaling or rotation with respect to the origin in the variables (x, y)
in R

2. Then, without loss of generality, we can suppose, that (a1, b1) = (1, 0). Hence,
the bifurcation diagram can be represented in R

2, because the coordinates of the second
singularity, (a2, b2), are the free variables of this problem.

Hence the bifurcation diagram can be computed from any maximal configuration.
Consider now the maximal configuration (3, 1, 2) and fix any perturbation such that
system (1.10) presents three zeros in the inner annulus and one in the middle one.

Therefore, the bifurcation regions S̃0, S̃1 and S̃2, in (a2, b2) plane, are defined by the
number of zeros of I in the outer annulus, that is 0, 1 and 2. Hence, the total number of
zeros of I is 4, 5 and 6 for the maximal configuration (3, 1, 2), or (2, 1, 3), by symmetry.
This regions are plotted in Figure 1.3.

The complete bifurcation diagram could be done doing a similar procedure for the
case (2, 2, 2). This global result exceeds the scope of this work due to the difficulties to
obtain the diagram of Figure 1.3, as it can be seen in Section 1.4.2.

S̃0

S̃1

S̃2

Figure 1.3 Bifurcation diagram for the maximal (3, 1, 2) configuration

This chapter is organized as follows. In Section 1.2, we unfold the computations
needed to found an expression of the Abelian integral, (1.8). We include also the proofs
of Theorem 1.2 and Proposition 1.11. Section 1.3 is devoted to the study of the case of
a unique singularity and the proof of Theorem 1.12. The case with two singularities is
studied in Section 1.4. First, we provides the upper bound given in Theorem 1.13 and
we improve this result for the first values of n, n ≤ 6. Secondly, Theorems 1.14 and 1.15
are proved. Finally, the bifurcation diagram showed in Figure 1.3 is constructed.
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1.2 General results for an arbitrary number of sin-

gularities

This section is devoted to prove the rationality of I(r) and the general bounds of its
number of zeros. Next technical lemma ensures that locating a singular point at (1, 0),
for example the closer to the origin, is not restrictive.

Lemma 1.16. System (1.6) is invariant under dilations and rotations with the center
at the origin

Proof. Rotations and dilations are linear transformation of the space. So, they do not
change the form of system (1.6) nor the degree of the polynomials. Moreover, the
transformed system has also the inner structure of being a polynomial perturbation of a
linear center multiplied by a function like K(x, y) with the zeros located in other place,
but with the same properties of the original one.

1.2.1 Computations of the Abelian Integrals

Although there is not a unique way to express 1/K(x, y), for K given in (1.9), as a sum
of partial fractions, the following lemma gives us a possible decomposition for any value
of k. In this section we show other rational decompositions of lower degrees, but only
for small values of k.

Lemma 1.17. For all k,

1
k∏
j=1

Fj(r, cos t, sin t)

=
k∑

j=1

Aj(r
2, r cos t, r sin t)

D(r2)Fj(r, cos t, sin t)
,

where Fj(r, cos t, sin t) = r2−2ajr cos t−2bjr sin t+a
2
j + b

2
j , Aj and D, for j = 1, . . . , k,

are polynomials with degree (2k − 1)(k − 1) and 2k(k − 1), respectively.

Proof. We consider the conjugate of each term in the denominator of the expression of
the statement, i.e. the polynomial Gj(r, cos t, sin t) = r2− 2ajr cos t+2bjr sin t+ a2j + b2j
for j = 1, . . . , k. Thus

FjGj =4(a2j + b2j )r
2 cos t2 − 4aj(a

2
j + b2j + r2)r cos t

+ (r2 + a2j − 2rbj + b2j )(r
2 + a2j + 2rbj + b2j ).

This polynomial, seen as a one variable polynomial respect to r cos t, has a negative
discriminant, −16(a2j + b2j − r2)2b2j < 0. Therefore, by the one variable Partial Fraction
Decomposition Theorem, there exist polynomials, Bj , with degree one such that for any
k, (

k∏

j=1

FjGj

)−1

=

k∑

j=1

Bj(r cos t)

FjGj
.
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In fact Bj(r cos t) = ρj(r
2)r cos t + ξj(r

2), with ρj and ξj been rational functions. The
expressions of ρj and ξj can be found solving a linear system with 2k equations and 2k
variables. This system can be constructed from equation

1 =
k∑

i=1




k∏

j=1
j 6=i

FjGj



(
ρi(r

2)r cos t + ξi(r
2)
)
.

We just study the degrees of the polynomials involved in the matrix of the system.
Let us denote by ∆l any non-fixed polynomial of degree l with respect to r2. Conse-
quently the system can be written as




0 · · · 0 ∆2k−2 · · · ∆2k−2

∆2k−2 · · · ∆2k−2 ∆2k−3 · · · ∆2k−3
...

. . .
...

...
. . .

...
∆1 · · · ∆1 ∆0 · · · ∆0

∆0 · · · ∆0 0 · · · 0







ρ1
...
ρk
θ1
...
θk




=




1
0
...
0


 . (1.11)

Therefore, by Cramer’s Rule, the solutions ρj and θj , as products of one term for
each different row and column of the previous matrix, have the following rational form

ρj =

∆
−k+

2(k−1)∑
1

l

∆
k−1+

2(k−1)∑
1

l

=
∆2(k−1)2−1

∆2k(k−1)

, and θj =

∆
−(k−1)+

2(k−1)∑
1

l

∆
k−1+

2(k−1)∑
1

l

=
∆2(k−1)2

∆2k(k−1)

,

both denominators are the same, the determinant of system (1.11).
Now we can consider

1
k∏
j=1

Fj

=

k∏
l=1

Gl

k∏
j=1

FjGj

=

k∑

j=1

Bj(cos t)
k∏
l=1

Gl

FjGj
=

k∑

j=1

Bj(cos t)
k∏

l=1
l6=j

Gl

Fj
.

Hence we just need to take Aj(r
2, r cos t, r sin t) as the numerator of Bj(cos t)

k∏
l=1
l6=j

Gl and

D(r2) as the determinant of M , so D is a polynomial of degree 2k(k − 1).
Additionally, by the definition of Gl,

k∏

l=1
l6=j

Gl = ∆0(r
2)∆k−1(r cos t, r sin t) + · · ·+∆k−2(r

2)∆1(r cos t, r sin t) + ∆k−1(r
2),
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and it follows that

Aj = (∆2(k−1)2−1(r
2)r cos t +∆2(k−1)2(r

2))

k∏

l=1
l6=j

Gl = ∆(2k−1)(k−1)(r
2, r cos t, r sin t).

This completes the proof.

Next lemma gives us another rational decomposition. It has lower degree than the
one given in Lemma 1.17, for some particular values of k. In fact it seems to be true for
any value of k (taking fixed values for the points (ai, bi)). But to obtain a proof for any
k requires a deeper knowledge of the structure of the decomposition. In Section 1.4 we
include the explicit expressions for case k = 2.

Lemma 1.18. For all k = 2, 3, 4,

1
k∏
j=1

Fj(r, cos t, sin t)

=
A(r2)

D(r2)
+

k∑

j=1

Bj(r
2)(r cos t+ 1) + Cj(r

2)r sin t

Ej(r2)Fj(r, cos t, sin t)
,

where Fj(r, cos t, sin t) = r2−2ajr cos t−2bjr sin t+a
2
j +b

2
j and A, Bj, Cj, D and Ej for

j = 1, . . . , k are polynomials of degrees k(k−1), k−1, k−1, k2 and 2k−1, respectively.

Proof. Straightforward computations with an algebraic manipulator1 give as the sought
expression.

In addition to the previous lemmas we need the following one. It is a generalization
of [GPT08, Lemma 2.2]. Our proof is considered as a corollary of that one, instead of
an adapted one. Our statement is given in terms of Chebyshev’s polynomials, see more
information about them in [Con65].

Lemma 1.19. For all l ∈ N, we have that

Icl (r) =

∫ 2π

0

cos(lt)

r2 + a2 + b2 − 2ar cos t− 2br sin t
dt

=





2π

(a2 + b2)l/2
Tl

(
a√

a2 + b2

)
rl

a2 + b2 − r2
0 ≤ r <

√
a2 + b2,

2π(a2 + b2)l/2Tl

(
a√

a2 + b2

)
r−l

r2 − (a2 + b2)
r >

√
a2 + b2,

Isl (r) =

∫ 2π

0

sin(lt)

r2 + a2 + b2 − 2ar cos t− 2br sin t
dt

=





2π b

(a2 + b2)(l+1)/2
Ul−1

(
a√

a2 + b2

)
rl

a2 + b2 − r2
0 ≤ r <

√
a2 + b2,

2π b (a2 + b2)(l−1)/2 Ul−1

(
a√

a2 + b2

)
r−l

r2 − (a2 + b2)
r >

√
a2 + b2,

1All the computations have been made using MAPLE.
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where Tl and Ul are the Chebyshev’s polynomials of first and second kind of degree l,
respectively.

Proof. We consider the change t = τ + θ taking the unique value of θ ∈ (0, 2π) such
that sin θ = b/

√
a2 + b2 and cos θ = a/

√
a2 + b2, so

Icl (r) =

∫ 2π

0

cos(l(τ + θ))

r2 + a2 + b2 − 2ar cos(τ + θ)− 2br sin(τ + θ)
dτ

=

∫ 2π

0

cos(lτ) cos(lθ)− sin(lτ) sin(lθ)

r2+a2 + b2−2r(a cos θ+b sin θ) cos τ −2r(b cos θ−a sin θ) sin τ dτ

=

∫ 2π

0

cos(lθ) cos(lτ)− sin(lθ) sin(lτ)

r2 + a2 + b2 − 2r
√
a2 + b2 cos τ

dτ.

(1.12)

The change of variable r = ρ
√
a2 + b2 transforms equation (1.12) to the form given

on the hypothesis of [GPT08, Lemma 2.2]. Therefore,

Icl (r) =
cos(lθ)

a2 + b2

∫ 2π

0

cos(lτ)

ρ2 + 1− 2ρ cos τ
dτ +

sin(lθ)

a2 + b2

∫ 2π

0

sin(lτ)

ρ2 + 1− 2ρ cos τ
dτ =

=





2π
cos(lθ)

a2 + b2
ρl

1− ρ2
0 ≤ ρ < 1,

2π
cos(lθ)

a2 + b2
1

(ρ2 − 1)ρl
ρ > 1,

now, if we undo the change in r, we have that

Icl (r) =





2π
cos(lθ)

a2 + b2 − r2
rl

√
a2 + b2

l
0 ≤ r <

√
a2 + b2,

2π
cos(lθ)

r2 − (a2 + b2)

√
a2 + b2

l

rl
r >

√
a2 + b2.

By the definition of θ and the properties of the Chebyshev’s polynomials Tl, see [Phi03],
we obtain

cos(lθ) = Tl(cos θ) = Tl

(
a√

a2 + b2

)
.

This gives us the expression of the statement of the lemma.
The proof finishes doing analogous computations for

Isl (r) =





2π
sin(lθ)

a2 + b2 − r2
rl

√
a2 + b2

l
0 ≤ r <

√
a2 + b2,

2π
sin(lθ)

r2 − (a2 + b2)

√
a2 + b2

l

rl
r >

√
a2 + b2

and

sin(lθ) = sin θUl−1(cos θ) =
b√

a2 + b2
Ul−1

(
a√

a2 + b2

)
.
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Now we have the tools to see the rationality of (1.8).

Proof of Theorem 1.2. After changing to polar coordinates and using usual trigonomet-
ric identities, the expression of I(r) at (1.8) writes as

I(r) =

∫ 2π

0

Q(r cos t, r sin t)r sin t+ P (r cos t, r sin t)r cos t
k∏
j=1

(
r2 − 2raj cos t− 2rbj sin t+ a2j + b2j

) dt =

=
n+1∑

m=1

rm
∫ 2π

0

m∑
l=0

(αl m cos(lt) + βl m sin(lt))

k∏
j=1

(r2 − 2raj cos t− 2rbj sin t + a2j + b2j )

dt,

(1.13)

where αlm and βlm are independent real coefficients such that if l and m are not of the
same parity then αl m = βl m = 0. Finally, ordering and gathering coefficients,

I(r) =

n+1∑

l=0

rlRl(r
2)

∫ 2π

0

cos(lt)
k∏
j=1

(r2 − 2raj cos t− 2rbj sin t+ a2j + b2j )

dt

+

n+1∑

l=1

rlSl(r
2)

∫ 2π

0

sin(lt)
k∏
j=1

(r2 − 2raj cos t− 2rbj sin t+ a2j + b2j )

dt,

(1.14)

where Rl(r
2) and Sl(r

2) are polynomials of degree at most [(n+ 1− l)/2] with arbitrary
coefficients for all l = 0, . . . , n+ 1.

Lemma 1.17 allows us to break up the rational functions in the integrand of (1.14)
as a sum of more simple functions and Lemma 1.19 gives us a expression for the integral
of each term. As everyone of those expressions is a rational piecewise function of r2, we
can assure that the sum of them is also a rational piecewise function of r2.

1.2.2 Upper bounds for the number of zeros

I(r) is a piecewise rational function. See Theorem 1.2. Then the number of its zeros
is bounded. This section is devoted to prove Proposition 1.11 that provides an explicit
bound studying the degree of the numerator.

Proof of Proposition 1.11. From the proof of Theorem 1.2, the numerator of I(r) can
be studied from the numerator of the integrand of (1.14), that is

R0(r
2) +

n+1∑

l=1

rl
(
Rl(r

2) cos(lt) + Sl(r
2) sin(lt)

)
.
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The numerators, that appear applying Lemma 1.17, are

Aj(r
2, r cos t, r sin t) =

κ∑

i=0

κ∑

m=i

αi,m(r
2)rm cosi t sinm−i t

for any j = 1, . . . , k, where κ = (2k−1)(k−1) and αi,m are polynomials of degree κ−m.
We can write cos(lt) cosi t sinm−i t as a real combination of the functions

cos((l +m)t), cos((l +m− 2)t), cos((l +m− 4)t), . . . if m− i is even,

sin((l +m)t), sin((l +m− 2)t), sin((l +m− 4)t), . . . if m− i is odd,

and function sin(lt) cosi t sinm−i t as a real combination of

sin((l +m)t), sin((l +m− 2)t), sin((l +m− 4)t), . . . if m− i is even,

cos((l +m)t), cos((l +m− 2)t), cos((l +m− 4)t), . . . if m− i is odd.

Therefore, the numerator of the integrand for any term in the Abelian integral can
be written as

R̃0(r
2) +

n+1+κ∑

λ=1

rλ
(
R̃λ(r

2) cos(λt) + S̃λ(r
2) sin(λt)

)
, (1.15)

where R̃λ(r
2) and S̃λ(r

2) are polynomials of degree

max

{[
n + 1− l

2

]
+ κ−m :

l = max{0, λ− κ}, . . . , n+ 1
m = max{0, λ− (n+ 1)}, . . . , κ

}
,

for any λ = 0, . . . , n+ 1 + κ and [·] denotes the integer part function. That is

deg R̃λ = deg S̃λ =





[(n + 1)/2] + κ if λ ≤ min {n+ 1, κ} ,
[(n + 1)/2] + κ− λ+ n+ 1 if n + 1 < λ ≤ κ,

[(n + 1 + κ− λ)/2] + κ if κ < λ ≤ n + 1,

[(n + 1 + κ− λ)/2] + κ− λ+ n+ 1 if max {n+ 1, κ} ≤ λ.

Then, using (1.15), the degree of the numerator of the Abelian integral, Î(r), depends
on the region where r is considered. That is

deg Î(r) =




deg Îj(r) = max

λ=0,...,n+1+κ
{deg R̃λ + λ}, if r2 < a2j+1 + b2j+1, j = 0, . . . , k − 1,

deg Ik(r) = max
λ=0,...,n+1+κ

{deg R̃λ}, if r2 > a2k + b2k

where Îj(r) denotes the numerator of Ij(r) for j = 0, . . . , k. Hence,

deg Îj(r) =2max

{[
n + 1

2

]
+ κ +min{n+ 1, κ},

[
n+ 1

2

]
+ κ,

[κ
2

]
+ κ+ n + 1,

[
max{n+ 1, κ}

2

]
+ κ+ n+ 1

}
= 2

([
max{n+ 1, κ}

2

]
+ κ+ n + 1

)
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for j = 0, . . . , k − 1 and

deg Îk(r) =2max

{[
n+ 1

2

]
+ κ,

[
max{n+ 1, κ}

2

]
+max{n+ 1, κ}

}

=2

([
max{n+ 1, κ}

2

]
+max{n+ 1, κ}

)
.

Finally, the total number of zeros, except the origin, is bounded by the sum of all
the degrees. So, the bound is given by

|Z(n, k)| ≤ k (n + 1 + κ) + (k + 1) [max{n+ 1, κ}/2] + max{n+ 1, κ} − 1

≤ kn+ (k + 3) [max{n + 1, κ}/2] + k(2k2 − 3k + 2).

1.3 The case of one singularity

The aim of this section is to prove the bound, given in Theorem 1.12, for the number
of zeros of the Abelian integral when we have only one singularity.

Proposition 1.20. When k = 1, the singularity of system (1.10) is located at (1, 0) and
the function I(r), defined in (1.8), is the piecewise rational function

I(r) =





2π
r2

1− r2
Φ(r2) if 0 < r < 1,

2π
1

1− r2
Ψ(r2) if 1 < r,

(1.16)

where Φ and Ψ are polynomials of degree less or equal to n and [(n + 1)/2], respectively.
So,

∣∣ZM(n, 1)
∣∣ ≤ n + [(n+ 1)/2]. [·] denotes the integer part function.

Proof. Lemma 1.16 allows us to prove that the singularity is located at (1, 0).
Fixed P and Q in (1.6) we have

I(r) =

∫ 2π

0

Q(r cos t, r sin t)r sin t+ P (r cos t, r sin t)r cos t

r2 − 2r cos t+ 1
dt.

Following the procedure in the proof of Theorem 1.2, I(r) can be written as

I(r) =

n+1∑

l=0

rlRl(r
2)

∫ 2π

0

cos(lt)

r2 − 2r cos t+ 1
dt+

n+1∑

l=1

rlSl(r
2)

∫ 2π

0

sin(lt)

r2 − 2r cos t+ 1
dt.

By Lemma 1.19, the terms corresponding to the second addition vanish. Then, we only
need to consider the first one taking into account the relative position of the point (1, 0)
and the curve γr. When 0 < r < 1 we have

I(r) = I0(r) = 2π
1

1− r2

n+1∑

l=0

r2lRl(r
2) = 2π

r2

1− r2
Φ(r2)
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where

Φ(s) =

n+1∑

l=0

sl−1Rl(s) =

n∑

i=0

φis
i. (1.17)

and, when 1 < r,

I(r) = I1(r) = 2π
1

r2 − 1

n+1∑

l=0

Rl(r
2) = 2π

1

1− r2
Ψ(r2)

where

Ψ(s) = −
n+1∑

l=0

Rl(s) =

[(n+1)/2]∑

j=0

ψjs
j . (1.18)

Moreover, the coefficients {φi} and {ψi} are linear combinations of the coefficients {αl,m}
given by (1.13) in the proof of Theorem 1.2.

Proposition 1.21. Fixed n in N. If k = 1, given i and j such that i ≤ n and j ≤
[(n + 1)/2] and given x1, . . . , xi ∈ J0 = (0, 1), xi+1 . . . , xn /∈ J0, y1, . . . , yj ∈ J1 = (1,∞)
and yj+1, . . . , y[(n+1)/2] /∈ J1 then there exist P and Q of degree n such that I(r), defined
in (1.8), has exactly i zeros in J0 located on {xk} and j zeros in J1 located on {yl}.

Proof. When n = 0, Φ and Ψ are constants. Hence there are no isolated zeros and the
statement is proved.

For the other cases, n ≥ 1, we can choose P and Q, from the proof of Theorem 1.2,
such that the values of {αl,m} are arbitrary. Then the proof follows showing that the
polynomials Φ(s) and Ψ(s), from (1.17) and (1.18), have exactly the configuration of
zeros given in the statement. The main problem is that, from expressions (1.17) and
(1.18), it can be checked that

Φ(1) + Ψ(1) = 0 (1.19)

and, consequently, the values of {φi} and {ψi} are not independent. We apply this
relation in the coefficient of the leading term of Ψ, so

ψ[(n+1)/2] = −
n∑

i=0

φi −
[(n+1)/2]−1∑

j=0

ψj .

First we show, when n is even, that the coefficients {αl,m} can be given in terms of
{φi} and {ψj}. When n is odd follows similarly. The system given by the expressions
of {φi} and {ψj} with respect to {αl,m}, (1.13), is solvable if we take out one equation.
In fact, if we eliminate the equation relative to the expression of ψ[(n+1)/2], the solution
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{αl,m} can be written as

αl,m =





m/2−1∑
i=0

(φi + φn−i) +
m/2−1∑
j=0

ψj if l = 0, m = 2, 4, . . . , n,

−φn − ψ0 if l = 1, m = 1,

−
(m+1)/2−2∑

i=0

φi −
(m+1)/2−1∑

i=0

φn−i−
(m+1)/2−1∑

j=0

ψj if l = 1, m = 3, 5, . . . , n− 1,

φn/2+(l−1)/2 if l = 1, 3, . . . , n+ 1, m = n+ 1

0 in other cases.

(1.20)
Second, we compute the values {φi} and {ψj} for a fixed choice of the corresponding

zeros, taking into account the relation (1.19). Given xi 6= 1, i = 1, . . . , n and yj 6= 1,

j = 1, . . . , [(n+ 1)/2], there exists a unique collection of numbers, φ̃i for i = 0, . . . , n−1

and ψ̃j for j = 0, . . . , [(n+ 1)/2]− 1, such that sn +
n−1∑
i=0

φ̃is
i =

n−1∏
i=0

(s− xi) := Φ̃(s) and

s[(n+1)/2] +
[(n+1)/2]−1∑

j=0

ψ̃js
j =

[(n+1)/2]−1∏
j=0

(s − yj) := Ψ̃(s) with Φ̃(1) 6= 0 and Ψ̃(1) 6= 0.

Then fixing φn = 1 and ψ[(n+1)/2] = −Φ̃(1)/Ψ̃(1) we can define Φ(s) = φnΦ̃(s) and

Ψ(s) = ψnΨ̃(s). These two functions satisfy the condition (1.19) and the solution (1.20)
provides the existence of a perturbation where the functions Φ(s) and Ψ(s) defined in
(1.16) are done. Due to the arbitrariness of choosing the zeros, xi and yj, the proof is
finished.

Finally, we conclude this section with the proof of Theorem 1.12.

Proof of Theorem 1.12. Propositions 1.20 and 1.21 allow us to choose the perturbation
in (1.6) that has an associated Abelian integral with a fixed configuration of simple
zeros. So, see [Pon34], there exist perturbations with at least any configuration of limit
cycles less or equal than (n, [(n+ 1)/2]) .

1.4 The case of two singularities

The rationality of I(r) guarantees a solution for the problem P(n, k). But the solution
can not be optimal because an example with such quantity of zeros can not be obtained.
We present, in this section, some optimal bounds for k = 2 and small values of n. The
cases n ≤ 6 are studied with more detail. The computations that are needed, for larger
values of n, exceed the capacity of our computers.

1.4.1 An explicit bound for the maximum configuration

Theorem 1.2 provides, using that function I(r) is piecewise rational, the existence of a
maximum configuration. Although the proof is constructive, it does not give the lowest
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value for the degree of functions Ij . So just if we fix concrete values of k, explicit
lower upper bounds of these degrees can be obtained. This section deals with the case
k = 2, where Theorem 1.13 gets a better upper bound of ZM(n, 2). Before to prove
Theorem 1.13, we introduce some technical results. Lemma 1.23 gives a better rational
decomposition than Lemma 1.17. And Proposition 1.24 provides an explicit expression
for I(r). Therefore, we can study the degrees of the numerator of I(r) in each interval
Jl for l = 0, 1, 2, defined in the introduction.

As Lemma 1.16, next result transforms (1.6) into another one which simplifies the
computations.

Lemma 1.22. Given system (1.6),

{
ẋ = y K(x, y) + εP (x, y),
ẏ = −xK(x, y) + εQ(x, y),

(1.21)

where K(x, y) =
2∏
j=1

((x− aj)
2 + (y − bj)

2) and P and Q are polynomials of degree n.

And such that (a1, b1), (a2, b2) and the origin are not collinear, equivalently a1/b1 6=
a2/b2. Then, there exists a change of variables, in fact a rotation centered at the origin,
that restricts the study of (1.21) to the case a1 = a2 = a > 0. Moreover, the value
a2j + b2j remains unchanged.

Proof. Let us consider that the change of variable (x̃, ỹ) is a rotation, in the plane
(x, y), with respect to the origin of angle θ = arctan ((a1 − a2)/(b1 − b2)) . As it is a
linear transformation it does not modify the structure of the system, nor the degree of
the perturbation (P,Q). More concretely, the singularities are located at (ã1, b̃1) and

(ã2, b̃2) with

ã1 = ã2 = ã = sign(b1 − b2)
−b1a2 + a1b2√

(a1 − a2)2 + (b1 − b2)2
.

If ã is negative then we make a rotation of angle θ + π instead of θ.

The following lemma gives us a decomposition with addends of degree one, for k = 2.
It is proved just for the case a1 = a2 > 0, but with this structure can be found a
decomposition’s result less restrictive.

Lemma 1.23. Under the hypothesis of Theorem 1.2 for k = 2 assuming that a1 = a2 =
a > 0 and b1 6= b2 we have that:

1
2∏
j=1

Fj(r, cos t, r sin t)

= A(r2) +
2∑

j=1

Bj(r
2)(r cos t+ 1) + Cj(r

2)r sin t

Fj(r, cos t, r sin t)
, (1.22)
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where

A(r2) =
r4 + 2(a2 − b1b2)r

2 + (a2 + b21)(a
2 + b22)− 4a2

D1(r2)D2(r2)E(r2)
,

B1(r
2) =

4ar2 + 2a(a2 + b21)(b1 − b2)

(b1 − b2)D1(r2)E(r2)
,

B2(r
2) =

−4ar2 + 2(a2 + b22)(b1 − b2)

(b1 − b2)D2(r2)E(r2)
,

C1(r
2) =

−2(a2 − b21)r
2 + 2(a2 + b21)(a

2 + 2a + b1b2)

(b1 − b2)D1(r2)E(r2)
,

C2(r
2) =

2(a2 − b22)r
2 + 2(a2 + b22)(a

2 + 2a+ b1b2)

(b1 − b2)D2(r2)E(r2)
,

Dj(r
2) = r2 + a2 + 2a+ b2j ,

E(r2) = r4 − 2 (a2 + b1b2)r
2 + (a2 + b21)(a

2 + b22),

Fj(r, cos t, r sin t) = r2 − 2ar cos t − 2bjr sin t + a2 + b2j ,

for j = 1, 2.

Proof. The numerator of equation (1.22) can be written as

η0 + η1r cos t+ η2r sin t+ η3r
2 cos(2t) + η4r

2 sin(2t) = 1,

and the system of equations {η0 = 1, η1 = η2 = η3 = η4 = 0} takes the form

M




A
B1

B2

C1

C2




=




1
0
0
0
0



, (1.23)

where M is the matrix of the corresponding linear system. The determinant of M,

det(M) =−
(
4a2 + (b1 + b2)

2
)
D1(r

2)D2(r
2)E(r2),

does not vanishes because, for r ∈ R, none of the bi-quadratic factor do. This is
due to the fact that the discriminant of det(M), considered as a polynomial in r2, is
−4a2(b2 − b1)

2, which is negative for any value of the parameters under the hypothesis
of the statement. The factors in r2 vanishes only when r2 = −(a2 + b2j + 2a) < 0, which
is impossible for r ∈ R.

The values of A, Bj , Cj , Dj and E, for j = 1, 2, come solving equation (1.23).

Proposition 1.24. Let A,Dj , E be the functions defined in Lemma 1.23. Under the
same hypotheses of this lemma, the Abelian integral I(r) writes as

I(r) = 2πA(r2)R0(r
2) + 2π

2∑

j=1

n+2∑

l=0

φj,l(r
2)rl(1+(−1)δj )

(−1)δj (a2 + b2j − r2)
, (1.24)
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where δj =

{
0 if r2 < a2 + b2j
1 if r2 > a2 + b2j

, l = 0, . . . , n + 2 for j = 1, 2. Moreover, if s = r2,

R0(s) is a polynomial of degree [(n+1)/2] and φj,l(s) are rational functions that depend
on a, b1, b2 and n. The numerator of any φj,l has lower or equal degree to 2+ [(n− l)/2]
and the denominator is the polynomial Dj(s)E(s), which has degree 3, for j = 1, 2 and
l = 0, . . . , n+ 2.

Proof. The expression of the Abelian integral, from the proof of Theorem 1.2, is given
by (1.14). Hence, using Lemma 1.23, we have

I(r) =
n+1∑

l=0

rlA(r)

(
Rl(r

2)

∫ 2π

0

cos(lt)dt+ Sl(r
2)

∫ 2π

0

sin(lt)dt

)

+
2∑

j=1

n+2∑

l=0

rl
[
Bj(r

2)

(
Rl(r

2) +
r2

2
Rl+1(r

2) +
1

2
Rl−1(r

2)

)

+Cj(r
2)

(
r2

2
Sl+1(r

2)− 1

2
Sl−1(r

2)

)]∫ 2π

0

cos(lt)

Fj(r, cos t, sin t)
dt

+

2∑

j=1

n+2∑

l=0

rl
[
Bj(r

2)

(
Sl(r

2) +
r2

2
Sl+1(r

2) +
1

2
Sl−1(r

2)

)

+Cj(r
2)

(
−r

2

2
Rl+1(r

2) +
1

2
Rl−1(r

2)

)]∫ 2π

0

sin(lt)

Fj(r, cos t, sin t)
dt,

where Fj(r, cos t, sin t) = r2 − 2ar cos t − 2bjr sin t + a2 + b2j and Rl(r
2) and Sl(r

2) are
polynomials of degree at most [(n + 1− l)/2] with arbitrary coefficients for all l =
0, . . . , n + 1, see (1.14). For simplicity we have denoted R−1 = S−1 = S0 = Rn+2 =
Sn+2 = Rn+3 = Sn+3 = 0.

Finally, the expression given in the statement follows, using also that
∫ 2π

0
cos(lt)dt =

0 for l > 0 and
∫ 2π

0
sin(lt)dt = 0 for l ≥ 0, replacing the integrals in the previous formula

for I with the corresponding expressions of Icl (r) and I
s
l (r) given in Lemma 1.19. Addi-

tionally, straightforward computations show that the numerators of φj,l are polynomials
in r2 of degree lower or equal to

1 + max

([
n + 1− l

2

]
, 1 +

[
n+ 1− (l + 1)

2

]
,

[
n+ 1− (l − 1)

2

])
= 2 +

[
n− l

2

]
.

Proof of Theorem 1.13. For k = 2 there are three regions to study, Jj for j = 0, 1, 2.
See the introduction for the definition of Jj . Moreover, we distinguish two cases: when
the singularities (aj , bj) are collinear with the origin and when they are not.

First we study the non collinear case. From Lemma 1.22, as in the previous proofs, we
assume a1 = a2 = a and we apply Proposition 1.24, which provides explicit expressions
for I in each region.
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In the first region r ∈ J0, that is r
2 < a2 + b21 < a2 + b22, we apply Proposition 1.24

with δj = 0 for j = 1, 2. Then the Abelian integral (1.24) writes as

I(r) = I0(r) = 2πA(r)R0(r) + 2π
2∑

j=1

n+2∑

l=0

φj,l(r
2)r2l

a2 + b2j − r2
,

where the degree of the numerator of I0(r) is lower or equal to

2

(
max

l=0,...,n+2

(
2 +

[
n + 1

2

]
+ 2, l + 2 +

[
n− l

2

]
+ 2

))
= 2(n+ 5).

Furthermore, I(r) is a function of r2 and from the expression of I(r) in polar coordinates,
(1.13), it can be checked that I0(0) = 0. So, in fact, Z0(n, 2) ≤ n+ 4.

Doing the same procedure for the second region r ∈ J1, a
2+ b21 < r2 < a2+ b22, (1.24)

writes as

I(r) = I1(r) = 2πA(r2)R0(r
2) + 2π

n+2∑

l=0

φ1,l(r
2)

r2 − (a2 + b21)
+ 2π

n+2∑

l=0

φ2,l(r
2)r2l

a2 + b22 − r2
,

and the degree of the numerator of I1(r) is lower or equal to

2

(
max

l=0,...,n+2

(
2 +

[
n + 1

2

]
+ 2, l + 2 +

[
n− l

2

]
+ 2

))
= 2(n+ 5).

Hence Z1(n, 2) ≤ n+ 5.

As in the above cases, for the last region r ∈ J2, a
2+ b21 < a2+ b22 < r2, we have that

I(r) = I2(r) = 2πA(r2)R0(r
2) + 2π

2∑

j=1

n+2∑

l=0

φj,l(r
2)

r2 − (a2 + b2j )
.

The proof for this case finishes showing that the degree of the numerator of I2(r) is
lower or equal to

2

(
max

l=0,...,n+2

(
2 +

[
n+ 1

2

]
+ 2, 2 +

[
n− l

2

]
+ 2

))
= 2

([
n+ 1

2

]
+ 4

)
.

Therefore we have that Z2(n, 2) ≤ [(n+ 1)/2] + 4.

The collinear case, a1/b1 = a2/b2, follows similarly but using the decomposition
introduced in [GPT08]. Straightforward computations show that Ij are functions of r2

and the degrees of the corresponding numerators are bounded by 2(n+1), 2(n+2) and
2 [(n + 1)/2] + 1, for j = 0, 1, 2.



22 Chapter 1. Limit cycles on a linear center with extra singular points

Improvements of upper bounds when n ≤ 6 and k = 2

It is clear that the expression of I(r) is unique, although the differences given by the
decompositions in Lemmas 1.17 and 1.23 can mislead us of this fact. For concrete
values of n and k, straightforward computations2 show that the bounds provided by
Theorem 1.13 are larger than the explicit ones obtained by direct calculations. These
differences are due to some simplifications that appear during the procedure to obtain
I(r). Therefore, this phenomenon is still an open question.

Proposition 1.25. Table 1.1 summarizes the values of the maximum configuration for
k = 2 and n ≤ 6.

n ZM=(Z0, Z1, Z2) |ZM | Z̃
0 (1,1,1) 3 13
1 (3,2,3) 8 16
2 (4,3,3) 10 18
3 (5,4,4) 13 21
4 (6,5,4) 15 23
5 (7,6,5) 18 26
6 (8,7,5) 20 28

Table 1.1: Degree of the numerators of I in each region. Z̃ shows the value given by
Theorem 1.13

The computations involved in obtaining the values of Table 1.1 are not difficult but
the memory requirements are too high. In fact our computers needed some hours to
obtain the explicit expressions for n = 5 and over a week for n = 6. Hence other
techniques should be developed to obtain them for higher values of n. Extrapolating
the exact values of Table 1.1 for n ≥ 1 we have

ZM (n, 2) ≤
(
n + 2, n+ 1,

[
n+ 1

2

]
+ 2

)

and so

|ZM(n, 2)| ≤ 2n+

[
n + 1

2

]
+ 5.

This values match with the ones given in Table 1.1 for n ≤ 6. Next section presents also
the explicit expressions for I for the values n = 0 and n = 1.

1.4.2 Configurations of simultaneous zeros

In this section we see that, in general, there is no perturbation nor singular points such
that the configuration of zeros is the maximum one. Therefore the maximality of the

2All the computations of this section have been done with MAPLE.
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total number of zeros of I(r2) is a simultaneity problem of zeros and the three different
period annulus should be studied all together. The main difficulty is studying the
different functions in the same parameter space defined in fixed but different domains.

As we have already mention in the introduction, and for simplicity, we restrict our
analysis to the case

(a1, b1) = (1, 0) and (a2, b2) = (a, b), with a2 + b2 ≥ 1.

Let n be the degree of the perturbation (P,Q) in (1.6). The explicit expression of the
Abelian integral I given by (1.9) can be explicitly obtained in terms of the coefficients
of P and Q. From the results and the notation of this chapter, I is defined by the three
functions I0(r

2), I1(r
2) and I2(r

2). Hence the problem reads as: For any n, given a
point in the plane (a, b), which is the maximum number of simultaneous zeros of Ij in
Jj for j = 0, 1, 2? This section provides a detailed presentation of our results for n = 0
and n = 1.

Configurations for degree zero perturbations

In the previous section we conclude that ZM(0, 2) = (1, 1, 1). Hence we can prove the
result which gives the configurations of zeros for the Abelian integral for n = 0.

Proof of Theorem 1.14. Let P (x, y) = p0 and Q(x, y) = q0 be the perturbation functions
given in (1.6) for n = 0. In this case following the procedure and notation described in
Section 1.2 we obtain I, from (1.8),

I0(r
2) = 2π

r2 ((aα+ bβ + α)r2 − bβ − aα− b2α− a2α)

(a2 + b2 − r2) ((r2 − a)2 + b2) (r2 − 1)
,

I1(r
2) = 2π

(aα + bβ − α)r2 − bβ − aα + b2α + a2α

(a2 + b2 − r2) ((a− 1)2 + b2) (r2 − 1)
,

I2(r
2) = −I0(r2).

(1.25)

Each Ij, 0, 1, 2 is defined in the intervals (0, 1), (1,
√
a2 + b2) and (

√
a2 + b2,∞), re-

spectively. α and β are independent combinations of p0 and q0, so they can be considered
as the parameters of this problem. In fact, in this case α = p0 and β = q0. Hence, the
simple zeros different from the origin are given from the respective numerators. That
is, from three polynomials of degree one in r2, denoted by Îj for each j = 0, 1, 2, which
depend on a, b, α, β.

Finally, we show which are the possible configurations less or equal to the maximum,
(1, 1, 1).

From (1.25), I0 and I2 have exactly the same zeros. Hence the configuration (1, 1, 1)

can not be done, because Î0 and Î2 can not have simultaneously one zero in (0, 1) and
another one in (

√
a2 + b2,∞). So, I(r2) have, at most, two simple zeros.

Let us denote by x0 the zero of Î0. Then we have the condition

(aα + bβ + α)x0 − bβ − aα− b2α− a2α = 0.



24 Chapter 1. Limit cycles on a linear center with extra singular points

Solving the previous expression in terms of α/β we have that

α

β
=

b(−1 + x0)

−a− b2 − a2 + x0 + ax0
.

Then, the following properties hold

Î0(0) = −x0ω,
Î0(1) = (1− x0)ω,

Î1(1) = (1− x0)ω,

Î1

(√
a2 + b2

)
= (x0 − (a2 + b2))ω,

Î2

(√
a2 + b2

)
= (x0 − (a2 + b2))ω,

Î2(∞) = sign(−ω)∞,

where ω = bβ(a2+b2−1)/(a+b2+a2−x0−ax0). The proof ends studying the sign of the

above expressions in terms of x0. When x0 is in (0, 1) or in (
√
a2 + b2,∞), Î1 has a zero

in (1,
√
a2 + b2). But when x0 is in [1,

√
a2 + b2] then Î1 has no zeros in (1,

√
a2 + b2).

These last assertions prove that the only possible configurations are (1, 1, 0), (0, 1, 1)
and (0, 0, 0).

Configurations for degree one perturbations

The configurations in Theorem 1.15 are obtained looking for fixed values of (a, b) and
specific perturbations for each of them. This section deals with all possible configurations
less than the maximum (3, 2, 3), given in Section 1.4, for degree one perturbations. A
different problem is, for a fixed configuration, which are all the points (a, b) such that
this configuration is obtained studying all the possible perturbations of fixed degree.
Section 1.4.3 studies this last problem for the configurations (3, 1, 2). However it is
necessary to obtain beforehand some results for some lower configurations. The following
definition is also useful to study this case.

Definition 1.26. We say that Z(n, k) = (Z0, . . . ,Zk) is a minimal configuration of
P(n, k) in (a, b) if for some choice of values of the parameters, we have at least a
configuration of zeros Z(n, k) for I defined by (1.8).

For the case k = 2 and n = 1, following the procedure and notation described in
Section 1.2 we obtain I, from (1.8),

I0(r
2) = 2π

r2Î0
(a2 + b2 − r2) (a2 + b2) ((r2 − a)2 + b2) (r2 − 1)

,

I1(r
2) = 2π

Î1
(a2 + b2 − r2) (a2 + b2) ((a− 1)2 + b2) (r2 − 1)

,

I2(r
2) = 2π

Î2
(a2 + b2 − r2) ((r2 − a)2 + b2) (r2 − 1)

,
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where

Î0 =− (aα2+bβ2)r
6+
(
(a2+b2)α0+

(
(a+1)2+b2

)
(aα2+bβ2)

)
r4

+
(
(1+a)(a2+b2)α1+b(a

2+b2)β1−
(
(a2+b2)2+a(a2+b2)+a2−b2

)
α2

−b
(
(a+1)2+b2−1

)
β2

)
r2− (a2+b2)2α0−

(
(a+1)2+b2−1

)
(a2+b2)α1

−b(a2+b2)β1,
Î1 =((a2−b2−a)α2+b(2a−1)β2)r

4+
(
(a2+b2−1)(a2+b2)α0+(a−1)(a2+b2)α1

+b(a2+b2)β1+a((a−1)2+b2)α2+b
(
(a−1)2+b2

)
β2

)
r2

+(a2+b2−a)(a2+b2)α1−b(a2+b2)β1+(a2+b2−a)(a2+b2)α2−b(a2+b2)β2,
Î2 =−α0r

6+
(
− (a+1)α1−bβ1+(−a2+b2−a−1)α2−b(1+2a)β2

)
r4

+
(
(a2+b2)α0+(a2+b2+a)α1+bβ1+a

(
(a+1)2+b2

)
α2+b

(
(a+1)2+b2

)
β2

)
r2

−a(a2+b2)α2−b(a2+b2)β2.
(1.26)

The second subindex of αi’s and βi’s that appeared in (1.13) has been deleted to simplify
the previous expressions. Thus, we have that all the coefficients αi and βi are arbitrary
real constants. And together with a and b, they compose the set of seven essential pa-
rameters of problem P(1, 2). Moreover, expressions (1.26) show also that the maximum
configuration for this problem is (3, 2, 3).

As it has been explained in the introduction, the limit cycles correspond with the
simple zeros of I(r2). Then we can study only the configuration of the simultaneous

zeros of the polynomials Î0, Î1 and Î2 in their corresponding intervals. This can be done
rewriting these polynomials in the proper way and doing an exhaustive and meticulous
application of the Descartes’s rule of signs.

Next result shows that, for this case, there exists a symmetry that reduces the number
of cases we need to study.

Proposition 1.27. For any (a, b), if (z0, z1, z2) is a configuration of problem P(1, 2)
then (z2, z1, z0) is also a configuration.

Proof. From expressions (1.26), according to Definition 1.4 and equation (1.13) we prove
that if there are α0, α1, α2, β1 and β2 so that (z0, z1, z2) is a configuration, then there
are α∗

0, α
∗
1, α

∗
2, β

∗
1 and β∗

2 for which the configuration of zeros is (z2, z1, z0).
With the change of variables

(x, y) =

(
aw + bz

w2 + z2
,
bw − az

w2 + z2

)
and its inverse (w, z) =

(
ax+ by

y2 + x2
,
bx− ay

y2 + x2

)
,

we have that

(a, b) 7→ (1, 0), (1, 0) 7→ (a, b), and w2 + z2 =
a2 + b2

y2 + x2
. (1.27)
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The relation between the new Abelian integral (I∗0 , I
∗
1 , I

∗
2 ) and the old one is given by

(I∗0 , I
∗
1 , I

∗
2 ) = (I2, I1, (a

2 + b2)I0),

where the new parameters are

α∗
0 =

(a2 + b2)α0 + (a2 + a + b2)α1 + β1b

a2 + b2
,

α∗
1 =

−α1a− β1b

a2 + b2
,

α∗
2 =

(a− a2 − b2)α1 + β1b+ (a− b) (a+ b)α2 + 2 β2gc

a2 + b2
,

β∗
1 =

− (a2 + a+ b2) (a2 − a+ b2)α1 + cβ1b

b (a2 + b2)
,

β∗
2 =

a (a2 − a+ b2)α1 − cβ1b+ 2α2b
2a− b (a− b) (a+ b) β2

b (a2 + b2)
.

Finally we have, from the change of variables (1.27), the following correspondence be-
tween intervals

r ∈ (0, 1) 7→ r∗ ∈
(
a2 + b2,∞

)
,

r ∈
(
1, a2 + b2

)
7→ r∗ ∈

(
1, a2 + b2

)
,

r ∈
(
a2 + b2,∞

)
7→ r∗ ∈ (0, 1) ,

that provides the symmetric configuration.

Due to the symmetry given by the last proposition, let us consider, from now on,
only configurations (z0, z1, z2) with z0 ≥ z2.

First we prove some technical results to know which vectors of integers are config-
urations and which are not. More concretely, Lemma 1.28 shows how some of zeros of
Îj(r

2) for j = 0, 1, 2 can be fixed a priori. This allow us to found the minimal configu-
rations of P(1, 2). See Proposition 1.29. From these facts, we prove that I(r) has not
eight positive zeros. Because there are no configurations with three zeros in the inner
annulus and two in the middle one. See Proposition 1.30. Moreover the properties that
satisfy the polynomials Î0, Î1 and Î2 are studied in order to apply, in most cases, the
Descartes’ rule of signs.

Lemma 1.28. Fixed (a, b) with b 6= 0. Given x0, x1, x2 non-zero and different real
numbers such that (a + 1)2 + b2 6= x0 + x1 + x2 and y0 a real number such that y0 6= 1
and y0 6= a2 + b2, then there exist α0, α1, β1, α2, β2 satisfying:

Î0(r
2) =− α0(r

2 − x0)(r
2 − x1)(r

2 − x2),

Î1(r
2) =α0(r

2 − y0)
(
(µ− y0)(1− x0)(1− x1)(1− x2)(r

2 − µ)

+ (1− y0)(µ− x0)(µ− x1)(µ− x2)(r
2 − 1)

)
,

Î2(r
2) =α0

(
φ3(r

2 − µ)3 + φ2(r
2 − µ)2 + φ1(r

2 − µ) + φ0

)
:= α0φ(r

2 − µ),

(1.28)
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where µ = a2 + b2 and

φ3 = µ+ 1 + 2a− (x0 + x1 + x2),

φ2 = 3µ2 + (4a+ 1− 3(x0 + x1 + x2))µ+ x0x1 + x1x2 + x0x2 − 2a,

φ1 = 3µ3 + (2a− 3(x0 + x1 + x2))µ
2 + (1− 2a+ 2(x0x1 + x1x2 + x0x2))µ− x0x1x2,

φ0 = µ(µ− x0)(µ− x1)(µ− x2).

Proof. From equation (1.26), the proof follows checking that the system of equations

{
Î0(x0) = 0, Î0(x1) = 0, Î0(x2) = 0, Î1(y0) = 0

}
,

has only one solution with respect to the variables α1, β1, α2, β2. Because the determi-
nant of its associated matrix M,

det(M) =b2x0x1x2(x2 − x0)(x1 − x0)(x2 − x1)(y0 − 1)(a2 + b2 − 1)

(a2 + b2)3(a2 + b2 − y0)((a+ 1)2 + b2 − x0 − x1 − x2),

does not vanish.

Previous lemma shows that (3, 1, 0) is a minimal configuration . Similar results give
other minimal configurations for this case.

Proposition 1.29. The configurations which are minimal of P(1, 2) in any (a, b) are
(3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2), (1, 2, 1), (1, 1, 2), (1, 0, 3), (0, 2, 2) and (0, 1, 3).

Next result shows that there are configurations that can not be done. An immediate
consequence of next result is that the maximum configuration is not maximal. Hence,
there are no perturbations providing eight simultaneous zeros.

Proposition 1.30. Given w ∈ {0, 1, 2, 3}, (3, 2, w) is not a configuration of P(1, 2).

Proof. With the change r2 = (µ− 1)s+1, the expression of Î1 in Lemma 1.28 writes as

Î1(s) = α0(µ− 1)2(s− y0)ϕ(s) (1.29)

where ϕ(s) = −y0(µ − x0)(µ − x1)(µ − x2)s + (1 − y0)(1 − x0)(1 − x1)(1 − x2)(s − 1),
and the interval of definition is moved to (0, 1). Consequently, if x0, x1, x2, y0, s ∈ (0, 1)

we have that y0 is the unique zero of Î1(s) in (0, 1), because the polynomial of degree
one, ϕ(s), is always negative in this interval,

ϕ(0) = −(1− y0)(1− x0)(1− x1)(1− x2) < 0,

ϕ(1) = −y0(µ− x0)(µ− x1)(µ− x2) < 0.

Therefore it is not possible that Î1(s) has two zeros in the interval (1, a2 + b2) and the
statement is done.
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The list of impossible configurations follows studying the number of zeros of Î2 or
φ(s), see (1.28), given in Lemma 1.28. The Descartes’ rule of signs, [Kos82], allows us
to describe them. But first we need some technical results and notations to describe
the signs of the coefficients φi, when we move the parameters on the plane (µ, a). More
concretely, Lemmas 1.32, 1.33 and 1.34 provide the shapes and locations of the equations
φi = 0. On the plane (µ, a), with µ = a2+ b2, in all these relations a can be written as a
function of µ. We denote them by a = ai(µ). Lemma 1.35 gives some relations between
the coefficients that are very useful in the proof of Proposition 1.36. This last result
exposes that there are not configurations with six positive and simultaneous zeros of I,
three in the inner annulus and three more in the outer one. This result together with
Proposition 1.30 shows that there are not configurations with seven zeros.

Definition 1.31. Given a polynomial φ(s) =
n∑
j=0

φjs
j, we say that φ has the confi-

guration of signs [sn, . . . , s1, s0] with si ∈ {+,−, ?} if and only if sign(φj) = sj for
j = 0, . . . , n and the symbol ? denotes the case when sign(φj) is unknown.

For example, for a polynomial of degree three, we say that φ(s) = φ3s
3+φ2s

2+φ1s+
φ0, has the configuration [−,+,−,+] if φ3 < 0, φ2 > 0, φ1 < 0 and φ0 > 0, and we say
that it has a configuration [?,+,+,+] if we don’t know the sign of φ3 but φ2, φ1, φ0 > 0.

Lemma 1.32. Given x0, x1, x2 ∈ (0, 1), let us consider a1=a1(µ) such as φ1(µ, a1(µ)) =
0. Then

a1 =
3µ3 − 3 (x0 + x1 + x2)µ

2 + (2x0x2 + 2x0x1 + 1 + 2x1x2)µ− x0x1x2
2µ (1− µ)

. (1.30)

Furthermore, for µ > 1, the graph of the function a1(µ) has a vertical asymptote on µ = 1
and an oblique one on a = −3 (µ+ 1− (x0 + x1 + x2)) /2.Moreover, limµ→1+ a1 = −∞.
See the graph of function a1(µ) and the sign of coefficient φ1 in Figure 1.4.

1

φ1 < 0

φ1 > 0

µ

a

Figure 1.4 Graph of the curve φ1(µ, a) = 0 defined in Lemma 1.32
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Proof. The graph of a1 has µ = 0 and µ = 1 as vertical asymptotes. The limit of a1
when µ nears 1 on the right side is

lim
µ→1+

a1 = sign (−4 + 3(x0 + x2 + x1)− 2(x0x2 + x0x1 + x1x2) + x0x1x2)∞,

that for the values of x0, x1 and x2 consider, is always negative. The proof finishes
studying the graph close to the asymptote.

Lemma 1.33. Given x0, x1, x2 ∈ (0, 1), let us consider a2 = a2(µ) with φ2(µ, a2(µ)) = 0,
then

a2 =
3µ2 + (1− 3x0 − 3x1 − 3x2)µ+ x0x2 + x0x1 + x1x2

2(1− 2µ)
. (1.31)

Moreover, the graph of a2 presents a vertical asymptote on µ = 1/2 and an oblique one
with equation a = (6(x0+x1+x2)−6µ−5)/8. Figure 1.5 shows the graph of the function
a2(µ) for µ > 1/2 in terms of the sign of the limit

lim
µ→ 1

2

+
a2 = sign (−5 + 6(x0 + x1 + x2) + 4(x0x2 − x0x1 + x1x2))∞

and the sign of the coefficient φ2.

1

2

φ2 < 0

φ2 > 0

µ

a 1

2

φ2 < 0

φ2 > 0

µ

a

Figure 1.5 Graphs for the curves φ2(µ, a) = 0 defined in Lemma 1.33

Lemma 1.34. Given x0, x1, x2 ∈ (0, 1), let us consider a3 = a3(µ) with φ3(µ, a3(µ)) = 0,

a3 = −1

2
(µ+ 1− (x0 + x1 + x2)). (1.32)

Moreover, the graph of the function a3(µ) is a straight line with negative slope. Figure 1.6
shows also the sign of the coefficient φ3.

Lemma 1.35. Given x0, x1, x2 ∈ (0, 1), let ai = ai(µ) for i = 1, 2, 3 be the functions
defined in (1.30), (1.31) and (1.32). If µ > 1 then a2(µ) > a1(µ). See the relative
positions of the respective graphs and the sign configurations in Figure 1.7.
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φ3 > 0

φ3 < 0

µ

a

Figure 1.6 Graph of the curve φ3(µ, a) = 0 defined in Lemma 1.34

1 µ

a

[?,+,+,+]

[?,−,+,+]

[?,−,−,+]

a = a2

a = a1

1

µ

a

[?,+,+,+]

[?,−,+,+]

[?,−,−,+]

a = a2

a = a1

Figure 1.7 The two situations for the curves φ1(µ, a) = 0 and φ2(µ, a) = 0, defined on
Lemma 1.35. The sign configurations of the function φ(s) are also indicated

Proof. The proof follows showing that there are no tangential contact points between
a1 and a2 for any choice of values of x0, x1 and x2. Then, for fixed values of x0, x1 and
x2, it is checked that the relative position is the given in the statement.

First we compute the resultant, R1,2, between the numerator of the difference of a1
and a2 and the difference of its derivatives, with respect to the parameter x2. That is

R1,2 = (9µ6 − 18 (x1 + x0)µ
5 + 3

(
3(x1

2 + x0
2 − 1) + 4(x0 + x1) + 9x0x1

)
µ4

− 2
(
x1 − 3 + 6x0

2x1 + 11x0x1 + 3x1
2 + 6x1

2x0 + x0 + 3x0
2
)
µ3

+ 3x0x1 (3x1 + 2x0x1 + 3 + 3x0)µ
2 − 6x0x1 (x0x1 + 1)µ

+ x0x1 (x0x1 + 1)) (2µ− 1)µ (µ− 1) .

The last three terms of R1,2 do not vanish when µ > 1 and the first one, which is the
unique term that could be null, with the change µ̃ = µ− 1 writes as

R̃1,2(µ̃) = 9µ̃6 + 18 (3− x1 − x0) µ̃
5 + 3

(
42− 26(x0 + x1) + 9x0x1 + 3(x21 + x20)

)
µ̃4

+ 2
(
−6(x21x0 + x20x1) + 15(x20 + x21)− 67(x0 + x1) + 75 + 43x0x1

)
µ̃3

+ 3
(
35x0x1 + 12(x20 + x21)− 9(x20x1 + x21x0)− 38(x0 + x1) + 33 + 2x20x

2
1

)
µ̃2

+ 6
(
6− 3(x20x1 + x21x0) + 3(x20 + x21) + x20x

2
1 − 8(x0 + x1) + 9x0x1

)
µ̃

+ 6 + 9x0x1 − 8x0 − 8x1 + x20x
2
1 − 3x20x1 + 3x21 + 3x20 − 3x21x0.
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Hence, R̃1,2 is always positive because for all x0 and x1 in (0, 1), all the coefficients of
this polynomial are positive. So there is not tangential contact.

Straightforward computations finish the proof showing that a2 > a1 for fixed x0 =
1/8, x1 = 1/4 and x2 = 1/2. That is

a2 − a1 =
192µ̃4 + 536µ̃3 + 690µ̃2 + 460µ̃+ 115

128 (2µ̃+ 1) (µ̃+ 1) µ̃
> 0.

Proposition 1.36. Given w ∈ {0, 1, 2}, (3, w, 3) is not a configuration for the problem
P(1, 2).

Proof. In the expression of Î2(r
2) given in Lemma 1.28, or equivalently in function φ(s),

y0 does not appear. So if Î0(r
2) has three zeros in (0, 1), the zeros of Î2(r

2) do not

depend on the zeros of Î1(r
2).

From equation (1.28), φ can be considered in the variables (µ, a) with µ = a2 + b2.
Moreover, φ is a function in b2, then we can restrict our study to b > 0. The number
of zeros of φ can be done studying the number of positive zeros, considering φ(s) with
r2 = s+ a2 + b2 and applying the Descartes’ rule, [Kos82].

When Î0 has three zeros in the first region, x0, x1, x2 ∈ (0, 1), as µ > 1 φ0 is always

positive. This forces that Î2 has also three zeros if and only if, for s > 0 we have
φ3 < 0, φ2 > 0, φ1 < 0. The proof follows showing that this relative position of the
curves, see Figure 1.8, is in fact impossible.

1

µ

a

a = a3

a = a2

a = a1

Figure 1.8 Impossible configuration of the graphs of the functions a = ai(µ), i = 1, 2, 3.
The shadowed region corresponds to the situation φ0, φ2 > 0, φ1, φ3 < 0 with a sign

configuration [−,+,−,+]
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When µ > 1, it can be checked that for each i = 1, 2, 3, φi > 0 if and only if a > ai(µ).
Lemma 1.35 guaranties that a2 > a1. Therefore there is not a value of a such as a < a1
and a > a2. So the conditions φ1 < 0 and φ2 > 0 are incompatible.

Proposition 1.37. For any (a, b) and given w ∈ {0, 1, 2}, (3, 0, w) is a configuration
if, and only if (3, 1, w) is a configuration also.

Proof. From the functions (1.28), if we fix x0, x1, x2 and y0, the expression Î2 is inde-

pendent to the choice of y0. Then when Î0 has three zeros, independently of the number
of zeros of Î2, Î1 has one zero for y0 in (0, 1) and no zeros when y0 > 1. Because equa-

tion (1.29) guaranties that the other zero of Î1 is negative. Moreover, the point (a, b)
remains unchanged, but the perturbation changes with y0.

Maximum number of zeros for degree one perturbations

Now we prove Theorem 1.15, the main result of Section 1.4, that asserts that the max-
imum number of zeros of P(1, 2) is six. And the maximal configurations are (3, 1, 2),
(2, 2, 2) and (2, 1, 3). In fact it is also proved that a vector of integers is a configuration
if, and only if, is less or equal to one of the maximal ones.

Proof of Theorem 1.15. Proposition 1.25 provides that all the configurations are lower
than (3, 2, 3). Propositions 1.27, 1.30 and 1.36 guarantee that (3, 2, 3), (3, 2, 2), (3, 1, 3)
and (2, 2, 3) are not configurations. Therefore the maximum number of simultaneous
zeros cannot be seven nor eight. Same results imply that neither (3, 2, 1), (3, 0, 3),
(1, 2, 3) are configurations. Hence the only configurations with six zeros are the ones
from the statement.

The proof finishes proving that all the vectors (z0, z1, z2) less or equal to (3, 1, 2),
(2, 2, 2) or (2, 1, 3) are configurations. This is done providing concrete values of (a, b) and

perturbation parameters such that the exact number of zeros of Îj is zj for j = 0, 1, 2.
We only show that (2, 2, 2) is a configuration because the other cases follows similarly
and next section deals with the configurations of type (3, 1, w).

Fixed (a, b) = (1/2, 1), we have J0 = (0, 1), J1 =
(
1,
√
5/2
)
and J2 =

(√
5/2,∞

)
.

From Proposition 1.29 we know that (2, 2, 0) is a minimal configuration. In a similar way

that Lemma 1.28, we can found the functions Î0 and Î1, see (1.26), such that x0 = 7/10,
x1 = 9/10 and y0 = 11/10, y1 = 12/10, are their corresponding pair of zeros. Then

{
α0 = 1, α1 = − 508

6745
, β1 =

20609

26980
, α2 = −1155

1349
, β2 = −6995

2698

}
.

and the functions (1.26) write as

Î0 =− 1

10792

(
326r2 − 403

) (
10r2 − 9

) (
10r2 − 7

)
,

Î1 =− 231

10792

(
10r2 − 11

) (
5r2 − 6

)
,

Î2 =r
6 − 34916

6745
r4 +

214097

26980
r2 − 20375

5396
.
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Moreover, Î0 has two zeros in J0, the third one
√

403/326 is not in J0. Î1 has the two

zeros in J1. Î2 has only two zeros in J2, two in the intervals (9/8, 5/4) and (3/2, 2) and
the third one in (1, 17/6) which is not in J2. Hence, (2, 2, 2) is a configuration.

Remark 1.38. To find the values of (a, b) and the suitable perturbation to prove that a
given configuration is done can be, in general, very difficult. Because the region of the
parameters can be really small. The configuration (2, 1, 2), for example, is achieved
for the values (a, b) = (999/1000, 9/200) , x0 =

√
19999/20000 ≈ 0.999975, x1 =√

19997/20000 ≈ 0.999925, x2 = y0 =
√

100001/100000 ≈ 1.000005. Next section
shows these difficulties.

1.4.3 Bifurcation Diagram for perturbations of degree one

For k = 2 and perturbations of degree one, problem P(1, 2), the maximal configurations
are given in Theorem 1.15. In this section we look for the region on the parameter space,
(a, b), where the maximal configuration (3, 1, 2) can be achieved. This is done studying
all the perturbations that provide configurations of type (3, 1, w), for w = 0, 1, 2. Given
the symmetry of Proposition 1.27, this problem is equivalent to study the maximal
configuration (2, 1, 3), because both regions are the same. For the configuration (2, 2, 2)
a similar study can be obtained.

From Lemma 1.28, given x0, x1, x2 ∈ (0, 1), the zeros of Î0, the bifurcation diagram

follows studying the number of zeros of the function Î2 in J2 = (a2 + b2,∞). Or
equivalently, looking for the zeros of

φ(s) = φ3s
3 + φ2s

2 + φ1s+ φ0 (1.33)

in (0,∞), where

φ3 = µ+ 1 + 2a− ρ,

φ2 = 3µ2 + (4a+ 1− 3ρ)µ+ σ − 2a,

φ1 = 3µ3 + (2a− 3ρ)µ2 + (1− 2a+ 2σ)µ− τ,

φ0 = µ(µ− x0)(µ− x1)(µ− x2),

and µ = a2 + b2, ρ = x0 + x1 + x2, σ = x0x1 + x1x2 + x0x2, τ = x0x1x2. Moreover, as Î2
does not depend on y0, the zero of Î1, all the results are also valid for the configurations
of type (3, 0, w), for w = 0, 1, 2.

The main tool to describe the bifurcation diagram is the Descartes’ rule of signs. See
[Kos82]. But a complete comparative study between the curves φi(µ, a) = 0, i = 0, 1, 2, 3
is not necessary. See Lemmas 1.35 and 1.40. First, we provide the bifurcation curves,
on the plane (a, b) for a fixed values of xi, i = 0, 1, 2. Second, we construct the general
bifurcation curves studying how they change when we move the parameters x0, x1 and
x2 in (0, 1).
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Bifurcation diagram for fixed zeros in the inner region

The first step to obtain the bifurcation diagram on plane (a, b) from the sign distribution
of the coefficients of function φ, see (1.33), is doing it when the values of x0, x1 and x2
are fixed.

Lemma 1.39. For fixed x0, x1, x2 ∈ (0, 1) and (a, b) ∈ R
2 with µ = a2 + b2 > 1, the

changes of signs in the coefficients of φ, see (1.33), are

(i) zero in S∗
0 := {(a, b) ∈ R

2 : φ2 > 0, φ3 > 0},

(ii) one in S∗
1 := {(a, b) ∈ R

2 : φ3 < 0}, and

(iii) zero or two in S∗
2 := {(a, b) ∈ R

2 : φ2 < 0, φ3 > 0}.

Furthermore, the vertexes of these regions are

R =

(
3ρ− σ

2
− 2,

√
−9ρ2 + 6ρσ − σ2 + 24ρ− 8σ − 12

2

)
,

S =

(
ρ− 2

2
,

√
ρ (4− ρ)

2

)
,

T =

(
ρ− 2− ζ

4
,

√
(ρ+ 2)ζ + 4ρ− ρ2 + 2σ

2
√
2

)
.

(1.34)

Where ζ =
√
ρ2 + 4ρ− 4− 4σ, ρ = x0+x1+x2, σ = x0x1+x0x2+x1x2 and τ = x0x1x2.

See Figure 1.9.

Proof. By definition of a1, a2 and a3 in Lemmas 1.32, 1.33 and 1.34, respectively, we
already know the sign configurations according to the value of a with respect to a1(µ),
a2(µ) and a3(µ). Following these lemmas, we have that

- if a > max(a2(µ), a3(µ)) the sign configuration is [+,+,+,+],

- if a2(µ) < a < a3(µ) the sign configuration is [−,+,+,+],

- if a < min(a2(µ), a3(µ)) the sign configuration is [−,−,+,+] or [−,−,−,+], and

- if a3(µ) < a < a2(µ) the sign configuration is [+,−,+,+] or [+,−,−,+].

Since µ = a2 + b2 we obtain the regions and the intersection points defined in the
statement.

As the region S∗
2 can be empty, the following two lemmas give us the necessary

conditions on x0, x1, x2 to avoid this possibility.
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–−2
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b

Figure 1.9 The regions and points defined in Lemma 1.39. The respective symmetric
ones, with respect to the line b = 0, are denoted by R′, S ′, T ′ and S∗

2
′

Lemma 1.40. For µ > 1, the curves φ2 = 0 and φ3 = 0, given in Lemmas 1.33 and
1.34, do not have intersection points (Type I) or just one (Type II). See Figure 1.10.
Moreover, given x0, x1, x2, the region S∗

2 is non empty when the curves φ2 = 0 and
φ3 = 0 are of Type II and the abcise of the intersection point is greater than 1.

Proof. First we prove when the region S∗
2 is non empty. As it follows in the proof of

Lemma 1.39, this occurs when we have the configuration [+,−, ?,+]. This situation is
only possible, see Figure 1.10, on Type II and under the conditions of the statement.
Second, we show how are the graphs of curves φ2 = 0 and φ3 = 0.

When the graph of {(µ, a) : a = a2(µ)} is monotonous, there is only one intersection
point of the curve with a = a3(µ) for µ > 1/2. Because the slope of the oblique
asymptote, −3/2, is less than the slope of a = a3(µ), −1/2. So we are in a Type II.

If the graph {(µ, a) : a = a2(µ)} is not monotonous, we prove that for µ > 1
there are no intersection points with the graph of {(µ, a) : a = a3(µ)}. We show it by
contradiction, that is, they can exist only for µ ≤ 1. In fact we prove that µ < 1.

Assume that the intersection points are (µ0, a2(µ0)) = (µ0, a3(µ0)) and (µ1, a2(µ1)) =
(µ1, a3(µ1)). Then, from (1.31) and (1.32), we have that the numerator of a3(µ)−a2(µ),
N(a3 − a2), is a quadratic polynomial that vanishes at µ0 and µ1, that is

N(a3 − a2) = (µ− µ0)(µ− µ1)

= µ2 − (x0 + x2 + x1)µ+ x0x1 + x0x2 + x1x2 − (x0 + x1 + x2) + 1,
(1.35)
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1

a

µ

[+,+, ?,+]

[−,+, ?,+]

[−,−, ?,+]
a = a2

a = a3

1

a

µ

a = a2

a = a3

[+,+, ?,+]

[+,−, ?,+]

[−,−, ?,+]

[−,+, ?,+]

Figure 1.10 Graphs of Types I (left) and II (right) for the curves φ2 = 0 and φ3 = 0

with

ξ1(x0, x1, x2) := µ0 + µ1 = x0 + x1 + x2,

ξ2(x0, x1, x2) := µ0 µ1 = x0x1 + x0x2 + x1x2 − (x0 + x1 + x2) + 1.
(1.36)

The possible values of x0, x1, x2 satisfy the next conditions: the discriminant of
N(a3−a2), see (1.35), is non negative, the function a2(µ), see (1.31), is not monotonous
and x0, x1, x2 ∈ (0, 1). All these conditions can be expressed as the next set of inequali-
ties:

C1 = x20 + x21 + x22 − 2(x0x1 + x0x2 + x1x2) + 4(x0 + x1 + x2)− 4 ≥ 0,

C2 = 5− 6(x0 + x1 + x2) + 4(x0x1 + x0x2 + x1x2) ≥ 0,

C3 = x0(1− x0) ≥ 0,

C4 = x1(1− x1) ≥ 0,

C5 = x2(1− x2) ≥ 0.

(1.37)

The Karush-Kuhn-Tucker (KKT) Theorem, see [AEGP85], provides the maximum and
minimum values of the functions (1.36) in the set (1.37). The functions

Ξ±
1 (x0, x1, x2) := ±ξ1 + λ1C1 + λ2C2 + λ3C3 + λ4C4 + λ5C5, and

Ξ±
2 (x0, x1, x2) := ±ξ2 + λ1C1 + λ2C2 + λ3C3 + λ4C4 + λ5C5,

are defined to look for the maximum(+) or the minimum(−) with λj ∈ R
+ for all

j ∈ {1, 2, 3, 4, 5}.
The candidates to obtain the maximum value of ξ1 are the solutions of the system

{∇Ξ+
1 = 0, λjCj, j = 1, . . . , 5}, where ∇ denotes the gradient operator. This system

has eight equations and eight variables, (x0, x1, x2, λ1, λ2, λ3, λ4, λ5), and it has only two
solutions satisfying xi ∈ [0, 1] and λj ≥ 0 for i = 0, 1, 2 and j = 1, . . . , 5. That is

(1, 1, 1, 0, 0, 1, 1, 1) and (xM , xM , xM , 0, 8
√
3/7, 0, 0, 0) where xM = (9−

√
21)/12. How-

ever, the first point is not in the set (1.37) because C2(1, 1, 1) = −1. Hence, the maximum
is obtained at the point (xM , xM , xM) and ξ1 ≤ (9−

√
21)/4.

It can be shown, similarly, that the minimum of ξ1 is done at the point (xm, xm, xm)
with xm = 2− 2

√
2/3 and the maximum and the minimum of ξ2 are done at the points
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(xm, xm, xm) and (xM , xM , xM), respectively. Therefore, we can concluded that

1.10102051 ≈ 6− 2
√
6 ≤ ξ1 ≤ 9−

√
21

4
≈ 1.10435608,

0.30217804 ≈ 7−
√
21

8
≤ ξ2 ≤ 15− 6

√
6 ≈ 0.30306154.

Finally, from (1.36) we have

µ0 =
1

2

(
ξ1 −

√
ξ21 − 4ξ2

)
,

µ1 =
1

2

(
ξ1 +

√
ξ21 − 4ξ2

)
,

and therefore

max(µ0, µ1) ≤
1

2

(
max ξ1 +

√
(max ξ1)

2 − 4min ξ2

)
=

7−
√
21

4
≈ 0.60435608.

This contradicts the condition µ > 1.

Region S∗
2 contains the configurations (3, 1, 2) and (3, 1, 0), the boundary between

these two regions is given when φ(s) has a positive zero of multiplicity 2. This can be
seen in the next result.

Proposition 1.41. For fixed x0, x1, x2 ∈ (0, 1) and (a, b) ∈ R
2 with µ = a2 + b2 > 1,

the number of zeros of Î2 in the outer region is

(i) zero if (a, b) is in S̃∗
0 := S∗

0 ∪ {(a, b) ∈ S∗
2 : D∗ > 0},

(ii) one simple if (a, b) is in S̃∗
1 := S∗

1 ,

(iii) one double if (a, b) is in D̃∗ := {(a, b) ∈ S∗
2 : D∗ = 0}, and

(iv) two simple if (a, b) is in S̃∗
2 := {(a, b) ∈ S∗

2 : D∗ < 0}.
Therefore the respective configurations are (3, 1, 0) in the case (i), (3, 1, 1) in the cases
(ii) and (iii) and (3, 1, 2) in the case (iv). With

D∗ = 4µ7 + (3− 4a2 − 4ρ− 12a)µ6 + (−30ρ+ 30 + 12ρa+ 4σa+ 22σ − 12τ + 8a

+ 16a3)µ5 + (3 + 8a− 44a2 − 16a4 − 30ρ+ 24a2ρ− 32σa2 + 8τa2 − 12ρa+ 4σa

− 20τa+ 8τ + 27ρ2 − 18ρσ + 12ρτ − σ2 − 4σ)µ4 + (4− 12a+ 32a4 − 4ρ− 36ρaσ

+ 12ρτa− 8τaσ − 32ρa3 + 24a2ρ+ 24σa2 − 16τa2 + 16a3σ − 26τσ + 20σ2a + 16τa3

+ 12τ 2 + 12ρa+ 4σa+ 48τa + 8τ − 18ρσ − 12ρτ + 22σ2 + 22σ)µ3

+ (−4σ2a2 + 18ρτσ − 16τa2σ − 4a2τ 2 − 68τaσ − σ2 + 2τσ2 + 12ρτa− 16a4

− 12τ + 20τ 2 − 4σ3 − 32σa2 − 16τa2 − 20τa+ 12ρτ + 48τa2ρ+ 16a3 + 40τ 2a

+ 16a3σ − 26τσ + 20σ2a− 64τa3 − 12ρτ 2 − 4a2 + 4σa)µ2 + 2τ(−2τ 2 + 6τ + 20τa

+ 2τσ + 20τa2 − 12ρτa + 2τaσ − 6ρτ + σ2 + 8a3 − 8σa2 − 4σa+ 4a2 + 2σ2a)µ

− τ 2(4τ − 4ρτ + 8τa+ 4a2 + σ2 − 4σa)
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where ρ, σ and τ are defined in Lemma 1.39. Additionally the point T , (1.34), is in the
curve D∗ = 0. In fact it is a tangential contact point between D∗ = 0 and φ3 = 0.

Proof. Lemma 1.39 gives us the possible sign configurations and therefore the number
of zeros module two. For that reason, we just consider the curve, D∗ = 0, of zeros of
multiplicity two inside S∗

2 . This curve is a factor of the resultant, with respect to the

variable r, of Î2(r) and its derivative also respect to r. This resultant has the extra
factor µ+ 2a+ 1− ρ that we do not consider, because it corresponds to the expression
of φ3 = 0, the boundary of S∗

2 .

Straightforward computations show that T belongs to D∗ = 0 and that the tangential
property is also satisfied.

S̃∗
0

S̃∗
1

S̃∗
2

D̃∗

0 1

Figure 1.11 Regions where Î2 has 0, 1 or 2 zeros for fixed x0, x1, x2

Remark 1.42. Drawing the implicit expression given in Proposition 1.41 for the curve
D̃∗ = 0, we observe that it is the graph of a function b∗(a). Moreover, it goes from the
point T to a point in the circumference {a2+b2 = 1} which is situated between the points
R and S defined in Lemma 1.39. See Figure 1.11.

Bifurcation diagram varying the zeros of the inner region

The diagram of the maximum number of changes of sign follows studying how the curves
of Figures 1.9 and 1.11 are modified under the different values of (x0, x1, x2) in (0, 1)3 or
(ρ, σ, τ) in (0, 3)2 × (0, 1). See Lemma 1.39. We use these two coordinates indistinctly.
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First we write the functions a1(µ), a2(µ) and a3(µ) given in Lemmas 1.32, 1.33 and
1.34 with these new coordinates.

a1(µ) =
3µ3 − 3ρµ2 + (1 + 2σ)µ− τ

2µ (1− µ)
,

a2(µ) =
3µ2 + (1− 3ρ)µ+ σ

2(1− 2µ)
,

a3(µ) =
−µ− 1 + ρ

2
.

(1.38)

As it can be shown in Lemma 1.39, different configurations appear from the signs of the
functions φ2 and φ3. In this new coordinates, these functions only depend on ρ and σ.
Hence, in our study, we move only these two, not τ. In fact, next result shows which are
the different intervals where σ moves in terms of ρ.

Lemma 1.43. Fixed ρ ∈ (0, 3), we have

σ ∈





(
0,
ρ2

3

)
if 0 < ρ ≤ 1,

(
ρ− 1,

ρ2

3

)
if 1 < ρ ≤ 2,

(
2ρ− 3,

ρ2

3

)
if 2 < ρ < 3.

Proof. Fixed ρ, we have that x0 = ρ − x1 − x2 ∈ (0, 1). Therefore, x1 and x2 must
be in the region (0, 1) × (0, 1) delimited by the straight lines ρ − x1 − x2 = 0 and
ρ − x1 − x2 = 1 in the plane (x1, x2). These regions, in terms of ρ, are showed in
Figure 1.12. Thus, the interval for σ comes from the minimum and maximum of the
function σ = (ρ−x1−x2)(x1+x2)+x1x2 on the different regions for (x1, x2) given also
in Figure 1.12. We distinguish three possible cases: ρ ∈ (0, 1], ρ ∈ (1, 2) and ρ ∈ [2, 3).
Solving the optimization problems with the corresponding restrictions, see [AEGP85],
we obtain the intervals defined on the statement. More concretely, the maximum is
always ρ2/3 and it is located in the central point (x1, x2) = (ρ/3, ρ/3), where x0 = ρ/3,
and the minimum is always located on the vertexes of the regions.

Lemma 1.44. The point T , defined in (1.34), remains in the region {(a, b) : Γ0 >
0,Γ1 > 0,Γ2 > 0,Γ3 > 0}, where

Γ0 = a2 + b2 − 1,

Γ1 = (a2 + b2)2 − 2a(a2 + b2 + 1)− 4b2 + 1,

Γ2 = 2a3 + 2ab2 − 2a+ 1,

Γ3 = 2a− 1,
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ρ

ρ

0 1

1

0

(1,ρ−2)

(ρ−2,1)

ρ−1

ρ−1 1

1

0

(1,ρ−2)

(ρ−2,1)

Figure 1.12 Regions for the pairs (x1, x2) such that the corresponding x0 is in the
interval (0, 1) for the corresponding values of ρ in (0, 1], (1, 2] and (2, 3)

when (ρ, σ, τ) moves in (0, 3)2×(0, 1). See Figure 1.13. Moreover, the intersection points
of the boundaries are

{(a, b) : Γ0 = 0} ∩ {(a, b) : Γ1 = 0} =
(
(1−

√
3)/2, 4

√
3/
√
2
)
,

{(a, b) : Γ1 = 0} ∩ {(a, b) : Γ2 = 0} =
(
(1−

√
5)/4,

√
18 + 10

√
5/4
)
,

{(a, b) : Γ2 = 0} ∩ {(a, b) : Γ3 = 0} =
(
−1/2,

√
7/2
)
,

{(a, b) : Γ3 = 0} ∩ {(a, b) : Γ0 = 0} =
(
−1/2,

√
3/2
)
.

Γ0

Γ1

Γ2

Γ3

−0.5 0

–1.8

–0.8
a

b

Figure 1.13 Region, depicted in gray, where the point T moves when (x0, x1, x2) is in
(0, 1)3

Proof. First, we show that, for any ρ, T moves along a circumference arc over φ3 = 0
when we change the values x0, x1 and x2. Second, we study the region covered by these
arcs.

Fixed ρ, the point T = (aT , bT ) just depends on the value of σ. The maximum
and minimum values of aT correspond with the maximum and minimum values of σ,
because aT grows when σ grows. The corresponding value to bT is determined by the
curve φ3 = 0, which is a circumference of radius ρ. From Lemma 1.43, the maximum
value of σ is ρ2/3. Hence, substituting this value on the coordinates of the point T, given
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in Lemma 1.39, we obtain the curve parameterized by ρ that writes, in implicit form,
as Γ1 = 0. From the different minimum values of σ given in Lemma 1.43, we obtain the
curves Γ2 = 0 when ρ ∈ (2, 3), Γ3 = 0 when ρ ∈ (1, 2] and Γ4 = b2+ b2a+a+a2+a3 = 0
when ρ ∈ (0, 1].

The region where T moves is depicted in gray together with the curves Γi = 0,
i = 1, . . . , 4 and the compatibility condition a2 + b2 > 1, that defines the curve Γ0, in
Figure 1.14. Notice that the curve Γ4 = 0, that appears only when ρ ∈ (0, 1], does not
define the boundary of the region of the statement because it is totally contained in the
region a2 + b2 < 1 for these values of ρ.

Γ0

Γ1

Γ2

Γ3

Γ4

Figure 1.14 Graphs of the curves Γi = 0 given in the proof of Lemma 1.44 and which
define the boundary of the region where the point T moves

Straightforward computations finish the proof by looking for the intersection points
of the different components of the boundary curve.

Proposition 1.45. Let (a, b) ∈ R
2 with µ = a2 + b2 > 1. Consider the regions

(i) S0 = {(a, b) ∈ R
2 : φM2 > 0, φM3 > 0},

(ii) S1 = {(a, b) ∈ R
2 : φM3 < 0} \ S2,

(iii) S2 = {(a, b) ∈ R
2 : φM2 < 0,Γ0 > 0,Γ2 > 0,Γ3 > 0},

with
φM2 = 3(a2 + b2)2 + 4(a− 2)(a2 + b2) + 3− 2a,

φM3 = (a+ 1)2 + b2 − 3,

Γ0 = a2 + b2 − 1,

Γ2 = 2a3 + 2ab2 − 2a+ 1,

Γ3 = 2a− 1.

For any (a, b) in Si, the number of changes of signs in the coefficients of the function
φ, see (1.33), is at most i for any i = 0, 1, 2. Moreover, there exist values x0, x1, x2 in
(0, 1) such that this number is exactly i. See the bifurcation diagram in Figure 1.15.
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−3 1

–2

S0

S1

S2

a

b

Figure 1.15 Bifurcation diagram of the number of changes of sign for the coefficient of
the function φ

Proof. The diagram of the number of changes of sign for the coefficients of the function
φ can be obtained considering the region covered by S∗

i for i = 0, 1, 2, defined on
Lemma 1.39, moving the values of x0, x1, x2 in the interval (0, 1).

First we study the areas covered by the boundaries φ2 = 0, φ3 = 0. From the
expressions (1.38), we have that a2(µ) grows when ρ is constant and σ decrease or when
σ is constant and ρ grows. In both situations, the graphs do not intersect each other.
The value of a3(µ), that does not change with σ, grows when ρ grows and the graphs do
not intersect each other for different values of ρ. Figure 1.16.(a) shows how these curves
move in the plane (a, b). This property of monotonous sweep shows that both, the curve
that defines the region with two changes of sign, φM2 = 0, and the one that defines the
regions with one change of sign, φM3 = 0, are obtained for the maximum values of ρ and
σ. That is ρ = 3 and σ = 3. See Figure 1.16.(b).

Finally, the complete bifurcation diagram follows adding the region, see Lemma 1.44,
where the point T moves. This diagram is ploted in Figure 1.9.

Finally we can provide the complete bifurcation diagram of maximal configurations
for our problem.

Theorem 1.46. The maximal configuration of zeros of P(1, 2) depending on (a, b) is

(i) (3, 1, 0) in S̃0 = S0 ∪ {(a, b) ∈ S2 : D > 0},

(ii) (3, 1, 1) in S̃1 = S1,

(iii) (3, 1, 2) in S̃2 = {(a, b) ∈ S2 : D < 0},

for a function D(a, b) such that the curve {(a, b) : D = 0} ⊂ {(a, b) ∈ R
2 : φM2 <

0 and φM3 > 0}. Where S0, S1, S2, φ
M
2 and φM3 are defined in Proposition 1.45.
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−0.5 0

–1.8

φ3
φ′3 φ2

φ′2

a

b

(a)

−0.5 0

–1.8

φM3

φM2

a

b

(b)

Figure 1.16 Graphs of the functions φ2 = 0 and φ3 = 0 for different values of (a, b). A
comparison for fixed σ and growing ρ is showed in (a). The boundary of the regions are

represented in (b).

Proof. In the proof of Proposition 1.45, see Figure 1.15, we have studied the number of
changes of sign of the coefficients of φ. This prove that in the regions Si for i = 0, 1, 2, we
have that the maximal configurations are (3, 1, 0), (3, 1, 1) and (3, 1, 0) or (3, 1, 2), respec-
tively. In fact, the sweep arguments of the proofs of Lemma 1.44 and Proposition 1.45
prove that in the region S2 = S2 ∩ {(a, b) ∈ R

2 : φM3 < 0} we have the configuration
(3, 1, 2). See Figure 1.17. Also the curves D∗ = 0, given in Proposition 1.41, contained
between the regions {(a, b) ∈ R

2 : φ2 < 0 and φ3 > 0} for every ρ and σ force the
existence of a curve D = 0 contained in the region {(a, b) ∈ R

2 : φM2 < 0 and φM3 > 0}
such that distinguishes the configurations (3, 1, 0) from (3, 1, 2).

As it can be seen in the proof of the previous result, the complete bifurcation diagram
for the exact number of zeros comes from studying how the curve D∗ = 0 moves when ρ,
σ and τ change. This study is similar to the procedure for the curves φ2 = 0 and φ3 = 0
made in the proof of Proposition 1.45. From the plots of the curve D∗ = 0 for different
values of ρ, σ, τ , it seems also that some monotonous properties can be observed. Taking
the same values used for φM2 = 0, ρ = σ = 3, we obtain that τ = 1 and using µ = a2+b2,
we have a possible candidate for D = 0. That is

D = 4a4b2+8a2b4+4b6+4a5+8a3b2+4ab4−9a4−18a2b2−9b4+4a3+4ab2+2a2+2b2−1.

As in Proposition 1.41, this curve would be the bifurcation curve from 0 to exactly 2
zeros for ρ = σ = 3 and τ = 1. Numerically we show that it is, in fact, the bifurcation
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curve for the general case. The bifurcation diagram given in Theorem 1.46 is showed on
Figure 1.17.

S̃0

S̃1 S̃2

S2

a

b
2

10−1−2−3

Figure 1.17 Bifurcation diagram for the configurations (3, 1, w) for w = 0, 1, 2. S i are
defined in Theorem 1.46 and S2 in its proof



Chapter 2

Existence and Uniqueness of limit

cycles for generalized ϕ-laplacian
Liénard equations

2.1 Introduction

Liénard equation,
x′′ + f(x)x′ + g(x) = 0, (2.1)

appears as simplified model in many domains in science and engineering. It was inten-
sively studied during the first half of 20th century as it can be used to model oscillating
circuits or simple pendulums. In the simple pendulum case, f and g represents the
friction and acceleration terms. One of the first models where this equation appears was
introduced by Balthasar van der Pol. See [Pol26]. Considering the equation

x′′ + µ(x2 − 1)x′ + x = 0,

for modeling the oscillations of a triode vacuum tube. See [GH02] for other references
about more applications.

The first results on the existence and uniqueness of periodic solutions on the Liénard
equation appear in [LS42, San49]. For some results on the existence and uniqueness of
limit cycles, some papers like [Vil82] or [Vil83] and the books [YCC+86] and [ZDHD92]
could also be referred. Additionally, more current references on related problems are
[DMD11] and [LL12].

In this chapter, some criteria are presented for existence and uniqueness results on
limit cycles for the generalized ϕ-laplacian Liénard equation

(ϕ(x′))′ + f(x)ψ(x′) + g(x) = 0 (2.2)

Besides the obvious mathematical interest of this generalization, our main motivation for
considering such equation comes from some relativistic models studied before. Special
Relativity imposes a universal bound for the propagation speed of any gravitational

45
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or electromagnetic wave. If c is the speed of light in the vacuum, in the framework
of Special Relativity the momentum of a particle with unitary rest mass is given by
ϕ(x′) = x′√

1−x′2
c2

, see [Gol80]. The harmonic relativistic oscillator,


 x′√

1− x′2

c2




′

+ x = 0,

is a classical topic studied in several papers, for example [Gol57, Mic98]. Other authors
have included damping terms and nonlinear forces. An example is the forced pendulum
with relativistic effects, which model can be expressed as


 x′√

1− x′2

c2




′

+ kx′ + a sin x = p(t) (2.3)

where p(t) is a periodic function. It is treated in [Tor08], where conditions on the
function p are given for which equation (2.3) presents periodic orbits.

In the case of Liénard equation (2.1), it is usual to apply some change of variables
to express the equation as the planar system

{
ẋ = y − F (x),
ẏ = −g(x)

or {
ẋ = y,
ẏ = −g(x)− f(x)y.

In this chapter a variation of this approach is considered. Our results apply to system

{
ẋ = ϕ−1(y),
ẏ = −g(x)− f(x)ψ(yϕ−1(y)),

(2.4)

or, after a time rescaling, to system

{
ẋ = yϕ′(y),
ẏ = −g(x)− f(x)ψ(y).

(2.5)

Before stating the results some necessary hypotheses are introduced. All the func-
tions in (2.2) should be at least locally Lipschitz continuous, C0,1, except ϕ(y) that
should be in C1,1. These properties assure the existence and uniqueness of a solution for
any initial value problem associated to system (2.4) or (2.5). More regularity of each
function is required in some concrete results.

Let D be the greater connected domain, neighborhood of the origin, for which the
four functions in (2.2), ϕ(y), ψ(y), f(x) and g(x), are well defined. In this way D can be
consider as D = (x1, x2)× (y1, y2) where x1, y1 ∈ R

− ∪ {−∞} and x2, y2 ∈ R
+ ∪ {+∞}.
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Along this chapter all the limits considered for x or y tending to xi or yi with i = 1, 2
are limits from the interior of the intervals of definition. It means that, for example, we
denote y → y2 instead of y → y2

−.
Based on the results of the classical Liénard equation (2.1) given in [Vil82, Vil83,

ZDHD92] the following conditions, denoted by (H), are established.

(H0) f(x), g(x) and ψ(y) are of class C0,1 (R) and ϕ(y) is of class C1,1 (R) .

(H1) xg(x) > 0 for all x ∈ (x1, x2) \ {0} and g(0) = 0.

(H2) f(0) 6= 0.

(H3) Dom(ϕ) ⊆ Dom(ψ).

(H4) ψ(0) = 0.

(H5) ϕ
′(y) ∈ R

+ \ {0} for all y ∈ (y1, y2) and ϕ(0) = 0.

(H0) represents the regularity condition. (H1) and (H2) are inherited from the referred
classic results. (H3 − H5) are the most basic hypotheses that we impose to ϕ(y) and
ψ(y). We have included the extra condition ϕ(0) = 0 for simplicity and symmetry
reasons. Without lost of generality, the case ϕ(0) 6= 0 can also be considered after doing
a translation of this function.

Briefly the aim of this chapter is to provide conditions on functions f, g, ϕ and ψ
such that system (2.5) has at least a periodic orbit and, moreover, if it exists, when it
is unique. Next two results summarizes these properties.

Theorem 2.1. [Existence Theorem] Consider system (2.5) under the hypotheses (H).
Additionally, next properties hold.

(i) yψ(y)f(x) ≤ 0 in a neighborhood of the origin, Ix × Iy = [x−, x+]× [y−, y+] ⊂ D,
except for a finite number of points where it vanishes.

(ii) There exist δ and η in R, with x1 < η < 0 < δ < x2, such that f(x) > 0 for all
x ∈ (x1, x2) \ [η, δ].

(iii) For each i = 1, 2 there exists λi in R
+ ∪ {+∞} such that, if |xi| = +∞, then

lim inf
x→xi

x(|g(x)|+f(x)) = λi, and if xi ∈ R, then lim inf
x→xi

|x−xi|(|g(x)|+f(x)) = λi.

(iv) yψ(y) > 0 for all y 6= 0.

(v) For i = 1, 2, lim
y→yi

ψ(y)/(yϕ′(y)) ∈ R.

(vi) The integral
∫ δ
η
f(x)dx is positive or, alternatively, there exists y0 ∈ (y1, y2) such

that −ψ(y0) ∈
[
lim inf
x→xi

g(x)/f(x), lim sup
x→xi

g(x)/f(x)
]
for at least one of the xi and

there exists U , neighborhood of y0, such that sign(ψ′(y)) is constant almost for
every y ∈ U .
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Then system (2.5) has at least a periodic orbit contained in D.

Theorem 2.2. [Unicity Theorem] Consider system (2.5) under the hypotheses (H).
Additionally, next properties hold.

(i) f, g ∈ C0,1((x1, x2)) and ϕ, ψ ∈ C1,1((y1, y2)) with x1, y1 ∈ R
− ∪{−∞} and x2, y2 ∈

R
+ ∪ {+∞}.

(ii) There exist a < 0 < b such that f(x) < 0 when x ∈ (a, b) and f(x) > 0 when
x ∈ (x1, x2) \ [a, b],

(iii)
d

dx

(
f(x)

g(x)

)
> 0, for all x ∈ (x1, x2) \ I0 where I0 ⊂ [a, b] such that I0 contains

the origin and I0 = (a, x0) or I0 = (x0, b) with x0 satisfying that
∫ x0
0
g(s)ds =

min
{∫ a

0
g(s)ds,

∫ b
0
g(s)ds

}
.

(iv) ψ′(y) > 0 and
d

dy

(
ψ′(y)

yϕ′(y)

)
< 0, for all y in (y1, y2) \ {0}.

Then system (2.5) has at most one limit cycle. Moreover, when it exists, it is stable.

In Section 2.2, we present the different kinds of functions that we can find in our
study. The Section 2.3 is devoted to introduce a new way to compactify the domain D
to D̃ = (−1, 1)× (−1, 1). This compactification allows us to consider the boundary of D
as the inverse of the boundary of D̃. Hence, we can study the behavior of the differential
equation (2.4) close to the boundary of D. Moreover, this compactification allows us

to consider all the cases in a unified way. So we restrict our study to the case D = D̃.
In Section 2.4, we show some first integrals of the particular cases of (2.5) when the
friction term vanishes, f(x) = 0,

{
ẋ = yϕ′(y),
ẏ = −g(x), (2.6)

or when the acceleration term vanishes, g(x) = 0,
{
ẋ = yϕ′(y),
ẏ = −f(x)ψ(y). (2.7)

We use both first integrals as state functions of system (2.5).
These first sections include all the technical results needed to prove the main results.

Hence, in Section 2.5, we prove the Existence Theorem, Theorem 2.1. The proof follows
from the Poincaré-Bendixson theorem, see [CL55], because the statement ensures that
the origin and the boundary of D have the same stability, in fact both are repellors.
Proposition 2.6 studies the stability of the origin and Propositions 2.20 and 2.21 deal
with the stability of the boundary of D. Finally, Section 2.6 is devoted to prove the
uniqueness of limit cycle in the whole space, Theorem 2.2. The proof, as it is done in
[ZDHD92], is obtained by contradiction, computing the integral of the divergence of the
vector field between any two consecutive limit cycles. We remark that our proof does
not need any restriction on the location of the limit cycles.
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2.2 Function families

In this chapter we only consider three basic different behaviors of ϕ(y) over yi for i = 1, 2.
We say that

(a) ϕ(y) is singular over yi if yi ∈ R and lim
y→yi

ϕ(y) = ±∞,

(b) ϕ(y) is non-bounded regular over yi if yi = ±∞ and lim
y→yi

ϕ(y) = ±∞, and,

(c) ϕ(y) is bounded regular over yi if yi = ±∞ and lim
y→yi

ϕ(y) ∈ R
+.

For shortness, we denote above properties by Si, NBi and Bi, respectively. Some graph-
ical representations of this basic functions are showed in Figure 2.1.

(a) Singular (b) Non-bounded Regular (c) Bounded Regular

Figure 2.1 Basic ϕ functions

The most representative function of the singular case could be the relativistic oper-
ator, ϕ(s) = s/

√
1− s2. An example of the non-bounded regular case is the p-laplacian

operator, ϕ(s) = |s|p−1s. And for the bounded regular case, we can use, for example,
the mean curvature operator, ϕ(s) = s/

√
1 + s2. These three examples are well known

in the literature about ϕ-laplacian problems. See for example [BJM10], [WSM+09] or
[DCM09], respectively.

Although the previous examples are all symmetric we do not ask for any symmetry to
the function ϕ(y), nor a symmetric behavior at the boundary of the domain. Therefore
some mixed cases can also be considered. Hence, the results of this chapter apply also
for functions like ϕ(s) = s/(1− s) or ϕ(s) = es − 1. See Figure 2.2.

Figure 2.2 Some examples of mixed behavior at the boundary of the domain
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We also consider different kinds of function f(x) in terms of the type of its domain
of definition. So we say that we are in a finite (infinite) case on xi, denoted by Fi (Ii), if
xi ∈ R (xi /∈ R). The results of this chapter also apply when we have not symmetry in
the behavior of f(x) at both xi, i = 1, 2, at the same time, as in the case of the function
ϕ. An example of this situation is the function f(s) = s2

1−s − 1, shown in Figure 2.3.

Figure 2.3 A mixed function f(x)

The functions g and ψ are actually determined by the hypotheses (H) and, as it can
be seen in the next section, they do not play an special role in the compactification.
Hence it is not necessary to study their different behaviors at the boundary of the
domain.

2.3 A Polygonal Compactification

The main tool of this chapter is a transformation of the domain of definition, D =
(x1, x2) × (y1, y2), of the generalized Liénard differential equation (2.5). Next proposi-
tion allows us to unify all the different behaviors detailed in the previous section via a
transformation to the square (−1, 1)× (−1, 1). We consider it as a polygonal compact-
ification because the closure of the new domain is a compact set which boundary is a
polygon.

Proposition 2.3. Given system (2.5) satisfying (H) and defined in D = (x1, x2) ×
(y1, y2) where x1, y1 ∈ R

− ∪ {−∞} and x2, y2 ∈ R
+ ∪ {+∞}, there exists a change of

variables of class C1 such that (2.5) writes as

{
ẇ = χ(z),

ż = −g̃(w)− f̃(w)ψ̃(z),
(2.8)

the new domain of definition is D̃ = (−1, 1)× (−1, 1) and the functions f̃ , g̃, ψ̃ and χ
satisfy the following properties.

(H̃0) f̃(w), g̃(w) and ψ̃(z), χ(z) are of class C0,1 (R) .

(H̃1) wg̃(w) > 0 for all w ∈ (−1, 1) \ {0} and g̃(0) = 0.

(H̃2) f̃(0) 6= 0.
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(H̃3) Dom(χ) ⊆ Dom(ψ̃).

(H̃4) ψ̃(0) = 0.

(H̃5) zχ(z) > 0 for all z ∈ (−1, 1) and χ(0) = 0.

From now on we use either system (2.5) defined in D or system (2.8) defined in D̃.
A graphical interpretation of the last result can be seen in Figure 2.4.

ց

→

ր

Figure 2.4 Some examples of compactified boundaries

Proof of Proposition 2.3. All the functions, f , g, ϕ and φ are functions of one variable.
Taking into account the symmetry of the hypotheses (H) with respect to the origin we
can consider different changes of variables for the positive and the negative axes. These
changes define a global piecewise change of class C1 for the variable x and another one
for the variable y. Hence system (2.5) is equivalent to system (2.8) and all the conditions

of hypotheses (H) are transformed to the equivalent conditions of hypotheses (H̃). From
the above considerations we only show the changes corresponding to first quadrant, that
is x > 0 and y > 0. The other follow analogously.

Following the classification of Section 2.2 we consider all possible cases F2, I2, S2,
NB2 and B2 because the changes of variables are different for each type.

For the type F2, let us consider the change of variable

w =
x2x

(x2 − 1)x+ x2
which inverse is x =

x2w

(1− x2)w + x2
,
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that transforms (2.5) to {
ẇ = yϕ′(y),

ẏ = −g̃(w)− f̃(w)ψ(y)

where

g̃(w) =

x22 g

(
x2w

(1 + x2)w + x2

)

((1− x2)w + x2)
2 and f̃(w) =

x22 f

(
x2w

(1 + x2)w + x2

)

((1− x2)w + x2)
2

and the corresponding side of the boundary of the transformed D is the line w = 1.

For the type I2, we consider the change of variable

w =
x

1 + |x| which inverse is x =
w

1− |w| , (2.9)

that transforms (2.5) to {
ẇ = yϕ′(y),

ẏ = −g̃(w)− f̃(w)ψ(y)

where

g̃(w) =

g

(
w

1− |w|

)

(1− |w|)2 and f̃(w) =

f

(
w

1− |w|

)

(1− |w|)2 .

Moreover, the line w = 1 contains the corresponding side of the boundary of the trans-
formed D.

For the type S2, consider the change of variable

z =
y22y

y2 − y2(2− y2)y + y22

which inverse is

y =
y2
2z

(
(2− y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

)
,

and (2.5) writes as

{
ẋ =

y2
2z

(
(2− y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

)
ϕ̃′(z),

ż = −g(x)− f(x)ψ̃(z),

where

ϕ̃(z) = ϕ
( y2
2z

(
(2− y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

))
,

ψ̃(z) = ψ
( y2
2z

(
(2− y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

))
and
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z = 1 contains the boundary of the transformed D.

For the type NB2, let us consider the change of variable

z =
y

1 + |y| which inverse is y =
z

1− |z| , (2.10)

and (2.5) writes as 



ẋ = z
ϕ̃′(z)

1 − |z| ,

ż = −g(x)− f(x)ψ̃(z)

where

ϕ̃(z) = ϕ

(
z

1− |z|

)
, ψ̃(z) = ψ

(
z

1− |z|

)

and z = 1 contains a piece of the boundary of the transformed D.

Finally, for the type B2 if lim
y→y2

ϕ(y) = ν2, the change of variable needed is

z =

ϕ

(
ν2
ϕ′(0)

y

)

ν2
which inverse is y =

ϕ′(0)

ν2
ϕ−1(ν2z),

that allow us to express (2.5) as follows

{
ẋ = γ(z),

ż = −g(x)− f(x)ψ̃(z),

where

γ(z) =
(ϕ′(0))2

ν2
ϕ−1(ν2z)

ϕ′
(
ϕ′(0)

ν2
ϕ−1(ν2z)

)

ϕ′ (ϕ−1(ν2z))
, ψ̃(z) = ψ

(
ϕ′(0)

ν2
ϕ−1(ν2z)

)

and again z = 1 contains the boundary of the transformed D.

The proof ends checking that the global piecewise changes are all C1. This is done
because any of the previous changes are of class C1 for x 6= 0 or y 6= 0. Moreover,
the left and right derivatives at the origin coincides, in fact, w′(0+) = w′(0−) = 1 and
z′(0+) = z′(0−) = 1. Therefore we combine the changes depending on the behavior at
R

+ and R
−.

Under hypothesis (H0), system (2.5) satisfies the sufficient conditions to assure exis-
tence and unicity of any initial value problem in D. Then, from the previous proposition,
this is also done for the equivalent system (2.8) in the corresponding D̃.
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2.4 State functions

In a general framework, a differential equation can be thought as a dynamical system.
In that case, a function of state, also called state function, E is a property of the system
that depends only on the current state of it. That is, the value of the function E at
some point is independent of the processes undergone by the system to arrive to this
value. State functions usually appear in physical and chemical systems, for example the
mass, the energy, the entropy and the temperature, among others.

The state functions, for system (2.5), described in this section are constructed as first
integrals in the null friction and the null acceleration cases, (2.6) and (2.7) respectively.
They are very helpful in the study of system (2.5), particularly in the proof of the
Uniqueness Theorem, Theorem 2.2.

Lemma 2.4. [Primary Energy Function] The function E(x, y) = G(x) + Φ(y), where
G(x) =

∫ x
0
g(u)du and Φ(y) =

∫ y
0
vϕ′(v)dv, is a first integral of system (2.6) in D.

Moreover E(0, 0) = 0 and the origin is a local center.

Proof. Straightforward computations show that E is well defined and Ė ≡ 0 over the so-
lutions of system (2.6). The existence of the first integral and the monodromic structure
of the origin gives the center property

Likewise, next result holds.

Lemma 2.5. [Secondary Energy Function] The function J(x, y) = F (x) + Ψ(y), where

F (x) =
∫ x
0
f(u)du and Ψ(y) =

∫ y
0
vϕ′(v)
ψ(y)

dv, is a first integral of (2.7) in D. Moreover

J(0, 0) = 0.

2.5 Existence results

Theorem 2.1, the Existence Theorem, is a consequence of the results of this section. In
order to simplify the reading of all the results we refer to system (2.5), defined in D, for

the functions f, g, ϕ, ψ and to system (2.8), defined in D̃, for the corresponding trans-

formed functions f̃ , g̃, χ, ψ̃, via the change of variables of Proposition 2.3. Additionally
we also assume the hypothesis (H) on (2.5) and (H̃) on (2.8).

2.5.1 Local stability of the origin

Let us show some conditions so that system (2.5) has a singular point at the origin
which stability can be determined.

Proposition 2.6. Assume that f and ψ vanish only on a finite number of points on
neighborhoods of the origin Ix = [x−, x+] ⊂ (x1, x2) and Iy = [y−, y+] ⊂ (y1, y2), respec-
tively. If sign f(x) and sign yψ(y) are constant in Ix and Iy, then the origin is a repellor
(attractor) when yψ(y)f(x) ≤ 0 (≥ 0). Moreover the basin of repulsion (attraction) con-
tains the biggest level curve of the Primary Energy Function E, defined in Lemma 2.4,
completely contained in Ix × Iy.
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Proof. By (2.5) we have

Ė = g(x)ẋ+ yϕ′(y)ẏ = g(x)yϕ′(y) + yϕ′(y)(−g(x)− f(x)ψ(y)) = −yψ(y)ϕ′(y)f(x).

As ϕ′(y) > 0 for every y ∈ (y1, y2) \ {0} the sign of Ė is constant in a neighborhood
of the origin. Thus we can assure that the stability of the origin, applying Hartman’s
Theorem, is done by the sign of yψ(y)f(x).

2.5.2 Stability of the infinity

This section is devoted to prove that the boundary ofD is a repellor under the hypotheses
of Theorem 2.1. First, we study how the compactification transforms the hypotheses.
Second, Proposition 2.14 explains the behavior of the orbits close to the boundaries of
the compactified domain D̃ and Definition 2.15 introduces the notion of regular and
singular points in the boundary. Propositions 2.17 and 2.18 establish the dynamics of
the finite points and Corollary 2.19 shows that their ω-limit remains in D̃ or is the
full boundary. Finally, we prove that the boundary is a repellor considering two cases.
Proposition 2.20 deals with the case with singular points on the boundary different from
the vertex and Proposition 2.21 without them.

Lemma 2.7. If yψ(y) > 0 then zψ̃(z) > 0.

Lemma 2.8. If there exist δ, η ∈ R, with x1 < η < 0 < δ < x2, where f(x) > 0 for

all x ∈ (x1, x2) \ [η, δ], we have that there exist δ̃, η̃ ∈ R, with −1 < η̃ < 0 < δ̃ < 1,

satisfying f̃(w) > 0 for all w ∈ (−1, 1) \ [η̃, δ̃].

Lemma 2.9. Assume that there exists y0 ∈ (y1, y2) such that −ψ(y0) ∈
[
lim inf
x→xi

g(x)

f(x)
,

lim sup
x→xi

g(x)

f(x)

]
for at least one of the xi and a neighborhood U of y0 where sign(ψ′(y)) is

constant almost for every y in U . Then this properties are also satisfied in the compact-
ified domain.

The proofs of the above lemmas involve straightforward computations, using the
appropriate change of variables from the proof of Proposition 2.3.

Lemma 2.10. Assume that there exist δ, η ∈ R, with x1 < η < 0 < δ < x2, such that
f(x) > 0 for all x ∈ (x1, x2) \ [η, δ], and λi ∈ R

+ ∪ {+∞} such that, for i = 1, 2,

if |xi| = +∞, lim inf
x→xi

x(|g(x)|+ f(x)) = λi, or

if xi ∈ R, lim inf
x→xi

|x− xi|(|g(x)|+ f(x)) = λi.

Then there exist λ̃i ∈ R
+ ∪ {+∞} such that lim inf

w→wi

|w − wi|(|g̃(x)| + f̃(x)) = λ̃i, for

i = 1, 2.
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Proof. The statement follows immediately for xi ∈ R, so we only prove it for |x2| = +∞.
The case |x1| = +∞ is analogous. From the change of variables (2.9) we have

lim inf
w→1

|1− w|(|g̃(w)|+ f̃(w)) = lim inf
x→x2

(
1− x

1 + x

)
g(x) + f(x)
(
1− x

1 + x

)2 =

= lim inf
x→x2

(1 + |x|)(|g(x)|+ f(x)) = β + λ.

And the above expression is positive because β = lim inf
x→x2

(|g(x)|+ f(x)) ≥ 0, since |g(x)|
and f(x) are positive functions for |x| large enough.

Lemma 2.11. The function χ satisfies lim
|z|→1

|χ(z)| = +∞.

Proof. We restrict the proof to the case z > 0. The other cases are analogous. Following
the structure of proof of Proposition 2.3 we consider the types S2, NB2 and B2.

For S2 we have χ(z) =
y2
2z

(
(2− y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

)
ϕ̃′(z) with

ϕ̃′(z) =

(
(2 − y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

)
y22

2z2
√
y2(z − 1)((y2 − 4)z − y2)

ϕ′
( y2
2z

(
(2− y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

))
.

As we are in the singular type, lim
y→y2

ϕ′(y) = +∞. If not, ϕ can be regularly extended

from y = y2, which contradicts the maximality of the domain D. Thus,

lim
z→1

χ(z) = lim
y→y2

yϕ′(y)
(y2 − y2(2− y2)y + y22)

2

y22(y2 − y)(y2 + y)
= +∞.

For NB2 we have χ(z) = zϕ̃′(z)/(1 − z) = zϕ′ (z/(1− z)) /(1 − z)3 with z ∈ (0, 1)
and

lim
z→z2

χ(z) = lim
y→y2

y(1 + y)2ϕ′(y) = +∞

because lim
y→y2

y2ϕ′(y) = +∞. We show this assertion by contradiction. Assume that

lim
y→y2

y2ϕ′(y) = α where α is a real number. Then there exists y0 > 0 such that ϕ′(y) <

(α + 1)/y2 for all y > y0. So, it follows that

ϕ(y) =

∫ y

0

ϕ′(v)dv =

∫ y0

0

ϕ′(v)dv +

∫ y

y0

ϕ′(v)dv = ϕ(y0) +

∫ y

y0

ϕ′(v)dv <

< ϕ(y0) +

∫ +∞

y0

α + 1

v2
dv = ϕ(y0) +

−(α + 1)

v

∣∣∣∣
+∞

y0

= ϕ(y0) +
α + 1

y0

for all y ∈ (0,+∞). It means that ϕ is a bounded function, which contradicts the
condition of being in type NB2.
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We conclude considering the type B2. We have

lim
z→1

χ(z) = lim
z→z2

ϕ′(0)2

ν2
ϕ−1(ν2z)

ϕ′
(
ϕ′(0)

ν2
ϕ−1(ν2z)

)

ϕ′(ϕ−1(ν2z))
= lim

y→+∞
ϕ′(0)y

ϕ′(y)

ϕ′
(

ν2
ϕ′(0)

y

) = +∞,

because

lim
y→+∞

ϕ′(y)

ϕ′
(

ν2
ϕ′(0)

y

) = 1.

This equality follows from lim
y→+∞

ϕ′(y) = 0, hence ϕ′(y) is a Cauchy function. Let ε ∈
(0, 1) and δ = ε

3
. Thus there exists y0 such that for all y > y0, |ϕ′(y)− ϕ′(ν2y/ϕ

′(0))| < δ
holds. Therefore,

min

{
1− δ,

1

1 + δ

}
<

ϕ′(y)

ϕ′
(

ν2
ϕ′(0)

y

) < max

{
1 + δ,

1

1− δ

}

and, consequently,

1− ε

2
< 1− ε

3
≤ ϕ′(y)

ϕ′
(

ν2
ϕ′(0)

y

) ≤ 3

3− ε
< 1 +

ε

2
.

Lemma 2.12. If the limit lim
y→yi

ψ(y)

yϕ′(y)
is real then lim

z→zi

ψ̃(z)

χ(z)
= 0, for i = 1, 2.

Proof. Let us just consider the case i = 2, that is z2 = 1. The case i = 1 follows
analogously. The different types that should be considered are S2, NB2 and B2.

We start with type S2,

lim
z→1

ψ̃(z)

χ(z)
= lim

y→y2

y22(y2 − y)(y2 + y)

(y2 − y2(2− y2)y + y22)
2

ψ(y)

yϕ′(y)
=

2

y32
lim
y→y2

(y2 − y)
ψ(y)

yϕ′(y)
= 0.

For type NB2, let us consider the change (2.10) and we obtain

lim
z→z2

ψ̃(z)

χ(z)
= lim

z→z2
(1− z)

ψ

(
z

1− z

)

z

1− z
ϕ′
(

z

1− z

) = lim
y→+∞

1

1 + y

ψ(y)

yϕ′(y)
= 0.

Finally, let us consider type B2. Since lim
y→+∞

ϕ′(y) = 0, we have

lim
z→z2

ψ̃(z)

χ(z)
= lim

y→+∞

ψ(y)ϕ′
(

ν2
ϕ′(0)

y

)

ϕ′(0)yϕ′(y)
=

1

ϕ′(0)
lim

y→+∞

ψ(y)

yϕ′(y)
ϕ′
(

ν2
ϕ′(0)

y

)
= 0.
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Lemma 2.13. Let h be a function of class C0,1([0, 1)), if lim inf
s→1

(1 − s)h(s) > 0 then
∫ 1

0
h(s)ds = +∞.

Proof. From the statement, lim inf
s→1

(1 − s)h(s) = λ for a positive real number λ. Thus,

there exists ε ∈ (0, 1) such that h(s) ≥ λ/(2(1− s)), for all s ∈ (1− ε, 1). Hence,

∫ 1

0

h(s)ds =

∫ 1−ε

0

h(s)ds+

∫ 1

1−ε
h(s)ds.

The proof ends because h(s) is bounded in [0, 1− ε] and

∫ 1

1−ε
h(s)ds ≥

∫ 1

1−ε

λ

2

1

1− s
ds = +∞.

Next result extends the dynamics to the boundary of D̃. Then we study the behavior
of the orbits in each quadrant.

Proposition 2.14. Consider system (2.8) under the hypotheses (H̃). Additionally we
assume that

(i) there exist real numbers δ̃, η̃, such that −1 < η̃ < 0 < δ̃ < 1, and f̃(w) > 0 for all

w ∈ (−1, 1) \ [η̃, δ̃],

(ii) there exists λ̃i ∈ R
+ ∪ {+∞} with lim inf

w→wi

|w−wi|(|g̃(x)|+ f̃(x)) = λ̃i, for i = 1, 2,

(iii) zψ̃(z) > 0 for all z 6= 0,

(iv) lim
|z|→1

|χ(z)| = +∞, and

(v) lim
z→zi

ψ̃(z)/χ(z) = 0, for i = 1, 2.

Then for i = 1, 2, given w0, z0 ∈ (−1, 1) such that −ψ̃(z0) /∈
[
lim inf
w→wi

g̃(x)

f̃(x)
, lim sup

w→wi

g̃(x)

f̃(x)

]
,

the vector field defined by (2.8) is topologically equivalent to

{
ẇ = sign(zi),
ż = 0,

or

{
ẇ = 0,

ż = lim
w→wi

sign(−g̃(w)− f̃(w)ψ̃(z0))

in a neighborhood of (w0, zi) or (wi, z0), respectively.
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Proof. First we prove the equivalence for neighborhoods of points (w0,±1). For any
z 6= 0, we can rewrite the system (2.8) with a positive time rescaling as

{
ẇ = sign(χ(z)),

ż = −g̃(w)−f̃(w)ψ̃(z)
|χ(z)| .

(2.11)

For any fixed w0 ∈ (−1, 1), applying (iv) and (v), we have ż → 0 when z → ±1. It

means that the segments of the boundary of D̃ contained in {z = ±1} are invariant for

(2.11). Using hypotheses (H̃), χ(z) and z have the same sign, so the proof, for this case,
ends.

Finally, we only prove the equivalence for neighborhoods of points (1, z0). For the

points (−1, z0) the proof is analogous. For any z0 satisfying −ψ̃(z0) /∈
[
lim inf
w→1

g̃(w)/f̃(w),

lim sup
w→1

g̃(w)/f̃(w)
]
there exists a neighborhood of (1, z0) in D̃ such that g̃(w)+f̃(w)ψ̃(z)

does not vanishes. In this neighborhood, system (2.8) is equivalent to

{
ẇ = χ(z)

|−g̃(w)−f̃(w)ψ̃(z)| ,

ż = sign(−g̃(w)− f̃(w)ψ̃(z)).

Hence, the equivalence follows similarly to the previous case.

Definition 2.15. We say that the points (w0,±1) or (±1, z0), are regular points in the
boundary when they satisfy the properties of the Proposition 2.14. The other points,
including the vertex, are called singular.

Remark 2.16. Proposition 2.14 extends the dynamical behavior of system (2.8) in D̃
to the regular points of its closure. See a possible phase portrait in Figure 2.5.

bc bc

bc bc

Figure 2.5 An example of a phase portrait on the boundary. The rounded
regions represent the set of singular points
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Proposition 2.17. Under the assumptions of Proposition 2.14, the positive orbit of
every point in [0, 1)× (0, 1) (resp. in (−1, 0]× (−1, 0)) cuts transversally, in finite time,
the segment (0, 1)× {0} (resp. (−1, 0)× {0}). See Figure 2.6.

bc

δ̃0

1

1

Figure 2.6 Phase portrait of system (2.8) on the first quadrant

Proof. We only prove the result on the first quadrant. The other follows by symmetry.
The first component of the vector field on the points over the positive z-axis is greater

than zero. Proposition 2.14 provides a Flow Box argument for the vector field (2.8) in
the neighborhood of the points (0, 1)× {1}. As there are no critical points with w > 0,

z > 0 in D̃, the proof ends, from the Poincaré-Bendixson Theorem, showing that there
are no orbits tending to (1, z0) with z0 > 0. We prove it by contradiction.

In a neighborhood of the segment {1} × (0, 1) in D̃, condition (ii) implies that

lim
w→1

(1−w)g̃(w) or lim
w→1

(1−w)f̃(w) is strictly positive. Then, one of the state functions

of Section 2.4. after the changes of variables of Proposition 2.3,

Ẽ(w, z) = G̃(w) + Φ̃(z) =

∫ w

0

g̃(u)du+

∫ z

0

χ(v)dv

J̃(w, z) = F̃ (w) + Ψ̃(z) =

∫ w

0

f̃(u)du+

∫ z

0

χ(v)

ψ̃(v)
dv,

goes to infinity when (w, z) tends to the boundary of D̃ by Lemma 2.13.
Therefore, if an orbit goes to the boundary then one of the state functions goes

to infinity. This contradicts with the fact that both state functions decrease over the
solutions of the vector field on the region w > δ̃ and z > 0. Because, by (i) and (H̃),

˙̃
E(w, z) = g̃(w)ẇ + χ(z)ż = −f̃(w)ψ̃(z)χ(z) < 0

and
˙̃
J(w, z) = f̃(w)ẇ +

χ(z)

ψ̃(z)
ż = −g̃(w)χ(z)

ψ̃(z)
< 0.
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Proposition 2.18. Under the assumptions of Proposition 2.14, the positive orbit of
every point in (0, 1)× (−1, 0] (resp. in (−1, 0)× [0, 1)) cuts transversally, in finite time,
the segment {0} × (−1, 0) (resp. {0} × (0, 1)). See Figure 2.7.

bc

w

Figure 2.7 Phase portrait of system (2.8) on the fourth quadrant

Proof. We only prove the result on the fourth quadrant, the other follows by symmetry.
The second component of the vector field on the points over the positive w-axis is

negative. Proposition 2.14 provides a Flow Box argument for the vector field (2.8) in
the neighborhood of the points (0, 1)×{−1}. As there are no critical points with w > 0,

z < 0 in D̃, the proof ends, from the Poincaré-Bendixson Theorem, using the condition
ẇ = χ(z) < 0 on the fourth quadrant.

The last two propositions imply the next corollary.

Corollary 2.19. The ω-limit of a finite point of D̃ can not be partially contained in the
corresponding boundary.

Finally, the proof of Theorem 2.1 follows from the next two propositions. In the
first result, the boundary always presents singular points besides the vertex, while in
the second does not.

Proposition 2.20. Consider system (2.5) under the hypotheses (H) and satisfying that

(i) there exist δ and η in R, with x1 < η < 0 < δ < x2, such that f(x) > 0 for all
x ∈ (x1, x2) \ [η, δ],

(ii) for each i = 1, 2 there exists λi in R
+ ∪ {+∞} such that, if |xi| = +∞, then

lim inf
x→xi

x(|g(x)|+f(x)) = λi, and if xi ∈ R, then lim inf
x→xi

|x−xi|(|g(x)|+f(x)) = λi,

(iii) yψ(y) > 0 for all y 6= 0,
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(iv) for i = 1, 2, lim
y→yi

ψ(y)/(yϕ′(y)) ∈ R,

(v) there exists y0 ∈ (y1, y2) such that −ψ(y0) ∈
[
lim inf
x→xi

g(x)/f(x), lim sup
x→xi

g(x)/f(x)
]

for at least one of the xi, i = 1, 2, and there exists U , neighborhood of y0, such that
sign(ψ′(y)) is constant almost for every y ∈ U .

Then, the boundary of D is a repellor.

Proof. Applying Lemmas 2.7 to 2.12 to system (2.8), we can compactify and we are on
the hypotheses of Propositions 2.14. Then, from statement (v), see Lemma 2.9, there

exists z0 ∈ (−1, 1) such that −ψ̃(z0) is in Ii =

[
lim inf
w→wi

g̃(w)/f̃(w), lim sup
w→wi

g̃(w)/f̃(w)

]

for at least one of the wi and there exists a neighborhood, Ũ , of z0 such that sign(ψ̃′(z))

is constant almost for every z ∈ Ũ .
We only prove the case w2 = 1 and ψ̃′(z) > 0. The other cases follow similarly.
The proof is done in two steps. In the first one, we study the behavior of the vector

field close to (1, z0) and, in second place, we construct a negatively invariant region that
proves that the infinity is a repellor. For the first step we distinguish two different cases,
when I2 is a proper interval or it reduces to a point.

If we are in the first case, we can assume that φ̃(z0) is in the interior of I2. From
the definition of lim inf and lim sup, there exists a sequence {wn}+∞

n=1 ⊂ (0, 1) such that

lim
n→+∞

wn = 1 and −g̃(wn) − f̃(wn)ψ̃(z0) = 0. Moreover, there exists ε > 0 such that

(z0 − ε, z0 + ε) ⊂ Ũ and ψ̃(z0 − δ) < ψ̃(z0) < ψ̃(z0 + δ), for all δ in (0, ε). Hence, it
follows that for all n ∈ N and δ ∈ (0, ε) we have ż(wn, z0− δ) > 0 and ż(wn, z0+ δ) < 0,
and consequently there exists an orbit, Γ(z0), which α-limit set is the point (1, z0). See
Figure 2.8.

z0

z0 + ε

z0 − ε
wn wn+1 wn+2 . . .

(a) ψ̃′(z) > 0

z0

z0 + ε

z0 − ε
wn wn+1 wn+2 . . .

(b) ψ̃′(z) < 0

Figure 2.8 Behavior of the flux near to a continuum of singular points in the boundary

In the second case, −ψ̃(z0) = lim
w→1

g̃(w)/f̃(w) and ψ̃′(z) > 0 in Ũ . Then the branch

of ψ̃−1
(
−g̃(w)/f̃(w)

)
defined in Ũ is a well defined function for all w ∈ (1− γ, 1) for a

positive small enough γ. Similar arguments as the ones in the previous case imply that
Γ(z0) also exists. See Figure 2.9.
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b

b

z0

Figure 2.9 Behaviour of the flux near to an isolated singular point in the boundary

For the second step, Propositions 2.17 and 2.18 give that the orbit Γ(z0) touches
the positive w-axis, in finite time, passing through all quadrants in counterclockwise
direction. We call (ŵ, 0) the first time that this happens and (ŵ, ẑ) the first time that

the orbit Γ(z0) cuts the straight line w = ŵ in the fourth quadrant. Then, by (H̃5), the
region defined by Γ(z0) between (ŵ, ẑ) and (ŵ, 0) and the segment with those endpoints,

Ŝ, is positively invariant. The proof ends because the positive orbits of all points in the
complement of this region in D̃ cross the segment Ŝ. See Figure 2.10.

bc bc

bc bc

Figure 2.10 Positively invariant region when the boundary has singular points different
form the vertex

Proposition 2.21. Consider system (2.5) under the hypotheses (H) and satisfying that

(i) there exist δ and η in R, with x1 < η < 0 < δ < x2, such that f(x) > 0 for all

x ∈ (x1, x2) \ [η, δ] and the integral
∫ δ
η
f(x)dx is positive,

(ii) for each i = 1, 2 there exists λi in R
+ ∪ {+∞} such that, if |xi| = +∞, then

lim inf
x→xi

x(|g(x)|+f(x)) = λi, and if xi ∈ R, then lim inf
x→xi

|x−xi|(|g(x)|+f(x)) = λi,
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(iii) yψ(y) > 0 for all y 6= 0,

(iv) for i = 1, 2, lim
y→yi

ψ(y)/(yϕ′(y)) ∈ R.

Then the boundary of D is a repellor.

Proof. System (2.5) from Proposition 2.3 and Lemmas 2.7 to 2.12, writes as the com-

pactified equivalent system (2.8) in D̃. In order to obtain a contradiction, we suppose
that the boundary of D is not a repellor. Hence, Propositions 2.14, 2.17 and 2.18 ensure
the existence of a return map close to the boundary. More concretely, for ε > 0 small
enough, there exists an orbit, Γε, that starts at (η̃, z0) with z0 ∈ (1 − ε, 1), cuts after
a time T the segment {η̃} × (0, 1) at (η̃, zT ) with zT ∈ [z0, 1) and remains, for positive
time, in (−1, 1) × (−1, 1) \ (−1 + ε, 1 − ε) × (−1 + ε, 1 − ε). See Figure 2.11. Let us

denote by (η̃, z0), (δ̃, z1), (δ̃, z2), (η̃, z3) and (η̃, zT ) the consecutive cutting points of Γε
with the segments {η̃} × (−1, 1) and {δ̃} × (−1, 1). Consequently, z0, z1, zT ∈ (1− ε, 1)
and z2, z3 ∈ (−1,−1 + ε).

bc bc

bc bc

1

1− ε

−1 + ε

−1

11− εδ̃η̃−1 + ε−1

Figure 2.11 Phase portrait, close boundary, of Γε when the boundary
of D̃ is not a repellor

The contradiction is obtained checking that the primary energy function Ẽ, see

Lemma 2.4, in (η̃, zT ) is lower than in (η̃, z0). Because, as z
∂Ẽ

∂z
= zχ(z) > 0 for all

z 6= 0, Ẽ grows when |z| grows but zT ≥ z0. So, we conclude proving that Ẽ decreases
when the orbit passes through the consecutive cutting points defined before.

Straightforward computations show that, from (i), there exist η̃, δ̃ satisfying −1 <

η̃ < 0 < δ̃ < 1 and
∫ δ̃
η̃
f̃(s)ds > 0. Then there exists a positive real number A such that

−
∫ δ̃
η̃
f̃(s)ds+2M(δ̃− η̃)/A < 0, where M = max

w∈(η̃,δ̃)
|g(w)|. By hypotheses (H), (iv) and

Lemma 2.12, we obtain that lim
z→zi

χ(z) = +∞ and lim
z→zi

ψ̃(z)/χ(z) = 0 or, equivalently,
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lim
z→zi

χ(z)/ψ̃(z) = +∞, for i = 1, 2. Therefore, we fix ε > 0 small enough, such that

χ(z) > A2 and χ(z)

ψ̃(z)
> A, for all z ∈ (1− ε, 1) ∪ (−1,−1 + ε).

Hence, writing equation (2.8) as dz/dw = −g̃(w)/ψ̃(z) − f̃(w)ψ̃(z)/χ(z), we can
estimate the differences

z1 − z0 =

∫ δ̃

η̃

(
− g̃(w)
ψ̃(z)

− f̃(w)ψ̃(z)

χ(z)

)
dw ≤ 1

A

(∫ δ̃

η̃

−f̃(w)dw +
M

A
(δ̃ − η̃)

)
< 0,

G̃(δ̃)−G̃(η̃) =
∫ δ̃

η̃

g̃(w)dw ≤M(δ̃−η̃) and Φ̃(z1)−Φ̃(z0) = −
∫ z0

z1

χ(z)dz ≤ −A2(z0−z1),

where the G̃ and Φ̃ are the compactified functions defined in Lemma 2.4. Thus, the
primary energy function satisfies

Ẽ(δ̃, z1)− Ẽ(η̃, z0) ≤M(δ̃ − η̃) + A2(z1 − z0) ≤ 2M(δ̃ − η̃)−A

∫ δ̃

η̃

f̃(w)dw < 0.

So, the energy decreases from (η̃, z0) to (δ̃, z1) and from (δ̃, z2) to (η̃, z3), applying the
same argument replacing z0 and z1 by z2 and z3, respectively.

Finally, the energy also decreases from (δ̃, z1) to (δ̃, z2) and from (η̃, z3) to (η̃, zT )

because f̃(w) > 0 and
˙̃
E = −f̃(w)χ(z)ψ̃(z) ≤ 0, for all w ∈ (−1, 1) \ [η̃, δ̃] and z ∈

(−1, 1).

2.6 Uniqueness of limit cycle

This section is devoted to prove the Unicity result, Theorem 2.2.
Proposition 2.6 shows that the origin is the unique singular point, which is a repellor.

Additionally, there is no periodic orbits entirely contained in (a, b) × (y1, y2) because
Ė = −f(x)yϕ′(y)ψ(y) > 0, for all (x, y) ∈ (a, b) × (y1, y2) \ {(0, 0)}. Moreover, all the
periodic orbits contain the region {(x, y) ∈ D : 0 ≤ E(x, y) ≤ min(G(a), G(b))}, because
it is negatively invariant. In the proof we assume that G(a) ≤ G(b), in other case we
can change (x, y) by (−x,−y).

The proof is done by the method of comparison. Let us suppose that we have two
different limit cycles, Γ1 and Γ2. Then we prove that the integral of the divergence of
the vector field (2.5), between them, is different from zero, in fact, it is negative. This
contradicts the existence of two limit cycles because it implies that both orbits have the
same stability.

Taking into account the above considerations, there are three possible configurations
of Γ1 and Γ2 in terms of the position of a, b and x0. See Figure 2.12. We only present
the proof when Γ1 contains the segment (a, x0) × {0} and Γ2 contains the segment
(a, b)× {0}. See Figure 2.12(b). The proof follows similarly for the other two cases.

The integral of the divergence of equation (2.5),

divX =
d

dx
(yϕ′(y)) +

d

dy
(−g(x)− f(x)ψ(y)) = −f(x)ψ′(y),
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a x0 b

Γ1

Γ2

(a)

a x0 b

Γ1

Γ2

(b)

a x0 b

Γ1

Γ2

(c)

Figure 2.12 Relative positions between Γ1 and Γ2 with respect to the intervals (a, b)
and (a, x0)

between both periodic orbits is computed decomposing the region in five different regions
Gi, i = 1, . . . , 5. See them in Figure 2.13.

G1

G2

G3

G5 G4

Γ1

Γ2

Figure 2.13 Decomposition of the enclosed region between Γ1 and Γ2

The different time reparametrizations that we use along the periodic orbits, in each
region, are

dt =





1

yϕ′(y)
dx if (x, y) ∈ Γ|G1∪G3 ,

− 1

g(x) + f(x)ψ(y)
dy if (x, y) ∈ Γ|G2∪G4 ,

− ψ(y)

g(x)yϕ′(y)
dJ if (x, y) ∈ Γ|G5,

where J is the secondary energy function, defined in Lemma 2.5. Then, by the Green’s
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Lemma, the integral of the divergence along the curve Γ1 − Γ2 can be written as

∫

Γ1−Γ2

divXdt =

∫∫

G1∪G3

− d

dy

(
f(x)ψ′(y)

yϕ′(y)

)
dx dy+

+

∫∫

G2∪G4

d

dx

(
− f(x)ψ′(y)

g(x) + f(x)ψ(y)

)
dy dx+

+

∫∫

G5

d

dx

(
−f(x)ψ

′(y)ψ(y)

g(x)yϕ′(y)

)
dJ dx =

=

∫∫

G1∪G3

∆1 dx dy +

∫∫

G2∪G4

∆2 dy dx+

∫∫

G5

∆5 dJ dx,

where

∆1=−f(x) d
dy

(
ψ′(y)

yϕ′(y)

)
, for x ∈ (a, b), y ∈ (y1, y2) \ {0},

∆2=−ψ′(y)
g(x)2

(g(x) + f(x)ψ(y))2
d

dx

(
f(x)

g(x)

)
, for x ∈ (x1, x2) \ [a, b], y ∈ (y1, y2) \ {0},

∆5=−ψ
′(y)ψ(y)

yϕ′(y)

(
−f(x)
g(x)

)
, for x ∈ (x0, b), y ∈ (y1, y2) \ {0}.

The proof ends because, from the statement, it can be checked that all the integrands,
∆1, ∆2 and ∆5, are negative in each region where they are considered.
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Chapter 3

On the Bogdanov-Takens

bifurcation

3.1 Introduction

In general, the applications of differential systems require more than a theoretical knowl-
edge of the qualitative behavior of the solution. Knowing the existence or the number of
limit cycles that a system has is not always enough. It is usually desired to control when
the limit cycles appear or disappear. The aim of our work is to provide global results
about the homoclinic connection curve in the parameter space for the Bogdanov-Takens’
normal form written as {

x′ = y,
y′ = −n + by + x2 + xy,

(3.1)

where n and b are real numbers.

This problem is established in [Tak74, Bog75], where they introduce system (3.1) as
the simplest one that provides a universal unfolding of a cusp point that just shows a
bifurcation of limit cycle and a homoclinic connection curve. The cusp is a particular
degenerate equilibrium point which linear part has one zero eigenvalue and the quadratic
coefficient for the saddle-node bifurcation vanishes. It implies that the phase portrait,
when n and b vanish, presents two tangent separatrices at the origin. The qualitative
behavior of system (3.1) is utterly known. For a detailed description of the complete
unfolding we refer the reader to [GH02, Kuz98]. For the analysis of other cusp unfolds,
it could be referred [DRS87] where it is considered the cusp of codimension 3 (our case
has codimension 2). It shows a reacher behavior than (3.1) in variety and quantity of
dynamical phenomena.

Roughly speaking, there are several ways in which the cusp point evolves varying n
and b. Taking into account the location of (n, b) in the parameter space, near the cusp
(n = b = 0), the number and types of singular points is none; just one, a saddle-node; or
two, a saddle and a focus. Each case corresponds to the condition n < 0, n = 0 (b 6= 0)
and n > 0, respectively.

Limit cycles can only appear in the case with two singular points, n > 0, and there

69
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can be at most one. Furthermore, system (3.1) characterize a rotated family of vector
fields with respect to b. Hence, fixed n and varying b, a unique unstable limit cycle,
born from a focus via a Hopf bifurcation (b =

√
n), increases, up to disappear on a

homoclinic connection (b = b∗(n)). The evolution of the phase portrait is shown in
Figure 3.1.

bb bb bb bb

b < b∗(n) b = b∗(n) b∗(n) < b <
√
n

√
n ≤ b

Figure 3.1 Evolution of the phase portrait of system (3.1) for n > 0

Lawrence Perko, in [Per92], includes the first global treatment of the bifurcations
of the Bogdanov-Takens’ system. For all n > 0, the value b∗(n) is unique. See Fig-
ure 3.2(a). Perko proves that this function is analytic with respect to

√
n. Moreover,

(3.1) also presents an invariant straight line in the case b =
√
n − 1. Hence, as Perko

also shows, function b∗(n) could be lower bounded. Then, for any n > 0, we know that
max{−√

n,
√
n − 1} < b∗(n) <

√
n. A numerical approximation of the curve b∗(n) is

shown in Figure 3.2(b) as a dashed curve together with the Perko’s lower and upper
bounds.

n

b
0 limit cycles

0 limit cycles

1 limit cycle

√
n

b∗(n)

n

b

√
n

√
n− 1

b∗num(n)

(a) (b)

Figure 3.2 Bifurcation diagram of the existence of the limit cycle (a)
and the previous bounds for the curve b∗(n) = 0 (b)

One of our main objectives is to provide closer explicit curves bd(n), bu(n) such that
bd(n) ≤ b∗(n) ≤ bu(n) for all n > 0. So, we seek the values of the parameters that
provide the homoclinic connection. The algebraic method that we apply is used to
localize connections of singular points, heteroclines as well as homoclines. See [GGT10].
Furthermore, we also prove the Perko’s Conjecture that predicts the performance of this
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curve when n goes to infinity. More precisely, he conjectures that b∗(n) goes to infinity
as

√
n−1 do. This is not the first study of the Bogdanov-Takens’ system at the infinity

of the parameter space. See [Bou91]. But the aim and the procedure of both works are
completely different. In fact, that work does not deal with Perko’s Conjecture nor with
the location of the bifurcation homoclinic connection.

The main results of our work may be summarized in the following two theorems.

Theorem 3.1. For n large enough, the homoclinic bifurcation curve of system (3.1)
satisfies

b∗(n) =
√
n− 1 +O(n−1).

Theorem 3.2. For all n > 0, it holds that bd(n) < b∗(n) < bu(n) where bu(n) and bd(n)
are the piecewise functions

bu(n) :=





Γu(n) , if n ≤ nu,
√
n− 1 +

4√
n
, if n > nu,

and bd(n) :=

{
Γd(n) , if n ≤ nd,√
n− 1, if n > nd,

where nd and nu are given squaring the unique positive real root of 72m3−78m2−49m−7,
and the biggest positive real root of

96m16 + 88m15 + 462884m14 + 50229186m13 − 390289463m12 + 294539208m11

− 2224823608m10 + 1615614334m9 − 2965720485m8 + 10305829872m7

− 34801925760m6 + 65690924544m5 − 98084348928m4 + 61359980544m3

− 14300872704m2 − 16817061888m+ 9172942848,

respectively. Moreover Γu and Γd are the functions defined by the branches of given
polynomials in

√
n and b of degrees 25 and 9 with 257 and 42 monomials, respectively.

Additionally, the series expansion at n = 0 of Γu, and Γd are

b =
5

7
n1/2 +

72

2401
n+

271944

823543
n3/2 +O(n2),

and

b =
5

7
n1/2 +

72

2401
n− 30024

45294865
n3/2 +O(n2).

The explicit expressions for the polynomials Γu and Γd are presented in the Appendix of
this chapter.

The bounds provided by Theorem 3.2 are graphically represented in Figure 3.3. The
large dashed curve is a numerical approximation of b∗(n) and the short dashed curves
are the previous known bounds given in [Per92].

In order to obtain our results, we follow the method introduced in [GGT10]. In
fact, we adapt the method in two different ways depending in the region that we are
interested in each case, small or large values of n. The basic idea of the proof is the
following: If we have positive fixed values of b and n such that b <

√
n, we want to
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n

b
Γu

√
n− 1

√
n− 1 + α√

n

Γd n

b
bu(n)

bd(n)

(a) (b)

Figure 3.3 Previous (short dashed) and new (solid) upper and lower bounds together
with the numerical approximation (long dashed curve) of the graph of the function b∗(x)

distinguish if b > b∗(n) or b < b∗(n), which means the existence or not of the limit
cycle. So, first of all, we consider a closed curve passing trough the saddle point and
surrounding the focus, that in this case is an attractor. Therefore, we could apply
the Poincaré-Bendixson theorem and distinguish both cases depending if the delimited
region is negative or positively invariant. Hence, the limit cycle exists and it is unstable
or does not exist. Both cases are represented in Figure 3.4.

bb bb

b > b∗(n) b < b∗(n)

Figure 3.4 Negative and positive invariant loops around the focus

In [GGT10], the closed curve around the attracting point is proposed to be the
loop of an algebraic self-intersecting curve which vertex is on the saddle point and the
branches of the curve on this point approximate its separatrices. In this chapter we use
the same construction for the closed curve when n is small. But we adapt the proof
when n is large designing a piecewise algebraic closed curve which also approximates the
separatrices of the saddle point. Moreover, we also provide the biggest possible interval
where this argument holds.
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The chapter is organized as follows. In Section 3.2, changes of variables, in phase
and parameter spaces, are presented to shorten expressions for the bifurcation curves de-
scribed in Theorem 3.2. Moreover, the previous results and curves are also transformed.
The new results of the bifurcation curve are proved in Section 3.3, close to the origin
in the parameter space, and in Section 3.4 for bigger values of n. Section 3.5 is devoted
to proof Theorem 3.2 and to deal with some small rational expressions that provide a
good approximation to this curve. Additionally, a short study of the differences with
the numerical bifurcation curve are also presented. And we summarize the ranges of
validity of the upper bounds constructed. At the end of this chapter, due to their size,
we include the expressions of the functions in the statement of Theorem 3.2.

The required computations to obtain all the results have been done using the alge-
braic manipulator MAPLE.

3.2 Changes of variables

First, we move the saddle point of system (3.1) to the origin. Second, we change the
parameter space in such a way that the eigenvalues of the saddle point do not have square
roots. This last change allows us to obtain smaller expressions for the bifurcation curves
than in the original coordinates.

System (3.1) is transformed, by the change of variables (x, y) → (x+
√
n, y), into

{
x′ = y,
y′ = 2

√
nx+ (b+

√
n)y + x2 + xy.

(3.2)

In order to simplify the expression of the eigenvalues of the linearization of the saddle
point, we also propose a change in the parameters (n, b). The new parameters, M and
B, satisfy

M2 =
(b+

√
n)2 + 8

√
n

4
, B =

b+
√
n

2
, (3.3)

and system (3.2) writes as

{
x′ = y,
y′ = (M2 − B2)x+ 2By + x2 + xy.

(3.4)

In what follows, in order to facilitate the reading, we refer, when necessary, to (n, b) and
(M,B) as the small and the capital parameter space respectively.

With the first change, the origin of the previous system is a saddle point and the
focus of (3.1), (−√

n, 0), changes to (B2 −M2, 0).
In the parameter space, the Hopf bifurcation curve, b =

√
n, becomes B2+2B−M2 =

0. The curve of the existence of an invariant straight line, b =
√
n − 1, is moved to

M2 = (B + 1)2. And the curve where the divergence of the saddle point vanishes,
b = −√

n, is contained in the horizontal axis, B = 0. Moreover, the origin goes to the
origin and the large values of n also correspond with large values of M.
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The homoclinic bifurcation curve, b = b∗(n), has also a new expression for sys-
tem (3.4). We denote it by B = B∗(M). And, as far as it is located between the curves
listed in the previous paragraph, we have that B = B∗(M) is contained in the set

R =
{
(M,B) ∈ R

2 such that M > 0, B > 0, B2 + 2B −M2 < 0, B > M − 1
}
. (3.5)

Without loss of generality, we consider only system (3.4) in region R. Thus Theo-
rems 3.1 and 3.2 are the translation of the analogous results for system (3.4). In order to
easy the reading of the rest of the chapter, the curves described in Figure 3.3 in the small
parameter space are plotted in Figure 3.5 in the capital parameter space. In Figure 3.5
set R and a numerical representation of the curve B = B∗(M) are also printed.

M

B B2 + 2B −M2 = 0

M2 = (B + 1)2

B∗
num(M)

Figure 3.5 Region R and the curves which define its boundary. The numerical
approximation of B = B∗(M) is represented by the dashed line

Since the curves in Figure 3.5 are not distinguishable at all, the plots in this pa-
rameter space is not very useful. So we use a different scale for some of the diagrams
included in this chapter. Figure 3.6 is equivalent to Figure 3.5 using B̃ instead of B,
where B̃ = (B −M + 1)M . This rescaling is due to the fact that the bifurcation B∗

curve goes asymptotically to the straight line B −M + 1 = 0.

M

B̃

Figure 3.6 Region R and the bifurcation curve B = B∗(M) in the (M, B̃) plane
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3.3 Bounds from the origin

This section is devoted to the study of upper and lower bounds for b∗(n) for small
values of n. The results on this section are presented in terms of the capital parameters
introduced in the previous section, M and B. In these new coordinates, small values of
n corresponds also with small values of M .

Proposition 3.3. There exists a positive real value Mu, such that for all 0 < M < Mu

there exists B∗(M) < Γ̃u(M) where Γ̃u(M) is the function defined by the branch of the
algebraic curve

− 327M7B − 714M6B2 − 253M5B3 + 458M4B4 + 519M3B5 + 250M2B6 + 61MB7

+ 6B8 − 198M7 − 579M6B + 253M5B2 + 1590M4B3 + 1488M3B4 + 707M2B5

+ 177MB6 + 18B7 − 144M6 + 300M5B + 1402M4B2 + 1339M3B3 + 658M2B4

+ 171MB5 + 18B6 + 336M4B + 378M3B2 + 201M2B3 + 55MB4 + 6B5 = 0

which series expansion at the origin is

B =
3

7
M2 − 180

2401
M4 +

3321

33614
M5 − 225153

3294172
M6 +O(M7).

And Mu is the M-component of the first common point of this function and the Hopf
bifurcation curve, B = −1 +

√
1 +M2 which is the smallest positive zero of the polyno-

mial 8640M7−28800M6+29876M5−19392M4+14939M3−13200M2+8400M−2304.
That is, approximately, 2.036795457.

Moreover, there exists a positive real Md, such that for all 0 < M < Md there exists
Γ̃d(M) < B∗(M) where Γ̃d(M) is the function defined by the branch of the algebraic
curve

18M5 + 51M4B − 6M3B2 − 78M2B3 − 48MB4 − 9B5 + 24M4

− 24M3B − 138M2B2 − 90MB3 − 18B4 − 56M2B − 42MB2 − 9B3 = 0

which series expansion at the origin is

B =
3

7
M2 − 180

2401
M4 − 1107

16807
M5 +

77085

1647086
M6 +O(M7).

AndMd is theM-component of the first common point of this function and the invariant
straight line curve, B = M − 1, which is the smallest positive zero of the polynomial
72M3 − 186M2 + 83M − 11. That is, approximately, 2.059652018.

Proof. We recall that system (3.4) has a saddle point at the origin and the linear appro-
ximation to the separatrices of the origin is given by the equation

C2(x, y) := −(M2 − B2)x2 − 2Bxy + y2 = 0. (3.6)
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It defines two straight lines which explicit equations are y = (B ±M)x. The one which
slope is B +M is tangent at the origin to the unstable separatrix. And, the other one,
which slope is B −M , is tangent to the stable separatrix.

Let us consider the algebraic curve characterized by equation

C(x, y) := C2(x, y) + c30 x
3 + c21 x

2y + c12 xy
2 + c03 y

3 = 0. (3.7)

Following the method described in [GGT10], we impose that this equation defines a
curve as close to the separatrices as possible. It means that this curve should coincide
at the origin with the separatrices in the highest possible derivative orders. For this
purpose, first we set the Taylor series expansions of both separatrices close to the origin.
We express the separatrices as functions of y,

x = Φ±(y) :=

∞∑

k=1

a±k y
k, (3.8)

where the superscript sign determines the separatrix that we approach in each case.
Then a±k are real numbers obtained from the identity

∂(x− Φ±(y))

∂x
y +

∂(x− Φ±(y))

∂y
((M2 − B2)x+ 2By + x2 + xy)|x=Φ±(y) ≡ 0.

Straightforward computations show that a±1 = 1/(B ±M),

a±2 =
a21(1 + a±1 )

−4B + 3a±1 (B
2 −M2)

, a±3 = −1

2

a2(−4(a±1 )
2 + 2a±2 B

2 − 3a±1 − 2a±2M
2)

−3B + 2a±1 (B
2 −M2)

,

and the following coefficients of Φ± have analytical expressions depending on a±1 . Note
that their denominators do not vanish in region R defined in (3.5).

Substituting (3.8) in (3.7) we get the functions, that defines both branches of the
algebraic curve near the origin,

G±(y) := C(Φ±(y), y) =
∞∑

k=3

g±k y
k. (3.9)

From definition (3.6) g±k vanishes for k = 1, 2. When the curve defined by C(x, y) = 0
becomes closer to the separatrices, it provides extra conditions g±k = 0 for higher values
of k. In (3.7), we choose cij with i, j = 0, 1, 2, 3 such that i+j = 3, in order to vanish g±k
for the first values of k. As we have four coefficients cij, we can cancel four coefficients
g±k and we are free to distribute them between both separatrices. For example, we
can choose the value of three of these parameters in aim to be closer to the unstable
separatrix and the other parameter to be closer to the stable one. It means, in this
case, that we fix cij solving the equations g+3 = 0, g+4 = 0, g+5 = 0 and g−3 = 0, and
consequently

G+(y) =

∞∑

k=6

g+k (M,B)yk,
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and

G−(y) =
∞∑

k=4

g−k (M,B)yk,

where g+6 and g−4 are not identically zero polynomials in M and B.
After these considerations, we can vanish an extra term in G+ or in G−. This extra

assumption relates the parameters M and B via, for our case, a polynomial relation
given vanishing one more g±k . In our previous example, we may consider g+6 = 0 or
g−4 = 0 and we can establish two different relations between M and B. Straightforward
computations show that if we set g+6 = 0, we obtain the equivalent condition

E41(M,B) :=− 327M7B − 714M6B2 − 253M5B3 + 458M4B4 + 519M3B5

+ 250M2B6 + 61MB7 + 6B8 − 198M7 − 579M6B + 253M5B2

+ 1590M4B3 + 1488M3B4 + 707M2B5 + 177MB6 + 18B7 − 144M6

+ 300M5B + 1402M4B2 + 1339M3B3 + 658M2B4 + 171MB5

+ 18B6 + 336M4B + 378M3B2 + 201M2B3 + 55MB4 + 6B5 = 0.

And for g−4 = 0, we obtain the equivalent condition

E32(M,B) := 18M5 + 51M4B − 6M3B2 − 78M2B3 − 48MB4 − 9B5 + 24M4

− 24M3B − 138M2B2 − 90MB3 − 18B4 − 56M2B − 42MB2 − 9B3 = 0.

The non vanishing factors in R have been removed. The subindex notation shows the
orders of approximation of the curve C(x, y) = 0 to the separatrices. The first digit
corresponds to the unstable separatrix and the second digit to the stable one.

With the same procedure we obtain all the conditions Eij for i + j = 5. Studying
the plots of all these curves in region R, we can see that between the graphs of the
curves E41 = 0 and E32 = 0 there are no other curves Eij = 0 for all values of i+ j = 5.
Additionally the graph of E41 = 0 appears above the graph of E32 = 0 in the space
(M,B) and these are the curves that appear in the statement.

The proof continues showing that curves E41 = 0 and E32 = 0 define negative and
positive invariant closed regions that contain the focus point. See Figure 3.4. This
assertion is proved in two steps for each value (M,B) on the curve Eij = 0 and for some
values of M bigger than the ones that appear in the statement. First, we prove that
the respective curves C(x, y) = 0 are without contact for the vector field when x < 0.
Second, we prove that C(x, y) = 0 has a loop that emerges for x < 0 from the origin
when (M,B) is close to (0, 0).

These last properties ensure that E41 = 0 is an upper bound for B = B∗(M).
Moreover, both curves never touch each other in R. The proof finishes, for this case,
checking that E41(M,B) = 0 intersect the Hopf bifurcation curve, B = −1 +

√
1 +M2,

in a point that is approximately (M,B) = (2.036795457, 1.269038504). This is the value
of Mu that appear in the statement. Hence, the upper bound is defined as a piecewise
function because, for fixed values ofM , the Hopf curve takes lower values of B than the
curve E41(M,B) = 0.
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Curve E32 = 0 gives the lower bound of the statement. For that case the proof follows
similarly but this curve intersect the curve of the existence of an invariant straight line,
B = −1 +M . Hence, the lower bound is also a piecewise function because, for fixed
values of M , this straight line takes bigger values of B than the curve E32 = 0. This
intersection point defines the value of Md that appears in the statement.

We only prove these properties for the curve E41(M,B) = 0. Then, we describe the
differences that appear when we take E32(M,B) = 0.

We start proving that the curve C(x, y) = 0 is without contact. This means that
the vector field (3.4) does not change the side that it points out along C(x, y) = 0.
Equivalently, the region delimited by C(x, y) = 0 is negatively invariant. To prove it,
we study the roots of the resultant, respect to y, of C(x, y) and its derivative respect
the vector field,

D(x, y) :=
∂C(x, y)

∂x
y +

∂C(x, y)

∂y
((M2 −B2)x+ 2By + x2 + xy).

Some computations with an algebraic manipulator show that

P (x;M,B) := Res(C,D, y) = α(M,B)x10
(
r0(M,B) + r1(M,B)x+ r2(M,B)x2

)
,

where α(M,B) does not vanish in R. Hence, with the exception of the multiple root in
x = 0, we can restrict our study to the quadratic polynomial.

Straightforward computations show that the polynomial E41(M,B) is one of the
factors of r0(M,B). So, under the assumption that E41(M,B) = 0, P (x;M,B) can
have at most one root different from x = 0. Let us check where this zero is located
applying the Descartes’ rule of signs, [Kos82]. The resultant of r1(M,B) and E41(M,B)
respect to M , except for some non-vanishing factors in R, is

1402B4 + 3361B3 + 2503B2 + 483B − 72.

Therefore, there is just one possible value for B where both polynomials can vanish at
the same time, which is the positive root of the previous polynomial. It approximately
takes the value B = 0.095501437. But we observe that r1(M,B) does not change its
sign in small segments on E41(M,B) = 0 for this concrete value of B. So r1(M,B) has
a fixed sign for any (M,B) in R satisfying E41(M,B) = 0. Additionally, all the factors
of the resultant of r2(M,B) and E41(M,B) respect to M do not have positive roots. So
r2(M,B) has also a fixed sign for (M,B) in R satisfying E41(M,B) = 0. Finally, if we
consider any (M,B) in R such that E41(M,B) = 0, it is easy to check that the sign of
r1 and r2 are positive and negative, respectively. Hence, there are not negative values
of x where P (x;M,B) vanishes if M and B satisfy E41(M,B) = 0. Consequently, the
curve C(x, y) = 0 is without contact for negative values of x if E41(M,B) = 0.

Our next goal is to show that C(x, y) = 0 under the condition E41(M,B) = 0
actually contains a loop around the focus, (x, y) = (B2−M2, 0), having a vertex on the
saddle, (x, y) = (0, 0). That is, the loop remains in the region of the phase space with
x < 0, where the curve C(x, y) = 0 is without contact. From the construction of C(x, y)
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follows easily that the curve has a vertex at the origin. And, following [GGT10], we have
proved the existence of this loop taking M small enough, since the curve obtained here
and the bounds there have the same first coefficients in the power series expansion for
M close to 0. The procedure is to find a box on the phase plane such that its boundary
has no contact points with C(x, y) = 0 except for the saddle point. Figure 3.7 represents
the graphical idea of the proof.

bb

Figure 3.7 Proving the existence of the loop surrounding the focus

In order to have an approximate idea about the size of that box, we study some
points of C(x, y) = 0 and their evolution when we move the value of M in the range of
the statement. Therefore we observe that, if E41(M,B) = 0, the contact point between
C(x, y) = 0 and the negative x-axis has a power series expansion in M that starts like

−3

2
M2 +

99

392
M4 +O(M5).

Similarly we obtain that, when x = B2 −M2, two points on C(x, y) = 0 has a power
series expansion in M that starts like

± 1√
3
M3 +O(M4).

So, in order to be far enough from these known points on C(x, y) = 0 we take the
vertical segment in the boundary of the box in x = −2M2 and both horizontal segments
set y = ±M3.

Now, in order to see that these segments have no contact points with C(x, y) = 0
we proceed as follows. Let us first see the case of the vertical segment. Thus, we fix
the value of x = −2M2 in the expression C(x, y) and we obtain a polynomial in y with
degree 3. Then, we compute the discriminant of this polynomial, DC(M,B), respect to
y and it is a polynomial in M and B with degree 19, with the exception of some factors
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that do not vanish in R. That is

− 75087M19 − 771039M18B − 2955075M17B2 − 5791935M16B3 − 5146031M15B4

+ 1781489M14B5 + 9452533M13B6 + 9484153M12B7 + 2834507M11B8

− 2648069M10B9 − 3457697M9B10 − 1922677M8B11 − 637517M7B12 − 131085M6B13

− 15633M5B14 − 837M4B15 − 358668M18 − 2124324M17B − 3745326M16B2

+ 2970806M15B3 + 22821408M14B4 + 38575340M13B5 + 26504182M12B6

− 4720570M11B7 − 24364172M10B8 − 22111932M9B9 − 11194994M8B10

− 3555102M7B11 − 701832M6B12 − 76428M5B13 − 2646M4B14 + 162M3B15

+ 13716M17 + 2664756M16B + 16908150M15B2 + 45638620M14B3 + 59703551M13B4

+ 21302235M12B5 − 47237365M11B6 − 81798503M10B7 − 64623550M9B8

− 30599870M8B9 − 8876028M7B10 − 1369538M6B11 − 15877M5B12

+ 32319M4B13 + 4779M3B14 + 189M2B15 + 787536M16 + 5975352M15B

+ 14852124M14B2 + 4533506M13B3 − 51863670M12B4 − 122994760M11B5

− 139930230M10B6 − 94582910M9B7 − 39218024M8B8 − 9157952M7B9

− 689260M6B10 + 160638M5B11 + 16446M4B12 − 10512M3B13 − 2538M2B14

− 162MB15 + 280800M15 − 989712M14B − 14989824M13B2 − 53870868M12B3

− 96112515M11B4 − 97704531M10B5 − 58816770M9B6 − 19809750M8B7

− 2620939M7B8 + 248377M6B9 − 79113M5B10 − 136865M4B11 − 42130M3B12

− 4662M2B13 + 27MB14 + 27B15 − 432000M14 − 4017600M13B − 14057712M12B2

− 24420888M11B3 − 21471336M10B4 − 7832826M9B5 + 1463546M8B6

+ 2159994M7B7 + 293270M6B8 − 366660M5B9 − 202136M4B10 − 41114M3B11

− 1926M2B12 + 486MB13 + 54B14 − 216000M13 − 1036800M12B − 1626480M11B2

+ 21600M10B3 + 2548296M9B4 + 2883624M8B5 + 1344389M7B6 + 114879M6B7

− 167964M5B8 − 80154M4B9 − 13654M3B10 + 36M2B11 + 297MB12 + 27B13.

And the resultant of E41(M,B) and DC(M,B) respect to M is

2899622803184994484224B39 − 16412078457787621834752B38

− 1535278927440587362664448B37 − 23688411426884067396681728B36

− 202065146355663413954215936B35− 1165768158549406117303156736B34

− 4984332287223795443419840512B33− 16713724114703483938180956160B32

− 45701239445532739824210935808B31− 103918499777337919858974654464B30

− 193238176255440188900157685760B29− 263438033121700724968201912320B28

− 123607365356201133380114644992B27+ 666058154571668577346557771776B26

+ 2822400982402589808333290930176B25+ 7196246763889539671297738784768B24

+ 14510713801720917602146669703168B23+ 25109505424899238589611461595136B22
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+ 38643695639740926329904520141824B21+ 53484117194462348676172039630848B20

+ 66159294872247029375902242141184B19+ 71908684250951283143638955503872B18

+ 67049279646371641117126261502720B17+ 51878581071831116191429598677504B16

+ 31411694759635147646807567239360B15+ 12695083681184078702766440589216B14

+ 684244727385813834968011768720B13− 3953362876299772878463898370636B12

− 3798165932246799827469207218864B11− 2038472318847501714435355222559B10

− 608908340006243591242901125072B9+ 24242766622506635502196884126B8

+ 139900991864465566982394566550B7+ 85749198474821573268513637569B6

+ 31118739181290495159018284520B5+ 7339447375107889386068008965B4

+ 1037653460604717219779746482B3+ 54572204525720465976293322B2

− 6064006883266578137934096B− 834443269200948104180559.

The smallest valid root takes a value approximately B = 2.062295032 and it corresponds
approximately to M = 2.871454426. So, we can assure that the vertical boundary for
x = −2M2 does not contain points in C(x, y) = 0 at least for M between 0 and
2.871454426. Notice that this value is bigger than the value given in the statement.

Doing similar computations for the horizontal segments in the boundary of the box,
we obtain that the segment at the top is valid until M = 3.263890289, approximately,
and the segment at the bottom has no contact points with C(x, y) = 0 for any posi-
tive value of M . Summarizing, the box represented in Figure 3.7 has no contact with
C(x, y) = 0 while M is lower than 2.871454426. Then, the loop remains in the interior
of the box.

Finally, we check that the branch of E41(M,B) = 0 containing the origin and satis-
fying the existence of the loop is the expression given in the statement.

The proof for the curve E32 = 0 follows similarly as the above case. The main
difference is that almost all the segments without contact with the loop, that prove its
existence, are fixed. That is x = −12, y = 13 and y = −M3.

The next result gives new upper and lower bounds considering a particular case of
non contact quartic curves in the phase space for localize the bifurcation curves in the
parameter space. The key point of next result is that the proof of the existence of a
loop in the non contact curve is easier.

Proposition 3.4. There exists a positive real number Mu and a function Γ̃u(M) such

that for all 0 < M < Mu, B
∗(M) < Γ̃u(M). Moreover, Γ̃u(M) is the function defined

by the branch of a given polynomial, see the Appendix, on M and B (of degree 14 with
72 monomials) which series expansion at M = 0 is

B =
3

7
M2 − 180

2401
M4 +

2366307

90589730
M6 +

71523

32353475
M7 +O(M8)
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Additionally, Mu is the biggest positive zero of the polynomial

15925248M13 − 529072128M12 + 1472221440M11 − 2220910656M10 + 7743711296M9

− 23908694736M8 + 42538637040M7 − 50911036332M6 + 46590774012M5

− 31063624839M4 + 12150489456M3 − 1556369640M2 − 366210720M + 69984000,

which is, approximately, 30.30805089.

Proof. The proof follows using the same ideas and techniques developed in the proof of
Proposition 3.3. Hence, due to the size of the expressions that appear during the proof,
we only show the differences between both results.

The main difference is that we consider a special quartic algebraic curve

F (x, y) := C2(x, y) + a30x
3 + a21x

2y + a12xy
2 + a40x

4 + a31x
3y + a22x

2y2 = 0.

As the above curve is quadratic in y, the proof of the existence of the loop is easier.
Then, following the notation of the proof of Proposition 3.3 the expression of Γ̃u comes
from the condition E52 = 0.

Similar results but with a complete quartic algebraic curve do not give better results.
Even though better approximation curves are obtained, we are not been able to prove
that they are upper and lower bounds, because the expressions that appear in the proof
are extremely huge. Notice that the above result does not provides a better lower bound.

3.4 Bounds up to infinity

In this section we study the function B = B∗(M) on intervals that arrive to infinity,
(Mα,+∞). The procedure is similar than the one described in the last section. In this
case only upper bounds are provided because only negatively invariant regions can be
obtained. The main difference between next result and the given in previous section is
that this region is constructed via a piecewise rational curve. More concretely, the proof
follows the same procedure that Proposition 3.3. In this case the method considered in
[GGT10] does not give good expressions of C(x, y), since the property of been without
contact usually breaks down. Therefore, we design it as a composition of sections of
three different algebraic curves. The negatively invariant region in R

2, which boundary
is defined by the curve C(x, y) = 0 is plotted in Figure 3.8. Finally, we also proof the
main result of the chapter, Theorem 3.1.

Proposition 3.5. For any real α > 0, there exists Mα >
√
α > 0 such that for any

M > Mα,

M − 1 < B∗(M) < M − 1 +
α

M2
.
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Figure 3.8 Piecewise loop for the bounds at infinity

Proof. From the existence of an invariant straight line for B =M−1 we only prove that,
for any α, there exists a curve B =M−1+α/M2 in the region of existence of limit cycle
for M large enough. Without loss of generality we can assume that B =M − 1+α/M2

and we can restrict our study to the values of M where this curve remains in R.
Following the procedure of Proposition 3.3 we propose a curve C(x, y) = 0 formed

by three different polynomials Fi(x, y) of degree i, for i = 1, 2, 3. Figure 3.9 shows the
geometry of the curve C(x, y) = 0 and the sections that we propose. By abuse of
notation, we use the same Fi to denote the algebraic curves that contain each one of
them.

bb bb bb

F1 F2 F3

Figure 3.9 Graphical representation of the different Fi considered

First of all, let us consider the straight line containing the origin, the saddle point,
such that is tangent to the stable separatrix. It satisfies the equation y = (B −M)x.
We say F1 to the segment of this straight line defined between the origin and the point
(x1, y1) with x1 = B2 −M2, which is the x-coordinate of the focus.

Second, we take F2 to be a section of a quadratic curve that does not contain the
origin. In general, it is expressed as 1 + a10x + a01y + a20x

2 + a11xy + a02y
2 = 0. And
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we fixed the values of the aij to have that F2 passes trough (x1, y1) and is tangent to F1

at this point. It gives us two of the five necessary conditions to get a unique quadratic
expression. The other three are obtained imposing that F2 contains and approximates
until the second order the vector field at (x2, 0), where x2 = −3M . The choice of this
value for x2 is justified in Remark 3.6(a). F2 is defined as the section of the quadratic
curve between the points (x1, y1) and (x2, 0).

Finally, F3 is contained in a cubic curve which quadratic part is (B2 − M2)x2 −
2Bxy + y2 as the one defined in (3.7), in the proof of Proposition 3.3. This fact assures
that this curve is tangent to both separatrices at the origin. The four coefficients of
the homogeneous part of degree three will be fixed to get that F3 approaches two times
more the unstable separatrix at the origin and contains and is tangent to the vector
field at (x2, 0). F3 is restricted to the section between the origin and (x2, 0) and which
is contained in the third quadrant.

Let us check now the behavior of the vector field on each Fi for i = 1, 2, 3.
The gradient of F1 at (x1, y1) is (M−B, 1) for any α, which is an orthogonal exterior

vector to F1. The gradient of F2 at (x2, 0) is
(
− 2(3M+B2−M2)3

3(B+M)2(M−B)4M
, 0
)

which always

points to the exterior of F2 if M > 0 and α > 0. And the gradient of F3 at (x2, 0) is
(−3(B +M)(M − B)M, 0) which always points to the exterior of F3 if M >

√
α. Thus

we can conclude that the vector field points to the exterior of F for M large enough, if
we see that the curves defined by Fi = 0 and Ḟi = 0, the derivation of Fi respect to the
vector field, has no common points. Note that Fi and Ḟi are both polynomials in x and
y. Hence we can consider the resultant of both respect anyone of the variables.

The resultant of F1 and Ḟ1 respect to y is

R1 := Res(F1, Ḟ1, y) =
αx2

M2
.

It just vanishes at x = 0, which means that the behavior of the vector field along F1

does not change for any point on F1. As the vector field at (x1, y1), (x
′, y′)|(x,y)=(x1,y1) =

((M − B)2(M + B), (M − B)2(M + B)(B2 + 2B −M2)), points to the exterior of F ,
this property holds at any point in F1 and any value of M > 0.

The resultant with respect to y of F2 and Ḟ2, R2, has a zero with multiplicity two
at x = x2 and a factor of degree four on x, p(x). Let us consider the Sturm sequence
associated to p(x), that we denote by [p0(x), p1(x), p2(x), p3(x), p4(x)]. Once we evaluate
the sequence at x2 and x1, we obtain ten rational functions of M and α. If we consider
the series expansion of them at M = +∞, we can obtain the sign of these rational
functions for M large enough. The sign configuration of the Sturm sequence, for α > 0,
at x2 is [+,−,−,+,+] and at x1 is [+,+,±,−,+]. Thus, independently to the value
of α > 0, the number of changes of sign is in both cases two. Therefore, R2 does not
vanish in the interval (x2, x1). From the previous case, the vector field at (x1, y1) points
to the exterior of C(x, y) = 0. So, by the construction of F2, the vector field points to the

exterior of C(x, y) = 0 along F2, forM large enough and any α > 0. The value ofM , M̃2,
where F2 satisfies the desired property can be taken as the largest positive root of any
of p0(x1), p1(x1), p2(x1), p3(x1), p4(x1), p0(x2), p1(x2), p2(x2), p3(x2), p4(x2), which, for
fixed α, are all polynomials in M .
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The resultant of F3 and Ḟ3 respect to x, R3, is of the form y9q(y), with q a polynomial
of degree three. The series expansion of the coefficients of q(y) for y = +∞ show that
the sign configuration of this coefficients forM large enough is [+,−,+,−]. Thus by the
Descartes’ rule of signs, all the zeros of q(y) are positive. Then R3, for M large enough,
has no vanishing points in the lower half plane, where F3 is defined. And, similarly to
the previous cases, we check that the vector field points to the exterior of C(x, y) = 0
along F3. This behavior of F3 can be assure while the coefficients of q(y) do not vanish.

Thus, for a fixed value of α, we can take M̃3, a real value from which we can assure this
behavior, as the maximal root of the coefficients of q(y), which are polynomials in M .

This finishes the proof, since Mα can be taken as the maximum of M̃2 and M̃3 and
for M > Mα we have the situation given in Figure 3.10.

bb

Figure 3.10 The negatively invariant region corresponding to the piecewise loop

Next remark clarifies some details about the previous proof. First, we explain why
we fix the point (x2, 0) to be (−3M, 0) in the previous proof. Second, we show the
expression of Mα for a particular α.

Remark 3.6. (a) In order to guarantee the choice of point x2 in the proof of Proposi-
tion 3.5, we have computed numerically the first contact point of the separatrices of
the saddle point with the negative x-axis, (Ps, 0) for the stable and (Pu, 0) for the
unstable. See Figure 3.11(a).

For some fixed values of α, we use a Fehlberg fourth-fifth order Runge-Kutta method
with degree four interpolation to obtain numerical approximations of the coordinates
Ps and Pu for any M . With the obtained values we compute approximations of the
first coefficient of the power series expansion of these points. Figure 3.11(b) shows
the plot of −Ps/M and −Pu/M together with the corresponding value of the abscissa
of the focus point. We should remark that for any α that we have checked the limit
behavior has been always the same. Thus, fixing x2 = −3M , we desire that our loop
will contact the x-axis between the points (Ps, 0) and (Pu, 0) for M large enough.

(b) From the proof of last proposition, fixed α, Mα can be obtained as the largest positive
root of a list of fourteen polynomials in M . For example, if we take α = 51/40, we
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Figure 3.11 Separatrices of the saddle point

have that Mα is the largest positive zero of the polynomial of degree 17 given by

196608000000M17 − 1441792000000M16 − 535756800000M15

+ 1480294400000M14 − 1310515200000M13 − 1151979520000M12

+ 1314478080000M11 − 727741440000M10 − 273666816000M9

+ 443460096000M8 − 458441856000M7 + 61550064000M6

+ 227310753600M5 − 162364824000M4 − 41403030120M3

+ 82806060240M2 − 17596287801,

that is, approximately, 7.578650186. Numerical computations show that this concrete
value of α is close to the one that minimize Mα. And it is taken in order to have a
kind expression. A more accurate choice gives a value of Mα with a difference lower
than a few thousandths.

We conclude this section with the proof of Theorem 3.1. It states the behavior, for
the small parameters, of the curve b = b∗(n) when n goes to infinity. Straightforward
computations give the transformation of the upper bound of the previous result in capital
parameters to small ones. Next lemma provides the transformed curve.

Lemma 3.7. Denoting m =
√
n, the change of variables (3.3) converts the curve B =

M − 1 + αM−2 to the branch of the curve

− 4m5 − 12m4b− 8m3b2 + 8m2b3 + 12mb4 + 4b5 − 60m4 − 48m3b+ 88m2b2

+ 80mb3 + 4b4 + (−192− 16α)m3 + (384− 48α)m2b+ (64− 48α)mb2

− 16αb3 + (256− 160α)m2 − 192αmb− 32αb2 − 256αm+ 64α2 = 0

(3.10)

such that, when m goes to +∞, it is written as

b = m− 1 + 2α
1

m
− α

1

m2
+
(α
2
− 2α2

) 1

m3
+O

(
1

m4

)
.

Moreover, it remains below the curve b = m− 1 + 2αm−1 for any positive m and α.
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Proof. Straightforward computations show that equation (3.10) follows immediately
from the transformation under the change of variables (3.3).

In order to prove the comparison property in the statement of the lemma, we only
need to show that both curves do not have common points. Then, the power series
expansion at infinity, given in the statement, implies the desired order.

The common points of both curves are characterized by the roots of the polynomial
obtained substituting b = m− 1 + 2αm−1 in (3.10),

q(m) :=8m7 + (16α+ 12)m6 + (24α+ 6)m5 +
(
−12α + 1 + 48α2

)
m4

− 8α (3α + 1)m3 + 24α2 (2α + 1)m2 − 32mα3 + 16α4.

The computation of its Sturm sequence evaluated at 0 and at +∞ gives us the con-
figurations of signs [+,−,−,−,+,+,−,−] and [+,+,+,−,−,+,−,−], respectively, for
any positive α. Hence, q(m) does not have any positive root, and the curves of the
statement have no common points for any positives m and α.

Proof of Theorem 3.1. From Lemma 3.7 the upper bound B =M − 1+αM−2 is trans-
formed to b =

√
n−1+2α(

√
n)−1+O ((

√
n)−2) . Therefore, by Proposition 3.5, we have

that for every γ = 2α > 0 there exists nγ ∈ R
+ such that for every n > nγ ,

√
n− 1 < b∗(n) <

√
n− 1 +

γ√
n
.

Then, as we have that function b∗(n) is analytic respect to
√
n, see [GGT10], we can

assure, for n large enough, that

b∗(n) =
√
n− 1 +O

(
n−1
)
.

That is the expression given in the statement.

3.5 Global bounds for n in R
+

This section is devoted to prove and analyze the bounds given in the statement of
Theorem 3.2. First of all, we include the proof of Theorem 3.2. Then, as a corollary of
it, we provide a rational expression for an upper bound of b∗(n). We conclude with an
analysis of the maximum error committed in the location of b∗(n).

Proof of Theorem 3.2. Let Γd(n) and Γu(n) be the translation to small parameters of

functions Γ̃d(M) and Γ̃u(M) given in Propositions 3.3 and 3.4, respectively. It follows
that Γd connects with the curve b =

√
n − 1 at n = nd, which can be obtained by

squaring the positive root of the polynomial of the statement. That is the translated
characterization of Md in Proposition 3.3.

By Lemma 3.7 and Remark 3.6(b), the curve b =
√
n− 1 + 51/(20

√
n) is an upper

bound of b = b∗(n) for n > n′
u. Where n′

u is obtained by squaring the positive root of
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the polynomial

50331648000000000m17 − 243269632000000000m16

− 2129238425600000000m15 − 7211878973440000000m14

+ 111668173209600000000m13 + 264470739812352000000m12

− 130466347912396800000m11 − 9197101546824499200000m10

− 6302900112535388160000m9 + 6325778059290335232000m8

+ 2289016716587559936000m7− 46572462911915224012800m6

+ 8515659923453703340800m5− 4901243812728523876800m4

− 45716337137659722706080m3 + 6052551315638078774880m2

− 8203038242422388605200m− 7953608649353382254007,

obtained translating the polynomial in Remark 3.6(b) to the small parameters and
introducing the auxiliary parameter m =

√
n. That is n ≈ (6.9323668)2 ≈ 48.05770774.

However, this curve does not satisfy the condition of generating a global continuous
upper bound. Because this curve cuts b = Γu(n) for a value of n lower than n′

u, the
starting point where we can assure that the curve is an upper bound. This situation is
shown in Figure 3.12.

MMα

B̃

α
M

α′

M

Γ̃u

Figure 3.12 Connection of the piecewise upper bound, bu(n)

In fact, for any α > 51/40, b =
√
n− 1+2α/

√
n is also an upper bound of b = b∗(n)

when n > n′
u. The value of α such that the curve b =

√
n− 1 + 2α/

√
n cuts b = Γu(n)

for n = n′
u is 1.913537947, approximately. For simplicity, we can finish the proof fixing

α = 2, for example. Thus we obtain the upper bound and the corresponding value of
nu given in the statement.

The global bounds included in Theorem 3.2 have been provided joining several local
upper bounds. And they have motivate the seek of rational candidates, as simple as
possible, to be also global upper bounds of the bifurcation curve b = b∗(n).

Corollary 3.8. There exist n0, n∞ positive real numbers such that for any 0 < n < n0

or n∞ < n < +∞,

b∗(n) < br(n) :=

√
n(5 + 2

√
n)

7 + 2
√
n

.
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Proof. It is easy to check that

br(n) =
√
n− 1 +

7

2
√
n
+O

(
n−1
)
,

when n goes to +∞. Therefore, there exist γ > 0 and nγ > 0 such that for n > nγ ,

√
n− 1 +

γ√
n
< br(n).

Then, by Theorem 3.1, we have proved the statement up to infinity
When n is close to 0 the statement follows using a similar argument since, for n

small enough,

br(n) =
5

7
n1/2 +

4

49
n+O

(
n3/2

)
,

the definition of Γu(n) in Theorem 3.2 says that for n small enough

Γu(n) =
5

7
n1/2 +

72

2401
n+O

(
n3/2

)
,

and 4/49 > 72/2401.

M

B̃

br(n)

Figure 3.13 Graphical representation of the rational upper bound given in Corollary 3.8

Remark 3.9. The function provided in Corollary 3.8 is motivated by the knowledge of
the Bogdanov-Takens curve at its limits of definition, gathering [GGT10] and the results
contained in this chapter. It has just been designed fixing a first order approach to the
origin and infinity as Bogdanov-Takens’ curve does. This idea can also be considered
for higher order approximations in order to obtain a family of rational candidates to be
upper bounds. But we cannot assure that all these functions are global upper bounds of
b∗(n).

The main problem for the rational curve br(n) of Corollary 3.8, for example, is that
our proof does not work for the full real line. But it is an upper bound as it can graphically
be seen in Figures 3.13 or 3.14.
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n

b
bu(n)

bd(n)

br(n)

Figure 3.14 The bounds given in Theorem 3.2 and Corollary 3.8

The lower and upper bounds given in Theorem 3.2 and Corollary 3.8 are represented
in Figure 3.14. The knowledge of the maximum difference between this curves motivates
the following proposition.

Proposition 3.10. For any n > 0 we have

∣∣∣∣
bu(n) + bd(n)

2
− b∗(n)

∣∣∣∣ <
1

6
.

Proof. As far as bd(n) < b∗(n) < bu(n), for every n > 0, we have

max
0<n

∣∣∣∣
bu(n) + bd(n)

2
− b∗(n)

∣∣∣∣ < max
0<n

∣∣∣∣
bu(n)− bd(n)

2

∣∣∣∣.

Let us consider the capital parameters (M,B) and (M, B̃), introduced in Section 3.2.

Let us denote by Bu(M), Bd(M), B̃u(M) and B̃d(M) the bounds of B = B∗(M) and

B̃ = B̃∗(M) obtained translating to capital parameters the ones given in Theorem 3.2,
bu(n) and bd(n) respectively. It follows that

max
0<n

∣∣∣∣
bu(n)− bd(n)

2

∣∣∣∣ = max
0<M

|Bu(M)− Bd(M)| = max
0<M

∣∣∣∣∣
B̃u(M)− B̃d(M)

M

∣∣∣∣∣.

In the rescaled capital parameter space, (M, B̃), the graph of the above differences is
plotted in Figure 3.15.
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1

6

2 M

B̃

Figure 3.15 Numerical representation of
(
B̃u(M)− B̃d(M)

)
/M

1

4

50
n

b

Figure 3.16 Differences between the rational curve given in Corollary 3.8
and the numerical approximation of b∗(n)

Figure 3.16 shows a numerical representation of the distance between br(n), the
rational upper bound, and b∗(n). There are some labels included in the axes of the
graphic in order to give some ideas on the size of the maximum distance.

Finally, we summarize the results of this chapter. We have constructed several upper
and lower bounds of b∗(n), each one with its own interval validity range. As the functions
in Theorem 3.2 are global upper bounds, their validity range is R+. We have included in
Table 3.1 the approximative values of their connection points in both capital and small
parameters.

M n

bd(n), nd 2.05965201805 2.43251441741
bu(n), nu 8.47598802427 60.0356036188

Table 3.1: Connection points

Table 3.2 contains the extrema of the range, different from 0 or ∞, of the main
functions obtained along the chapter. The values are expressed, at the same time, in
the capital parameter space, M , and in the small parameter case, n, in order to help
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the comprehension of the text. To simplify notation, the functions
√
n − 1 + α(

√
n)−1

have been denoted by Γ∞(n).

M n

Γu(M) for the cubic, Mu 2.03679545744 1.61045872621
Γu(M) for the quartic, Mu 30.3080508889 859.928861348
Γ∞(M) for α = 51/40 7.57865018594 48.0577077492
br(n) near the origin, n0 3.57286231485 8.26191928192
br(n) near the infinity, n∞ 7.70499194495 49.8543430782

Table 3.2: Validity range of the bounds

Appendix. Explicit expressions of the functions that

appear in Theorem 3.2

This appendix is devoted to present the functions that appear in Theorem 3.2 and
Proposition 3.4, due to their extension.

The upper bound b = Γu(n) satisfies a polynomial in the coordinates (n, b) of degree
50 with 488 monomials. But we do not show its expression due to its extension, more
than six pages. But using m =

√
n, b = Γu(n) in the coordinates (m, b), satisfies the

polynomial of degree 25 with 257 monomials given by

6220800m25+118350720m24b+1048204800m23b2+5702607360m22b3

+21110284800m21b4+55300734720m20b5+101692039680m19b6

+118963468800m18b7+42514813440m17b8−146429078400m16b9

−349219537920m15b10−390209633280m14b11−182847974400m13b12

+150497948160m12b13+371723904000m11b14+349219537920m10b15

+159138017280m9b16−26815536000m8b17−107002114560m7b18

−95081817600m6b19−52546475520m5b20−20244660480m4b21

−5502297600m3b22−1015856640m2b23−115084800mb24−6065280b25

+1479409920m24+25447898304m23b+202329253728m22b2+979317796608m21b3

+3186916616736m20b4+7208345545920m19b5+11072259099936m18b6

+9820774357632m17b7−414106289568m16b8−15666786170496m15b9

−24027019191360m14b10−16663536470016m13b11+1347045380928m12b12

+15195214770048m11b13+15632837061696m10b14+6653243923200m9b15

−1880901186624m8b16−4811908120128m7b17−3610247316768m6b18

−1620648850176m5b19−463010329440m4b20−76596134976m3b21

−4020877152m2b22+808507008mb23+115420896b24+84621220992m23
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+1288340194176m22b+8943457635072m21b2+37069000720416m20b3

+100161191495808m19b4+177344384238144m18b5+181594323823104m17b6

+19275968341152m16b7−262450460047104m15b8−435356383758336m14b9

−305743750018560m13b10+35124339871296m12b11+285911704675584m11b12

+269090901263232m10b13+86875012859904m9b14−59520056347584m8b15

−90139294406016m7b16−54946790640000m6b17−19293792226560m5b18

−3592251065952m4b19−69102271872m3b20+117226391616m2b21

+21951530496mb22+1185062688b23+2414194507008m22+31884131336256m21b

+188101079408928m20b2+641511875796384m19b3+1342298764700832m18b4

+1568475643682592m17b5+264611549651904m16b6−2378121008711040m15b7

−4093915225074048m14b8−2723647705357824m13b9+774728156299968m12b10

+3089356510209216m11b11+2490135914265792m10b12+430735862300352m9b13

−886533985695744m8b14−921728907278208m7b15−446086120265856m6b16

−112848983025984m5b17−7058442069216m4b18+4180301322912m3b19

+1226178837408m2b20+129224460576mb21+4880168256b22+42190814634240m21

+470451286136448m20b+2267586703804992m19b2+5947184281170944m18b3

+8196404089444864m17b4+1961477154569152m16b5−13489230549722880m15b6

−24086083022740480m14b7−14563176105958912m13b8+8399916239310336m12b9

+21304373361561472m11b10+13965013282195456m10b11−634889482612736m9b12

−7494193465936256m8b13−5732203990987520m7b14−2103486848228352m6b15

−301815126950656m5b16+54945819748736m4b17+30793636929600m3b18

+5201438891008m2b19+404622489088mb20+11807514560b21+495876937655040m20

+4487513887926976m19b+16545974125913120m18b2+28705605197816768m17b3

+10361321113019104m16b4−51428818413182080m15b5−97250974110823168m14b6

−51062683016071808m13b7+53909569367995904m12b8+99763713113532672m11b9

+48658371413630528m10b10−20265216018078464m9b11−39701433355521856m8b12

−22523461498507136m7b13−5608349848081408m6b14+33707576360576m5b15

+391024139706880m4b16+103292053239872m3b17+13074188960928m2b18

+818367701824mb19+17278284128b20+4104092821667840m19

+28312843969412224m18b+69819279415142400m17b2+41105786416460832m16b3

−135727881844667520m15b4−285155185291330176m14b5−122657032814469248m13b6

+229441151090534400m12b7+328573475038163328m11b8+94513852166579840m10b9

−126102088861397632m9b10−136959392539723968m8b11−54632796990975360m7b12

−6349251404392320m6b13+2446689031102080m5b14+1104877347606784m4b15
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+212390401970304m3b16+22515377821440m2b17+1083685497984mb18

+12749065120b19+24248170909005568m18+113731913419226304m17b

+119958794637441760m16b2−243701994794514656m15b3−631262639455112736m14b4

−208889256536238688m13b5+689780650186495712m12b6+771640395849770144m11b7

+20677092181085792m10b8−441095940107501920m9b9−302939716318727136m8b10

−70796915314736288m7b11+5373818838661024m6b12+6504196546318560m5b13

+1838275684562336m4b14+308765642213600m3b15+27475035662624m2b16

+760457061920mb17+3462524032b18+100457345029900032m17

+240725155697962496m16b−258867884174916288m15b2−1080119137649827136m14b3

−274544472903095552m13b4+1521072514023740544m12b5

+1276250735468781760m11b6−451649186474963392m10b7

−965591142884274816m9b8−385192534878103296m8b9−16903608672155968m7b10

+22642961413505856m6b11+8440201658162176m5b12+2095708173335680m4b13

+352768753056576m3b14+18661462897600m2b15+199493090432mb16

+275361200182773760m16−24274497847361664m15b−1426810749661406080m14b2

−355729778198722944m13b3+2527873309894242432m12b4

+1373958026708376320m11b5−1425291112416852480m10b6

−1253415774351883008m9b7−172100052464404224m8b8

+61296882134398336m7b9+25865269037062272m6b10

+5095684448861312m5b11+2266577973638784m4b12+238671809538048m3b13

+4772158151936m2b14+429715428082300800m15−1367619432428810240m14b

−616381816261551232m13b2+3315854533454275840m12b3+515888813505861376m11b4

−2188921705654174720m10b5−654543783718337792m9b6+43418085599272448m8b7

+118533112492607872m7b8−6216783207470080m6b9+4875395092361600m5b10

+1632837097817344m4b11+60385667667968m3b12+154827387518464000m14

−2129589491551820800m13b+4643874344694302720m12b2

−2336798290309246976m11b3−328070062174093312m10b4−609415804072036352m9b5

+349813351851782144m8b6+17053843181522944m7b7−15357613659959296m6b8

+5110418770789376m5b9+421514883500032m4b10−523689297294080000m13

+1495937764656128000m12b−1096022762364108800m11b2+131072400717946880m10b3

−311704372471083008m9b4+298824261287272448m8b5−60486934990241792m7b6

+1064348487114752m6b7+1483249690617856m5b8−33072590592000000m12

+134603494502400000m11b−170202048768000000m10b2+38839430062080000m9b3

+50705558378496000m8b4−20443669596241920m7b5+1602400672825344m6b6

−597196800000000m11+3344302080000000m10b−7023034368000000m9b2

+6554832076800000m8b3−2294191226880000m7b4.
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In the coordinates (M,B), the function B = Γ̃u(M) satisfies the polynomial of degree
14 and 72 monomials with expression

−383292M14−1910439M13B−3223665M12B2−314748M11B3+5603940M10B4

+5541141M9B5−2323401M8B6−7154664M7B7−3397092M6B8+2020587M5B9

+3218997M4B10+1742052M3B11+499644M2B12+76071MB13+4869B14

−500742M13−787023M12B+4493070M11B2+14795091M10B3+11566572M9B4

−11585754M8B5−24443044M7B6−8307134M6B7+12772706M5B8

+16289545M4B9+8662166M3B10+2509195M2B11+388536MB12+25344B13

−174798M12+1420524M11B+7005177M10B2+4483350M9B3−16943919M8B4

−28501282M7B5−3691132M6B6+27741570M5B7+31479694M4B8+16742014M3B9

+4938651M2B10+781536MB11+52119B12−48600M11+855846M10B+404136M9B2

−8473533M8B3−14178838M7B4+2903273M6B5+26313718M5B6+28894211M4B7

+15714446M3B8+4769205M2B9+775554MB10+53046B11+226800M9B

−1138914M8B2−2990748M7B3+2116351M6B4+10975549M5B5

+12542602M4B6+7156446M3B7+2261723M2B8+380289MB9+26766B10

−264600M7B2+218442M6B3+1575182M5B4+2042992M4B5+1262428M3B6

+421554M2B7+73806MB8+5364B9.

For the lower bound in the coordinates (n, b), the function b = Γd(n) satisfies the
polynomial of degree 18 with 74 monomials given by

26244b18−282852nb16+492804b17+1318032n2b14−5279904nb15+3542049b16

−3510864n3b12+24093936n2b13−59646456nb14+12332628b15+5919480n4b10

−61282656n3b11+284874732n2b12−396688860nb13+21865626b14−6572664n5b8

+95304600n4b9−569429352n3b10+2244693060n2b11−1556797266nb12+18664224b13

+4817232n6b6−93070944n5b7+511250454n4b8−4198843116n3b9+12862236618n2b10

−3613760064nb11+6056521b12−2251152n7b4+55882224n6b5−158931720n5b6

+962744508n4b7−22001723442n3b8+51550980192n2b9−4831263702nb10+609444n8b2

−18903456n7b3−16136820n6b4+3431184300n5b5−7185849282n4b6−76306790784n3b7

+139214319207n2b8−3390790528nb9−72900n9+2763396n8b−8845848n7b2

−1884890196n6b3+7787631546n5b4−39218570784n4b5−180864465140n3b6

+244658871808n2b7−959415296nb8+13322961n8−170532324n7b−7508602530n6b2

−27656677440n5b3−65653161849n4b4−288902018304n3b5+265576943616n2b6

−764646966n7−5166608736n6b−73099403862n5b2−30984045056n4b3

−294849320960n3b4+159664046080n2b5+11621481961n6−2593704832n5b

+46422134784n4b2−167754334208n3b3+40282095616n2b4+17934515200n5

+44027084800n4b−41104179200n3b2+10485760000n4.
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Using the auxiliary variable m =
√
n, in the coordinates (m, b), the polynomial has

degree 9 with 42 monomials and is given by

−270m9−1998m8b−6264m7b2−10584m6b3−9828m5b4−3780m4b5+1512m3b6

+2376m2b7+1026mb8+162b9−3591m8−21456m7b−51804m6b2−61344m5b3

−29250m4b4+10224m3b5+19764m2b6+9216mb7+1521b8+792m7−33504m6b

−119160m5b2−121968m4b3+5928m3b4+77184m2b5+37944mb6+3792b7

+111661m6+1950m5b−290733m4b2−71260m3b3+181635m2b4+74334mb5

+2461b6+70240m5+18304m4b−424896m3b2+334720m2b3+44128mb4

+102400m4−286720m3b+200704m2b2.

The size increases in (n, b) instead of (m, b) because the square root disappears squaring.

Finally, in the coordinates (M,B), the lower bound B = Γ̃d(M) satisfies the quintic
polynomial

− 18M5 − 51M4B + 6M3B2 + 78M2B3 + 48MB4 + 9B5 − 24M4 + 24M3B

+ 138M2B2 + 90MB3 + 18B4 + 56M2B + 42MB2 + 9B3.

Clearly, the most useful coordinates are (M,B). Because the expressions involved in
all the results of this chapter are shorter.
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[PGTT12] S. Pérez-González, J. Torregrosa, and P. J. Torres. Existence and uniqueness
of limit cycles for generalized ϕ-laplacian liénard equations. Prepublicacions
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